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Abstract 

Plasminogen activator inhibitor-1 (PAI-1), with its cofactor vitronectin (VN), 

controls the rate of plasmin-mediated fibrin breakdown in blood clots by inhibiting tissue-

plasminogen activator (tPA) and urokinase-plasminogen activator (uPA). The activity of 

PAI-1 is attributed to its reactive center loop (RCL), which is solvent-exposed in an 

active conformation, but inserts as an additional strand into its central β [beta]-sheet 

during transition to a latent state and during inhibition. VN slows the latency transition, 

and the rate at which PAI-1 inhibits the plasminogen activators (PAs) also differs. 

However, the steps during the latency transition, mechanism of VN stabilization, and 

basis for inhibitory rate differences are unclear, and all involve the RCL. To address 

these issues, this study combines computational methods with cysteine-scanning 

mutagenesis of the RCL for fluorescence and electron paramagnetic resonance (EPR) 

spectroscopy to investigate changes in the RCL due to interactions with these ligands. 

Homology modeling of the RCL indicates sampling of a limited energy-conformation 

landscape for this region. Fluorescence investigation of the latency transition suggest 

that RCL detachment to assume the latent conformation occurs within the first 10 

minutes of the process, which typically has a half-life of about 1 hour. Equilibrium-

binding studies indicate that VN, its N-terminal somatomedin B (SMB) domain, and a 

longer truncation involving an intrinsically disordered domain (SMB-IDD) increase the 

solvent exposure of the RCL in stabilizing PAI-1. Studies with active site-blocked PAs 

reveal that both dock at the RCL, but rest differently on its top, employing distinct 

exosite interactions and mobility constraints on the RCL that likely effect the kinetics of 

its interaction with PAI-1. Thereby, this study provides detailed structural information on 
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the PAI-1 RCL, and new insights into the latency process and interaction with PAs. 

Such information is valuable in the development of inhibitors specific for the interaction 

of PAI-1 with either PA, and in targeting this biomarker in diseases states caused by the 

dysregulation of PAI-1. Overall, the results from this work reveal that ligand interactions 

fine-tune the activity of PAI-1 by affecting the conformation and dynamics of the RCL 

from its position as a solvent-exposed loop to an inserted β [beta]-strand.  
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Chapter 1 Life of PAI-1: Physiological Roles, Regulation, & Paradoxes  

1.1. Introduction 

1.1.a. PAI-1 in Human Physiology 

Biological systems of serine proteases and serine protease inhibitors (serpins) 

reach far into each kingdom of life, including Archae, Bacteria, and Eukarya. These 

systems sustain diverse processes, such as digestion, inflammation, and blood 

homoeostasis (i.e. hemostasis) [1]. The step-wise activation of serine proteases from 

their zymogen forms creates potentially dangerous proteolytic cascades that must be 

controlled spatially and temporally by serpins. This ensures their proper function and 

prevents their escape [2]. Plasminogen activator inhibitor-1 (PAI-1), discovered in the 

1970s and found only in vertebrates ranging from the cold-blooded zebrafish to the 

warm-blooded humans, is one such serpin of great biological importance. Of the 36 

human serpins, PAI-1 is a plasma & tissue-associated serpin that is a multi-specific [3] 

inhibitor of tissue- and urokinase-plasminogen activators (tPA & uPA) with anti-

fibrinolytic [4], pro- and anti-adhesive [5, 6], and pro-inflammatory properties [7]. PAI-1 

balances hemostasis by regulating blood clot formation (i.e. coagulation) via thrombin 

cleavage of fibrinogen, and breakdown of fibrin clots (i.e. fibrinolysis) by plasmin [4] (Fig. 

1.1). Consequently, too much PAI-1 can lead to thrombotic or fibrotic states in which 

excessive fibrin accumulates, potentially blocking blood vessels and disrupting oxygen 

supply to tissues, whereas too little PAI-1 can lead to hyperfibrinolytic and mild bleeding 

states [8, 9]. In the extracellular matrix (ECM), PAI-1 is further involved in regulating cell 

adhesion and migration, and thereby tissue remodeling, by interacting with its 

physiological cofactor, vitronectin (VN) [10].  
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Figure 1.1 PAI-1 Regulates Hemostasis by Inhibiting Plasminogen Activators. In 
response to injury and/or other intrinsic/extrinsic factors, the coagulation cascade is 
activated, which involves the activation of inactive zymogen forms of serine proteases 
by cleavage, and subsequent activation of downstream serine proteases. The reaction 
culminates in the activation of prothrombin to thrombin, which then cleaves the soluble 
fibrinogen to insoluble fibrin that deposits at the site of injury. During fibrinolysis, plasmin 
is activated from plasminogen by plasminogen activators (PAs, i.e. tPA and uPA) to 
cleave fibrin, forming fibrin degradation produces and resolving the clot. PAI-1 slows 
fibrinolysis by inhibiting PAs. Its cofactor, vitronectin (VN), stabilizes PAI-1 and localizes 
it to the clot site.  
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Plasminogen activation plays a significant role in thrombosis [11], ischemic and 

hemorrhagic stroke [12], and cancer metastasis [13-19] by degradation of basement 

membranes and invasion into the bloodstream. PAI-1 may appropriately be expected to 

halt these effects by inhibiting plasminogen activators (PAs), but, paradoxically [20-23], 

contributes to the severity of cancers, presumably via competing with cell surface 

receptors (e.g. integrins, uPA receptor) for its cofactor. Thereby, PAI-1 is increasingly 

being used as a poor prognostic biomarker in these situations and is a desired target by 

pharmaceutical means.  

Additionally, the dysregulation of PAI-1 has multiple physiological consequences. 

Increased circulating levels of PAI-1 are associated with the greater risk of 

cardiovascular disease (CVD) [24-28] and the hardening of blood vessels (i.e. 

atherosclerosis) [29], which is characterized by scarring and inflammation, and 

exacerbated by cholesterol deposition. PAI-1 is also involved in inflammatory processes, 

including the systemic inflammatory response syndrome (or sepsis) [30, 31] and the 

autoimmune rheumatoid arthritis of the joints [32], by inhibiting efferocytosis (i.e. 

phagocytosis) of apoptotic neutrophils [7], The increased expression of PAI-1 in the 

formation of new blood vessels (i.e. angiogenesis) [33] further facilitates metastasis in 

certain cancers [17, 20, 34]. In adipose tissue, PAI-1 acts as a signaling molecule to 

affect the metabolic syndrome [35-37], which is characterized by obesity, dyslipidemia, 

hypertension (high blood pressure), and diabetes mellitus, the latter which is commonly 

caused by insulin sensitivity or resistance resulting in high blood glucose levels. In the 

brain, PAI-1, with tPA, regulates the circadian clock [38] responsible for rhythmic 

biological processes, including sleep and hormone production. PAI-1 is also implicated 
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in hair loss (i.e. alopecia) [39]. Due to its diverse roles, the tight regulation of PAI-1 

expression is required for its proper function in these physiological processes.   

1.1.b. PAI-1 Genetics & Signal Transduction 

In humans, the PAI-1 gene is located on the q arm of chromosome 7 [40]. 

Deletion of this gene results in viable individuals that develop normally, but with the 

hyperfibrinolytic and mild bleeding states previously mentioned [8], while deletion of this 

arm of chromosome 7 causes a genetic disorder called William’s syndrome, which is 

characterized by elfin features and an unusual trust in strangers [41]. The PAI-1 gene 

codes for a 402 amino acid protein containing a signal sequence with two possible 

cleavage sites, resulting in a ~43 kilodalton (kDa) polypeptide with 379 or 381 residues 

(the residue numbering used this dissertation is based on the shorter polypeptide). 

Upon removal of the signal sequence, PAI-1 is secreted and circulates in the plasma at 

concentrations of 5 - 20 ng/ml [30]. PAI-1 is primarily synthesized by the liver 

hepatocytes [42], but is also produced and secreted by platelets, adipocytes, and during 

acute-phase responses, by endothelial cells lining blood vessels and smooth muscle 

cells forming their walls.   

A 4G/5G polymorphism in the regulatory region upstream of the PAI-1 promoter 

(Fig. 1.2), in which 4 or 5 guanines provide a binding site for a transcriptional activator 

or repressor, respectively, results in the increased and decreased expression of PAI-1, 

respectively [40]. The latter contributes to the role of PAI-1 in CVD [27]. The regulatory 

region also contains response elements for glucose and the very-low-density lipoprotein 

(VLDL). Several signaling pathways and molecular transducers further regulate PAI-1 

expression. Via the insulin receptor, a receptor tyrosine kinase, insulin signals through 
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Figure 1.2 Multiple Signaling Pathways Are Involved in PAI-1 Expression. The 
expression of PAI-1 is regulated by many factors, including cytokines (TGF-β, TGF-α, 
TNF-β), nucleotides (UTP), peptides (ATII), cholesterol, and glucose homeostasis 
molecules (insulin, VLDL), via signaling through their respective receptors. Possible 
downstream signaling molecules and the organization of the PAI-1 gene are also shown. 
The regulatory region of the PAI-1 gene includes a 4G/5G polymorphic region, and 
response elements (RE) for glucose and VLDL. 
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the phosphotidylinoside-3-kinase (PI3K) & Ras/ERK pathways to induce PAI-1 

expression [43]. The effects of glucose, VLDL, and insulin on its expression connect 

PAI-1 to the metabolic syndrome [25, 35, 36, 43-45]. Small molecules and peptides, 

including the nucleotide uridine triphosphate and angiotensin II, respectively, bind to 

their G-protein-coupled receptors, the purinergic (P2Y) and AT1 receptor, initiating the 

cyclic adenosine monophosphate and phospholipase C signaling pathways to stimulate 

PAI-1 expression [46-49]. PAI-1 expression is also increased by signaling resulting from 

the binding of the pro-inflammatory cytokines, transforming growth factor-α and -β 

(TGF-α, TGF-β) [50, 51], tumor necrosis factor-α (TNF-α) [52], and interleukin-1 (IL-1) to 

their respective receptors [53]. When present, lipopolysaccharide, a common 

component of the outer membrane of Gram-negative bacteria, also induces PAI-1 

expression [54] and contributes to PAI-1 in sepsis. In addition to its expression by these 

molecules and signaling pathways, the function of PAI-1 critically depends on its 

mechanism of action.  

1.1.c. Thermodynamics & Mechanisms: How Serine Proteases & Serpins Work  

Like other serpin-protease pairs, PAI-1 inhibits PAs by mimicking their natural 

substrates and allowing initial processing by the protease. Serine proteases catalyze 

the hydrolysis of peptide bonds (Fig 1.3) using an acid-base mechanism [1]. Despite the 

thermodynamics favoring hydrolysis, the planar and double-bond character of the 

peptide bond connecting amino acids in proteins renders it kinetically stable [55]. This 

feature necessitates the use of enzymes (proteases) to break proteins into their 

constituent parts (and ultimately amino acids) for removal from the body or recycling for 

future use and incorporation into newly synthesized proteins. The mechanism by which  
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Figure 1.3 Serine Proteases Catalyze the Hydrolysis of Peptide Bonds. Hydrolysis 
occurs in two steps including acylation (panels A-C) and deacylation (panels D-F). The 
catalytic triad' serine nucleophile, histidine base, and aspartate residues, as well as 
peptide bond substrate (orange) and water (blue), are depicted. The oxyanion hole is 
represented in panels B & E.  Arrows indicate the flow of electrons.  
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serine proteases perform this function involves two steps that include acylation via a 

covalent intermediate followed by deacylation. Serine proteases employ a catalytic triad 

consisting of a serine nucleophile, a histidine base, and an aspartate residue to help 

orient the base in its cleavage of peptide bonds. In this mechanism, the serine 

nucleophile is activated by deprotonation by the adjacent histidine base (Fig. 1.3 A). 

The resulting alkoxide can then attack an incoming carbonyl carbon, leading to the 

formation of an unstable tetrahedral intermediate, and transition state formation is 

stabilized by donation of backbone hydrogen bonds from the oxyanion hole (Fig. 1.3 B). 

The tetrahedral intermediate, bearing a formal negative charge on the carbonyl oxygen 

collapses, resulting in cleavage of the peptide bond and consequent release an amide 

product and acylated enzyme (Fig 1.3 C). To regenerate the enzyme, deacylation 

occurs by water entering the active site, where it functions as a nucleophile (as serine 

does in the first half of the reaction), and is deprotonated, forming a hydroxyl that 

attacks the carbonyl carbon (Fig. 1.3 D). A tetrahedral intermediate stabilized by the 

oxyanion hole again forms and collapses (Fig.1.3 E), releasing a carboxylic acid 

product and regenerating the enzyme (Fig 1.3 F).  

PAI-1, like other serpins, employs a conformation-based suicide mechanism [4, 

56] to inhibit its target serine proteases. This mechanism incorporates concerted 

conformational changes [57] involving communication between the three β-sheets (sA, 

sB, & sC) and nine α-helices (hA-hI) that comprise the folding core of the protein (Fig. 

1.4 - 1.5). Foremost, the reactive center loop (RCL), containing the pseudo-substrate 

scissile bond (P1-P1’) recognized by cognate serine proteases, stretches over sB and 

sC, but is tethered close to the serpin body [58] in the inhibitor-active conformation.  
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Figure 1.4 Metastable Structure of PAI-1 with Important Functional Regions 
Highlighted. The active, metastable structure of PAI-1 (Protein data bank, PDB 
3Q02;[59]) is shown with secondary structure elements and important functional regions 
in protease inhibition and self-regulation by latency transition indicated, including the 
RCL (red), the gate (green), the shutter (cyan), and the flexible joint (orange) regions. 
Residues adjacent to the scissile bond (P1-P1’) are specified by their position P and 
distance from this point, where C-terminal residues are indicated by a prime (‘). 
Rendering constructed using the graphics program Visual Molecular Dynamics (VMD 
1.9). 
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Figure 1.5 PAI-1 Primary Sequence & Secondary Structure. The structure of PAI-1 
consists of nine α-helices (hA-hI) and three β-sheets, including a five- to six-stranded 
sheet A (s1A - s6A; RCL is s4A in latent), a six-stranded sheet B (s1B - s6B), & a four-
stranded sheet C (s1C - s4C). Helices are indicated by cylinders and β-strands by 
arrows. The unresolved residues of the RCL are in italics, and scissile bond residues in 
bold italics. Functional regions are colored as in Fig. 1.5, and secondary structure 
assignments are based on the metastable crystal structure of PAI-1 (3Q02). 
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Residues of the RCL are designated by the position P and distance from the scissile 

bond, with C-terminal residues indicated by a prime (‘). Other important regions for PAI-

1 function include the hinge (P17-P14, but defined here as P14-P11), the gate (s3C, 

s4C, s3B, and hG), the shutter (s3A/s5A), and the flexible joint regions (s1A, s2A, hD, 

and hF), which are named according to their role in conformational transitions (as 

described below). Despite the ~25% sequence homology among its family members, 

serpins share a high degree of conservation in this tertiary fold. 

 With the RCL exposed, PAI-1, akin to other serpins, is kinetically trapped in a 

metastable fold that is required for successful inhibition [60]. Unlike most of its family 

members, the RCL of PAI-1 is on a timed switch and spontaneously (ΔG ~ -9 kcal/mol) 

[61] inserts as the fourth strand into its central β-sheet A (s4A) without proteolytic 

cleavage, giving rise to the inactive latent conformation (c.f. Fig. 1.7). This latent 

transition occurs under physiological conditions (37°C, pH 7.4) with a half-life of ~1-2 

hrs and represents the final product of serpin folding [62]. In comparison, only 10% of 

the serpin, antithrombin III (ATIII), converts to its latent form after 10 hrs at 37°C [58]. 

Yet, RCL insertion during latency is distinct from its insertion during inhibition, with the 

former several magnitudes slower than the latter [63] and entropically-driven [64]. 

Accordingly, PAI-1 rapidly inhibits PAs at rates approaching the diffusion limit (10-6-10-

7M-1s-1) [65]. In the latter case, cleavage of the scissile bond is coupled to the 

enthalpically-driven [64], fast insertion of the RCL as s4A [66, 67], leading to a 70 Å 

“North to South pole” translocation [68] followed by “crushing” of the enzyme [69] 

against the serpin scaffold (Fig. 1.6). This sequence of events leads to kinetic trapping 

of the protease at the acyl enzyme stage of its mechanism. If insertion of the RCL is 
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delayed, e.g. by mutation of PAI-1 to a canonical serpin consensus residue [70-72], 

lowering temperature [73] and pH [74-76], or by the presence of non-ionic solvents [77], 

deacylation of the serpin-attached acyl enzyme occurs, releasing the protease. This 

causes the cleaved PAI-1 to behave as a substrate for the protease instead of an 

inhibitor [69, 78]. Due to this behavior, the serpin mechanism is generally considered to 

be branched between inhibitor and substrate pathways that share a common path until 

the point of insertion [69, 78], in contrast to the initial pathway model in which PAI-1 is 

predestined to be either an inhibitor or substrate [79].   

 The rates that define the interaction of PAI-1 and PAs during inhibition (Fig. 1.6) 

include the rates of noncovalent Michaelis complex formation (kassoc, or k1), cleavage 

and acylation (kacylation, or k2), displacement of the P’-side of the serpin RCL from the 

protease active site, which is required to prevent reversible acylation, and RCL insertion 

to form of the final covalent complex (ki) or cleaved serpin hydrolyzed to release the free 

protease (ks). Since k1 is fast, the second-order rate of inhibition (kinhib) is limited by the 

reversible rates of acylation and loop-displacement, and irreversible rates of RCL 

insertion [limiting rate of insertion, klim = (k2k3*)/(k2 + k-1 + k3*) where k3* = k3(ki + ks)/(k-3 

+ ki + ks)] [80]. These rates differ for PAI-1 with PAs and depend on their conformational 

state, presence of cofactors (Table 1.1), and exosite interactions, defined as 

interactions outside the serpin P4-P3’ residues and the protease active-site (S4-S3’ 

specificity pockets) [81]. In general, native PAI-1 inhibits the two-chain form of tPA (tc-

tPA) faster than uPA and the single-chain form of tPA (sc-tPA) (i.e. kinhib tc-tPA > uPA > 

sc-tPA), whereas uPA is inhibited faster by denatured and refolded PAI-1 (kinhib uPA > 

tc-tPA > sc-tPA). Also, while VN increases kinhib of refolded PAI-1 with both PAs, it  
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Figure 1.6 Branched Pathway of the Serpin Inhibitory Mechanism. Serpins (coloring 
scheme for functional regions conserved from Fig.1.5; scissile bond as red dot) use a 
suicide mechanism to inhibit serine proteases (grey) via the formation of a noncovalent 
Michaelis complex, the covalent acyl-enzyme, the loop-displaced enzyme, and the final, 
stable complex, which, if deacylates, forms a cleaved, inactive serpin that has then 
behaved as a substrate. Kinetics of individual interactions are defined by the indicated 
rate constants (k).  

 

 

 

 

 

 

 

 

 

 

+ 

+ 

Serine protease 

Serpin 
Michaelis  
Complex 

Loop-bound  
Acyl-enzyme 

Loop-displaced  
Acyl-enzyme 

Cleaved Serpin (substrate) 

Stable Suicide 
 Complex 

k1 

k-1 

k2 

k-2 

k3 

k-3 

ki 

ks 



	   14	  

Table 1.1 Effects of Conformational State & Presence of Cofactor on PAI-1 
Inhibition of Plasminogen Activators 

 

 
a Ref. [82] 35°C, pH 7.2, PBS 

 b Ref. [11] 
 

37°C, pH 7.8, Tris 
 c Ref. [83] 

 
PBS 

  d Ref. [84] 23°C, pH 7.8, Tris 
 e Ref. [85] 

 
25°C, pH 7.4, HEPES 

 f  Ref. [86] 25°C, pH 7.4, PO4 
 g Ref. [57] 

 
25°C, pH 7.4, HEPES 

 h Ref. [87] 
 

25°C, pH 7.4, HEPES 
  I Ref. [80] 

 
25°C, pH 7.4, HEPES 

          * NBDP9 background 
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reduces the efficiency of inhibition (klim/Km) of native and a stable mutant of PAI-1, 14-

1B, with both PAs.  

 The conformational changes that occur during inhibition and latency transition 

require the flexibility of the serpin scaffold, which is also exploited by non-inhibitory 

serpins. However, in contrast to inhibitory serpins, non-inhibitory serpins do not require 

RCL insertion for its function. For instance, the hydrophobic pocket formed by hH, s3B-

4B, and the s4/5B loop on its “back” (c.f. Fig. 1.4) is used by non-inhibitory hormone-

binding serpins to bind their ligands. In the latter case, the hormone binds with high 

affinity to one state, is transported, and then released from the serpin upon 

conformational change to another state for which it has low affinity. The conformations 

of inhibitory and non-inhibitory serpins also differ considerably in thermodynamic 

stability, with RCL-inserted forms significantly more stable than RCL-exposed forms. 

Consequently, the protease-complexed state (Tm >100°C) [88] of PAI-1 is more stable 

than its latent state (Tm~68-70°C), while its active state is the least stable (Tm~45-55°C) 

[59, 70]. 

1.1.d. Conformational Flexibility in PAI-1 Function  

In addition to thermodynamic stability, the conformations of PAI-1 differ at 

important functional regions. Due to its inherent flexibility [89-91], PAI-1 can adopt six 

main conformations, which, in order of increasing stability, include the inhibitor-active, 

pre-latent (not shown) and noncovalent complex, inhibitor-inactive latent, final protease-

complexed, and cleaved-substrate conformations (Fig. 1.7). Each requires dramatic 

structural changes and repositioning of the RCL via distinct conformational routes. Thus 
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Figure 1.7 Structural Flexibility Enables PAI-1 to Adopt Many Global 
Conformations. PAI-1 can assume multiple conformations, which include the active 
metastable conformation (3Q02), the noncovalent Michaelis complex (3PB1), the 
inactive latent conformation (1C5G), the final complex (1TB6), and the cleaved 
substrate conformation (3EOX). Functional regions of the serpin are colored as 
indicated in Fig. 1.5. Serine proteases are shown in black. Graphics were constructed 
using VMD 1.9. The final complex is based on the structure of the thrombin-antithrombin 
complex and the pre-latent structure of PAI-1 is currently unresolved. 
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Figure 1.8 Monoclonal Antibodies Provide Information on PAI-1 Conformation. 
The location of the indicated PAI-1 mAb epitopes are shown in space-filling rendering 
and colored accordingly (44E4, 42A2F6, H4B3, 56A7C10, 8H9D4, 33B8, MA-2, MA-6, 
55F4C12, & 33H1F7). PAI-1 secondary structural elements are also highlighted (s1C, 
gate loops, shutter, and hF). Representations constructed using VMD 1.9.  
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Table 1.2 Effects & Epitopes of PAI-1 Conformation-Sensing Antibodies 
 
 

mAb Epitope Mechanism of PAI-1 Neutralization 
2 s1A, hF, hF/s3A loop Converts to substrate 

 
6 s1A, hF, hF/s3A loop Converts to substrate 

 
55F4C12 hF opposite SMB BS Converts to substrate by decreasing 

fast insertion (klim) 
 

33H1F7 hF opposite SMB BS Converts to substrate by decreasing 
fast insertion (klim) 
 

H4B3 Cleft when s1C detaches Accelerates latency 
 

33B8 Pre-inserted hinge/hD Accelerates latency 
 

8H9D4 277 (s6A), 327 (s5A) Converts to substrate by preventing 
disordering of protease active site 
 

44E4 H185, R186, R187 (s4C) Blocks Michaelis formation 
 

42A2F6 K243 (s3B/hG loop), E350  Blocks Michaelis formation 
 

56A7C10 E242, K243, E244 (s3B/hG 
loop), E350, D355 (P9’). R356 
(P10’) 

Blocks Michaelis formation 
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it is likely that the RCL directs the conformational and functional changes between these 

forms. However, due to meta-stability of PAI-1, crystallization of native form has been 

elusive. Therefore, the use of conformation-specific monoclonal antibodies (mAbs) has 

been utilized to provide details on PAI-1 (Fig. 1.8, Table 1.2) [65, 67, 68, 85, 92-97]. 

Diverse methods, including fluorescence [98-105], hydrogen-deuterium exchange 

(HDX) coupled to mass spectrometry (MS) [90, 91], digestion by non-target proteinases 

[73, 89, 106], and mutagenesis analyses [70-72, 107-109], have also provided 

significant insight into the folding enigma of this protein and have mapped out important 

regions in its various transitions (Table 1.3). 

In the active conformation, the RCL of PAI-1 projects from the serpin scaffold and 

is solvent-exposed (Fig. 1.9). By measuring the distance between P1’ and P3 to E313 

at its opposite pole using donor-donor energy migration (DDEM) [58], the RCL was 

determined to be tethered close to the protein core. Also, in this conformation, hF and 

hF/s3A loop cover and interact extensively with the parallel-stranded shutter, of which 

sA contains mostly hydrophobic and s5A half polar and nonpolar residues (Fig. 1.10). 

Since its hydrogen bonds are longer and weaker, the parallel organization of the shutter 

is less stable than its antiparallel organization in the RCL-inserted states. Also, the C-

terminus of PAI-1 occupies a hydrophobic pocket formed by s2C, s6A, s4B, and s5B 

(involving residues P276, F278, L280, F358, and P379; c.f. Fig. 1.4) [66, 110], which in 

other serpins is occupied by its gate region. The latter position of the C-terminus is 

hypothesized to mobilize the gate region of PAI-1 and contribute to its more labile 

nature in comparison to other serpins [66]. Mutagenesis of this region indicates that the 

gate modulates the height of the energy barrier from active to latent forms [116]. 
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Table 1.3 Global Conformational Changes Accompanying Transition of Active 
PAI-1 to Latent & Cleaved States By Functional Region 

 
 

 
★★★ Ref. [111] 
★★ Ref. [59] 
★ Ref. [112] 
✚ Ref. [113] 
¶¶¶ Ref. [114] 
¶¶ Ref. [58, 65] 
¶ Ref. [94] 
⌘ Ref. [81] 
v Ref. [92] 
u Ref. [10] 
¢ Ref. [115] 
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Figure 1.9 The RCL is Solvent-Exposed in the Active State & Tightly Associated 
With the Protein Core in the Latent State of PAI-1. PAI-1 in the active conformation is 
shown from two views (A & C), in which the RCL is mostly unresolved. In the latent 
conformation (B & D), the RCL is inserted as the fourth strand in the central β-sheet A 
(s4A). The secondary structure of functional regions is colored as in previous figures. 
Side-chains of the RCL and interacting residues are shown as lines and colored 
according to its participating interaction (hydrophobic - black, hydrogen-bond - blue, 
and ionic red). Representations were constructed in VMD 1.9 using the crystal 
structures of active (3Q02)[59] and latent (1C5G)[66] PAI-1.  
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During inhibition, the solvent-exposed RCL of PAI-1 forms a noncovalent 

Michaelis docking complex and is cleaved at the scissile bond by PAs. To form the final 

complex, the C-terminal RCL (including s1C) must be displaced from the protease 

active, and exosites released upon insertion of its N-terminal portion into sA. RCL 

insertion is limited by its access to the parallel-stranded shutter and hindered by the 

placement of hF. Furthermore, the opening of the shutter is restricted by interactions of 

s3A and s5A [73, 107] with hF “on top” and hB “on bottom” [108]. Upon displacement of 

hF and opening of the shutter, the RCL inserts, resulting in the reorganization of sA into 

a six-stranded antiparallel β-sheet. Following insertion, hF returns to its previous 

position over the shutter and newly inserted s4A [69]. Since most of the favorable 

enthalpy from RCL cleavage [61] is expended upon its insertion, the return of hF is 

hypothesized to provide the potential to “lock” the protease in the final complex [111]. 

Successive insertion of the RCL residues also is hypothesized to provide the energy for 

hF displacement [111]. Interestingly, s5A is connected in primary sequence to the RCL, 

and s3A is connected N-terminally to s4C of the gate and C-terminally to hF, thereby 

offering a possible route of communication between these structural elements.  

While the structural changes during inhibition have been investigated thoroughly 

[68, 87, 117], much less is known about the conformational steps from the metastable to 

latent state of PAI-1 [4, 88, 92]. Despite this limitation, the structural requirements for 

latency transition that are known involve global conformation changes, including full 

detachment of s1C from its participating β-sheet to allow RCL insertion without 

cleavage, widening of the gate loops from 7 Å to 14 Å  (Fig. 1.11) to allow s1C through 

and elongation of P2-P10’ alongside the protein surface, opening of the shutter,  
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Figure 1.10 α-Helix F Covers The Shutter Region in Metastable Conformations of 
PAI-1. Active PAI-1 is shown from two views (A-B) with secondary structure of 
functional regions colored as in previous figures. Side-chains of the shutter and 
interacting residues are shown as lines and colored according to its participating 
interaction (hydrophobic - black, hydrogen-bond - blue, and ionic red). Representations 
were constructed in VMD 1.9 using the crystal structures of active (3Q02) and latent 
(1C5G) PAI-1. 

 

 

Figure 1.11 The Mobile Gate Region of PAI-1 Widens to Allow RCL Insertion In 
The Latent Conformation. The gate region of PAI-1 in the active (3Q02) and latent 
(1C5G) conformations is shown from the ‘top’ view. The distance between the gate 
loops (green) is indicated and other functional regions colored as previously. The side 
chain of Arg356 (P10’) is shown as lines. Distances were calculated using MOE and 
structures rendered in VMD 1.9.  
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Table 1.4 Comparisons of RCL Interactions in the Active & Latent States of PAI-1 

 

 

 

 

 

Type* Residue Number RCL Position Residue Number Location in 20 Structure
ION GLU 350 P4' ARG 271 s2C
ION GLU 351 P5' ARG 187 s4C
HYD ILE 352 P6' LEU 273 s2C
HYD ILE 353 P7' VAL 274 s2C
HYD MET 354 P8' ILE 237 s3B
HYD MET 354 P8' LEU 275 s2C
HYD PHE 358 P12' ILE 237 s3B
HYD PHE 358 P12' LEU 275 s2C
HYD PHE 358 P12' PHE 278 s2C/s6A loop
HYD PHE 358 P12' MET 354 s1C/RCL/P8'

Type* Residue Position RCL Position Residue Number Location in 20 Structure
HB THR 333 P14 TYR 228 s2B/s3B loop
HYD VAL 334 P13 MET 147 hF/s3A loop
HB SER 336 P11 LEU 169 s2B
HB THR 339 P8 GLY 38 hB
HB THR 339 P8 GLN 322 s5A
HYD VAL 341 P6 VAL 42 hB
HYD VAL 341 P6 LEU 43 hB
HYD VAL 341 P6 LEU 46 hB
HYD VAL 341 P6 LEU 165 s3A
HYD VAL 341 P6 VAL 317 hI/s5A loop
HYD ILE 342 P5 LEU 152 s3A/hF loop
HYD ILE 342 P5 VAL 164 s3A
HYD ILE 342 P5 LEU 321 s5A
HYD VAL 343 P4 LEU 163 hF/s3A loop
HYD VAL 343 P4 LEU 315 hI/s5A loop
HB SER 344 P3 THR 161 hF/s3A loop
HYD MET 347 P1' LEU 321 s5A
HB GLU 350 P4' ARG 30 hA/hB loop
HB GLU 350 P4' ASP 285 s6A
ION GLU 350 P4' ARG 30 hA/hB loop
ION GLU 350 P4' LYS 288 hI
* HB = hydrogen bond, HYD = hydrophobic interaction, ION = ionic bond

Metastable
First Contact Second Contact

Latent
First Contact Second Contact
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insertion of P14-P11 before displacing hF to fully insert up to P4 with P-even residues 

buried and P-odd exposed, and return of helix F over sA [112]. Upon its insertion, the 

RCL is tightly associated with its core by participating in many hydrophobic and 

hydrogen-bonding interactions with the shutter and hF/s3A loop (Table 1.4).  

Prior to full insertion, PAI-1 may also adopt a pre-latent conformation in which the 

RCL is reversibly and partially inserted up to P11 [58] and the s1C is partially detached 

[94]. Pre-insertion of the RCL in this low populated conformation (from crystallization 

and NMR studies) [66, 94, 118] is not required for recognition [60] by PAs. Also, 

cleavage by PAs, but not Michaelis complex formation, triggers insertion of the RCL [57, 

69, 117] and may shift the equilibrium of PAI-1 towards to the pre-latent conformer. 

Since s1C detachment occurs in this state, the rate-limiting step for the latency process 

is hypothesized to be opening of or RCL passage through the gate. 

1.1.e. Roles of the RCL  

Serpins are specific inhibitors of their target serine protease. However, a 

comparison of the RCL composition of various serpins, including the intracellular PAI-2, 

antithrombin III (ATIII), α2-antiplasmin (α2-AP), α1-antitrypsin (α1-AT), and 

antichymotrypsin (ACH), shows that these serpins share a high degree of homology [56, 

84] (Fig. 1.12). Overall, the consensus of the RCL is for small, nonpolar residues, with 

acidic residues at the hinge (P16-P17), a small, uncharged residue at P14, and basic 

residues at the scissile bond. Accordingly, the replacement of P14 in PAI-1 with a basic 

residue such as arginine (PAI-1R) results in its complete substrate behavior, which has 

been manipulated to provide mechanistic details (e.g. kassoc, kacylation) of the inhibitory 

process [60, 78], and conformational information about the central β-sheet of PAI-1 
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Figure 1.12 Serpins Are Highly Specific Inhibitors Despite Similarities in RCL 
Sequence. The RCL of PAI-1 is shown in comparison to that of other inhibitory serpins, 
including PAI-2, antithrombin III (ATIII), α2-antiplasmin), α1-antitrypsin (α1-AT), and 
antichymotrypsin (ACH). RCL peptides (left) were constructed using Molecular 
Operating Environment (MOE2010), and atoms displayed in the ball-and-stick model 
inside the molecular surface (red - acidic, blue - basic, yellow - sulfur, gray= nonpolar). 
The P1-P1’ scissile bond residues in the RCL sequences (right) are also shown in red, 
with the P-designations at the top, and the RCL consensus sequence at the bottom.  
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variants in the presence of RCL-mimicking peptides (e.g. rigidity of 14-1B sA) [92]. Also, 

N-terminal RCL chimeras, in which P17-P2 are replaced by the corresponding residues 

in PAI-2, ATIII, and the serpin consensus sequence, show a minor impact on the 

specificity of the serpin [84]. Similarly, the activity of PAI-1 is largely unaffected by 

alanine-scanning, charge reversal, and homology mutagenesis of P4’-P10’ [116]. In 

contrast, replacement to proline at most positions in RCL, including P14 and P12 [119-

121], decreases the klim of PAI-1 with PAs and increases its substrate behavior, while 

PAI-1 with proline at the P1 position is not an inhibitor. Also, the substitution of P-even 

residues in the N-terminal portion of the RCL, which point inwards towards the 

hydrophobic core, with the negatively charged glutamate slows the latency transition of 

PAI-1 [66].  

Saturation mutagenesis of P1-P1’ [122] and combinatorial mutagenesis of the 

P3-P1 (Ser-Ala-Arg) [83] residues demonstrates the necessity for a basic residue at the 

P1 position and the strict positional requirement of Arg-Met at the scissile bond for 

successful inhibition, respectively (i.e. R-M at P3-P2 or P2-P1 are not inhibitors). 

Appropriately, the length of the RCL, in addition to the identity of its residues, is highly 

conserved among serpins [123]. Consequently, additions and deletions within the N-

terminal P4-P3 region of the RCL result in increased substrate behavior, indicating the 

prerequisite for tight tethering in distorting protease upon complex formation [123]. Also, 

additions and deletions within the C-terminal P3’-P5’ residues of PAI-1 result in the 

accelerated and lengthier latency transition, respectively [124]. 

1.1.f. Glycosylation, Mutation, and Cofactor Effects on PAI-1 Stability  

 Native human PAI-1 is glycosylated, resulting in its greater stability than  
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Figure 1.13 Glycosylation of PAI-1 Slows Latency Conversion. PAI-1 contains three 
possible N-linked glycosylation sites, which residues are shown as space-filling 
representation (pink). Functional regions are colored as previously described and 
structures were rendered using VMD 1.9. 

 

Figure 1.14 The Active Conformation is Stabilized by Mutation of The Gate & 
Shutter Regions in 14-1B Variant of PAI-1. The quadruple 14-1B mutant of PAI-1 has 
an active half-life of ~145 hrs. Residues mutated are indicated and shown as space-
filling representation (black). Functional regions are colored as previously described 
and structures based on PBD 1B3K were rendered using VMD 1.9. 
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than unglycosylated recombinant PAI-1 [4]. Glycosylated PAI-1 present in vivo has a 

half-life in plasma longer than the latter in vitro (i.e. ~6 hrs versus ~1-2 hrs at 

physiological temperature and pH), but is still much more labile than other plasma 

components (e.g. the half-life of serum albumin is ~19 days). Three potential 

glycosylation sites at N209, N265, and N329 exist on PAI-1 (Fig. 1.13), but only the 

former two are modified [4]. The N-linked glycosylation at position 265 particularly 

affects the latency transition of PAI-1 by binding in the hydrophobic cleft covered by s1C 

in the gate region, which slows the latency transition of PAI-1. Since latent PAI-1 in this 

glycosylated form has been recovered from plasma, tissues [92], and platelets [10], the 

latency transition as a mechanism of self-regulation of PAI-1 is physiologically relevant. 

Other biochemical properties of PAI-1 are unaffected by absence of this post-

translational modification [4].  

 In addition to glycosylation, the stability of PAI-1 is particularly affected by 

mutations in functional regions that are important in the conformational changes from 

the metastable to RCL-inserted forms of PAI-1 (i.e. during latency transition and 

inhibition). The quadruple 14-1B mutant of PAI-1 exemplifies the latter (Fig. 1.14). Via 

molecular evolution using phase-display methods, the N150H (hF/s3A loop), K154T 

(hF/s3A loop), Q319L (s5A), and M354I (s1C) mutations in 14-1B result in PAI-1 with an 

inhibitory half-life of ~145 hrs and denaturation temperature  ~10°C higher than its 

native form [70]. In contrast, the single mutations only modestly increase the stability of 

PAI-1. These mutations result in the formation of a unique hydrogen-bond network 

created over the shutter region where the RCL inserts [108].  

 Conformational differences between native and 14-1B PAI-1 make conclusions  
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regarding mechanism based on the former debatable [4]. A 310 helix present in the loop 

connecting hF (covering the shutter) to s3A of the shutter in 14-1B is absent in the 

metastable W175F structure of PAI-1 [59]. [The W175F mutation, located at the region 

where the RCL hinge inserts (i.e. breach region), is kinetically more stable (t½ ~7 hrs), 

but shares the same thermodynamic stability as native PAI-1.] Also, while 14-1B binds 

to VN and is stabilized in a fashion similar to wt-PAI-1, the 338B mAb and RCL-

mimicking peptides indicate that the RCL and shutter in the mutant differ from that of the 

wild-type protein [92]. Thereby, the decreased mobility and greater extension of the 

RCL, resulting in less extensive pre-insertion, and a shutter closed near the flexible 

hinge region, possibly due to the proposed hydrogen-bonded network, is hypothesized 

to explain the increased stability of 14-1B relative to native PAI-1. 

Importantly, VN also influences the stability of PAI-1 in its RCL-exposed active 

conformation. VN binds with high affinity (Kd ~0.1-1 nM) [62] via its 44-residue N-

terminal SMB domain to Q125, R103, and M112 of flexible joint region of PAI-1 (Fig. 

1.15). Binding at this site is responsible for the stabilizing effect of VN on PAI-1 [91, 92, 

113, 125], modestly increasing its inhibitory lifetime by ~1.5-2-fold [80]. The interaction 

of VN and PAI-1 extends beyond this region to an additional site mapped to a region 

outside the SMB domain of VN and hE (R115 and R118) in PAI-1 near its heparin-

binding site [80]. Binding at this lower affinity site (Kd~100 nM), like heparin, does not 

stabilize PAI-1 [113, 126]. VN also affects the interaction of PAI-1 with divalent transition 

metals by reversing the destabilization of PAI-1 caused by these metals [62, 127]. 

However, the mechanism by which VN stabilizes PAI-1 and affects the metal-PAI-1 

interaction is not clear, and hypotheses range from a purely steric one, involving closure  
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Figure 1.15 Vitronectin Binds At The Flexible Joint Region & Stabilizes PAI-1 in 
The Active Conformation. The N-terminal somatomedin B domain (SMB, blue) is 
shown in complex with PAI-1 (1OC0). Residues that comprise the primary high-affinity 
(red) and secondary low-affinity (green) VN binding sites on PAI-1 are displayed as 
spaced-filled spheres. The representation was generated in VMD 1.9. 
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of the bottom of the shutter via binding the flexible joint region [92, 125], to changing the 

RCL conformation, making it more solvent exposed upon complex formation [4, 92, 

104]. 

1.2. Rationale for Study  

The RCL of PAI-1 directs its conformational transitions during latency and 

protease inhibition, but its native structure has been elusive by crystallographic methods. 

Structural information gathered by additional means can be beneficial in the 

development of its use as a druggable target. In Chapter 2, homology modeling is 

performed to understand the flexible nature of the RCL, not readily apparent or 

artifactual (i.e. resolved due to crystal packing) in available structures, and to gain 

possible insights into the metastable folding of loop regions in serpin structures. Also, 

although its mechanism of inhibition has been investigated in great detail, much less is 

known about the steps from the metastable to the latent state of PAI-1, including the 

limiting step. To investigate this transition as reported from the RCL, single-cysteine 

mutants were engineered along its length to covalently attach the environmentally 

sensitive fluorescent NBD (N,N' - dimethyl - N - (iodoacetyl) - N' - (7 - nitrobenz - 2 - oxa 

- 1,3 - diazol - 4 - yl) ethylene diamine) or paramagnetic spin MTSL (2,5 - dihydro - 

2,2,5,5 – tetramethyl - 3 - [[(methylsulfonyl) thio] methyl] - 1H - pyrrol – 1 - yloxy) probes. 

Of the 22 residues, 17 were selected based on the contacts formed in the latent 

conformation (Table 1.5) and functional importance, including hinge residues involved 

in pre-insertion, and gate residues involved in s1C detachment. 

VN stabilizes PAI-1 and slows its latency rate by a yet unclear mechanism. As its 

cofactor, the outcome of physiological processes that involve PAI-1 also involves VN. A 
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better understanding of this mechanism can provide valuable information on the PAI-1-

VN interaction. In Chapter 3, the models of PAI-1 stabilization by VN are discussed and 

involvement on the RCL hypothesized. Using PAI-1 labeled at the RCL, the effect of VN 

and its truncations, SMB and SMB-IDD, binding at the distal flexible joints site on RCL 

solvent-accessibility, and thus conformation, and dynamics are investigated to provide 

information on the mechanism of VN-mediated PAI-1 stabilization.   

In Chapter 4, the interaction of PAI-1 and PAs in the Michaelis complex is 

investigated. For native PAI-1, klim and Km for tc-tPA is ~9X slower and ~16X smaller, 

respectively, than that of uPA [80, 85-87] (Table 1.1). Since the stoichiometry of 

inhibition (SI ratio = 1 + ks/ki), describing the propensity of PAI-1 to partition between the 

inhibitory and substrate branches during RCL insertion, is the same for PAI-1 with both 

PAs [57, 85, 87], the noted differences in klim are due to differences in exosite 

interactions [68]. Utilization of exosites increases serpin specificity and inhibition rates 

via effects on scissile bond orientation and overall binding affinities [128]. The main 

exosite exploited by PAI-1 and PAs is between the acidic P4’-P5’ residues in PAI-1 

contacting the surface-exposed 37-loop of PAs [129]. This interaction has been 

demonstrated to effect klim via loop-displacement (k3), and is stronger for tPA than uPA 

[68, 85, 87]. Furthermore, the resolved crystal structure of the Michaelis complex 

between 14-1B PAI-1 and active site-blocked uPA shows the utilization of additional 

surface-exposed loops of uPA in exosite interactions with PAI-1 [81].  

Although the P4’P5’-37-loop exosite interaction on klim has been studied, the 

contribution of other exosites, as identified by PAI-1-uPA Michaelis structure, is unclear. 

In an effort to investigate the latter and explain the noted differences in inhibition rates, 
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the binding of active site-blocked sc-tPA (tPA-SPD*) and uPA (uPA-SPD*) in the 

Michaelis complex with PAI-1 was investigated using the RCL-labeled single mutants. 

Based on these results, a model of the Michaelis complex between PAI-1 and tPA 

constructed, providing new information on exosite interactions to explain differences in 

rates of PA inhibition by PAI-1. Together, these studies provide a comprehensive look at 

the RCL of PAI-1.  

 

 

Table 1.5 Residues Scanned by Cysteine Mutagenesis to Probe the Conformation 
& Dynamics of PAI-1 RCL 
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Chapter 2 The Metastable RCL Occupies Limited Conformations That 
Change During Latency Transition                                                            .  
 
2.1. Introduction 

2.1.a. Fluorescence Detects Changes in Solvent Accessibility 

Fluorescence (Fig. 2.1 A), frequently employed for structural investigation, 

localization studies, and investigation of protein-protein interactions, occurs when an 

excited electron emits light of a lower energy and longer wavelength than it absorbs 

[130]. This radiative process includes three main steps, including absorption and 

excitation, a transient fluorescence lifetime, and emission. During fluorescence, a 

ground state electron is excited to a higher energy state upon absorption of light of a 

wavelength that is equal in energy to the difference between its two energetic states. 

The exited electron remains in the higher energy state for a time that defines its 

fluorescence lifetime, which typically ranges from femtoseconds (10-15 s) to 

nanoseconds (10-9 s). During this excited lifetime, the electron can lose energy as heat 

due to thermal motions, molecular vibrations, or by radiationless processes, including 

distance-dependent resonance energy transfers, before entering the lowest energy 

excited state. From this state, the electron returns to ground state by releasing energy 

and emitting light of a longer wavelength.   

To probe conformational changes that occur in RCL by its solvent accessibility, 

the NBD fluorophore (Fig. 2.1 B) was employed due to its prior use, frequently at the P9 

position to provide mechanistic details of the inhibitory process [4, 5, 12, 13, 25, 26, 33, 

35-39]. The utility of this probe is also in its high extinction coefficient, quantum yield, 

and sensitivity to local environmental changes. Specifically, then environmental impact 

on its spectral properties includes a reduced, red-shifted or enhanced, blue-shifted  
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Figure 2.1 Fluorescence Using The NBD Probe. A. Fluorescence is the process by 
which a ground state electron (1) absorbs light of the wavelength that is equal in energy 
to the difference between two energetic states and is excited to a high energy state (2), 
where it can lose energy (3), and upon returning to ground state (4), emits light of a 
longer wavelength and lower energy than absorbed. B. The structure of the thiol-
reactive fluorescent NBD probe chosen for this study. The spectral properties of NBD 
(C.) include an enhanced, blue-shifted and reduced, red-shifted fluorescence in 
hydrophobic and hydrophilic environments, respectively. 
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fluorescence in hydrophilic and hydrophobic environments, respectively (Fig. 2.1 C), 

and thereby can be used for conformational investigation. 

2.1.b. EPR Spectroscopy Provides Information on Protein Dynamics 

To complement structural investigation by fluorescence, electron paramagnetic 

resonance (EPR) spectroscopy is used to investigate PAI-1 RCL dynamics. (Fig. 2.2) 

The resonance of an unpaired electron harboring paramagnetic properties occurs when 

it absorbs radiation of a frequency (ν) that is equal in energy to the energy difference 

(ΔE) between its two states (h is Planck’s constant) (Fig. 2.2 A). Typical EPR 

experiments involve sweeping the magnetic field at a constant frequency, usually in the 

microwave range (9-10 GHz, i.e. X-band). The resulting absorption spectra are 

converted to the first derivative. The line-widths (H0) in these derivative spectra provide 

information on nanosecond dynamics (~1-100 ns) that depend on the rotational 

correlation time, τc, i.e. the time it takes the spin-label side chain to rotate 1 radian. 

Sharper and broader line-widths, corresponding to larger and smaller inverse line-

widths (H0
-1), thereby indicate greater or more restricted motion, respectively 

The paramagnetic MTSL probe (Fig. 2.2 B) was chosen for investigation of RCL 

dynamics due to its extensive use and thorough characterization [131-134]. The MTSL 

signal is split into three peaks due to the interaction of its paramagnetic electron with the 

nearby nitrogen nucleus (i.e. a hyperfine interaction) (Fig. 2.2 C). EPR using the MTSL 

probe can be used to provide specific information about the location (e.g. α-helix, β-

strand) and environment (e.g. polar, hydrophobic) of an individual residue, the proximity 

of individual residues, and changes in local structure due to intramolecular 

conformational changes or dynamic interactions [135]. Advantages of EPR include the  
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Figure 2.2 Electron Paramagnetic Resonance Using The MTSL-Probe. A. Electron 
paramagnetic resonance occurs when a molecule with an unpaired electron (i.e. 
paramagnetic) absorbs radiation of a frequency (ν) that is equal in energy to the energy 
difference (ΔE) between the two states (h is Planck’s constant). Typical EPR 
experiments involve sweeping the magnetic field at a constant frequency. B. Structure 
of the MTSL probe chosen for investigation of RCL dynamics. C. The characteristic 
MTSL signal is split into three peaks due to the interaction of the paramagnetic electron 
with the nitrogen nucleus. Sharp line-widths in EPR spectra of MTSL indicate fast 
motion, while broad line-widths indicate slow motion.  
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use of relatively small sample size, lack of molecular weight or size restrictions, and 

insignificant interference of non-paramagnetic contaminants on the resulting signal [135, 

136].  

2.1.c. Objective of Study 

 The RCL plays a central role in PAI-1 function, but structural details are missing. 

A better understanding of its conformation, dynamics, and latency transition can provide 

useful information for the development of inhibitors to PAI-1 in the treatment of CVD and 

certain cancers. Using homology modeling, fluorescence, and EPR spectroscopy, the 

conformation and dynamics of the RCL are investigated to provide this lacking 

information. 

2.2. Methods and Materials 

2.2.a. Homology Modeling of PAI-1 RCL 

The RCL of PAI-1 was modeled in Molecular Operating Environment (MOE, 

2010) using the metastable structure of PAI-1 (PDB ID: 3Q02) as a template. Initially, 

the signal sequence was removed from the target sequence (NP_000593.1) and 

subsequently aligned (using MOE align) against the PDB template sequence in which 

the RCL is unresolved. Following the alignment, the core structure of PAI-1 was refined 

by energy minimization using the CHARMM27 force field parameters and fixed partial 

charges. The RCL was modeled with all other parameters default. Three low energy 

structures resulted from homology modeling of the RCL (HM1-3). 

2.2.b. Prediction of Solvent Accessibility for PAI-1 RCL Homology Models 

The solvent accessibility of a residue in the RCL homology models was predicted 

in MOE2010 based on an independent probability accounting for its structural class and 
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a conditional probability, for which the residue in a window of residues is compared to a 

reference GLY-X-GLY tripeptide, where X is the residue in question. The residue was 

classified as buried, partially-exposed, or exposed if the probability of the residue is < 

9%, < 36%, or > 36% of its reference value, respectively. Probabilities of the buried 

class are plotted.  

2.2.c. Protein Contacts Analysis 

Inter- and intrachain contacts within crystal structures or homology models were 

reported in MOE2010-2012 using a cut-off distance for hydrophobic and ionic 

interactions of 4.5 Å, and treating histidine and methionine as basic and hydrophobic, 

respectively. Side-chain to main-chain hydrogen bonds are also included.  

2.2.d. PAI-1 Cloning & RCL Mutagenesis 

The human PAI-1 gene, cloned without a His-tag into the pET24d(+) vector within 

HindIII & NcoI restriction sites for inducible expression and selection via kanamycin 

resistance, was a kind gift from Grant Blouse (Novo Nordisk A/S, Clayton, NC). 

Oligonucleotide primers (Invitrogen Custom DNA Oligos) were designed to contain a 

single cysteine mutation at the desired RCL position along with a unique restriction site 

to facilitate screening (Table 2.1), and mutations were introduced by PCR according to 

manufacturer’s instructions using the Stratagene Quik Change® II XL Site-directed 

Mutagenesis kit. The resulting Dpn1-treated products were also accordingly 

transformed into β-mercaptoethanol-treated XL-10 Gold ultracompetent cells via a 30 

min incubation on ice followed by a 30 sec heat-shock at 42°C, return to ice for 2 min, 

addition of 0.5 ml warm SOC media (Invitrogen™), incubation at 37°C and 250 rpm for 

1-2 hrs, and inoculation onto LB-agar plates supplemented with 50 µg/ml kanamycin for  
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Table 2.1 Primer Design & Engineering of Unique Restriction Sites to Facilitate 
Screening of Single-Cysteine RCL Mutants of PAI-1 

 

Base-pair substitutions to incorporate cysteine mutations and restriction sites are bolded 
in black and blue, respectively.   
 
 

 

 

 

 

 

Primer Length G+C %GC N %N Tm Mutation Sequence 
Restriction Site 

Introduced
Recognition 
Sequence

P14FWD 38 23 61 4 11 78 T333C 5'-GAGGTGAACGAGAGTGGGTGTGTGGCCTCCTCATCCAC-3' TaqII' CACCCA
P14REV 38 23 61 4 11 78 T333C 5'-GTGGATGAGGAGGCCACACACCCACTCTCGTTCACCTC-3'

P13FWD 35 22 63 3 9 79 V334C 5-GTGAACGAGAGTGGCACGTGCGCCTCCTCATCCAC-3' PmII CACGTG
P13REV 35 22 63 3 9 79 V334C 5'-GTGGATGAGGAGGCGCACGTGCCACTCTCGTTCAC-3'

P12FWD 35 21 60 3 9 78 A335C 5'-CGAGAGTGGCACGGTGTGCTCTTCATCCACAGCTG-3' SapI GCTCTTC
P12REV 35 21 60 3 9 78 A335C 5'-CAGCTGTGGATGAAGAGCACACCGTGCCACTCTCG-3'

P11FWD 28 19 68 2 7 78 S336C 5'-GGCACGGTGGCCTGCTCTTCCACAGCTG-3' SapI GCTCTTC
P11REV 28 19 68 2 7 78 S336C 5'-CAGCTGTGGAAGAGCAGGCCACCGTGCC-3'

 
P8FWD 38 24 63 4 11 79 T339C 5'-CGGTGGCCTCCTCATCCTGCGCAGTCATAGTCTCAGCC-3' FspI TGCGCA
P8REV 38 24 63 4 11 79 T339C 5'-GGCTGAGACTATGACTGCGCAGGATGAGGAGGCCACCG-3' TGCGCA

 
P6FWD 36 21 58 3 8 78 V341C 5'-CCTCATCCACAGCATGCATAGTCTCAGCCCGCATGG-3' NsiI ATGCAT
P6REV 36 21 58 3 8 78 V341C 5'-CCATGCGGGCTGAGACTATGCATGCTGTGGATGAGG-3'

P5FWD 35 22 63 3 9 79 I342C 5'-CTCATCCACAGCTGTCTGCGTCTCAGCCCGCATGG-3' BsmBI CGTCTC
P5REV 35 22 63 3 9 79 I342C 5'-CCATGCGGGCTGAGACGCAGACAGCTGTGGATGAG-3'

P3FWD 34 22 65 3 9 79 S344C 5'-CACAGCTGTCATAGTCTGCGCACGCATGGCCCCC-3' FspI TGCGCA
P3REV 34 22 65 3 9 79 S344C 5'-GGGGGCCATGCGTGCGCAGACTATGACAGCTGTG-3'

P1' FWD 41 24 59 4 10 79 M347C 5'-CATAGTCTCAGCCCGCTGTGCACCCGAGGAGATCATCATGG-3' ApaLI GTGCAC
P1'REV 41 24 59 4 10 79 M347C 5'-CCATGATGATCTCCTCGGGTGCACAGCGGGCTGAGACTATG-3'

P2'FWD 41 23 56 4 10 78 A348C 5'-CATAGTCTCAGCCCGCATGTGTCCGGAGGAGATCATCATGG-3' BspEI TCCGGA
P2'REV 41 23 56 4 10 78 A348C 5'-CCATGATGATCTCCTCCGGACACATGCGGGCTGAGACTATG-3'

  
P3'FWD 35 21 60 3 9 78 P349C 5'-CTCAGCCCGCATGGCATGCGAGGAGATCATCATGG-3' SphI GCATGC
P3'REV 35 21 60 3 9 78 P349C 5'-CCATGATGATCTCCTCGCATGCCATGCGGGCTGAG-3'

 
P4'FWD 33 22 67 3 9 79 E350C 5'-GCCCGCATGGCCCCCTGCGAGATCATCATGGAC-3' (none) n/a
P4'REV 33 22 67 3 9 79 E350C 5'-GTCCATGATGATCTCGCAGGGGGCCATGCGGGC-3'

P5'FWD 37 23 62 4 11 78 E351C 5'-GCCCGCATGGCCCCCGAATGCATCATCATGGACAGAC-3' NsiI ATGCAT
P5'REV 37 23 62 4 11 78 E351C 5'-GTCTGTCCATGATGATGCATTCGGGGGCCATGCGGGC-3'

P6'FWD 35 22 63 3 9 79 I352C 5'-CGCATGGCCCCCGAGGAATGCATCATGGACAGACC-3' NsiI ATGCAT
P6'REV 35 22 63 3 9 79 I352C 5'-GGTCTGTCCATGATGCATTCCTCGGGGGCCATGCG-3'

P7'FWD 34 21 62 3 9 78 I353C 5'-GGCCCCCGAGGAGATATGCATGGACAGACCCTTC-3' NsiI ATGCAT
P7'REV 34 21 62 3 9 78 I353C 5'-GAAGGGTCTGTCCATGCATATCTCCTCGGGGGCC-3'

P8'FWD 41 24 59 4 10 79 M354C 5'-GGCCCCCGAGGAGATCATATGCGACAGACCCTTCCTCTTTG-3' NdeI CATATG
P8'REV 41 24 59 4 10 79 M354C 5'-CAAAGAGGAAGGGTCTGTCGCATATGATCTCCTCGGGGGCC-3'



	   42	  

overnight growth and selection. 

2.2.e. Restriction Digestion Screening of PAI-1 RCL Mutants  

For screening, at least five transformed colonies were inoculated into 10-25 ml 

fresh Terrific Broth (TB) + 50 µg/ml kanamycin and grown overnight at 37°C and 250 

rpm. Cultures were harvested by centrifugation (Beckman Coulter AvantiTM Centrifuge 

J-25) for 10 min at 10,000 x g and 4°C. Plasmids were purified using the Promega 

Wizard® Plus SV Minipreps DNA Purification System. To detect the incorporation of 

mutations via the presence of engineered restriction sites, purified plasmids (~50-100 

ng in 1-3 µl) were treated with 1-2 µl and 2.5 µl (10%) of their corresponding restriction 

endonuclease and NEB buffer (Table 2.3), respectively, and dH2O added up to 25 µl for 

the total reaction mixture. Reactions were incubated for at least 1 hr at the specified 

temperatures, and subsequently analyzed by electrophoresis in a 0.8% agarose gel at 

100 V for 1 hr. Digested plasmids were visualized by ethidium bromide fluorescence 

under UV radiation, and documented using the Bio-Rad Quantity One software and 

ChemiDoc XRS photodocumentation system. Samples with the correct digestion pattern 

were sequenced, and plasmids with the correct mutations were transformed into 

Escherichia coli Rosetta 2 DE3 pLysS cells (Invitrogen), which codes for rare eukaryotic 

codons for optimal expression without posttranslational modification in this prokaryotic 

system. 

2.2.f. PAI-1 RCL Mutant Growth, Expression, & Purification   

Plasmids with the correct RCL mutation were transformed into E. coli Rosetta 2 

DE3 pLysS cells for growth, expression, and large-scale cell harvest. Typical conditions 

for growth were 30-37°C in TB (supplemented with 50 µg/ml kanamycin and 34 µg/ml 
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chloramphenicol) with shaking at 250-300 rpm. At mid- to late log phase, cells were 

cooled to 15°C and protein expression induced with 1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG). After overnight induction, cultures were harvested by 

centrifugation for 30 min at 10,000 x g and 4°C. Harvested cells were prepared for 

purification by resuspension in buffer [50 mM NaH2PO4, 1 mM EDTA, 1 mM DTT, 1 

mg/100 mg protease inhibitor cocktail for use with bacterial cell extracts (Sigma-Aldrich 

Corp., St. Louis, MO), 20 mg lysozyme, pH 6.5], lysed on ice by sonication at an 

amplitude of 7 with 30 seconds ‘on’ and 1 minute ‘off’ for 15 pulses (Fisher Scientific 

550 Sonicator Dismembrator), and cell debris removed by centrifugation for 30 min at 

10,000 x g and 4°C. All subsequent steps were performed in the presence of the 

reducing agent, dithiothreitol (DTT), and at 15°C to prevent dimerization and latency 

transition, respectively. Recombinant single-cysteine RCL mutants of PAI-1 were 

purified in three chromatographic steps (Fig. 2.3), including 1.) cation exchange (SP-

Sepharose FF), which separates based on charge, with the negatively-charged matrix 

binding positively-charged proteins, while similarly charged molecules flow through [the 

isoelectric point (pI), under which proteins are positively-charged, of wild-type (wt) PAI-1 

and all RCL mutants is 7.146 and 7.144, respectively, except for P4’ and P5’ mutants, 

which have a pI of 7.491]; 2.) immobilized metal affinity chromatography (IMAC; 

chelating-Sepharose FF charged with nickel), which is commonly used for His6-tagged 

proteins, but employed here due to the ability of PAI-1 to bind metals [137]; and 3.) gel 

filtration (Sephacryl S-100 HR)(GE Healthcare, Piscataway, NJ), which separates based 

on size, with larger molecules eluting earlier than smaller molecules that travel through 

the pores of the matrix. Samples taken throughout the purification were analyzed by  
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Figure 2.3 Purification Scheme for PAI-1 RCL Cys Mutants. PAI-1 RCL cys mutants 
were purified from lysed E. coli in three consecutive steps – 1.) cation exchange 
separates based on charge; 2.) immobilized metal affinity chromatography (IMAC) 
separates based on affinity for metals; and 3.) gel filtration separates based on size. 
.  
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SDS-PAGE (10% polyacrylamide, reducing) at 150 V for ~ 2 hrs, followed by Western 

blotting (rabbit anti-human PAI-1, Molecular Innovations Inc, Novi, MI) and matrix-

assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) 

(as described below) to confirm identity and purity of the protein yielded.  

2.2.g. Labeling of PAI-1 RCL Cys Mutants 

DTT was removed from the purified single-cysteine mutant protein for labeling 

purposes via a disposable PD-10 desalting column (GE Healthcare Life Sciences) 

equilibrated with PBS at 4°C according to manufacturer’s protocol. The fluorescent and 

spin probes, NBD [N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) 

ethylenediamine; D-2004, Invitrogen Molecular Probes] and MTSL [2,5-hihydro-2,2,5,5-

tetramethyl-3-[[(methylsulfonyl)thio]methyl]-1H-pyrrol-1-yloxy; Cat. No. 087500, Toronto 

Research Chemicals], were added at 10-20X molar excess at 10% of the total reaction 

volume and incubated (covered) to label on ice at 4°C overnight and ≥ 4 hrs, 

respectively. After incubation, free probe was removed by an additional PD-10 step. An 

absorbance spectrum of the yielded protein was collected (Fig. 2.4), from which the 

degree of NBD labeling was determined using the following equation: 

 

(ANBD /εNBD) * (MW PAI-1 / mg PAI-1 ml-1) = mole NBD/mole PAI-1 

 

where the ANBD is the absorbance at 492 nm, εNBD, is the extinction coefficient for NBD 

(25,000 M-1cm-1), and the MW of recombinant unglycosylated human PAI-1 used for the 

calculation is 43,000 mg/mmol (εPAI-1
 = 0.83 mg ml-1 cm-1). MTSL-labeling was confirm- 

ed using a Bruker EMX EPR spectrometer (see Ch. 2.2.q.). 
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Figure 2.4 Representative Absorption Spectra to Determine Labeling 
Stoichiometry. The red trace is the spectrum of the labeled protein, while the black 
trace is that of the buffer.  
 

2.2.h. Assessment of PAI-1 RCL Cys Mutant Activity  

Single-chain and two-chain tPA (sc-tPA, tc-tPA; Molecular Innovations, Novi, MI) 

were titrated with increasing equivalents of PAI-1, from sub-stoichiometric to excess 

concentrations, and incubated for 30 min at ambient temperature in PBS, pH 7.4. 

Reactions were analyzed by SDS-PAGE under reducing and non-reducing conditions. 

Experiments were performed in duplicate or triplicate, and a digital image of the gels 

created using the Bio-Rad Quantity OneTM software on the Bio-Rad Photo 

Documentation System (ChemiDocXRS scanner). To quantify the amount of active, 

dimeric, latent, and cleaved PAI-1 that is observed for these mutant constructs, 

densitometry of each band in the lane corresponding to 1:1 PAI-1:tPA in a single 

representative gel was performed using Bio-Rad Image Lab Software (Molecular 

Imager® Systems). The results were normalized as percent of total intensity after 

background subtraction. From the latter results, the relative stoichiometry of inhibition 

(SI ratio) was estimated from the ratio of the normalized percentage of cleaved 

(substrate) to active (inhibitor) PAI-1 present for each construct. PAI-1 activity was also 
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determined indirectly by titrating tc-tPA with PAI-1 as described above, incubating at 

room temperature, and then adding 1 mM of the chromogenic tPA substrate, 

Spectrozyme tPA (American Diagnostics Inc., Stamford, CT) in 100 mM Tris, 1% BSA, 

1 mM EDTA, pH 7.4 at 37°C. The absorbance of the p-nitroaniline product at 405 nm 

(BioTek Synergy4 plate reader, Gen5 Software, Costar 96-well half area plate) was 

recorded and equivalent to fully inhibit tPA determined to assess PAI-1 activity. Plate 

activity assays were performed in triplicate.  

2.2.i. Aggregation & Dimerization Tests of PAI-1 RCL Mutants 

Unlabeled PAI-1 RCL mutants were incubated at room temperature in PBS (pH 

7.4), an aliquot removed periodically, and quenched with equimolar tc-tPA. Samples 

were analyzed by non-reducing SDS-PAGE on a 10% polyacrylamide gel at 150 V for ~ 

2hrs and visualized by Coomassie stain. Mutants were also dialyzed (Slide-A-Lyzer, 

MWCO 10K, Thermo Scientific) in PBS (pH 7.4) at 4°C for at least 4 hours for 

assessment by analytical ultracentrifugation (AUC). 400 µl of 4 µM dialyzed protein and 

dialysate were loaded into the sample and reference centerpiece sectors, respectively, 

of an assembled ultracentrifuge cell, sealed with torque pressure, and analyzed by 

sedimentation velocity (Beckman-Coulter Analytical Ultracentrifuge XL-A) under vacuum 

at 50,000 rpm (25°C). The absorbance traces collected over time were plotted against 

the cell radius and fit to a c(s) distribution model using SEDFIT [138], along with 

residuals of the fits and the distribution plot of distinct sedimenting species.     

2.2.j. Desalting & Molecular Mass Determination 

Samples were desalted by high performance liquid chromatography (HPLC) prior 

to analysis by MALDI-TOF-MS to obtain molecular mass information. Salts were 



	   48	  

removed from PAI-1 via a hydrophobic C18 column (Phenomenex, Jupiter 4u, Proteo 

90 Å, 250 x 4.60 mm, 4 micron) connected to a HPLC pump (Agilent Technologies 1200 

Series), with Solvent A (default) and B containing H2O/0.1% trifloroacetic acid (TFA) and 

acetonitrile (ACN)/0.085% TFA (w/v), respectively. Under temperature control at 28°C, 

samples were separated using the following linear gradient: 

 

Time (min) %B Flow (ml/min) Max. Pressure (bar) 
0 5 1 300 
5 5 1 300 

20 95 1 300 
23 95 1 300 
26 5 1 300 
30 5 1 300 

    
    

Typical retention times were ~15 min for PAI-1. The desalted samples collected were 

subsequently dissolved in 10 mg/ml sinapic acid matrix (Fluka Analytical) and spotted 

on a Bruker Anchor Chip target plate containing hydrophobic surfaces surrounding a 

hydrophilic patch at each spot. After drying, target plates were placed in the chamber of 

a Bruker Daltonics Microflex mass spectrometer and gas-phase ions separated in the 

positive-polarity mode in a vacuum without reflection. Using the Flex Control software, 

the instrument was calibrated (quadratic) with the Bruker Protein Calibration Standard II 

for MS that covers the 20,000-70,000 Da mass range. Masses were derived from the 

resulting spectra using the Flex Analysis software.   

2.2.k. PAI-1 RCL Cys Mutant Stability 

PAI-1 was incubated at 37°C in buffer [50 mM MOPS, 100 mM (NH4)2SO4, 0.1 

mM EDTA, pH7.4] and quenched with tc-tPA at various time points. Initial rates were 

measured by adding Spectrozyme tPA to the reactions and recording the absorbance of 
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Figure 2.5 The Stability of PAI-1 Determined By The Inhibition of tPA. PAI-1 was 
incubated at 37°C in MOPS (pH 7.4), quenched with tPA, and its residual activity 
assayed indirectly by tPA cleavage of its chromogenic substrate, Spectrozyme tPA, and 
measuring the rate of evolution of the p-nitroaniline product at 405 nm. Initial rates of 
tPA activity were plotted over time. The residual PAI-1 activity was determined from the 
negative slope of tPA activity.  
 

 

 

p-nitroaniline at 405 nm for 5 min. The slope obtained from the latter was plotted against 

each time point as tPA activity (Fig. 2.5). Data were collected for ≥ 10 half-lives. The 

residual PAI-1 activity was taken as the negative slope of tPA activity, and fit (using the 

nonlinear least squares method in GraphPad Prism Version 5.0b) to a one-phase 

exponential curve corresponding to the transition of PAI-1 to the latent state from which 

the active half-life was determined.   

2.2.l. Unlabeled & Labeled PAI-1 Activity By Gel Electrophoresis 

Unlabeled, NBD-labeled, and MTSL-labeled PAI-1 constructs (4 µM) were 

incubated in the absence or presence of equimolar sc-tPA in PBS (pH 7.4) at ambient 

temperature for 30 minutes. Samples were resolved under non-reducing conditions by 
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SDS-PAGE on a 10% polyacrylamide at 150 V for ~2 hrs and visualized by Coomassie 

stain. 

2.2.m. PEG-Coating Cuvettes for Fluorescence Experiments    

To prevent adsorption of protein, cuvettes (Starsted, four optical-sided acrylic) 

were coated as previously described. Briefly, 10 mg/ml PEG 20000 was added to 

cuvettes and incubated overnight. After incubation, cuvettes were decanted, rinsed with 

dH20, and centrifuged briefly bottom up in a tabletop centrifuge. Cuvettes were then 

dried at 60°C for at least 2 hrs.   

2.2.n. Titration of NBD-PAI-1 with VN 

Native monomeric VN, purified from plasma (c.f. Ch. 3.2.a.), was resuspended 

from an ammonium sulfate precipitate, dialyzed overnight in PBS (pH 7.4) at 4°C, and 

its concentration determined spectrophotometrically (Cary 50 Series UV-Vis 

Spectrophotometer) according to Beer-Lambert’s law [c = A/(lε), where c is the 

concentration, A is the absorbance at 280 nm, l is the path length (1 cm), and ε is the 

extinction coefficient (1 mg ml-1 cm-1 for VN)]. 0.5 µM NBD-PAI-1 in 2 ml MOPS buffer 

[50 mM MOPS, 100 mM (NH4)2SO4, 1 mM EDTA, pH 7.4] was added to a PEG-coated 

cuvette and placed in a Perkin Elmer LS 50B Luminescence spectrometer at ambient 

temperature. NBD-PAI-1 was titrated with increasing concentrations of VN, excited at 

480 nm, and the emission spectra from 500-600 nm collected. Samples were corrected 

for dilution by multiplying the resulting intensity by the ratio of the final to initial volumes. 

After correcting for dilution, the maximum intensity from the resulting spectra was 

plotted against VN concentration, fit to a one-site binding curve by nonlinear regression 

(GraphPad Prism), and the dissociation constant (Kd) determined.  
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2.2.o. Single-Point Relative Quantum Yield Determination 

To determine the contribution of the efficiency of NBD fluorescence to the 

magnitude of fluorescence changes observed, single-point measurements were taken 

to estimate the relative quantum yield (QY) for NBD-PAI-1. Based on labeling 

stoichiometry, NBD-PAI-1 concentration was adjusted to 0.25 µM NBD in 2 ml buffer 

containing 50 mM NaH2PO4, 300 mM NaCl, 1 mM EDTA, 0.1% PEG 8000 (w/v), pH 7.4. 

Samples were added to a PEG-coated cuvette and placed in a Perkin Elmer LS 50B 

Luminescence spectrometer connected to circulating water bath (Lauda-Brinkmann 

RM6) set such that the temperature in the chamber was 37°C. Using FL Winlab 

software, absorbance scans from 400-520 nm and emission scans from 500-600 nm 

were collected. Emission scans were collected after excitation at 480 nm. The 

absorbance at the theoretical wavelength maximum of 480 nm for NBD and area of 

fluorescence of the emission can were used to calculate the relative quantum yield 

using the following equation:  

Qprot = Qref (∫Iref/∫Iprot)(Aprot/Aref) 

 

where Qprot and Qref is the relative quantum yield of NBD-PAI-1 and NBDfree, 

respectively, A is the absorbance at 480 nm, and ∫I is integral of the intensity of the 

fluorescence emission (i.e. area of fluorescence). ∫I was calculated using GraphPad 

Prism software. Qref was arbitrarily set to 0.5, assuming 50% efficiency for NBDfree.  

2.2.p. PAI-1 Latency Transition via Steady-state Fluorescence 

NBD-labeled RCL constructs were added to a PEG-coated cuvette at a 

concentration of 300-500 nM PAI-1 in 2 ml buffer containing 50 mM NaH2PO4, 300 mM 
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NaCl, 1 mM EDTA, 0.1% PEG 8000, pH 7.4 and sealed with mylar plate sealer. The 

cuvette was then placed in a Perkin Elmer LS 50B Luminescence spectrometer at 37°C. 

Samples were excited at 480 nm and fluorescence emission spectra from 500-600 nm 

were collected every 5 minutes (for 5-7 hrs followed by 3 overnight time points) until 

saturation occurred. Results are plotted as the normalized intensity at the average 

wavelength maximum of 530 nm for NBD-labeled PAI-1 according to the following 

equation: 

[(F-F0)/F0]*100 

 

where F is the fluorescence intensity at 530 nm at a given time point, and F0 = Fmin, 

which is the lowest fluorescence intensity at 530 nm measured over time. The plots of 

the normalized fluorescence over time were analyzed in GraphPad Prism using the 

nonlinear least squares fitting criteria to a single, one-phase exponential curve from 

which the half-life of insertion was determined.  All experiments performed in triplicate.   

2.2.q. PAI-1 RCL Mobility via Electron Paramagnetic Resonance (EPR) 

MTSL-labeled PAI-1 was dialyzed in 4 L buffer (PBS, pH 7.4) at 4°C and diluted 

to a final concentration of 2 µM. Reactions were added to a 100 mm high-precision 

quartz capillary (Wilmad Glass, inner diameter 1.012 ± 0.013 mm), sealed with Teflon 

plugs, and placed in the cavity of a Bruker EMX EPR Spectrometer at ambient 

temperature. The frequency was held constant at ~ 9.5 GHz and center field was set at 

3360 G with a sweep width of 100 G. The time constant and conversion time were set to 

655.29 ms and 20.48 ms, respectively, with a resolution in X of 2048 for 5 scans. 

Spectra were collected at an attenuation of 10 dB, receiver gain of 2.00E+05, amplitude 
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modulation of 4 G, and frequency modulation of 100 kHz. All other parameters were 

kept at default. From the resulting spectra, the scaled mobility (Ms) was determined 

using the following equation: 

Ms = (δ-1 - δi
-1)/(δi

-1 - δm
-1) 

 

where δ is the width of central resonance line of MTSL-PAI-1 labeled at a residue of the 

RCL and δ-1 is its inverse, δi
 is the line-width of most immobilized RCL residue, and δm 

is the line-width of most mobile RCL residue. The change in mobility (ΔH0
-1) was 

determined from the central field MTSL peak by subtracting the average inverse line-

width of active MTSL-PAI-1 to that of latent MTSL-PAI-1. All experiments were 

performed in triplicate. Latent MTSL-PAI-1 was prepared by incubation at 37°C for ≥ 1 

week. 

2.3. Results 

2.3.a. Homology Modeling Investigates RCL Conformations 

The RCL of PAI-1 is defined elsewhere as P16-P10’ [112] or P14-P10’ [66], but 

here as the 22 residues from P14-P8’ based on mutants generated for this study. These 

residues were homology modeled using the metastable W175 structure as a template 

due its thermodynamic similarity to wild-type PAI-1 (Fig. 2.6 A) [59]. Although the body 

of the serpin was constrained and partial charges fixed, the results surprisingly yield 

only three low energy conformations for the RCL, indicating sampling of a small energy-

conformational landscape for this region [139, 140]. Molecular dynamics of the three 

structures within 0.8 kcal/mol also reveal only small populations of loop conformers 

(data not shown). The modeled structures differ in extension and probability of solvent  
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B.  

 
 
Figure 2.6 Homology Models of PAI-1 RCL. The RCL was homology modeled in MOE 
using the energy-minimized metastable structure of PAI-1 as a template (3Q02). A. 
Close up of the three low-energy loop conformations resulting from modeling: HM1 
(red), HM2 (orange), and HM3 (magenta). B. Probabilities of solvent exposed surface 
in the RCL homology models were predicted by MOE2010. Decreases and increases 
represent greater and lesser solvent exposure, respectively. RCL residues are identified 
by their P-designation with respect its distance from the P1-P1’ scissile bond, with 
residues C-terminal indicated with a prime (‘). 
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HM2	  
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Table 2.2 Comparison of RCL Interactions in Homology Models & Crystal 
Structures of Different Conformations of PAI-1 

 

 

 

 

 

 

 

exposure of the RCL (Fig. 2.6 B), but overlap considerably at s1C and, interestingly, the 

scissile bond. Overlap of s1C residues P4-P8’ in the models is expected, as these 

residues are resolved in the template structure. However, the scissile bond overlap, 

forming a small protrusion in the models, is absent in crystal structures of the 

thermodynamically stable active 14-1B PAI-1 conformer, in which the RCL is resolved 

due to crystal packing and interaction with edge-strands of sA or sC [112, 141, 142]. 

In terms of protein contacts (Table 2.2), all of the models are predicted to 

participate in the same noncovalent interactions, with the exception of an ionic  

interaction bridging P4’ (E350) to P1 (R364) and a hydrogen bond between P5 (I342) to 

K207 (s3C) in the gate region in model 1 (red) and model 2 (orange), respectively. Most 

Model Type Residue Position
RCL 

Location Residue Number
Location in 
20 Structure Type Residue Position

RCL 
Location Residue Number

Location in 
20 Structure

1 ION GLU 350 P4' ARG 346 P1 HB THR 333 P14 TYR 228 s2B/s3B loop
2 HB ILE 342 P5 LYS 207 s3C HYD VAL 334 P13 MET 147 hF/s3A loop

1,2,3 HB GLU 351 P5' ARG 187 s4C HB SER 336 P11 LEU 169 s2B
1,2,3 ION GLU 351 P5' ARG 187 s4C HB THR 339 P8 GLY 38 hB
1,2,3 HYD ILE 352 P6' LEU 224 s2B HB THR 339 P8 GLN 322 s5A
1,2,3 HYD ILE 352 P6' LEU 273 s2C HYD VAL 341 P6 VAL 42 hB
1,2,3 HYD MET 354 P8' LEU 224 s2B HYD VAL 341 P6 LEU 43 hB
1,2,3 HYD MET 354 P8' ILE 237 s3B HYD VAL 341 P6 LEU 46 hB
1,2,3 HYD MET 354 P8' LEU 273 s2C HYD VAL 341 P6 LEU 165 s3A
1,2,3 HYD MET 354 P8' LEU 275 s2C HYD VAL 341 P6 VAL 317 hI/s5A loop
1,2,3 HYD PHE 358 P12' MET 354 a1C HYD ILE 342 P5 LEU 152 s3A/hF loop

HYD ILE 342 P5 VAL 164 s3A
HYD ILE 342 P5 LEU 321 s5A
HYD VAL 343 P4 LEU 163 hF/s3A loop

Type Residue Number
RCL 

Position Residue Number
Location in 
20 Structure HYD VAL 343 P4 LEU 315 hI/s5A loop

ION GLU 350 P4' ARG 271 s2C HB SER 344 P3 THR 161 hF/s3A loop
ION GLU 351 P5' ARG 187 s4C HYD MET 347 P1' LEU 321 s5A
HYD ILE 352 P6' LEU 273 s2C HB GLU 350 P4' ARG 30 hA/hB loop
HYD ILE 353 P7' VAL 274 s2C HB GLU 350 P4' ASP 285 s6A
HYD MET 354 P8' ILE 237 s3B ION GLU 350 P4' ARG 30 hA/hB loop
HYD MET 354 P8' LEU 275 s2C ION GLU 350 P4' LYS 288 hI
HYD PHE 358 P12' ILE 237 s3B
HYD PHE 358 P12' LEU 275 s2C HB = hydrogen bond
HYD PHE 358 P12' PHE 278 s2C/s6A loop HYD = hydrophobic interaction
HYD PHE 358 P12' MET 354 s1C/RCL/P8' ION = ionic bond

First Contact

LATENT (1C5G)
First Contact Second Contact

Second Contact

Homology Models

METASTABLE (3QO2)

First Contact Second Contact
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of these contacts involve s1C interactions with the gate, as in the metastable structure, 

and thereby indicate strand attachment. In contrast, these interactions are mostly 

absent in the latent structure in which s1C is detached. Furthermore, the distance 

between P3 and P1’ to position 313 on the opposite pole of PAI-1, estimated to be ~ 55  

Å and ~ 68 Å – 69 Å from solution [58] and crystal methods [112], respectively, was 

measured to be an average of ~63 – 64 Å in the models. The latter indicates that the 

modeling parameters favor an RCL that is close to the body of the serpin. 

2.3.b. Purification of PAI-1 RCL Mutants Yields Sufficient Quantities for Conform-

ation & Dynamics Studies 

 In addition to homology modeling, cysteine-scanning mutagenesis of the RCL 

was performed in order to investigate the steps in the latency process by steady-state 

methods. Mutagenesis was facilitated by the fact that PAI-1 does not contain intrinsic 

cysteine residues and, due to the large number of mutants generated, by the creation of 

unique restriction sites for screening purposes. By comparing the band pattern upon 

restriction digestion (Fig. 2.7) to the expected result if the correct mutation was 

incorporated (Table 2.3), PAI-1 RCL cysteine mutants were screened relatively quickly. 

For instance, of the five colonies per construct screened for the P1’, P2’, P5’, and P6’ 

mutations, only 2, 0, 4, and 2, respectively, of the plasmids purified from these colonies 

show the correct digestion pattern with the restriction enzyme for which sites were 

engineered, and thus were the ones confirmed by sequencing.   

 All mutants were expressed as recombinant proteins in E. coli (as described 

under Methods 2.2.f.). To maximize yields, cells were grown to high density in the 

logarithmic phase (Fig. 2.8 A) before induction of protein expression by the addition of  
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Figure 2.7 Restriction Digestion to Screen For PAI-1 RCL Mutants. Mutations to the 
human PAI-1 gene in the pET24(d+) vector were introduced by PCR, the resulting 
plasmids transformed into Escherichia coli cells, and plasmids purified. A representative 
agarose gel (0.8%) displaying the digestion pattern of five transformed colonies per 
construct with their respective restriction enzymes to screen for the presence of mutated 
plasmids is shown (c.f. Table 2.3). Controls for wild-type (wt) plasmids are contained in 
the first four lanes. 
 
 

Table 2.3 Expected Digestion Patterns in Screening of PAI-1 RCL Mutants 
 
 

 

pET24d(+) 5236 bp
PAI-1 1140 bp

pET24d(+)- wt PAI-1 6639 bp
  
NEB Buffer/Temp. Restriction Enzyme Sites on pET Vector Sites on PAI-1 Cys Mutant Sites on PAI-1 w/ ! # Expected Bands Fragment Size (bp)

ApaLI 1042, 2977, 3477 2 P1' (M347C) 2, 1039 5 500, 1037, 1403, 1935, 1760
(2446, 4381, 4881)

BspEI 3, 2352 (1407, 5756) 351 P2' (A348C) 351, 1042 4 348, 691, 886, 4714 

FspI 2144 (3548) n/a P3 (S344C) 1030 2 2518, 4121
P8 (T339C) 1015 2533, 4106

NdeI n/a n/a P8' (M354C) 1060 1 6639

NsiI 4215, 4481 n/a P6 (V341C) 1021 3 266, 4598, 1775
(5619, 5885) P5' (E351C) 1051 266, 4568, 1805

P6' (I352C) 1054 266, 4565, 1808
P7' (I353C) 1057 266, 4562, 1811

SphI 537 (1941) n/a P3' (P349C) 1045 2 896, 5743

PmlI n/a n/a P13 (V334C) 1000 1 6639

SapI 3047 (4451) n/a P12 (A335C) 1003 2 3448, 3191
P11 (S336C) 1006 3445, 3194

TaqII 970, 1188 (2374, 2592) 406, 566 P14 (T333C) 406, 566, 997 5 160, 218, 431, 1377, 4453

BsmBI 1677, 2804, 4381 n/a P5 (I342C) 1024 4 1127, 1577, 1878, 2057
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IPTG, upon which linear growth was established (Fig. 2.8 B) by lowering incubation 

temperatures to minimize latency transition of translated PAI-1 and entrance into the 

stationary or death phase for the cells, as evidenced by the lack of a plateau or 

decrease in optical density (OD) at 600 nm, respectively. PAI-1 expression was 

confirmed by Western blot (Fig. 2.8 C). Typical cell harvests and protein yields ranged 

from ~27.4 - 72.4 grams and ~21.6 - 87.7 milligrams, respectively. The purity of the PAI-

1 RCL mutant protein obtained from these cells was analyzed by SDS-PAGE (Fig. 2.9 

A) and Western blot (Fig. 2.9 B). Most of the E. coli proteins were removed by cation 

exchange, leaving few lower molecular weight proteins for removal by IMAC and gel 

filtration. Moreover, RCL mutant purity and identification by molecular mass were 

assessed by HPLC (data not shown) and MALDI-TOF-MS (c.f. Fig. 2.14 A, Table 2.6), 

respectively. 

2.3.c. Mutations & Labeling Modestly Affect the Activity & Stability of PAI-1 

 Because serpins employ a conformation-based inhibitory mechanism, which can 

be affected at multiple levels, including its metastable fold or RCL insertion, the 

consequence of mutations on serpin function necessitates evaluation by more than one 

method [56, 143]. Thus, the activity and stability of the RCL mutants were assessed by 

its ability to inhibit one of its targets, tPA, and characterize its effect on PAI-1. 

Theoretically, PAI-1 forms stoichiometric (1:1) final serpin-protease suicide complexes 

with PAs. However, due to the labile nature of PAI-1, preparations generally contain 

some degree of latent protein, which can be separated by hydrophobic interaction 

chromatography (e.g. phenyl Sepharose) [85, 144] based on the additional β-strand 

character of latent PAI-1 upon RCL insertion, or by affinity chromatography using active 
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Figure 2.8 Growth & Expression of PAI-1 RCL Cys Mutants. Sequenced plasmids 
containing the correct RCL mutation in the PAI-1 gene were transformed into E. coli 
Rosetta 2 DE3 pLysS cells for growth and expression. Representative curves (for the 
PAI-1 P9 S338C mutant) of the optical density at 600 nm over time to observe cell 
growth (A) at 30°C before induction and (B) at 15°C after induction with 1 mM IPTG are 
shown. (C) Western blot verifies the induction of PAI-1 expression.  
  

 
 

Figure 2.9 Analysis of PAI-1 RCL Cys Mutant Purification. A representative (A) 
SDS-PAGE and (B) Western blot are shown for the purification of PAI-1 (P6 V341C) via 
(1) cation exchange, (2) immobilized metal affinity chromatography, and (3) gel filtration. 
Molecular weight standards (STD) are shown to the left of the supernatant (Sup) from 
which PAI-1 was purified.  
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site-blocked (S195A) serine proteases [145], which bind only the active serpins. Since 

reversal to the active conformation is non-spontaneous and therefore generally adds to 

the background in these experiments, the latter step was omitted in the purification of 

PAI-1. Therefore, to determine the amount of active RCL mutant present in these 

preparations, varying equivalents of PAI-1 were added to tPA, and the amount of p-

nitroalanine produced from the cleavage of Spectrozyme tPA by tPA was measured 

using the absorbance of the product at 405 nm (Fig. 2.10). Since only active PAI-1 

inhibits tPA, the decrease in the tPA activity indicates the increased presence of active 

PAI-1, and the plateau represents the equivalent required to fully inhibit tPA. For 

instance, in the representative assay, full inhibition occurs at 1.25 equivalents, which 

indicates that 80% of the PAI-1 RCL mutant present is active. However, this method 

does not detect the cleaved forms that arise from substrate behavior of PAI-1, which 

may be increased due to mutation of the RCL. Thus, an additional activity assay was 

performed by titrating tPA with the RCL mutant and analyzing by SDS-PAGE (Fig. 2.11). 

Again, the decrease in tPA and increase in complex formation was used to estimate the 

percent active PAI-1 mutant present. Cleavage in substrate PAI-1 results in its slightly 

faster migration than unmodified PAI-1 under electrophoresis, and can thereby be 

detected as the lower band in the PAI-1 doublet that appears in the gel at ~43 kDa. At 

sub-stoichiometric concentrations (i.e. 0.50 - 0.75 equivalents PAI-1 to tPA), the PAI-1 

present in the top band of the doublet is the latent form, while at higher stoichiometries, 

is unreacted due to saturation of tPA. The equivalent at the saturation point indicates 

the amount of active PAI-1 present. In this analysis, reducing conditions (Fig, 2.11 B) 

were generally used for clarity, but non-reducing (Fig. 2.11 A) also used to  
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2.10 Assessment of PAI-1 RCL Cys Mutant Activity. tPA was titrated with increasing 
concentrations of PAI-1 to determine the equivalent required to fully inhibit tPA. (A) 
Spectrozyme tPA is added to PAI-1-tPA mixtures and the absorbance at 405 nm 
recorded. (B) The absorbance at 405 nm after two minutes is plotted against PAI-1 
equivalent. A representative assay (for PAI-1 P9 S338C) is shown. Error bars are 
plotted as standard deviations. 
 
 
 
 
detect the formation of PAI-1 dimers (~86 kDa) due to presence of cysteine in the RCL. 

In the representative assay under both conditions, the excess occurs at 1.25 to 1.5 

equivalents of one PAI-1 RCL mutant to tPA, indicating that 67% - 80% of the 

preparation contains active PAI-1 RCL mutant protein.   

 To determine if the mutations affect insertion of the RCL, the SI ratio, describing 

the partition between inhibitory and substrate branches of the serpin pathway, was 

estimated by SDS-PAGE of 1:1 PAI-1:tPA mixtures and densitometry of the resulting 

products of electrophoresis (Fig. 2.12). From this analysis, the P13 mutant near the 

hinge and P3 to P5’ mutants about the scissile bond show increased substrate PAI-1, 

and thus, have greater relative SI ratios, while the P4’ and P6’ RCL mutants show the  
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Figure 2.11 Functional Distribution PAI-1 RCL Cys Mutants. tc-tPA was titrated with 
increasing concentrations of PAI-1 and its complexes separated under (A) nonreducing 
and (B) reducing conditions to resolve different functional species of PAI-1 (i.e. active, 
latent, substrate) and determine the equivalent of PAI-1 required to fully inhibit tPA. 
Ratios represent the concentration of tPA:PAI-1. A representative assay (for PAI-1 P9 
S338C) is shown.  
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Figure 2.12 Relative Stoichiometry of Inhibition of PAI-1 RCL Cys Mutants. PAI-1 
was added 1:1 to tPA and analyzed by SDS-PAGE. The relative stoichiometry of 
inhibition (SI ratio), relating the tendency of PAI-1 to partition into the inhibitory and 
substrate branches of the serpin pathway is indirectly estimated by the amount of 
substrate PAI-1 formed upon reacting with tPA. (Active PAI-1 in complex with tPA is not 
shown.) 
 

 

significant presence of latent protein, perhaps due to complications during purification. 

The low SI ratio due to cysteine mutation of the P14 residue has been previously 

reported [60]. Densitometry was also used to estimate the conformational distribution of 

active, dimer, and latent RCL mutant, which are tabulated (Table 2.4) next to the results 

obtained from the chromogenic and electrophoretic activity assays. The results of the 

activity assays are similar and indicate high activity (≥ 80%) for most constructs by both 

methods, which is comparable to wt-PAI-1 (data not shown). However, the activity 

assessed by the two methods differ for the P14, P2’, P4’, and P7’ constructs, a result 

which may be due to detection of substrate behavior in the electrophoretic versus 

chromogenic assay, or variations in experimental conditions between the two assays. 

Most constructs have a low latent protein content (average of ~14.5%), except P6, as 

previously mentioned. Also, RCL mutants, maintained in the presence of DTT prior to 

labeling, have a low tendency to dimerize by disulfide formation, as supported by an 

insignificant amount of dimer detected over time (Fig. 2.13), with dimer appearing only 

at high concentrations (Fig. 2.11). Also, sedimentation velocity experiments  
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Table 2.4 Activity & Conformational Distribution PAI-1 RCL Cys Mutants 
 

 
 
 

 

indicated that PAI-1 RCL mutants exist as a single, un-aggregated monomeric species 

(Fig. 2.13).  

 DTT was removed from PAI-1 RCL mutant protein prior to labeling with the NBD 

and MTSL probes. Typical labeling stoichiometries for NBD labeling ranged from 0.75 to 

1 mol NBD/mol PAI-1, but were lower (0.1-0.4 mol NBD/mol PAI-1) for P6’-P8’, likely 

due to limited accessibility of residues in these positions in s1C (Table 2.5). Labeling 

was also confirmed by MALDI-MS (Fig. 2.14, Table 2.6), which measures the mass-to-

charge ratio of gas phase ions to accurately determine molecular masses. Labeling with 

NBD (MW 419.18 Da, including the 126.9 Da iodine atom) results in the addition of  
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Figure 2.13 PAI-1 RCL Cys Mutants Exist in A Non-Aggregated, Monomeric State. 
In the top left panel, the indicated unlabeled PAI-1 RCL mutants were analyzed by non-
reducing SDS-PAGE to determine if dimeric PAI-1 forms over time. In the remaining 
panels, 4 µM of the indicated unlabeled PAI-1 RCL mutants were analyzed by 
sedimentation velocity. The absorbance traces are shown at the top, the residuals at the 
middle, and the distribution plot of sedimenting species at the bottom of each panel.  
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Table 2.5 Labeling Stoichiometry of NBD-PAI-1 
 

 
*Based on single measurement of A280 and ε = 0.93 mg/ml/cm for PAI-1,  
  and A492 and ε = 25,000 M-1cm-1 for NBD.  

 
 
 
 
 
292.28 Da to PAI-1. Small variances up to 30 Da are observed in the experimentally 

determined masses compared to their theoretical values, and may be due to the 

instrument calibration and/or analysis in linear mode without the use of a reflectron, 

which refocuses ions avert to spatial, temporal, or kinetic effects on the separation. The 

masses of a few constructs (P11, P8, P5, P4’, and P6’-8’) were not determined since 

the labeling success of the previously tested constructs strongly suggested that similar 

results would be obtained.  

 To determine if the introduction of the mutations or labeling with a molecular 

probe affects the function and stability of PAI-1, several stability assays were performed 
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Figure 2.14 Confirmation of NBD Labeling of PAI-1 Cys Mutants by Matrix-
Assisted Laser Desorption Ionization Mass Spectrometry. Purified PAI-1 RCL cys 
mutants were HPLC-purified and analyzed by MALDI-TOF-MS. Representative spectra 
for an (A) unlabeled and (B) labeled RCL mutant are shown (c.f. Table 2.6).  
 
 
 

Table 2.6   MALDI-MS of Unlabeled & Labeled PAI-1 RCL Cys Mutants 
 

 
            n.d. = not determined 
            Theoretical masses calculated in SEDENTERP.  
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(Fig 2.15) as described under Methods (2.2.k). Most mutations confer similar stability to 

or exhibit slightly increased stability compared to wt-PAI-1, even upon labeling, 

consistent with previous data [58, 78]. In particular, mutation in the hinge (P14, P12, 

P11) and adjacent to the scissile bond (P6, P3) stabilized PAI-1, whereas mutation of 

P6’-P7’ in s1C rendered PAI-1 less stable. However, these changes are minor in 

comparison to the effect of the single W175F and quadruple 14-1B mutations on PAI-1, 

which exhibit inhibitory half-lives of ~7 to 145 hrs, respectively [59, 70]. In terms of 

labeling, conjugation of the NBD probe N-terminal (P14, P9-P8, P6, and P5) and C-

terminal (P1’, and P3’-P5’) to the scissile bond resulted in the marginally greater stability 

of PAI-1, whereas labeling of P12 reversed the stabilizing effect of the mutation. Except 

for P14, the half-lives of labeled-PAI-1 increase towards P8 and decreased towards s1C, 

similar to the trend observed when P-even positions of the RCL were mutated to 

glutamate in an effort to reduce the latency rate of PAI-1 [66].   

 Since NBD-labeling shows small effects on the stability of PAI-1, the effect of the 

MTSL probe on the activity of PAI-1 was tested at representative positions, P9 & P1’, in 

the RCL. The activity of MTSL-PAI-1 in the absence and presence of tPA was also 

compared to the activity of its unlabeled and NBD-labeled counterparts (NBD-P2’ was 

used in place of NBD-P1’, which was not available at the time of the experiment) (Fig. 

2.16). In the absence of tPA, unlabeled, NBD-labeled, and MTSL-labeled P9 (Fig. 2.16 

A) and P1’ (Fig. 2.16 B) show similar results and electrophoretic mobility. Also, for both 

constructs, the NBD-labeled and MTSL-labeled protein samples contain a small amount 

of dimer and unlabeled or degraded protein, respectively. In the presence of tPA, 

MTSL-P1’ forms slightly more substrate than unlabeled P1’ or NBD- P2’. These results  
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Figure 2.15 Mutation & NBD-Labeling of The RCL on PAI-1 Stability. Unlabeled 
(black) and labeled (red) PAI-1 cys mutants were incubated at 37°C in MOPS buffer 
(pH 7.4) and its residual activity assayed indirectly by the addition of 50 nM tPA. 1 mM 
Spectrozyme tPA, a chromogenic substrate for tPA, was added to the reaction and the 
absorbance of its p-nitroaniline product measured at 405 nm. Initial rates were plotted 
over time and the inhibitory half-life determined. Residues are ordered from N-terminal 
to C-terminal in the RCL according to its P designation relative to the P1-P1’ scissile 
bond. 
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Figure 2.16 Effect of MTSL-Labeling of The RCL on PAI-1 Stability. Representative 
unlabeled, NBD-labeled, and MTSL-labeled PAI-1 constructs were incubated in the 
absence or presence of equimolar single-chain tPA (sc-tPA) in PBS (pH 7.4) at ambient 
temperature for 30 minutes. Samples were resolved under non-reducing conditions by 
SDS-PAGE on a 10% polyacrylamide gel. Results for the (A) PAI-1 P1’ RCL mutant 
(M347C) and (B) PAI-1 P9 RCL mutant (S338C) are shown. Molecular weight 
standards are contained in the left-most lane, and components present (+) in 
succeeding lanes are indicated below the lane. 
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indicate that MTSL-labeling has similar effects as NBD-labeling at the P1’ position. In 

striking contrast, MTSL-P9 is completely converted into substrate in the presence of tPA, 

while unlabeled and NBD-labeled P9 show similar formation of complexes with tPA. The 

latter indicates that MTSL-P9 assumes an RCL-exposed active conformation and 

interacts with tPA, but upon cleavage, releases the protease.  

2.3.d. NBD Reports Unique Micro-environments at the RCL 

 To test the ability of NBD fluorescence to provide specific information on PAI-1, 

the affinity for VN (Fig. 2.17) and relative quantum yield (QY) (Fig. 2.18, Table 2.7) of 

RCL-labeled mutants were determined. A Kd of ~ 10 nM for the PAI-1-VN interaction, 

comparable to published values [10, 62], indicates this method is reliable in determining 

characteristics of PAI-1. Also, the absorbance (Fig. 2.18 A) and fluorescence spectra 

(Fig. 2.18 B), with excitation and emission maxima of ~480 nm and ~530 nm, 

respectively, were used to estimate the relative QY of NBD-PAI-1 (Table 2.7). The QY, 

defined as the amount of photons emitted per photons absorbed, is used as a measure 

of efficiency of the fluorescence process. Accurate QY measurements require the use of 

sophisticated photon-counting equipment, which was unavailable for these experiments.  

 An alternative method is to calculate the QY with respect to a reference at 

multiple concentrations, or by single point measurements. Due to the lack of a NBD QY 

reference value in the literature under the conditions employed in these experiments, 

the relative QY of NBDfree was arbitrarily set to 0.5 to assume 50% efficiency of its 

fluorescence. The results of the relative QY measurements indicate that the relative QY 

of NBD-PAI-1 are all similarly high, with a slightly decreasing trend towards the C-

terminal position of the RCL. 
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Figure 2.17 VN Binds with High-Affinity to PAI-1. 0.5 µM NBD-PAI-1 was titrated with 
increasing concentrations of VN, excited at 480 nm, and the emission spectra from 500-
600 nm collected. The maximum intensity from the resulting spectra is plotted against 
VN concentration, fit to a one-site binding curve by nonlinear regression (GraphPad 
Prism), and the dissociation constant (Kd) determined. Spectra were collected in MOPS 
(pH 7.4) at ambient temperature. A representative curve is shown (for PAI-1 labeled at 
the P14 position). Results based on single experiment. 
 
 
 
 
 
 
 

0.0 0.8 1.6
0

75

150
Kd = 0.01 µM
R2 = 0.99

[VN] (!M)

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 (a
.u

.)



	   73	  

 
Figure 2.18 Single-Point Measurements For Relative Quantum Yield 
Determination of NBD-PAI-1. (A) Absorption and (B) emission spectra for NBD-PAI-1 
normalized to a concentration of 0.25 µM NBD were obtained to approximate 
fluorescence quantum yields (c.f. Table 2.7). Emission spectra were collected after 
excitation at 480 nm. NBD-labeled RCL residues tested are indicated.  
 
 

Table 2.7 Relative Quantum Yields of NBD-Labeled RCL Mutants of PAI-1  
 
 

NBDfree & NBD-
Labeled PAI-1 

Labeling 
Stoichiometry 

Area of 
Fluorescence 

(a.u.) 

Absorbance 
(a.u.)* 

Relative Q 
Yield 

NBD n/a 16725 257 0.5** 
P14 0.83 8531 135 0.49 
P13 0.7 12617 201 0.47 
P12 0.7 7938 126 0.45 
P6 0.59 10923 168 0.45 
P3 0.97 13545 218 0.43 
P1' 1.14 10838 171 0.42 
P2' 0.79 8657 135 0.41 
P3' 1.02 10091 155 0.41 
P5' 1 14067 217 0.41 

 *Absorbance at the theoretical excitation wavelength maximum (480 nm) for NBD. 
 **Assuming 50% efficiency, the quantum yield of NBDfree was arbitrarily set to 0.5. 
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 Because buffers and temperature affect its stability [73, 77], the effect of the 

latter on PAI-1 was tested for NBD at the P9 position of the RCL to detect if 

perturbations in fluorescence occur (Fig. 2.19). To ensure that the results obtained for 

NBD-PAI-1 fluorescence are not due to non-specific adsorption of the protein to the 

cuvette used in these experiments, the half-lives of loop insertion were determined as 

described under Methods (2.2.b) in non- and PEG-coated cuvettes (Fig. 2.19 A). 

Whereas the half-life obtained at the specified temperature and pH in the PEG-coated 

cuvette are similar to that previously reported (i.e. t½ ~ 19 v. 23 hrs [105]), the result for 

NBD-PAI-1 in a non PEG-coated cuvette is very fast, indicating absorption to the 

cuvette surface. Thereby, all cuvettes were coated prior to latency experiments by 

fluorescence (2.2.l.). Also, as expected, increasing the temperature at a constant pH 

(Fig. 2.19 B) resulted in a faster half-life comparable to that obtained under 

physiological temperatures [73] than at room temperature. Furthermore, the half-lives 

measured in different buffers (Fig. 2.19 C), are similar, but slightly longer in phosphate-

containing buffers due to the known stabilizing effect of the latter on PAI-1 [146]. 

However, in measuring the half-lives of PAI-1 in MOPS, inconsistent results with large 

standard deviations were obtained (Fig. 2.19 D) that were not observed in phosphate 

buffers. To determine if components in the MOPS buffer are responsible for the 

observed discrepancies, the half-life of NBD-PAI-1 was tested in buffers in which the 

concentration was lowered to 0.1 M (data not shown) and PEG was removed. The 

removal of PEG, but not lowering EDTA concentrations, from MOPS buffer resulted in a 

half-life consistent with the expected value, indicating that PEG interacts with or affects 

the solvation of the protein in the presence of MOPS. Upon removal of PEG in the latter,  
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Figure 2.19 Effect of Buffers, Temperature, & PEG on NBD-PAI-1 Fluorescence. 
0.5 µM NBD-PAI-1 was excited at 480 nm and emission spectra from 500-600 nm 
collected over time. The normalized fluorescence change at 530 nm was plotted against 
time, fit to a single exponential corresponding to the latency transition, and half-lives 
determined for NBD-PAI-1 in (A) phosphate buffer at room temperature and pH 7.4, (B) 
in phosphate buffer at different temperatures and pH 7.4, (C) in different buffers at 37°C 
and pH 7.4, and (D) in MOPS buffer with and without PEG at 37°C and pH 7.4. [PO4 = 
50 mM NaH2PO4, 300 mM NaCl, 1 mM EDTA, 0.1% PEG 8000; MOPS = 50 mM MOPS, 
100 mM (NH4)2SO4, 1 mM EDTA]. Representative data are for NBD-P9 PAI-1. 
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the results in both buffers are comparable and reproducible (Fig. 2.19 C). Overall, these 

results reveal that NBD-fluorescence can provide specific information about PAI-1 

conformation, but that care must be taken to account for effects of buffer or other 

additives to the experimental mixture 

2.3.e. Transition to the Latent Conformation is Accompanied by Changes in RCL 

Conformation 

 The transition to the latent state of PAI-1 is spontaneous and irreversible, with 

the N-terminal residues of the RCL from P16-P4 inserted as s4A, and P2-P10’ extended 

along the surface of the protein [112]. In this state, the P-even residues point inwards 

toward the hydrophobic core of the protein, while the scissile bond is tucked near the 

core and inaccessible for target proteases. To investigate the changes that occur during 

transition from the active state to this conformation, multiple positions in the RCL were 

labeled with a fluorescent reporter, and its insertion over time was monitored. Due to the 

sensitivity of NBD to its local environment, the conformational changes associated with 

the translocation of the RCL and hinge to the shutter, and s1C through the gate to the 

surface, of PAI-1 can be observed via its fluorescence. Figure 2.20 shows a 

representative graph for the normalized change in fluorescence over time for NBD at 

various positions in the RCL during the latency process. Except for P5’, which shows a 

consistent decrease over time, each position in the RCL exhibits an increases in 

fluorescence, indicating burial of the NBD probe in or near the hydrophobic core of the 

serpin. This increase in fluorescence has been shown previously to correlate with a loss 

of inhibitory activity, and is attributed to latency transition of PAI-1 [105]. Also, an initial 

decrease, indicating greater solvent exposure, was observed for all constructs, except 
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Figure 2.20 Steady-state RCL Insertion During Latency Transition of PAI-1. NBD-
labeled PAI-1 was added at 0.3-0.5 µM in 50 mM NaH2PO4, 300 mM NaCl, 1 mM EDTA, 
0.1% PEG 8000, pH 7.4 at 37°C. Samples were excited at 480 nm and normalized 
fluorescence change at 530 nm plotted against time. Data were fit to a single 
exponential corresponding to the latency transition. All experiments were performed in 
triplicate, but only one plot is shown above its residuals.  Plots are ordered from N-
terminal to C-terminal of the RCL.  
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for P9-P6 (Fig, 2.21 A). The decrease was slowed at room temperature and lowering 

buffer pH (Fig. 2.21 B). It should be noted that re-purification, relabeling, extensive 

dialysis (Fig. 2.21 C), changing the buffer (Fig. 2.21 D), and elimination of PEG from 

the buffers (data not shown) did not alter the outcome, indicating that these initial 

changes report a bona fide structural change in PAI-1. Also, the coated cuvettes were 

rinsed prior to drying to prevent the possible presence of excess PEG from leaching into 

the solution, and thus are unlikely to be responsible for the observed decrease. The 

process detected by this decrease ends within ~10 min for most constructs before 

increasing exponentially to saturation. 

 The magnitude of the fluorescence changes at various positions are not 

correlated with either the labeling stoichiometries (Table 2.5) (both of which are similar 

to reported results [105, 117]), contacts formed in the latent state (c.f. Table 1.4), 

relative quantum yield (Table 2.7), or polymerization (data not shown). For example, P1’, 

which had the highest labeling stoichiometry, exhibits an overall fluorescence change 

that is similar in magnitude to that of P6’-P8’, which have some of the lowest degrees of 

labeling, likely due to limited access of the latter residues during the labeling reaction.  

Similarly, P9, which does not make significant contacts in the latent crystal structure, 

has the highest fluorescence change, followed by P6 and P5, which, unlike the former, 

participate in several hydrophobic contacts in the latent conformation. Also, P14, while 

having one of the highest relative QY, shows an intermediate magnitude for the 

fluorescence change. These results emphasize that the unique microenvironment for 

various residues positioned in the RCL can be detected by the sensitive NBD probe. 

 The half-life for insertion of RCL residues was obtained from fitting the data in  
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Figure 2.21 Initial Decrease in Fluorescence During Latency Transition. 0.5 µM 
NBD-PAI-1 was excited at 480 nm and emission spectra from 500-600 nm collected 
over time (A) in phosphate buffer at 37°C and pH 7.4, (B) in phosphate buffer at room 
temperature and pH 6.6, (C) after dialysis (*) and relabeling (**) in phosphate buffer, 
and (D) in MOPS buffer at 37°C and pH 7.4. Results are plotted as the normalized 
fluorescence change at 530 nm against time represented as a continuous line without 
points. Representative data for NBD-labeled RCL mutants tested are indicated. [PO4 = 
50 mM NaH2PO4, 300 mM NaCl, 1 mM EDTA, 0.1% PEG 8000 buffer; MOPS = 50 mM 
MOPS, 100 mM (NH4)2SO4, 1 mM EDTA, 0.1% PEG 8000 buffer] 
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Figure 2.20 to an exponential one-phase decay model (Fig. 2.22, red bars). Except for 

P14, P12, and P8, the half-life of NBD-PAI-1 generally increases towards P8, as 

previously observed (c.f. Fig. 2.15). Due to their position at the hinge, the long half-lives 

observed for P14 & P12 may be due to probe interference in hindering burial of the 

residues into sA in the latent conformation. Also, the residuals and goodness of fit 

(Table 2.8) indicate that P8 and P5’ would fit better to an alternative two-phase decay 

model (Fig. 2.22, black bars). An additional trend of a longer half-life of insertion within 

error for s1C residues P5’-P8’ is also observed. The half-lives of loop-insertion are also 

considerably longer than the half-lives measured indirectly from the residual PAI-1 

activity towards tPA. A noteworthy difference between the two measurements is that the 

latter only detects inhibitor PAI-1, while the former detects both inhibitor and substrate 

PAI-1. Insertion of the RCL in PAI-1 that behaves as a substrate has previously been 

shown to be slower [78], and thereby, the half-lives measured directly by fluorescence 

can be accordingly longer than that measured by kinetics of substrate inhibition alone. 

In addition to conformational effects, the dynamics of the RCL in the active and 

latent conformations was measured by EPR. The RCL was labeled at the various 

positions with the paramagnetic MTSL probe, which carries an unpaired electron that, 

when placed in a magnetic field, resonates by absorption of microwave energy equal in 

energy to the difference between its electronic states [136]. The magnetic field was 

swept at a constant frequency, and EPR spectra collected. Individual representative 

spectra of MTSL-PAI-1 indicate that the dynamics at different positions in the RCL are 

distinct in the active and latent conformations (Fig. 2.23). The change in the dynamics 

of the RCL was obtained from the difference in the line-width between the active and  



	   81	  

 
Figure 2.22 Half-life of RCL Insertion. NBD-labeled PAI-1 was added at 0.3-0.5 µM in 
50 mM NaH2PO4, 300 mM NaCl, 1 mM EDTA, 0.1% PEG 8000, pH 7.4 at 37°C. 
Samples were excited at 480 nm and fluorescence emission at 530 nm over time 
recorded. Data were fit to a single exponential (red bars) from which the half-life for 
insertion of the NBD probe at each RCL position during latency transition was obtained. 
Initial decreases were excluded before calculating half-lives from a one-phase decay 
model. A two-phase decay model without exclusion of initial values was used to 
evaluate certain constructs, for which the slow half-life (black bars) is shown. All 
experiments were performed in triplicate from which an average was plotted with 
standard deviation error bars.    
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Table 2.8 Comparison of Half-lives Obtained for NBD-labeled PAI-1 via tPA 
Inhibition & Steady-state Fluorescence 

 

 
 

 

 

 

 

 

 

 

 

RCL 
Position

Half-life 
(hrs)*

klat (x 10-3) 

(min-1)*

Half-life 

(hrs)¥ R2 ¥

Half-life 

(Fast) (hrs)§

Half-life 

(Slow) (hrs)§ R2 §

P14 3.28 ± 0.31 3.54 ± 0.32 3.88 ± 2.67 !"#$
P13 1.12 ± 0.06 10.33 ± 0.55 1.04 ± 0.05 !"##
P12 1.18 ± 0.03 9.83 ± 0.25 8.07 ± 0.21 !"##
P11 1.51 ± 0.06 7.65 ± 0.29 3.12 ± 0.12 !"##
P9 1.65 ± 0.06 7.01 ± 0.25 3.39 ± 0.03 !"##
P8 2.73 ± 0.14 4.24 ± 0.21 0.87 ± 0.01 !"#% 0.46 ± 0.07 5.18 ± 4.24 0.99
P6 2.63 ± 0.13 4.67 ± 0.18 4.1 ± 0.05 !"##
P5 2.27 ± 0.12 5.11 ± 0.26 5.46 ± 0.47 !"#$
P3 1.77 ± 0.04 6.54 ± 0.15 4.34 ± 0.36 !"#$
P1' 1.78 ± 0.05 6.55 ± 0.17 4.56 ± 0.07 !"#$
P2' 1.27 ± 0.09 9.13 ± 0.62 2.28 ± 0.01 !"#%
P3' 1.64 ± 0.03 7.04 ± 0.13 2.34 ± 0.06 !"#&
P4' 1.57 ± 0.10 7.38 ± 0.47 2.33 ± 0.04 !"##
P5' 1.66 ± 0.14 6.98 ± 0.48 1.08 ± 0.08 !"&# 0.11 ± 0.01 4.43 ± 0.76 0.97
P6' 0.94 ± 0.02 12.26 ± 0.31 2.4 ± 1.07 !"#&
P7' 1 ± 0.07 11.64 ± 0.82 3.83 ± 0.64 !"#&
P8' 1.31 ± 0.07 8.82 ± 0.46 2.62 ± 0.18 !"#%
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latent conformations of PAI-1 (Fig. 2.24). From these results, a periodicity of two is 

observed from P14 to P3, which indicates a β-strand structure, as expected upon RCL 

insertion as s4A. Except for P11, the P1’-P8’ positions exhibit slightly greater mobility 

when latent, as expected from this stretch of sequence that is extended along the 

surface of PAI-1 in the latent conformation. Also, the lack of periodicity in this segment 

of the RCL indicates the absence of regular secondary structure (i.e. α-helical, indicated 

by periodicity of 3.6, and β-strands). The greater orientational freedom of probes [e.g. 

N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacenyl-3-propionyl)-N-(iodoacetyl) 

ethylenediamine, BYDIA) at the RCL has been previously reported for latent PAI-1, and 

is due to its more relaxed conformation in this state [99]. Thus, the result with another 

probe support the EPR results obtained here.  

For MTSL-PAI-1, the intensity of the MTSL resonance signal is proportional to 

the concentration of EPR active species. Therefore, the correlation in signal intensity 

could result from several phenomena, including probe dimerization, reduction, or 

removal of the MTSL label. MTSL reduction or removal may occur by the presence of 

DTT, which is unlikely in this case as MTSL-PAI-1 was passed through two gel-filtration 

columns during the labeling procedure. A more likely alternative explanation is the 

resulting signal is due to an equilibrium between the active and latent conformations of 

PAI-1. A correlation between signal intensity and the amount of active versus latent 

protein would also better explain the increase in MTSL intensity observed at some RCL 

positions in the latent state (e.g. P14, P12, P9-P5 in Fig. 2.23), for which a gain in EPR 

active species is improbable. Although the presence of free MTSL can also result in 

spectra with greater intensities and sharper line-widths, its intensity typically dominates  
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Figure 2.23 Mobility at Different Positions of The RCL (s4A) in Active & Latent 
Conformations of PAI-1. Latent MTSL-PAI-1 was prepared by incubation at 37°C for 1 
week (PBS, pH 7.4). EPR spectra of 2 µM active (freshly thawed) and 2 µM latent 
MTSL-PAI-1 in PBS (pH 7.4) were collected at by sweeping the magnetic field (3310-
3410 gauss) at a constant frequency (~9.45 GHz). Representative spectra of active 
(black traces) and latent (cyan traces) MTSL-PAI-1 for each RCL position are shown. 
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Figure 2.24 Changes in RCL Dynamics From The Active to Latent State of PAI-1. 
EPR spectra of 2 µM active or latent MTSL-PAI-1 in PBS (pH 7.4) were collected at 
ambient temperature. The inverse line-widths from the resulting spectra were obtained, 
and the change in the relative mobility (1/H0) determined by subtracting the average 
inverse line-width of active MTSL-PAI-1 from the average inverse line-width of latent 
MTSL-PAI-1. All experiments were performed in triplicate. Standard deviation error bars 
for most positions are small and not visible in the plot. Residues are ordered from N- to 
C-terminus of the RCL. 
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and obscures protein signals, and its peaks (high, center, and low field) are equal and 

symmetric. In addition, variances in the EPR spectra of MTSL-PAI-1 alone were 

observed (Fig. 2.25). The quality factor, Q, which indicates how efficiently the EPR 

cavity stores microwave energy (Q = 2π/energy dissipated per cycle = νres/H½, where 

νres is the resonance frequency of the cavity and H½ is the line-width at ½ height 

resonance), also varied from 200 to 2200 with day-to-day usage. Smaller variations in Q 

were observed within shorter time frames. Changes in the Q factor, which is sensitive to 

electromagnetic interference (EMI), can be minimized, but not controlled. Since the 

other EPR parameters can be set, the observed variations observed for MTSL-PAI-1 

are likely due to fluctuations in the Q factor. Thereby, despite tight standard deviations, 

small differences in mobility between separate positions are insignificant.   

2.4. Discussion 

2.4.a. How does flexibility of the RCL affect its conformation? 

 Homology modeling of the RCL was performed to search for potential 

conformations that may provide information regarding where the RCL ‘starts’ in the 

latency process. Only three low energy structures resulted (Fig. 2.6), and molecular 

dynamics within 0.8 kcal/mol (to allow for thermal motions) also agree with such results. 

The body of the protein was fixed during modeling, which precludes partially inserted 

pre-latent forms. However, since this approach typically produces many conformational 

possibilities, the few models obtained for the RCL is a striking result. While relaxation of 

this constraint is expected to give rise to more loop conformers, the restricted 

conformational mobility revealed by homology modeling is likely a consequence of the 

metastable folding of the RCL to fit its function. Access to few conformations also likely 
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Figure 2.25 Effect of Quality Factor on MTSL-PAI-1 EPR Measurements. EPR 
spectra of 2 µM active MTSL-PAI-1 in PBS (pH 7.4) were collected at different times 
and Q values (~200-2000). The magnetic field (3310-3410 gauss) was swept at a 
constant frequency (~9.45 GHz). The scaled mobility (Ms) was determined from the 
inverse line-width of the resulting spectra with respect to the inverse line-widths of the 
most mobilized and immobilized residue. Residues are ordered from N- to C-terminus of 
the RCL. All experiments were performed in triplicate. 
 

 

 

 

 

 

 

 

 

P14 P13 P12 P11 P9
P8 P6 P5 P3 P1' P2' P3' P4' P5' P6' P7' P8'

-1

0

1

PAI-1 alone (1)
PAI-1 alone (2)

MTSL-Labeled RCL Residue

S
ca

le
d

 M
o

b
ili

ty
 !

"



	   88	  

limits the search for the conformation recognized by target proteases, thereby priming 

or pre-organizing the serpin to make favorable interactions with target serine proteases. 

Also, these limited conformations presumably indicate that the metastable kinetic trap is 

close to and facilitates funneling towards the latent state.  

2.4.b. Why does MTSL have distinct effects from NBD on PAI-1 stability? 

Despite extensive mutagenesis [66, 94, 107-110, 116, 121, 124, 147], 

thermodynamic characterization [61, 64], and conformational studies using 

crystallization [112], limited proteolysis [77, 89], hydrogen-deuterium exchange (HDX) 

[90], RCL-mimicking peptides [148], and monoclonal antibodies [65], the sequence of 

events during the transition from active to latent conformation are still not well defined. 

Single-cysteine mutants of the RCL were thus generated to label with the fluorescent 

NBD reporter and observe changes that occur during this process. Significant effects on 

the stability or fold of PAI-1 were not expected for these mutants, as previous studies 

have shown that the lability is not in the sequence of the RCL [84] and its mutation is 

tolerated as long as the P1 position is occupied by a basic residue, preferably arginine, 

and not proline at the P1’ position [83, 122].  Indeed, many studies have employed 

mutation and labeling of the P9 position to elucidate events during inhibition, interaction 

with target proteases, and mechanism of inactivation by neutralizing monoclonal 

antibodies [65, 68, 78, 80, 86, 104, 105, 117]. Mutation and labeling of P14, P13 [101], 

P3, & P1’ [58, 99, 100, 104, 117] has been used to a lesser degree to provide 

information about RCL tethering and nanosecond dynamics. Similar to these studies [58, 

100, 105], the results here indicate that the NBD-labeled RCL mutants are folded and 
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function properly (Fig. 2.15), although the SI ratios vary, indicating different degrees of 

substrate behavior for these mutants (Fig. 2.12).  

 In contrast to NBD-labeling, MTSL-labeling of the P9 position of the RCL results 

in the curious and complete substrate behavior of PAI-1 (Fig. 2.16 A). Upon loop 

insertion, this residue resides in a mostly hydrophobic environment near the center of 

s4A in RCL-inserted conformations of PAI-1 (c.f. Fig. 1.10 B & D, Table 1.4). Since the 

side-chains of P-odd residues point out upon insertion, interference with the close 

packing of the hydrophobic core is not expected. Also, MTSL, which adds 185.9 Da to 

PAI-1, is smaller than the NBD probe, which adds 292.28 Da upon labeling, discounting 

possible steric explanations for the difference. One possibility to account for this 

peculiar behavior is that the MTSL, but not NBD, probe prevents fast insertion of the 

RCL during inhibition due to different exosite interactions with tPA in the Michaelis 

complex. Another possibility is that the MTSL-probe at the P9 position affects the final 

crushing of the enzyme against the serpin scaffold upon insertion. In this scenario, the 

nitroxide at the P9 position, but not at P1’, may be oriented such that it may react with 

the ester bond of the acyl enzyme by nucleophilic radical substitution. Since the length 

of the RCL is important in the close tethering and crushing of the protease [123, 124], 

substitution at the P9 position could thus result in deacylation of the serpin-protease 

complex. Though not tested, results for MTSL-labeling of residues around the scissile 

bond (P5-P3’) may be similar to P1’, and residues further N-terminal to the target bond 

may be similar to P9. Alternatively, the effect may only occur at the P9 position. 

Whether greater exosite interactions or deacylation occurs during (i.e. in following the 

substrate branch of the inhibitory process) or after insertion remains to be determined. 
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However, this study employs MTSL for dynamics investigation of the RCL prior to or 

following latency transition, which is distinct from RCL insertion during inhibition. 

Thereby, this substrate behavior should not affect the interpretation of the EPR results 

obtained here.   

2.4.c. What steady-state changes occur during latency transition? 

Except for P9-P6, an initial decrease was observed within 10 minutes, followed 

by an exponential increase in fluorescence for a much longer time frame for all RCL 

residues tested (Fig. 2.21 A). Excluding the decrease, this behavior can be adequately 

described by the single exponential latency process for most mutants, although the 

changes for P8 and P5’ are better explained using a two-step model. The observed 

initial decrease in fluorescence may be attributed to the partial or full detachment of s1C 

in preparation to assume the latent conformation, leading to the exposure of P4’-P8’ and 

a change in RCL conformation that is experienced by other RCL residues except for P9-

P6. The ensuing increase then describes the insertion of P14-P4 into sA and P2-P8’ 

near the hydrophobic core. The dynamics of the RCL in the latent conformation (Fig. 

2.24) are also consistent with the insertion of P14-P3 as s4A and P1’-P8’ as an 

extended loop.  

Due to their distinct positions, the early-phase changes exhibited by P8 and P5’  

may not report the same process, in spite of the fact that the second change that occurs 

at longer times is consistent with RCL insertion. For the P8 residue, which resides under 

the apex of hF in the latent conformation, an early process occurs with a half-life of ~27 

min, which is consistent with the expected displacement of hF prior to full insertion of 

the RCL in the latent conformation. The hurdle in displacing hF may also explain the 
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trend of an increasing half-life towards the P8 position. Once hF is displaced, 

consecutive residues can insert with ease. For the P5’ residue, which is located at s1C 

in the active conformation, but stretched along sA in the latent conformation, an early 

process occurs with a half-life of ~ 6.6 min, which is close to the 10 min decrease 

observed at adjacent residues, likely representing s1C detachment. The decrease in 

fluorescence indicating greater solvent exposure observed at the P5’ position is 

puzzling, but may be due to an interaction with a water molecule in its vicinity during its 

transition to the latent state. Following detachment, the longer half-lives for insertion of 

P5’-P8’ s1C residues may be due to its slow passage through the gate. Whether hF 

displacement or passage through the gate is the rate-limiting step of the latency process 

is not clear, and requires further investigation.  

To unify these results here with the currently accepted paradigm for the latency 

transition, the following model is proposed (Fig. 2.26). Starting from the native, 

metastable state (Fig. 2.26 A), crystallization and DDEM studies reveal that the RCL is 

extended, but close to the protein core, limiting its possible conformations according to 

homology modeling. Within the first ~10 minutes of the latency process during which a 

decrease in fluorescence, or greater solvent exposure, of the RCL is observed, the 

central β-sheet partially opens (Fig. 2.26 B). This opening allows the reversible and 

partial insertion of the N-terminal portion of the RCL (as detected by the 33B8 mAb and 

DDEM studies) concomitant with the partial detachment of s1C from its host β-sheet (as 

detected by the H4B3 mAb) (Fig. 2.26 C; c.f. Table 1.2). A detached s1C and partially 

Inserted RCL results in the pre-latent conformation of PAI-1. For further RCL insertion, 

the gate must widen (Fig. 2.26 D) and hF must be displaced (Fig. 2.26 H). The two  
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Figure 2.26 Model of PAI-1 Latency Transition. The RCL is shown in red, with s1C 
depicted as a red arrow, the gate loops in green, the shutter β-strands as blue arrows, 
and hF as an orange cylinder. Additional strands of the central β-sheet A are shown as 
gray arrows. Starting from the native, metastable state (A), the RCL is extended, but 
close to the protein core. In the steps toward the latent conformation, the shutter 
partially opens (B). This allows the RCL to partially insert and s1C to partially detach, 
reversibly, in the pre-latent conformation (C). For further RCL insertion, the gate must 
widen (D) and hF must be displaced (H). The C-terminal RCL may then pass through 
the gate and consecutive N-terminal RCL residues insert as s4A (G). When the N-
terminal RCL is fully inserted as s4A and C-terminal RCL extended along the surface of 
the serpin (F), hF returns to its position over the shutter and the latency process is 
completed (E).  
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events are reasoned to occur in concert within the next ~20 min of the latency process 

based on the first-phase of the transition reported from the P8 position. Also, the C-

terminal RCL must pass through the gate region (Fig. 2.26 G), which occurs on a longer 

time-scale, as evidenced from the half-lives reported from the P5’ to P8’ positions. The 

rate-limiting step of the latency transition, which may be widening of the gate, passage 

through the gate, or hF displacement, likely occurs between the conformation changes 

proposed in Figures 2.26 G-H. With hF displaced, consecutive N-terminal RCL 

residues can insert. Once these residues are fully inserted as s4A, and C-terminal RCL 

extended along the surface of the serpin (Fig. 2.26 F), hF can return to its position over 

the shutter (Fig. 2.26 E). Thus, the latency transition with its many steps is completed 

with a half-life of ~ 1 hr.  

2.5. Conclusions 

The tight control of PAI-1 expression and activity is crucial for its proper function 

and physiological effect. The pre- and post- transcriptional and translational regulation, 

including by polymorphic regions in the genetic material, glycosylation of the protein, 

and binding of its cofactor, provide several points that serve as a system to check and 

balance PAI-1 levels. Importantly, the activity of PAI-1 is curbed by its latent transition, 

which is a valid mechanism of self-regulation in vivo. This transition and the 

conformation of the RCL were both poorly characterized prior to this study. Using a 

combined approach of homology modeling, steady-state fluorescence, and EPR, the 

findings here provide evidence that the structures available to the RCL appear to 

occupy a circumscribed conformational space, placing the metastable state close to its 

global free-energy minimum. To get to this state, s1C detachment occurs as an early 
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event of the latency process. The slower insertion of the RCL, likely limited by its 

passage through the gate or hF displacement, follows. From this “stressed” to “relaxed” 

transition, the inserted positions experience a greater degree of orientational freedom. 

Thereby, the results here reveal that latency transition is not a simple monotonic 

process, but one that involves sequential steps with independent and concerted 

conformational changes. This work presents new information on both the conformation 

of the RCL and latency process of PAI-1, which can be used in the design of more 

effective inhibitors to this inhibitor under its pathophysiological states.  
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Chapter 3 Vitronectin Prevents Full Insertion of the PAI-1 RCL             . 
 
3.1. Introduction 

3.1.a. Structural Organization of VN & Oligomerization 

As its physiological cofactor, VN assists PAI-1 in regulating fibrinolysis and extracellular 

proteolysis by several mechanisms, including slowing its latency rate, stabilizing its 

active conformation, affecting its specificity, and localizing it to the site of action [4, 80]. 

VN also binds additional structurally distinct molecules, including uPAR, integrins, 

heparin, the antithrombin-thrombin (AT-T) complex, fibrin, plasminogen, collagen, and 

platelets. In contrast to PAI-1, whose multi-specificity is built upon a single flexible 

scaffold, the promiscuity of VN is due to possessing several domains and binding sites 

for its various ligands (Fig 3.1). VN contains three structured domains, including the 

somatomedin B (SMB), central, and C-terminal domains, and a long, unstructured 

region, the IDD (intrinsically disordered domain). Small-angle x-ray scattering 

measurements [149] indicate that these domains fit into the overall bi-lobed fold of VN 

that is extended in solution. The N-terminal SMB domain, solved by crystallography and 

NMR [125, 150-152], contains 8 cysteines, which form a disulfide knot, and two short α-

helices. At the end of the SMB domain is an RGD (Arg-Gly-Glu) sequence and stretch 

of negatively charged residues that serve as sites for uPAR and integrins, and thus, cell 

binding. The adjacent IDD is unresolved, but predicted by the PONDR (Predictors of 

Naturally Disordered Regions) algorithm to be intrinsically disordered [153], and thereby, 

may gain structure by coupling binding to folding [154-156], as characteristic of these 

regions. As with the latter domain, the structures of the central and C-terminal domains 

have not been solved, but were homology modeled  
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Figure 3.1 VN Is A Promiscuous, Bi-Lobed, Multi-Domain Glycoprotein. VN 
contains three main domains, which from N- to C- terminus are the somatomedin B 
domain (SMB, cyan), the central domain (green), and the C-terminal domain (red). The 
SMB domain is connected to the central domain by an intrinsically disordered domain 
(IDD, space occupied by orange spheres). The global structural model of VN, exhibiting 
its bi-lobed (transparent circles) shape, is displayed over a schematic of its domain 
organization. Sites for post-translational modifications, including glycosylation (blue 
ball-and-sticks in structural model and hexagons in schematic), phosphorylation (PO3

-), 
and sulfation (SO3

-) sites, are indicated above the domain organization, while clusters of 
negatively (-) and positively (+) charged residues are shown at its bottom. Adapted from 
[149].  
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using the threading method, and thereby predicted as a four-bladed and half β-propeller 

fold, respectively [153]. The hemopexin-like central domain contains several surface-

exposed hydrophobic patches that may be involved in protein-protein interactions and 

modulating the oligomeric state of VN, while the C-terminal domain contains several 

positively charged residues for heparin binding. VN also contains multiple sites for post-

translational modifications. Glycosylation of VN functions in its multimerization and 

collagen binding [157], sulfation in its binding of AT-T complexes [158], and 

phosphorylation in its role in fibrinolysis and extracellular proteolysis by lowering its 

affinity for PAI-1 [159].  

The PAI-1 binding sites on [160] and affinity [10] for VN were controversial before 

the realization of two binding sites for PAI-1, and its role in the oligomerization of VN. 

VN is primarily synthesized in the liver and by vascular smooth muscle cells that form 

the wall of blood vessels, and it circulates at micromolar quantities (0.3-0.6 µM) in a 

monomeric form [161, 162]. VN binds to active PAI-1 with subnanomolar affinity (Kd = 

0.1-1 nM) [4, 62]. This interaction occurs between the SMB domain of VN and the 

flexible joints region of PAI-1 (Fig. 3.2). Specifically, the Asp22 side-chain carboxyl and 

Phe13 backbone amide groups adjacent to the single turn α-helix in the SMB domain 

interact electrostatically and via hydrogen bonding with the Arg101 guanidino and the 

Gln123 side-chain carbonyl groups in the loop connecting s2A to hE of PAI-1, 

respectively. Because this site overlaps the uPAR and RGD binding sites, PAI-1 

competes with these receptors for VN, and thereby modulates cell adhesion and 

migration.  

As with binding sites and affinity, the pro- and anti-migratory (or anti- and pro- 
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Figure 3.2 Complex Formation with VN Stabilizes & Alters the Specificity of PAI-1. 
A close-up of the binding interface of PAI-1 (colored as previously described) in 
complex with the SMB domain of VN (PDB 1OC0)[125] is shown. Binding of the SMB 
domain (blue) of VN to the primary, high-affinity site (red space-filled spheres) at the 
flexible joint region of PAI-1 stabilizes it, while binding of VN at a site outside the SMB 
domain to the secondary, low-affinity site (green space-filled spheres) on PAI-1 may 
have a role in altering its specificity for target serine proteases. PAI-1 residues involved 
in binding VN, and the cysteines (yellow) forming the disulfide knot in the SMB domain, 
are indicated. Rendering constructed using VMD 1.9. (c.f. Fig. 1.14) 
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adhesive, respectively) roles of VN and PAI-1 have also been controversial [6]. Alone, 

both VN and PAI-1 cause the migration of cells, but via different mechanisms. For its 

migratory effect, VN binds to uPA-uPAR, where uPA locally activates plasminogen (Plg) 

to plasmin (Pln), which subsequently activates matrix metalloproteases (MMPs) to 

degrade the surrounding extracellular matrix (ECM) (c.f. Fig. 4.4), facilitating cell 

migration. The migratory effect of PAI-1 is due to its interaction with PAs and the low-

density lipoprotein receptor-related protein, LRP-1. LRP-1 can bind surface receptors 

(uPAR, integrins) that attach the cell to the ECM, and to PAI-1-PA complexes, which 

initiate receptor-mediated endocytosis (c.f. Fig. 4.6), thus leading to internalization of 

the receptors and cell detachment. Furthermore, at basal PAI-1 levels, PAI-1-VN is anti-

migratory, as VN prevents PAI-1 binding to LRP-1, but depending on the 

microenvironment, can also be pro-migratory, as PAI-1 blocks the binding of cell-

surface receptors to VN. Overexpressed PAI-1, in contrast, is pro-migratory via LRP-1. 

PAI-1 also induces VN to form higher-order oligomers that exhibit pro-adhesive 

properties and enhanced integrin binding [5].  

While monomeric in circulation, VN in the ECM can also exist in a multimeric 

form for which active PAI-1 has approximately 6-fold higher affinity [10]. The 

oligomerization of VN into this multimeric form is stimulated in vitro by denaturation and 

refolding [163], but is also induced in a step-wise [164] and concentration-dependent 

manner by PAI-1 via an intermediate revealed by sedimentation equilibrium to have a 

stoichiometry of 2:1 PAI-1:VN [165]. Multimeric VN has different adhesive properties 

from native monomeric VN, although the distinction between the two forms is not always 

clear from the literature. The observation of 2:1 complexes and the evidence of binding 
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sites hypothesized in the central and C-terminal domains with affinities ranging from 

0.3-190 nM further indicated that VN possesses two binding sites for PAI-1. The 

presence of a second, lower affinity (Kd = 50-100 nM) binding site outside the SMB 

domain, was confirmed by a recombinant truncation of VN lacking the SMB domain 

(rΔSMB) that retains the ability to bind PAI-1 [113, 126]. Similarly, several mutants of 

PAI-1 mapped a secondary binding site on PAI-1 for VN located on hE and involving 

residues R115 and R118 (Fig. 3.2). Though the two sites on VN can be simultaneously 

occupied by two PAI-1 molecules upon saturation ([165], rapid kinetic measurements 

revealing a biphasic binding of PAI-1 to full length monomeric VN, but monophasic 

binding to the SMB truncation, indicates an extended binding interface exists for the 1:1 

PAI-1-VN interaction [80], possibly involving the IDD gaining structure upon binding to 

hE.   

Similar to the previous aspects of their interaction, the ability of VN to bind latent 

PAI-1 has been debatable [10, 160], as the interaction is undetected by many methods; 

however, surface plasmon resonance measurements show that VN indeed binds latent 

PAI-1, albeit with ~100 to 200-fold lower affinity [10, 126] and fast dissociation rates 

(koff) [126]. Also, VN dissociates from PAI-1 when the sA and flexible joint region are 

reorganized due to RCL insertion during latency or final complex formation [10, 160, 

166].  With respect to these processes, VN stabilizes PAI-1 and alters its specificity.  

3.1.b. VN on PAI-1 Conformational Stability & Specificity 

By binding to PAI-1, VN increases its thermal stability [125] and slows its latency 

rate [4]. A mechanism by which VN slows the PAI-1 latency transition was proposed 

from the crystal structure of the stable 14-1B mutant of PAI-1 in complex with the SMB 
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domain of VN (Fig. 3.2) [125]. This structure suggests that VN binding at the flexible 

joint of PAI-1 sterically blocks RCL insertion by keeping its shutter in a closed 

conformation. RCL insertion resulting in the expansion of sA and closing of the 

hydrophobic gap between s1A/s2A and hD/hE is likewise hindered. Also, whereas the 

RCL in other 14-1B structures [e.g. active, uncomplexed (1B3K, 1DVM) [141, 142] and 

in complex with uPA-S195A (3PB1)[81] is resolved, either due to crystal packing effects 

or binding interactions, the RCL in the 14-1B-SMB complex is unresolved, signifying its 

greater exposure and/or flexibility in the complex. However, VN binding also results in 

the increased incorporation of RCL-mimicking peptides of varying lengths (i.e. the P14-

P10 pentapeptide and P14-P7 octapeptide) to metastable PAI-1, indicating a ‘pigeon-

toed’ opening of the shutter in the native serpin [92] (Fig. 3.3). Since this opening of the 

shutter suggests more than solely steric effects, VN stabilization of PAI-1 is additionally 

hypothesized to affect the conformation of the RCL, specifically by shifting the 

conformational equilibrium of PAI-1 to more solvent-exposed RCL forms [92], which is 

supported by fluorescent reporters at the P9 and P1’ positions of the RCL [104]. Also, 

the mobile gate that affects the PAI-1 latency transition may be altered by VN binding.  

The binding site responsible for the stabilization of PAI-1 by VN is demonstrated 

by the R101A/Q123K double mutant of PAI-1 [92] and recombinant VN truncation 

lacking the SMB domain (rΔSMB) [113, 126]. The R101A/Q123K double mutant in the 

presence of full length VN and wtPAI-1 in the presence of rΔSMB fail to result in the 

stabilization of PAI-1, indicating that PAI-1 stabilization requires SMB binding at its 

flexible joint. Furthermore, hydrogen-deuterium exchange (HDX) studies of PAI-1 in the 

presence of the SMB domain indicate this stabilization spreads beyond the binding  
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Figure 3.3 Model of VN Stabilization of PAI-1. Global conformations of PAI-1 are 
represented (as previously described, c.f. Fig. 2.27), including the active-metastable, 
the pre-latent, and the latent conformations. VN is hypothesized to stabilize PAI-1 by in 
shifting its conformational equilibrium towards the more active conformation. (Adapted 
from [92]). 

 

 

 

Figure 3.4 VN & Heparin Make PAI-1 A More Efficient Thrombin Inhibitor. PAI-1 
primarily inhibits PAs (tPA and uPA) to prevent the activation of plasminogen (Plg) to 
plasmin (Pln) during fibrinolysis. Thrombin (T), normally activated from its prothrombin 
(Pro-T) form during coagulation and inhibited by antithrombin (AT), is inhibited also by 
PAI-1 when the latter is bound to VN or heparin. Heparin also assists AT in the inhibiton 
of thrombin.  
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interface to hB, hC, and hI underlying the flexible joint [91]. 

In addition to effects on stability, VN alters the specificity of PAI-1 towards 

thrombin (Fig. 3.4) and increases their association rate (kassoc) by 200- to 270-fold [10, 

167]. Though thrombin is mainly responsible for converting fibrinogen to fibrin, its 

interaction with PAI-1 may function in the clearance of the latter or in regulation of the 

coagulatory branch in the hemostatic process [168]. However, the role of thrombin 

inhibition is primarily accomplished by antithrombin, and enhanced by heparin, a 

glycosylaminoglycan and anticoagulant, which bridges the two. Heparin, like VN, also 

alters the specificity and makes PAI-1 a more efficient thrombin inhibitor [10, 80, 84, 160, 

166, 169]. Residues in PAI-1 that are involved in binding heparin are located in hC, hD, 

s2A, and its connecting loop (Fig. 3.5), which overlaps the secondary binding site on 

PAI-1 for VN. Unlike VN, heparin does not stabilize PAI-1 [160], and as with the 

antithrombin-thrombin complex, may serve as a scaffold for the interaction of PAI-1 with 

thrombin rather than exhibiting effects on the RCL conformation.   

Opposite to heparin, α1-acid glycoprotein (AGP), an acute-phase anti-

inflammatory protein, stabilizes PAI-1, but is not known to alter its specificity [95]. AGP 

binds to the loop connecting hI to s5A at the flexible joint (Fig. 3.6) adjacent to the SMB 

binding site and “opposite” to the heparin site. Also, AGP only binds to active PAI-1, and 

thereby is hypothesized to stabilize PAI-1 by restricting the movement of sA. 

3.1.c. Objective of PAI-1-VN Study  

Although effects on sA and RCL conformation are implicated [4, 92, 104], how 

this change in conformation stabilizes PAI-1 is unclear. By reporting from the RCL, 

changes in the solvent accessibility and dynamics that occur in the presence of VN are  
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Figure 3.5 Heparin Binding Alters the Specificity of PAI-1. The highly sulfated and 
negatively charged heparin glycosaminoglycan binds to a site (blue space-filled 
spheres) on PAI-1 (colored as previously described) adjacent to the SMB binding site. 
PAI-1 residues involved in binding heparin are indicated and graphics rendered using 
VMD 1.9. 

 

 

Figure 3.6 α1-Acid Glycoprotein Stabilizes The Active Conformation of PAI-1. α1-
acid glycoprotein (AGP) binds to a site (iceblue space-filled spheres) on PAI-1 (colored 
as previously described) adjacent to the SMB binding site. The stretch of residues in 
PAI-1 that are involved in AGP binding are indicated. Depiction generated using VMD 
1.9.  
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used to provide the lacking information. Also, the proximity of the AGP- and SMB- 

binding site and of the heparin-binding and secondary VN-binding sites, suggests that 

these sites may play separate roles in PAI-1 stability and specificity. Binding at these 

sites may thereby have discrete effects on the RCL. While the secondary binding site on 

VN for PAI-1 is unknown, it may involve the IDD. To test the latter, the RCL-labeled 

mutants were investigated by fluorescence and EPR in the presence of the SMB and 

SMB-IDD truncations of VN. 

3.2. Methods & Materials 

3.2.a. Purification of VN, SMB, & SMB-IDD 

         VN was purified from human plasma in several steps, including BaCl2 precipitation, 

ammonium sulfate precipitations, treatment with 1mM DTNB and extensive dialyses, 

anion exchange (DEAE Sephacel), affinity (Blue Sepharose CL-6B and heparin 

sepharose), and gel filtration (Sephacryl S-200 HR) chromatography, as described 

previously [62, 127]. Purified VN was confirmed by western blot using a polyclonal anti-

VN antibody generated in rabbit. VN, stored as an ammonium sulfate precipitate, was 

resuspended and dialyzed extensively in buffer before experimentation. Recombinant 

SMB domain (residues 1-47) was expressed as a thioredoxin-fusion protein from a 

pET32b vector in Rosetta-gami 2 (DE3) pLysS and purified as described previously [62, 

127], including IMAC (nickel-Sepharose FF) followed by thrombin cleavage and gel 

filtration (S-100).  

3.2.b. Assessment of Full-length VN Oligomeric State  

VN and wt-PAI-1 were dialyzed in PBS (pH 7.4) at 4°C, diluted to 8 µM and 16 

µM, respectively, analyzed by sedimentation velocity at 50,000 rpm and 25°C, and fit to  
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a c(s) distribution model using SEDFIT as previously described (c.f. Ch. 2.2.j.).  

3.2.c. Steady-state Fluorescence of VN & Truncations on PAI-1 RCL Solvent 

Accessibility 

NBD-labeled PAI-1 and its ligands (VN, SMB, & SMB-IDD) were dialyzed in 4 L 

buffer (PBS, pH 7.4) at 4°C and added to a PEG-coated acrylic cuvette to a final 

concentration of 0.5 µM and 2 µM, respectively, in 2 ml buffer. Reactions were sealed 

and incubated at 25°C for 30 min to equilibrate. The cuvette was then placed in a Perkin 

Elmer LS 50B Luminescence spectrometer at ambient temperature, excited at 480 nm, 

and the fluorescence emission spectra from 500-600 nm were collected. The intensity at 

530 nm was obtained and normalized to determine the percent change in fluorescence 

due to binding according to the following equation:  

 

[(F-FPAI)/FPAI]*100 

 

where F is the fluorescence intensity of NBD-PAI-1 at 530 nm in the presence of ligand, 

and FPAI is the average fluorescence intensity of NBD-PAI-1 alone at 530 nm. All 

experiments were performed in triplicate.  

 In addition to tests in PBS, initial changes in MOPS (pH 7.4) were measured by 

adding 1.5 µM human VN (native, monomeric, dialyzed in PBS, pH 7.4) to 0.5 µM NBD-

PAI-1 in a PEG-coated cuvette The emission spectra were collected as described 

above. Fluorescence values were corrected for dilution by multiplying the resulting 

intensity at 530 nm by the ratio of the final to initial volumes. The percent change in 
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fluorescence was determined according to the above equation. Experiments were 

performed in duplicate.  

3.2.d. EPR of VN & Truncations on PAI-1 RCL Mobility 

EPR spectra were collected as previously described (c.f. Ch. 2.2.q.), with the 

exception that dialyzed MTSL-labeled PAI-1 in PBS buffer (pH 7.4) was diluted to a final 

concentration of 2 µM after the addition of 8 µM ligand (VN, SMB, & SMB-IDD) and 

incubated at room temperature for 30 min to equilibrate prior to analysis. The change in 

the mobility (ΔH0
-1) was determined from the central field MTSL peak by subtracting the 

average inverse line-width of MTSL-PAI-1 alone to that of MTSL-PAI-1 in the presence 

of ligand. All experiments were performed in triplicate.  

3.2.e. Detection of Free Sulfhydryls & Labeling Integrity of MTSL-PAI-1 

MTSL-PAI-1 samples were retrieved after EPR experimentation, added to a 96-

well plate (Costar, half-area), and 1 mM DTNB added to MTSL-PAI-1 in the absence 

and presence of ligands. Samples were incubated at ambient temperature for 5 min, 

and subsequently, the absorbance at 412 nm was measured (BioTek Synergy4 plate 

reader) to detect the presence of free sulfhydryls. Experiments were performed in 

duplicate. Samples from EPR/DTNB experiments were HPLC-purified and analyzed by 

MALDI MS as previously described (c.f. Ch. 2.2.k.) to confirm the presence of the MTSL 

label on PAI-1.   

3.3. Results 

3.3.a. VN & its Truncations Exert Similar Conformational Changes in the RCL 

 As its affinity for PAI-1 depends on its conformation, native VN was purified from 

human plasma and analyzed by AUC, which confirms its monomeric state (Fig. 3.7A)  
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Figure 3.7 VN forms higher-order complexes with PAI-1. Purified VN was added in 
the absence (A) and presence (B) of PAI-1 at the indicated concentrations to an 
ultracentrifuge cell and analyzed by sedimentation velocity. The absorbance traces 
collected over time and plotted against the cell radius were fit to a c(s) distribution 
model using SEDFIT in the top panels, the residuals of the fit are shown in the middle 
panels, and the distribution plot of distinct sedimenting species in the bottom panels.   
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and ability to form PAI-1-mediated higher-order oligomers (Fig. 3.7B). To investigate 

the conformational effects due to VN binding, the solvent accessibility along the RCL 

was measured by fluorescence under equilibrium conditions (Fig. 3.8). As expected for 

binding at a distant region, full length VN and its truncations, SMB and SMB-IDD, 

induce modest changes in the exposure of the RCL that are similar in magnitude at 

most positions. Hinge residues P14-P13, residues about the scissile bond (P3-P3’), and 

s1C residues P4’-P5’ show less than 10% change in fluorescence due to binding of the 

three VN constructs. At the P14-P13 positions, the SMB-IDD elicits a slightly greater 

decrease in fluorescence (~3-6%), representing more solvent exposure, than full length 

VN or the SMB domain. Also, a ~2-15% increase in fluorescence is observed at P12-

P11 in the presence of the VN constructs, indicating a more hydrophobic environment 

for these near hinge residues. Further along the RCL, the P9-P6 residues show greater 

solvent exposure (~6-18% fluorescence decrease) due to VN, SMB, and SMB-IDD 

binding. These residues also do not exhibit an initial decrease during the latency 

transition of PAI-1 (c.f. Fig. 2.22 A), providing a possible connection between VN 

binding and PAI-1 stability. At the distal end of the RCL, larger increases of ~17-28% 

and ~15% are observed for P6’ in the presence of VN and SMB-IDD, and P8’ in the 

presence of the SMB domain, respectively, while P7’ exhibits less than a ~5% change in 

solvent accessibility in the presence of these ligands. 

 In addition to steady-state changes in phosphate buffer, the effect of VN binding 

on the RCL conformation was tested in MOPS buffer, which was chosen for its low 

binding of metals in related studies (see Ch. 5). Initial changes at steady state were 

recorded as described under Methods (c.f. 3.2.c). The results reveal less than 10%  



	   110	  

 

Figure 3.8 Effect of VN & its Truncations on the Solvent Accessibility of PAI-1 
RCL. 2 µM VN, SMB and SMB-IDD were added to 0.5 µM NBD-PAI-1 in PBS (pH 7.4), 
and the fluorescence emission spectra collected at ambient temperature from 500-600 
nm with excitation at 480 nm. The emission at 530 nm was taken and normalized to 
NBD-PAI-1 alone to reveal the percent change in NBD fluorescence at the RCL upon 
the addition of ligand. Increases and decreases indicate a change in the NBD 
environment from a more hydrophobic and hydrophilic environment, respectively. 
Residues are ordered from N- to C-terminus of the RCL and plotted with standard 
deviation error bars. All experiments were performed in triplicate.  
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Figure 3.9 VN Binding to PAI-1 on The RCL Solvent Accessibility Is Influenced by 
Buffer Effects. 1.5 µM VN was added to 0.5 µM NBD-PAI-1 in MOPS (pH 7.4) and the 
fluorescence emission spectra collected at ambient temperature from 500-600 nm with 
excitation at 480 nm. The emission at 530 nm was taken and normalized to NBD-PAI-1 
alone to reveal the percent change in NBD fluorescence at the RCL upon the addition of 
ligand (blue, with standard deviation error bars). Residues are ordered from N- to C-
terminus of the RCL. Experiments were performed as single or duplicate experiments. 
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changes along the RCL in the presence of full length VN (Fig. 3.9). In contrast to results 

in PBS, the lowest changes are observed at P8-P5 and P6’, while the larger changes 

are observed at P14 and P3’-P4’. A periodicity of two, which is characteristic of β-strand 

secondary structures, is also observed at P2’-P3’ and s1C residues P4’-P7’. These 

results emphasize the effect of buffers on the solvent accessibility of the PAI-1 RCL.  

3.3.b. The Dynamics of the RCL Are Unaffected By VN & Truncations 

 Resonance spectra of the RCL in the presence of VN and its truncations were 

collected by EPR to determine if the stabilization of PAI-1 involves changes in its 

motional dynamics (Fig. 3.10). Similar to MTSL-PAI-1 alone (c.f. Fig. 2.25), these 

spectra indicate that different positions along the RCL are distinct. For instance, the 

high-field peak at most positions has a sharp shoulder, of which the ratio of the heights 

differs, while this shoulder at P5’ and P7’ is smooth. However, an analysis of the line-

width of the centerfield peak (Fig. 3.11) for MTSL-PAI-1 indicates no significant change 

in RCL mobility in the presence of these ligands.   

 As previously discussed (c.f. Ch. 2.3.e.), probe dimerization or loss of the MTSL-

label can result in decreases in the resonance signal intensity, although an active-latent 

signal equilibrium is more likely. Nonetheless, MTSL-PAI-1 was tested for the presence 

of free sulfhydryls and the spin-label (Fig. 3.12). For the former, DTNB was added to 

MTSL-PAI-1 in the absence and presence of VN, SMB, and SMB-IDD and the 

absorbance at 412 nm collected (Fig. 3.12 A). DTT-free unlabeled P9 containing a 

single free sulfhydryl, as well as DTNB alone and DTNB in the presence of the ligands 

only, were used as controls. Based on the results of this assay, the MTSL-PAI-1 

samples retrieved from EPR experiments do not possess free sulfhydryls. Also, though  
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Figure 3.10 Binding of VN & its Truncations on The Dynamics at Different 
Positions in the RCL. 8 µM VN, SMB, & SMB-IDD were added to 2 µM MTSL-PAI-1 in 
PBS (pH 7.4) and EPR spectra were collected at ambient temperature by sweeping the 
magnetic field (3310-3410 gauss) at a constant frequency (~9.45 GHz). Representative 
spectra of MTSL-PAI-1 alone (black traces), and in the presence of VN (blue traces), 
SMB (red traces), and SMD-IDD (orange traces) for each RCL position are shown.   
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Figure 3.11 Change in RCL Dynamics Due to Binding of VN & its Truncations. 8 
µM VN, SMB, & SMB-IDD were added to 2 µM MTSL-PAI-1 in PBS (pH 7.4) and the 
EPR spectra collected at ambient temperature. The inverse line-width from the resulting 
spectra was obtained, and the change in the relative mobility (1/H0) determined by 
subtracting the average inverse line-width of MTSL-PAI-1 alone from the inverse line-
width obtained in the presence of ligands. Residues are ordered from N- to C-terminus 
of the RCL. All experiments were performed in triplicate.  
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Figure 3.12 MTSL Probe Remains Conjugated to PAI-1 in The Presence of VN & Its 
Truncations. (A) DTNB was added to MTSL-PAI-1 in the absence and presence of 
ligands and the absorbance at 412 nm measured to detect the presence of free 
sulfhydryls. Results are from duplicate experiments. (B-C) Samples from EPR/DTNB 
experiments were HPLC-purified and analyzed by MALDI MS to confirm presence of 
MTSL-labeled PAI-1 (E) in comparison to unlabeled PAI-1 (D). Representative 
chromatograms and spectra are shown.  
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VN contains 8 cysteines in the SMB domain and 6 in central and C-terminal domain, 

these residues are disulfide-linked or buried between or within the domains [170, 171]. 

To determine if PAI-1 was still properly labeled after experimentation and not dimerized, 

the previous samples were purified by HPLC (Fig. 3.12 B) and analyzed by MALDI-MS 

(Fig. 3.12 C). In contrast to unlabeled PAI-1, a control that generates a single peak by 

HPLC, MTSL-PAI-1 in the presence of VN ligands exhibits two peaks corresponding to 

two distinct species. MTSL-PAI-1 was collected from the peak at a retention time of ~15 

min for molecular mass determination. Despite its low recovery, analyses of the HPLC-

purified PAI-1 confirmed the presence of the MTSL-label. These results indicate that the 

MTSL remains conjugated to the RCL and that the observed signal changes are not due 

to probe dimerization or loss of the MTSL label. 

3.4. Discussion 

3.4.a. How does VN binding affect the conformation of the RCL?  

Binding of the SMB domain of VN to the flexible joint region stabilizes that active 

conformation of PAI-1 and slows the latency rate, while binding at the secondary low 

affinity site on hE may play a role in altering its specificity. Alone in solution, the RCL of 

PAI-1 is tethered close to the body of the protein. The results from fluorescence 

experiments (Fig. 3.8) show that VN binding to PAI-1 causes changes in the RCL 

conformation that permit partial insertion of the P14-P11 residues at the hinge, but 

disfavor full insertion by increasing the solvent exposure of the P9-P6 segment of the 

RCL. The unusually large pre-insertion of residues P14-P11, beyond which strand 

insertion is hypothesized to be irreversible, may be one factor contributing to the lability 

of PAI-1 compared to other serpin [58, 92]. Thereby, by hindering spontaneous RCL 



	   117	  

insertion past this point, VN maintains PAI-1 in its active conformation and stabilizes it. 

Interestingly, the P9-P6 residues exposed upon VN binding do not show an initial 

decrease during the latency transition, possibly indicating that these are unique 

positions in regulating RCL insertion. Via conformational effects on these residues of 

the RCL, VN may also alter the specificity of PAI-1. Furthermore, the possible greater 

protection of N-terminal RCL residues with no change at the P1-P1’ scissile bond 

observed in the HDX study of the SMB bound to PAI-1 [91] supports the results 

obtained here. Aside from the changes in its conformation, VN does not affect the 

dynamics of the RCL in its stabilization of PAI-1, as evidenced by the results obtained 

by EPR (Fig. 3.11). Therefore, effects on the local mobility of individual residues within 

the loop do not appear to be critical for stabilization of PAI-1 

In a previous report [104], the NBD label conjugated to the P9 and P1’ positions 

exhibited no change and a ~10% decrease in fluorescence, respectively, in the 

presence of full length VN in HEPES buffer [104]. At the same temperature and pH, the 

P9 and P1’ positions exhibit a ~2.5% fluorescence increase and decrease, respectively, 

in the presence of full length VN in MOPS buffer (Fig. 3.9), and a ~7% decrease and 

~1% increase (i.e. essentially no change), respectively, in PBS buffer (Fig. 3.8). These 

buffer differences, reminiscent of their unusual effects on PAI-1 stability (c.f. Fig. 2.19), 

thereby result in differences in the solvent accessibility, and thus conformation, of the 

RCL. Also, the aforementioned study measured a dissociation constant (Kd) of ~100 nM 

for full length VN binding to PAI-1, while the Kd measured here is 10 nM (c.f. Fig. 2.16). 

As affinity measurements are closer to the tight binding characteristic of their interaction 

and the buffer more physiologically relevant, the results in PBS would seem to more 
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closely reflect the changes that occur in vivo than the results in HEPES or MOPS. 

Despite these differences, in all three cases, VN affects the conformation of the RCL   

and increases its solvent exposure.  

From the steady-state results (Figs. 3.8 & 3.11), the effects of the VN ligands on 

the RCL conformation and dynamics are comparable, but not the same. Particularly, the 

results obtained about the P14 hinge and s1C conformation by fluorescence differ 

notably. Since the SMB represents binding only at the primary high affinity site at the 

flexible joints region, and full length VN and SMB-IDD represents primary and/or 

secondary site binding, the unique effects on the RCL conformation reveal that primary 

and secondary site binding are distinct. However, since the magnitude and changes it 

produces at most positions of the RCL are similar to VN (Fig. 3.8), SMB binding to the 

flexible joint is primarily responsible for most of the conformational effects on the RCL. 

Also, full length VN and SMB elicit a more similar conformation on the RCL hinge than 

SMB-IDD, suggesting that the presence of the central and C-terminal domain affects the 

IDD interaction with PAI-1. The latter also indicates that the IDD has unique effects on 

PAI-1 RCL conformation, possibly due to binding at the secondary low affinity-binding 

site on PAI-1 hE. Binding to this site can explain the effect of VN on PAI-1 specificity by 

changes in the RCL conformation involving the hinge and gate regions, in addition to 

changes at the P9-P6 residues previously mentioned. Thereby, the alteration of PAI-1 

specificity would require binding at the second site and conformation changes 

throughout the RCL. Another possibility is the adoption of structure by the disordered 

domain in the SMB-IDD, which is absent in the SMB truncation. However, since these 
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differences are small, an alternative hypothesis is that secondary-site binding by VN 

alters its specificity by affecting another important functional region in PAI-1. 

3.5. Conclusions 

As PAI-1 utilizes a conformation-based mechanism in its anti-proteolytic 

functions that may be affected at multiple levels, VN appropriately affects PAI-1 at many 

levels, including its stability and specificity. As it pertains to PAI-1 stability, evidence 

from multiple studies indicates that VN binding results in closure of the bottom of the 

shutter region and extension of the RCL. The results here support a model of VN-

mediated stabilization of PAI-1 in which binding increases the solvent exposure of PAI-1 

RCL near the hinge region to prevent its full insertion. Thereby, VN slows the latency 

transition of PAI-1. Furthermore, primary and secondary site binding by VN elicits 

separate effects on the conformation of the RCL, while the dynamics of the RCL remain 

largely unchanged. The conformational effects on the hinge, P9-P6 residues, and s1C 

gate residues likely play a role in altering the specificity of PAI-1. The evidence obtained 

from these studies also does not refute that IDD may house the secondary binding site 

on VN for PAI-1. 
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Chapter 4 PAI-1 Forms Distinct Michaelis Complexes with 
Plasminogen Activators                                                                              . 
 
4.1. Introduction 

4.1.a. Structural Basis of PA Function  

In Chapter 1, the mechanism by which serine proteases catalyze the hydrolysis 

of peptide bonds by sequential acylation and deacylation is presented. This mechanism 

depends on the structure of the serine protease domain (SPD) responsible for catalysis. 

The SPD consists of two β-barrels rotated approximately 90° with respect to each other, 

and several surface-exposed activation and variable loops (Fig. 4.1) [172]. A catalytic 

triad, comprised of a serine nucleophile (Ser195; numbering based on canonical serine 

protease, chymotrypsin), a histidine base (His57), and an aspartate residue (Asp102) 

responsible for orienting the catalytic base, are situated at the interface between the two 

β-barrels. These domains are synthesized as an inactive precursor, or zymogen form, in 

which the active site is not properly organized for catalysis. Zymogen activation occurs 

by cleavage of the N-terminus, typically between residues 15-16, followed by insertion 

of the newly formed N-terminus into a cleft near the active site, forming a salt-bridge 

that changes the conformation of the SPD to one that is productive for catalysis, and 

correctly orienting the substrate-binding pockets (S) and oxyanion hole [173]. Several 

loops, collectively termed the activation loops, are involved in this conformational 

change, including the L1 autolysis loop, the L2 oxyanion hole-stabilizing loop, and the L3 

S1 entrance-loop. The autolysis and S1 entrance loops are also termed the 140- (or 147) 

loop and 217-loop, respectively (based on its location in primary sequence). The 

zymogen conformation can be readopted by the binding of monoclonal antibodies 

targeted to the autolysis loop in activated domains [174], shifting the paradigm of   
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Figure 4.1 Serine Protease Domains Consist of Two β-Barrels & Several Surface-
Exposed Loops. The SPD β-barrels are arranged approximately 90° with respect to 
each other, and the catalytic triad residues, Ser195, His57, and Asp102 (yellow), are at 
the interface (based on PBD 3PB1)[81]. At one pole, the surface-exposed 37-loop 
(blue), 60-loop (red), 97-loop (orange), 147-autolysis loop (green), and the 217-S1-
entrance loop (magenta) are clustered. Representations constructed using VMD 1.9. 
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zymogen activation from irreversible [175-178] to completely reversible. Re-

zymogenation using these antibodies has been employed as a mechanism to 

specifically neutralize serine proteases, as these loops vary to a greater degree than the 

active sites.   

Despite similarities in active site architecture, serine proteases exhibit a great 

degree of specificity for target substrates due to the presence of variable loops [3, 128], 

including the 30- (also 37-), 60-, 97-, and 186-loops. These loops frequently participate 

in exosite interactions outside the active site, which in addition to recognition, are 

responsible for rate enhancements [128]. For PAs, the variable 37-, 60-, and 97-loops, 

and the 147- and 217-activation loops, are clustered at one pole of the domain. With the 

assistance of these loops, the SPD of PAs function in the specific and fast activation of 

Plg to Pln.  

Domains N-terminal to the SPD confer additional functions to PAs. tPA has four 

domains N-terminal to its SPD (Fig. 4.2), including the fibronectin-like finger domain, the 

epidermal growth factor domain (EGF), and the Kringle 1 and Kringle 2 domains [179]. 

The finger and Kringle 2 domains afford tPA fibrin-binding specificity, which has been 

exploited for the use of tPA as a clot-busting thrombolytic. The Kringle domains, formed 

by three intramolecular disulfide bonds, of tPA contain lysine-binding sites, which 

provide positively-charged ‘knobs’ for the negatively-charged ‘holes’ in soluble fibrin 

created when the its insoluble fibrinogen form is cleaved by thrombin. The EGF and 

Kringle 1 domains also are involved in the rapid clearance of tPA by the liver via a 

process that is facilitated by posttranslational glycosylations. tPA is synthesized as a 70 

kDa single chain (sc-tPA) polypeptide, and disulfide-linked via Cys264 in a short linker  
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Figure 4.2 The Structure of tPA is Important for Binding Fibrin & Activating 
Plasminogen. The 70 kDa serine protease consists of five domains, which from N- to 
C-terminus, include the finger domain, (1TPM)[180], the EGF domain (1EDM)[181], two 
Kringle domains (1PK2)[182], and the SPD (1BDA)[183]. The domain organization is 
represented under the corresponding crystal structures. (1EDM is based on the domain 
from Factor IX, and tPA Kringle 1 on its Kringle 2 structure.) Residues in yellow are the 
cysteines involved in intramolecular disulfides contained in the Kringle domains. 
Catalytic triad residues, Ser195 (orange), His57 (blue), & Aspt102 (red), are contained 
in the SPD. Several domains contain glycosylation sites (hexagons). Structures were 
rendered using VMD 1.9.  
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Figure 4.3 uPA Structure Supports Plasminogen Activation & Localized 
Pericellular Proteolysis. The 54 kDa high molecular weight (HMW) form of uPA 
consists of three domains arranged schematically from N- to C-terminus under 
corresponding crystal structures. The EFG (1EDM, based on Factor IX)[181] and 
Kringle 1 (1PK2, based on tPA Kringle 2)[182] domains are connected by a long linker 
to the SPD (3PB1)[81]. A 32 kDa lower molecular weight (LMW) form of uPA arises 
from cleavage of the linker region. Residues involved in disulfides in the Kringle domain 
are shown in yellow. Catalytic Ser195 (orange), His57 (blue), & Aspt102 (red) are 
contained in the SPD. Structures were generated using VMD 1.9. 
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region and Cys395 in the SPD. In a feedback fashion, Pln processes and cleaves tPA 

between Arg275-Ile276 in the SPD to give rise to its two-chain form (tc-tPA). tPA is also 

activated via proteolysis by multiple contact factors (e.g. prekallikrein, kininogen, factor 

XIIa) [184].   

Similarly, uPA, synthesized in a 54 kDa high molecular weight (HMW) form, 

consists of two domains N-terminal to its SPD (Fig. 4.3) [179]. The EFG and Kringle 1 

domains of uPA are connected to the SPD by a long linker. Unlike tPA, the Kringle 

domain of uPA does not contain lysine-binding sites, and therefore, does not possess 

fibrin-specificity. Also, the EGF domain of uPA, instead of promoting its clearance, is 

involved in binding the deep hydrophobic pocket formed by the three extracellular finger 

domains of its cell-surface receptor, uPAR, which activates [185] and localizes uPA to 

the pericellular region where it participates in extracellular proteolysis. Positive-feedback 

cleavage by Pln within its long linker region gives rise to a 32 kDa lower molecular 

weight (LMW) form of uPA. The HMW form is predominantly found in the urine, whereas 

the LMW form predominates in tissues.  

4.1.b. PAs as Proteases & Signaling Molecules  

Although sharing the role of Plg activation, its functional domains, expression, 

and localization establish separate responsibilities for PAs. tPA is mainly expressed and 

secreted into circulation by endothelial cells lining blood vessels [42, 186], where it 

primarily activates Plg to Pln during intravascular fibrinolytic events (Fig. 4.4). Due to its 

fibrin-specificity [187], tPA can further assist Pln in fibrin removal. tPA is also abundantly 

expressed in neural tissue of the brain, where, with PAI-1, it regulates the 

neurotransmitter, glutamate, and its induction of circadian clock phase shifts [38]. In  
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Figure 4.4 Proteolytic Functions of Plasminogen Activators. In intravascular 
settings, tPA is mainly responsible for plasminogen (Plg) activation, but also can assist 
plasmin (Pln) in clot dissolution. In the extravascular extracellular matrix (ECM), uPA 
interacts with its receptor, uPAR, to generate active Pln, which can then activate matrix 
metalloproteinases (MMP-9, MMP-2) to assist in localized pericellular proteolysis 
involved in tissue-remodeling. PAI-1 is localized to fibrin clots and the ECM by its VN 
cofactor to inhibit these PAs.  PAI-1 also blocks the interaction of cell-surface receptors 
(uPAR, integrins) to VN.  
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contrast, uPA is chiefly expressed and secreted into the extracellular matrix (ECM) by 

stromal cells [13, 186], where it is localized by uPAR, normally expressed by white 

blood cells (i.e. monocytes, neutrophils eosinophils, and macrophages), to facilitate Plg 

activation. Active Pln can subsequently activate the Zn2+-dependent matrix 

metalloproteinases (MMP-9, MMP-2), which function as collagenases and gelatinases, 

to assist in degradation of the surrounding ECM. Such pericellular proteolysis is 

required for tissue remodeling, an important step in normal wound healing [188]. When 

present, tPA activation of Plg in the ECM similarly results to MMP activation. In both 

intra- and extravascular locations, PAI-1 is localized by VN to inhibit these PAs. PAI-1 

also blocks the interaction of uPAR and cell-surface integrin receptors with VN. Binding 

of these receptors to VN and other ECM components (collagen, gelatin, etc.) is 

necessary for the adhesion and migration of cells during tissue remodeling [189].  

Due to these protease-dependent roles in fibrinolysis and extracellular 

proteolysis, PAs have been employed as thrombolytics, but their elevated expression 

has been implicated in many cancers, including uPA in lung [15], ovarian [17], breast 

[18], and prostate cancers [190, 191], and tPA in breast, prostate, [16, 192] and 

pancreatic cancer [193, 194]. Because Plg and subsequent MMP activation results in 

proteolysis that can provide a metastatic route for malignant cells to invade into the 

bloodstream, high PA levels serve as poor prognostic biomarkers in these cancers.  

PAs also function in processes that do not require its catalytic properties. By 

interacting with cell-surface receptors, PAs initiate signal transduction pathways that 

affect its expression, as well as cell survival (Fig. 4.5). Binding of tPA to LRP-1 (low-

density lipoprotein receptor-associated protein 1) [195], or of the pro-inflammatory  
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Figure 4.5 Plasminogen Activators as Signaling Molecules. tPA and uPA can 
interact with cell-surface receptors (LRP, uPAR, NMDA, etc.) and initiate different signal 
transduction pathways, including the mTOR, ERK, and MAPK signaling pathways, that 
affect its expression and cellular responses.  

 

 

 

 

 

 

 

 



	   129	  

cytokine, TNF-α, to its receptor, signals via the transcription factor, NF-κβ (nuclear 

factor kappa-light-chain-enhancer of activated B cells), to increase PA and iNOS (nitric 

oxide synthase, inducible form) expression [196]. iNOS uses L-arginine (L-Arg) as a 

precursor for the synthesis of nitric oxide (NO). L-Arg and S-nitrosylation via NO 

stabilize tPA and uPA, respectively [197, 198]. NO also increases the expression of the 

latter.  

Both the stabilized and unmodified forms of uPA bind to uPAR, which activates 

ERK/MAPK (extracellular-signaling regulated kinase/mitogen-activated protein kinase) 

signaling pathways, including the Ras (GTPase)-ERK and p38-MAPK pathways. These 

signals result in the increased expression of MMP-9 [199]. In addition to this uPA-uPAR 

signaling, suPAR signals via the formyl peptide receptor-like G-protein coupled receptor 

(GPCR) to effect cell movement (chemotaxis) [200]. suPAR is the soluble form of uPAR 

consisting of its three extracellular finger domains, and arises from cleavage of its GPI 

(glycosylphosphatidylinositol) -anchor by Pln.  

PA signaling moreover effects brain chemistry. As previously mentioned, tPA is 

expressed in neuronal tissues, where it can bind the glutamate receptor, NMDA (N-

methyl-D-aspartate) [201]. Increased exogenous tPA, as when injected as a 

thrombolytic in the treatment of ischemic stroke to relieve O2 depletion due to vessel 

blockages, leads to increases in intracellular calcium, an important second-messenger, 

and can result in neurotoxicity [202-206]. LRP-NF-κβ-mediated increase in NO also 

contributes to this neurotoxicity. Additionally, tPA-LRP-1 signals via mTOR, a 

serine/threonine kinase of the PI3K (phosphoinositide-3-kinase) family and mammalian 

target for rapamycin (a bacterial macrolide used as a immunosuppressant to prevent  
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Figure 4.6 Receptor-Mediated Endocytosis in the Clearance of PAI-1 & 
Plasminogen Activators. LRP-1 binds PAI-1, PAs, and its complexes, which results in 
endocytosis, followed by degradation inside lysosomes or recycling to the cell surface.  
 
 

 

Figure 4.7 LRP-1 Binds to A Cryptic Site on PAI-1. Residues involved in LRP-1 
binding are represented as yellow space-filled spheres. The RCL (red), gate (green), 
shutter (cyan), and flexible joint region (orange) of metastable PAI-1 (3Q02)[59] are 
also highlighted. Figure generated using VMD 1.9. 
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organ transplant rejection) to affect cell growth, proliferation, motility, survival, and 

protein synthesis [207], while its signaling via the ERK/Bad (B-cell lymphoma-2-

associated death promoter) pathway culminates in apoptosis of the cell [195].  

4.1.c. Regulation & Clearance of PAs 

PAs in proteolysis and signaling are mainly regulated by PAI-1, as previously 

described, and by elimination from circulation. PAs have a circulating half-life of ~6-12 

minutes before clearance by the liver [179, 184], and must act on their targets within this 

timeframe. Also, PAs form complexes with PAI-1 that are stable for years [4], and 

therefore are cleared locally by receptor-mediated endocytosis via LRP-1 [208] (Fig. 

4.6).  During this process, LRP-1 binds tPA, uPA, PAI-1, and its complexes, prompting 

endocytosis into clatherin-coated pits, which subsequently fuse with the early endosome. 

Clatherin dissociates from this vesicle, and ligands dissociate from their receptors. The 

receptors are then recycled to the cell surface, while the endosome containing the 

ligands fuses with lysosomes containing hydrolytic enzymes, which degrade the 

proteins into individual amino acids. Though PA binding to LRP-1 can also initiate 

signaling pathways, free proteases and free PAI-1 have low affinity for the receptor [4]. 

Particularly, the low affinity of LRP-1 for PAI-1 is due to its cryptic binding site on the 

uncomplexed or VN-bound serpin (Fig. 4.7). This site is exposed upon cleavage and 

final complex formation (e.g. with PAs, thrombin), increasing the affinity of and 

clearance by LRP for the latter [4].   

4.1.d. Objective of PAI-1 PA Study 

From an understanding of its structure to clearance, a major aim of this work is to 

determine the structural basis for the differences in PA inhibition by PAI-1 according to 



	   132	  

the rationale provided in Ch. 1.2. Specifically, the involvement of exosite interactions in 

the higher affinity and faster klim of PAI-1 with tc-tPA and uPA, respectively, resulting in 

the faster inhibition of the former, is investigated here by fluorescence and EPR using 

the RCL-labeled mutants. Thereby, the contribution of exosite interactions in rate 

enhancements and specificity can be evaluated.  

4.2. Methods & Materials 

4.2.a. Materials 

Active site-blocked (i.e. S195A) tPA (tPA-SPD*; single-chain, non-enzymatic) 

was purchased from Molecular Innovations, Inc. (Novi, MI). Active site-blocked uPA 

(uPA-SPD*) was a kind gift from Mingdong Huang (Fujian Institute of Research on the 

Structure of Matter, Chinese Academy of Sciences, China).  

4.2.b. Equilibrium Binding of PAs by Steady-State Fluorescence 

NBD-labeled PAI-1 was dialyzed in 4 L buffer (PBS, pH 7.4) at 4°C and added at 

a final concentration of 0.5 µM in 60 µl after the addition of 0.5 µM ligand. Reactions 

were incubated at 25°C for 30 min, 50 µl of the sample was added to a 0.3 cm three-

window black-sided quartz cuvette, and placed in a Perkin Elmer LS 50B Luminescence 

spectrometer at ambient temperature. Spectra were collected and analyzed as 

previously described (c.f. Ch. 3.2.c).  

4.2.c. Effect of PA Binding on PAI-1 RCL Mobility via EPR 

EPR spectra were collected as previously described (c.f. Ch. 2.2.q.), with the 

exception that dialyzed MTSL-labeled PAI-1 in PBS buffer (pH 7.4) was diluted to a final 

concentration of 2 µM after the addition of 2 µM (due to limited quantity of reagent 

available) and 8 µM tPA-SPD* and uPA-SPD*, respectively, and incubated at room 
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temperature for 30 min to equilibrate prior to analysis. The change in the mobility (ΔH0
-1) 

as previously described (c.f. Ch. 3.2.d). All experiments were performed in triplicate. 

EPR samples were retrieved, and free sulfhydryls were detected and labeling integrity  

MTSL-PAI-1 assessed as previously described (c.f. Ch. 3.2.e).  

4.2.d. Modeling of PAI-1-tPA Michaelis Complex 

The structures of the single-chain tPA serine protease domain (1BDA) and 

metastable PAI-1 with a homology-modeled RCL (HM1-3; c.f. Fig. 2.6) were individually 

aligned and superimposed on the ATIII-thrombin Michaelis complex (1TB6) using 

MOE2012. From the resulting superimposed complexes, tPA was docked to each of the 

RCL-modeled PAI-1 structures using the automated ZDOCK server [209] according to 

the lock-and-key model with only a contact between S195 (catalytic) of tPA and Arg346-

Met347 (P1-P1’) of PAI-1 specified. The top five predictions from the automated docking 

were obtained and the lowest energy complex with tPA for each RCL-modeled PAI-1 

structure chosen for further refinement. Using the CHARMM27 force field in MOE2012, 

the distances between the carbonyl carbon of PAI-1 Arg346 (P1 Arg C=O) to the 

hydroxyl oxygen of tPA S195 (S195-OH), and the carbonyl carbon of PAI-1 E351 (P5’ 

Glu) to the guanidino-nitrogen of Arg36 in the tPA 37-loop (37 ArgA), were restrained to 

a target distance of 3-4 Å, and minimized with weight of 5 kcal mol-1 (Å2)-1. Potential 

energies of the resulting restrained docked Michaelis complexes were calculated, and 

contacts between chains reported as previously described (c.f. Ch. 2.2.c.). The model of 

PAI-tPA complex was then superimposed on the 14-1B-active site-blocked uPA crystal 

structure (3PB1) and root-mean-squared deviation obtained.   

4.3. Results 
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4.3.a. Active Site-Blocked PAs Utilize Different PAI-1 Exosites in the Michaelis 

Complex 

 The NBD-labeled PAI-1 RCL mutants were used to investigate the interactions of 

PAI-1 and PAs in the Michaelis complex. As the PAs bind PAI-1 at the RCL, increases 

in NBD fluorescence can provide information about the burial of hydrophobic surfaces 

that occur due to binding. Equimolar tPA-SPD* and uPA-SPD* were added to NBD-

labeled PAI-1, and the consequent changes in fluorescence recorded (Fig. 4.8 A-B). 

The resulting fluorescence changes at the RCL are large for the PAs bound to PAI-1. 

For residues immediately adjacent to the scissile bond, a decrease in fluorescence is 

observed at P1’-P2’ in the presence of both PAs. A previous report showed that the 

NBD label at the P1’, but not P9, position reduced the affinity of tPA for PAI-1 [117], 

indicating that the probe at the active site, which requires tight binding, but not at 

adjacent exosites, which are released upon final complex formation, interferes with PA 

binding. The decrease at P1’-P2’ is thereby consistent with the expulsion of the probe 

from the active site, leading to its greater solvent exposure. Furthermore, the P4’-P5’ 

positions exhibit a 25% and 1% decrease in fluorescence in the presence of tPA-SPD*. 

In the presence of uPA-SPD*, a 23% and 110% fluorescence increase is observed. 

Assuming an interaction with the 37-loop of the PAs, the increase, and thus more 

hydrophilic nature, would indicate that hydrogen and/or ionic bonding is more important 

for the interaction of PAI-1 with tPA-SPD*, but not for the PAI-1-uPA-SPD* interaction 

due to the greater hydrophobic environment of these residues in the presence of the 

uPA-SPD*. However, such hydrogen and/or ionic interactions can only be implied with 

respect to the adjacent Glu residue for these positions (i.e. Glu at P5’ is present in the  
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Figure 4.8 PA Binding of PAI-1 RCL in Michaelis Complex. 0.5 µM NBD-PAI-1 was 
added to 0.5 µM tPA-SPD* or uPA-SPD* in PBS, pH 7.4, and its emission at 530 nm 
collected after excitation at 480 nm. Results are normalized to NBD-PAI-1 alone to 
obtain the percent change in fluorescence at the RCL upon ligand binding. Residues 
are ordered N-terminal to C-terminal in the RCL according to its P designation relative 
to the P1-P1’ scissile bond. All experiments were performed in triplicate. 
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single-cysteine mutant labeled at P4’, and vice versa). Most notably, the overall change 

in fluorescence is greater at the N- and C-terminal RCL for tPA-SPD* and uPA-SPD*, 

respectively, with the greatest difference between the exosites occurring at positions 

P9-P6 (~211-275% increase) for tPA-SPD* and P4’-P8’ (~19-110% increase) for uPA-

SPD*. These results indicate that both PAs rest differently on the serpin top by utilizing 

distinct exosites in the Michaelis complex. 

4.3.b. RCL Dynamics in the Michaelis Complex are Affected by uPA Binding 

In addition to fluorescence, the dynamics of the RCL of PAI-1 complexed to PAs 

were investigated by EPR. Active site-blocked PAs were added to MTSL-labeled PAI-1 

and the resonance spectra collected (Fig. 4.9). The change in the inverse line-width, or 

relative mobility (ΔH0
-1), due PA binding is plotted with respect to RCL position (Fig. 

4.10). The individual spectra indicate that the mobility of the RCL in the absence and 

presence of the PAs is unique. The inverse line-widths reveal that the relative mobility of 

the RCL is largely unchanged due to the binding of tPA-SPD*. In contrast, the mobility 

of the RCL in the presence of uPA-SPD* is considerably restricted, specifically at the N-

terminal P14 and P11-P5 positions.  In comparison, the average temperature (B) factor 

at this region in the 14-1B PAI-1-uPA-SPD* Michaelis crystal structure [81], which 

represents the highest populated conformer, indicates these residues are quite mobile, 

but this difference is likely due to differences between solution and crystal structures. 

Another factor that may account for the observed results is the difference between the 

14-1B compared to metastable structure of PAI-1. Also, a previous report showed that 

the orientational freedom of a probe conjugated to the P3 position was decreased with 

respect to the P1’ position in the presence of the PAs [100]. The restricted mobility at P3  
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Figure 4.9 Binding of Plasminogen Activators Affects the Dynamics at Different 
Positions in the RCL. tPA-SPD* and uPA-SPD* were added at 2 µM and 8 µM, 
respectively, to 2 µM MTSL-PAI-1 in PBS buffer, pH 7.4. EPR spectra were collected at 
ambient temperature by sweeping the magnetic field (3310-3410 gauss) at a constant 
frequency (~9.45 GHz). Representative spectra of MTSL-PAI-1 alone (black traces) 
and in the presence of tPA-SPD* (magenta traces) and uPA-SPD* (orange traces) for 
each RCL position are shown.  
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Figure 4.10 Changes in Mobility of the RCL upon Michaelis Complex Formation. 2 
µM tPA-SPD* and 8 µM uPA-SPD* was added to 2 µM MTSL-PAI-1 in PBS buffer, pH 
7.4 and the EPR spectra collected. The inverse line-width from the resulting spectra 
was obtained and the change in the relative mobility (1/H0) determined by subtracting 
the average inverse line-width of MTSL-PAI-1 alone from the inverse line-width obtained 
in the presence of ligands. Residues are ordered N-terminal to C-terminal in the RCL 
according to its P designation relative to the P1-P1’ scissile bond. All experiments were 
performed in triplicate. 
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Figure 4.11 MTSL Probe Remains Conjugated to PAI-1 in The Presence of Active 
Site-Blocked Plasminogen Activators. 1 mM DTNB was added to 2 µM MTSL-PAI-1 
(white bars) in the absence and presence of active site-blocked PAs (as indicated) and 
the absorbance at 412 nm recorded. The black bar represents DTNB in the absence of 
MTSL-PAI-1 and ligands (c.f. Fig. 3.12A).  

 

 

compared to the P1’ position in the presence of both active site-blocked PAs detected 

by EPR is consistent with the latter study. 

As previously explained for MTSL-PAI-1, (c.f. Ch. 2.3.e.), the intensity of the 

MTSL resonance signal is proportional to the concentration of EPR active species. 

Though the increases in intensity observed at some RCL positions (e.g. P11 in the pre-  

sence of tPA-SPD* and P2’ in the presence of uPA-SPD*) (Fig. 4.9) are unlikely due to 

an increase in paramagnetic concentration, the decreases in intensities observed (e.g. 

at P14, P13, etc.) may indicate a loss of the latter. To test this, DTNB was added to 

MTSL-PAI-1 in the absence and presence of PAs (Fig. 4.11) to detect for the presence 

of free sulfhydryls, which would occur if MTSL was removed and/or dimerized. The 

resulting low absorbance at 412 nm for MTSL-PAI-1 in complex with PAs, similar to 

P14 P13 P12 P11 P9 P8 P6 P5 P3
0.0

0.1

0.2

0.3

0.4

0.5

P1' P2' P3' P4' P5' P6' P7' P8'

DTNB A
lo

ne

unlab
ele

d P
9

Alone
uPA-SPD
tPA-SPD

A
ve

. A
41

2

MTSL-Labeled RCL Residue



	   140	  

DNTB alone (black bar), indicates the lack of free sulfhydryls. In contrast, the higher 

absorbance of tPA-SPD* in the absence of MTSL-PAI-1 and unlabeled P9 indicates the 

presence of a free cysteine, which is expected for the latter. These results also indicate 

that a free cysteine in tPA-SPD* becomes inaccessible upon complex formation with 

PAI-1.  

4.3.c. Model of PAI-1-tPA Michaelis Complex  

The steady-state fluorescence and EPR data presented here reveal clear 

differences in the Michaelis complex of PAI-1 with tPA-SPD* and uPA-SPD*, with the 

former and latter resting at the proximal and distal regions of the RCL, respectively. This 

difference is similar to that of ATIII in the Michaelis complex with thrombin and fXa [3]. 

Since a structure of its complex with PAI-1 is currently unavailable, a model of the PAI-

1-tPA Michaelis complex was constructed based on the latter complex by molecular 

superimposition and protein-protein docking. Homology modeling of the RCL was 

required prior to docking in order to use the metastable PAI-1 structure [59], in which 

the RCL is unresolved, for the Michaelis model. Three low energy RCL-modeled PAI-1 

structures resulted (HM1-3) (c.f. Fig. 2.6), to which the serine protease domain of tPA 

was docked as described under Methods (4.2.d.). After docking, the distances between 

the scissile bond to the catalytic serine, and P5’ to the 37-loop of tPA, were restrained 

based on distances in the PAI-1-uPA Michaelis crystal structure and biochemical 

evidence showing a stronger P4’P5’-37-loop interaction for PAI-1 and tPA. Restraining 

distances as such reveals the path of least resistance to the target distance (3-4 Å), 

which is in contrast to constraining distances, where the target distance is reached 

regardless of steric or thermodynamic considerations. The potential energy of the  
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Figure 4.12 Michaelis Complex of PAI-1 with PAs. The (A) crystal structure 
(3PB1)[81] of the 14-1B variant of PAI-1 (black RCL) in the Michaelis complex with the 
active site-blocked serine protease domain of uPA (orange) is shown next to the (B) 
docked and restrained model of the tPA serine protease domain (1BDA)[183] 
(magenta) in the Michaelis complex with the metastable PAI-1 (3Q02)[59] containing a 
homology-modeled RCL (red RCL). The structures were superimposed about the Cα 
and shown from “front” (C) and “side” (D) views. Secondary structural elements involved 
in conformational changes of PAI-1, including the gate (green), shutter (cyan), and 
helix F (brown) of the flexible joint region are highlighted. Rendering created using 
MOE2012.   

A. B. 

C. D. 
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Figure 4.13 Close-up of PAI-1-PA Michaelis Complex Interface. Metastable (red 
RCL) and 14-1B (black RCL) PAI-1, in complex with tPA (magenta) and uPA (orange), 
respectively, is shown in white with the gate (green) and shutter (cyan) regions 
highlighted. Panels A-B show the complexes from the “front.” Panels C-D are “side” 
views of the binding interface. The Cα atom of residues P1 in the RCL, P5’ in s1C, Arg-A 
in the 37-loop of the PAs, and Glu-A of the tPA 60-loop are shown in the space filling 
rendering and colored according to their participating chain (MOE2012).   
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Table 4.1 Potential Energy & Root-Mean-Squared Deviation of Docked & 
Restrained PAI-1-tPA Michaelis Complex Models 

 

 

resulting docked and restrained PAI-1-tPA models were calculated (Table 4.1), and the 

lowest energy model shown superimposed on the 14-1B PAI-1-uPA-SPD* crystal 

structure (Fig. 4.12 - 4.13 A-D), highlighting the different positions occupied by the PAs 

in the Michaelis complex with PAI-1. The root-mean-squared deviation (RMSD) (Table 

4.1) of the docked & restrained PAI-1-tPA Michaelis models compared to their 

unrestrained docked structures is small (<2Å), indicating minimum perturbation of the 

structures due to the applied distance restraints. Also, two of the three PAI-1-tPA 

Michaelis models contain more interchain contacts than that of the 14-1B PAI-1-uPA-

SPD* Michaelis structure (Table 4.2). Interestingly, tPA in the Michaelis model with PAI-

1 also possess more contacts with N-terminal RCL residues than does uPA in complex 

with 14-1B PAI-1, which is consistent with the fluorescence data.   

4.4. Discussion 

4.4.a. How does noncovalent Michaelis complex formation affect serpin inhibition 

rates?  

Serpin inhibition couples fast RCL insertion to protease translocation, destructing 

the enzyme active site to varying degrees, including a general deformation to removal of  

!"# $%& '()* '()* ##(+ #,(#+ -./.+(0# #()/1 #(+)+ #,
!"* $%& .()0 .(10 #.()/ #,(+1 -.+*+(+* #(#/ #(++# #*
!". $%& .(.0 '()* ##()1 #,(,1 -#0*/(,1 #(+)# #(/ #0
#'-#2 3%& .()1 1(+# 456 456 -.),1(' 456 456 #+

789:;<=><?3@A9B;@:?$B:4<:C<349A?$96B4AD<?$93E$39A?
456<4:$<6@@FBE6GFA

!"#$%&'()$*+,-./0+%&'(

12345 ,12167%89:%4%
;<%2=>2

1?,0.,*-9%@.0=>A%
&B/-9CD?9(

$*+,-./0%!0+,=-*.0E%&'(
1542=>%F%
#5G64HI%

167%89:%F%
;<%2=>2

1542=>%4%
#5G64HI%1=?,0*.%5 1=?,0*.%J K%3.,0=L-/0%

M?.,-/,+



	   144	  

Table 4.2 Interactions in PAI-1-PA Michaelis Complexes 
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the catalytic serine from the histidine base and distortion of oxyanion hole to a 

conformation incompatible with catalysis [4, 123]. For PAI-1, many structural factors 

affect RCL insertion, and thus the outcome of the inhibitory process, including: the 

identity of the RCL residue [60, 122], scissile bond position [83], and length of the RCL 

required for close tethering of the protease [123, 124]; P’-side loop-displacement from 

the protease active site and release of exosites interactions upon cleavage, precluding 

s1C detachment [68] and reversible acylation [117]; accessibility of the RCL to the 

parallel-stranded shutter, of which opening is limited by interactions of s3A and s5A [73, 

107] with hF “on top” and hB “on bottom” [108]; reorganization of sA into a six-stranded 

antiparallel β-sheet; and displacement and return of hF over s4A upon RCL insertion 

[69]. Although the RCL hinge (P16-P14) can be pre-inserted [58] prior to formation of 

the Michaelis complex, and thus formerly hypothesized to facilitate insertion upon 

cleavage, such a conformation is induced after engaging with proteases and triggered 

by RCL cleavage [73, 100, 105, 115, 117, 118, 210]. Thereby, the manner in which the 

RCL is positioned and exosite employed in the Michaelis complex prior to cleavage 

affects the subsequent rates of acylation, loop-displacement, and insertion [211].  

4.4.b. How do exosites affect PAI-1 reactions with PAs?  

PAI-1 primarily inhibits PAs (kinhib = ~107; c.f. Table 1.1), but due to its multi-

specificity, can also inhibit other serine proteases, including thrombin (kinhib= 1.1 ± 0.2 x 

103 M-1s-1), plasmin (kinhib= 2.7 ± 0.5 x 104 M-1s-1) [167], and β-trypsin (kinhib= 2.2 ± 0.1 x 

106 M-1s-1) [85], albeit at slower rates. The basis of this multi-specificity and effect on 

rates is use of one or more exosites beyond the active site interactions (P4-P3’). 

Analysis of the Michaelis complex of various serpin-protease pairs suggests that the  
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Table 4.3 Serpin-Serine Protease Exosite Contribution & Inhibition Rates 

          
★ Ref. [211] 
★★  Ref. [212], adjusted to values from [211] based on fold-difference 
★★★  Ref. [85], adjusted to values from [211] based on fold-difference 
✚  Ref. [3] 
✚✚ Ref. [81] 
n.d. not determined 
n.a. not applicable 

 
 

 

 

optimal contribution of exosites to the total contact surface is ~30% for favorable rate 

enhancements, with fewer or more exosites not improving the reaction, but seemly 

required for better recognition when a more extensive exosites is required (Table 4.3) 

[3]. For instance, the inhibition of thrombin by protein C inhibitor (PCI, 12.9% exosite) 

and heparin cofactor II (59.3% exosite) is ~20X and ~3X slower, respectively, than its 

inhibition by ATIII (32.7% exosite) [3, 211]. Accordingly, the rate of β-trypsin inhibition by 

PAI-1, for which it has no known exosites, is ~2.5X slower than that its inhibition of uPA 

(36% exosite) [3, 85]. The latter trend also seems to correspond with the manner in 

which the protease rests on the serpins top (Fig. 4.14). Proteases can approach the  
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Figure 4.14 Location of Serine Protease Exosites on Serpin Top. The locations of 
different exosites (transparent circles) for representative serpin-serine protease pairs 
are shown on the PAI-1 scaffold (3Q02 [59], white with red RCL, green gate loops, and 
cyan shutter). Sites (right) are colored according to their corresponding pair (left).   

 

 

 

Table 4.4 Common Serpin-Serine Protease Exosite Interactions 

 
             Ref. [3] 
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serpin from two directions: the ‘front,’ where it encounters the helical turn preceding s4C, 

followed by sB and sC (e.g. ATIII-thrombin, ATIII-fXa), or the ‘back door’ (e.g. PCI-

thrombin), engaging with s3C [3].  Exosite interactions between the 37-, 60-, and 147-

loops (also known as the 30-, 60-, and 140 loops) of the protease with s1-3B, s2-3C, 

and the helical turn preceding s4C of the serpin, respectively, are frequently employed 

(Table 4.4) [3]. Also, close approach of the protease is required for closely-folded RCLs, 

as in PAI-1 [58], which limits the range of possible exosites [3, 211]. 

Certain lines of evidence suggest similar noncovalent Michaelis complexes 

between PAI-1 and PAs. For instance, the difference in kinhib between the PAs by PAI-1 

is small compared to that of thrombin and plasmin by PAI-1 [167]. Also, both PAs share 

considerable structural similarity (RMSD ~ 1.9 Å) and characteristic features of their 

serine protease domains [179]. Appropriately, the differences that do exist between the 

two are mainly in the variable loops, with tPA containing a longer and more positive 37-

loop, a 97-loop that protrudes less from domain scaffold, and a much shorter 186-loop 

than that of uPA. However, the fluorescence data (Fig. 4.8) reveal distinct differences in 

the Michaelis complexes of PAI-1, with tPA-SPD* resting on the front of the serpin near 

the proximal hinge, employing exosite contacts with N-terminal P9-P6 RCL residues, 

while uPA-SPD* leans on the distal hinge of the RCL, engaging in exosite contacts with 

s1C (P4-P8’). Specifically, the PAI-1-tPA Michaelis complex (Fig. 4.12 B), modeled 

based on the fluorescence data, show interactions between s1C (P4’)-s2C, s3C, and 

P12 or P11-P8 of PAI-1 with the 37-, 60-, and 97-loops of tPA, respectively (Table 4.2). 

In contrast, s1B, P4’ in s1C, and P5-P3 interact with the 37-, 60-, and 97-loops, 

respectively, in the 14-1B-PAI-1-uPA Michaelis complex. Furthermore, more contacts 
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are present in the tPA than the uPA complex with PAI-1 (Table 4.2), and the EPR data 

(Fig. 4.10) reveal that, unlike tPA-SPD*, binding of uPA-SPD* at the distal hinge 

significantly restricts the mobility of the RCL.  

As previously mentioned, native PAI-1 inhibits tc-tPA faster than uPA, and uPA 

faster than sc-tPA, but RCL insertion (klim) is faster in the presence of uPA, and the 

affinity (Km) greater in the presence of tc-tPA (c.f. Table 1.1). These findings provide an 

explanation for these noted differences. In terms of klim, binding of uPA at the distal 

hinge immobilizes the N-terminal RCL, which can restrict its motion for facile sA 

incorporation, resulting to its faster insertion. In terms of Km, sc-tPA participates in more 

interactions in the Michaelis complex than uPA, which may be similar for tc-tPA, 

contributing to its greater affinity for PAI-1. It can further be hypothesized that tc-tPA 

binds the proximal hinge similar to sc-tPA in the Michaelis complex, but induces greater 

restrictions on RCL mobility than the latter, but less than that of uPA, leading to its faster 

rate of inhibition than its single-chain form. Such knowledge of the binding and 

association of these components in the Michaelis complex will be useful in the 

development of more efficient PAI-1-PA inhibitors. 

4.4.c. Why inhibit tPA versus uPA interaction with PAI-1? 

PAI-1-tPA signaling via LRP-1 [12] and PAI-1-uPA-uPAR signaling [199] can lead 

to the increased expression of MMP-9, and plasmin activated from plasminogen by PAs 

can consequently activate MMP-9. While these processes are important in tissue 

remodeling after injury under normal conditions, they can be harmful in pathological 

settings, e.g. cancers, strokes. In the latter case, it may be desirable to inhibit PAI-1-PA 

interactions, without interfering with other serpin-serine-protease interactions. The 
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differences in PAI-1-PA interactions revealed here can be used in the development of 

more specific inhibitors for each, which generally leads to increased efficacy and 

decreased undesirable side effects of drugs. In addition, difficulties can arise from using 

tPA as a thrombolytic [12, 213, 214] in acute ischemic stroke, including its fast hepatic 

clearance [42, 179], rendering it ineffective, or prolonged presence, leading blood-brain 

barrier (BBB) permeability and oxidative stress [197, 214]. The latter neurotoxicity of 

tPA can be countered by the neuroprotection provided by uPA [215] shown to alleviate 

the effects of oxidative stress, but not if the latter is targeted. Also, the risk of 

neurotoxicity is greater if endogenous PAI-1 levels are high (e.g. due to 4G/4G 

polymorphism). In this case, the specific inhibition of tPA, and not uPA, may be 

beneficial.   

4.4.d. How does interaction with VN affect PAI-1 interaction with PAs? 

  Binding of VN alters the specificity of PAI-1 [167], possibly via binding at its 

secondary site on hE, and affects its interaction with the PAs. Specifically, VN lowers 

the klim of PAI-1 with the PAs and Km with sc-tPA, but not the Km with tc-tPA and uPA 

(c.f. Table 1.1). VN also does not affect the SI ratio of PAI-1 with the PAs [86, 92], and 

thus the partition between the inhibitory and substrate branches. Thus, the effect of VN 

on the interaction of PAI-1 with the PAs probably involves the formation of the 

noncovalent Michaelis complex. Interestingly, tPA binding to PAI-1 (Fig. 4.8 A) elicits 

greater changes in solvent accessibility of the same residues, P9-P6, as VN (c.f. Fig. 

3.8) and those that do not show an initial decease during the latency process (c.f. Fig. 

2.22 A). Also, VN binding considerably affects the s1C conformation. These results 

suggest that VN induces changes in RCL conformation to one less favored by the PAs.   
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4.5. Conclusion 

Steady-state fluorescence and EPR investigation demonstrate that uPA binding 

to the C-terminal RCL in the Michaelis complex restricts its motion, resulting in faster 

rates of RCL insertion (klim), while sc-tPA binding at the N-terminal RCL engages in 

more exosite interactions, yet leaves RCL relatively mobile. The Michaelis complex for 

tc-tPA is likely similar to that of sc-tPA, except with greater restriction of RCL mobility. 

Thereby, PAI-1 inhibits tc-tPA more rapidly than uPA, and the latter two more quickly 

than sc-tPA. 
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Future Directions                                                                                         . 

Characterizing the loop to strand conformation and dynamics of the PAI-1 RCL 

by computational and spectroscopic methods reveals important information about the 

latency transition and interactions with its ligands, including VN and PAs. These studies 

reveal that the few conformations that are accessible to the RCL may contribute to its 

meta-stability and facilitate the conversion of PAI-1 to its global free-energy minimum 

latent state. The new information gathered here on the latency process, specifically the 

early s1C detachment during the transition and VN delaying full insertion by eliciting a 

solvent-exposed conformation of the N-terminal RCL, can be used for the development 

of more effective inhibitors against PAI-1 in its pathophysiological states. The finding 

that sc-tPA participates in many exosite interactions with the N-terminal RCL, 

contributing to its higher Km, and uPA engages with the C-terminal RCL in its exosite 

that significantly restricts loop mobility, resulting in its faster klim, can likewise be used 

for the specific targeting of PAI-1. However, many questions for future work remain to 

be answered. For instance, is the initial decrease observed by steady-state investigation 

of the latency transition sufficiently explained by s1C detachment? Does RCL passage 

through the gate or hF displacement limit the rate of this transition? Does VN affect s1C 

detachment or other processed during the latency process? How does the IDD affect 

the RCL conformation in the absence of the SMB domain? How does VN affect the 

Michaelis complex with PAs?  

Due to the success of the combined approach using fluorescence and EPR of 

RCL-labeled mutants to elucidate structural information, further experiments can be 

performed to answer these questions. To verify that s1C detachment explains the early 
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decreases in fluorescence, single-cysteine RCL mutants of the stable 14-1B PAI-1 

mutant can be engineered and labeled as presented in this work. These mutants can 

subsequently be tested by steady-state fluorescence to detect the presence of the initial 

decrease, which may be longer due to the enhanced stability of the latter in comparison 

to native PAI-1. Also, PAI-1R, in which the P14 position mutation to Arg prevents its 

insertion, can be used to investigate if s1C detachment is a prerequisite for RCL 

insertion or if these events are mutually exclusive. Furthermore, the latency transition in 

the presence of VN can be observed to determine if the latter affects any step of the 

latency transition, including s1C detachment or hF displacement.  

Producing VN with the appropriate post-translational modifications and correct 

disulfide pairing in the SMB by recombinant methods (e.g. E. coli, baculovirus) is 

challenging due to low yields, although initial success with expression in Drosophila 

melanogaster S2 insect cells has been met (data not shown). An additional challenge in 

purifying intrinsically disordered proteins, which characteristically possess a low 

hydrophobicity and high density of charge, is the propensity to aggregate and its 

susceptibility to proteolysis. The latter can be circumvented by thermal/chemical 

denaturation [216], boiling lysis followed by ion-exchange [217], the use of solubility-

promoting buffers [218], or via use of a fusion protein [219]. Upon its purification, the 

contribution of the IDD alone on the conformation of the RCL can be examined by 

fluorescence, as the EPR data of full length VN did not show significant changes in RCL 

dynamics in its presence.  

  To assess the effect of VN on the interaction of PAI-1 and PAs, the fluorescence 

and EPR measurements of the RCL-labeled PAI-1 in the presence of active site-
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blocked PAs, VN, and/or its truncations can be performed. Also, since the results here 

pertain to its single chain form, the effect of tc-tPA on the structure of the RCL can be 

investigated to explain its faster kinhib than uPA and sc-tPA with PAI-1. (tc-tPA can be 

formed from sc-tPA via plasmin cleavage). Moreover, since VN affects the specificity of 

PAI-1, the RCL-labeled PAI-1 can be examined by these methods in the presence of 

active site-blocked thrombin, and differences from PAs compared to obtain information 

on serpin specificity requirements.  

In EPR experiments, though the changes in signal intensity may be explained by 

changes in the Q factor, and DTNB assays and MALDI analysis indicate the absence of 

free sulfhydryls and dimerized PAI-1, respectively, the reduction of the MTSL-probe 

conjugated to PAI-1 could not excluded because free MTSL retains its paramagnetism 

and results in sharper line-widths, as observed in the increase in signal intensity in 

some cases (c.f. Figs. 2.23, 3.11, & 4.10). Reducing agents, such as ascorbate [131, 

220] or DTT, can be used to test the latter. Accordingly, if the probe is already reduced, 

a signal change should not occur. Also, the MTSL spectra contain information in 

addition to dynamics. Residue-by-residue orientation information can be obtained from 

simulations of the high-field peak in these spectra to provide greater structural 

resolution Moreover, for an additional comparison of PAI-1 RCL dynamics, low-T EPR 

measurements (liquid nitrogen, ~77 Kelvin) can be performed to collect data on the 

immobilized RCL. Research into these questions will further the understanding of the 

nature of PAI-1. 
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