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ABSTRACT 
 

 The combination of physics, biology, chemistry, and computer science constitutes the 

promising field of computational molecular biophysics. This field studies the molecular 

properties of DNA, protein lipids and biomolecules using computational methods. For this 

dissertation, I approached four problems involving the chemotaxis pathway, the set of proteins 

that function as the navigation system of bacteria and lower eukaryotes.  

In the first chapter, I used a special-purpose machine for molecular dynamics 

simulations, Anton, to simulate the signaling domain of the chemoreceptor in different signaling 

states for a total of 6 microseconds. Among other findings, this study provides enough evidence 

to propose a novel molecular mechanism for the kinase activation by the chemoreceptor and 

reconcile previously conflicting experimental data. In the second chapter, my molecular 

dynamics studies of the scaffold protein cheW reveals the existence and role of a conserved 

salt-bridge that stabilizes the relative position of the two binding sites in the chew surface: the 

chemoreceptor and the kinase. The results were further confirmed with NMR experiments 

performed with collaborators at the University of California in Santa Barbara, CA. In the third 

chapter, my colleagues and I investigate the quality of homology modeled structures with cheW 

protein as a benchmark. By subjecting the models to molecular dynamics and Monte Carlo 

simulations, we show that the homology models are snapshots of a larger ensemble of 

conformations very similar to the one generated by the experimental structures. In the fourth 

chapter, I use bioinformatics and basic mathematical modeling to predict the specific 

chemoreceptor(s) expressed in vivo and imaged with electron cryo tomography (ECT) by our 

collaborators at the California Institute of Technology. The study was essential to validate the 

argument that the hexagonal arrangement of transmembrane chemoreceptors is universal 

among bacteria, a major breakthrough in the field of chemotaxis. 

In summary, this thesis presents a collection of four works in the field of bacterial 

chemotaxis where either methods of physics or the quantitative approach of physicists were of 

fundamental importance for the success of the project.  
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INTRODUCTION 
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Physicists have always combined intricate mathematical models to explain and predict 

behaviors of different systems in nature: from galaxies to sub-atomic particles. In the last 

century, physics has contributed to the understanding of many fields of biology. In particular, the 

study of biomolecules greatly benefited from the methods of physics resulting in the field of 

molecular biophysics. With the significant increase of available computational power, in silico 

methods became viable to molecular biophysicists. For example, a detailed description of the 

dynamics of a biomolecule can be obtained by numerically solving Newton’s equations of 

motion for a many-body system. This method, called molecular dynamics simulations (MD) has  

rapidly evolved in the past few years and is now capable of approaching biological systems of 

varied time and length scales [1, 2]. Concomitantly, several properties calculated from 

trajectories produced by MD simulations have been successfully compared to experimentally 

derived data as a validation of the computational method [3, 4]. However, the advantage of 

approaching problems in biology from the physics perspective is not restricted to innovative 

methods. The generally quantitative formalism of a physicist in synergy with the qualitative 

perspective of a biologist allows for major leaps in the current understanding of life sciences. 

This multi-part research project seeks to apply this synergy between physics and biology in 

different problems related to bacterial chemotaxis, primarily focusing on its sophisticated 

molecular machinery. In addition, bioinformatics methods are used to extrapolate the results 

from a particular study to a range of similar biological systems, considerably increasing the 

significance of the discoveries here described. 

 

Introduction to protein structure 

 

At the molecular level, proteins are constructed from building blocks called amino acids. 

Amino acids are organic compounds formed by a carboxylic acid ( െܪܱܱܥ) connected to an 

amine group (െܰܪଶ) by a carbon, known as an alpha carbon, which in turn is connected to a 

hydrogen atom and a side chain. Different amino acids have the same backbone (carboxylic 

acid, alpha carbon and amine group) but different side chains, or residues. Twenty of these 

amino acids are specified by the genetic code and are considered standard building blocks of 

proteins. Each of these amino acids is represented by a unique three letter code or one letter 

code and can be classified by biochemical characteristics (Table 1). An amide synthesis 

reaction between any two amino acids builds a peptide bond between them. Repeatedly, this  
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Table 1: Standard amino acids, their codes and biochemical groups 

Amino acids One letter code 
Three letter 

code 

Biochemical 

group 

Alanine A Ala hydrophobic 

Arginine R Arg positive charged 

Asparagine N Asn polar 

Aspartic acid D Asp negative charged 

Cysteine C Cys polar 

Glutamic acid E Glu negative charged 

Glutamine Q Gln polar 

Glycine G Gly hydrophobic 

Histidine H His positive charged 

Isoleucine I Iso hydrophobic 

Leucine L Leu hydrophobic 

Lysine K Lys positive charged 

Methionine M Met hydrophobic 

Phenylalanine F Phe hydrophobic 

Proline P Pro hydrophobic 

Serine S Ser polar 

Threonine T Tre polar 

Tryptophan W Trp hydrophobic 

Tyrosine Y Tyr polar 

Valine V Val hydrophobic 
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process builds elongated amino acid chains also known as polypeptide. Finally, proteins are 

polypeptides that perform a biological function when folded [5]. 

From the macromolecular perspective, proteins have four levels of information. The 

primary structure of a protein is the information related to the amino acid content that forms the 

protein, also known as the protein sequence. Segments of the peptide sequence of various 

lengths fold primarily in two basic configurations: alpha-helices and beta-sheets. Information 

associated to each configuration is called secondary structure. The tertiary structure of a protein 

is the complete tridimensional fold of the peptide sequence, built from a series of alpha-helices, 

beta-sheets and unstructured regions. Lastly, the quaternary structure is the association of 

multiple tertiary structures to form a macromolecular protein complex Figure 1 .  

Finally, from the architectural perspective, proteins are divided into domains, which are 

parts of the protein that fold independently of the others. A protein can have a single domain or 

multiple domains. Normally, each domain is responsible for a specific task fundamental to the 

overall function of the protein. 

 

Chemotaxis 

 

 Chemotaxis is the phenomena of organisms moving in the environment according to 

chemical cues. The network of proteins that participates in this process forms the chemotaxis 

system. The chemotaxis system has been classified as the most complex two component 

regulatory system (TCS) [6], which, in turn, is a subcategory of the signal transduction cell 

systems [7]. Generally, the chemotaxis system works by sensing the chemical composition of its 

surrounding environment and controlling the motility apparatus to navigate the organism 

accordingly. In other words, it is the navigation control system of prokaryotes and lower 

eukaryotes. Throughout evolution, bacterial chemotaxis systems have diversified incredibly, 

both in network structure and components; however, the basic principles of functionality 

remained the same [8-10]. The core components present in most chemotaxis systems are: the 

methyl-accepting chemotaxis proteins (MCPs), scaffold protein (CheW), the phosphor-relay 

histidine kinase (CheA), the CheA response regulator (CheY) (responsible for motor control) 

and two enzymes: the methyltransferase (CheR) and methylesterase  (CheB) (both involved in 

adaptation mechanisms) [10]. While CheB, CheR and CheY are diffused in the cell, thousands 

of copies of MCPs, CheAs and CheWs self-assemble into a protein complex generally localized 

in the cell pole (Figure 2) [11]. By means of whole-cell electron cryo-tomography, it has been  
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Figure 1: Main protein structures levels 
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Figure 2: Canonical E. coli chemotaxis system. 

Taken from [11] 
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shown that chemoreceptors in different species representing major bacterial phyla are all 

arranged into a highly conserved, 12-nm hexagonal array [12]. This rejects the model of 

hedgerow arrangements for chemoreceptors previously suggested from the crystal structure in 

Thermotoga maritima [13] in favor of the trimer-of-dimers arrangement suggested by the crystal 

structure of E. coli’s receptor Tsr [14]. This result suggests that the basic mechanism and 

function of receptor clustering is universal among bacterial species and was, thus, conserved 

during evolution. 

 

Escherichia coli’s chemotaxis system 

 

 Escherichia coli, which is a model organism in the study of chemotaxis, has a simple 

chemotaxis network of proteins featuring all the core components plus a phosphotase (CheZ). It 

has all the defining characteristics of a chemotaxis system: adaptability, signal amplification, 

dynamic range [15] and robustness [16]. This thesis will further explore the chemotaxis system 

of E. coli. 

 In E. coli’s genome, there is one histidine kinase (CheA), one scaffold protein (CheW) 

and five MCPs: Tar, Tsr, Trg, Tap and Aer [17]. The two major receptors, Tar and Tsr, are 

different from the other receptors because they show greater abundance in the cell and have 

the ability to adapt and function independently of other receptors. On the other hand, the three 

minor receptors, Trg, Tap, and Aer, depend, to some extent, on major receptors to perform 

function and adaptation, as well as showing lower abundance in the cell. Thousands of copies 

of the five chemoreceptors form a mixed forest of trimer-of-dimers [14, 18-22] and, with help 

from the scaffold protein CheW, bind to a homodimer histidine kinase CheA to form the minimal 

signaling unit in vitro [23]. The stoichiometry of the chemotaxis system in E. coli is still a matter 

of debate [20]. A membrane bound, ultra-stable[24] macromolecular complex, also called 

signaling complex, is then formed by arranging many copies of the minimal signaling unit into a 

large array with hexagonal symmetry [20, 25]. 

 The chemotaxis network in E.coli is rather simple compared to other organisms and, 

therefore, subject to intense study [11]. The qualitative model of E.coli’s chemotaxis system 

implies that the signaling complex oscillates between two conformational states. The “on” 

receptor conformation promotes the CheA autophosphorylation rate and the “off” conformation 

disables CheA autophosphorylation. The overall kinase activity, therefore, is the result of the 

proportion of complexes in the two states [26]. In the presence of attractants, the receptors’ 

conformation equilibrium is shifted to the “off” state; while in the absence of attractants the 
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receptors’ conformation equilibrium is shifted to the “on” state.  Shifts in the on-off equilibrium 

control the flux of phosphoryl groups from CheA to CheY and CheB. CheY-P binds to the motor, 

increasing the probability of clockwise (CW) rotation, which causes the cell to tumble. Counter-

clockwise (CCW) rotation, the behavior in absence of CheY-P, produces smooth swimming. The 

combination of tumbling and smooth swimming results in a random walk movement of the 

organism. The phosphatase CheZ hydrolyzes CheY-P, guaranteeing short durations of the 

tumbling periods.  

During its random walk, the cell needs to keep track of the various concentrations of 

attractants recently experienced in order to bias its net displacement towards higher 

concentrations. This is done via the use of methylation sites in the MCPs by two enzymes: the 

methylesterase CheB and the methyltransferase CheR. There are four major methylation sites 

in the major chemoreceptors of E. coli, and they are encoded in the gene (in order) as 

glutamine, glutamate, glutamine and glutamate, or in short QEQE. This methylation state is, 

thereby, also called wild-type. The adaptation mechanism is based in constant methylation of 

the methylation sites by the enzyme CheR and in deamidation of the same methylation sites by 

the enzyme CheB which is kinase activity dependent [26].  

Specifically, the wild-type receptors in absence of attractants balance the constant 

activity of CheR by producing enough CheB-P (CheB phosphorilated by CheA) to keep the 

chemoreceptors in the wild-type methylation state. Also, the balance between CheY-P and 

CheZ in the cell avoids the immediate increase in tumbling and allows a non-bias random walk. 

As the cell encounters attractants, the receptor undergoes to a series of conformational change, 

culminating in an overall decrease in kinase activity. This change leads to less CheY-P, which 

allows for a decrease in the tumbling frequency. It also leads to less CheB-P, and the imbalance 

between CheB-P and CheR drives the receptor to a more methylated state, counteracting the 

conformational changes due to ligand binding and ultimately restoring the receptor’s equilibrium 

for tumbling. However, this secondary adaptation pathway occurs in a much slower time scale, 

allowing the bacteria to effectively drift towards the attractant before adapting, reaching 

equilibrium, and returning to a non-bias random walk. Lastly, when the cell ceases to encounter 

attractants, the receptor’s conformation shifts to the “on” state, which increase kinase activity 

and consequently, the concentration of CheB-P and CheY-P. The cell now tumbles frequently 

(high concentration of CheY-P) and the receptor is driven to a less methylated state, which, in 

turn, restores the wild-type methylation state and, finally, restores the equilibrium between 

CheB-P and CheR, as well as CheY-P and CheZ[15]. In summary, the adaptation mechanism of 
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chemotaxis systems assures responses to gradients rather than absolute concentrations of 

attractants. 

 

Molecular Dynamics 

 

The intricate molecular mechanisms that govern life are a matter of great interest in 

biology. However, the deep understanding of such mechanisms is not only related to 

descriptions of proteins, enzymes, lipids, DNA and ligands in atomic resolution but also to how 

these entities evolve in time.  Despite current advances in microscopy and other techniques, 

there are many limitations to satisfactorily describing the dynamics of biologically relevant 

molecules via experimental methods. This creates an opportunity for computational methods to 

aid experimental techniques in a collaborative way. In the context of atomistic description of 

biological molecules, a specialized computational technique borrowed from chemistry and 

physics became popular in the past fifty years: the classical molecular dynamics simulations. In 

a nutshell, the technique simply uses computers to numerically calculate Newtonian equations 

of motion for a system with ܰ interacting atoms: 

 

݉௜ݎԦపሷ ൌ െ׏ሬሬԦ ௧ܷ௢௧௔௟ሺݎԦଵ, ,Ԧଶݎ … , ݅    ,Ԧேሻݎ ൌ 1,2, … , ܰ    (1) 

 

where ݉௜ and ݎԦ௜ are, respectively, the mass and the position of atom ݅. The total potential 

energy, ௧ܷ௢௧௔௟ሺݎԦଵ, ,Ԧଶݎ … ,  Ԧேሻ, is a function of the spatial distribution of all particles in the systemݎ

[27]. The solution of such equations is the time evolution of the entire system that can be used 

to calculate several thermodynamic parameters and even visualize certain molecular 

mechanisms with atomic precision. However, molecular dynamics techniques are only 

applicable to molecular biology because the atomic coordinates of several proteins and DNAs 

have been already resolved experimentally. These atomic coordinates are the starting point of 

any molecular dynamics simulation. Atomic coordinates derived from X-ray crystallography or 

NMR experiments are organized in a file, named “pdb file,” which is deposited in a public 

repository [28].  

Unfortunately, MD simulation is a classical approach to molecular problems which would 

be more accurately described by the solution of the time-dependent Schrödinger’s equation. 

Current computational techniques and available computational power makes moderately sized 

problems intractable under the quantum mechanics framework. To classically approach 

molecular problems in a computationally efficient manner, some approximations must be made: 
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for example, the Born-Oppenheimer approximation which assumes that electrons move 

instantaneously with the atomic motion, or the assumption that all electrons are in their ground 

state at all times of the simulation. While approximations of this nature limit applications of the 

technique, biomolecules have been successfully treated under the classical framework [3, 29-

33]. 

 

Bonded and non-bonded interactions 

 

The main success of MD simulations in biomolecules comes from the accurate, 

computer-friendly, description of the total potential energy ௧ܷ௢௧௔௟. In general, the total potential 

energy of a given atom is decomposed in bonded and non-bonded terms, but in practice, the 

technical description of it is a matter of choice between the engine and the force field used. All 

simulations described throughout this thesis use the CHARMM27 force field [34-37]. All engines 

used in this thesis (NAMD2[27], Desmond [38] and Anton [39]) are able to work with the 

potential energy description provided by CHARMM27, which separates the total potential 

energy into seven components: 

 

௧ܷ௢௧௔௟ ൌ ܷ௕௢௡ௗ ൅ ܷ௔௡௚௟௘ ൅ ܷ௎஻ ൅ ௜ܷ௠௣௥௢௣௘௥ ൅  ܷௗ௜௛௘ௗ௥௔௟ ൅ ܷ௩ௗ௪ ൅ ௖ܷ௢௨௟௢௠௕  (2) 

 

the first four terms are intra molecular interactions. They are related to the movements of 

stretching, bending (angle and Urey-Bradley) and improper torsion angles respectively (Error! 

Reference source not found.). They are quadratic energetic penalties to geometrical deviation 

from the position of  equilibrium and are modeled by the following equations[34] : 

  

ܷ௕௢௡ௗ ൌ  ∑ ݇௜
௕௢௡ௗሺݎ௜ െ ଴௜ሻݎ

ଶ
௕௢௡ௗ௦ ௜       (3) 

ܷ௔௡௚௟௘ ൌ  ∑ ݇௜
௔௡௚௟௘ሺߠ௜ െ ଴௜ሻߠ

ଶ
௔௡௚௟௘௦ ௜       (4) 

ܷ௎஻ ൌ  ∑ ݇௜௞
௎஻ሺݎ௜௞ െ ଴௜௞ሻݎ

ଶ
௎஻        (5) 

௜ܷ௠௣௥௢௣௘௥ ൌ  ∑ ݇௜
௜௠௣௥௢௣௘௥ሺ߮௜ െ ߮଴௜ሻ

ଶ
௜௠௣௥௢௣௘௥ ௜     (7) 

 

where the variables ݎ௜, ߠ௜, ݎ௜௞, ߮௜ are the bond length, bond angle, Urey-Bradley 1,3 distance 

and the improper torsion angle while  ݎ଴௜, ߠ଴௜, ݎ଴௜௞, ߮଴௜ are equilibrium values and ݇௜
௕௢௡ௗ, ݇௜

௔௡௚௟௘, 

݇௜௞
௎஻, ݇௜

௜௠௣௥௢௣௘௥ force constants. The last intra molecular potential is the energetic adjust for the 

dihedral angle rotational barrier described by the formula:  
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Figure 3: Bonded interactions 
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ܷௗ௜௛௘ௗ௥௔௟ ൌ  ∑ ݇௜
ௗ௜௛௘ௗ௥௔௟ሾ1 ൅ cos൫ߛ௜݊௜ െ ଴௜൯ሿௗ௜௛௘ௗ௥௔௟ ௜ߛ     (6) 

 

here, ߛ௜ is the dihedral coordinate, ݊௜ determines the periodicity, ߮଴௜ determines the angle where 

the potential has a minima and ݇௜
ௗ௜௛௘ௗ௥௔௟ determines its amplitude force constant. 

There are two non-bonded terms: van der Walls and Coulombic. The first is described as 

Lennard-Jones potential 6, 12: 

ܷ௩ௗ௪ ൌ  ∑ 4߳௜௝ ቈ൬
ோబ,೔ೕ
௥೔ೕ
൰
ଵଶ
െ ൬

ோబ,೔ೕ
௥೔ೕ
൰
଺
቉௡௢௡ି௕௢௡ௗ௘ௗ      (8) 

where ݎ௜௝ is the distance between atoms ݅ and ݆ , ߳௜௝ is the potential depth and  ܴ଴,௜௝ 

is the minimal distance allowed between the atoms. Finally, the last term describes the 

electrostatic potential of the system:  

௖ܷ௢௨௟௢௠௕ ൌ  ∑
௤೔௤ೕ

ସగఢబ௥೔ೕ
௡௢௡ି௕௢௡ௗ௘ௗ      (9) 

where ݍ௜, ݍ௝ are the charges of the atoms ݅ and ݆, ݎ௜௝ the distance between them and ߳଴ the 

dielectric constant, which is set to unit in this context. 

 The accuracy of the force field depends on how accurately the parameters described 

above portray the interactions between atoms in the simulation. In CHARMM27, the force field 

parameters have been determined by quantum mechanics calculations and empirical 

techniques [37]. Recently, a number of studies have shown that simulations with this same force 

field are used to calculate a number of parameters that have been successfully compared to 

experimental data [40, 41]. 

Although the accuracy of force fields allows for long MD simulations, the calculations of 

the non-bonded components of the potential energy are troublesome. Both van der Walls and 

Coulombic terms are, in principle, summed over every, single, non-bonded atom of the 

simulation. To avoid boundary effects, the system is submitted to periodic boundary conditions 

which makes the calculations of non-bonded terms of the potential energy practically intractable 

[27, 38]. For that reason, special techniques are used to calculate non-bonded terms of the 

potential energy.  

NAMD2 and Desmond calculate the electrostatic potentials with a technique called 

Particle mesh Ewald or PME [42]. Desmond and Anton use a similar technique called k-space 

Gaussian split Ewald. A detailed description of both methods can be found in [43], but basically, 

the method splits the equation (9) in two parts: (1) a direct sum that decays quickly as distance 

increases and is limited by a cut-off and (2) a reciprocal sum that would converge slowly if not  
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for efficient mapping of the charge distribution of the system into a regular mesh before the 

efficient fast Fourier transform [39].  On the same note, van der Walls computations are usually 

truncated in space given the fast decay of its potential. Despite the technique described to 

improve performance, van der Walls and electrostatic forces are responsible for almost 90% of 

the work load of an MD simulation in a regular, single processor, and both are a current subject 

of study [39]. 

 

The velocity-Verlet integrator 

 

Once the potential energy is calculated, the equations of motion (1) must be evolved in 

time. There are a couple of different techniques to perform this task, but, the velocity-Verlet 

integrator [44] is described here, as it is the integrator used in NAMD2, Desmon and Anton. 

First, assume that all forces are already calculated for the current time step ݊ and the 

current position and velocity ሺݎ௜ሺݐ ൌ ݊ሻ, ݐ௜ሺݒ ൌ ݊ሻሻ are known. Now, the goal of the integrator is 

to calculate the next step ሺݎ௜ሺ݊ ൅ 1ሻ, ௜ሺ݊ݒ ൅ 1ሻሻ assuming the forces ܨሺݎ௜ሺ݊ሻሻ. The basic velocity-

Verlet integrator performs the following instructions: 

 

(1) The velocity is calculated from the actual velocities and the current force for a half-

step: 

 

௜൫݊ݒ   ൅ 1
2ൗ ൯ ൌ ௜ሺ݊ሻݒ  ൅ ݉௜

ିଵܨ൫ݎ௜ሺ݊ሻ൯ כ ݐ∆ 2ൗ      (10) 

 

(2) The new positions are calculated using the half-step velocity: 

 

௜ሺ݊ݎ    ൅ 1ሻ ൌ   ௜ሺ݊ሻݎ ൅ ݒ௜൫݊ ൅ 1
2ൗ ൯ כ  (11)     ݐ∆

 

(3) The force ܨሺݎ௜ሺ݊ ൅ 1ሻሻ is computed using the recently calculated position. 

 

(4) Finally the new velocities are computed for the step ݊ ൅ 1: 

 

௜ሺ݊ݒ ൅ 1ሻ ൌ ௜൫݊ݒ  ൅ 1
2ൗ ൯ ൅ ݉௜

ିଵܨ൫ݎ௜ሺ݊ ൅ 1ሻ൯ כ ݐ∆ 2ൗ    (12) 

 

where ∆ݐ is the integration time step.  
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This integrator has desirable accuracy for biomolecular applications and is stable for 

long time simulations. To improve integration time efficiency, NAMD2, Desmond and Anton 

employ multiple time stepping [44], also known as RESPA, which stands for reference system 

propagator algorithm [45] . As the calculation of the potential energy is divided per nature of 

interaction, RESPA allows that different parts of the potential function can have a different 

integration time step. Usually, bonded interactions are calculated more often, followed by the 

short range electrostatics and van der Walls, and less often than the long-range electrostatics 

forces. While it is desirable to have the largest time-step possible from a performance 

perspective, it should be small enough to ensure accurate description of the system and stability 

of the numerical calculations. Hydrogen atoms are very light compared to other particles in the 

system, therefore, bonds to hydrogen atoms limit the size of the time-step. The most popular 

way to constrain bonds to hydrogen is by using Lagrange multiplier-based methods. While 

NAMD uses SHAKE [46], both Desmon and Anton use an updated version M-SHAKE [47].  

Finally, the integrator accommodates small modifications, as needed, to keep constraints 

necessary for specific thermodynamic ensemble.   

 

Isothermal-isobaric (NPT) ensemble 

 

 Molecular dynamics simulations can be performed in different thermodynamic 

ensembles: microcanonical (NVE), canonical (NVT), isoenthalpic-isobaric and isothermal-

isobaric (NPT). From all ensembles, NPT is the one that better simulates experimental 

conditions since it requires that temperature and pressure of the system remain constant. 

Conceptually, this requirement is achieved in MD simulations by (1) coupling the system to a 

thermal bath that exchanges energy with the system in order to keep temperature constant and 

(2) by scaling the system dimensions to controlling the pressure. Details on how these 

constraints are implemented in MD simulations can be found in [44, 48, 49].  

 

Anton supercomputer 

 

Anton [39] is a specialized supercomputer for molecular dynamic simulations. The 

machine has 512 processing nodes, each containing a specialized processor for molecular 

dynamics calculations. The nodes are connected with a high performance network and the 

machine runs a specialized molecular dynamics engine to avoid overhead. Unlike other 

machines, Anton has no operating system. The instructions to solve the Newtonian equations of 
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motion, the structure file containing the atomic coordinates, the parameters for the force field 

calculations, the integrator constants, the thermodynamic ensemble and any other requirements 

are compiled altogether in a front node running Linux, which in turn, submits the job to Anton 

nodes. The unique combination of hardware and software on Anton reaches performances of 

2.5 s/day compared to 50 ns/day for the same system using Desmond on 512 nodes on the 

University of Tennessee’s supercomputer Newton. Simulations presented in Chapter I of this 

thesis were performed on Anton using 50,000 hours awarded as a grant. 

 

Bioinformatics and Genomics 

 

 The use of bioinformatics in this thesis is limited and primarily enhances the significance 

of the results obtained by other techniques. The genetic code of a given organism, its DNA, 

carries the information about what proteins are produced to sustain its life. Protein sequences 

from various genome projects are annotated and stored in databases such as RefSeq [50], 

providing a vast amount of genetic information. Bioinformatics provides tools to mine this 

information by mixing applied mathematics and statistics with computational methods. In fact, 

bioinformatics alone was able to perform ground-breaking scientific developments such as the 

neutral theory of molecular evolution [51] and the evolutionary tree built from genome sequence 

[52]. Here some concepts are introduced for the sake of clarity in the later chapters. 

 In short, a gene is the stretch of DNA that translates into a protein. Proteins are peptide 

chains that execute a biological function when folded. A pair of genes is said to be homologous 

if they are related to each other either by orthology, separated by an event of speciation, or by 

paralogy, separated by an event of duplication. A protein family is the set of genes where all 

genes are homologous to each other. Using sequence similarity search algorithms such as 

BLAST [53] or HMMER [54] , one can search databases for homologous genes. A set of 

homologous genes can be aligned using multiple sequence alignment software, such as MAFFT 

[55]. The multiple sequence alignment (MSA) is used to evidence a mutation, a deletion, or an 

insertion of residues in each protein of the protein family. This allows for a comparison of the 

rate of side chain exchange in each individual amino acid position during the course of evolution 

of the protein family. It is a paradigm in bioinformatics that highly conserved positions in a 

multiple sequence alignment of homologous sequences are likely to be crucial for its biological 

function [56]. In addition, the conservation of the sequence positions involved in certain tasks 

indicates that the results of experiments in one gene of the family can be confidently 
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extrapolated to all other genes in the same family, which enhances the impact of a particular 

biological finding.  

 

Scope of Thesis 

 

 This thesis will portray a series of four interdisciplinary works intersecting physics, 

biology, chemistry and computer science. The common theme between them is the persistent 

exploration of problems in molecular chemotaxis in prokaryotes from the viewpoint of a 

physicist. Throughout the thesis, the importance of understanding the limitations of popularized 

methods such as molecular dynamics, will become apparent. Chapter 1 will investigate the 

molecular machinery in a chemoreceptor structure by the use of molecular dynamics 

simulations performed in a specialized machine. This study, apart from reconciling apparently 

conflicting experimental data previously reported, proposes a novel mechanism of kinase 

activation by the receptor that should be conserved across the Bacteria and Achaea domain. 

Chapter 2 will show a combination of molecular dynamics simulations and bioinformatics to 

predict the role of a conserved residue for an essential protein in chemotaxis. The prediction is 

further confirmed by NMR measurements and biochemical experiments done by collaborators. 

Chapter 3 is a study of the quality of homology modeled structures using molecular dynamics 

and Monte Carlo simulations with CheW protein as a benchmark. The results of this study will 

guide future homology modeling on cheW homology models in other model organisms such as 

Rhodobacter sphaeroides and Bacillus subtilis. Chapter 4 will provide details of the use of 

bioinformatics and simple mathematical modeling to recognize which specific chemoreceptors 

were imaged in a series of cryo-EM tomography of several distant related organisms. The work 

provided decisive support for the universality of hexagonal packing of the self-assembled 

chemotaxis array in prokaryotes. Finally, the conclusion will review the work presented in this 

thesis and future prospects will be discussed. 
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CHAPTER I SIGNALING MECHANISM OF CHEMORECEPTOR REVEALED BY 

MICROSECOND MOLECULAR DYNAMICS SIMULATION  
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Abstract  

Bacterial chemotaxis is a model system for the to study of transmembrane signaling 

mechanisms. Chemoreceptors typically span the inner membrane as part of a highly ordered 

complex that includes a cytoplasmic kinase, CheA. Ligand binding by the chemoreceptor 

periplasmic domain transmits a signal to its distal cytoplasmic tip, which interacts with CheA and 

modulates its kinase activity. The molecular mechanism of kinase activation and deactivation by 

the chemoreceptor signaling domain remains largely unknown. Using long all-atom molecular 

dynamics simulations, we show that there is a shift in equilibrium between two stable 

conformations of the chemoreceptor kinase-binding region, which is dependent on the 

chemoreceptor signaling state. The two stable conformations of the kinase- binding region are 

associated with the cis – trans isomeric state of the 1 dihedral angle of Phe396, the most 

conserved residue in the chemoreceptor superfamily. The wild-type chemoreceptor oscillates 

equally between the two conformations, whereas each signaling state shifts the equilibrium to a 

particular conformation state. Our results suggest that the switch between the two 

conformations is the direct control mechanism of kinase activity in chemotaxis, and that this 

mechanism is conserved throughout all chemotaxis systems, which are widespread across 

diverse lineages of Bacteria and Archaea. Our results suggest that long molecular dynamics 

simulations can be productive in studying molecular mechanisms of signal transduction in other 

systems. 

 

Introduction 

Bacteria navigate their environment via a specialized two-component system, the chemotaxis 

system, which regulates the flagellar motor. Chemical cues induce conformation changes in 
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chemoreceptors, also known as methyl-accepting chemotaxis proteins (MCPs), which modulate 

the kinase’s autophosphorylation rate affecting the function of the flagella motor. The fine 

control of this mechanism leads the organism to swim towards attractants and away from 

repellents. Chemotaxis systems are vastly diverse with several accessory proteins [10] and 

interaction network structures [8, 9]. However, the superfamily of chemoreceptors is of central 

importance in the molecular machinery of all chemotaxis pathways in prokaryotes and it is 

present in more than 95% of genomes with at least one chemotaxis gene [10, 26]. Multiple 

copies of these receptors directly interact with the kinase CheA and the scaffold protein CheW 

forming a large ultra-stable multi-protein complex [24]. Furthermore, electron cryo-tomography 

images of the chemotaxis protein complex in several organisms show a common hexagonal 

organization of chemoreceptors arrays despite the idiosyncrasies of each chemotaxis system 

[12]. The universality of these results supports that signal transduction mechanisms in 

chemoreceptors might be shared among the majority of chemoreceptor homologs.  

The transmembrane serine receptor (Tsr), one of the two major receptors in Escherichia 

coli and Salmonella typhimurium, is one of the model chemoreceptors commonly studied to 

understand the mechanisms of signal transduction in prokaryotes and lower eukaryotes. The 

other major receptor in Escherichia coli and Salmonella typhimurium, transmembrane aspartate 

receptor (Tar), is also target of many studies of signal transduction. Tar and Tsr are expected to 

behave very similarly and results of the dynamics from one to another are often translated with 

little or no loss of rigor. Tar and Tsr form homodimers [57] and multiple evidences suggest 

functional trimeric oligomerization made up of mixed homodimers in vivo [14, 22, 58]. The 

domain architectures of Tar and Tsr consists of a single ligand-binding perisplasmic domain and 

two cytoplasmic domains: HAMP and signaling domain (Figure 4). The signaling domain of Tsr, 

which is the focus of this work, is a four-helix bundle [14] that can be further divided in three 

functional modules: adaptation, coupling and protein interaction [59]. The protein interaction 

module is highly conserved over extended evolutionary distances due to pressure to maintain 

interaction with multiple interfaces [60]: homo-dimerization, trimerization and interactions with 

CheA [61] and CheW [20, 62]. Consequently, the activation of the kinase and the formation of 

the chemotaxis protein complex are directly linked to this module. The coupling module is the 

region that connects the adaptation and the protein interaction modules. From all three 

modules, this is the least conserved and its structure is predicted to be more unstable than the 

others [60]. In addition, knob truncation experiments established no signal-locking perturbation 

in the coupling module, also in contrast to the others [59]. However, the center of the coupling 
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module features a set of conserved glycine residues ( G340, G341 and G439 ), forming the so 

called glycine hinge [63], that is considered important for proper signaling in Escherichia coli 

[63]. The glycine hinge is predicted to enable a bending movement of the chemoreceptor. The 

“bending as a mechanism of signal transduction” hypothesis is further supported by in vivo 

studies that show relative movement between dimers upon stimulation [26, 63-65]. Finally, the 

adaptation module lies above the coupling module and contains four methylation sites that are 

covalently modified by the enzymes CheB and CheR in Escherichia coli. The methylation sites 

act as a chemical memory that allows the system to adapt to new environments [26]. In Tsr, the 

four principal methylation sites are: Q297, E304, Q311 and E493 [66], hence the notation for the 

wild-type methylation state of Tsr: QEQE. The receptor’s ability to activate the kinase is 

dramatically influenced by the receptor’s methylation state [67, 68]. Mutagenesis studies have 

shown that the glutamatine side chain mimics the effect of a methyl group addition [69] allowing 

genetic manipulation of the chemoreceptor’s signaling state. For example, in absence of the 

enzymes CheB and CheR, Tsr double mutant E304Q/E493Q results in a QQQQ state that 

mimics all sites being methylated, which locks the receptor in “on” state, activating the kinase 

independently of presence of attractant. Conversely, the double mutant Q297E/Q311E results in 

the EEEE state that mimics an unmethylated receptor, locking it in the “off” state, deactivating 

the kinase.  

One periplasmic sensory domain, and two citoplasmic domains, HAMP and the signaling 

domain. The signaling domain is divided in functional modules: adaptation module, coupling 

module and signaling module. For clarity only one monomer of the homodimer is shown. 

To explain the kinase activation by the receptor, a working model has been proposed 

based on multiple studies: the yin-yang hypothesis [26, 59, 70, 71]. The model proposes that in 

presence of attractant, conformation changes would be transmitted to the signaling domain of 

the chemoreceptor and cause different structural effects in different modules. In presence of 

attractant, the four helix bundle packing is expected to be weakened in the adaptation module 

but strengthened in the protein interaction module. This represents the “off” state of the 

receptor, in which inactivates the CheA kinase. Conversely, in absence of signal, attractant the 

receptor is in an “on” state and helical packing in the adaptation module is expected to be stable 

while the protein interaction module to be unstable, promoting kinase activity. It is noteworthy 

that adaptation to a higher attractant concentration leads to the methylation of the glutamate 

side chains (changing E to Q), partially neutralizing the negative charges in the adaptation 

module which would theoretically favor stabilization of the helix. Consequently, adaptation to  
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Figure 4: Scheme of the most common layout of chemoreceptor domains. 
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lower attractant concentration leads to the de-methylation of the glutamine side chains 

(changing Q to E), increasing the negative charges in the adaptation module and therefore 

weakening the helical packing by electrostatic repulsion. Thus, adaptation and attractant signals 

generate opposite effect on the adaptation module (negative feedback) as necessary for proper 

function of the system [59]. In addition, this model proposes the coupling module as an essential 

link to transmit the conformation changes between the adaptation module and the protein 

interaction module. Thus, the authors reject the hypothesis that the middle part of the 

chemoreceptor would be highly flexible as previously proposed by bioinformatics approach [60] 

and structural analysis [63], generating debate. 

 Although the yin-yang model introduces the basic concept of signal transduction in 

chemoreceptors, the molecular details are still poorly understood [59] despite the multiple 

experimental techniques applied in the past. Thus, computational methods provide a new 

avenue of exploration, in particular with molecular dynamics (MD) simulations methods. In the 

past, the periplasmic and the transmembrane domains of Tar chemoreceptors were 

successfully subject to different MD techniques addressing the problem of transmembrane 

signaling transduction[72, 73]. More recently, molecular dynamics coarse grain model was used 

to gain insights in the general mechanical behavior of the full chemoreceptor bound to the 

transmembrane [74]. In this work, we use all atoms molecular dynamics (MD) simulations to 

study in detail the protein dynamics of the signaling domain of Tsr from Escherichia coli in “on”, 

“off” and wild-type signaling states. We seek to gain insights of the structural and dynamic 

disparities between the different signaling states shortly after switching. We mimic the “on” and 

“off” states of the signaling domain of Tsr by varying the methylation state of the chemoreceptor 

(QQQQ for on, QEQE for wild-type and EEEE for off) via in silico mutations. 

 In molecular dynamics simulations there is a major trade off between the number of 

simulated atoms versus how long the simulation must be run in order to provide significant 

information of the system. Consequently, the technical challenges of using MD in this study are 

twofold: (1) the relatively large size of the signaling domain of the Tsr chemoreceptor and (2) the 

relatively long timescale when the conformational changes due to changes in methylation states 

might occur. To overcome this limitation we used Anton [39], a supercomputer specialized in all-

atoms molecular dynamics simulations, to simulate 2 s of physiological time of the signaling 

domain of Tsr chemoreceptor for each methylation state. 
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In summary, our data supports a shift in the paradigm that the flexibility of four helix 

bundle is related to backbone stability or atomic mobility [59, 60]. This reconciles the existence 

of the flexible bundle with the requirement of backbone stability for signal transduction 

previously conjectured in the yin yang model. Ultimately, our results suggest a novel mechanism 

for modulation of the kinase activity by the receptor, which is intimately related to the cis-trans 

conformation of the highly conserved residue Phe396. 

 

Results 

 

Bending properties of chemoreceptor 

 

The 2 s simulations of the three methylation states show statistically significant 

differences (p < 0.000001 in two-tailed Kolmogorov-Smirnoff two sample test in pairwise 

comparison) between the average bending angle in several layers over the period of the 

simulation (Figure 5). To measure local bending properties in chemoreceptors we pair residues 

that are equidistant of the center of the harpin turn of the chemoreceptor (residue E391) and call 

it a layer (see methods). Surprisingly, the regions between layers A307-E475 and I284-S494, 

including three methylation sites, and the region between A382-A400 and G340-M442, located 

right below the glycine hinge, are the most inflexible overall. In contrast, the region between 

layers A314-D464 and L342-E440 is undoubtedly the most variant in all three simulations and 

includes almost all layers with large average bending angle. These layers are directly above the 

glycine hinge and span the region between the adaptation and coupling modules (Figure 6). 

G280 is the true hinge of the Tsr and is directed linked to signaling properties. 

 

Remarkably, the layers containing the residues forming the glycine hinge did not exibit 

any especial bending property in comparison to other residues. Conversely, the layer G280-

E502 showed the largest average bending angle in all three methylation states: 3.4 ± 0.1 

degrees for ܶݎݏொொொொ, 2.9 ± 0.1 degrees  ܶݎݏொாொா and 2.9 ± 0.1 degrees ܶݎݏாாாா. In Tar genes, 

the residue G280 has been mutated to cystein resulting in intradimer disulfide bonds formation 

[75]. A follow up study in Tar shows that G280 is the only conserved glycine to show kinase  
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Figure 5: Profile of averaged of bending angle for each residue layer for each 2 

microsecond simulation in three different methylation states: QQQQ (green), QEQE 

(black) and EEEE (red). 

 Error bars represent the standard deviation of the mean obtained with block jackknife 

method with N = 10 (see methods). The lines of squares represent the result of Kolmogorov-

Smirnoff two sample significance test. Blue squares point the layers with significantly different 

mean values (p < 0.000001) in each pairwise comparison. 
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Figure 6: Mapping of the QQQQ averaged bending angle profile in the Tsr structure. 

 The color indicates high average bending angles (red) and low average bending angles 

(blue).  
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activity for three different modifications: G280A, G280C and disulfide formation; even in 

presence of attractant [63]. Activation of the kinase by G280C disulfide formation makes sense 

under the yin-yang model that predicts a more stable adaptation module would drive the 

receptor to “on” state. Nonetheless, lock-on mutant G280A and G280C in reduced state is 

puzzling. Substitutions to Ala or Cys in a four helix bundle are predicted to destabilize the 

structure and, if in the adaptation module, would switch the kinase to “off” state based on the 

yin-yang model.  

 

Average of atomic mobility of alpha carbons and order parameter. 

 

Average atomic mobility, measured by the root mean square fluctuation (r.m.s.f.) of a 

particular atom, is related to the relative vibrational motion of the atom and in consequence to 

the Debye-Waller factor, also known as B-factor or the temperature factor. Figure 7 shows the 

r.m.s.f calculated for each of the 2 s simulations of the chemoreceptors in all three methylation 

states. Essentially, different methylation states had slightly altered r.m.s.f along the 

chemoreceptor structure, especially close to the methylation sites E304 and Q311; however, 

those differences are not as expressive as the average bending angle. The results also show 

that the tip of the chemoreceptor and the region between layers A314-D464 and L342-E440, 

presents high r.m.s.f. in comparison with the rest of the protein. In particular, the residues G457 

and L475, a direct neighbor of a conserved glycine G474 [63], demonstrated a particular large 

mobility among residues on the C-terminus side of the chemoreceptor. In the same line, the 

residues G280 and its neighbor G283 also show larger atomic mobility compared to its 

neighbors. The overlay of r.m.s.f and average bending angle data shows an apparent 

correlation: flexible regions tend to be more dynamic. However, in all three simulations, the 

region of the glycine hinge, specifically the residues G340, E440 and A443, is particularly 

mobile compared to all other residues in contrast to the relatively small average bending angle 

of these residues. It is obvious now that the coupling between r.m.s.f. and bending angle is 

residual and not purely related to the dynamics. In fact, order parameter ܵଶ [76] of the bond 

vector ܰଵହ െ  of the backbone is a measure of dynamics that should be less sensitive to long ܪ

range motions of slow timescale compared to the backbone dynamics. Calculations of the order 

parameter for all alpha carbons of the structures show a remarkable similarity between the  
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Figure 7: Profile of r.m.s.f for each residue for each 2 microsecond simulation in three 

different methylation states: QQQQ (green), QEQE (black) and EEEE (red).  

Error bars represent the standard deviation of the mean obtained with block jackknife 

method with N = 10.  
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simulations in all three methylation states (Figure 8). Overall, the Tsr structure has a relatively 

rigid backbone ܵଶ ൐ 0.9 with exception for the hairpin turn of the chemoreceptor, as expected. 

However, a few isolated residues are more dynamic as exhibited by their lower order 

parameters. Interestingly, G341 and L342, both part of the layers forming the glycine hinge, are 

the most dynamic region in the chemoreceptor other than the tip. This resolves the contrast 

between high r.m.s.f. of the region and the low average bending angle by supporting that the 

region is unstable, but not necessarily flexible, which in turn argues against the coupling of 

dynamics and flexibility. Furthermore, residue G280 has an ordinary ܵଶ ൌ 0.9 despite its high 

flexibility. In addition, residues G426 and G469, both not showing any relevant numbers for 

r.m.s.f. and bending angle, are also highly dynamical residues. Substitution of G469 by a 

cysteine causes super activation of the kinase, but maintains wild-type response if in the 

oxidized state [63]. As previously stated, substitution to cysteine tends to destabilize the helix, 

locking the kinase on and we hypothesize that disulfide bond formation would rescue the wild-

type stability and therefore the signaling properties explaining the otherwise puzzling result. 

Interestingly, the disulfide formation of the layer G469-G469’ in the mutant G469C was 

reportedly incomplete, which would allow some instability and therefore prevent a complete 

lock-off state, possibly rescuing the wild-type behavior despite the mutation. 

 

Phe396 undergo to cis-trans conformational switch during simulations. 

Despite the insight obtained from the overall mechanistic analysis described above, little 

to no effect was dependent of the methylation state of the chemoreceptor. However, further 

analysis of the highly mobile (r.m.s.f) and dynamic (order parameter) protein interacting module 

indicates otherwise. Analysis of the root mean square deviation (r.m.s.d.) of the protein 

interaction module in the simulation of the wild-type methylation shows that it oscillates between 

two different conformations over time (Figure 9). Astonishingly, further investigation of the 

trajectory for all residues in the protein interaction module indicates that only one residue is 

responsible for the oscillation of the entire module: the Phe396. Neighboring residues show 

correlated r.m.s.d. oscillations but in a much lower value, which suggests that they are 

secondary effects from the movements in the Phe396. During the simulation of the 

chemoreceptor homodimer, the Phe396 of monomer A interacts with the equivalent residue of 

monomer B, Phe396’. This interaction is also present in the Tsr X-ray crystal structure (PDB 

code: 1QU7) [14] as shown in Figure 10. 
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Figure 8: Profile of the order parameter (S2) calculated from each simulation of the 

chemoreceptor in three different methylation states: QQQQ (green), QEQE (black) and 

EEEE (red). 

 Error bars represent the standard deviation of the mean obtained with block jackknife 

method with 
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Figure 9: Temporal analysis of the protein interaction module mobility (r.m.s.d.) shows 

oscilation between two stable conformations. 
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Figure 10: Interaction between Phe396(blue) and Phe396'(red) in the Tsr X-ray crystal 

structure (PDB code: 1QU7) [14] 
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Specifically, the oscillation of the r.m.s.d of the protein interaction module is correlated 

with the position of the 1 dihedral angle (formed by the dihedral angle of the N, C, C and C 

atoms) of the residues Phe396 and Phe396’ (Figure 11). The Phe396 residue is paired with 

Val384 to form the 5th layer above the tip. Locally, the cis-trans switch implicates in a “flip” 

between residues Phe396 and Phe396’, where before the switch Phe396 is further away from 

the tip of the chemoreceptor and after the switch it becomes closer to the tip and vice versa for 

Phe396’. Analysis of the trajectories shows that the cis-trans switch occurs in approximately 4 

ns. Visualization of a switching event in the wild-type chemoreceptors is shown in Figure 12. 

To further study the effects of the cis-trans switch in the overall structure, the distances 

between the alpha carbons of Phe396, Phe396’, Val384 and Val384’ were measured during the 

simulation. Val384 and Phe396 are found in the same layer of the four helix bundle. The first is 

in the N-terminus helix (N) and the second is in the C-terminus helix (C) of each monomer. 

Herein, Phe396/Phe396’ and Val384/Val384’ are described as C/C’ and N/N’, respectively, 

according to the helices in which they are found. Therefore, the relative position of the residues 

towards each other can be also interpreted as the distances between the four alpha helices 

composing the four helix bundle. Surprisingly the only deformation occurring during the cis-trans 

switch is the distances between the helix C and N’ and between the helix C’-N, all other 

distances remains constant during the simulation. A summary of the temporal evolution of these 

measurements is shown on Figure 13. 

Distances between helices were measured as the alpha carbons distances between 

residues Phe396 from the helix C, Val384 from the helix N, Phe396’ from the helix C’ and 

Val394’ from helix N’. Over the course of the simulation, only distances between C-N’ and N-C’ 

varies as the cis-trans C1 dihedral angle. This suggests that the consequence of the cis-trans 

oscillation of Phe396 to the overall structure is the variation of the relative position of the helices 

C and N’ and the relative position of the helices N-C’.   

 

Cis-trans switch of Phe396-Phe396’ is methylation state dependent 

 

In the wild-type simulation, the Phe396 oscillates between the two stable conformations 

cis and trans. In contrast, the switch between conformations is slightly less frequent in the 

simulation of the chemoreceptor in the “on” state, QQQQ, revealing a preferencial trans 

conformation of the Phe396. Simulations of the chemoreceptor in the “off” state, EEEE, also  
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Figure 11: Temporal evolution of the 1 dihedral angle of the interacting residues Phe396 

(above) and Phe396’ (below)  

Comparison between the temporal evolution of the 1 dihedral angle and the r.m.s.d of 

the entire protein module Figure 9 shows that the switching between cis-trans is correlated to 

major configuration changes in the protein interaction region in the chemoreceptor 
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Figure 12: Time lapse of a section of a chemoreceptor simulations in the wild-type 

methylation state highlighting the conformation switch of the Phe396(red)-Phe396'(blue) 

pair.  

Phe396 starts in a cis conformation (right) and then switches to a trans conformation 

(left) over the course of 4ns.  
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Figure 13: Temporal analysis of the pairwise distances between the helices: C, N, C’ and 

N’. 
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reveal a preferential conformation; however, it is a cis conformation preference in contrast to the 

QQQQ state simulations. This stark divide is evident in the distribution of the 1 dihedral angles 

observed during the simulations (Figure 14).   

Phe396 is the most conserved residue in chemoreceptors. 

 

One of the central paradigms of molecular evolutionary biology is that residues 

conserved over long evolutionary distances are important for the function of the protein, either 

by contributing to enzymatic activity, serving as docking site for an interacting protein or even to 

maintain the tertiary structure [56, 77]. The protein interaction module of the chemoreceptor is 

one of the most conserved sequences in nature, and this conservation is attributed to the multi-

faceted nature of its interactions [60].  Analysis of 7,809 non-redundant sequences of 

chemoreceptor fetched from complete genomes in the MIST database in August 2012, reveals 

the Phe396 as the most conserved residue from in the chemoreceptor protein family (Figure 

15). This suggests that if the Phe396 cis-trans switching is in fact the mechanism of kinase 

activation by the chemoreceptor, then the mechanism is conserved in all bacterial chemotaxis 

systems. 

Discussion 

Mechanical properties of the chemoreceptor structure 

 Previously, functional modules of the chemoreceptor signaling domain were identified 

based on features of the multiple sequence alignment [60]. Here we show that the previously 

described flexible bundle [60], which was later defined as the coupling module [59],  shows 

large average bending angles, although our experiments define new boundaries for this module. 

We find the largest bending angles between the layers A314-D464 and L342-E440 in contrast 

with the much larger region previously predicted [60] (Figure 5 and Figure 6). The adaptation 

module that serves as a substrate for the adaptation enzymes, cheB and cheR, is one of the 

most rigid regions of the chemoreceptor together with the protein interaction module where 

CheA and CheW are suppose to bind to the chemoreceptor [26] . Remarkably, while local 

stability is not required for protein-protein interaction [78], we found that bending properties of 

the four helix bundle seems correlate with the chemoreceptor’s binding sites. Therefore, since 

this intermediate region of the receptor has no special properties but the high average bending 

angle, we agree with the flexible bundle nomenclature. 
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Figure 14: Comparison of the distributions of 1 dihedral angle in Phe396 during 

simulations of the chemoreceptor in three states: QQQQ, QEQE and EEEE. 
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Figure 15: Sequence logo of the chemoreceptor protein interaction module. 

 The Phe396 (designated by an asterisk) is the most conserved residue in the entire 

family of chemoreceptors. 
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In addition, the results presented here do not support a bending role for the glycine 

hinge and suggest the region should be termed as glycine bundle. The conservation of these 

glycine residues together with the unique high plasticity of their backbone, relative low order 

parameter and high r.m.s.f., still supports that the glycine bundle is important for the proper 

function of the chemoreceptor, but not as a highly bendable hinge. In contrast, the layer G280-

E502 appears to be the true hinge of the chemoreceptor having the highest average bending 

angle in all three simulations. These residues have not being attributed to have a bending role 

before since it is present in the adaptation module that was thought to be rigid. In addition, 

previous methodologies applied to measure bending angle were subject to cumulative bending 

of adjacent layers [63, 74] misleading the measurement.  

The combination of average bending angle, atomic mobility and backbone dynamics, 

explains the apparent conflicting result of mutants targeting G280 [63] and the yin-yang model 

[59]. We speculate that substitutions in position G280 could compromise the bending properties 

of the layer causing an increase in stability and consequently locking the kinase in on state. This 

hypothesis is also in line with the idea that replacing the glycine with a disulfide bond would lead 

to loss of bending properties which in turn stabilizes the local helical packing. In addition it is 

noteworthy that this relationship is not symmetrical: increasing stability in neighboring residues 

does not necessarily affect bending capabilities of a given layer; however impairing bending 

capabilities of a given layer must contribute to stabilization of the region. Another factor to 

consider is that residue E502, which is a member of the layer G280-E502, is also known to be a 

minor methylation site [66]. Changes from Glu to Gln can alter the local bending properties of 

the layer given the large number of charged residues in the adaptation module [79] serving as a 

fine tune to receptor adaptability. In light of these results, we show that there is an intrinsic 

connection between receptor bending properties, helical stability and kinase activation. 

However, it does not necessarily mean that highly flexible regions are unstable and largely 

mobile. In other words, the relationship between these three mechanical properties seems to 

depend on several factors such as the biochemical composition of the local environment. Also, 

no substantial change in any of the three mechanical properties measured here could be 

correlated to differences in methylation states. 
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Cis-trans switch of conserved Phe396 suggests novel kinase activation mechanism 

 

We identified two stable conformations of the Phe396-Phe396’ interacting pair (Figure 

10). Our results show that switching from one conformation to another takes approximately 4ns, 

however the switching event is rather rare (Figure 12). The only significant consequence of the 

Phe396 conformational switch in the overall structure is the variation between the relative 

position of the helices C and N’ and between the helices N and C’ (Figure 13). Surprisingly, the 

Phe396 conformational switch does not alter the other intra-monomer helix distances (C-N, C’-

N’) nor the inter-monomer distances of the equivalent helices (C-C’ and N-N’).  Figure 16 shows 

a representation of the two configurations of the four helices depending on the conformation of 

Phe396. If monomer A (C and N) is exactly symmetrical to monomer B (C’ and N’) then the two 

configurations from Figure 16 are the same if monomer A and monomer B are switched and 

rotated 180°. We work with the hypothesis that monomer A and B cannot be perfectly 

symmetrical given the chaotic nature of biological systems and that the two conformations are 

indeed not equivalent. Thus, our results show that during the simulation of the chemoreceptor in 

the wild-type methylation state, the pair visits the two conformations equally suggesting 

energetic equilibrium between the two conformations in this methylation state. Interestingly, the 

equilibrium is shifted in different directions for different methylation states Figure 14 and Figure 

17 .  

However, recent experimental evidences show that the quaternary structure of the 

chemoreceptor, the trimer of dimers [12], is necessary for successful modulation of the kinase 

activity [23]. An important question is what does these two conformations mean for the trimer of 

dimer context? Figure 18 shows a prediction of two conformations assumed by the trimer of 

dimer in case of all Phe396 in cis and trans state (panels A and B, respectively). Analysis of the 

Tsr trimer of dimer crystal structure further supports our predictions (Figure 19). The structure’s 

snapshot shows the trimer with the Phe396 in cis state and provides supports for the predicted 

conformation for the Phe396 trans state as well. Surprisingly, the residues from the helix C’ are 

not in close contact with the residues from the neighboring helix N which facilitates the ejection 

of the helix C’ in trans. In this case, we also speculate that the ejection of C’ helix would allow 

for the three helices N to come closer together. In this scenario, this hypothesis can be tested 

with crosslinking experiments on residues V398 and R394 for chemoreceptors in “on” and “off” 

signaling state. 
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Figure 16: Geometry of the tip of the receptor in cis conformation of the Phe396 (A) and 

trans conformation of the Phe396 (B). 
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Figure 17: Working model of the Phe396 conformation preference based on molecular 

dynamics simulations. 

The potential energy is shown in the y-axis. In the wild-type, both conformations are 

equally preferable (central panel). In the QQQQ and EEEE methylation states (left and right 

panels, respectively) the wild-type Phe396 equilibrium conformation (gray) shifts to a 

preferential conformation (black) 
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Figure 18: Predicted geometries of the trimer-of-dimer for cis (A) and trans (B) 

conformations of the 1 dihedral angle of the Phe396. 
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Figure 19: Top view of the protein interaction module of the Tsr trimer of dimers crystal 

structure. 

Residues from the N – terminus (purple) are responsible for the trimerization contacts in 

only one monomer of each the dimer (1, 2 and 3). Remarkably, the residues from the C – 

terminus (green) do not seem to make a strong connection to residues from the neighbor dimer 

helix N (black arrow). This provides further support that for the two states conformation of the 

trimer of dimers suggested in Figure 18.  
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Conclusion 

Using a specialized supercomputer, Anton, we performed three 2s simulations of the 

full signaling domain of the chemoreceptor Tsr from the Escherichia coli. Each simulation had 

the chemoreceptor in a different methylation state that mimic three distinct signaling states: “on” 

(QQQQ), “off” EEEE,  and wild-type (QEQE), which is an equilibrium between “on” and “off” 

states, as assumed by a two-state model of chemotaxis [26]. This analysis provided means to 

use structural features common in all simulations to redefine the boundaries between that were 

previously characterized by sequence analysis [60] (Figure 20.) 

The adaptation module begins at the start of the chemoreceptor signaling domain and 

ends at the layer A314-R468. This region contains the methylation sites responsible for 

adaptation Q297, E304, Q311 and E493, in Tsr E. coli ).  It is remarkably rigid in terms of 

average bending angle. In addition, this region contains the layer G280-E502 that shows 

remarkable bending capabilities and is the true hinge of the chemoreceptor. This finding 

reconciles the conflicting results of the in vitro data on kinase activity of various mutants [63]. 

Specifically, G280A and G280C in reduced and oxidized state which lock the kinase in “on” 

state instead of lock the kinase in “off” state as expected by the yin-yang model [59]. We 

hypothesize that any mutation in this layer affects its special bending properties resulting in a 

lock-on behavior of the receptor. In other words, we believe the mutations that were originally 

thought to destabilize the helix have the opposite effect and jam the chemoreceptor hinge, 

stabilizing the helix. The high conservation of this glycine in close homologs also supports the 

importance of the position for the function of the chemoreceptor [63]. 

The coupling module, more appropriately called here the flexible bundle, links the 

adaptation module and the protein interaction module. We show that this region is highly flexible 

as predicted by Alexander and Zhulin [60] and yet fairly stable as conjectured by the yin-yang 

model [59], reconciling the conflicting evidence. Here, we introduce the concept that the bending 

capabilities and backbone dynamics are not always correlated. Furthermore, our results show 

that measurements of atomic mobility are a combination of these two measurements and 

possibly other structural movements such as torsion and stretching, which were not explored in 

this work. The boundary between the flexible bundle and the protein interaction module is the so 

called glycine hinge, more precisely the layer G341-T441. However, our results indicate that the 

region containing the glycines G340, G341 and G439, forming the glycine hinge, does not bend 

more than other regions of the chemoreceptor. On the other hand, this region exhibits high  
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Figure 20: The three distinct regions of the Tsr receptor: adaptation module, flexible 

bundle and protein interaction module. 

 Features of interest are highlighted: the G280-E502 the hinge of the receptor (green), 

the methylation sites (red), the glycine bundle (blue) and the central residue in the model for 

kinase activation the Phe396 (yellow). 
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atomic mobility given the plasticity of their backbones as shown in lower order parameter 

relative to the rest of residues. Therefore, we propose to rename this region the glycine bundle 

based on our evidence that the previously described “hinge-like” observations[63] are related to 

cumulative bending in adjacent layers and not to the region itself.  

The protein interacting module can be clearly divided in two regions. The “upper” part of 

the protein interaction module, roughly from the layer L380-E402 to the glycine bundle, is well 

characterized structurally by our methods. Our results indicate that the region is inflexible to 

bending and has a highly stable backbone (with the exception of residue G426). In contrast, the 

“lower” part of the protein interaction module, below the layer L380-E402 is extremely dynamic 

and hints towards a more complex role than simply steady protein interaction. 

We further investigated the most conserved residue in the extensive chemoreceptor 

family, Phe396, which is located in the center of the dynamic part of the protein interaction 

module. Our results show that during the simulations the residue transitions between two stable 

and distinct conformations: the cis and trans conformations of its 1 dihedral angle. We found 

that over the course of the simulation of the receptor in the wild-type methylation state, the 

Phe396 assumes both cis and trans conformations equally. In contrast, Phe396 exhibits 

opposing preferential conformation states in QQQQ and EEEE simulations (trans and cis, 

respectively). The switch from cis to trans of Phe396 significantly affects the overall geometry of 

the dynamic part of the protein interaction module by altering the distances between helix C and 

N’ and C’ and N Figure 16 . In the context of trimer-of-dimers this switch would putatively 

change the topology of the allegedly interacting sites of CheW and CheA regulatory domain. 

Since each methylation state represents a different signaling state, we suggest a novel 

molecular mechanism of the CheA kinase regulation where the cis-trans switch of the Phe396 is 

directly responsible for the modulation of kinase activity. 

 In our hypothesis, wild-type chemoreceptors have an equal likelihood of existing in 

either conformation, which has a net effect of an equal ratio of “on”:“off” chemoreceptor along 

with and active:inactive CheA kinases, accordingly. Changes in the adaptation module, either by 

(de)methylation of the adaptation sites or by change in concentration of the attractant, alter the 

energy landscape of the dynamic part of the protein interaction module making one of the 

conformations energetically more favorable than the other Figure 17. This in turn changes the 

ratio of “on”:“off” chemoreceptors and active:inactive CheA kinases, and therefore, each 
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conformation is associated to a different signaling state. How changes in adaptation module 

alter the energy landscape of the protein interaction module is still unknown.  

Overall, the results presented here support a novel mechanism of kinase activation, only 

revealed by use of computational methods of molecular dynamics simulations. As the switch 

occurs in 4 ns, the changes in conformation are rather rare. Ideally, the extension of such 

simulations is desired although the results here are enough to provide a testable hypothesis for 

the mechanism of kinase activation.  

 

Methods 

 

Simulation system. The X-ray crystal structure of the Tsr chemoreceptor in QQQQ methylation 

state deposited in the Protein Data Bank (PDB code: 1QU7) is not fully resolved. However, the 

authors built a complete model based on the X-ray crystal structure and cross linking data [14]. 

Water molecules trapped in the 1QU7 were transferred to the model, total of 120. The model 

was truncated at the residues 263 to 519, the coordinates around the limits of the signaling 

domain [14, 60, 80]. The structure was embedded in water, tip3p, neutralized and 0.05mM of 

NaCl was added. The total simulation system size was 144,647 atoms ( 90x90x182 Å3 ). To 

keep the receptor in place during the simulations we added a 50 kcal/mol/Å2 restrain in the 

backbone of the residues 263 and 519 and one 25 kcal/mol/Å2 in the backbone of the residues 

264 and 518. 

Simulations. We performed a 50ns simulation with the engine Desmond in the Newton 

supercomputer at University of Tennessee using 512 nodes for pre-equilibration of the system 

in NPT ensemble with Berendsen at 300K constant temperature and 1 atm pressure. The 

system was then transferred to the 512 node, special-purpose supercomputer, Anton where a 

one 1s simulation was performed to assure equilibration of the entire structure. Copies of the 

last frame of this simulation were mutated to change the methylation states of the structure: 

Q304E and Q493E to build QEQE structure and Q297E, Q304E, Q311E and Q493E to build 

EEEE structure. Waters and ions were added as needed to restore minor changes in density 

and neutralize the system. Local minimization was performed for 8 steps in the recently mutated 

side chains on Maestro. The velocities were initialized on Desmond prior to be transferred to 

Anton. Each of the three production simulation was 2s long. All simulations used CHARMM27 
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forcefield, NPT ensemble, 300K, 1 atm and Berendsen integrator. Long range electrostatics 

interactions used Gaussian split Ewald with a 64 x 64 x 64 FFT mesh. Short range and van der 

Waals interactions were cut off at 16.75 Å. The simulations time step was 1 fs and respa 1:1:3 

meaning that long-range interactions were calculated every third step. 

 

Calculation of the average bending angle. To measure local bending properties in 

chemoreceptors we pair equidistant residues of the center of the harping turn of the 

chemoreceptor (residue E391) and call it a residue layer. For example the 10th residue from the 

center of the harping turn E391 towards the N-terminus is the residue N381 which is paired to 

the 10th residue towards the C-terminus G401 to for the layer E391-G401. The angle between 

the largest component of the principal axis of inertia calculated for the alpha carbons of the four 

layers above the target layer and below the target layer is then denoted bending angle (Figure 

21). The calculations was performed using the function “measure inertia” from VMD [81]. This 

strategy aims to minimize coupling between other movements such as shear, torsion or 

stretching that might appear as bending, as well as misleading measurements by cumulative 

bending of adjacent layers in a given frame, as occurred in [74]. A time series of the bending 

angle was extracted for each layer and averaged over time for each production simulation. The 

error bars are the standard error calculated by the jackknife procedure [82]. More specifically, by 

the delete-a-group procedure as explained in reference [83] using N = 10. We used the 

Kolmogoroff-Simirnoff two sample test as the test of significance since the test is sensitive to 

shape and average of the distributions compared. 

Local alignment per residue protocol for calculations of the r.m.s.f and order parameter.  

In molecular dynamics, both r.m.s.f and order parameter calculations need a reference frame. 

R.m.s.f calculations can be performed against any frame of the simulation or even to an 

average structure of the entire ensemble assuming that the system is ergotic. The order 

parameter, as it is a measurement of the asymptotic value of a correlation function has to be 

performed against the initial frame (see methods below). The current methodology to calculate 

these values assume that the frames of the simulations have been aligned to the reference 

frame to avoid coupling between rotational and/or translational movements to the dynamics 

being measured. This procedure works well for globular proteins but it fails in the case of 

multidomain structures and/or largely anisotropic structures such as the chemoreceptor. To  
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Figure 21: Schematics of the calculation of the bending angle.  

The target layer is represented by the yellow spheres. The largest component of the 

principal axis of inertia of the alpha carbons in the superior 4 layers (blue spheres) is compared 

to the one calculated from the lower 4 layers (red spheres) as represented by the colored 

arrows. The angle between the arrows is called the bending angle 
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overcome this problem we suggest a procedure much more computationally intensive but that 

eliminates the problem of frame alignment in anisotropic structures that we call: local alignment 

per residue protocol. As the value is calculated for each residue, each frame is aligned to the 

reference frame using only atoms within a certain threshold from the target residue. This custom 

selection of atoms filters long range movements of parts of the structure that might take place 

during the simulation. In both R.m.s.f  and order parameter the cutoff chosen was of 30 Å. We 

generally call this procedure as local alignment per residue protocol. 

Calculation of the r.m.s.f. The r.m.s.f. here is calculated for the alpha carbon of each residue 

as the formula: 

ܴ.݉. .ݏ ݂ሺ݅ሻ ൌ
ଵ

்
∑ ሻݐԦ௜ሺݎۃ െ ଶ்ۄప௔௩௘ሬሬሬሬሬሬሬሬԦݎ
௧       10 

where ܶ is the total number of frames, ݎԦ௜ሺݐሻ is the position of the alpha carbon of residue ݅ in the 

frame ݐ and ݎప௔௩௘ሬሬሬሬሬሬሬሬԦ ൌ  is the average position of the alpha carbon of residue ݅. The error bar ۄሻݐԦ௜ሺݎۃ

is the standard error also calculated by delete-a-group jackknife procedure as in the average 

bending angle. 

Calculation of the order parameter. The order parameter is defined as [76, 84-88]: 

ܵଶ ൌ ூሺ∞ሻܥ ൌ
ଵ

்మ
∑ ∑ ଶܲ൫̂ߤሺ߬ሻ · ݐሺߤ̂ ൅ ߬ሻ൯் ଶ⁄

ఛୀ଴
் ଶ⁄
௧ୀ଴      11 

where ܥ௜ሺ∞ሻ is the internal correlation function when ݐ ՜ ∞. Also,  ݐ and ߬ scans over the 

sequence of frames, ̂ߤ is the unit vector pointing along the backbone 15N-H bond. ଶܲሺݔሻ ൌ

 ቀ
ଷ௫మ

ଶ
െ

ଵ

ଶ
ቁ is the second Legendre polynomial. The equation X requires a convergence of ܥ௜ሺݐሻ 

as ݐ increases. To verify the convergence, we calculate the correlation function as: 

ሻݐூሺܥ ൌ ۃ ଶܲ൫̂ߤሺ0ሻ ·  12      ۄሻ൯ݐሺߤ̂

then we define ܥ௧௔௜௟ as the average of the values of the last 0.5 ns of the correlation function. 

Convergence is assumed if |ܥூሺ∞ሻ െ |௧௔௜௟ܥ ൏ 0.005 as proposed before [85]. If there is no 

convergence, the order parameter is considered null. 

Bioinformatics. We selected all 12,498 chemoreceptor sequences from complete genomes in 

the MIST database as in August 2012 [89]. Using HMM models previously published [60],  the 

chemoreceptors were classified and separated in different files according to its heptad classes 



52 
 

using HMMER [90]. From this set, 2,312 sequences were excluded from our analysis by not 

matching any of the heptad classes. For each file, the MCPsignal PFAM model [91] was used to 

only select the region of the protein matching the PFAM definition of the signaling domain. Each 

file was independently aligned using MAFFT [55]. To avoid bias, we excluded sequences 98% 

identical. Also, 46 sequences were removed for the reason of being incomplete in the region of 

interest. Finally, the MSA of each heptad class was manually trimmed to include only the closest 

4 heptads from the hairpin turn from the N-terminus and the C-terminus, total of 8 heptads or 57 

residues. In Tsr number the region selected is from D363 to S419. The sequence logo with the 

information content, which in turn indicates the amino acid distribution of each position of the 

MSA was built using the software Weblogo [92]. 
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CHAPTER II  THE ROLE OF A CONSERVED SALT-BRIDGE IN THE CHEMOTAXIS 

COMPLEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

 This chapter was taken from a manuscript in preparation: 

Davi Ortega, Guoya Mo, Kwangwoon Lee, Hongjun Zhou, Jerome Baudry, Frederick 

Dahlquist, Igor Zhulin. Investigating structural properties of CheW with molecular 

dynamics and NMR. Manuscript in preparation 

Conceived and designed experiments: DO JB FD IZ. Performed experiments: DO GM 

KL HZ. Analyzed the data: DO GM KL HZ JB FD IZ. Wrote the paper: DO GM KL JB FD IZ. 

 

Abstract 

 

The prokaryotic chemotaxis system is one of the best studied signal transduction pathways in 

nature. Recently, a comprehensive evolutionary study revealed that the birth of a single 

component, CheW, led to the divergence of the chemotaxis system from simpler two component 

systems. CheW increases the binding affinity between the receptors and the kinase in the 

chemotaxis complex, which supports its role as scaffold and possibly the main promoter of 

chemotaxis lattice formation. However, in vitro and in vivo experiments targeting a highly 

conserved position Arg62 in E. coli suggest that CheW may play a more complex and dynamic 

role in chemotaxis given its null phenotype, despite showing only small changes in binding 

affinity with the kinase and the chemoreceptor. Here we show that the Arg62 form a salt-bridge 

interaction with Glu38 that is of fundamental importance for the signaling mechanism in bacterial 

chemotaxis. By means of a total of ~ 2.7 s of multiple molecular dynamics simulations we 

establish the salt-bridge formation between Arg62 and Glu38 in wild-type CheW. We found that 

disruption of this interaction affects the structure of the first sub-domain which, in turn, affects 

the overall stability between the binding sites for the chemoreceptor (second sub-domain) and 

the kinase (first sub-domain). NMR experiments shows that the mutation R62A only introduces 

local changes in CheW structure but relaxation dispersion analysis suggests that the mutation 

will increase the dynamics of the second sub-domain. Taking these results together, we provide 

a significant step towards a better understanding of the kinase activation by the chemoreceptor 

and place CheW protein not as a simple scaffold protein but as a component with an active role 

in signal transduction.  
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Introduction 

 

Signal transduction is a fundamentally important process for all living organisms. While 

the majority of signal transduction events in prokaryotes are carried out by relatively simple one- 

and two-component systems [6, 93, 94], the pathway that controls chemotaxis and other cellular 

functions in bacteria and archaea [10, 11] appears to be as complex as some eukaryotic 

receptor-kinase cascades. The Escherichia coli chemotaxis pathway employs dedicated 

chemoreceptors that are anchored in the membrane and detect signals from both outside and 

inside the cell [26]. Chemoreceptors relay this information to the CheA histidine kinase, which 

then communicates the information to its cognate response regulator CheY. In a phosphorylated 

form, the CheY protein binds to flagellar motors causing a change in the direction of its rotation, 

thus converting the initial signal detected by chemoreceptors into a behavioral response – a 

change in the swimming direction. This pathway also employs receptor modifying enzymes 

CheB and CheR as well as a CheZ phosphatase that, acts on CheY [7]. 

The key features of this remarkable system include high sensitivity, wide dynamic range, 

signal integration, memory, and precise adaptation [67, 95-98] all of which are consequences of 

a highly ordered arrangement of chemoreceptors and kinases at the cell pole [12, 95, 99]. The 

geometry of a hexagonal array with a lattice spacing of 20 nm is conserved over long 

evolutionary distances [12], indicating the importance of relevant positions between interacting 

members of the complex. In addition to chemoreceptors and the CheA kinase, this complex also 

contains the CheW protein, which is usually referred to as a docking, coupling or adaptor protein 

[100-102].  

Three structures of CheW have been resolved for three organisms: Thermotoga 

maritima [100], Escherichia coli [103] and Thermoanaerobactor tengcongensis [104]. The CheW 

fold is composed by two five-stranded -barrel connected by a hydrophobic core [100].  CheW 

is needed for proper kinase activation by the chemoreceptor [105] since it is necessary to the 

formation of the chemoreceptor-CheW-CheA complex [106]. Also, overexpression of CheW 

leads to impairment of chemotaxis [62] since it disrupts trimer formation in chemoreceptors by 

blocking trimer contacts in the receptor [102, 107, 108]. The binding sites of the kinase CheA 

and the chemoreceptor have been mapped on CheW in a series of publications [102, 107, 109-

111]. Although the overall results of binding assays suggest a modest role of simple scaffold for 

CheW, the chemotaxis inhibitor mutant R62H challenges that perspective. While only 
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moderately affecting in vitro binding affinity for both the receptor and the kinase, the mutant has 

null phenotype for chemotaxis [110]. This astonishing result suggests that CheW might have a 

bigger role in chemotaxis system yet to be uncovered [110]. 

In this study, we address this problem by using a combination of comparative sequence 

analysis, NMR and computational molecular biophysics, and analyzing results in the context of 

available structural, biochemical and genetic data. This approach revealed an evolutionary 

conserved salt bridge on the surface of CheW that is responsible for maintaining a specific 

geometry within the signaling complex. Overall, our results show that CheW is not just 

molecular “glue” but a highly dynamic protein that might have a “pro-active” role in signal 

transduction. 

 

Results 

 

Co-evolving class-specific residues in CheW form a short-range salt bridge  

 

Residues in proteins that are conserved over long evolutionary distance play the most 

critical roles in their structure. Because positional conservation is strongly affected by functional 

diversification during the evolution of the protein family, it is important to avoid entangled 

information in search of function-specific residues. CheW is a single-domain protein; however 

this domain, also termed CheW, is present in some other multi-domain chemotaxis proteins, 

such as CheA [112] and CheV [113]. However, diversification within the CheW protein family 

may not be limited to its presence in functionally distinct proteins. The chemotaxis signal 

transduction pathway originated early in the evolution of bacteria and diversified into many 

distinct classes, in which a repertoire of interacting proteins can be quite different [10].  For 

example, in F1 class exemplified by Bacillus subtilis, CheW protein interacts with 

chemoreceptors that are structurally different from those in F7 class exemplified by Escherichia 

coli [60]. Furthermore, within a genomic dataset, protein sequences in each class are unequal in 

both numbers and phylogenetic relatedness, which further complicates analysis. In order to 

identify residues that are only critical to the function of the CheW protein, we collected all 

sequences of proteins with a single CheW domain from MIST database [89]. CheW sequences 

larger than 238 amino acids were also discarded to decrease the chances of selecting poorly 

annotated proteins containing the CheW domain as opposed to the scaffold protein CheW 
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studied here. Also, sequences with less than 138 amino acids, which is the length of the CheW 

model in PFAM, were removed from the dataset to avoid truncated sequences. Both of these 

length-based filters do not affect the overall results and are placed here for the sake of clarity. 

Finally, sequences with more than 98% identity were deleted from the dataset to avoid bias from 

the different number of genomes per organism. We have assigned the resultant sequences to 

chemotaxis classes and found that F1 and F7 are the most abundant classes that are also 

comparable in size (Figure 22). Therefore, we have performed further comparative sequence 

analysis on CheW-F1 and CheW-F7 subsets only. 

Earlier analysis of CheW sequences indicated it is a poorly conserved protein [114]. 

Therefore, it was not surprising to discover that among the five most conserved positions in 

each class only two glycine residues are common to both classes (Table 2).  Conservation of a 

glycine residue usually indicates its unique structural role, either by allowing sharp turns and 

bends, or by its placement in space constraint environment [63]. Indeed, Gly63 is located at a 

critical turn on the CheW tertiary structure and Gly57 is present in a beta sheet bend (Figure 

23).  A strikingly unexpected find, however, was a nearly absolute conservation of two charged 

residues (Arg62 and Glu38 in E. coli sequence) in the F7 class (Table 2). We therefore focused 

our investigation on the properties of CheW proteins that belong to F7 class, especially E. coli  

CheW protein is from the F7 class. 

Arg62 and Glu38 are in close proximity in the tertiary structure (Figure 23). Interestingly, 

both Arg62 and Glu38 (along with some other residues) have been implicated as functionally 

important in previous experimental studies with the E. coli protein. Mutations in Glu38 reduce 

the binding constant between CheW and the Tar chemoreceptor making it a possible candidate 

for the receptor binding site [111]. Mutations in residues in close proximity of Arg62 decrease 

the binding affinity between CheW and CheA; however, mutations in Arg62 itself do not 

considerably affect binding affinities for either CheW or CheA while  significantly impairing 

chemotaxis [111]. Thus, defining the role of this conserved residue remains a challenge despite 

the fact that it has been approached by different experimental techniques [102, 109, 110]. 

Physical proximity and the opposite charge suggest that Arg62 and Glu38 residues are likely to 

interact. Furthermore, the highest level of evolutionary conservation suggest this interaction is 

critical to protein function. Because “self-interactions” between residues in a protein molecule 

are likely to contribute to protein dynamics, we first attempted to examine the role of Arg62 and 

Glu38 residues by using NMR. 
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Figure 22: Distribution of non-redundant CheW sequences in chemotaxis classes 
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Table 2: Highly conserved residues in F1 and F7 classes of the CheW protein 

F1 F7 

Residue Identity (%) Residue Identity (%) 

Gly57 100 Gly57 99.8 

Pro49 98.7 Arg62 99.8 

Val102 97.1 Glu38 99.3 

Gly63 94.0 Gly63 99.1 

Phe22 93.8 Gly99 99.1 

Residue numbers are given in reference to the E. coli CheW protein. 
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Figure 23 : Highly conserved residues mapped on the CheW secondary structure scheme 

(A) and the 3D NMR structure (B). 
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Mutants E38A and R62A show different stability in vitro  

 

15N labeled CheW (1 mM) and its mutant CheW R62A (1.5 mM) were uniformly 

examined for their relaxation properties. The wild-type CheW backbone chemical shift 

assignments were obtained from previously published results (BMRB accession No. 15322) 

[103].  Of the 154 published assignments, 123 were transferred to our wild-type CheW 15N-

HSQC spectrum.  The remaining assignments (20%) were not transferred due to the overlap of 

certain resonances or the weak intensity of the resonances in our condition. 

To see how the mutation affects CheW structure, we compared the 15N-HSQC spectrum 

of E38A and R62A CheW to the wild-type CheW spectrum, and the residues with significant 

chemical shift perturbations were mapped onto the structure of CheW (Figure 24 and Figure 

25).  The results showed that the E38A mutation caused a global structural perturbation, while 

the R62A mutation only caused local structural perturbation.  This is probably because the 

residue Glu38 is located in the middle of 3, which is critical for structure stability, or proper fold.  

Residue Arg62, on the other hand, is located in the turn that connects 4 and 5, and a single 

residue mutation in a flexible turn does not often affect the protein global structure.  Residues of 

the R62A mutant that showed chemical shift perturbation with respect to the wild-type CheW 

greater than 20 Hz were 40-43, 49, 51, 55, 57, 60, 61, 63, 64, 66, 68-70, 73, 76, 78, 86, 88, and 

101.  These residues are mainly located in 4-5, C-terminus of the -sheet containing Glu38 

(3), and residues in close proximity to these limited regions.  For this reason, the subsequent 

experiments focused on the R62A mutant only.  Taken together, these results suggested that, 

while the global structure does not appear to be significantly affected by this mutation, the 

absence of the interaction between Glu38 and Arg62 might lead to a slightly altered local 

arrangement of the 5 -strands in the second subdomain of CheW. 

Backbone Dynamics 

 

 To further investigate the significance of the interaction between Glu38 and Arg62, we 

measured the relaxation parameters of the backbone 15N nuclei in both wild-type and R62A 

CheW.  The average longitudinal relaxation rate R1 was 1.299 s-1 for WT and 1.295 s-1 for the 

mutant (Figure 26a).  The average transverse relaxation rate R2 was 14.62 s-1 for WT and 15.38 

s-1 for R62A mutant (Figure 26b).  The average R2/R1 value was 11.36 for WT and 12.02 for the 

mutant.  The slight increase in R2 in the R62A mutant, despite the almost identical in R1 values,  
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Figure 24: Effects of the mutation E38A in the CheW structure. 

A) Superposition of 1H-15N HSQC spectra of Wild-type CheW (black) and the mutant 

CheW E38A (red). B) The chemical shift perturbation between wild-type- and E38A CheW color-

mapped onto the CheW structure (PDB code 2HO9).  The red color indicates larger chemical 

shift difference and blue color showed smaller differences.  The mutation site E38 is shown in 

yellow. 
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Figure 25: Effects of the mutation R62A in the CheW structure. 

A) Superposition of 1H-15N HSQC spectra of Wild-type CheW (black) and the mutant 

CheW R62A (red).  The chemical shift perturbation between wild-type- and E38A CheW shown 

in (a) was color-mapped onto the CheW structure (PDB code 2HO9).  The red color indicates 

larger chemical shift difference and blue color showed smaller differences.  The mutation site 

R62 is shown in green. 
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To address such possibilities, further analysis of the dynamics was performed by using 

the MODELFREE program to provide information on the internal and overall motions of both 

constructs (8-12). The 15N R1, R2 and 1H-15N NOE data were fitted to a single isotropic rotational 

diffusion model with m fixed at 10.98 ns for WT and 11.6 ns for the mutant, and internal 

parameters were optimized.  The generalized order parameter, S2, reflects amide HN bond 

vector motions on the picoseconds-to-nanosecond time scale, and it ranges from 0 (unrestricted 

motion) to 1 (completely restricted motion).  Generally, order parameter values greater than 

0.85 are associated with rigid regions of the protein and values below 0.8 are associated with 

flexible regions [115-120]. The order parameter S2 obtained from the isotropic model shows that 

the majority of the backbone amides are rigid, the loops and the turns connecting the -sheets 

shows some degree of freedom, and the N- and C- termini of CheW are highly flexible (Figure 

26c).  The order parameter information for the C-terminal end of loop 1 is missing, probably due 

to its increased mobility on the microsecond-to-millisecond time scale, which causes resonance 

broadening and a lack of data for this region. 

 

Relaxation dispersion analysis 

 

 During the model-free analysis, an apparent chemical exchange term, Rex was found to 

make a significant contribution to achieving adequate fit of the 15N relaxation data.  This 

suggested that there were conformational motions in CheW on the microsecond-to-millisecond 

time scale.  For accurate characterization of the Rex term, a series of Carr-Purcell-Meiboom-Gill 

(CPMG) [121-123] relaxation dispersion experiments were performed on both 15N labeled wild-

type and R62A CheW [117, 124, 125]. The Rex terms from R1/R2/NOE fitting are similar to the 

results from the separate CPMG measurements below. 

 The phenomenological transverse relaxation rate constant, Rex, represents the damping 

constant due to exchange between sites.  The value of Rex results from the chemical shift 

difference between two exchange sites (ex) and the reduced lifetime of the exchange sites (ex) 

[125].  The differences between Rex measured at cp values ranging from 20 ms to 1 ms for wild-

type and R62A CheW are shown in Figure 26e, and the differences between these two 

constructs are shown in Figure 26f.  The relaxation dispersion curves for residues Ile65, Thr86, 

Ser164 are shown in Figure 27, and they are typical of those residues exhibiting cp dependent 

dispersion.  The residues that have Rex greater than 5 s-1 are Ile65, Phe75, Ser76, Gln77,  
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Figure 26: Backbone amide 15N relaxation parameters for CheW vs. residue number. 

 The black squares represent wild-type CheW, the red circles represent R62A mutant, 

and the green triangles represent the difference between these two constructs. Approximate 

location of secondary structural elements is shown at the top: (a) the longitudinal relaxation rate 

R1; (b) the transverse relaxation rate R2; (c) [4]-15N NOE; (d) the extracted order parameter S2 

(e) the differences phenomenological transverse relaxation rate constant Rex = Rex(20ms) –

Rex(1ms); (f) the differences between the Rex in (e)  Rex(R62A) –Rex(WT). 
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Figure 27: CPMG dispersion curves for CheW. 

  Values of Rex are plotted versus 1/cp for Ile65 (magenta), Thr86 (black), Ser164 

(green). Solid lines for WT (+) and dash lines for R62A () are best fits to eq. 14. 
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Thr86, Leu159, Ser164, and their ex  and ex extracted from Rex data are given in Table 1.  In 

these two CheW constructs, the majority of the backbone 15N spins showed no significant 

differences in relaxation rate constant.  However, some residues located in 4 and 5, and the 

loops and the two helical regions showed larger Rex values.  Furthermore, the single mutation of 

Arg62 increased the Rex value in some residues on loop1, 1, 2, 4 and 10, indicating that 

there are increased conformational exchange motions in microsecond-to-millisecond time scale.  

This suggested that the mutation of R62, which disrupted the interaction between E38 and R62, 

will destabilize the second subdomain of the CheW structure.  

Unfortunately, some critical dynamics information in the C-terminus of loop1 and 4 are 

missing, thereby limiting further insights into the impact of the interaction between E38 and R62 

on the structure, dynamics, and function.  To address this limitation, molecular dynamics (MD) 

was used to complement the NMR studies. 

 

Direct evidence of the salt-bond between Arg62 and Glu38 

 

Because of all the limitations, we decided to study the dynamics of residues Glu38 and 

Arg62 by using multiple molecular dynamics (MD) simulations. Using the NMR solution structure 

of the CheW protein from E. coli [103] we performed ten independent MD simulations of 90 ns 

each with a total of 450 thousand frames after an equilibration period of 30 ns (Materials and 

Methods). According to [126] a salt bridge between Arg and Glu can be inferred from an in-silico 

model if the pair of residues meet the following criteria: i) the side chain charged group centroids 

are within 4.0 A of each other and ii) at least one pair of carbonyl oxygen and side chain 

nitrogen atoms are within a 4.0 A. In our simulations, 84% of the frames meet both criteria and 

11% meet only the latter, indicating N-O bridge formation. In only 5% of the frames these criteria 

not met. The temporal evolution of the distance of the side chain charged group centroids is 

show in Figure 28. 

 In further analysis, we found there are only two representative distinct salt bridge 

geometries. We define these geometries as follows: geometry A requires both atoms NH1 and 

NH2 are within 4.0 A from a two distinct oxygen atoms in the glutamate side chain, and 

geometry B requires both atoms NE and NH2 are within 4.0 A from a different oxygen atom in 

the glutamate side chain, (Figure 29). In 64% of all frames the residues are in geometry A and 

in 20% they are in geometry B. 
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Figure 28: Temporal evolution of the distance of the side chain charged group centroids 
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Figure 29: The salt-bridge formed by Arg62 and Glu38 in geometry A (top) and geometry 

B (bottom).  

In simulations with wild-type structure, 64% of frames have the residues Arg62 and 

Glu38 in salt-bridge formation in geometry A, and 20% in geometry B. 
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Interaction between Arg62 and Glu38 affects protein dynamics 

 

The interaction between Arg62 and Glu38 has consequences to the overall protein structure. To 

understand the contribution of the salt bridge to the local backbone stability of the protein, we 

analyzed the distance between alpha carbons of the involved residues in all 10 simulations. We 

found that the salt-bridge in geometry A maintains the distance between the alpha carbons of 

residues Glu38 and Arg62 at 12.3 ± 0.3 A. All other conformations assumed by the ion pair, 

including the salt-bridge in geometry B and the N-O bridge, slightly shift the distance between 

the alpha carbons and increase their relative motion range (Figure 30). The independent 

distribution of each conformation is shown on Figure 31. This result indicates that the stability of 

the relative distance between the backbone atoms of Glu38 and Arg62 is compromised if the 

residues do not form a salt-bridge in geometry A. To further validate this finding, we created two 

in silico mutations where Glu38 and Arg62 were replaced with Ala and ten, independent 

simulations of 90 ns were carried out for each mutant. Both mutations intrinsically forbid salt-

bridge formation. We noticed that, in both mutants, the distance between the backbone atoms, 

in specific alpha carbons, was not restricted, as in the wild-type, with the salt-bridge in geometry 

A (Figure 32). 

This result leads to the conclusion that the formation of the salt-bridge between residues 

Glu38 and Arg62 in a specific geometry maintains a stable, relative position between their 

correspondent backbone atoms. 

Local backbone changes are linked to relative position of functionally active sites 

 

Arg62 is located close to a proposed CheA binding site, and Glu38 is located within a proposed 

receptor binding site. Consistent changes in alpha carbon fluctuations calculated for each allele 

show an increase in motion of the receptor binding site relative to the kinase binding site. Local 

changes in backbone positioning relative to these sites were seen in all frames where the 

interaction between Arg62 and GluE38 was not maintained in a specific geometry. This appears 

to be the most critical consequence of the disruption of the interaction for the protein structure in 

the performed simulations. As revealed by the analysis of the order parameter, this local change 

in backbone mobility could not be linked to overall protein dynamics changes in the pico- to 

nanosecond time scale (Figure 33). 
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Figure 30: Histogram of the distance between alpha carbon from Arg62 and Glu38 in all 

wild-type simulations combined (black). The frames can be separated by the occurrence 

of salt-bridges in geometry A (blue) and all other interactions (red). 

The latter includes frames with geometry B and frames with no interaction between the 

residues Arg62 and Glu38. The salt-bridge in geometry A is solely responsible for the peak of 

stability of alpha carbon distance in 12.3 ± 0.3 A. 
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Figure 31: Distributions of the distances between alpha carbons for each conformation 

between Arg62 and Glu38 in all simulations with WT. 

In black is the sum of all conformations, salt bridge in geometry A is in blue, salt bridge 

in geometry B is in red, salt bridge in other salt-bridge geometries is in purple,  N-O bridge in 

light green and finally longer range in dark green. Note the log scale for easy display of the less 

populated conformations. 
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Figure 32: Comparison of the histograms of the distances between the alpha carbons of 

residues 38 and 62 for three alleles: wild-type (black), E38A (purple) and R62A (green). 

 Both mutants show an increase in instability (broader peaks) with respect to the wild- 

type salt-bridge with geometry A (light blue shade). 
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Figure 33: Average of the order parameter calculations for 10 simulations in each 

simulated allele. Wild-type is in black, E38A in red and R62A in blue. 

 Only local changes around position 62 and loop regions are prone of consistent 

changes in dynamics. Error bars represent the standard deviation of the calculations for the 10 

simulation in each allele. 
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We hypothesize that the main evolutionary pressure in the class CheW-F7 is to maintain 

this key intra-protein interaction between the two residues that are also a part of two different 

protein-protein interfaces within the signaling complex. 

To further support this hypothesis, we analyzed the difference in frame averaged root 

mean square deviation (RMSD) per residue between frames collected from the simulations of 

the R62A mutant in comparison with those of the wild-type (salt bridge in geometry A). 

Mutations in position Glu38 disrupt the interaction of CheW with the receptor [111], therefore we 

have not performed the same analysis for the mutant E38A. To measure the relative fluctuation 

of the receptor binding region related to the CheA binding region, we aligned the frames using 

only the backbone atoms of the residues Ile55 and Val68, which is a proposed CheA binding 

site [102, 111]. The frames with the salt bridge in geometry A were selected separately from 

each simulation, and the final frame averaged RMSD per residue value is an average of the 

values independently calculated for each simulation. Since only 64% of the frames from the 

wild-type simulation had a salt bridge in geometry A, we randomly selected 64% of the frames 

from all ten R62A simulations. The frame averaged RMSD per residue was calculated in the 

same fashion as described for the wild-type. Overall, the R62A mutant protein was more 

dynamical than the wild-type (higher frame averaged RMSD per residue) (Figure 34A). 

However, considering the fluctuation of the results from each simulation, only few residues were 

significantly more dynamical in R62A than in the wild-type (p-value < 0.00002). Satisfactorily, 

more than half of these residues were found on the chemoreceptor binding region (Figure 34B), 

further suggesting that the most important consequence of disrupting the salt bridge between 

Glu38 and Arg62 is the increase in fluctuation of the relative position between the kinase and 

receptor binding sites on the CheW surface. 

Discussion 

The results presented here provide a compelling explanation for the strong evolutionary 

pressure on residues Arg62 and Glu38 of the scaffold protein CheW. We found that both 

residues are highly conserved among all CheW proteins. In particular, they are invariant in all 

currently available CheW sequences from the most populated chemotaxis class, F7. While 

Glu38 was previously suggested to participate in the interaction with chemoreceptors [111], 

previous studies failed to propose a role for Arg62, although this residue was recognized as 

highly conserved and shown to be critical for chemotaxis [110]. Using NMR measurements and 

MD simulations, we now show that Arg62 and Glu38 form a stable salt-bridge with a specific  
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Figure 34: Occurrence of salt-bridge in geometry A between Arg62 and Glu38 improves 

the stability of the position of the chemoreceptor binding region relative to the kinase 

binding region. 

 A) Frame averaged root mean square deviation (RMSD) per residue was calculated for 

frames from wild-type simulations with salt-bridge in geometry A between Arg62 and Glu38 

(black) and also for frames from R62A simulations (red). The error bars represent standard error 

of the mean. B) Cartoon representation of the CheW structure and residues Arg62 (blue) and 

Glu38(red). Residues presenting significant difference (P < 0.0002) in RMSD are marked in the 

plot (yellow star) and mapped in the structure (yellow balls). Spectacularly, all residues lay in the 

chemoreceptor binding region. 
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geometry. Simulations with the mutant R62A show that disruption of the salt bridge does not 

lead to overall structural and dynamic compromises of the protein. However, it resulted in a 

detectable loss in stability of the relative position of the chemoreceptor and the kinase binding 

regions. NMR experiments determined that mutant R62A only perturb the CheW structure 

locally, agreeing with the MD results. However, the chemical shifts experienced by several 

residues in the mutant E38A, in contrast to only local changes of the same mutant in the 

molecular dynamics simulations, suggests that E38A is important for the proper fold of CheW. 

In-silico mutants do not experiencing the folding process. Furthermore, the NMR relaxation 

dispersion experiment suggests slow, local motion around the region of Arg62 in the mutant 

R62A. It may be inferred that immediate changes in stability observed by the MD simulations 

will lead to major motions in microsecond-to-millisecond time scale. Finally, despite the 

differences in the environment conditions between the NMR experiments and the MD 

simulations, both mutant R62A and wild-type showed a relative good agreement in order 

parameter, a long stand validation of molecular dynamics methodology by NMR quantitative 

experiment.  

Our results, combined with previous experimental data, lead to the unambiguous 

conclusion that the Arg62 and Glu38 interaction is fundamental to CheW function as a 

dedicated scaffold in the chemotaxis complex. We speculate that the maintenance of stability 

between the chemoreceptor and kinase binding regions of CheW might play a role in signal 

transduction between the chemoreceptor trimer of dimers and the kinase. 

The role of CheW in bridging chemoreceptors and the histidine kinase in the chemotaxis 

signaling complex is reminescent to that of SH2 and SH3 domain-containing scaffold proteins 

that connect G-proteins and tyrosine kinases to downstream enzymes in eukaryotic signal 

transduction schemes. A traditional view on scaffold proteins as a molecular “glue” [107] is 

challenged by observations that proteins are conformationally dynamic and exhibit functional 

promiscuity [127]. Our results demonstrate that the CheW protein, which participates in a unique 

signaling complex in bacteria, is not just static “glue” that keeps the elements of the complex 

together. It is a highly dynamic protein and, thus, might play a role in signal transduction. For 

example, transmitting conformational changes in chemoreceptors and the kinase can be 

achieved by changing stability between corresponding binding regions of CheW that we have 

detected.  



78 
 

By implementing a computational approach that combines bioinformatics and molecular 

simulation with in-vitro NMR techniques, we were able to find a key determinant – an 

evolutionary conserved salt bridge on the surface of the protein – and to propose a mechanism 

for such control. As more genomic and structural information becomes available, our approach 

is directly applicable to similar biological systems. 

 

Materials and Methods 

 

NMR spectroscopy        

 

All the NMR data was collected at 30°C with a Varian Inova 600 MHz spectrometer 

equipped with a four-channel (1H, 13C, 15N, and 2H) cryoprobe and Z-axis pulsed field gradients.  

NMR data was analyzed with the nmrPipe package and ANSIG3.3 [128, 129].  The backbone 
1H and 15N sequential assignments were taken from a previous publication [103].  All NMR 

samples were in 30 mM Tris-HCl (pH 7.3), 30 mM NaCl, 0.2% sodium azide in 90% H2O and 

10% D2O.   

The longitudinal relaxation time T1 (or inverse rates R1), transverse relaxation time (or 

inverse rates R2), and the 1H-15N NOE factor of backbone amide 15N nuclei in CheW were 

measured using inverse-detected two-dimensional (2D) experiments [115-119].  R1 relaxation 

rates were determined from spectra recorded with delays of 11, 55, 110, 220, 330, 440, 660, 

880, and 1210 msec. R2 relaxation rates were determined from spectra recorded with delays of 

16.5, 33, 49.5, 66, 82.6, 99.1, 115.6, 132.1, and 148.6 msec. A recycle delay of 1.5 sec was 

used in both R1 and R2 measurements.  Relaxation rates R1 and R2 were extracted by fitting the 

peak intensities with a single-exponential decay function. The 1H-15N NOE factor was taken as 

the ratio of the peak intensities with and without proton saturation during 3 sec of the total 8 sec 

recycle delay period [119, 120].  Further analysis of the dynamics data was performed by using 

the MODELFREE program [76, 116, 118, 130] to provide information on the internal and overall 

motions of CheW.  The 15N R1, R2 and 1H-15N NOE values were fitted into a single isotropic 

rotational diffusion model described by the overall correlation time m. The model contains a 

contribution from fast internal motions described by the order parameter S2 and the correlation 

time e and from additional exchange broadening (Rex) on the time scale of sec to msec. In the 
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data fitting procedure, m was fixed at 11.0 ns for WT and 11.6 ns for the mutant, and internal 

motional parameters were optimized [76, 115-118, 124, 125, 130].  

For more accurate characterization of the chemical exchange contribution (Rex) to the 

transverse relaxation rate constant, a series of modified Carr-Purcell-Meiboom-Gill (CPMG) 

relaxation dispersion experiments were performed [121-123]. The total CPMG period was kept 

constant at 80.0 msec while the delay cp was varied for a total of 9 values ranging from 1.0 ms 

to 20.0 ms.  The Rex term, with a base value at the fastest spin-echo rate or the shortest cp= 1 

ms, can be extracted by the following equation:  

 

Rex = -12.5 ln (I/I0)     13 

 

where I  is the peak intensity at cp and I0 is the peak intensity with cp= 1 msec.  The value of Rex 

is contributed by the chemical shift difference between two exchange sites (ex) and the 

reduced lifetime of the exchange sites (ex):  

 

Rex = ex ex [1-2ex/cp) tanh(cp/2ex)]    14 

 

in which ex = (1 – 2)
2p1p2; and pi and i are the population and Larmor frequency for the 

nuclear spin at site i, respectively, and ex is the reduced lifetime of the exchanging sites  [125]. 

 

Bioinformatics  

 

 We collected all 3738 CheW proteins sequences from MIST database [89] using its 

definition of CheW in August 2012 from draft and complete genomes. HMMER 2.0 [54] was 

used to classify the CheW according to its chemotaxis classification (flagelar only) determined 

by Wuichet and  Zhulin [10]. 1185 sequences were uncategorized, attributed to alternative 

systems (Acf) or type IV pili systems (Tfp) and were discarded from this analysis. To avoid 

truncated sequences, we removed sequences with less than 138 amino acids, the length of the 

pfam model. We recognize that CheW domain is also part of other proteins with large portions 

with no hit to pfam models (data not shown).To avoid contamination by such proteins, we 

selected only sequences shorter than 238 amino acids long, since the scaffold CheW 

presumably contains only one CheW domain. The number 238 comes from adding 100 amino 

acids, which is the average size of a protein domain, in addition to the 138 amino acids covered 



80 
 

by the pfam model. In this step, 296 sequences were deleted for being too large and 72 were 

deleted for being too short. The length-based filter applied here does not significantly change 

the results and was used to significantly improve readability of the multiple sequence alignment 

built. CheWs sequences were separated according to their chemotaxis classes in different files. 

Each file was subjected to multiple sequence alignment using algorithm L-INS-I from the 

package MAFFT [55]. To avoid bias, the distribution by redundant genomes for each class, 

sequences with more than 98% identity were removed from the dataset. The final dataset 

contained 1429 sequences. Figure 22 shows the distribution of these sequences in natural 

chemotaxis classes. These sequences were used to plot Figure 22 and the sets for class F1 

and F7 were used to calculate the identities presented in Table 2. 

 

Structures and simulation system. 

 

The atomic coordinates of E. coli CheW were obtained from the NMR structure 

deposited on PDB (PDB code: 2HO9) [103]. There are 20 frames in the PDB file, and the frame 

with the lowest alpha carbon RMSD against the average of all frames was selected. This 

structure contains 2576 atoms (including hydrogen). The structure was solvated with Solvate 

plug-in of VMD [81]. Using the Autoionize plug-in of VMD, 30 mM of NaCl was added to the 

system and randomly placed ions were used to neutralize the simulation box. The final system 

contains 36193 atoms in a 64 x 91 x 70 A simulation cell. 

CheW structure equilibrates after ~30 ns (data not shown). We arbitrarily select a frame 

at 40 ns to be the starting point for production simulations of the wild-type protein. To build the 

mutant R62A and E38A, we used the Mutate plug-in of VMD and changed arginine to alanine  

and glutamate to alanine in two, independent copies of the same frame, which was selected as 

the starting point for the wild-type protein simulations. To ensure that all three simulations 

systems (wild-type, mutant R62A and E38A) were similar, only 200 steps of energy minimization 

were applied to each of the two simulation cells after the mutation.  

 

Molecular Dynamics Protocols 

 

Equilibration: The simulation system was subjected to 1000 steps of standard energy 

minimization, followed by 280 ns simulation in NPT ensemble. All simulations were performed 

with NAMD2 [27] using CHARMM22 [37] force fields for proteins and TIP3P model for water 
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[131]. The temperature was held constant at 298 K using Langevin dynamics in non-hydrogen 

atoms with a damping coefficient of 5 ps -1. The pressure was also held constant at 1 atm using 

a Nose-Hoover Langevin piston [49] with a period of 100 fs and a decay time of 50 fs. The 

integration time step was set to 2 fs under a multiple time stepping scheme [132], with bonded 

and non-bonded interactions calculated at every step and long range electrostatics interactions 

calculated at every other step. For the description of the long range forces, van der Waals 

forces had a cutoff of 12 Å and a switching function started at 10 Å to ensure smoothness.  

Electrostatic interactions were calculated using particle mesh Ewald (PME) with a grid point 

density of over 1/Å. 

 

Production: For the wild-type and each mutant, ten, 90 ns long, independent simulations were 

produced. In each simulation, atom velocities were reinitialized, guaranteeing independence 

between each run. The same simulation settings described in the equilibration section were 

used. The computation was performed using 512 nodes in the Newton Cluster at The University 

of Tennessee-Knoxville with a performance of ~33 ns/day. Temperature and pressure were 

constant throughout all simulations (data not shown). 

 

Calculation of the frame average RMSD per residue: 

 

To calculate the frame average RMSD per residue, we executed the following 

procedure: (1) Select all frames from all simulations with the wild-type structure in which Arg62 

and Glu38 form a salt-bridge in geometry A. The frames were kept separated according to its 

parent simulation producing ten sets of frames. (2) For each one of the ten sets of frames, the 

RMSD per residue is calculated for each frame against the initial frame common to all 

simulations. (3) The RMSDs per residue were averaged over the number of frames in each set 

independently.  

The RMSDs were calculated using the VMD tcl command “rmsd” and all atoms were 

taken in consideration. The values plotted in Figure 34A are means of the frame average RMSD 

per residue for all ten values of the ten sets. The error bars represent standard error of the 

mean. 

The same procedure was executed for the simulations with the mutant R62A structure. 

However, to produce the ten sets of frames, the same amount of frames selected from the wild-

type simulations (64%) were randomly selected from all ten simulations and later grouped in ten 
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sets according to the parent simulation. Statistical significance was calculated using two-tailed t-

tests for each residue independently.  

 

Order Parameter Calculations: 

We calculate the order parameter defined by Lipari and Szabo [76]. We use a discrete version 

of the equation 3 in [84]: 

 

ܵଶ ൌ
ଵ

்మ
∑ ∑ ଶܲ൫̂ߤሺ߬ሻ · ݐሺߤ̂ ൅ ߬ሻ൯் ଶ⁄

ఛୀ଴
் ଶ⁄
௧ୀ଴       15 

 

where ݐ and ߬ scan over the sequence of frames, ̂ߤ is the unit vector pointing along the 

backbone N-H bond. ଶܲሺݔሻ ൌ   ቀ
ଷ௫మ

ଶ
െ

ଵ

ଶ
ቁ is the second Legendre polynomial. 

 

General protocol for frame alignments: 

 

CheW contains several loops. In our simulation, these loops were very flexible and alignment of 

the frames was rather poor, which dramatically affected the results of the order parameter 

calculations. It is then important to align the frames using only the most stable regions of the 

molecule. The residues with the lowest RMSF per residue calculated from the production part of 

the initial 280 ns simulation were selected for the alignment. The cutoff was determined by the 

75th percentile of the distribution of the calculated RMSF for each residue. As a result, only 

residues with less than 4.87 Å RMSF were used to align the frames for order parameter 

calculations: 15 to 43 46 47 53 to 61 64 to 81 85 to 119 126 to 136 140 to 156. 
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CHAPTER III  Homology Modeling and Molecular Simulations of CheW 
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Abstract 

 

Homology models of the E. coli and T. maritima chemotaxis protein CheW were 

constructed to quantify the quality of structural predictions and their usefulness in chemotaxis: i) 

a homology model of E. coli CheW was constructed using the T. maritima NMR structure as a 

template, and ii) a model of T. maritima CheW was constructed using the E. coli NMR structure 

as a template. The conformational space accessible to the homology models and to the NMR 

structures was investigated using molecular dynamics and Monte Carlo simulations. The results 

show that even though homology models of cheW sequences and their corresponding 

experimental structures may be structurally different, they explore, through their dynamics, 

similar fractions of their accessible conformational space.  This shows that homology models of 

cheW (and potentially, of other proteins) should be seen as snapshots of an otherwise large 

ensemble of structures similar to that of experimental structures. The understanding of the 

structural and functional properties of chemotaxis complexes benefits from the description of the 

dynamics of predictive homology models. 

Introduction 

 

Bacterial chemotaxis is a model system for understanding the fundamental principles of 

signal transduction in biological systems. The core signaling complex in chemotaxis consists of 

chemoreceptors and the histidine kinase, CheA, that are linked by the coupling protein, CheW. 

Chemoreceptors detect various extracellular and intracellular stimuli and modulate CheA 

activity, which transduces the signals to the flagellar apparatus via its cognate response 
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regulator, CheY[26, 133]. In many organisms, the signaling complex assembles into organized 

arrays at the cell poles, where chemoreceptors cooperatively regulate kinase activity [12, 134]. 

This high-order structure is critical for signal amplification, the remarkable sensitivity of the 

system, and its precise adaptation [99, 135]. Although the general concepts involved in the 

chemotaxis pathway are understood, the details of the molecular mechanism are still a matter of 

intensive research [11, 15]. Thus, an atomic description and complete molecular analysis of the 

chemotaxis components is fundamental to address this challenging topic. 

There are currently 34 atomic structures deposited in the Protein Data Bank for the 

protein elements of the chemotaxis signaling complex formed by the five domain kinase CheA, 

the scaffold protein CheW and the chemoreceptor, which is also known as methyl-accepting 

chemotaxis protein (MCP) (Table 3). All of these structures are for proteins in Thermotoga 

maritima, a thermo-stable protein, and Escherichia coli, a model organism for chemotaxis. 

However, other model organisms, such as Rhodobacter sphaeroides [11, 136] still and Bacillus 

subtilis [11, 136], still do not have resolved three-dimensional structures available for any of 

their chemotaxis proteins. The modest number of available 3D structures compared to the vast 

number of chemotaxis proteins that have been sequenced is dramatic. For instance, there are 

3,738 CheW protein sequences from draft and complete genomes in the Microbial Signal 

Transduction (MiST2) database as of August 2012 [89]. This is in sharp contrast to four 

structures resolved for three organisms. To translate this avalanche of sequence data into 

structural knowledge, it becomes necessary to use in silico approaches to build molecular 

models. 

Homology modeling is the approach of choice to build such models when only the 

sequence of a protein and at least one structure of a homologous protein are known. This 

technique has been used extensively in a wide variety of applications, including analyzing ligand 

binding sites [137, 138], substrate specificity[139], docking and scoring involved in rational drug 

design [140], generating ensembles for docking [141], generating and analyzing binding sites for 

protein-protein interactions [142], as well as providing starting models in X-ray crystallography 

[143] and NMR spectroscopy [144]. In homology modeling, the higher the sequence identity 

between the protein sequence to be modeled (also called the “target”) and the protein template, 

the higher the quality of the model [145]. Empirically, sequence identity levels of less than ~30% 

between the template and the target proteins have been found to lead to homology models of 

poor quality. Thus, proteins in this range of sequence identity are often referred to as being in 

the “Twilight Zone” of homology modeling [146]. This is an issue for cheW, where proteins of  
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Table 3: Chemotaxis protein structure entries in the Protein Data Bank. 

 All structures are derived from X-ray crystallography, except the underlined structures, 

which are derived from NMR spectroscopy. 

 

Structural 

availability 

summary       

CheA 
CheW MCP 

P1 P2 P3 P4 P5 

Escherichia 

coli 
  

1FWP 

1EAY 

1A00 

1FFG 

1FFS 

1FFW 

      2HO9 
3ZX6 

1QU7 

Thermotoga 

maritima 

1TQG 

2LD6  
1U0S 1B3Q 

1B3Q 1I58 1I59 

1I5A 1I5B 1I5C 

1I5D 2CH4 3UR1 

1B3Q 

2CH4 

3UR1 

1K0S 

2CH4 

3UR1 

2CH7 

3G67 

3G6B 

3UR1  

Thermoanaero

bacter 

tengcongensis 

          2QDL   

Salmonella 

typhimurium 
1I5N             
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similar function have often low or very low sequence identity. As shown in Figure 35, virtually all 

sequences exhibit less than 30% sequence identity to each other, and most of them actually 

exhibit sequence identity of less than 15%. However, there are many examples of proteins in 

different families having very low sequence identity yet sharing an overall similar fold [147-155]. 

This is especially true for proteins that share similar functions, such as the known sequences of 

CheW. 

In the case of chemotaxis proteins, and in particular of CheW, where known sequences 

outnumber known structures by orders of magnitude, homology modeling is the only technique 

available to develop a structural rationale to function. But how accurate would such models be, 

which have to be based on low sequence identities and high function and conservation? Even if 

overall structures are correctly predicted, would specific details in the structures be missed that 

are important for the protein’s function? Generally, what level of confidence can the field of 

chemotaxis have in such computationally predicted cheW structures? The present work aims at 

addressing these issues by quantifying the quality of structural predictions and the extent to 

which structural predictions can explain and rationalize the function of the corresponding 

proteins.  

In the present work, homology models of E. coli cheW are built using the NMR structure 

of T. maritima CheW (PDB code: 1K0S) as a template. Similarly, homology models of T. 

maritima CheW are built using the E. coli NMR structure as a template (PDB code: 2HO9). The 

residue identity between the sequences of these two proteins is low – 25.8% – which places 

these proteins in the aforementioned “twilight zone” of homology modeling. Molecular dynamics 

(MD) and Monte Carlo (MC) simulations are used to assess the structural variations of these 

homology models, and to assess the similarities and differences of the models compared to the 

experimental NMR structures of the corresponding proteins. This identifies the regions of the 

CheW structures that can be modeled with high confidence and therefore explains their 

corresponding functional role. 

 

Results 

Comparison of the RMSDs between the starting, static 20 homology models and 20 

NMR structures (Figure 36) show fairly large values, up to 8 Å for E. coli and up to 6 Å for T. 

maritima. Hence, the homology models are overall significantly different than the experimental  
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Figure 35: Histogram of the pairwise sequence identities for all against all 1,742 non-

redundant CheW sequences selected from the MiST2 database. 
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Figure 36 : Comparison of the RMSDs between the 20 homology models and 20 NMR 

structures for both E.coli and T. maritima.  
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NMR structures of the corresponding species. In contrast, the RMSD values between the 

experimental static NMR sub-structures are no larger than 4 Å for both E. coli and T. maritima. 

Prior to the RMSD calculation of each pair, the structures were aligned taking in 

consideration the backbone atoms of the residues that can be aligned without gap in the protein 

cheW from E. coli and T. maritime pairwise alignment. The selected residues for E. coli are: 7 to 

72 74 to 120 123 to 151 154 to 161 while for T. maritime were all residues but 151. The RMSD 

values calculated for the same set of residues used in the alignment were calculated using the 

function “measure rmsd” from VMD [81].  

Molecular dynamics and Monte Carlo simulations of selected homology models and 

NMR structures (see Materials and Methods) allow the sampling of structural variations that are 

thermodynamically accessible at room temperature. RMSDs between each of the 25,000 

structures from the MD simulation of the selected NMR models and each of the 25,000 

structures from the MD simulation of the selected homology model were calculated as described 

in the Materials and Methods section. The results are summarized in Error! Reference source not 

found., and, in the case of the  consensus residues, displayed on Figure 37. The “all 

residues” RMSD values between the starting homology model and the corresponding NMR 

structure are high: 9.1 Å for E. coli and 6.8 Å for T. maritima (Error! Reference source not found.). 

However, the core structural elements of the proteins exhibit a lower RMSD when the termini 

are excluded, and the RMSD values are further for the  consensus residues ranging between 

3.0 Å for E. coli and 4.4 Å for T. maritima (Error! Reference source not found.). This indicates that 

about half to two-thirds of the relatively high overall RMSD difference between the homology 

model and NMR structures is due to differences in the mostly terminal flexible parts of the 

protein, with the structural core being better modeled by the homology approach. Importantly, 

Error! Reference source not found. also indicates that the molecular dynamics trajectories as well 

as the Monte Carlo trajectories produce structural variations of the starting NMR and homology 

model structures that were much closer to each other than the static starting models, as low as 

0.8 Å (for E. coli) and 1.5 Å  (for T. maritima) for the  consensus residues. The corresponding 

structures are superimposed in Figure 38 that shows that the core structures are highly similar 

in NMR and homology model trajectories. Yet there is very little overlap seen in the N-terminal 

and C-terminal regions, or in some of the internal loops. Significant differences are also visible 

in the large loop located near the top of each structure in Figure 38 (corresponding to residues 

43-54 in E. coli and residues 37-48 in T. maritima). 
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Table 4: RMSD values from Figure 37 for (A) MD and (B) LBMC. 

A   

RMSD vs.  NMR 

Trajectories 

E. Coli CheW T. Maritima CheW 

All Residues  Residues 

17‐157 Only 

/ Consensus 

Residues Only 

All Residues  Residues 

10‐147 Only 

/ Consensus 

Residues Only 

 

Starting values 

 

 

9.1 

 

6.2 

 

3.0 

 

6.8 

 

5.8 

 

4.4 

  

Lowest values 

 

 

5.2 

 

3.0 

 

0.8 

 

3.4 

 

2.8 

 

1.5 

 

Highest values 

 

 

10.4 

 

6.3 

 

3.4 

 

6.0 

 

5.1 

 

2.7 

 

Average values 

 

 

8.5 

 

5.3 

 

2.1 

 

5.3 

 

4.5 

 

2.4 

B 

RMSD vs. NMR 

Trajectories 

E. Coli CheW T. Maritima CheW 

All Residues  Residues 

17‐157 Only 

/ Consensus 

Residues Only 

All Residues  Residues 

10‐147 Only 

/ Consensus 

Residues Only 

 

Starting values 

 

 

9.1 

 

6.2 

 

3.0 

 

6.8 

 

5.8 

 

4.4 

 

Lowest values 

 

 

4.9 

 

3.9 

 

1.1 

 

3.9 

 

3.5 

 

1.1 

 

Highest values 

 

 

11.4 

 

6.8 

 

2.9 

 

9.1 

 

6.8 

 

6.3 

 

Average values 

 

 

8.1 

 

5.2 

 

1.9 

 

6.0 

 

4.9 

 

3.4 
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Figure 37: RMSD matrices comparing the similarity of each point of the homology-

modeled trajectories with each point of the NMR trajectories. 

 The RMSD is calculated using the / consensus residues only, and is indicated by 

color, according to the color-coded scale to the right of each matrix. The top two matrices are for 

the MD simulations, and the bottom two are for the LBMC simulations. The small yellow dots in 

each graph indicate the point where the RMSD between both structures in the ensemble is the 

lowest. 
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Figure 38: Superimposition of the most similar structure in the NMR trajectory (red) with 

the most similar structure in the homology-modeled trajectory (blue) 

(A): E. coli MD simulation (RMSD = 0.8 Å), (B) E. coli LBMC simulation (RMSD = 1.0 Å), 

(C) T. maritima MD simulation (RMSD = 1.5 Å), and (D) T. maritima LBMC simulation (RMSD = 

1.1 Å). 
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Figure 39 shows the distributions of RMSD values found comparing the structures in the 

NMR and homology model simulations (as for the instance shown in Figure 37 for the  

consensus residues). In all of the cases represented in Figure 39, the distribution representing 

the 20 homology models vs. each other (blue) consistently exhibit the lowest range of RMSD 

values, indicating that they are relatively structurally close to each other. The RMSD range of 

the 20 NMR structures vs. each other (green) consistently exhibit RMSD values shifted toward 

higher values than the homology models, indicating that the NMR structures collectively 

describe more configurational space than the homology models. This configurational space is 

different when calculating RMSDs between the homology models and the NMR structures (red). 

As shown in Error! Reference source not found., the NMR and homology models are closer to 

each other in the case of the core residues than when comparing all residues, and further so in 

the case of the  consensus residues.  The purple and cyan distributions show that the range 

of conformation sampled in molecular dynamics and LBMC simulations are slightly different in 

the case of simulations of the selected NMR model and of the selected homology model. 

Importantly, the red distribution in Figure 39.E. shows that, in the case of the MD simulation of 

the E. coli homology model and of the E. coli NMR structure, the configurational space sampled 

is leading to RMSD values that can be lower than that exhibited between NMR structures. In 

other words, a static, NMR model and a static homology model, differing by approximately 3 Å 

RMSD (black line in Figure 39E.) can, when sampling the configurational space 

thermodynamically allowed to them, find themselves closer to each other at RMSD values less 

than 1 Å than individual NMR structures of the same protein.  

 

Discussion 

These results show that homology models of cheW can be constructed using other 

cheW templates of low sequence similarities. When comparing such homology models to their 

corresponding experimental structures, the limits of homology modeling become apparent: 

homology models are closer to their template structure than to their target structures. However, 

although homology models and NMR models of CheW may be overall different from each other, 

the sampling of structural space accessible by these models using molecular dynamics or 

Monte Carlo simulations significantly improves the agreement between predicted and 
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experimental models of the same protein. Experimental and predicted models may be closer to 

each other than some experimental NMR structures are from each other. This suggests that  

 

 

Figure 39: Histograms of the RMSD values comparing the NMR ensembles and MD/LBMC 

simulated trajectories.  

Blue represents the histogram for the RMSD values of the 20 homology models versus 

each other; Green, the histogram of the RMSD values of the 20 NMR structures versus each 

other; Red, the histogram of the RMSD values of the 20 homology models versus 20 NMR 

structures; Purple, the histogram of the RMSD values of every structure of the homology model 

simulation versus every structure of the NMR simulation, using LBMC; Cyan, the histogram of 

the RMSD values of every structure of the homology model simulation versus every structure of 
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the NMR simulation, using MD. The vertical black line indicates the starting RMSD value for the 

homology model/NMR structure pair that was simulated. 

whenever possible, homology models should not be seen as “the” most correct possible model, 

but rather as a starting point, and they should be subjected to MD or Monte Carlo simulations to 

identify the range of structures thermodynamically accessible.  

However, even this improvement brought by including the models’ structural variations 

has its limits in the modeling of CheW. Not surprisingly, the N-terminal and C-terminal regions of 

CheW are too flexible to be correctly modeled by homology. This is also the case of the flexible 

loop from residues 38 to 48. What does this mean in terms of confidence of the model when it 

comes to translate CheW structure into CheW function? Table 5 shows the CheW residues 

proposed to be involved in protein/protein interactions in the chemotaxis complexes of E. coli 

and T. maritima. The CheW residues in the  consensus region, for which the “dynamics-

improved” homology models are in very good agreement with the experimental structure, 

contain many residues that are involved with the chemoreceptor proteins. This suggests that 

homology modeling of the CheW sequences done here is likely to be a good structural basis to 

predict the interacting regions between CheW and MCP. This is less so however for the 

proposed interactions between CheW and the kinase protein of the chemotaxis complex, as the 

residues proposed to be involved in these interactions belong to the more structurally variable 

regions that are not so well predicted by homology modeling. The dynamic loop between 

residues 43-54 in E. coli and residues 37-48 in T. maritima, that is involved in the interaction 

between CheW and the CheA P5 domain[13, 20], is also more difficult to model predictively. 

However, the present simulations indicate that these regions are relatively flexible at room 

temperature and the structures observed in NMR experiments may not correspond to the 

structures of the same regions when in contact with another protein in the functional chemotaxis 

complexes. 

 

Materials and Methods 

Multiple sequence alignments of cheW. CheW sequences were retrieved from complete 

genomes in the August 2012 release of the MiST2 database[89]. The sequences were then 

pruned using the CheW domain definition from the Pfam [156] model PF01584 with HMMER3 

[54] and 2,240 sequences with a single hit to the Pfam model were selected.  A multiple 

sequence alignment was generated using linsi from the package MAFFT [55]. Sequences 
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exhibiting 98% identity were deleted to avoid redundant sequences. The final dataset contained 

1,742 sequences that were re-aligned using linsi. The pairwise identity ܫ௜௝ between the  

 

 

 

 

 

 

Table 5: CheW interactions in the literature.  

For E. coli, the residues included were: 17-19, 22-24, 27-30, 36-39, 57-61, 64-69, 87-93, 

96-102, 104-105, 109-111, 133-135, 142-144, and 154-160 (57 residues, or 34.1%, out of the 

total 167 residues in the protein). For T. maritima, the residues included were: 12-17, 22-26, 30-

34, 51-55, 58-63, 65-69, 80-84, 92-95, 97-103, 127, 132, 134-135, and 139-147 (61 residues, or 

40.4%, out of the total 151 residues in the protein). 

Protein Partner  Organism  Residues  Reference 

Chemoreceptor 

T. maritima  14 27 39 98 99  [107] 

E. coli  37 62  [102] 

E. coli  38 87  [111] 

E. coli  38 62 99 88 86 108  [109] 

Kinase 
E. coli  46 48 59 60 64  [102] 

E. coli  45 46 56 158  [111] 
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sequences ݅ and ݆ was calculated for ݅ ൌ 1,2,3… ,1741 and ݆ ൌ ݅ ൅ 1, ݅ ൅ 2,… ,1742. All ܫ௜௝ values 

were binned in 1% bins and displayed in the histogram format. 

 

Homology modeling of E. coli and T. maritima cheW structures. For the modeling of E. coli 

CheW, the sequence was obtained from the UniProt database (Entry ID: P0A964) [157], and 

modeled based on the T. maritima CheW structure as the template obtained from the Protein 

Data Bank [158], PDB ID: 1K0S [100]. Similarly, the T. maritima CheW protein was modeled 

from its sequence (UniProt Entry ID: Q56311) using the E. coli CheW structure as the template 

(PDB ID: 2HO9) [103]. The program MOE, version 2010 (Chemical Computing Group, Inc., 

Montreal, Quebec, Canada), was used to build 20 homology models of both the E. coli and T. 

maritima CheW proteins. The C-terminal and N-terminal outgap modeling and automatic 

disulfide bond detection options were enabled in MOE. The models generated were scored 

based on Coulomb and Generalized Born interaction energies [159], and the top scoring 

homology model was selected for simulation using molecular dynamics and Monte-Carlo 

simulations. 

 

Molecular Dynamics Simulation. The dynamics of the selected CheW homology models was 

investigated using all-atom molecular dynamics (MD) simulations, including the top scoring 

homology model generated for E. coli and T. maritima CheW. In addition, the dynamics of the 

first NMR structure (which is also the most thermodynamically favorable) of the PDB entries for 

the corresponding proteins (1K0S and 2HO9) was also simulated. Each protein was solvated 

using periodic boundary conditions with 8,067 TIP3P water molecules [27, 131]. The molecular 

dynamics program NAMD2 version 2.7 [27] was used with the CHARMM22 all-atom force field 

at a simulated temperature of 300 K. The integration step was set to 2 fs and all of the distances 

in the system involving hydrogen atoms were constrained to equilibrium values. All simulated 

systems were initially energy minimized using the conjugate gradient algorithm for 2,000 steps. 

After initial energy minimization, the systems were gradually heated in an equilibration 

procedure from 100 K to 300 K, in incremental steps of 50 K for 100 ps at a time, for a total of 

500 ps. This was followed by a production run of 50 ns. The similarities and differences between 

two given structures were quantified by calculating the root-mean-square deviation (RMSD) 
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between these structures. Three different RMSDs were calculated that focus on different 

structural subsets of cheW: i) using the backbone heavy atoms of all residues, ii) using the 

backbone heavy atoms of only the “protein core”, i.e. excluding residues 1-16 and 158-167 in E. 

coli, or residues 1-9 and 148-151 in T. maritima, and iii) using only the backbone heavy atoms 

of only the  consensus residues, i.e.; residues having either a -helix or -pleated sheet 

structure in all 20 sub-structures of the NMR models. For E. coli, this included residues 17-19, 

22-24, 27-30, 36-39, 57-61, 64-69, 87-93, 96-102, 104-105, 109-111, 133,-135, 142-144, and 

154-160 (57 residues, or 34.1%, out of the total 167 residues in the protein). For T. maritima, 

the residues included were 12-17, 22-26, 30-34, 51-55, 58-63, 65-69, 80-84, 92-95, 97-103, 

127, 132, 134-135, and 139-147 (61 residues, or 40.4%, out of the total 167 residues in the 

protein). RMSDs were calculated between all 25,000 structures generated in the molecular 

dynamics simulations of the selected homology model, and all 25,000 structures generated in 

the molecular dynamics simulations of the selected NMR model. 

 

Monte Carlo Simulations. The same systems that were used in the MD simulations were used 

in Monte-Carlo simulations using the LBMC method [160]. All simulations were run using an 

equilibration phase of 3 x 108 Monte Carlo MC steps, followed by a total of 3 x 109 MC steps. 

The simulation temperature was chosen to be slightly below the unfolding temperature, based 

on 13 short simulations of 3 x 108 MC steps, i.e. of kBT/ = 0.7, where  is the depth of the Gō 

potential [161, 162]. Frames were saved every 105 MC steps. Trial moves consisted of 

swapping three consecutive peptide planes per step and/or changing the corresponding  

angles[160] with an acceptance rate of approximately 20-25% ; setting the fraction of local 

moves to 10% and the fraction of -only moves to 30%. RMSDs were calculated using the 

same numbers of residues as with the MD simulations (above), and for the LBMC ensembles, 

33,000 structures were generated in the molecular dynamics simulations of the selected 

homology model and NMR model. 
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CHAPTER IV  Universal architecture of bacterial chemoreceptor arrays 
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Abstract  

Chemoreceptors are key components of the high-performance signal transduction 

system that controls bacterial chemotaxis. Chemoreceptors are typically localized in a cluster at 

the cell pole, where interaction among the receptors in the cluster is thought to contribute to the 

high sensitivity, wide dynamic range and precise adaptation of the signaling system. Previous 

structural and genomic studies have produced conflicting models, however, for the arrangement 

of the chemoreceptors in the clusters. Using whole-cell electron cryotomography, here we show 

that chemoreceptors of different classes and in many different species representing major 

bacterial phyla are all arranged into a highly conserved, 12-nm hexagonal array consistent with 

the proposed “trimer of dimers” organization. The various observed lengths of the receptors 

confirm current models for the methylation, flexibility, signaling, and linker subdomains in vivo. 

Our results suggest that the basic mechanism of transmembrane signaling in chemotaxis is 

universal among bacterial species and was thus structurally conserved during evolution. 

 

Introduction 

Most motile prokaryotes rely on a chemosensory system to control their movement toward 

favorable environmental conditions [7]. This process of chemotaxis depends on transmembrane 

chemoreceptors called methyl-accepting chemotaxis proteins (MCPs). MCPs can be classified 

by topology type [163] and signaling domain class [60]. Topology type 1 MCPs have large 

periplasmic ligand-binding domains [163] and an elongated cytoplasmic region consisting of a 

HAMP (histidine kinase, adenylyl cyclases, methyl-binding proteins, and phosphatases) domain 
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followed by a signaling domain, which in turn is composed of "methylation," "flexible bundle," 

and "signaling" subdomains [26, 60] Figure 40. MCPs cluster together with other chemotaxis 

proteins including CheA and CheW in large arrays at the cell pole [95, 99, 134, 164, 165].  

Because MCPs act cooperatively, their arrangement and interactions within the arrays is 

critical to their function. Based on the crystal structure of the Tsr receptor from E. coli [14] as 

well as cross-linking and other studies [166, 167], it seems clear now that the basic functional 

unit in that organism is a "trimer of receptor dimers." It was further proposed that in E. coli, 

trimers of receptor dimers form a hexagonal array with a lattice spacing of 20 nm [168]. A 

subsequent ECT study showed that overexpresed Tsr chemoreceptors in E. coli pack into a 

hexagonal lattice with a center-to-center spacing of 7.5 nm [169-172]. In these overexpression 

strains the receptors surprisingly form a ‘zipper-like’ double layer, where large invaginations of 

the inner membrane allow the cytoplasmic tips of one layer to interact with the cytoplasmic tips 

of a second, facing layer. This arrangement was later proposed to represent the activated form 

of the receptors [173]. Adding further complication, MCPs from T. maritima crystalized as rows 

of dimers [13]. This structure, combined with pulsed ESR and crystallographic studies of a 

CheA-CheW dimer, led to a third, "hedgerows of dimers" model for the architecture of 

chemoreceptor arrays [13]. Finally, through direct imaging of intact Caulobacter crescentus 

cells, we  [174] and others [169] showed that the chemoreceptors in that organism are arranged 

in a hexagonal lattice whose 12 nm spacing suggested that trimers of receptor dimers occupied 

each 3-fold symmetric vertex. While the MCPs of E. coli and C. crescentus all belong to the 

same signaling domain class (36H), those from T. maritima belong to a different class (44H) 

[60]. Thus, based on structural and bioinformatics data, it was unclear whether receptors from 

different MCP classes and organisms clustered similarly, or if not, how many architectures there 

might be. By imaging wild-type cells in nearly-native states, here we show that the 

chemoreceptors of diverse species from six different signaling domain classes are all arranged 

into a highly conserved, 12-nm hexagonal array consistent with a single "trimer of receptor 

dimers" functional unit at each vertex. 

 

Results and Discussion 

Position of chemoreceptor arrays within cells.  In order to visualize the arrangement of 

chemoreceptors in diverse bacteria, we selected thirteen distantly related organisms, which 

together possess receptors from all seven major signaling domain classes [60]  (Table 6) and 

recorded nearly 700 electron cryotomograms of intact, frozen-hydrated cells. Previous  
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Figure 40: Schematic representation of MCP topology type I. 

 Two transmembrane regions (TM1 and TM2) anchor the receptor in the membrane. The 

extracellular (periplasmic) ligand-binding domain is shown in light gray. The cytoplasmic portion 

of the receptor consists of the HAMP domain, linker, and the signaling domain, which, in turn, is 

comprised of 3 sub-domains: methylation regions (MR1 and MR2, white), the flexible bundle 

sub-domain (FH1 and FH2, light gray), and the signaling sub-domain (SR1 and SR2, dark gray). 

In the E. coli Tsr receptor, Gly-340 and Gly-439 comprise the glycine ‘‘hinge’’ in the flexible 

bundle sub-domain, and the receptor hairpin is Gly-390. The ‘‘cytoplasmic’’ sequence length 

plotted on Fig. 3 was measured from the middle of TM2 to Gly-390 in the hairpin. 
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Table 6: Summary of measurements of 13 different bacterial species obtained by ECT 

 

Bacteria Phylum 

Average cell 

diameter x 

length (µm) 

MCP class (no. of 

receptors) Location 

Distance 

from IM to 

base 

plate Lattice 

Surface area 

(nm2), estimated 

no. of receptors 

Escherichia coli 

Gamma-

proteobacteria 0.5 – 1.3 x 2-5 36H (4,1) 

Mainly 

polar 22 nm 12 nm ~ 53 k, ~5200 

Caulobacter crescentus 

Alpha-

proteobacteria 

0.4-0.7 x 0.9-

2.2 

36H (9,7), 38H (1), 

Unc (1) 

Polar, 

Convex 

side 31 nm 12 nm ~ 17 k, ~ 1700 

Thermotoga maritima Thermotogae 0.5-1 x >1.5 44H (6), Unc (1) polar 25 nm 12 nm ~ 97 k, ~ 9400 

Vibrio cholera 

Gamma-

proteobacteria 0.8 – 0.9 x 1.5 

40H (32,10), 44H (1), 

36H (2), 24H (2), Unc 

(2) 

Polar, 

Convex 

side 25 nm 12 nm ~ 121 k, ~11800 

Magnetospirillum 

magneticum 

Alpha-

proteobacteria 0.5 x 2–10 

38H (39,23), 40H (2), 

44H (1), Unc (7) Polar 28 nm 12 nm ~ 12 k, ~ 1200 

Helicobacter hepaticus 

Epsilon-

proteobacteria 0.3 x 1.5 – 4 

28H (4,1), 40H (3), 

Unc (1) 

Polar 

‘cap’ 24 nm 12 nm ~112 k, ~ 10900 

Campylobacter jejuni 

Epsilon-

proteobacteria 0.4 x 0.5–5 

28H (4), 40H (1,1), 

24H (3), Unc (1) 

Polar 

‘cap’ 24 nm 12 nm ~144 k, ~ 14000 

Rhodobacter 

sphaeroides 

Alpha-

proteobacteria 

0.7–0.8 x1.3–

1.4 

34H (7,1), 36H (2), 

Unc (2) Polar 21 nm 12 nm ~22 k, ~ 2200 

Borrelia burgdorferi Spirochaetes 

0.2 x variable 

length (> 10) 

34H (2), 48H (1), Unc 

(3) 

Sub-

polar 27 nm 

No lattice 

observed NA 

Listeria monocytogenes Firmicutes 0.5 x > 1.5 44H (1), 24H (1) Polar 26 nm 

No lattice 

observed ~30 k, ~ 2900 

Acetonema longum Firmicutes 

0.3 x variable 

length (> 10) 44H (20,2), Unc (10) 

Sub-

polar 26 nm 12 nm ~ 51 k, ~5000 

Treponema primitia Spirochaetes 0.4 x3-8 

48H (10,1), 40H (1), 

Unc (1,2) Polar 28 nm 12 nm ~ 15 k, ~ 1500 

Halothiobacillus 

neapolitanus 

Gamma-

proteobacteria 

0.4 –0.5 x1.6–

1.7 40H (4) Polar 24 nm 12 nm ~ 31 k, ~ 3000 
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immunolabeling [175] and correlated light and electron microscopy studies [174] had already 

established that in E. coli and C. crescentus, chemoreceptor arrays can be recognized as 

clusters of thin, pillar-like densities extending from the inner membrane to a prominent "base 

plate" 20-30 nm below. Satisfyingly, similar structures were seen in all thirteen organisms 

imaged here (Figure 41 and Figure 42), but their locations within the cell varied. As in E. coli, 

the chemoreceptor arrays in Magnetospirillum magneticum, Rhodobacter sphaeroides, 

Treponema primitia, Thermotoga maritima, and Listeria monocytogenes were polar. In contrast, 

the arrays in Helicobacter hepaticus and Campylobacter jejuni formed a polar "collar" 

completely surrounding the tip of the cell, but with a gap at the apex occupied by the flagellar 

motor. As in C. crescentus [174], the arrays in Vibrio cholerae were polar but consistently 

localized to the convex side of the crescent-shaped cells.  Receptor arrays in Acetonema 

longum and Borrelia burgdorferi were typically subpolar but inconsistently positioned. The array 

in A. longum was found, for instance, to range from immediately adjacent to the pole to nearly a 

micron away.  Although cytoplasmic MCP arrays have been reported in R. sphaeroides [176-

178], none were observed here. 

Receptor lengths. Despite the similarity of the arrays, the distance between the base plate and 

the inner membrane varied between species (Table 6). Measured values ranged from 21 nm in 

R. sphaeroides to 31 nm in C. crescentus, but were constant within each species. Because 

distinct periplasmic densities were observed above the arrays in nearly all the cells, and only 

topology type 1 MCPs have large periplasmic domains, we infer that at least the majority of the 

MCPs composing these arrays were of topology type I. In 7 of the organisms imaged (E. coli, V. 

cholerae, H. neapolitanus, A. longum, L. monocytogenes, R. sphaeroides and T. maritima) all 

the topology type I MCPs present in their respective genomes belong to a single (but different 

for each organism) signaling domain class (Table 6). When the observed distance between the 

inner membrane and base plate was plotted against the number of cytoplasmic residues in the 

corresponding receptor sequences, there was a strong correlation with a slope of 0.142 nm per 

residue (Figure 43a). Because all the MCPs shown in Figure 43a contain a single HAMP 

domain, and its size is constant [179, 180], its presence should not affect the slope. The 

remarkable match of the observed slope with the rise per residue seen in the coiled coil crystal 

structure of a T. maritima receptor's signaling domain (0.145 nm/residue) [13] therefore confirms 

that the methylation, flexible bundle, and signaling subdomains in all the receptors shown are 

also coiled coils in vivo.  
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Figure 41: Characteristic appearance of chemoreceptor arrays in vivo.  

(A) A 55-nm-thick tomographic slice through a T. maritima cell pole (signaling domain 

class 44H). Typical features like the inner (IM) and outer membrane (OM) and the enclosed 

extended periplasm are clearly visible. The arrows indicate the location of the chemoreceptor 

array within the inner membrane and densely packed cytoplasm. Bar: 100 nm. (B) A 3-nm-thick 

tomographic slice through the pole of a T. maritima cell treated with Polymyxin B. The reduced 

cytoplasmic crowding clarifies chemoreceptor features compared to those in untreated cells.  

Bar 100 nm. 
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Figure 42: Chemoreceptor arrays in diverse bacteria. 

 Tomographic slices through cells of 11 different species illuminating the varied location 

but consistent appearance of the arrays. (T. maritima and C. crescentus are not shown, 

because they are available in Figure 41 and ref [174] respectively.) (Scale bars: 100 nm.) 
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Figure 43: Correlation between observed physical length and predicted sequence length. 

 (A) Organisms possessing a single class of topology type I receptors. Physical length 

and sequence length were measured as described in Materials and Methods. The sequence 

length is an average of all topology type I MCPs in the given genome. Vertical bars indicate SD 

of measurements from different cryo-tomograms and positions within the array, horizontal bars 

indicate the larger of the SD of the various MCP sequence lengths present in the genome or the 

estimated uncertainty in the position of the transmembrane region (~ 5 residues, see Materials 

and Methods). The line is a least squares fit whose slope confirms that the cytoplasmic domains 

of the receptors form extended coiled coils. Al, A. longum; Ec, E. coli; Hn, H. neapolitanus; Lm, 

L. monocytogenes; Rs, R. sphaeroides; Tm, T. maritima; and Vc, V. cholera. (B) All topology 

type I MCPs in all 13 organisms imaged. Each MCP sequence in each organism is represented 

by a symbol, color- and shape-coded by organism (Right). All the MCPs of a particular organism 

appear at the same height on the graph (the measured distance between the inner membrane 

and base plate layer), even though it is not known which were actually imaged. MCPs of 

particular signaling domain classes cluster closely, and are labeled with the color of the label 

itself (e.g., 34H, 36H) indicating whether the receptors of that class are typical (black), contain 

extra linkers (blue), or contain both extra linkers and a second HAMP domain (red; see Figure 

44). The sequence lengths of typical receptors (i.e., those without extra linkers and HAMP 

domains) are seen to progress steadily with class number across the graph from left to right. 

Receptors with additional linkers or a second HAMP domain (blue and red labels) appear further 

to the right than expected because of their extra residues. The Unc label represents an MCP 

that does not correspond to a known length class, but was given a sequence length 

measurement as described in Materials and Methods. The graph shows that within the 

organisms that possess 2 classes of receptors (C. jejuni, H. hepaticus, B. burgdorferi, T. 

primitia, M. magneticum, and C. crescentus), only one class matches the trend line found in A, 

suggesting that it was the receptor class forming the arrays. 
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The genomes of the other 6 organisms imaged (C. jejuni, H. hepaticus, B. burgdorferi, T. 

primitia, M. magneticum, and C. crescentus), each contain topology type I MCPs belonging to 2 

different signaling domain classes and some of their MCPs possess linkers and/or an additional 

HAMP domain (Figure 44 and Figure 45). It was unclear therefore which class of MCPs were 

being expressed and forming the arrays. When the observed lengths were plotted against the 

number of cytoplasmic residues in all the topology type I receptors, however, only one 

candidate signaling class within each organism matched the trend line (Figure 43b). In the 

cases of B. burgdorferi and T. primitia, for instance, the sequence length of the class 48H MCPs 

fell compellingly well on the trend line but the class 34H (B. burgdorferi) and unclassified (T. 

primitia) receptors did not. In the cases of C. jejuni and H. hepaticus, receptors of the 40H class 

fell on the trend line, but those of class 28H, which contain long (~95 residue) extra linkers 

between their HAMP and signaling domains (Figure 45), did not. In the case of M. magneticum, 

while its class 40H receptors did not fit the trend line, surprisingly, its class 38H receptors did 

because they contain an extra linker (of ~30 residues). Finally, in the case of C. crescentus, 

neither the class 36H nor 38H receptors matched the trend line well. However, close inspection 

of the sequences revealed that the class 36H receptors also contain second HAMP domain. 

Because a HAMP domain is expected to be approximately 4 nm shorter than a (presumably) -

helical linker of the same number of residues [179], if this deficit is taken into account, the 

observed length of the class 36H receptors also matches the trend line well. Our interpretations 

are therefore that (i) in the single growth condition used for each particular species, the arrays 

were composed of receptors from a single predominant signaling class that could be identified 

by the observed distance between the inner membrane and base plate, (ii) the methylation, 

flexible bundle, and signaling subdomains present in all 13 organisms are in fact coiled coils, 

and (iii) the linkers are -helical in vivo. Assuming this is correct, our data contained images of 5 

major signaling domain classes (44H, 40H, 38H, 36H and 34H) and one minor signaling domain 

class (48H). 

Lattice arrangement.  Eleven of the species imaged here presented clear "top" views of the 

arrays (those of L. monocytogenes and B. burgdorferi were inaccessible, see Figure 46Figure 

45). Surprisingly, they all revealed the same ~12 nm honeycomb-like hexagonal arrangement 

observed previously in C. crescentus.  We conclude that throughout the entire wide range of 

species and receptor classes imaged here (including WT E. coli and T. maritima, for which MCP 

crystal structures and alternative models exist, as well as organisms from 6 diverse taxonomic 

groups that span the bacterial kingdom (Figure 47), trimers of receptor dimers pack at the  
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Figure 44: MCP signaling domain length classes observed in the study.  

Light and dark gray blocks correspond to heptads (7 aa) for each class (i.e., there is a 

total of 34 heptads in the 34H MCP signaling domain). 
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Figure 45: The three different domain architectures of MCP topology type I receptors. 

 Red circles, predicted signal peptides; blue rectangles, predicted transmembrane 

regions; HAMP, predicted HAMP domains; linker, predicted linker region; MCPsignal, predicted 

signaling domains. The domain architecture at the top is most common. Receptor classes with 

the top, middle, and bottom domain architectures are identified by black, blue, and red labels in 

Figure 43b, respectively. 
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Figure 46: Universally conserved 12-nm hexagonal arrangement of receptor.  

(A) Top" view of a chemoreceptor array (black arrows) in T. maritima (signaling domain 

class 44H). Bar: 50 nm. (B–K) Top views (Left) and power spectra (Right) of receptor arrays all 

reveal the same ~12-nm hexagonal lattice. B, T.maritima; C, A. longum; D, C. jejuni; E, H. 

hepaticus; F, M. magneticum; G, H. neapolitanus; H, R. sphaeroides; I, E. coli; J, V. cholerae; K, 

T. primitia. (Scale bars: 25 nm; power spectra enlarged.) (L) Trimer of dimers (blue) fit into the 

vertices of the hexagonal lattice in a chemoreceptor array (V. cholerae). Six trimers of dimers 

(red) enclose one hexagon. The spacing from the center of one hexagon to the center of an 

adjacent one is consistently 12 nm (blue asterisks). 
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Figure 47: Maximum likelihood phylogenetic tree of 406 representative bacteria. 

 Organisms that encode one or more MCPs within their genomes are shown in red. 

Phyla are shown at the right (proteobacteria are further subdivided into classes) with the 

exception of unique organisms that are sole representatives of their phyla. Red circles and their 

associated lines show the placement of organisms examined in this study. The Firmicutes clade 

was used to root the tree, because it is currently considered to be the oldest phylum [181, 182].  

 



116 
 

vertices of a 12 nm hexagonal lattice. In all the arrays we observed, the honeycomb-like lattice 

was clearest just above the base plate but deteriorated as it rose towards the inner membrane. 

These observations support the notion that the major architectural contacts occur near the 

signaling subdomain of chemoreceptors [26]. While the basic arrangement of all the arrays was 

clearly hexagonal, none of the arrays were perfectly regular, supporting the idea that the degree 

of local order could reflect activation and/or regulation [169]. The size of the arrays, and thus the 

estimated number of receptors, varied by an order of magnitude (from ~1,200 in M. magneticum 

to ~14,400 in C. jejuni (Table 6)), without obvious correlation to the cell size or bacterial 

taxonomy. 

 

Conclusion 

Tightly coupled, communicating chemoreceptor arrays are thought to enable the main features 

of the signaling mechanism: heightened sensitivity [183], signal gain [96], cooperativity [67, 135] 

and adaptation [98, 184].  The universal hexagonal architecture and secondary structure of 

chemoreceptor arrays that we observed in diverse bacterial species implies, therefore, that the 

trimer-of-dimers arrangement and the underlying signaling mechanism are preserved over long 

evolutionary distances. The main features of the signaling mechanism that are being revealed in 

E. coli are therefore likely to be applicable to other bacterial species. This is important because 

while chemotaxis is critical to both pathogenic [185] and symbiotic [186] interactions of bacteria 

with higher organisms, the molecular details of this fascinating system can at present only be 

studied in a few model organisms. 

 

Materials and Methods. 

Strains, sample preparation, EM data collection, and image processing.  Bacterial strains 

(Caulobacter crescentus CB15N, Escherichia coli RP 437, Thermotoga maritima MSB8/DSM 

3109, Vibrio cholerae TRH7000, Magnetospirillum magneticum sp. AMB-1, Helicobacter 

hepaticus ATCC 51449, Campylobacter jejuni ATCC 29428, Rhodobacter sphaeroides NCIB 

8253, Borrelia burgdorferi B31 cells ATCC 35210, Listeria monocytogenes strain 10403S 

(serotype 1/2a), Acetonema longum APO-1 DSM 6540, Treponema primitia strain ZAS-2, 

Halothiobacillus neapolitanus C2 ATCC 23641) were grown in standard media.  To flatten the 

thickest cell types slightly, E. coli cells were incubated with 462 iu/ml PenicillinG for 60 min at 30 
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°C [187] and T. maritima cells were treated with 1 mg/ml PolymyxinB for 10 hours on ice. 

Cultures were plunge-frozen across EM grids as described [188]. Standard EM tilt-series were 

collected on 300 kV electron cryomicroscopes and three-dimensional reconstructions were 

calculated as described [189, 190].  

 

MCP sequences and classification.  MCP sequences from the complete genomes (E. coli, C. 

crescentus, T. maritima, V. cholerae, M. magneticum, H. hepaticus, C. jejuni, R. sphaeroides, B. 

burgdorferi, L. monocytogenes) were downloaded from the MIST database [191]. For the draft 

genomes (A. longum, T. primitia and H. neapolitanus), contigs were subjected to the GeneMark 

gene finding program [192] to obtain the translated sequences. MCPs were then identified in 

translated proteins using the MCPsignal domain model (Pfam database [156] accession number 

PF00015) and the HMMER software package [54].  The final set contained 223 MCPs from 13 

genomes (Table 6). MCPs were assigned to signaling classes and membrane topology types as 

previously described [60, 193]. Sequences which did not match any established signaling class 

were left unclassified ("unc" in Table 6). 

  

Physical and sequence lengths measurements. Because of the well-understood point-

spread-function in electron cryotomography (including a final low-pass filter), the edges of 

objects appear less sharp in tomograms than they really are. The exact positions of the top and 

bottom of the inner membrane or CheAW base plate are therefore difficult to ascertain. The 

location of their midplanes are, however, highly reliable, since the point-spread-function only 

smooths (and does not shift) peaks. The distance between the peaks (midplanes) of the inner 

membrane and CheAW base plate was therefore used as an estimate of the physical length of 

the cytoplasmic portion of the MCPs. Likewise, the center of transmembrane regions can be 

more reliably predicted from sequence than the edges, and neither is exact because 

transmembrane helices likely drift up and down a few residues within the fluid bilayer. The 

sequence length of the "cytoplasmic" domains was therefore taken to be the number of amino 

acids from the middle of TM2 to the conserved glycine at the tip of the hairpin (Gly390 in the Tsr 

protein of E. coli)(Figure 40). While it is not yet known exactly where the tip of the hairpin is with 

respect to the midplane of the CheAW base plate, because whatever discrepancy that might 

exist is likely to be the same for all the receptors, it should not have affected the slope of the 

correlation between physical and sequence lengths across different receptor classes.  
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In this thesis, different problems in chemotaxis were approached with computational 

molecular biophysics. In the first three chapters, molecular dynamics techniques were applied to 

fundamentally diverse problems: the molecular mechanism of cell signaling, protein structure 

and homology modeling. The last chapter is a classic example of how the scientific training of a 

physicist is useful in other areas such as biology even without using physics methods. 

Regardless, the four projects resulted in four novel findings in the fields of chemotaxis and 

protein structure. 

In chapter one, the use of long molecular dynamics simulations reconciles apparently 

conflicting arguments in the chemoreceptor’s dynamic structural properties from two different 

methods: bioinformatics and crosslinking experiments. The first predicts the center portion of the 

chemoreceptor to be a flexible bundle while the other predicts a stable structure. We show that 

both are correct and that bending properties are not strictly related to backbone dynamics in 

four helix bundles. In addition, this study provides enough evidence to redefine the boundaries 

of the functional modules of chemoreceptors. Ultimately, and most importantly, the results of 

this work suggest a novel model for the modulation of the kinase activity by the chemoreceptor. 

This is the first molecular mechanism proposed to explain the activation of the kinase by 

conformational changes in the receptor’s protein interaction region. 

 In the second chapter, the confirmation of a salt-bridge formation between two highly 

conserved residues in the cheW protein family explains a ten year mystery in the field of 

chemotaxis: if cheW is only a scaffold, as previously thought, why does the mutant R62H have 

null phenotype and yet manage to keep the wild-type binding affinities with the chemoreceptor 

and the kinase?  Here, molecular dynamics and NMR experiments are combined to show that 

the aforementioned residue participates in a salt-bridge interaction critical for the proper function 

of chemotaxis in the organism.  

The third chapter addresses a major problem in the field of structural biology. The 

information obtained by sequencing techniques dramatically outnumbers the number of atomic 

coordinates resolved for protein structures by X-ray crystallography and NMR. Molecular 

dynamics is used to access the quality of a common technique used to bridge this information 

gap: homology modeling. The results show that although the models are structurally close to the 

template, ensemble sampling techniques such as molecular dynamics or Monte Carlo 

simulations improves the general quality of the model.  

Finally, in chapter four, mathematical modeling and bioinformatics were used to 

demonstrate that the selection of organisms showing hexagonal pack of transmembrane 
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chemoreceptors arrays is in fact a broad survey of evolutionarily distant chemoreceptors. This 

result was central to the claim that the hexagonal packing observed is universal in bacteria. 

The field of molecular dynamics simulations is only in its early developments and 

popularization among young scientists. With the increase in computer power and advances in 

specialized hardware specific for molecular dynamics, it is expected a higher influx of scientific 

discoveries using the method. Experimental techniques are clearly still necessary to lay the 

groundwork prior to in silico studies, but the significance of high-throughput computational 

methods is already undeniable.  

 

Future Aims 

 

 The future of computational biophysics relies on the advances of computational methods 

and technologies yet to come such as new algorithms, faster devices and new architectures. At 

the current stage, mid-size single molecule molecular dynamics needs specialized machines or 

large supercomputers to produce a meaningful, statistically tractable, ensemble. However, in 

the near future, longer and larger simulations will become more feasible and that opens an 

entire pathway for the field of chemotaxis. 

 The ultimate goal of simulating the entire chemotaxis complex anchored to a lipid bilayer 

should be pursued, given the outcomes. Presented here, a complete picture of the individual 

conformational changes that form the signaling cascade of the chemotaxis system will have an 

unprecedented impact in health sciences. Chemotaxis is not only a model system for several 

other cell signaling mechanisms, but it is also essential for understanding infection by 

pathogenic bacteria and therefore a target for drug design. 

 However, multiple advances are necessary to successfully simulate the entire 

chemotaxis complex. First, homology modeling and molecular dynamics simulations are 

necessary to confidently build missing structures and capture the native states of proteins to be 

assembled in the complex. Second, bioinformatics and structural biology will be necessary to 

correctly dock the proteins in the complex. Third and most importantly, the assembled system 

will have to undergo long (microseconds to miliseconds) molecular dynamics. The complete 

chemotaxis complex system could be as large as 100 million atoms and simulations of the order 

of milliseconds will be needed to effectively gain insight in the molecular machinery of the entire 

system at once. For that, new technologies in hardware and software will be necessary  

 Conversely, there are some topics that can be promptly addressed. The use of 

molecular dynamics to produce a reliable, complete, all-atoms structural model of the 
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chemoreceptor is one example. The link between the HAMP domain and the signaling domain 

remains subject of research and molecular dynamics can help to provide some answers. The 

combination of bioinformatics, homology modeling and molecular dynamics can drive major 

advances to the complete understanding of chemotaxis in the near future. 
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