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Abstract 

Alcohols (methanol and ethanol) have been identified as having the potential to improve 

air quality when used to replace conventional gasoline. This potential is primarily due to 

the different organic species that are emitted by alcohol-fueled engines. The use of "near 

neat" alcohols gives greater benefits than fuels containing lower levels of alcohol, but neat 

alcohols present a significant cold starting problem. 

The primary objective of this study was to develop a rich combustor device which will 

extend the cold start range of alcohol fueled engines to -30°C while reducing cold start 

emissions. In support of this objective a software model was developed which includes 

the thermodynamic operation of the device as part of a vehicle, considering engine 

parameters, vehicle parameters, and driving cycle requirements. 

The analytical portion of this project consists of developing the software model. To 

understand the design and operating variables of the combustor, the model simulates 

operation of the combustor. The model predicts the output composition using the 

shifting equilibrium approach. The model includes engine and vehicle parameter inputs 

which will allow the simulation of a driving cycle. Chemical kinetics are not 

considered. 

The experimental portion of this project includes design, fabrication, and testing of the 

rich combustor device(s). The combustor design and installation takes into 
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consideration all the criteria for proper vehicle operation such as requirements for 

actuating, shutdown, and phase-out of the device at different operating conditions. 

Because of the availability of cold temperature testing capabilities, including an engine 

dynamometer, and an engine identical to the engine in the test vehicle, the task of 

vehicle integration could logically be combined, to a great extent, with the testing and 

development of the prototype. We used the dynamometer driving the engine as a pwnp 

to test the combustor while the issues of fit, interfaces, and control were concurrently 

addressed. With this capability, a parallel approach allowed many of the problems 

associated with vehicle integration to be addressed early in the development of the 

combustor. 

The development of the rich combustor was primarily targeted toward methanol; 

however, the device functions equally well using ethanol.  
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Preface 

This project was originally defined by five tasks. The following task statements best 

describe them. 

As the first task, a theoretical model shall be developed to determine what are the 

important combustor design variables. The model shall help determine the relationships 

between the combustor's inputs (fuel and air flow) and outputs (composition, 

temperature, and flow rate of exhaust products). The exhaust product flow rates needed 

to achieve adequate alcohol cold-start over a range of temperatures shall also be 

determined. 

In the second task, using the understanding obtained from the modeling effort in the first 

task, a prototype combustor shall be designed and fabricated. The design shall include 

among other concerns: nozzle selection, air and fuel flow regulation, ignition system 

selection, material type, and fabrication method. 

In the third task, the prototype rich combustor(s) shall be tested to determine its 

performance. The tests shall be done over a range of ambient temperatures and shall 

include performance mapping of the following parameters: fuel and air flow, output gas 

composition and temperature, and combustor temperature (at different locations on the 

apparatus). The evaluation shall initially be based on bench tests of the apparatus but 

shall include issues associated with vehicle applications such as air flow and pressure 

drops. 
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Based on the test results from the previous tasks, the prototype rich combustor device(s) 

shall be installed on vehicles for cold-start testing. The combustor and installation shall 

take into consideration all the criteria for proper vehicle operation such as requirements 

for actuating, shutdown, and phase-out of the device at different operating conditions. 

Based on the prototype rich combustor apparatus achieving satisfactory low temperature 

cold start results, the apparatus shall be tested to determine if the apparatus has any 

measurable effect on the vehicle's emissions and fuel consumption. The methanol 

fueled vehicle shall be emissions tested twice, using the rich combustor apparatus one of 

the times. The test cycle shall be determined by the operator but will need to take into 

consideration a low temperature cold start. 

Because of the availability of cold temperature testing capabilities, including an engine 

dynamometer, and an engine identical to the engine in the test vehicle, the task of 

vehicle integration could logically be combined, to a great extent, with the testing and 

development of the prototype. We could use the dynamometer driving the engine as a 

pump to test the combustor while the issues of fit, interfaces, and control were 

concurrently addressed. With this capability, many of the problems associated with 

vehicle integration were addressed early in the development of the combustor. This 

parallel approach was taken rather than the original task breakdown which included 

bench testing. Due to a shift in the focus from methanol to ethanol, the vehicle 

emissions testing was replaced in the project with testing of the combustor using 

ethanol. 
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The results of the modeling, prototype design and fabrication, testing and development 

are presented for operation using methanol fuel. The conversion of the combustor 

system to use ethanol was simple and straightforward, and the results of testing using 

ethanol are also presented. 
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Chapter I 

Introduction 

Background 

Methanol (CH30H) has several properties which distinguish it as an attractive 

alternative to petroleum fuels. Its high octane rating and high latent heat of vaporization 

enhance its appeal as an alternative to gasoline in spark-ignition engines. Emissions 

from an alcohol fueled engine contain up to 58% less hydrocarbons (HC) and oxides of 

nitrogen (NOx), compared to a gasoline-fueled equivalent (Hochsmann 1989). 

Compared to their gasoline equivalent, the emissions from methanol fueled engines are 

less photochemically reactive (Pefley 1984 ). The low volatility of methanol coupled 

with its high latent heat of vaporization reduce the evaporative emissions from a 

methanol fueled vehicle (Hodgson 1994). Together, these properties make it an 

attractive alternative fuel from an environmental perspective. 

Cold Starting Issues 

Unfortunately, the low vapor pressure and high latent heat of vaporization of methanol 

also lead to low vapor pressures at low temperatures which severely reduces the cold 

start performance of an alcohol fueled engine. This problem is compounded by the fact 

that the low air fuel ratio required for methanol means less air is available per unit mass 



of fuel in the fresh charge to supply the energy for vaporization. Unlike gasoline which 

can be blended to achieve desired phase equilibrium behavior (winter blends are more 

volatile than summer blends), methanol is a pure substance with a known fixed phase 

equilibrium behavior. The vapor pressure at various temperatures (Perry's 1993) is 

shown in Figure 1. The equivalence ratio assuming saturated vapor at the temperature 

considered, shown for methanol (Pefley 1986 ) in Figure 2 ,  indicates the minimum 

(richest) achievable air/fuel ratio during cold starting. 

The traditional manner in which an adequate air/vapor ratio is achieved for gasoline

fueled engines is to over-fuel the engine in order to assure that enough fuel evaporates. 

This is accomplished on carburetor-equipped engines by employing a choke, and on 

fuel-injected engines by a warm-up enrichment cycle. As is evident from Figure 2 ,  

over-fueling to provide an adequate air/vapor ratio is not possible for methanol below 

approximately 12 °C. 

This over fueling during cold start and drive away account for a substantial portion of 

the emissions generated during the U. S. Environmental Protection Agency (USEPA) 

Federal Urban Driving Schedule (FUDS) by a typical current model car. Due to over 

fueling, the exhaust is rich in unburned fuel and carbon monoxide. During this initial 

starting period, the catalyst is cold and ineffective. The net result is that the engine 

produces more undesirable emissions as a result of the over fueling at a time when the 

catalyst is unable to convert the emissions. Reducing the over fueling during cold 

starting would reduce the cold start emissions (Hodgson 1994). 
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Aside from the fuel and emissions issues concerning cold starting, there are other issues 

which must also be considered. The power required to crank the engine is increased due 

to the increased viscosity of the engine oil at low temperatures. This places a high 

current demand on the battery and therefore, the battery's ability to sustain cranking is 

reduced to the point where it becomes an issue during cold cranking and starting. 

Cold Starting Solutions 

Because the implementation of methanol as an automotive fuel may be limited by the 

cold start problems described above, much research has been done taking many 

approaches. Some of the approaches taken are described below (Hodgson 1994). 

S11pp/ementary F11el 

This approach involves using a volatile fuel, typically gasoline, to start the engine and 

warm it up, after which the engine is switched to the alcohol fuel. Obviously, this 

approach requires auxiliary fuel storage and delivery systems. On-board generated 

hydrogen has also been used (Hydrogen Consultants 1995)  which requires heaters and 

catalysts. 

Blended F11el 

This approach uses a volatile fuel as a blending agent to provide the required air/vapor 

ratio for starting. M85 (85% methanol, 1 5% unleaded gasoline) is an example of this 
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approach. The advantage of this approach is that a single fuel system can be used, but 

the disadvantage is that the advantages of methanol described above are compromised 

by the addition of the blending fuel. 

Engine Modifications 

Many approaches to engine modifications have been taken to extend the cold start range 

of alcohol fueled engines. High energy ignition systems, "prompt EGR" (Gardiner 

1993 ), and optimization of injection parameters (Hochsmann 1989) are among the 

research efforts in the field. The most effective of these (prompt EGR) requires internal 

modifications to the engine (installation of a special camshaft). 

Air Heating 

Two approaches have been taken to heating the intake air. A combustor was used to 

provide its exhaust to the hot side of a "air to air" heat exchanger located immediately 

upstream of the intake ports and injectors, with the engine intake air as the cool side 

(Hochsmann 1989). This combustor was fueled with liquid methanol from the fuel tank; 

a glow plug served as the ignition system. The air flow through the combustor was 

provided by an external fan. 

The second approach taken (Hodgson, et al 1993) was to bum liquid methanol directly 

in the intake air stream. The air/fuel ratio was maintained very lean such that sufficient 

oxygen remained in the intake stream to support combustion in the engine. 
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In both cases, it was determined from cold start testing that the intake fresh charge 

would cool due to contact with the cold engine surfaces to the point that a combustible 

mixture was not present at the spark event. 

Fuel Heating 

Efforts to utilize fuel preheating have not significantly extended the cold start range of 

methanol (Hochsmann 1989). This results from the same cooling of the fresh charge 

that limits the contribution from air heating. 

Fuel Reforming 

In this approach, the fuel is reformed by various processes to produce other combustible 

species. Two approaches taken have been reforming methanol into dimethyl ether 

(Karpuk 1988}, dissociating methanol into hydrogen and carbon monoxide (Karpuk 

1989) and steam reforming (Lalk 1984). 

All of these approaches require heat for the fuel and the catalysts to produce the 

reformed fuel. The required heat is not available during cold start and warmup, so the 

fuel must be reformed when operating temperatures are sufficient and stored on the 

vehicle for later use. This requires the additional systems described for the 

supplementary fuel approach. 
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Riclt Combustion 

This is the approach taken in this study. Liquid methanol is burned in a rich diffusion 

flame in the combustor to produce the non-condensable gases hydrogen and carbon 

monoxide. These combustible gases are then mixed with additional air and fed to the 

engine. Proof of concept testing has been conducted by multiple researchers (Hodgson 

1993), (lwai 1994) and (Pettersson 199 1) which shows that rich combustion or partial 

oxidation is a viable means to extend the cold start range of alcohol fueled engines. 

This study addresses the development and application of this technology to a methanol 

fueled vehicle. 
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Chapter II 

Modeling 

Combustor Model 

To understand the design and operating variables of the combustor, a design tool has 

been developed to simulate constant pressure adiabatic combustion, including 

dissociation of the products. The model uses the thermodynamic and reaction data, and 

follows the methodology, presented in Campbell (1979) to determine the composition 

and temperature of the products. Chemical kinetics are not considered. 

The model performs an enthalpy balance of the reactants and products, using the 

thermodynamic data from Campbell. Dissociation of the product gases is included in 

the enthalpy balance; therefore, the final temperature (constant pressure adiabatic flame 

temperature) and equilibrium composition of the combustor products is determined 

using an iterative scheme. The following species are considered in the dissociated 

products- CO, C02, H2, H, H20, 02, 0, OH, N2, and NO. Chemical equilibrium among 

these species is governed by conservation of the elements C, 0, H, and N, plus the 

following six equilibrium reaction equations: 

1 k 
C0+-02 +-< �1 �) C02 

2 
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k 
2 0  ( 2 � 0 2 

k 
2 H  < "' ) H2 

k 
O+H< 5 )OH 

The reaction equilibrium constants k; are functions of temperature; therefore, a product 

temperature is assumed, and the ten equations governing chemical equilibrium are 

solved using the algorithm presented in (Hodgson 1990). With an assumed product 

temperature and a calculated equilibrium composition, the enthalpy of the products is 

compared to the enthalpy of the fuel and air mixture. If the difference in the two 

enthalpy values is greater than the desired convergence criteria, a new product 

temperature is assumed. The product temperature and equilibrium composition are 

determined iteratively in this manner. 
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The combustor model allows examination of methanol, ethanol, n-octane, and other 

fuels not considered in this project. The air/fuel ratio and the temperatures of the fuel 

and air may be separately specified. 

Calculations have been made using the model to simulate combustion of rich mixtures 

of both methanol and ethanol with air at -30°C to determine the concentration of 

hydrogen and carbon monoxide in the product gases under the equilibrium assumption; 

the results are shown in Figures 3 and 4. The calculated results for methanol are in 

good agreement with the calculated results presented in (lwai 1984), which compare 

well with the experimental results that were presented. 

Although it appears that extremely rich combustion (equivalence ratios >2 ) would give 

more hydrogen and carbon monoxide in the product gas, experimental results of lwai 

showed that this did not occur. It is believed that this is due to non-homogeneous 

combustion. lwai concluded that an equivalence ratio of 2 was appropriate. 

As detailed in the following section on the engine model, the combustor product stream 

contains significant inert or non-combustible species that results in the charge being fed 

to the engine having a lower energy density than the charge with the rich combustor 

operating. 

Engine Model 

The design tool includes an engine model that simulates the use of the combustor 

products, as well as the primary fuel, for fueling the engine. This model follows the 

1 1  
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same methodology as the rich combustor model for determining the thermodynamic 

properties and product composition. The four-stroke Otto cycle is modeled including 

the effects of progressive combustion (spark advance and combustion duration), 

volumetric efficiency, and part-throttle operation to calculate the range of output of the 

engine using engine geometry, engine volumetric efficiency vs. engine speed/manifold 

pressure tables, and ambient conditions as inputs. 

The engine model requires a selection of fuel, equivalence ratio for the engine, and 

fueling strategy- primary fuel or rich combustor operation. Ambient temperature and 

pressure must be specified, as well as the pertinent engine dimensions- bore, stroke, 

compression ratio, connecting rod length, and number of cylinders. A lookup table 

approach was chosen for incorporating the effects of volumetric efficiency rather than 

calculating the flow rate through the engine based on engine characteristics and 

operating conditions. The latter approach requires knowledge or estimation of many 

engine dimensions and operating parameters as well as numerical modeling of their 

effects on volumetric efficiency. The lookup table approach requires only that the 

candidate engine's volumetric efficiency be calculated from flow rates measured as a 

function of engine speed and manifold pressure. The volumetric efficiency data file 

required by the model contains volumetric efficiency for operating points from 1 00 to 

4000 RPM and 6 5  to 100 kPa, with operating point spacing of 1 00 RPM and 5 kPa. 

The four stroke Otto cycle is used as the basis for the thermodynamic engine model. 

Valve events are modeled as occurring instantaneously at top dead center (TDC) or 
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bottom dead center (BDC), with the exception of the intake closing event. This event is 

used to include the volumetric efficiency effect of reduced fresh charge. The theoretical 

fresh charge volume (volume at BDC minus volume at TDC) is multiplied by the 

volumetric efficiency to determine the volume of the actual fresh charge at intake 

manifold temperature and pressure. The engine geometry is then used to determine the 

crank angle (degrees after BDC) at which the intake valve should close corresponding to 

that volume. In this manner, the volumetric efficiency effects of port flow area, valve 

timing, exhaust gas recirculation (EGR), and other parameters too numerous to list are 

all incorporated in the volumetric efficiency lookup table and are all modeled by the late 

closing intake valve feature. 

The intake manifold conditions, except pressure, are assumed to be the same as ambient. 

In the case of primary fuel use, both the fuel and the air are at the specified ambient 

temperature. If operation of the rich combustor is chosen, then the products are 

assumed to mix with air and be cooled to ambient temperature in the intake manifold as 

described below. 

The constant volume combustion of the Otto cycle is replaced by progressive 

combustion in the engine model with spark advance and combustion duration as 

required inputs. A linear model of the burning rate is used; the portion of the fuel 

burned per degree of crankshaft rotation is assumed constant. The products of 

combustion are modeled using the shifting equilibrium method; chemical equilibrium 

among the combustion products is maintained throughout the cycle. Equilibrium 
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composition is calculated at each state point based on the temperature, pressure, and 

element abundancies. 

With engine speed and manifold pressure as inputs, and the lookup table used to 

determine volumetric efficiency, the engine model calculates the state point 

temperatures around the cycle. The temperature at the end of the intake stroke is used 

as the test for convergence; the model usually converges within three or four iterations. 

With the temperature and equilibrium composition at each of the state points 

determined, the thermodynamic data can be evaluated to calculate the indicated work 

for the cycle. The cycle calculations are based on one mole of fuel, which corresponds 

to a very large displacement engine. The actual displacement, as determined from the 

engine dimensions, is then used to proportionally reduce the calculated indicated work 

and amount of fuel to the appropriate values for the actual engine considered. The 

engine speed is then used to calculate the indicated power and fuel consumption rate. 

Engine friction power, including accessory load, is calculated using the following 

equation suggested by (Ross 1993). 

Friction Power =11th* .00567• Engine Speed• Engine Displacement 

where 11th is the thermal efficiency. 

It is noteworthy for the current study that this equation does not include temperature 

effects. The friction power of a cold engine will be higher than that predicted by the 
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equation. The engine friction was measured at various temperatures for the test engine. 

Although this data is engine specific, the trend should hold for other engine 

configurations and is included in the model. The engine brake power is then evaluated 

by subtracting the friction power from the indicated power. At each operating point 

(engine speed and manifold pressure), the following are calculated: 

• Brake power output 

• Fuel consumption 

• Efficiency 

• Cycle temperatures 

• Cycle pressures 

• Exhaust composition (equilibrium) 

A preliminary analysis of the indicated output of the engine using the rich combustor 

versus using the primary fueling system gives a basis for evaluating the results of the 

model. An analysis of the two modes of operation based on the heating value of the 

fuels, treating all gases as ideal, should yield a good approximation of the relative 

values of the indicated output of the engine. The analysis is presented for methanol for 

comparison to the model prediction; calculations for ethanol are similar. 

Assuming that the engine indicated torque is proportional to the heating value per mole 

of intake charge (proportional to the heating value per unit volume of intake charge), the 
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following analysis can be used to estimate the effect on engine indicated torque using 

the rich combustor to fuel the engine. 

From Obert ( 197 3  ), the constant volume lower heating values of interest are: 

LHVcu,ou = 2 920 89 * 2.326 = 67 9399 kJ I kmol 

LHVco = 103 500 * 2.326 = 24074 1 kJ I kmol (est) 

LHVu2 = 10 34 35 * 2 .326 = 240 589 kJ I kmol 

Operation of the rich combustor with an equivalence ratio of2.0 gives the following 

calculated product mixture: 

CH 30H -+.76 CO + .7325 H 2 + 433 non - combustibles 

Therefore based only on considerations of the heating value per mole of.fi.ld, the 

indicated output of the engine using the rich combustor products for fuel is reduced by 

the following factor. 

(.76 * LHVco + .7 32 5 * LHVu ) I 1.4 92 5 
CLHV = 2 =.354 

LHVcu,ou 
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This reduction in indicated output accounts only for the lower heating value of the rich 

combustor products versus the heating value of the methanol. The indicated output is 

further reduced due to the fact that the total number of moles in the fresh charge for 

induction into the engine is greater using the rich combustor. For conventional 

operation under stoichiometric conditions, the total number of moles in the fresh charge 

is: 

CH30H + 1.5 (02 + 3.76 N2) = 8. 1 4  moles 

For operation using the rich combustor with the engine operating at stoichiometric, the 

total number of moles in the fresh charge is: 

.76 CO + .7325 H2 + 4.33 non- combustibles + .75 (02 + 3.76 N2) = 9.39 moles 

Assuming that the indicated output of the engine is proportional to the energy density 

and that the fresh charge using the rich combustor is cooled to the same temperature as 

the fresh charge for the conventional fueling, the indicated output of the engine is 

further reduced by the factor: 

cnr = 8.14/9.39 =.867 

19  



Therefore, assuming the incoming fresh charge is at the same temperature for the two 

modes of operation, the indicated output of the engine using the rich combustor is only 

30.7% of the indicated output of the engine using the conventional fueling system. 

Further, if the fresh charge using the rich combustor is not cooled to the same 

temperature, the indicated output of the engine is reduced by a temperature factor based 

on the ideal gas law: 

C _ T combustor 
T-

T conventional 

For the case considered, the uncooled fresh charge using the rich combustor would be 

approximately II 00 K, which would give an effective indicated output of only 

approximately 7% of a conventionally operated engine. Fortunately cooling of the rich 

combustor products does occur and is, in fact, the reason for considering the rich 

combustor rather than a simple air heater (Hodgson 1993). The results obtained from the 

design tool agree with this preliminary analysis. 

Several operating points were examined using parameters obtained from the test vehicle 

to compare the brake output of the engine for the two modes of operation. Typical 

results are presented in Figure 5. These results include the low-temperature friction 

modification to the engine friction calculation. 
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Vehicle Model 

The design tool also includes a vehicle model for determining the road load power 

requirements for the driving cycle considered. The vehicle model operates in discrete 

time steps corresponding to the data for the prescribed driving cycle. For the Federal 

Urban Driving Schedule (FUDS), the time steps are one second. The vehicle model 

assumes that the engine is idling at lime = 0 and does not address cranking and starting. 

The model also assumes that the engine is idling during braking. Shifting of the 

transmission is per the default specifications of the driving cycle. 

The vehicle parameters required by the model are vehicle mass, tire size, transmission 

gear ratios, and axle ratio. The model calculates the engine speed and the engine power 

required as a function of vehicle speed and acceleration. The engine speed is 

determined from the vehicle speed, tire size, transmission gear ratio, and axle ratio. The 

power required at the drive axle for constant speed is calculated using the following 

equation suggested by Obert(l979). 

hp = .Y_ 1o.OJ48 W + 0.00128 AV2 
375\: 

where 

V = Vehicle Speed {mph) 

W = Vehicle Weight (lbs. ) 

A= Frontal Area (ft2) 
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The power required at the drive axle for acceleration is calculated using 

dV 
Power= MV-dt 

where 

V = Vehicle Speed 

M = Vehicle Mass corrected for rotating inertia 
dV v,+,- v, 
- = ___;,;�_.:.. 
dt �t 

The total power required at the drive axle is then the sum of the two calculated values. 

For calculating the required engine brake power, the vehicle model assumes a 70% 

efficient driveline. Figure 6 shows the engine speed and Figure 7 shows the engine 

brake power required for the first 505 seconds of the FUDS calculated for the test 

vehicle, a 1988 Chevrolet Corsica. 

Integrated Model 

The three models described above are integrated into a single software package-

"Thermodynamic Engine Model with Rich Combustor" written in Microsoft Visual 
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Basic® for WindowsTM· A source code listing is included as Appendix A. The logistics 

of the model are as follows. 

Through the Engine Parameters dialog box, shown in Figure 8, the user specifies the 

ambient conditions, fuel, fueling strategy, rich combustor equivalence ratio (if 

applicable), engine equivalence ratio, engine dimensions, and ignition parameters. 

If rich combustor operation is specified, the combustor model calculates the 

composition of the combustor output which is used to fuel the engine. Incorporating the 

user specified volumetric efficiency data file, the engine model calculates the 

performance map for the engine as specified in the Engine Parameters section. The 

results of this calculation are stored in a lookup table; engine brake power and fuel 

consumption rate are stored vs. engine speed and intake manifold pressure at 100 RPM 

and 5 kPa increments. Figure 9 shows a three dimensional plot of the calculated 

performance map for the test engine with the rich combustor providing the fuel., 

including the low-temperature friction calculation. 

Through the Chassis Parameters dialog box, shown in Figure 10, the user specifies the 

vehicle weight, tire size, axle ratio, and transmission ratios. Using the chassis 

parameters and the specified driving cycle, the vehicle model calculates the engine 

speed and required engine brake power for each time step of the driving cycle. 

For each time step in the driving cycle, the operating point of the engine is determined 

in the following manner. The engine speed is considered first. Since the performance 

map lookup table has data every 100 RPM, the two engine speed entries which bracket 
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the operating point are determined. Then for each of the two engine speed entries, the 

brake power values are determined which bracket the required brake power calculated 

by the vehicle model. The operating point is then found by linearly interpolating in 

both directions (engine speed and intake manifold pressure) between the four operating 

points described above. Once the operating point is determined, the fuel consumption 

and other values available in the performance map lookup table are calculated using the 

same linear interpolation. Figure 11 shows the fuel consumption rate for the first 505 

seconds of the FUDS for the engine operating on the rich combustor. 

Cranking and Starting 

Based on actual cold room engine starting tests at -30°C using gasoline, the combustor 

fuel flow rate was estimated as 0.25 gm/sec (methanol) during engine cranking at 100 

RPM. This figure rises to 1. 1 gmlsec at an idle speed of 800 RPM. These estimates 

were obtained from the design tool by calculating the output of the engine using the 

measured operating parameters (cranking speed, manifold temperature, pressure, and 

mass flow rate of air) from cold room testing using gasoline, then determining the 

operating parameters to provide that same output from the engine using the rich 

combustor fueled with methanol. 
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Chapter III 

Prototype Design and Fabrication 

Approach 

From a previous investigation of the rich combustor concept for cold starting (Hodgson 

1 994), the following areas of concern were noted. 

1 .  The device should be downsized to be more suitable for under-hood installation. 

2. Appropriate controls should be incorporated to make the system operation automatic. 

3. More control over the air-fuel ratio is required. 

These areas, together with the concerns listed in the above, were taken as the design 

criteria for the prototype rich combustor. The criteria will be addressed individually by 

describing their incorporation into the prototype design. Some features of the design 

address multiple concerns. 

First Generation Combustor Design 

A brief description of the prototype rich combustor and its operation will be beneficial. 

The prototype is fundamentally an "air-splitter." It is installed between the existing 
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throttle body and the intake manifold on the engine, and divides the air flowing through 

the throttle body into two (physically three) streams. One stream flows through the 

combustion chamber where fuel is added and ignited. The fuel droplets burn in a rich 

diffusion flame to produce the desired products used to fuel the engine. This stream can 

be throttled to reduce the flow through it as the engine warms up and the requirement 

for the non-condensable gases is reduced. The remaining air flow is directed around the 

combustion chamber unaffected except for heat transfer from the combustion chamber 

and rejoins the combustor products prior to entering the intake manifold. A complete 

set of prints of the design drawings is included as Appendix B in this report. 

Downsizing 

Since this project involves the demonstration as well as investigation of the rich 

combustor cold start device, the ultimate goal is to install the device on a vehicle and 

demonstrate the ability to start and drive away under the cold ambient conditions 

required. The under-hood space available in a modern vehicle is very limited; therefore, 

the device must allow installation in the vehicle. 

The prototype design was obviously not downsized to meet the requirement of vehicle 

installation. This prototype was not intended to be installed under-hood; instead, it was 

used in the dynamometer installation shown in Figure 1 2. Evaluation of this prototype 

on the dynamometer installation allowed the determination of the minimum size for the 

rich combustor to be installed on the vehicle. 
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Figure 12  First generation rich combustor dynamometer installation 
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Control 

The approach taken in the design of the prototype combustor was to minimize the 

amount of control required; the operation is to be as automatic as reasonable. The only 

control requirements anticipated were positioning of the throttle plate versus engine 

temperature, and regulating fuel flow to the combustor and the main fuel injection 

system. 

The throttle plate can be positioned using temperature input to a positioning device such 

as a stepping motor. The goal is to position this throttle plate using some simple device. 

Control of the fuel flow will be managed by the engine control computer. The 

aftermarket engine controller used on the engine in the dynamometer installation allows 

programming of the enrichment schedule for fuel management. The design tool will 

predict the fuel flow requirements for operation of the rich combustor. Actual testing 

will determine the schedule of operation of the rich combustor as a function of engine 

warm-up, or the position of the throttle plate as described above. The fuel flow to the 

combustor's injector(s) must then be controlled to maintain the desired air/fuel ratio in 

the rich combustor, with the appropriate fuel directed to the main injector system to 

maintain the desired overall engine air/fuel ratio. 

Air and Fuel Flow Regulation 

Regulation of the air flow is the primary reason for choosing the "air-splitter" approach. 

The desired operating equivalence ratio for the rich combustor will be nominally 2. 
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This dictates that initially, when the engine is operating on the products of the rich 

combustor alone, half of the air flowing through the engine's throttle body will be used 

by the rich combustor, with the remaining half used to burn the combustor's products in 

the engine. The combustor is designed such that the flow areas of the combustion 

chamber is equal to the sum of the areas of the two air passages. Further, this flow area 

is equal to the flow area through the original throttle body, allowing undisturbed 

operation of the engine with the combustor's throttle plate completely closed. 

Fuel flow is controlled by the engine control computer. The design tool has predicted 

the fuel flow requirements for operation of the rich combustor. Testing determines the 

schedule of operation of the combustor and therefore the air flow through it; the fuel 

flow to the combustor must then be controlled to maintain the desired air/fuel ratio in 

the rich combustor. The fuel flow to the main injection system must also be controlled 

in concert with operation of the rich combustor. The design tool can be used to predict 

this fuel flow requirement also, once the schedule of operation of the rich combustor is 

known. 

Nozzle and Ignition System Selection 

The fuel injectors and ignition system are basic to the operation of the rich combustor. 

Rather than designing the prototype for a particular injector and/or ignition system, 

provisions have been made to allow investigation and testing of available systems. 
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Material Type and Fabrication Metllod 

Since the current prototype is known to not be the final configuration for installation on 

the vehicle, it was designed to minimize cost associated with material and construction. 

As shown on the included drawings, the prototype is primarily aluminum welded 

construction. The design considerations for the combustor to be installed in the vehicle 

will be primarily space limitations; therefore, the physical design of the device may be 

quite different. However, the operation of the device is not expected to change. 

General 

Ports are spaced along the axis of the prototype to allow installation of thermocouples 

and/or sampling probes to monitor the progression of the reaction. This will help to 

determine the minimum size required for the rich combustor. Access to the combustion 

chamber is provided to allow incorporation of flame-quenching devices. A port has 

been machined in the intake manifold plenum and fitted with a sight glass to allow 

visual inspection of the operation of the rich combustor. 

Design Evolution 

The first generation rich combustor design was modified as a result of the testing 

described below. The two areas which were modified were the ignition system and the 

fuel system. 
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The original design for the ignition system included conventional spark plugs. 

However, during fabrication it was decided to evaluate the use of small glow plugs as an 

ignition source. This type ignition has the advantage of requiring only a voltage source 

for the thin wires of the glow plugs; no other components such as coils , etc. are 

required. This configuration is shown in Figure 13. Testing of this configuration, as 

described below, showed that the glow plugs could not maintain sufficient temperature 

for ignition in the air stream as the engine was cranked. Raising the voltage supplied to 

the glow plugs to overcome this would result in immediate burnout when the air flow 

was disrupted. 

The glow plug ignition system was replaced by conventional spark plugs. The spark 

plugs were mounted in the combustor as shown in Figure 14. 

A coil assembly from a Saturn automobile was used to fire the spark plugs; a single coil 

fired both spark plugs in a manner similar to the ignition system used on the engine. A 

device which operates independently of the engine was fabricated to provide the 

required excitation signal to the coil assembly. The circuit diagram for the device is 

included in Appendix D. This made the combustor ignition system completely self

contained. 

This configuration suffered from two problems. The spark plug gap was near the wall 

and was not exposed to very much of the fuel spray from the injectors. The other 

problem was a result of the vertical mounting and the conductivity of methanol. The 
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Figure 13 Glow plug configuration 
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Figure 14 Spark plug configuration 
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annulus between the insulator and body of the lower plug filled up with methanol and 

essentially grounded the electrode, preventing that spark plug from firing. 

This conventional spark plug configuration was replaced by igniters used in oil 

furnaces. This igniter has an electrode that extends well beyond the insulator and does 

not have a ground electrode since these igniters are intended to arc to a ground that is 

part of the furnace. For this application, however, two igniters were used with the 

modified Saturn ignition system and were installed such that the arc was from one 

igniter to the other (see Figure IS). The gap between the electrodes of the two igniters 

was approximately one quarter inch although the ignition system would allow a gap of 

greater than one inch. This configuration proved satisfactory and no problems were 

encountered during testing at temperatures as low as -30°C. This ignition system was 

carried over to the second generation combustor design. 

The original design for the fuel syste� included conventional automotive injectors for 

delivering the fuel. Methanol compatible injectors with a rated flow rate of3.9 gm/sec 

were obtained from Rochester Products. Calculations from the model indicated that 

two of these injectors would be adequate to deliver the fuel at a rate for drive-away. 

Initial testing of the injectors was conducted with the conventional spark plug 

configuration with poor results; the fuel was not reliably ignited. Subsequent off-line 

testing of the injectors revealed that the injectors had an almost jet-like spray pattern. 

From previous work (Hodgson 1 993 and Iwai 1 984), it was known that a fine spray 

would be required to ignite the methanol. The injectors could, however, provide the 
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Figure 15  Furnace igniter configuration 
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control of the fuel flow as required. Nozzles such as those used in oil furnaces were 

chosen to provide the required spray pattern. As shown in Figure 16 , the resultant 

design was an assembly of the injectors for flow control in line with the nozzles for 

providing the required spray pattern. This configuration proved satisfactory and was 

carried over to the second generation combustor design. 

Several nozzles were flow tested to determine the flow rate and spray pattern. It was 

decided to use one nozzle with a measured flow rate of 0. 97 grnlsec without an injector 

which meant that it delivered that flow rate at all times. That flow rate corresponded to 

the idle fuel flow rate requirements predicted by the model. The injector - nozzle 

assembly was used in the other position with a nozzle with a measured flow rate of 1.57 

grnlsec for initial cold start testing. 

Other modifications to the original design were incorporated as a result of, and during, 

the testing of the first generation combustor. A baflle arrangement was added to disrupt 

the flow through the combustor and provide more surface area for quenching the flame. 

In addition, a quenching nozzle was added to both quench the flame and cool the 

products. The final configuration of the first generation combustor design is shown in 

Figure 17. Figure 18 shows the final configuration installed on the test engine. 

Second Generation Combustor Design 

Two major problems with the first generation combustor design surfaced during testing. 

The combustion zone exceeded the length of the combustor and the flame continued 
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Figure 1 8  First generation final configuration installed on test engine 

46 



past the point where the fresh air rejoined the combustor products. In fact, the flame 

continued on into the intake manifold which resulted in all the combustible gases being 

consumed before they reached the engine cylinder. The second problem was associated 

with the splitting of the air. Due to the reaction occurring in the combustor area, 

splitting the air flow through the combustor and fresh air areas could not be 

accomplished by simply using equal flow areas. 

The second generation design addressed both of these problems while maintaining the 

original overall concept for operation of the rich combustor as described above. The 

ignition system developed for the first generation design was included in the second 

generation design. The injector/nozzle hybrid system for fuel delivery was also used in 

the second generation combustor design. In addition, the second generation design 

addressed under-hood installation in a vehicle. A complete set of prints of the design 

drawings is included as Appendix C in this report. 

Design Features 

The combustion zone length problem associated with the first generation design could 

not be overcome by the baffle arrangement as described above; therefore, the only 

solution was to increase the length of the combustion chamber in the second generation 

design. Keeping in mind the vehicle integration issue of limited under-hood space, a 

flat spiral type configuration that would be installed on top of the existing plenum 

emerged as the most promising configuration. However, manufacturing a design of this 
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type would be very expensive; fabrication would require either extensive machining or 

very difficult forming of tubing. A compromise design was chosen which maintained 

the general configuration described above, but was considerably simpler to 

manufacture. Rather than a flat spiral, a square cornered maze-type configuration was 

used which simplified the fabrication considerably. The original concept drawing for 

this design is shown in Figure 19. This configuration could be fabricated as a weldment 

from rectangular steel mechanical tubing readily available. This configuration increases 

the length of the combustor flow path by a factor of approximately 1 0; this has proven 

adequate for the testing performed so far. 

The second generation combustor is installed on top of the plenum with the combustor 

outlet mated to the added port in the plenum previously used for a sight glass. The 

overall height of the second generation combustor is 3 inches above the top of the 

plenum, which allows for under-hood installation. 

The problem associated with air splitting was originally addressed by using larger 

tubing for the combustion chamber than for the fresh air. The flow area of the 

combustor was approximately 6 square inches while the fresh air side was 

approximately 4 square inches. This proved to be an improvement to the first 

generation design but did not completely solve the problem. Testing showed that too 

much air was flowing through the fresh air side resulting in a very lean mixture supplied 

to the engine. Modifications to the design for proper air splitting are described below. 

48 



INJECTOR 

SPARK 0LUGS 

�OZZLE 

QUENCHING 
�OZZLE 

\ \ I 
\ 

THROTTLE 

� COMBUSTOR � ( PATH 

�� b----+--; -_ _-/n 

\ 
I 

I I ,.......-- - - - - I [ 
I i >-----;&����tm� i 

'NGINE 
AIR PATH 

Figure 19 Second generation design concept drawing 

49 



General 

With the configuration chosen for the second generation design, the combustor could 

not be fit between the main throttle body and the intake manifold as with the first 

generation design. To maintain the overall concept for control, the throttle body must 

be mounted at the inlet of the combustor. This required that the opening in the plenum 

be capped where the throttle body originally was installed. 

The fuel delivery system was designed to deliver the fuel flow rate required for drive

away as predicted by the model; this would require two injectors (in addition to the one 

serving for idle). The configuration shown in Figure 20 was chosen. The idle injector 

is upstream of the ignition system where the flame is established. The two additional 

injectors are installed immediately downstream of the ignition system and deliver fuel, 

under the control of the engine controller, to the established flame. Provisions for a 

quenching nozzle are also provided. 

Design Evolution 

As described above, the air flow through the fresh air side was too high. An additional 

throttle was installed in the fresh air side, as shown in Figure 2 1, to further restrict the 

flow. Testing showed that the mixture provided to the engine was closer to 

stoichiometric. 

The original design featured drains at both ends of the second leg of the combustion 

chamber. This configuration was adequate for removing any liquid that collected and 
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flowed on the floor of the combustor. However, liquid droplets were observed through 

the sight glass being carried in the gas stream. To prevent these droplets from being 

carried to the engine, a fine mesh stainless steel wire cloth was installed immediately 

upstream of the second drain to knock the droplets down to the floor where they would 

flow out the drain. This screen was mounted to a frame that served also as a sort of dam 

to any liquid flowing along the floor. Testing showed that this screen heated up and 

glowed red which tended to cause whatever fuel was being carried by the gas stream to 

burn or evaporate when it reached the screen. 

The current configuration of the second generation combustor is shown installed on the 

test engine in Figures 22 and 23. 
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Figure 22 Second generation combustor installed on test engine 
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Figure 23 Second generation combustor on test engine 
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Chapter IV 

Prototype Testing and Evaluation 

Approach 

Because of the availability of cold temperature testing capabilities, including an engine 

dynamometer, and an engine identical to the engine in the test vehicle, the task of 

vehicle integration could logically be combined, to a great extent, with the testing and 

development of the prototype. We could use the dynamometer driving the engine as a 

pump to test the combustor while the issues of fit, interfaces, and control were 

concurrently addressed. With this capability, many of the problems associated with 

vehicle integration were addressed early in the development of the combustor. This 

parallel approach was taken rather than the original task breakdown which included 

bench testing. 

Testing Configuration 

The testing facility consists of a refrigerated enclosure built on one end of the 

dynamometer mounting bed plate. The walls and floor are frame construction with 

approximately twelve inches of Styrofoam insulation. The refrigeration unit is capable 

of cooling the chamber, including a hot engine, to -30°C in approximately nine hours. 

Access to the dynamometer is through a driveshaft tunnel in the rear wall. 
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As mentioned above, the engine in the test cell is identical to the engine in the test 

vehicle, a 2.8 L V -6 Chevrolet. The engine is port-injected and comes originally with a 

distributor-less ignition system. The original engine controller has been replaced with 

an aftermarket Electromotive TEC-11 engine controller for controlling the ignition, fuel 

injection, and fuel management for the rich combustor. Monitoring access to the data 

inputs to the engine controller is provided by a PC-based system, which also serves as 

the programming and file transfer software. 

The engine in the test vehicle is mounted transverse for front wheel drive, but a 

transmission is used in the test cell to couple the engine to the dynamometer. Figure 24 

shows the test engine, with the first generation combustor installed, in the test cell. 

The engine sensors outputs as well as thermocouples installed in the combustor and the 

engine are monitored and recorded using the data acquisition system. Complete 

descriptions of the test equipment are included in Appendix D. 

First Generation Combustor Testing 

Testing of the first generation combustor began with evaluation of the candidate ignition 

systems. A reliable ignition system is an absolute requirement for success of the 

combustor. 

Ignition System Testing 

Testing of the ignition system on the first generation combustor design is described in 

Chapter II. The basic configuration was carried over to the second generation design. 
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Figure 24 First generation combustor installed on test engine in test cell 
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Fuel System Testing 

As stated above, the original design used automotive fuel injectors obtained from 

Rochester Products which were methanol compatible. The spray from these injectors 

was observed to be jet-like, unsuitable for this application. The nozzles were available 

from previous cold start research (Hodgson 1993) which were known to provide an 

ignitable spray of liquid methanol. These nozzles would be used to provide the desired 

methanol spray pattern; the injectors could however be used to control the flow through 

the nozzles. 

The General Purpose Output (GPO) of the Electromotive controller would be used to 

adjust the methanol flow rate. The GPO is a 12 volt square wave output with pulse 

width modulation operating at 3 1  Hz. The percent-on time can be programmed in the 

controller software as a function of engine speed and intake manifold pressure. The 

GPO can drive any device (solenoid, etc.) with an impedance of greater than 45 Ohms. 

The injectors used are the saturation type and have an impedance considerably less than 

this requirement, 2.8 Ohms. A relay would be required to drive the injectors using the 

signal from the GPO as input. A solid state relay was chosen; details are included in 

Appendix D. 

Before implementing the injector-nozzle configuration shown in Figure 16, the injectors 

were tested to determine the effect of the pulse width modulation on the flow rate. A 

bench test rig was assembled using a fuel pump identical to the pump used on the test 

engine feeding an injector being controlled by the GPO directed into a graduated 
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cylinder. The results are shown in Figure 25. As Figure 25 shows, the flow rate through 

the injector is linear with percent GPO. This characteristic simplifies the task of 

calibrating the fuel flow rate. 

In addition to the two nozzles used on the previous project, several other nozzles were 

obtained to have a range of flow rates. These nozzles are standard hollow cone spray 

nozzles commonly used in industrial applications for rinsing, cooling, etc. They are 

typically equipped with a sintered bronze filter element integral with the filter body. 

The nozzles are rated in gallons per hour at 1 00 psi and stamped with that number. 

Several of the nozzles were tested on the bench test rig described above, without the 

GPO-controlled injector, with the results shown in Table 1 .  Table 1 shows some 

variation in the measured flow rate versus "advertised" flow rate. Therefore the nozzles 

used in the combustor must be flow tested before use. 

The nozzle identified 1 .25 with a measured flow rate of 0.97 gm/sec was chosen to be 

used in the upper position in the combustor. This flow rate is close to the flow rate for 

idling as predicted by the model. The strategy for fuel delivery is then to use that 

nozzle, without an injector, supplying methanol to the combustor at the rate required for 

idling. The nozzle identified as 2.00 with a measured flow rate of 1 . 1 3 gm/sec was used 

in the lower position with an injector controlling the flow rate using GPO control. 

Other nozzles would be tested in the lower position. As a result of operational testing 

described below, a third nozzle was added downstream for quenching as shown in 

Figure 1 7. 
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Table 1 Nozzle Flow Test Results 

Nozzle ID Mass Flow Rate (gm/sec) 

.75 0.42 

.85 0.44 

1 .00 0.50 

1 .25 0.97 

1 .35 1 .59 

1 .50 0.74 

1 .75 0.98 

2.00 1 . 1 3  

2.00 0.39 

*nozzle from previous work 

62 



Operational Testing 

From the testing of the first generation design combustor, the following conclusions 

were reached: 

• The rich combustor concept for cold starting is viable. 

• The combustion zone length provided was too short for the reaction to reach 

completion before rejoining the fresh air stream. 

• The flow restriction associated with the baffles caused the flame to travel 

upstream and curl around the wall separating the combustor passage from 

the fresh air passage. 

• The quenching no:zzle is required to cool the combustor products to prevent 

the combustibles from being consumed in the intake manifold. 

• The series throttle arrangement of the original design must be maintained for 

simplicity of control. 

• The first generation combustor was too large for underhood application 

These conclusions drove the design for the second generation rich combustor design. 

The second generation design significantly increased the combustion zone length, thus 

eliminating the need for baffles and the resulting flow restriction. The physical layout 

of the combustor was completely changed to accommodate underhood installation . 

The series throttle arrangement, as well as the fuel and ignition systems developed thus 

far, were carried over to the second generation design. 
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Second Generation Combustor Testing 

The initial configuration of the fuel system for the second generation combustor was the 

same as the final configuration for the first generation combustor. The nozzle identified 

1 .25 with a measured flow rate of 0.97 gm/sec was installed in the upper position in the 

combustor. The nozzle identified 2.00 with a measured flow rate of 1 . 1 3  grnlsec was 

used in the lower position with an injector controlling the flow rate using 30% GPO 

control .  The nozzle identified 0. 75 with a measured flow rate of 0.42 gm/sec was used 

for the quenching nozzle. An additional nozzle/injector assemble was installed in the 

third port, but the injector was not connected to the controller. The extended tip spark 

plugs were again used; however, the transformer was replaced by the Saturn ignition 

system driven by the in-house developed device. 

The first start attempt after installation, at room temperature, was successful; the engine 

started using the starter. A series of cold start attempts were performed, first at -30°C 

and then at -8°C. Although the engine fired sporadically during several of the attempts, 

there were no successful starts. Data from one of the start attempts is shown in Figure 

26. After a few unsuccessful attempts, the spark plugs in the engine would become very 

wet with methanol and water and then would not fire. Figure 26 shows this plainly; 

note the data shows no evidence of firing after the second attempt at 0% GPO. The cold 

start testing was suspended in favor of more systematic testing to determine the 

operating parameters of the combustor required to maintain the correct stoichiometry in 

the combustor and the engine. 
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Stoichiometry Testing 

Determining the operating equivalence ratio of the combustor was accomplished by 

motoring the engine with the dynamometer with the engine's ignition system disabled 

such that the engine is serving as an air pump for the combustor. The gas analyzer is 

used to determine the CO and C02 content of the combustor product stream by 

sampling from the port near the sight glass as shown in Figure 27. The downstream 

sampling port was used to determine if the product composition changed as it flowed 

through the third "leg" of the combustor which would indicate that the reaction was 

continuing. 

The output of the gas analyzer is on a dry basis since the water vapor condenses from 

the sample stream. The measured value of CO concentration was compared to the 

equilibrium composition calculations, shown in Figure 3, to estimate the operating 

equivalence ratio for the combustor. 

The operating equivalence ratio of the engine was determined using the gas analyzer 

sampling from a port in the exhaust pipe. For the range of combustor equivalence ratios 

considered, the concentrations of hydrogen and carbon monoxide are approximately 

equal. For the stoichiometric combustion of an equimolar mixture of hydrogen and 

carbon monoxide, the molar amounts of the CO, H2, and 02 should be equal. 

65 



600 

500 

� 

::2: 
a. 400 � 
"'C Q) 
� 300 

(/) 
Q) c 

"Cil 200 c w 

100 

0 

0% 
GPO 

-

1!>% 

Cranking at -8° C 
Using Battery Plus Hi-charge 

5% ��0 GPO 

:\ 
1 0% 1 \ 
GPO 
/\ I 

v 

\ 
[) I I 

� Evidence of Engine Firing 

0% V1v GPO 

5% 
GPO 

... ,, ,, ' I ' ' , , 

1 0% 

G'O 

,,,, ' ' ' I ,, 
0 100 200 300 400 500 600 700 800 900 1000 

Elapsed Time (sec) 

Figure 26 Unsuccessful cold start attempt 

66 



SAMPLE ?ORl � SAMPlE 'ORI 

I � 
t I 

Figure 27 Sampling port locations 

67 



The concentrations of the CO and 02 were compared to estimate the operating 

equivalence ratio for the engine. This estimate is then used to determine the balance of 

the air flow through the two sides of the combustor. A lean condition, indicated by 

more 02 than CO, indicates that too much air is flowing through the engine fresh air 

side of the combustor; a rich mixture indicates too much flow through the combustor 

side. 

Testing began with the fuel system unchanged from the initial cold start testing- the 

nozzle identified as 1 .25 with a measured flow rate of 0.97 grn!sec was installed in the 

position upstream of the spark plugs (position # 1 ). The nozzle identified as 2.00 with a 

measured flow rate of 1 . 1 3  grnlsec was used in the first position downstream of the 

spark plugs (position #2) with an injector controlling the flow rate. The nozzle 

identified as 1 .50 with a measured flow rate of 0. 74 grnlsec was installed in the second 

position downstream of the spark plugs (position #3) with an injector controlling the 

flow rate. The port for the quenching nozzle was plugged. 

The test cell was cooled to approximately -9°C, and the temperature was monitored to 

assure that the engine had reached a steady state temperature. The engine was then 

motored at various speeds while the % GPO was varied. The gas analyzer, sampling 

from the downstream sampling port initially, was used to determine the concentrations 

of CO, C02, and 02 • Table 2 shows the results of testing with only the frrst 

downstream nozzle operating. 
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The sampling location was moved to the upstream port to compare the results from the 

two locations. The results for the upstream location are shown in Table 3. 

The results indicate that mixing in the area of the port into the intake manifold , where 

the fresh air joins the combustor product stream, may be causing oxygen from the fresh 

air stream to be introduced into the sample. The upstream location was used for all 

subsequent combustor product sampling. 

As shown in Table 2, the CO content of the combustor product stream is fairly 

insensitive to the percent GPO, above 5% GPO. The nozzle in the first downstream 

position was changed to investigate whether this phenomenon was related to that 

particular nozzle and/or the effect of small % GPO values on the spray pattern or flow 

rates from the nozzle. The nozzle identified as 1.00 with a measured flow rate of 0.50 

gm/sec was assembled with an injector and installed in the first downstream position 

(position #2) , with the other two nozzles unchanged The procedure described above 

was repeated with the results shown in Table 4. 

Based on the results of this test, a GPO table was constructed to be downloaded to the 

Electromotive controller. After adjusting the set point values for the engine speed, the 

percent GPO was specified for each RPM set point. The GPO table also allows setting 

the percent GPO for manifold pressure set points at each engine speed set point; 

however, a single value of percent GPO was used for all values of manifold pressure at 

each engine speed set point. This should be sufficient for starting and idling, but the 
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Table 2 Combustor Product Composition- Downstream Port 

Engine 

Speed % GPO % CO % C02 % 02 

(RPM) 

200 0 9.9 7.2 2.3 

200 5 1 0.2 7.0 2. 1 

200 1 0  9.9 6.9 1 .9 

200 1 5  9.6 6.9 2. 1 

300 0 9.9 6.8 1 .8 

300 5 1 0.5  6.7 3.2 

300 1 0  1 0.5 6.7 3 .4 

300 1 5  1 0. 1  6.8 2.8 

400 0 9.7 7.0 2.9 

400 5 1 0.3 6.8 2.7 

400 1 0  1 0.4 6.8 1 .6 

400 1 5  1 0.5 6.7 3.3 

400 20 1 0.3 6.8 1 .8 

500 0 9 . 1  7.4 2.3 

500 5 1 0.2 6.9 2.7 

500 1 0  1 0.4 6.8 1 .9 

500 1 5  1 0.8 6.7 1 .7 
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Table 3 Combustor Product Composition- Upstream Port 

Engine 

Speed 

(RPM) % GPO % CO % C02 % 02 

500 0 8.4 8.8 0.9 

500 5 1 0.9 8.87.6 0.5 

500 1 0  1 0.7 7.5 1 .0 

500 30 1 1 .0 7.2 1 .4 
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Table 4 Combustor Product Composition by Nozzle 

Engine Active 

Speed Nozzle 

(RPM) Number % GPO % CO % C02 % 02 

200 3 0 1 0.4 7.7 1 .7 

200 3 5 1 0.5 7.5 1 .4 

200 3 1 0  1 0.3 7.3 1 .5 

200 3 1 5  1 0.0 7.0 2.6 

200 3 20 9.9 6.9 2.3 

200 3 5 1 0.5 6.8 2.7 

200 2 0 1 0.8 7.0 1 .9 

200 2 5 1 0.6 7 . 1  -

200 2 1 0  10.2 7.3 1 .3 

200 2 1 5  1 0.4 - -

200 2 20 9.3 6.7 4.6 

500 2 0 5.3 9.9 8.0 

500 2 5 6.5 9.2 8.8 

500 2 1 0  7.0 - -

500 2 1 5  1 0.9 7.2 2.8 

500 2 20 1 0.9 6.9 6. 1 

500 3 0 5 . 1  1 0.4 -

500 3 5 6.7 9.8 1 .8 

500 3 1 0  6.5 1 0. 1  2.6 

500 3 1 5  1 0.2 7.9 1 .6 

500 3 20 1 0.2 7.7 1 .5 
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Table 4 (continued) 

Engine Active 

Speed Nozzle 

(RPM) Number % GPO % CO % C02 % 02 

500 3 30 1 0. 1  7.7 1 .8 

500 2 & 3  0 3 .8 1 1 . 1  7.9 

500 2 & 3  5 4.6 1 0.5 1 0.0 

500 2 & 3  1 0  9.5 8.2 1 . 1 

500 2 & 3  1 5  1 0.6 7.3 1 .2 

500 2 & 3  20 1 0.7 7.2 1 .4 

200 2 & 3  0 1 0.3 7.2 2.4 

200 2 & 3  5 1 0.4 7.2 1 . 1  

200 2 & 3  1 0  9.6 7. 1 3 .0 
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table will need to be modified later to include manifold pressure dependence for off-idle 

operation. Table 5 lists the GPO settings. 

With both injectors downstream of the spark plugs (positions 2 & 3) being controlled 

per this GPO table, the engine was cranked using the starter. Samples were analyzed 

from the combustor as well as the exhaust pipe. The combustor product stream 

composition was 1 1 .4% CO, 7.7% C02, and 0.8% 02• The composition of the sample 

taken from the exhaust pipe was 4.5% CO, 3.8% C02, and 1 2.4 02 • This indicates a 

very lean mixture being fed to the engine resulting from too much air flowing through 

the fresh air side of the combustor. A thin rectangular shim was installed between the 

flanges of the main combustor body and the adapter for the engine throttle body. This 

shim could be positioned to restrict the flow through the fresh air side by various 

amounts depending on the position of the shim. The shim was initially positioned such 

that there remained approximately I in
2 

of flow area for the fresh air side compared to 4 

in
2 

for the unrestricted case. 

The tests described above were repeated at various shim location settings with the 

engine motored by the dynamometer. The engine operating equivalence ratio, as 

indicated by the composition of the sample taken from the exhaust pipe with the engine 

not firing, could be affected by adjusting the position of the shim. Cold start attempts 

resulted in sporadic firing of the engine, but no true start and idling. After a few 

unsuccessful attempts, the engine spark plugs became wet and would not fire. To 
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Table 5 GPO Settings 

Engine Speed 

(RPM) 

% GPO 

200 5 

500 1 5  

1000 30 

1 500 45 
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address the spark plug wetting problem, a device was fabricated and installed just 

upstream of the second drain consisting of a double thickness of fine stainless steel wire 

cloth mounted to an aluminum block. The wire cloth was used to knock down any 

unburned fuel droplets being carried by the product stream, and the aluminum block 

served as a dam to prevent the liquid from flowing along the floor of the combustor and 

direct it into the drain. 

Testing as described above revealed that the double thickness of wire cloth restricted the 

flow through the combustor side too much, resulting in a lean mixture measured at the 

exhaust pipe. One thickness of the wire cloth was removed and the wire cloth/dam 

assembly reinstalled. With the shim restricting the flow through the fresh air side as 

much as possible, the composition of the combustor product stream was measured as 

1 2.7% CO, 8.0% C02, and 0.8% 02• The composition of the sample taken from the 

exhaust pipe was 6. 1 %  CO, 4. 1% C02, and 1 1 .2 02 • This composition indicates a lean 

mixture being fed to the engine, but no further adjustment to the shim was possible. 

The divider between the two sides of the combustor does not extend to the flange face, 

and thus the shim, which means that the flow area could only be reduced to 

approximately 0. 75 in
2 

• Since hydrogen has a wide flammability range, the mixture 

being fed to the engine may be combustible even though lean. 

Fresh dry spark plugs were installed in the engine, the ignition system of the engine was 

enabled, and a cold start attempt was made at -25°C. The engine started and idled on 

the third attempt as well as the fourth attempt as shown in Figures 28 and 29. The 
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backfiring indicated is not fully understood, but is believed to be associated with the 

high flame speed of hydrogen combustion. As a result of this testing, the combustor 

was modified to add a throttle plate, as shown in Figure 2 1 ,  to replace the temporary 

shim. The added throttle plate would allow restricting the flow through the fresh air 

side to the point of practically blocking it. 

After the additional throttle plate was installed in the fresh air side of the combustor, 

calibration testing was performed using the dynamometer to drive the engine at the 

approximate cranking speed of 1 70 RPM. The results of that testing are shown in Table 

6. The testing began with the throttle positioned such that the flow area was 

approximately equal to the 0. 75 in2 minimum achievable with the shim as described 

above. The first two samples taken indicate a lean mixture being supplied to the engine. 

To enrich the mixture being fed to the engine, the fresh air throttle plate was then 

positioned at its closed position for the remainder of the testing. The samples from the 

engine exhaust were taken with the engine spark plugs not firing. The sample mixture 

then represents the mixture being fed to the engine. As shown in Table 6, the CO 

content of the combustor product stream is fairly insensitive to the percent GPO, above 

1 0% GPO. 

As shown in Table 5, the %GPO value of 1 0  corresponds to the value programmed in 

the engine controller GPO lookup table for cranking speeds. Thus, the programmed 

GPO table should be the correct fueling schedule for the combustor for starting the 

engine with the fresh air throttle fully closed. The test cell was cooled to -29°C and 
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Table 6 Calibration testing with fresh air throttle 

% GPO % CO % C02 % 02 Sample Location 

1 0  1 2.7 7.9 0.7 combustor 

1 0  5.7 3.9 1 1 .8 exhaust 

1 0  6.5 4.3 1 0.7 exhaust 

1 0  1 2.4 7.7 0.7 combustor 

1 2  1 2.7 8. 1 0.7 combustor 

1 2  1 2.8 8.0 0.7 combustor 

14  1 2.5 7.7 0.6 combustor 

20 1 2.2 7.7 0.6 combustor 

30 12.3 8.0 0.7 combustor 

40 12 . 1  7.8 0.7 combustor 

1 0  1 2.4 8.0 0.7 combustor 

1 0  6.3 4.3 1 0.0 exhaust 
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several start attempts were made at that temperature and then later at other temperatures. 

None of the tests resulted in a truly successful start. The engine would fire and run at 

approximately 300 RPM, with typical results shown in Figure 30. Examination of the 

engine spark plugs after the start attempts showed extreme wetting (the plugs dripped 

when removed from the engine) which was no doubt causing fouling. The plug fouling 

problem was compounded by the lowered battery voltage during cranking at low 

temperature. I f  the battery voltage is below 1 0  volts, the coils may not be able to fire 

fouled plugs (Electromotive, 1 995). It was suspected that the screen device may not be 

performing properly. It  was removed and found to have an area that had burned 

through. The screen was replaced with a new one, and the 1 .59 gm/sec quenching 

nozzle was re-activated. However, the spark plug wetting problem persisted. 

The spark plug wetting problem was of course due to the high content of H20 in the 

combustor product stream. The water vapor, laden with methanol and partial 

combustion products, condenses when exposed to the cold surfaces of the engine. This 

is particularly true in the cylinder, where additional condensation occurs due to the 

compression of the incoming charge on the compression stroke. The cavity between the 

spark insulator and the metal body is especially prone to collect the condensate. Since 

no practical method exists to prevent the H20 from forming in the combustor product 

stream (a catalyst would not be practical), it was decided to attempt to condense the 
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water vapor before it reaches the cylinder. Heat exchangers were designed and installed 

in the combustor as shown in Figure 3 1 . A similar heat exchanger was installed in the 

plenum above the intake manifold. Using an external auxiliary pump, coolant from the 

radiator was circulated through the three heat exchangers in parallel and returned to the 

radiator. 

The test cell was cooled to approximately - 1  0°C (the highest setting on the thermostat) 

to test the effectiveness of the heat exchangers. To reduce the amount of vapor to be 

condensed by the heat exchangers, the quenching nozzle was disabled. The 

composition of the combustor product stream was measured as 1 2.4% CO, 6.6% C02, 

and 2.2% 02• The composition of the sample taken from the exhaust pipe was 6.5% 

CO, 3.8% C02, and 1 0.8 02 • This composition indicates a lean mixture being fed to 

the engine, but since hydrogen has a wide flammability range, the mixture being fed to 

the engine should be combustible even though lean, as demonstrated earlier. 

The engine started and idled at approximately 800 RPM for several repeated tests, over 

several days, at this temperature. It was later suspected that these start attempts and 

subsequent periods of idling (some were somewhat lengthy periods of idling) caused the 

melting of the block supporting the fine wire screen. After these successful start 

attempts, the cold start performance of the engine was severely degraded. The engine 

would fire and run at approximately 300-400 RPM; sometimes, assist from the starter 
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was required to maintain even this speed. Results were similar to those shown in Figure 

30. Samples taken from the combustor, however, showed adequate combustibles to 

start the engine. 

Over the next several weeks, several problems were found and addressed which 

improved the performance slightly, but the engine still would not reach idle speed. The 

battery voltage drop was found to be affecting the fuel pressure due to the fuel pump 

slowing down at the lower voltage. The fuel pump was placed on an independent power 

supply to maintain the fuel pressure during cranking. 

The solenoid valve in the fuel supply line to the combustor nozzles was found to wired 

such that the switch was energized at all times while the engine controller was on, such 

that if the combustor fuel switch was inadvertently left on after a test, the fuel continued 

to flow to the combustor. This was thought to be causing over-fueling of the 

combustor, so the valve was rewired to be open only when the combustor fuel switch 

was closed and the engine was turning. 

The transmission input shaft had become stuck in the pilot bearing in the rear of the 

crankshaft due to either corrosion or thermal expansion differences or both. At low 

temperatures, even with the transmission in neutral, the dynamometer would turn as a 

result of cranking the engine. It must be pointed out that even though the transmission 

is a manual shift type, it is lubricated using automatic transmission fluid. The torque to 

turn and accelerate the dynamometer must be supplied by the engine in addition to what · 

is required to accelerate the engine itself. This problem could be overcome, however, 
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by simply motoring the dynamometer at a speed to match the engine speed during 

cranking and starting. A very important consequence of this problem was the 

generation of engine friction data at low temperature as shown in Figure 32. 

Although this data is somewhat engine specific, it clearly illustrates the increase in 

engine friction as the temperature decreases. This information will be incorporated in 

the engine model to more realistically determine the operating parameters required for 

starting at low temperatures. 

The engine controller used has a feature that sets the spark advance to 0° BTDC for any 

engine speed below 400 RPM. The controller logic assumes that, at engine speeds 

below 400 RPM, the engine is being cranked and is not running. The spark advance 

may be adjusted via the PC interface once the engine reaches 400 RPM, but may not be 

changed below 400 RPM. It was felt that the diluted mixture being fed to the engine 

may require some spark advance due to the dilution effect on the flame propagation. 

The crank-mounted trigger wheel that is read by the magnetic sensor to determine 

crankshaft position was modified to allow rotating the wheel with respect to the 

crankshaft. This allowed several mounting positions to achieve a mechanical spark 

advance of 5°, 1 0°, 1 5°, 20°, 25°, or 35° BTDC. The engine controller would still set 

the spark advance to 0° BTDC; however, the actual spark advance below 400 RPM 

would be the amount the trigger wheel had been rotated with respect to the crankshaft. 
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The actual spark advance at all operating points will be similarly offset. There is little 

potential for damage due to excessive spark advance, however, at the engine operating 

speeds under consideration. 

After all these developments, the engine was still capable of running at only about 400 

RPM at all temperatures. We knew that the system was capable of much better 

performance, as previously demonstrated. However, the combination of parameters that 

produced a successful start previously could not be simply repeated since the combustor 

had been modified in the interim. After reviewing the test results up to this point, a 

problem with the screen became the popular diagnosis of the problem. Since the 

installation of the heat exchangers and baffles had obscured the view from the sight 

glass of the screen, the combustor was disassembled to inspect the screen. The screen 

was found to be intact; however, the aluminum block to which the stainless steel screen 

was attached had melted into several pieces. The screen was found lying on the floor of 

the third leg of the combustor and thus was not performing its intended function. A new 

mounting block was fabricated from stainless steel and the screen assembly replaced. 

No other anomalies were found, and the combustor was reassembled. 

The test cell was cooled to - 1  0°C and several starting attempts were made to determine 

the effect of mechanical advance on the cold start performance. It was found that 1 0° of 

mechanical spark advance gave the best results- the engine started in 8 seconds and 

idled at 600 - 700 RPM. Adjusting the number of steps that the Idle Air Control (lAC) 

resets after opening all the way at power up resulted in improved performance; a value 
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of 50 steps to reset was found to be optimum. The most improvement, however, was a 

result of opening the fresh air throttle slightly. The effect of opening the throttle was to 

increase the equivalence ratio in the combustor while maintaining approximately the 

same equivalence ratio in the engine, which is lean. This adjustment resulted in 

consistent starts at temperatures as low as -20°C, with less than consistent performance 

at -30°C. Encouraged by these results, methanol compatible fuel injectors were 

installed in the engine for operational testing of the transition to the main fuel injection 

system. Scrap injectors had been used not connected to the engine controller during the 

cold start testing to avoid damaging the ones planned for use in operational testing. The 

engine controller had previously been calibrated for normal operation on methanol fuel. 

Transition Testing 

For development of the transition schedule from operation on the combustor alone to 

operation on the main fuel injection system alone, a switch was installed in the power 

lead to the main fuel injectors. This switch would allow turning on and off the main 

fuel injection system; with the switch off, the output from the controller to the fuel 

injectors (they are pulled to ground) does nothing since there is no power to the 

injectors. When the switch is turned on to activate the main fuel injection system, the 

injectors are driven at whatever schedule the controller has determined for that 

operating point. Since the engine is operating lean during starting, the engine controller 

is trying to eruich the mixture by adjusting the injector-on time. Fortunately, the engine 

controller acts quickly enough to adjust the mixture before it becomes too rich. The 
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combustor fuel system was already controlled by a switch, allowing the combustor 

operation to be controlled. 

For operation on methanol, it was found that the main fuel injection system could be 

activated fairly soon after the engine reach idle speed operating on the rich combustor. 

The engine is operating on a lean mixture at that point and the engine controller adjusts 

the amount of liquid fuel injected based on the input from the Exhaust Gas Oxygen 

(EGO) sensor. The EGO voltage reaches a steady state value around the stoichiometric 

set point and the engine runs with both the combustor and the main fuel injection 

system operating. It should be pointed out that, for this engine controller, the EGO 

signal is not used when the coolant temperature is below 0°C. To implement this 

strategy, a 1 0  kQ resistor was placed across the connector for the coolant temperature 

sensor to simulate a 1 0°C signal from the thermistor. When the engine surfaces have 

warmed up sufficiently, the fuel supply to the combustor is turned off, and the engine 

continues to run on just the main fuel injection system. 

Figure 33 shows a start to transition at -9°C. The temperature of the test is considered 

to be the temperature reported by a thermocouple installed through the block water 

jacket and in contact with the cylinder wall on the coolant side. The rapid increase in 

the EGO voltage indicates the point at which the main fuel injection system was 

activated. The voltage reaches a steady value when the engine equivalence ratio comes 

under control. 
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Figures 34 shows a start and transition to idle on the main fuel injection system at -6°C. 

The point at which the main system is turned on is clear and Figure 35 shows the point 

at which the combustor is turned off. Also shown in Figure 35 is the engine running at 

approximately 3500 RPM on the main fuel injection system alone after less than three 

minutes. Figures 36 and 37 illustrate a start and transition at -l 8°C. The point at which 

the main fuel injection system is activated is evident. The first attempt occurred after 

approximately 2 minutes and resulted in the engine stalling. The next three attempts 

were made immediately after the engine reached idle speed operating on the combustor, 

and all three resulted in the engine stalling. The fifth attempt at transition came after 

allowing the engine to idle on the combustor for approximately 90 seconds and resulted 

in the engine continuing to run on both systems and finally the main fuel injection 

system alone. 

Ethanol Testing 

The performance of the combustor using ethanol was evaluated. The ethanol used was 

fuel ethanol or E95 (95% ethanol and 5% denaturant). The only adjustments to the 

combustor system to switch from methanol to ethanol were made to the fueling 

parameters programmed in the engine controller. The method of determining the 

injector-on time employed by the controller allows adjusting a single parameter, 

essentially the maximum injector-on time, to recalibrate the fueling schedule for a 

different fuel. The controller does not display the correct desired or actual air fuel ratio 

(it displays the equivalent values for gasoline), but the equivalence ratio is correct since 
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the ratio is determined and controlled by the EGO signal. The GPO table was also 

adjusted for the different stoichiometry of ethanol. With no further modifications, the 

combustor was tested using ethanol. 

Figures 38 and 39 show a start and transition at - l l °C using ethanol. The point at which 

the main fuel injection system is turned on is evident. The engine continues to run with 

both systems operating until the combustor is turned off causing the engine to stall. The 

engine was restarted and the transition attempted again, resulting in the engine running 

for a short period of time after the combustor is switched off. The third attempt resulted 

in the engine continuing to run after the combustor was switched off. 

Figures 40 and 4 1  show a start and transition at -20°C. The point at which the main fuel 

injection system is activated is evident. Rather than turning the combustor off 

completely, the amount of fuel to the combustor was reduced by entering a negative 

GPO offset via the PC link to the engine controller. This method of phasing out the 

combustor operation via the fuel flow with constant air flow converts the rich 

combustor eventually to an air heater before being switched off completely. The points 

at which the GPO was offset by 1 0% each step are evident by a downward spike in the 

EGO voltage as well as a slope change in the plenum inlet temperature trace. This step

wise method was an improvement over the binary control previously used for the 

combustor, but the operator's impatience caused the engine to stall. The engine was 

restarted and the transition was completed. It is worthwhile to note that nothing 

unexpected occurs when the engine stalls and is restarted. 
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Figures 42 and 43 show a start and transition at -30°C. Note the extremely long time 

required for the engine to accelerate to idle speed. The point where the main fuel 

injector system was activated is evident. Two steps of the step-wise schedule for 

combustor phase-out are evident in the EGO voltage trace. The engine stalled after the 

second step indicating that the schedule should be lengthened. The trace for the plenum 

inlet temperature shows that the combustor could be operated for a longer time with the 

temperature still in a reasonable range. 

Figures 44 and 45 show a start and transition at - 1 1 °C. The step-wise method of 

combustor phase-out was employed. Note the plenum inlet temperature trace; the 

temperature reaches a somewhat steady value as the fuel to the combustor is decreased 

in the step-wise fashion indicating that the schedule may be extended to achieve a 

smooth transition to operation on the main fuel injection system. 
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Chapter V 

Conclusions and Recommendations for Future Work 

The rich combustor concept for improving the cold start performance of alcohol fueled 

engines has been shown to be practical. The ability to start an alcohol fueled engine to 

temperatures as low as -30°C has been demonstrated. Although -30°C starts were not 

consistently successful, reliable cold starting has been demonstrated at -20°C for both 

methanol and ethanol; a schedule for the transition to operation on the main fuel 

injection system has been developed but not demonstrated reliably. Reliable cold 

starting and transition to operation on the main fuel injection system has been 

demonstrated for approximately -1  0°C for both methanol and ethanol. 

Although the system was not installed on a vehicle, most of the vehicle integration 

issues were resolved during the development of the rich combustor system. Reordering 

of interest in the alcohols resulted in a change in the focus from methanol to ethanol.  

The ethanol testing was performed in lieu of emissions testing the system using 

methanol. 

The development of the transition to main fuel injection system schedule should be 

refined to give a smooth transition at all temperatures. The test results presented 

indicate that it should be achievable. The ability to phase-in the main fuel injection 

system rather than switching it on would allow an earlier beginning of the transition 

process and would supply additional fuel to the lean-operating engine operating on the 
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combustor alone. Modifications to the engine controller software would be required to 

achieve ·this phase-in control of the main fuel injection system. Once this transition 

schedule is optimized, off-idle operation of the system should be developed with the 

goal of start up and drive away. 
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Sub Form_Load 0 

optMetric.Enabled = False 
On Local Error Go To Err 14  
Open "tiresize.txt" For Input As I 
Do While Not EOF( I )  

Line Input # I ,  TireSize$ 
lstTireSize.Addltem TireSize$ 

Loop 
Close # I  
Exit Sub 

Err l4: 
msg$ = "I CAN'T FIND THE FILE tiresize.txt" + Chr$( 1 3) + Chr$( 1 0) + "MAKE SURE 

ALL THE REQUIRED FILES ARE AVAILABLE" 
Value% = MsgBox(msg$, I )  
I f  Value% >= 0 Then 

Exit Sub 
End If 
Resume 

End Sub 

Sub cmdExit_ Click 0 

frm Tires. Hide 
End Sub 

Sub lstTireSize_Click 0 

TireDia = Vai(Mid$(1stTireSize.Text, 2 I ,  1 0)) 
IfoptMetric.Value = - 1  Then 
TireDia = TireDia • 25.4 

End lf 
txtTireDiameter.Text = Format$(TireDia, "####.00") 
clipboard.SetText txtTireDiameter. Text 

End Sub 

Sub optEnglisb_Ciick 0 

lblUnits.Caption = "in" 
End Sub 

Sub optMetric_Ciick 0 

lbiUnits.Caption = "mm" 
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End Sub 

VERSION 2.00 
Begin Form fnnEngineParameters 

Caption = "Engine Parameters" 
ClientHeight = 4890 
ClientLeft = 1 080 
ClientTop = 1 770 
ClientWidth = 6945 
FontBold = - 1  'True 
Fontltalic = 0 'False 
FontName = "System" 
FontSize = 9.75 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height = 5295 
Left 1020 

= "Fonn 1 "  Link Topic 
ScaleHeight 
Scale Width 

= 4890 
= 6945 

= 1 425 Top 
Width = 7065 
Begin Frame fraAmbientConditions 

Caption = "Ambient Conditions" 
Height = I 095 
Left = 1 20 
Tablndex = 4 1  

Top = 2 1 60 
Width = 241 5  
Begin TextBox txtAmbientPressure 

Height = 285 
Left = 1 250 
Tablndex = 3 
Top = 690 
Width = 495 

End 
Begin TextBox txtAmbientTemperature 

Height = 285 
Left = 1 250 
Tablndex = 2 
Top = 330 
Width = 495 

End 
Begin Label Label l 9  

Caption = "atm" 
Height = 255 
Left = 1 800 
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Tablndex 
Top 
Width 

End 

= 42 
= 720 

= 300 

Begin Label Label l 2  
Caption = "Pressure" 
Height = 255 
Left = 1 20 
Tablndex = 45 
Top = 720 
Width = 855 

End 
Begin Label Label? 

Caption = "K" 
Height = 255 
Left = 1 800 
Tab Index 
Top 
Width 

End 

= 44 
= 360 

= 135  

Begin Label Label6 
Caption = "Temperature" 
Height = 255 
Left = 1 20 
Tablndex = 43 
Top = 360 
Width = 1 095 

End 
End 
Begin Frame fraColdStart 

Caption = "Cold Start Strategy" 
Height = 1 935 
Left = 4920 
Tablndex = 34 
Top = 2 1 60 
Width = 1 935 
Begin TextBox txtCombustorEquivRatio 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 285 
Left = 840 
Tablndex = 37  
Top = 660 
Width = 960 

End 
Begin OptionButton optRichCombustor 

Caption = "Rich Combustor" 
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Height 
Left 
Tab Index 
Top 
Value 
Width 

End 

= 255 
= 1 20 

= 12  
= 360 

= - 1  'True 
= 1 695 

Begin OptionButton optEnrichment 
Caption = "Enrichment" 
Height = 255 
Left = 1 20 
Tablndex = 36 
Top = 1 080 
Width = 1 455 

End 
Begin TextBox txtEnrichmentEquivRatio 

BackColor = &HOOFFFFFF& 
Enabled = 0 'False 
ForeColor = &HOOOOOOOO& 
Height = 285 
Left = 840 
Tablndex = 35 

Top = 1 400 
Width = 960 

End 
Begin Label lb1EnrichmentEquivRatio 

BackColor = &HOOFFFFFF& 
Caption 
Enabled 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "Equiv Ratio" 
= 0 'False 

= &HOOOOOOOO& 
= 375 

= 240 
= 39 

= 1 320 
= 495 

Begin Label lblCombustorEquivRatio 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 
End 

= "Equiv Ratio" 
= &HOOOOOOOO& 

= 375 
= 240 

= 38 
= 600 

= 495 
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Begin Frame fraFueiManagement 
Caption = "Fuel Management" 
Height = 1 8 1 5  
Left = 4920 
Tablndex = 30 
Top = 120 
Width = 1 935 
Begin OptionButton optLookupTable 

Caption = "Lookup Table" 
Enabled = 0 'False 
Height = 255 
Left = 1 20 
Tablndex = 33 
Top = 1 440 
Width = 1 455 

End 
Begin TextBox txtEquivRatio 

BackColor = &HOOFFFFFF& 
Enabled 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= 0 'False 
= &HOOOOOOOO& 

= 285 
= 840 

= 32 
= 1 020 

= 960 

Begin OptionButton optConstantAF 
Caption = "Constant A/F'' 
Height = 255 
Left = 1 20 
Tablndex = 3 1  
Top = 720 
Width = 1 455 

End 
Begin OptionButton optStoichiometric 

Caption = "Stoichiometric" 
Height = 255 
Left = 120 
Tablndex = 1 1  
Top = 360 
Value = - 1  'True 
Width = 1 455 

End 
Begin Label 1biEquivRatio 

BackColor = &HOOFFFFFF& 
Caption 
Enabled 

= "Equiv Ratio" 
= 0 'False 
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ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 
End 

= &HOOOOOOOO& 
= 375 

= 240 
= 40 

= 960 
= 495 

Begin CommandButton cmdSelectEngine 
Caption = "Select Engine" 
Enabled = 0 'False 
Height = 375 
Left = 2640 
Tablndex = 29 
Top = 3 120 
Width = 2055 

End 
Begin CommandButton cmdEngineParametersCancel 

Caption = "Cancel" 
Height = 375 
Left = 5640 
Tab Index 
Top 
Width 

End 

= 1 4  
= 4320 

= 1 2 1 5  

Begin CommandButton cmdEngineParametersOK 
Caption = "OK" 
Default = - 1  'True 
Height = 375 
Left = 4200 
Tablndex = 1 3  
Top = 4320 
Width = 1 2 1 5  

End 
Begin Frame fraFuel 

BackColor = &HOOFFFFFF& 
= "Fuel" 

= &HOOOOOOOO& 
= 1 935 

Caption 
ForeColor 
Height 
Left = 1 20 

= 28 Tab Index 
Top 
Width 

= 1 20 
= 241 5  

Begin Frame fraFuelState 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 

= "Fuel State" 
= &HOOOOOOOO& 
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Height 
Left 

= 525 
= 120 

Tab Index 
Top 
Width 

= 46 
= 1 300 

= 2 1 75 
Begin OptionButton optGaseous 

BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
TabS top 
Top 
Width 

End 

= "Gas" 
= &HOOOOOOOO& 

= 240 
= 1 20 

= 48 
= 0 'False 

= 240 
= 6 1 5  

Begin OptionButton optLiquid 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tablndex 
Top 
Value 
Width 

End 
End 

= "Liquid" 
= &HOOOOOOOO& 

= 240 
= 1 200 

= 47 
= 240 

= - 1  'True 
= 855 

Begin ListBox lstFuel 
BackColor = &HOOFFFFFF& 
FontBold = 0 'False 
Fontltalic = 0 'False 
FontName = "Fixedsys" 
FontSize = 9 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
ForeColor = &HOOOOOOOO& 
Height = 930 
Left = 1 20 
Tablndex = I 
Top = 240 
Width = 2 1 75 

End 
End 
Begin Frame fraDimensions 

BackColor = &HOOFFFFFF& 
Caption = "Dimensions" 
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ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

= &HOOOOOOOO& 
= 2895 

= 2640 
= 20 

= 1 20 
= 2055 

Begin TextBox txtNumberCylinders 
BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 285 
Left = 1 080 
Tab Index = 1 0 
Text 
Top 
Width 

End 

= "6" 
= 2400 

= 495 

Begin TextBox txtCompRatio 
BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 285 
Left = 1080 
Tablndex = 9 
Top = 1920 
Width = 495 

End 
Begin TextBox txtRodLength 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 285 
Left = 840 
Tablndex = 8 
Top = 1 4 1 0  
Width = 735 

End 
Begin TextBox txtStroke 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 285 
Left = 840 
Tablndex = 7 
Top = 930 
Width = 735 

End 
Begin TextBox txtBore 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 285 
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Left 
Tab Index 
Top 
Width 

End 

= 840 
= 6 

= 450 
= 735 

Begin Label lbiRatio 
BaekColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "Comp Ratio" 
= &HOOOOOOOO& 

= 495 
= 120 

= 27 
= 1 920 
= 6 1 5  

Begin Label Label l 
BaekColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "No. Cylinders" 
= &HOOOOOOOO& 

= 375 
= 1 20 

= 1 9  
= 2400 

= 855 

Begin Label Label 1 4  
BaekColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "em" 
= &HOOOOOOOO& 

= 240 
= 1680 

= 26 
= 1440 

= 240 

Begin Label Label l 3  
BaekColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "em" 
= &HOOOOOOOO& 

= 240 
= 1 680 

= 25 
= 960 

= 240 

Begin Label Label l I 
BaekColor = &HOOFFFFFF& 
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Caption 
ForeColor 
Height 
Left 

= 
"em" 

= &HOOOOOOOO& 
= 240 

= 1 680 
Tablndex = 24 
Top = 480 
Width = 240 

End 
Begin Label Label l 0 

BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "Rod Lg" 
= &HOOOOOOOO& 

= 240 
= 1 20 

= 23 
= 1440 

= 720 

Begin Label Label9 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "Stroke" 
= &HOOOOOOOO& 

= 240 
= 1 20 

= 22 
= 960 
= 720 

Begin Label LabelS 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 
End 

= "Bore" 
= &HOOOOOOOO& 

= 240 
= 1 20 

= 2 1  
= 480 

= 600 

Begin Frame fralgnition 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 

= "Ignition Parameters" 
= &HOOOOOOOO& 

= 1 455  
= 1 20 

= 0 
= 3360 
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Width = 241 5  
Begin SpinButton spnCombDuration 

Height = 300 
Left = 1 800 
Top = 960 
Width = 200 

End 
Begin SpinButton spnSparkAdvance 

Height = 300 
Left = 1 800 
Top = 360 
Width = 200 

End 
Begin TextBox txtCombustionDuration 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 300 
Left = 1 200 
Tablndex = 5 
Top = 960 
Width = 495 

End 
Begin TextBox txtSparkAdvance 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 300 
Left = 1 200 
Tablndex = 4 
Top = 360 
Width = 495 

End 
Begin Label Label 1 8  

BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "DEG" 
= &HOOOOOOOO& 

= 240 
= 240 

= 1 8  
= 1 200 

= 480 

Begin Label Label l ?  
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 

= "BTDC" 
= &HOOOOOOOO& 

= 240 
= 240 
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Tab Index 
Top 
Width 

End 

= 1 7  
= 600 
= 480 

Begin Label Label 1 6  
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "Comb Our" 
= &HOOOOOOOO& 

= 240 
= 120 

= 1 6  
= 960 
= 975 

Begin Label Label 1 5  
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tablndex 
Top 
Width 

End 
End 

End 

= "Spark Adv" 
= &HOOOOOOOO& 

= 240 
= 1 20 

= I S  
= 360 
= 975 

Dim tmpBore$, tmpStroke$, tmpRodLength$, tmpSparkAdvance$, 
tmpCombustionDuration$ 

Dim tmpNumberCylinders$, tmpCompRatio$, tmpAmbientPressure$, 
tmpAmbientTemperature$ 

Dim tmpEquivRatio$, tmpEnrichmentEquivRatio$, tmpCombustorEquivRatio$, 
tmpFueiSelection% 

Sub cmdEngineParametersCancel_ Click 0 

txtBore.Text = tmpBore$ 
txtStroke.Text = tmpStroke$ 
txtRodLength.Text = tmpRodLength$ 
txtSparkAdvance.Text = tmpSparkAdvance$ 
txtCombustionDuration. Text = tmpCombustionDuration$ 
txtNumberCylinders.Text = tmpNumberCylinders$ 
txtCompRatio.Text = tmpCompRatio$ 
txtAmbientPressure.Text = tmpAmbientPressure$ 
txtAmbientTemperature. Text = tmpAmbientTemperature$ 
txtEquivRatio.Text = tmpEquivRatio$ 
txtEnrichmentEquiv Ratio. Text = tmpEnrichmentEquivRatio$ 
txtCombustorEquivRatio.Text = tmpCombustorEquivRatio$ 
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lstFuel.Listindex = tmpFuelSelection% 
optRichCombustor. Value = - 1  
optStoichiometric.Va1ue = - 1  
frmEngineParameters.Hide 

End Sub 

Sub cmdEngineParametersOK_ Click 0 

IftxtAmbientTemperature.Text = "" Then 
MsgBox "PLEASE SPECIFY AN AMBIENT TEMPERATURE" 
txtAmbientTemperature.SetFocus 
Exit Sub 

End If 
IftxtAmbientPressure.Text = "" Then 

MsgBox "PLEASE SPECIFY AN AMBIENT PRESSURE" 
txtAmbientPressure.SetFocus 
Exit Sub 

End If 
If txtEquivRatio.Text = '"' And optConstantAF.Va1ue = - 1  Then 

MsgBox "PLEASE SPECIFY AN EQUIVALENCE RATIO" 
txtEquivRatio.SetFocus 
Exit Sub 

End If 
IftxtEnrichrnentEquivRatio.Text = "" And optEnrichrnent.Value = -1 Then 

MsgBox "PLEASE SPECIFY AN EQUIVALENCE RATIO" 
txtEnrichmentEquivRatio.SetFocus 
Exit Sub 

End If 
IftxtCombustorEquivRatio.Text = '"' And optRichCombustor.Value = - I Then 

MsgBox "PLEASE SPECIFY AN EQUIVALENCE RATIO" 
txtCombustorEquivRatio.SetFocus 
Exit Sub 

End lf 
lf lstFuel.Text = "" Then 

MsgBox "PLEASE SELECT A FUEL" 
lstFuel.SetFocus 
Exit Sub 

End If 
IftxtCompRatio.Text = "" Then 

MsgBox "PLEASE SPECIFY A COMPRESSION RATIO" 
txtCompRatio.SetFocus 
Exit Sub 

End If 
IftxtBore.Text = "" Then 

MsgBox "PLEASE SPECIFY A BORE" 
txtBore.SetF ocus 
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Exit Sub 
End If 
lftxtStroke.Text = 1111 Then 

MsgBox "PLEASE SPECIFY A STROKE" 
txtStroke.SetF ocus 
Exit Sub 

End If 
lftxtRodLength.Text = "" Then 

MsgBox "PLEASE SPECIFY A CONNECTING ROD LENGTH" 
txtRodLength.SetF ocus 
Exit Sub 

End If 
IftxtSparkAdvance.Text = "" Then 

MsgBox "PLEASE SPECIFY A SPARK ADVANCE" 
txtSparkAdvance.SetFocus 
Exit Sub 

End If 
lf txtCombustionDuration.Text = 1111 Then 

MsgBox "PLEASE SPECIFY A COMBUSTION DURATION" 
txtCombustionDuration.SetFocus 
Exit Sub 

End If 

IftxtNumberCylinders.Text = 1111 Then 
MsgBox "PLEASE SPECIFY THE NUMBER OF CYLINDERS" 
txtNumberCylinders.SetF ocus 
Exit Sub 

End If 

Bore = Val(txtBore.Text) 
Stroke = Val(txtStroke.Text) 
RodLength = Val(txtRodLength.Text) 
StrokeRatio = RodLength I Stroke 
SparkAdvance = Val(txtSparkAdvance.Text) 
CombustionDuration = Val(txtCombustionDuration. Text) 
NumberCylinders = Val(txtNumberCylinders.Text) 
CompRatio = Val(txtCompRatio.Text) 
EnrichmentEquivRatio = Val(txtEnrichmentEquivRatio. Text) 
CombustorEquivRatio = Val(txtCombustorEquivRatio.Text) 
frmEngineParameters.Hide 
EngineDisplacement = 3. 1 4 1 6  • Stroke • Bore " 2 / 4  • NumberCyl inders 
AmbientPressure = Val(txtAmbientPressure.Text) 
AmbientTemperature = Val(txtAmbientTemperature. Text) 

MC = Vai(Mid$(lstFuei.Text, 1 8, 6)) 
MH = Val(Mid$(lstFuei.Text, 24, 6)) 
MO = Val(Mid$(lstFuei.Text, 30, 5)) 
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Hrp = Val(Mid$(1stFuel.Text, 35, 10)) 
Hfg = Val(Mid$(lstFuel.Text, 45, 8)) 
If optLiquid. Value = - 1  Then 

Hrp = Hrp - Hfg 
End If 
FuelACP = Val(Mid$(lstFuel.Text, 53, 6)) 
FuelBCP = Val(Mid$(1stFuel.Text, 59, 8)) 

End Sub 

Sub Form_Activate 0 

tmpBore$ = txtBore.Text 
tmpStroke$ = txtStroke.Text 
tmpRodLength$ = txtRodLength.Text 
tmpSparkAdvance$ = txtSparkAdvance.Text 
tmpCombustionDuration$ = txtCombustionDuration.Text 
tmpNumberCylinders$ = txtNumberCylinders.Text 
tmpCompRatio$ = txtCompRatio.Text 
tmpAmbientPressure$ = txtAmbientPressure.Text 
tmpAmbientTemperature$ = txtAmbientTemperature.Text 
tmpEquivRatio$ = txtEquivRatio.Text 
tmpEnrichmentEquivRatio$ = txtEnrichmentEquivRatio.Text 
tmpCombustorEquivRatio$ = txtCombustorEquivRatio. Text 
tmpFuelSelection% = lstFuel.Listlndex 

End Sub 

Sub Form_Load 0 

Open "Fuels.txt" For Input As 1 
Do While Not EOF(l )  
Line Input # I ,  FuelStuff$ 
frmEngineParameters.lstFuel.Addltem FueiStuff$ 

Loop 
Close I 

txtCompRatio.Text = "8.9" 
txtBore.Text = "8.90" 
txtStroke.Text = "7.60" 
txtRodLength. Text = " 1 3  . 1 3" 
txtSparkAdvance.Text = " I S" 
txtCombustionDuration.Text = "30" 
lstFuei.Listlndex = 5 
txtNumberCylinders.Text = "6" 
txtAmbientPressure.Text = " 1 .0" 
txtAmbientTemperature.Text = "243" 
txtEquivRatio.Text = " 1 .0" 
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txtEnrichmentEquivRatio.Text = " 1 .0" 
txtCombustorEquivRatio.Text = "2.0" 
Bore = Val(txtBore.Text) 
Stroke = Val(txtStroke.Text) 
RodLength = Val(txtRodLength.Text) 
StrokeRatio = RodLength I Stroke 
SparkAdvance = Val(txtSparkAdvance.Text) 
Combustion Duration = Val(txtCombustionDuration. Text) 
NumberCylinders = Val(txtNumberCylinders.Text) 
CompRatio = Val(txtCompRatio.Text) 
EnrichmentEquivRatio = Val(txtEnrichmentEquivRatio.Text) 
CombustorEquiv Ratio = Val(txtCombustorEquivRatio. Text) 
frmEngineParameters.Hide 
EngineDisplacement = 3 . 1 4 16  * Stroke * Bore " 2 / 4  * NumberCyl inders 
AmbientPressure = Val(txtAmbientPressure.Text) 
AmbientTemperature = Val(txtAmbientTemperature. Text) 

MC = Vai(Mid$(1stFuei.Text, 1 8, 6)) 
MH = Val(Mid$(1stFuel.Text, 24, 6)) 
MO = Val(Mid$(1stFuel.Text, 30, 5)) 
Hrp = Vai(Mid$(1stFuei.Text, 35, 10)) 
Hfg = Val(Mid$(1stFuel.Text, 45, 8)) 
If optLiquid. Value = - 1  Then 

Hrp = Hrp - Hfg 
End lf 
FueiACP = Vai(Mid$(lstFuel.Text, 53,  6)) 
FueiBCP = Vai(Mid$(1stFuei.Text, 59, 8)) 

End Sub 

Sub optConstantAF _Click O 

lbiEquivRatio.Enabled = - I  
txtEquivRatio.Enabled = - 1  
txtEquiv Ratio.SetFocus 

End Sub 

Sub optEnrichment_ Click 0 

lblCombustorEquivRatio.Enabled = 0 
txtCombustorEquivRatio.Enabled = 0 
lblEnrichmentEquivRatio.Enabled = - 1  
txtEnrichmentEquivRatio.Enabled = - I 
frmAdFlameTemperature. lbiCombustorProducts Temp. Visible = False 
frmAdFiameTemperature.lbiCombTempUnits.Visible = False 
frmAdFiameTemperature.txtCombustorTemp. Visible = False 
txtEnrichmentEquivRatio.SetFocus 

End Sub 
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Sub optRichCombustor _Click {) 

lblEnrichmentEquivRatio.Enabled = 0 
txtEnrichmentEquivRatio.Enabled = 0 
lblCombustorEquivRatio.Enabled = - I  
txtCombustorEquivRatio.Enabled = - I  
fnnAdFlameTemperature.lblCombustorProductsTemp. Visible = True 
fnnAdFlameTemperature.lblCombTempUnits. Visible = True 
frmAdFlameTemperature.txtCombustorTemp. Visible = True 
txtCombustorEquivRatio.SetF ocus 

End Sub 

Sub optStoichiometric_ Click 0 

lblEquivRatio.Enabled = 0 
txtEquivRatio.Enabled = 0 
txtEquivRatio.Text = " 1 .0" 

End Sub 

Sub spnCombDuration_SpinDown () 

txtCombustionDuration.Text = Str$(Val(txtCombustionDuration.Text) - I )  
End Sub 

Sub spnCombDuration_SpinUp 0 

txtCombustionDuration.Text = Str$(Val(txtCombustionDuration.Text) + 1 )  
End Sub 

Sub spnSparkAdvance_SpinDown 0 

txtSparkAdvance.Text = Str$(Val(txtSparkAdvance.Text) - 1 )  
End Sub 

Sub spnSparkAdvance_SpinUp 0 

txtSparkAdvance.Text = Str$(Val(txtSparkAdvance.Text) + 1 )  
End Sub 

Sub Blowdown (TempProducts, PressProducts, VolumeProducts, SProducts) 

PressExpand = AmbientPressure 
TempExpand = TempProducts 
VolumeS = VolumeState l 
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blow 1 :  
IfTempExpand > 1 600 Then 

Call Equilibrium(TempExpand, PressExpand, 0) 
End If 
SDelta = SProducts - EntropyProducts(TempExpand, PressExpand) 

1 Decrease TempExpand until SDelta becomes positive 

If SDelta < 0 Then 
TempExpand = TempExpand - 1 00 
GoTo blow I 

End If 

1 The Isentropic Expansion Temperature has just been passed when SDelta became positive 
' Begin Bisection Method 

biow2: 

blow3 : 

TempExpLast = TempExpand 
TempExpand = TempExpand + 50 
k% = I 

IfTempExpand > I600 Then 
Call Equilibrium(TempExpand, PressExpand, 0) 

End lf 
SDelta = SProducts - EntropyProducts(TempExpand, PressExpand) 
If SDeita < 0 Then 

TempExpLast = TempExpand 
TempExpand = TempExpand - 50! I 2 " k% 

If Abs(TempExpand - TempExpLast) < 1 GoTo blow3 'Convergance 
k% = k% +  I 
GoTo biow2 

Else 
TempExpLast = TempExpand 
TempExpand = TempExpand + 50! I 2 " k% 

If Abs(TempExpand - TempExpLast) < 1 GoTo blow3 'Convergance 
ko/o = k% +  I 
GoTo blow2 

End If 

TempState5 = TempExpand 
MolesExhaustProduct = MolesProduct 
PressState5 = PressExpand 
VolumeBlowdown = MolesProduct • TempExpand • 8.3 I 4 / PressExpand I 1 0 I  
B1owdownFactor = VolumeState5 / VolumeBiowdown 
Residual = VoiumeState3 / VolumeBiowdown 
For i =  1 To I O  

NumberMolesExhaust(i) = ( 1 - Residual) • NumberMoles(i) 
Next 
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MolesExhaustProduct = { I  - Residual) * MolesExhaustProduct 
MolesProduct = 0 
For i =  1 To 1 0  

NumberMoles(i) = BlowdownFactor * NumberMoles(i) 
MolesProduct = MolesProduct + NumberMoles(i) 

Next 
BlowdownData$ = " 5 " + 11 11 + Format$(TempExpand, "####") + " " + 

Format$(PressExpand, 11## .00") 
For A% = I To 1 0  

'for mole fraction of product, comment out the next line 
I 

BlowdownData$ = BlowdownData$ + 11 11 + FORMAT$(NumberMoles(A%), 1100.00011) 

'for mole numbers of product, comment out the next line 
' 

BlowdownData$ = BlowdownData$ + 11 11 + Format$((NumberMoles(A%) I 
MolesProduct), "0.00011) 

Next 
End Sub 

Sub cmdCalcAFT_Click () 
VolumetricEfficiency = Val(txtVolumetricEfficiency. Text) 
EngineS peed = Val(txtEngineSpeed. Text) 
PressManifold = Val(txtPressManifold.Text) 
Call FourStroke(VolumetricEfficiency, EngineSpeed, PressManifold) 

End Sub 

Sub cmdCalcSinglePoint _Click O 

fralnputs.Visible = False 
VolumetricEfficiency = Val(txtVolumetricEfficiency. Text) 
EngineSpeed = Val( txtEngineSpeed. Text) 
PressManifold = Val(txtPressManifold.Text) 
Call FourStroke(VolumetricEfficiency, EngineSpeed, PressManifold) 
mnuViewSinglePoint.Enabled = True 
mnuViewCombustor.Enabled = True 
mnuView.Enabled = True 

End Sub 

Sub cmdCalculatePerfMap_Click 0 

ReDim PerformanceMapData$( 1 00, 2 1 )  
gagPercentComplete.Visible = True 
On Error Go To usercancel2 
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VolumetricEfficiency = .58 
EngineSpeed = 800 
PressManifold = .55 
Call FourStroke(VolumetricEfficiency, EngineSpeed, PressManifold) 
PerformanceMapData$(EngineSpeed I I 00, PressManifold * 20) = 

Format(BrakeHorsepower, "000.0") + "  " + Format(FuelFiowRate, "00.00") + " " + 
Format(VolumetricEfficiency, "0.0000") 

For spec l %  = I  To 10  
PerformanceMapData$(EngineSpeed I I 00, PressManifold * 20) = 

PerformanceMapData$(EngineSpeed I I 00, PressManifold * 20) + " " + 
Format(NumberMolesExhaust(spec 1 %) I MolesExhaustProduct, "0.0000") 

Next 

NumberPoints = 0 
PointNumber = 0 
CMDialog l .Filter = "Vol. Eff. Files * .eft]*.ef�Text Files * .txtl* .txt1All Files *.* I*.*" 
CMDialog1 .Filterlndex = 1 
CMDia1og 1 .Dia1ogTitle = "OPEN VOLUMETRIC EFFICIENCY FILE" 
CMDialog 1 .Cance1Error = True 
CMDialog l .Action = 1 
If CMDialog 1 .Filename = "" Then Exit Sub 
fnnAdFiameTemperature.Refresh 
Open CMDialog I .Filename For Input As I 0 

Do While Not EOF( 1 0) 
Line Input # I  0, EngineData$ 
NumberPoints = NumberPoints + I  

Loop 
Close 1 0  
Open CMDialog l .Filename For Input As 1 0  
Do While Not EOF( I 0) 

Line Input # I  0, EngineData$ 
PointNumber = PointNumber + 1 
Vo1umetricEfficiency = Vai(Mid$(EngineData$, 1 9, 6)) 
EngineSpeed = Val(Mid$(EngineData$, S, 4)) 
PressManifold = Val(Mid$(EngineData$, 14, 3)) 1 1 00 
Call FourStroke(VolumetricEfficiency, EngineSpeed, PressManifold) 
PerformanceMapData$(EngineSpeed I I 00, PressManifold * 20) = 

Format(BrakeHorsepower, "000.0") + " " +  Format(FuelFlowRate, "00.00") + " " + 
Format(V olumetricEfficiency, "0.0000") 

For spec l %  = I  To 1 0  
PerformanceMapData$(EngineSpeed I I 00, PressManifold * 20) = 

PerformanceMapData$(EngineSpeed I 1 00, PressManifold * 20) + " " + 
Format(NumberMolesExhaust(spec l%) I MolesExhaustProduct, "0.0000") 

Next 
gagPercentComplete.Value = l 00 * PointNumber I NumberPoints 

Loop 
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Close 10  
mnuView.Enabled = True 
mnuViewEngineOutput.Enabled = True 
cmdDrivingCycle.Enabled = True 
mnuFileSave.Enabled = True 
mnuSavePerfData.Enabled = True 
gagPercentComplete. Visible = False 

If fnnEngineParameters.optRichCombustor. Value = True Then 
mnuViewCombustor.Enabled = True 

End lf 

usercancel2: 
Exit Sub 
Resume 

End Sub 

Sub cmdCancel_Click 0 

txtOutputFi le.Text = "" 
fraOutputFi le.Visible = False 
cmdSaveData.SetFocus 

End Sub 

Sub cmdCancelSinglePoint_ Click 0 

fralnputs.Visible = 0 
End Sub 

Sub cmdCiear _Click 0 

txtPressManifold.Text = "" 
frmEngineParameters.txtCompRatio. Text = '"' 

End Sub 

Sub cmdCombustorOutputReturn_Click 0 

Totalltems = lstCombustorOutput.ListCount 
For i = 1 To Totalltems 

lstCombustorOutput.Removeltem 0 
Next i 
fraCombustorOutput. Visible = False 

End Sub 
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Sub cmdDrivingCyde_Ciick 0 

ReDim VehicleSpeed( 505), RequiredBrakePower( 505 ). CycleEngineSpeed( 505), 
CycleFuelFlowrate(505), CycleBrakePower(505) 

gagPercentComplete.Visible = True 
AxleRatio = Val( frmChassisParameters.txtAxleRatio. Text) 
ld1eHorsepower = Vai(Left$(PerformanceMapData$(8, I I ), 4)) 
IdleFuelRate = Val(Mid$(PerformanceMapData$(8, I l ), 6, 5)) 

Open "fuds.txt" For Input As 1 
Line Input # 1 ,  CycleStep$ 
VehicleSpeed(O) = Vai(Right$(CycleStep$, 6)) 
CycleEngineSpeed(i) = 800 
RequiredBrakePower(O) = IdleHorsepower 
Forj = I  To 505 

Line Input # I ,  CycleStep$ 
i = Clnt(Left$(CycleStep$, 4)) 
VehicleSpeed(i) = Vai(Right$(CycleStep$, 6)) 
lfVehicleSpeed(i) = 0 Then 
CycleEngineSpeed(i) = 800 
CycleFuelFlowrate(i) = ldleFuelRate 
RequiredBrakePower(i) = IdleHorsepower 
GoTo Idle 

End lf 
VehicleAcceleration = (VehicleSpeedG) - VehicleSpeedG - I )) * 88 / 60 
lfVehicleAcceleration < 0 Then 
CycleEngineSpeed(i) = 800 
CycleFueiFlowrate(i) = IdleFuelRate 
RequiredBrakePower(i) = IdleHorsepower 
GoTo Idle 

End If 
IfVehicleSpeed(i) < I 5  Then 

TransRatio = Val(frmChassisParameters.txtTransmissionRatio I .  Text) 
ElseifVehicleSpeed(i) < 25 Then 
Trans Ratio = Val( frmChassisParameters.txtTransmissionRatio2. Text) 

ElseifVehicleSpeed(i) < 40 Then 
TransRatio = Val( frmChassisParameters.txtTransmissionRatio3. Text) 

Else 
TransRatio = Val{ fnnChassisParameters.txtTransmissionRatio4. Text) 

End If 

CycleEngineSpeed(i) = (VehicleSpeed(i) * 5280 * 12 / 60 / 3 . 14 I 6 / 
Val(fnnChassisParameters.txtTireDiameter.Text)) * AxleRatio * TransRatio 

RequiredBrakePower(i) = ((VehicleMass * VehicleAcceleration * VehicleSpeed(i) * 
88 / 60 / 550) + . 1 263 * VehicleSpeed(i) + .00008448 * VehicleSpeed(i) " 3) I .7 

' Determine the operating point from the performance map data 
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4)) Then 

LowerRPMPoint = Int(CycleEngineSpeed(i) / I  00) 
UpperRPMPoint = LowerRPMPoint + I 
For k =  1 3  To 20 

If RequiredBrakePower(i) < Vai(Left$(PerformanceMapData$(LowerRPMPoint, k), 

LowerRPMUpperHP = k 
LowerRPMLowerHP = k - I 
GoTo UpperRPM 

End lf 

Next 

UpperRPM:  

5)) Then 

For m =  1 3  To 20 
If RequiredBrakePower( i) < Vai(Left$(PerformanceMapData$(U pperRPMPoint, m ), 

UpperRPMUpperHP = m 
UpperRPMLowerHP = m - I 
GoTo FoundPoint 

End If 

Next 

FoundPoint: 

XRPM = CycleEngineSpeed(i) I I 00 - LowerRPMPoint 
FuelRateLL = Val(Mid$(PerformanceMapData$(LowerRPMPoint, 

LowerRPMLowerHP), 6, 5)) 
FuelRateLU = Val(Mid$(PerformanceMapData$(LowerRPMPoint, 

LowerRPMUpperHP), 6, 5)) 
FuelRateUL = Val(Mid$(PerformanceMapData$(UpperRPMPoint, 

UpperRPMLowerHP), 6, 5)) 
FueiRateUU = Val(Mid$(PerformanceMapData$(UpperRPMPoint, 

UpperRPMUpperHP), 6, 5)) 
PowerLL = Val(Left$(PerformanceMapData$(LowerRPMPoint, 

LowerRPMLowerHP), 5)) 
PowerLU = Val(Left$(PerformanceMapData$(LowerRPMPoint, 

LowerRPMUpperHP), 5)) 
PowerUL = Vai(Left$(PerformanceMapData$(UpperRPMPoint, 

UpperRPMLowerHP), 5)) 
PowerUU = Val(Left$(PerformanceMapData$(UpperRPMPoint, 

UpperRPMUpperHP), 5)) 
PowerUpper = (PowerUU - PowerLU) * XRPM + PowerLU 
PowerLower = (PowerUL - PowerLL) * XRPM + PowerLL 
FueiRateUpper = (FuelRateUU - FuelRateLU) * XRPM + FueiRateLU 
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FueiRateLower = (FueiRateUL - FueiRateLL) • XRPM + FueiRateLU 
XPower = (RequiredBrakePower(i) - PowerLower) I (PowerUpper - PowerLower) 
CycleFueiFiowrate(i) = ( I - XPower) * FueiRateLower + XPower • FueiRateUpper 

Idle: 'This point is at idle conditions 
NextPoint: 

gagPercentComplete.Value = j 1 5.05 
Next 
mnuView.Enabled = True 
mnuViewDrivingCycle.Enabled = True 
mnuFileSave.Enabled = True 
mnuSaveDrivCycData.Enabled = True 
gagPercentComplete. Visible = False 

Close I 

End Sub 

Sub cmdDriviogCycleOK_ Click 0 

fraDrivingCycle.Visible = False 
End Sub 

Sub cmdExbaustCompReturo_ Click O 

Totalltems = lstExhaustComposition.ListCount 
For i =  1 To Totalltems 

lstExhaustComposition.Removeltem 0 
Next i 
fraExhaustComposition.Visible = False 

End Sub 

Sub cmdExit_ Click 0 

End 
End Sub 

Sub cmdOtto_Ciick 0 

Open "Otto. txt" For Output As 1 
For i =  1 To 300 

Print # I ,  Format$(i, "000"), Format$(TempVolume(i) I VolumeState l ,  "0.000"), 
Format$(TempPressure(i), "###.00") 

Next 
Close I 
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End Sub 

Sub cmdPerformanceDataOK_Ciick 0 

Totalltems = lstPerformanceData.ListCount 
For i =  1 To Totalltems 

lstPerformanceData.Removeltem 0 
Next i 
fraPerformanceData.Visible = False 

End Sub 

Sub cmdPerformanceMapOK_Ciick 0 

fraPerformanceMap. Visible = False 
End Sub 

Sub cmdPrintData_ Click 0 

On Local Error GoTo errorl 
lbiFueiName.Caption = Mid$(frmEngineParameters.lstFuel.Text, I 0, 5) + " with " +  

frmEngineParameters.txtEquivRatio.Text + " theoretical air." 
Printer.Print lbiFuelName.Caption 
Printer.Print '"' 
Printer.Print "State Temp Press C02 CO 02 0 NO N2 

H H2 OH H20" 
Printer.Print "" 

Printer.Print IntakeData$ 
Printer .Print IsentropicCompressionData$ 
Printer .Print AdiabaticFiameData$ 
Printer.Print " init " +  Format$(Templnitial, "####") + "  " +  

Format$(Pressln itial, "##.##") 
Printer.Print " final " + Format$(TempFinal, "####") + " " + 

Format$(PressFinal, "##.##") 
Printer.Print IsentropicExpansionData$ 
Printer.Print BlowdownData$ 
Printer.Print ExhaustData$ 
Printer.Print "Residual = " + Format$(Residual, "0.000") 
Printer.Print "IMEP = " +  Format${1MEP, "##.00") 

Printer.NewPage 
Printer.EndDoc 

Exit Sub 
errorl :  MsgBox "check the printer" 
Resume 
End Sub 
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Sub cmdRetum_ Click 0 

Totalltems = lstFlameTemperature.ListCount 
For i = 1 To Totalltems 

lstFlameTemperature.Removeltem 0 
Next i 
fraOutput.Visible = False 

End Sub 

Sub cmdSaveData_ Click 0 

lblFileExtension.Caption = ".WOT" 
txtOutputFile.Text = Left$(frmEngineParameters.lstFuel.Text, 8) 
fraOutputFile.Visible = True 
txtOutputFile.SetF ocus 
cmdWrite.Default = - I  

End Sub 

Sub cmdViewData_Ciick 0 

lblFuelName.Caption = Mid$(frmEngineParameters.lstFuel.Text, 1 0, 5) + " with 11 + 
frmEngineParameters.txtEquivRatio.Text + " theoretical air." 

lstFlameTemperature.Addltem IntakeData$ 
lstFlameTemperature.Addltem IsentropicCompressionData$ 
lstFiameTemperature.Addltem " init " +  Format$(Templnitial, 11####") + "  " + 

Format$(Presslnitial, "##.##11) 
lstFlame Temperature.Addl tern AdiabaticFlameData$ 
lstFlameTemperature.Addltem " final " +  Format$(TempFinal, "####") + 11 11 + 

Format$(PressFinal, "##.##11) 
lstFlameTemperature.Addltem IsentropicExpansionData$ 
lstFiameTemperature.Addltem BlowdownData$ 
lstFiameTemperature.Addltem ExhaustData$ 
lstFiameTemperature.Addltem "Residual = 11 + Format$(Residual, "0.000") 
lstFiameTemperature.Addltem "IMEP = 11 + Format$(IMEP, "##.00") + 11 atm" 
lstFlameTemperature.Addltem "POWER = " +  Format$(Horsepower, "##.00") + 11 hp" 
fralnputs.Visible = False 
fraOutput.Visible = True 
frmEngineParameters.fraDimensions. Visible = False 
cmdRetum.SetFocus 

End Sub 

Sub cmdWrite_Ciick 0 

On Local Error Go To error2 
If txtOutputFile.Text = 1111 Then 

MsgBox "PLEASE SPECIFY AN OUTPUT FILENAME" 
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GoTo 5000 
End If  

lbiFueiName.Caption = Mid$(frmEngineParameters.lstFuei.Text, 1 0, 5)  + " with " +  
frmEngineParameters.txtEquivRatio.Text + " theoretical air." 

H 

OutputFile$ = Left$(txtOutputFile.Text, 8) + ".WOT" 
Open OutputFile$ For Output As I 

Print # I ,  lbiFueiName.Caption 
Print # I . "" 
Print # I ,  "State Temp Press C02 CO 

H2 OH H20" 
Print # I , ""  

Print # 1 ,  IntakeData$ 
Print # 1 ,  lsentropicCompressionData$ 
Print # I ,  AdiabaticFiameData$ 
Print # I ,  IsentropicExpansionData$ 
Print # I ,  BlowdownData$ 
Print # I ,  ExhaustData$ 

02 

Print # I ,  "Residual = " + Format$( Residual, "0.000") 
Print # I ,  "IMEP = " + Format$(1MEP. "##.00") 

Close I 
fraOutputFi le.Visible = False 

Exit Sub 
error2: 

Select Case Err 
Case 68, 7 1  

MsgBox "Make sure the disk is available for writing! "  
Case 59 

0 NO 

response% = MsgBox("Existing file will be overwritten! ". 257, "WARNING") 
If response% = 2 Then Exit Sub 

Case Else 
MsgBox "File in use by another application" 
txtOutputFile.SetFocus 
Exit Sub 

End Select 
Resume 
5000 End Sub 

Sub Combustion (UReactants, MolesReactant) 

TempProducts = 1600 'Initial Value for iteration 

' Increase TempProducts until UDelta becomes negative 
I 

60 A = PressState2 * TempProducts I (MolesReactant * TempState2) 
Call Equilibrium(TempProducts, 0, A) 

N2 

UDelta = UReactants - (HProducts(TempProducts) - 8.3 1 4  * MolesProduct * TempProducts) 
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lfUDelta > 0 Then 
TempProducts = TempProducts + 100 
GoTo 60 

End If 

' The Adiabatic Flame Temperature has just been passed when UDelta became negative 
' Begin Bisection Method 

TempProdLast = TempProducts 
TempProducts = TempProducts - 50 
k% = 1 

70 A =  PressState2 • TempProducts I (MolesReactant * TempState2) 
Call Equilibrium(TempProducts, 0, A) 
UDelta = UReactants - (HProducts(TempProducts) - 8.3 14  • MolesProduct • TempProducts) 
If UDelta > 0 Then 

TempProdLast = TempProducts 
TempProducts = TempProducts + 50! 1 2  " k% 

If  Abs(TempProducts - TempProdLast) < 1 Go To 80 'Convergance 

Else 

k% = k% +  I 
GoTo 70 

TempProdLast = TempProducts 
TempProducts = TempProducts - 50! 1 2  " k% 

If Abs(TempProducts - TempProdLast) < I GoTo 80 'Convergance 
k% = k% +  I 
GoTo 70 

End lf 
'PressState3 =PressState2 • MolesProduct * TempProducts I (MolesReactant • TempState2) 
80 PressState3 = 8.3 1 4  • MolesProduct • TempProducts I VolumeState3 1 10 1  

TempState3 = TempProducts 
AdiabaticFlameData$ = " 3 " + " " + Format$(TempState3, "####") + " " + 

Format$(PressState3, "###.##") 
For A I % = I To 1 0  

'for mole fraction o f  product, comment out the next line 
' 

' AdiabaticFiameData$ = AdiabaticFlameData$ + "  " +  FORMAT$(NumberMoles(A%), 
"00.000") 

'for mole numbers of product, comment out the next line 
' 

AdiabaticFlameData$ = AdiabaticFiameData$ + "  " +  Format$((NumberMoles(A l %) I 
MolesProduct), "0.000") 

Next 
End Sub 
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Sub Commandl_Ciick 0 

fraPerfonnanceMap. Visible = False 
End Sub 

Sub Compression (VolumeReactants) 

TempState2 = TempS tate I 
Comp1 :  

SDelta = EntropyReactant(TempState2, VolumeReactants) - EntropyReactant(TempState I ,  
VolumelntakeCloses) 
I 

1 Increase TempState2 until SDelta becomes positive 

If SDelta < 0 Then 
TempState2 = TempState2 + 100 
GoTo Comp 1 

End lf 

1 The Isentropic Compression Temperature has just been passed when SDelta became positive 
1 Begin Bisection Method 

TempState2Last = TempState2 
TempState2 = TempState2 - SO 
k% = 1 

comp3 : 
SDelta = EntropyReactant(TempState2, VolumeReactants) - EntropyReactant(TempState 1 ,  

VolumelntakeCioses) 
If SDelta < 0 Then 

TempState2Last = TempState2 
TempState2 = TempState2 + SO! / 2  " k% 

If Abs(TempState2 - TempState2Last) < 1 Go To comp2 1Convergance 

Else 

k% = k% +  1 
GoTo comp3 

TempState2Last = TempState2 
TempState2 = TempState2 - 50! / 2 "  k% 

If Abs(TempState2 - TempState2Last) < 1 GoTo comp2 1Convergance 
k% = k% +  l 
GoTo comp3 

End If 
comp2: 

PressState2 = PressState l • VolumelntakeCloses I VolumeReactants • TempState2 / 
TempState 1 

lfVolumeReactants = VolumeState2 Then 'Piston at TDC 
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IsentropicCompressionData$ = 11 2 11 + " 11 + Format$(TempState2, "####") + " " + 
Format$(PressState2, "##.##") 

For A% = 1 To 1 0  

'for mole fraction of product. comment out the next line 
I 

IsentropicCompressionData$ = lsentropicCompressionData$ + " " + 
FORMA T$(N umberMoles(A% ), "00.000") 

'for mole numbers of product, comment out the next line 
I 

IsentropicCompressionData$ = IsentropicCompressionData$ + " " + 
Format$((NumberMoles(A%) I MolesState l ), "0.000") 
I 

Next 
End If  

End Sub 

Function EntropyProducts (Temperature, Pressure) 

TempEntropy = 0 
If Temperature < 1 600 Then 

For j = 1 To 1 0  
TempEntropy = TempEntropy + NumberMolesG) * (BLG) * Log(Temperature) 

CLG) I Temperature + DLG) - 8.3 14  * Log(Pressure)) 
IfNumberMolesG) > 0 Then 

TempEntropy = TempEntropy - 8.3 14  * NumberMoles(j) * Log(NumberMolesG) I 
MolesProduct) 

End lf 
Next 

Else 
For j = I To 1 0  
TempEntropy = TempEntropy + NumberMoles(j) * (BH(j) * Log(Temperature) 

CH(j) I Temperature + DHG) - 8.3 14  * Log(Pressure)) 
IfNumberMolesG) > 0 Then 

TempEntropy = TempEntropy - 8.3 14 * NumberMoles(j) * Log(NumberMoles(j) I 
MolesProduct) 

End If 
Next 

End If  
EntropyProducts = TempEntropy 

End Function 

Function EntropyReactant (Temperature, Volume) 

FuelACP = Val(Mid$(frmEngineParameters.lstFuei.Text, 53, 6)) 
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FueiBCP = Vai(Mid$(frmEngineParameters.lstFuei.Text, 59, 8)) 
EntropyFuel = Volumetric Efficiency • ( I  - Residual) • ((FueiACP - 8.3 I 4) • 

Log(Temperature) + FueiBCP • Temperature + 8.3 14  • Log(Volume)) 
Entropy Air_ Residual = 0 
Forj = I  To I O  

EntropyAir_Residual = EntropyAir_Residual + NumberMoles(j) • ((ACPG) - 8.3 I 4) • 
Log(Temperature) + BCP(j) • Temperature + 8.3 14  • Log(Volume)) 

Next 
EntropyReactant = EntropyAir_Residual 
IffrmEngineParameters.optRichCombustor.Value = 0 Then 

EntropyReactant = EntropyFuel + EntropyAir_Residual 
End If 

End Function 

Sub Equilibrium (Temperature, Pressure, A) 

Static KReaction(6) 
For React'l/o = I To 6 

KReaction(React%) = Exp(KA(React%) I Temperature + (KB(React%) + KC(React'l/o) 
I Temperature) * Log(Temperature) + KD(React%)) 

Next 
If Pressure = 0 GoTo calcW 

calcA: 
A = Pressure I MolesProduct 

calcW: 
W I = KReaction( l )  • Sqr(A) 
W2 = KReaction(2) • A 
W3 = KReaction(3) 
W4 = KReaction( 4) • A 
W 5 = KReaction( 5) • A 
W6 = KReaction(6) • Sqr(A) 
N7max = (Sqr( l + 8 • AbundancyHydrogen * W4) - 1 )  I (4 • W4) 
N7min = O  

iterate: 
NumberMoles(7) = (N7max + N7min) 1 2 ! 
NumberMoles(9) = (AbundancyHydrogen - NumberMoles(7) • ( I  + 2 • W4 • 

NumberMoles(7))) I ( I + 2 * W4 • W6 • NumberMoles(7) • Sqr(W2) I W5) 
NumberMoles(8) = W4 • NumberMoles(7) /\ 2  
NumberMoles( l O) = NumberMoles(9) • NumberMoles(7) • W4 • W6 * Sqr(W2) I WS 
NumberMoles(4) = NumberMoles(9) I (WS * NumberMoles(7)) 
NumberMoles(3) = W2 • NumberMoles(4) /\ 2  
NumberMoles( I )  = AbundancyCarbon I ( I  + I I (WI * Sqr(NumberMoles(3)))) 
NumberMoles(2) = AbundancyCarbon - NumberMoles( l )  
NumberMoles(S) = W3 • NumberMoles(J) * (Sqr( l + 8 • AbundancyNitrogen I (WJ * 

NumberMoles(J))) - I )  I 4! 
NumberMoles(6) = (AbundancyNitrogen - NumberMoles(5)) I 2 
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AOP = 2 • (NumberMoles( 1 )  + NumberMoles(3)) + NumberMoles(2) + 
NumberMoles(4) + NumberMoles(S) + NumberMoles(9) + NumberMoles( 1 0) 

If  Abs(AOP - AbundancyOxygen) I AbundancyOxygen < .00 1 Then 
GoTo converge 1 

Else 
If AbundancyOxygen > AOP Then 

N7max = NumberMoles(7) 
Go To iterate 

Else 
N7min = NumberMoles(7) 
GoTo iterate 

End lf 
End If 

converge I :  
I f  Pressure = 0 GoTo done ) 
MolesProductPrime = 0 
For spec% = 1 To 10  

MolesProductPrime = MolesProductPrime + NumberMoles(spec%) 
Next 
If Abs(MolesProductPrime - MolesProduct) I MolesProduct > .00 1 Then 

MolesProduct = MolesProductPrime 
GoTo calcA 

End lf 

done I :  
MolesProduct = 0 
For spec% = I To 10  

MolesProduct = MolesProduct + NumberMoles(spec%) 
Next 

End Sub 

Sub Exhaust 0 

MolesProduct = 0 
For i =  I To 10  

NumberMoles(i) = NumberMoles(i) I CompRatio 
MolesProduct = MolesProduct + NumberMoles(i) 

Next 
ExhaustData$ = 11 6 11 + 11 11 + Format$(TempState6, "####") + 11 11 + 

Format$(PressState6, 11##.0011) 
For A% = 1 To 1 0  

'for mole fraction of product, comment out the next line 
I 

ExhaustData$ = ExhaustData$ + 11 11 + FORMAT$(NumberMoles(A%), "00.00011) 
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'for mole numbers of product, comment out the next line 

ExhaustData$ = ExhaustData$ + "  " +  Format$((NumberMoles(A%) I MolesProduct), 
"0.000") 

Next 

End Sub 

Sub ExpandResidual 0 

PressExpand = PressManifold 
TempExpand = TempState6 
VolumeS = VolumeState 1 
SProducts = EntropyProducts(TempState6, AmbientPressure) 

residual I :  
IfTempExpand > 1 600 Then 

Call Equilibrium(TempExpand, PressExpand, 0) 
End If  
SDelta = SProducts - EntropyProducts(TempExpand, PressExpand) 

' Decrease TempExpand until SDelta becomes positive 

If SDelta < 0 Then 
TempExpand = TempExpand - 16  
GoTo residual l 

End If 

' The Isentropic Expansion Temperature has just been passed when SDelta became positive 
' Begin Bisection Method 

residua12: 

TempExpLast = TempExpand 
TempExpand = TempExpand + 8 
k% = 1 

IfTempExpand > 1600 Then 
Call Equilibrium(TempExpand, PressExpand, 0) 

End If 
SDe1ta = SProducts - EntropyProducts(TempExpand, PressExpand) 
If SDelta < 0 Then 

TempExpLast = TempExpand 
TempExpand = TempExpand - 8 !  / 2  " k% 

If Abs(TempExpand - TempExpLast) < I  GoTo residual3 'Convergance 
k% = k% +  1 
GoTo residual2 

Else 
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TempExpLast = TempExpand 
TempExpand = TempExpand + 8! 1 2  1\ k% 

If Abs(TempExpand - TempExpLast) < l GoTo residual3 1Convergance 
k% = k% +  1 
GoTo residua12 

End lf 
residual3 : 

TempState6Prime = TempExpand 
Vo1umeState6Prime = Mo1esProduct * TempExpand * 8.3 14 1  PressExpand I 1 0 1  

End Sub 

Sub Expansion (TempProducts, PressProducts, SProducts, Ratio, MolesPassed) 

TempExpand = TempProducts 
Vo1umeState4 = VolumeState 1 

6 1  If TempExpand > 1600 Then 
A =  8.3 14  * TempExpand I (CompRatio * VolumeState3) 
Call Equilibrium(TempExpand, 0, A) 

End If  
PressExpand = PressProducts I Ratio * TempExpand I TempProducts * MolesProduct I 

MolesPassed 
SDelta = SProducts - EntropyProducts(TempExpand, PressExpand) 

1 Increase TempExpand until SDelta becomes positive 

If SDelta < 0 Then 
TempExpand = TempExpand - 1 00 
GoTo 6 1  

End If 

1 The Isentropic Expansion Temperature has just been passed when SDelta became positive 
1 Begin Bisection Method 

TempExpLast = TempExpand 
TempExpand = TempExpand + 50 
k% = 1 

7 1  lfTempExpand > 1600 Then 
A =  8.3 14  * TempExpand I (CompRatio * VolumeState3) 

Call Equil ibrium(TempExpand, 0, A) 
End If 
PressExpand = PressProducts I Ratio * TempExpand I TempProducts * MolesProduct I 

MolesPassed 
SDelta = SProducts - EntropyProducts(TempExpand, PressExpand) 
If SDelta < 0 Then 

TempExpLast = TempExpand 
TempExpand = TempExpand - 50! 1 2  1\ k% 
If Abs(TempExpand - TempExpLast) < I  GoTo 8 1  1Convergance 
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Else 

k% = k% +  1 
GoTo 7 1  

TempExpLast = TempExpand 
TempExpand = TempExpand + SO! I 2 " k% 
If Abs(TempExpand - TempExpLast) < t GoTo 8 1  'Convergance 
k% = k% +  1 
GoTo 7 1  

End If  
8 t PressExpand = PressProducts I Ratio * Temp Expand I Temp Products * MolesProduct I 
MolesPassed 

TempState4 = TempExpand 
PressState4 = PressExpand 
lsentropicExpansionData$ = " 4 11 + " " + Format$(TempState4, "####11) + 11 " + 

Format$(PressState4, "##.0011) 
For A2% = 1 To 1 0  

'for mole fraction of product, comment out the next line 
I 

IsentropicExpansionData$ = lsentropicExpansionData$ + " 11 + 
FORMA T$(NumberMoles(A% ), "00.000") 
I 

'for mole numbers of product, comment out the next line 
I 

IsentropicExpansionData$ = IsentropicExpansionData$ + " " + 
Format$((NumberMoles(A2%) I MolesProduct), "0.000") 
I 

Next 
End Sub 

Sub Form_Load 0 

' ON LOCAL ERROR GOTO error3 
ReDim NumberCombustorMoles( 1 0), NumberMoles( 1 0), ACP( I 0), BCP( I 0), Hzero( 1 0), 

SpeciesName$( 1 0), AH( I O), BH( I O), CH( 1 0), OH( I O), AL( I O), BL( I O), CL( I O), OL( I O), 
KA(6), KB(6), KC(6), KD(6) 

frmAdFlameTemperature.Caption = "Thermodynamic Engine Model with Rich Combustor" 
Open "products.txt" For Input As I 
For Species% = 1 To I 0 

Line Input # I ,  ProductS tuff$ 
SpeciesName$(Species%) = Left$(ProductStuff$, 6) 
Hzero(Species%) = Val(Mid$(ProductStuff$, 7, 8)) 
ACP(Species%) = Val(Mid$(ProductStuff$, I 5, 6)) 
BCP(Species%) = Val(Mid$(ProductStuff$, 2 1 ,  8)) 
AL(Species%) = Val(Mid$(ProductStuff$, 29, 10)) 
BL(Species%) = Val(Mid$(ProductStuff$, 39, 7)) 
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CL(Species%) = Vai(Mid$(ProductStuff$, 46, 1 0)) 
DL(Species%) = Vai(Mid$(ProductStuff$, 56, 8)) 
AH(Species%) = Val(Mid$(ProductStuff$, 64, 1 0)) 
BH(Species%) = Vai(Mid$(ProductStuff$, 74, 7)) 
CH(Species%) = Val(Mid$(ProductStuff$, 8 1 ,  1 0)) 
DH(Species%) = Vai(Mid$(ProductStuff$, 9 1 ,  8)) 

Next 
Close 1 
Open "table_c2.txt" For Input As I 

For React% = 1 To 6 
Line Input # 1 ,  ReactionData$ 
KA(React%) = Val(Mid$(ReactionData$, 1 ,  1 0)) 
KB(React%) = Vai(Mid$(ReactionData$, I I , 9)) 
KC(Reactl'/o) = Vai(Mid$(ReactionData$, 20, 9)) 
KD(React%) = Vai(Mid$(ReactionData$, 29, 8)) 

Next 
Close 1 
fraCombustorOutput.Visible = False 
txtPressManifo1d.Text = " 1 "  
fraOutput.Visible = False 
fraOutputFile.Visible = False 
fraOutput.Left = 3320 
fraOutput.Top = 1 20 
fraOutput. Width = 42 1 5  
fraOutput.Height = 4335 
fraOutputFile.Left = 13  
fraOutputFile.Top = 5 
fraOutputFile. Width = 1 8  
fraOutputFile.Height = 8 
txtVolumetricEfficiency.Text = " 1 "  
txtEngineSpeed.Text = "3000" 
txtCombustorTemp = "243" 
fralnputs.Visible = False 
mnuViewSinglePoint.Enabled = False 
mnuViewCombustor.Enabled = False 
mnuViewEngineOutput.Enabled = False 
fraExhaustComposition.Visible = False 
fraPerfonnanceData.Visible = False 
mnuView.Enabled = False 
fraPerfonnanceMap.Visible = False 
cmdSaveData.Visible = False 
cmdOtto.Visible = False 
Vehic1eMass = Val(fnnChassisParameters.txtVehicleWeight.Text) / 32.2 
fraDrivingCycle.Visible = False 
cmdDrivingCycle.Enabled = False 
mnuViewDrivingCycle.Enabled = False 
mnuFi leSave.Enabled = False 

I SO 



gagPercentComplete.Visible = False 

Exit Sub 
error3 : errorMsg$ = "Make sure the files FUELS. TXT and PRODUCTS. TXT are" + Chr$( 13) 
+ Chr$( 1 0) 

errorMsg$ = errorMsg$ + "in the directory where the program was started" 
End 

End Sub 

Sub FourStroke (VolumetricEfficiency, EngineSpeed, PressManifold) 

ReDim NumberMolesCombustor( 1 0), NumberMoles( I 0), NumberMolesExhaust( l 0) 
ReDim TempPressure(300), TempVolume(300) 

lftxtPressManifold.Text = "" Then 
MsgBox "PLEASE SPECIFY AN INTAKE MANIFOLD PRESSURE" 
txtPressManifold.SetFocus 
Exit Sub 

End If 

TempManifold = Val( frmEngineParameters.txtAmbientTemperature. Text) 
TempCombustorFuel = Val(txtCombustorTemp.Text) 
PressExhaust = Val(frmEngineParameters.txtAmbientPressure.Text) 
EquivRatio = Val( frmEngineParameters.txtEquiv Ratio. Text) 
CombustorEquivRatio = Val( frmEngineParameters.txtCombustorEquivRatio.Text) 
YStoich = MC + MH 1 4! - MO I 2! 
PressState 1 = PressManifold 
TempState I = TempManifold 
Residual = 0 
cmdSaveData.Visible = False 

'Calculate Manifold Conditions for Normal Operation 
I 

If frmEngineParameters.optEnrichment. Value = - 1  Then 

Y = YStoich I EquivRatio 
HFuel = MC • Hzero( I )  + MH 1 2  • Hzero( I 0) - YStoich • Hzero(3) - Hrp + FuelACP 

• (TempManifold - 298. 1 6) + FueiBCP • (TempManifold " 2 - 298. 1 6  " 2) I 2 
HOxygen = Y • (Hzero(3) + ACP(3) • (TempManifold - 298. 1 6) + BCP(3) • 

(TempManifold " 2 - 298. 16  " 2) 1 2) 
HNitrogen = 3 .76 • Y • (Hzero(6) + ACP(6) • (TempManifold - 298. 1 6) + BCP(6) • 

(TempManifold " 2  - 298. 16  " 2) 1 2) 
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Else 

HManifold = HFuel + HNitrogen + HOxygen 
HFreshState 1 = HManifold 
VolumeState I = ( 1 + 4. 76 * Y) * 8.3 14  * Temp State 1 I PressManifold I I 0 I 
Moles State 1 = I + 4. 76 * Y 
AbundancyCarbon = MC 
AbundancyHydrogen = MH 
AbundancyOxygen = (MO + Y * 2) 
AbundancyNitrogen = 7.52 * Y 
NumberMoles(3) = Y 
NumberMoles(6) = 3 .76 * Y 
EnthalpyState 1 = HManifold 

' Calculate Manifold Conditions for Rich Combustor Operation 

Call RichCombustor 

YStoich = ( 1 - ( 1 1 CombustorEquivRatio)) * YStoich 
Y = YStoich I EquivRatio 
MolesCombustorProduct = MolesProduct 
MolesState 1 = MolesCombustorProduct + 4. 76 * Y 
VolumeState I = Mo1esState 1 * 8.3 1 4  * TempS tate 1 I PressManifold I 1 0 1  
'from Rich Combustor AbundancyCarbon = NumberMoles( 1 )  + NumberMo1es(2) 
'from RichCombustor AbundancyHydrogen = NumberMoles(7) + NumberMoles(8) * 2 

+ NumberMoles( 1 0) * 2 + NumberMoles(9) 
AbundancyOxygen = (Y * 2) + NumberMoles( 1 )  * 2 + NumberMoles(2) + 

NumberMoles( l 0) + NumberMoles(4) + NumberMoles(3) * 2 + NumberMoles(9) + 
NumberMoles( 5) 

AbundancyNitrogen = 7.52 * Y + NumberMoles(5) + NumberMoles(6) * 2 
HOxygen = Y * (Hzero(3) + ACP(3) * (TempManifold - 298. 1 6) + BCP(3) * 

(TempManifold A 2 - 298. 1 6  A 2) 1 2) 
HNitrogen = 3 .76 * Y • (Hzero(6) + ACP(6) * (TempManifold - 298. 1 6) + BCP(6) * 

(TempManifold A 2 - 298. 1 6  A 2) 1 2) 
'HFuel = HProducts(TempCombustorProducts) 
HFuel = HProducts(TempCombustorFuel) 
YCombustorStoich = MC + MH / 4! - MO / 2! I CombustorEquivRatio 
HCombustorFuel = MC * Hzero( l )  + MH 1 2  * Hzero( I 0) - YCombustorStoich * 

Hzero(3) - Hrp + FueiACP * (TempManifold - 298. 1 6) + FueiBCP * (TempManifold A 2 -
298. 1 6  A 2) 1 2  + HProducts(TempCombustorFuel) - HProducts(TempCombustorProducts) 

HManifold = HFuel + HNitrogen + HOxygen 
NumberMoles(3) = NumberMoles(3) + Y 
NumberMoles(6) = NumberMoles(6) + 3.76 * Y 
EnthalpyState l = HOxygen + HNitrogen + HFuel 
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End lf 

TempState l Last = TempState l 

Begin Iteration on TempState l 

pass% = 1 

Compression Stroke: 
1 Calculate the Amount of Fuel and Fresh Charge 

after the Intake closes (volumetric efficiency effect) 

Efficiency Ratio = (VolumetricEfficiency + ( 1 - VolumetricEfficiency) I CompRatio) 
VolumelntakeCioses = VolumeState 1 • Efficiency Ratio 

Calculate the amount of residual and fuel if burner is operating 

For i =  1 To 1 0  
NumberMoles(i) = NumberMoles(i) • VolumetricEfficiency 
NumberMolesCombustor(i) = NumberMoles(i) • VolumetricEfficiency 

Next 

MolesState I = MolesState J • VolumetricEfficiency 
AbundancyCarbon = AbundancyCarbon • VolumetricEfficiency 
AbundancyHydrogen = AbundancyHydrogen • VolumetricEfficiency 
AbundancyOxygen = AbundancyOxygen • VolumetricEfficiency 
AbundancyNitrogen = AbundancyNitrogen • VolumetricEfficiency 
EnthalpyState I = EnthalpyState 1 • VolumetricEfficiency 
UState I = US tate 1 • VolumetricEfficiency 

1 The sharp cornered Otto Cycle pressure values for 
1 p2 and p3 are needed for the progressive combustion 
1 calculations. They will be obtained first. 

I Isentropic Compression of Residual + Fresh Charge 
I To State 2 .. . . State 1 conditions are known from 
1 the Intake Stroke 

stepp$ = "Calculating Iteration Number " +  Format$(pass%, "##") 
VolumeState2 = VolumeState l / CompRatio 
Call Compression(VolumeState2) 
Temperature2 = TempState2 
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Pressure2 = PressState2 
MolesState2 = MolesState I 
EnthalpyState2 = EnthalpyState I 
For i =  1 To 1 0  

EnthalpyState2 = EnthalpyState2 + (ACP(i) * (TempState2 - TempState 1 )  + BCP(i) * 
(TempState2 " 2 - TempState I " 2) I 2) * NumberMoles(i) 

Next 
IffrmEngineParameters.optRichCombustor.Value = 0 Then 

EnthalpyState2 = EnthalpyState2 + (FuelACP * (TempState2 - TempState l )  + 
FuelBCP * (TempState2 " 2 - TempState l " 2) I 2) * ( 1  - Residual) * VolumetricEfficiency 

End If  
UState2 = EnthalpyState2 - MolesState2 * 8.3 1 4  * TempState2 

1 Constant Volume Combustion Process 
1 at VolumeState2 

VolumeState3 = VolumeState2 
Call Combustion(UState2, MolesState2) 
MolesState3 = MolesProduct 
UState3 = HProducts(TempState3) - 8.3 14  * MolesState3 * TempState3 
EntropyState3 = EntropyProducts(TempState3, PressState3)  

1 The sharp cornered pressures are now known for 
1 use in the progressive combustion calculations 

1 Progressive Combustion Process 

1 Calculate the Properties of the Fresh Charge/Residual 
1 mixture at the Start of Cumbustion 

Volumelnitial = (VolumeState l - VolumeState2) * (CompRatio I (CompRatio - 1 ) - ( 1 -
Cos(3 . 1 4 1 6 - SparkAdvance * 3 . 14 16  I 1 80)) I 2 + StrokeRatio - .5 * Sqr((2 * StrokeRatio) " 2  
- (Sin(3 . 1 4 1 6 - SparkAdvance * 3 . 14 16  I 1 80)) " 2)) 
I 

I Recalculate the Composition of the Fresh Charge + Residual 

For i =  1 To 1 0  
NumberMoles(i) = NumberMolesCombustor(i) 

Next 
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1 Calculate I 00 P-V points on compression up to ignition 

1 For i =  I To 76 
TempVolume(i) = VolumeState l + Sin((i - I ) * 3 . 1 4 1 6 / 1 80) * (VolumeState2 -

VolumeState I )  
Call Compression(Temp Volume(i)) 
TempPressure(i) = PressState2 

1 Next 

Call Compression(Volumelnitial) 
Templnitial = TempState2 
TempState2 = Temperature2 
Presslnitial = PressState2 
PressState2 = Pressure2 

Enthalpylnitial = EnthalpyState 1 
For i =  I To 1 0  

Enthalpylnitia1 = Entha1pylnitia1 + (ACP(i) * (Templnitial - TempState1 )  + BCP(i) * 
(Templnitial A 2 - TempState 1 A 2) I 2) * NumberMoles(i) 

Next 
Enthalpylnitial = Enthalpylnitial + (FuelACP * (Templnitial - TempState 1 )  + FuelBCP * 

(Templnitial A 2 - TempState I A 2) I 2) * ( I  - Residual) 
Ulnitial = Enthalpylnitia l - MolesState 1 * 8.3 14  * Templnitial 
kReactants = Log(Presslnitial / PressState l )  I Log(VolumelntakeCioses I Volumelnitial) 

Call ProgressiveCombustion(Volumelnitial, Templnitial, Presslnitial, kReactants, 
SparkAdvance, CombustionDuration, MolesState I )  

EntropyFinal = EntropyProducts(TempFinal, PressFinal) 
MolesFinal = MolesProduct 
UFinal = HProducts(TempFinal) - 8.3 14 * MolesFinal * TempFinal 

1 Isentropic Expansion from VolumeFinal to 
I VolumeState4 

VolumeState4 = VolumeState l 

1 Calculate 1 00 P-V points on expansion from VolumeFinal 

1 For i = 1 To 75 
TempVolume( I 06 + i) = VolumeState l + Sin((75 - i) * 3 . 1 4 1 6  I 1 80) * (VolumeState2 -

VolumeState 1 )  
Call Expansion(TempFinal, PressFinal, EntropyFinal, TempVolume( I 06 + i )  I 

VolumeFinal, MolesFinal) 
Temp Pressure( 1 06 + i) = PressState4 
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' Next 

Call Expansion(Tempfinal, Pressfinal, Entropy final, VolumeState 1 I VolumeFinal, 
MolesFinal) 

MolesState4 = MolesProduct 
PressState4 = PressState4 
UState4 = HProducts(TempState4) - 8.3 14 * MolesState4 * TempState4 

Slowdown Process 

VolumeStateS = VolumeStatei 
Call Blowdown(TempFinal, PressFinal, VolumeFinal, EntropyFinal) 

' Exhaust Stroke 

VolumeState6 = VolumeState2 
TempState6 = TempStateS 
PressState6 = PressExhaust 
Call Exhaust 
EnthalpyState6 = HProducts(TempState6) 

' Intake Stroke 

Call Intake(HFuel, HManifold, EnthalpyState6) 

If Abs(TempState l - TempStatel Last) < 20 Then 
GoTo FuliConverge 

Else 
If frmEngineParameters.optRichCombustor. Value = 0 Then 

TempState i Last = TempState l 
VolumeState 1 = (Moles Product + ( 1 - Residual) * ( 1 + 4. 76 * Y)) * 8.3 I 4  * 

TempState I I PressState 1 I I 0 I 
MolesState I = MolesProduct + ( I  - Residual) * ( 1 + 4. 76 * Y) 
AbundancyCarbon = ( I - Residual) * MC + NumberMoles( l )  + NumberMoles(2) 
AbundancyHydrogen = ( I - Residual) * MH + NumberMoles(7) + NumberMoles(8) 

* 2 + NumberMoles( 1 0) * 2 + NumberMoles(9) 
AbundancyOxygen = ( 1 - Residual) * (MO + Y * 2) + NumberMoles( l )  * 2 + 

NumberMoles(2) + NumberMoles( I O) + NumberMoles(4) + NumberMoles(3) * 2 + 

NumberMoles(9) + NumberMoles(S) 
AbundancyNitrogen = ( I - Residual) * 7.52 * Y + NumberMoles(S)  + 

NumberMoles(6) * 2 
NumberMoles(3) = NumberMoles(3) + ( I - Residual) * Y 
NumberMoles(6) = NumberMoles(6) + ( I - Residual) * 3 .76 * Y 
UState i = EnthalpyState l - MolesState l * 8.3 1 4  * TempState l 
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Else 
UState l = EnthalpyStatel - MolesState l * 8.3 1 4  * TempState l 
TempState I Last = TempState l 
VolumeState l = (MolesProduct + ( 1  - Residual) * (MolesCombustorProduct + 4.76 

* Y)) * 8.3 1 4  * TempState l l PressState1 1 10 1  
Moles State I = MolesProduct + ( I  - Residual) * (MolesCombustorProduct + 4 .  76 * 

Y) 
For i =  I To 10  

NumberMoles(i) = NumberMoles(i) + ( I  - Residual) * 
N umberMolesCombustor( i) 

Next 
NumberMoles(3) = NumberMoles(3) + Y 
NumberMoles(6) = NumberMoles(6) + 3.76 * Y 
'AbundancyCarbon = NumberMoles( l )  + NumberMoles(2) 
'AbundancyHydrogen = NumberMoles(7) + NumberMoles(8) * 2 + 

NumberMoles( I 0) * 2 + NumberMoles(9) 
'AbundancyOxygen = NumberMoles( l )  + NumberMoles(2) * 2 + NumberMoles( l O) 

+ NumberMoles(4) + NumberMoles(3) * 2 + NumberMoles(9) + NumberMoles(5) 
'AbundancyNitrogen = NumberMoles(S) + NumberMoles(6) * 2 

End If 
pass% = pass% + 1 
GoTo CompressionStroke 

End lf  

Full Converge: 
WorklntakeLoop = ( 1  - PressManifold) * I O I  * (VolumeState2 - VolumeState l )  
IMEP = (UFinal - UState4 - Ulnitial + UState l + WorkCombustion + WorklntakeLoop) I 

(VolumeState l - VolumeState2) 1 1 0 1  
'IMEP = (UState3 - UState4 - (UState2 - UState l )) I (VolumeState l - VolumeState2) 1 1 0 1  
WorkPerCycle = EngineDisplacement I I  000000! * IMEP * I 0 I 'kiloJoules 
Watts = WorkPerCycle * EngineSpeed 1 2 1 60 * 1 000 
IndicatedHorsepower = Watts 1 745.7 
FuelFiowRate = ( I - Residual) * ( 1 2  * MC + 1 6  * MO + MH) * 1 000 * EngineDisplacement 

I 1 000000! * EngineSpeed 1 2  I 60 I (VolumeState 1 - Vo1umeState2) 
If frmEngineParameters.optRichCombustor. Value = True Then 

Therma1Efficiency = IMEP * 1 0 1 1 UState l * (Vo1umeState l - VolumeState2) 
Else 

ThermalEfficiency = Watts I (FueiFiowRate I ( 1 2  * MC + 1 6  * MO + MH) I ( 1 -
Residual) * (HFuel)) 

End If 
FrictionHorsepower = ThermalEfficiency * .00567 * EngineSpeed * EngineDisplacement I 

1 000 
BrakeHorsepower = lndicatedHorsepower - FrictionHorsepower 
NumberCyl inders = Val( frmEngineParameters.txtNumberCylinders. Text) 
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End Sub 

Function HProducts (TempProducts) 

EnthalpyProducts = 0 
If TempProducts < 400 Then 

For j = I To 1 0  
EnthalpyProducts = Hzero(j) + ACP(j) * (TempProducts - 298. 1 6) + BCP(j) * 

(TempProducts " 2 - 298. 1 6 " 2) / 2  
Next 

ElselfTempProducts < 1 600 Then 
For j = I  To 1 0  
EnthalpyProducts = EnthalpyProducts + NumberMoles(j) • (AL(j) + BL(j) • 

TempProducts + CL(j) * Log(TempProducts)) 
Next 

Else 
For j = I To 1 0  

EnthalpyProducts = EnthalpyProducts + NumberMoles(j) * (AH(j) + BH(j) • 
TempProducts + CH(j) * Log(TempProducts)) 

Next 
End If 
HProducts = EnthalpyProducts 

End Function 

Sub Intake (HFuel, HManifold, EnthalpyState6) 

ReDim Preserve NumberMolesCombustor( I 0), NumberMolesPrime( 1 0) 

FuelACP = Val(Mid$(frmEngineParameters.lstFuel.Text, 53, 6)) 
FuelBCP = Val(Mid$(frmEngineParameters.lstFuel.Text, 59, 8)) 

' Determine the TempState6Prime of the Residual after 
' expanding to PressManifold 

'Call ExpandResidual 

'EnthalpyState6Prime = HProducts(TempState6Prime) 
EnthalpyState6Prime = EnthalpyState6 

' Reset the Combustor Output 

For i =  1 To 1 0  
NumberMolesCombustor(i) = NumberMolesCombustor(i) I VolumetricEfficiency 

Next 
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int i :  
lffnnEngineParameters.optRichCombustor.Value = 0 Then 

HFueiState l = MC * Hzero( l )  + MH / 2  * Hzero( I O) - YStoich * Hzero(3) - Hrp + 
FuelACP * (TempS tate 1 - 298. 1 6) + FueiBCP * (TempS tate I " 2 - 298. 1 6  " 2) I 2 

HOxygenState l = Y * (Hzero(3) + ACP(3) * (TempStatel - 298. 1 6) + BCP(3) * 
(TempState l " 2 - 298. 1 6  " 2) / 2) 

HNitrogenState I = 3 .76 * Y * (Hzero(6) + ACP(6) * (TempState 1 - 298. 1 6) + BCP(6) 
* (TempState 1 " 2 - 298. 1 6 " 2) / 2) 

Else 
HFreshState 1 = HFueiState 1 + HNitrogenState I + HOxygenState I 

For i =  I To 1 0  
NumberMolesPrime(i) = NumberMoles(i) 
NumberMoles(i) = NumberMolesCombustor(i) 

Next 
NumberMoles(3) = NumberMoles(3) + Y 
NumberMoles(6) = NumberMoles(6) + 3.76 * Y 
HFreshState I = HProducts(TempState I )  
For i =  I To 1 0  

NumberMoles(i) = NumberMolesPrime(i) 
Next 

End lf 

1 Calculate the Enthalpy of the Residual at State I 
1 considering only those species we have Cp data for 
I C02, CO, 02, N2, H2, H20 

HResiduaiState I = EnthalpyState6Prime 
For i =  I To 1 0  

HResiduaiState l = HResidualState l + (ACP(i) * (TempState l - TempState6) + BCP(i) 
* (TempState l " 2 - TempState6 " 2) / 2) * NumberMoles(i) 

Next 
EnthalpyState 1 = ( I  - Residual) * HFreshState 1 + HResiduaiState I 
HDelta = EnthalpyState 1 - EnthalpyState6Prime - ( I  - Residual) * HManifold 
If HDelta < 0 Then 

TempState l = TempState l + 1 6  
GoTo int i 

End lf 

TempState l Last = TempState l 
TempState l = TempState l - 8 
k% = 1 

int2: 
If fnnEngineParameters.optRichCombustor. Value = 0 Then 
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HFueiState l = MC • Hzero( 1 )  + MH / 2  • Hzero( 10) - YStoich * Hzero(3) - Hrp + 
FueiACP * (TempState I - 298. 1 6) + FueiBCP * (TempState I " 2 - 298. 1 6  " 2) / 2  

HOxygenState l = Y * (Hzero(3) + ACP(3) • (TempState l - 298. 1 6) + BCP(3) * 
(TempState I " 2 - 298. 1 6  " 2) / 2) 

HNitrogenState l = 3.76 * Y * (Hzero(6) + ACP(6) * (TempState l - 298. 1 6) + BCP(6) 
* (TempState l " 2 - 298. 1 6  " 2) / 2) 

HFreshState l = HFuelState l + HNitrogenState l + HOxygenState l 
Else 

For i =  1 To 1 0  
NumberMolesPrime(i) = NumberMoles(i) 
NumberMoles(i) = NumberMolesCombustor(i) 

Next 
NumberMoles(3) = NumberMoles(3) + Y 
NumberMoles(6) = NumberMoles(6) + 3.76 * Y 
HFreshState I = HProducts(TempState 1 )  
For i =  I To 10  

NumberMoles(i) = NumberMolesPrime(i) 
Next 

End If 

' Calculate the Enthalpy of the Residual at State 1 
' considering only those species we have Cp data for 
I C02, co. 02, N2, H2, H20 

HResidualState 1 = EnthalpyState6Prime 
For i =  1 To 1 0  

HResidualState I = HResidualState l + (ACP(i) * (TempS tate 1 - TempState6) + BCP(i) 
* (TempS tate I " 2  - TempState6 " 2) / 2) * NumberMoles(i) 

Next 
EnthalpyState 1 = ( 1 - Residual) * HFreshState 1 + HResidualState 1 
HDelta = EnthalpyState 1 - EnthalpyState6Prime - ( 1 - Residual) * HManifold 
If HDelta > 0 Then 

TempState 1 Last = TempS tate I 
TempState 1 = TempState I - 8 / 2  " k% 

If Abs(TempState I - TempS tate l Last) < l Go To int3 'Convergance 

Else 

k% = k% + 1 
GoTo int2 

TempS tate 1 Last = TempS tate I 
TempState l = TempS tate I + 8 / 2  " k% 

If Abs(TempState l - TempState l Last) < 1 GoTo int3 'Convergance 

End If 
int3: 

k% = k% +  l 
GoTo int2 

If frmEngineParameters.optRichCombustor. Value = 0 Then 
MolesState 1 = MolesProduct + ( I  - Residual) * (MolesCombustorProduct + 4. 76 * Y) 
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Else 
MolesState l = MolesProduct + ( I - Residual) * ( 1  + 4.76 * Y) 

End If 
IntakeData$ = "  1 " + "  " +  Format$(TempState l ,  "####") + "  " +  Format$(PressStatel ,  

"##.##") 
For A% = I To 1 0  

'for mole fraction o f  product, comment out the next line 
I 

' IntakeDataData$ = lntakeDataData$ + "  " +  FORMAT$(NumberMoles(A%), "00.000") 

'for mole numbers of product, comment out the next line 
I 

lntakeDataData$ = IntakeDataData$ + "  " +  Format$((NumberMoles(A%) I MolesStatel ), 
"0.000") 

Next 
End Sub 

Sub mnuChassisParameters_Click 0 

frmChassisParameters. Visible = True 

End Sub 

Sub mnuEngineParamcters_Click 0 

frmEngineParameters.Show 
End Sub 

Sub mnuExit_ Click 0 

End 
End Sub 

Sub mnuPrintCombustor _Click 0 

CMDialog I .DialogTitle = "PRINT COMBUSTOR PERFORMANCE TABLE" 
CMDialog i .PrinterDefault = True 
CMDialog I .CancelError = True 
On Error Go To UserCancel3 
CMDialog 1 .Action = 5 
Printer.Print "Rich Combustor Operation" 
Printer.Print Mid$(frmEngineParameters.lstFuel.Text, 1 0, 5) + " with " +  Format( l I 

Val(fnnEngineParameters.txtCombustorEquivRatio.Text), "##.##") + " theoretical air." 
Printer.Print "Percents on Molar Basis" 
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Printer.Print "C02 --> " +  Fonnat( I OO * NumberMolesCombustor( l )  I 
MolesCombustorProduct, "00.00") + " %" 

Printer.Print "CO --> " + Fonnat( I 00 * NumberMolesCombustor(2) I 
MolesCombustorProduct, "00.00") + "  %" 

Printer.Print "02 --> " + Fonnat( I 00 * NumberMolesCombustor(3) I 
MolesCombustorProduct, "00.00") + " %" 

Printer.Print "0 --> " +  Fonnat( I OO * NumberMolesCombustor(4) I 
MolesCombustorProduct, "00.00") + " %" 

Printer.Print "NO --> " + Fonnat( I 00 * NumberMolesCombustor(S) I 
MolesCombustorProduct, "00.00") + " %" 

Printer.Print "N2 --> " +  Fonnat( l OO * NumberMolesCombustor(6) I 
MolesCombustorProduct, "00.00") + " %" 

Printer.Print "H --> " +  Fonnat( l OO * NumberMolesCombustor(7) I 
MolesCombustorProduct, "00.00") + "  %" 

Printer.Print "H2 --> " + Fonnat( I 00 * NumberMolesCombustor(8) I 
MolesCombustorProduct, "00.00") + "  %" 

Printer.Print "OH --> " + Fonnat( I 00 * NumberMolesCombustor(9) I 
MolesCombustorProduct, "00.00") + " %" 

Printer.Print "H20 --> " + Fonnat( I 00 * NumberMolesCombustor( I 0) I 
MolesCombustorProduct, "00.00") + " %" 

Printer.Print "Temp = " +  Fonnat(TempCombustorProducts, "0000.00") + "  K" 
Printer.EndDoc 

UserCancel3: 

Exit Sub 
Resume 

End Sub 

Sub mnuPrintEnginelnputs_ Click 0 

CMDialog l .Action = 5 
End Sub 

Sub mnuPrintEngineOut_ Click 0 

CMDialog i .DialogTitle = "PRINT SINGLE POINT ENGINE OUTPUT" 
CMDialog I .PrinterDefault = True 
CMDialog l .CanceiError = True 
On Error Go To UserCancel l 
CMDialog ! .Action = 5 

lbiFuelName.Caption = Mid$(fnnEngineParameters.lstFuel.Text, 1 0, 5) + " with " +  
fnnEngineParameters.txtEquivRatio.Text + " theoretical air." 

Printer.Print lbiFueiName.Caption 
Printer.Print "" 
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Printer.Print "State Temp Press C02 CO 02 0 
H2 OH H20" 

Printer.Print "" 
Printer.Print lntakeData$ 
Printer.Print lsentropicCompressionData$ 
Printer.Print AdiabaticFiameData$ 

NO N2 H 

Printer.Print " init " + Format$(Templnitial, "####") + " " + 
Format$(Presslnitial, "##.##") 

Printer.Print " final " +  Format$(TempFinal, "####") + "  " +  
Format$(PressFinal, "##.##") 

+ II hp" 

Printer.Print lsentropicExpansionData$ 
Printer.Print BlowdownData$ 
Printer.Print ExhaustData$ 
Printer.Print "Residual = " + Format$(Residual, "0.000") 
Printer.Print "IMEP = " + Format$(1MEP, "##.00") + " atm" 
Printer.Print "Indicated Power = " +  Format$(1ndicatedHorsepower, "###.00") 

Printer.Print "Brake Power = " + Format$(BrakeHorsepower, "###.00") + " hp" 
Printer.Print "Fuel Flow = " + Format$(FueiFiowRate, "##.00") + " gm/sec" 
Printer.Print "MAP = " +  Format$(PressManifold, "##.00") + " atm" 
Printer.Print "Engine Speed = " +  Format$(EngineSpeed, "####") + " rpm" 
Printer.Print "Engine Displacement = " + Format$(EngineDisplacement I I 000, 

"##.0") + " l itre" 
Printer. NewPage 
Printer.EndDoc 

UserCancel l :  

Exit Sub 

Resume 

End Sub 

Sub mnuPrintPerformanceTable_Ciick () 

On Error Go To UserCancel 
CMDialogl .DialogTitle = "PRINT ENGINE PERFORMANCE TABLE" 
CMDialog I .PrinterDefault = True 
CMDialog I .CanceiError = True 

CMDialog I .Action = 5 
lbiFueiName.Caption = Mid$(frmEngineParameters.lstFuei.Text, I 0, 5) + " with " +  

frmEngineParameters.txtEquivRatio.Text + " theoretical air." 
Printer.Print lblFueiName.Caption 
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Printer.Print "" 
Printer.Print "Eng MAP Brake Fuel Vol. C02 CO 02 0 NO N2 

H H2 OH H20" 
Printer.Print "Spd Power Flow Eff." 
Printer.Print " rpm atm hp gls" 
Printer.Print "11 
For i =  I To 1 00 

For j = I  To 2 1  
I f  Performance Map Data$( i, j) = '"' Then 

GoTo NoData 
End lf 

Printer. Print Format(i * I 00, 1100000") + 11 11 + Fonnat(G - I )  / 20, "#.00") + II II 

+ PerformanceMapData$(i, j) 
NoData: Next 

Next 

Printer.Print "Engine Displacement 11 + Format(EngineDisplacement I I 000, 
11###.#11) + 11 litre" 

Printer.Print "Ambient Temperature " +  Format(AmbientTemperature, 11###") + "  K11 
Printer.Print "Compression Ratio 11 + Format(CompRatio, "##") 
Printer.EndDoc 

UserCancel: 

Exit Sub 

End Sub 

Sub mnuSaveDrivCycData_ Click 0 

Open "DrivCycl.txt" For Output As I 

For i = I To 506 
Print # 1 ,  Format(i, "####") + 11 " +  Format(VehicleSpeed(i), "00.0") + "  11  + 

Format(CycleEngineSpeed(i), "0000") + 11 " +  Fonnat(RequiredBrakePower(i), 1100.011) + "  11 
+ Format(CycleFueiFiowrate(i), "00.011) 

Next 
Close 1 

End Sub 

Sub mnuSavePeriData_ Click 0 

Open "perfrmnc.txt" For Output As 1 
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For i = l To l 00 
For j = 0 To 20 

If PerfonnanceMapData$(i, j) = 1111 Then 
GoTo empty2 

End lf 
Print # I ,  Fonnat(i • I 00, "####") + II II + Fonnat(G - 1 )  1 20, 110.0011) + II II + 

Left$(PerfonnanceMapData$(i, j), 5) + "  " +  Mid$(PerfonnanceMapData$(i, j), 7, 5) + 11 " +  
Mid$(PerfonnanceMapData$(i, j), 1 2, 6) 

empty2: 
Next 

Next 
Close 1 

End Sub 

Sub mnuSingleOperatingPoint_ Click 0 

If fnnEngineParameters.optEnrichment. Value = True Then 
lblCombustorProductsTemp.Visible = False 
lblCombTempUnits.Visible = False 
txtCombustorTemp.Visible = False 

End If 

fralnputs.Visible = True 
End Sub 

Sub mnu ViewCombustor _Click 0 

If fnnEngineParameters.optEnrichment.Value = True Then 
lbiCombustor.Caption = "The Rich Combustor option was not selected in Engine 

Parameters." 
fraCombustorOutput. Visible = True 
Exit Sub 

End If 

Call RichCombustor 
fraCombustorOutput.Visible = True 
lbiCombustor.Caption = Mid$(fnnEngineParameters.lstFuei.Text, 1 0, 5) + " with " +  

Fonnat( 1 1 Val(fnnEngineParameters.txtCombustorEquivRatio.Text), "##.##") + " theoretical 
air." 

lstCombustorOutput.Addltem "Percents on Molar Basis" 
lstCombustorOutput.Addltem "C02 --> " + Fonnat( 1 00 * NumberMolesCombustor( 1 )  I 

MolesCombustorProduct, "00.00") + 11 %11 
lstCombustorOutput.Add1tem "CO --> 11 + Fonnat( 100 * NumberMolesCombustor(2) I 

MolesCombustorProduct, 1100.0011) + " %" 
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lstCombustorOutput.Addltem "02 --> " + Fonnat( 100 * NumberMolesCombustor(3) I 
MolesCombustorProduct, "00.0011) + 11 %" 

lstCombustorOutput.Addltem "0 --> "  + Fonnat( IOO * NumberMolesCombustor(4) I 
MolesCombustorProduct, 1100.00") + "  %" 

lstCombustorOutput.Addltem "NO --> " + Fonnat( I 00 * NumberMolesCombustor(5) I 
MolesCombustorProduct, "00.00") + " %" 

lstCombustorOutput.Addltem "N2 --> " +  Fonnat( IOO * NumberMolesCombustor(6) I 
MolesCombustorProduct. "00.00") + " %" 

lstCombustorOutput.Addltem "H --> " + Fonnat( 1 00 * NumberMolesCombustor(7) I 
MolesCombustorProduct, "00.00") + " %" 

lstCombustorOutput.Addltem "H2 --> " + Fonnat( I 00 * NumberMolesCombustor(8) I 
MolesCombustorProduct, "00.00") + " %" 

lstCombustorOutput.Addltem "OH --> " + Fonnat( I 00 * NumberMolesCombustor(9) I 
MolesCombustorProduct, "00.00") + "  %" 

lstCombustorOutput.Addltem "H20 --> 11 + Fonnat( I 00 • NumberMolesCombustor( I 0) I 
MolesCombustorProduct, "00.00") + "  %" 

lstCombustorOutput.Addltem "Temp = " + Fonnat(TempCombustorProducts, "0000.00") + 
" K" 
End Sub 

Sub mnu ViewDrivingCycle_ Click 0 

grphDrivingCycle.GraphTitle = "Vehicle Speed" 
grphDrivingCycle.Autolnc = 0 
grphDrivingCycle.NumSets = I 
grphDrivingCycle.FontUse = 4 
grphDrivingCycle.FontSize = 1 00 

grphDrivingCycle.NumPoints = 506 
grphDrivingCycle.LeftTitle = "Vehicle Speed (mph)" 
grphDrivingCycle.BottomTitle = "Elapsed Time (sec)" 
For i = 1 To 506 

grphDrivingCycle.ThisSet = I  
grphDrivingCycle.ThisPoint = i 
grphDrivingCycle.GraphData = VehicleSpeed(i - 1 )  
grphDrivingCycle.XPosData = i - I 

Next 
grphDrivingCycle.DrawMode = 2 
fraDrivingCycle.Visible = True 
optVehicleSpeed.Value = True 

End Sub 

Sub mnuViewHorsepowerMap_Ciick 0 

grphPerfonnanceMap.GraphTitle = "Horsepower Map" 
grphPerfonnanceMap.NumSets = 8 
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grphPerformanceMap.NumPoints = 40 
grphPerformanceMap.Autolnc = 0 
For j = 20 To 1 3  Step - 1  

For i =  1 To 40 
grphPerformanceMap.ThisSet = 21 - j 
grphPerformanceMap.ThisPoint = i 
grphPerformanceMap.GraphData = Val(Left$(PerformanceMapData$(i, j), 5)) 
grphPerformanceMap.XPosData = i • 1 00 

Next 
Next 
grphPerformanceMap.DrawMode = 2 
fraPerformanceMap.Visible = True 

End Sub 

Sub mnuViewPerformanceTable_Ciick 0 

lblPerformanceData.Caption = Mid$(frmEngineParameters.lstFuel.Text, 1 0, 5) + " with " +  
frmEngineParameters.txtEquivRatio.Text + 11 theoretical air." 

fraPerformanceData.Visible = True 
For i = I To I 00 

For j = I  To 2 1  
If PerformanceMapData$(i,j) = "" Then 

GoTo empty l 
End lf 

lstPerformanceData.Addltem Format(i • 100, "####") + " " + Format(G - 1)  I 20, 
110.00") + 11 " + Left$(PerformanceMapData$(i, j), 5) + 11 11 + Mid$(PerformanceMapData$(i, 
j), 7, 5) + 11 11 + Mid$(PerformanceMapData$(i, j), 1 2, 6) 

empty l :  
Next 

Next 
End Sub 

Sub mnuViewSinglePointExhaust_Ciick 0 

fraExhaustComposition.Visible = True 
lblExhaustComposition.Caption = Mid$(frmEngineParameters.lstFuel.Text, 1 0, 5) + " with " 

+ Format( l I Val(frmEngineParameters.txtEquivRatio.Text), "##.##") + " theoretical air." 
lstExhaustComposition.Addltem "Percents on Molar Basis" 
lstExhaustComposition.Addltem "C02 --> 11 + Format( 1 00 • NumberMolesExhaust( 1 )  I 

MolesExhaustProduct, "00.000000") + " %" 
lstExhaustComposition.Addltem "CO --> 11 + Format( l OO • NumberMolesExhaust(2) I 

MolesExhaustProduct, "00.000000") + "  %" 
lstExhaustComposition.Addltem "02 --> " + Format( 1 00 • NumberMolesExhaust(3) I 

MolesExhaustProduct, "00.000000") + " %" 
lstExhaustComposition.Addltem "0 --> " +  Format( I OO • NumberMolesExhaust(4) 1 

MolesExhaustProduct, "00.000000") + " %" 
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lstExhaustComposition.Addltem "NO --> " + Format( I 00 • NumberMolesExhaust(S) I 
MolesExhaustProduct, 1100.00000011) + "  %" 

lstExhaustComposition.Addltem "N2 --> 11 + Format( I 00 • NumberMolesExhaust(6) I 
MolesExhaustProduct, 1100.00000011) + 11 %11 

lstExhaustComposition.Addltem 11H --> 11 + Format( I OO • NumberMolesExhaust(7) I 
MolesExhaustProduct, 1100.000000") + 11 %" 

lstExhaustComposition.Addltem 11H2 --> 11 + Format( I 00 • NumberMolesExhaust(8) I 
MolesExhaustProduct, "00.000000") + 11 %" 

lstExhaustComposition.Addltem 110H --> 11 + Format( I OO • NumberMolesExhaust(9) I 
MolesExhaustProduct, "00.00000011) + " %11 

lstExhaustComposition.Addltem "H20 --> " + Format( 1 00 • NumberMolesExhaust( 1 0) I 
MolesExhaustProduct, 1100.00000011) + " %11 

End Sub 

Sub mnu ViewStatePoints _Click 0 

lblFuelName.Caption = Mid$(frmEngineParameters.lstFuei.Text, 10, 5) + 11 with 11 + 
fnnEngineParameters.txtEquivRatio.Text + 11 theoretical air." 

lstFlameTemperature.Addltem Left$(1ntakeData$, 2 1 )  
lstFiameTemperature.Addltem Left$(1sentropicCompressionData$, 2 1 )  
lstFlameTemperature.Addltem 11 init " +  Format$(Templnitial, "####") + "  " +  

Format$(Presslnitial, "##.##") 
lstFiameTemperature.Addltem Left$(AdiabaticFiameData$, 2 1 )  
lstFlameTemperature.Addltem 11 final " +  Format$(TempFinal, "####") + 11 " +  

Format$(PressFinal, "##.##") 
lstFiameTemperature.Addltem Left$(1sentropicExpansionData$, 2 1 )  
lstFiameTemperature.Addltem Left$(Biowdown0ata$, 2 1 )  
lstFiameTemperature.Addltem Left$(ExhaustData$, 2 1 )  
lstFiameTemperature.Addltem "Residual = " + Format$(Residual, "0.00011) 
lstFlameTemperature.Addltem 11IMEP = II + Format$(1MEP, "##.00") + " atm" 
lstFiameTemperature.Addltem "INDICA TED POWER = 11 + Format$(1ndicatedHorsepower, 

11##.00") + II hp" 
lstFlameTemperature.Addltem "BRAKE POWER = " + Format$(BrakeHorsepower, 

"##.00") + " hp" 
FueiFiowRate = ( 1 - Residual) • ( 1 2  • MC + 1 6  • MO + MH) * 1000 * EngineDisplacement 

I 1000000! * EngineSpeed I 2 I 60 I (VolumeState 1 - VolumeState2) 
lstFlameTemperature.Addltem "FUEL FLOW = " +  Format$(Fue1FiowRate, "##.0011) + 11 

grnlsec" 

fralnputs.Visible = False 
fraOutput.Visible = True 
cmdRetum.SetFocus 

End Sub 

Sub optEngineSpeed_Click 0 
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grphDrivingCycle.GraphTitle = "Engine Speed" 
grphDrivingCycle.Autolnc = 0 
grphDrivingCycle.NumSets = I  
grphDrivingCycle.NumPoints = 506 
grphDrivingCycle.LeftTitle = "Engine Speed (rpm)" 
grphDrivingCycle.BottomTitle = "Elapsed Time (sec)" 
For i = I To 506 

grphDrivingCycle.ThisSet = I  
grphDrivingCycle.ThisPoint = i 
grphDrivingCycle.GraphData = CycleEngineSpeed(i - 1 )  
grphDrivingCycle.XPosData = i - 1 
grphDrivingCycle.XPosData = i - I 

Next 
grphDrivingCycle.DrawMode = 2 
fraDrivingCycle.Visible = True 

End Sub 

Sub optFueiFiowrate_Ciick 0 

grphDrivingCyc1e.GraphTitle = "Fuel Consumption Map" 
grphDrivingCycle.Autolnc = 0 
grphDrivingCycle.NumSets = I 
grphDrivingCycle.NumPoints = 506 
grphDrivingCycle.LeftTitle = "Fuel Flow Rate (gps)" 
grphDrivingCycle.BottomTitle = "Elapsed Time (sec)" 
For i =  I To 506 

grphDrivingCycle.ThisSet = I  
grphDrivingCycle.ThisPoint = i 
grphDrivingCyc1e.GraphData = CycleFuelFlowrate(i - I )  
grphDrivingCycle.XPosData = i - 1 

Next 
grphDrivingCycle.DrawMode = 2 
fraDrivingCycle.Visible = True 

End Sub 

Sub optRequiredPower_Ciick 0 

grphDrivingCycle.GraphTitle = "Horsepower Map" 
grphDrivingCycle.Autolnc = 0 
grphDrivingCycle.NumSets = 1 
grphDrivingCycle.NumPoints = 506 
grphDrivingCycle.LeftTitle = "Required Engine Power (hp)" 
grphDrivingCycle.BottomTitle = "Elapsed Time (sec)" 
For i = 1 To 506 

grphDrivingCycle.ThisSet = l 
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grphDrivingCycle.ThisPoint = i 
grphDrivingCycle.GraphData = RequiredBrakePower(i - 1 )  
grphDrivingCycle.XPosData = i - I 

Next 
grphDrivingCycle.DrawMode = 2 
fraDrivingCycle.Visible = True 

End Sub 

Sub optVehicleSpeed_Ciick 0 

grphDrivingCycle.GraphTitle = "Vehicle Speed" 
grphDrivingCycle.Autolnc = 0 
grphDrivingCycle.NumSets = I 
grphDrivingCycle.NumPoints = 506 
grphDrivingCycle.LeftTitle = "Vehicle Speed (mph)" 
grphDrivingCycle.BottomTitle = "Elapsed Time (sec)" 
For i =  I To 506 

grphDrivingCycle.ThisSet = I 
grphDrivingCycle.ThisPoint = i 
grphDrivingCycle.GraphData = VehicleSpeed(i - I )  
grphDrivingCycle.XPosData = i - I 

Next 
grphDrivingCycle.DrawMode = 2 
fraDrivingCycle.Visible = True 

End Sub 

Sub ProgressiveCombustion (Volumelnitial, Templnitial, Presslnitial, kReactants, 
SparkAdvance, CombustionDuration, MolesReactant) 

Static PressProgressive( I 0 1  ), TempProgressive( 1 0 1  ), VolumeProgressive( I 0 1 )  
CompRatio = Val(frmEngineParameters.txtCompRatio.Text) 
WorkCombustion = 0 
FractionBumed = 0 
PressProgressive( 1 )  = Presslnitial 
VolumeProgressive( I )  = Volumelnitial 
TempProgressive( 1 )  = Templnitial 
Cranklncrement = Combustion Duration I I 00 
DeltaN = I I 30 'Use linear relation 
For i =  2 To 3 1  

' Evaluate k for the Products of Combustion 

CpProducts = 0 
IfTempProgressive(i - I ) >  400 Then 
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IfTempProgressive(i - I ) >  1 600 Then 
A = Presslnitial * TempProgressive(i - 1 )  I (Mo1esReactant * Templnitial) 
Call Equilibrium(TempProgressive(i - I ), PressProgressive(i - I ), A) 
For j = 1 To 1 0  

CpProducts = CpProducts + NumberMo1esG) I MolesProduct * (BH(j) 
+ CH(j) I TempProgressive(i - 1 )) 

Next 
Else 

For j = 1 To 10  
CpProducts = CpProducts + NumberMo1es(j) I MolesProduct * (BL(j) 

+ CL(j) I TempProgressive(i - 1 )) 
Next 

End If 
kProducts = CpProducts I (CpProducts - 8.3 1 4) 

Else 
Forj = I To 10  
kProducts = kReactants 
Next 

End If 
FractionBurned = FractionBurned + DeltaN 
kMixture = kReactants + (kProducts - kReactants) * FractionBurned 
VolumeProgressive(i) = (VolumeState l - VolumeState2) * (CompRatio I (CompRatio -

I ) - ( I  - Cos(3 . 1 4 1 6 - (SparkAdvance - Cranklncrement * (i - 1 )) * 3. 1 4 1 6 1 1 80)) 1 2  + 
StrokeRatio - .5 * Sqr((2 * StrokeRatio) " 2  - (Sin(3 . 1 4 1 6  - (SparkAdvance - Cranklncrement * 
(i - 1 )) * 3 . 1 4 16 1 1 80)) " 2)) 

PressProgressive( i) = PressProgressive(i - I )  - (PressProgressive(i - I )  * kMixture * 
(VolumeProgressive(i) - VolumeProgressive(i - 1 )) I VolumeProgressive(i)) + (PressState3 -
PressState2) * VolumeState2 1 VolumeProgressive(i) * DeltaN 

TempProgressive(i) = 1 0 1  * PressProgressive(i) * VolumeProgressive(i) I (8.3 14 * 
(FractionBurned * MolesProduct + ( 1 - FractionBurned) * ( 1 - Residual) * ( I + 4.76 * Y))) 

WorkCombustion = WorkCombustion + (PressProgressive(i) + PressProgressive(i - 1 )) 
* 50.5 * (VolumeProgressive(i) - VolumeProgressive(i - 1 )) 

TempVolume(i + 75) = VolumeProgressive(i) 
TempPressure(i + 75) = PressProgressive(i) 

Next 
TempFinal = TempProgressive(3 1 )  
PressFinal = PressProgressive(3 1 )  
VolumeFinal = VolumeProgressive(3 1 )  

End Sub 

Sub RichCombustor 0 

FueiACP = Val(Mid$(frmEngineParameters.lstFuei.Text, 53, 6)) 
FueiBCP = Vai(Mid$(frmEngineParameters.lstFuei.Text, 59, 8)) 
FueiTemp = Val( frmEngineParameters.txtAmbientTemperature. Text) 
OxidizerTemp = FueiTemp 
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PressReactants = Val( frmEngineParameters.txtAmbientPressure. Text) 
YCombustorStoich = MC + MH / 4 ! + -MO / 2! 

l 0 Y = YCombustorStoich I Val(frmEngineParameters.txtCombustorEquivRatio.Text) 
AO = MO + Y  * 2 
AN = 7.52 * Y 
AbundancyCarbon = MC 
AbundancyHydrogen = MH 
AbundancyOxygen = (MO + Y • 2) 
AbundancyNitrogen = 7.52 • Y 
HFuel = MC • Hzero( l )  + MH / 2  * Hzero( l O) - YStoich • Hzero(3) - Hrp + 

FuelACP • (FuelTemp - 298. 1 6) + FuelBCP • (FuelTemp " 2 - 298. 1 6  " 2) / 2  
HOxygen = Y • (Hzero(3) + ACP(3) • (OxidizerTemp - 298. 1 6) + BCP(3) • 

(OxidizerTemp " 2  - 298. 1 6  " 2) / 2) 
HNitrogen = 3 .76 • Y • (Hzero(6) + ACP(6) • (OxidizerTemp - 298. 1 6) + BCP(6) • 

(OxidizerTemp " 2  - 298. 1 6  " 2) / 2) 
HReactants = HFuel + HNitrogen + HOxygen 

NumberMoles( 1 )  = MC 'C02 
NumberMoles(2) = 0 'CO 
NumberMoles(3) = Y - YStoich '02 
NumberMoles(6) = 3.76 • Y 'N2 
NumberMoles( 1 0) = MH I 2 'H20 

MolesProduct = 0 
For i% = 1 To 1 0  

MolesProduct = MolesProduct + NumberMoles(l%) 
Next 
MolesProductSimple = MolesProduct 
TempProducts = 1 600 'Initial Value for iteration 

' Constant Pressure Combustion 

PressProducts = PressReactants 

' Increase TempProducts until HDelta becomes negative 

20 IfTempProducts >= 1 600 Then 
Call Equilibrium(TempProducts, PressProducts, 0) 

Else 
MolesProduct = MolesProductSimple 

End If 
HDelta = HReactants - HProducts(TempProducts) 
If HDelta > 0 Then 

TempProducts = TempProducts + 100 
GoTo 20 

End If 

' The Adiabatic Flame Temperature has just been passed when HDelta became negative 
' Begin Bisection Method 
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TempProdLast = TempProducts 
TempProducts = TempProducts - 50 
k% = 1 

50 IfTempProducts > 1600 Then 

Kelvin 

Kelvin 

Call Equilibrium(TempProducts, PressProducts, 0) 
Else 

MolesProduct = MolesProductSimple 
End If 
HDelta = HReactants - HProducts(TempProducts) 
If HDelta > 0 Then 

Else 

TempProdLast = TempProducts 
TempProducts = TempProducts + 50! / 2  " k% 
If Abs(TempProducts - TempProdLast) < 1 GoTo 54 1Convergance to 1 

k% = k% +  1 
GoTo 50 

TempProdLast = TempProducts 
TempProducts = TempProducts - SO! / 2  " k% 
If  Abs(TempProducts - TempProdLast) < 1 Go To 54 'Convergance to 1 

k% = k% +  1 
GoTo 50 

End If 
1 Temperature and Composition of Combustor Products has 
1 been determined for Ambient Pressure ---

TempProducts NumberMo1es(i) PressProducts 

1 The Combustor Products will now be expanded isentropically 
1 to the pressure in the intake manifold 

54 TempExpand = TempProducts 
PressExpand = PressManifold 

1 Increase TempExpand until SDelta becomes negative 

55 SDelta = EntropyProducts(TempProducts, PressProducts) -
EntropyProducts(TempExpand, PressExpand) 

If SDelta < 0 Then 
Temp Expand = Temp Expand - 100 
GoTo SS  

End If  

1 The Isentropic Expansion Temperature has just been passed when SDe1ta became negative 
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' Begin Bisection Method 

TempExpLast = TempExpand 
TempExpand = TempExpand + 50 
k% = 1 

56 IfTempProducts > 1 600 Then 
Call Equilibrium(TempProducts, PressProducts, 0) 

End If 
SDelta = EntropyProducts(TempProducts, PressProducts) 

EntropyProducts(TempExpand, PressExpand) 
If SDe1ta < 0 Then 

TempExpLast = TempExpand 
TempExpand = TempExpand - 50! / 2  " k% 
If Abs(TempExpand - TempExpLast) < 1 GoTo 57 'Convergance 
k% = k% +  1 
GoTo 56 

Else 
TempExpLast = TempExpand 
TempExpand = TempExpand + 50! I 2 " k% 
If Abs(TempExpand - TempExpLast) < I GoTo 57 'Convergance 
k% = k% +  1 
GoTo 56 

End If 
57 TempCombustorProducts = TempExpand 

MolesCombustorProduct = MolesProduct 
For i =  I To 1 0  

NumberMolesCombustor(i) = NumberMoles(i) 
Next 

End Sub 
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BackColor = &HOOCOCOCO& 
Caption 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "Select..." 
= 375 

= 1 200 
= 5 

= 480 
= 840 

Begin Label lbiTireSizeUnits 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tablndex 
Top 
Width 

End 
End 

= "in" 
= &HOOOOOOOO& 

= 240 
= 795 

= 7 
= 600 

= 255 

Begin Frame fraAxleRatio 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

= "Axle Ratio" 
= &HOOOOOOOO& 

= 1 095 
= 1 20 

= 6 
= 3000 

= 2 1 75 
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Begin TextBox txtAxleRatio 
BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 375 

Left = 1 20 

Tablndex = I 
Top = 480 
Width = 600 

End 
Begin CommandButton cmdSelectAxleRatio 

BackColor = &HOOFFFFFF& 
Caption = "Select..." 
Height = 375 
Left = 1 200 
Tablndex = 2 
Top = 480 
Width = 855 

End 
Begin Label Label2 

BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 
End 

= ": 1 "  
= &HOOOOOOOO& 

= 240 
= 800 

= 1 3  
= 600 
= 360 

Begin Frame fraOverdrive 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

= "Transmission Ratios" 
= &HOOOOOOOO& 

= 2895 
= 2760 

= 8 
= 360 

= 2 1 75 
Begin TextBox txtTransmissionRatio2 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 375 
Left = 1 20 
Tablndex = 19  
Top = 840 
Width = 600 

End 
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Begin TextBox txtTransmissionRatio3 
BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 375 
Left = 1 20 
Tablndex = 1 8  
Top = 1 320 
Width = 600 

End 
Begin TextBox txtTransmissionRatio4 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 375 
Left = 120 
Tablndex = 1 7  
Top = 1 800 
Width = 600 

End 
Begin TextBox txtTransmissionRatio5 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 375 
Left = 1 20 
Tab Index = I 6 
Top = 2280 
Width = 600 

End 
Begin TextBox txtTransmissionRatio 1 

BackColor = &HOOFFFFFF& 
ForeColor = &HOOOOOOOO& 
Height = 375 
Left = 1 20 
Tablndex = 3 
Top = 360 
Width = 600 

End 
Begin CommandButton cmdSelectTransRatio 

BackColor = &HOOFFFFFF& 
Caption 
Height 
Left 
Tab Index 
Top 
Width 

End 

= 11Select. . . 11 

= 375 
= 1 200 

= 1 4  
= 2280 

= 840 

Begin Label Label6 
BackColor = &HOOFFFFFF& 
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Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "2nd" 
= &HOOOOOOOO& 

= 240 
= 750 

= 23 
= 960 

= 360 

Begin Label LabelS 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "3rd" 
= &HOOOOOOOO& 

= 240 
= 750 

= 22 
= 1440 

= 360 

Begin Label Label4 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tablndex 
Top 
Width 

End 

= "4th" 
= &HOOOOOOOO& 

= 240 
= 750 

= 2 1  
= 1 920 

= 360 

Begin Label Label l 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "5th" 
= &HOOOOOOOO& 

= 240 
= 750 

= 20 
= 2400 

= 360 

Begin Label Label3 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
Top 
Width 

= " 1 st" 
= &HOOOOOOOO& 

= 240 
= 750 

= 1 5  
= 480 

= 360 
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End 
End 
Begin OptionButton optEnglish 

BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tablndex 
Top 
Value 
Width 

End 

= "English" 
= &HOOOOOOOO& 

= 240 
= 1 20 

= I I  
= 0 

= - 1  'True 
= 975 

Begin OptionButton optMetric 
BackColor = &HOOFFFFFF& 
Caption 
ForeColor 
Height 
Left 
Tab Index 
TabS top 
Top 
Width 

End 
End 

= "Metric" 
= &HOOOOOOOO& 

= 240 
= 1 200 

= 1 2  
= 0 'False 

= 0 
= 855 

Sub cmdChassisParametersOK_Ciick 0 

TireDiameter = Val(txtTireDiameter. Text) 
AxleRatio = Val(txtAxleRatio.Text) 
TransmissionRatio 1 = Val(txtTransmissionRatio I .  Text) 
TransmissionRatio2 = Val(txtTransmissionRatio2. Text) 
TransmissionRatio3 = Val(txtTransmissionRatio3 .Text) 
TransmissionRatio4 = Val(txtTransmissionRatio4. Text) 
TransmissionRatio5 = Val(txtTransmissionRatio5.Text) 
VehicleMass = Val(txtVehicleWeight.Text) I 32.2 

If optMetric. Value = - I  Then 
TireDiameter = TireDiameter / 25.4 

End If 
frmChassisParameters.Hide 

End Sub 

Sub cmdSelectAxleRatio _Click 0 

txtAxleRatio.SetFocus 
frmAxleRatio.Show 

End Sub 
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Sub cmdSelectTireSize_Ciick 0 

txtTireDiameter.SetFocus 
frm Tires.Show 

End Sub 

Sub Form_Load 0 

txtTransmissionRatio l .Text = "3.50" 
txtTransmissionRatio2.Text = "2.05" 
txtTransmissionRatio3 .Text = " 1 .38" 
txtTransmissionRatio4.Text = "0.94" 
txtTransmissionRatio5.Text = "0.72" 
txtAxleRatio.Text = "3.6 1 "  
txtVehicleWeight.Text = "3000" 
txtTireDiameter.Text = "24.75" 
optMetric.Enabled = False 
cmdSelectVehicleWeight.Enabled = False 
cmdSelectAxleRatio.Enabled = False 
cmdSelectTransRatio.Enabled = False 

End Sub 

Sub optEnglish_Ciick 0 

lbiTireSizeUnits.Caption = "in" 
End Sub 

Sub optMetric_Ciick 0 

lbiTireSizeUnits.Caption = "mm" 
End Sub 

Sub txtTireDiameter _ GotFocus 0 

txtTireDiameter.Text = clipboard.GetText() 
clipboard.Clear 

End Sub 

Sub txtTransmissionRatio _ GotFocus 0 

End Sub 
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Dynamometer 

General Electric Type TLC-3544 DC Dynamometer 
300 hp absorption 
250 hp motoring 
2500-5000 RPM 
Model # 42G306aj 
Serial # AN-2-6 
General Electric Company 
Schenectady, NY 1 2345 

Gas Analyzer 

PGA-5 Five Gas Infrared Analyzer 
Range and Accuracy: 

HC 0-5000 ppm 0-400 ± 1 2  ppm 
>400 ± 3% of reading 

co 0-1 0% 0-2 ± .06 
>2 ± .03 

C02 0-25% 0- 1 6  ± .5 
> 16 ± .6% of reading 

02 0-25% 0- 16  ± .5 
> 1 6  ± .6% of reading 

NOx 0-4000 ppm 0- 1 000 ± 32 ppm 
1 000-2000 ± 60 ppm 
2000-4000 ± 1 20 ppm 

MicroProcessor Systems Inc 
Sterling Heights, MI 

Engine Controller 

TEC-11 PAF 
Serial # 202776-34T2H-6CYL 
Electromotive 
Chantilly, VA 
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Refrigerated Enclosure 

Refrigeration U11it 

Kold Pack Low Temprature Split Sytsem 
Model # 303FSSE 
14000 Btulhr 
Kold Pack Refrigeration Systems 
Hackson, MI 4920 1 

Enclosure 

1 0' X 8' X 1 2' with 12" thick walls, floor and roof 
Frame construction on site 
Insulation: 1 2" Styrofoam (k=0.03 Btulhr-ft-°F) 
Heated window 
C02 fire supression system 

Solid State Relay 

Caydon Solid State Relay 
Model 0 1 040 
Line voltage: 0 - 1 00 V de 
Load current range: 0 -40 Adc 
Control voltage range: 3.5 - 32 Vdc 
Control current @ 5V de: 1 .6 mA 
Must release voltage: 1 .0 Vdc 
Surge currend 1 0 ms: 1 06 A peak 
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In-house Developed Ignition Circuit 

Out to Saturn 
Ignition System l O kO 

I � Inductor 

555 Timer 

555 Timer 
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Data Acquisition System 

Flight Recorder 
In-Vehicle Data Acquisition System 
Advance Electornic Diagnostics, Inc 
1 0850 N. 24th Ave., Suite 1 0 1 
Pheonix, AZ 85029 

External Input Channels 
Analog - 1 5  differential inputs. Cold junction compensation is handled internally. 1 2  
bits resolution. 
Serial Logging - 1 28 channels of RS-232 levels. Maximum baud rate of 1 3 1  kBaud. 
Timer/Discrete Inputs - Frequency 0.2 Hz to I 00 kHz. Pulsewidth - 1 0 microseconds to 
5 seconds. 
Sampling - 500 microseconds to 1 hour time between storage. 
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