
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2013 

Kinetic and kinematic evaluation of compensatory movements of Kinetic and kinematic evaluation of compensatory movements of 

the head, pelvis and thoraco-lumbar spine associated with the head, pelvis and thoraco-lumbar spine associated with 

asymmetrical weight bearing of the pelvic limbs in dogs asymmetrical weight bearing of the pelvic limbs in dogs 

David Alan Hicks 
dhicks@utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Small or Companion Animal Medicine Commons 

Recommended Citation Recommended Citation 
Hicks, David Alan, "Kinetic and kinematic evaluation of compensatory movements of the head, pelvis and 
thoraco-lumbar spine associated with asymmetrical weight bearing of the pelvic limbs in dogs. " PhD 
diss., University of Tennessee, 2013. 
https://trace.tennessee.edu/utk_graddiss/1734 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268766377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1734&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/767?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1734&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by David Alan Hicks entitled "Kinetic and 

kinematic evaluation of compensatory movements of the head, pelvis and thoraco-lumbar spine 

associated with asymmetrical weight bearing of the pelvic limbs in dogs." I have examined the 

final electronic copy of this dissertation for form and content and recommend that it be 

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a 

major in Comparative and Experimental Medicine. 

Darryl L. Millis, Major Professor 

We have read this dissertation and recommend its acceptance: 

Joseph P. Weigel, H. Steven Adair, Jonathan S. Wall 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



 
Kinetic and kinematic evaluation of compensatory movements of the head, 

pelvis and thoraco-lumbar spine associated with asymmetrical weight bearing 
of the pelvic limbs in dogs 

 
 
 
 
 
 
 
 
 
 

A Dissertation Presented for the  
Doctor of Philosophy 

Degree 
The University of Tennessee, Knoxville 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
David Alan Hicks 
       May 2013 



 ii 

Acknowledgements 

 Thank you to everyone involved in making completion of this Doctor of Philosophy 
degree in Comparative and Experimental Medicine possible.  Specifically, I would like to thank 
Dr. Darryl L. Millis who provided me with the means to pursue and produce this research.  I 
would not be where I am today without your generosity and faith in me.  You were the driving 
force behind my research, and you were so generous with your time, knowledge, and materials.  
You have taught me so much and I will forever be grateful for this.  Thank you to my other 
committee members, Drs. Joe Weigel, Steve Adair and Jon Wall for your continued support, 
understanding, and patience through this process.  I would like to thank Drs. Bob DeNovo and 
Claudia Kirk and my surgical residency mentors for the flexibility and patience you have shown 
to allow me to complete this degree.  I would especially like to thank my resident mates, Drs. 
Carlos Souza and Chad Andrews for all of your support.  I certainly could not have completed 
this without your help.  Thank you to all of my colleagues that have assisted in data collection, 
with a special thank you to Drs. Jason Headrick and Tripp McEachern for all of your time, effort, 
and input into this project. Also, I thank all of my family and friends, past and present, who have 
continued to support and encourage me through this endeavor, with a very special thank you to 
my wife, Dr. Deborah Hicks, and my daughter, Caroline Jayne. This work most certainly could 
not have been completed without them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 iii 

Abstract 
 

The purposes of this dissertation were to 1) determine ground reaction forces of dogs 
with mild asymmetrical weight-bearing of the pelvic limbs while trotting and 2) use three-
dimensional motion analysis to identify compensatory vertical motion of the head and pelvis, and 
lateral motion of the thoraco-lumbar spine in dogs with mild asymmetrical weight-bearing of the 
pelvic limbs while trotting, and 3) use this information to introduce a subjective grading system 
for the pelvic limbs in dogs.  Our hypotheses were that dogs with asymmetric weight bearing 
demonstrate compensatory motions of the head, pelvis and thoraco-lumbar spine while trotting, 
and that these motions would have a positive correlation with the degree of weight bearing 
asymmetry. 
 Twenty-seven dogs were included in the study.  Nine were normal dogs, which had no 
surgical intervention, 9 dogs had a cranial cruciate ligament transection and tibial plateau 
leveling osteotomy 3 ± 0.5 years prior to study start, and 9 dogs had a cranial cruciate ligament 
transection and extracapsular lateral fabellar-tibial suture (modified retinacular imbrications 
technique) 7 ± 0.5 years prior to study start.  A kinematic model was created so that reflective 
markers placed on the sagittal crest of the skull, the ischiatic tuberosity and 3 points along the 
thoraco-lumbar spine of each test subject could be tracked over time while trotting. Kinetic and 
kinematic data were used to characterize weight-bearing asymmetry between the left and right 
pelvic limbs, and to describe linear vertical displacement of the head and pelvis, and lateral 
angular displacement of the thoraco-lumbar spine. Maximum, minimum and range of motion 
values were analyzed for any differences between the pelvic limbs. 

Dogs with subtle asymmetric weight bearing of the pelvic limbs demonstrated a greater 
range of pelvis linear vertical displacement (PLVD) on the side with a greater peak vertical 
force, and greater thoraco-lumbar lateral angular displacement (TL-LAD) toward the side with a 
lower peak vertical force while trotting.  No differences in mean head linear vertical 
displacement (HLVD) were detected, and there were no significant correlations between the 
magnitude of HLVD, PLVD and TL-LAD and the degree of asymmetrical weight bearing of the 
pelvic limbs.  
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INTRODUCTION 
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Subjective Gait Analysis in Veterinary Medicine 

 Locomotion can be defined as the translation of a body from one point to another by 

means of characteristic movements.1  These movements, in reference to terrestrial locomotion, 

can be described as the dynamic activity of synchronized, repetitive, multi-planar rotational 

movements of body segments around joints.2 The precise neuro-muscular actions that produce 

motion at the joints of a bipedal or quadrupedal animal result in a regular, cyclic manner of 

locomotion or characteristic gait.3 Gaits, by one definition, are designed to minimize unwanted 

displacements or energy costs, while translating a body from one point to another in space at a 

certain range of velocity.1 Whether referring to a symmetric gait (i.e. trot, pace, amble or running 

walk) or an asymmetric gait (i.e. gallop, canter, or bound),4 alterations or asymmetries in these 

synchronized movements can be perceived visually as abnormal (i.e. lameness).  Such gait 

alterations or lameness can result from diseased or ineffective interactions between muscles, 

tendons, bones, ligaments, joints, and central or peripheral nervous tissues.5  Several basic gait 

analysis techniques may be necessary to elucidate the underlying neuro-musculoskeletal tissues 

involved, classify the resulting abnormalities as focal or multifocal, and determine if any of the 

motions being observed result from compensatory efforts by the subject.   

 Gait analysis, by definition, is the systematic measurement and assessment of 

characteristics of locomotion that either subjectively describes or objectively quantifies the 

forces that affect motion (i.e. kinetics) and the temporal and geometric properties of motion (i.e. 

kinematics).6-8 Subjective evaluation of gait for an asymmetry or lameness by watching a human 

or animal in motion is common in clinical practice.9  However, subjective assessment of 

lameness assumes both observational acuity, as well as the ability of the clinician or owner to 

reliably interpret signs of pain or disability before or after treatment for disease.10 Variations 
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among breeds, severity of underlying disease, the skill of the evaluator, and the types of 

subjective lameness grading systems used have contributed to inconsistencies resulting from 

traditional evaluation schemes.5,11,12 For example, observations of normal vs. abnormal motion in 

equine patients have included subjective evaluations of lameness and descriptions of 

compensatory movements of the head13 and pelvis14,15 (i.e. “head nod”, and “hip hike” or 

“gluteal rise”, respectively), as well as subtle lateral or ventral-dorsal motions of the thoraco-

lumbar spine.16  Such motions may be associated with the animal’s efforts to distribute body 

weight away from the affected limb during the swinging and weight-bearing phases of gait, 

presumably to reduce pain and discomfort.17-19  However, several recent studies have reported 

the low agreement between equine clinicians for subjective scoring of mild to moderate lameness 

and have concluded that subjective scoring of lameness in horses is either only ‘moderately 

reliable’ or ‘just within acceptable limits’.20-22 Considering the suggestions of these authors, 

compensatory movements of the subject may further skew the reliability of lameness scores 

during clinical lameness examinations.   

Subjective evaluation of canine gait has been used for many years as well.  However, our 

ability to perceive or interpret subtle motions during the gait cycle can be very difficult and in 

some respects impossible even for experienced gait specialists.23  The validity of owner, trainer 

and clinician subjective lameness scores as a reliable indicator of limb function and as a means 

of quantifying the long term success of treatments for many conditions is unknown.10 

Systematically determining the primary source of the lameness, characterizing associated 

compensatory motions, and classifying the gait following a subjective grading system used to 

evaluate asymmetry or lameness in the pelvic limb at a trot may allow for an earlier, more 
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comprehensive approach to the underlying condition, its progression, and potential response to 

treatments.   

Lameness has been reported to be the most economically important medical condition 

affecting horses,9 and subclinical disorders of the locomotor system are the most frequent causes 

(74%) of poor performance.24 Osteoarthritis is a common sequelae to a number of orthopedic 

conditions in dogs, including rupture of the cranial cruciate ligament, patella luxation, meniscal 

injuries, and hip dysplasia, and is characterized by pathologic changes of diarthrodial joints 

accompanied by clinical signs of pain and disability.25  It has been estimated that up to 20 

percent of the canine population over one year of age is affected with osteoarthritis.25,26 Several 

techniques are available for evaluating outcome after treatment of orthopedic disease.27  These 

include subjective evaluation of pain or lameness, force platform analysis, and radiographic 

scoring.28-33  Lameness grade is commonly used to evaluate function and pain in orthopedic 

patients; however, this is subjective and may be confounded by evaluator bias.27  Several 

examples of proposed lameness grading schemes have been described in the veterinary 

literature,12,34-37 however they are very general in nature and focus mainly on consistency of 

weight bearing of either the forelimb or the hind limb, degree of discomfort, and variations of 

‘gait abnormalities’. 
Movements of the head, spine, pelvis and extremities of a quadruped are a dynamic, 

coordinated process that result from symmetrical neuro-muscular actions on the musculoskeletal 

system.  These motions are best described by making multiple observations over time, rather 

than by observing single discrete events.38 Visually identifying alterations or asymmetries in 

these coordinated movements over time can prove difficult even to the trained observer, not to 
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mention when the abnormality (i.e. lameness) is subtle.  Conditions such as congenital 

abnormalities, trauma, degenerative joint disease (DJD) or osteoarthritis (OA), neuromuscular 

conditions, infectious diseases or neoplasia have been reported as resulting in varying degrees of 

thoracic or pelvic limb lameness.5  Without early recognition and intervention for these 

disorders, irreversible damage to the musculoskeletal system may result, allowing potential 

treatments to be less effective if the disease continues to progress.  Quantifying and 

characterizing the asymmetry of an animal’s body weight distribution and compensatory 

movements during locomotion may prove clinically significant by allowing for earlier 

recognition of underlying disorders.  This earlier recognition may allow for initiation of earlier 

treatment, a more comprehensive assessment of response to therapies, and a potential overall 

reduction in the progression of secondary OA. Therefore, competence in evaluating animals with 

a lameness early in the course of the disease process is vital to initiate early therapy,5 and has 

been considered the driving force behind the development of more objective, quantitative kinetic 

and kinematic gait analysis techniques.   
Kinetic Gait Analysis in Veterinary Medicine 

   Objective measures of musculoskeletal function have been available since the late 

1800s.23  Increasing interest in clinical methods of gait analysis for both humans and animals has 

been rapidly evolving over the last 40 years and has brought together various technological 

advances in single and serial force platforms, electro-goniometric devices, computerized two- 

and three-dimensional kinematic systems, electro-myography, and a variety of ‘bio-feedback’ 

instruments.1,23  Such objective modalities can be found in modern gait laboratories in both 

medical and veterinary research institutions, and have aided our ability to quantitatively define 

temperospatial gait characteristics.39  Force platform gait analysis is a valuable method to obtain 
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objective data on limb loading in dogs, and is increasingly being used to evaluate the outcome of 

surgical or medical treatments for orthopedic conditions.40  Kinetic analysis of canine gait can be 

performed using methods introduced in 1987 by Budsberg et al1,41 which measure orthogonal 

ground reaction forces (i.e. mediolateral [x direction], craniocaudal [y direction], and vertical [z 

direction]) resulting from paw impact during the stance phase of gait.42  This technique can 

accurately assess normal and abnormal weight bearing, identify features of specific gait 

alterations, and quantify weight distribution so that numeric comparisons can be made within or 

between animals over time;6,43 these methods have become the gold standard to objectively 

assess lameness.  The ground reaction forces obtained represent the summation of truncal and 

limb forces transmitted through one limb to the ground during the stance phase of the stride, and 

have been viewed as an objective, quantitative measure of weight bearing for individual 

limbs.6,42 The peak vertical force, and vertical impulse, which is the vertical force integrated over 

time during the stance phase of gait, most directly measure dynamic weight bearing in both 

humans and animals, and are decreased, relative to ‘normal’, when an asymmetry or lameness is 

present.1,42,44,45 

Objective analysis tools, such as the force platform, allow for a more accurate assessment 

of functional weight bearing, and may also reduce or eliminate subjective influence, error, or 

bias.  Anecdotal observations suggest that dogs can have up to a 5-10% difference in weight 

bearing on force platform analysis prior to visualizing subtle clinical lameness in affected dogs in 

the pelvic limbs, and up to a 25-30% difference in the thoracic limbs. To date, kinetic assessment 

has been extensively used to examine the gait and gait-associated abnormalities in horses, in 

dogs that are considered normal, and in dogs following coxofemoral excision arthroplasty, total 

hip replacement, cranial cruciate ligament rupture repair, hip dysplasia, induced acute synovitis, 
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and osteoarthritis.1,3,41,44-63 With the continuing advances in computer technology, biomechanical 

researchers have developed systems that integrate methodologies using kinetic (force) analysis, 

two- and three-dimensional kinematic (motion) analysis, and electromyography (EMG) all at the 

same time.23 

Kinematic Gait Analysis in Veterinary Medicine 

Kinematic gait analysis is one of the oldest methods of evaluating movement, dating back 

to the late 19th century.  This aspect of gait analysis describes the motion of objects, quantifies 

the positions, velocities, accelerations, and angles of anatomical points, segments, and joints in 

space.23   It is performed using a series of cameras and non-reflective or reflective markers 

placed on the subject’s skin over specific anatomic landmarks used for reference points, 

approximating centers of joint motion, indicating bony prominences, or points measured a 

specified distance from a specified landmark.38,64-66 Two popular techniques that have laid the 

foundation for studying kinematics involve the use of analog- or digital-based analysis systems 

that are combined with commercially available video or optical capture computer software 

programs that detect and process two- or three-dimensional coordinates of the markers that emit 

a reflection when exposed to infrared or visible light.8,23 A number of recent studies have used 

software programs to quantify two- and three-dimensional representations of animal movements 

that have provided joint angular motion, angular velocities, and angular accelerations; patterns of 

stride, including stride lengths, stance times, and swing times; and linear velocities and 

accelerations during normal and abnormal musculoskeletal conditions.38,39,62,65,67-86  However, 

limited published data exist regarding evaluation and measurement of head, pelvic, and thoraco-

lumbar spinal movements in dogs with asymmetrical weight bearing of the pelvic limbs. Also, 

there is little evidence regarding the sensitivity of these movements and their association with the 
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degree of asymmetry or lameness being evaluated.19  Regardless of the absence of objective 

characterization of gait and compensatory movements in the veterinary literature, anecdotal 

descriptions of such movements have historically influenced subjective assessments of pelvic 

limb lameness in dogs. To our knowledge positive correlations between these movements and 

the severity of observed clinical lameness have only been suggested. 
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Problem Statement 

The purposes of the study reported here were to 1) measure ground reaction forces of 

dogs with mild asymmetrical weight-bearing of the pelvic limbs while trotting, 2) use kinematic 

analysis to characterize vertical motion of the head and pelvis, and lateral motion of the thoraco-

lumbar spine in dogs with mild asymmetrical weight-bearing of the pelvic limbs while trotting 

and 3) use this information to introduce a subjective grading system for the pelvic limbs in dogs. 

Hypothesis 

We hypothesized that compensatory movements of the head, pelvis and thoraco-lumbar 

spine occur during asymmetrical weight bearing of the pelvic limbs in dogs, and that the 

magnitude of these dynamic measurements would positively correlate with the degree of weight-

bearing asymmetry while trotting.  We postulated that this information would be instrumental in 

designing a subjective grading system for the pelvic limb in dogs and in aiding the clinician or 

owner during clinical gait examinations of dogs with suspect pelvic limb lameness. 
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MATERIALS AND METHODS 
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Facilities 

The Veterinary Orthopedic Laboratory (VOL) at The University of Tennessee College of 

Veterinary Medicine was used for collection of kinetic and kinematic data.   

Subjects 

Twenty-seven adult research hound-type dogs were evaluated.  Mean body weight was 

21.5 ± 2.5 kg (47.3 ± 5.5 lbs.).  All dogs were random source animals, which had reached 

skeletal maturity at the time of acquisition.  Therefore their ages were estimated based on length 

of time at our research facility from time of purchase.  Estimated mean age was 5.3 ± 3.3 years.  

These dogs were used as part of an ongoing study that grouped the dogs into three categories.  

The control group (Group 1; n=9) included dogs free of any orthopedic or neurologic 

abnormalities.  Physical examination of these dogs by the same investigator (DLM) revealed no 

gait deficiencies, orthopedic or neurologic problems and all were assigned a subjective lameness 

grade of 0.  The two treatment groups consisted of dogs that had received either a TPLO (Group 

2, n=9) or LFS (Group 3, n=9) surgery previously. Surgery was performed on average 48 ± 5 

months prior to the start of this study for Group 2 and on average 84 ± 5 months for Group 3.  

For both surgical groups of dogs, the CCL was surgically transected immediately prior to the 

stabilization procedure.  The TPLO surgery was performed as previously described.87 Briefly, an 

osteotomy of the proximal tibia was created using a biradial saw blade.  The proximal tibial 

component was rotated caudally so that the tibial plateau angle was approximately 5 degrees to 

the long axis of the tibia.  The two tibial components were held in place with a 6 holed TPLO 

plate (Figures 1 and 2).  The LFS group was stabilized with two nylon sutures passed around the 

lateral femoral fabella and through a hole created in the proximal tibial tuberosity (Figure 3).  

Once recovered from surgery, all surgical dogs were allowed the same amount of leash restricted 
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activity and were kept in the same controlled kennel-type environment. The control group was 

similarly housed. Thorough physical and orthopedic examinations were performed on Groups 2 

and 3 by the same investigator (DLM) and no significant gait, clinical or orthopedic 

abnormalities, other than the stifle surgeries, were detected.  All 18 dogs in Groups 2 and 3 were 

assigned a subjective lameness grade of 0, and all 27 dogs were considered fit and capable to trot 

consistently along a designated gait runway measuring 10.7 meters in length.  The Institutional 

Animal Care and Use Committee approved the study.    
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Figure 1. A representation of a tibia before and after the proximal tibial osteotomy for the tibial 
plateau leveling osteotomy. (From Kowaleski MP, Boudrieau RJ, Pozzi A: Stifle Joint. In Tobias 
KM, Johnston SA, editors: Veterinary Surgery Small Animal, ed 1, 2012, Saunders/Elsevier) 
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Figure 2. Post-operative radiographic images of a TPLO procedure. (From Kowaleski MP, 
Boudrieau RJ, Pozzi A: Stifle Joint. In Tobias KM, Johnston SA, editors: Veterinary Surgery 
Small Animal, ed 1, 2012, Saunders/Elsevier) 
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Figure 3: Representation of lateral fabellar suture procedure. (From Kowaleski MP, Boudrieau 
RJ, Pozzi A: Stifle Joint. In Tobias KM, Johnston SA, editors: Veterinary Surgery Small Animal, 
ed 1, 2012, Saunders/Elsevier) 
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Ground Reaction Force Measurement and Limb Designation Protocol 

 Kinetic data were obtained using a force platform (OR 6-6, Advanced Medical 

Technology Inc., Watertown, MA).  The force platform was mounted in the center of and level 

with the surface of the designated gait runway.  The signal from the force platform was 

processed through an analog to digital convertor board and stored by use of a specialized 

computer software program (Acquire 7.3, Sharon Software, Inc., Dewitt, MI).  As each dog 

trotted along the gait runway and across the force platform, velocity and acceleration were 

recorded by use of 5 photoelectric cells, each placed 50 centimeters apart, and a start-interrupt 

timer system.  Care was taken to ensure that the dog triggered the photoelectric cells and that a 

relatively constant speed with minimal acceleration or deceleration was maintained across the 

force platform during each trial.  Forward velocity of the dog was controlled by the same 

investigator (DAH) and maintained between 1.7 to 2.1 meters/second (m/s) [(3.8 to 4.7 

miles/hour)]. Forward velocity was also verified by kinematic analysis of a reflective sphere 

placed on the sagittal crest of the skull.  The acceptable range of acceleration and deceleration 

was maintained at ± 0.50 meters/second/second (m/s2) [(± 0.003 miles/second2)], respectively.  

An evaluation was considered valid if the velocity and acceleration were within the described 

parameters, and a thoracic limb followed immediately by the ipsilateral pelvic limb contacted the 

force platform while the dog trotted along the gait runway.  If the dog was distracted during an 

evaluation, or if any portion of a contralateral paw hit the force platform, the data were 

considered invalid.  Five valid evaluations were collected for both left and right pelvic limbs, and 

vertical ground reaction forces were used to mark initiation and termination of the stance phase.  

Peak vertical force (PVF) and vertical impulse (VI) were recorded, and these values were 

expressed as a percent of body weight for each limb at 1-millisecond intervals for 650 
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milliseconds after each foot strike.  The mean velocity, acceleration, PVF and VI values for each 

dog for the 5 valid trials were calculated for both pelvic limbs while trotting. Mean PVF values 

were used to identify weight-bearing asymmetry in all study dogs. For study purposes, the pelvic 

limb that demonstrated the lowest mean PVF was designated the limb with ‘lower’ degree of 

weight bearing, and the contralateral pelvic limb, which demonstrated the greater mean PVF, 

was designated as the limb with ‘greater’ degree of weight bearing. 

Objective Symmetry Grade Assignment 

A simplified method for determining a mean vertical symmetry index was used by 

calculating the ratio between the lower and greater PVF values.  The resulting value was 

multiplied by 100, and then subtracted from 1 to yield the percent difference in weight bearing 

(i.e. degree of weight bearing asymmetry) between the pelvic limbs with lower and greater PVF 

values.  Objective symmetry grades ranging from 0 – 5 were proposed based on the percentage 

of weight bearing asymmetry calculated between the pelvic limbs with lower and greater degrees 

of weight bearing (Table 1). For example, a weight bearing difference between 0.0 and 7.9% 

using the symmetry index represents near perfect symmetry between the 2 measured limbs (i.e. 

no lameness) and would be assigned an objective symmetry grade of 0.  A weight bearing 

difference between 27.0 and 45.9% objectively would be an objective symmetry grade of 2.  
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Table 1–Proposed objective symmetry grade (OSG) based on percent difference of 
the mean lower and greater peak vertical force values. 
 

Percent Difference of Mean 
 Affected / Unaffected  
Pelvic Limb PVF 

 
OSG 

 

 
              0.00-7.9% 

 

 
0 

 
             8.0-26.9% 

 
  1 

 
 

            27.0-45.9% 
 

 
  2 

 
 

            46.0-64.9% 
 

 
  3 

 
 

        65.0-83.9% 
 
 

 
   4 

 

 
             84.0-100% 
(Non-weightbearing) 

 

 
   5 
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Kinematic Measurement Protocol 

Kinematic gait analysis was performed simultaneously with kinetic data recording using 

a commercially available motion analysis system (Peak Performance Technologies, Inc., 

Centennial, CO). The commercial software system used an absolute reference frame based on the 

global Cartesian system, in which the x-axis corresponded to the principal cranial-caudal 

direction, the y-axis corresponded to the medial-lateral direction, and the z-axis corresponded to 

the vertical direction (Figure 1).   

The system was calibrated before each recording session by capturing 4 stationary and 2 

dynamic reflective spheres on a reference frame and a reference wand, respectively (2 cm 

diameter; Peak Performance Technologies, Inc., Centennial, CO).  This calibration process 

yielded a designated three-dimensional test space (an area measuring 6.3m x 6.3m x 6.3m) that 

was centered directly over the force platform. The 4 stationary spheres represented the origin, the 

x-axis and the y-axis.  The 2 x-axis spheres measured 40 cm and 80 cm from the origin, 

respectively, and the 1 y-axis sphere measured 70 cm from the origin.  The 2 dynamic spheres on 

the wand measured 90 cm apart.  All measurements were made from the center of all spheres.  

The 6 reflective spheres represented known coordinates for calibration of the designated three-

dimensional test space and were recorded for 1 minute while the wand was moved throughout 

the test space.  The calibration process reported error measurements at a distance of 500 

millimeters within a field of view of the 6 spheres with known coordinates, and was considered 

adequate if the error measurements were ≤ 1 millimeter for each sphere (0.2% error).  

 An area of hair (5 cm2) was clipped from each dog at specific anatomic landmarks.  

These landmarks included the sagittal crest of the skull, bilateral dorsal aspects of the scapular 

spine, bilateral scapulohumeral joints, bilateral humeroulnar joints, bilateral lateral 



 20 

antebrachiocarpal joints, bilateral lateral metacarpal-phalangeal joints, a dorsal midline point 

measured 8 cm cranial to the thoraco-lumbar spinal junction, the thoraco-lumbar spinal junction, 

a dorsal midline point measured 8 cm caudal to the thoraco-lumbar spinal junction, bilateral 

cranial dorsal iliac spines, bilateral ischiatic tuberosities, bilateral greater trochanters, bilateral 

femorotibial joints, bilateral tarsocrural joints and bilateral lateral metatarsal-phalangeal joints.  

The reflective spheres were securely attached to the anatomic landmarks of each dog by the same 

investigator (DAH) with nonirritant adhesive (Figure 2).  Four digital infrared cameras (Philips 

LTC-5000; Philips, Inc., Centennial, CO) were used to capture marker locations on each dog as 

they trotted along the designated gait runway, crossing directly over the force platform.  Each 

camera had 48 annularly placed light-emitting diodes around the lens for improved brightness 

and uniformity of light.  Sample frequency of each camera was 60 Hz.  Marker locations were 

recorded by use of the motion analysis program and software (KineCalc for Motus 8.3, Peak 

Performance Technologies, Inc., Centennial, CO) was used to calculate all of the defined 

variables. Three-dimensional coordinates of marker trajectories were smoothed by a Butterworth 

4th-order low-pass filter at a cut off frequency of 6 Hz according to the manufacturer’s 

recommendations (KineCalc for Motus 8.3, Peak Performance Technologies, Inc., Centennial, 

CO). 
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Figure 4 – Picture of reference frame and reference wand indicating calibration test 
space directly over the force platform. The small yellow arrow indicates the origin 
and the large yellow arrows represent the x-axis, y-axis, and z-axis, respectively. 
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Figure 5 – Picture of reflective spheres placed on the left side of the animal 
representing specific anatomic landmarks. Thoracic and pelvic limb markers were 
not used for the current study. 
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Five valid trials were recorded for both left and right sides while each dog trotted along 

the 10.68 meter designated gait runway, passing through the calibrated three-dimensional test 

space and directly over the force platform.  For study purposes, one pelvic limb stride was 

defined by one complete stance phase (i.e. from paw strike to toe off) and one complete 

sequential swing phase (i.e. from toe off to paw strike).  Data for 2 consecutive pelvic limb 

strides were collected per trial. For study purposes, the sequence of the 2 complete pelvic limb 

strides was defined as the pelvic limb gait cycle. Both vertical ground reaction forces for the 2nd 

rear limb strike and digital tracking of a reflective marker secured to the lateral metatarsal-

phalangeal joint region throughout the gait cycle was used to mark initiation and termination of 

both the stance and swing phases.  After trials were obtained for each dog trotting through the 

test space, the digital video files were processed by use of specialized motion analysis software 

to identify locations of all reflective markers in 3-dimensions.  

Measurements:  Head Linear Vertical Displacement (HLVD) 

HLVD during 2 strides per trial was established by tracking the reflective marker secured 

on the sagittal crest of the skull (Figure 3) in the vertical (Z coordinate) axis while trotting over 

ground.   The HLVD in meters from the surface of the gait runway was calculated for each stride 

and maximal and minimal vertical displacement values were determined using specialized 

computer software.  The mean of the maximal and minimal values for the 2 consecutive strides 

was calculated for each dog for the 5 valid trials, and the mean of these values (i.e. mean of the 

means) ± SD for maximum and minimum displacement values for HLVD were determined for 

the pelvic limb gait cycles with lower and greater degrees of weight bearing.  Mean HVLD total 

motion values for the gait cycles were determined by subtracting the minimum values from the 

maximum values. 
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Measurements:  Pelvis Linear Vertical Displacement (PLVD) 

PLVD during 2 strides per trial was established by tracking the marker secured on the 

ischiatic tuberosity (Figure 3) in the vertical (Z coordinate) axis while trotting over ground.   The 

PLVD, in meters from the surface of the gait runway, was calculated for each stride and maximal 

and minimal values were determined using specialized computer software.  The mean of the 

maximal and minimal values for the 2 consecutive strides was calculated for each dog for the 5 

valid trials, and the mean of these values (i.e. mean of the means) ± SD for maximum and 

minimum displacement values for PLVD were determined for the pelvic limb gait cycles with 

lower and greater degrees of weight bearing.  Mean PLVD total motion values for the gait cycles 

were determined by subtracting the minimum values from the maximum values. 

Measurements:  Thoraco-Lumbar Lateral Angular Displacement (TL-LAD) 

For study purposes the thoraco-lumbar joint angle (T-L Angle) was defined by the 

positions of the 3 reflective markers on the dorsal midline of the T-L region (Figure 4) to 

establish 2 distinct segments.  Segment 1 was created by a computer-generated line between 

marker number one (8 cm cranial to the thoraco-lumbar junction) and marker number two (at the 

thoraco-lumbar junction).  Segment 2 was created by a computer-generated line between marker 

number two and marker number three (8 cm caudal to the thoraco-lumbar junction).  Using the 

Cartesian global coordinate system and computer software, the T-L angle in degrees was 

calculated by tracking the 2 segments (Figure 4) in the horizontal (Y coordinate) axis.   A 

computer-generated angle of reference (Figure 5) was defined as 1800 when the 3 markers were 

in a straight line from cranial to caudal, and any deviation from this angle of reference was 

defined as the thoraco-lumbar lateral angular displacement (TL-LAD).  Based on the designated 

origin of the calibration reference frame (Figure 1), when TL-LAD occurred to the left side of 
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the animal (i.e. to the left of the 1800 reference angle), the computer-generated angular values 

were less than 1800 (Figures 5 and 6).  When TL-LAD occurred to the right side of the animal 

(i.e. to the right of the 1800 reference angle), the computer-generated angular values were greater 

than 1800 (Figures 5 and7).  Maximum and minimum values were generated for 2 strides using 

computer software.  The mean of the maximal and minimal values for the 2 consecutive strides 

was calculated for each dog for the 5 valid trials, and the mean of these values (i.e. mean of the 

means) ± SD for maximum and minimum displacement values for T-L LAD were determined for 

the pelvic limb gait cycles with lower and greater degrees of weight bearing.  For study purposes 

the numerical difference from the 1800 reference angle was calculated for each of the mean 

maximum and minimum displacement values for all 27 dogs and represents the T-L LAD 

occurring throughout the gait cycles for both pelvic limbs. Mean summary statistics for all 

dynamic measurements are reported in Table 2.    
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Figure 6 – Picture of reflective markers placed on the study subjects for kinematic 
analysis.  The 2 black arrows indicate reflective markers placed on the sagittal 
crest of the skull and ischiatic tuberosity for tracking head linear vertical 
displacement (HLVD) and pelvis linear vertical displacement (PLVD), 
respectively.  Thoracic and pelvic limb markers were not used in the current study. 
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Figure 7 – Picture of reflective markers placed on the dorsal midline of the T-L 
region to establish computer-generated segments 1 and 2 represented by the black 
arrows.  
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Figure 8 – Illustration of computer-generated angle of reference for thoraco-lumbar 
lateral angular displacement (T-L LAD).  When segments 1 and 2 (large black 
arrows along the x-axis) are in a straight line, the computer-generated angle 
resulted in 180o (small black arrow along the x-axis).  When T-L LAD occurred to 
the left (top figure), the computer-generate angles were< 180o.  When T-L LAD 
occurred to the right (bottom figure), the computer-generate angles were> 180o. 
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Figure 9 – Picture of reflective markers placed on the dorsal midline of the T-L 
region for kinematic analysis.  The black arrows represent thoraco-lumbar lateral 
angular displacement (T-L LAD) to the left.   
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Figure 10 – Picture of reflective markers placed on the dorsal midline of the T-L 
region for kinematic analysis.  The black arrows represent thoraco-lumbar lateral 
angular displacement (T-L LAD) to the right. 
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Table 2 – Mean + SD values for kinetic and kinematic variables for the pelvic 
limbs at a trot with lower and greater degrees of weight bearing.   
        

 
Variable 

Lower degree of 
weight bearing 

Greater degree of 
weight bearing 

Forward Velocity (m/s) 1.87 + 0.10 1.89 + 0.11 

Acceleration (m/s/s) 0.023 + 0.17 0.021 + 0.17 
Peak Vertical Force 
(% of body weight) 

66.50 + 8.0* 71.39 + 7.88 

Vertical Impulse 
(% of body weight) 

8.46 + 0.88* 8.95 + 0.84 

Maximum HLVD (meters) 0.55 + 0.09 0.53 + 0.12 

Minimum HLVD (meters) 0.51 + 0.08 0.49 + 0.11 
Total motion of HLVD (meters) 0.037 + 0.010 0.036 + 0.014 

Maximum PLVD (meters) 0.57 + 0.09 0.57 + 0.13 
Minimum PLVD (meters) 0.47 + 0.11 0.43 + 0.13 

Total motion of PVLD (meters) 0.095 + 0.054 0.134 + 0.086* 
Maximum T-L LAD (degrees) 8.73 + 5.25* 5.51+ 6.51 

Minimum T-L LAD (degrees) -4.98 + 4.51 -8.29 + 7.26 
* Value is significantly (P < 0.05) different between pelvic limbs with lower and 
greater degrees of weight bearing. 
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CHAPTER 3 

Data Analysis 
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Statistics 

All computations were performed using a commercially available statistical software 

program (SAS, version 9.1, SAS Inc., Cary, NC).  All data were tested by the Shapiro-Wilk test 

and were normally distributed. The mean PVF and VI values for 5 valid trials for each dog was 

calculated and used to identify weight-bearing asymmetry between right and left pelvic limbs at 

a trot.  These mean values were compared using a paired Student’s t-test to determine 

significance.  Mean maximum, minimum and total range of motion HLVD, PLVD, and T-L 

LAD values of the 5 valid trials were calculated for each dog.  These mean values were then 

used to compare differences between the pelvic limbs with lower or greater degrees of weight 

bearing using a paired Student’s t-test.  Simple linear regression was used to determine if a 

relationship existed between mean lower and greater peak vertical force (PVF) and vertical 

impulse (VI) of the pelvic limbs and the mean HLVD, PLVD, and T-L LAD values.   Values of 

P < 0.05 were considered significant. 
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CHAPTER 4 

RESULTS 
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Ground Reaction Forces and Limb Designation 

All 27 dogs completed the study.  Mean body weight was 21.5 + 2.5 kg (47.3 + 5.5 lbs.) 

and estimated mean age was 5.3 + 3.3 years.  The mean PVF value for 5 valid trials for each dog 

was calculated and used to identify weight-bearing asymmetry between right and left pelvic 

limbs at a trot.  The pelvic limb that had the lower mean PVF value was designated the limb with 

a ‘lower’ degree of weight bearing, and the contralateral pelvic limb was designated as the limb 

with a ‘greater’ degree of weight bearing. Twelve of the 27 dogs evaluated had lower weight 

bearing on the right pelvic limb.  The remaining 15 dogs had lower weight bearing on the left 

pelvic limb.  Mean PVF in the lower weight bearing limbs (66.50 + 8.0) was significantly 

different (Figure 11) than that of the greater weight bearing limbs (71.39 + 7.88; P < 0.001), and 

mean vertical impulse was significantly different (Figure 12) in the lower weight bearing limb 

(8.46 + 0.88) compared to the greater weight bearing limb (8.95 + 0.84; P < 0.003).    
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Figure 11 – Bar graph of mean peak vertical force (PVF) values with standard 
deviation bars reported during the stance phase of the gait cycle for lower and 
greater weight bearing in the pelvic limbs of all 27 dogs.  *Significant difference 
(P < 0.001). 
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Figure 12 – Bar graph of mean vertical impulse (VI) values with standard deviation 
bars reported during the stance phase of the gait cycle for the for the lower and 
greater weight bearing in the pelvic limbs of all 27 dogs.  *Significant difference 
(P < 0.03). 
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Objective Symmetry Grade Assignments 

Objective symmetry grades (OSG) for all 27 dogs are provided in Table 3.  Fourteen of 

the 27 dogs evaluated were assigned an OSG of 0, which represents an 0.0 – 7.9% difference in 

weight bearing symmetry between the pelvic limbs, and 13 of the 27 were assigned an OSG of 1, 

which represents an 8.0 – 26.9% difference in weight bearing symmetry.  None of the 27 dogs 

had greater than 26.9% difference in weight bearing symmetry and were not assigned an OSG 

greater than 1.      
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         Table 3–Objective symmetry grade (OSG) for all 27 dogs.  
 

 
 
Dog* 

 
Mean PVF 
Affected      Unaffected 

 
 
Ratio  

 
Percent Asymmetry 

(1 - Ratio) 

 
 

OSG 
1 60.42 72.14 0.84 16 1 
2 63.59 71.32 0.89 11 1 
3 67.28 68.81 0.98 2 0 
4 54.77 59.48 0.92 8 1 
5 70.70 79.36 0.89 11 1 
6 76.08 76.57 0.99 1 0 
7 85.26 88.79 0.96 4 0 
8 62.13 65.12 0.95 5 0 
9 75.19 78.03 0.96 4 0 
10 57.96 66.36 0.87 13 1 
11 59.32 62.06 0.96 4 0 
12 77.89 85.42 0.91 9 1 
13 62.85 65.86 0.95 5 0 
14 52.69 58.96 0.89 11 1 
15 64.65 68.90 0.94 6 0 
16 61.62 62.10 0.99 1 0 
17 67.17 73.97 0.91 9 1 
18 59.62 65.40 0.91 9 1 
19 67.79 69.48 0.98 2 0 
20 59.29 59.88 0.99 1 0 
21 69.77 78.07 0.89 11 1 
22 69.70 75.38 0.92 8 1 
23 68.46 71.55 0.96 4 0 
24 70.80 78.91 0.90 10 1 
25 74.33 76.04 0.98 2 0 
26 57.55 69.20 0.83 17 1 
27 78.89 80.40 0.98 2 0 

 *Dogs 1-9 were the normal group, dogs 10-18 were the TPLO 
            group and dogs 19-27 were the LFS group.   
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Head Linear Vertical Displacement (HLVD) 

Mean maximum, minimum and total motion values for HLVD for the pelvic limbs with a 

lower degree of weight bearing were 0.55 ± 0.09, 0.51 ± 0.08, and 0.037 ± 0.010 meters, 

respectively, and 0.53 ± 0.12, 0.49 ± 0.11, and 0.036 ± 0.014 meters, respectively, for the pelvic 

limbs with a greater degree of weight bearing.  There were no significant differences in any 

mean HLVD values between the pelvic limbs with lower and greater degrees of weight bearing 

(Figure 13).  Figure 14 is a graph of head linear vertical displacement (HLVD) of a dog during 

one stance phase and one swing phase of the right pelvic limb with a lower degree of weight 

bearing and an objective symmetry grade of 1, demonstrating a sinusoidal pattern over time.   
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Figure 13– Bar graph of mean maximum, minimum and total motion values for head 
linear vertical displacement (HVLD) reported during the gait cycle of the pelvic 
limbs with lower and greater degrees of weight bearing for all 27 dogs.  No 
significant differences detected (P > 0.05). 
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Figure 14 – Graph of head linear vertical displacement (HLVD) of a dog during right 
contact phase (i.e. left swing phase) and left contact phase (i.e. right swing phase) with 
an objective symmetry grade of 1, demonstrating a sinusoidal pattern over time.  Circles 
with arrows indicate minimum and maximum HLVD values from the gait runway 
surface, respectively, occurring at midstance of the contact phase and just before 
initiation of the respective swing phase. 
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Pelvis Linear Vertical Displacement (PLVD) 

Mean maximum, minimum and total motion values for PLVD values for the pelvic limbs 

with a lower degree of weight bearing were 0.57 ± 0.09, 0.47 ± 0.11, and 0.095 ± 0.054 meters, 

respectively, and 0.57 ± 0.13, 0.43 ± 0.13, and 0.134 ± 0.086 meters, respectively, for the pelvic 

limbs with a greater degree of weight bearing.  Mean total motion for PLVD was significantly 

greater on the side with the greater degree of weight bearing (P < 0.05), however no significant 

differences in mean maximum or minimum PLVD values between the pelvic limbs with lower or 

greater degrees of weight bearing were detected (Figure 15).  Nine of the 27 dogs evaluated 

(33%) demonstrated a 2- to 4-fold increase in total motion for PVLD on the side with a greater 

degree of weight bearing compared to the contralateral side.  The mean total motion for PVLD 

for these 9 dogs was 0.20 ± 0.11 meters for the side with a greater degree of weight bearing and 

0.06 ± 0.03 meters for the contralateral side.  Maximum and minimum PVLD values between 

pelvic limbs in one dog with an objective symmetry grade of 1 is represented schematically in 

Figures 16 and 17, respectively. 
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Figure 15 – Bar graph of mean maximum, minimum and total motion values for 
pelvis linear vertical displacement (PVLD) reported during the gait cycle of the 
pelvic limbs with lower and greater degrees of weight bearing for all 27 dogs. 
*Significant difference detected (P < 0.05). 
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Figure 16 – Graphs of pelvis linear vertical displacement (PLVD) during one swing 
phase of the pelvic limb with greater and lower degrees of weight bearing, 
respectively, in a dog with an objective symmetry grade of 1.  Circles with arrows 
indicate maximum PLVD values occurring near the initiation of the contact phase of 
the respective limb. 
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Figure 17– Graphs of pelvis linear vertical displacement (PLVD) during one stance 
phase of the pelvic limb with greater and lower degrees of weight bearing, 
respectively, in a dog with an objective symmetry grade of 1. Circles with arrows 
indicate minimum PLVD values occurring near mid-stance of the respective limb. 
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Thoraco-Lumbar Lateral Angular Displacement (T-L LAD) 

Maximum and minimum values for T-L LAD were 8.73 ± 5.25 and 

-4.98 ± 4.51, respectively, for the pelvic limb with a lower degree of weight bearing.  Maximum 

and minimum values for T-L LAD were 5.51 ± 6.51, -8.29 ± 7.26, respectively, for the limb with 

a greater degree of weight bearing.  Maximum T-L LAD values were significantly different (P 

value < 0.05) between the pelvic limbs and the degree of weight bearing (Figure 18).  Mean T-L 

LAD from 1800 values between the limbs with the lower and greater degrees of weight bearing in 

one dog with an objective symmetry grade of 1 is represented schematically in Figure 19.  
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Figure 18 – Bar graph of mean maximum and minimum values with standard deviation 
bars for thoraco-lumbar lateral angular displacement (T-L LAD) reported during the gait 
cycle for the pelvic limbs with lower and greater degrees of weight bearing for all 27 
dogs.  *Significant difference (P < 0.05). 
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Figure 19 – Graph of thoraco-lumbar lateral angular displacement (T-L LAD) from 180o 
(horizontal arrow) throughout two contact phases of the left pelvic limb in one dog with 
an objective symmetry grade of 1.  Black circles indicate left and rear contacts, 
respectively.  Black arrows indicate T-L LAD values for the left limb (lower degree of 
weight bearing) just prior to contact phases and right limb (greater degree of weight 
bearing) just prior to the contact phase.  
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Eleven of the 27 dogs evaluated (41%) demonstrated a 2- to 10-fold increase in the mean 

T-L LAD from 1800 on the side with a lower degree of weight bearing compared to the side with 

a greater degree of weight bearing during the swing phase of the gait cycle.  The mean T-L LAD 

values from 1800 for these 11 dogs were 11.16 ± 3.83 degrees for the side with a lower degree of 

weight bearing and 0.63 ± 3.46 degrees for the side with a greater degree.  

No significant correlations were detected between mean PVF and VI of the pelvic limbs 

with lower or greater degrees of weight bearing and mean HLVD, PLVD, and T-L LAD values. 
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CHAPTER 5 

DISCUSSION 
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We evaluated mild asymmetrical weight bearing of the pelvic limbs in trotting dogs using 

force platform analysis.  We also used kinematic analysis to characterize vertical motion of the 

head and pelvis, and lateral motion of the thoraco-lumbar spine throughout the gait cycle. Our 

findings support our hypothesis that dogs with subtle asymmetric weight bearing of the pelvic 

limbs demonstrate compensatory motions, including a greater range of pelvis linear vertical 

displacement (PLVD) on the side with a greater degree of weight bearing, and greater thoraco-

lumbar lateral angular displacement (TL-LAD) toward the side with a lower degree of weight 

bearing while trotting.  No differences in mean head linear vertical displacement (HLVD) were 

detected, however.  We also hypothesized that the magnitude of these compensatory movements 

would positively correlate with the degree of weight-bearing asymmetry while trotting.  

However, there were no significant correlations between the magnitude of HLVD, PLVD and 

TL-LAD and mean peak vertical force (PVF) or vertical impulse (VI) in dogs with subtle 

asymmetrical weight bearing of the pelvic limbs. To our knowledge the study reported here is the 

first to evaluate vertical linear displacement of the head in dogs with subtle weight bearing 

asymmetry of the pelvic limbs while trotting.  We chose the sagittal crest of the skull as an 

anatomic landmark for uniform identification and relative ease to evaluate head movement.  

Considering that head and pelvic movements have been considered to be most important in 

diagnosing lameness is horses,14 we were interested in determining if the head follows a similar 

pattern of vertical displacement and if it demonstrates similar compensatory motions during gait 

as compared with horses. Due to the large mass of the head and neck and the length from the 

body center of mass in horses, head movements are thought to influence load distribution to the 

limbs to minimize pain associated with the lameness and possibly prevent further damage to 

tissues.88,89 Dropping the head when the sound foot lands and raising it when weight is placed on 
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the lame limb is an indicator of forelimb lameness in horses.14 However, the contribution of head 

movements in the overall compensation of lameness is difficult to determine; various 

explanations regarding how head movements influence limb loading have been suggested.88 

Most authors agree that a head nod may be associated with a pelvic limb lameness, but there is 

disagreement as to when this occurs.90 Several studies have developed methods to objectively 

quantify the severity of equine lameness using head and trunk kinematic data.11,13-15,90-94 One 

study in particular, by Buchner et al14, evaluated kinematics of the head and trunk with various 

degrees of lameness.  Maximum vertical displacement, velocity and acceleration of head, 

withers, tuber sacrale and both tuber coxae were quantified during different phases of gait.  Their 

analysis indicated that the amplitude and symmetry of head movements significantly change with 

increasing lameness, and lameness-induced head movements are compensatory mechanisms. 

They suggested that horses could develop upward kinetic energy by exaggerated back rotation 

during the stance phase of the sound limb and reduce the lifting effort during the lame stance 

phase.  In addition to the effect of exaggerated back rotation, they suggested that the head 

movements they observed may help the horse unload the lame pelvic limb during weight 

bearing.  However, unlike a forelimb lameness, they stated the changes in head movement noted 

during a pelvic limb lameness were small and not significant before a lameness degree 2.14  This 

leads us to the question of the importance of compensatory head movements associated with 

pelvic limb weight bearing asymmetry in dogs.  The results of our study revealed that movement 

of the head in trotting dogs follows a sinusoidal pattern of vertical displacement over time 

(Figure 10).  However, we were unable to detect a significant difference in mean maximum, 

minimum, or total motion for HLVD during asymmetrical weight bearing of the pelvic limbs in 

trotting dogs.  One explanation for the findings in our study could be the inherent differences in 
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conformation of the horse compared to the dog, especially regarding the distribution of mass 

among various body parts (i.e. head, trunk and extremities). The large mass of the head and neck 

and their protruding position relative to the body center of mass in horses may contribute to 

natural differences in head movement between the two species during ambulation.  Studies 

similar to the 2-segment 2-dimensional inverse dynamic model of trotting horses by 

Vorstenbosch et al88 would be indicated to determine if the static and dynamic effects of head 

movement play a major role in lameness compensation in dogs as well.  Such studies could be 

faced with several limitations considering the variability of size and conformation inherent 

among different canine breeds.  Another explanation for the lack of significance in our study is 

that we evaluated mild asymmetric weight bearing of the pelvic limbs.  Vertical movements of 

the head may not be a sensitive indicator of pelvic limb weight bearing asymmetry, especially if 

only mild asymmetry is present.  However, differences in vertical head movement during pelvic 

limb asymmetry may become more pronounced as the severity of asymmetry increases.  

Carefully designed studies evaluating vertical head movements in a similar population of dogs 

with objective symmetry grades ranging from 0 to 5 would be necessary to address this question.   

Significant differences in the mean range of pelvic linear vertical displacement (PLVD) 

were detected between the degrees of weight bearing of the pelvic limbs in the study reported 

here (Figure 12). We chose to evaluate pelvic movement in dogs with subtle asymmetric weight 

bearing of the hind limbs by comparing vertical displacement of the right and left ischiatic 

tuberosities.  Several studies have evaluated asymmetry of pelvic movement in horses to detect 

and measure forelimb and hind limb lameness.11,14,89,93,95,96 However, to our knowledge, this is 

the first study to evaluate vertical movement of the pelvis in dogs while trotting. We chose the 

ischiatic tuberosity as our anatomic landmark, compared to the sacrum or tuber coxae chosen in 
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horses, due to the overall differences in muscle mass, ease of identification, and the relative 

visibility of the landmark during clinical gait analysis.  We felt that it was a consistently palpable 

anatomic landmark in the pelvic limb and would be the most representative marker of pelvic 

movement in dogs throughout the gait cycle and different movements might be associated with 

potential weight bearing asymmetry.   

Analysis of vertical pelvic movement using the sacrum as a marker of pelvic position has 

been suggested as an optimum method for detecting hind limb lameness in horses,14 in contrast 

to our choice of using the ischiatic tuberosity in the dog. Vertical movement of the sacrum in 

trotting horses has a sinusoidal pattern during gait, in which two minimum and maximum 

movement cycles occur during one complete stride.  The first minimum height is reached during 

the middle of the stance phase and the first maximum is reached immediately after the end of one 

limb’s stance phase (i.e. at toe off).  The second minimum and maximum heights occur during 

the middle and at the end of the contralateral limb’s stance phase, respectively.  In an ideal sound 

horse, the minimum and maximum heights reached near midstance and after toe off 

(immediately after stance) of one hind limb are equal to the subsequent minimum and maximum 

heights of the contralateral hind limb.97 Our data support that vertical movement of the ischiatic 

tuberosity in trotting dogs also has a sinusoidal pattern during gait, in which a cycle of 

movement occur in each limb during one complete stride. Although the pattern of ischiatic 

tuberosity movement reaches its minimum height during midstance (Figure 14), which is similar 

to tuber sacrale motion in the horse, the maximum height occurs near the initiation of stance 

phase (i.e. at the end of the swing phase; Figure 13) for both pelvic limbs and their respective 

degree of weight bearing.  This difference in maximum pelvic heights reached in horses at push 

off (i.e. initiation of swing phase) and in dogs at initial contact (i.e. at the end of swing phase) 
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may be a plausible explanation of what occurs during kinematic and visually-assessed lameness 

examinations between horses and dogs.  For example, in a kinematic study by Kramer et al, 

pelvic movements in sound horses and in horses with induced hind limb lameness were 

described.97 They found that induction of a transient, shoe-induced lameness in horses at two 

different levels of intensity consistently resulted in less downward movement of the pelvis 

during stance phase of the affected limb and less upward movement of the pelvis after toe off of 

the affected limb.  They stated that the hip or pelvic hike (discussed in many descriptions of 

visually-assessed lameness) may actually be the result of propulsion of the sound limb that 

elevates the pelvis to a higher degree than propulsion by the lame limb and occurs immediately 

before weight bearing of the lame limb.  In our study we did not find a significance difference 

between the two limbs in the maximum or minimum pelvic heights while trotting.  However, we 

did find a significant difference in the total pelvic motion that occurs on the side with a greater 

degree of weight bearing compared to the side with a lower degree of weight bearing during gait, 

with most of this difference due to the minimum pelvic height (Figure 12).  These data suggest 

that more downward movement of the pelvis occurs during the stance phase and more upward 

movement of the pelvis occurs at the end of the swing phase of the limb with a greater degree of 

weight bearing.  This greater total pelvic motion supports our suggestion that a ‘hip drop’ on the 

side with a greater degree of weight bearing versus a ‘hip hike’ on the side with a lower degree 

of weight bearing occurs in dogs while trotting and may be visually detected during clinical 

lameness evaluation.  Less downward movement of the pelvis during stance phase of the lower 

degree limb and less upward movement of the pelvis right after contact explains the fact that 

there was less total motion detected throughout the gait cycle of the lower degree limb.  

However, pelvic movement in the horse using the sacrum as a marker and pelvic movement in 
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the dog using the ischiatic tuberosity may not be comparable.  To our knowledge no lameness 

studies of the equine species have been conducted using the ischiatic tuberosity as a marker of 

pelvic movement.  We could postulate that the kinematics of gait between the two species is 

fundamentally different during a trot, but without equivalent studies to evaluate the same 

anatomic points under similar study conditions, comparisons between the two species remain 

speculative at best.  

Evaluation of pelvic movement with hind limb lameness of horses by comparing right 

and left tuber coxae displacement has been reported.14,15,90 Tuber coxae displacement is affected 

by rotation of the pelvis relative to the vertebral column as well as by translational displacement 

of the trunk.  The rotational movement of the pelvis around the vertebral column results in the 

pelvis rotating away from the weight-bearing limb.  The vertical displacement of each tuber 

coxae during one stride in sound horses is normally symmetrical.  In addition, the minimum 

height reached by the left tuber coxae during right hind limb stance is lower than the minimum 

height the left tuber coxae reaches during left hind limb stance and vice versa.97 We believe that 

rotation of the pelvis relative to the vertebral column and translational displacements of the trunk 

occur during weight bearing in dogs. However it is unknown whether or not asymmetry of the 

ischiatic tuberosity in dogs mimics asymmetry in the tuber coxae described for horses, but it is 

likely. The degree of weight bearing asymmetry (i.e. lameness) necessary in dogs to cause 

significant pelvic height differences of right and left ischiatic tuberosities is unknown. We did 

not detect any significant differences in maximum or minimum PLVD values between the pelvic 

limbs, although minimum PLVD tended to be less on the side with a greater degree of weight 

bearing.  This could possibly be explained by the small study population and that none of the 27 

dogs had an objective symmetry grade greater than 1.  However, we did find a significant 
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difference in the total motion for PLVD between the pelvic limbs and their degree of weight 

bearing (Figure 12).  Furthermore, 6 of the 27 dogs evaluated (22%) demonstrated a 2- to 4-fold 

increase in the total motion for PVLD on the side with a greater degree of weight bearing 

compared to the contralateral side throughout the gait cycle.  The mean range of motion for 

PVLD for these 6 dogs was 0.20 m for the greater degree and 0.06 m for the lesser degree.  This 

information could be useful in describing pelvic movement in dogs with subtle weight bearing 

asymmetry, and could be viewed as the initial step in characterizing compensatory movements 

associated with mild pelvic limb lameness.   

A plausible explanation of why dogs with subtle asymmetric weight bearing of the pelvic 

limbs (mild pelvic limb lameness) demonstrate a ‘hip drop’ on the side of the pelvis with a 

greater degree of weight bearing of the respective limb during trotting is perhaps a compensatory 

spring loading to increase propulsion from that limb to make up for less propulsion from the side 

with a lower degree of weight bearing.  This explanation of changes in forward propulsion 

between the limbs with lower or greater degrees of weight bearing is supported in a study 

reported by DeCamp et al, which described alterations in patterns of pelvic limb movement 

secondary to lameness in dogs that were one, three and six months after having their cranial 

cruciate ligament experimentally transected.74 They explained that the differences observed in 

pelvic limb movements likely developed as adaptive responses to painful stimuli from an 

unstable joint.  Femorotibial joint adaptation, with increased flexion angle and decreased 

extension during stance phase, was thought to be the animal’s compensatory response to a 

ruptured cranial cruciate ligament.  Less extension of the femorotibial joint at the end of the 

stance phase was proposed to be a result of reduced limb propulsion and be a protective 

adaptation to pain and joint instability.  Greater extension of the coxofemoral and tarsal joints 
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was also thought to compensate for the altered femorotibial joint, and therefore, maintain gait.74 

These changes in movement are supported by our findings of greater total pelvis linear vertical 

displacement (PLVD) on the side with a greater degree of weight bearing to help compensate for 

abnormal femorotibial joint function on the affected side.  All 27 dogs in the study reported here 

demonstrated significantly less propulsion on the limb with a lower degree of weight bearing 

throughout the gait cycle compared to the limb with a greater degree of weight bearing.  This 

greater propulsion and altered flexion and extension of the joints on the limb with a greater 

degree of weight bearing may manifest as a ‘hip drop’ during the stance phase of the gait cycle, 

compared to the limb with a lower degree of weight bearing. However, the scope of our study 

was not to compare normal dogs and dogs with previous surgery following stifle stabilization.   

To our knowledge, the study reported here is the first to investigate thoraco-lumbar (T-L) 

spinal kinematics of the dog with asymmetrical weight bearing of the pelvic limbs while trotting.  

Although there are extensive data about kinematics of the extremities, we are unaware of such 

data for the canine spine.  A comprehensive review of the veterinary literature revealed that 

kinematics of the vertebral column are related to motion of normal dogs.98 Vertebrae can rotate 

in 3 planes, resulting in flexion-extension, lateral bending, and axial rotation.  The amount of 

rotation that is possible varies along the vertebral column, depending on the size, shape, and 

orientation of anatomic structures such as the intervertebral discs, articular facets, lateral joints, 

dorsal spinous processes, and ligaments.99 

Several in vitro techniques using isolated dissected thoracolumbar vertebral columns of 

the horse have been reported.100-102 For those studies, it was concluded that the amount of 

rotation is limited (< 50) for most intervertebral joints, except in the cranial thoracic and 

lumbosacral joint (> 200).102 Faber et al103 studied movements of the vertebral column of horses 
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trotting on treadmill and suggested that movements of the vertebral column and pelvic limbs are 

closely associated.  Kinematics of 8 vertebrae and both tuber coxae were determined using bone-

fixated markers.  They found that flexion-extension and axial rotation were characterized by a 

double sinusoidal pattern of motion during one stride cycle, whereas lateral bending was 

characterized by one peak and one trough.  Ranges of motion for all vertebrae were: flexion-

extension, 2.80 to 4.90; lateral bending, 1.90 to 3.60; axial rotation, 4.60 to 5.80; except for 

thoracic vertebrae 10 and 13, where the amount of axial rotation decreased from 3.10 and 3.30, 

respectively. They suggested that their findings were in agreement with a kinematic study of the 

vertebral column in humans,104 which stated that the more caudal vertebrae start to rotate and the 

more cranial vertebrae follow as a result of the direct linkage between the pelvic limbs and the 

vertebral column.  This mechanism was explained as a conservation of angular momentum 

generated by the pelvic limbs.  For comparison a study by Benninger105 et al evaluated the 3-

dimensional motion pattern including main and coupled motions of the caudal lumbar and 

lumbosacral portions of the vertebral column of dogs.  They concluded that coupled axial 

rotation and lateral bending are similar at all levels in vertebral columns of dogs and range 

between 10 and 20.  A study by Faber et al106 determined the validity of using skin-fixated 

markers to assess kinematics of the thoraco-lumbar vertebral column in horses.  Kinematics of 8 

vertebrae and both tuber coxae were determined by use of bone-fixated and skin-fixated markers.  

They found that data from skin-fixated markers were accurate for determining lateral bending at 

the walk in the mid-thoracic and lower lumbar portion of the vertebral column only.  However, at 

the trot, data from skin-fixated markers were valid for determining lateral bending for all 

thoracolumbar vertebrae.106 We believe the results of these studies support our suggestion that 

thoraco-lumbar lateral angular displacement (T-L LAD) in the dog results from direct linkage of 
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the vertebral column to the pelvic limb in dogs while trotting.  However, the ability to identify 

coupling of axial rotation and lateral bending or the evaluation of flexion-extension, lateral 

bending and axial rotation of individual vertebral bodies or specific intervertebral joints in our 

dogs using skin-fixated markers was beyond the scope of our study.  Furthermore, we are 

uncertain if data from skin-fixated markers in dogs would have similar results compared to data 

derived from horses.   

We were aware of assumptions that must be made when skin-fixated markers are used in 

kinematic studies of the vertebral column.106 First, analysis of movements within the vertebral 

column can only be performed in 2-dimensions, because at least 3 markers per vertebrae are 

required for 3-dimensional analysis.  In a 2-dimensional approach, data are determined in the 

sagittal, horizontal or frontal plane.  Such an approach is viable when out-of-plane motions are 

not expected (i.e. when anatomical constraints prevent such motions or when the activity has a 

planar nature.106 However, out-of-plane motions of the vertebral column can be expected, 

because these motions are 3-dimensional in origin.102 Second, angles are usually calculated 

between 2 motions segments, in which each segment is defined by 2 markers.107,108 In the 

vertebral column, each motion segment includes several vertebrae and thus several intervertebral 

joints.106 Consequently, the motion segments will not behave like rigid bodies, thus violating the 

rigid-body requirement, which is one the fundamental assumptions of the kinematic 

procedure.109 Finally, the use of skin-fixated markers assumes that these markers reflect 

movement of the underlying vertebrae, which is not necessarily true.106 However, the use of skin 

markers was adequate for our study.  We were not interested in determining 3-dimensional 

kinematics of the vertebral column, but we wished to describe lateral angular displacement of the 

thoraco-lumbar spine in the horizontal plane during subtle weight bearing asymmetry of the 
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pelvic limbs.  We agree that flexion-extension, axial rotation, and lateral bending likely occur 

during normal and abnormal canine locomotion and that some degree of coupling of these 

motions is inherent.  However, we are unaware of any study in the literature describing these 

physiologic movements in of the thoraco-lumbar spine in dogs while trotting.  Thus, our study 

was the first to describe this. 

We were also aware of a well known, but hard to eliminate source of error attributable to 

skin movement artifact.110 Most kinematic studies of canine extremities have used noninvasive 

methods, with skin markers positioned over bony prominences on the extremities.77,111 However, 

the validity of results determined by use of spherical markers attached to the thoracolumbar skin 

during trotting studies in dogs has not been evaluated. In a study of anesthetized dogs in which 

piezoelectric accelerometers were attached to the bone and skin, passive manipulation of the 

adjacent vertebrae was used to move the spine.  Artifactual error associated with translation of 

movement between the skin marker and the underlying bone was <2%.112 Several other studies 

have used skin-fixated markers positioned over dorsal spinous processes of vertebrae to 

determine kinematics of the vertebral column in horses.102,107,113 These studies suggest that 

relative motion of the skin with respect to the underlying bony structure can be distorted by 

inertial effects attributable to the non-rigid attachment of the skin to the bony structure, and the 

movement caused by muscle contraction beneath the skin. Additional studies to quantify skin 

motion artifact in dogs under a multitude of conditions is needed to fully understand the 

relationship between skin movement and the underlying musculature and bony structures.  

However, the use of skin markers may be suitable for noninvasive clinical studies even though 

they may not reflect the true movement of the vertebral spine.110 
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Finally we felt it would be paramount to have a basic understanding of epaxial muscular 

function in dogs under normal conditions to fully understand the motions of the T-L spine during 

asymmetrical weight bearing of the pelvic limbs.  A number of studies have described the 

function of the epaxial muscles in dogs while walking, trotting and galloping.114-116 These studies 

evaluated normal dogs using surgically implanted EMG electrodes and proposed that axial 

muscles in mammals serve three potential functions during locomotion.  First, they mobilize the 

trunk and can contribute to propulsion through the production of mechanical work.  Second, they 

can control or counteract movements passively induced by gravitational and inertial forces.  

Third, they link the vertebrae and ensure the integrity of the spine, thereby allowing 

polysegmental muscles to act on larger units of the spine.116 The authors reported that the epaxial 

muscles studied showed a biphasic EMG activity pattern during the stride cycle.  The greater 

activity (main burst) was associated with the second half of the ipsilateral pelvic limb stance and 

the lower level EMG activity occurred during the ipsilateral pelvic limb swing phase.116 

Compared with walking, the integrated activity of the epaxial muscles increased when dogs 

trotted.  Greater accelerations and decelerations are required to swing the limbs back and forth 

during each trotting stride and therefore the locomotor forces acting on the trunk are likely 

greater.  The greatest increase in muscle recruitment occurred at mid-trunk (thoracic vertebra 13) 

and this gait-associated change in activity was significantly greater at thoracic vertebra 13 than at 

lumbar vertebra 6.116 They concluded that the timing in recruitment of the epaxial muscles 

functions to stabilize the trunk against extrinsic pelvic limb muscle action and long-axis torsion 

during trotting.  Trotting data showed that the timing of the epaxial muscle EMG activity is also 

appropriate to produce lateral bending of the trunk.  This muscle activity was expected to occur 

around toe off of the ipsilateral pelvic limb and produce lateral bending.116 
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This information was vital to help with interpretation of our study because we were 

interested in evaluating thoraco-lumbar lateral angular displacement (T-L LAD) at a trot using 

skin-fixated markers. We proposed that the described lateral bending in horses would be similar 

to our description of T-L LAD in dogs and data derived by use of skin-fixated markers would be 

plausible in describing the motion of the thoraco-lumbar spine of dogs. We evaluated motion of 

the thoraco-lumbar spine between the described segments (Figure 7) and found a significant 

difference in the amount of maximum T-L LAD between limbs with a lower degree of weight 

bearing and a greater degree of weight bearing (Figure 18).  Eleven of the 27 dogs evaluated 

(41%) demonstrated a 2- to 10-fold increase in the maximum T-L LAD on the side with a lower 

degree of weight bearing compared to the contralateral side. This increased motion occurred just 

before the contact phase (Figure 19) and could be considered a compensatory effort by the 

animal to maintain progressive motion during gait.  Painful extension of the hip or stifle joint 

leading to asymmetric weight bearing may lead to inadequate propulsion of the pelvic limb with 

a lower degree of weight bearing. The pronounced lateral angular displacement of the thoraco-

lumbar spine toward the limb with a lower degree of weight bearing may be a compensatory 

effort by the animal to maintain comfortable, progressive momentum by using the epaxial 

muscles to pull the pelvis forward.  The conclusions by Schilling et al116 support our suggestions 

in that a burst of EMG activity of the epaxial muscles occurring around toe off of the ipsilateral 

pelvic limb in normal dogs could produce the exaggerated lateral bending we observed during 

asymmetrical weight bearing while trotting.  A possible explanation for why the maximum 

amount of T-L motion occurred just before initiation of the stance phase instead of toe off could 

be due to differences in muscle contraction that occur during symmetrical weight bearing 

compared to asymmetrical weight bearing while trotting.  A lower degree of weight bearing 
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potentially alters the normal, synchronous actions between the pelvic limb and axial skeleton, 

resulting in altered muscle activity that manifests as increased lateral bending toward the side 

with a lower degree to conserve gait.  It is unknown what degree of asymmetric weight bearing 

would result in reduced propulsion of the lame limb and altered muscle activity to result in 

asymmetric spinal motion   The active or passive role of the epaxial muscles of the 

thoracolumbar spine in dogs experiencing asymmetrical weight bearing of the pelvic limbs 

remains debatable until a carefully designed study integrating EMG, force platform analysis and 

kinematic analysis of the T-L spine can be conducted. 

One concern is that altered or abnormal spinal motion in dogs with pelvic limb lameness 

may predispose them to developing secondary osteoarthritis of the intervertebral joints.  Spinal 

arthritis could worsen alterations in gait and perhaps result in clinical problems from subsequent 

compression of associated neural structures.117 This is an important point because dysfunction of 

the back is a well-known cause of poor performance and lameness in equine athletes.103 Similar 

to horses, dogs with back problems often have reduced performance.118 Considering that a high 

number of canine patients with pelvic limb conditions also have degenerative changes in their 

vertebral column, describing normal and abnormal motion of the canine T-L vertebral column 

during subtle asymmetrical weight bearing of the pelvic limbs may be crucial to understanding 

how altered spinal motion may lead to back pain.  These data may provide an initial 

understanding of the T-L spine and supporting tissues during canine locomotion and may allow 

earlier identification of underlying pelvic limb conditions leading to these secondary changes. 

Furthermore, with as much as a 2-fold difference in thoraco-lumbar spinal motion toward the 

pelvic limb with a lower degree of weight bearing while trotting, visual detection of 

asymmetrical thoraco-lumbar spinal movements may improve gait evaluation by owners, trainers 
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and clinicians.  Finally, this information was considered essential for developing and clarifying 

the criteria proposed in our subjective lameness grading scale (Table 4). 

For study purposes, mean PVF values were used to designate the pelvic limbs with a 

lower degree or greater degree of weight bearing of all 27 dogs.  Possible causes of the 

asymmetry may be variation between trials, or previous TPLO or LFS procedures in 18 of the 27 

dogs. Symmetry has been examined in healthy dogs while trotting and no significant difference 

was detected between sides,3,79,81 but none of the dogs had perfect right-to-left symmetry as 

measured by use of kinetic data.3 We found a difference between pelvic limbs in the dogs used in 

our study and this information was the basis for our assignment.  The described lack of perfect 

right-to-left symmetry may help explain why we detected subtle weight bearing asymmetry in 9 

of the 27 dogs, which were normal; however, this may not be applicable to the remaining 18 

dogs that had known histories of TPLO or LFS procedures.  

Several veterinary studies have compared post-operative ground reaction forces of TPLO 

and LFS to stabilize the stifle in patients with cranial cruciate ligament rupture. One study by 

Conzemuis et al82 evaluated dogs receiving these procedures for six months after surgery and 

evaluated peak vertical force differences between them at a walk. They found no differences 

between the two surgical groups, and few dogs returned to normal function in the 6-month post-

operative evaluation period.  Approximately 15% of the lateral suture dogs and 11% of the 

TPLO dogs returned to normal function at a walk based on ground reaction forces and 

impulses.82 We evaluated dogs at a trot, which may result in even fewer dogs having normal 

weight bearing because of the additional force placed on the limb while trotting.  Another study 

by Au et al83 compared the same two procedures at a walk up to 2 years post-operatively.  They 

did not compare to healthy controls, but found that at all time points up to and including the 2 



 67 

year post-operative time, there was no difference in peak vertical force between these groups.  A 

similar study by Ballagas et al84 found that one group of dogs that had experimentally transected 

CCLs and repair of stifle instability with a TPLO procedure had no significant differences at a 

trot between 18 week post-operative and pre-operative peak vertical forces and impulses. 

However, there was still a notable difference in weightbearing between the surgical and 

nonsurgical limbs and the lack of significance was likely due to low power of the study as a 

result of small numbers.  Another similar study by Jevens et al85 found similar results when 

comparing the lateral suture technique in trotting dogs.All of these studies evaluated dogs in the 

short-term, whereas we evaluated dogs 4-6 years after surgery.  During this time, in addition to 

any surgical effects, arthritis may have progressed and contributed to the asymmetry in weight 

bearing.  

In light of these studies that compared different surgical techniques, an important 

difference in our study was that we were not interested in comparing PVF values between 

normal dogs and dogs with previous surgery following experimental cranial cruciate ligament 

transection.  Rather than repeating similar studies we were interested in evaluating a population 

of dogs that demonstrated subtle weight bearing asymmetry between the pelvic limbs while 

trotting.  Our goal was to determine if compensatory motions of the head, pelvis and 

thoracolumbar spine occur during subtle weight bearing asymmetry and if such motions correlate 

with the degree of asymmetry.  If these motions are present with subtle weight bearing 

asymmetry, then perhaps they would become more pronounced with increasing severity of 

asymmetry. The 18 dogs that had stifle surgery had a mean time after surgery of 5 years, and 

these dogs demonstrated subjective gait characteristics similar to the 9 normal age-matched dogs 

and were given a lameness grade of 0 by the same investigator (DLM) during subjective clinical 
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assessments.  However, we found a significant difference in mean PVF between the pelvic limbs 

(Figure 8).  One explanation of the contrasting findings between our and previous studies is 

perhaps the length of time that had lapsed between the initial surgery and the initiation of the 

different studies. To our knowledge no study has published findings with greater than 2 years 

after surgery with objective data; our study evaluated dogs that were on average 5 years after 

surgery.   

An answer that remains unknown is whether or not the previous surgery influenced the 

differences between PVF of the pelvic limbs.  Not all dogs had surgery on the limb with a lower 

degree of weight bearing in this study. In some dogs, the nonsurgical limb was the limb with a 

lower degree of weight bearing for purposes of our study.  Therefore, our results indicate that 

surgical intervention of the stifle joint did not always coincide with our pelvic limb assignment 

in this subset of dogs. Six of the 9 dogs that underwent TPLO and 3 of the 9 LFS dogs 

demonstrated lower PVF on the non-surgical limb.  Three of the TPLO dogs that demonstrated a 

lower PVF on the non-surgical limb were assigned an OSG of 1, which represents an 8-26.9% 

difference in weight bearing between the pelvic limbs.  A potential explanation for these findings 

is that these dogs may have been experiencing subclinical pathology in the non-surgical limb at 

the time of this study that was not detected on physical examination, and this resulted in 

assigning the non-surgical limb as the limb with a lower degree of weight bearing.  It is possible 

that compensatory movements in chronically affected patients remain for a long time because of 

inherent muscle memory as a result of an acute condition.  Another potential explanation could 

be that these dogs were experiencing pathology in both limbs at the time of study, especially 

with the history of previous surgery, and compensation for bilateral lameness lead to 

asymmetrical weight bearing.  Perhaps a larger study following the same criteria as the study 
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reported here would be necessary to truly discern whether or not dogs with long-term follow up 

(i.e. greater than 5 years) for cranial cruciate ligament disease would demonstrate similar 

findings of PVF asymmetry and associated compensatory changes.   

 We chose peak vertical force (PVF) as our primary criterion for detecting weight-bearing 

asymmetry between the pelvic limbs, and used a simplified method for determining a mean 

vertical symmetry index by calculating the ratio of the mean PVF values between the limb with a 

lower degree of weight bearing and the limb with a greater degree of weight bearing.  The 

resulting value was multiplied by 100, then subtracted from 1 to obtain the percent asymmetry 

and subsequent objective symmetry grades for all 27 dogs (Tables 1 and 3).  Previous studies 

have indicated minor asymmetry in temporal and kinetic components, which were not the result 

of any pathologic state, but may simply represent variations of gait in normal dogs.3,86,87 A study 

by Budsberg et al3 evaluated limb symmetry by identifying and quantifying asymmetries 

between fore- and hind-limb ground reaction forces of healthy dogs at a trot.  They evaluated 

three methods for calculating symmetry indices and reported that the mean vertical symmetry 

indices, regardless of calculation method, deviated < 8% from perfect symmetry for all variables 

in normal dogs. The most consistent values of symmetry were for the vertical axis, as compared 

with craniocaudal and mediolateral axes.  We felt the findings in that study were similar to our 

findings of percent differences in weight bearing symmetry and used this information to establish 

cutoff points for our proposed objective symmetry grades (OSG) ranging from 0 – 5 (Tables 1 

and 3).  For example, a weight bearing difference between 0.0 and 7.9% would represent near 

perfect symmetry between the 2 measured limbs objectively (i.e. no lameness) and would be 

equivalent to an objective symmetry grade of 0.  A weight bearing difference between 27.0 and 

45.9% objectively would be equivalent to an objective symmetry grade of 2.  Fourteen of the 27 
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dogs in our study deviated <7% from perfect symmetry based on mean PVF values and were 

assigned an OSG of 0.  The remaining 13 of 27 dogs demonstrated a weight bearing difference of 

8.0 – 26.9% and were assigned an OSG of 1. The mean vertical symmetry index for all 27 dogs 

in our study deviated < 17% from perfect symmetry and none were assigned an OSG of greater 

than 1.  Following these proposed cutoff values based on quantitative force platform data may 

allow for easier categorization of a dog’s weight bearing symmetry to a nominal 0 – 5 grading 

scale by assignment of an objective symmetry grade.  

We felt this information was consistent with our subjective clinical evaluations prior to 

the study and represented a population of dogs with mild asymmetrical weight bearing of the 

pelvic limbs.  None of the dogs had obvious clinical, orthopedic or gait abnormalities, other than 

the previous stifle surgeries described in 18 of the dogs.  Additionally, we found no correlation 

between normal dogs or previous surgical dogs and the assignment of an objective symmetry 

grade.  We were interested in evaluating the kinetics and kinematics of dogs that had minimal or 

no obvious clinical lameness, but had subtle weight bearing asymmetry between the pelvic limbs 

while trotting.  We were especially interested in this sub-set of dogs that, despite being 

seemingly clinically sound, may demonstrate some compensatory movements of the head, pelvis 

and T-L spine that could indicate mild asymmetrical weight bearing of the pelvic limbs.  If such 

subtle compensatory movements occur in dogs with subclinical rear limb lameness, identification 

and classification of mild pelvic limb lameness would perhaps be less challenging to clinicians, 

trainers or owners during subjective clinical evaluations, and allow earlier diagnosis and 

intervention to treat lameness.  

We chose the trotting gait for evaluation in our study because of its symmetric nature, in 

which diagonal limbs have an even cadence over time3, and because it is routinely used during 
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clinical evaluations of dogs to discern alterations in movement that may indicate a pathologic 

condition.  We reviewed the literature and several sources can be found describing subjective 

lameness grading systems in dogs.12,35-37 One study by Shires et al12 evaluated an intra-articular 

cruciate ligament replacement technique in a series of dogs. Two subjective grading systems 

were introduced for owners to evaluate the frequency of lameness prior to surgery and the type 

of lameness post-operatively.  The frequency of lameness scale had grades from 0 to 4, and the 

type of lameness scale had grades from 0 to 5.12  We were interested in taking the basic criteria 

described in the 5- and 6-point lameness grading systems by Shires and others35-37 and expand 

the descriptions to be more specific for pelvic limb lameness in dogs at a trot.  Apart from 

general visual descriptions of lameness, such as degree of discomfort and a lower or greater 

degree of weight bearing, we chose to introduce 3 additional descriptors of compensatory motion 

based on our hypotheses.  We hypothesized that motion of the head (HVLD or vertical head 

nod), pelvis (PLVD or vertical hip drop), and thoraco-lumbar spine (T-L LAD) occurs in dogs 

with asymmetrical weight bearing of the pelvic limbs while trotting, and that this information 

would improve our ability to evaluate clinical lameness and be instrumental in designing a 

subjective grading system for the pelvic limb in dogs. Our data supported the hypothesis that 

compensatory movements of the pelvis and thoraco-lumbar spine occur with subtle weight 

bearing asymmetry of the pelvic limbs in dogs and that our proposed descriptors may be valid. 

However, no significant differences were found in mean vertical head motion.  It may be 

possible that head motion does not indicate subtle weight bearing asymmetry, but it may be an 

indicator of more severe asymmetrical weight bearing.  We cannot confirm this based on our 

study because our dogs did not have severe asymmetries in weight bearing, but this appears to be 

supported in clinical patients with increasing degrees of weight bearing asymmetry.  
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Our subsequent intention was to use the discrete value objective symmetry grading 

system introduced in Table 1 and compare this to a proposed subjective lameness scale 

introduced in Table 4.  We felt this would be the first step in using quantitative information 

concerning subtle weight bearing asymmetry and the associated compensatory motions in dogs, 

and extrapolate this information to a subjective lameness grading system for the pelvic limb.  

The application of quantitative data to a qualitative, subjective format would allow potential 

identification of specific compensatory movements and potentially improve subjective clinical 

evaluation of dogs with suspected pelvic limb lameness.  We suggest that if such compensatory 

movements are evident in dogs with subtle asymmetric weight bearing of the pelvic limbs, these 

may become more pronounced with more severe pelvic limb lameness.  However, further studies 

with a larger study population and a broader range of lameness severity would be necessary to 

validate our proposed subjective lameness grading system for application to clinical patients.     
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Table 4- Proposed subjective lameness grading system for the pelvic limb in dogs 
at a trot.  
 

Grade Descriptors 
 

 0 
 

 
-No Lameness Present 
 

 
 1 

 

-Lameness Is Difficult To Observe 
-No Discomfort Noted 
-Weight Bearing Fairly Consistent On Affected Pelvic Limb 
-Vertical Head Nod Is Not Observed  
-Vertical Hip Drop Is Subtle 
-Lateral T-L Spinal Displacement Towards The Affected Pelvic Limb Is  
 Subtle 

 
 

 
         2  
 

-Mild, Subtle Lameness Is Observed 
-Mild Or Inconsistent Discomfort Noted 
-Vertical Head Nod Is Inconsistent When Affected Pelvic Limb    
 Contacts The Ground 
-Vertical Hip Drop May be Observed When Unaffected Pelvic Limb  
Contacts The Ground 
-Lateral T-L Spinal Displacement Towards The Affected Pelvic Limb  
 Is Observed  

 
 
 

         3 
 

-Moderate Lameness Is Observed 
-Moderate Discomfort Noted 
-Subtle Vertical Head Nod Is Consistent When Affected Pelvic Limb  
Contacts The Ground 
-Vertical Hip Drop Is Consistently Observed When Unaffected Pelvic  
Limb Contacts The Ground  
-Lateral T-L Spinal Displacement Towards The Affected Pelvic Limb Is  
 Consistent 

 
 
 
 
4 

-Marked Lameness Is Observed 
-Marked Discomfort Noted 
-Intermittent Non-Weight Bearing On Affected Pelvic Limb 
-Vertical Head Nod Is Pronounced When Affected Pelvic Limb Contacts  
The Ground 
-Vertical Hip Drop Is Pronounced When Unaffected Pelvic Limb  
Contacts The Ground 
-Lateral T-L Spinal Displacement Towards The Affected Pelvic Limb Is  
 Pronounced  

 
 

 5 
 

-Non-Ambulatory At Times 
-Non-Weight Bearing On All Strides On Affected Pelvic Limb 
-Severe Discomfort Noted 
-Prefers To Sit Or Become Recumbent 
-Inability To Move 
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Our results indicate that surgical intervention of the stifle joint did not coordinate with 

our pelvic limb assignment in this subset of dogs. Six of the 9 dogs that underwent TPLO and 3 

of the 9 LFS dogs demonstrated lower PVF on the non-surgical limb. One question that arose as 

a result of our study is if femorotibial adaptation of the limbs is a permanent modification to the 

biomechanics of gait in dogs with previous stifle surgery, or is it a temporary adjustment in 

relation to joint pain and instability?  Because our population of dogs had surgery on average of 

5 years prior to study start, we suggest that these changes may not be permanent modifications to 

the stifle joint pathology and perhaps associated with the progression of osteoarthritis or 

subclinical pathology in the designated affected limb at the study start. Further studies with long-

term follow up (i.e. greater than 5 years) for cranial cruciate ligament disease are necessary to 

truly discern whether or not dogs experience permanent modifications to the stifle joint 

associated with the suggested femorotibial adaptation.  

There are other limitations to our study.  The population of subjects we evaluated was 

relatively small and this may have reduced the opportunity to detect statistical differences among 

some of the variables.  The subtle degree of weight bearing asymmetry in the dogs may have also 

reduced the ability to demonstrate differences in some parameters.  A larger study population 

with a broader range of weight bearing asymmetry in the pelvic limbs may have addressed these 

limitations.  The use of 4 cameras limited us to evaluating one side at a time.  This required the 

handler (DAH) to lead the dog on the left side going one way and from the right side going the 

other way.  Although it is usual to handle horses from the left side,63 dogs are often handled from 

both sides.  Therefore, we believe that this did not affect the gait measurements.  A limited 

number of strides evaluated during each trial were a concern in our study.  Due to the constraints 

of our gait laboratory, we were only able to evaluate 2 strides per gait cycle.  Previous 
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studies14,15,90,93,96,119 of equine pelvic limb movement have analyzed only a limited number of 

strides (3 to 15) per condition.  In some instances, these strides have not been consistent.  

Analysis of larger numbers of strides per trial would allow for a better representation of a horse’s 

overall movement pattern.  Evaluation of a large number of strides is particularly important in 

horses in which the degree of lameness is mild or the nature of the lameness is intermittent.  In 

this situation the likelihood of misrepresenting a horse’s overall movement pattern is 

decreased.97 The use of serial force platforms or a treadmill with an embedded force platform 

would have allowed evaluation of additional consecutive strides.  Maximum and minimum 

values were used for all kinematic variables instead of continuous waveforms.  We analyzed 

discrete portions of the kinetic and kinematic waveforms in order to compare differences 

between the pelvic limbs.  Although this resulted in a large amount of data, there are other 

methods to analyze waveforms.  Principal component analysis120, polynomial equations75,76, 

Fourier analysis74,77-79, and generalized indicator function analysis (GIFA),121 have all been used 

to study gait waveforms successfully.  It is possible that these methods may have identified 

differences that were undetectable by our method.  Inaccurate placement of skin marker may 

affect kinematic data.  The markers in our study were easy to place on the sagittal crest of the 

skull and ischiatic tuberosity, where bony landmarks were easy to palpate.  The thoraco-lumbar 

segments were less easy to locate, however, because of the differences in muscle mass covering 

the T-L junction.  In the present study, one individual (DAH) placed all of the markers, which 

should reduce variations caused by placement error.  Regarding skin movement artifact, we are 

in agreement Gradner et al110 and believe that the use of skin markers may be suitable for 

noninvasive clinical studies even though they may not reflect the true movement of the vertebral 

spine.  Further studies to quantify skin motion artifact in dogs under a multitude of conditions is 
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necessary to fully understand the relationship between skin movement and the underlying 

musculature and bony structures. 

In conclusion, we found that dogs with subtle asymmetric weight bearing of the pelvic 

limbs demonstrate greater total motion of the pelvis (PLVD) on the side with a greater degree of 

weight bearing, and greater thoraco-lumbar lateral angular displacement (TL-LAD) toward the 

side with a lower degree of weight bearing while trotting.  Description of these compensatory 

movements is valuable when evaluating in dogs with subtle weight bearing asymmetry in the 

pelvic limbs and may improve the sensitivity of lameness detection during subjective clinical 

lameness examinations.  This information could prove useful for owners, trainers and clinicians 

to enhance our ability to identify early changes in the gait of dogs to allow earlier intervention. 
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Appendix A: Mean PVF and VI values for statistical analysis 

  
Lower Greater Lower Greater 

Dog Group PVF PVF VI VI 
1 N 60.4200 72.1140 7.2780 9.1540 
2 N 63.5900 71.3240 9.0520 9.4760 
3 N 67.2840 68.8080 8.5780 8.1300 
4 N 54.7700 59.4880 7.1380 8.0100 
5 N 70.7000 79.3580 9.3220 10.6700 
6 N 76.0840 76.5680 8.4380 9.4620 
7 N 85.2560 88.7900 9.5360 9.3960 
8 N 62.1340 65.1180 7.7060 8.1040 
9 N 75.1880 78.0340 7.8720 7.7260 

10 T 57.9580 66.3640 7.5760 7.6000 
11 T 59.3220 62.0600 8.8520 8.5900 
12 T 77.8940 85.4240 9.6430 9.2560 
13 T 62.8520 65.8580 8.2580 8.6140 
14 T 52.6900 58.9600 6.7950 7.8440 
15 T 64.6480 68.9020 9.9180 9.6600 
16 T 61.6220 62.0880 8.6280 8.5420 
17 T 67.1680 73.9680 7.7680 8.4580 
18 T 59.6280 65.3980 8.5980 9.2120 
19 S 67.7940 69.4780 9.1380 9.0060 
20 S 59.2940 59.8780 8.7640 9.0300 
21 S 69.7720 78.0720 8.1340 8.8280 
22 S 69.7020 75.3820 8.0360 9.3560 
23 S 68.4560 71.5520 8.0720 8.9720 
24 S 70.8020 78.9120 10.6320 10.6280 
25 S 74.3320 76.0420 8.6320 8.1820 
26 S 57.5480 69.2000 8.0180 10.6640 
27 S 78.8860 80.4000 7.9420 9.0540 

*N = Normal; T = TPLO; S = Suture. 
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Appendix B: Mean HLVD values for statistical analysis 

  
Lower PVF Lower PVF GreaterPVF GreaterPVF 

  
HLVD HLVD HLVD   HLVD   

Dog Group Maximum Minimum Maximum Minimum 
1 N 0.5508 0.5076 0.5272 0.4650 
2 N 0.3132 0.2848 0.3612 0.3136 
3 N 0.6010 0.5544 0.5790 0.5460 
4 N 0.4796 0.4540 0.4834 0.4588 
5 N 0.5576 0.5278 0.1104 0.1018 
6 N 0.4804 0.4498 0.6196 0.5782 
7 N 0.4866 0.4398 0.4908 0.4306 
8 N 0.5826 0.5532 0.6204 0.5900 
9 N 0.5374 0.4892 0.5340 0.4884 

10 T 0.2840 0.2650 0.3266 0.2726 
11 T 0.5982 0.5700 0.6234 0.5970 
12 T 0.6122 0.5640 0.5932 0.5382 
13 T 0.5070 0.4782 0.4778 0.4364 
14 T 0.5966 0.5614 0.3898 0.3794 
15 T 0.6490 0.5988 0.6324 0.5982 
16 T 0.5256 0.4968 0.5384 0.5092 
17 T 0.6082 0.5796 0.6060 0.5706 
18 T 0.5352 0.4770 0.5630 0.5218 
19 S 0.5648 0.5358 0.5576 0.5364 
20 S 0.6532 0.6088 0.6506 0.5872 
21 S 0.6585 0.6223 0.6550 0.6133 
22 S 0.5668 0.5228 0.5424 0.5098 
23 S 0.6212 0.5910 0.6132 0.5874 
24 S 0.6106 0.5656 0.5905 0.5610 
25 S 0.6063 0.5715 0.6246 0.5952 
26 S 0.5550 0.5102 0.5494 0.5208 
27 S 0.5448 0.5168 0.4264 0.3958 

*N = Normal; T = TPLO; S = Suture. 
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Appendix C: Mean PLVD values for statistical analysis 

  
Lower PVF Lower PVF 

Greater 
PVF 

Greater 
PVF 

  
PLVD PLVD PLVD   PLVD   

Dog Group Maximum Minimum Maximum Minimum 
1 N 0.5384 0.3306 0.5518 0.3876 
2 N 0.3362 0.2364 0.3664 0.2448 
3 N 0.6076 0.4678 0.5940 0.4810 
4 N 0.4860 0.4196 0.4934 0.4598 
5 N 0.5628 0.5144 0.1642 0.1030 
6 N 0.5106 0.3256 0.6832 0.5092 
7 N 0.4912 0.3390 0.5674 0.4308 
8 N 0.6022 0.4436 0.6660 0.5672 
9 N 0.5292 0.3172 0.5568 0.3600 

10 T 0.2930 0.2745 0.3690 -0.0038 
11 T 0.6232 0.5698 0.6408 0.5618 
12 T 0.6070 0.5380 0.7668 0.4816 
13 T 0.5302 0.4572 0.5196 0.4422 
14 T 0.6012 0.5668 0.4814 0.4052 
15 T 0.6524 0.5410 0.6350 0.5128 
16 T 0.5466 0.4054 0.5434 0.4720 
17 T 0.6280 0.5698 0.6154 0.5240 
18 T 0.6142 0.5330 0.5430 0.4222 
19 S 0.5834 0.5192 0.5656 0.5070 
20 S 0.6732 0.5528 0.5996 0.3954 
21 S 0.6753 0.6260 0.6735 0.4770 
22 S 0.5868 0.5290 0.5714 0.3988 
23 S 0.6402 0.6012 0.6322 0.5932 
24 S 0.6430 0.5302 0.8720 0.5495 
25 S 0.6140 0.5755 0.6458 0.5692 
26 S 0.5838 0.5030 0.5460 0.4446 
27 S 0.5606 0.4600 0.4392 0.3940 

*N = Normal; T = TPLO; S = Suture. 
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Appendix D: Mean T-L LAD values for statistical analysis 

  
Lower PVF Lower PVF 

Greater 
PVF 

Greater 
PVF  

  
T-L  LAD T-L  LAD T-L LAD   T-L LAD   

Dog Group Maximum Minimum Maximum Minimum 
1 N 10.8995 -5.1824 2.2041 -11.8020 
2 N 12.5117 -4.1849 1.9799 -5.3890 
3 N 11.3068 1.2677 -3.0689 -10.7454 
4 N 9.2194 -5.5412 3.9464 -5.0691 
5 N 9.5866 0.4892 -6.4125 -14.6990 
6 N 1.4022 -11.9667 12.6896 -9.2621 
7 N 10.0591 -5.0057 8.1043 -14.4243 
8 N 21.1035 -3.7634 18.6272 -15.0921 
9 N 7.4336 -3.6921 0.4104 -5.2432 

10 T 16.1695 -10.1408 18.4933 -0.7351 
11 T 2.7373 -5.9762 6.5403 -25.2240 
12 T 13.1596 -1.6103 6.2650 -9.1425 
13 T 12.3561 -6.8088 4.7793 -25.3478 
14 T 4.0945 -7.6853 9.3565 -2.7206 
15 T 11.3351 -5.3661 10.4058 -2.8860 
16 T 7.4906 -9.2329 9.2002 -2.3965 
17 T 10.8485 -0.1692 1.2606 -5.4168 
18 T 3.7470 -3.4785 4.4333 -7.2250 
19 S 8.8500 1.1058 -3.0191 -14.3041 
20 S 14.9531 -10.2351 7.9638 -5.9468 
21 S 4.1387 -1.9768 3.5655 -4.5714 
22 S 4.9054 -6.9515 7.9636 -2.3951 
23 S 0.5428 -4.3639 -4.2714 1.1134 
24 S 4.0128 -0.8029 2.4983 -16.6631 
25 S 4.9484 -10.3370 11.6038 1.7988 
26 S 1.2456 -16.1044 14.6292 1.6198 
27 S 16.5740 3.1600 -1.3922 -11.5714 

*N = Normal; T = TPLO; S = Suture. 
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