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Abstract 

 

This dissertation introduces the novel concept of removing the ground conductive plate   

by utilizing body capacitance as the ground in the capacitive sensor, whereby circuit pressure 

sensing can occur with only one plate and one dielectric.  Additionally, body capacitance 

sensing was limited to a binary touch-no-touch output, whereas the method presented here 

can sense various applied pressures.  The resulting circuit acts as an antenna that receives local 

capacitance signals from a human interaction. 

The advantage of this design is that it allows for both proximity sensing and pressure 

sensing (once the body part is touching the dielectric material).  This setup is ideal for a z-axis 

dimensional interface for touchscreen devices, as well as pressure sensing palpation or planter 

region interaction. 

 

 



  

Page vi 

 

  

Preface 

 

This dissertation is the introduction to using mutual capacitance from a human 

performing proximity and pressure sensing using a conductive plate(s) of any size.  The 

fundamental mechanics of this interaction are explored including a Capacitance-to-Digital 

Conversion (CDC) microcontroller evaluation with data acquisition, Material stress-strain 

Instron testing with differential capacitance measurements for various elastic dielectrics, 

palpation relative and absolute proximity and pressure sensing, and plantar proximity and 

pressure sensing for gait detection. 
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Chapter 1  Contributions 

 

This electrical interference as a result of mutual capacitance was popularized in 1919 by 

Leon Theremin’s invention of a musical instrument, the Theremin, which consisted of two 

antennae (one straight and one loop). These antennae created tone and volume control based 

on the mutual capacitance detected by the device, as shown in Figure 1.  As the player’s hand 

moves closer to the straight antenna, the pitch of the audible sound is modified.  The second 

loop antenna increases volume as the player’s hand moves inside or along the edge.  In this 

mutual capacitance phenomenon, the player’s hand (or appendage) acts as the ground and 

completes the circuit.  As the player’s hand moves toward the antennae, the capacitance 

increases and sends an analog signal to either the frequency generator or the volume voltage. 

Since the invention of Theremin this method has been used for general purpose proximity 

sensing for gesture control in automobiles and location detection in buildings [1, 2],  There are 

also medical applications, including a sensor array on a doctor’s lab coat and “go/no-go” on the 

end of an apparatus or probe to detect contact with the skin [3, 4].  The summary of these 

efforts with comparable benchmarks is shown in Table 1.  This paper evaluates the possibility of 

utilizing this mutual capacitance phenomenon for pressure sensing, as well as proximity sensing 

within a single sensor connection.   

The transition from sensing proximity to sensing pressure is achieved with the addition 

of a dielectric layer with known mechanical properties.  For example, consider a flat, conductive 

plate with a layer of rubber over it, and then connected to a circuit with a Capacitive-to-Digital 

Converter (CDC).  As a subject’s hand approaches the conductive plate the detected 

capacitance increases.  Once the subject’s hand actually presses against the dielectric, there is 

an initial spike in capacitance as a result of the (mathematical) removal the air’s contribution to 
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the dielectric layers.  This initial spike in capacitance is associated with the pressure that is 

applied to the sensor, exhibiting the first instance of mutual capacitance sensing pressure.\ 

In a standard Theremin, air acts as the dielectric and does not significantly resist the 

hand as it moves closer to the antenna.  When rubber (or other nonconductive material) is used 

as the dielectric, the rubber resists the hand and it tries to move closer to the antenna or 

capacitive plate.  The proximity-pressure relationship is a result of the Elastic Modulus of the 

dielectric is the pressure applied to the surface as determined by the electric potential of the 

finger via the area and centroid in proximity to the sensor.   

This concept is rather direct when investigating relative sensing of proximity and 

pressure, but quickly becomes complex when absolute proximity and absolute pressure values 

are desired.  The following details the experimental set-up required to configure a mutual 

capacitive absolute pressure sensor. 

 

 

 

Figure 1.  Leon Theremin using mutual capacitance to control volume and pitch. 
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Table 1.  Proximity Sensing Benchmarks 
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36 cm 
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Cheng et. 

al 2008 

Gesture 

Capture 
~3 x 5 cm 2 cm < 50 pF YES NO NO 

Togura 

et. al 

2009 

Gesture 
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conductive 

plate 

10 x 10 cm 

5 x 5 cm 

10 – 40 
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YES YES NO 

Palmer 

2010 

Probe Contact 

Sensor 
~ 2 x 2 cm Contact < 50 pF YES NO NO 

        

Huber 

2012 
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plate with 

dielectric 

2.5 x 4.5 

cm 
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Section 1.1 Fundamental Contributions 

 

The primary contribution of this project is the creation and application of a single plate 

and single dielectric capacitance dual proximity and pressure sensor that uses the body’s 

capacitance to act as the ground of the circuit.   Conductive surface-to-body capacitance human 

presence sensing has been attempted for human-sensing for computer interfaces [1], but never 

as a dual proximity and pressure sensor. 

Another primary contribution is the creation of a foil paper that can be cut with a laser, 

replacing photolithography as an inexpensive, rapid prototyping of a sensor array. 

 

Part 1.1.1 Capacitive Proximity and Pressure Sensing of Human Interaction 

 

Body capacitance presents a fundamental conflict when capacitive pressure sensing is 

applied to capacitive touchscreens or pedobarography.  The body provides 100-150 pF of 

capacitance [5], which is the fundamental physical phenomenon utilized by capacitive 

touchscreens [6]. Existing touchscreens do not offer proximity or pressure sensing [6]; the 

touch location is triangulated from multiple capacitive sensors on the edges of the screen.  For 

pedobarography with a typical capacitive sensor, the capacitance of the foot will interfere with 

the sensor’s capacitance measurement.  This can be resolved with additional shielding and, 

more importantly, added cushion for a greater distance to reduce the foot’s capacitive impact 

to the system.  The resulting sensor array is thicker and more rigid than is practical to 

implement for a flexible sensor for the electronic pedobarographic shoe. 
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The proposed body capacitance solution is simple, novel, and robust.  This concept 

replaces the traditional ground sensor plate with the body capacitance supplied by the finger or 

foot, as shown in Figure 2.  The sensor consists of a finger or plantar region, dielectric, and 

capacitive plate.  This assembly is the first body capacitive sensor for proximity or pressure 

sensing. 

Figure 3 demonstrates this sensor as a dual proximity and pressure sensor.  When the 

finger moves closer to the capacitive plate the sensor’s capacitance value increases, shown as 

(A) to (B).  The capacitance continues to increase until it touches the dielectric on top of the 

capacitive plate, shown as (B) to (C).  The capacitance spikes as the finger touches the dielectric 

material (C).  This spike occurs because the body capacitance no longer passes through the air 

and dielectric but instead passes only through the dielectric material.  At this point, the sensor 

transitions from proximity sensing to pressure sensing.  As the finger presses harder on the 

dielectric, the responding capacitance increases, shown as (C) to (D) which is correlated to 

pressure sensing. 

This same sensor concept can be applied for pressure sensing the plantar regions of a 

foot for gait analysis.  A typical gait M-curve from a force plate consists of a spike from the heel 

strike, a dip during mid-stance, and then a spike again during toe lift-off.  The foot’s position 

relative to the capacitive sensor through a normal gait is shown in Figure 4.  Figure 5 displays 

the expected sensor response during the gait.  For the heel sensor, the sensor spikes during the 

heel strike then dips as load reduces.  During the swing phase, the distance between the heel 

and the sensor increases and the capacitance begins to increase again as the heel gets into 

position to strike again.  A similar response occurs for the sensor over the metatarsal and big 

toe plantar regions. 
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Figure 2. Diagram of the proposed proximity and pressure sensor utilizing body capacitance with a 

microcontroller to interpret the capacitance values. 

 

 

 

 

Figure 3. The single capacitive plate used as a proximity and pressure sensor. 
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Figure 4. Sensor position inside the shoe through a typical gait. 

 

 

 

 

Figure 5. Capacitive sensor response from a typical gait. Image from 

http://www.med.nyu.edu/rehabengineering/research/locomotion.html 
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Part 1.1.2 Laser Cut Flexible Sensor 

 

Photolithography sensor fabrication can often take weeks to complete and can have 

high development costs.  While a flexible sensor array was fabricated for this project, the costs 

and lead-time hinder the rapid development progress.  In the lab, hand-cut aluminum foil 

sensors are used as prototype flexible sensors.  While effective, it requires a simplified 

geometry and is a fabrication method susceptible to human variation.  An inexpensive, rapid 

prototyping solution is needed.   

Laser cutting is an obvious choice, but aluminum foil is difficult to laser cut because the 

surface reflects the laser instead of absorbing it.   The proposed solution would be to adhere a 

layer of paper to a layer of aluminum foil.  The material is set on the cutting bed such that the 

paper faces the laser beam.   As the laser cuts the pattern, the paper cuts and causes a shear in 

the foil which extracts the pattern from the paper-foil material.  Now an inexpensive sensor 

array can be rapidly, repeatable produced.  Images from this process from development to 

prototype are shown in Figure 6. 
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Figure 6.  The laser cut sensor process from CAD drawing: to cut, to connection to the microcontroller. 

 

 

 

 

 

 

Moving forward within this document Chapter 2 provides the background of previous 

attempts of utilizing mutual capacitance for proximity sensing as well as previous attempts at 

gait detection for Pedobarographic studies. 

 

Chapter 3 outlines the hardware setup, sensor options, and software data acquisition. 
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The results are shown in Chapter 4 with a discussion of those results in Chapter 5. 

 

Chapter 6 then details the possibilities of this technology in the future. 
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Chapter 2  Background 

 

This chapter starts by reviewing fundamental relationships of a mutual capacitive sensor 

and builds a set of equations that describes the phenomenon.  After that, there is a focus on 

the previous attempts to apply mutual capacitance as a proximity sensor for human presence, 

gesturing, and locating an apparatus on a person.  These applications are summarized, and then 

a case study is performed on the development of a Pedobarographic shoe sensor that utilizes 

the mutual capacitance phenomenon. 

The benefit of adding a dielectric layer to the single conductive plate is the dual usage of 

both proximity and pressure sensing from a single sensor.  With respect to the shoe, the sensor 

detects the distance between the sole of the shoe to the local plantar region. Then as the 

plantar region initiates contact, the sensor continues to report the capacitance, but now is 

responding to the applied pressure which thins the dielectric that in turn decreases the distance 

between the plantar region and the sensor.  The result of which is an increase in capacitance. 

 

Section 2.1 Capacitive Proximity and Pressure Sensing Mathematical 

Relationships 

 

The fundamental equations that define mutual capacitance are simple.  However, the 

relationship between the finger or appendage and the capacitive plate is complex due to the 

viscoelastic properties of the body.  The mutual capacitance is a function of the area of 

interaction, distance, number of dielectrics, and dielectric coefficients. The number of 

dielectrics plays a significant role in detecting the difference between sensing proximity and a 

pressure. 
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There is another capacitive phenomenon in play with mutual capacitance proximity and 

pressure sensing. In pure proximity sensing, there are two dielectrics between the finger and 

the capacitive plate, the elastic material and air.  The result is equivalent to the two dielectrics 

being wired in series, as in Figure 7 [7].  During the transition from proximity to pressure 

sensing, one dielectric is removed, causing a theoretically instantaneous increase of the 

capacitive measurement.  From this point, the system measures pressure as a result of the 

increase in capacitance caused by the decrease in distance, which is caused by an increase in 

applied pressure.  While the simplest model of the equations with a perfectly rigid finger show 

a discontinuity between proximity and pressure sensing, when bulk elastic properties are 

applied to the finger with small sections of the finger coming in contact with the elastic 

dielectric, then the model shows a smooth transition with an inflection point as the sensor 

transitions from proximity to pressure sensing.  

 

 

 

 

 

Figure 7. Diagram and equations exhibiting stacked dielectrics act in series. 
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Section 2.2 The Pedobarographic Gait Shoe 

 

Pedobarography was introduced by walking across an inked mat in the mid-1920s and 

has evolved into a complex array of electronic pressure sensors [8, 9].  Today, static and 

dynamic pedobarographic studies evaluate rheumatoid arthritis [10], congenial clubfoot [11], 

cavovarus feet in children with Charcot-Marie-Tooth disease [12], and evaluation of diabetic 

deformities [13].  Additionally, pedobarography is utilized as a post-operative evaluation [14] or 

to determine the effectiveness of a treatment regimen [15].   

Each of these studies measure the foot’s pressure distribution during a controlled action 

or gait to assess the effect of the pressure distribution on a physical condition, or the affect a 

physical condition has on the pressure distribution. 

 

Part 2.2.1 Center of Pressure Monitoring 

 

Center of pressure (COP) is the center point of the pressure distribution of the foot to 

the ground forces and can be associated with a static or a dynamic pressure pattern [16].  

Tracking COP has become the primary analysis technique for numerous pedobarographic 

studies [17], including shifts in gait COP of a diabetic foot compared to the control group [16], 

determination of a patient’s muscle strength regime to improve dynamic balance in patients 

with knee osteoarthritis [18], and determination of walking pressures in young and mature 

adults [19].  

While the previously mentioned studies demonstrate the diverse functions of COP 

analysis, Kul-Panza provides a strong endorsement for the need of correlating pedobarography 
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and knee health.  He concluded that, “pedobarography may become a useful technique to 

determine foot pressures that change because of disturbed weight-bearing and balance 

problems in knee osteoarthritis.”  For his study, the pedobarographic data from a walking gait 

was compared with the ability to maintain balance in patients with knee osteoarthritis [20].  

The study determined pressure in the hindfoot and peak pressure were lower in the 

osteoarthritis group compared to the control.  Also, the sway width while balancing was higher 

in the osteoarthritis group. 

 

Part 2.2.2 Electronic On-Shoe Pedobarography 

 

Flex-Force is an eight sensor array that measures plantar foot pressure as resistance 

[21].  The sensor has been tested to 100 N which results in 1000 kPa by applying force in steps 

of 10 N and constant speed of 0.1 mm/min.  During an orthotic study, the initial results indicate 

applied pressures in range of 50 to 400 kPa for a normal subject and higher pressures (greater 

than 600 kPa) at metatarsal heads for diabetic patients.  

A gyroscopic gait detection system has shown promising results [22].  It is able to predict 

gait with 99% accuracy during walking on flat, irregular, and inclined surfaces.  When the 

patient is impaired, the system is 96% accurate. The sensor signals are sampled at a frequency 

of 100 Hz with a resolution of 10 bits and processed on a 20 MHz microcontroller board.  The 

system detects a 3° change in heel rotation. 

The GaitShoe [9] is a gait analysis system that can retrofit into a patient’s shoe [9] 

permitting the shoe to transmit data wirelessly.  The GaitShoe prototype runs from a 9 Volt 

battery and weights 200 grams. The device contains gyroscopes, accelerometers, sonar, and 

force sensitive resistors.  This development group has not determined an analytical method for 
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processing the acquired data, such as the sensor output from a five second walk into 

meaningful pedobarographic characteristics. 

Fullen systems holds a patent on a sensor array consisting of a conductive material 

between two electrodes [23]..  This insole system reads and computes pressure signals within 

the shoe.  When a pressure is detected above a specified threshold, the circuit triggers a sound 

to notify the wearer of the increase in stresses. 

Polodoff and Tekscan hold a patent on a sensor array consisting of two layers of 

intersecting electrodes and a pressure sensitive resistive material in the middles [24].  This 

device is the mainstream selection for electronic pedobarography. 

 

Table 2.  Summary of gait detection methods and sensor location 

Year Who Force Sensing Type Gyroscope Sensor 

Count 

Method 

1991 TekScan Piezoresistive No 256 Contact on the bottom of foot 

1994 
Fullen 

Systems 
Conductance No 256 Contact on the bottom of foot 

1999 Novell Piezoresistive No 200 Contact on the bottom of foot 

2001 Pappas Piezoresistive Yes 3 On outer, bottom of the sole 

2008 GaitShoe Piezoresistive Yes 4 On outer, bottom of the sole 

2009 ForceFlex Piezoresistive No 256 
Contact on the bottom of the 

foot. 

      

2012 Huber 

Mutual Capacitive 

Proximity and Pressure 

Sensing 

No 3 
Contact on the bottom of foot 

at plantar region 
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Part 2.2.3 Design Objectives for Capacitive Shoe Insole Sensor 

 

Most studies discussed earlier utilized high-density count sensor arrays (HDSA) 

consisting of 200-1000 sensors per foot.  The recent attempts in On-Shoe Pedobarography 

reduce that count by placing a small number of pressure sensors at specific regions of interest.  

While the sensor resolution is reduced, the information from these devices still provides useful 

pedobarographic feedback to the researcher.  One drawback to the design of lower density 

sensor arrays (LDSA) is sensor placement.  HDSA systems create the regions of interest via 

software analysis; whereas, the LDSA designs must custom fit the sensor placement per patient 

to ensure accurate experimental data. 

Pedobarographic technology is progressing toward requiring fewer strategically placed 

sensors, there are few suggestions for this trend: 

• Improved dynamic response with fewer sensors. 

• Reduced manufacturing cost with some sacrifice of data accuracy. 

• Less data to transmit wirelessly with LDSA. 

 

It should also be mentioned that LDSA are being designed for specific applications, 

whereas, HDSA are purposed for a wide range of functionality to a general audience. 

 

 

This is also the first plantar region specific approach to sensing.  The ForceFlex sensor 

array from TekScan was used to demonstrate that the instead of a sensor array, strategically 

placed sensors under the plantar regions provide sufficient sensing for plantar pressures [21]. 
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Chapter 3    Design and Methods 

 

This experimental set-up for palpation proximity and pressure sensing integrates a 

baseline force sensor (TekScan FlexForce) as the control, a capacitive plate, a dielectric, and a 

Silicon Labs C8051996 Demoboard CDC with UART communication-to-data acquisition 

software.   

The purpose of the set-up is to create third data relationship.  First, the Elastic Modulus 

of the material must be determined.  Dependent upon desired precision, this value can be 

attained using generic material properties, or the stress-strain data can be collected via an 

Instron.  Secondly, spacers of a known thickness were placed over the capacitive sensor which 

revealed the proximity-to-capacitive relationship (of more value to palpation sensing than gait 

detection).  Thirdly, the capacitive sensor must be electrically isolated and resting on another 

pressure sensor.  The sensor transitions from proximity to pressure sensing once the baseline 

pressure sensor begins registering an applied pressure. Figure 8 represents the data 

connections from this set-up. 

The resulting system creates a deflection-CDC counts proximity-pressure- to-

capacitance relationship.  All of these components are necessary for a successful absolute 

proximity and pressure sensor, and it is unnecessary that the capacitance-to-counts ratio be 

known.  Counts become the conversion that connects force to deflection.  One can perform 

calibration using known capacitors to generate a custom reference table and determine the 

counts-to-capacitance relationship.   

This project utilized a Silicon Labs C8051F996 microcontroller.  This chip supports 14-

port CDC at 25 kHz with UART communication to the data acquisition software.  Additionally, 

this chip can span to a virtually unlimited number of sensors in an array based on a combination 
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of Master-In-Slave-Out (MISO) parallel processors and multiplexors.  For this evaluation, the 

onboard 14-ports were sufficient.   

The mutual capacitive effect is detailed in Figure 9.  The detected capacitance has a 

gentle increase as the user gets closer until the point when the user is close enough to the 

dielectric such that a rapid increase in capacitance is detected.  All capacitive increases from 

this point are from pressure sensing. The standard set-up for palpation sensing consists of a 

capacitive plate and a dielectric material, as shown in Figure 10.  The test set-up was used to 

characterize proximity mutual capacitance for one finger, two fingers, and the palm of a hand. 

Three replicates of each type were collected with hard stops placed at 4.35mm increments with 

proximity data collected between 6.35 and 25.4mm.  The sensing distance for the dia12mm 

sensor was 25.4mm.  It should be noted that larger sensors allow for a larger sensing distance 

[2]. 

 

 



  

Page 19 

 

  

 

Figure 8.  Process to convert a relative proximity and pressure sensor into an absolute sensor. 
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Figure 9. The fundamental concept of mutual capacitance proximity and pressure sensing. 



 

 

Figure 10.  Test set-up to establish fixed proximity points and subsequent transition to pressure 
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establish fixed proximity points and subsequent transition to pressure 

sensing. 

 

 

establish fixed proximity points and subsequent transition to pressure 
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Section 3.1   Controller Hardware 

 

The system’s ability to rapidly perform a Capacitance-to-Digital Conversion (CDC) is 

paramount to promptly report the applied force over a specific sensor region.  During review of 

currently available CDC technology, one microcontroller (uC) stood alone:  the SiLabs 

C8051F966, which combines general uC functionality (GPIO, UART, MISO, JTAG\C2 Interface) 

with specialized CDC functionality: 

• 14-ports available for CDC 

• 12-bit, 25 kHz CDC sample rate 

• Internal oversampling for noise reduction and bandwidth control 

 

Having 14 ports available for either GPIO or CDC allows for numerous combinations of 

uC, MUX, and MISO solutions.  Section C-4 of this chapter outlines these options during the 

discussion of sensor fabrication options.  The CDC sample rate is critical in determining the 

overall sensor array frame rate.  Finally, the uC’s ability to oversample performs all noise 

reduction on the uC, reducing the volume of data to be transmitted and simultaneously 

reducing the PC’s CPU load to perform real-time calculations. 

An evaluation of this microcontroller’s capacitance calculation accuracy is included in 

Appendix A, as well as the required source code to perform various functions outlined in this 

document.  In general, the 12-bit output matched a linear regression of at least 95% across all 

gain settings. 

For MUX applications, the uC’s GPIO ports are configured to digital and communicates 

with the MUX as specified by its truth table.  The uC has a 5 kHz digital on\off  switch, that is 20 

ms.   
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Part 3.1.1   Single Microcontroller with CDC 

 

This basic hardware configuration utilizes the 14 available ports for capacitance 

conversion. When this microcontroller is packaged within its demoboard (as in Figure 11), it 

becomes a very simple development platform to evaluate many different proximity and 

pressure sensing concepts. 

 

 

 

 

 

Figure 11.  Silicon Labs C8051F996 microcontroller [25] 
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Part 3.1.2   Multi-MicroController MISO Connectivity 

 

 The Master In-Slave Out features of the SiLabs microcontroller become useful when 

greater than 12 ports of CDC are required, and the sampling rate needs to be faster than 200 Hz 

and up to 25 kHz. This design requires one microcontroller to act as the master and up to 12 

other microcontrollers to connect as slaves, as shown in Figure 12.  The result is a maximum of 

120 ports that can collect data at rates up to 25 kHz.  The master printed circuit board is shown 

in Figure 13. 

 

 

 

 

Figure 12.  Basic MISO schematic 
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Figure 13.   MISO Master PCB: concept and fabrication 

 

 

Part 3.1.3   Multiplexor PCB with MicroController 

 

This design replaces the 12 slave microcontrollers with two multiplexors.  While the 

hardware schematic is simpler to implement, this comes at the penalty of sampling rate.  The 

microcontroller and multiplexor PCB is shown in Figure 14.  It was anticipated that more 

microcontrollers can read more sensing plates simultaneously, although the switching time of 

the microcontroller when controlling the multiplexors was unexpected.  For the microcontroller 

to control the multiplexor, it must send a digital logic signal based on the multiplexor’s truth 

table.  The microcontroller switches digital logic at 5000 Hz.  This switching rate limits the 

sampling rate of the sensor array.  The result limits a 256 count sensor array (16 x 16 

multiplexors) to a 0.05 Hz sampling rate.  This rate becomes prohibitive for fast response 

applications. 
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Figure 14. Sensor array PCB for multiplexor 

 

 

 

 

 

 

Section 3.2   Selection of Sensor Dielectric Material  

 

Both of these materials have pivitol roles to play in designing a successful pressure 

sensor with a sufficient dynamic range for the specified application.  The dielectric material’s 

elastic modulus determines the change in distance between the sensor plates, which drives the 

change in capacitance,  whereas sensor fabrication determines the geometry of the sensing 

region and the development costs. 

The type of dielectric material directly depends on the application of the sensor.  For the 

pedobarographic shoe, the dielectric needs to be able to have a linear compression between 0-

900 pounds on an individual sensor.  This maximum load is determined by a 300 pound person 

with a impact magification of 3.  This set of specifactions allows for a sufficient dynamic range 

for a heel strike impact during a typical walking gait. For the breast phantom, the maximum 
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sensing load is under 10 pounds.  Here, a soft material is preferred to allow for larger 

deflections, improving the dynamic range of the sensor. 

Various dielectric materials were tested  by ‘sandwiching’ two aluminum foil sensor 

plates around a dielectric material and connected to the microcontroller.  The sensor assembly 

was then placed inside of a compression Instron capable of providing a load of 1000 N.  A 

stress-strain curve and a capacitance-deflection curve were created for each material listed in 

Table 3.  After test conclusion, it was determined that neoprene would be the optimal material 

for pedobarographic sensing because it was fairly stiff, and yet provides a good sensing range.  

For the breast phantom, both polyurethane and Dragon Skin gels were soft enough to be 

sensitive to light, intermediate, and deep palpations.  A sample calculation using polyurethane 

is shown in Figure 15 with Capacitiance to Load and Counts to Load in Figure 16.  There was an 

initial compression of the foil to the dielectric and then the sensor begins to act repeatible.  

Neoprene was selected for the plantar shoe sensor and Polyuerthane for the Palpation sensor.  

These applications span 0-300lb loads for gait detection and just 0-3 pound loads for palpation 

sensing.   
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Table 3.  List of dielectric properties 

Sensor Application Material 

Hardness 

(OO) 

Elastic 

Modulus 

(MPa) 

Thickness 

(inch) 

Plantar Region Shoe 

Sensor 
Neoprene 90 71 0.125in 

Plantar Region Shoe 

Sensor 

Natural Gum 

Rubber 
50 58 0.125in 

Plantar Region Shoe 

Sensor 
Latex 60 65 0.062in 

Medical Phantom 

Sensors 
Polyurethane 30 2.0 0.25 in 

Medical Phantom 

Sensors 
Smooth-On Skin 20-40 1.7-2.0 Cast (~0.25in) 

Medical Phantom 

Sensors 
Q-Gel 20-30 2.0 Cast (~2in) 
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Figure 15.  General Capacitive equations as a ratio of electric potential strain to mechanical strain.  

Data collected for Polyurethane shown. 
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Figure 16.  Cyclic loading of capacitive sensor during Instron compression testing. 
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Section 3.3   Sensor Fabrication Methods 

 

Creation of a capacitive pressure sensor requires two regions of conducting material 

separated by a dielectric.  Sensing regions can be fabricated by cutting the shapes using 

scissors, transferring a pattern into a circuit with lithography, or laser-cutting a shape in the 

conductive material. These fabrication methods were evaluated for flexibility, dynamic range, 

ease of system integration, cost, and fabrication time. 

 

Part 3.3.1   Simple  Copper Plates and PCB Etchant 

 

A simple dual copper plate array was designed and assembled, consisting of numerous, 

random sensor sizes, to read a multiplexor sensor array, whereby the SiLabs C8051F996 

microcontroller was officially selected. This non-uniform sensor size helped confirm the 

multiplexor sensor’s switching was occurring properly and helped determine the capacitance 

drift between the first sensor and the last sensor in the array. 
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Figure 17.  Test setup to evaluate C8051F996 mircocontroller’s ability to perform CDC array sensing 

with a multiplexor. 

 

 

 

Figure 18.  Sensor row number, column number, and sensor’s overlapping area.  The microcontroller is 

compatible with multiplexor array sensing.  
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Part 3.3.2   Lithography Flexible Sensor 

 

After the simple copper plate design comfirmed that the microcontroller was capable of 

reading individual sensors in the array, the next step was to incorporate a flexible design 

(design process flow is shown in Figure 19).  In order to meet a wide range of applications (i.e., 

from shoe sensor to breast phantom), the sensor array needed to be modular, so various 

materials could function  as the dielectric for each application.   

AllFlex, Inc. (Salt Lake City, Utah) provided the ideal fabrication solution to meet the 

assorted applications for which the sensor array would be used, as the manufacturer was 

capable of fabricating 18x24 inch flexibile sheets.  Typically, the manufacturer fabricates a 

single pattern in an array over the entire sheet, but for this project, AllFlex, Inc. layed out 

numerous sensor geometries onto the sheet, permitting a single manufacturing print to be 

applied to numerous applications. Likewise, the print maintained the necessary modularity with 

regards to the dielectric type, allowing various materials to be incorporated according to the 

application’s needs. The final design is 2mil copper surrounded by 5 mil of polyester, shown in 

Figure 20. 
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Figure 19.  Design strategy for flexible sensor array 

 

 

 

    

Figure 20. Flexible sensor array design and fabrication 
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Part 3.3.3   Laser-Cut Aluminum Foil Sensor Array 

 

Ultimately, the photolithography sensor array was determined to be the final design, 

but an evaluation of laser-cut sensor arrays was conducted between concept and final design. 

This prototyping method allows for repeatable fabrication while keeping development time and 

costs at a minimum.  The cost and lead-time comparison is shown in Table 4.  Laser cutting foil 

is the quickest, most cost effective method to rapidly prototype a reproducible sensor for 

testing. 

Traditional attempts at laser-cutting aluminum foil have been unsuccessful because of 

the foil’s reflectivity, wherein the laser reflects off the foil instead of residing in the membrane 

of the material, building heat to initiate a cut.  For this concept, aluminum foil and paper are 

joined with an adhesive layer.  The laser then makes contact with the paper and builds heat in 

the foil, resulting in a heat-shear in the foil. 
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Figure 21. The laser-cut sensor process: CAD drawing, cutting, and connecting to microcontroller 
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Table 4.  Comparison of sensor array fabrication methods 

Sensor Fabrication 

Flexible 

Sensor 

M
o

d
u

la
r 

Minimum 

Feature 

Size 

Manufacturing 

Time Manufacturing Cost 

Copper Plates and 

PCB Etchant 
No Yes 5mm 1 day $10 

Photolithography 

Copper and 

Polyester 

Yes Yes 5 micron 6 weeks 

 

$800 tooling charge per 

concept. 

$1000 per sheet 

Laser Cut Aluminum 

Foil and Paper 
Yes Yes 1mm 

5 minute paper 

assembly 

5 minute cut 

<$1 per sheet for 

materials 

$20 per sheet to laser 

cut 
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Section 3.4   Data Analysis 

 

Part 3.4.1   Data Acquisition Graphical User Interface (GUI) and Real-time Display 

 

Data collection, visualization, and subsequent analysis are essential and for a significant 

number of applications, the visualization and analysis are performed in a post-processing 

environment.   However, this paper aims to understand the effect of visualization and analysis 

in a real-time environment. The computer is simultaneously responsible for data collection, 

visualization, and analysis which results in a higher central processing unit (CPU) burden. 

Two Biomedical Engineering Design teams from the University of Tennessee have 

recently developed pressure sensor systems: a shoe sensor used for gait prediction and a rib 

cage to determine palpation force and location during a breast exam.  In the case of these 

projects, the visual feedback and the predictions must be performed in real-time to aid the 

software operator to make immediate assessments. 

Part 3.4.2   Method 

 

The following addresses the test plan for evaluation, as well as compare frame rates: 

I. Universal Asynchronous Receiver/Transmitter (UART) Data 

a. Data collection constant stream 

b. Data collection constant burst 

II. Data collection with Real-time Visual Feedback in Matlab 

a. Bar Chart 

b. Surface Plots 

c. Image Plots 

III. Data collection with Decision Making 

a. Threshold detection 

b. Data collection with Real-time Visual Feedback and Decision Making 
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 Figure 22 shows the program utilized to collect the UART data. It contains 

Connect\Disconnect buttons, a data display window (bar chart shown), real-time raw data 

display (High and Low bit), and data points per loop.  The value entered for data points per loop 

drives the frame rate of the interface by specifying the number of data points before the screen 

refreshes. During one loop, the program is expected to collect the data packet, process the 

incoming data, make a prediction or decision based on the incoming data, and then display 

both the data and prediction.  This program flow is shown in Figure 23. 
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 Figure 22. Sensor data collection GUI 

 

   

Figure 23. Sensor data collection program flow 
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Part 3.4.3   Data Acquisition Results 

 

A graph of data point results for various run conditions is shown in Figure 24.  Data 

collection frame rates. Matlab was able to collect and process considerably faster when the 

graphics were not activated.  When the graphics were activated, the surface maps were the 

fastest method, followed by image generation, then drawing a bar chart.  Although, the values 

were close enough that a particular application may create different results.   

Figure 25 reveals the examination of each situation, given 100 data points per loop. The 

baseline data collection with decision making occurs at 40 frames per second.  Activating the 

High and Low bit raw data costs 10 frames.  Activating the graphics costs approximately 20 

frames.  However, activating both features costs 25 frames per second. 
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Figure 24.  Data collection frame rates 
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Figure 25. Data collection frame rates per specific function 

 

 

Part 3.4.4   Summary of Data Acquisition and GUI Frame Rates  

 

Matlab is capable of capturing an UART datastream and performing some analysis on 

that data faster than the data is received.  However, Matlab has demonstrated a significant CPU 

load when trying to refresh the visualization of the data.  This CPU load was observed using the 

built-in functionality of bar and surface plots and the creation of a bitmap and then drawing the 

image.  Each case shows a 50% drop in frame rates when the data visualization is enabled. 
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Chapter 4    Results 

 

Section 4.1   Palpation Proximity and Pressure Sensing Results 

 

Proximity sensing sensitivity data was collected one finger, two fingers, and the palm of 

a hand approaching a 0.5 inch diameter aluminum foil sensor with a 0.5 inch diameter 

polyurethane dielectric on top of it.  Figure 26 shows that there was little proximity difference 

between one and two fingers.  The mutual capacitance of the palm of the hand becomes 

significantly different from the fingers at 0.4 inches from the sensor.  At the final layer, the palm 

is cupped over the sensor resulting in a large increase in perceived proximity.  This sensor can 

detect ±100 counts if the appendage is unknown.  Meaning that the software is not expecting 

one finger, two fingers, palm, or whatever the desired interface.  This range results in a 

calculated ±0.205 inches (5.2mm) of error.  If the interfacing appendage is known, then the 

accuracy improves to ±25 counts.  Now, the sensor is accurate to within ±0.051 inches (1.3mm). 

Pressure sensing for a single finger pressing on the described setup was collected and is 

shown in Figure 27.  The TekScan FlexForce sensor data is shown on top and CDC counts data 

shown on the bottom.  The counts show an increase as the digit approaches the sensor.  This is 

the proximity region.  The finger is the pressed hard (3000g) against the dielectric and sensor 

followed by four softer (700 grams) presses.  From the data shown in Figure 27, this system was 

capable of detecting applied load to ±250 counts which translates to ±400 grams (0.88 pounds).  

Also, taking data from the dielectric compression tests sensor is detecting ±0.020 inches 

(0.5mm) proximity detection via the compression of the dielectric material.  
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This data is summarized in Figure 28.  It represents the flow of data to process an 

absolute mutual capacitive proximity and pressure sensor instead of a relative sensor.  

This microcontroller was tested with 10 50 pF static capacitors connected in series and 

parallel, resulting in a range of 25 – 200 pF at various gain settings; the signal-to-noise ratio 

(SNR) ranged from 200 to 1500.  The Rose criterion states that an SNR of at least five is 

necessary to be capable of distinguishing image features with 100% certainty. Hence, the 

microcontroller will provide accurate, reliable results consistent with the expectations of a 

commercially available mass-produced device. 

Using three trials of palpation proximity sensing with the test set-up demonstrated a 

sensing sensitivity of +/- 25 and 100 counts, dependent upon whether or not the appendage 

was known.  This count range results in +/-1.3 and 5.2 mm of error.  Mutual capacitive pressure 

sensing with a dielectric demonstrates a +/- 250 counts variation (+/- 1 High Bit of 12 bits), 

which corresponds to +/- 3.9 Newtons.  This error can be traced back to proximity with the 

Elastic Modulus of the dielectric (polyurethane in this case).  The corresponding deflection is +/- 

0.5 mm.  
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Figure 26.  Mutual capacitance increase of a finger approaching a dielectric and capacitive plate. 
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Figure 27. Pressure sensing tests for CDC counts-to-load relationship. 
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Figure 28. Mutual capacitance proximity and pressure sensing, relative to absolute transition. 

 

 

 

Section 4.2   Plantar Proximity and Pressure Sensing Gait Detection Results  

 

 The collected data suggests that mutual capacitance can be used for relative plantar 

proximity and pressure sensing using the sensor layout shown in Figure 29.  Figure 30 displays 

the plantar mutual capacitance changes within the big toe, metatarsal, and heel.  Each sensor 

demonstrated the relative characteristics of the acting plantar region during a gait activity. 

Figure 31 is the same data with a 20 count moving average.  Figure 32 shows the sensor trace 
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Palpation 
Test

CDC Counts-Applied Load 
Relationship

± 250 counts sensitivity

Instron
Testing

•CDC Counts to 
Deflection

•Applied Load 
to Deflection

Analysis

•Proximity Sensing Sensitivity

• ± 25 counts == ± 1.3mm
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for 1) Heel Strike, 2) Metatarsal Contact, 3) Big Toe Contact, 4) Big Toe Lift-off, 5) Swing, and 6) 

Heel Strike from the metatarsal sensor.  The Metatarsal Heel Strike (6) was a surprise, likely 

associated with the heel strike pushing the toe of the shoe toward the toe of the foot after 

swing phase.  The proximity of the metatarsal sensor was jolted close to the plantar region 

during the impact. 

 Comparing Figure 30 and Figure 31 with respect to system responsiveness, the lower 

moving average provides a rapid trigger when instantaneous timing is required.  However, the 

higher moving average data results in a triggering system based around a consistent motion.  

This gait data exhibits the prediction variation only in the user’s gait: slower when starting and 

stopping, and consistent in the middle. The results of this are listed in Figure 32.  A four sensor 

plantar system is quadruple-redundant for a generalized gait.  While more sensors will provide 

more redundancy for generalized gait detection, it can also help with instantaneous events.  

When the heel strike shifts the metatarsal sensor closer, the trigger was established at the 

moment prior to mid-stance. 

 The counts range was calculated with the static capacitor data to determine the 

capacitive change in the circuit.  In general, 2-4 pF of change was detected.  Totaling the 

normalized load value using an impact value of 1.7 for each sensor provides a load sensing 

output that can be interpreted as the classic M-curve for pedobarography from Figure 5.  The 

resulting chart is shown in Figure 33.  The proximity data has been threshold filtered based on 

the rapid spike caused by the proximity-pressure sensing transition. 

 



 

  

 

Figure 

Figure 30.  Plantar region mutual capacitive gait unfiltered data. Standing, walking 10 steps, and then 
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Figure 29.  Layout of plantar sensors. 

 

 

 

 

Plantar region mutual capacitive gait unfiltered data. Standing, walking 10 steps, and then 

standing. 

 

 

Plantar region mutual capacitive gait unfiltered data. Standing, walking 10 steps, and then 



 

  

 

Figure 31.  Data filtered with a 20 point moving average.  This value is 

detection, but may vary by the particular aspect of the gait being studied.
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.  Data filtered with a 20 point moving average.  This value is acceptable for general gait 

detection, but may vary by the particular aspect of the gait being studied.

 

acceptable for general gait 

detection, but may vary by the particular aspect of the gait being studied. 
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Figure 32.  Gait events can be detected with a plantar mutual capacitance sensor: 1) Heel Strike, 2) 

Metatarsal Contact, 3) Big Toe Contact, 4) Big Toe Lift-off, 5) Swing, and 6) Heel Strike as detected via 

the Metatarsal sensor. 

 



 

  

 

Figure 33.  Normalized, totaled plantar load data resulting in classic M
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.  Normalized, totaled plantar load data resulting in classic M-curve. 

 

curve.  
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Chapter 5    Discussion 

 

Plantar region mutual capacitive proximity and pressure sensing can be used for gait 

detection.  This method utilizes sensors under plantar regions to detect when the foot is in 

contact with a particular sensor.  The magnitude of mutual capacitance then depends on the 

Elastic modulus of the dielectric to calculate an applied load.   

This sensor array was designed for detecting a normal walking gait.  This technology is 

robust enough that it can support various gait types.  If diabetic, arthritic, or deformed feet are 

to be studied then the location of the plantar sensors can be either general or specific.  Larger 

sensors that encompass entire plantar regions can provide bulk properties.  Higher count, 

smaller arrays can provide detail information, i.e. horizontal wires across the metatarsal.  These 

sensors can capture the roll of the ball of the foot as it transitions from midstance to toe lift off.  

These methods can be applied to the heel or toe regions, too.  

An additional benefit to mutual capacitive sensing is how easily configurable it is.  There 

are many successful combinations of an elastic dielectric and a flexible conductive plate.  The 

sensors can start as simple homebrew aluminum foil shapes and be transformed to flexible 

polyester microfabricated sheets.  Each is application specific and scalable to the size of the 

project.   

The hardware setup needs iterations of miniaturization.  This project used readily 

available demoboards which sacrifice size for easy integration.  An ultimate design would have 

a small, battery powered microcontroller with multiple CDC ports with integrated Bluetooth.  

Microcontroller firmware would have to automatically sense the capacitance and adjust the 

gain in which the dynamic range provides an adequate response.  If one has gone to the trouble 
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of making this portable PCB, then the applications would reach far beyond just 

Pedobarographic studies.  Customized pressure sensing interfaces and proximity gesturing is 

suddenly available as a generic toolkit and release to the creativity of the masses.  

The mutual capacitance between humans and electrical wiring can be used for proximity 

and pressure sensing applications.  Extensive calibration is required to transition the collected 

data from relative to absolute.  This calibration includes bulk modulus mechanical properties of 

the finger or appendage which is applying the pressure, electric potential of the finger or 

appendage for the individual, stress-strain curve for the dielectric in compression (or tension), 

and capacitance-to-CDC counts for the microcontroller.  Once these values are understood, 

either by data collection or statistical confidence, then the sensor becomes an absolute 

pressure sensor.  This relationship is shown in Figure 8. Given the complexity in achieving an 

absolute proximity and pressure sensor, one may choose to simplify the calibration and apply a 

relative sensor.   

The demonstrated precision in for relative proximity sensing mimics the proven function 

of the Theremin.  The Theremin utilized this technology to use an unfiltered proximity sensing 

signal to generate an analog sound.  If this detection method were variable, the resulting 

audible sound would also be wavy und variable.  If one were to watch an expert playing the 

Theremin, it would be obvious that the purity of the sound is a function of the stillness of the 

player’s hand as it approaches the antenna.  There are numerous future applications that can 

utilize this technology, including proximity and pressure sensing touchscreens, medical 

phantom sensing, haptic controls, and medical equipment sensing. 

The tests performed within this paper demonstrated satisfactory detection of proximity-

to-pressure sensing transition.  Additionally, like all other types of sensors, this mutual 

capacitance sensor must be designed for a specific application, which requires consideration of 
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sensor size, microcontroller gain and port settings, dielectric selection, and sensor array 

method. 

The calculation of change in capacitiance is independent of area while area is constant.  

However, area does matter when setting the gain.  The dynamic range of the sensor is 

dependent on the proper amplification without reaching the top of the range.  Given the 

fundamental physics of a finger acting on a sensor with electric potiential, the area would 

slowly increase from a negligible value.  And possibly reaching infinity as the finger nearly 

presses onto the sensor.  

Plantar region mutual capacitive proximity and pressure sensing can be used for gait 

detection, and the particular method utilized here placed sensors under plantar regions to 

detect when the foot was in contact with a particular sensor.  The magnitude of mutual 

capacitance then depends on the Elastic modulus of the dielectric to calculate an applied load.   

This sensor array was designed for detecting a normal walking gait, although this 

technology is robust enough to potentially support various types of gait.  Specific applications 

using this plantar region mutual capacitive proximity and pressure sensor involve studying 

diabetic, arthritic, or deformed feet, and the locations of the plantar sensors could be either 

general or specific.  Larger sensors that encompass entire plantar regions can provide bulk 

properties, higher count; smaller arrays can provide detailed information (e.g., horizontal wires 

across the metatarsal).  These sensors can capture the roll of the ball of the foot as it transitions 

from mid-stance phase of the gait cycle to the toe lift-off phase.  These methods may be 

likewise applied to the heel or toe regions to give data respective of those locations of the foot.  
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This type of sensing is furthermore beneficial in that it is configurable into multiple 

forms.  There are many successful combinations of an elastic dielectric and a flexible conductive 

plate.  The sensors may begin as simple aluminum foil shapes and be transformed into flexible 

polyester micro-fabricated sheets to microns.  Each is application-specific and scalable to the 

size of the project.   
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Chapter 6   Future Work 

 

Utilizing mutual capacitance for a proximity and pressure sensor requires refinement to 

fit the application.  The size of the sensor, calibration methods, full or partial dielectric layers, 

and the type of interaction all play major roles in determining what is being sensed by the 

electronics.  In fact, the software and the firmware on the hardware will even be a factor.  From 

a technical perspective the repeatability and reliability of the sensor and the test setup must be 

improved.  During control load cell and 3rd party sensor setups, the variation in data runs could 

be explained on either the baseline or the test sensor.  Neither was definitive as to the cause.  

Hence, further research in quantifying this sensing method is first and foremost for developing 

this technology to transition from relative to absolute. 

Looking beyond this early development phase, there are many uses for this sensing 

method. Within medical phantoms, this sensor can exist as a single wire, array of wires, sensing 

region, or array of sensing regions.  These regions can inform the user or instructor if the proper 

pressure has been applied or if all regions of interest have been examined.  Additionally, each 

of these sensor types can be integrated with medical device phantoms for to test users for 

proper sterility methods.  If the device is touched while opened, then the sensor would report 

contact.  Also, the proximity sensor would also be able to capture a near-miss, too.  Beyond the 

testing, this method could be integrated into actual devices, as well. 

For hardware, a simple wire can be placed under an ultrasound transducer’s rubber layer.  

Now, the sensor can report if contact has been made and if that contact is being applied with 

the proper pressure, shown in Figure 34.  This method is extremely useful if the ultrasound data 

is used for computer vision and can trigger or withdraw a trigger if the proper pressure is or 

isn’t registered. 



 

  

 

Figure 34.  Schematic of typical ultrasound transducer (top) and Schematic of transducer with a 

mutual capacitive pressure sensor (bottom).
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.  Schematic of typical ultrasound transducer (top) and Schematic of transducer with a 

mutual capacitive pressure sensor (bottom). 

 

.  Schematic of typical ultrasound transducer (top) and Schematic of transducer with a 
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