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Abstract

Toxoplasma gondii is a parasite capable of causing diseases such as encephalitis, birth

defects, and abortion to infected hosts that uses a very unique life cycle to manipulate

the cell and immune systems. To investigate the mechanics of how the parasite

spreads within hosts, several related models are developed to study the within-host

dynamics of Toxoplasma gondii. Understanding the complicated methods of how

the parasite grows, dies, invades, replicates, and evades the host immune response

is the critical aim of this independent research. The processes of acute and chronic

infection are studied independently to understand the dynamics of the infection at

both stages, followed by an attempt to understand the entire duration of the infection

through one system. Finally, a probabilistic rule-based model is simulated within a

3D mesh representation of a mouse brain to visualize the infection spreading during

the acute and chronic phase. The results presented shed light onto the effects of the

immune response, cyst volume growth, and the dependence of multiple stages in the

dissemination of the parasite within a host.
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Chapter 1

Introduction

Toxoplasma gondii is a potentially deadly parasite capable of infecting mammals

and birds. The parasite is unique in that it uses the cat to divide sexually while

using all hosts to divide asexually. The most common means of transmission is

ingestion of oocysts released into the environment by felidae species, the parasites

definitive host, or by ingestion of the persistent bradyzoite cysts in animal tissues.

Following ingestion, parasites penetrate the host’s intestinal epithelium and undergo

a developmental switch to the rapidly replicating tachyzoite parasite stage, which is

then disseminated systemically. Disseminated toxoplasmosis is likely the result of a

few parasites that successfully penetrate across the intestinal barrier, evade mucosal

immunity including effector activity of recruited inflammatory monocytes[103, 51,

49]. The parasites are capable of converting between the stages of tachyzoites and

bradyzoites [47].

Each stage of parasite triggers a different immune response where the immune

response fights back against tachyzoite infected cells while bradyzoites trigger an

immune response unique from that of tachyzoites. From in vivo experiments, mice

that are in the chronic state who become immunosuppressed will exhibit an increased

invasion rate of parasites into host cells, indicating that the chronic state is regulated

by the immune response [60].
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Toxoplasma gondii is an important parasite because of the role it plays in human

health. The chronic infection rate of the parasite ranges from 20% in the US to

50% and higher in other countries [4]. Although the chronic infection state is

asymptomatic, hosts who develop an immune deficiency are capable of triggering

a very large secondary acute attack that is capable of serious illness or death.

Additionally, becoming infected with parasites while bearing a child in utero can

cause serious birth defects to the unborn child, up to and including abortion [4].

It is interesting to note that T. gondii plays a role in the behavior of human health

and behavior. Parasites that have infected the brain are capable of causing behavioral

changes in the host. The behavioral change of infected mice has been observed in

in vivo experiments that observed parasite-cat interactions [14, 71]. When mice are

infected with T. gondii, the mice are attracted to the cats urine, thus altering the

brain function of the mice [91, 134].

In this work, we aim to develop a better understanding of T. gondii because of

the role it plays in human health. By understanding how the parasite behaves using

mathematical and computational methods, we hope to be able to address some of the

lingering questions regarding T. gondii not explored experimentally.

The within-host dynamics of the parasite can be understood by breaking the

processes into separate parts before attempting to combine the processes into a single

effort. A model is developed to understand the biological processes that are undertook

while a host experiences an acute infection. Additionally, a model to describe the later

chronic infection of the host is developed to understand the biology while the host

typically exhibits very few symptoms caused by the parasite.

Once these two models are developed, the acute and chronic stages are combined

into a single mathematical model to describe the transition from the acute stage to

the chronic stage. This model provides insights into the role of the immune response

for the duration of the infection. Finally, the model developed for both stages is

transformed into a rule-based probabilistic algorithm to model the infection within

the brain. The computational model provides data output during the simulation
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Figure 1.1: Life Cycle of Toxoplasma gondii from [136].

along with the functionality of outputting the infection as 3D representations of the

brain.

The acute infection process is important to study because the most harm can be

done to the host during this stage. The acute infection features a large number of

parasites replicating and disseminating very quickly, causing a very rapid immune

response. If unchecked, the parasites could replicate in such a way to cause the host

to die. Additionally, an immune response can cause the host to develop immune

pathology. Thus, understanding the acute infection is very important.

Our hypothesis of the acute infection is that it may be possible for the parasites

to undergo various stages during the invasion process of the life-cycle. The testing

of the effects of the multiple stages of the parasitic infection and immune response

is performed by analyzing 16 different nested models to determine which model best

fits the available experimental data. Understanding these stages allows us to develop

a better understanding of the life cycle. Additionally, the overall fit of the model to
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the data gives evidence that the model is supported by the data, and thus allowing

us to claim support for the assumptions made in the model.

The answer to those questions are supported by a model that we are the first to

build using commonly understood models from cellular dynamic systems. The ODE

model we developed is unique in its application to T. gondii.

The chronic infection period of a Toxoplasma gondii infection typically is

asymptomatic to the host. However, there are interesting biological questions to

be answered during this process because a resurgence of the infection can be caused

by a compromised immune response. Thus, understanding how the immune response

and the dissemination of parasites occurs during the chronic state is important. There

are two questions that can be answered by modeling the chronic state of the parasitic

infection: 1) Do the assumptions we make in our model support the experimental

data for cyst-volume distributions, and 2) Can we differentiate the growth, death,

and bursting functions for the cyst distributions?

The assumptions we made about our model appear to be supported by the data

because the model was able to capture the behavior of the data. However, we could

not differentiate between the growth, death, and bursting functions, instead opting

for functions that combined the effects of each growth/removal function due to the

lack of identifiability for some parameters. It may be possible to differentiate between

these parameters given data at different time points in the infection.

The model that was developed is a model adapted from research done with other

biological phenomena, typically with regard to age of an individual and the biomass

of an individual (for example, Daphnia). However, we are the first to adapt this

model to T. gondii and examine different growth/death functions within the context

of within-host dynamics, specially examining the volume growth of cysts infected with

bradyzoites.

After examining the acute and chronic stages of the infection, the combined effects

of these two different stages acting on a single system are evaluated. Initially, the

intention of the within-host dynamics model was to explore the equilibrium points of
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the infection. Interestingly, the model demonstrated that the infection was capable of

persisting either with or without the immune response, despite the widely understood

belief that immuncompromised mice cannot survive an invasion of T gondii. Thus, it

may be possible for a nonvirulent parasite strain to invade an immunocompromised

host and the host will not die.

The within-host model attempts to link the parasitic invasion dynamics with the

host-cell population dynamics during chronic and acute stages of infection. This

complicated model is the first of its kind to be applied to T. gondii with regards

to incorporating stage-conversion, parasite invasion, and host-cell infection. The

introduction of a two-class system for bradyzoites is unique for classifying bradyzoites

as either cells ready to convert back to tachyzoites after invasion or bradyzoites that

will form cysts. This model answers novel questions regarding the 3 different fixed

points of the system and effect the immune response has (for example, one of the

diseased fixed points is absent of immune response, indicating that the parasite can

persist at low enough levels that the immune response is not needed to keep the

parasites in equilibrium).

Following the development of the the within-host dynamics model, there still

remained questions regarding the findings found in the chronic infection model. The

acute and within-host models do not account for size of infected host cells and there

was not a way to validate the chronic infection results. Thus, a discrete-time rule-

based simulation was created in C++ to simulate the interactions between cells,

parasites, and the immune response. This rule-based model was developed as a tool

to further understand the mechanisms of T. gondii infection.

The development of a cellular automata model for modeling and visualizing the

parasitic infection in a brain novel in that we are the first to develop this type of

model for this type of parasitic infection. Other models have been developed using

tumors to visualize replication of tumor cells that we borrowed some principles in

modeling from, although our model is significantly different because of the nature of
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the infection. The model allows us to display numerical and visual results to aid in

our discussions with biologists.

The model is capable of outputting the relative sizes of infected cysts, the variables

measured in the chronic infection model. In the course of developing this model,

we hypothesized three different assumptions for the method in which the parasites

replicate within cysts. By running the simulation using each of the three different

replication mechanisms, we develop support for the models generated during the

chronic infection.

As demonstrated, the research presented here is unique and novel, especially in

the application of models to the problem of T. gondii. The models answer novel

questions regarding the impact of the immune response, the role of replication within

cysts, the role of differentiated stages of parasites and immune response on the acute

infection state, and the exploration of the specific method of replication within the

cysts.
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Chapter 2

Literature Survey

2.1 Toxoplasma gondii

Toxoplasma gondii is a parasitoid that infects up to 20% of the US population

[4]. While the parasite does not typically cause death when an individual becomes

infected, those with deficient immune systems and unborn children may die from

contracting the parasite. The effect it has on humans makes this an important parasite

to study and monitor.

The between-host dynamics is a complicated cycle that exists between mammals

and birds. The parasite uses the feline to reproduce sexually. When the cat becomes

infected, it sheds oocysts, which contaminates the environment. These oocysts can

be ingested by mammals and birds which then become infected with the parasite[47].

Eating another organism that is infected can also infect the secondary host. Studying

the effects of asexual reproduction in secondary hosts has been performed biologically,

however, much work can still be done on reproducing the results of the life-cycle of

the parasite mathematically [77].

The within-host life cycle of a parasite starts out as a tachyzoite, which reproduces

asexually very quickly. The tachyzoites infect host cells, where they feed off of

the nutrients in the host to reproduce. Once the parasite replicate several times,
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the parasites will burst from the host cell and continue to infect other host cells.

Sometimes, the parasites will convert to a new stage of Toxoplasma known as a

bradyzoite. These parasites replicate very slowly and will eventually form a cyst

within a host cell (most often in muscle and brain tissue). The cysts are filled with a

few up to thousands of bradyzoites, and can remain alive for days even after a host

has died. The consumption of undercooked meat is one way to release a bradyzoite

cyst [4].

Once the host cell containing bradyzoite bursts, each bradyzoite can then re-

infect new host cells, thus completing the life cycle within the host. Tachyzoites

are rapidly dividing and responsible for the symptoms of acute infection whereas

the slowly replicating bradyzoites are located within tissue cysts, which protect the

parasite from the host immune system and make it inaccessible to drugs [47]. The

differentiation of tachyzoites into bradyzoites is a response to the onset of protective

immunity whereas the dormant bradyzoites are able to reconvert into tachyzoites to

cause fatal infection. Therefore, stage conversion between tachyzoites and bradyzoites

plays a pivotal role in the pathogenesis, transmission, persistence, and reactivation of

the disease.

Thy lytic cycle of T. gondii consist of the parasite entering a host cell, replicating,

and then lysing out of the host cell when the replicated parasites egress from the host

cell [19]. A parasitophorous vacuole (PV) is formed to allow parasites to replicate

within the host cell, while external stress factors may trigger egress of the parasites.

During early infection, the PV acts as a barrier to keep the parasites within the

host cell and to reduce the effect of the immune response [94]. Typically, the rapid,

cytolytic release of parasites lyses the host cell as the parasites break through the

parasitophorous vacuole membrane, the host cytoplasm, and finally the plasmalemma

[19]. T. gondii is unique from the viral lytic cycle in that the parasite is very active

during invasion (compared to bacteria and viruses) where the motility and unique

shape provide a very quick and precise invasion into a host cell [29]. Further, while the

parasite is undergoing the lytic cycle, it is possible for the parasite to spontaneously
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convert from tachyzoite to bradyzoite or vice-versa. A variety of external stress

factors, including an IFN-γ mediated immune response, are responsible for the stage-

conversion from tachyzoite to bradyzoite during early infection [121]. Eventually,

bradyzoites make up the majority of parasites found within a host.

There are qualitative observations of the size distributions of cysts found in brain

tissue. Isolated tissue cysts in several experiments ranged from 20 µm to 70 µm in

diameter [94]. The number of cysts found in the brains of an mouse infected with

the HIF strain of T. gondii ranged from 290 to 1380 and ranged from 10 to 70 µm

[15]. In that experiment, 80% of cysts were solitary while the other 20 % were found

in groups of two or larger. Further, it has been reported that as much as 92% of

the brain regions contained cysts in one such experiment [15]. The timing of the

steady-state typically occurs around 2 months while the number of cysts per brain

(and the copies of parasite DNA) peaked near 40-60 days [110].

Few comprehensive experiments regarding the size distribution of cysts during

chronic infection exist. There is anticipation of new experimental designs to more

effectively quantify the numbers and sizes of cysts in the brain through high-

throughput epifluorescence microscopy where the counting method is fully automated

[8]. Other attempts to quantify the number of cysts using photon emission imaging

to observe concentrations of cysts give insights into the total cyst load in the mouse,

but not the relative sizes of the cysts [40].

The steady-state dynamics of the parasite is controlled by the immune response.

Cysts can evade the immune response through the thick cyst walls [94]. T-cells

and IFN-γ are the main players in maintaining tachyzoite replication and preventing

reactivation of infection [129]. Reactivation occurs when the immune response is

compromised and does not suppress cyst development, causing a release of parasites

into the brain. It is unknown how frequently reactivation occurs, and experimental

evidence was not able to detect enough reactivation events to predict the frequency

of reactivation [131]. Reactivation by means of a secondary infection, as in the case

of a mouse previously infected with a non-virulent strain and later infected with a
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highly-virulent strain, is not a common occurrence, and thus a previous infection

provides some immunity from new infections [57].

Figure 2.1: Lytic Cycle of Toxoplasma gondii from [65].

There are differing opinions on the underlying processes that occur during chronic

infection of an infected host. It is unknown whether cysts form and remain in a cyst

form for nearly the life of host or if there is a constant dynamic process of bursting

cysts combined with invasion that has no net change in cyst formations in the host.

A well-developed model will be able to provide some insight into the question of cyst

formation. By developing a strong data-driven model for cyst formation, it may be

possible to develop better immunological treatment plans for immunocompromised

patients infected with chronic Toxoplasma gondii.

2.2 Modeling Techniques

In developing the mathematical frameworks for the different stages of the infection

(acute, chronic, and combined-stages), it became apparent that there is a need

to develop different techniques for each method. Therefore, each of the different
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modeling techniques are surveyed below. In addition, some of the technical needs of

applying these models to data are presented as well.

2.2.1 ODE Modeling

The phenomenon of parasites invading hosts and healthy host cells has been modeled

using mathematical models quite heavily [111, 70, 10]. The techniques of modeling

parasites on the within-host scale follow very similar parallels to the modeling

techniques of between-host modeling.

One of the best parallels to parasitic within-host modeling occurs through virus

dynamics modeling. For example, a model could be developed between target cells,

productively infected cells, uninfected cells that are refractory to infections, free virus,

and IFN to describe the flu[109]. In that paper, the authors use the above state

variables to find parameter matches to match experimental data. Another model

developed where target cells, free virions, and infected target cells are modeled as a

system [31, 21, 62].

To best illustrate the method of linearization of nonlinear ODE systems, the

classical paper by Anderson and May is reviewed [11]. In Anderson and May, they

propose a model for infectious disease modeling by introducing a dynamic “N”, the

total population. The host population was previously taken to be constant. They

begin by introducing the diversity of agents causing disease. There are two different

types: microparasites and macroparasites. Microparasites reproduce at much higher

rates within the host, and immunity is more likely for those who survive the initial

infection. The duration of the infection is typically short. Macroparasites have

much longer generation times and direct multiplication is non-existant or very slow.

Macroparasitic infections tend to be more of a persistent nature.

In the studies of mice populations studied by the researchers, mice are introduced

at a certain rate (A), in units of mice introduced per day. The total number of mice,

N = X + Y + Z, is not assumed to be some independently-set constant, but is set
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by the dynamics of the infection. The mortality rate of this model is given by b,

the natural mortality rate. Trivially, the disease-free population would equilibrate to

N∗ = A/b. The modeling equations then become:

dX

dt
= A− bX − βXY + γZ

dY

dt
= βXY − (b+ α + ν)Y

dZ

dt
= νY − (γ + b)Z

dN

dt
= A− bN − αY

where b is the natural death rate, γ is the immunity loss rate, α is the disease

death rate, ν is the infected recovery rate, and β is the transmission term which

incorporates interactions between susceptible and infected individuals [11].

The equations have a stable equilibrium solution if:

A/b > (α + b+ ν)/β

This type of linearization about a fixed point is surveyed heavily in Kot [96]. If

this condition is not met, the disease dies out and the population equilibrates to the

disease free stability point N∗. If the inequality is satisfied, the total population is

then depressed to:

N∗ =
A+D(α + b+ ν)/β

b+D

where D = α/[1 + ν/(b+ γ)].

These modeling equations were fit to data observed in experiments carried out

by researchers on the effects of mice. Too large of an α makes it impossible for a

disease to persist (since it is killing to population too rapidly to spread effectively)

while a small α would have very little effect on N∗. The author suggests that diseases

caused by microparasites are more likely to persist within, and cause severe reduction
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of, host populations with high birth (or immigration) rates; this phenomenon derives

essentially from the high inflow of susceptibles [11].

When considering a birth rate rather than an introduction rate, the system merely

change to:

dX

dt
= a(X + Y + Z)− bX − βXY + γZ

dY

dt
= βXY − (b+ α + ν)Y

dZ

dt
= νY − (γ + b)Z

dN

dt
= (a− b)N − αY

And a natural intrinsic growth rate is given to be r = a − b. The parameter

stability inequality is then given by:

α > r

[
1 +

ν

b+ γ

]

If this equation holds true, then the equilibrium point of the population is:

α(α + b+ ν)

β[α− r(1 + ν/(b+ γ))]

If the inequality is not true, the disease will grow exponentially (but necessarily

less that r):

ρ = [B2 − (b+ γ)(α− r) + rν]
1
2 −B

where B = 1
2
(α+ b+ν+γ− r). The asymptotic prevalence of the infection would

be y = Y/N → (r − ρ)/α.

If N is less than some value NT = (α+ b+ ν)/β then initially Y will decrease and

X will increase exponentially at rate r. However, once X exceeds NT , then Y will

increase, and the system will either converge to N∗ or N will grow at the slower rate

ρ, depending whether the inequality is satisfied.
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If the disease death rate is much higher than the intrinsic disease-free growth

rate, it is likely that prevalence settles to be small as to give a high probability for

stochastic fade out. Epidemics can occur when r > α if the disease does not regulate

the host population but merely slows its growth rate slightly. Infections of short

duration which induce lasting immunity will tend to exhibit epidemic patterns [11].

Of particular interest is the way they handle vertical transmission. A fraction

of births from the infected class are also infected. Therefore, the threshold host

population (minimum population for successful introduction of the disease) is given

by (α + b+ ν − fα)/β. The threshold is zero if fα > α + b+ ν.

Other work has been done to represent R0, the reproductive number for

Toxoplasma gondii. In this mouse transmission system, we assume that R0, the

reproductive number of disease, is a function of several biological phenomena. To

model this, we assume that R0 can be modeled for a system using a modified R0

operator:

R0 =
β

d+ α
(2.1)

where β is the predation rate of infected mice, d is the natural death rate of the mice,

and α is the parasitic-caused death rate of the mice caused by virulence [43, 41]. This

assumes that the next-generation operator for the diseased cat-mouse system would

be a function of cat predation on mice and virulence of the mice. The modeling of cats

and mice in a coupled ODE system has been observed before where the reproductive

number R0 has been calculated before [92, 93].

2.2.2 Partial Differential Equation Modeling

Some of the partial differential equations related to age modeling of a population

correspond to the volumetric growth of parasite densities and cell sizes. For example,

the McKendrick-von Foerster PDE [96, 88] can be written as

∂n

∂t
+
∂n

∂a
= −µ(a, t)n (2.2)
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where n is the density of all females and µ(a, t) is a death rate that depends on both

the age of the individual and the time. The boundary condition for such a partial

differential equation is

n(0, t) =

∫ ω

0

n(a, t)m(a, t)da (2.3)

and an initial condition n(a, 0) = n0(a).

The above system models the population density as a function of time and age.

However, in the world of parasites, the volume of a parasite-containing cell is of

interest during the chronic infection period. Therefore, it is important to take into

account the time of infection and the volume of the cyst in determining the parasite-

cell densities. Therefore, the model from Sinko [119] is presented

∂n(t, a,m)

∂t
+
∂n(t, a,m)

∂a
+

∂

∂a
[g(t, a,m)n(t, a,m)] = −D(t, a,m)n(t, a,m) (2.4)

where n(t,a,m) is the density function, g(t, a,m) is the growth rate that depends on

time, age, and biomass, and D(t, a,m) is the removal function that depends on time,

age, and biomass. The boundary conditions specify that a(a,m) = n(0, a,m) and

B(t,m) = n(t, 0,m) where a(a,m) is the number of animals at age a and mass m

that initially exist at time t = 0, and B(t,m) is the number of newborn animals with

mass m that exist at time t. Oldfield refined this system to accurately describe the

growth of a population with respect to just time and mass [108].

One instance where the size distribution of the population is of importance is in

the study of Daphnia, which are small planktonic crustaceans that live in the water

and grow with time and size [54]. In the Daphnia model, the population of Daphnia

interact with a predator which reduces the population. The density of the population

depends on the number of individuals and their sizes for a given population.
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2.2.3 Optimization and Analyzing Results

Part of the topic of this research is to introduce and analyze different sets of data

and derive parameters for models. For example, in the chronic infection model, an

experiment was performed to collect cyst-size measurements from 4 mice after 4

months of infection. These measurements are then used in analyzing the parameters

of the model. Additionally, in the acute infection section of this research, data is used

to fit the model for both the parasite counts and the immune response interaction.

To perform model selection of different models fitted to the same data set, several

different methods were used. One such technique that we used involved the maximum

likelihood function [27, 18, 132]. The likelihood function is typically defined as

L =
∏

p(di|λ) (2.5)

where p(di|λ) is the probability of observing the data point i given the parameters

λ. This function is easier to handle numerically when the negative log-likelihood is

considered [22]. The log-likelihood function can be written as

L =
∑

p(di|λ) (2.6)

Developing the proper probability functions that are used in the minimization

technique is important in being able to find the global minima of the negative log-

likelihood function [22]. The probability function for a density function with no error

term can be assumed to be

p(di|λ) =
f(di)∫
f(s)ds

(2.7)

However, if we assume that there is noise in the observation, we can make a

probability function based on the observation and prediction of a given function. For

example, if the function one wants to estimate the probability for is y a + bx, the

measurement could really be estimated as yobs a+ bx+ ε, where ε is some noise term
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[69]. By assuming the noise term is distributed normally about 0 with some standard

deviation, N(0, σ), one can derive the probability of a normally distributed function

to be

p(di|λ) =
1

2πσ
exp(

(yobs − ypred)2

2σ2
(2.8)

Using a minimization technique to minimize the negative log-likelihood becomes

easy to do numerically for optimization problems that are not highly nonlinear. To

test this, a minimization technique in Mathematica, R, or Matlab can be used to

find the minima of the objective function. It is important to be certain the the

global minima is the value returned from the minimization technique. To insure

this, the minimization algorithm should be performed many times using different

initial conditions and possibly different searching techniques (Nelder-Mead, Simulated

Annealing, Differential Evolution, etc).

The best way to compare nested models that are evaluated using the maximum

likelihood is to use the AIC approach. The AIC allows one to compare models using

the negative log likelihood as a reward while the number of parameters as a penalty

[23]. For the AIC, method of minimizing the negative log likelihood while minimizing

the number of parameters predicts the best model fit to existing data [7]. The AIC

value is calculated as

AIC = −2 log(L) + 2np (2.9)

where np is the number of parameters in the particular nested model. It is important

to use nested models and the same data set when attempting to compare AIC’s of

different models. The definition of ∆AICi = AICi - AICbest gives a way to compare

models. The criteria for accepting a model based on the ∆AIC is: 0-2 best evidence

of acceptance, 3-7 less evidence of best selection, 10+ almost no evidence of a fit

supported by the model and data [27].
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2.2.4 Bayesian Statistics

In the case of highly nonlinear problems, it may be very difficult to find a global

minima to the negative log likelihood objective function [22]. In the case where finding

the global through different searching routines is not possible, it may be necessary to

resort to bayesian statistics and the Markov Chain Monte Carlo routine to find the

parameters that best fit the model.

The Markov Chain Monte Carlo method that is best suited for the problems

presented in this research is the Metropolis-Hastings algorithm. The best parameters

are found by searching around the parameter space with a random walk. Some prior

information regarding the distribution of the parameters is assumed and the posterior

distributions of the parameters are found.

More specifically, the Metropolis-Hastings routine first is given an initial parame-

ter, xt. A new distribution of parameters is generated based on the current parameter

choice [114]. For our model, the objective function is a chi-squared distribution which

is denoted by f . Further, the distribution of parameters is a conditional density of q.

Thus, xt+1 takes on the new value with probability min
(
f(Yt)
f(xt)

q(xt|Yt)
q(Yt|xt) , 1

)
. Otherwise,

xt+1 retains the value of xt.

In this algorithm, it is required to specify an effective “step size” that represents

the variance of normal distribution of each parameter that we are searching for.

Once the MCMC generates a sufficient number of samples, it is necessary to thin

the sample to reduce any autocorrelation in the individual parameter spaces. Once

thinning is performed, the mean of the individual parameter samples is the parameter

estimate.

To evaluate the “fit” of the model, the DIC is used to find best fitting nested

model (deviance information criteria) [17]. The deviance is defined as D(λ) =

−2 log(p(y|λ)) + C. The expectation of the deviance is D̄ = Eλ[D(θ)]. The effective
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number of parameters is found as pD = D̄ −D(λ̄)[17]. Therefore, the DIC is

DIC = pD + D̄ (2.10)
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Chapter 3

Acute Infection ODE Model

3.1 Introduction

Toxoplasma gondii is an obligate intracellular protozoal parasite and the causative

agent of toxoplasmosis. The most common means of transmission is ingestion of

oocysts released into the environment by felidae species, the parasite’s definitive host,

or by ingestion of the persistent bradyzoite cysts in animal tissues. Following inges-

tion, parasites penetrate the host’s intestinal epithelium and undergo a developmental

switch to the rapidly replicating tachyzoite parasite stage, which is then disseminated

systemically. Disseminated toxoplasmosis is likely the result of a few parasites that

successfully penetrate across the intestinal barrier and evade mucosal immunity,

including effector activity of recruited inflammatory monocytes[103, 51, 49].

The lytic cycle of T. gondii begins with the invasion of a host cell by the free

parasites followed by their replication within a parasitiphorous vacuole(PV) inside the

cell. Eventually the parasites trigger the lysis of the cell by a yet undefined process at

which time parasites are released from the PV into the intracellular space[82, 12, 19].

Unlike the majority of intracellular pathogens, T. gondii actively invades host cells

instead of relying on phagocytosis for entry [46]. This, in part, allows the parasites to

invade and replicate within virtually any type of vertebrate host cell. During invasion
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of a host cell, the parasite forms a nascent PV that is largely segregated from host

endocytic and exocytic pathways [102, 101, 126, 32].

An IFN-γ-dependent cell mediated immune response is critical for the control

of T. gondii infection (reviewed in [39]). In immunocompromised IFN-γ deficient

mice, T. gondii replication is relatively unrestrained and results in rampant parasite

replication, dissemination, and the host death [128]. IFN-γ production by NK cells,

and CD4+ and CD8+ T cells is driven in large part by early IL-12 production by

innate immune cells including dendritic cells [98], macrophages [113], inflammatory

monocytes [103] and neutrophils [20]. IFN-γ- subsequently activates inflammatory

monocytes [103, 49, 50, 112] and other hematopoietic cells as wells as non-

hematopoietic cells [139] to suppress or kill intracellular parasites through a variety

of cell autonomous immune effectors (reviewed in [97]).

Even in immune-competent hosts, parasites likely encounter an initial environment

permissive to dissemination and replication within host cells early in the infection.

However, as time progresses, the IFN-γ-dependent innate, and eventually the cell-

mediated immune response becomes mobilized mobilized, leading to the clearance of

the majority of parasites. Nevertheless, some tachyzoites survive their acute stage

of infection and convert to the slow growing and more immuno-resistant bradyzoite

developmental stage. Bradyzoites are encased in cysts created within an infected host

cell. In the presence of an acute immune response, bradyzoites are relatively quiescent

and can persist for long periods, months or years. However, in the absence of IFN-γ

or effective cell mediated immunity, the bradyzoites can convert back to tachyzoites

causing re-initiation of active infection and severe pathology and death [115, 61, 127].

It is clear that IFN-γ production, IFN-γ-dependent activation of cell autonomous

antimicrobial mechanisms in host cells, and IFN-γ-dependent cell mediated immunity

are clear determinants in whether T. gondii survives and replicates or is killed follow-

ing the invasion of a host cells during infection. Because of the complex interactions

between IFN-γ levels and T. gondii densities, we develop a compartmental model to
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describe the relationship between the initial onset of infection and the host IFN-γ-

dependent immune response.

X Y
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Figure 3.1: Representation of our Compartmental model for T. gondii infection.
X represents susceptible host cells, YE represents the host cells that are exposed to
parasites, YI represents the infected host cells that have been activated, ZP represents
the primed immune response, and ZA represents the activated immune response. See
Table 3.1 and below for the definitions of all model parameters.

3.2 Model and Method

3.2.1 Model Description

We first present a framework to describe the tachyzoite lytic cycle that dominates

the early, acute infection process. For simplicity, we assume that acute infection

is dominated by tachyzoites and, therefore, neglect bradyzoites in our framework.

The dynamics of inter-conversion between tachyzoites and bradyzoites have been

empirically studied in [123] while the growth of bradyzoites in chronic stage has been

studied in [125]. Figure 6.1 shows a compartmental description of the model. The

state variables include the densities of uninfected cells, X; the densities of exposed
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host cells (YE) which are not yet capable of producing parasites, which acts as a delay

for the infected host cells because cells of this type cannot cause new infections; the

densities of infected host cells (YI) that are capable of causing an increased immune

response and larger numbers of tachyzoites within a PV; the densities of primed

immune cells (ZP ) which acts as a delay class in the immune response by limiting the

removal of infected cells[95]; and the densities of activated immune cells capable of

causing removal of infected cells (ZA).

We assume uninfected cells are generated at a constant rate λ and assume a

constant background cell removal of d. In the absence of an infection, the population

dynamics of host cells are given by Ẋ = λ − dX. Under this simple population

dynamics model, the number of uninfected cells stably converges to the equilibrium

X0 = λ/d. We assume that during acute infection the number of infected host cells

is only a small fraction of the total host cells, which implies that any change in X

is small, remaining essentially constant throughout the acute infection phase, that is

X = X0. This assumption is applied throughout the rest of the paper.

The generation of exposed cells YE is proportional to the product of the abundance

in healthy host cells and the abundance of infected host cells: βXYI . The rate

constant, β is a composite parameter describing the efficacy of the invasion process

and depends on the rate at which the parasites find uninfected cells, the rate of

parasite entry, and the probability of successful invasion. The exposed cells convert

to the infectious category at a rate: hYE. The average life time of infected cells

is 1/a. We consider a simple model of immune response: ZP , which consists of

a primed response and ZA, activated response. We assume the activated immune

immune cells encounter and attack infected cells according to a mass action model

with rate constant p and that these interactions also recruit primed immune cells

with efficiency c/p such tha the net rate of primed cell recruitment is cYIZA. The

primed immune cells ZP become activated at constant rate k. The average life time

of activated immune cells is 1/δ. Parameters are described in Table 3.1.
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Table 3.1: Definitions of model parameters

Parameter Definition
β transmission rate of infection (1/cell-day)
h conversion rate of cells infected with early-

type parasites to cells with infection-causing
parasites (1/day)

a natural death rate of cells infected with
parasites (1/day)

p removal of parasites caused by interaction
with immune response (10mL)/(day-ng)

c recruitment rate of early-type immune re-
sponse caused by interaction with parasites
(1/(cell-day))

k conversion of early-type immune response
to immune response capable of removing
parasites (1/day)

δ decay rate of killing-capable immune re-
sponse (1/day)

Combining the above processes leads to the following system of equations:

Y ′E = βX0YI − hYE (3.1)

Y ′I = hYE − pYIZA − aYI (3.2)

Z ′P = cYIZA − kZP (3.3)

Z ′A = kZP − δZA (3.4)

The system possesses two equilibria. The first is a disease free equilibrium (DFE):

(Y ∗E , Y
∗
I , Z

∗
P , Z

∗
A) = (0, 0, 0, 0). (3.5)

The second is an endemic equilibrium:

(Y ∗I , Y
∗
E , Z

∗
P , Z

∗
A) =

(
βX0δ

ch
,
δ

c
,
δ(βX0 − a)

kp
,
(βX0 − a)

p

)
(3.6)
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which is biologically infeasible if βX0 < a.

Using the next generation matrix approach [42], we can show that the basic

reproduction number is

R0 =
βX0

a
. (3.7)

It follows that the disease free equation will be stable if and only if R0 < 1. From the

Routh-Hurwitz stability criterion [89], we can show that the endemic equilibrium is

stable if R0 > 1.

Next, we will present the simplifications of the system (3.1)-(5.2) under different

quasi steady-state assumptions.

Primed immune response ZP in quasi steady state:

Here we assume the primed immune response is in quasi steady state, that is, ZP =

cYIZA/k. The biological assumption here is that we assume that there is not a

secondary class of immune response triggered by infected cells. It follows that the

system (3.1)-(5.2) can be reduced to:

Y ′E = βX0YI − hYE (3.8)

Y ′I = hYE − pYIZA − aYI (3.9)

Z ′A = cYIZA − δZA (3.10)

Exposed cells YE in quasi steady state:

Assume the exposed cells are in quasi steady state, that is, YE = βX0YI/h. This

model tests the notion that the invasion process is very fast and a secondary state of

infected cells does not help capture the dynamics of the infection process. It follows

25



that the system (3.1)-(5.2) can be reduced to:

Y ′I = βX0YI − pYIZA − aYI (3.11)

Z ′P = cYIZA − kZP (3.12)

Z ′A = kZP − δZA (3.13)

Primed Immune Response and Exposed Cells ZP and YE in

quasi steady state:

Assume the primed immune response and the exposed cells are in quasi steady state,

that is, ZP = cYIZA/k and YE = βX0YI/h. This model assumes that a single class of

infected cells and immune response captures the dynamics of the infection. It follows

that the system (3.1)-(5.2) can be reduced to:

Y ′I = βX0YI − pYIZA − aYI (3.14)

Z ′A = cYIZA − δZA (3.15)

3.2.2 Bayesian Parameter Fitting

Mordue et al. measured evolution of parasite load and immune response during acute

toxoplasmosis in mice [104] and we fit our models to this data in order to estimate

parameters of the models using a Markov Chain Monte Carlo (MCMC) Bayesian

approach [100, 67]. IFN-γ levels are taken from blood samples and average parasite

counts taken from peritoneum tissue cultures.

In their experiments, Mordue et al. [104] started to collect the parasite and

immune data two days after infection since the parasite load and the immune level

are at very low levels in the first two days. In simulations of the models, we shift the

time coordinate of the models so that the initials conditions of the models correspond

to data at day 2 in the experiments.
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To develop biologically sound assumptions of our model, care is taken in

formulating the initial conditions for the systems. Generally, we assume that at

the start of the experimental collection, there are only populations of one type of

parasite-infected host cells and one type of immune response present. This biological

assumption leads to the following initial conditions for each nested model:

• Full Model: We set YI(0) = 0 and ZA(0) = 0, and estimate YE(0) and ZP (0)

from parameter fitting.

• ZP in quasi steady state: We set YI(0) = 0 and estimate YE(0) and ZA(0)

from parameter fitting.

• YE in quasi steady state: We set ZA(0) = 0 and estimate YI(0) and ZP (0)

from parameter fitting.

• ZP and YE in quasi steady state: We estimate YI(0) and ZA(0) from

parameter fitting.

Burkart [26] developed a MCMC routine in Mathematica [138]. The routine

uses the MCMC Metropolis-Hastings method for performing a random walk in the

parameter space that will reflect samples from the posterior [74]. We implement

the models in Mathematica and adopt Burkart’s package for parameter fitting. We

assume that our objective likelihood function is distributed as a normal distribution.

The variances that are used are found by estimating the measurement errors from

the experimental data.

In this parameter fitting algorithm, it is required to specify an effective step size

that represents the variance of normal distribution of each parameter that we are

searching for. To find a good starting estimate for this distribution, we ran 4 sets

of 40,000 MCMC samples and recorded the parameter choices. We then used the

variances from these initial runs designate our step size variance.

We used an adaptive MCMC algorithm where at every every 10,000 samples, the

algorithm would evaluate the average acceptance rate for those 10,000 samples and
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adjust the scaling to get the average acceptance rate between 0.1 and 0.4 [13].We run

the simulations for 300,000 samples for each of the four models. We thin the 300,000

samples by 1,000 to reduce autocorrelation between the samples [140]. We used the

means, standard deviations, and confidence intervals of the posterior samples as our

summary statistics.

While our models are based on the number of infected host cells, experiments lack

this resolution to measure both free parasites and those that are in cells together

in a single parasite count using extracts from homogenized tissues [104]. Since YE

represents an early exposed stage, we assume each YE cell contains only one tachyzoite.

Let us denote the expected number of tachyzoites an infected host cell by nt. Then,

we estimate the total number of parasites found in a homogenized tissue sample as

follows:

P = YE + ntYI . (3.16)

In the following simulations, we estimate the model parameters when nt = 1, 2, 4,

and 8, respectively.

The 300,000 MCMC samples of the model are compiled with the first 10%

considered as burn-in samples. The Deviance Information Criterion (DIC) is often

used as the model selection technique in MCMC simulations [122, 16]. DIC can

be regarded as a generalization of the Akaike information criterion (AIC) and the

Bayesian information criterion (BIC).

3.3 Results

According to the DIC, the experimental data are bested described by the full model

with nt = 4. Table 3.2 shows the DIC values for each model.

The mean values of the parameter posteriors (parameter estimates) and the 95%

posterior probabilities for the best model with nt = 4 are presented in Table 3.3. The
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Table 3.2: DIC Values for Each Model. The full model with nt = 4 is the best
performing model.

nt Full YE ZP YE & ZP
Model in QSS in QSS in QSS

1 82.6 130.9 167.5 163.1
2 90.5 114.5 125.1 144.7
4 53.2 106.2 88.2 136.7
8 57.4 112.4 106.1 137.8

QSS stands for quasi steady state.

fits of the alternative sub-models to experimental data when nt = 4 are shown in

Figure 3.2.

Table 3.3: Parameter Estimates andPosterior Probability Intervals for the Best
Model; see DIC in Table 3.2.

Parameter Estimate 95% Posterior Probability Interval
βX0 0.56 {0.40, 0.77}
h 2.67 {2.35, 3.09}
p 0.23 {0.21, 0.30}
a 0.60 {0.34, 0.93}
c 0.33 {0.16, 0.51}
k 0.79 {0.69, 0.98}
δ 2.25 {0.99, 3.62}
Y0 13.63 {8.63, 19.07}
Z0 0.08 {0.02, 0.16}

3.4 Discussion and Conclusion

The model presented here was created to model the biological phenomenon associated

with immune response dynamics in acute T.gondii infection. Linear stability analyses

were performed to examine the stability of the model’s two fixed points: disease-free

equilibrium and an endemic equilibrium with continuing immune response. The full

ODE model and sub models derived from it were fitted to parasite density and IFN-

γ data for infected mice previously reported in [104]. Parameters of the model were
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Figure 3.2: Illustrations of model fits to parasite and immunological data. The solid
line is the YEYIZPZA model, the dashed line (−−) is the YIZA model, the dotted line
is the YEYIZA model (· · ·) and the dash-dotted is the YIZPZA (− · −·) model.

estimated based on the posterior samples of a Bayesian MCMC algorithm and models

were compared using the DIC.

Using the DIC as a model selection method in Table 3.2, we find that the full

model has the greatest support is the model that includes all 4 state variables, YE,YI ,

ZP , and ZA with nt = 4. It is worth noting that the DIC penalizes models for

each of their parameters, yet the model selection criteria supports the model with the

greatest number of parameters. The data and model-selection technique suggests that

the best description of the phenomenon is one in which the presence of primed immune

response and exposed cells infected with parasites play a prominent role. If a primed

immune response or exposed cells infected with parasites played a very small role in

the phenomenon, the model selection would have supported one of the sub models.

Thus, we conclude that the data indicates that a delay in the immune response

and parasitic invasion make an important contribution to the overall dynamics of

invasion. The second best model contains the same 4 state variables with nt = 8. As

a qualitative conclusion, the plots of the models over the data observations in Figure

3.2 all have similar shapes and fits.

The patterns exhibited by the parasite density-immune response interaction shows

a strong correlation between the two. Our results indicate that if the parasites enter

at a low level and don’t replicate very quickly, the immune response would not be

triggered. However, a virulent strain of parasite, or large numbers of parasites, would
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trigger a very large transient immune response. The data used in this paper supports

the biological phenomenon observed because the original experiment tested larger

doses of parasites and more virulent strains than the Type II strain of parasite used

for this model [104].

In future work, having raw data would allow for more accurate predictions

of the parasite counts because more realistic error distributions could be found.

Additionally, we have assumed that the healthy cell count, X, remains constant

throughout the infection. Having estimates for the reduction in the healthy cell counts

would provide a third state variable to use for parameter estimation, thus providing

a more accurate estimate of the parameters. We also believe that introducing other

immune response indicators such as CD-8+ counts, IL-12, or other immune response

measurements could add complexity but more accuracy to the model.

Visually inspection of the plots of the models over the data, the model without

any delay and the model with a delay in the parasite activation both present a small

level in the parasite levels. We associate this regeneration of parasites as a low level

of parasites that biologically would not trigger a second infection. In general, the

parameter fitting algorithm provides a realistic representation of the parameters used

in the different models. One advantage of using the MCMC approach over a global

minima search routine is that the spread of the parameter estimates are described by

the variability of the posterior distributions.

The goal of building this model was to determine whether there is evidence to

support an exposed cell class or a primed immune response class in dealing with

the life-cycle of the Toxoplasma gondii parasite. Based on the model-selection

analysis, there is support for the less-active classes of parasite-infected cells and

immune response. Developing an understanding of these secondary classes will aid in

understanding a variety of issues pertaining to T. gondii including mortality, strain

virulence, and stage conversion factors, among others.
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Chapter 4

Chronic Infection PDE Model

4.1 Model and Method

4.1.1 Sampling and Estimating the Volume of T. gondii

Cysts from the Brain Tissue of Chronically Infected

Mice

T. gondii has three predominant clonal genotypes (types I, II, and III) [37, 64, 73].

Type II constitutes a majority of clinical cases of toxoplasmosis and asymptomatic

infections in humans in North America and Europe[6, 37, 73]. Therefore, a type

II strain, ME49, was used for this study. Female Swiss-Webster mice (Taconic,

Germantown, NY) were infected intraperitoneally with 10 cysts of the ME49 strain

as previously described [84]. Six months later, the brain of each of four mice

was triturated in 1 ml of PBS [130]. Four to six aliquots (20 ml each) of each

brain suspension were applied to microscopic examination using a Nikon Eclipse 90i

microscope and a photograph was taken on each T. gondii cyst detected at x400

magnification with a Nikon DS-Ri1 digital camera. Photographs of 50-56 cysts from

each brain, a total of 213 from four mice, were recorded (see Figure 4.1 for a typical

photograph of a cyst). Due to the fact that a small proportion of cysts appear
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to be more ellipsoid than spherical, we measured the diameter of each cyst from

two different angles using NIS Elements BR analysis 3.2 software. The measured

diameters of each cyst are shown in Figure 4.2.

Figure 4.1: Example of photograph of a cyst from our experiment. Most of the cysts
observed took on similar nearly circular cross section projections.

4.1.2 Modeling Cyst Formation & Growth

There have been several attempts to understand the biology of Toxoplasma gondii

infection through mathematical modeling [123, 77], however, none of these previous

efforts have tried to model the growth and distribution of cysts as a function of

their volume. Because in this study we are solely interested in the distribution of
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Figure 4.2: The diameter d1 measurements vs the d2 measurements. The relationship
between each diameter is shown to indicate that the projected cysts were nearly
spherical.

cyst volumes, we can avoid having to explicitly model population of free bradyzoites,

tachyzoites, and uninfected target cells and, instead, simply assume new cysts are

being formed at some rate B(t). See Figure 4.3 for a schematic of the within-host

system and Table 4.1 for definitions of the functions used in our model. Biologically

B(t) represents the rate at which uninfected target cells become infected by free

parasites and begin forming cysts intracellularly. Following [119], we model the

growth of these cysts using a partial differential equation structured by both time

and cyst volume. Specifically,

∂Y (t, v)

∂t
+

∂

∂v
(g(v)Y (t, v)) = −r(v)Y (t, v) (4.1)

where Y (t, v) is the density of bradyzoite cysts of volume v at time t, g(v) is

cyst growth rate, i.e.the rate at which bradyzoites replicate within a cyst, and

r(v) is the cyst removal rate, i.e. the sum of the rate at which encysted cells are
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either cleared by the immune response or through natural cyst bursting. Although

these two cyst removal processes differ in that bursting ultimately leads to the

production of new cysts while immune response clearance does not, their effects on

the relative distribution of cysts as a function of volume are indistinguishable and,

hence, combined in Equation 4.1. Biologically, both g(v) and r(v) likely vary with

the immune response state of the host. However, since we are focusing on the steady

state of the system where the immune response state of the host is constant, we do

not explicitly model this dependency. Because cyst volumes are finite, we restrict

ourselves to growth functions where limv→∞ g(v) = 0 such that a finite, maximum

cyst size vmax exists. Assuming that all new cysts have the initial volume v0, based

on our definition of B(t) as the rate at which new cysts are formed, according to [34]

the boundary condition for Equation 4.1 satisfies the equality,

B(t) = g(v0)Y (t, v0). (4.2)

4.1.3 Steady-state Solution

Although Equation 4.1 can be explicitly solved as a function of time (e.g. see [28]),

here we focus solely on the steady state solution. We begin by presenting the general

solution and then later assume specific functional forms for cyst growth g(v) and

removal r(v).

Letting Ŷ represent the absolute distribution of cyst volumes at steady state at

which point, by definition, ∂Y
∂t
|Ŷ = 0. Under these conditions, Equation 4.1 simplifies

to the following ordinary differential equation

dŶ

dv
= −r(v) + g′(v)

g(v)
Ŷ (4.3)

where g′(v) is the derivative of g(v) with respect to v. Further, we introduce a

combined function f(v) which is a combined function of both the cyst growth g(v)
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Table 4.1: Functions and their definitions.

Function Biological Description
B(t) The rate at which uninfected target cells are becoming infected at

time t, leading to the formation of new cysts with volume v0.

B̂ The rate at which uninfected target cells are becoming infected at
steady state.

g(v) Cyst volume growth rate. Equal to the rate at which bradyzoite
population is increasing within a cyst.

g′(v) First derivative of the cyst growth function g(v) with respect to v.
r(v) Cyst removal via both immune response clearance and cyst

bursting.
v0 Volume of newly formed cysts.

vmax Maximum possible cyst volume.
Y (t, v) Absolute density of host cells infected with cysts of volume v at

time t.

Ŷ (v) Absolute density of host cells infected with cysts of volume v at
steady state.

ŶT Total density of infected host cells and equal to
∫ vmax

v0
Ŷ (v)dv.

y(v) Relative density of host cells infected with cysts of volume v at
steady state and equal to Ŷ v/V̂T

and removal r(v) functions. Using the combined function, the above has a general

solution of

Ŷ (v) = Ŷ0 exp

[
−
∫ v

v0

f(v′)dv′
]

(4.4)

where Ŷ0 represents the steady state density of newly formed cysts and satisfies the

boundary condition defined in equation 4.2 with B(t) = B̂. More specifically,

f(v) =
r(v) + g′(v)

g(v)
. (4.5)

Because the combined function f(v) is a function of both g(v) and r(v) the

first parameters of growth and removal functions, g0 and r0 respectively, cannot be

uniquely identified. Instead, they can be estimated only as ratios of one another,

i.e. r0/g0.
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Table 4.2: Definitions of cyst growth g(v),removal r(v) functions,the corresponding
combined function f(v), the results AIC, ∆AIC, and parameter estimates for the
model selection study.

Index
Growth
g(v)

Removal
r(v)

Combined
f(v) AIC ∆AIC r0

g0
r1

1 g0 r0
r0
g0

1915.88 0.33 0.03 N/A

2 g0 r0v
r0
g0
v 1990.32 74.77 0.0004N/A

3 g0 r0v
2 r0

g0
v2 2064.06 148.51 10−6 N/A

4 g0 r0
v

1+v
r0
g0

v
1+v

1916.21 0.66 0.03 N/A

5 g0 r0
v2

1+v2
r0
g0

v2

1+v2
1915.55 0.0 0.03 N/A

6 g0 r0 (1 + r1v) r0
g0

(1 + r1v) 1917.88 2.33 0.03 0.0

7 g0 r0
v

r1+v
r0
g0

v
r1+v

1917.87 2.32 0.03 0.07

8 g0 r0
v2

r1+v2
r0
g0

v2

r1+v2
2917.12 1.57 0.03 8.74

9 g0v(1− v
vmax

) r0
r0
g0
vmax+vmax−2v
vmaxv−v2 2211.24 295.69 0.24 N/A

10 g0v(1− v
vmax

) r0
v

1+v

r0
g0
vvmax+(vmax−2v)(1+v)
v(1+v)(vmax−v) 2182.26 266.71 0.27 N/A

11 g0v r0
1
v

(
r0
g0

+ 1
)

2269.66 354.11 0.25 N/A

12 g0v r0
v

1+v
1
v

+ r0
g0

(
1

1+v

)
2238.08 322.53 0.27 N/A

13 g0v r0
v2

1+v2
1
v

+ r0
g0

v
1+v2

2248.9 333.25 0.27 N/A
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Figure 4.3: Chronic infection diagram of cyst-volume distribution model. Parasites
infect healthy cells and begin replicating, causing the volume of the cyst to increase.
The parasites burst at some rate and release new parasites into the system which are
capable of infecting new healthy cells.

4.1.4 Fitting Models to the Cyst Volume Estimates

Our data on cyst volume represents a random sample from the larger cyst population,

in order to fit our models to this data we generate a probability density function y(v)

from our steady state solution. We investigate the steady state solution in 4.4 under

several different forms of growth and removal functions; see definitions in Table 4.2.

We divide cyst density by the total cyst population size, ŶT =
∫ vmax

v0
Ŷ (v)dv to get

y
(
v
∣∣∣~λ) =

Ŷ
(
v
∣∣∣~λ)

ŶT

(
~λ
) =

exp
[
f
(
v
∣∣∣~λ)]∫ vmax

v0
exp

[
f
(
v
∣∣∣~λ)] , (4.6)

where ~λ represents the parameters of a given combined function f (e.g. r0/g0

or r0/g0 and r1). It follows that the negative log-likelihood L of a particular
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model and parameter set ~λ given a random sample of n observed cyst volumes

~V = {V1, V2, . . . Vn} is simply,

L(V |~λ) = −
n∑
i=0

ln
(
ŷ
(
Vi

∣∣∣~λ)) = −

(
n∑
i=1

ln(Ŷ (Vi))

)
+ n ln

(∫ vmax

v0

Ŷ (v)dv

)
(4.7)

For each model in Table 4.2 we estimated the corresponding model parameters

~λ by minimizing L based on the observed data ~V using the NMinimize routine

in Mathematica 8.1. The minimal L value and the total number of independent

parameters were used to calculate the AIC value for each model. All of the results

are also presented in Table 4.2.

4.2 Results

Limited amounts of data are available in the literature to quantify the steady-state

volume distribution of T. gondii cysts [99, 72]. Qualitative evidence presented

suggests that the over time distribution of cyst-volumes increases until it reaches

a steady state [99]. Data from Hooshyar [72] provided a brief snapshot of the

cyst distributions over time within a host. To produce more data, we conducted

experiments to measure cyst volumes from 4 mice after 6 months of infection. From

the 4 mice, there were 213 cyst observations that we combined into a single data set.

Three different growth functions were examined: linear, logistic, and exponential.

In preliminary studies of the models presented in Table 4.2, the exponential and linear

growth rate functions are clearly not supported by the data. Instead, the data clearly

supported the linear growth function and thus various growth models using additional

removal functions as shown in Table 4.2 were examined.

Two separate studies support our assumption that the steady state is reached

by month 4. In once such study, the chronic infection of T. gondii reaches steady-

state after 2 months while another study found the number of cysts per brain (and

the copies of parasite DNA) peaked near 40-60 days [110]. The measurements we
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collected were in the form of two radii of a cross-sectional area of each cyst, and

thus we assumed the volume was ellipsoidal in shape, and were able to calculate the

volume of the cysts. In examining the data from Hooshyar [72], we were able to make

conclusions on when the dynamics of chronic infection reached stationarity. The mean

volume of month 2 was 54.15 µm3, the mean volume of month 3 was 139.15 µm3, and

the mean volume of month 4 was 107.97 µm3. The results of comparing these three

different distributions suggest there is a significant difference in mean cyst volume

between month 2 and 3 (t=-1.963, p < 0.05), 2 and 4 (t=-2.922,p < 0.05), but not 3

and 4 (t=0.0685, p < 0.05). These results indicate that the system reaches steady-

state before month 3. Therefore, our experimental design collected cyst volumes from

4 mice infected after 6 months to insure stationarity.

The Akaike Information Criteria (AIC) score was used to evaluate and compare

different models [79]; see Table 4.2. The AIC value of a model is based on its negative

log-likelihood at the MLE parameters and the number of parameters. The ∆AIC of

a model is the difference between the lowest observed AIC value and the AIC value

for a given model [27].

For comparison, probability distributions of one parameter models are shown in

Figure 3.2. Typically, the distribution of cysts of T. gondii are viewed in terms

of diameter. However, biologically volume is a more appropriate measure since it

is expected to be proportional to the number of bradyzoites in a cyst. While the

probability distribution on the diameter scale (Figures 6.5 (c) and (d)) is unimodal,

the probability distribution on the volume scale (Figures 6.5 (a) and (b)) does not

show modality. This difference is due to nonlinear transform between volume and

diameter [38]. The volume of a cyst is calculated using the measured diameters

plotted in Figure 4.2. The diameter scale is the geometric mean of the measurements

of each cysts diameter.
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Figure 4.4: Probability distributions for one-parameter models (left) and two-
parameter models (right), with the volume representation on the top and diameter
scale on the bottom (the same models are presented, but represented with different
transformations). For (a) and (c), the solid line represents the function r0

g0
, the dashed

line represents
r0
g0
v

1+v
, and the dot-dashed line represents

r0
g0
v2

1+v2
. For (b) and (d), the solid

line represents the function r0
g0

+ d1v, the dashed line represents
r0
g0
v

d1+v
, and the dot-

dashed line represents
r0
g0
v2

d1+v2
. Since two diameters were recorded, the diameter used

in the data histogram is an effective diameter calculated by using
√

r1
2
r2
2

.

4.3 Discussion and Conclusion

We have developed a mathematical framework to select the most appropriate

mathematical descriptions for the growth and removal processes through parameter

fitting of experimental data. The use of various forms for the growth and removal

functions demonstrate the flexibility of the model to adapt and validate on other

data sets. Since the goal is to understand the behavior of cysts at the chronic stage

of infection, we have used the stationary assumption of the model to match data
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from chronic measurements. The parameter fitting of the steady-state solution yields

multiple cases associated with each removal function. First, we considered three

different growth functions along with various removal functions. It was clear that

the only growth rate function that fit was the constant growth rate function. For

the constant growth rate, the AIC values of the best cases for constant growth all

had ∆AIC values of less than 2 (constant, type II, type III, and type III with two

parameters). Based on the AIC criteria, performances of several functions (constant,

type II, type III, and type III with two parameters) are indistinguishable for the

constant growth rate model. Thus, the current study supports several models as the

best growth and removal functions.

The most critical finding of this model selection problem is the lack of support for

the linear and logistic growth rates. Normally, population growth satisfies a logistic

or exponential growth function. However, experimental data here supports a constant

growth rate model. The cyst volume growth is described by the following equation:

dv

dt
= g(v) (4.8)

Assume the cyst volume is proportional to the number of bradyzoites within the cyst

and denote the bradyzoite number by n. Therefore, a constant volume growth rate

indicates that the number of parasites within the cyst increases linearly over time

and the per capita growth of bradyzoites if inversely proportional to the number of

parasites. This probably suggests that bradyzoites do not replicate synchronously

but instead collectively produce a single new bradyzoite at some time interval. For

example, a cyst may start with a given number of bradyzoites and a single new

bradyzoite may be formed through replication every few hours. While it may be

surprising that the bradyzoites replicate in a way analogous to a factory producing

a product, there may be factors such as nutrient availability, resource allocation,

immune response, and other stress factors that may suppress synchronous replication
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in cysts. Therefore, the data-driven model selection results here provide evidence for

asynchronous bradyzoite division.

Understanding of the chronic infection period for Toxoplasma gondii will aid in

understanding the role of cyst growth, bursting, and removal in the maintenance

of a chronic infection. Understanding how cysts behave during chronic infection is

a first step in developing a complete framework of the complete life-cycle process.

Ideally, knowing the removal and growth rates from independent experiments could

determine which growth and bursting functions cysts follow. However, following

individual cohorts in vivo may not be possible experimentally and thus additional

modeling experiments can be formed as a byproduct of this work.

With the development of high throughput technology [8], experiments can be

designed to automatically count the number of cysts and to measurement their

volumes. These data can help researchers answer important questions regarding

the dynamics of cyst formation and chronic infection. Moreover, data should be

collected at multiple time points, including the acute infection phase, in order to

further determine transient dynamics of cyst growth and removal.

The chronic stage of T. gondii infection involves many complex biologic processes.

The current model lumps these processes into a growth and a removal functions.

Thus, the results and analyses here provide limited insights on biological details

such as regulations of immune response and stage-conversion phenomena. In future

work, a more detailed model will be developed to include the bursting of free

parasites, invasion of free parasites into host cells, replication of tachyzoites and

bradyzoites during early infection of host cells, and the cyst-volume growth functions

as described here. We envision integrated experimental and analytical analyses may

ultimately develop better immunological treatment plans for immunocompromised

patients infected with chronic Toxoplasma gondii.
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Chapter 5

Within-Host Dynamics ODE

Model

5.1 Introduction

T. gondii has a complex life cycle, as seen in Figure 6.1. The parasite uses the feline

to reproduce sexually. When the cat becomes infected, it sheds oocysts, which infect

the environment. These oocysts can be ingested by mammals and birds which then

become infected with the parasite [48]. Eating another organism that is infected can

also infect the secondary hosts. A few mathematical models have been developed to

investigate the transmission dynamics of T. gondii between different hosts [2, 63, 78].

Within a host, T. gondii exists in two interconvertable stages: bradyzoites

and tachyzoites. Bradyzoites have the slow-growing and encysted form whereas

tachyzoites are the fast-replicating parasites. Tachyzoites disseminate within the

host and lead to the acute phase of infection. After the bradyzoite-containing cysts

are ingested by the host, the walls of these cysts are digested inside the host’s

stomach. Bradyzoites, which are resistant to gastric conditions in the stomach,

will subsequently invade the host’s epithelial cells of the small intestine and convert

into tachyzoites there. While most of tachyzoites in immunocompetent hosts are
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Figure 5.1: Diagram representing the life cycle of T. gondii. Reprinted from [45].

eliminated by the innate and adaptive immune responses, some tachyzoites differ-

entiate into the dormant bradyzoite stage inside host cells [48]. The differentiation

of tachyzoites into the bradyzoite stage plays an essential role in the development

of tissue cysts, which allows life-long persistence of the parasites in the host.

Reactivation of bradyzoites back to tachyzoites can lead to life threatening infection.

The interconversion between tachyzoites and bradyzoites can be influenced by many

in vivo and in vitro factors. In this work, we aim to develop a mathematical model to

understand the nonlinear, complex interactions between T. gondii invasion dynamics

and host immune response.

In the following sections, the results, numeral solutions, and model development

were done in collaboration with those found in [123]. However, the proofs were

formalized by the mathematicians of the collaboration, and I include them as

supplementation to the work I have done on the project.
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5.2 Model and Method
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Figure 5.2: Compartmental model representing within-host invasion dynamics of T.
gondii. Note the immune response is not shown.

We develop a compartmental model to describe the invasion dynamics of T. gondii ;

see Figure 5.2. The model has 7 state variables: the population size of uninfected

cells, X; the population of cells infected with tachyzoites, YT ; the population of cells

containing early-stage bradyzoites, YB; the population of cells containing encysted

bradyzoites, YC ; the population of free tachyzoites, PT ; the population of free

bradyzoites, PB; and the effector cells of the host’s immune response, Z.

We assume uninfected cells are generated at a constant rate of λ and assume

the average life time of an uninfected cell is 1/d. In the absence of an infection,

the population dynamics of host cells is given by Ẋ = λ − dX. Under this

simple population dynamics model, the number of uninfected cells converges to the

equilibrium X0 = λ/d. Free parasites infect uninfected cells at a rate proportional

to the product of their abundance: βPTXPT for tachyzoites and βPBXPB for

bradyzoites. The rate constants, βPT and βPB describe the efficacy of the invasion
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process and depend on the rate at which the parasites find uninfected cells, the rate

of parasite entry, and the probability of successful infection. Note that βPT and βPB

are lumped parameters and have the unit 1/(number of cells)/time [87, 105, 106, 137].

Note these rate constants sometimes carry a slightly different definition; see [24] for

example.

Average life time of a cell infected with tachyzoites is 1/aT and that of a cell

infected with encysted bradyzoites is 1/aC . Since tachyzoites replicate much faster

than bradyzoites, one expect aC be much smaller than aT . Assume the total number

of parasites produced from one infected cell containing tachyzoites, i.e. the burst

size, is sT and assume the burst size of an encysted cell is sC . Let kT = sT ∗ aT and

kC = sC ∗ aC . Then, free parasites are produce at a rate kTyT for tachyzoites and

kCyC for encysted bradyzoites. Free parasites are removed from the system at a rate

uTPT for tachyzoites and at rate uBPB for bradyzoites. Tachyzoites in a host cell can

spontaneously convert to bradyzoites at a rate rTyT . To account for the reactivation

process, we assume early-stage bradyzoites may convert to tachyzoites at a rate rByB.

We also consider a simple model for the immune response. Much work has been done

regarding the immune response caused by Toxoplasma infection and many important

mechanisms have been identified [56]. Here, we introduce a variable Z to represent

the overall effector cells without consideration of specific immune mechanisms. We

assume the effector cells act on host cells infected with tachyzoites in a predator-prey

manner.
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Combining the above processes leads to the following system of equations:

Ẋ = d(X0 −X)− βPTXPT − βPBXPB (5.1)

ẎT = βPTXPT − aTYT − rTYT + rBYB − cTYTZ (5.2)

ẎC = rTYT − aCYC (5.3)

ẎB = βPBXPB − rBYB (5.4)

ṖT = kTYT − uTPT (5.5)

ṖB = kCYC − uBPB (5.6)

Ż =
ρYTZ

h+ YT
− δZ (5.7)

where ρ is the production rate of the effector cells, δ is the removal rate of the

immune system response, and h represents the saturation level of the effector cells

[137]. The first term in the immune equation represents the activation process in

response to the detection of infected cells whereas the second term in the immune

equation represents natural decay of the immune effector. The activation process

takes the form of Holling’s Type II predator-prey relation [96, 120, 30]. When the

number of infected cells is small, the level of immune response is low. Then, the

immune response increases at a great rate and saturates when the number of parasites

is sufficiently large.

Kafsack et al. [83] developed a mathematical model to interpret kinetics data

collected for T. gondii invasion. Their results show that T. gondii invasion dynamics

including contact, attaching, penetrating, and invasion occur within a few minutes.

On the other hand, previous experiments show that replication and stage conversion

dynamics take place in hours [76, 48, 135]. We assume that the kinetics of free

parasites are significantly faster than kinetics of other processes. Thus, we can

adopt the common quasistationary approximation and assume the free parasites are
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in equilibrium. It follows from Equations (5.5)-(5.6) that

PT =
kTYT
uT

(5.8)

PB =
kCYC
uB

(5.9)

Substituting the above equations into Equations (5.1)-(5.4), (5.7) leads to the

following reduced model:

Ẋ = d(X0 −X)− βTYTX − βBYCX (5.10)

ẎT = βTYTX − aTYT − rTYT + rBYB − cTYTZ (5.11)

ẎC = rTYT − aCYC (5.12)

ẎB = βBYCX − rBYB (5.13)

Ż =
ρYTZ

h+ YT
− δZ, (5.14)

where βT = kTβPT/uT and βB = kCβPB/uB. A compartmental model of this

simplified model is shown in Figure 5.3. All parameters in the model are non-

negative and one can show that the solutions of the system are non-negative, given

non-negative initial values. The model (5.10)-(5.14) will be analyzed in a biologically-

feasible region as follows. We consider the region

D =
{

(X, YT , YC , YB, Z) ∈ IR5
+ : X ≥ 0, YT ≥ 0, YC ≥ 0, YB ≥ 0, Z ≥ 0

}
.

Solutions of (5.10)-(5.14) starting in D can be shown to remain in D for all t ≥ 0.

Thus D is positively invariant and it is sufficient to consider solutions in D. We state

and prove Theorem 5.1 for non-negativity of solutions of (5.10)-(5.14) in D.

Theorem 5.1. Let the initial data be X(0) ≥ 0, YT (0) ≥ 0, YC(0) ≥ 0, YB(0) ≥ 0,

and Z(0) ≥ 0. Then, solutions X(t), YT (t), YC(t), YB(t) and Z(t) of the model
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system (5.10)-(5.14) are non-negative for all t ≥ 0. Moreover, for the model system

(5.10)-(5.14), the region D is positively invariant.

Proof. Assume that the solution of (10)-(14) has been extended to maximal domain

[0, T ∗); we will show the non-negativity of solutions and that there is no blow-up,

giving T ∗ =∞.

Since X0 > 0 and the other terms in the right hand side (RHS) of equation (10)

has X as a common factor, we have that X(t) ≥ 0 for t ≥ 0. Similarly, the structure

of the RHS of (14) implies that Z(t) ≥ 0 for t ≥ 0.

Note that the structure of (11)-(13) implies that if YT (0) = YC(0) = YB(0) = 0,

then YT (t) = YC(t) = YB(t) = 0 for all 0 ≤ t ≤ T ∗ by uniqueness of the initial

boundary value problem (solution is (X(t), 0, 0, 0, Z0e
−δt) where X ′ = d(X0 −X)).

If one of YT (0), YC(0) or YB(0) is positive, then we can show that all three

components are positive on [0, T ∗). For example if YC(t) > 0 on [0, ε], by integrating

the DEs for YB and YT , we obtain their positivity on [0, ε]. On the other hand,

if one of these three functions hits 0, say YT , let t1 be the first time that YT

is 0 and all three functions are positive on (0, t1). The structure of (11) with

K(t) = βTX(t)− aT − rT − cTZ(t) gives

YT (t1)e
∫ t1
0 K(s)ds − YT (0) =

∫ t1

0

e
∫ t
0 K(s)dsrBYB(t)dt,

which is a contradiction as the RHS is positive, YT (t1) = 0 and YT (0) ≥ 0. Continuing

we conclude that D is invariant.

The structure of (10) and (14) shows that X and Z do not blow up. Note that

M(t) = X(t) + YT (t) + YC(t) + YB(t)

satisfies

M ′(t) ≤ d(X0 −X(t)),

which means that M does not blow up. Thus we conclude T ∗ =∞.
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Note that for ρ ≤ δ, the solution to our systems (10)-(14) is bounded for all t > 0,

but later we can prove the boundedness without that assumption.
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Figure 5.3: A simplified compartmental model representing the dynamics of T. gondii.
Note the immune response is not shown.

5.3 Results

5.3.1 Disease-Free Equilibrium (DFE)

The structure of system (5.10)-(5.14) implies there exists a unique non-negative DFE

solution. Denote this equilibrium solution by

E0 = (X∗, Y ∗T , Y
∗
C , Y

∗
B, Z

∗) = (X0, 0, 0, 0, 0). (5.15)

The stability of E0 can be established using the next generation operator method on

the system (5.10)-(5.14). We take, YT , YC , YB, as our infected compartments, then

using the notation in [133], the Jacobian matrices F and V for the new infection

terms and the remaining transfer terms are respectively given by,
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F =


βTX

∗ 0 0

0 0 0

0 βBX
∗ 0

 and V =


aT + rT 0 −rB
−rT aC 0

0 0 rB

 . (5.16)

It follows that the basic reproduction number of the system (5.10)-(5.14), denoted by

R0, is given by

R0 = ρ(FV −1) =
X0(aCβT + rTβB)

aC(aT + rT )
(5.17)

where ρ is the spectral radius. Further, using Theorem 2 in [133], the following result

is established.

Lemma 5.1.1. The DFE of the model (5.10 )-(5.14), given by E0, is locally

asymptotically stable (LAS) if R0 < 1, and unstable if R0 > 1.

The basic reproduction number (R0) measures the average number of new

infections generated by a single infected individual in a completely susceptible

population [9, 44, 68, 133]. Thus, Lemma 5.1.1 implies that T. gondii can be

eliminated from within the host (when R0 < 1) if the initial sizes of the sub-

populations are in the basin of attraction of the DFE, E0.

Consider the domain

D1 = {(X, YT , YC , YB, Z) ∈ D : X∗ ≥ X} .

Using the approach in the proof of Theorem 5.1, it can be shown that the region is

positively-invariant.

Theorem 5.2. The DFE of the model (5.10)-(5.14), given by E0, is global asymptot-

ically stability (GAS) in D1 whenever R0 < 1.
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Proof. The proof is based on using a comparison theorem. The equations for the

infected components in (5.10)-(5.14) can be written in terms of



dYT (t)

dt

dYC(t)

dt

dYB(t)

dt


=

(
F − V

)


YT (t)

YC(t)

YB(t)


−MQ



YT (t)

YC(t)

YB(t)


, (5.18)

where, M = X∗ − X (t), the matrices F and V are given above and Q is the non-

negative matrix given by

Q =


βT 0 0

0 0 0

0 βB 0


Since M ≥ 0 for all t ≥ 0, it follows that



dYT (t)

dt

dYC(t)

dt

dYB(t)

dt


≤

(
F − V

)


YT (t)

YC(t)

YB(t)


. (5.19)

Using the fact that the eigenvalues of the matrix F−V all have negative real parts (see

the local stability result given in Lemma 5.1.1, where ρ(FV −1) < 1 if R0 < 1 which is

equivalent to F − V having eigenvalues with negative real parts when R0 < 1 [133]),

it follows that the differential inequality system (5.19) is stable whenever R0 < 1.

Consequently, (YT (t), YC(t), YB(t)) → (0, 0, 0) as t → ∞. by standard comparison

results [90, 53].
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The structure of the X DE gives the convergence of X(t)→ X∗ as t→∞. Using

the convergence of YT (t) to 0 and the term with YT in (14) will be smaller than the

δZ term for large t, we obtain that Z(t)→ 0.

Thus, (X(t), YT (t), YC(t), YB) → (X∗, 0, 0, 0, 0) as t → ∞ for R0 < 1. Hence, the

DFE E0 is GAS if R0 < 1.

Note that the boundedness of the solutions follows in this case.

The above result shows that T. gondii will be eliminated from within the host if the

threshold quantity R0 can be brought to a value less than unity.

5.3.2 Endemic Equilibrium (EE)

Let E1 = (X∗, Y ∗T , Y
∗
C , Y

∗
B, Z

∗) be any arbitrary equilibrium of the model (5.10)-(5.14).

Conditions for the existence of equilibria for which T. gondii is endemic within the

host (where at least one of the infected variables is non-zero) can be obtained as

follows. Let,

λ∗1 = βTY
∗
T and λ∗2 = βBY

∗
C ,

and let

x∗ = λ∗1 + λ∗2 (5.20)

be the associated force of infection, which is defined as the rate at which susceptible

individuals become infected by an infectious disease [3, 52, 59, 58, 66, 117, 116]. To

determine the existence of the endemic equilibrium, we consider first the case where

immunity is not present (i.e Z = 0). Setting the right-hand sides of the model to zero

gives the following expressions (in terms of λ∗1 and λ∗2 at steady state):
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X∗ =
dX0

(d+ λ∗1 + λ∗2)

Y ∗T =
dX0(λ

∗
1 + λ∗2)

(aT + rT )(d+ λ∗1 + λ∗2)

Y ∗C =
dX0rT (λ∗1 + λ∗2)

aC(aT + rT )(d+ λ∗1 + λ∗2)

Y ∗B =
dX0λ

∗
2

rB(d+ λ∗1 + λ∗2)
.

(5.21)

Substituting the expression in (5.21) into the expression in (5.20) we have that the

non-zero equilibrium of the model after some algebraic manipulation satisfy:

x∗ = d(R0 − 1). (5.22)

It follows that x∗ > 0 if and only if R0 > 1. This result is summarized below:

Theorem 5.3. The model (5.10)-(5.14) with Z = 0 has a unique endemic equilibrium

whenever R0 > 1.

Next we consider the case where the immune system responds throughout infection

period (i.e Z 6= 0). To determine the existence of the endemic equilibrium, setting

the right-hand sides of the model to zero gives the following expressions:
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X∗∗ =
dX0

(d+ λ∗∗1 + λ∗∗2 )

Y ∗∗T =
δh

(ρ− δ)

Y ∗∗C =
rT δh

aC(ρ− δ)

Y ∗∗B =
dX0λ

∗∗
2

rB(d+ λ∗∗1 + λ∗∗2 )

Z∗∗ =
d(λ∗∗1 + λ∗∗2 )(ρ− δ)X0 − δh(d+ λ∗∗1 + λ∗∗2 )(rT + aT )

δhCT (d+ λ∗∗1 + λ∗∗2 )
.

(5.23)

Substituting the expression in (5.23) into the expression in (5.20) gives

x∗∗ =
δh(aT + rT )(R0 − 1)

(ρ− δ)
+
δh(aT + rT )

(ρ− δ)
(5.24)

It follows that x∗∗ > 0 if and only if R0 > 1 and ρ > δ. This result is summarized

below:

Theorem 5.4. The model (5.10)-(5.14) with immune response (i.e., Z(t) > 0) has

a unique endemic equilibrium whenever R0 > 1 and ρ > δ.

Thus, to obtain a unique endemic equilibrium, Theorem 5.4 implies that in the

presence of immune response, ρ, the maximum attack rate, must be greater than δ,

the removal rate of the immune system response for this case to happen.

5.3.3 Local stability of the endemic equilibrium (EE)

In this Section we will consider the stability of the endemic equilibrium E1. First we

consider the case without immune response (Z = 0); thus linearizing (5.10)-(5.14) we
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have the matrix J evaluated at E1 with Z(t) = 0, using the equilibrium (5.21)

J =


−d− βTY ∗T − βBY ∗C −βTX∗ −βBX∗ 0

βTY
∗
T βTX

∗ − (aT + rT ) 0 rB

0 rT −aC 0

βBY
∗
C 0 βBX

∗ −rB

 .

The matrix J has the sign pattern J11 < 0, J33 < 0, J44 < 0, J12J21 < 0, J13J31 =

0, J14J41 = 0, J23J32 = 0, J24J42 = 0, J34J43 = 0, and J22 = (aT+rT )(βT aC−1)
(aCβT+rT βB)

< 0

provided βTaC < 1, thus the matrix is sign stable and hence the equilibrium (5.21)

is locally asymptotically stable [1, 25, 75]. We have thus established the following

result:

Lemma 5.4.1. The endemic equilibrium (5.21) without immune response is locally

asymptotically stable for βTaC < 1.

Next we consider the stability of the equilibrium E1 in the presence of immune response

(i.e., Z(t) > 0). Linearizing (5.10)-(5.14) evaluated at E1, using the equilibrium (5.23)

gives the matrix J

J =



−d− βTY ∗∗
T − βBY ∗∗

C −βTX∗∗ −βBX∗∗ 0 0

βTY
∗∗
T βTX

∗∗ − (aT + rT + CTZ
∗∗) 0 rB CTY

∗∗
T

0 rT −aC 0 0

βBY
∗∗
C 0 βBX

∗∗ −rB 0

0 ρZ∗∗

(h+Y ∗∗
T ) −

ρY ∗
T Z

∗∗

(h+Y ∗∗
T )2 0 0

ρY ∗∗
T

(h+Y ∗∗
T ) − δ


The matrix J has the sign pattern J11 < 0, J33 < 0, J44 < 0, J55 = 0, J12J21 <

0, J13J31 = 0, J14J41 = 0, J15J51 = 0, J23J32 = 0, J24J42 = 0, J25J52 = 0, J34J43 =

0, J35J53 = 0, J45J54 = 0, J22 = − rT βBX
∗∗

aC
< 0 and

J25J52 =
(ρ−δ)(aCβT+rT )[dX0(ρ−δ)−hδ(aT+rT )]−a2Cd(ρ−δ)

2(aT+rT )

hδρ(aCβT+rT )+ρaCd(ρ−δ)
< 0 provided dX0(ρ − δ) <

hδ(aT + rT ), thus the matrix is sign stable and hence the equilibrium (5.23) is locally

asymptotically stable [1, 25, 75]. We have thus established the following result:
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Lemma 5.4.2. The endemic equilibrium (5.23) with immune response is locally

asymptotically stable provided dX0(ρ− δ) < hδ(aT + rT ).

5.4 Discussion and Conclusion

Recall from (5.17) that the reproduction number R0 is proportional to X0, the total

number of host cells before invasion of the parasites. Assuming the invasion and

reproduction kinetics of the parasites are the same in different organs, larger organs

intend to have more cells and thus larger R0 values, which will make them more

suitable for the parasites to dwell. This is probably why T. gondii is most frequently

found in brain, heart, and muscle in a host [48]. To investigate the influences of

various parameters to the diseased state, we will rewrite the endemic equilibria in

terms of model parameters. The equilibrium without immune response in (5.21) can

be rewritten in terms of model parameters as follows:

X∗ = X0

R0

Y ∗T = dX0

aT+rT
− d aC

rT βB+aCβT

Y ∗C =
rT Y

∗
T

aC

Y ∗B =
βB X∗Y ∗

C

rB
.

(5.25)

It follows from (5.25) that, in endemic state, the number of healthy cells, X∗, is less

than the original number of cells, X0. The model predicts that the steady state of

the disease reaches a dynamic balance between three different stages of the parasites:

Y ∗T , Y
∗
C , and Y ∗B. Note that Y ∗B and Y ∗C are proportional to Y ∗T and Y ∗T is positively

correlated to X0. Thus, steady state parasite loads are related to the size of the

organ. Also, recall the reproduction rate of uninfected cells is λ = dX0. Assume the
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reproduction rate λ is a constant, it can be seen from (5.25) that, an organ with longer

life expectance 1/d will have larger parasite loads. Since brain cells are permanent,

this also explains why T. gondii is mostly like to be found in brain [48].

The equilibrium with immune response in (5.23) can be rewritten in terms of

model parameters as follows:

X∗∗ = aC dX0(ρ−δ)
h δ(aC βT+rT βB )+aCd(ρ−δ)

Y ∗∗T = h δ
ρ−δ

Y ∗∗C =
rT Y

∗∗
T

aC

Y ∗∗B =
βB X∗∗ Y ∗∗

C

rB

Z∗∗ = X∗∗ (rT βB + aC βT )−aC( aT+rT )
aC cT

.

(5.26)

It is interesting to note that the relationships between the three parasite loads, Y ∗∗T ,

Y ∗∗C , and Y ∗∗B , remain the same as those in the absence of immune response although

the steady state value of Y ∗∗T is now determined by kinetics of immune response. We

also note the parasite loads Y ∗∗T and Y ∗∗C do not depend on the original number of host

cells X0 whereas the load Y ∗∗B is proportional to X0. Moreover, when the reproduction

rate of uninfected cells λ = dX0 is kept at a constant, a larger life expectance 1/d

will lead to a larger value of X∗∗ and thus a higher parasite load Y ∗∗B . Again, the

analysis shows that T. gondii favors cells with long life expectance such as the brain.

5.4.1 Numerical Simulations

In order to investigate the effects of T. gondii infection, we first introduce model

assumptions and estimate parameters of infection dynamics using experimental data

available in the literature. Numerical simulations here use a mouse spleen as an
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example. We estimate a healthy spleen has X0 = 108 cells. Assume that the life

expectancy of spleen cells is 1 month, which leads to the death rate as d = 1.389 ×

10−3h−1. In the current model, we assume at most one parasitophorous vacuole (PV)

can form within a host cell. We further assume parasites within the same PV are in

the same stage and replicate simultaneously. Experimental data in Weiss and Kim

[135] indicate that the doubling time of tachyzoites is 6 hours and that of bradyzoites

is 24 hours. Tachyzoites in vivo often lyse the host cell after reproducing 2 or 3

times [35]; thus, we choose aT = 1/(18h) and kT = 8/(18h). Cysts of bradyzoite may

contain more than 1000 parasites [47]. We assume encysted brayzoites burst after

reproducing 10 times and thus estimate aC = 1/(240h) and kC = 1024/(240h). After

a parasite is released from a PV into the organ, we assume the parasite may interact

with 10 host cells and the probability of invasion of individual host is 2%. It follows

that βT = 8.889 × 10−10(number of cells)−1h−1 and βB = 8.533 × 10−9(number of

cells)−1h−1. Since tachyzoites can convert to bradyzoites after about 20 generations

of reproduction [81], we estimate rT = 1/ (108h). Weiss and Kim [135] showed that 48

hours after bradyzoites invade a tissue, tachyzoites start to appear; thus, we estimate

rB = 1/ (48h). The current model does not consider detailed immune mechanisms.

Instead, we consider the effector cells of the immune system acting on tachyzoites

in PV. Assume the interaction rate between effector cells and tachyzoite PVs as

cT = 1.67× 10−8(number of cells)−1h−1. Assume the degradation rate of the immune

effector cells to be δ = 1/ (48h). Let h = 105 to account for the memory effect of

immune response and let ρ = 10/ (24h) be the response rate.

Substituting the above parameters into Equation (5.17) yields R0 = 30.63, which

indicates that an infected cell will, on average, infect 30.63 uninfected host cells per

hour. Consider an immuno-incompetent host, in which Z = 0, it follows that the

equilibrium diseased state is X∗ = 3.26× 106, Y ∗T = 2.07× 106, Y ∗B = 6.16× 106, and

Y ∗C = 4.61 × 106. The total number of cells is 1.61 × 107, which is reduced to 16%

of the original number, X0. In contrast, in an immunocompetent host, the long term

solution is X∗ = 9.30 × 107, Y ∗T = 5.26 × 103, Y ∗B = 4.46 × 105, Y ∗C = 1.17 × 104 and
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Z∗ = 1.07 × 108. The total number of cells is 9.34 × 107, only slightly less than the

number for disease free state. Transient responses in the absence of immune response

are shown in Figure 5.4 while transient responses in the presence of immune response

are shown in Figure 5.5.
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Figure 5.4: Response in the absence of immune response: variation of healthy host
cells (left) and variation of infected host cells (right). The infected host cells include
those infected with tachyzoites (solid), cysted bradyzoites (dashed), and early-stage
bradyzoites (dotted).
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Figure 5.5: Response in the presence of immune response: variation of healthy host
cells (left) and variation of infected host cells (right). The infected host cells include
those infected with tachyzoites (solid), cysted bradyzoites (dashed), and early-stage
bradyzoites (dotted).

We further use the model to study reactivation. While the number of parasites

in an immunocompetent host is greatly suppressed, the parasites can be reactivated

when the host becomes immunoincompetent [36]. Here, we consider reactivation

due to temporary impairment in the immune system. We assume a host is first
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infected with T. gondii and, after 3000 hours, the host’s immune system is temporarily

impaired so that the production rate ρ is reduced to 10% of the nominal value. We

assume the impairment lasts for 200 hours and then the host’s immunity recovers

to the original level. This scenario would be analogous to a host suffering from

immunodepression for a few weeks before overcoming the secondary infection and

allowing for a full immune response to the toxoplasma. The results for this particular

situation are shown in figure 5.6. It is clear that this temporary decrease in immune

response leads to a significant increase of parasite load within the host.
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Figure 5.6: Reactivation of parasites due to temporary impairment of the immune
system: variation of healthy host cells (left) and variation of infected host cells
(right). The infected host cells include those infected with tachyzoites (solid), cysted
bradyzoites (dashed), and early-stage bradyzoites (dotted).

Here, we have developed a mathematical framework to investigate intra-host

dynamics of T. gondii. Assumptions and simplifications have been made about the

biological processes including invasion, replication, and stage conversion. Parameters

of the model have been estimated based on available experimental data. In the

differential equation model we created, the effects of spreading parasites are examined.

In the analysis, we first found the fixed points and analyzed the rate of infection

R0. The first fixed point in the analytical model was the parasite-free equilibrium

point. The second and third equilibrium points are identical in expressions for

YT , YC , and YB. It is interesting to note that the second and third equilibrium
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points vary in the values for the immune response fixed point. The immune regulated

equilibrium only exists when ρ > δ.

It is also important to note the assumption made in analyzing this model. We

have assumed the invasion dynamics of the free parasites are much faster than the

replication and stage conversion, which leads to quasistationary simplification of the

free parasites. This assumption is valid because the bursting of cells with tachyzoites

release free tachyzoites, this release was modeled as a contribution of infection directly

to uninfected hosts. The use of the Holling’s Type II functional response models the

way an immune system should respond: Very limited response to low numbers of

invaders and a quickly growing response up to a threshold as the number of invaders

increases. This type of response allows us to simplify the immune system into a

mathematical model.

The critical value for R0 found in this model indicates that our infection rate is

dependent upon the initial number of uninfected hosts, the death rate of cells infected

with bradyzoites and tachyzoites, the invasion rate of tachyzoites and bradyzoites

contained within a host, and the conversion rate from tachyzoites to bradyzoites.

Analyses of the reproduction number and the endemic solutions indicate that T.

gondii favors large organs with long life expectance. This agrees with the experimental

observation that T. gondii are commonly found in skeletal muscles, brain, and

myocardium.

Numerical simulations show that the immune system plays a pivotal role in

suppressing the growth of tachyzoites within host cells. This suppression, once the

system reaches endemic behavior, allows for the body to exit the acute infection stage

and begin the long-term, virtually symptom-free, state. Without immune response,

the tachyzoites would be free to replicate and invade many different hosts.

Tachyzoites are rapidly dividing and responsible for the acute infection whereas

the slowly replicating bradyzoites are located within tissue cysts, which protect the

parasite from the host immune system and make it inaccessible to drugs [48]. The

differentiation of tachyzoites into bradyzoites is a response to the onset of protective
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immunity whereas the dormant bradyzoites are able to reconvert into tachyzoites to

cause fatal infection in patients. Therefore, stage conversion between tachyzoites and

bradyzoites plays a pivotal role in the pathogenesis, transmission, persistence, and

reactivation of the disease.

Future work of this system will include a more detailed description of immune

response. While using the Holling’s Type may accurately model the conceptual

framework of an immune response, more evidence is needed to qualify this technique

as accurate. A further expansion of this model might include a spatial array in

which the disease can propagate. While our model tracks the disease throughout the

spleen and assumes a homogenous distribution of cells throughout, the parasites are

actually capable of starting in the stomach and invading the brain, muscles, and liver.

Therefore, a spatial model may be able to describe the complicated dynamics that

describe how the parasites can move throughout the body.
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Chapter 6

Cellular Automata Brain

Simulation of Infection

6.1 Introduction

Toxoplasma gondii is a parasitoid that infects up to 20% of the world’s population

[4]. While the parasite does not typically cause death when an individual becomes

infected with Toxoplasma, those with deficient immune systems can develop severe

brain inflammation. Additionally, infection during pregnant can cause severe birth

defects. The effect it has on humans makes this an important parasite to study and

monitor, especially the mechanisms that regulate the within-host dynamics.

Toxoplasma gondii is a parasite that infects mammals and birds. The parasite

uses the feline to reproduce sexually. When the cat becomes infected, it sheds oocysts,

which infect the environment. These oocysts can be ingested by mammals and birds

which then become infected with the parasites [80]. Eating another organism that is

infected can also infect the secondary hosts.

The life cycle of a parasite starts out as a tachyzoite which replicates asexually

very quickly. The tachyzoites infect host cells, where they feed off of the nutrients

in the host to reproduce. Once the parasite replicate several times , they will burst
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from the host cell and continue to search for a new host and infect other host cells.

Sometimes, the host cell will not burst and the parasites will convert to a new stage

of Toxoplasma known as a bradyzoite. These parasites replicate very slowly and will

eventually turn a host cell into a cyst (most often in muscle and brain tissue). These

cysts are filled with thousands of bradyzoites, and can remain alive even after a host

has died. The consumption of undercooked meat is one way to release a bradyzoite

cyst [4].

Figure 6.1: Life cycle representation of Toxoplasma gondii from [65]. The parasites
invade a host cell, replicate within the host cell, and eventually burst, releasing new
parasites capable of reinvasion of a host cell.

Once a host cell containing bradyzoites bursts, each bradyzoite can then reinvade

other healthy host cells, thus completing the life cycle within the host. This work

focuses solely on the asexual replication cycle of the parasite and does not consider

sexual replication within a cat.

Toxoplasma gondii is unique in that parasites can exist in the tachyzoite or

bradyzoite state throughout the life cycle. Tachyzoites are rapidly dividing and
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responsible for the acute infection whereas the slowly replicating bradyzoites are

located within tissue cysts, which protect the parasite from the host immune system

and make it inaccessible to drugs [80]. The differentiation of tachyzoites into

bradyzoites is a response to the onset of protective immunity whereas the dormant

bradyzoites are able to reconvert into tachyzoites to cause fatal infection. We

also investigate the effects of different hypothesized growth functions have on the

pathogenesis, transmission, persistence, and reactivation of the disease.

6.2 Model and Method

6.2.1 Cellular Automata

A simple cellular automata model requires four components: a spatial domain, a set

of states that can exist, a set of neighborhoods, and deterministic rules. To develop

our model, we define our cellular automata in the following manner.

The spatial domain the geographic mesh of an organ or tissue we are studying. The

spatial domain is a set of nodes identified on a tetrahedral mesh. Each node contains

a given number of actual cells. Additionally, each node is capable of possessing a

number of free tachyzoites or bradyzoites. These free tachyzoites or bradyzoites are

capable of invading the host cells contained within each node.

We define the cells to have the states of YT for a cell infected with tachyzoites,

YC for a cell infected with cysted bradyzoites, and YB for a cell infected with recently

freed bradyzoites (these typically convert back to tachyzoites). Additionally, a cell’s

state is dependent upon the the number of parasites contained within it, because the

rule definitions change with the number of parasites within each host cell. Therefore,

it is necessary to label the state of each cell with the number of parasites of each

type contained within the cell. There are two neighborhood definitions. Each cell in

the sub-domain of each node has a local neighborhood of every other cell within the

same sub-domain. Every node has a neighborhood calculated by finding other nodes
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within a given radius. Figure 6.2 paints a picture of how a node is defined within the

context of our model.

The update rules are all based on phenomenon expressed by the T. gondii parasite

and their reaction with host cells. These rules are presented in the next section. The

simulation applies all of the rules before moving on to the next time step. The default

time step for the algorithm is 1 hour, although different time steps may be specified.

Node 

Cells Free 
Parasites 

Figure 6.2: Figure of a node that includes some healthy cells, infected cells, and free
parasites. The node is an object and each cell is an object within each subdomain of
a node. The free parasites and invaded parasites are maintained as variables within
each object.

6.2.2 Biological Rules

The Toxoplasma gondii parasites behaves in a way that makes it possible to model

the biological processes using simple rule updates. We have modeled the various rules

using functions within each object. Rules are updated within each node and within

each cell. A flow diagram of the assumptions is presented in Figure 6.3.
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Figure 6.3: Flow diagram of the biological processes and assumptions presented in
this model. This figure is modified from [123].

Invasion

A free parasite in either the tachyzoite or bradyzoite state is able to move about

the organ by moving from node to node. Transitioning from one node to the next

depends on whether the parasite can overcome the probability of a free parasite dying.

Otherwise, the free parasite may enter any one of the pre-calculated neighboring

nodes from its current node with equal probability. We define pt, the probability of

transition, to be 1
ni+1

, where ni is the number of neighboring nodes available to the

ith node. The number of neighbors is found by calculating all neighboring nodes

within a given radius of a node.

A free parasite follows three processes when invading a host cell contained within

a node. Firstly, a parasite will invade a host cell with a given probability. Secondly,

a parasite can only invade a host cell that does not contain any parasites. Thirdly,

a parasite, if unsuccessful at invading the first host cell, can attempt to invade each
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healthy host-cell until it has tried each cell. After it has tried to invade each cell, the

process will stop.

Replication

Once a parasite invades a healthy cell, the process of replication begins. The

replication rate for tachyzoites and bradyzoites is specified within the algorithm (see

Table 6.1). A tachyzoite may replicate at a rate of rT .

To investigate varying degrees of replication of bradyzoites, we consider three

different growth functions:

• synchronous replication of the cyst: for a true probability event, all parasites

will replicate once.

• asynchronous replication of the cyst: for a true probability event, a given

number of parasites will be added to the cyst.

• individual replication of individual parasites: each parasite within a cyst will

undergo a probability event, and if true, a single parasite will be added to the

cyst population of bradyzoites.

A moderate immune response may contribute to bradyzoite conversion by

suppressing parasite replication but still allowing parasites to reach a pre-mitotic

cell cycle checkpoint for entry into conversion [121]. This type of immune response is

seen in several mathematical models used in tumor modeling [85]. The bradyzoites

are formed in to cysts and develop stability as they grow. A combination of immune

response and self-regulation within the cyst causes the bradyzoites to slow down

from their initial replication rate. This reduction in the replication rate of encysted

bradyzoites is

prep = rC

(
1− C

NC

)
(6.1)

where rC is the probability of a replication event of bradyzoites, C is the number of

bradyzoites within the cyst, and NC is the maximum observable number of parasites
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possible within a cyst. This response is modeled in such a way that the immune

response keeps cysts from wanting to grow without bounds [56].

Bursting

Parasites contained within a host cell are susceptible to egress through the process

of host cell lysis. Eventually, the parasite will cause the cell to burst, infecting the

node area with free parasites. These parasites can be in the form of tachyzoites or

bradyzoites. The probability of bursting depends on the user-controlled parameter

for the maximum threshold for parasites capable of occupying a cell before bursting

happens. The probability of a cell bursting increases as the parasite population within

a cell approaches the threshold population. The defined rate of bursting is given in

Table 6.1. The probability of a host cell infected with tachyzoites bursting is dT and

the probability of a burst for a cell infected with bradyzoites is dC .

The assumption is made that a host cell dies after parasites contained within cause

the cell to burst. Because of the large number of host cells available on an organ, we

assume that the birth and death rates of the host cell is the same. Therefore, when a

host cell is ruptured, it dies, and a new one is immediately created in the same node.

Inter-conversion

The conversion rate is dependent upon the time that is required for a parasite to

convert from tachyzoite to bradyzoite. For each time step, there are two competing

processes occurring simultaneously where on one hand the parasites may egress from

the host cell, but on the other hand they may convert to a state which has less

likelihood of egressing from the host cell. At each time step, there is a probability

that a tachyzoite may egress and there is a probability that it may convert to a

bradyzoite. If the tachyzoite converts to a bradyzoite, there is a different assigned

probability of conversion.
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The conversion rate is a probabilistic rule and has a rate of cBT for bradyzoites

converting to tachyzoites and cTC for tachyzoites converting to cysted bradyzoites.

If a bradyzoite bursts from a host cell and enters the free space, the free bradyzoite

may then invade a new healthy cell. Once the bradyzoite invades, it replicates

at the bradyzoite rate. However, the biological process regulates that an invading

bradyzoite will eventually convert back in to a tachyzoite [107]. Therefore, there is a

separate probability of conversion from bradyzoite to tachyzoite. We also assume that

conversion is a synchronous event. For simplicity, the conversion process converts all

parasites and does not leave the possibility of observing both types of parasites within

the host cell. We also assume conversion is instantaneous in our model.

Survivability of free parasites

In addition to host cell death, free parasites are capable of death when in the intra-

cellular space. Tachyzoites and bradyzoites cannot survive for long times when not

inside of a host cell. A free parasite that exists in any free space within a node is

capable of dying, staying in the current node, or moving to a new node. Therefore,

there exists a chance of a free parasite dying for each time step. This probability is

defined as pd and the numerical value can be seen in Table 6.1.

In the case of free tachyzoites, the probability of death during spreading is a

function of the total number of tachyzoites present in the organ:

pdeath = pd + (1− pd)
Tcf

hT +KT

(6.2)

where pd is the probability of a free tachyzoite dying if it is free from a host cell, in

absence of immunity, Tcf is the number of tachyzoites in the organ, hT is the attack

rate, and KT is the maximum number of tachyzoites needed before the immune

response reaches a maximum rate.
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6.2.3 Simulation Techniques

Mesh

This model is developed using mesh generated by the DigiMouse project, which

produced a three-dimensional whole-body tetrahedral mesh representation of a mouse

[5]. The mesh is created using PET, CT, and cryo-section images. The final result

produces 306,773 elements and 58,244 nodes compartmentalized into different organs.

The mesh of the brain can be seen in Figure 6.4.

Using the mesh, we use the nodes to represent a region of space where an

average number of healthy host cells can exist. We then used random assignment

of the number of host cells assigned to each node, which we assume that the spatial

heterogeneity of the cells within the organ is preserved in the model. Because this is

not a finite element or finite difference problem, the nodes are the only data used in

our model and we ignore the element data for simulations.

The mesh is refined using the CubeIt program to increase the number of nodes [33].

The nodes were partitioned into computational nodal-regions through the METIS

algorithm [86].

Object-Oriented Programming

The code for the Toxoplasma gondii simulation is written in C++. The main objects

are represented by the domain of all spatial nodes. Within each primary node object,

a secondary object was created to represent each of the cells. Parasites were not

represented as an object but as a variable contained within each node and cell.

Within each cell, parasites could exist in the tachyzoite state or bradyzoite state.

Free parasites can exist within a node and can enter any one of the infected cells.

Each cell can only accept one free parasite. Free parasites can exist in tachyzoite,

bradyzoite, or an alternate bradyzoite state that can only exist if it has recently come

from a burst infected cell, and the alternate bradyzoite’s eventually return to the

tachyzoite state.
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Figure 6.4: Mesh generated from the digitized mouse brain.

Parallelization

The code is written using C++ and implemented in linux on an Intel machine with

8-cores. The code is tested on a multi-processor Linux computer and implemented on

the Newton cluster at the University of Tennessee. To implement the code in parallel,

Message Passing Interface (MPI) is used to parallelize the algorithms. To parallelize

the code, the initial setup is performed in the first processor. The parallelization

is done by dividing the brain across the spatial-geographic domain and assigning

each region to a separate computation process. After the entire initialization is

complete, the first processor sends the node information (location, number of hosts,

identification numbers) to each of the secondary processors. Once the simulation

begins, the biological rules all apply to each processor simultaneously. The spreading

algorithm requires a Send/Receive process through MPI. During the spread process,
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the free parasites in one node may to spread to their neighboring nodes. The spreading

function is completed by each node retaining a list of neighbors that are within a given

neighborhood of the node. If the neighbor is located within a different processor, the

free parasite is sent to a buffer node. Once the spreading process is completed in

each node, the buffer node sends each of the free parasites to the relevant processor

and the parasite enters the node. Once the simulation is complete, the primary

processor assembles the data from each processor into a single file for data analysis

and visualization.

Algorithm

The code initially reads the mesh, the neighbor lists (generated in pre-processing),

and the input parameter choices. A partitioning algorithm is used to assign nodes to

different processors. The principal processor sorts the data and sends the appropriate

nodal information to each processor. All of the cells are labeled as healthy. An initial

dose of 1000 tachyzoites is applied to one node. Discretized time steps of 1 hour are

taken and the following process is followed:

• Any free parasites may spread to a neighboring node per the spreading rules.

Some free parasites may die in this step.

• Any free parasites may invade a host cell at its new location.

• The parasites that have invaded a host cell may replicate which is a function of

the parasite type (bradyzoite or tachyzoite) and a random variable.

• Data is collected and recorded, and time is incremented.

The parameters needed to run this model are based on rates and probabilities

found within current literature; see Table 6.1.
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Table 6.1: Estimated and experimental parameter estimates used in the simulation.

Paramter Description Rate

rB Bradyzoite replication rate 1/10 h−1

rT Tachyzoite replication rate 1/6 h−1[135]
cBT Conversion rate from YB to YT 1/48 h−1 [135]
cTC Conversion rate from YT to YC conversion 1/20 h−1 [81]
dC Bradyzoite Bursting Rate 1/(24*30) h−1 [123]
dT Tachyzoite Bursting Rate 1/8 h−1

NT Number of Tachyzoites in host for bursting 8 parasites [55]
NC Carrying capacity of Bradyzoites in host 1000 parasites [80]
pd Free parasites death rate 0.8 h−1

6.3 Results

To investigate various types of growth functions explored in [124], we simulated

the infection with three types of growth for the parasites contained within a cyst:

asynchronous growth at the cyst-population level, asynchronous growth at the cyst-

parasite level, and synchronous growth at the cyst-population level. This allows

us to explore the different hypotheses surrounding the growth behavior of parasites

contained within a cyst.

The simulation in this case study was performed assuming that a mouse brain

had 107 cells, so each node had a random number of cells with a mean of 300. There

were 77,221 nodes in the mouse brain mesh. The simulation was carried out using 16

processor nodes. The simulation was evaluated 3600 hours with time steps of 1 hour

each. The data was recorded at the end of each time step into a visualization file and

a data file, which could then be analyzed.

We investigate three separate replication assumptions. The three separate

replication functions are used to generate the distribution of cyst sizes for each hour

of the simulation. The plot of infected parasites is shows in Figure 6.6. For a), the

synchronous replication rate of tachyzoites shows a large number of small cysts with

the potential for much larger cysts. In b), the asynchronous replication rate is modeled

76



0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

TimeHhL

N
u
m

b
e
r

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

TimeHhL

N
u

m
b
e
r

Figure 6.5: Simulation results of one trial. Number of cells infected with tachyzoites
and total tachyzoite load (left); number of cells infected with bradyzoites and total
bradyzoite load (right).

by introducing a constant number of new cysts for a true probability event. In c),

the asynchronous replication is modeled by giving each parasite within a cyst the

opportunity to replicate. To test for stationarity, we used the Mann-Whitney median

test (selected because the distributions of cyst sizes are not normally distributed)[118].

The test statistic was found by comparing the final simulation hour with each of the

previous 100 simulated hours. The results suggested that the medians were not

significantly different in at least 99 out of 100 tests at the α = 0.05 level for all three

growth functions. This allows us to conclude that the distributions have reached

stationarity in all three cases.
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Figure 6.6: Steady-state cyst-size distributions for different growth functions.

The results shown in Figure 6.5 demonstrate the behavior of the infection of the

simulation. During the early period of the infection, cells infected with tachyzoites
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begin to appear and persist throughout the early part of the infection. By the end of

the first month of infection, the bradyzoites have started to increase in abundance.

As the infection carries into the chronic infection stage (3 months or longer), the

overall number of cells infected with parasites begins to fall. At this point in the

infection, the total number of parasites decreases but the distribution of cyst sizes

remains constant.

6.4 Discussion and Conclusion

In this work we developed a cellular automata model to describe the invasion of a

Toxoplasma gondii within a brain. The model was developed using the mechanistic

life cycle models to simulate the parasitic invasion on a mouse brain. The invasion,

replication, stage-conversion, and egress processes were modeled according to realistic

experimental parameters. The results of the model were presented to explore three

different growth processes for bradyzoite replication. The steady-state distributions

were explored to examine the behavior of the distributions as chronic infection

developed. Finally, a variety of tools were used to display the output of the model as

plots and 3D models.

The data collected for each time step allows for observing healthy cells, cells

infected with bradyzoites, tachyzoites, or secondary bradyzoites, and free tachyzoites

and bradyzoites. There are also data collected to describe the number of each type

of parasite found within host cells.

In exploring the 3 separate growth functions, the trends observed are supported by

the findings of the partial differential equation model developed for the cyst volume

growth in Sullivan et.al. [124]. In that model, they proposed that the growth rate

could be constant (asynchronous), linear increasing (synchronous), or logistic. In the

model observations, the synchronous models followed a negative exponential function

with a coefficient in the exponent that forced the function to go to 0 much too quickly

compared to the distribution of the data. However, their model showed that the
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constant growth rate function was able to fit the data the best. In our observations of

the model in Figure 6.6, the asynchronous growth at the cyst level appears to closely

resembles the distribution of data observed in the experiments performed in [124] at

steady state.

The target audience of this model is biologists who need a convenient way to test

parameters and outcomes from infection in mice. By using this model, biologists may

be able to determine replication and conversion rates by looking at existing data from

within their experiments. This model could be used to examine different strain types

along with various effects of initial dosages and compared to experimental data. For

example, the data collected in Mordue et. al. [104] demonstrates the parasite load

on various organs as well as the effect of mortality caused by varying strain types.

Future work on this model would allow for simulating the transmission of the

parasite over the entire mouse body. The immune system modeling would need to be

examined such that the immune response would transmit the parasites from organ

to organ. The transmission and reproductive rates, along with the immune system

response, might be difficult to determine for each organ. An updated immune system

modeling technique may also be needed to more accurately represent the various

methods of immunity response.

Overall, this tool has proven useful in observing trends found on mechanistic

ODE models and PDE models. Additionally, the findings of this model are generally

in support of experimental observations of Toxoplasma gondii. Specifically, the

convergence of the model to a steady-state, along with the observation that the

asynchronous growth at the cyst level shows similar behavior to previous models

and data demonstrates the validity of the assumptions made in our model.
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Chapter 7

Conclusions

Here we have presented a multitude of modeling techniques applied to the unique life-

cycle of T. gondii. As demonstrated, there are unique aspects of the acute infection

cycle, chronic infection stage, and other biological phenomenon observable when

viewing the entire life cycle. In the development of the various models presented

here, the use of real experimental data provides additional support to the models

developed here. Finally, we used a variety of dynamic and statistical processes to

analyze and make conclusions based upon our developed models.

The work presented here was unique in that there have not been models designed

to describe the complete life cycle of T. gondii infection to this degree. Further,

the use of real experimental data to validate various modeling assumptions allows

us to make stronger conclusions than if the models had been developed on a purely

theoretical basis.

For the acute infection model, 16 nested models were developed with different

assumptions. Each of the 16 models were fit to existing experimental data from the

brains of mice. The relative “fit” of the models was compared using the DIC. It

was interesting that despite being penalized for having more effective parameters, the

model that best described the data was the model that had two state of immune

response and two states of parasite. Therefore, the significant conclusion from the
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acute infection model is that parasites undergo an initial infection state and the

immune response has a primed and active state despite typically only observing a

single state experimentally.

In the chronic infection analysis, multiple models were compared using the AIC

for model selection. In particular, multiple growth and removal functions were

considered. The experimental data did not support any growth function except the

constant growth rate function. This is interesting because the typically dividing

parasites or cells are typically thought to divide according to a linear growth rate

function. This finding is significant because it suggests that parasites within a cyst

produce offspring as a community of parasites contained within the cyst, and not

necessarily as individuals. Despite the various removal functions, it was difficult to

differentiate the models with the best AIC values.

The within-host dynamics theoretical model attempted to combine the acute

infection process and the chronic infection process by introducing a stage-conversion

process. This model analyzed the dynamics of the parasitic infection within a

host. The analysis of the dynamics of this model suggest that there are 3 distinct

equilibrium: a disease-free equilibrium, an immune-free endemic equilibrium, and

an immune-response mediated endemic equilibrium. It is interesting to note that

the parasites are capable of persisting at equilibrium levels while never triggering an

immune response. The numerical simulations of the model were also presented where

the host suffers a temporary reduction in immune response. Despite the reduction in

immune response, the model demonstrated that the host was able to quickly recover

to nearly identical levels once the host immune response recovered.

Finally, the cellular automata model used probabilistic rules to demonstrate the

acute and chronic infection of the parasites infecting a brain. The model investigated

the various growth mechanisms and reproduced the overall trends observed in the

chronic infection model for the growth behavior. The model incorporated a wide-

range of biological assumptions and the output of the steady-state histogram showed

validated the assumptions when compared to experimental data. While this toolbox
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used parameters found in the literature as compared to finding parameters via

statistical methods, the behavior of the model is supported by other models in this

project and the experimental data.

As a recommendation for future work, there are three main areas that I would

like to see investigated. Firstly, these models are general in the sense that they are

applied to a nonvirulent strain of parasite. It would be interesting to develop a more

stringent model that would predict mortality or account for more virulent strain types.

To fulfill the modeling strategies used in this model, it would be necessary to collect

data using the more virulent strains of Toxoplasma gondii. It would also be possible

to include additional mortality terms defined in the model to describe when a host

would be susceptible to death.

As a second goal in future work, it would be interesting to further develop the

cellular automata model in such a way that the infection would spread from organ

to organ. In the mesh file that was used, the different organs that are susceptible

to parasitic infection could be used to host the infection in addition to the brain.

For example, the parasite could begin spreading in the intestines and spread to the

spleen, liver, etc. Finally, the parasite could make its way to the brain. It would be

interesting because many of the transport mechanisms would need to be modeled.

This model could be used to compare to data found for the entire host infection over

a period of time.

Finally, additional data could be used to strengthen the conclusions found from

these models. An experimental design that incorporated the chronic and acute

infection scale could be used to develop a parameter estimating routine for the within-

host dynamics model. Additionally, an experiment that more accurately captured

the organ-specific IFN-γ levels and parasite densities would be helpful in further

strengthening the conclusions of the model. For the chronic infection model, using

a high-throughput method to collect data and find small cysts that may have been

ignored with a manual counting method would provide a better data set to match
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models to. Having cyst distributions at daily or weekly intervals would allow for

model fitting of the transients in addition to the steady-state.
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