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ABSTRACT

Systems of nonlinear reaction-diffusion equations representing
models of competition, predation, and mutualism are presented and
discussed. The models are divided into two categories, patch models
and continuous models which can be represented by systems of ordi-
nary differential equations or by systems of partial differential
equations, respectively. Within each of these categories there are
four types of diffusion mechanisms, random, biased, directed, and
predator-prey diffusion. Conditions for system persistence and
extinction are sought.

For the patch models, existence, uniaueness, positivity, and
boundedness of solutions are discussed. Persistence of a nonnegative
component ui(t) means limsup ui(t) > 0 versus system persistence

—>0

of nonnegative components ui(t) which means 112:up ui(t) >0,
i=1,..., n, provided the solutions exist on [0, =) . Definitions
of weak and strong persistence are also given. It is shown that
complete system extinction (solutions tend to zero) can occur in the
patch random diffusion model. However this is not possible in any
of the other patch models. The persistence criteria for the logistic
random diffusion model as well as the predator-prey diffusion model
are completely determined. Numerous theorems are presented which give
necessary conditions for weak and strong persistence.

For the continuous models, uniaueness, positivity, and boundedness
of solutions are discussed for initial boundary value problems. Dirichlet
or Neumann boundary conditions are prescribed on a bounded domain

B . Persistence of a nonnegative component ui(x, t) means



v
limsup f ui(x, t) dx > 0 versus system persistence of nonnegative
B

to

components ui(x, t) which means 11T:up IB ”i(x’ t) dx >0,
i=1,..., n, provided solutions exist on B x [0, ») . Weak and
strong persistence are defined also for this setting. Some of the
same properties of solution behavior are established for the contin-
uous reaction-diffusion systems as for the reaction systems without
diffusion. The significance of the type of diffusion mechanism is
illustrated by comparing numerical solutions to the logistic random,
biased, and directed diffusion models. For the Neumann problem
numerical solutions converge to the homogeneous equilibrium (spatially
independent), but the rates of convergence differ depending on the
type of diffusion. For the homogeneous Dirichlet problem numerical
solutions to the random diffusion model tend to zero, however numerical
solutions to both the biased and directed diffusion models tend to a
positive heterogeneous equilibrium solution.

The main tool employed to determine the persistence and extinction
criteria is differential inequalities. The Comparison Principle of
ordinary differential equation theory and the Maximum Principle of
partial differential equation theory are used to prove many of the

persistence and extinction results.
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CHAPTER I
INTRODUCTION

Persistence or extinction of a species can have a significant
impact on an ecological system. Paine (1966) in his experiments with
a marine intertidal community demonstrated the importance of the
presence of a top predator to species diversity. Absence of the top
predator - a starfish - caused a drastic reduction in the number of
species. From a mathematical viewpoint, the importance of persistence
or extinction is due to the fact that persistence is a global phenomena
while extinction is a local phenomena. The global nature of per-
sistence contrasts with that of the much used linearization techniques
employed to establish local stability of an equilibrium.

Persistence and extinction have been studied in models of Lotka-
Volterra food chains and trophic level interactions (Freedman and
Waltman, 1977; Gard and Hallam, 1979; Hallam, 1980; Hallam, Svoboda,
and Gard, 1979). The study of persistence and extinction in models
which incorporate spatial heterogeneity has been neglected. Inclusion
of spatial variance as well as temporal variance provides a more
realistic ecological model, but from an analytical viewpoint a more
complex model also.

Much of the recent mathematical ecologically-oriented research
has been centered on reaction-diffusion equations. .Experimenters
and theoreticians have shown that spatial heterogeneity has an impor-
tant influence on the behavior of ecological models. Huffaker (1958)
performed experiments with a mite predator-prey system. In the absence

of spatial heterogeneity the system collapsed; the predator drove the
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system to extinction. YWhen the mites were allowed to disperse over
a complex spatial region both the predator and prey survived. Kier-
stead and Slobodkin (1953) showed the existence of a critical patch
size for a plankton reaction-diffusion equation. If the patch size
was less than a critical size, diffusion caused destruction of the
patch. It has been shown that diffusion can destabilize a stable
equilibrium (Segel and Jackson, 1972). However if the diffusion
coefficients are sufficiently large, the effects of spatial hetero-
geneity are diminished (Murray, 1977). Spatial heterogeneity is also
thought to have a stabilizing influence. May (1976) stated,

In general, spatial heterogeneity tends to be stabilizing.
Variations in many environmental factors are unlikely to
occur synchronously in all the patches and thus the species
"spreads the risks" through its occupancy of many small
habitats.

Many topics on reaction-diffusion eauations are currently being
investigated. Much of the work is primarily in connection with the
random diffusion equation. However this model can be applied to very
few ecological species because there are few species whose motion can
be described as random. In this document the diffusion mechanism is
generalized to include two other types of interaction referred to as
biased and directed diffusion.

Persistence and extinction are now defined for a system of ordi-
nary differential equations with a discrete spatial domain and a system
of partial differential equations with a continuous spatial domain.
Consider the hypothetical systems (1) and (2), the discrete and contin-

uous models respectively,



. du’;li . .
(1) —— =fu) + D) =, ,i=0,...,m,
t i i
and
u; = fo(u) + 0, (u, |vu[2, Aau) ; x€B
t
(2) u. » 1= heenn
- ———1—= b -
u; = g.(x, t) or 5===0; x€2B

In (1) , ul  is the population density of species i in patch j
i

and u = [ug(t)]?=] ?=] and in (2) , u; is the population density
of species i and u = [ui(x, t)]?=] . The functions fg and fi
represent the biological reaction mechanism, such as Lotka-Volterra
and the functions Dg and Di represent the diffusion mechanism.
A brief description of Lotka-Volterra dynamics is presented in Ap-
pendix A .

In system (2), the domain B is assumed to be bounded and the
boundary conditions are either Dirichlet or Neumann. If Neumann

3u1 _

boundary conditions, o 0 , are assumed, then the species remain

within B ; there is zero flux across the boundary. If Dirichlet

boundary conditions, u gi(x, t), are assumed, then the population

i
density at the boundary is known. Homogeneous Dirichlet boundary con-
ditions, u; = 0 , have been applied to models of red tide organisms
(Kierstead and Slobodkin, 1553). The species tend to crowd together
en masse. The outer edge of the inhabited region is unfavorable and

therefore no species are present there.
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System persistence and extinction are defined for (1) in Defi-
nition 3.

DEFINITION 3. System (1) is persistent if for each solution

u(t) = [ug(t)] , limsup u(t) > 0 with u(0) € IR:'_+m and 1 € (0, Tu] s
t>t
where [0, Tu) is the maximal inverval of existence of wu(t) .

System (1) is not persistent if there exists a solution wu(t) such

that 1im ul(t) = 0 for some i and j with u(0) € R}'™ and some
t>t
T € (0, Tu] . System (1) is of extinction type if there exists a

solution u(t) such that lim u(t) = 0 with u(0) € IRE+m and some
>T
t € (0, Tu] .

If a system is of extinction type, then it is not persistent.
However the converse is not true. It is possible for a system to be
not persistent and not of extinction type. For example one species
may tend to zero in patch j , but its limsup may be positive in
another patch. To account for this type of behavior, we define weak
and strong persistence.

DEFINITION 4. System (1) is weakly persistent if for each solu-

. m .
tion wu(t) = [ug(t)] , Timsup £ ud(t) >0 for i =1,..., n with
ter  j=1 !

n+m and < € (0, Tu] , where [0, Tu) is the maximal interval

u(0) € R

of existence of u(t) . System (1) is strongly persistent if for each

n+m

solution wu(t) , liminf u(t) > 0 with u(0) € R,

t>1
A system which is weakly persistent has each species surviving in

and € (0, T].

at least one of the patches and a system which is strongly persistent
has each species surviving in each patch and its population size is
bounded below by a positive constant.

In addition to system persistence and extinction, component per-

sistence and extinction can be defined.
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DEFINITION 5. The component ui(t) of system (1) is persistent

if for each solution u(t) = [ug(t)] , limsup u;(t) >0 with

trt
u(0) € RY™ and <€ (0, T ], where [0, T ) is the maximal
interval of existence of u(t) . The component uﬁ(t) of system (1)

is not persistent or is of extinction type if there exists a solution

u(t) such that 1lim ﬁi(t) =0 with u(0) € nzﬁ*m and some t € (0, Tu].
t>t
Persistence and extinction for system (2) are defined.

DEFINITION 6. System (2) is persistent if for each solution

u(x, t) = [ui(x, t)] , limsup I u(x, t) dx > 0 with u(x, 0) € H22
t>1 B
and T € (0, Tu] , where [0, Tu) is the maximal interval of existence

of u(x, t) . System 2 is not persistent if there exists a solution

u(x, t) such that 1lim f ui(x, t) dx = 0 for some i with
u(x, 0) € IRZ and sﬁﬁé E € (0, Tu] . System (2) is of extinction type
if there exists a solution u(x, t) such that 1lim f u(x, t) dx = 0
with u(x, 0) € IR} and some t € (0, T ] . e

We also define weak and strong persistence and component persistence
and extinction for system (2) .

DEFINITION 7. System (2) is weakly persistent if for each solution

u(x, t) = [u;(x, t)] , Vimsup Mu(-, t)l_ > 0 with u(x, 0) € E12 and
t>t
T+ € (0, Tu] , where [0, Tu) is the maximal interval of existence of

u(x, t) . System (2) is strongly persistent if for each solution

u(x, t) , liminf I u(x, t) dx > 0. with u(x, 0) € H!E and t € (0, Tu] .
B

t>t

DEFINITION 8. The component uk(x, t) of system (2) is persistent

if for each solution u(x, t) = [ui(x, t)] ., limsup [ uk(x, t) dx > 0
B

t+t
with u(x, 0) € IRE and t € (0, Tu] , where [0, Tu) is the maximal

interval of existence of u(x, t) . The component uk(x, t) of system



(2) is not persistent or is of extinction type if there exists a

solution u(x, t) such that 1lim I uk(x, t) dx = 0 with u(x, 0) € 312
t>t ‘B

and some t € (0, Tu] .

In the discrete models, our hypotheses will be seen to assure that
solutions exist for all time, hence Tu =+ . In the continuous
models, we assume Tu =+ o,

To illustrate system persistence and extinction, consider an appli-

cation of Definition 6 to the random diffusion model

ut = ru + Duxx y O<x<L, t>0,

(9) u(0, t)
u(x, 0)

O=a(L,t); t>0,

¢(x) 3 0<x<L,

where r and D are positive constants and ¢(x) € IR, . The

= (r-kZ D)t
solution to (9) is given by wu(x, t) = ¢ c, e sin k x ,

n=1

L
where k. = %1 and ¢, = %-I’ ¢(x) sin EE& dx (Berg and McGregor,
0

1966) . The solution corresponds to a negative exponential if
r - kf D <0. It follows that the system is persistent if L i.ﬂ//g
and is of extinction type if L < n/?g-.

The effects of diffusion (random, biased, directed, and predator-
prev) on the persistence and extinction of Lotka-Volterra models of

competition, predation, and mutualism are analyzed in the following

chapters.



CHAPTER II
DIFFUSION MECHANISMS

In this chapter we classify and explain different types of
diffusion mechanisms and present the continuous and discrete models
representing them. The reaction mechanism is ignored and only the
diffusion mechanism is considered.

The first type of diffusion is referred to as random diffusion.
This model is derived assuming each individual has an equally likely
probability of moving in any direction. Individuals move at random

and are in continual motion. The random diffusion model is

(1) uy = Dau ,

vihere the diffusion rate, D , is a positive constant.
The random diffusion patch model can be derived from a finite
difference approximation of (1) . The finite difference scheme in

one spatial dimension is

u D u(x + ax, t) - 2u{x, t) + u(x - ax, t)] .
t N [ (Ax)z

In the discrete version, let u](t) = u(x - ax, t) , uz(t) = u(x, t) ,
and u3(t) = u(x + ax, t) , which represent three points in space.
Assume each patch or region is sufficiently homogeneous so that the
population in the ith patch can be denoted by ui . Then ui repre-
sents the population density of species u in patch i . For a three-

patch model, the finite difference approximation yields the following



differential equation for u2(t) :

2
%%— = orud - W8] + B0 - WY,

where D = E-QX?
aX

The random diffusion patch model is generalized by making the
following assumptions:
(i) the diffusion rates between different patches can be unequal,
(ii) there are m patches between which a species can move freely,
and
(iii) the system is not necessarily closed; there exists a region
surrounding the patches that serves as a species pool.
With the assumptions (i)-(iii), the random diffusion patch model takes

the following form:

k .z .
(2) dg = T Dk‘][uJ - akJ uk] s k=1,...
j=1
J#k

[N

where the parameters DkJ and akJ are positive. The modifications

(i) and (ii) are obvious. The additional parameters akJ are a
consequence of assumption (iii). They require some explanation since
they play an important role in extinction. First, assumption (iii) is

explained in more detail.



Consider two patches,

1
w22 . 120,

(3)

2
d 21 1 21 2
%=D[u-a u-] .
du' | du
dt

lation remains constant for all time. A reasonable assumption is that

2
If - 0 , then u] + u2 = ¢ = constant. The total popu-

patches one and two represent a closed system with respect to diffusion.
If the system was closed and if m individuals left patch one, then all

m individuals would enter patch two. Therefore we call system (3)

"closed", if u] + u2 =cC.

The condition u] + u2 = ¢ holds if and only if
(8) u2[012 _ DZ] a21] + u][DZ] . D12 a12] =0,

2

for all solutions u] and u” of (3) . Solutions with positive

initial conditions remain positive for all time. Equation (4) should

hold for any positive initial conditions. Thus equation (4) holds

1 2

if and only if the coefficients of u and u~ are zero,

012 - 21 2V - 0 =02 - 012,12 .| This condition is equivalent

to conditions (5) and (6) ,

(5) A I

(6) 0l2 - g2 2
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If conditions (5) and (6) hold, system (3) is closed with respect

to diffusion. For example, if a]2 =

12 _ 21

1 , a closed system requires

D D If conditions (5) and (6) do not hold, the total patch
population varies with time. Therefore there must exist a region
surrounding the patches which serves as a species pool or reservoir
and species move to and from this pool. The discrete random dif-
fusion model (2) is studied in detail in Chapter III.

The second spatial model is referred to as the biased diffusion
model. Here the diffusion rate is not constant but depends on
population size: D 1is replaced by Du . If u is large, diffusion
proceeds at a faster rate and if u is small, the diffusion rate js

slow. The continuous model of the transport mechanism is formulated

by

(7) u, = Du au .

The patch model is derived from the finite difference scheme

TR Du(x, t)[u(x + AX, t) - gu(x, t) + u(x - ax, t)] .
(ax)

Then, using notation as above, the following model is obtained:

(8) g%~ =0 o2l - WP+ T8 - W,
Equation (8) is generalized by making the assumptions (i) - (iii) .
The resulting biased diffusion patch model is given by

K m s . .
(9) g%: T DkJ uk[u‘] - ak‘] uk] ; k=1,..., m.
51

J#k
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The third spatial model is referred to as the directed diffusion
model. This model was derived from first principles by Gurney and
Nisbet (1975). They considered a random walk,

. in which at each "step" an animal may either stay at

its present location or move in the direction of lowest

population density, the probability distribution among

these two possibilities being determined by the magnitude

of the population density at the grid site concerned

(Gurney and Nisbet, 1975).
Species move in the direction of the population gradient. Jorne
and Safriel (1979) cite some examples where this type of behavior occurs.
"Ecological examnles of such behavior can be found in population dis-
persal of artic ground squirrels..., and chemotaxis of bacteria"
(Jorné and Safriel, 1979).

The continuous model of the directed diffusion transport mechanism

is given by
(10) uy = D div(uvu)

or equivalently,

(1) u, = g-A(uz) .

t

Using a finite difference scheme for eauations (10).and (11) yields

two different equations. For equation (11)

ox = ax, t) = 20%(x, t) # wB(x + ax, 8)y

D
u, & 5
tv2 (AX)Z
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Then the differential equation for u2 is

Q.

2 — .
L= 2 1H? - w1+ FLh? - B?T .

(=X

A generalization of the above model under assumptions (i) - (iii)

yields one versinn of the directed diffusion patch model,

(12) T =

For equation (10), using a forward, then backward difference scheme

u(x, t) [u(x + AX, t) - u{x, t}J

ut % DY AX Ax

= at ,t‘ - ’t)
_u(x Aix ) [u(x ) Axu(x AX 1}

Then

2
T LT I T (T I

This model is hard to generalize because the diffusion rates differ
2
du

for each patch in the eauation T For two patches under the
assumptions (i) - (iii) ,

k .
13) oo KK ke, k=2,
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The diffusion rate is governed by only one of the patches - in this
case u] . Equation (13) is studied subsequently only for the logistic
two-patch model because of its lack of generality.

Another model particularly applicable to predator-prey systems

is given by
(14)
u2t = -0, div(uzvu1) ,

where U represents the prey and u, the predator. Using Gurney

and Nisbet's (1975) analysis, this model has the following interpretation.
The prey moves to regions of low predator density (moving against

the gradient of uz) and the predator moves to regions of high prey
density (moving with the gradient of u]) . A forward then backward

difference scheme yields the patch model

Again this model is hard to generalize because of the dependence of
the diffusion coefficients on different patches. If we make the
assumption that the diffusion rate for each species ug depends on
that particular species, then the above equations are replaced by



14

d“? = 2,3 21 .= 2.1 2
g = Dy ujlyy - u] + 0y ujly, - 3l
2
du
- - 1
‘Eg =Dy “3[“$ - “?J * 0, “g[uf -yl

These equations can be derived from the continuous model

<
j—
1]

DI u] Au2

uZt = -DZ U2 AU] Py
where this model has approximately the same interpretation as model
(14). The generalized predator-prey patch diffusion model under the

assumptions (i) - (iii) yields

k
du m . . .
1. ki krd _ ki [k
N B A
ik
(15) k=T1,..., m.
duk m
duz _ ki ke k ki
A als
jFk
i ki ok

The prey move into patch k if uy > agt U, . In other words, if
the size of the predator population in patch j is greater than a
constant times the size of the predator population in patch k , then
the prey enter patch k . The prey leave patch k if the reverse

inequality holds. The predator moves into patch k if u% > a;j u% H
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or if the size of the prey population in patch k is greater than
a constant times the size of the prey population in patch j . The
predator leaves patch k if the reverse inequality holds. The prey
flee from the predators and the predators chase after the prey.

There exist other types of diffusion mechanisms of interest to
ecological systems, an example of which is the cross diffusion of
Mimura and Kawasaki (1980) . However we confine ourselves to the
models discussed in the preceding pages. The patch models, where
the diffusion mechanism is represented by equations (2), (2), (12),
(13), and (15), are analyzed in Chapter III. The continuous models,
where the diffusion mechanism is represented by eauations (1), (7),

(10), and (14), are analyzed in Chapter IV.
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CHAPTER III

PATCH MODELS

1. Introduction

Discrete models of ecological syvstems which incorporate spatial
heterogeneity are studied in this chapter - i.e., systems of ordi-
nary differential equations with random, biased, directed, or predator-
prey diffusion. Species move between different geographic areas
called patches. Therefore these models are referred to as patch
models. Reaction-diffusion systems with Lotka-Volterra dynamics

and generalizations of them are analyzed.

2. Random Diffusion
The effects of random diffusion on a Lotka-Volterra competitive

system are analyzed in this first model:

. . n . m . . .
J = - J Jkp k _ Jk J
(2.1) uy u,i[ai0 kil P uk] + kil Di [ui o ui] ,
k#J
for i=1,...,n and j=1,..,m,where a.g, a;, DJ¥, and
: . dud
agk are positive constants and &g = Hfl . The superscript j

represents the patch and the subscript i represents the species
(n and m are thus the number of species and patches, respectively).

We mention at the outset that (2.1) has been studied for the
particular case agk =1 and ng= D?j

1978, 1974; Yodzis, 1978). For example, Hastings (1978) proved under

(Hastings, 1973; Levin,

certain conditions that a feasible homogeneous equilibrium is asymp-

totically stable. His theorem is stated without giving its proof.
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THEGREM 2.2. Assume agk =1 and ngk - D?j in (2.1). If

for the homogeneous model, ng =0 in (2.1), there exists a
uj
J - ux - uxIn 1 for
: ci[ui ux - u¥ :?

. 1
the feasible equilibrium ug =ut,i=1,...,n (§ fixed), then

Lyapunov function of the form V =

no~3

i

[u1 j=1 s an asymptotically stable equilibrium for (2.1) for

each patch j =1,..., m.

a a a
12 10 N

42 %20 W

when, in the Lotka-Volterra equations the feasible equilibrium is

For two competing species Theorem 2.2 applies if

asymptotically stable. Theorem 2.2 is a persistence result under
the given hypotheses. In the following analysis, conditions are
determined on the parameters which give rise to various types of per-
sistence and extinction.

Proposition 2.3 states that an initial value problem for (2.1)
has a unique solution defined on its maximal interval of existence
(o, Tu) .

PROPOSITION 2.3. Given any u, € RT™ there exists a unique

solution u(t) = [u%(t)] to (2.1) defined on a maximal interval
(o, T,) such that u(0) = Ug
PROOF. The proof follows from the fact that

. m . .
J Jk jk J
usfa., - Z a. ] + £ Dy [u - ay Uy
710 o ik Uk k=1 i i

k#J

satisfies a local Lipschitz condition in ug (Corduneanu, 1977).
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The next proposition shows that solutions to (2.1) are positive

if the initial conditions are positive.

PROPOSITIOH 2.4. Every initial value solution of (2.1) with

u(0) € R}™ satisfies u(t) € RY™ for te& [0, T) .
PROOF. Suppose there exists a solution u(t) of (2.1) such

that ug(t) =0 for some i and j and some t € (0, Tu] . Assume

t < Tu and define

ty = 1.ub.(tful(t) > 0, i = 1,...,n, 3= 1,..., m and

t € (0, Tu)}

There exists a component of u(to) which equals zero, denote it by

2 L j .
u(ty) . Then w (t)) =0, uj(ty) >0, i-= R

and Gi(to) < 0. Therefore Gi(to) =
Gi(to) < 0 implies ui(to) =0 for j=1,..., m. The set

- jn mJ . . s s .
M, {[ui]i=l j=l|”k 0, j=1,..,m} is invariant for system
(2.1) and u(to) € M contradicts the uniqueness of initial value

k
solutions. Therefore t =T and u(t) € H22+m for t € [0, Tu) ./
Assume for the remainder of this chapter that initial conditions
are positive. The next theorem and corollary imply the maximal inter-
val of existence for system (2.1) ‘is [0, =) . Thus Proposition 2.4
implies (2.1) has finite time persistence.

THEOREM 2.5. Initial value solutions of (2.1) are bounded.



m .
PROOF. Let ui = z ug . Then

j=1
m n . m m S .
0 =ajouy - I uf T oag W+ IoT ng[":'( ik u3]
Jj=1 k=1 j=1 k=1
k#j
or equivalently,
m . om . o moo.
.o kj Jk pik J J
(2.6) U, =a.u. + 2 u oz [0 -] 5 a, z wu
i i07i je1 ! k=1 i i i k=1 K ja1 | K
k#J
Thus
m o
. _ Jr2
(2.7) u; < Kiui a;y I (ui) ,
j=1
m ki T
where K. = a,, + max{0, £ [D.J - o3¢ pd ]} s positive.
i i0 j k=1 i i
k#J
Suppose limsup ug(t) =o for some i and j . Then it follows
t->T
u
from the definition of u; that limsup ui(t) = » , Choose a sub-

t+Tu

sequence -{t } ., such that t >T , liz u;(t ) ==, and

&i(tz) > 0 . There exists a subset J C {1, 2,..., m} such that
limsup ug(tz) =« for jE€J and limsup u% (tz) <o for j'€¢J.
2"‘“’ 2+¢;

By choosing successive subsequences of {tz} , there exists a sub-

sequence of {tz}’ which after relabeling is called {tz} again, and

there exists a nonempty subset S CJ such that 1lim u?(tz) = o for

Lo

s€S and 1limsup us (tz) <= for s'€S.

gr )

19
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Choose t € {t,} such that

_ K. K, .
(2.8) uS () > max{(2 = * ;‘—-— L sup u: (t), 1
! it 34§ s'és g .

for s €S . Apply inequality (2.8) to (2.7) at t =t , where the

arguments are deleted for simplicity of notation. Then

. S s’ $,2
. . >+ > ] - a.. )
U, < K1[z us + T ] a.. z(u1)

or
. S s' s' S
us < Ki[z uy + Iy ] - [ZKi * Kz sgp u; (tz)]z uj
Thus
: s s' s s
ug < Ki[-z ui +zuy - szp ug (tz)z “i]
and

S
i <0,

ﬁ. < -Kiz u
where the superscripts s and s' mean the summations are taken
over s€S and s' &S , respectively. The last inequality contra-
dicts the choice of the original subsequence {tz} , since at

te(t,}, ﬁi(f) > 0 . Hence solutions are tounded. /



COROLLARY 2.9. Initial value solutions of (2.1) exist on [0, =

PROOF. Let [0, Tu) be the maximal interval for any solution
u(t) of (2.1). Since the solution u(t) is bounded (Theorem 2.5),
if Tu < » then the solution can be continued to the right contra-
dicting the definition of T . Hence T ==. /
The next theorem gives conditions under which a species goes
to extinction.

THEOREM 2.10. Assume m =2 in (2.1). If

(1) alg=as,-0kadkco, 52k, §,k=1,2
and
g S22 1 2
(11) ry = D5° Dy - 350 25

hold for some i, i =1,..., n, then any initial value solution

<0,

u(t) = [ug(t)] to (2.1) satisfies 1im ug(t) =0 for j=1, 2.

toe

PROOF. Rearrange system (2.1) as follows:

. . . . n N .
3o _ pdk Jk J ~ik k
up = uylazg - 03 oy k§] A Yd * 0y Uy
Then
- J j .3 jk  k
uj < ajg uj * 03Ty

for j #k and j, k

k

b J. DJk W
i i i j

z .
—te e
)

[«7)

for j#k and Jj, k =1, 2 are linear. The eigenvalues of this

linear system have negative real parts if and only if (i) and (ii)

1, 2 . The comparison differential eauations

21

) .
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hold. Therefore 1im wg(t) =0 for j=1, 2. The desired result
follows by applyingazorollary 6 of the Comparison Principle in Ap-
pendix B. /
Theorem 2.10 gives conditions for sbecies extinction. System (2.1)
with 2 patches and n species is of extinction type if conditions
(i) and (ii) hold for all species, i = 1,..., n .
Similar results to Theorem 2.10 can be proved for m patches
(m > 2) by comparing system (2.1) with the linear differential system

5 ik ik mjk kK
(2.11) W] = wilay, - 07 i+ I 03 W,
#

M3

k=1 k=1
k#J k#J

for j=1,...,m.

Conditions which guarantee that the eigenvalues of (2.11) have
negative real parts can be derived using the Routh-Hurwitz criteria
(Pielou, 1977). The conditions become very complicated and numerous
as m increases, therefore we omit stating them. If the eigen-
values have negative real parts, complete system extinction is pos-
sible, even for n and m arbitrary. Random diffusion introduced

into a Lotka-Volterra system of this type can cause the total system

to collapse (i.e., extinction).

The parameters ugk play an important role in extinction. Theorem
2.10 restricts the range of the parameters aik, agk a?J >1. Con-

dition (ii) of Theorem 2.10 is equivalent to

_ nl2 {21 2 12 12 21 21 12,21 12 21
i_D'i D‘I -[aio] +aiO[D1.a1. + D% 'ay ] - 0.°D5 @:"ar <

r
i% P9 %Y

0.
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Suppose a}z °§] <1, then
_pl2 12 _ 21 21
ri 2 ajolazg = 03 oy” - D o]
or

121 2
ri 2 -aglagp - 057 o'

However condition (i) of Theorem 2.10 implies a}o < 0. Thus

ry > 0 , contradicting condition (ii) .
The restriction a}z afl > 1 implies system (2.1) cannot be
closed with respect to diffusion. Conditions for a closed system
12 21 _ 12 _ 21 21
a, =1 e .

given in Chanter II were a, and D.” = D; There-

i i i i
fore species are entering the species pool which surrounds the

patches. A reason for system (2.1) to be of extinction type is

that the number of species leaving the patches and entering the species
pool exceeds the number returning to the patches. As a consequence

of this movement, the patches become empty.

Inequality (i) in Theorem 2.10 is a necessary condition for
extinction. If the inequality is reversed, component persistence
results. Two types of component persistence are outcomes obtained
in the next theorem.

THEOREM 2.12.

. mo .
(i) If ago =a;9- L 03 adX > 0 for some i and j in

system (2.1), then there exists an 2 such that

limsup ui(t) >0 .

too
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m . o .
(ii) If = [D';J - D%k ugk] >0 for some i in system (2.1),
k=1
k#j
then there exists k and ¢ such that 1limsup u:(t) >0.

£+

PROOF. Suppose 1im uﬂ(t) =0, k=1,...,n. Choose T
t-bcn

J
n . ay
such that t > T implies a5 uﬂ(t) < ;0 . Then it follows
j k=1 '
- J iy 250 j
that uj(t) > uj(t) —> and lim ul(t) == . This contradiction
t o=

establishes the conclusion of (i) .

Next suppose 1lim u:(t) =0 for 2=1,..., m and k=1,...,n
m . t-}@
Let U = I uﬂ s, k=1,..., m. The differential equation for u;
j=1
is given in (2.6),

m . om . o n m . .
Ug =asgu; * T ug z [Dli(J - agk ng] - L ag = ug uﬂ .
j=1 1 k=1 k=1 'Kj=
k#j

Applying the hypothesis of (ii) yields

n
uj; > uslagg - A E

ul,
i i k=1 k

where Ai = max{aik} . Since 1lim uk(t) =0, T can be chosen such

k to
imolies o [ ' 240
that t > T imolies kz] uk(t) < 2Ai . Thus ui(t) > ui(t) -
and lim ui(t) = o , This contradicts the original assumption, hence
to=
the conclusion of (ii) follows. /

Condition (i) of Theorem 2.12 implies a species persists in
patch j . If ago >0 for some i and all j =1,..., m , then

there is a species which persists in each patch.
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Individuals migrate at random in model (2.1). Therefore it seems

likely that if species uj is present in patch j , it will diffuse

into all patches. In other words, persistence of uj in one patch

implies persistence in all patches. This is indeed what occurs if

species uj is strongly persistent in one patch. We prove this

result in the next theorem.

THEOREM 2.13. If for some solutinn u(t) = [ug(t)] of (2.1),
m . .

liminf ug(t) =L>0, then Timinf ud(t) >0 for j=1,...,m.

toe j=] to 1

PROOF. Solutions of (2.1) are bounded according to Theorem 2.5

hence

n

" J Jrad
(2.14) vy 2 vujlaye - =

plk ok
k=1 i i

J
as) Sup uk] +

™M 3

k=1
k#J

Suppose, for purpose of contradiction, that 1liminf ug(t) =0.

too

Choose a sequence of points {tz}:=l , monotonically increasing,

such that t2 - ® &g(tz) <0, and 1lim u%(tl) = 0 . There exists

<0

at such that for tS > t

'3 9 ?
J £
ui(ts) < j n j
L oﬂ . n
where 0 < ¢ < ————< L and DI = min(DJX, 1} . The differential
1+ Di T o
inequality (2.14) implies for t = to > t,

P . m _
@ > -ev 0] 1 oukE)

k=1

2
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For t = t, > t, sufficiently large,

ne~3

u?(f) >L-¢ ,

k=1

which implies
ﬁg(fj >-¢e# Dg[L -e]=-e[1+ Dg] + D? L>0

by choice of ¢ . The inequality &g(f) > 0 contradicts the choice
of the sequence {tz} . The conclusion of the theorem follows. /

In the following theorems the discussion is restricted to two
species in two patches, n =2 =m . The next theorem gives conditions
on the parameters of patch j which imply one component is strongly
persistent while the other component goes to extinction (implies weak

persistence in patch j) . Under slightly less restrictive assumptions,

it is shown in Theorem 2.16 that the system (2.1) is weakly persistent.

THEOREM 2.15. Let wu(t) = [ug(t)]$=] §=] denote a solution to
(2.1). .
ik alg a1 32
(i) If D% =0 and — > max(z—, 7} for some j ,Jj #k,
20 j 21 22
j 40 o .
then Tliminf u](t) L and lim uz(t) =0. Ifin

addition D'.fj > 0, then liminf ul;(t) >0 .
t—»oo
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. d d d
(i) If DfJ =0 and 0 < -%9 < min{sll , =23 for some k ,

a
2350 21 22

a .
k # j , then liminf uk(t) > <0 and 1lim uJ(t) =0 .
tow 2 T o )

3k > 0, then liminf ul(t) > 0 .

tox

If in addition D

Before we proceed with the proof, observe that initial value
solutions of (2.1) are still positive if ng= 0 . This holds true
because in this case the set {[u%]lu% =0 for some jl} 1is an
invariant set for (2.1) and thus u%(t) >0 for t>0.

PROOF. The differential inequalities
. J Jrad Jo_ J
uy > uylayy - aqquy - agpu;]
5 I g0 ] i
uy = uplayy - ay Uy - 3y, upl < uplayy e - ayy Uy - ag, Uyl

follow from (2.1) for n=2=m, where e is chosen sufficiently.

J
a a a
10 >max{”, 12
+ €

small so that
320 L ANY

Consider the comparison

equations

.—:{.:.
"

jr.d J Jj
”%[alo S ITRR IR IPR Y

_J Jo_ j
= wilagy + ¢ = 2y Wy - a2,y W] .

0N S

w

The Comparison Principle in Appendix B implies u{(t) > w%(t) and

) J
P . . a .
uZ(t) < wi(t) for t>0. Since limwl(t) = 10 and Vim wi(t) = 0,
2 2 to | a tow 2
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the conclusion of (i) follows. If D#J > 0 , Theorem 2.13 implies
Viminf uf(t) > 0 .

to
The proof of (ii) is proved in a similar manner to (i) . /
Conditions (i) and (ii) imply weak system persistence of system
(2.1) for n=2=m . Theorem 2.15 is reminiscent of the behavior

for Lotka-Volterra competition. If a feasible equilibrium does not

exist, one species tends to its carrying capacity while the other

species dies out.

The following theorem states conditions which give rise to a

weakly persistent system.

THEOREM 2.16. Let u(t) = [u}(t)F., 5., denote a solution
to (2.1). !
a 40
(i) If D;2=0 and £<a_ , then
d22 90
limsup : u:lj(t) > 0.
tow | jol
2
d a
(ii) If D"]” =0 and L’<-a2—° . then
1 o
2 .
limsup £ u%(t) >0.
oo jo

PROOF. Consider the "persistence function"

1,281 - 1,,,,82 32
V(t) = [u](t)] [uz(t)] , where B, = -8, 77> 0 . For purpose
12
2 .
of contradiction, assume 1lim ¢ u%(t) =0 . Since a}o >0,
too j=1

Theorem 2.12 implies limsup u;(t) > 0 (a species persists in

e 1,481
u] ()]

patch one). Thus 1liminf V(t) = Timinf =0 . Choose

toe B )] 2
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a sequence of points {tz}:=1 , monotonically increasing, such that

t, = 112 V(t,) =0, and V(tl) < 0. Thenat t, (arqu-

ments deleted for simplicity of notation) ,

o
V = Ve, T + 8y ;TJ
1 2
or equivalently,
' 22 1 1, . %2 12 “%
Vo= -8y V= (ayp - ag Uy - ag, up) + 2= D)7
12 12 Uy
- (a a, ul -a u])]
20 21 1 22 "2'° ¢
Replace the above equation by the inequality
y 1 322 I
(2.17) V> -8, V[y + U](az] - T)] s
where = izg—a] -a Since 1lim u](t ) = 0, choose s such
T3, %10 " %0 - o 11 :

that t > t_ implies u](t ) | a,y - iZZill | < L Inequality
2="s 1'72 21 a1, 2 -
) By Y
(2.17) implies V(t,) > —5—V(t,)) >0 for t, >t . This contra-
=s
dicts the choice of the secuence (t } since V(t ) < 0. The desired

result for part (i) follows.
The proof of (ii) is proved in a similar manner to (i) . /
To complete the analysis of (2.1), we consider the simplest case,
that is, the logistic population, one species in m patches. The

patch random diffusion model for a logistic population is given by
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. . . m . . .
% IR P j Jke k 3k J
(2.18) u u [aJO ajj ] + kil DY {u av" '],
k#J

for j = 1,..., m , where ajO’ ajj’ agk, and DJk are positive.

Observe that the parameters a9 and a.. in (2.18) depend

J JJ
on the patch. In model (2.1) it was assumed that the parameters
230 and a;, were independent of the patch. However all of the
propositions, theorems, and corollaries are valid if a1.0 and L
are replaced by bgo and b?k , respectively, where patch dependence
is now included.

The persistence and extinction criteria for system (2.18) are

determined in Theorems 2.19 and 2.20.

THEOREM 2.19. Let u(t) = [uj(t)]§=] denote an initial value

solution of (2.18). The extinction behavior, 1lim u(t) = 0 occurs

t
if and only if
(1) 30 = 259 - pkadk o, 2Kk, j.k=1,2
and

.. _al2 21 = =
(ii) r=D°cD°" - 2310 299 <0.

PROOF. Assume conditions (i) and (ii) hold. If r < 0 and

530 <0, j=1,2, Theorem 2.10 implies 1im u(t) = 0 . Therefore

to

assume r = 0 . For this case the isoclines of svstem (2.18) are
graphed in Figure 1. The assumptions imply the slopes of the isoclines
at the oriqin are equal. Hence the isoclines do not intersect and
there does not exist any critical point in R E . With no critical
point, there does not exist any limit cvcles (Sansone and Conti, 1964).

By the theory of ordinary differential ecuations for two-dimensional



-—— l.l] =0

u2 =0

FIGURE 1
Isoclines of system (2.18) for 5}0 and Eéo negative and r zero.

3]
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systems (Coddinaton and Levinson, 1955), the desired result is ob-
tained. Solutions approach the origin, 1im u(t) =0 .
£

Assume next that 1im u(t) = 0 . Theorem 2.12(i) implies 530 <0.

t+

Suppose 550 0 for some j . Then the vertex of the parabolic

isocline uJ

7= [@] in RS

0 1is at the origin and there exists a critical point
(Figure 2). A linear analysis about the origin shows
that it is a saddle point. Next we show there does not exist any

limit cycle in R2.

tet h=[u v’ ec(R?) and

2 1
ﬂgp_)z h[-D]Z E.I. - a]] u]] . g.ﬂg.@: h[-DzlI U7_ - a22 Uz] ’ and

Ju u du u
QL%EI + 31%91 <0 in R E . DuLac's criterion implies there does not
au au

exist any limit cycle in R E .

= P and ﬁz = Q. Then

Solutions are bounded, there is no limit cycle in 123 » the

origin is unstable, and there exists one critical point, u , in

2

R, . The theory of ordinary differential equations for two-dimensional

systems implies 1lim u(t) = u . However this contradicts the hypothesis,

too
lim u(t) = 0 . Hence a., < 0 ; and (i) holds.
to JO 2
Suppose r > 0 , then there exists a critical point u in R +
A linear analysis about the origin shaws it is unstable. In a manner
similar to the above argument a contradiction is reached. Hence
r <0 ;and (ii) holds. /
In the proof of Theorem 2.19 it is shown that if inequalities (i)

or (ii) do not hold, then solutions tend to a positive equilibrium.

This result is stated in Corollary 2.20.
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FIGURE 2
Isoclines of system (2.18) for

820 zZero.

\ 74
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COROLLARY 2.20. Let u(t) = [uj(t)]§=] denote a solution of
system (2.18). If

(i) 350 >0 forsome j, j=1,2
or

(ii) r>0,

then 1lim u(t) =u>0.

too

We continue the discussion of ordinary differential equation
models with random diffusion by looking at Lotka-Volterra systems
of predation and mutualism. A more suitable transport mechanism
for a predator-prey system is examined in section 5.

The Lotka-Volterra predator-prey system with two species in

two patches is

"J oL J - J Jkp k Gk
uy = ujlayg = a3, upl + Dy uy - o7 gl
(2.21) ifk, i, k=1,2,

.
[ &N
}

J J jkr k Jjk
uy = wyl-apg + ap 1] + 03 [uy - oy w3l ,

where aiO’ aij’ ng, and agk are positive parameters.

As in the competitive random diffusion model (2.1), initial
value solutions to (2.21) have unique positive solutions on. [0, Tu) .

PROPOSITION 2.22. Given any Ug € H!f there exists a unigue

solution u(t) = [ug(t)] to (2.21) defined on a maximal interval
(o, Tu) such that u(0) = Uo and u(t) € IRﬁ .
PROOF. The proof is similar to the proofs of Propositions 2.3

and 2.4. /
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The following theorem states conditions under which system (2.21)
is of extinction type, a result analogous to Theorem 2.10.

THEOREM 2.23. Let u(t) = [ug(t)] denote a solution of (2.21)

with maximal interval of existence [0, =) . If
; J - _ nJk _Jk , . _
(i) ajg = 219 D] ay” < 0, j#k, J,k=1,2

and

. 122 12
(i) ry = D] D] - 319 339 < 0,

then 1lim u;(t) =0, j=1,2. If in addition to (i) and (ii),

to

cas 12 A21 _ 12 A12 21 .21 12 21
(iii) [a]][az] - Dz 02 = [a20 *a, 02 ][a20 *+ a, 02 ] - Dy D2 >0

holds, then 1im wu(t) =0 .
to
PROOF. The first part of the theorem was proved in Theorem 2.10
by a comparison argument.

Assume (i), (ii), and (iii) are satisfied, then it follows that

limuj(t) =0, j=1,2. Choose T such that t>T implies

to

u%(t) < 55-, where e is chosen sufficiently small so that
21

[a] - e][a2 -e] - 0;2 Dgl >0,

(2.24)
o; -~ €2 o, j=1,2,

hold. The differential equation for u;, yields for t > T,

Y

Jjk uk

o wdr.
u2<u2[aj+e]+02 5
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The comparison equations

jk  k

- J
W 2 ¥

2=[e-aj]w‘;+0

are linear and have eigenvalues with negative real parts if and only
if inequalities (2.24) hold. Corollary 6 of the Comparison Principle

in Appendix B implies 1lim u%(t) =0, j=1,2. /

tom

Theorem 2.23 is valid if density dependence is included in the
prey or predator equation or if the parameters are patch dependent.

If conditions (i), (ii), and (iii) hold, then Tu = = , automatically.
If Tu < = , the solution can be continued to the right since the
solution on [0, Tu) is bounded in le . Thus solutions to (2.21)
satisfying (i) - (iii) have finite time persistence.

There exists an extinction theorem for m patches (m > 2)
provided the linear comparison equations have eigenvalues with
negative real parts. The conditions for a linear system of three
or more equations to have eigenvalues with negative real parts become
very numerous and cumbersome, therefore we do not state them. How-
ever these conditions imply that a predator-prey system in m patches

goes to extinction.

A remark analogous to the one presented for the competition

equations (2.1), is also valid here. If a}z ¢%1

12 O‘21
2 2
For prey extinction to occur the number of prey leaving the patches

< 1, Theorem 2.23

does not hold. However if « > 1, condition (iii) is valid.

must be greater than the number of prey entering the patches. For
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predator extinction to result when the prey are not present, the
number of predators leaving the patches must be greater than or
equal to the number of predators entering the patches.
An interesting observation is the fact that if inequality
(ii1) is reversed there is a possibility of predator survival.
THEOREM 2.25. If aja, - D,% D2

solution u(t) = [ug(t)] of (2.21) such that limsup u%(t) >0
t-T
u

< 0, then there exists a

for some j , j=1,2.

PROOF. From eauations (2.21) the inequalities

are derived for j #k and j, k=1, 2 .

The comparison equations

..=- : J-k k
(2.26) w% a5 w% + D) wy
for j#k and Jj, k =1, 2 have one positive and one negative eigen-
value which implies the origin is a saddle for (2.26). There exist
separatrices for system (2.26) such that if the solution
wz(t) = [w%(t)]§=] starts off of the separatrices, then

limsup w%(t) >0 for some j . There exist initial positions,

to .
w2(0) , such that the initial value solution satisfies 1limsup w%(t) >0

to

for some j . Therefore if u2(0) = w2(0) , then Corollary 6 in
Appendix B implies uz(t) > wz(t) for t € (0, Tu) . Hence there

exists a solution of (2.21) such that 1limsup ug(t) >0 for some j .
t-T
u
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If the particular solution u(t) in Theorem 2.25 has a finite
interval of existence, Tu < = . then the predators persist in both
patches. This follows from the fact that the solution to the com-
parison equations cannot tend to zero in finite time.

If conditions (i) and (ii) hold in Theorem 2.23 and the hypothesis
of Theorem 2.25 holds, then predator survival is possible without
prey survival. In this particular case the predator population in
the patches is being replenished by the species pool surrounding
the patches.

Theorems 2.23 and 2.25 apply to more general predator-prey
systems, where a predator satiation term is_incorporated. Consider

the following system:

Jood _ e dy,d jkp k- Jk

uy = uylagg - ap g (updupl + Dy Quy - oq” vyl
(2.27)

ul = uj[-a +a gj(uj)uj1 + pIK[uK - ok uj]

2 2 720 21 1/71- 2 -2 2 2

for j#k and j, k =1, 2, where gj € C](H2+) and 0 < g3(x) < K
for x>0 and j =1, 2. An example of a function gj is given

For this particular function g¢° , system (2.27)

by ¢J(x) =

represents Michaelis-Menten-Monod kinetics.

Initial value problems of (2.27) have unique positive solutions
u(t) = [ul(t)] defined on [0, T)) .

COROLLARY 2.28. Theoreris 2.23 and 2.25 are valid for solutions

u(t) to system (2.27).
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PROOF. In the proof of Theorem 2.23, use the inequality

0 R 1S o | S | Jj jk k
uy < upl-apy - Dy ay” + ap) Kuyl + 03" up
coupled with the Comparison Principle to show predator extinction.
The proof for prey extinction remains unaltered for (2.27). The
nroof of Theorem 2.25 also remains unchanged for (2.27). /
The last ordinary differential equation models studied with

random diffusion are the Lotka-Volterra mutualistic systems

Jjk J
i Uy

s . mo
J J Jkp k _
(2.29) u sy uk] + kfl D; [ui a

j n
uil-3;0 + t
# k#J

for i=1,...,n, j=1,..., m, and

.s . . : m . . .
J - ,J _ J J ke k _ dk
W = ulagg - ay uy Fagp upl + 20y luy - eyt uy]

k=1
k#j
(2.30)
W = uj[—a +a,, wl+ g Djk[uk - 3K uj]
27 Yl%0 T et L U e e
k#J

for j=1,..., m, where all the parameters are assumed to be prositive.
Initial value problems for (2.29) and (2.30) have unique positive

solutions.

2+m
+

PROPOSITION 2.31. Given any uy € R}™ and v, € R
there exist unique solutions u(t) = [ug(t)] and v(t) = [vg(t)]

to (2.29) and (2.30) respectivelv. such that u(0) = ug » v(0) = vq
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u(t) €RI™ for tel[0,T),and v(t)€RS™ for tefo, T) .
The intervals [0, Tu) and [O, Tv) denote the maximal interval of
existence for solutions u and v , respectively.
PROOF. The proof is similar to the proofs of Propositions 2.3
and 2.4. /
The presence of random diffusion for model (2.29) results in
different behavior than the system without diffusion; persistence is

possible. This is shown in the following theorem.

THEOREM 2.32. Let u(t) = [ug(t)] denote a solution to (2.29)

with maximal interval of existence [0, Tu) . If

Jk Jk

m m

(2.33) min{ & Di } - max{a10 + I i } >0

k j=1 J k=1
Jj#k k#J

for some i , then 1liminf uJ(t) >0 for j=1,..., m.

t»T
Un .
PROOF. Let u; = L ug . The differential equation for u,
j=1
is
. m m . . m n .
- J Jk Jk JJ
u, = I ui[-a.n- I Dy av ]+ I £ a., Ul uy
LI R 10 o 1 je1 k=1 ik "k i
k#J
m m .
+ Loz ng uf
j=1 k=1
k#j

or



a1

. m . .
Jk Jjk
u, > -max{a I D% af lu;
i j 0" k=1 1 1
k#J
m .
+ min{ £ ng} :
k j=l
J#k
Thus
. m m . .
u; > U [min { ¢ i } - max{a; i0 + I ng agk} 1.
k  j=1 J k=1
J#k k#J

The hypothesis implies ﬁi > 0 and therefore ui(t) > ui(O) for

t>0. Y have 1liminf u; (t) > u; (0) >0.
t+T

Suppose, for purpose of contradiction, that 1liminf uj (t) 0 for
t+T

some Jj . Choose a sequence of noints, {t } =1 ° monotonically in-

creasing, such that t, - Tu , lim uJ(t ) =0, and uJ(t ) <0.

Lo

The differential equation for u% yields the following inequality

‘s . m mo

J J Jk Jk Jjk  k

u! > uzl-a;n - £ D% 1+ £ Dy u;

i Lt LU T k=1 1 i
k#J k#J

or equivalently,

m . . m . .
DJk aJk -1] + ¢ pIk u@ P
i i k=1 1 1 i

'j jp- -
Ui Uil - L
#J k#J

k
k

Thus
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. . m . . .
(2.34) w > -ud max{a.0 + I ng agk + 1) + u; min{1, ng} .
i i j i k=1 K#j

k#J

Choose t. such that t, 2 t

s implies

u;(0) min 01, 036

w(t,) < k] _
ity mo ik
2 max{ai0 + T D% ay” + 1}
j k=1
k#J
and
ui(tz) 3-”1(0) .
For t2 Z.ts , the differential inequality (2.34) implies

. u.(0) .
1(t,) > L—min 01, 031 > 0 .
k#J

This contradicts the choice of the sequence {tz} . Hence the desired
result follows. /
Theorem 2.32 is a strong persistence result for the mutualistic
system (2.29), provided the inequality (2.33) holds for all i .
Without diffusion the system is of extinction type, but with diffusion

the system can be persistent. Condition (2.33) holds only if agk <1
for all j # k . In this case the system is not closed, species are
entering the patches from the surrounding species pool.

There exist conditions for system extinction also, which we state

in the next theorem.
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THEOREM 2.35. Let u(t) = [ug(t)] denote a solution to (2.29).

If the initial conditions are sufficiently small and

m . m . .
max{ I D%k} - min{a y + t ogk uik} <0
j=1 j k=1
j#k k#J
for i=1,..., n, then limu(t) = 0.
L tom
m .
PROOF. Let u; = I ug The differential equation for
j=1
. m . m . . n .
- j k Jk J
u. = £ wfl-ain- £ DN+ £ oa, ull
LI it %0 k=] 1 1 k=1 ik 'k
k#3j k#1
m m
+ I T D%k u? .
j=1 k=1
k#j
Thus
. m . . n
o Jk _Jk
u; < ui[ ngn{aio + kil Dy" a3’} ¥ sz{aik} 251 u,J
k#J
m .
+ max{ I D%k} ui
k j=1
j#k
or equivalently,
' mo ik j n
(2.36) uy < ui[max{ z Di } - min{aio} + max{aik} L ug] .
k j=1 J k 2=1

j#k

U.

1

is
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. m . .
where aq = 3.~ + L Dqk aqk .
i0 10 oy 1

k#j

ficiently small such that

If the initial conditions are suf-

mo . n
[max{ ¢ Dg } - min{ago} + max{a; } ¥ ul(O)] < -¢
k Jj=1 J k 2=

j#k

1

for i 1,..., n , where ¢ > 0 , then we show that

(2.37) Gi(t) < -c uy(t)

1,...,n and t> 0.

for i

If u(t) <u,(0) for ¢=1,...,n and t >0, we are done.
Suppose this is not the case. Llet t; = 1.u.b.{t]u2(t) g‘uz(o) R
2=1,...,n, t>0}. There exists an i such that "i(to) = ui(O) ,
ﬁi(to) >0 and uz(to) < ul(O) , 2 =1,..., n. Apply the differential
inequality (2.36) at ty >

. m . . n
ui(to) < ui(to)[max{ z ng} - min{ago} + max{aik}zg "z(to)}

k j=1 ° J k =1
j#k

or

ui(ty) < u;(0)[-€] < 0
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which contradicts ﬁi(to) >0 . Hence ug(t) 5-”2(0) for

2 =1,...,n and t >0 . Inequality (2.37) holds, from which

the desired result follows. /
Similar results like those in Theorems 2.32 and 2.35 are valid

for system (2.30). We state the theorems but omit their proofs.

THEOREM 2.38. Let wu(t) = [ug(t)] denote a solution to (2.30)

with maximal interval of existence [0, Tu) such that

then 1liminf uJ(t) >0 for j=1,..., m.
t+T

THEOREM 2.39. Let u(t) = [ug(t)] denote a solution to (2.30)

such that the initial conditions are sufficiently small,

m . m
max{ Z D%k} - min{ ¢ D%k Jk} + ag < <0,
k j=1 J k=1
J#k k#J
and
m . m .
max{ I D%k} - min{a20 + %k Jk} <0,
k j=1 J k=1
j#k k#J

then 1im u(t) =

£
Solutions to (2.29) can be unbounded, just as in the mutualistic
model, provided the initial positions are sufficiently large and the

maximal interval of existence is [0, =)



THEOREM 2.40. If initial positions of solutions, u(t) , to

(2.29) are sufficiently large, in particular,

m . N
Jjk jk
+ I .
0 " 5 % % j
. . a
uJ(O) > k#J - _po
q a
%pq Pq
m .
jk Jjk
+ T D7«
. %0 k=] 9 q aj
u%(o) N k#j = aqg
qp ap
for some p and q in the set (1, 2,..., n}

the solution, w(t) , to the system

= w [-ad
Wp Wp[ apo + apq wq] 3
=y [-qd

(2.41) wq wq[ aq0 + aqp wp] s

u(0) = ug(O) . wg(0) =

exists on [0, Tw) , then if Tu

1im ug(t) = ®
t—»Tu

for i=q,p.

ug(O)

and some j , and

46



In particular, for all solutions, u(t) , such that Tu =T =

limsup u?(t)

-

for i=1,...,n and k=1,..., m.
PROOF. Consider the differential ineoualities

" J Jr_.d J
up > upl-apg + apg U

' J Jr_.Jd j
Uy > Yal-ago + 2gp U]

obtained from (2.29). The comparison equations in the variables

(wp, wq) represent the obligate mutualistic system (2.41). If

al ad
wp(O) > ESQ and wq(O) > EEQ ,
qp Dq

then it follows that 1im w(t) = « . This in turn, by Corollary
t-T
w

4 to the Comparison Principle in Appendix B, implies

(2.42)  lim wi(t) == and lim uw(t) = = .
t-T, P t-T, q

The first part of the theorem holds.

Now assume Tu = Tw = « and consider the other species in

patch j , u% for i #p and i # g . The differential equation

J

for uy yields
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J

J Jp_yJ
uy > ui[ ayy * 3ip up] .
: 2 aj
. ] i0 .
Choose T > 0 such that t > T implies up(t) > , which
ip

is possible because of (2.42). For t > T, “2 > ago ug which

implies

lim ul(t) = w

to

for i=1,..., n.
Finally consider the species in patch &, u% » where 2 # ] .

The differential equation for u% yields

"% [ ) 2j 3
. > -a S+ D) !
uy > a10 u D1 i

i u

Suppose limsup u%(t) < K < » , then there exists a T] such that
to

t>T, implies u%(t).i K . Choose T,>T, such that for t>T,,
j 2 K a?o ‘2 2
ui(t) > -—533-_- For t > T2 s ui(t) > K as and therefore

,i_.

1im u?(t) = o . This is a contradiction to the boundedness assump-
toco

tion. The desired conclusion follows. /

Consideration of the maximal interval [O, Tw) of system (2.41)
is necessary since it is used as the comparison system. It is possible
for system (2.41) to have a finite maximal interval, T, <= - There-
fore to prove all system components were unbounded we needed the

additional assumption Tu = e = Tw .
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Perhaps one of the most surprising results of the random dif-
fusion models is that random diffusion can cause extinction or
persistence in systems where in the absence of random diffusion
extinction or persistence is not possible. Random diffusion can
drive a competitive and predator-prey system to extinction and

cause an obligate mutualistic system to persist.

3. Biased Diffusion

In this section, models corresponding to biased diffusion
are analyzed. Species migration rates depend upon the population
size. The discrete version of the biased diffusion model for a
competitive system is

m . . . .
gk dr ko kO J
kil Dy ui[ui oy ”i]
k#j

n j
=3k ud +

(3.1) W = uia,. -
it i0 k=1

1

for i=1,...,,n and j =1,..., m , where the parameters
agk are positive.
Model (3.1) differs from the random diffusion model (2.1) in

that D%k in equations (2.1) is replaced by D%k ug . The diffusion
rate for species ug is a linear function of the population size.
Initial value problems for (3.1) have unique positive solutions.

PROPOSITIOM 3.2. Given any Uo € H22+m , there exists a

unique solution, u(t) = [u%(t)] , to (3.1) such that u(0) = Ug and
u(t) € H22+m for t € [0, Tu) , where [0, Tu) is the maximal

interval of existence.
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PROOF. The proof follows in a similar manner to the proofs of
Propositions 2.3 and 2.4. /

Unlike the competitive random diffusion model, complete extinc-
tion cannot occur for the biased diffusion model. This is probably
due to the fact that when the population size becomes small, dif-
fusion rates decrease and fewer species leave the patches. The fact
that at least one species survives in each patch is the content of
the next result.

PROPOSITION 3.3. Let u(t) = [ug(t)] denote a solution to

(3.1). For each j € {1,..., m} , there exists an i € {1,..., n}

such that limsup ug(t) >0 .
t=Ty
PROOF. The proof follows directly from the equations

. . . . n . m N
J oo d P R I J . plk K
(3.4)  uy =ujlago-ayjuy - I oag Ut £y ugl
k=1 k=1
k#1 k#j
1 m - 5k ik
for i=1,...,n and j =1,..., m , where ad. = a.. + & D ad
i1 LR S B B
k#Jj

Under certain conditions solutions of (3.1) are bounded.

THEOREM 3.5. If

min{agi} > (m-1) max{ng} s

J j#k
for i =1,..., n, then every initial value solution to (3.1) is
bounded.

ug . Ai = min{agi} , and Di = max{ng} .
1 b] j#k

ne~m3

PROOF. Define uy =

J

Suppose there exists an i such that 1limsup "1(t) = » . Then there
t-T
u
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exists a sequence of points {tz}:=1 » monotonically increasing, such
that t, > Ty » llﬂ “i(tz) = o , and ui(tn) > 0 . By passing to
successive subsequences, there exists a subsequence, which after
relabeling we call {tg} again, and a nonempty subset J C {1, 2,..., m}

such that

Tim ug(tz) =, jE€J and

Lo

(3.6)

limsup u‘gl(tl) cMca, j'€4.

Lrc0

Employing equations (3.4) the inequality

" ™3

(u))? + o
1 j

nem3
[ =
-t Cdy

(3.7) Ug < a5 U; - Ai :

M™M=
[ =
-

iy

J

~ x

can be obtained.

We consider two cases. For the first case we assume J con-
tains only one element and for the second case we assume J coOn-
tains more than one element.

Assume J contains one element, J = {j} . Choose t_. such

3

that t2 g_ts implies ug (tz) <M, j'€J , which is possible
1

because of equations (3.6). For t2 3_ts evaluate the inequality
1

(3.7) at t, (where the arguments are deleted for simplicity of

notation),



52

’ J_ Jy\2
uy < aio(m - 1M+ a;q U3 Ai(ui)

+2 Di(m -1)M ug + Di(m -1)(m - 2) M2

or equivalently,

’ J _ J
u; < S, + ui[Ri A, ui] ,

= 2
where Si = aio(m - 1M+ Di(m - 1)m - 2) M and Ri a9t ZDi(m - 1M,

?

Choose t52 3_tsl such that for t > t52

; Ri'+1
ui(tz) > max{ Ai

R 251} .

For t, > t
() Sy

. _ j _
ui(ta) <S; ui(tz) < =S < 0,

a contradiction to the choice of the sequence {tﬁ} . Hence for

J={j} , solutions are bounded.

Assume J contains c¢ elements, ¢ > 1 . Apply the Cauchy-

Schwarz inequality for sums (Apostol, 1975), (3.8), to inequality

(3.7). Since

m 5.2
(3.8) (m-1) £ (u)°>
j=1 j=1

™3
_h:(_a.
x x
YRR
[ =3

we obtain the following inequality



. A, m m
j J k
U < a.qo u; = [ -D.] £ u & u,
j i0 7§ m-1 i j=1 LA R
k#J
or equivalently,
‘ j' j
(3.9) u; < aio[z uy t+I ui]

— 3 g 2 N} S
-01.[zug(zu‘1?+.$:u~;’)+zu%| (zu~i+£u‘1? )],

~de

A.
) - ] - i j j ¢
where Di — Di > 0 and the superscripts of u; » J, 3%

Jj, J' mean the summations are taken over j€J , j'€J, JEJ
and 3 #j, J'€J and J'#j', respectively.

L i \
Choose tS such that tz > tS implies uy (tz) <M for

1 1

j' €J . Thus
L ug (t)<(m-c)M.

Ineauality (3.9) can be replaced by

-

(3.10)  u(t,) <a lim-cm+zul] -0l & ul)

c N
or t, Z'tsl . Choose t52 3_tS] such that t, > t implies

2

. 2 a,
ug(tz) > max{ i0 , (m - c)M} .

i

For t, 2t s inequality (3.10) implies
2

53
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: J
ui(tz) < aio(m -Cc) M+ ui[a].0 -2 aiOJ <0.

The inequality Gi(tl) < 0 contradicts the choice of the original
sequence {tz} . The conclusion of the theorem follows. /

If the condition in Theorem 3.5 holds, solutions can be continued
to the right - i.e., the maximal interval of existence for a solution,
U(t), is {0’ cx)) .

COROLLARY 3.11. If min{ad,} > (m - 1) maxtdd¥}, i=1,...,n,

. ii . i
J j#k
then initial value solutions to (3.1) exist on [0, =) .

Biased diffusion can be viewed as an increase in the density

dependent term a5 to agi in each patch. But at the same time
. m .
it also adds the terms ug X D%k u? which is an expression of
k=1
k#J

mutualistic behavior. Density dependence puts a 1limit on population
growth, but mutualism enhances growth. These two behaviors are in
opposition and thus a divergence is obtained. When density dependence
dominates, solutions are bounded (Theorem 3.5) and when mutualism
dominates, solutions are unbounded (Theorem 3.16).

We first restrict ourselves to the case of two species in
two patches, then to one species in m patches. In the next two
theorems, sufficient conditions are given for component persistence.

THEOREM 3.12. Assume min{a}i, afi} > max(0}2, 02y, i=1,2

and n=2=m in (3.1).

(1) If a3, §_D}2 Dg] ,» then every solution, u(t) = [ug(t)] ,

to (3.1) satisfies limsup u:(t) >0 for some i .

)
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(ii) If a]2a2] < D] D2 , then every solution u(t)

55

= [ul(t)],

to (3.1) satisfies limsup u](t) >0 or limsup u2(t) >0 .

too

too

PROOF. The first assumption implies by Corollary 3.11 that

initial value solutions exist on [0, =

For part (i) consider the "persistence function"

B] 82
V(t) = [u(6)] | [u5(t)] 2,

where B'i >0 i=1, 2 and < El
i ’ ’ 12 = B2
2

Suppose, -for purpose of contradiction, that

toro

jectories of (3.1) yields

o] 02
. u u
V(t) = v(t)ls|, o + &5 5
“ Y2

V(t)[y - B} ayy Y (t)

1 12 2

toro

i=1,2. Then 1im V(t) = 0. The derivative or

t 2z Ua(t)

. 1 2 i

such that t > T implies

ik ik
.o+ 0 a
i1 * 05 oy

Uy (t) <o and 28) <« —f—.

B1 21

48, 35

lim u, (t) =0,

V along tra-

2 21

- 8] a3,) uy(t))]

Choose T,
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For t> T, V(t)°> V(t)[%ﬂ , since the coefficients of uf and
B]

u; are positive due to the choice of the ratio -—% . Thus
8
2

1im V(t) = » , which contradicts the original assumption. Hence
EE: conclusion for part (i) follows.
The proof of part (ii) follows similarly if V 1is replaced
by the "persistence function"
2 E1 J
v(t) = [ui(6)] ! [up(t)1 2,

j L e I B %
where Bi>0,1i‘J,1,J-1,2 and—{fi"ri /
D} 8, 2
COROLLARY 3.13. Assume min{a}i, a?i} > max{o}z, of]}, i=1,2

and n=2=m in (3.1). Let u(t) = [ug(t)] be any solution of

(3.1) satisfying Tim ul(t) = 0 for some i and j such that

t -+

215807 < min0]2 031, 08! D)), then imsup uf(t) > 0 for k# i
and 2 =1, 2.
PROOF. Proposition 3.3 implies limsup uﬂ(t) >0, k#i
to
and Theorem 3.12 implies 1limsup uﬁ{t) >0, k#i, 2#J. /
tox

Observe that all of the previous theorems and propositions hold
if the parameters are patch dependent.

Next we analyze the case of one species in m patches. This
represents a logistic population distributed among m patches.
Proposition 3.3 implies the system is persistent since there exists
only one species per patch. However it is easy to show that the

following system is strongly persistent:
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. . . m . . . .
(3.14) w = u‘][a.0 - a.. uJ] + I DJk u‘][uk - aJk W],
o ~ %33 k=1
k#J

for j =1,..., m, where the parameters are positive.

THEOREM 3.15. Let wu(t) = [uj(t)] denote a solution of (3.14)

with maximal interval [O, Tu) . Each component wW(t) of u(t)

satisfies

liminf WJ(t) > 0,
tT,

for j=1,..., m.
PROOF. Rearrange system (3.14) as follows:
m

o= e, -7 w4
u u [aJO aJJ u kil D

k#J

Jk Uk]

or

°J j - J
u . - .. U
> ulayg - a5 vl

m . N
where a..=a.. + I DJk aJk . The comparison eaquations are the
NN N R
k#J
logistic equations,

33 -y j 4
W W [aj0 333 wl.

j as, 5 .
Since lim wY(t) = 3%—- and uw(t) > w(t) on [0, Tu) , the desired

toe JJ
result follows. /



Theorem 3.5 shows that solutions are bounded if the density
dependent effect induced by diffusion is greater than the mutualistic
effect. We show next the reverse conclusion holds if the mutualistic
effect dominates - i.e., solutions to (3.14) are unbounded.

THEOREM 3.16. Let u(t) = [W(t)] denote a solution of (3.14)

with maximal interval of existence [0, =) . If

(3.17) s -0 oM <o

for some k and j , k#3j , then limsup u(t) == for j=1,...

tr
PROOF. The basic idea is to compare the differential equations
k

for u” and uj with a system whose solutions are unbounded. The

J

differential equations for uk and u’ satisfy

ut > uk[ak0 - Ekk uk + pkd ul]

W J a4+ ik K
w > u [ajo az5 u [T

The solution of the comparison differential equations,

we = wk[ako - E%k k + pkd w ]

§ooodra L= i, ik K
w = v [ajO ajy W+ L
exists on [0, ») and is unbounded in both components, if (3.17)

holds. A graph of the phase plane is given in Figure 3a). Corollary



59

a) u2
A 7
7
/7
/7
Q /,',

Az,

>

/7
yd
"
o
”
= 7
";’
«— > — !
”
”
L,
”
7”7
)

FIGURE 3
a) Solutions to (3.21) are unbounded.
b) Solutions to (3.21) tend to an equilibrium.
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4 to the Comparison Principle in Appendix B implies wk(t) < uk(t)

and wj(té < uj(t) for t >0 . Hence

Yim u¥(t) = = = 1im uI(t) .

to o

Consider the other components u’(t) , where i #k, i#7J.
The inequality
u' + 0" WJ]

i —

holds. Suppose Tlimsup ui(t) <M< . Choose T such that t>T

too
implies

. M

. . a.
(3.19) u'(t) <M and w(t) > —l%?—
D J

For t > T , inequality (3.18) coupled with (3.19) imply

ﬁj(t) > ui(t)[aio -a,. M+a.. M= ui(t) a.q -

Thus T1im u’(t) = » , which contradicts the boundedness assumption.

to

The conclusion of the theorem follows. /
The inequality (3.17) is satisfied only if o3¢ «K3 <1 . An
interpretation of this inequality is that the species are more inclined

to remain in their respective patches than leave. In addition species
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are moving into the patches from the surrounding species pool, thereby
causing an overabundance of the species in the patch.

For the particular case m = 2 in system (3.14), the results
of Theorems 3.15 and 3.16 are sharp. One parameter determines

asymptotic stability or unbounded growth.

PROPOSITION 3.20. Let u(t) = [u(t)]5.; denote a solution
of (3.14). If

(1) Ty 3, - 0202 <0, then Vim uW(t) ==, 521, 2,
to
or if

(1) 3y 3y, - 0'2 02! 5 0 , then
— 12

a a + a D

1im u](t) - 10 22 20 and
tom 3. 3., - 02 p?
1 222

— 21

a a,, + a D
vim u?(t) = 22

to a«” 322 -D D

PROOF. The proof follows directly from the differential equations,

_ 1 — 1 12 2
u =u [a]0 -aju +0%u 1>

(3.21)

= u~2[a20 - 5&2 w2 + p& u]]

c .
[l

and a phase plane analysis. The isoclines of (3.21) under the con-
ditions stated in parts (i) and (ii) are graphed in Figure 3a) and

3b), respectively. The conclusion of the theorem follows. /
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Biased diffusion caused an asymptotically stable population,
modelled by the logistic equation to display unbounded growth.
The discrete version of the biased diffusion model for a

predator-prey system is given by the following equations,

s . . m . . . .

J = J - J Jk J k _ Jk J

up = ujlayg - 2y, “2]+k§] Dy” uyluy = o7” U3l
k#j

(3.22)

bj = uj[-a + a uj] + ? Djk uj[uk - o3k ul]

2 "2t%0 T %21 4T L T2 M2 T %2 2
k#J

for j =1,..., m, where the parameters are positive.

Initial value problems for (3.22) have unique positive solutions.

PROPQOSITION 3.23. Given any Ug € IRE+m there exists a uniaue

solution, u(t) = [ug(t)] , to (3.22) such that u(0) = u, and

0
u(t) € HQ$+m for t € [0, Tu), vhere [0, Tu) is the maximal interval
of existence.
PROOF. The proof follows in a similar manner to the proofs of
Propositions 2.3 and 2.4. /
As was true for competition with biased diffusion is also true

for (3.22); at least one species survives in each patch.

PROPOSITION 3.24. Let u(t) = [ug(t)] denote a solution of

(3.22). For each j € {1, 2,..., m} there exists an i € {1, 2}

such that 1limsup ug(t) >0.
t+Tu
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PROOF. First, system (3.22) is rearranged as follows:

J = ) - J_aJ Jk .k
9T alag - -t 0yl
k#]

(3.25)

for j=1,..., m, where a%] =

Assume extinction occurs, 1lim ug(t) =0, i=1, 2, then
t-T
u

T € (0, Tu) can be chosen so that t € [T, Tu) implies

. a . a

J 10 J 10
ug(t) <« ——=— and uy(t) <

! 4 a%] 2 4 a2

For t €[T, Tu)’ eouations (3.25) imply

‘s a :
u(t) > 22 ul(t) .

2
a
j I R
This implies u](t) > u](T) e for t = (T, Tu) » which contra-
dicts 1lim u%(t) = 0. The desired conclusion follows. /

t+Tu
Density dependence can be included either in the prey or pre-

dator eauations and the proposition is still valid. Theorem 3.5
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can be applied to the prey equations. If

min{a%]} > (m-1) max{D%k} » then every solution, u(t) , has
J J#k

components u%(t) which are bounded.

Proposition 3.24 shows that a species must survive in each
patch. We show next that under certain conditions the predator cannot
be the sole survivor in every patch.

THEOREM 3.26. Let u(t) = [ug(t)] denote a solution of (3.22)

such that

(3.27) min{agz} > (m-1) max{ng},
J J#k

then 1limsup u%(t) >0 for some j .

t>T
u m . .
PROOF. Define u, = t ul, i=1,2, A,=min{a),} , and
—_— i oy 2 .22
j=1 J
D2 = max {D‘;k I3
J#k
Suppose 1im u](t) = 0 . We consider two cases, the first case
t->Tu
is Tu < » and the second Tu = ® , .
Assume Tu < » ., Then there exists a Jj such that 1limsup u%(t) = ™,
t->T
u

since otherwise the solution can be continued to the right. Thus

1imsup uz(t) = » ., There exists a. T such that t € [T, Tu),
t-T
u

implies

450

J
u (t) & ———
1 2 sy
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for j=1,...,m. For t€I[T, Tu)’ the differential eauation for
j

us yields
.s a . s m .
J Jp_ 220 3 jk Kk
up < upl- 5 - apupt I D U]
k#J
for j=1, s, M Hence
-da m . m m . .
20 32 ok
u, < u, - A, 2 (uy)®+0D, £ T uyu
2 2 2 2 j=1 2 2 j=1 k=1 2 2
k#j

Next anply Cauchy-Schwarz ineauality for sums (Apostol, 1975) to

obtain
. -a A m m .
20 _r 2 ik
Uy < 5 Uy - Ly - Dl j§1 oy 22
k#J
Ay
Inequality (3.27) implies w17 - D, >0, thus for t€ [T, Tu)
we have
. ‘&20
(3.28) uz(t) <5 u2(t) .
a
20
o -7 (t-T)
This implies u,(t) < uy(T) e for t€ (T, T,) and u, is

bounded, which is a contradiction. For Tu < =« we have reached a
contradiction, thus the conclusion is valid in this case.
Assume Tu = o , By the same argument as above we obtain the

inequality (3.28) for t > T . Inequality (3.28) implies
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1im uz(t) = 0 which contradicts Proposition 3.24. In either case,

t<o

Tu <o Or Tu = » , the desired conclusion is reached. /

If a predator satiation effect is included, Proposition 3.24
and Theorem 3.26 still hold. Consider the predator-prey model
introduced in section 2,

' i1+ 7 iy ik i
uy = u [a]0 - ay, q’ (u])u ]+ = 03 [u] - oj u]]

k=1
k#J

(3.29)

N . Y . m . .

: K e k

u% u‘;[-a20 *+ 2y gJ(u%)u ]+ E] D% u%[u2 - az uJ]
K#J

for §=1,...,m,vhere @ €C(R,) and 0<g(x) <K<=

for x€1R+

PROPOSITION 3.30. (i) Let u(t) = [u‘?(t)] denote a solution
of (3.29). For each j € {1, 2,..., m} there exists an i € {1, 2}

such that Tlimsup uJ(t) >0.
t+T

(i1) Let wu(t) = [ug(t)] denote a solution of (3.29) such that

min{agz} > (m-1) max{DJk},
J j#k

then Tlimsup u%(t) >0 for some j .
t-T
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PROOF. The proof of part (i) follows easily from the inequality

.l . . M sy sn m
J J - J Jjk ik Jk  k
k#j k#j
The proof of part (ii) follows from the inequality
s . . m . . . m -
J Jr. J . jk 3k J jk  k
uy < upl-ayq *+ a5 K uy R A RN upl ./
k#J k#J

Consider the obligate mutualistic system with biased diffusion,

. . . m o . . .
i JIr. J jk gp ko ko
(3.31) u3 ”i[ a9 * asy uk} + k£1 Di ui[ui oy ui]

k#J

N M3

k=1
k#i

for i=1,...,,n and j=1,..., m, where all parameters are

positive. Initial value problems of (3.31) have unique positive

solutions.
PROPOSITION 3.32. Given any uy € R} there exists a
unique solution, u(t) = [u%(t)], to (3.31) such that u(0) = ug

n+m

and u(t) € IR,

for t € [0, Tu) , where [0, Tu) is the raximal
interval.

Model (3.31) exhibits the same extinction behavior as does the
model without diffusion.

THEOREM 3.33. Let u(t) = [ug(t)] denote a solution of (3.31)

where the initial conditions are sufficiently small, then 1lim u(t) =0 .
to=
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PROOF. The differential equation for uj satisfies

i
.. . n . mo .
J Jro J ) Jk k
(3.34) uy < ui[ ajg+ kE] ag, wt E Di ui] .
= k=1
k#i k#J

If the initial conditions are sufficiently small so that

m .
r pd¥ uk(0)] < - <0
k=1 1 1

: j
7 k#J

k=1
k#1

..on and ji=1,..., m, where € > 0 , then we show

n
-
-

for i

that

.

(3.35) &g < -¢ U

b

for i=1,...,n and j=1,..., m.
If ul(t) <ul(0) forall i and j andall t> 0, weare
done. Suppose this is not true; there exists a t such that

ug(f) > ug(O) for some i and j . Define
tg = Toub.ctlud(t) < ul(0), 1= Theeey my = Thes my t3 0.

There exists i and j such that ug(to) = ug(O) . ﬁg(to) >0,
and ui(to) g_uﬁ(to) for k=1,...,n and 2 =1,..., m. Evaluate
the differential inequality (3.34) at ty >
. m .
J Jk
s uk(to) + Dy u

k=1
k#j

K(

. . n
j

uj(ty) < uj(ty)l-azq + & i(tg)]

k#i
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or
ui(ty) < uj(0)[-c] < 0

since ut(to) 5.u&(0) for all k and & . This contradicts

ﬁg(to) > 0 . Hence uﬁ(t) < ui(O) for t> 0. Thus the inequality
(3.35) holds for t >0 and for all i and j . The desired con-
clusion is obtained. /

Theorem 3.33 implies system (3.31) is of extinction type. No
persistence criteria exist which imply persistence.

We have shown that the biased diffusion models of competition
and predation represent more persistent systems than the same models
with random diffusion. In competition and predation at least one
species survives. However biased diffusion did not cause the mutual-
istic system to persist as random diffusion did. We also showed
that biased diffusion can lead to solutions which exhibit unbounded
growth in the logistic model, a behavior which does not occur in the

model without diffusion.

4. Directed Diffusion

Two discrete versions of the directed diffusion model are
analyzed in this section. The first version can easily be extended
to an arbitrary number of m patches, whereas the second version
cannot. Therefore the second version is discussed only for the case
m =2 1in the logistic model.

Directed diffusion is movement away from areas of high popula-

tion densities to areas of low population densities. The first
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version of the directed diffusion model for a2 competitive system is

(4.1) ug = u‘g[ai0 -

Hmt 33

k

for i=1,..., n and j=1,..., m, where all parameters are
positive.
Initial value problems of (4.1) have unique positive solutions.

PROPOSITION 4.2. Given any ug € IRE+m there exists a unique solu-

tion, u(t) = [ug(t)], such that u(0) = uy and u(t) € mf"“ for

t € [o, Tu) .
Complete extinction cannot occur in system (4.1). The next
Proposition proves that at least one species persists in each patch.

PROPOSITION 4.3. Let u(t) = [uﬂ.'(t)] denote a solution of (4.1).

For each j € {1,..., m} there exists an i € {1,..., n} such that

limsup ug(t) >0.
t+Tu

PROOF. First, system (4.1) is rearranged as follows:

. . n . m .
- Jd P B B N jk, Kk
(4.4) u3 ui[ai0 asy. us Loag uk] + kil 05 (u1-f ’

i
k#i k#j
j mo ik jk J
where a%, = a.. + £ Dy a% . Assume that 1im u3i(t) = 0 for
11 it t-T
k#3 :

i=1,...,n. From (4.4) we obtain the differential ineaquality,
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. . n N

J ,J J

. Uy - £ oa., u] .

i 2y ik Tk
k#i

u’

J .
i > ujlagg - a

There exists a T such that t € [T, Tu) implies

. s d.
J Jr i0
wl(t) > uJ[5Y ,

a.
- j j ie s iy o2 T
since 1lim ui(t) =0 and lim uk(t) = 0. Thus ui(t) > “i(T) e
t-T t-T
u u
for t € [T, Tu) , which contradicts 1lim u%(t) =0 . The conclu-
t-T
u
sion of the theorem holds. /

A result similar to the one for the competitive random diffusion
model (2.1), Theorem 2.2, which was due to Hastings (1978), is valid
for the directed diffusion model.

THEOREM 4.5. Let wu(t) = [ug(t)] denote a solution of (4.1)

with n = 2 such that

(1) of*=0, i=1,2 7k,
(i) a3k =1, i=1,2, j#k,

;
and
a a a
(114) 212 0
422 %0 I
then the maximal interval is [0, ») and u(t) satisfies

]

. d d -d a
too a1y 322 ~ N2

. d d - a d
Iim u%(t) . a11 azo _ alO a21 - u3
to 11 %22 -~ 212 ¥
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PROOF. Ve first show that a solution to system (4.1) satis-
fying (i) - (iii) is bounded for any finite time and hence the

solution can be continued to the right.

m
Let u; = X ug . The differential equation for u; is
j=1
. m n ..
- J ,J
U, = U, Q.0 - I I a@;, U, U% ,
i i ~i0 j=1k=1 ik "k i
m m . . .
since © ¢ ng[(UE)z - agk(uq)z] = 0 . However
i=1 k=1 T
k#J
T (u)?
u. < a u. - minf{a;,} t (u
i0 7§ K ik je1

By an argument similar to the proof of Theorem 2.5 we can show solutions

are bounded. Hence limsup ui(t) <o foreery T<ewo  ,i=1,...,n,
t-T

which implies limsup ug(t) <o forevery T<w,i=1,...,n and
t-T

j=1,..., m. The maximal interval of existence for u(t) is [0, =).

The function

J J
. u . u
- J ] J - - * ._2
vy = agqluy - uy - uy In ;;] + a]z[u2 ug - uy In 5
1

ik
is a Lyapunov function for the homogeneous system (4.1), Dg =0

(Goh, 1977). Consider the function
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We show that V 1is a Lyapunov function for (4.1). Observe that

V is positive definite; V>0 and V=0 if and only if ug = u¥

i=1,...,n and j=1,..., m. The derivative of V is

qd
. m 2 i
V=1t ¢ c.—ul -u*],
j=ri=t teg T

where €y = ay and C, = ay, . System (4.1) together with (ii)

imply
. m 2 n jar
= - - *

(4.6) v {j£] 151 c;la;g kil a5, W Jluy - u¥l)

m 2 m ik (u';)2 - (u‘g)2 j

+{r ¥ T c; D [ - ] ["i - u?]}
§=1 i=1 k=1 ™
k#J

or equivalently,
vV = {I]} + {12} s

vhere I] and 12 represent the first and second terms in brackets,
respectively, on the right side of (4.6). Since Vj is a
Lyapunov function for the homogeneous system, I] < 0. We show

next that I, < 0 . Assumption (i) implies

2 m j- . . u* u¥

ke, ky2 iy 24¢Y7 i
I,= 1t £ © ¢ OI[WH- () —+ - H
R S NS TR B B L uf ul

or



2 m j-1 . u* . .
12 =-I I I c ng —Tl—F [u§ - ug]z[u$ + ug] .
i=1 j=1 k=1 ug u;

Therefore I, <0 and V ois negative definite; 7'5_0 and V=0

2
if and only if u = u? s 1=1,...,n and j=1,..., m. We

i
have proved that V is a Lyapunov function for (4.1) under the
assumptions (i) - (iii). The homogeneous equilibrium is globally
asymptotically stable. The conclusion follows. /

The conditions in Theorem 4.5 imply model (4.1) is a strongly
persistent system. .

Next we investigate a logistic population in m patches with

directed diffusion. The model is

s N . m . . .
(4.7) w = uJ[a. -a.. Wl 3 DJk{(uk)z - aJk(uJ)z]
jo JJ k=1
k#j
for j =1,..., m, where all parameters are positive. According to
Proposition 4.3, system (4.7) is persistent. However it can be

shown to be a strongly persistent system.

PROPOSITION 4.8. Every solution, u{t) = [W(t)], to (4.7)

satisfies

liminf w(t) > 0 .
toT,

PROOF. The proof follows directly from the ineaguality

ud Jfa.. - a.. uj
w > ufage - ag; el

74
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m . .
where a.. = a.; + ¢ pik aJk . /
37 %T 5

k#J
Directed diffusion can cause solutions to become unbounded.

THEOREM 4.9. Let u(t) = [uj(t)] denote a solution to (4.7)

with maximal interval of existence [0, =) such that

for some k and j , then Tlimsup ul(t) =o for 2=k, j.
to
J k

PROOF. The differential equations for u” and u~ yield the

following inequalities:

A R - Jk, ky2

w > u [ajo aj; u 1+0°(u)
(4.10)

uk z_uk[ak0 - Ekk uk] + DkJ(u‘])2 .

k

let v=ul +u , then

o I IV I
The hypotheses imply

v >V min{ajo, a0}

which yields the result, 1lim v(t) = « . This implies

to
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Timsup uz(t) =™
t

for 2=3 or & =k . Without loss of generality, assume 2 = j .

If Timsup uX(t) < = , then lim W (t) = » and the differential

toe to

inequality (4.10) for uk yields a contradiction. Thus

limsup u¥(t) = = and limsup wI(t) = = . /

too to

For the case m = 2, two patches, solutions are bounded if the

inequalities in Theorem 4.9 are reversed.

THEOREM 4.11. Let u(t) = [uj(t)]§=] denote a solution to

(4.7) such that

- 21 - 12
g - D" >0 and 35, - D“>0,

then Tlimsup uj(t) <o for j=1,2.

oo .
PROOF. The differential inequalities (4.9) are replaced by

equalities, where j =1 and k=2 . Then for v = u] + u2 we

have

V< max{a;gs a,0} - min{ay; - p?!, a,, - 'Z [ (u)? + ()2
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The differential ineaquality above is similar to the one given in
(2.7). The rest of the proof proceeds in a manner similar to the
proof for boundedness given in Theorem 2.5 for competitive random
diffusion models. /
For the second version of the directed diffusion model, we
analyvze the logistic population in two patches. The model is

described by
(4.12) W = uj[ajo - a5 uj] + pik u][uk - ajk uj]

for j, k=1,2 and j # k , where all parameters are positive.

To differentiate between model (4.12), the other model for
directed diffusion, (4.7), and the model for biased diffusion, (3.14),
note that the diffusion rate depends on the density in patch one
only. If the density in patch one is high, the rate of diffusion
out of that patch is high and in addition if the density in patch
two is low, diffusion into patch two increases. The reverse be-
havior occurs if the density in patch one is low.

The choice of u] as the moderator of the diffusion rate was
arbitrary. Similar results are valid if u] is replaced by u2 .

Observe that initial value problems of (4.12) have unique

positive solutions.

2

+ there exists a unique

PROPOSITION 4.13. Given any Ug € R

solution, u(t) = [uj(t)]§=] , of (4.12) such that u(0) = ug and

2

u(t) € R}

for t € [0, Tu) .

lodel (4.12) is a strongly persistent system.



THEOREM 4.14. Every solution u(t) = [u(t)] to (4.12) satis-

fies

liminf w(t) >0, j=1, 2.
t—»Tu

PROOF. Equations (4.12) imply

l..l] > U][alo = E]] u]] ’

12 12

where 5}] = an +D " a The comparison equation is the logistic,

hence the conclusion holds for u] .

Suppose liminf uz(t) = 0. A sequence of points {t2}2=]
t-T
u

can be chosen such that t, - Tu , lim u2(t2) =0, and ﬁz(tz) <0.

24

There exists @a T and M such that t2 € [T, Tu) implies

a
(4.15)  u'(t) 24> 0 and vi(t)) < minGEAY , By} .
22 «a
The differential equation for u2 is
2 e - a4 0P ul{u‘ AN
20 ~ %22 ;Z ¢ :

For t, € (T, Tu) , the inequalities (4.15) imply
2(t) > () 122 > 0
L= 2 2 ?

which contradicts the choice of the sequence {tz} .

78



The conclusion of the theorem is established. /

The two versions of the logistic directed diffusion model,
(4.7) and (4.12), have the same persistence behavior. Both models
represent strongly persistent systems.

Consider next predation with directed diffusion. The model is

given by
Woe ullay - a, udl e 103k (82 - k()2
B ban [ VAR SRR B A L
k#J
(4.16)
j M ke, ky2 Gk, 342
up = upl-azg + a5 ujl + & 2 [(up)™ - o7 (up)]
k#J

for j =1,..., m, where all parameters are positive. Initial value

problems of (4.16) have unique positive solutions.

2+m

PROPOSITION 4.17. Given any Ug €ER, there exists a unique

solution, u(t) = [ug(t)] , to (4.16) such that u(0) = ug and

2+m

u(t) € IRY

for t € [0, Tu) .
Complete extinction cannot occur for model (4.16). The next
proposition shows that at least one species must persist in each

patch.

PROPOSITION 4.18. Let u(t) = [ul(t)] denote a solution of
(4.16) . For each j €{1, 2,..., m} there exists an i€ (1, 2}

such that

limsup ud(t) > O .
1
t-T,

79
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PROOF. For purpose of contradiction assume 1lim ug(t) =0

t-T
u
for i =1, 2 . The differential equation for ug yields
"J Je. _ A3 J L J
(4.19) uy > u][a]0 ay, vy - Ay, uz] R
. m . .
where aj, = & Nka“.
1 R 1
k=1
k#J
Choose T such that t € [T, Tu) implies
. a . a
(4.20)  uwd(t) <« 10 and uwl(t) « 10—
4 a3’ 4 a
11 12
Inequality (4.19) coupled with (4.20) imply
i) > ul (629
1 ] 2
a
0 (¢-1)

for t € [T, Tu) . Hence u{(t) > u{(T) e 2 for t € (T, T,) -

contradicting the original assumption. The desired result is ob-

tained. /
Given certain restrictions on the parameters we can alsc show

that system (4.16) is persistent.

THEOREM 4.21. Let u(t) = [ug(t)] denote a solution of (4.16)

such that

(1) o =08, 11,2, j7k
and

(i) o3f =1, =12, jrk,

then Tlimsup u(t) > 0 .
t+Tu
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PROOF. Consider the function

J

420 4 Y
a T a 1n a ]

21 21 20

o
Bk [T [V I B’ ]
412 42 40
The function Vj is a Lyapunov function for the homogeneous system,

ng £ 0. It can be shown in a manner similar to the proof of

Theorem 4.5, that

is positive definite and V < 0 .

Suppose 1lim ug(t) =0 for some i and j . Then
t-T
u

lim V.(t) = = and 1im V(t) = « . This contradicts v'g_O , and
tsT, t+T,

establishes the conclusion of the theorem. /
For the final model with directed diffusion we consider the

obligate mutualistic system,

.s . n . m . .
J = ir. J Jkpe o ky2 o 3ky 342
(4.22) uy ui[ ajg * kil asy uk] + kil D [(ui) aj (ui) ].
k#i k#3
for i=1,..., n and j =1,..., m , where all parameters are

positive. Initial value problems have unique positive solutions.



PROPOSITION 4.23. Given any Ug € B%:+m there exists a uniaque
solution u(t) = [ug(t)] such that u(0) = Ug and u(t) € 112+m
for t € [0, Tu) .

An obligate mutualistic system with directed diffusion does
not persist. We show in the next theorem that there exist initial

conditions which imply system extinction.

THEOREM 4.24. Let u(t) = [ug(t)] denote a solution to (4.22)

such that the initial conditions are sufficiently small. Then

limu(t) =0 .

to

m .
PROOF. Let ui = ug The differential eaquation for u;
j=1
is
. - . m n . .
- J (3,2 J g
u, = u,[~a,,) - = aj.(uf)c+ £ & a,; up uy
i i 7i0 jep 11T j=1 k=1 ik "k i
k#i
m m .
+ L= ng(uf)z,
j=1 k=1
k#j
. m N .
where a3, = g Dqk aqk . Therefore
LIS i
k#j
n m

£ up +max{ ¥ Dik}ui] .
k=1 k =1
k#i j#k

Suppose the initial conditions are sufficiently small so that

82
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n m o,
ik
(-a,, + max{a, } ¢ wu, (0) +maxt £ D% } u,(0)] < -¢ ,
i0 - T kT 2y Tk K j=1 | (0] <
k#i j#k

where ¢ > 0 . It can be shown in a manner similar to the proof of

Theorem 2.35 that
ui(t) < -¢ ui(t)

for t > 0. The conclusion of the theorem holds. /
We have shown that Lotka-Volterra models with directed diffusion
behave, in some instances, similarly to those with biased diffusion.
Competition and predation with directed diffusion cannot lead to
total system extinction and an obligate system with directed diffusion
is of extinction type. There exists conditions which imply the
logistic population with directed diffusion can become unbounded.
However unlike the models with biased diffusion we were able to
give sufficient conditions which imply svstem persistence of com-

petitive and predator-prey systems with directed diffusion.

5. Predator-Prey Diffusion

An appropriate spatial model for a predator-prey system is one
in which the predator moves to areas of high prey concentration and
the prey moves to areas of low predator concentration. In the fol-
lowing model, (5.1), the predator leaves the patch it occupies if
another patch has comparatively more prey. The prey leaves its

patch if another patch has comparatively fewer predators. We study
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a Lotka-Volterra predator-prey system in m patches, where ug

represents prey density in patch j and u% represents predator

density in patch j . The model is

. . . m . . B .
Joo ] . J gk Jr k _ Ik
up = ulagg - 3 Vel + 20y uilup - oqn up)
k#J
(5.1)
ke gk K
uz[u] o u]]

.. . R m

J = WIr. J J

uy = upl-any + a, uyl 4 E D,
#

for j=1,..., m, where all parameters are positive.
Initial value problems of (5.1) have unique positive solutions.

PROPOSITION 5.2. Given any Uy € B?E+m there exists a unique

solution, u(t) = [u}(t)] , of (5.1) such that u(0) = Ug and

u(t) € RZ™ for tefo, T .
We can show that for model (5.1) the prey population is persistent.
THEOREM 5.3. Every solution u(t) = [ul(t)] of (5.1) with

maximal interval [0, =) satisfies

limsup u{(t) >0, j=1,...,m.

t>

PROOF. First, system (5.1) is rearranged as follows:

. . . . m .
o=yl - ad J Jjk Kk
uy = uylagg -2y wpt B 0 U]
(5.4) k#J
. . N N m . .
Jo= - i 3. jk Jjk Kk
k#J
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where
. m .
J Jk Jk
P PR B
k#j
and
. m .
J = jk
as, = a,y + I Dy .
217 %1 " L%
k#j
Suppose 1lim ug(t) =0 for some j , then T can be chosen
oo
such that t > T implies
. a
u%(t) < 20j
2 a5
Equations (5.4) imply
' j -a
2 < u2[ 201
for t>T . Thus lim u%( t) = 0 . However this toaether with
toeo
the equation (5.4) for u%(t) imply  lim u](t) = » which
to
contradicts the assumption 1im u3 (t) . Hence the desired
too
result follows. /

Theorem 5.3 also holds if there is a density dependent term in

the prey or predator equations, or if the parameters a;; are patch

dependent (implying a heterogeneous environment).



For two patches, persistence is determined by one parameter.

- rd 2 2
THEOERM 5.5. Let u(t) = [ui(t)]i=] j=1

(5.1) with maximal interval of existence [0, =) such that

denote a solution of

1 .2

_ 12 12 21 21
p = a2] a2] D, «

= Dy"ay Dy oy

>0,

then limsup u(t) > 0 .

to
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PROOF. According to Theorem 5.3, limsup u%(t) >0, j=1,2.

toe

Thus we only need to show that Tlimsup u%(t) >0, j=1,2.
£

For purpose of contradicticn assume  1lim u%(t) = 0 for some

to

J . Choose T] such that t > T] )

7]

10

J
uz(t) < aJ ’
12

N

then equations (5.4) imply

. 3 a
u(£) > ()52

This implies 1lim u%(t) =,
towo
Consider the "persistence function",

1 2
V(t) = [up()3® L3(0)1®



J ndk _Jk
kB Dy e

where 8" = > 0, k#Jj . Then

or equivalently,

- 1, 2y .o 8p s j
V= V['azo(s +38 ) + U'I ia—kﬂ] = v['Y'I + U] Yz]
21

where the definitions of g and Y, are clear. Both g and 0
are positive. Choose Ty such that t > T, implies
n

J 1
vy (t) > 2 Y,

then V(t) > ¥ V(t) . Hence 1im V(t) = » which in turn implies

t+o

1im u;(t) = o , since lim u%(t) = 0. There exists a T3 such

toe to

that t > T, implies

.. a 3 a
>3 10 k 10
2 Dy 312

The differential equation for u§ implies, for t 3_T3 ,

ok < W= 5 a0 -

87
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Consequently we get 1lim u#(t) = 0 , vhich contradicts Theorem 5.3.

t+

This contradiction establishes the conclusion of the theorem. /
Consider a more general predator-prey model, where predator
satiation is included. We introduce the satiation function gJ given

in section 2. System (5.1) is replaced by the following set of

equations:
17 Mt8o ~ 4 I 0 T BT Bt Ty
k#J
(5.6)
3 = ulleayy + ay Pl + 1 o3k udlud - odk
Y2 T Upltl0 T TN T 2T Tt T %2
k#J

for j=1,..., m , where all parameters are positive, gj € C](El+)
and 0 < gj(x) <K<= for x€R_. Initial value problems of
(5.6) have unique positive solutions.

System (5.6) can be rearranged to look like eauations (5.4), but

where a{z and ag] have the following interpretations:

. .. m ey s
J _ J¢.J jk Jjk
P PG DR
k#J
. « . m .
j J.d jk
ay =3y g(w)+ & D

k=1
k#J

The bounds on gJ yield bounds on the terms a%z and a%] R
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. m . . . m . .
J . Jk jk _ _J Jk jk _ 13
R = B oDver <app <Kt LoDy = Ay,
k#J k#J
. m . . m . .
j - Jk _ . J Jk _ §J
Br= 50 << Kt L0 Ry
k#J k#J

Thus the differential equations (5.6) have the following bounds:

“g[alo " K}% “g i kgl oy k] <uf < ”J[alo ﬁiz “% ' kg] ng “5]
k#j k#J
(5.7)
3o, T ki Lo
uplragy * By Uy * I 007 Uyl < vy
k#J

Theorems 5.3 and 5.4 hold for system (5.6).

THEOREM 5.8.
(i) Every solution, u(t) = [u%(t)] , of (5.6) with maximal
interval [0, =) satisfies limsup u%(t) >0, j=1,...,m.

to
(ii) Let wu(t) = [u (t) ] denote a solution of (5.5)

i= IJ 1
with maximal interval of existence [0, =) such that

—_ 0,2 2 12 21 2]
P =By By -0 O o >0

then limsup u(t) > 0 .

t=
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PROOF. The proofs of (i) and (ii) are similar to the proofs
of Theorems 5.3 and 5.5, if one applies the inequalities in (5.7). /

Part (i) of Theorem 5.8 holds if density-dependent terms are
included and if the parameters are patch dependent. Persistence
for system (5.6) is determined by one parameter, p .

Complete extinction cannot occur in models (5.1) and (5.6);
the prey persist in .every patch. This is a reasonable conclusion
from models (5.1) and (5.6), since not only does prey persistence
occur in Lotka-Volterra models without diffusion, but with this type
of diffusion, the prey preserve themselves by fleeing from the
predator.

This concludes the analysis of the patch models. The contin-

uous models are analyzed in the following chapter.
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CHAPTER IV
CONTINUOUS MODELS

1. Introduction

Continuous models of ecological systems which incorporate
spatial heterogeneity are studied in this chapter - i.e., partial
differential equation models of random, biased, directed, and predator-
prey diffusion. Recent research on the random diffusion model utilizing
Lotka-Volterra dynamics is briefly summarized in the second section.
In sections 3 - 5, the continuous analogues of the discrete models
presented in Chapter III, i.e., biased, directed, and predator-prey

diffusion models, respectively, are analyzed.

2. Random Diffusion

In the continuous models incorporating spatial heterogeneity,
the reaction-diffusion ecuation most often studied is the equation
with random diffusion. This model orginates from the simple dif-

fusion or heat equation, = Dau , where the diffusion rate, D,

Yt
is a positive constant.

The Lotka-Volterra random diffusion models have been studied by
many scientists and mathematicians (Brown, 1980; Conway and Smoller,
1977; Fife, 1980; Fisher, 1937; Gopalsamy, 1977; Jorne and Carmi, 1977;
Kierstead and Slobodkin, 1953; Leung, 1978; Levin, 1978; Levin and'
Segel, 1976; McMurtrie, 1578; Murray, 1977; Rosen, 1975; Segel and
Jackson, 1972; Skellam, 1951; Turing, 1952; Williams and Chow, 1978).

A brief summary of the results of these investigators will be given

as they anply to persistence and extinction.
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Initial boundary value problems are considered with either
Dirichlet or Neumann boundary conditions prescribed on a bounded
domain, B , having a sufficiently smooth boundary. If a positive clas-
sical solution exists to the Lotka-Volterra random diffusion model,
then it is unique. Positive classical solutions exist for the Neumann
problem, if there exists a priori bounds (Hastings, 1978).

The logistic random diffusion model is often referred to as

Fisher's equation (Murray, 1977),

uy = u(1 -u)] +Dau; x€B, t>0,
(2.1) u(x, 0) = #(x) ; x €8,
us= f(x, t) or %% =0; x€3B, t>0.

The difference between persistence and extinction for (2.1) depends
on the type of boundary conditions prescribed. The Neumann problem
has persistent solutions for ¢(x) € R_ . However the Dirichlet
problem with ¢(x) € R can give rise to extinction, if the boundary
conditions are homogeneous and the diffusion rate, D , is sufficiently
large.

The n-species competitive random diffusion model has recently

been studied by Brown (1980),

]J+0D,Au; 3x€EB,t>0,

n

Tt j=1
(2'2) U.i(X, 0) = ¢‘i(x) ; X€B,

ij Y5

au.

- '1 - . -~
u; = fi(x, t) or " 0; x€38,t>0.
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for i =1,..., n. He studied the Neumann problem and showed that
for two species the feasible equilibrium of the Lotka-Volterra equations
was an attractor for (2.2), provided the equilibrium was stable. For
n-species, Brown (1980) stated "a sufficient condition which guarantees
the existence and global asymptotic stability of a critical point with
all species coexisting." In fact under certain conditions, for two
species, every solution of the Neumann problem “"decays uniformly and
exponentially to the spatially homogeneous functions (u](t), uz(t)) .
whose w-1imit set is a subset of the w-limit set" of the ordinary
differential equation model (Conway and Smoller, 1977). If the w-limit
set of the ordinary differential equation contains only points where
at least one of the components is zero, then system (2.2) has component
extinction. For the homogeneous Dirichlet problem, there exists suf-
ficient conditions which imply every solution decays to zero (Conway,
Hoff, and Smoller, 1978). Thus various types of persistence and
extinction occur in both the Neumann and Dirichlet problems.

The predator-prey random diffusion model takes the following

form:

u]t = u][a]0 - ay, u2] + D1Au]
; xX€B, t>0,
uyl-ay0 + a5y Uyl + Dyau,

(2.3)
u;(x, 0) = ¢,(x) ; x€B,

au,

- 1 _ .
u.-fi(x,t) or F-O,XEBB, t>0,
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for i =1, 2. Murray (1977) showed that the solution to the Neumann
problem decays to a spatially homogeneous solution provided D] and
D2 are sufficiently large. Since the solutions to the spatially
homogeneous equations are persistent, the Neumann problem with
D] and D2 sufficiently large is a persistent system. With density
dependence included in the prey and predator equations, Leung {1578) showed
that solutions to the Neumann problem converge uniformly on B to the homo-
geneous equilibrium, provided the equilibrium exists. For the homo-
geneous Dirichlet problem with density dependence, there exists con-
ditions which result in system extinction (Conway, Hoff, and Smoller,
1978). In addition to system persistence and extinction, conditions
exist for system (2.3) with density dependence which imply component
persistence and extinction for the Neumann problem (Conway, Hoff,
and Smoller, 1978).

Compared to the other Lotka-Volterra systems, the mutualistic
random diffusion model has been studied very little. One of the reasons
for this lack of interest is the fact that the solutions can display
unbounded growth. However we complete the analysis of Lotka-Volterra

systems with diffusion by including Lotka-Volterra mutualism in our

discussions. The model is given by the equations (2.4) for i =1,..., n.

n

u1.t = u1[-a1.0 + 5 ay ukJ +Djdu; 3 x€B,t>0,
#

(2.4) u;(x, 0) = ¢,(x) 5 x€B,

AUy
u; = fi(x, t) or rrake 0; x€3B, t>0.
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It has been shown that system extinction can occur in (2.4) for both
the homogeneous Dirichlet and Neumann problems (Conway, Hoff, and
Smoller, 1978). In fact if ¢.(x) , i =1,..., n, arc sufficiently
sr211l, complete system extinction occurs for the Neumann problem,
independent of any restrictions on the parameters (Conway and Smoller,
1977). Thus (2.4) is not a persistent system. Extinction can also
occur for the mutualistic model (2.5) for i =1, 2 and for both

models (2.4) and (2.5) with density dependent terms included.

“, T uyl-a;9 + a;,u,1 + Dyy,
;s x€B, t>0,
U2, * uylayg + ay up - ay,u,] + Dytuy
(2.5)
u1-(x, 0) = ¢(x) ; x€B ,
3Ui
u; = fi(x, t) or Fra 0: x€3B, t>0.

There has been much investigation of solution behavior to Lotka-
Volterra random diffusion models. Presented here were some of these
results as they pertained to persistence and extinction. In the next
sections we study the effect of nonlinear diffusion on Lotka-Volterra

systems.

3. Biased Diffusion

The biased diffusion model without biological reaction terms takes

the form: uy = Duau . Species move randomly, but the rate of movement

depends on population density.
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We analyze a Lotka-Volterra system with biased diffusion on a
bounded domain B (E‘R'") of sufficiently smooth boundary (such that
the Divergence Theorem holds) with either Dirichlet or Neumann boundary
conditions. The domain B satisfies the interior sphere condi-
tion - a necessary condition to apply the maximum principle.

The Lotka-Volterra biased diffusion model is given by

n
u, =u.fa;,+  a..
i, im0 j=1 1

”j] + Di u, su; 3 x€B, t>0,
(3.1) u;(x, 0) = ¢.(x) 5 x€B,

Ju.
u; = fi(x, t) or —L=0;.x€8, t>0

an

for i =1,..., n, where Di is a positive constant. The question
of existence of nonnegative solutions to (3.1) is still unanswered.
However numerical results seem to indicate, in certain instances, that
solutions exist. It is assumed that a classical solution exists to
(3.1). By a classical solution to (3.1) we mean a function
u(x, t) = [ug(x, )1, with u, € (@) xc'((0, =) , i =T, n,
such that the partial differential equation is satisfied on B x (0, =)
and such that u(x, t) satisfies the specified initial and boundary
conditions, ¢, € C(B) and f, €c?(28) x C'((0, »)) for i=1,..,n.

For the remainder of this section we discuss uniqueness, positivity,
boundedness, and persistence of classical solutions to (3.1). Results
for the general Lotka-Volterra system (3.1) are presented first, then
results for the particular systems of competition, predation, and

mutualism are presented.
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In Theorem 3.2, it is proved that a positive classical solution
to (3.1) is unioue.

THECREM 3.2. Every positive classical solution to (3.1) is
unique, if ¢1.(x)>0 for x€B , i=1,...,n.

PROOF. We prove the solution is unique at each point (x, t)
where x €B and t € (0, T] for T arbitrary. Assume there exists

n

two positive classical solutions, v and w , where v = [v, i=1

and w = [wi]?=] . Let u=v-w, then u satisfies the following:
n
uit = agqu; t jil aij[vivj - wiwj] + DiViAVi - DiwiAwi :

x€EB,t>0,
(3.3) - ui(x, 0)=0 ; xE€8B,

ou.
u. =0 or #=o; X€W, t>0

i
for i=1,...,n . If u=0 on Bx (0, T) we are done. There-
fore suppose there exists a point P = (x, t) €B x (0, T) such that

u(P) # 0 . Define
ty = l.u.b.{tlu(x, t) =0, x€B, t >0}

Since ty € [0, T) , there exists an interval (to, t0 +a) and a
j such that uj(x, t) # 0 for some x €B and all t€& (tj, ty+ a) .
Consider system (3.3) for x €B and t € [to, t0 +a),

u(x, to) =0, x€B . Multiply the partial differential equation

in (3.3) by uj and integrate over the spatial domain B to obtain



+ fu.v.Av, - u.w.Aw, ] .
IB D1[u1vlav1 U wiaws ] dx

An application of Green's identity to the above equation yields

d_ I j-dx = a u2 dx + 2 a u;[v.v, - w,w,]dx
at |, 2 i0 Jg Ui Ptie 10 P bt A B
(3.4) ; jB 0,[o(uyv,) = ¥ v, - o(uw,) - 7w, Jdx
th

where Ij represents the j integral of the rignt side of equation

(3.4). Make the following substitution in the integrand of I,:

. .- Wew, ] .. u,[u.v, U,
a5 ui[vivJ wiwsd =g ul[u1vJ + w1uJ]

d.: U?V. + a_i. u.u. v.

ij i Jg oig ac

Employing an interpolation inequality of Gilbarg and Trudinger (1977),

the inequality

22U &
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is obtained for every €5 > 0 . After rearrangement apply the inter-

polation inequality to the integrand of I3 also. This leads to

v(uivi) T Vs - v(uiwi) "W,

2 2

. ¢ V.UV, = w.Uw. ]| + u.l|VW.| - |Vw.
Vu, [vlvv1 W, ] u1[|vv1| [7w; 1]
= U, - [uivvi + wivui] +uvuy - [vv1 + Vwi]

2
. . e . tow, . + u,vu,. - .
2u; V. oo YU+ WU u;us - W,

and
2
2 17y 2
2 |vw1| €1 2

for every €; > 0.
The above equations and ineoualities applied to (3.4) yield the

following inequality:

2 2
2 ", v,

< | uilasn+ £ ageve + ©oas.  ——
- B 10 . j=~| 1J 261- 1 Ei

2 2 3 i
ujdx + IB |Vu1’ [E'Diei Diwi] dx .
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Since W, is positive, e; can be chosen sufficiently small such that

%'ei - Wy o< 0 on B x [tg, t0 +a] . Then
2 2 2
d [ Y 2 on 12y U Y3
(3.5) aE-IB 7 dx ﬁ'IB ki (v, ws, IVV1| , IVmil ) 7 dx + e, jii [ 5-dx

for i =1,..., n, where ki is a constant depending on v, Wi,
lvvilz, and vailz
2

Let Ei(t) - | 1 dx and E(t) = [E, (t)]1 -1 - Consider the

lg 2
following linear system,

(3.6)  LEEL- cgr)
where C = [cij] js an n x n constant matrix and

Ik+1, = ]

RN PRSI
Let E(t = I 2(x to)dx . Thus the unique solution to (3.6)

B
for t € [t t + a) is given by E(t) =0 . System (3.6) is a com-

parison system to equations (3.5) since

u
J
: cij JB 3 dx

ne~3

dx <
J

N' c
- N

4
dt /B
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for t € (to, ty + a) and i =1,..., n. Cornllary 6 in Appendix B
ul
implies I fi dx <0 for tE€ (to, ty + a) . A contradiction has
B

been reached, hence u(x, t) = 0 on BT =Bx[0,T] or v=w on

B Since T was arbitrary we have the desired result. /

T .
The initial boundary value problem for competition with biased

diffusion is

n

u. =ulfa;n- z a

ij'uj] + DiuiAui ; XE€B,t>0,

(3.7) u;(x, 0) = 0.(x) 5 x€8B,

u; = fi(x, t) or ;;i =0; x€3B, t>0
for i =1,..., n, where the parameters 3;0° aij’ and Di are
positive.

Solutions of (3.7) are bounded and positive under certain con-
ditions. The required conditions are stated in the following theorems
and corollary.

THEOREM 3.8. Every nonnegative classical solution of (3.7) with
Dirichlet or Neumann boundary conditions is bounded provided

(1) ¢ is bounded, i =1,..., n
and in addition for Dirichlet boundary conditions,

(i) f; is bounded, i =1,...,n.

PROOF. Suppose 3 and fi are bounded by a constant, Mi .

independent of x and t . Ve will show
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(3.9) u; (x, t) < max{M,, - 0 =,
3

Suppose (3.7) has Dirichlet boundary conditions and there exists
10
ii

gax ui(x, t) = ui(x], t]) = ui(P]) > ui(PO) » where P, €B x (o, to]
t

a point P (xo, t ) such that u; (P ) > max{M. , Thus

0

and By =B x [0, tg]. At Py, uj (Py) 20 and aug(Py) <0

t
0
Evaluating the partial differential equation at P] , we find

n
0 i'uit = ui[aiO - aiiui] il a5 UjY; + D, ;Us BUL < 0o ,
#1
30
since "i(P1) > This contradiction establishes the theorem in
ii

the case of Dirichlet boundary conditions.

Suopose (3.7) has Neumann boundary conditions and there exists

a.
a point P] = (x], t]) such that max u,(x, t) = u,(P,) > max{M,, —155
B i it i’ ayy
t
for some to < @ , Therefore P] €B x (0, t0] . If P €8 x (0, to]

we reach a contradiction as in the case of Dirichlet boundary conditions.
Therefore assume X1 € 3B . Then Aui(P]) < 0, since if not, there
exists a region R CB (with the interior sphere property) such that

X] € 3R and Aui(x, t]) >0 for x€R . The Maximum Principle in

au.-' (P'l )

an
boundary conditions. Thus Aui(P]) < 0 and uj (P]) > 0 . Evaluating
t

Appendix B implies > 0 , contradicting the homogeneous Neumann
the partial differential equation at P] , we again reach a contradiction.

a-
The desired result is obtained, u,(x, t) < (M, 5190 , xEB,t>0./
ii
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In the preceding theorem we assumed that the solution was non-
negative. For the two-species case this assumption is implied by

some additional hypotheses on the initial and boundary conditions.

THEOREM 3.10. Assume ui(x, t) , i=1,2 satisfies the initial

boundary value problem (3.7), where n =2 . |If
a,
(1) 0<¢,(x) <2, xeB,i=1,2,
! i

a a a
(i1) a12 < a]O .

22 %20

and in addition for Dirichlet boundary conditions,

a.
(111) 0 <fi(x,t) <22, x€2B, t>0, i

1,2,

ii
then ui(x, t) >0, i=1,2.

PROOF. Define t, = l.u.b.{tfu;(x, t)>0, i=1,2, x€ B,

0
t>0}. If ty < = , there exists a point P0 = (xo, to) such that
either u](PO) =0 or u2(P0) =0.

Suppose u](PO) = 0. Consider the function
v](x, t) = u](x, t) + et - to) R

where € > 0 1is sufficiently small so that the minimum of Vi does
not occur on B x {0} nor on 3B x [0, t0] in the case of Dirichlet

boundary conditions. Also assume 0 < € < ElF , where
0
a a a
% 12 [ 10 _ 20] which is positive because of assumption (ii).
a a a
1 12 22
Consider the solution ui(x, t) , i=1, 2 of the Dirichlet

problem. We have min v](x, t) = v](x], t]) = v](P]) < 0 where
B
t
Py €Bx (0, tg] . At P, v]t(P]) <0 and avy(Py) > 0 which



implies u, (Py) < -e and au,(Py) > 0 . From the partial differential
t

equation evaluated at P] , we find

0>u, =ufa,,-
]t 110 j

"~

: a]j<uj] + D] u; A,

or
2 1
(3.11) 0> u1[a]0 - -E ay; Ul -
j=1
By choice of ¢ and Vi it follows that

u](P]) = vq(Py) - elty - ty)

g_e(to - t])
(to = t])

- tok

or

—

(3.12) 0 < u](P]) <K

Inequalities (3.11) and (3.12) yield the following:

4

or

0> ayn - b - ap, u(Py) = ayy - @ [Elg -
10 k 12 "241 10 12 a2

20
22

a
3,1 T 212 U2(Py)

104
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a
20
u,(P;) >
2V'1 as9
320
Therefore gax uz(x, t) = u2(x2, tz) = uz(Pz) > 555- and
t
0

P2 €8x (0, to] because of assumptions (i) and (iii). At P2 ,
u, (Pz) >0 and A"z(Pz) < 0. Evaluate the partial differential
t

equation at P2 to obtain a contradiction,

0 g_uzt < uplagg = ay U] < 0.
Hence for the Dirichlet problem, u](PO) >0 .

Consider the solution ui(x, t) , i=1,2 to the Neumann
problem. Proceeding in a manner similar to the one for the Dirichlet
problem, we find that if X €B8 and Xo € B a contradiction is
reached. Therefore assume min v](x, t) = v](x], t]) = v](P]) is

Bto
such that x, € 3B . Then AV](P]) > 0, for if not, there exists a
region R CB (with the interior sphere property), such that x, € 3R

and AV](X, t1) <0 for x€ R . The Minimum Principle in Appendix

o av(P]) o av](P]) 3u](P])
B implies TEE 0 , a contradiction to ok T 0
Therefore at P, , wu; (Py) <0 and au;(P,) >0 . Evaluating the
t
partial differential equation at P] yields the same result as the
a
one for the Dirichlet problem, u,(P,) > 20 If
2V 1 3,9

gax u2(x, t) = UZ(XZ’ t2) = u2(P2) is such that Xo € B , we reach
to
a contradiction. Thus assume Xo € 3B , which implies AUZ(PZ) <0.
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If Auz(Pz) > 0 , there exists a region R C B (with the interior
sphere property), such that X € 3R and Auz(x, tz) ;UO for

x € R . The Maximum Principle in Appendix B implies —Z (P,) > 0 ,
contradicting the boundary conditions. Thus at P, , aEzt(PZ) >0
and Auz(Pz) < 0 . The partial differential equation evaluated at

P, yields a contradiction. Hence for the Neumann problem, u](PO) >0.

2
For the case UZ(PO) = 0 , define

v2(x, t) = uz(x, t) + e(t - tO) .

Assume € > 0 is sufficiently small and positive so that the minimum
of Vo does not occur on B x {0} nor on 3B x [O, to] in the case

of Dirichlet boundary conditions. Also assume 0 < ¢ < le , where
0

The proof proceeds in a similar manner to the

a2 [azo ) a10]
32 1 M
case U1(P0) 0 and a contradiction is reached.

1.
k

Therefore we have shown ty == and ui(x, t)>0, i=1,2
for x€B and t>0. /

Theorems 3.8 and 3.10 imply solutions to (3.7) are positive and
bounded.

COROLLARY 3.13. Assume a classical solution, ui(x, t), i=1, 2,

exists to system (3.7). If

250
(1) 0<o,(x) <2, x€B,i=1,2,
a, aj, all
(i) 12 . 10 < 11
42 3P0 I
and in addition for Dirichlet boundary conditions,

30
a ii
then 0 < u,(x, t) < 0 , i=1,2.
1 344
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The conditions prescribed in Corollary 3.13 correspond to a
stable feasible equilibrium for two-species Lotka-Volterra competition.
If the initial and boundary conditions lie in the hatched region of
the Uy = Uy plane in Figure 4, then the solution remains there for
all time; the region is invariant.

If a classical solution exists for t > 0 to (3.7), then under
the assumptions of Corollary 3.13, the system has finite time per-
sistence - i.e., j ui(x, t)dx>0, i=1,2, for 0<tc<w=,

For nonnegative c]azsical solutions to the Dirichlet problem, finite

time persistence is an inherent assumption in the hypotheses of

Theorem 3.10 and Corollary 3.13, since f ui(x, t)Jdx >0, i=1, 2

for 0 <t <= follows from the continuiEy assumptions on u . Con-
ditions for system persistence for infinite time, 1limsup J ui(x, t)dx > 0,
have not been determined. o °

Consider system (3.7) for n = 1, the logistic model with biased

diffusion,

up = ulayy - ajy ul +Duau; x€ B, t>0,
(3.14)  u(x, 0) = ¢(x) 5 x €8,

u=f(x, t) or %%—= 0; x€38, t>0.
Applying some of the preceding theorems to (3.14), we find that positive
classical solutions are unique (Theorem 3.2) and nonnegative classical
solutions are bounded (Theorem 3.8). The additional assumptions

reaquired for positivity in Theorem 3.10 are not needed for the logistic

model.
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Solutions to (3.7) remain in the hatched region.
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THEOREM 3.15. Assume u(x, t) is a classical solution to (3.14).

If
(i) ¢(x)>0, x€B

and in addition for Dirichlet boundary conditions,
(i) f(x, t) >0, x€3B, t>0,

then u(x, t) > 0.

PROOF. Define t, = l.u.b.{tfu(x, t) >0, x€B, t>0}.

0
If ty <=, there exists a point P = (XO’ to) such that u(PO) =0.

Define
V(X, t) = U(X, t) + E(t = to) s

where € > 0 1is sufficiently small and positive so that the minimum

of v does not occur on B x {0} nor on @B x [0, t0] in the case

a
of Dirichlet boundary conditions. Also assume 0 < e < t]g
01
Then min v(x, t) = v(x], t1) = v(P]) <0.
By
0

Consider the solution, u(x, t) , to the Dirichlet problem. Then
P, € B x (0, to] . vt(P]) <0, and AV(P]) > 0 which imoly
ut(P]) < -e and AU(P]) >0 . The choice of ¢ and v imply

u(Py) < ety - t))

[T}
-
o

(to - t])

or



10

a
0 < u(Py) 5_519
11
Evaluate the partial differential eaquation at P] to arrive at a

contradiction,
0> u, = ula, - ajq ul + Dusu > 0 .

Therefore u(P]) >0 and t The conclusion of the theorem

0 ® ,
holds for the Dirichlet problem.
Consider the solution, u(x, t), to the Neumann problem. If
Xy € B we obtain a contradiction by following the same argument
as in the Dirichlet problem. Therefore assume X € 3B . Then

av(Py) > 0, since if not, there exists a region R CB (with the

interior sphere property) such that Xy € 3R and av(x, t]) <0

av{P,)

for x € R . The Minimum Principle in Appendix B implies 3 LA 0,
‘ av(P]) au(P])

which contradicts the boundary conditions, since 3 = 3 =0.

At P, a V(P}) <0, vi(Py) <0, and av(Py) > 0 which imply
u(Py) i#’_, u(Py) < -¢ , and au(P;) > 0 . The partial differential
equation evaluated at P, yields a contradiction. Therefore u(P]) >0
and t0 = o , The desired result is obtained for the Neumann problem. /
Theorem 3.15 implies finite time persistence for classical so-
lutions to (3.14).
There is little known about the predator-prey biased diffusion
model, except that solutions are unique. Ve discuss the predator-prey

model in connection with directed diffusion in the next section.
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The remaining type of Lotka-Volterra interaction is mutualism.

In mutualistic systems with biased diffusion solutions exhibit the

same type of behavior as without diffusion.

For small initial and

boundary conditions system extinction occurs and for large initial

and boundary conditions solutions remain large.

system is formulated below:

The obligate mutualistic

n

uit=ui[-a1.0+ i] 35 uj]+D1'u1'Au1'; xXE€EB,t>0,

J#i
(3.16)  u;(x, 0) =9¢.(x); x€B,
Y
=fi(x,t) or =—L=0; x€B, t>0

for i =1,..., n, where the parameters 30 aij , and Di are
positive.

THEOREM 3.17. Assume a classical solution,

exists to (3.16). If
(1) ¢;(x) > max { JO} ,
AFANERN R
and in addition for Dirichlet boundary conditions,
(i) f (x, t) > max{;—g} s
J#i

XE€EB,i=1,...,n

XE€EB, 0<t<w, i

then u, (x, t) > max {31—} s, i =1,..., N0 .
j#i i

PROOF. Let o be any positive number such that

==} and min

min ¢.i(x) > a .]1 an[o’w]

A{x,

u(x, t) = [u;(x, t)],

1,...,n,

t) > ay > max{;i—} .
J#i
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We will show ui(x, t) > a; . Define ty = l.u.b.{tlui(x, t) > oy

x€B,t>20, i=1,...,n}. Assume tj <. Then there exists

a point P0 = (xo, to) such that ui(PO) P for some i .

Consider the solution, u(x, t) , to the Dirichlet problem. The
minimum of u; on B x [0, to] occurs at P , where x, €B and
ty > 0 because of assumptions (i) and (ii) and the definition of t0 .
At Py s ui(PO) =, uit(PO) <0, and Aui(PO)'i 0 . Evaluate

the partial differential equation for u; at P0 , then

n
0 3_u1t = “i['aio + jil a4 uj] + D, eau;
J#i
or
c n
0> I .E aij uj] .
Jj=1
J#i
3o, . 240
The definition of t; implies uj(PO) > a4 max{==} > —= Thus
k#i “kJ ij

we obtain a contradiction,

n
0> [-a;5+ I agy aj] >0.
Jj=1
J#i
Therefore t0 = » and the desired conclusion foliows for the Dirichlet

problem,

a.
(3.18)  u(x, t) > a; > max{;ﬁ} . i=1,....n.
i#i 2
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FIGURE 5

Solutions to (3.16) remain in the hatched region.
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and tg > 0 because of assumptions (i) and (ii) and the definition

of to . At P0 R ui(PO) = Bs s uit(PO) >0, and A”i(PO) <0.
Evaluate the partial differential equation for uj at P0 , then
n
0 <u; =8i[-a;9+ Ioay; uj] + D, 8, auy
t J-]
J#
or
n
0<[-a50+ T a;5u5l
J=1
J#i

a a.
nll min {ako}_g nll a10 .
k#i  “kJ iJ

The definition of t; implies ”j(PO) < 8y <

n
J#i
The above contradiction establiskes the desired conclusion for the

Dirichlet problem,
ui(x, t) < By » 1=1,...,n.

Consider the solution, u(x, t) , to the Neumann problem. The
only case we need to consider is when X0 € 3B , since otherwise the
proof is the same as for Dirichlet boundarv conditions. Therefore
assume the maximum of ui(x, t) occurs at Py » vhere x, € 3B . By

annlying the Maximum Principle we can show :ui(Po) <0 . Also
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ui(PO) = 8; and uit(PO) > 0 . The partial differential equation
for u; evaluated at PO yields a contradiction. The conclusion
of the theorem holds for the Neumann problem. /

As a consequence of Theorem 3.19, we can show system extinc-
tion occurs for positive classical solutions to (3.16).

THEOREM 3.20. Assume a positive classical solution,

u(x, t) = [ui(x, t)] exists to (3.16) for the homogeneous Dirichlet
problem and the Neumann problem. (By a positive solution we mean
u(x, t) >0 on B x [0, »)). If the initial conditions satisfy
hypothesis (i) of Theorem 3.19, then system (3.16) is of extinction

type - i.e., 1lim I u(x, t)dx = 0 .
B

t4

PROOF. Integrate the partial differential equations for uj

over the domain B . We have

(3.21) 4y, dx = -a f u, dx + g a (
y dt Jg i i0 jp i ij )

Apply Green's identity to the last integral on the right side
of (3.21),

Hypothesis (i) of Theorem 3.19 implies uj(x, t) < Bj
a
nll min {EKQ} . Thus we obtain
k#i  “kj

<
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a;. 8] I u.dx < -e f u, dx ,
. B |

d_ -
at [B uj dx < [-a;q + Jg i

. 0 13
—to

-

)

<

J
J

where ¢ > 0 . The above differential inequality implies

1im I ui(x, t)dx = 0 . The conclusion of the theorem has been estab-
B

to=

Tished. /
Solutions tend to the origin if the initial conditions lie in

the hatched region of Figure 5b); the region is invariant. Since

system extinction occurs for system (3.16), independent of any assump-

tions on the parameters, persistence is not possible. e can do the

same type of analysis for another mutualistic system to show system extinc-

tion occurs and to show the solutinns are large if the initial and boundary

conditions are large. Ve state the theorem, withnut giving its proof.

THEOREM 3.22. Assume a positive classical solution, ui(x, t),

i=1,2, exists to the initial boundary value problem

= uplagg - agy up + gy upd + 0y Uy Ay
;s XEB,t>0,
= upl-ayp + 2y upl + D, uysu,
(3.23)
u'i(x’ 0) = ¢1(X) 7 XE€B,

au

= i_n.
u; = fi(x, t) or rraie 0; x€3B, t>0

for i =1, 2, where all the parameters are assumed to be positive.



(b)

If
(1) & (x) > and ¢,(x) >0, x €8,
a a
1 %2

and in addition for Dirichlet boundary conditions,

a
(111) f,(x, t) > 22 and Fplx, £) >0, x 2B, 0
21

th 420
en U](xa t) >a2] and u2(x, t) >0.
If
d d d -a d
20 11 320 ~ %10 21 -
(1) ¢,(x) > and ¢,(x) > , XEB
17 Ay 2 3231
d a
(1) 72< 2,
1n

and in addition for Dirichlet boundary conditions,
a1 320 " 10 %2

118

t<=,

?

. 320
(iii) f](x, t) > and f2(x, t) >

a2 312 3

xE€BW, 0<t <=,

2

a11 320 - 210 %21

320
then u1(x, t) > 31 and uz(x, t) > 317 591
(c) If
(1) ¢q(x) < ;%% and  ¢,(x) < L azg]; :;? 2
(1) ;lg < 220 ,
1 21
and in addition for Dirichlet boundary conditions,

a

x€E€B,

a1y 30 ~ 210 0

cas 20
(iii) fq(x, t) < = and f,(x, t) <
1 P 2 PP

X € 3B , t>0,

2

311 220 ~ 10 %21

a
20
then u.(x, t) < == and u,(x, t) <
! 371 2 217 3
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In fact, a stronger result holds for initial conditions satisfying
Theorem 3.22(c) for the Neumann problem and homogeneous Dirichlet
problem (3.23). Extinction occurs if the hypotheses (i) and (ii)
hold in Theorem 3.22(c) . Graphs of the uy - U, plane corre-
sponding to parts (a), (b), and (c) of Theorem 3.22 are given in
Figure 6a) - c) . The hatched regions are invariant,

We conclude this section by discussing an interesting property
about strongly persistent solutions to the Neumann biased diffusion
model. A1l spatial heterogeneities are damped for large time;
solutions become spatially independent for large time. A precise
statement of this result follows.

THEOREM 3.24. Consider the initial boundary value problem ,

uit = fi(up,eesu)) +Duduy 3 x€B, t>0,

(3.25) ui(x, 0) = ¢i(x) i XEB,

ou.
_1=0

; X€3B, t>0
an

for i =1,..., n, where Di is a positive constant. If

(1) min{D;}
1

d is sufficiently large
and

(i) 5up(Hvufﬂm} =m is bounded,
u
then every nositive classical solution u(x, t) = [ui(x, t)] to (3.25)

with property

(iii) liminf ui(x, t) >e, >0 for almost every x €8B ,
tow 1

satisfies 1lim [B Ivulzdx =0 .

1o
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Solutions to (3.23) remain in hatched region.
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J IVu|2 dx = I (vu, v} dx .
B B

Then

$(t) I (9u, VUt?dx = J (vu, v(f + Du au) dx ,
B B

where f + Du Au = [fi + Diui Aui]?=1 . Apply Green's identity to

the above equation.
v(t) = J (9u, v,f - v dx - I DulAuIzdx
B B
2 R 2
<m |u|® dx - d min [ei} lau|® dx
B i B
Lemma B in Appendix B implies

Y(t) <m [ |vu|2dx - d min {e;} A [ }Vul2 dx ,
B i B8

where A is the smallest positive eigenvalue of -A with homogeneous

Neumann boundary conditions on B . Thus

(3.26)  $(t) < 2[m - dr min {e;3] () .
1

If d is sufficiently large, then m -dx min{e,} is negative and
i

inequality (3.26) implies 1lim y(t) = lim-J IVu}2 dx = 0. /
B

to toe

121
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Theorem 3.24 is similar to the result for random diffusion as
proved by Murray (1977). He proved that "if the diffusion is suf-
ficiently strong all spatial inhomogeneities are smoothed out"

(Murray, 1977). A Lotka-Volterra competitive system satisfies
condition (ii). Therefore if diffusion is sufficiently large, a
strongly persistent competitive system will become spatially homo-
geneous for large time. Biased diffusion has little effect on the
system.

We have shown that competitive systems with biased diffusion
have solutions which are positive and bounded and the system is per-
sistent in finite time. Persistence criteria for the predator-prey
system with biased diffusion have not been determined. The mutualistic
system (3.16) is of extinction type; there exists initial conditions
such that solutions tend to zero. Next we analyze the effect of directed

diffusion on Lotka-Volterra systems.

4. Directed Diffusicn

The directed diffusion model without biological growth has the
following form: u; =D div(uvu) . Directed diffusion was formulated
from first principles by Gurney and Nisbet (1975) and discussed in
Chapter II. Species move from high to low population densities.

We study a Lotka-Volterra system with directed diffusion on a
bounded domain B(C R™) with a sufficiently smooth boundary (such
that the Divergence Theorem holds) with either Dirichlet or Neumann
boundary conditions. The domain B satisfies the interior sphere

conditicn.
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The existence of nonnegative solutions for system (4.1) is not
known. However we 3ive an example of a Cauchy problem with directed
diffusion, where existence has been established. The general Lotka-
Volterra model with directed diffusion is
n
-

u. = ui[ai0 + T

a, .
i, jep

; uj] + D, div(ui Vui) ; XEB,t>0,

(4.1) u; (x, 0) = ¢.(x) 5 x€B,

3u
u; = fi(x, t) oor- —=0; x€3B, t>0

i
an
for i=1,..., n, where Di is a positive parameter. System (4.1)
represents a degenerate parabolic system for nonnegative solutions.

The following parabolic Cauchy problem has been studied by Gurtin

and MacCamy (1977),

u, = ru + (u%)

t XER ,t>0,

XX;
(4.2)

u(x, 0) = ¢(x) 3 x€R ,

where a > 1 . The differential equation represents directed diffusion
for o« =2 . The existence of a weak solution to (4.2) has been
established. If ¢ 1is a nonnegative, bounded, Lipschitz continuous
function, there exists a unique weak solution to (4.2) which is clas-
sical at any point where u(x, t) is positive. In addition, if the
initial condition, ¢ , is positive on a bounded interval and zero

elsewhere, then the solution, u , satisfies
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<0, E](t) < X< gz(x)
u(x, t)

=0 , elsewhere,

where gl(t) and gz(t) are nonincreasing and nondecreasing con-
tinuous curves, respectively.
The biological reaction mechanism of (4.2) represents exponential
growth or decay. If r >0, then 1lim £.(t) = and
t-mo.I -'-'D,'i=2

if r <0, then 1lim gi(t) = c; , where Ici[ < » , This result

too

contrasts with the behavior of the familiar parabolic Cauchy problem,

u, = ru +DAbw;, xXE€EPR, t>0,

u(x, 0) = ¢(x) 5 x€R ,

where waves are propagated with infinite speed.

As illustrated in the simple exponential model, (4.2), directed
diffusion affects system behavior differently than random diffusion.
In the remainder of this section the effect of directed diffusion on
Lotka-Volterra systems of the type (4.1) is analyzed. Unicueness,
positivity, boundedness, extinction, and persistence of classical
solutions are discussed. Many of the results for biased diffusion are
applicable to directed diffusion since the proofs for both models
are similar.

Positive classical solutions to (4.1) are unique.
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THEOREM 4.3. Every positive classical solution, u(x, t) =

[ui(x, t)], is unique if ¢,(x) >0 for x€B,i=1,...,n.

PROOF. The proof is similar to the proof of Theorem 3.2. /

A weak persistence result is valid for Lotka-Volterra systems
provided some 3o > 0 . This is proved in Theorem 4.4.

THEOREM 4.4. Assume a nonnegative classical solution,
u(x, t) = [ui(x, t)] , exists to (4.1) for the Neumann problem or
the homogeneous Dirichlet problem. If 3 > 0 for some k , then
either

(i) limsup j uk(x, t)dx > 0
to B
or
(i) Vimsup Hui(-, t)I_ >0 for some i .

tox

PROOF. Suppose the conclusion is false, 1lim j uk(x, t)dx = 0
B

tox

and Tim Hui(-, t)llm =0 for i=1,..., n. Consider f uk(x, t)dx
B

o

= j Uy dx . As a consequence of the Divergence Theorem, we obtain
B

[eX[-%
ot

n
u dx =a j u dx + & a,. ( u, u, dx .

Holders inequality implies

nm~Mm33

d
dt JB Uk Xz JB Ulagg + I 3y hlagg) Tus(-, )l Jdx

Jj=1
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vhere h(akj) = . Choose T such that t>T im-
0, ak.j > 0

a
. k0 o
plies Iuj( » Bl < |2n a; — for j=1,...,n. For t>T,

which implies 1lim j Uy dx = « . Hence this contradiction establishes
t+ /B

the conclusion of the theorem. /
Theorem 4.4 can be applied to competitive, predator-prey, and

some mutualistic systems. In these systems there exist at least one

species with positive intrinsic growth rate, a0 - Complete extin-

ction cannot occur in the sense of 1lim "ui(-, t)I_ =0 for

too

i=1,..., n; the system has weak component persistence.
Theorem 4.4 can be applied to any diffusion model with Lotka-
Volterra interaction terms in which the diffusion term upon inte-

gration over B is nonnegative. The theorem does not apply to

au

i 2
. . . . _ 1 - . . .
biased diffusion, since JB Dyu; duy dx = D u; T !aB IB D1IVU1’ dx

We now specialize to Lotka-Volterra competition. The initial
boundary value problem is
n

u, = u.[ai0 - I a,.

. ; & j uj] + Di div(ui vui); xX€B,t>0,

(4-5) ui(xa 0) = ¢i(x) i X€B,

du.

= 1 _ .
u; = fi(x, t) or T ; X€3B, t>0
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for i=1,..., n, where 350 » a..

ij? and Di are positive

parameters.
Nonnegative classical solutions to (4.5) are bounded and posi-
tive under certain restrictions.
THEOREM 4.6. Every nonnegative classical solution, u(x, t) = [ui(x, t)],
to (4.5) is bounded such that for the Neumann problem B C R and
(i) ¢i(x) is bounded
and in addition for Dirichlet boundary conditions,
(i) fi(x, t) 1is bounded.
PROQF. The proof is similar to the proof of Theorem 3.8. /
THEOREM 4.7. Assume a classical solution, ui(x, t) =1, 2, exists
to (4.5) such that for the Neumann problem BC R . If
(i) 0<¢i(x)<::+? , XEB, i=1,2,
(1) :12 . :10 g :11
22 20 21

*

and in additinn for Dirichlet boundary conditions,

a.
(111) 0<f(x,t) <22, x€B, 0<t<m, i=1,2,
! 355
0
then 0 < ui(x, t) 3o o i=1,2.

ii
PROOF. The proof is similar to the nroof of Theorem 3.10. /

Under the given restrictions of Theorem 4.7, solutions have
finite time persistence. We investigate persistence for infinite time
next. First, we prove two lemmas.

LEMMA 4.8. If u(x, t)>0, x€B, t>0, 1lim j u(x, t) dx = 0,
B

t

and j dx = |B] < =, then 1lim [ n u(x, t) dx = - ,
B t+o JB



128

PROOF. There exists a number Nn for every integer n such

that t 3-Nn implies

(4.9) jB u(x, t)dx < 17 .

n

For t fixed, define
A(t) = {x]ulx, t) > %} and Aﬁ(t) = {x]u(x, t) < %}
- c _ ¢
Then B = An(t) U An(t) and @ = An(t) N An(t) .

Suppose t Z-Nn and n is sufficiently large, then apply
inequality (4.9),

> l = l
. jB u(x, t)dx> JAn(t) Lac=La(e)] .

=|‘\>l —

Thus for t > Nn ,

1

c 1
- and [AS(t)| > [B] - => 0.

A, ()] <
Let M <0 be given. If t 3-Nn , then the above inequalities imply

J In u(x, t) dx = f In u(x, t)dx + j n u(x, t)dx
B A, (t) A:(t)

< I u(x, t)dx + j In %-dx
A(t) AC(t)
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u(x, t)dx + [|8] - %J In %

<

S——
(=)

1 1 1
<— +[IB] -5l n .
n
If n 1is sufficiently large,
J In u(x, t)dx <M .
B

It follows that 1lim j In u(x, t)dx = -» . /
B

o
LEMMA 4.10. Assume V(t) = V(u](t),..., un(t)) = V(u(t)) is

a Lyapunov function for the ordinary differential equations

du; .
i fi(u) , T=1,...,n.
The function V is positive definite on R : = {[ui]?=1|”i >0,

i=1,...,n} and V=0 if and only if u = u*= constant. Also

n

V(t) is negative semi-definite (negative definite) on R _ . Assume

further that the reaction-diffusion system

u, = f.(u) + div(D,;(x, t, u) vu.) ; x€B, t>0,
i i i i

(4.11) ui(x, 0) = ¢i(x) ;. XEB,

ou,

- ilg.
Di(x, t,u) =0 or 5 0; x€3B, t>0

n

has a positive classical solution, u(x, t) = [ui(x, t)]1=1 .
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2 2
1f 2550 and 2-=0, i7j for u€R], then
T %75

i
there exists a functional V(t) = J V(u(x, t))dx for system (4.11)
B

with the following two properties:
(i) V(t) 1is positive definite
and
(i) V(t) is negative semi-definite (negative definite) on
IRE , provided Di(x, t, u) >0 for almost every x € 8B .
PROOF. The functional V(t) is positive definite since
V(u(x, t)) 1is positive definite for u € H?Q . Property (i) is
satisfied.

We compute V(t) deleting arguments for simplicity of notation.

V(t)

n
—
@

<< .

a

x

n n
3V WL,
= 3 [ — f.(u) dx + I J — div(D, vu,)dx
j=1 /g 3Y; 1 i=1 /g Y% L
=1+, ,

where I] and 12 denote the first and second summations, respectively.
The summation I] <0 if V 1is negative semi-definite and Iy < 0 if

V is negative definite. Apply Green's identity to I2 .
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-2__3" Eﬂil_
2 i=1 Zau,i ian '3B

—
|
N o3
—
—
@
o
P
c
<
~—~
Q
c
A
a
x

n 2
3V 2
-Z[ D.-—2-|Vu.[ dx ,
j=1'g ! aus 1

azv Ju

since =0, i#Jj, and 551 =0 or Di(x, t,u)=0

for x € 3B . The integrands in 12 are nonnegative, hence the
result follows, 7'5_0(< 0) . /

The following theorem is a persistence result for two-species
competition.

THEOREM 4.12. Assume a positive classical solution, ui(x, t) ,

i=1, 2, exists to the Neumann problem or homogeneous Dirichlet
problem (4.5). (By a positive solution, we mean ui(x, t) >0,

x€B, t>0). If

a a d
12 %10 0
d22 %0 A

]

then the system is persistent - i.e., limsup J ui(x, t)dx > 0 ,
B

to

i=1,2.
PROOF. Consider the function

u u
V(t) = a21[u] - u¥ - uy n ;%J + a]z[u2 - u§ - u} In G%J .
1

The function V(t) is a Lyapunov function for Lotka-Volterra two-
d70d0, = 87,4 d,ndq7 = 89nd
* = 10722 12°20 - 20711 10721

species competition, where u3 11322 = 819397 and uj 3193 - 312371
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(Goh, 1977). Lemma 4.10 implies the functional V(t) = J V(u(x, t))dx
B

32y 3%y
has properties (i) and (ii), since > > 0 and —=0, i# 3]
au’ 3u13uj
2 1
on R_+ .
Suppose 1lim [ ui(x, t)dx = 0 for some i . Lemma 4.8
t+ /B
implies Tlim [ In ui(x, t)dx = == . Thus 1im V(t) = += , a contra-
t+o JB t o

diction to property (ii) in Lemma 4.10, v(t) < 0. The desired

conclusion follows. /

Consider system (4.5) for n =1, the logistic model,

uy = u[a]o - ag u] + D div(uvu) ; x€B, t>0,
(4.13)  u(x, 0) = ¢(x) 5 x€8B,

us= f(x, t) or %% =0; x€aB, t>0.
The preceding theorems imply positive classical solutions are unique
(Theorem 4.3), nonnegative classical solutions are bounded (Theorem
4.€), and nonnegative classical solutions to the Neumann problem or
the homogeneous Dirichlet problem are weakly persistent (Theorem 4.4).
Positivity of solutions can be shown for (4.13) in a similar manner

to the logistic biased diffusion model.

THEOREM 4.14. Assume a classical solution exists to (4.13). If

(i) ¢(x) >0, x€B,
and in addition for Dirichlet boundary conditions ,
(ii) f(x, t) >0, x€3B, t>0,
then u(x, t) >0 .
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PROOF. The proof is similar to the proof of Theorem 3.15. /
Positivity of solutions can be shown to hold true for more

general equations, such as

u, = f(u) + ausu + BIVul2 ,

where o« and B are positive and f(u) >0 for 0 <u < K.

Theorem 4.14 implies finite time persistence, since
! u(x, t)dx >0 for 0 < t <o . The next cuestion nf interest
B
is persistence in infinite time. The Meumann oroblem and homogenenus

Dirichlet problem have persistent solutions.

THEOREM 4.15. Every positive classical solution, u(x, t),

to the Neumann problem or homogeneous Dirichlet problem (4.13) is

persistent - i.e., limsup j u(x, t)dx > 0 .
B

too

a a a;, u
PROOF. The function V(t) =u - 22 - 10 35 11— 45,
- N M 40
2%y _ 210
Lvapunov function for the logistic equation. Since — Ty > 0,
au a;q U
11
Leima 4.10 implies V(t) = J V(u(x, t))dx is positive and
. B
V(t) is negative.
Suppose 1im f u(x, t)dx = 0 , then Lemma 4.8 implies
too /B
1im I In u(x, t)dx = - =, Thus 1im V(t) = +» contradicting
t-= ’B £
V(t) <0 . Hence limsup J u(x, t)dx > 0 . /
te B

Theorem 4.15 presents a contrasting result to the one for the
random diffusion model. If the diffusion coefficient is sufficiently
large, random diffusion causes system extinction for the homogeneous

Dirichlet problem.
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The remaining types of interactions we discuss are predation

and mutualism. The predator-prey model is

u; = uqla;n = ay, U,] + Dy div(u,vuy) _
R U 2 Rt U N T
u2t = uz[-a20 *ay u]] + 02 d1v(u2Vu2)
(4.16)  uy(x, 0).= ¢.(x); x €8,
aui
u; = fi(x, t) or realke 0; xE€3B,t>0

for i =1, 2, where all the parameters are positive.
Positive solutions to (4.16) are unique (Theorem 4.3). We can
show persistence for positive solutions.

THECREM 4.17. Assume a positive classical solution, ui(x, t),

i=1, 2, exists to the Neumann problem and the homogeneous Dirichlet
problem (4.16). Then every solution is persistent - i.e.,

limsup f ui(x, t)dx >0, i=1,2.
B

£

PROOF. The function

d a a a a dq AU
(4.18)  V(t) = ap[u; - 620 - a2° n g‘ 10 10,, 122
21 22 20

™h2 2 0

Y
1+ a,0u, -

is a Lyapunov function for the Lotka-Volterra predator-prey system.
2 2

Since 23>0, i=1,2 and auaax =0, i#3j, Lenma 4.10
3”1 i)

implies V(t) = I V(u(x, t))dx is positive and V(t) is nonpositive.
B8
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Suppose lim j ui(x, t)dx = 0 for some i . Lemma 4.8 implies
B

to

1im j In ui(x, t)dx = -» . Thus 1lim V(t) = + » , contradicting
B

too to

V(t) <0. /

Density dependence included in the prey or predator equation
still implies system persistence because of the existence of a
Lyapunov function of the type (4.18).

Cirected or biased diffusion are probatly not biologically
meaningful types of movement for predation, since they assume the
predator and prey move independently. A more appropriate model is
mentioned in the next section.

Consider the mutualistic systems with directed diffusion,

u. = ui[-aio +

; Ioag. uj] + D, div(uiVui) i XEB,t>0,
t j
J

1 Y
1

.. 1 3

(4.19)  u;(x, 0) = ¢,(x) 5 x€B,

Ju,
- 1 _ .
u; = fi(x, t) or rread 0; x€3B, t>0

for i=1,..., n and

= u][a]0 - a5y Uy tay, u2] + D, div(u]vu])

c
—
[l

N ; G 9 9

(4.20)  u;(x, 0) = ¢.(x) ; x EB,

ou.

= 1 _ .
u; = fi(x, t) or o 0; Xx€3B,t>0
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for i =1, 2 and where all parameters are positive.
Systems (4.19) and (4.20) behave similarly to the mutualistic
systems without diffusion.

THEOREM 4.21. Assume a classical solution, u(x, t) = [ui(x, t)],

exists to (4.19). If

(i) (x) > max {51—& , X€EB, i=1,...,n,
JEi i
and in addition for Dirichlet boundary conditions,

(i1) fy(x, )>mﬂﬁoh xE€M, O<t<e, i=1,...,n,
J#1

then u; (x, t) > max{—l—} , i =1,.0.,n.
J#i

PROOF. The proof is similar to the proof of Theorem 3.17. /

In fact if conditions (i) and (ii) hold, solutions satisfy

inequality (3.18),

ui(x, t) > a> maxLAlr}
17 g Al

Using the above inequality it is easy to show that solutions to

(4.18) become-unbounded.

COROLLARY 4.22. Assume a classical solution, u(x, t) = [ui(x, t)],
exists to the Neumann problem (4.19) and hypothesis (i) holds in Theorem

4.21. Then lim JBui(x, t)dx = + o , i =1,..., n.

too

PROOF. Integrate the differential eauation over the domain B

and apply the Divergence Theorem,

n
.dx = - + .U,
IB u1dx a:0 IB u,dx Jz] a1J IB uluJ dx

J#i

[=N[=N
ct
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Qo
‘-f

n
. d -a.~ + L. Qe . d . d
JB u; dx > [ a, .51 a1J aJ] JB u; dx > e JB u; dx
#1

ol

where € > 0 . The inequality

d
T JB U, dx > ¢ JB u; dx ,

implies 1lim j “i(x’ t)dx = = . /
toeo

The following theorem shows that the solutions to the Neumann
problem and homogeneous Dirichlet problem (4.19) are of extinction

type.

THEOREM 4.23. Assume a positive classical solution,

u(x, t) = [ui(x, t)], exists to (4.19) for the Neumann problem with

B C R and for the homogeneous Dirichlet problem. If

then system (4.19) is of extinction tvoe - i.e., 1im j u(x, t)dx = €.
B

tow
PROOF. The proof follows in a similar manner to the proofs of
Theorem 3.19 and 3.20. /
Similar statements can be proved about system (4.20) as was
done for the corresponding biased diffusion system in Theorem 3.22.

The system (4.20) for the Neumann problemwith B € R and homogenecus

Dirichlet problem is of extinction type provided the initial conditions
2 a.
20 22

3 As a consequence of the
1 a2

are sufficiently small and



results in Theorem 3.22 (a) and (b) we can show sclutions to the

Neumann problem (4.20) become unbounded.
COROLLARY 4.24. Assume a classical solution, ui(x, t) ,

i=1, 2, exists to the Neumann problem (4.20). If

. as0 —
(i) ¢ (x) > 3 and ¢,(x) >0, x€B
2
and
a a
(1) 20, 220
ann A
or if
a Q77890 - @qAd
e e 20 11720 10721 =
(i11) ¢,(x) > and ¢,(x) > , XEB
1 a 2 a1, 3y
and
a a
(iv) _]g < ﬁ .
an Y

hold, then 1lim f uz(x, t)dx = = and 1limsup “u](-, t)l ==
B (-]

to tox
PROOF. If (i) and (ii) hold, it can be shown in a manner
similar to the proof of Theorem 3.17 that

uq(x, t) > > igg nd u,(x, t) > > 0
'l ] G] a 2 Y GZ .

a2

Integrate the differential equation for u, in (4.20) over the

domain B and apply the Divergence Theorem,

138



139

where ¢ > 0 . The inequality

dx

%F f uzfdx > € J u,
B B

implies 1im J uz(x, t)dx = »= . Do the same for the differential
B

too

equation of uy s

— u, dx = a u, dx - a uy dx + a u,u, dx
dt B 1 10 B 1 11 B 1 12 B 172

3_[a10 - a]lﬂu](., t)ﬂw] [B Uy dx + 2y, a1JB uzdx .

—
-+
[ =
p—
—
-
ct
~
8
A
=
A
8

, then

d
a fB up dx 3_[a]0 - Ay, M] fB Uy dx + a;, o4 JB uzdx

v

K+ap o I u, dx
B

where K = The

constant K js nonpositive.
2K + 1

. For
a2 N

Choose T such that for t>T, J u, dx >
B

t > T, we have

3 J
- u, dx > K +1>0.
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The last inequality implies 1lim [ u]dx = = , a contradiction to
t+ /B

Hu](~, t)I_ < = . Hence the desired conclusion follows.

In a similar manner it can be shown that the theorem follows
if (iii) and (iv) hold. /

Mutualistic systems (4.19) and (4.20) exhibit the same type of
behavior as the corresponding systems without diffusion. There exist
initial conditions which give rise to unbounded solutions and there
exist initial conditions whick imply system extinction.

We have showin that there exist persistence criteria for directed
diffusion models of competition and predation. However the mutualistic
system (4.19) is of extinction type independent of any assumptions on
the values of the parameters. Hence no persistence criteria exist
for (4.19).

This concludes the analysis for the directed diffusion models.
Many of the results here are analogous to the results for the spatially
homogeneous Lotka-Volterra models. OCf the directed diffusion models
discussed, the persistence and extinction behavior of the logistic model
is the one most completelv determined. Its behavior is discussed in

Chapter V, where its numerical solutinns are calculated.

5. Predator-Prey Diffusion
A spatial model appropriate to a predator-prey system was
formulated in Chapter II. Predators chase the prey and the prey

flee from the predators. The initial boundary value problem is
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= u,[ayn - a7, u,] + Dy div(u,vu,)
A L A e e L
= u2[—a20 * ay u]] - Dz div(uzvu])

(5.1) u;(x, 0) = ¢:(x) ; x €8,

u.,

u, = f.(x, t) or —L=0; x€aB, t>0
1 1 an

for i =1, 2 and where the parameters are positive.
For model (5.1) there exists a weak component persistence
result similar to Theorem 4.4.
THEQOREM 5.2. Assume a nonnegative classical solution, ui(x, t),

i=1, 2, exists to the Neumann problem and the homogeneous Dirichlet

problem (5.1). Then either 1limsup ﬂuz(-, t)Il_>0 or

to

limsup f u](x, t)dx > 0 .
B

to=

PROOF. Assume the conclusion is false, 1lim "”2(" t)_=0

too

and 1lim J u](x, t)dx = 0, Integrate the differential equation
B

t+o

for u, over the domain B and applv the Divergence Theorem,

d _ .
T ]B updx = agg jB uydx - ap, JB uy U, dx

410

For
412

Choose T such that t > T implies Huz(-, t)ll°° <

t>T
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Thus 1lim J u]dx = » which contradicts the original assumotion.
B

troo

The conclusion of the theorem follo-s. /

Theorem 5.2 implies either the ‘predators are weakly persistent
or the prev are persistent. System (5.1) is more difficult to
analyze due to the interactive nonlinear diffusion terms and hence
the results are slim.

This concludes the analysis for the continuous models. In
Chapter V, the persistence and extinction results for both the patch

and continuous models are discussed.
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CHAPTER V
DISCUSSIOM

The results for the patch and continuous models presented in
the foregoing chapters are varied and numerous. In this conclu-
ding chapter, the most interesting behavior exhibited by these
models is discussed. ‘e will compare and contrast solution beha-
vior for a patch versus a continuous model and a random versus a
biased or a directed diffusion model. Some of the results are
illustrated by comparing numerical solutions to the continuous
logistic model.

One important conseauence of the patch random diffusion models
is the possibility of extinction behavior for both competition
(Theorem 2.10, Chapter III) and predation (Theorem 2.23, Chapter III).
Extinction is due to the "openness" of the system. More individ-
ual members of the patches move out of the patches into the sur-
rounding pool than return. Ultimately the patches become
empty. Complete extinction cannot occur in Lotka-Volterra predation
or competition, however the same system with random diffusion can
lead to extinction.

A more surprising result is the possibility of predator sur-
vival without the prey (Theorem 2.25, Chapter III). In .this case
predator survival is due to an influx of predators from the sur-
rounding pool which replenishes the supply of predators dying out
because of lack of prey.

The above examples have shown that spatial heterogeneity can

increase the possibility of extinction. DeAngelis, Travis, and
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Post (1979) gave an alternative interpretation to the logistic two-
patch model. Using their interpretation, the opposite conclusion
is obtained. Spatial heterogeneity increases the likelihood of
persistence. (Consider the negative logistic equation,

=i . i
u u [a10 a;; u ],

where 5}0 <0 and aii >0 . If diffusion is added, then

= .
[}

LS I AT T T IO I T 2

irg .

u [aio a
Corollary 2.20 (Chapter III) implies system persistence provided
12 21 — =
sists due to the mutualistic action of random diffusion.

>0 . A species destined for extinction per-

The mutualistic random diffusion patch model is an example
of a system where spatial heterogeneity increases persistence of
the system. Without diffusion the system is of extinction type,
but with diffusion there exist sufficient conditions which imply
the system is stronaly persistent (Theorem 2.32, Chapter III).

There are many propositions and theorems, which give suffic-
jent conditions for weak and strong persistence for the patch
random diffusion models. The extensive research on the contin-
uous random diffusion models has also established sufficient
conditions for nersistence or extinction. A summary of the per-
sistence and extinction results for the Lotka-Volterra random

diffusion models is given in Table 1.
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TABLE 1
PERSISTENCE AND EXTINCTION IN RANDOM DIFFUSION
MODELS
Type Model __Persistence Extinction
WCP | CP WP SP P CE E
Competition + + + + + +
Patch Predation + + + + +
Mutualism + + + + + +
Competition s u e u i : ¥
Continuous|Predation * * ks ks ks 2* 2*
. 0 0 0 0 0 + +
Mutualism 0 0 0 0 0 T T

*with density dependence.

The various types of persistence and extinction given in

Table 1 have the following interpretations:

WCP = weak component persistence
CP = component persistence
WP = weak persistence
SP = strong persistence
P = system persistence

CE = component extinction
E = system extinction.
A plus, + , by a model implies that there exist sufficient
conditions for the indicated persistence or extinction. A zero,
0 , by a model implies that there do not exist sufficient conditions

for the indicated persistence or extinction. For the continuous
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models, the upper half of the box is for the Neumann problem and
the lower half of the box is for the homogeneous Dirichlet problem.
Table 1 indicates that there exist sufficient conditions which imply al-
most all of the types nf persistence and extinction for competition and
predation, except in the continuous case with homogeneous Dirichlet
boundary conditions. However the continuous obligate mutualistic
system is of extinction type, since no criteria exist which imply
persistence.

The patch biased diffusion model does not have such an adverse
effect on the system as random diffusion for a competitive or predator-
prey system. Complete extinction is not possible for competition
or predation; a species survives in each patch (Proposition 3.3,
Chapter III). Similarly in the patch directed diffusion models,
complete extinction cannot occur for competition or predation
(Proposition 4.3, Chapter III). However the obligate mutualistic
system with either biased or directed diffusion is of extinction
type (Theorems 3.33 and 4.24, Chapter III). In the continuous models,
the Neumann problem and homogeneous Dirichlet problem with directed
diffusion for competition and predation have a vieakly persistent
component (Theorem 4.4, Chapter IV). Competition and predation for
the directed diffusion system with Neumann or homogeneous Dirichlet
boundary conditions represent persistent systems provided their
homogeneous equilibria are stable (Theorems 4.12, 4.17, Chapter IV).
The obligate mutualistic system, however, is not persistent (Theorems
3.20, 4.23, Chapter IV). A summary of the persistence and extinction
results for both biased and directed diffusion is given in Tables

2 and 3.



PERSISTENCE AND EXTINCTION IN BIASED DIFFUSION

TABLE 2

147

MODELS
Persistence Extinction
Type Model
wce | Cp WP SP CE E
Competition + 0
Patch  Predation + 0
_Mutua]ism 0 0 0 + +
Competition
Continuous| Predation
Mutualism 8 g : I
TABLE 3
PERSISTENCE AND EXTINCTION IN DIRECTED DIFFUSION
MODELS
i Extinction
Type Mode] Persistence
WCP | CP WP SP P CE E
Competition + + + + 0
Patch Predation + + + 0
Mutualism 0 0 0 0 + +
+
Competition I : I ¥
+ 0 0
Continuous  Predation : : : n 0 0
. + +
Mutualism 8 g 8 T T
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In Chapter III we discussed a patch predator-prey model in which
the prey flees from the predator and the predator chases the preyv.
In contrast to the random diffusion model, the prey always persist
(Theorem 5.3, Chapter III). The number of prey leaving the patches
decreases when they sense their number is small in the patches. In
random diffusion this "sensing" does not occur. For this particular
system, persistence can be determined by one parameter (Theorem 5.5,
Chapter III). In the continuous analogue of the predator-prey patch
model it was shown that the system has a weakly persistent component
(Theorem 5.2, Chapter IV). Table 4 summarizes the persistence and

extinction results for predator-prey diffusion.

TABLE 4

PERSISTENCE AND EXTINCTION IN PREDATOR-PREY
DIFFUSICN MODELS

. Persistence Extinction
Type
WCP cp WP SP p CE E
Patch + + + 0
Continuous :

The significance of the type of diffusion becomes apparent in
the logistic population. Consider the patch models first. A logistic
population with biased or directed diffusion can have unbounded solu-
tions (Theorems 3.16 and 4.9 , Chapter III). Biased or directed
diffusion causes an undiffused asymptotically stable system to

exhibit unbounded growth. A logistic population with random diffusion
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has bounded solutions (Theorem 2.5, Chapter III). Whereas in the
random diffusion model extinction can occur (Theorem 2.19, Chapter
II1), a biased or directed diffusion model represents a strongly
persistent system (Theorems 3.15 and 4.8, Chapter III).

In the continuous models of the logistic population, we found
that the Meumann problem and the homogeneous Dirichlet problem with
directed diffusion are persistent systems (Theorem 4.15, Chanter
IV). Similarly the Neumann problem with random diffusion is
a persistent system. However the homogeneous Dirichlet problem
with random diffusion (Fisher's equation) can give rise to extinction,
provided the diffusion coefficient is sufficiently large. Regardless
of the magnitude of the diffusion coefficient, solutions to the directed
diffusion model persist, unlike the random diffusion model. Table 5

summarizes the results for the logistic model with diffusion.

TABLE 5

PERSISTENCE AND EXTINCTION IN THE LOGISTIC
MODEL WITH DIFFUSIOM

Type Diffusion Persistence Extinction
Wp Sp P E
Random + N . .
Patch Biased + N . 0
Directed + . . 0
Random + + + 2
Continuous Biased
o . + + 0
Directed | T . .
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Numerical solutions for the logistic equation with random,
biased, and directed diffusion, equations (1)-(3), were computed for
the homogeneous Dirichlet problem. A finite difference scheme was

used with At = .004 and &x = .1 .

up =ull -u]+u 5 0cx<1, t>0,
(1) u(x, 0) = uo(x) i 0<x<1,

u(0, t) =0=u(1,t); t>0.

vl -v]l+w 5 0<x<1, t>0,
(2) v(x, 0) = vo(x) ; 0<x<1,
0=v(l,t); t>0.

v(0, t)

w, = w[l - w] + (wwx)x ; 0<x<1, t>0,
(3) w(x, 0) = wo(x) ;3 D<x<1,
w0, t) =0=w(1,t); t>0.

For any of the initial conditions given in Figure 7, the random

diffusion solution, u , tended to zero. This will always occur for

the random diffusion model (1) due to the choice of parameters.
Leung (1980) showed that if

(4) a1 < DAys

then the solution to the problem,
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Initial conditions for tt(me)homt()gc)aneous Dirichlet problems
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up = uf@yg - agyu) + 0 U, » 0 x<1,t>0,
u(x, 0)

Un(X), 0< x< ] ’

u(o, t) =0=u(1,t) ,t>0,

tends to zero. The parameter M is the principal eigenvalue of

the problem,

2
d-u

+ AU
o’

n
o

u(o) = 0 =u(1) ,

which is given by A] = nz . Hence in our case 410 © 1, D=1

and A] = nz and inequality (4) holds. For the same initial con-
ditions, both the biased and directed diffusion solutions, v and
w , tended to heterogeneous equilibrium solutions (Figure 8). The
equilibrium solution to equation (2) is easy to calculate. The

equilibrium, V(x) , satisfies the boundary value problem,

V'(x) - v(x) = -1
V(O) =0 = V(]) ’

and the solution is given by the equation

2
V(x) = (=L e X+ (Bl e+ 1.
1-e

1 -e
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w(x, 10)

— ~

FIGURE 8
Equilibrium solutions to systems (2) and (3).
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Analytically we proved that the solution, w , to equation (3)
is persistent (Theorem 4.15, Chapter IV). Numerical work indicates
that this is also the case for equation (2).

We can determine in part the effect that different types of
diffusion might nhave on a reaction system by comparing the average
values of the pure diffusion systems, without the reaction mechanism.
This is done in the next proposition.

PROPOSITION 5.

(i) Let u, v, and w be nonnegative solutions to the initial

boundary value problems given below:

ug =Dy aus; x€ B, t>0, Vi =D, vav ; X €EB, t>0,

t

u(x, 0) = uy(x) ; x €8, v(x, 0) = vq(x) ; x €8,
au _ . vV _o .
In - 0; x€23B, t>0, N 0; x€3B ,t>0,
Wy = Dy diviwww) ; XE€B, t> 0,

w(x, 0) = wy(x) 5 x€B,

’?FO" XEMB, t>0.

Then IB [u(x, t) - v(x, t)]dx Z_JB[uo(x) - vo(x)]dx and

JB [w(x, t) - v(x, t)Jdx > JB [wo(x) - vo(x)]dx .

(ii) Let u, v, and w be nonnegative solutions to the initial

boundary value problems given below:
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uy = D] AUuU; XEB,t>0,v 02 vav; x€B , t >0,

t=
u(x, 0) = uo(x) i x €B, v(x, 0) = vo(x) i X€E€B,
u=0; x€B8, t>0, v=0; x€3B8,t>0,
Wy = 03 div(iwww) ; x€B, t>0,

w(x, 0) = wy(x) ; x€B,

w=0:; x€3B, t>0.

Then jB[w(x, t) - v(x, t)]dx 1'IB [wo(x) - vo(x)]dx and
IB [w(x, t) - u(x, t)]dx Z'jB [wo(x) - uo(x)]dx )

PROOF. The proof of (i) is an easy consequence of Green's

identity.

g? JB [U(X, t) = V(X, t)]dx IB[D] Au - Dz VAV]dX

au v 2
=p, &4 i -D0v— +0D [ |ov| “dx.
1 3n 28 2" 3n 3B 2

Thus

ajla
ct

[ [u(x, t) - v(x, t)]dx > 0
B
which implies

JB Cu(x, t) - v(x, t)ldx 3_[8 Cug(x) = vo(x)]dx .
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Similarly it follows that
I [w(x, t) - v(x, t)] dx 3_[ [wo(x) - vo(x)]dx .
B B

Part (ii) follows by applying Green's identities also. /
For the homogeneous Dirichlet problem the numerical results
agree with the proposition. Figure 8 shows that the average value
for w , the solution to the logistic directed diffusion model, domi-
nates that of u or v. The above results are also illustrated
by calculating the numerical solutions to the Neumann problems,
= ull -u] +u

u 3 0<x<1, t>0,

t XX
(6) u(x, 0) = uo(x) : 0<x<1,

ux(O, t) =0-= ux(l, t) ; t

v
o
-

= v[1 - v] + vv O<x<1, t>0,

Vt XX -7 =
(7) v(x, 0) = vo(x) ; 0<x<1,
Vx(o’ t) =0-= vx(1, t); t>0,

w, = w[l - w] + (wwx)x ; 0<x<1, t>0,

t
(8) w(x, 0) = wo(x) ; 0<x<1,

wx(O, t) =0-= wx(1, t) ; t>0.

For initial conditions below the eouilibrium value of one (Figure 9),
above the equilibrium value (Figure 10), and mixed, above and below

the equilibrium value (Figure 11), all solutions to (6) - (8) approach
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FIGURE 9
Initial conditions I - VI.
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FIGURE 10
Initial :onditions IV, V, VI.
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FIGURE 11
Initial conditions VII and VIII,
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the equilibrium value one. Solutions become spatially homogeneous
for large time. After 250 time steps with At = .004, the solutions
are nearly homogeneous or constant. The solutions to (6) - (8) are

given in Table 6 for the eight specified initial conditions.

TABLE 6

SOLUTIONS TO (6) - (8) FOR INITIAL
CONDITIONS I - VIII

Solutions
u(x, 1.) vix, 1.) wix, 1.)
Initial (Random) (Biased) (Directed)
Conditions
I .9709 .9358 . 9592
Il .9433 .9254 .9385
ITI . 9003 819 .881
IV 1.0456 1.0386 1.0389
v 1.0679 1.0583 1.0604
VI 1.1099 1.0568 1.0531
VII .9337 .842 .9120
VIII 1.0884 1.0276 1.05586

Since solutions converge to the equilibrium value one, Proposition
5 indicates that the biased diffusion solution should be furthest
from the ecuilibrium if solutions start below one (initial con-
ditions I - III). If solutions start above one (initial conditions
IV - VI), then the biased diffusion solution should be closest to
one. This is indeed the case as exemplified in Table 6, except

for initial condition VI. In terms of convergence to equilibrium,
the biased diffusion model converges the slowest of the three models

for small initial conditions and the fastest for large initial conditions.
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The presence of directed or biased diffusion in a system tends
to make the system more persistent. Directed motion or biased motion
bv themselves are more realistic types of transport mechanisms than
random diffusion for many biological populations. Probably a com-
bination of all three motions occurs most often in ecological systems.
We have discussed only four types of diffusion mechanisms. There
exist many other ways of formulating movement across space. For
example, an interactive type discussed by Mimura and Kawasaki (1980)
is called cross diffusion. It is described by the partial differential

equation,

uIt = A(u] u2) .

In addition to considering various types of diffusion mechanisms,
various types of reaction mechanisms need to be considered. Lotka-
Volterra dynamics are a simple first approximation. In the predator-
prey models we have made some generzlizations by assuming a satiation
effect for the oredators. Probably some of the same persistence
results hold for more general models.

This paper constitutes a beginning in the study of persistence
and extinction in spatially heterogeneous systems. The results of
this study have indicated that persistence and extinction can be
affected both positively and negatively by spatial heterogeneity

considerations.
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APPENDIX A
LOTKA-VOLTERRA EQUATIONS

The most widely used mathematical models describing ecological
interactions are the Lotka-Volterra equations. Lotka (1924) and

Volterra (1926) formulated the differential equations

(1) du;
T " Yilage t

n
£ a;,,u.], i=1,...,n
j=1 1 )

to describe different ecological interactions, where u; = ui(t) ,

i=1,..., n and 250 and aij s, i, =1,..., n are con-

stants. Equations (1) represent a linear approximation to the per
capita growth rate of the species u; %. ;;i .

The equations have various interpretalions depending on the
signs of the parameters 350 and aij . If a0 > 0 and aij <0
for i, j =1,..., n, then the equations represent competition,
since species uj have a negative effect on the growth rate of species
u; . If n=2, a > 0, 3,0 < 0, ayp < 0, a3 > 0, and
ai4 <0, i=1, 2, then the equations represent predation, where
up s the prey and u, the predator. If ajg < 0 and a5 > 0,i#3J,
is 3 =1,..., n, then the equations represent mutualism. The species
have a negative intrinsic growth rate (ai0 < 0) and depend on each
other for survival. These have been examples of pure competition,
predation, and mutualism. By assigning other values to the constants

a0 and aij , model (1) can represent a combination of the various

ecological interactions, competition, predation, and mutualism.
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APPENDIX B
COMPARISON AND MAXIMUM PRINCIPLES

The Comparison Principle, the Maximum Principle, and Lemma B
used in Chapter IV are stated. For a detailed presentation of their
respective proofs, the reader is referred elsewhere.

To apply the Comparison Principle, the comparison functions must
satisfy a mixed auasi-monotone property. It is defined below.

DEFINITION 1. Let u(t) = g(t, u) and u(to) =up where
n+1

g = [gj]2=1 € C[E, R"] and E 14s an open (t, u)-set in R

The function g(t, u) is said to possess a mixed quasi-monotone

property if the following conditions hold:
(1) gp(t, u) is nondecreasing in uj , J =1, 2,...5 k,
j # p , and nonincreasing in Uq 3
(i1) gq(t, u) 1is nonincreasing in up and nondecreasing in
u, s, J=k+1,k+2,...,n, j#a,

J
where p € {1, 2,..., k} and q€{k+ 1, k + 2,..., n} .

Comparison Principle

Let

(i) g€ C[E, R"]) , where E is an open (t, u)-set in R

(11) v, we Cllty tg+a), R"], (t, v(t)) and (t, w(t))
are in E for tE€ [to, ty * a) , and
(iii) g(t, u) possess a mixed quasi-monotone property.

Assume further that



170

Vp(to) < Wp(to) s Vq(to) > Wq(to)
and for t € (to, to + a) , the inequalities

\}p(t) < g(t, v(t))
\::q(t) > gy (t, v(t))
(2) ip(t) > g (t, w(t))
\.}q(t) < g4 (t, w(t))

are satisfied. Then

vp(t) < wy(t) and v (t) > w.(t)

for t € [to, to +a) .

Theré are several corollaries to the Comparison Principle which
are applicable to specific cases. They are stated below.

COROLLARY 3. Assume hypotheses (i) - (iii) hold. Let wu(t)
be any solution to u = g(t, u) existing on [to, to +a) such

that
v(to) = Uy = w(to)
If inequalities (2) hold with strict inequalities, then

vp(t) < up(t) < wp(t)

’

vq(t) > uq(t) > wq(t)

for t € (to, to +a) .
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COROLLARY 4. Assume hypotheses (i) and (ii) hold and g(t, u)
is quasi-monotone non-decreasing in u . Let u(t) be any solution to

u=g(t, u) existing on [to, to + a) such that
v(to) = ug = w(to) .
If the inequalities

Qp(t) < gp(t, v(t))
(5)
'.::p(t) > g (t, w(t))

hold for p=1, 2,..., n, then
v(t) < u(t) < w(t)

for t € (to, t, +a) .

0
COROLLARY 6. (Linear system) Let g(t, u) = Au , where

A = [aij] ijs an n x n constant matrix, and (ii) hold. Let u(t)

be any solution to u = Au such that v(to) =ug = w(to) . If

aij >0 for i # j and inequalities (5) hold for p=1, 2,..., n,

then .

v(t) < u(t) < w(t)

for t € (to, t0 +a) .
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The Comparison Principle and its corollaries are proved in

Differential and Integral Inequalities Theory and Applications,

Vol. 1, (Lakshmikantham and Leela, 1969).
LEMMA B. Let u be an H® function on B , where g—‘;= 0

on 3B , then

[ laul? dx > [ lou)? dx ,
B B

where A is the smallest positive eigenvalue of -A with homogeneous

Neumann boundary conditions on B .

For a proof of Lemma B the reader is referred to an article by
Conway, Hoff, and Smoller (1978).

DEFINITION 7. The operator

L (x) 52 : a
= z A.:(X) —————— + £ b (x) —

is said to be uniformly elliptic in a domain B if and only if there

exists a positive number u such that

n
£oa..(x) g:8; > w
ig=1 M

2
B

neea 3

.i

for all n-tuples of real numbers (g],..., sn) and all x in B .

Maximum (Minimum) Principle
satisfy the uniformly elliptic differential inequality

Let u(x)



n 2 n
3 u ou
Llul = £ a.(x) + ¢ b,(x) >0 (<0)

vith bounded coefficients in a domain B . Suppose u <M (> M)
in B and u =M at a boundary point P . Assume that P lies
on the boundary of a ball S in B . If u 1is continuous in

B UP and an outward directional derivative U exists at P,

an
then

au
H>0 (<0) at P

unless u =M .

The proof of the Maximum Principle can be found in Maximum
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Principles in Differential Equations (Protter and Weinberger, 1967).
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