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The purpose of the present work is to explore anal.ytieal.ly and 

experimentally the heat transfer to liquid metals 1n turbU1ent flow 

within the thermal entrance region of circular tubes having uniform wall 

temperature. Since liquid metals are characterized by high thermal con

ductivity, emphasis has been placed on anal.ytieal eonduetion sol.utions 

which negl.eet the contribution to beat transfer that is made by the 

eddy motion of a fl.uid 1n turbul.ent flow. Three sol.utions, which differ 

only in the postul.ated vel.oeity distribution of the fl.uid, have been 

sel.eeted for eom,parison. The postulated velocity distributions are: 

(l.) uniform, (2) parabol.ic and, (:�) velocity proportional to distance 

from the channel. wall raised to the one-seventh power. The third distri

bution is usualJ.1 referred to as the one-seventh power law distri

bution. other related entrance region sol.utions are briefly surveyed. 

In view of the imp�rtant rol.e played by the mol.eeul.ar thermal 

conductivity 1n heat transfer to l.iquid metals 1n a direction normal to 

a tube wall., the infl.uenee of thermal. conductivity on heat transfer 

parall.el. to a tube wal.l. has been examined. A eom,parison has been made 

between conduction sol.utions for the ease of a fl.uid with uniform ve

locity for two systems of differing bouncl.ary conditions 1n which the 

l.ongitudinal conduction term is inel.uded, and an anal.ogous system 1n 

which the l.ongitudinal conduction term has been negl.eeted. 

It vas conel.uded that the effect of' longitudinal conduction may 

be negl.eeted 1n cases of heat transfer to liquid metal.s in turbul.ent 

fl.ov. 
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Experimental work performed in ccmnection with this study con

sisted of taking heat transfer data _to mercury and sodium in tubes of 

1/16 inch and 1/8 inch length in combination with diameters of 1/16 

inch and 1/8 inch. The mer"cury heat transfer data for three different 

test sections compare favorably with the conduction solution for a 

postulated velocity distribution according to the one-seventh power 

law. These data vere taken over a range of Reynolds modulus from 

20,000 to 200,000 and heat transfer coefficients up to 66,300 

Btu/hr.ft.2 0,. were achieved. The experimental data were higher than 

the predictions at the high range of Reynolds numbers, presumably 

because the predictions neglected the contribution of the eddy con

duction to the heat transfer mechanism. 

Sodium data were erratic and lov when compared wi �h the mercury 

data or the conduction solutions . In an effort to explain this obser

vation, it has been shown that, if a non-vetted condition existed, the 
small test section diameter and the high thermal conductivity of sodium 

would combine to maximize the effects on the heat transfer. An attempt 

was made to corroborate the eypothesis of non-wetting with an experi

mental study of interfacial electrical resistance but the results were 

inconclusive. 

Recommendations are made for extending the range of experi

mental operation to low Reynolds modulus (1000) ,  so as to investigate 

the influence of the velocity distribution, and to high Reynolds 

modulus (greater than 200,000) to study the influence of eddy conduction. 



The test section which was designed for the present studies can be 

easily adapted for use with other fluids or for other entrance con

ditions . Since it does tend to maximize effects of non-wetting, the 

present test section may be useful in pursuing thermal studies of 

wetting effects .  

vi 

The implication is clear that beat transfer coefficients greater 

than 5001000 Btu/hr. f't. 2 <T. should be attainable with sodium if the 

difficulties encountered in the present work can be overcome. 
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CHAP.rER I 

DTRODUCTIOB 

In many practical heat transfer systems, there persists the 

challenge to transfer large quantities of heat through small areas. In 

recent years, workers in the heat transfer field have become increasing

ly' aware that liquid metals offer unique possibilities for meetiDg this 

challenge. 

The existing studies which demonstrate the advantages of liquid 

metals over other heat transfer media are based on comparisons of heat 

transfer in long channels in which entrance effects are considered to be 

negligible . In the present work, it is shown that entrance effects in 

short tubes can be utilized so as to yield even higher values of heat 

transfer coefficients or heat flux to liquid metals than are obtained 

in long tubes. 

Since the terms 11entrance effects" , "short11 tubes, "long" tubes, 

and, in fact, "heat transfer in a thermal. entrance region" , depend on 

several related concepts in the fields of heat transfer and fluid me

chanica , the present chapter is devoted to a discussion of some of 

these concepts which pertain to the present stucly . Though most of the 

discussion is applicable to all fluids, special attention is devoted to 
liquid metals . 

Liquid Metals as Heat Transfer Media 

The liquid metals of most interest for transferring heat are 

characterized b7 the fol.l.owing properties: 
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1. Moderate melting point 

2. lligh boilillg point 

3.  Moderate viscosity 

4 .  High thermal conductivity 

In order to illustrate these characteristic properties ,  a few repre

sentative examples are shown in Table I for coDJDarison. Practical 

application of these characteristics of liquid metals to heat exchange 

problems would indicate (a) operation of heat exchangers at high 

temperatures vitbout the requirement of high pressure which is at

tendant with the use of more comon heat transfer media, and (b ) higher 

attainable heat transfer coefficients and heat fluxes than can be at

tained with common heat transfer media for a given pumping power. 

Bounda.ry Layer DeveJ.opment 

In liquid metals, as in more common fluids, the heat transfer 

conditions in an entrance region are quite different from the con-

di tiona which prevail far downstream from the entrance . In order to 

illustrate this point, consider the velocity distribution of a fluid 

initial.ly at uniform velocity and temperature as it enters a closed 

chamlel and assume tbat no heat transfer occurs. The portion of the 

fluid adjacent to the chamlel wall is slowed to zero velocity. Shear 

( internal friction) forces within the fluid spread the drag influence 

of the portion near the chaDnel wall, while the fluid near the center 

of the chamlel may still have essentiall.y a uniform velocity. The 

region of fluid in Which the velocity distribution has been greatly 

influenced by the presence of the interface at zero velocity is known 
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as the boundary layer. The growth of this boundary layer from zero 

thickness (at the entrance) until it encompasses the entire channel is 

called "hydrodynamic11 boundary layer development. Thus, a completely 

developed hydrodynamic boundary layer signifies a full.y established 

4 

flaw regime, or velocity distribution. The distance (from the entrance) 

required for this complete development to take place is often referred 

to as 11hydrodynamic entry length. "  

In a manner similar to hydrodynamic boundary layer development, 

a fluid of uniform temperature undergoes "thermal" bOilDdary layer de

velopment as it enters a heated channel. That is, the fluid in 

contact with the channel wall must assume the temperature of the vall. 

The influence of this region near the vall is then spread toward the 

center of the channel in a manner analogous to the growth of the hydro-

dynamic boundary layer. The distance required for the temperature 

distribution to become established is called the "thermal entry length. n 

For the case of hydrodynamic boundary layer development, the 

flow regime may be completely l.aDdnar in nature, or initially laminar 

and then turbulent. 
. 

The magnitude of the Reynolds modulus, D;: , and 

the geometry of the flow path upstream from the entrance determine the 

character of the flow regime in an isothermal stream. In a non

isothermal stream, the velocity distribution is influenced by the vari-

ation of physical properties of the fluid with temperature. All of 

these factors have an influence on the hydrodynamic entry length, but 

the chief influence is that entry length increases With Reynolds modu

lus. In the case of thermal boundary layer development, the thermal 



effects are imposed on whatever flow regime is coexistent . Thus, the 

Reynolds modulus and upstream conduit geometry influence thermal 

boundary layer development by their effects on the flow regime. 

5 

Although the case of simnltaneous hydrodyDamic and thermal 

boundar,y layer development is of much interest, the present study is 

restricted to systems in which the hydrodynamic regime or velocity 

distribution is well established and only a thermal boundary layer de

velopment is occurring. Such a system is illustrated by a fluid flow

ing in a tube 1 of which an upstream section is adiabatic and a down

stream section is heated. If the adiabatic section is sufficiently 

long that velocity distribution is established at the beginning of the 

heated section, thermal boundary layer development occurs in the heated 

section. The beginning of the heated section is then a "thermal 

entrance region."  The begjnn1Dg of the adiabatic section would be a 

"bydrodyDSmic entrance region" . In each case the entry length is the 

length of channel required to contain the entrance region. These 

concepts may be used to define a "long" tube as one in which the 

temperature and velocity distributions are established and in which 

the effects of an entrance region are negligible. A "short" tube is 

one in which the boundary layer development is occurring or in which 

the effects of boundary layer development are noticeable . The so

called "entrance effects" are then the results of hydrodynamic or 

thermal boundary layer development in an entrance region. 



The Infinite Heat Transfer Coefficient 

One reason for giving attention to the entrance region is that 

heat transfer coefficients can reach extremely high val.ues at the be-

ginning of a heated section. In certain ideal. cases which are dis-

cussed later, the heat transfer coefficient approaches an infinite 

val.ue when the heated section approaches zero length, and it drops 

6 

rapidly toward the lower values characterized by well-established 

velocity and temperature profiles as the length increases . This. may be 

seen more clearly by considering the definition of heat transfer coef-

ficient as the term is currently used. 
1 

Let f be the heat flux {Btu/hr. ft2. )  across a fluid-solid 

interface 1 where q is the heat rate. (Btu/hr. )  and A is the heat trans

fer surface . area { tt2) .  The fluid adjacent to the wall DDJ.St be in 

lRJQinar motion, a.nd the heat transfer through the fluid is by molec� 

conduction only. Hence, the following equation may be written for vari-

at ion of the heat flux at the channel wall w1 th distance x from the 

entrance of the heated section: 

I-1. 

In this equation, k represents the molecular thermal conductivity. 

Temperature is represented by t 1 a.nd ty and "tm refer to the wall tempera

ture and mixed mean fluid temperature 1 respectively. The variable x is 

1. See Appendix H for Nomenclature 



measured along the axis of the chamlel, with x = 0 at the beginning of 

the heated section, wbUe y is the distance from the chaDnel wall to a 

point in the fluid. The subscript x is used to denote that S , b and A ' 

('tv - "fim) are the functions of distance from the beginning of the heated 

section. The manner of writing the temperature gradient in the partial 

derivative notation is used to denote that _l.!. is a function of x and 
dY' 

y and that ...2..! as used in the Equation I-1 is evaluated at y = 0 
dY' . 

(the fluid�solid interface ) . Equation I-1 :may be us�d to define the 

beat transfer coefficient as follows: 

hx a - k ��,o) 
(tw .:..t..,) 

There are two ideal cases which � be considered to illustrate the 

I-2 

point that at the entrance of the heat transfer region the heat transfer 

coefficient is infinite. If .a fluid of uniform temperature is flowing . 

in. a conduit of the same temperature, and the wall temperature at X = 0 

is raised to a new value which prevails for all positive values of x, it 

can be shown that ___ii (x,o) approaches' an infinite value as x ap-
. (Jy . 
preaches zero. MeBDWhile, the value of ( tw - tm) at x = 0 is fixed at 

a finite value. The other case is one of a beat flux discontinuity in-

stead of a temperature discontinuity at x = 0. If a fluid of uniform 

temperature is flowing in a conduit of the same teJ���erature, and a uni

form wall heat flux is applied at x = 0 and prevails for all positive 

values Of X� it can be shown that Ot (x,O) is finite While (ty - 'tm,) 
. ?Jy 

approaches zero as x approaches zero. In both cases, it is seen. that 

the beat transfer coefficient must approach an infinite value as x 
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approaches zeroo In the present study, thermal entrance regions of uni

form wall temperature are of principal interest . 

The Turbulent Flow Regime 

As pointed out previously, the thermal effects during thermal 

boundary layer development are imposed on whatever flow regime is co

existent . In the present study, the now regime is assumed to be 

turbulent . 

The velocity distribution within a fluid in turbulent flow is 

often represented by a power law as derived by Praudtl (}2) . The power 

law most commonly utilized to describe velocity distribution up to . 
1/7 Reynolds modulus of' 50 ,ooo is of the form u = B (f) , where u is 

fluid velocity at a distance y from the wall of a channel of radius b. 

The maximum velocity is represented approximately by the constant B. 

Schlichting (}5 ) considers this one-seventh power law to be suitable 

for Reynolds modulus up to J.OO ,000.. For higher values of ReynoJ.9.8 

modulus, the derivation of Prandtl is altered somewhat to give a one

eight power law for velocity at Re = 2001000 and a one-tenth power law 

for velocity at Re = 2 x 106.. Two limiting distributions for velocity 

may also be considered: (1) uniform velocity distribution, and 

(2) parabolic velocity distribution. As Reynolds modulus is increased 

to higher and higher values 1 the velocity distribution across the turbu-

lent core becomes increasingly uniform. In the limit 1 one may conceive 

of a completely uniform velocity throughout the conduit. The other 

limiting velocity distribution is the parabolic distribution which is 
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characteristic of laminar flow at Reynolds moduli up to 2000-4ooo. 
Clearly, the turbulent now regime cannot atta.in either of these llm1t

ing velocity distributions but they may be used to illustrate the 

influence of velocity distribution on the analytical heat transfer 

solutionso 

The well-established turbulent flow regime within a closed · 

channel is considered to have three different regions of flow: (1) the 

l.smjnar sublayer, (2) the buffer region, and (3) the turbulent core . 

The Jam:fnar sublayer comprises the band adjacent to the channel wall, 

where the fluid is in laminar motiono Beat is transferred across it by 

molecular conduction only 1 as !llentioned in the discussion of the 

definition of heat transfer coefficiento The buffer layer which lies 

between the lsm:f nar sub layer and the turbulent core is a zone in which 

eddies begin to occur 1 and the turbulent core is a region which is 

characterized by pronounced eddy motiono 

The Role of Molecular Conduction in Beat 
Transfer to Liquid Meta.J..a 

Within the turbulent core of a fluid, heat is transferred by 

combined molecular and eddy conductiono In ordinary fluids, the mo

lecular conduction is small compared with the eddy conduction and it 

may be neglected in the a.na.J.ytical heat transfer computations for the 

core zone o In liquid metals 1 however, this is not the case o As a re-

sult of their high thermal conductivity, it is necessary to retain the 

molecular conduction contribution in considering the core analysis as 

well as in the a.nalysis of' the buffer layer and the lam:lnar sublayer. 
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It was the inclusion of the molecular conduction term in the turbulent 

core analysis which distinguished the pioneer theoretical work of 

Martinelli ( 27 ) and Lyon ( 25 ) on heat transfer to liquid metals in 

regions of established temperature and velocity distributiono In the 

analytical solutions which are discussed in greatest detail in the 

present report, this line of reasoning is extended one step further o 

The solutions are based on the postulate that the eddy conduction 

contribution is negligible compared With that of the molecular con

duction. The magnitude of the eddy conduction contribution is a 

function of Reynolds modulus, increasing as the modulus increases .  

One implication of the postulate may be that the Reynolds modulus is 

sufficiently low that the eddy conduction contribution is negligible a 

Another consideration is that in regions very near to the beginning of 

the heated section of a channel, the thermal boundary layer does not 

extend far beyond the laminar sub layer or the buffer layer, and the 

extent of turbulence in the core has little influence on the total con

duction in the region of importance. These two thoughts are closely 

related by the fact that the thickness of the laminar sublayer or the 

buffer layer decreases as the Reynolds modulus increases. Additional 

discussion of these concepts will be presented later. 

Pur;pose and Scope 

It is the purpose of the present work to examine both ana

lytically and experimentally the mechanism of heat transfer to liquid 

metals in a thermal entrance regiono The scope of the work is confined 
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to the turbulent fl.ov regime, the circular tube geometry, and the 

thermal entrance region of uniform wall temperature. 1'he treatment of 

the subject includes a review of the existing analytical solutions and 

experimental data for beat transfer in entrance regions; a detail.ed 

examination of one of the basic postulates which is common to all of 

these solutions; a description of two systems which were designed and 

operated in order to obtain pertinent experimental data; and a dis

cussion of the experimental data in comparison With the analytical 

predictions . 

The analytical solutions are discussed in Chapter II with re

spect to the different postulates on which they are based and the re

sulting differences which arise in the beat transfer predictions. 

The postulate which is examined in detail is that the amount of 

heat conducted in an axial. direction is negligible compared with the 

amount conducted in a radial direction at � position within the fluid. 

This postulate is examined in Chapter ni in order to determine whether 

or not it is applicable to fluids of high thermal conductivity. 

Heat transfer data to mercury and to sodium were taken in the 

same type of test section, but the overall systems differed. These 

experimental systems and their operation are described in Chapter rv. 

The experimental data for entrance region heat transfer to mercury 

and sodium 8.1'e summarized in Chapter V, and comparison is made between 

experimental results and the analytical predictions. The heat transfer 

data to sodium indicate the need for investigation of contact re

sistance between copper and sodium, which is discussed in Chapter VI 

as a means of explaining the sodium data. 



In Chapter vn, an effort is made to s�e the concl.ustons 

and recommendations which may be drawn from the' present work. 

12 

In the Appendix, several pertinent discussions are presented in 

order to am,p.lify material in the body of the report or to examine 

features of the experimental. systems. Symbol.s used in the text and 

their definitions are tabulated in the last section of the Appendix. 



CHAPTER II 

ABALITICAL SOLUTIONS FOR BEAT TRANSFER m THE lmTRAl'lCE REGIOB 

A solution of the temperature field within a moving fluid may be 

used to compute the local heat transfer coefficient as defined in 

Equation I-2 or the local l'lusselt modulus, Nux, which comes directly 

II-1 

It is possible to obtain approximate solutions for NUx for many real 

systems by developing solutions for related ideal systems, or models. 

As a resuJ.t of the important role of the high molecular conduction in 

heat transfer to liquid metals, the possibility exists that solutions 

based on molecular conduction alone may serve as suitable approxi-

mations for systems involving liquid metal streams at low or moderate 

Reynolds modulus, where the eddy contribution to the heat transfer may 

be small compared with the molecular conduction. It is· significant to 

view a few of these solutions for comparison with each other and then 
. 

see how experimental observations are related to them. 

Conduction Solutions 

The Fourier-Poisson equation �be used to describe the 

temperature field arising from heat transfer by molecular conduction 

within a moving fluid.l In rectangular coordinates this is written as 

follows: 

1.  See reference (8) . 
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II-2 

where c is heat capacity, p is density, t is temperature, 8 is time, 

and ux1 Uy1 and t1z are velocity components parallel to the coordinate 

axes x, 71 and z, respectivelY'. 

In cylindrical coordinates 1 it is : 

II-3. 

where r is radial distance from the x axis 1 and t is angular displace-

ment. Several postulates may be made in order to define the ideal 

system: 

1 .  Conduction is negligible parallel to the direction 

of flow; i.e. , k t! = 0 

2. The temperature field is symmetrical. about the 

x axis ; i .e . ,  E! = 0 

3 .  Steady conditions prevail with respect to time; 

i .e . , ;: = o. 
4.  The velocity distribution is established; 

i .e. 1 ur = ut = 0 

5 .  Pbysical. properties are uniform and independent 

of temperature; i.e, ..L rk d- t] = k � qX d x] dX� 
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With these assumptions, the Equation II-3 becomes 

where r is the radial distance from the x-axis to a point in the fluid 

and 11a", is thermal diff'usivity, .!.. • Consider a fluid flowing through cp 
a tube of' radius b .  The boundary conditions postulated for the ideal 

heat transfer system are: 

l. Initial fluid temperature is uniform; 

2 .  Wall temperature is uniform; 

t�O,r) = t0 

t{x,b) = ty 
3.  Temperature field is axially symmetrical; dt(x 0)  = 0 

ar , 

Three analytical solutions for heat transfer in the thermal entrance 

region of' uniform wall temperature bave been selected for comparison. 

Each is.· a solution of' the Fourier-Poisson equation for a special case, 

and each differs only in the postulated form of' the velocity distri

bution� As pointed out in Cbapter I, the turbulent velocity distri-
.: . 

but ion is described by the one -seventh power law for a stream of 
' ·, ,. ,. . . 

Reynolds· modulus up to about 100,000. The turbulent velocity distri

butions are limited to a region bounded by the uniform velocity distri-
' 

bution � the parabolic velocity distribution. These three velocity 

distributions serve to designate the analytical solutions as follows : 

1. The solution presented by Graetz {13) for 

parabolic velocity distribution. 

2 .  The solution presented by Grae� {14) for 
. 

uniform velocity distribution. 



3. The solution presented by Poppendiek (31) for 

velocity distribution obeying the one-seventh 

power law. 

For the parabolic velocity distribution case, the velocity at any· 

:adius is expressed by the 
'
,relation u = 2U [ l - (�) �] , where U is 

the mean velocity. For the uniform velocity case, u = tr; and for the 
l/7 

one-seventh power law distribution, u = B (f) ,_where y is the 

distance from the channel wall. 

Parabolic Velocity Distribution 

16 

The solution for the case of parabolic veloc�ty distribution as 

developed by Graetz may be written as follows2: 

·, [ - 2.(2.705)'1. _2(f..�C,).. - � . ] . Pe� � � 
N _ 2 1.499e x + 1.078e x +0.358e x + ---

llx- [ 2(2.7,)� 2lk.�'t '2.\D.!{ ] 0.820e- � +D.0972e- Pei +D.OI3Se� +---

II-5 

Details of this solution are presented by Jakob (17) and Boelter et al 

{3) . The abbreviation Pe represents ·the Peclet modulus, DUpe • 
k 

For a region very near a thermal. entrance, the solution of Graetz bas 

not been evaluated. However, Leveque {23) presented a solution which 

may serve as an asymptote to augment the results of Graetz. 

N� = I. 07"" [ Pe � r! II-6 

2 .  See Appendix A 



Equations II-5 and II-6 express the variation of local llusselt modulus 

with distance x from the entrance to the heated section of a tube. It 

is also of interest to compare average values of Busselt moduli over 

regions of distance L from the thermal entrance. The average value 

of Nusselt modulus may be defined as follows: 

L 

17 

1 
L ) Nu.� dx 

0 
II-7 

Thus, according to Equation II-7 1 average values of Busselt 

modulus may be computed from solutions for local values. Equation II-5 

becomes3 

. 1 II� ln ( . ?.lt.,ef'a. --- -�1. _ 2.bo.a>t J 0.820e- �� + O.D97Ze Pe -to.or3Se Pe� +---

and Equation II-6 becomes 

-II-9 

3 .  See Appendix A 



Uniform Velocity Distribution 

For the uniform velocity case, the local Busselt modul.us is 

Nu = )( 

where an are roots of Jo(a)  = 0 

Average values of Busselt modulus for the case of uniform velocity are 

obtained from Equation II-10, which gives4 

l.8 

Nu._= 4_Pe� ln '[ i -� II-ll 

. �e et. . " . n:1 
Equation II-10 and II-ll may be augmented-�by au asymptotic solution pre-

sented by Poppendiek (31), in a form analogous to the Leveque solution 

which is mentioned above (Equation II-6) . 
_l_ � _ 1 [ m+ 1 R DJ m-+'2. 

'Ax- r {m�'l. + J) 21-m (rn+2) ex-
n-12 

In this solution, the m is defined by the power law velocity distri

bution, u = B ( �) m 
• For the case of 'l:lllif'o� velocity, m a 0 and B = u. 

Renee, Equation II-12 may be written as follows : 

II-13 

4. See Appendix B 
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or 

II-14 

One-seventh Paver Law Velocitz Distribution 

Poppendiek (30) presented a conduction solution for a fluid with 

velocity obeying the one-seventh power law within a conduit formed by 

two parallel plates . The boundary' conditions were the same as those 

listed previously: uniform. in1tial fluid temperature 1 uniform wall. 
temperature 1 and axial symmetry. 

By altering the solution slightly 1 it can be used as an approxi-

mation for the analogous circular tube system . · However j the approxi

mation is goOd only for l.arge values (greater than 1000) of the modulus 1 

Pe � • The asymtotic solution which Poppendiek (31) later pre�ented is 
X 

also applicable over the high region of Pe �and it is JD11Ch ee.Sier to 
X 

use for computations . Thus 1 for the case in which velocity distri-

( ) 1/7 
bution obeys the one-seventh power law, u = B � 1 Equation II-12 

may be written as follovs: 
:L 

Nu.� = o. "3 8 (Pe �] 15 II-15 

and 

II-16 

Comparison of Solutions 

Bote that all solutions descr�bed above are for the same system 

with the same boundary' conditions. In all cases; �at is transferred 
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radial.l.y by molecul.ar conduction only (as distinguished from edc1.y 

conduction) 1 and longitud1nal or axial conduction is .. neglected. The 

only primary difference between them is the postulated velocity distri-

bution. Comparison of values of local Nusselt moduli cCJDpUted from 

these solutions is shown graphicaJ.ly on Figure 1. Computed values far 

the one-seventh power law are extrapolated in accordance with the re-

lationship between .the three analogous solutions for conduits bounded 

by parallel plates . Also shown on Figure l are values taken from the 

analytical results of Seban and Shimazaki (37) for fluids of high 

thermal conductivity in a thermal entrance region of' uniform wall 

temperature. Their computations were based upon a differential eq

uation similar to Equation II-4 but including the eddy conduction contri-

but ion as follows: 

lL at :r _1 � [ r ( a+ �.) dt ] 
ax r ,}r ...,.. a r II-17 

where "EH" is eddy diff'usivity of' heat and "a" is thermal diffusi

vity. Equation II-17 reduces to Equation II-4 if' "€H11 is negligible 

compared with "a11 1 and "a" is assumed to be constant. Numerical inte-

grations were performed for the cases studied, which were characterized 

by two Reynolds moduli, 104 and 1051 with Prandtl modulus5 of 0.01.  

Although there is some uncertainty regarding their results because of 

large radial increments used in the integrations 1 the values shown on 

5· Note: Pr = � ; Pe = Re•Pr 
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Figure 1 are easily extrapolated to the predicted values for heat 

transfer to liquid metals in long tubes, according to another equation 

presented by Seban and Shimazaki (36) : [ ]0.8 
Nu. = s.o + 0.025 Pe II-18 

As in the studies made by Martinelli (27 ) and Lyon (25) , this equation 

developed by Seban and Shimazaki is based on the analogy between mo

mentum and heat transfer in high-conductivity fluids of established 

velocity and temperature distributions . One may consider that the 

curve for Re = 104 and Pr = 0 . 01, as extrapolated to the long tube 

valu�, is typical of the many possible combinations of Reynolds modulus 

and Prand.tl modulus. That is , for a given Peclet modulus, Equation 

II-18 defines the Nusselt modulus at which the curve levels off for 

large values of x ,  and the conduction solution serves as a bound for 
. 

the Nusselt modulus· at very small values of x .  The point at which any 

case may be adequately represented by the conduction solution depends 

on the magnitude of the Rel'Ilolds modulus and the thickness of the 

thermal bolUldary layer as mentioned in Chapter I .  The · solutions for 

average values of Nusselt moduli are shown on Figure 2. It is with 

these solutions that the present experimental data will be compared in 

Chapter V .  Several . other investigations of heat transfer in entrance 

regions have been made, but they are not applicable to the present 

study. A few of these may be noted briefly. 
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Related Analytical IDvestigations 

The work of Latzko (21) is of considerable historic interest but 

it may not .be applied to systems involving liquid metals because � 
postulated a.Prandtl modulus of unity. As in the solut�on of Poppendiek 

(30) mentioned previously, LatZko also postulated that the velocity 

obeyed the one-seventh power law . Be presented solutions for heat trans-

fer in thermal bc;nmdary layer development 1 simultaneous thermal and 

hydrodynamic boundary layer development and intermediate cases. Part of 

this work has been discussed by Jakob (17 ) .  

Sanders (33) considered a general treatment of f'ul.1y established 

temperature and velocity distributions in a pipe hav� a Wall tempera

ture discontinuity. As Bailey (1) bas pointed out, the postulates 

which Sanders made are expected to be applicable oncy for fluids in 
� . . . . . 

which the major thermal resistance·is near the channel wall. This 1m-

plies high Prandtl modulus 1 elim:l.nating applicability to liquid metal'S . 
'• . 

systems . 

Bailey (1) set up equations 
··�epresent:lDg the c�e of uniform 

velocity and temperature distributions at an entrance. .  N�rical inte-
. ' 

gration of the enerQ eqUa.tion was performed for Reynolds modulus of io5 
and Pr = 0.01 up to a length 'or 0. 1 diameter. 

In all cases, it has been postulated that the l.oDgitnainaJ con-

duction is negligible. The importance of this postulate will be· dis-

cussed in the next chapter. 



Related :Experimental. Investigations 

The experimental. investigation discussed later in this report is 

unique in its scope: heat transfer to l.iquid metals in thermal 

entrance regions of uniform wall temperature . However 1 data are 

currently available for heat transfer to l.iquid metal.s in entrance 

regions of uniform wall flux, and to air in thermal entrance regions of 

uniform wall temperature. Though these investigations are not specifi-

cal.l.y related to the present discussion, they are in the same general 

area of entrance region beat transfer and brief descriptions of them 

are given below. 

Johnson, Hartnett, and Clabaugh (20) presented heat transfer 

data to lead-bismuth eutectic in a circular tube vith uniform wall heat 

flux. Al.thougb. they were primarily interested in average heat transfer 

data for tubes of L/D S 641 l.ocal. heat transfer coefficients were com-

puted for !. of 4 .6, 1;.8 and 2;. Reynolds modulus ranged from 7500 to 
D 

. 

1101000; Peclet modulus from 200 to 5000,; Prandtl modulus from Oo020 to . 

0 .096; a.nd, Nussel.t modulus from 6 to 20. 

English and Barrett (ll) determined heat transfer coefficients to 

mercury in tubes having uniform � heat flux al.ong a heated length of 

about 50 diameters . Data were taken over a range of Reynolds modulus 

from 4000 to 451000. Here again, the main interest of the investi

gation was to determine "l.ong-tube" values of heat transfer coef

ficient 1 but the data could be used to evaluate local values for � 
greater than about 5 .  



Boe�ter, Young, and Iversen (4) investigated local beat transfer 

coefficients to air in thermal entrance regions of' uniform wall tempera-

ture for several different hydrodynamic entrance condi tiona . Their data 

were taken in a range of Reyno�ds modulus from about �7 ,ooo to 56,000. 

Agreement was found between experimental results and the a.nalytical 

6 . 
treatment of Latzko for the case of simultaneous thermal. and hydro-
dynamic boundary layer development. 

Cholette ( 6) determined local and average heat transfer coef'

ficients in a tube bundle of uniform wall temperature through the range 

of Reynolds modulus from about 8o to 18,500. The local heat transfer 

coefficients �ported are actually average values over length increments 

of about 10.5 diameters. 

Humble, Iowdermilk, and Grele (16) investigated heat transfer to 

air with uniform wall heat flux .  Poppendiek (:�0) used their data to 

estimate the variation of heat transfer coefficient with distance from 

the tube entrance for the Reynolds modulus of' .140,000. The experi

menters took data ·over a range of Reynolds modlilus from about 5000 to 
250,000. 

None of' the studies cited .includes local or average heat transfer 

coefficients for regions of � less than about 3 and all data for uni -
. . D . 

form heat flux cases in. 
regions of � less than 10 seem to be susceptible 

D 
to large condu�tion errors . In contrast, the experimental test section 

described in Chapter IV has been used to obtain average values of heat 

6 .  See page 22 



transfer coefficient for!. as low as ! and it may be modified to obtain 
D 2 

data for even smaller increments of !. • , D 



CHAP.rER III 

THE EFFECT OF LONGITUDINAL CONDUCTION IN 

THE THERMAL EDTBANCE REGION 

In Chapter II, it was noted that all of the availab1e so-

1utions for heat transfer in au entrance region are based on the postu-

1ate that 1ongitudinal. conduction is neg1igibl.e . Baranowski and ·Jury (2) 

are conducting a study which inc1udes the effect of 1ongitudina1 con

duction for parabo1ic ve1ocity distribution within a therma1 entrance 

region. Greatly simplified and more readily obtained so1utions are 

achieved if uniform ve1ocity is postul.ated. It is believed that, for 

purposes of exam1n1�g the effects of 1ongitudina1 conduct ion in 1iquid 

meta1s 1 so1uti9ns for cases of uniform ve1ocity will be adequate. As in 

so1utions emphasized in Chapter II, the so1utions obtained.. in this 

study are based o� the postulate that heat is transferred by mo1ecul.ar 

conduction on1y (as distinguished from eddy conduction). Since com:

parisons between parall.e1 p1ate systems and circular tube systems are 

of genera1. interest 1 both geometries are considered here, a;J.though only 

the so1utions for the circular tube systems have been eva1uated. Com

parisons are made of heat transfer in thermal. entrance regions of uni

form wal.l. temperature for three cases of each geometry- . The geometry-

and nomenc1ature are indicated on Figure ' .  Odd-numbered equations 

are for the paralle1 p1ate geometry- and the ana1ogous equations for 

the circuJ.ar tube geometry are even-numbered. 
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Case I. Fluid temperature is uniform at the entrance. 
Longitud:inal. conduction is neglected. (This 
is the same situation described in Chapter II 
as the Graetz solution for uniform velOcity. ) 

Referring to Figure 3 for defiliitions of symbols, the differential eq-

uations for Case I may be written as follows: 

Parallel Plates Circular Tubes 
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U dt = a d2.t 
ax 'fly'l III-1 U �! : � [ �) + + �� ] III-2 

Boundary condit ions are :  
t (O,y) = to 
t{lC,O) : tw 
�()(, b) = 0 
l im tGc .y) • tw ')( -+ CO 
Temperature solutions are: 

GO �"'" t- tw : 4�-1 e- At� ni-3 
t�-- tw 'L� 

M • l 

t (O,r) = to 
t ('lC ,  b) a tw 
*()(,0) :  0 

l im t(){,r) • tw 
� _. oo 

00 4or.?-t-tw = 'Z  � J.(�i) e-� 
t.-tN L «n , c«,) 

tl � l  ni-4 
where CXzt I S  are rootS Of ' 

Jo(crn) = o 

Ldcal Nusselt moduli are computed according to Equation II-1, as follows: 

Nu. = .. 
X 

.... 

e-1f 
• I -

p,., e 
III-5 � -· . e 

Nu.c= t I - �  
«1 e 

.. 

III-6 



Case II. Fluid temperature is uniform at the entrance. 
Longitudinal conduction is included for 
positive ·x. 

Parallel Plates Circular Tubes 
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U� :: c:t (� + ��] III-7 U� = al����+ �� + ��  III-8 

t.(O,y) : to 
t()(,O) = iw ���b) = O 
l im tlx,y) • tw 
J(-f> 00 

t(O,r) :  to 
t()(., b) = tw 
�� ()(,0) c. 0 

l tm t (Jt, .. ) : tw 
� _. oo 

III-9 

III-10 
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Case III. Fl.uid temperature is initial.J.y uniform at 
x = - oo • The channel. wall. is maintained 
at a uniform temperature from x = - oo to 
x = 0, and at a different uniform tempera
ture :f'rom x = 0 to x = + oo .  The thermal 
entrance region begins (as in Cases I and 
II) at x = O. 

Parallel. PJ.ates C ircul.ar Tubes 

-\:(X,O) =t, 1 - co <� <  0 t6c,b) =  t,  l - oo ( )( ( Q 
J im tc'x, y) == t, l im t lx,,.) • t, 
)( -.lo  - DO  'I. -+- - oe  

t t�.o> • t1 } 
O<x< � oa t<x ,b) .  t._ } O < x < + DO 

l im �l�< ,y) =t.,. 1i m t ()( ,,.) = i;. )( ..... .f-00 '1..-+ f- oO 

�(lC,b} • 0 -00 ( )( (+ 00 �(t,O) = 0 - oo < � <"- �  
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Discus·sion of Results 

Values of' local Nusselt modulus computed for the circular tube 

geometry are shown in Table II . It may be observed. from the table that 

if the Peclet modulus is 400 or greater, the differences between the 

three cases are negligible. The computed values for Pe = 40 are plotted 

on Figure 4. Bote that differences between the three cases are negli-
r 

gible for values of Pe � less than 100. This implies . that even at such 
X 

low Peclet modulus as 40, the effect of' longitud1naJ conduction is 

negligible for all positions in the entrance region beyond X = 0.4D. In 

other words, the effect shows itself only in the first increment of 

length and, even so, it is minor in importance. In considering the 

range of Peclet modulus involved, it is convenient to recall that it is 

sometimes defined as the product of the Reynolds modulus and the Prandtl 

modulus. If one considers a Prandtl modulus of 0.005 {which is about 

the mjnimum. value for the coDDDOn liquid metals ) , the Reynolds modulus 

corresponding to Pe = 4o is 8000. This may be considered as nearly the 

mjniDDun Reynolds modulus required to characterize a stream in established 

turbulent flow. It is believed, then, that Pe = 40 is a lover lim1t 

for practical cases of liquid metals in turbulent flow, and the con

clusion is that longitudinal conduction is not important in its effect 

on heat transfer � thermal entrance regions. 

It is interesting to note that the solutions for Case I also 

describe transient conduction in solids_ initia.J.:cy" at uniform tellq)era-

ture and with uniform wall tellq)erature after zero time. These cases 

are presented by Carslaw and Jaeger { 5 ) .  



Pe � X 
10 

40 

100 

400 

1000 

TABlE II 

LOCAL V AWES OF mJSSELT MODULUS 
FOR cmCULAR TUBE GEOME'mY 

Case I Case II Case III 

Pe = 40 Pe = 400 Pe = 40 Pe = 400 

5 ·78 5 ·78 5 ·78 5 ·78 5 -78 

6.17 6.� 6.17 6.25 6 .17 

1 ·14 8.08 1 ·13 7 ·94 1 ·13 

13 .08 15 .24 13.09 14.o8 13.08 

19.50 26.72 19.74 22.72 19-57 
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ClJAPl1ER IV 

DESCRIPTION OF THE EXPERIMENTAL 81STEMS 

In the course of the present work, two different experimental 

systems were employed in order tc,. study the thermal entrance region 

beat transfer to liquid metals. However 1 in both systems 1 the same 

test section was employed. 

Heat Transfer Test Section 

The test section is shown in cross-section on Figure 5 ·  It may 

be considered as a short, thick-walled copper cylinder (with a ' inch 

outside diameter, 1/16 to 1/a inch l.ength, 1/16 to 1/a inch inside 

diameter} mounted between stainless steel flanges with ,;a inch by 

l./4 inch thick Hycar bard rubber gaskets .  The stainless flanges were 

tapped with standard l./4 inch pipe threads ·in which were il.nserted 1/4 

inch pipe to ,;a inch tube connectors ·containing tbermowells. Thus, 

in order to remove the test section assembly from the experimental 

systems, it was only necessary to l.oosen two tubing flare nuts . 

Mercury Heat Transfer System 

The system in which this test section was installed for de

termip.ing the beat transfer coefficients to mercury is shown schemati

cally on Figure 6.  The sump consisted of a rectangular stainless steel. 

vessel, approximately l.O inches deep, 12 inches long and 8 �ches wide 

with a l./8 inch thick wal.l .  From this vessel., mercury was pumped by 

means of a small turbine pump through a cooler (consisting of a cQil. 

submerged in a tank of water) and then through the test section. After 
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4o 
the mercury passed through the test section, it could be diverted to a 

catch tank in Which flow rate measurements are made ,  or it could be re

turned to the sump. In the catch tank were located two probes which 

completed electrical circuits, turni.Dg on and turning off a timer when 

the mercury reached fixed levels in the tank. After the system was 

degreased with trichlorethylene and acetone washes, approximately �00 

pounds of triple distilled mercury was �oaded into the sump . A n1 trogen 

atmosphere was introduced above the mercury in the sump so as to mini

mize oxidation. Main flow channels consisted of 3/8 inch outside di

ameter staiDJ.ess stee� tubing. The fl.ow rate was control.led by a 3/4 

inch bypass valve and small adjustments were made with a l./4 inch 

globe valve in the main circuit . 

Auxillary Water System 

In order to insure that the periphery of the ,copper plate in the 

test section was maintained at a uniform temperature, an auxil.iary water 

system was constructed. In this system, water temperature was control.led 

by a bimetallic thermoregulator located in a mixing chamber in the 

supply line to the test section. This regulator, through a relay 

circuit, operated a.D immersion type resistance heater l.ocated in the 

water reservoir. A pressure l.imit switch was included in the heater 

relay circuit so as to break the circuit if the ·pressure exceeded 5 psi . 

As an added precaution, a 25 psi pop-off valve was provided in case 

excessive pressure buil.t up in the water reservoir for any reason. A 



laboratory size centrifugal pump was used to circulate the hot water 

through the tube around the copper plate in the test section. 

Temperature Measurement System 

other auxiliary equipment included the temperature measuring 

41 

apparatus .  Precise measurement of the temperature was required in the · 

test section for determining the heat transfer rate and the copper 

surface temperature. l'lo . :;o constantan wires were soldered . through 1/64 

inch diameter holes drilled in the copper plate at locations indicated 

on Figure 7 .  A copper lead was soldered to the surface of the plate 1 

and the plate itself served as � common copper lead to all the 

constantan junctions. The leads were passed to an enclosed terminal 

strip for selection by a Leeds and Northrup thermocouple switch, and 

the circuit continued through an ice bath cold junction to a Rubicon 

type B potentiometer. A General Electri� type 32C240G14 galvanometer 

was used in connection with the potentiometer . Mercury and water 

temperatures were measured upstream and downstream :from the test section 
. 

by means of copper-constantan couples in tbermowells. The potentiometer 

system described above was also used for these measurements . 

Sodiwn. Heat Transfer System 

A diagram of the sodium heat transfer system is shown on Figure 8. 

The sump and reservoir were both made :from 10 inch, schedule . 40, black 

iron pipe, and they were each provided with a hot plate at "t?he bottom 

and strip heaters around the outside surface . The main flow cbamlels 
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were of 3/8 inch outside diameter stainless steel. tubing.  The tubing 

and stainl.ess steel. val.ves were wound with monel.-sheathed, asbestos 

covered, No . 1.4 Nichrome resistance wire . Argon was used . as an inert 

atmosphere over sodium within the systemo It was al.so used to dis

pl.ace the sodium from the sump through the test section circuit to 

the reservoir, and from the reservoir to the sump through the return 

circuit . A standard gas cyl.i¢.er served as tbe argon source and a 

regul.ator was · used to control. the pressure in "the system. A vacuum 

pump was used to evacuate the system at the initial. l.oading of the 

sodium and following any changes in the system which woul.d have per-

mitted entry of air. All heater circuits were controlled by variabl.e 

transformers, or, in some cases by variabl.e resistors . In order to 

determine thermal. conditions throughout the system, temperatures were 
. . 

measured at strategic l.ocations by means of iron-constantan thermo-

coupl.es operating through a 12 point sel.f-balan.c� temper�ture indi

cator. These thermocoupl.e l.ocations are indicateQ. on Figure 8.  

The auxiliary water system and temperature measuring circuits, 

which have already ·been described, were al.so used with the sodium 

system. As in the mercury system, sodium temperatures were measured 

upstream and downstream from the test section by means of copper-

constantan coupl.es in thermovel.l.s. 

Operation of the mercury system was straightforward, but the 

sodium system required special. attention. Prior to l.oading, the 

sodium system was fl.ushed with trichl.oretbyl.ene for degreasing and 
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removal of foreign particles . It was then thorough:cy' dried and filled 

with argon in preparation for loading the sodium. Seven 12 pound bricks 

of sodium were then scraped in an argon atmosphere in order to remove 

the oxide layer coating the bricks . These bricks were then loaded into 

the reservoir which was continuously flushed vi th an argon stream during 

this operation. After the bricks were placed in the reservoir, the top 

flange was secured and tbe system was evacuated and purged with argon 

in order to remove a.ny air which may have been retained. Heater 

circuits were then closed in order to melt the sodium and preheat the 

f�ow circuits . The test section was preheated partly by conduction 

from the adjoining tubing heaters, partly by guard heaters at the out

side faces of the flanges, and partly through circulation of pressurized 

hot water through the tube· at the periphery of the center plate . When 

temperature readings indicated that the sump, reservoir, and flow 

chamlels were sufficiently hot and that the sodium was completely 

melted (m.p . 2080:F. ) 1 the sodium in the reservoir was transferred to the 

sump by displacement with argon. Preparation for an actual run con

sisted of closing the valve in the return circuit, opening the valve in 

the test section circuit, adjusting the argon regulator to the desired 

operating pressure, and opening the vent valve from the reservoir. A 

run began upon opening the valve from the argon supply to the sump. 

Steady condi tiona were obtained quickly as shown by the change 

of temperature reading$ in the test section during the first minute of 
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operation • 1 The volumetric flow rate of the sodium was· determined by 

the use of four probes located at different elevations in the reservoir. 

The sodium completed an electrical circuit when it contacted each probe, 

and, by means of a relay circuit, a timer (reading to 0.1  seconds) was 

started and stopped automatically. The two bottom probes and the two 

top probes vere paired so as to get two independent flow rate determi-

nations for each run. 

Operative Problems 

Operative problems which developed were chiefly in two regions : 

(1) assembly of the test section; and, (2) presence of oxides in the 

sodium. 

The problem of assembly of the test section may be clarified by 

considering the cross-sectional view of the assembly as shown on 

Figure 5 .  The extent of compression of the gaskets necessarY' to �old 

'00 psi internal pressure was determined roughly by a hydrostatic test . 

Each gasket was then placed between the f�s and the center hole wa8 
drilled while the gasket was com:pres�ed to a specified thickness . The 

center hole in the plate was carefully drilled prior to assembly 1 and 

the assembly operation was performed by stack_ing flange., gasket, plate 1 

gasket 1 and flange in a sandwich aligned by a drill through the center.  

1.  This observation confirmed a graphical prediction 
based on the methods of Perry and Berggren (29 ) • 
See Chapter V .  



After the flange bolts were tightened to again compress �he gaskets to 

the proper thickness, the drill was removed and the center hole was 

washed vith a detergent . It was then ready for installation in the 

test section circuit . 
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Prel1m1na:cy vork indicated that sufficient oxygen was in the 

system to saturate the sodium vith sodium oxide . This oxygen presum

ably came from residual oxygen adsorbed to surfaces within the system, 

res_idual oxide not removed fro� bricks before loading, and traces of 

oxygen in the argon gas . In order to prevent precipitation of oxide on 

the heat exchange surface, part of the runs were made vi th the sump at 

a lower temperature than the surface temperature of the test section, 

and some data were taken for heating sodium as well as for cooling. 

The experimental results obtained in these two heat transfer 

systems are discussed in the next chapter. 



CBAP.rER V 

In Chapter J)l ,  the experimental systems employed in these heat 

transfer studies were described. Data taken during each experimental run 

included the following: 

1. Liquid metal temperature upstream and downstream. 

from the test section. 

2.  Hot water or steam. temperature upstream and 

downstream from the test section. 

3 . Temperatures at two points for each of tour 

different radial positions on the copper 

plate in the test section. 

4 .  Timer readings to be used to compute the 

volumetric flow rate of the liquid metal. 

During operation of the experimental apparatus, the liquid metal being 

studied was circulated through the center hole in the copper plate 

within the test section.1 Pressurized hot water or steam. was circu

lated through the tube at the periphery of the copper plate so as to 

maintain the periphery at essentially constant ten:q>erature . The flat 

sides of the copper plate were insulated so that, as a result of the high 

thermal conductivity of the copper, radial heat flow vas achieved in the 

plate . From ten:q>erature measurements made at different radial posi tiona, 

1 .  See Figure 5 



the rate of heat transfer and the copper temperature at the copper

sodium interface were determined according to the relation 2 

tJ = Znkl (t-tw) 
-� lh  I"" b 

A simple graphical procedure may be used in the a.na.lJsis by re

arranging Equation .V-1 to the form 
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V-1 

V-2 

By plotting temperature at a given radius versus the logaritbm. of the 

ratio of that radius to the radius of the flow channel, , one obtains a 

linear relationship with a slope of S and intercept of �· The 

arithmetic average of the upstream and downstream liquid metal tempera-

ture measurements was taken as the mean fluid temperature within the 

test section. · These data were then used to compute the average heat 

transfer coefficient throughout the length of the channel (plate 

thickness)  , according the the relation 
'!. h = L V-3 

In order to estimate the time required for steady conditions to 

be attained in the test section, a graphical analysis was made according 

to the method of Perry and Berggren ( 29) • The results indicated that, 

after the first five seconds , the largest difference between the 

2. Thermal conductivity of copper is constant within 
1'/J over the temperature range in the plate . 
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graphic� determined transient temperature and the steady state 

temperature is half of one percent of the radial temperature difference 

initiall.y imposed on the plate at zero time. 

The data, obtained in three different test sections for heat 

transfer to mercury in the thermal entrance region, are summarized in 

Table III and plotted on Figure 93. For comparison, three solutions 

described in Chapter II are also plotted on Figure 9. Since the so-

lutions plotted are dependent on molecular conduction alone, the up

ward trend of the data (compared with these solutions) for high 

values of Pe � is attributed to the contribution of eddy conduction 

which increases as the Reynolds modulus increases . 

�ince comparison is made between the experimental data and 

analytical conduction solutions, it is desirable to determine how 

closely the experimental system fits the description of the ideal 

system postulated in the mathematical analysis . One tacit assumption 

in the ideal system is that the flow channel upstream from the heated 

section is adiabatic . In order to determine (1) whether or not this 

is so in the experimental system; (2) whether or not the radial heat 

flow in the test section plate is a true indication of the heat iD:put 

to the liquid; and ( 3) whether or not the area of the center hole in 

3.  Two plots appearing on Figure 9 differ by the choice 
of therma.1 conductivity data. Data of Hall (15 )  are 
believed to be more reliable than the data of Gehlhoff 
and Neumeier (12) . other physical properties are shown 
in Appendix D.  
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the plate is the effective heat transfer area, a brief analysis was 

made of the conduction of heat across the corner of the hard rUbber 

gaskets which hold the test plate in position. This analysis is 

54 

shown in Appendix E, and the conclusion drawn from it is that the heat 

leak across the gasket amounts to less than 1� of the radial beat flow 

in the test plate . This conclusion makes it appear that the experi

mental system closely approximates the ideal system vi th respect to the 

considera�ions mentioned above . 

Another item of great importance is the variation of wall teilg;)era

ture in the test section. The anal.ytical solutions with which the data 

are compared are based on the postulate of uniform wall temperature. 

In order to estimate the variation of wall temperature in the ' experi

mental system, an iterative procedure was employed in two eJ:CSDIPles as 

shoWn in Appendix F. Results of this study showed that the average 

deviation of the temperature from a uniform value is about "5.?fl, of the 

difference between the surface temperature and the mean fluid tempera

ture for a run having an average heat transfer coefficient of 8220 

Btu/hr. · :rt .  2 Opt. For runs having an average heat transfer coefficient 

of 77,290 Btu/hr. ft .  2 <T. , the temperature distribution
' 

is intermediate 

between the uniform temperature case and the uniform wall heat flux 

case . The average deviation in vall temperature in this case is about 

19{o . These two exsm,ples bracket the range of experimentally measured 

heat transfer c:oefficients to mercury. The influence of the tellq)era

ture deviation in the high heat transfer coefficient exsm,ple would be 

to increase the predicted values .  It can be shown for uniform velocity 
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systems that predictions based on the postulate of uniform wall tempera

ture are only about 7CJI, of' those based on the postulate of' uniform 

flux. The contribution of' the eddy conduction is believed to be the 

more important factor, however, in accounting for the increasing devi

ation of the data from the conduction solutions as the value Pe � is 
L 

increased. 

In view of' (1) the high thermal conductivity of' the copper path 

from the tube at the periphery of' the test plate to the center hole, 
. , .  

and (2) the estimation that less than 1� of' the radial heat flow is 

conducted across the gasket corner, considerable confidence is placed 

in the rate of heat flow as computed from the temperature gradient in 

the plate . In an ef'f'ort to obtain a heat balance, the liquid metal 

stream temperatures were measured upstream and downstream from the test 

section. The temperature changes in the stream were so small that con-

duction errors in the thermovells became significant . Bence, no conf'i-

dence vas placed in these measurements f'or the heat balance, but they 

were used to obtain the mean liquid temperature. In effect, the copper 

plate vas used as a heat meter, and it is believed that the uncertainty 

in the heat rate determined in this way is small compared vi th other 

uncertainties of the system. 

With regard to other uncertainties of' the system, an error 

a.na.lysis is made in Appendix G. Since three different test sections 

were employed in obtaining the experim:!ntal data, the anal.ysis for 

precision includes consideration of' physical size and thermocouple 
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location as well as the quantities measured during each experimental 

run. Results of the error anSlysis indicated
.
a precision of about 21; 

in Nusselt modulus when plotted against· the modulus, Pe E. • The accu-L .  
racy is uncertain primarily to the same extent that the physical 

properties (particularly thermal conductivity) are uncertain. This 

point is illustrated by the wide deviation between the two sets of 

thermal conductivity data for mercury, as shown in AppendiX D along 

with other pertinent physical properties of both mercury and sodium. 

The present study was undertaken as a study of heat transfer 

in a thermal entrance region as di�tinguished ·from a combined thermal 

and hydrodynamic entrance region. However, the system which was evolved 

and operated did not incorporate a very long calming section upstream 

from the test section. For the chamlels of 1/8 in. diameter the calm

ing section was about four diameters long, and for the 1/16 in. di

ameter channels it was about eight diameters long. Clearly, by usual 

standards, these lengths are not considered adequate for establishing 

the velocity distribution. However, it may. be noted that in the test 

sections of L=D= 1/16 in. and L=D = 1/8 in . , the � ratios are the same 
. 

but the hydrodynamic ca1m1ng section is twice as long for the 1/16 in. 

channel as for the 1/8 in. channel. There is no appreciable difference 

between the experimental results obtained from these two test sections·, 

indicating that the hydrodynamic entrance effect is negligible for these 

studies .  



A set of sample calculations is presented in Appendix C 1 show

ing the treatment of the experimental data for comparison Yith. the 

analytical solutions . 

57 

As shown in Table III, the Nusselt moduli for mercury 1 based on 

the thermal conductivity data of Hall, ranged f;rom 21.1 to 96.5 .  It 

was expected that Nusselt moduli in the same range should be achieved 

for sodium. This would imp� that 1 compared to heat transfer coef

ficients of 101300 to 66,300 Btu/br. ft2 Ojo. for mercury, the attaina

ble heat transfer coefficients to sodium should be about nine times 

these values--up to about 6001000 Btu/br. tt2 Opt. However, the sodium 

data were not reproducible and were very low ·and erratic . The region in 

which these data· fell is compared w1 th the region of .mercury data on 

Figure 101 and the data are summarized in Table IV. Heat transfer coef

ficients up to 131600 Btu/br. f't.2 Ojo. were achieved bu:t these were 

still extremely low when compared with the region of Nusselt moduli in 

which the mercury data fell. Clearly the attainment of coefficients 

of the order of 1001000 to 6oo 1000 Btu/br. f't .  2 OF. puts a premium on 

good interfacial contact, but the role of eddy conductivity and ve

locity distribution would be expected to be the same for both sodium 

and mercury. In t�e next chapter, a few conanents will be made regard

ing interfacial contact between sodium and copper. 
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CHAPTER VI 

AN EXPLANATION OF THE SODIUM DATA 

In the last chapter, it was pointed out that the experimental re-

sults obtained with sodium were low and inconsistent . Since the bulk of' 

the data fell below the conduction solutions (even the solution for 

parabolic velocity distribution) , it appeared that an additional thermal 

resistance of' variable magnitude was showing itself' in the thermal 

circuit . In the present studies , the thermal circuit was well defined 

from the peripheral tube in the test section to the hole interface 

bounded by the copper and filled with sodium. The temperature field 

and heat f'lolr in the copper plate were measured experimentally. Hence 

the region of' uncertainty began at the copper surface of known tempera-

ture and extended into the fluid.. If intimate contact was made between 

the copper and sodium, 'it is hard to conceive of' a situation which 

would yield data lower than values predicated on the postulates of' zero . 
eddy conduction and parabolic velocity distribution, when the lowest 

Reynolds modulus employed was about 20,000 . 

For purposes of examining the influence of' poor interfacial con-

tact, consider this condition to be represented as a series resistance 

of thickness x arid conductivity kx· If' the heat transfer areas are 

approximately equal, 

I - X + _I ho - .K� he 
where sUbscripts o and c refer to observed and computed values , 

respectively. This equation may be arranged to get the following: 

VI-1 



� - )( L + t  - ,;- fie. 
h o 1\.x 

VI-2 � 

or 

VI-,; . 

where kf is the thermal conductivity of the heat transfer fluid and D 

is the channel diameter. Equation VI-3 shows the importance of having a 

very low value of ...!. in the present studies , since kf of sodium is very 
kx . 

high {about 50 Btu/hr. ft .  2 �/ft . at its m.p . ) and the channel diameter 

was as small as 1/16 inch. In order to observe values equal to the com-

puted values , x must be zero or very small. Attempts were made to im-

prove the sodium data by carefull.y cleaning and electropolishing the 

copper heat transfer surface, as well as by revising procedures of as-

sembly in the test section. In order to eliminate the possibility that 

sodium oxides were precipitating on the test surface, heating runs were 

made but these resulted in no significant change in the data. It was 

finally suspected that the additional unknown thermal resistance exist-

ing at the interface consisted of oxides coating the copper surface . 

This appeared to contradict previous accounts of the use of sodium for 

deoxidizing copper, but it was later concluded that this use is con

fined to copper melts rather than surfaces ofS'olid copper. 

Copper is known to have a great affinity for oxygen and hot 

copper shavings .are often used to deoxidize gas · streams . In every case, 

the copper surface was cleaned and dried in air so that all surfaces 

were air-oxidized at room temperature . Moyer and Riemen· {28) con-



ducted measurements of heat transfer across a sodium-stainless steel 

interface in tbree pieces of apparatus and concluded that wetting pl.ay'ed 

little part, if e:n:y, in their experiments . However the ·minimum inter

facial resistance detectable in their work (corresponding to the limit 

of precision of their measurements ) was equivalent to o .o:�;.o in . of 

stainless steel. In terms of a heat transfer coefficient, this is 

roughly equal to 12,000 Btu/hr. 1't.2 CT. In order to examine their 

conclusion with respect to the present problem, Eqwation VI-3 may be 

used. If Nuc is of the order of 10 to 20, and kx is assumed to be 10 

Btu/hr. tt .2 �./ft . ,  the ratio of NUc to NUo would range from 8.7 to 

18.4. Clearly a resistance too small to be measured in the work of 

Moyer and Riemen would be completely controlling in the studies of heat 

transfer to sodium in an entrance region. 

In sodium wetting tests presented by Winkler and Vandenburg (39),  

the electrical resistance across the interface vas used to indicate the 

wetting temperature of stainless steel 347, molybdenum, nickel, low 

carbon steel, and glass . Samples of molybdenum and nickel which bad 

previously been wet by sodium (and washed off) were subsequently wet 

at the melting point of sodium (2o80po) . Otherwise, the wetting tempera

tures ranged from about 284'7 to 6:;20:F. Although they made no measure-

menta with coppe�, it may be significant that the upper · limit of oper

ating temperature in the experimental heat transfer system vas about 

300� because of the ByCar hard rubber gaskets in the test section. 
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In his studies �volving the mercury-steel interface,  Dreher (9) 

used a cylindrical glass cell sealed on each end w1 th the metal surfaces 

being tested. A fixed current was passed through the cell and the po-

tential was measured at points along the cell so as to indicate the po-

tential drop across each interface . Part of' his conclusions which 

pertain to the ll'esent discussion are repeated as follows : 

• • • • • • • • • • • • • • • • 0 • • • • • • • • • • • • • 

2. The interfacial electrical resistance is extremely sensi
tive to surface corulitions . This is evident f'rom the ex
treme difficulty of reproducing results under apparently 
identical conditions . These anomalies could only be attri
buted to .factors in operation affecting the surf'ace ·con
ditions .which could not 'be controlled. 

3 .  The existence ·of' wetting, as defined by low contact angles 
or retention of a silvery f'ilm, is a sufficient but not a 
necessary condition f'or low interfacial electrical re
sistance . It is believed that the thermal-electrical 
analogy applies to interfacial resistances in an approxi
mate qualitative sense, but D,Ot in an exact sense . This 
same conclusion, probably' then also applies to the inter
facial thermal resistance. 

4 .  It is possible to produce surfaces which give low inter
facial electrical resistances but do not exhibit wetting 
in the conventional sense . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

ll. Tests on copper specimens always result in zero inter
facial electrical resistance, which do not change with 
time, regardless of whether the surface was amalgamated 
prior to the test . Stainless steel specimens always re
sult in appreciable values of interfacial electric&l 
resistance . 

. . . . . . . . . . . . . . . . . . . . . . . . . . 
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The last conclusion is repeated to lend support to the validity of the 

heat transfer data for mercury in the copper test section. The first 

conclusions are repeated here to emphasize the uncertainties that exist 

when a surface is not wetted. Though Droher points out that only quali

tative inferences may be drawn about interfacial thermal resistance 

from electrical resistance measurements, some of his equipment was modi

fied for a brief study of the electrical resistance across the sodium

copper interface . The average of six determinations of the resistance 

across an interface of approximately 0.56 in.2 area was 6 to 7 micro

obms . Since Droher pointed out that a low resistance does not neces

sarily imply good wetting, the results are inconclusive . However, it is 

rewarding to examine a few of the possibilities for the thermal re

sistance in question. Consider a case where the computed Nusselt modu

lus is 20 and the experimentally measured value is 5 .  Equation VI-3 

may be used to compute the thickness of various substances which would 

give this required additional thermal resistance . Typical figures for 

a system with 1/16 in. diameter are shown in Table V .  Using some rough 
values for the electrical resistivity, the electrical resistance of a 

film of thickness x in the conductivity cell is also shown in the table . 

As indicated in the table, while thermal conductivity varies over a 

r� of 500, the electrical resistivity varies over a range of 109 . 

The wide band between iron and the oxides must include numerous other 

possibilities . The only conclusion which can be drawn is that inter

facial el�ctrical resistance measurements are meaningless in the 



Material 

Na 

Fe or Ni 

Oxides 

Gas 

TABIE V 

RELATIVE VALUES OF THERMAL AND EIECTRICAL 
mTERFACIAL RESISTANCE 

, k, Btu/br.ft .2 �/ft. x, in. p, ohm em 

48 9.4 x 1o-:5 1o-5 

:54 6 . 6  x 1o -:5 1o-5 
2 ;.9  x 1o-4 :500 to 
0.1  2.0 x 1o-5 104 
0 .02 :5 .9 x 1o-6 
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Rx' ohm 

6 . 6  X 10-8 
4 .7 X 10-8 

5 ·9 X 10-; 
to ; .9 



present study.. There is no apparent contradiction in the thermal 

and eJ.ectrical measurements, but ,  on the other hand, there is no proof 

that the J.ow and erratic sodium data may be attributed to an oxide 

film or non-wetted conditiono It is to the possibility of non-wetting 

that the appeal is made in the present case .. Since , as it has been 

shown, the experimental. system places so much i.Dq)ortance on good con

tact, the existance of a small additional resistance on the copper 

surface (which is quite J.ikeJ.y) woul.d explain the discrepancies . Proof 

of the hypothesis is difficuJ.t, but the present experimental. system may 

be weJ.J. suited for the thermal studies since the effects are maximized. 

It is very J.ikely that a non-fl.ow system or a flow system yielding low 

heat transfer coefficients would not show these .effects which are be

lieved to be due to non-wetting. 



CHAP.rER VII 

CONCLUSIONS AltD RECOMMENDATIONS 

It is believed that the following contributions are made in 

the present work: 

1 .  The literature on entrance region heat transfer 

has been reviewed. 

2.  An analysis has been presented for the effects 

of' longitudinal conduction on heat transfer to 

liquid metals in a thermal entrance .  

3 . An experimental apparatus has been designed and 

operated for the purpose of' obtSi.ning data on 

entrance region heat transfer to liquid metals . 

The same type of' apparatus may be easily modi-

f'i�d to conform to a variety of' entrance conditions . 

4. Experimental heat transfer data are presented for 

mercury dn turbulent flow in a thermal entrance 

region. The data were obtained in three different 

test sections with a precision �f' about 21�. 

5 .  Experimental heat transfer data to sodium are re.-

ported, but, because they are erratic and very low 1 

they are only used to illustrate the . probable 
. . . 

existence of' non-wetting conditions at a copper-

sodium interface .  



Conclusions which one may draw from this work are : 

1.  The effect of longitudinal conduction may be 

neglected in cases of heat transfer to liquid 

metals in turbulent flow. 

2.  Experimental heat transfer data obtained with 

mercury in turbulent flow confirm the pre-

dictions of an analytical conduction solution 

for values of Pe D less than 2000 in test L . 
sections of !!. = 1 and � = 2. This solution is L · L 
predicated on the postulates of negligible eddy 

conduction and velocity obeying the one-seventh 

power law. 

3 .  For values of Pe � greater than 2000, it is clear L 
that the eddy conduction must be included in the 

a.na.lytical solutions if reasonable agreement with 

the mercury data i� desired. For liquids of higher 

thermal conductiVity than' mercury, one would 

expect data to )agree With conduction solutions 

to higher values ·o-f Pe � • 

4 .  Very high values of heat flux or heat transfer 

coefficient may be achieved with liquid metals in 

the thermal entrance region. Coefficients as high 

as 66,300 Btu/hr. ft .  2 0,. were measured in the 

mercury system and it is believed that 1m1ch higher 

coefficients are attainable . 



The possibilities for extending the scope of the. work are 

numerous and interesting. One recommendation pointed toward a more 
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complete understanding of the effect of velocity distribution is that 

the experiment be performed over a much wider range of Reynolds modulus. 

If data were taken over the range of Re from 1000 to 20,000, any shift 

in agreement w1 th the conduction solutions could be attributed to the 

change in velocity profile from parabolic to the turbulent distribution. 

A� very high Re {greater than 200,000) it would be desirable to change 

the ratio of heated length to diameter so as to fill in the region of 

uncertainty between "long tube" predictions , which include eddy con-

duction, and "entrance region" predictions , which do not include eddy 

conduction. Presumably, there will always be a region very near the 

entrance to a heated channel, where the thermal bound.ary layer has not 
; . 

developed beyond the laminar sublayer. In this region, the eddies would 

be ineffective in the heat trans�er mechanism and the solutions for 

cases with and without eddy conduction should come together . 

In the pursuit of a study of the effect of wetting on beat trans-

fer, it is believed that the use of a test section, such as the one 

described in the present work, offe·rs the advantage of maximizing. ef-

fects of any surface filJn or unusual conditions . 

Copper was selected for the plate material in the test section 

because of its high thermal conductivity. It may be possible to find 

some other material which has a sufficiently high thermal conductivity 

and which will be wet more readily b;r sodium. If further studies 
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involving sodium and copper are pursued, it may be possible to achieve 

good contact by operating a system. at a higher temperature . This will 

create either a new design problem or a new materials probl.em1 for the 

BYcar rubber gasket in the present test section eliminates this 

alternative . 

Another alternative appears as a result of the solubility of 

sUver in sodiumo It may be feasible to silver plate a copper surface 

prior to contact with sodium. When the silver dissolves in the sodium, 

a fresh, unoxi.dized copper surface will be exposed at the interface .  

Although the present emphasis bas been directed toward liquid 

metals, the test section used in this work is equal.ly well suited for 

use with other heat transfer media. With liquids of lover thermal 

conductivity than sodium., the wetting problem. would be reduced since 

the interfacial thermal resistance probably would be reduced relative 

to the total thermal resistance . Even for water and air, there is 
.; 

currently very little information available on heat transfer in 

entrance regions . The promise of high heat transfer coefficients in 

entrance regions may also justify some effort to apply these concepts 

to a practical heat exchanger. Where size of exc�r is a serious 

limitation and high pumping power can be supplied in return for the 

saving in space , it may be possible to remove great quantities of heat 

from a small volume by having a number of parallel, short tubes in a 

bundle. 



It is hoped that the present work will motivate additional 

investigation in this "entrance region" segment of the field of heat 

transfer. The academic interest is great and the practical po-

.. tentialities are manifold. 
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APPENDIX A 

CONDUCTION SOLUTION FOR PARABOLIC VELOCITY DISTRIBUTION 

Jakob (17)  and Boelter et al (3) present complete discussions of 

the solution of Graetz (13) for laminar flow through a tube having uni-

form wall temperature . The local heat transfer coefficient may be de-

fined according to the equation 

h -x -
k �{J<,O) 

(trn- tw) 
Values for kt; b<,O) and (tm, - ty) are taken from Jakob as follows: 

k� �.o) ::: k t.btw [l.499e'¥ + I.078e-m,� + 0.358e-m� + - --] 
tM- tw = (t.a- t.,) [ 0.82De-�+ 0 .. 0972e-m')(+ O.Of35-M1)( +---] 

A-1 

A-2 

A-3 

where t0 is the initial fluid temperature, ty is the . wall temperature, 
2 'XI' 

and the exponentials may be rearranged so that mnx = � 
Values of' � are given as follows : 

t'o = 2.705, 7'1 c: 6.66, 7"2 = 10.3, r3 = (14.67) 

The value for t'3 is indicated by Jakob in a footnote (p.453) referring. 

to work of Lee, Nelson, Cherry, and Boelter ( 22) . 



8o 

Equations A-2 and A-3 may be combined to give 

[ 2(PJfr� � 2L��"� ] L ,  _ 2 J.499e- + f .078e- l-t!Ji + 0.358e- + - - -

'"Lix - r zw,. �\ �"1 
L0.820 e- x + 0.0972e

-
li3tt + o. Dl35e- )C. + - -J 

A-4 

In order to obtain the average values of Nusselt MOdulus between the 

entrance and x = L, a new definition may be made as follows: 

Thus .b. 

t.J"t.. = � f N� d(t) = A-7 

Nu,. = _.!. Je � In [o.azoe-�� o.o9ne �· + OOI35e-i{�·f' + --] 
4 L [o.ezo +0.097Z +D.DI3S +--J 

It can be shown that the sum in the denominator of Equation A-8 is 

unity 1 giving Equatio�?- A-9 as follows: 

A-8 
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· [ lbpef)"t �� 2laoA)lo ] NuL= -�le E In o.szoe- + o.0972.e� �t + o.ol35e-"Pef + - - -
· 

· 

A-9 

Values of NUx and l'luL are shown in !!!able VI • 

. • 
.· 

. · · 



TABLE VI 

COMPUTED VALUES OF :NUSSELT MODULI FOR 
. PARABOLIC VELOCITY DIS!miBUTION 

D Pe D Nl:lx NuL Pe x , L· 

1 ,.65 , . 69 

10 3.66 4.15 

40 4.00 5 .48 

100 4.76 7 .14 
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APPENDIX B 

AVEBAGE NUSBE!lr MODULI FOR TBE UNIFOBM VELOCITY CASE 

In the body of the report1, an equation was presented as the 

solution for local Nusselt moduli in circular tubes . This was for the 

case of uniform velocity in a ·thermal entrance region of uniform wall 

temperature. 

B-1 

. 

In order to determine average values of Nusselt modulus between 

the entrance and x = L, a new definition may be made as follows : 

Let B-2 

Then 

1. Equations II-10 and III-6 



.b 

NLLL- = e r NIL)( d (�7 = 

0 

or 

Nu. = -1 Pe Q In 
a.. 4 L 

00 

n.{ti) 
_ j_Pe Q_ ( dSl 

4 L l Sl ruo) 

It can be shown that L ��-= * , leading to Equation B-7 
tt:t 

Some local and average values of the Nusselt modulus are shown in 

Table VII. 
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B-5 

B-6 

B-7 



TABLE VII 

COMPUTED VALUES OF Nt}SSELT MODULI FOR 
UNIFORM VELOCITY DISTRIBUTION 

D D Pe x , Pe L 

1 

4 

10 

40 

100 

400 

1000 

Nux N� 

5 ·78 5 ·9� 

5 ·78 6.14 

5 ·78 6 .71 

6.17 9·30 

7-74 13.2 

13.08 24.3 

19 .50 37 -2 



APPENDIX C 

SAMPIB CAlCULATIONS 

Mercury Run No. 6 

Plate thickness, L = 0.124 in. 

Hole diameter, D = 0.125 in. 

Mercury temperatures (copper constantan couples ) 

upstream from test section - 0.879 m.v. , 72.10, 

downstream from test section - 0.979 m.v. , 76.2or 
According to Equation V-2 

The value of b in this case is D/2 = 1/16" 

The plot of t versus log !:, is shown on Figure 11. 
b 

From this plot, the value of the slope is determined as S = 179.3 -

127.3  = 52.0 where 179.3 and 127.3 correspond to !:. of 10 and 1, b 
respectively. The value of the heat rate 1 q1 may be computed from the 

slope as follows : 

s = 2�� q = 52.0 or. 

q = (52.0)(�kL) (52.0)�2)(�)�220�(0.124) = 323 Btu/hr 2.303 2.303 (12 • 

The heat transfer area is A = �rL or Jd>L ft. 2 



TABlE VIII 

TEMPERATURE DISTRIBUTION IN TEST SECTION PLATE 
(COPPER CONSTANTAN COUPLES) 

Thermocouple r, in. Emf, millivolts t . ,� 

1 1/4 2.923 158.6 

2 1/4 2.923 158.6 

3 1/2 5 .311 174.2  

4 1/2 3.304 173·9 

5 7/8 3.642 187.3 

6 7/8 3.626 186.6 

7 1 1/4 3-831 194-7 

8 1 1/4 3.831 194-7 
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From Figure ll1 ty is found to be 127.3 or. The mean mercury te�ra

ture is 74. 2'7. 

Then 

<tv - tm> = 127·3 - 74.2 = 53. 1  or. 
The heat transfer coefficient, h1 is computed as follows: 

{Thermal conductivity dA.ta of Hall are used in this example) 

The Reynolds modulus is frequently written as DUp but it may also be 
�A-

expressed as 4W where W is weight flov rate in DJ.jhr. The catch tt)A-D 
tank holds 8. J.8 lb . of mercury. between probes . The time required to 

fill the tank in this run was 15.25 seconds . 

Re = 4W = ttJA D 
8.18 x ;6oo 

{4) 15 .25 
tt {3.65 )  0.125 

12 

= 646oo 

Prandtl modulus {based on thermal conductivity data of Hall) is 0.0241 

Thus Pe and Pe D { since D 
= 1.0) are both equal to L L · 

Pe � = Re • Pr • � = {646oo) {0.024l)(l.o) = 1560 



APPENDIX D 

PHYSICAL PROP.ERTms OF MERCURY .AND SODIUM 

PhysicaJ. properties of mercury and sodium are shown on 

Figure 12. The values shown are interpolated from data tabulated in 

the Liquid-Metals llandbook {24) . For mercury, thermal conductivity data 

of Gehlhoff and Neumeier {12) appeared in the first edition, but the 

data of Hall {15 )  are included in the second edition. The data of 

Hall are considered to be more reliable . 
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APPENDIX E 

ABALISIS OF HEAT LOBS TliROUOB TEST SECTION GASKET 

In the evaluation of how closely the experilD:ental heat transfer 

system compares with the ideal .system, it was necessary to est�te the 

amount of heat conducted across the corner of the hard rubber gasket 

shown on Figure 5 .  An idealization of this conduct?-on pr.oblem is as 

follows. Consider the finite hollow cylinder shown on Figure l.;a. The 

probl.em is to determine the amount o:f heat conducted from the face in 

contact with the test plate, x = 0, to 'th� fluid through surface r = a. 

Consider the surfaces r = b and x = L to be insulated. Since the system 

is symmetrical about the x axis, it is necessar,y to study the tempera

ture distribution in only' half of the cross -section. The analytical 

solutions of several simil.ar problems of steady conduction in finite 

hollow 'cylinders are presented by Carslaw and Jaeger (5 ) .  Since the 

form of these a.nalytical sol.utions is cumbersome and the present probl.em 

does not demand. great precision, a relaxation method was selected �or 

the present study. Application of. the relaxation procedure to many 

heat transfer problems has been treated by Dusinberre (l.O) , 

Scarborough (;4) and Jakob (17) ,  but a superficial review of their vork 

revealed no information on hov best to apply the method to the tva

dimensional case in cyl.indrical coordinates . Consequently, a procedure 

has been im,provised for sel.ecting radial increments so that the us� 
relaxation proces�;J may be applied as if' the geometry consisted of a 

rectangular coordinate network. 
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In the two-dimensional rectangular coordinate network, it is 

common to arr� reference �its with equal heat transfer areas 

�allel to the coordinate axes . A heat balance over the unit indi

cated on Figure l;b is 

If .A = .& :. A3 = & then 4 = kA r .J. + + :+ t �t-4 ... ] tlx, AX'2. � AX4. � 7i.1: ..... '1 112. I 4- l.o 

E-1. 

It is usually on this basis that the relaXation procedure is applied 

to the two.odimensional problems in rectangular coordinates .  Now 'con-

&ider a similar heat �alance for a unit in the cylind,rical coordinate 

network shown on Figure 13c .  If temperature at each edge is the 

aritbmetic average of the center temperatures of the adjoining units 1 

one obtains 

(The validity of this choice of edge temperature. is examined later . )  

Thus 1 the only conditions for which the temperature term is anal.ogous 

to the rectangular geometry are : 

and (2) 



95 

where the Equation E-; becomes 

E-4 

These conditions may be written as follows 

then 

With a network covering the section shown on Figure l;d, it �s 

desirable to keep. the value of �x fixed for all units of the network. 

Similar1y to the equations set up above 1 one may also show that 

and 

Cl.ear1y 1 this may be continued for any number of additional. radial 

increments . 

Letting r7 = b and r1 = a, one obtains the following equations - · 

A'(P,.·I) lv. p = l"'?>1(Q•-1) ' v.  Q = IS'" ( e 1- 1 )  t �  J2 
which may be rearr�ged to get 

I . .. 



This procedure is also general for any number of .�d�tional radial 
. 

increments . The relation which ties these factors to a specific 

96 

case is that the product, P•Q11R 1 must equal the ratio of outside radius 

to inside radius , b/a.  Although the procedure is essential.l.Y one of 

trial and error, it is simple and may be performed quickly. The 

functions (M2-l) 1n M and l:.. (M2-l) .ln M are plotted on Figure 1.4 for 
2 . 

M 
various values of M. In order to illustrate t�e procedure, consider 

the network shown on Figure 1.:3<\. Three regions are indicated radially', 

so it is necessary to determine values of P, Q1 and B to conform to the 

relations noted above . For the first trial, let P = 1.8 .  From 

Figure 14, it is seen that if P = 1.8, then Q = 1.45 . But if Q = 1.451 

then B = 1.31. The product PQR is 3 .42. In the present case, it is 

found that P = 2.0, Q = 1.505, B = 1.336 gives a product of 4.02 which 

compares favorably with b/a = 4 for the present system. The radial 

increments for the present. analysis may now be determined as .follows : 

r1. = a = .J- in. = 0.0625 r1. 2 = 0 .00391 lo . 
r3 = 2r1 = � in. = 0.125 r3

2 = 0 .0156 

r5 = 1..5r3 = � in. = 0.1875 r52 = 0.0352 

r7 = b = 1.33 r5 = � in. = 0.250 r7
2 = 0.0625 
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It is now possible to consider the validity of the choice ·of 

edge temperature as the arithmeti� average of the temperatures charac-

terizing two adjacent units of the network. In case of unidirectional 

radial heat fl� in a cylind�r of the dimensions shown above, the 

temperature distribution would be described by the equation 

q. I .. t. -t� = 2trlc L n a-
Letting �-ta = 100<7, it is found that m = � 
Thus t-ta = � 1n !:. ln«+ a 
Values of t at different radial positions are shown on Table IX .  

For the case stud�ed, it appears that the choice of edge temperature 

is adequate, on the basis of the close approximation of the average 

temperatures to the compute� value for unidirectional radi8.1. heat 

flow. 

It is necessary to make special considerations for units which 

are oriented ·at borders of the network. Consider a .corner such as 

unit "i" of Figur� J.;d. The heat balance may be made as follows : 

where tt': 0 refers to the temperature at radius r2 along the plane 
2 1  

1 = 0 and �a, A x refers to the temperature at r = a and x = � x .  For 

Equation E-5 to be analogous to Equations E-2 and E-4, it may be 

written as follows : 



r 

r1 
r2 
r3 
r4 

r5 
r6 
r7 

TABLE IX 

RADIAL TEMPERATURE DISTRIBUTIOB IB A qyLIRDER 

r ln !:  
a a 

1 0 

f2 0.3464 

2 0 .6932 

2�1.5 0.8961 

3 1.099 

�1·33 1.241 

4 1.386 

t-ta 

0 
24.99 

50.01 

64.65 

79·29 

89.54 

100.00 

tr -t = 
trm-1 + trmt-1 

m a 2 

25 .00 

64.65 

89 .65 
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A work sheet is shown on Figure 15 . - The numbers in the circles are 

100 

E-6 

proportional to the change in Qo for each unit of the network, corre

spending to a temperature change at t(, . of one degree . (This is the 

number by which t0 is multiplied in the bracketed temperature term of 

Equation E-6) . Numbers below and to the right are the temperatures at 

the circled points , and numbers below and to the left are the corre-

spending values proportional to Qo• The numbers shown on Figure 15 

represent the temperature field resulting from the boundary conditions . 
�t ( ;_�) _ d D t ( ) t(r,O) = 100, t(a,x) = O, dr b,x - O, an ax r,L = O .  One may 

now compute the rate of heat conduction �hrough the gasket as follows : 

� � . � t-7 - I"S • 0.011 !  •� . 

"""f1. - ��1. = 0.0 1�6 i�.� 
r�•- l"';""L = 0.0 1 17 i n.� 

: �� ��437t o.44.9+o.ras] = 3.84-trk 

(J = 4.6X trk [60+2.3+t"]= 4 {0.0319) {91) tk : '2 79'1tk 
�.,.,.=4 lr� !3 12 In fZ ' 

� 
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FIG. 15 TEMPERATOBE DISTRIBUTION IN GASKET 
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Clearly, qr=a and qx=O should be equal since the other two possible 

paths for heat flow are insulated. A network of smaller subdivisions 

would be e�ected to bring these values closer together. For the 
. . 

present purposes 1 the average value will be considered sufficient 1 

i .e . ,  q = ; .84 + 2 ·79 �k = ; .;2 �k Btu/hr. 2 
If one compares the real and ideal gasket problems, it is seen 

that the ideal problem has boundary condi tiona which would lead to 

greater heat conduction through the gasket than the real problem. For 

example, the maximum difference between t(b,O) and the fluid �empera-
o ture is less than 100 F .  Furthermo� 1 in the real system, the value of 

t(a,o) is less than t(b ,O) according to an exponential function of 

radius . If t (a,x) is postulated to be the mean fluid temperature 1 

this implies that the interfacial thermal resistance is zero at r=a. 

The result is that the driving force is greater and the resistance 

less in the idealization than in the real case . 

If a value k = 0.1 Btu/hr.rt.2(0f/ft ) is assumed for the hard 

rubber, the heat leak is of the order of 1.0 Btu/hr which constitutes 

less than 1� ·of the beat flow in the test plate. 



APPENDIX F 

ESTIMATE OF WALL TEMPERATURE IN TBE TEST SECTION 

In order to determine the applicability of the postulate of uni-

form vall temperature to the present experimental system, an iter

ative procedure (34) has been used to estimate the actual vall tempera-

ture distribution in the copper plate. 

Consider a geometric network in the copper plate as shown on 

Figure 16. A heat balance in the network unit designated as (r2,x1) 
may be written as follows : 

Equation F-1 may be rearranged to get 

where P= (1i..)'� (�·)1.: - -- ( tf. )1. 
. io r. 'V.-1 

F-2 

Since, at steady state conditions , q(r2,x1) = 01 the term in the 

brackets may be set equal to zero and the resulting expression for t0 

is 

ti 2 � ( t + 'f:.aJ ± ta + fg.. 
2 (tiN+ I) 

) 
( 

F-3 



.2 
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FIG. 16 NETWORK FOR TEST SECTION ANALYSIS 
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For the case in which r = r0 defines the beat transfer surface, one 

may write 

where tm, is the mean fluid temperature. Thus, 

10��a�P(t,+t) +t 
rc? LP-1) lnP + 1 + h ro  Ira p {l)(� I< 

105 

F-4 

F-5 

where tm bas been set equal to zero. Similar equations may be set up 

for any particular unit in the geometric network. 

As shown in Equations F-4 and F-5 , it is necessary to use values 

of the heat transfer coefficient which correspond to particular lo

cations at the heat transfer surface. Since Equation II-16 may be 

used to compute average values of the heat transfer coefficient be-

tween x = 0 and x = L, it is possible to obtain average values for 

each increment ll. x of L as follows : 

F-6 

F-7 

F-8 
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But 

�,_ = 2k [ ).l<' � dx + (• �� ] = .)/JX ( h, Al< + hit. AX] 
0 J,c, F-9 

hz. = iJ:.X [ ( ... h�x + t n�dl(] = 3� [ 2h.f1X + h25 e.x] F-10 

Hence 

hrz.. = 2l12. - 11, 
h73 = 3ha-'lhz. 
h�= 4k+ -3n3 

F-ll 

F-12 

F-13 

In the present ana.lysis 1 the copper plate was divided into six 

radial increments and axial increments as shown on Figure 17 for a 

low h study and Figure 18 for a high study. At the coordinates desig-

nating each unit of the network, numbers in circles indicate the eq-

uations which are applicable. Below this and to the right is noted 

the steady state temperature which would prevail if the heat transfer 

coefficient were constant over the entire heat transfer surface. To 

the left is noted the temperature which appears as a result of the 

iterative procedure, with the allowance for variation of the heat trans-

fer coefficient. The details of the conditions of the analysis are as 

follows : 

n = 12 
D = 1/8 in. 
L = 1/8 in. 
q = 28o Btu/br 
k( copper) = 220 Btu/br :rt2 OF /ft 

r0 = 0.0625 in. 
r2 = 0.1061 in. 
rq. = O.l8o} in. 
r6 = 0.3o61 in. 
r8 = 0.5198 in. 

r10 = 0.8828 in. 
r12 = 1. 500 in. 
A X = 0.0312 in. 

p = 1.698 
N = 301.81 
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low h 

15700 
7025 
5485 
4680 
8220 

high h 

1476oO 
66020 
51560 
43980 
77290 

Additional equations used in the analysis are listed below: 

2 ��· 
'L ,....f., 

q., 
l. �. 

t,. 
� 

t' 

� =  

t = 0 

t= 

t =  

�'2.C3ot.et2,�+ti> + t2 + � 
2(3oi.SI tn,_+J )  

�4Z�+'l&)+-t2 
1.4 � C 1.25'4-x lo -5) 

0.7/J.'l. t. + t"Z. 
l .74'2 + h (1.'25'4-x ao-iJ) 

rr.'2 (301.8J)t, + t-a. +� 
.301.BI 1;.1. + '2 
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F-14 

F-15 

F-16 

F-17 

The results of the analysis of the wall temperature in the test 

section are summarized on Table X. Comparison is made with the tempera-

tures which woul.d prevail if the case were one of uniform heat flux. 

The two examples , having average heat transfer coefficients of 

8220 and 77290 Btu/hr. ft. 2 Of. , serve to bracket the range of experi-

mental measurements of heat transfer to mercury, from which coef-

ficients from 10300 to 66300 were obtained. In the example with low 

heat transfer coefficient, the deviation of wall temperature from the 

uniform postulated value is found to be greatest in the first increment 



TABLE X 

WALL TEMPERATtlBE IN THE TEST SECTION 

For low h System CQDJPUted t,  0, 
Increment Postulated t ,  0, Iterative Process Uniform Flux 

1 100 
2 100 
3 100 
4 100 

For high h System 
Increment Postulated t, 0, 

1 
2 
3 
4 

. �: . · >.  

10.64 
10 .64 
10.64 
10.64 

94.4  52.4 
99·7 ll7 .1 

102.9 149-9 
104.4 175 ·7 

Computed t, OF 
Iterative Process Uniform Flux 

1 ·91 5 . 58 
10.98 12.46 
12.73 15 .95 
13 .67 18.69 

llO 
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of length, averaging 5 .$ of the difference between the heat transfer 

surface temperature and the mean mercury temperature. Average devi-

ation over the entire heated length is abput 3·"' of this temperature 

difference . 

In the example with high heat transfer coefficient, the greatest 

average deviation from uniform temperature amounts to about 28.5� and 

it occurs in the last increment of heated length. The average devi

ation over the entire l.ength is about l.g/,. As shown on Tabl.e X, the 

wall. temperature distribution is intermediate between the postul.ated 

uniform temperature and that which woul.d resul.t in a case of uniform 

heat fl.ux. Hence, at the operating conditions yiel.ding high heat 

transfer coefficients, this particul.ar system tends tqward a case of 

uniform fl.ux. In the anal.ytical. sol.utions for uniform vel.ocity streams, 

it is fo� that predicted average Nussel.t moduli for the uniform wal.l 

temperature cases are only about 7� as high as predictions for cases 

of uniform heat f'l.ux. Consequently, one woul.d expect that the experi-

mental. data shoul.d be high compared with the uniform wall. temperature 

solutions in regions of high coeff'iciento  Clearly, this trend is ex-

hibited by the data, but the major infl.uence in making the data high at 

the high region of Pecl.et modul.us is the contribution of the eddy con-

duction, as noted previously in the text. 



APPENDIX G 

EBROR ANALYSIS 

In Chapter V ,  it was pointed out that the experimental values 

of' beat tr�f'er coef'f'icients were computed f'rom the equation 

h =  
where the heat rate q was determined by the slope S of the experi

mentally determined temperature gradient in the test section, ac

cording to the following expression: 

( ... -t' \ -=- � ln..t = S ln.J:. "+- 'WJ 'ZtrkeL b b 

In Equation G-2, tr is the temperature in the center plate at radius 

G-1 

G-2 

r, and tw is the plate surface temperature at r = b ;  kc is thermal 

conductivity of the plate and L is the plate thickness . Values of the 

surface temperature were obtained by extrapolating the measured tempera-.. 
ture gradient to the radius r = b.  

Experimental errors may be·· examined on the basis of the equations 

noted above (38) ,  describing data :from three different test sections . 

Here the heat transfer coefficient h is seen to be a fUnction of heat 

rate q, surfa�e temperature ty, mean liquid :temperature tm and surface 

area A, all of which are determined from experimental measurements. 

h = +( � 'tw > � , A) G-3 

dh = � dt} + � dt-v + l, d� +� dA G-4 

.. .... 
-· 



or 

From Equations G-1 and G-5 1 one gets 

An = � _ �tw - htm _ M_A 
n tt tw-� 

In practice 1 � b may be expressed as the sum of absolute values of 

the other terms so as to obtain the � error. 
4 Since S = '21t� L 1 one may wr1 te 

·.A 4 _ �L + .AS 
er- - -e- 5 

11:3 

G-5 

G-6 

G-7 
f1kc Note that the ---- term would be required in the estimate of accuracy, kc 

but it is not included in an estimate of precision. Since data from 

three different test sections are compared, the influence of physical 

dimensions and thermocouple locations must be involved in estimating 

the errors . The uncertainty in thermocouple location is about 0.002 

inch. If r2 = 1 1/4 in.  and r1 = 1/4 in. 1 one may obtain the relation 

� + Are 
'h tj = 

ln!i. 
tj 

0.009 G-8 

Values of l1tr and Aty may best be estimated by evaluating a set of 

temperature measurements by the method .of least squares . Equation G-2 

yields a linear plot of tr with respect to ln � 1 having an intercept b .  
tw at r = b .  Using data of Run 5 obtained in the mercury system, the 

least squares analysis is shown on Table XI . The average deviation is 



TABLE XI 

LEAST SQUABES ABALYSIS OF RADIAL TEMPERATURE 
DISTRIBUTION m TEST SECTION 

Run 5, Mercury System 
r X =  ln b y=t x2 gx Yc I Y-Yc l 

1 . 1.3863 158.6 1.92183 219 .87 28.32 158.81 0.2 
2 1.3863 158.7 220 .01 0.1 
3 2 .0794 173 .6 4 .32390 360.98 42.47 172.96 0.6 
4 2.0794 173 .2 360.15 0 .2 
5 2 .6391 185 .8 6.96485 490.34 53 .90 184.39 1.4 
6 2.6391 184.9 487 ·97 0.5 
1 2-9957 191.0 8.97422 572.18 61.19 191.68 0.7 
8 2 -2221 121-7 2�4.28 o.-o 

18.2010 1417 -5 44.36960 32 5 .78 3·7 

.NOTE : Numbers in the first co1UDm. designate the thermocouples 
in the test plate. The form. of the equation assumed for 
the analysis is y = Yo + gx:. Values of the constants 
determined by the analysis are Yo = 130.49 and g = 20.524. 
The average error is assumed to be the average of the 
absolute value of the deviation from the mean, about o.40,. 
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about 0 .5  0, . , and this vi� be considered as an -appropriate value of 

Hence, 

At'i + Lrbt; = 
_

. 1_ : D.04 
t�-: - t.: 25 

� I 

Letting L = 0.001 in. , E�tion G-7 � now  be evaluated. 

� 
= �L + bS :. 0.001 + "' 1'\1\ 6 • O O' r!" 4 L s 'l1w "' V'T'? • VJ 

The error in heat transfer area is obtained by considering possible 

errors in hole diameter as well as errors in' plate thickness . That 

is , 

The �ertainty in b and L is about 0 .  001 in. , hence 

b.AA � �J� + 0��1 = D .  04& 

G-9 

G-10 

G-ll 

G-12 

G-13 

G-14 

the change of mean fluid temperature tm, Within the test section is of 

the order of 4 or 5 Opt for the mercury runs . The error in tm is arbi

trarily taken as 1 Opt. Summing up the errors for heat transfer coef

ficient in the three test sections 1 according to Equation G-6, one gets 



ll6 

This error is reflected in the Busselt modu1us in the following manner : 

A (Nu..) = A h  .+ AQ = 0 1 53 + · o.ooz ::. 0 185 N!! h 0 ' 1/1" ' 
On this basis, the errors in Nusselt modu1us for the three test 

sections may amount to 18.�. Since these data are plotted against 

Pe � 1 it is of interest to examine errors in this term. 

n� D _ 4Wc 
r� T - vkL Pef = � + 't-

In practice 1 W was computed by measuring the time required for a 

certain volume of mercury to flow into the catch tank. The error in 

mass of mercury required to occupy the measured volume. is set at lj, 
on the basis of the variation in actual; measurements. The shortest 

G-16 

G-17 

G-18 

time increment required for filling the catch tank vas 5 .0 seconds on 

a timer which measured to 0.1 seconds. Hence 

.f: : � + ¥ :  0.01 + 05' : 0. 03 

In the region of the present experimental data, an error along the 
D abscissa, Pe L 1 would show itself as about half as much error along 

G-19 

G-20 

the ordinate, Bu. One can account in this ve:y for a precision of about 
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t 21. � for the data of the three test sections vhen plotted as Nu vs. 

Pe � • The accuracy of the data is of the same order as the precision L 
plus the additional uncertainty of the physical properties of the fluid. 

The data of Hall (15 )  and Gehlhoff and Neumeier (12) for tp.e thermal 

conductivity of mercury differ by about 3'51o in the temperature range 

of interest. 

) 



APPENDIX H 

Modul.i 

Nu Nusselt hD 
k 

Pe Peclet DU 
a 

Pr Praudtl =!!:-k 

Re Reynolds DUp -
,.. 

Capital letters 

A heat transfer area, :rt2 

B constant in power law expression, :f't./br. 

D channel diameter or equivalent diameter, :f't.  

L channel length, :f't .  

M,N,P,Q,R arbitrary functions defined in Appendix E 

M mass, lb. 

R interfacial electrical resistance, ohm 

s slope, 2sciz. , 0p-
u average fluid velocity, lb./hr. 

w flow rate, lb ./hr.  



Lower case letters 

a 

b 

c 

f 

g 

h 

k 

m 

q 

r 

t 

u 
x,y,z  

Greek letters 

thermal diffusivity, fto2/hro ,  or radius 
as used in Appendix E ,  ft o 

radius or half distance between plates, ft .  
beat capacity, Btu/lbo "F. 
functional notation as used in Appendix G 

arbitrary constant, AppendiX G 

heat transfer coef.:ficien.t, Btu/hr .ft .  2 Opt. 
thermal conductivity, Btu/hr. tt.2 "F/ft. 
exponent in power law expression 

exponent in parabolic flow solution, Appendix A 

beat rate, Btu/hr .. 

radius, fto 
temperature, OF .. 
local velocity, ft o /hr o 

distance coordinates, ft o 

an positive roots of Jo(a) = 0 

�n defined as (2n-l),r 

� roots used in parabolic flow splution, Appendix A 

�R eddy diffusivity of heat, tt.2jhr. 
8 time, hro 

JA viscosity, lb o /ft o hr. 

p density, lbo/fto;; or resistivity in obm em 
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t angular displacement in cylindrical coordinates 

llr see Appendix A 

J'l see Appendix B 

Subscripts 

c computed value, or denotes property of 
copper plate 

f denotes property of fluid 

L average value over length L 

m denotes mean fluid property 

o observed value, or initial fluid condition, 
or condition at origin of network unit 

r denotes condition at radius r 

w denotes condition at channel wall 

. x local value, or property of Ullknown substance 

Abbreviations 

b .p .  boiling point 

psi pressure in lb ./in.2 

ln natural logarithm 
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