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Abstract 

 

Prandtl’s lifting line theory expanded the Kutta-Joukowski theorem to calculate 

the lift and induced drag of finite wings. The circulation distribution about a real wing 

was represented by a superposition of infinitesimal vortex filaments. From this theory, 

the optimum distribution of circulation was determined to be elliptical. A consequence of 

this theory led to the prediction that the elliptical chord distribution on a real fixed wing 

would provide the elliptical circulation distribution. The author applied the same line of 

reasoning to lift-producing rotating cylinders in order to determine the cylindrical 

geometry that would theoretically produce an elliptical circulation distribution. The 

resulting geometry was the biquadratic body of revolution (BBOR). Water tunnel testing 

was conducted to compare force coefficients and ratios between a lifting arrangement 

incorporating BBORs and a lifting arrangement incorporating a more traditional 

cylindrical arrangement, the constant diameter circular cylinder (CDCC). As directed by 

the Navier-Stokes equation, testing was conducted at low   ,             

           , where viscous effects would become more pronounced. Results showed the 

BBOR arrangement to produce the highest lift to drag ratio within specific ranges of   

[alpha], surface velocity to free stream velocity. Lift coefficients were shown to increase 

with   [alpha] and approach values an order of magnitude larger than known fixed wing 

lift coefficients at low   . 
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Chapter 1 

Introduction and Background 

The study of fluid flow is segmented by the effects of viscosity and 

compressibility. Although all fluids are in actuality viscous and compressible, fluids in 

certain conditions experience minimal effects of one or both. For example liquids show 

little volume change with the application of pressure and are therefore deemed 

incompressible for practical purposes. By contrast gasses show significantly more 

volume change with the application of pressure and are therefore considered 

compressible; however, gas dynamic interactions that occur at speeds sufficiently lower 

than the speed of pressure transmission in the gas can be accurately modeled without the 

effects of compressibility (Abbott & von Doenhoff, 1959). All fluids, with the exception 

of superfluids, experience the effects of viscosity. Following Prandtl’s discovery and 

description of the boundary layer, fluid flow was separated into two regions: the 

boundary layer where viscous effects predominate, and the flow outside of the boundary 

layer where the effects of viscosity are negligible (Abbott & von Doenhoff, 1959). 

Derivations of the governing equations of fluid flow may be simplified by the exclusion 

of viscosity. Conclusions drawn from the simplified equations may prove highly 

beneficial for inviscid flow, e.g. outside of the boundary layer, yet their applicability can 

naturally be limited in viscous regions, e.g. the zero drag result known as d’Alembert’s 

paradox. This research points to an application of the results of an inviscid analysis, 

primarily Prandlt’s lifting line theory, to the optimization of a viscous phenomenon, i.e. 

the Robins-Magnus effect. The basic theories for both are here presented. 

 

Circulation Theory  

Kutta-Joukowski theorem. The definition of the aerodynamic tool known as 

circulation     is mathematically represented by Equation 1. 

 

        
 

        (1)  
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The interpretation of Equation 1 is aided by Figure 1 and proceeds as follows. The scalar 

product of velocity    , in a given velocity field, is taken with   , representing an 

infinitesimal distance along a closed curve  . The sum of all such products around   is 

known as circulation. The significance of circulation is that for a two dimensional 

(infinite) body immersed in a velocity field about which the circulation is finite    

      , the theorem of Kutta-Joukowski states that a force will be produced on the 

body perpendicular to the oncoming flow (Anderson, 2007). The simplified Kutta-

Joukowski theorem is given by Equation 2. 

 

                 (2) 

 

The force experienced by the body is designated   , since aero/hydrodynamic lift     is 

also by definition perpendicular to the oncoming flow     . The force being per unit span 

is represented by the prime (  ).  

Inviscid incompressible flow with circulation. Velocity fields with circulation 

can be represented mathematically; however, the velocity field must correspond to reality 

in order to have physical significance. The description of one such field follows. In order 

to provide an Eulerian description of flow, the velocity must be presented as a function of 

its position. The stream function     provides such a description. Differentiating a stream 

function produces a function that defines particle velocities at every point in space. The 

path of a particle is known as a streamline (for flow with no time variation, i.e., steady 

flow (Karamcheti, 1966)). Two conditions must be met prior to using a stream function. 

The flow must be incompressible everywhere. This condition is presented in Equation 3. 

 

               (3) 

 

In addition the flow must be irrotational everywhere, as presented by Equation 4. 

 

               (4) 
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Figure 1. Circulation. A closed curve C with an elemental length ds in a velocity field 

having velocity V at ds. 
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Given the two conditions, the stream function for a velocity field is a solution to 

Laplace’s equation as shown by Equation 5. 

 

               (5) 

 

A solution to Laplace’s equation is linear and therefore may be superposed to form other 

solutions (Anderson, 2007). Velocities in polar coordinates may be derived from stream 

functions as shown in Equation 6.  

 

    
 

 

  

  
         (6.a) 

    
 

 

  

  
         (6.b) 

 

Several fundamental stream functions and associated velocities in cylindrical coordinates 

are as follows. The first and most basic is that of the uniform stream as given by Equation 

7 with velocities given by Equation 8. 

 

                   (7) 

                     (8.a) 

                  (8.b) 

 

The next stream function is that of a source as given by Equation 9 (Anderson, 2007). 

 

   
 

  
          (9) 

The velocity produced by a source      emanates radially outward from a point as shown 

in Figure 2 with decreasing magnitude as given by Equation 10 (Anderson, 2007). 

 

    
 

   
         (10) 
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Figure 2. Source Flow. The direction and magnitude of velocities are shown to radiate 

outward and decrease with radial distance from the source. 
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The strength of the source is represented by  . The next stream function is that of a sink 

as given by Equation 11 (Anderson, 2007). 

 

    
 

  
          (11) 

 

The velocity      induced by a sink gravitates radially inward toward a point as shown in 

Figure 3 with increasing magnitude as given by Equation 12 (Anderson, 2007). 

 

     
 

   
         (12) 

 

As is evidenced by Equations 11 and 12 and seen in Figure 3, a sink is the opposite of a 

source. Since both sources and sinks are solutions to Laplace’s equation, they may be 

superposed. The superposition of a source and a sink at the same location is known as a 

doublet with strength  , as given by Equation 13, with velocity given by Equation 14 as 

shown in Figure 4 (Anderson, 2007). 

 

   
 

  

    

 
         (13) 

    
 

  

    

  
            (14.a) 

   
 

  

    

  
                (14.b) 

 

Flow emanating from the source is drawn back into the sink following circular 

streamlines. The superposition of a uniform stream and a doublet results in a streamline 

leading to a point of zero velocity known as a stagnation point. From the stagnation point, 

semicircular streamlines emanate in opposite directions encircling the doublet and 

meeting in a second stagnation point on the opposite side from which the leading 

streamline appears to exit away from the doublet. Further streamlines originating above 

and below the stagnation streamline continue smoothly above and below the stagnation 

and semicircular streamlines. This flow is pictured in Figure 5. The semicircular 

streamlines connecting the two stagnation points form a circle. This mathematical  
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Figure 3. Sink Flow. The direction and magnitude of velocities are shown to gravitate 

inward and decrease with radial distance from the source. 

 

 

Figure 4. Doublet Flow. The direction and magnitude of velocities follow circular 

streamlines from the source to the sink. The direction of the doublet is to the left. 

 

 

Figure 5. Doublet Flow in a Uniform Stream. Stagnation streamlines can be seen to enter 

and exit from the circular streamlines while other streamlines pass over and below. 
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construction represents the incompressible, inviscid flow around an infinite cylinder. The 

velocity for this flow is calculated via Equation 15. 

 

      
  

  
                      (15.a) 

       
  

  
                      (15.b) 

 

Radial distance from the center of the cylinder is represented by   as distinguished from 

the cylinder’s radius represented by  . It should be noted that the flow is symmetric 

about the central streamlines leading into and away from the stagnation points. The 

magnitudes of the flow’s velocities about an axis passing through the doublet’s center 

and normal to its direction are also symmetric. Calculation and integration of pressure 

along the circular streamlines (or surface of the cylinder) yields zero resultant force. The 

difference between this result and the reality that a real cylinder in a uniform stream 

would indeed experience drag is known as d’Alembert’s paradox (Pope, 2009). The 

resolution of d’Alembert’s paradox is found by the inclusion of friction, which is absent 

from the stream function analysis but necessarily involved in real flows. Real flows will 

be discussed following further discussion of inviscid flows. The next basic inviscid flow 

is the vortex.  

Vortex flows have concentric circular streamlines surrounding the vortex core as 

represented by the stream function and velocity equation, given respectively by Equations 

16 and 17, and as shown in Figure 6. 

 

  
 

  
            (16) 

     
 

   
         (17) 

 

Here   is known as the vortex strength (Anderson, 2007), which is synonymous with 

circulation as given by Equation 1, and is a constant for the vortex flow although    

decreases as the inverse of distance from the vortex core. Superposing a vortex flow with  
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Figure 6. Vortex Flow. Concurrent circular streamlines surround the vortex core. 

Velocity decreases inversely with distance from the core. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
10 

the doublet and uniform stream alters the streamlines as shown in Figure 7. In this Figure, 

two circular streamlines emanate from a stagnation point and come together at a second 

stagnation point; however, the leading and exiting streamlines are no longer collinear nor 

straight, and the stagnation points have moved closer to one another in the flow at the 

surface of the cylinder. In the case shown, the upper circular streamline has lengthened 

by the same amount that the lower circular streamline has shortened, thereby bringing the 

stagnation points closer together. This flow, as is the superposition of the doublet and 

uniform stream, is symmetric about an axis passing through the center of the doublet and 

normal to the uniform free stream; however, it is asymmetric about an axis passing 

through the center of the doublet, which is parallel to the uniform stream. When 

calculating pressure along the circular streamlines, the symmetry about the vertical axis 

yields no drag (as with the case of the doublet in the uniform stream); however, the 

asymmetry about the horizontal axis results in a net pressure and hence a lift force normal 

to the uniform stream. In addition to the process of pressure integration along the circular 

streamlines, the value of lift can also be calculated via Equation 2 given the value of    

for the vortex flow. As with all of the flows mentioned heretofore, this flow is inviscid. It 

is this final basic flow and the lift force that results that forms the foundation of this 

work. As a closing note on inviscid, incompressible 2-D flows, streamlines exist within 

the circular streamlines of Figures 5 and 7; however, the flow of interest lies outside this 

region. The inner flow is therefore ignored for the mathematical benefit of excluding 

singularities at     for the doublet and vortex flows, as well as for the physical reason 

that solid bodies will be considered to occupy this position.  

 

Robins-Magnus Effect 

The superposition of basic inviscid flows (uniform stream, doublet, and vortex) 

results in what appears to be a lifting cylinder. The cylinder itself is created by the 

doublet and uniform stream. Lift on the cylinder is a result of the addition of circulatory 

vortex flow, non-zero  . Rotation of a real cylinder in inviscid flow has no way to impart 

circulation to the surrounding fluid; inviscid flow with circulation is mathematical, not  
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Figure 7. Vortex Flow with a Doublet in a Uniform Stream. Streamlines are drawn over 

the circular streamlines causing asymmetry about the horizontal axis passing through the 

vortex/doublet core. 
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real. However, rotation of a cylinder in viscous (real) flow does impart circulation to the 

surrounding fluid via friction.  Velocity is imparted to the adjacent fluid through skin 

friction (the no-slip boundary condition), and the fluid’s viscosity transmits velocity to 

adjoining layers away from the surface similar to the velocity distribution shown in 

Figure 6 for inviscid vortex flow. The addition of a freestream velocity to a rotating 

cylinder will result in a lifting force analogous to the force on an apparent cylinder 

calculated for inviscid flow. This flow is shown by the visualization in Figure 8. The 

production of a lift force by a real rotating cylinder in real flow is known as the Robins-

Magnus effect (Sengupta & Talla, 2012). 

Much analytical, experimental, and numerical effort has been devoted to the 

Robins-Magnus effect. Moore (1957) presented a first order analytical approach to the 

viscous flow about an infinite rotating cylinder that produced results identical to the 

Kutta-Joukowski theorem. Prandtl (1926) presented a theoretical maximum lift 

coefficient for infinite rotating cylinders,      
   , beyond which increases in the 

ratio of rotational speed to forward speed,  , would no longer increase the lift coefficient. 

This is reached when the fore and aft stagnation points meet on one side of the cylinder. 

Reid’s (1924) experimental results showed lift coefficients for rotating cylinders an order 

of magnitude greater than typical airfoils            with an          value of 

approximately 7.8 for          and      . Ou (1991), Ou & Burns (1991), and 

Burns & Ou (1993) presented numerical results for unsteady flow over rotating cylinders 

that showed similar increasing values of    and similar     to that of Reid; however, Ou 

and Burns reported a time averaged      
  of approximately 6.25 and           of 

approximately 4.6 for        and        (instantaneous values were higher). At 

similar rotation rates, Karabelas et al. (2011) presented numerical results of          of 

approximately 5.3 for         . Chew, Cheng, & Luo (1995) presented an 

         of 4 and      
 of 9.1 for        and    . Beyond strictly force 

information, Stojkovic, Schon, Breuer, & Durst (2003) numerically discovered the 

presence of two distinct vortex shedding modes for infinite rotating cylinders for 

          . They showed that for       and             vortex shedding  
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Figure 8. Robins-Magnus Effect. Streamlines around a rotating cylinder exhibit striking 

similarity to the streamlines for a vortex/double/uniform flow superposition (Prandtl & 

Tietjens, 1957). 
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modes existed outside of which the flow exhibited steady behavior (Stojkovic, Schon, 

Breuer, & Durst, 2003). Stojkovic et al. (2003) also observed that within the second 

shedding mode (for higher  ) the average drag coefficient was negative (i.e. thrust was 

produced), and beyond the second shedding mode the flow field resembled the potential 

flow solution for a rotating cylinder. Stojkovic, Breur, & Durst (2002) also showed 

numerically an asymptotic increase in    with   towards Prandtl’s limit of    at    

   . Many other works have presented similar results (Badr, Coutanceau, Dennis, & 

Menard (1990); Chen, Ou, & Pearlstein (1993); Kang, Choi, & Lee(1999); Chou (2000); 

and Lu, Qin, Teng, & Li (2011)). Glauert (1957) presented theoretical values of     that 

far exceeded the maximum presented by Prandtl; however, he presented no    nor     

information. Tokumaru & Dimotakis (1993) presented experimental results showing 

greater lift coefficients than Prandtl’s theoretical maximum, possibly due to flow 

instabilities (Sengupta & Talla, 2012). They presented      
      for           . 

Mittal & Kumar (2003) presented numerical results for infinite circular cylinders that also 

showed    values far exceeding Prandtl’s theoretical maximum for increasing values of  

      
               . Padrino & Joseph (2006) numerically verified and 

extended Mittal & Kumar’s results for higher   and        
               . 

Although numerical results have been presented for finite rotating circular cylinders 

(Mittal S. , 2004), experimental results have been gathered from essentially two-

dimensional circular cylinders given that the models spanned the wind tunnel test section 

or were capped with end plates or fairings. Table 1 presents a collection of  referenced 

results for rotating cylinders. 
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Table 1. 

Circular Cylinder Results  

Researcher(s)                     Investigation Type 

Prandtl    - - 2 Analytical, 2D 

Reid                    Experimental, 2D 

Ou & Burns                     Numerical, 2D 

Karabelas et al.                2 Numerical, 2D 

Chew, Cheng, &Luo               Numerical, 2D 

Stojkovic, Breur, & Durst     -            Numerical, 2D 

Tokumaru & Dimotakis       -         10 Experimental, 2D 

Mittal & Kumar    -         Numerical, 2D 

Padrino & Joseph    -         Numerical, 2D 

*  This was the highest achieved in testing but no absolute maximum was identified. 
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Lifting Line Theory 

Anderson (2007) explains how Prandtl adapted the Kutta-Joukowski theorem to 

finite “lifting lines” with bound and trailing vortices. A vortex filament with strength   

and length b is used to represent a finite wing of the same length as shown in Figure 9. 

The vortex filament replacing the wing is known as the bound vortex. According to 

Helmholtz’s theorem, a vortex cannot begin or end in a fluid except at a boundary 

(Karamcheti, 1966); therefore, vortices must continue from the ends of the bound vortex 

and do so in the direction of the uniform stream as seen in Figure 9. These vortices are 

known as trailing vortices and are analogous to wingtip vortices trailing behind finite 

wings. The bound and trailing vortices in combination are referred to as a horseshoe 

vortex.  Although not necessarily relevant to the discussion at hand, the trailing vortices 

must also abide by Helmhotz’s theorem. In doing so, they are themselves connected by a 

vortex filament known as the starting vortex that closes the vortex filaments leaving no 

open ends. According the law of Biot-Savart given by Equation 18, velocities are induced 

everywhere in the flow by the bound and trailing vortices (Anderson, 2007).  

 

   
 

  

    

    
         (18) 

 

 

Therefore each segment,   , of a trailing vortex induces a velocity,   , at a given  

location along the bound vortex a given distance,  , from the segment. The influence of 

the entirety of the trailing vortices upon the bound vortex produces a downward velocity 

along the bound vortex known as downwash,     , distributed along its length. The 

downwash velocity causes the local relative wind,       , at the bound vortex to be 

slightly different than the uniform free stream,   . The local lift force, calculated via 

Equation 2, is then perpendicular to the local relative wind but tilted back in relation to 

the uniform stream as shown in Figure 10. Lift is by definition perpendicular to the 

relative wind (uniform free stream), so the sum of the force components perpendicular to  
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Figure 9. Horeshoe Vortex Representation of a Wing. A Finite wing is replaced by a 

bound vortex with trailing vortices analogous to those formed at real wingtips (Anderson, 

2007). 

 

 

Figure 10. Velocity and Force Effects at the Bound Vortex. The downward component of 

velocity, w, induced by the trailing vortices causes the force at the bound vortex to be 

tilted in the direction of the uniform stream.  
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the relative wind is lift, but the sum of the force components parallel to the relative wind 

is known as induced drag,   , as presented in Figure 10.  

The system of vortices by which lift and induced drag can be calculated came to 

be known as Prandtl’s lifting line theory. The lifting line theory is the three dimensional 

extension of the circulation theory by which lift, and now induced drag, for a finite wing, 

not simply an airfoil, may be calculated using incompressible, inviscid analysis. Lifting 

line theory goes further in modeling the lift produced by a real finite wing by noting that 

the lift goes to zero at the wingtips where the pressures on the upper and lower surfaces 

equalize. This requires a lift and necessarily a circulation distribution,      and      

respectively, which goes to zero at the ends of the bound vortex. Anderson (2007) 

presents a step by step description of creating such a distribution. To begin with, several 

horseshoe vortices are superposed with the bound vortex of each being coincident. As 

with basic two dimensional flows, these vortices are added thus providing a rough 

circulation distribution as shown in Figure 11. As the number of horseshoe vortices is 

increased to infinity, the distribution becomes smooth and truly goes to zero at the ends 

of the combined bound vortex. A continuous sheet of trailing vortices is then shed from 

the bound vortex as opposed to only two distinct trailing vortices. A continuous 

circulation distribution is presented in Figure 12. As with the distribution of lift more 

closely resembling that of a real finite wing, so too a trailing vortex sheet more accurately 

models the trailing vortices of a real finite wing that does indeed shed vorticity along its 

length not simply at the wingtips. By the lifting line theory the lift and induced drag of a 

finite wing in an inviscid, incompressible fluid can be calculated when a circulation 

distribution (    , with the y axis located along the span) is given. For a fixed wing with 

known airfoil sections and chord and twist distributions,      and hence L and    can be 

calculated with knowledge of the lift characteristics of each airfoil section. Conversely 

for a given     , a wing’s chord and/or twist distribution can be determined. A final note: 

Prandtl’s lifting line is formed by vortex filaments having no thickness and by definition 

has an infinite   . 

Circulation distribution for minimum induced drag. Munk (1921), a student 

and colleague of Prandtl, utilized the lifting line theory to solve for a particular      such  
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Figure 11. Superposition of Discrete Horseshoe Vortices. Horseshoe vortices are 

superposed to approximate the distribution of circulation for a finite wing (Anderson, 

2007). 

 

 

Figure 12. Superposition of Continuous Horseshoe Vortices. The continuous distribution 

of infinitely many infinitesimal horseshoe vortices represent the actual circulation 

distribution of a finite wing with circulation decreasing to zero at the wingtips (Anderson, 

2007). 
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that    was minimized. The      that accomplished this is the elliptical distribution, 

which has the form of Equation 19 and is shown in Figure 13. 

 

           
  

 
 
 

       (19) 

 

The span, represented by b,   runs from            , and        . An outcome of 

the elliptical      is that the calculated chord distribution,     , is also elliptical when 

the wing is untwisted and composed of only one airfoil section (Anderson, 2007). As an 

aside, continued analysis of the elliptical      has been made regarding span camber. 

When a wing has no span camber, the wing’s representative lifting line is contained 

within the x-y plane and is known as planar. When a wing has span camber, the wing’s 

lifting line is no longer confined to the x-y plane and is said to be nonplanar. Dihedral, 

winglets, endplates, and curved spans lead to the categorization of a wing as nonplanar.  

Such wings have been investigated by Cone (1962), Kroo (2000), Lundry & Lissaman 

(1968), Lyapunov (1993), and Mangler (1938). While reductions in    are consistently 

shown for nonplanar wings, Lyapunov(1993) showed that for a planar lifting line with the 

same total length as a corresponding nonplanar lifting line, the planar lifting line, with an 

elliptical     , will have lower   . It is for this reason that this work is founded on planar 

wings and hence straight lifting lines. 

 The current state of the art in lift production by rotating cylinders via the Robins-

Magnus Effect considers constant diameter circular cylinders (CDCC). Numerical 

investigations have presented results for finite CDCCs; however, theoretical and 

experimental investigations have presented results for 2D cylinders.  

 The state of the art is expanded by this work as follows: 1) a theoretical 

optimization of the cylindrical geometry used for lift production via the Robins-Magnus 

Effect is developed resulting in the biquadratic body of revolution (BBOR), 2) an 

experimental system to include a force balance and a mechanism for driving rotating 

cylinders in a water tunnel at low    is presented, and 3) the results from the comparison 

of CDCC and BBOR arrangements is presented.  
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Figure 13. Elliptical Distribution of Circulation. 
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Chapter 2  

Theoretical Development 

Biquadratic Body of Revolution 

Prandtl’s lifting line theory provides a means to calculate lift and induced drag 

given a bound vortex with a known distribution of circulation,     . The optimized 

distribution of circulation is elliptical. Given the elliptical circulation distribution, the 

elliptical chord distribution for a finite fixed wing follows. Therefore lifting line theory is 

used to design an optimized fixed wing. The Robins-Magnus effect describes lift 

produced not by fixed wings but by rotating cylinders or bodies. Regardless of whether 

lift is produced by the effects of camber and angle of attack for fixed wings or by body 

rotation for rotating cylinders, the value of circulation is central according to circulation 

theory and by extension to Prandtl’s lifting line theory. The author began to analyze the 

optimization of a rotating body creating lift via the Robins-Magnus Effect by focusing on 

circulation. The analysis began two dimensionally.  

Whereas circulation may be calculated for an airfoil, fixed (nonrotating) airfoils 

don’t have an intuitive connection with the word circulation. An infinite (2-D) rotating 

cylinder however, does cause the surrounding fluid to “circulate” due to friction at the 

surface. This “circulation” provided an intuitive connection with the value of circulation 

determined by Equation 1. According to Equation 1, the value of   was independent of 

the path  ; therefore,   may be chosen based upon ease of calculation. The path chosen 

around a rotating cylinder for this analysis was one adjacent to the cylinder’s surface. 

This choice was driven by knowledge of the fluid’s velocity at the surface. The no-slip 

boundary condition implied that the velocity of the fluid      at the surface     was that 

of the cylinder’s surface based upon the angular velocity     of the cylinder and the 

cylinder’s radius     as given by Equation 20. 

 

                (20)  
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This velocity was constant at each point along   thereby simplifying the integral in 

Equation 1 as shown in Equation 21. 

 

        
 

        
        (21)  

 

As in inviscid flow where the choice of vortex strength     set the circulation, in viscous 

flow, the choice of cylinder radius and angular velocity set   according to Equation 21. 

The analysis to this point had been primarily limited to two dimensional flows. Transition 

was then made to three dimensional flows. Expansion of circulation theory (2-D) to 

lifting line theory (3-D) led to circulation distributions,     , specifically the elliptical 

circulation distribution, and the elliptical chord distribution for finite fixed wings. The 

analysis next developed a similar outcome for finite rotating cylinders.  

 The basis for lifting line theory was the vortex filament. The usefulness of the 

vortex filament was contained in the fact that it produces circulation without vorticity 

(excluding the     position) and could be superposed upon other vortex filaments to 

create a desired circulation distribution. Rotating cylinders produce irrotational 

circulation in an analogous manner via Equation 21; however, distributions of circulation 

produced in this way would require either variable   or  . Variable    was not possible 

for a solid body, but variable   could easily be achieved. As a first attempt, a shape was 

chosen, and a corresponding circulation distribution was calculated. The elliptical chord 

distribution for a fixed wing by intuitive analogy led to selection of an elliptical 

distribution of radii for a cylinder. The body with such a distribution of radius was known 

as a prolate spheroid, an example of which is shown in Figure 14. The elliptical 

distribution of radii for the prolate spheroid is given by Equation 22. 

 

             
  

 
 
 

       (22)  
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Figure 14. Prolate Spheroid. The prolate spheroid with elliptical distribution of radii. 
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Here   represents the span of the spheroid, and    represents the radius at midspan 

     . The midspan circulation created about a rotating prolate spheroid was calculated 

by substituting Equation 22 into Equation 1 and integrating as given by Equation 23. 

 

                    
    

               
       

 

      (23)  

 

A similar calculation performed on all spanwise locations, including the substitution of 

Equation 23, yielded the circulation distribution given in Equation 24 running over the 

interval           . 

 

                       
    

          

                          
     

  

 
 
 

 

            
  

 
 
 

 

      (24)  

 

Although the body producing this circulation distribution was a prolate spheroid with an 

elliptical distribution of radii, the resulting circulation distribution of Equation 24 was 

parabolic. The elliptical circulation distribution resulting in an elliptical chord 

distribution for fixed nonrotating airfoils did not prove to be a direct analog for rotating 

bodies. To arrive at the desired elliptical circulation distribution presented by Equation 

19, a different distribution of radii was necessary. A new developmental path was then 

taken. As opposed to the previous method of choosing a distribution of radii and then 

solving for the corresponding circulation distribution (of which there were infinite 

options), the analysis began with the elliptical circulation distribution and proceeded 

towards the distribution of radii. The elliptical circulation distribution from Equation 18 

was first set equal to step two from Equation 24, as shown in Equation 25. 
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                 (25) 

 

The distribution of radii in Equation 25 was then isolated, with substitution of Equation 

23, and presented in Equation 26. 

 

            
  

 
 
 

 

 

 

       (26) 

 

With rearrangement this took the form of Equation 27. 

 

  
    

  
 
 

  
  

 
 
 

          (27) 

 

Equations 26 and 27 were categorized as biquadratic equations. Since they also 

represented axisymmetric three dimensional geometries, they were more precisely termed 

biquadratic bodies of revolution (BBOR). Figure 15 provides an example of such a body. 

A side-by-side comparison of the prolate spheroid and the BBOR is given in Figure 16. 

Figure 15 clearly shows the difference in the two geometries especially near the 

geometries’ tips. The BBOR appears blunt compared to the prolate spheroid. By way of 

analysis, rotation of this body would induce circulatory flow having an elliptical 

circulation distribution. Theoretical circulation distributions produced by the prolate 

spheroid and BBOR are shown in Figure 17. Addition of a uniform stream would result 

in lift via the Robins-Magnus effect analogous to that calculated via Prandtl’s lifting line 

theory. By extension the induced drag, calculated via lifting line theory, would be a 

minimum for the rotating BBOR as it is for the fixed wing with elliptical chord 

distribution. 
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Figure 15. Biquadratic Body of Revolution. The BBOR, when rotated, would produce an 

elliptical distribution of circulation. 

 

 

 

Figure 16. Prolate Spheroid and BBOR Comparison. The differences between the prolate 

spheroid (left) and the BBOR (right) are most pronounced at the tips. The BBOR is much 

more blunt at the tips. 
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Figure 17. Prolate Spheroid and BBOR Circulation Distributions. The theoretical 

circulation distributions for each cylindrical geometry (in parenthesis) are presented. 
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Implications of Navier-Stokes 

Considering the inviscid development of Prandtl’s lifting line theory, it’s 

applicability to real viscous flows is questionable. For finite fixed wings, the viscous, 

circulation inducing effects of the wing/fluid interaction are almost entirely contained in a 

very small region of the flow near the wing’s surface known as the boundary layer. 

Outside of the boundary layer, viscous effects are negligible, and inviscid analysis 

according to Prandtl’s lifting line theory is suitable. Treatment of real fluid flow is 

described in part by the Navier-Stokes equation, presented nondimensionally (indicated 

by *) in Equation 28. 

 

      

   
       

 

  
             (28) 

 

According to Equation 28, acceleration of the fluid, left side of the equation, is the result 

of forces of two types: pressure     and viscous    . The influence of pressure is given 

by the first term on the right side of Equation 28, while the second term describes the 

influence of viscosity (i.e. friction). The relative weight of the viscous term is set by the 

Reynolds number     . Reynolds number is a nondimensional dynamic similarity 

parameter that represents the ratio of viscous to inertial forces given by Equation 29. 

 

   
   

 
         (29) 

 

A characteristic length     is often represented by the chord length of an airfoil. High    

flow regimes, according to Equation 28, experience small effects from viscosity. As    

decreases, viscous effects become more influential. The Robins-Magnus effect relies on 

the viscous interaction between the rotating body and the fluid. It is literally a viscosity-

driven circulatory flow and is therefore a highly viscous phenomenon. With this in mind, 

the viscous term in Equation 28 can be enhanced at low   . Given that the Robins-

Magnus effect experienced by rotating cylinders, specifically BBORs, is a viscosity-

driven phenomenon, low    flow should enhance its effectiveness.  
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Drag of Nonrotating Cylindrical Bodies 

A review of the literature discussing the drag of cylindrical bodies, to include 

constant diameter circular cylinders (CDCC) and spheroidal and biquadratic bodies of 

revolution (BBOR), is here presented. Clift et al. (1978) presented a general analytical 

result in creeping flow for the drag coefficient of prolate spheroids whose major axis is 

normal to the oncoming flow as shown in Equation 30. 

 

    
          

                            
      (30) 

 

The author substitutes for Clift et al.’s “aspect ratio”,  , the wing aspect ratio as given by 

Equation 31. 

 

   
 

 
           (31) 

 

Clift et al. (1978) stated that data, either experimental or numerical for prolate spheroids, 

are not readily available for higher    (beyond creeping flow). A review of the literature 

confirms this statement. Riabouchinsky (1921), Hoerner (1965), and Clift et al. (1978) 

presented analytical and/or experimental results for oblate spheroids without mention of 

prolate spheroids. Oblate spheroids are spheroids whose axis of rotation (minor axis) is 

parallel to the oncoming flow. Aoi (1955), Breach (1961) , and Happel & Brenner (1983) 

presented analytical results for prolate spheroids but only for flow parallel to the major 

axis. By comparison much theoretical, experimental, and numerical data for circular 

cylinders was available. Heiss & Coull (1952) presented an expression (with 

modifications by the author to accommodate for the difference between   and   ) fitted 

to experimental data for finite cylinders in creeping cross flow shown by Equations 32, 

33, 34, and 35.  

 

                           (32) 
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                        (33) 

                               (34) 

                                 (35) 

 

Tomotika & Aoi (1950) and Tomotika & Aoi (1951) presented analytical expressions for 

the drag of infinite circular cylinders at        . Thom (1933) presents 

experimental data closely resembling that of Tomotika & Aoi; however, Thom’s results 

covered           . Both Tomotika & Aoi and Thom presented only pressure drag 

coefficients. Summaries of various experimental results for CDCC drag coefficients as a 

function of    were presented in Toussaint (1921), Bairstow, Cave, & Lang (1923), 

Tritton (1959), Hoerner (1965), Katz & Plotkin (1991), White (2006), Anderson (2007), 

and many other texts. A representation of cylinder drag coefficients is given in Figure 17. 

Although many works presented analytical, experimental, and/or numerical results for the 

drag of circular cylinders, results such as those shown in Figure 17 are primarily two-

dimensional. No drag values, experimental or otherwise, were found to exist for BBORs. 

As can be seen in Figure 18,            presented a local minimum drag coefficient 

of approximately unity for infinite circular cylinders. 
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Figure 18. Drag Coefficients. CD for infinite circular cylinders as a function of Reynolds 

number,   , as recreated from Anderson (2007). 
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Chapter 3  

Experimental Method 

Goals 

 The first goal of the experimental portion of this project was to determine force 

coefficients,          , and the ratio of these coefficients,             , for rotating 

cylinder arrangements at low    with the cylinder tips free to experience fully 3-D flow. 

Little to no experimental data existed for the 3-D flow about the constant diameter 

circular cylinder (CDCC), the geometry typically associated with a cylinder. No data 

existed for the biquadratic body of revolution (BBOR). The second goal was to compare 

the coefficients and coefficient ratios of the CDCC and the BBOR arrangements in order 

to evaluate the prediction that the elliptical circulation distribution theoretically predicted 

for the BBOR would be realized by providing higher values of      . The target of 

          was chosen due to the low 2-D drag coefficient exhibited by circular 

cylinders at this    as shown in Figure 18. This    was dually chosen due to its central 

position in the    range associated with micro air vehicles (MAV). MAVs are unmanned 

aerial vehicles (UAV) having a maximum dimension of       that operate in the range 

          . Testing at    above and below the target was planned in order to 

determine trends for the model arrangements. 

 

Subjects 

CDCC and BBOR. The experiment evaluated two model geometries, the CDCC 

and the BBOR. The geometries were three dimensional and were meant to rotate about 

their major/lateral axes (y axis) aligned normal to the oncoming flow. The models were 

evaluated at equivalent   . This was accomplished by designing each model to have 

approximately the same average radius,            , and adjusting the water tunnel 

flow speed between model runs accordingly. By maintaining approximately equal      

and equal cylinder spans,           , the models had approximately equal planform 

areas. Models were constructed from both aluminum and Delrin® acetal resin (Wear- and 
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Water-Resistant Delrin® Acetal Resin). The Delrin® models were used for testing due to 

their weight being half that of the aluminum models. The lower weight was an advantage 

in reducing model vibration while rotating. The aluminum models are shown in Figures 

19 and 20. Cylindrical models had historically been tip mounted; however, the 3-D flow 

induced by and about the models was very important. To capture this, flow about the tips 

was required to be unaffected.  
 
 

Model support. With several possible mounting methods considered, including 

magnetic levitation, the method selected for this experiment was mounting at a central 

nonrotating fuselage (CNF). The CNF was constructed from ABS plastic in a 3-D printer. 

The CNF contained an Ondrive PR6-1 sealed worm and wheel gearbox shown in Figure 

21, the output shafts of which drove the cylindrical models. A break in the circulation 

distribution was expected; therefore, the width of the CNF was minimized. A width of 

       was sufficient for the CNF to contain the necessary components for mechanizing 

the models’ motion. The gearbox was        wide extending outside of the CNF; 

therefore, the CDCC and BBOR models were counterbored, as shown in Figure 22, to 

accommodate the width of the gearbox while allowing the models to abut the CNF with 

minimal gap.  Although the entire body did not rotate, the CNF, in addition to providing 

housing for the mechanism, had the benefit of approximating potential future MAV 

wing/fuselage interactions. Aft of the gearbox, the CNF supported a Micromotor MMR-

0014 sealed pneumatic motor that drove the models. The motor is shown in Figure 23. 

The motor connected through an Ondrive TLC 13.1824 step-beam coupling to the input 

shaft of the worm and wheel gearbox. The pneumatic motor had two ports that allowed 

the rotation to be reversed; however, the research only needed rotation in one direction. 

One port connected the motor to pressurized shop air, and the other port was connected to 

an exhaust hose to direct exhaust air away from the models. The air hoses were contained 

within the CNF from the point of connection to the motor to an exit point above the water 

level. The upper aft section of the model support containing the air hoses provided a point 

of connection to the force balance. The CNF is presented in Figure 24. An adapter cap  
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Figure 19. Aluminum CDCC. The constant diameter circular cylinder model with 

            and a length of      . 

 

 

 

Figure 20. Aluminum BBOR. The biquadratic body of revolution model with      

       and a length of         showing the retroreflective tape and set screw location. 

 

 



 
36 

 

 

 

Figure 21. Worm Wheel Gearbox. The gearbox shown with a) the input shaft and b) dual 

output shafts is slightly smaller than the gearbox used in this project due to the custom 

inclusion of shaft seals for use in water (Gearboxes-Small & Miniature). 

 

 

 

Figure 22. CDCC with Gearbox Counterbore. The width of the gearbox necessitated a 

counterbore of the models. 
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Figure 23. Pneumatic Motor. A sealed pneumatic motor was used to drive the gearbox 

and hence the cylindrical models (All Air Inc., 2013). 

 

 

Figure 24. Central Nonrotating Fuselage. The CNF is shown with a) the pneumatic 

motor, b) the coupling, and c) the gearbox in place. 
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was also constructed for the CNF to provide a smooth transition for the larger maximum 

radius,           , of the BBOR. The adapter cap is shown in Figure 25. 

 

Design 

 The experimental design consisted of direct lift and drag force measurement of 

the rotating cylindrical model arrangements throughout a range of water tunnel flow 

speeds and rotation speeds. Water flow speed was varied from   to         . Model 

rotation speed was varied from   to        . Water flow speed variation was utilized to 

achieve a range of   . For each water flow speed, the cylindrical models’     was 

adjusted to achieve a range of  . 

 

Experimentation at low Re. Lissaman (1983) stated that the common difficulties 

associated with wind tunnel testing (measuring forces of differing magnitudes and 

different orders of magnitude along different axes, wall boundary effects, turbulence 

levels, and model shape accuracy) may be amplified in the low    regime. The difference 

in magnitude of the forces of lift and drag at high    can be as much as two orders of 

magnitude; however, this difference diminishes to single digits for airfoils  and rotating 

cylinders at lower            , as shown in Figure 26, making the difference in lift 

and drag magnitude less drastic in this regime (Lissaman, 1983). The absolute magnitude 

of the forces also decreases but with different results. A reduction in    of one order of 

magnitude, for example, will correspond in up to a two order of magnitude reduction in 

the forces produced requiring higher sensitivity in the measuring system. Wall boundary 

effects can be diminished by keeping the model dimensions within 80% of the tunnel 

section dimensions (Rae & Pope, 1984). Recent work suggested that partially open test 

sections should be considered to reduce the wall boundary effects when large model 

deflections were being tested (Worasinchai, Ingram, & Dominy, 2011). Worasinchai, 

Ingram, & Dominy (2011) show exaggerated values of both    and    within a closed 

section tunnel. Large airfoil incidence deflections translate to large flow deflections 

resulting in increased interaction between the model wake and the tunnel wall(s). 

Although cylinders would not present geometric differences with incidence changes, flow  
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Figure 25. CNF Adapter Cap. The adapter cap with set screw to secure in place when 

testing BBOR models. 

 

 

Figure 26. Reynolds number effect on          for fixed nonrotating airfoils 

(Lissaman, 1983). 
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deflections do increase with   and would therefore require equal consideration, 

especially along the axis mutually perpendicular to the tunnel flow axis and the cylinder’s 

major axis. Achieving small    by reduction of model size would assist in keeping 

models well away from tunnel walls both horizontally and vertically. Turbulence effects 

may be increasingly pronounced at low    as turbulent fluctuations become large relative 

to the lower speeds necessary for low    operation. Honeycombs and screens are used to 

reduce the amount of lateral and axial turbulence respectively (Rae & Pope, 1984). 

Repeatability of results in this regime has been questionable. Carmichael (1981) 

presented the results from three different testing locations for a common airfoil at 

        . The values of          reported by two of the facilities were twice as 

large as the value reported by the third. The former used pressure and wake flow 

integration while the latter used direct force measurement (Lissaman, 1983). Direct force 

measurement is arguably preferable; however, as    decreases, so do the magnitude of 

the forces. Therefore the sensitivity and resolution of the force balance becomes 

increasingly important. 

Water tunnel. After considering the difficulties involved with low    testing, the 

University of Tennessee Space Institute’s (UTSI) water tunnel facility was selected as the 

testing location. UTSI operates an Aerolab water tunnel with a             test 

section capable of water speeds continuously variable from 0 to       (UTSI Research 

Facilities, 2013). A dye injection system with six dye colors was capable of providing 

flow visualization (UTSI Research Facilities, 2013). The tunnel is shown in Figure 27. 

The primary reason for selecting water tunnel testing is the low turbulence level and 

resistance to turbulent fluctuations achieved in water tunnels. Given the size of the 

cylindrical models            and the target    of approximately        , a flow 

speed of around       was needed. The water tunnel has an open water boundary at the 

top of the tunnel. According to Worasinchai, Ingram, & Dominy (2011), the open 

boundary potentially reduces tunnel boundary effects thereby improving the accuracy of 

the results. 
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Figure 27. UTSI Water Tunnel. The tunnel test section; dye system to include a) dye 

ports, b) laser, and c) dye reservoir; and d) flow meter are shown above. 
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Force balance. No force balance existed for the UTSI water tunnel; therefore, a 

balance was designed to accommodate this and future experiments. The force balance 

drawings are presented in the Appendix. For this experiment, the force balance was 

designed to measure lift and drag forces of the expected magnitude produced by the 

rotating cylindrical models at    of approximately        . The forces were expected 

to be on the order of     to    . The water tunnel force balance is shown in Figure 28. 

The force balance attached to a vertical rod extending from a rectangular support bar 

spanning the top of the tunnel sidewalls. The vertical support rod can be seen in Figure 

28. The installed balance is shown in Figure 29. The clamp attached to the vertical 

support rod provided the attachment points for two mutually perpendicular cantilever 

balance bars. One balance bar was in the horizontal plane, and the other was in the 

vertical plane. Each balance bar provided two locations, separated by a known distance, 

to which full Wheatstone bridge strain gage balances were affixed. Deflection of the 

horizontal bar primarily provided information for lift calculation and will be hereafter 

referred to as the lift bar, while deflection of the vertical bar primarily provided 

information for drag calculation and will be hereafter referred to as the drag bar. Two 

additional bars, one vertical and one horizontal, completed the force balance. These bars 

were connected to the lift and drag bars and to one another by frictionless C-Flex GD-10 

double end bearings. These bearings had torsional spring rates of                  

offering very low resistance to deflection (C-Flex Bearings Double End Bearing, 2010). 

This allowed applied forces to transform the original relationship of the balance from a 

square to a rhombus as the lift and drag bars deflected. The force balance was designed to 

decouple the lift and drag forces as much as possible. Lift and drag coupling did occur, 

but the force balance was designed to minimize it. Remaining force coupling was 

accounted for with proper calibration. Lift forces being typically greater than drag forces 

required the drag balance to be more sensitive than the lift balance. In order to use the 

same balance bar design for lift and drag measurements, the vertical connecting bar was 

longer providing a greater bending moment for the drag bar. This arrangement also 

allowed the majority of the force balance to remain above the water’s surface as seen in 

Figure 29. 
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Figure 28. Force Balance with Stabilization Device. The force balance is shown prior to 

installation with the CNF and CDCCs connected. A wooden stabilization device protects 

the balance from overstresses during installation, removal, and storage. 

 

 

Figure 29. Installed Force Balance. The figure shows the following: a) ultrasonic flow 

sensors, b) force balance mounting base, c) balance bars, d) C-flex bearing locations, e) 

laser, f) CNF, and g) mounted CDCC. 
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Data Collection and Analysis 

 Data from the custom built force balance was automatically recorded using a 

National Instruments cDAQ-9188 data acquisition system. The force balance was 

calibrated by applying known forces in known directions via the calibration system 

shown in Figure 30. Readings were taken, as basket weight was increased and decreased 

to account for hysteresis, and then averaged. The calibration device was placed as was 

shown in Figure 30 as well as aft of the force balance for drag calibration as shown in 

Figure 31. Uncertainty in basket weight was        . The strain gage readings exhibited 

a large band of linearity with applied force, with nonlinear strain regions at each end. The 

force calibration curves for the horizontal and vertical balance bars are shown in Figure 

32 and Figure 33 respectively.  

 Water tunnel speed was set and measured with an Innova-Sonic ultrasonic flow 

meter shown in Figure 29. The tunnel motor was set with the tunnel motor controller, 

shown in Figure 34. The flow meter was calibrated by post-processing video of dye 

streams passing behind a measurement device attached to the test section via Equation 

36. 

 

  
     

     
         (36) 

 

Flow speed, the initial and final dye stream positions, and times at those positions, in 

Equation 36, are represented by  ,   ,   ,   , and    respectively. Uncertainty in the 

measuring device was           , and uncertainty in the time was        . Uncertainty 

in calculated values was calculated using the basic form of Equation 37 (Taylor, 1982). 
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Figure 30. Force Balance Calibration Device Position 1. Shown in the figure are the 

following: a) force balance calibration device, b) weight basket, c) attachment point to 

models, and d) pulley locations. 

 

 

Figure 31. Force Balance Calibration Device Position 2. Shown in the figure are the 

following: a) force balance calibration device, b) weight basket, c) attachment point to 

models, and d) clamps attaching force calibration device. 
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Figure 32. Horizontal Balance Bar Calibration. The majority of the calibration is linear 

with a nonlinearity at the upper end. The force for this bar directly corresponds to lift.  

 

 

Figure 33. Vertical Balance Bar Calibration. The majority of the calibration is linear with 

nonlinearity at the upper and lower ends. The force for this bar corresponds to the force 

applied to the center of the C-flex connection at the bottom of the vertical bar. 
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Figure 34. Tunnel Motor Controller. Water tunnel flow speed was initiated and changed 

by manually adjusting the knob on the bottom left face of the controller. 
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In Equation 37,   represents a quantity, dependent upon      , for which the 

uncertainty is sought. Applying Equation 37 to Equation 36, the uncertainty in flow speed 

was calculated as shown in Equation 38.  

 

     
  

   
    

 

  
  

   
    

 

  
  

   
    

 

  
  

   
    

 

   (38) 

 

The flow meter calibration curve is shown in Figure 35.  Error in flow speed ranged from 

      to      . Error increased with increasing speed due to the decreasing time 

involved in calibration at the higher speeds.  

 The models’     was recorded using a World-Beam® QS30 photoelectric 

sensor, shown in Figure 36, along with polarized retroreflective tape, shown in Figure 37, 

affixed to the models. The sensor emitted an electrical signal when it received a reflection 

of its output beam from the retroreflective tape. The data acquisition system counted the 

number of signals received over a given period of time. Data were collected over      

increments yielding an uncertainty of       . There was no uncertainty at      , when 

the motor was not running. With the motor driving the cylindrical bodies,     

uncertainty ranged from       at the lowest     to       at the highest    . Flow 

speed,  , and     were used in the calculation of   as shown in Equation 39. 

 

  
  

 
 

         

   
        (39) 

 

Uncertainties in   were calculated by substituting Equation 39 into Equation 37. They are 

presented in Chapter 4. Balance reading, flow speed, and     data were collected for all 

flow conditions. Balance readings taken during a no-flow and no-rotation condition were 

used to find a zero lift and zero drag offset that was applied to the balance readings for all 

other flow conditions. Additional zeroing was necessary for the horizontal balance bar 

readings (lift bar) to remove no-rotation reading changes as flow speed was increased. A 

linear interaction between the lift bar and motor    , quantified using data from the no- 
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Figure 35. Flow Speed Calibration. Error bars indicate increasing error with increasing 

speed. The increased error is due to smaller time differences during calibration at higher 

speeds. 

 

 

Figure 36. World-Beam® QS30 Photoelectric Sensor. The sensor, identified by the 

arrow, is mounted beneath the tunnel and is directed upwards through the bottom of the 

tunnel test section. The sensor is shown from a perspective above the tunnel.  
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Figure 37. Retroreflective Tape. The BBOR models are installed with the retroreflective 

tape strip for     measurement. 
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flow, with-rotation condition, was removed for all conditions. The author suspects this 

downforce was due to induced downward flow over the rectangular portion of the CNF 

aft of the models. The fact that the downforce was greater for the BBOR than for the 

CDCC supports this, since induced flow speeds should be higher near the CNF where the 

BBOR radius is larger than that of the CDCC. The difference in induced flow at the CNF 

is visualized in the next chapter. Interaction between the drag bar and motor rpm was 

inconsistent and was not used to correct balance readings. The lack of a similar 

interaction for the drag bar could be due to the fact that induced flow in the drag direction 

flowed over the streamlined vertical portion of the model mount resulting in minimal 

forces. Balance readings were then converted to applied forces from which lift, drag, 

force coefficients, and force ratios were then calculated. Lift was calculated directly from 

the calibration equations presented in Figure 32. Drag was calculated first by finding the 

force applied to the drag bar,  , from the calibration equations in Figure 33 and then 

substituting that force, along with lift, into Equation 40, which provides drag based upon 

the balance geometry.  

 

  
               

       
        (40) 

 

The coefficients of lift and drag were calculated using Equations 41 and 42 respectively. 

 

   
  

    
         (41) 

   
  

    
         (42) 

 

The planform area,  , of the models was calculated similarly to calculating the planform 

area of a fixed wing when it is connected to a fuselage. The rectangular area of the 

fuselage connecting the wing on one side to the wing on the other side is often included 

in the wing’s planform area. The same method was used for the cylindrical models. The 

area of the CNF between the models was included in the planform area calculation. For 

the CDCC, this area was simply a rectangle with a chord equal to the diameter of the 
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CDCC and a span equal to the width of the model mount. For the BBOR, the span was 

identical, but the chord was equal to the maximum diameter,     where           . 

Since the models had equal average radii,            , the planform area of the BBOR 

was slightly larger than that of the CDCC. The increase in planform area was 

approximately   . The uncertainty for planform area was       . Uncertainty in    

and    was calculated by substituting Equation 41 and Equation 42 into Equation 37.  

    was calculated directly by dividing lift by drag. Uncertainties in     was calculated 

by substitution  into Equation 37. The uncertainties are presented in Chapter 4. The 

following plots presented in Chapter 4 were then created:        ,        , and 

        . Identification of      
 and          was made for each model within 

specific ranges of   for each   . Comparisons were made between the CDCC and the 

BBOR. Flow visualizations were captured by illuminating streams of flouriscene dye 

with a laser sheet spread along the longitudinal axis of the body at selected spanwise 

locations. The photographs were postprocessed to highlight the contrast between the dye 

and the water. The visualizations were used for qualitative analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
53 

Chapter 4  

Results and Discussion 

Data were collected for force balance calibration and for each set of models over a 

three day period. Each model was tested at seven flow speeds from    to          and a 

range of rotational speeds from   to        . The combinations of flow speeds and 

rotational speeds resulted in    ranging from       to         and   ranging from   

to 180. The results of testing are presented and discussed in subsequent sections. 

 

Results 

 

Force coefficients. Coefficient of lift and coefficient of drag values were 

calculated by the process outlined in Chapter 3. Results have been presented by   , 

beginning with data for the highest   . Figure 38 presents the data for           . 

Although the scale of the figure may not immediately seem appropriate, it was adjusted 

for comparison with the data for other values of   . Figure 38 revealed that    for both 

models dropped as   was initially increased above  . The minimum drag coefficient, 

     
, observed for the CDCC was     and occurred at      . This was followed by a 

nearly linear increase in    as   approached  . The slope of the        curve will 

henceforth be referred to as    
.     for both models exhibited an approximately linear 

increase with   after which the slope of the data,    , began to decrease at    . Since 

    remained positive over the       range possible at this   , the maximum    for 

the CDCC was approximately    ; however,      
 was not apparent. The    and    

curves for both the CDCC and BBOR were similar, although    at     for the CDCC  

was    higher and     at       for the CDCC was double that of the BBOR.  

The next set of data corresponded to           . As seen in Figure 39, the 

same trends for    and    were evident; however, the curves were extended to a 

maximum   of approximately     due to the reduced flow speed. The initial decrease to a 

minimum    witnessed at            was not observed due to the inability to 

achieve lower values of   at this and all lower values of   . Minimum   was determined  
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Figure 38. Force Coefficients at           . 

 

 

Figure 39. Force Coefficients at           . 
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by the minimum sustainable    , approximately        , of the motor.     
 and     

appeared to remain positive for all four curves. The slopes continued to decrease for all 

curves with the BBOR curves decreasing more rapidly. The maximum    for the CDCC 

was increased to approximately    .      
 was still not apparent since     remained 

positive. For a constant value of  ,    at            was higher than    at    

        by   . No significant differences were observed between    at fixed   for the 

two    although the CDCC exhibited a    increase in drag for    . 

The next    tested was approximately        . The trend established by the 

previous two values of    was continued to a maximum   of      as shown in Figure 40. 

The linearity of the    and    curves with   seemed to have again been established albeit 

at lower values of    
 and    . The maximum    for the CDCC was increased to 

approximately     at       .  

As    was decreased to        ,    
 and     plateaued, became negative, then 

once again became positive for both models as presented in Figure 41.    
 exhibited 

similar behavior for both models. The maximum    for the CDCC was increased to 

approximately     at       .  

Reduction of    to approximately        , as presented in Figure 42, continued 

the trends shown for the previous   . The maximum    for the CDCC was increased to 

approximately     at       . A major difference observed at this    was that the 

maximum    for the BBOR, although still less than that for the CDCC, became much 

closer to the maximum   for the CDCC.  

The lowest and final    tested was        , approximately two orders of 

magnitude smaller than the highest   . Figure 43 shows that data scatter and increased 

uncertainty at this low    made trends more difficult to discern; however, positive    
 

and     continue for both models. For the first time, the maximum    value for the 

BBOR was higher than that for the CDCC. Maximum    for the BBOR was    at 

     .  

Lift to drag ratios. Lift to drag ratios were calculated and plotted for the range of 

  at each   . Data for            are presented in Figure 44. The lift to drag ratios  
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Figure 40. Force Coefficients at           . 

 

 

Figure 41. Force Coefficients at           . 
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Figure 42. Force Coefficients at           . 

 

 

 

Figure 43. Force Coefficients at           . 
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Figure 44.     at            . 
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for both the CDCC and the BBOR increased to a maximum of approximately     and 

plateaued at this value up to the maximum achievable  . The slope of the lift to drag 

curve of the CDCC was initially steeper than that of the BBOR; however, no apparent 

difference in          was apparent.  

The data for           , shown in Figure 45, exhibited similar trends 

extended to higher  ; although,          increased to approximately    . The slope of 

the lift to drag curve for the CDCC again was initially higher than that of the BBOR. The 

CDCC’s     curve peaked at      , decreased, and leveled at        .  Another 

notable difference was at       where the     for the BBOR exceeded that of the 

CDCC and continued to do so throughout the remainder of the   range.  

This trend was confirmed at             as shown in Figure 46.     for the 

BBOR again rose above that of the CDCC from       throughout the remainder of the 

  range tested. The margin by which the BBOR’s     exceeded that of the CDCC’s 

     increased within this range. The     for each model did exhibit a trend of 

converging toward a common value at higher  .  The          for the BBOR was 

approximately    .  

At                     for the BBOR remained constant at     as can be 

seen in Figure 47.     for the BBOR continued to rise above that of the CDCC for a 

slightly different range,           . Beyond this range of  ,     for the BBOR 

rapidly decreased to approximately   while     for the CDCC decreased only slightly 

and exhibited an increase for     .  

At                     for the BBOR increased to     as can be seen in 

Figure 48.     for the BBOR rose above that of the CDCC for the range,       

    .     for the BBOR and CDCC exhibited similar trends as with the higher    yet 

again extended to higher   at the lower flow speed.  

As with the data for force coefficients at           , data scatter at this flow 

speed prevented clear curves from being created, as seen in Figure 49; however, the data 

indicated that     for the BBOR was above that of the CDCC throughout the majority of 

the large   range.          for the BBOR was         at     . 
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Figure 45.     at            . 

 

 

Figure 46.     at            . 
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Figure 47.     at            . 

 

 

Figure 48.     at            . 
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Figure 49.     at            . 
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Discussion 

 

Force coefficients. As seen in Figures 40 through 44, zero rotation    for the 

BBOR was consistently lower than that for the CDCC. The    of each arrangement, at 

the highest    tested, was seen to drop with the start of rotation followed by a continual 

increase as   increased. This decrease in drag is undoubtedly due to the decrease in 

pressure drag caused by flow separation over the blunt circular cross section of the 

cylinders. The energy added to the flow by the rotating bodies allowed the boundary 

layer to remain attached as seen in Figure 50.     also increased with  , although a 

plateau was discovered at     .    decreased until      beyond which it increased for 

the tested values of   . For fixed  ,    for the models varied with    as shown in Figure 

51 and Figure 52. For the values of   evaluated,    for the BBOR increased with 

decreasing   , with the exception of a decrease between            and        

    at    .     variation with   , for fixed  , is shown in Figure 53 and Figure 54. 

For the values of   evaluated,    for the BBOR remained constant or decreased with 

decreasing   , with the exception of an inecrease between            and    

        at     and between            and            at     . 

Lift to drag ratios. For the range of    and   tested, the BBOR arrangement 

provided the local and global         . These values increased with decreasing    as 

stated in the previous subsection. Within a noticeable range of  , for each   , the BBOR 

arrangement was hydrodynamically more efficient than the CDCC arrangement, see 

Table 2. This was expected; however, for   outside of this range the CDCC was more 

efficient. According to Prandtl’s lifting line theory, this should not be so. It is important 

to remember that Prandtl’s analysis, which led to the optimal distribution of circulation, 

was not only inviscid but in essence 2-D. The lifting line, or superposition of vortex 

filaments, was infinitely thin thereby resulting in an infinite aspect ratio     . Given the 

2-D nature of the theory, the analysis made no room for flow along the span of the lifting 

line. In reality the velocity and pressure patterns surrounding a 3-D lifting surface will  
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Figure 50.           Streamlines about a Cylindrical body. The photo on the left is 

with    . The photo on the right is with      . Note the absence of flow separation 

about the rotating cylinder. 

 

 

Figure 51. BBOR          for fixed  .  

 

 

 

 

 

 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

0 5000 10000 15000 20000 25000 

C
L 

Re 

2 

4 

6 

8 

14 

20 



 
65 

 

Figure 52. CDCC          for fixed  . 

 

 

Figure 53. BBOR          for fixed  . 
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Figure 54. CDCC          for fixed  . 
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Table 2. 

BBOR Optimum Conditions 

   BBOR optimum   range Local          

            *     

            *     

            *     

                     

                     

               *     

*BBOR     was higher at the maximum   for this   . 
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distort the pattern predicted for a finite continuum of 2-D cross-sections. Higher 

pressures are allowed to equalize at the finite tips of the lifting surface causing a 

component of the flow to be along the span. For example if the CDCC were treated as a 

collection of 2-D sections, each section would impart the same circulation to the 

surrounding flow since each section had the same radius. Flow visualizations of the 

CDCC arrangement showed otherwise. Photographs were taken at            and 

     for seven locations along the halfspan of the CDCC and the BBOR arrangements 

measured from the root of the models. The seven locations were          ,         , 

      ,         ,        ,         , and     . The photographs along with photograph 

positions are presented in Figure 55. The column on the left presents photographs of the 

CDCC. The column on the right presents photographs of the BBOR. The first 

photographs’ locations, shown in the first row of Figure 55, were slightly inboard of the 

rotating model placing them          inboard of the outer edge of the CNF. The second 

photographs, the second row, were taken          from the root of the rotating models. 

The remaining five rows of photographs in Figure 55 present images at increasing 

spanwise locations moving toward the models’ tips. Photograph location is indicated 

above and to the left of each photograph. Long exposure times were necessary in order to 

capture the necessary light in the darkened test location. The photographs were therefore 

time averages over      periods at each spanwise location. Turbulence diffused the dye 

streams on the backside of the bodies, but streamlines leading to the bodies were 

relatively well formed.  Returning to the 2-D hypothetical example for the CDCC, 

comparison of the 2-D analytical result could now be made to with reality. The left 

column of Figure 55 could be viewed from top to bottom. Changes in the streamlines 

from one row to the next were instructive since they collectively provide a spanwise view 

of the models effect on the flow. Specifically the third and fourth streamlines, numbered 

from top to bottom, provided visible indications of the flow patterns about the bodies at 

each location due to their proximity to stagnation streamlines. The third streamline in the 

first row of the CDCC’s images was close to a stagnation point, as seen by the spreading 

of the streamline about the surface. The next image, taken slightly outboard of the first, 

showed that the third streamline had moved above a stagnation point. The continued  
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Figure 55. CDCC and BBOR Flow Visualizations. CDCC (left) and BBOR (right) positions are 
 indicated by the solid lines on the diagram above and to the left of each photograph. 
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Figure 55 continued. CDCC and BBOR Flow Visualizations. CDCC (left) BBOR (right) 
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reduction in curvature of the third streamline over the next three images indicated 

increased circulation in the flow. The last two images showed a decrease in circulation 

about the CDCC with the last image showing the third streamline near to if not on a 

stagnation streamline. Although the CDCC’s geometry was uniform in cross-section, the 

circulation distribution was not uniform. The nonuniformity near the CNF is 

understandable since this part of the body is not rotating. Circulatory flow is still 

imparted over this nonrotating section due to viscous interactions. The uniformity in flow 

towards the tips is lost due to spanwise flow allowed by the finite tips. Although not 

captured in a photograph, due to turbulent diffusion, the tip vortices could be seen rolling 

up behind the model tip. The photographs of the BBOR were similar to those of the 

CDCC; however, the circulation imparted to the flow near the CNF was greater owing to 

the large radius near the CNF. Likewise the circulation imparted to the flow near the tip 

was less due to the smaller radius.  

BBOR circulation distribution. One of the central premises that guided this 

research was that the BBOR should produce an elliptical circulation distribution as 

described by Equation 19 and shown in Figure 17. Figure 55 provided qualitative data for 

visualizing the circulation distribution; however, a quantitative approach was developed 

by which the circulation distribution developed by the BBOR could be evaluated. Lifting 

line theory is based upon the integration of Kutta-Joukowski’s theorem, stated by 

Equation 2. Integration of Equation 2 over a finite span with a known circulation 

distribution is presented in Equation 43. 

 

           
 
 

 
 
 

        (43) 

 

Lift provided by the elliptical circulation distribution is calculated by substituting the 

elliptical distribution of circulation from Equation 19 into Equation 43 and integrating. 

This yields an equation for lift as shown in Equation 44. 

 

  
 

 
              (44) 



 
72 

 

Substitution of Equation 44 and Equation 39, for  , into Equation 41 results in Equation 

45 for calculating    as a function of  . 

 

   
 

 
 

  

    
 
 

         (45) 

 

The slope of         curves,    , is presented in Equation 46. 

 

    
 

 
 

  

    
 
 

        (46) 

 

The BBOR models had             and               which yielded          . 

A line with this slope was placed on plots of the         data for the BBOR at    

        and            as shown in Figure 56 and Figure 57 respectively. The 

    of the data match that of the prediction, within the level of uncertainty, up to    , 

beyond which    began to decrease. This indicates for,      , the BBOR does 

provide an elliptical distribution of circulation. 

 Karman vortex street. Although not photographically captured due to turbulent 

dissipation of the dye streams, a distinct von Karman vortex street was witnessed behind 

the models with    . At the higher    tested, noticeable longitudinal oscillations were 

observed. Immediately upon initiating model rotation, the oscillations ceased. As was 

shown in Figure 50, the alleviation of flow separation with rotation led to the initial 

reduction in    as well as abating adverse longitudinal oscillations. Video evidence of 

this phenomenon was collected. 

Model vibration. Rotating models supported at one end were susceptible to mass 

and mounting imbalance. These issues combined with short mounting shafts from the 

gearbox led to vibration when rotating the models. The aluminum models (both CDCC 

and BBOR) experienced vibration. The vibration was initially minimized by the  
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Figure 56. BBOR     at           .    data for the BBOR on a line representing 

the theoretically predicted elliptical         curve of          . 

 

 

Figure 57. BBOR     at           .    data for the BBOR on a line representing 

the theoretically predicted elliptical         curve of          . 
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following process. With the models spinning, a marker was brought close to the free end 

of one side until contact was made with the model leaving a mark. The process was 

repeated on the free end of the model on the other side. The models were then stopped, 

and the marks were aligned. This process was repeated with marks at spanwise  locations 

further inboard. The result of this process was visually decreased yet still visible 

vibration. The next step was to reduce the mass of the models by constructing them out of  

Delrin® acetal resin. A minor difference between the aluminum and Delrin® models was 

that the bored holes were designed to be press fit onto the gearbox shafts albeit the set 

screw was still used. The Delrin® models exhibited similar vibration. Balancing, as was 

done with the aluminum models, only slightly alleviated vibration of the Delrin® models. 

One Delrin® model was overbored and fit loosely on the gearbox shaft. Upon tightening 

the set screw, the model was forced off center causing a vibration that could not be 

corrected by the first balancing technique. The next method to alleviate model vibration 

was to place two additional set screws at      in either direction from the original set 

screw. When care was taken while mounting the models and adjusting the set screws, the 

majority of perceptible vibration was removed. 
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Chapter 5  

Conclusions and Recommendations 

Conclusions 

 

In conclusion rotating cylindrical bodies have been shown to produce force 

coefficients up to an order of magnitude larger than fixed wings at low   . Lissaman 

(1983) showed      
   for 2-D airfoils at low   . Both cylindrical arrangements proved 

capable of significant increases above this value throughout the    range tested. The 

BBOR arrangement exhibited hydrodynamic advantage, highest         , over the 

CDCC arrangement throughout the range of    tested and within specific bands of  . 3-

D end effects due to finite    contribute to the difference between the 2-D analysis and 

the actual results. 

The state of the art has been expanded by this work as follows: 1) a theoretical 

optimization of the cylindrical geometry used for lift production via the Robins-Magnus 

Effect was presented resulting in the biquadratic body of revolution (BBOR), 2) an 

experimental system to include a force balance and a mechanism for driving rotating 

cylinders in a water tunnel at low    was presented, 3) the   ,   , and     results from 

the comparison of CDCC and BBOR arrangements were presented in which the 

hydrodynamic advantage of the BBOR over the CDCC was demonstrated, 4) the 

increased effectiveness of the Robins-Magnus Effect at low    was demonstrated by the 

increasing     values with decreasing   , and 5) evidence that the BBOR created an 

elliptical circulation distribution was demonstrated by the BBOR’s     matching that of 

the theoretical prediction. The latter three are significant to micro air vehicles (MAV), 

since MAVs operate at very low    and could benefit from the increased efficiency of 

the BBOR. 
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Recommendations 

 

The author’s recommendations and plans for future research in this area are as 

follows. Surface roughness could be varied to highlight the viscous effects for rotating 

cylinders. The BBOR and other cylindrical bodies could incorporate fences at spanwise 

locations, including the tips, in an effort to minimize the 3-D effects along the span. 

Cylinders with linearly tapered distribution of radii could be evaluated as a compromise 

between the easily manufactured CDCC and hydrodynamically optimized BBOR. 

Numerical analysis could be performed on BBORs of various aspect ratios at low   . 

Based upon flow visualizations presented in this document and those witnessed by the 

author while conducting research on this project, the turbulent nature of the flow aft of 

the models is a primary consideration. Appropriate turbulence models and grid regions 

need to be identified. Rotating cylindrical bodies could be incorporated in the trailing 

edges of control and lifting surfaces to provide flutter abatement at high speeds based 

upon the ability of rotating cylinders to minimize separation induced oscillations as 

witnessed during this project. Flow control could be investigated on fixed wings with 

integral rotating cylinders at the following locations: at the point of separation near the 

leading edge, at the maximum thickness location, at the flap hinge (to promote the 

Coanda effect).  

The author has conducted preliminary research with a rotating cylinder embedded 

at the point of maximum thickness in a fixed wing. Initial wind tunnel data showed that 

the zero-     was increased by    . The entire lift curve was also increased by the same 

amount. This was a significant increase in    given that      
   was observed for the 

wing without rotation.  

Another area of future research, which was one of the main applications inspiring 

the current research, was lift production for MAVs. The author has identified three areas 

upon which research could focus: 1) a fixed rotating cylinder providing lift with 

traditional fixed stabilizing and control surfaces; 2) multiple fixed rotating cylinders 

providing lift, stability, and control; and 3) rotating cylindrical lifting rotors. The author 

plans to begin with the former, a MAV with traditional fixed stabilizing and control 
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surfaces with lift supplied by fixed rotating cylinders. A final recommendation is to 

perform a detailed characterization of the UTSI force balance with the goal of developing 

an automated data acquisition system. 
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Research in the low            range led to the use of a water tunnel, for 

which no force balance existed. Expected forces were on the magnitude of         up to 

      . In order to accommodate low forces and operation within a water tunnel, the 

author, with guidance from Dr. Trevor Moeller, Dr. Peter Solies, and Dr. Ahmad Vakili, 

designed the force balance used to collect data in for this project. 

The author chose to separate all electrical devices, strain gages and associated 

wiring, from the water. This ruled out a typical sting type balance. Instead, a double 

cantilever parallelogram design was adopted, as seen in Figure A1. An upper horizontally 

mounted balance bar, Figure A2, upon which full wheatstone bridges were affixed was 

designed to measure lift moments while an identical but vertically mounted balance bar, 

also with full wheatstone bridges affixed, was designed to measure drag moments. A 

vertical and a horizontal bar, Figure A3 and Figure A4 respectively, were added to 

complete the parallelogram design as well as to provide a mounting location extending 

below the water’s surface. The horizontal bar extended aft of the parallelogram portion of 

the balance providing the capability to manually zero moment on the lift balance bar due 

to high model weight by the addition of counterweights along a range of positions. C-flex 

frictionless bearings, Figure A5, connected the bars via balance brackets, Figure A6 and 

Figure A7, allowing applied forces in one axis to be translated to the appropriate balance 

bar, with little unintended coupling, to the other balance bar. The balance bars, and hence 

the complete force balance, were connected to a mounting bracket, Figure A8, that 

connected to a rigid rod mounted above the water tunnel. The balance bars, brackets, C-

flex bearings, and hardware were stainless steel. The connecting vertical and horizontal 

bars were constructed from aluminum in order to reduce the system’s weight.  

Due to the force balance’s geometry, lift was directly related to the moment,   , 

created on the lift balance bar based upon the distance between the gage location and the 

balance pivot,  , as given by Equation A1 and shone in Figure A1. 

 

  
  

 
          (A1) 
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For forces applied perpendicular to, but along, the vertical connecting bar, drag was 

directly related to the moment,   , created on the drag bar based upon the distance 

between pivots on the vertical connecting bar,  , and the distance,  ,  from the vertical 

connecting bar’s lower pivot to the point of application of the force as given by Equation 

A2. 

 

  
 

      
           (A2) 

 

If forces were applied perpendicular to but not along the vertical connecting bar, as was 

the case for this experiment due to the forward extension of the central nonrotating 

fuselage (CNF), drag was also a function of lift and the distance,  , by which force was 

separated from the axis of the vertical connecting bar as given by Equation A3. 

 

  
 

      
   

 

     
        (A3) 

 

The lift moment, and therefore lift, was not affected by the distance  . 
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Figure A1. Complete Force Balance. Balance dimensions are presented along with a 

representative force  . 
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Figure A2. Balance Bar. 
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Figure A3. Vertical Connecting Bar. 
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Figure A4. Horizontal Connecting Bar. 
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Figure A5. C-Flex Double End Frictionless Bearing. The GD-10 bearings used for the 

force balance were custom ordered with all load bearing surfaces of equal width, i.e 

    in the figure (The Bearing Solution, 2010). 

 

 

Figure A6. Balance Bar C-Flex Bracket. 

 

 

Figure A7. Vertical and Horizontal Bar C-Flex Bracket. 

 

 

 

http://www.tracepartsonline.net/PartsDefs/Production/C-FLEX/10-14082012-060596/documents/Detail-Double-End.gif
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Figure A8. Force Balance Mounting Bracket. 
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