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Abstract

Three models of coevolutionary dynamics between mutualistically interacting species

are developed. The first is a three loci, haploid model describing a general plant-

pollinator system, such as Greya moth and its host plant. In this case, the system

will always collapse to a single plant type and pollinator type. In a community

with an mutant plant type, it is possible for a host-switch to occur, governed by

the initial relative abundance plant type and the pollinator choosiness. In addition,

genetic diversity can be maintained if the pollinator has no differential host preference,

only adaptation to a host. Next, this model is extended to the case of the fig-fig

wasp system, implementing a more complex life cycle of overlapping generations due

to asynchronous flowering populations. In the fig system, extensive hybridization

due to asynchronous flowering can maintain genetic diversity for thousands of

generations, when pollinator choosiness is high. Therefore, mutualism can lead to low

confidence trees in phylogenetic reconstructions affecting discordance among plant

and pollinator phylogenetic trees. Lastly, the consequences of host-switching and

other speciation events on coevolving phylogenies are explored through stochastic

numerical simulations. The goal is to determine to what extent cophylogeny should

be expected between mutualistic partners and what features of mutualistic webs can

be explained by mutualistic coevolution alone.
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Chapter 1

Introduction

It is well established through observation, experiment, and theory, that ecological

interactions affect evolutionary outcomes between individuals and populations, e. g.

[16, 30, 37]. The next step is to ask how evolution effects ecology. To what extent

does the ecology explain evolution and interaction patterns at the community level?

This paper attempts to address these questions with in the context of mutualistic

interactions. Mutualistic effects on evolution are modeled and then investigated

to determine the effect on community genetic and ecological structure. Below,

established observational results, experimental results, and theory are explored and

relevant terminology is introduced.

1.1 Mutualism and Coevolution

Coevolution, is the genetic change over time in a set of populations resulting from

the interactions between those populations. Usually the interacting populations are

different species, like plant-pollinator, predator-prey, or host-parasite [93]. There are

different types of ecological interactions which can cause such genetic change, and are

usually defined by their effect on fitness - the success of a population in propagating

its genetic material [30]. Mutualism is a type of ecological interaction that positively

affects the fitness of both interacting populations. Plant-pollinator interactions are
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usually considered mutualisms because the pollinator often receives a food source

from the nectar, and the plant is able to reproduce due to pollen transfer that occurs

during feeding. Antagonism is a case in which one population has a positive fitness

change and the other has a negative fitness change. Parasite-host is one example of

a highly studied type of antagonistic interaction [24].

An example of a mutualism that directly impacts reproductive success is the

plant and pollinator relationship. By definition, a pollinator aids the plant in

its reproductive success. In a mutualism, pollinators gain resources by either by

gathering nectar or by exploiting a potential plant on which to oviposit. These

systems are used as models because of the direct impact plants and pollinators have

on each other’s reproductive success [93]. Diffuse mutualism is sometimes used

to describe the most common case of mutualism in which the relationship weakly or

indirectly impacts reproductive success. In this case, the fitness of one population is

weakly dependent on the mutualistic interaction because either the interaction has

little effect or there are many other processes during the life cycle that contribute to

the organism’s fitness. In order to maximize the efficiency of a mutualistic interaction,

traits on which this interaction depend evolve to match in each population [93].

Although this terminology seems to imply that there is an active component, the

coevolutionary results of ecological interactions are derived via mechanisms such as

mutation, genetic drift, natural selection, and recombination [33].

1.2 Mechanisms of Evolution

1.2.1 Mutation

A gene is a unit of genetic information, and the site of a gene is the locus. Alleles

are the different biochemical forms of a gene, and mutations can alter which alleles

are present at a locus [42]. Although often a rare event, typically having probability

of occurring at a particular site on the order of 10−6, mutation is a source for novel
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genetic information. It allows genes flexibility to cope with and adapt to changing

environments over time [42].

1.2.2 Genetic drift

Populations are subject to sampling bias, and as a result, the frequency of each allele

type in that next generation may not equal the current ratio. This is called genetic

drift and impacts small populations [42]. This effect is included in individual-based

simulations that explicitly account for each individual’s genetics. This approach is

advantageous because it captures sampling bias and is often more biologically realistic,

but it is computationally complex and irreducible to simpler forms, and it requires

extensive analysis. One way to simplify this assumption is to include a stochastic

component to describe how the genetics change because the sampling effect is random

[84]. Several types of models assume infinite population size, but drift effects must

be acknowledged when comparing model results to the biological systems.

1.2.3 Natural selection

A set of genes is called the genotype, and the expression of that genotype in the

organism is called the phenotype. Natural selection acts on the phenotype (in

turn acting on the genotype) to decrease the organisms with phenotypes in the next

generation that are less fit [42]. For example, if a population of blue and red insects

were found by a predator on a red surface, then we would expect that more blue are

eaten than red, thus a higher proportion of red ants would result from selection. The

proportion of blue insects that survive is the fitness of the blue phenotype, denoted

by w. The proportion eaten or selected against is denoted by the parameter s. As a

result of the change in proportions of the parental population, we then expect that

more red insect will hatch and less blue insects will hatch in the next generation.
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1.2.4 Recombination and segregation

In a haploid organism, each gene site has one allele and it determines the genotype

of the organism. In a diploid system, each genotype has two alleles that together

determine the genotype of the organism [42]. Consider the haploid case with two loci

close to each other on the same chromosome. The chance that during chromosome

sex these two alleles will be separated during recombination and only one inherited

is called the recombination rate, r. Suppose that a haploid organism with allele

A at locus 1 and allele B at locus 2 (so it has a genotype of AB) mates with a

haploid organism with genotype ab. The offspring, also a haploid organism, will

have a 1/2 chance of having genotype AB and a 1/2 chance of having genotype ab if

recombination does not occur. Since the inheritance probability is independent of the

recombination, the probability the offspring will have genotype AB given parents of

genotypes AB and ab is (1 − r)/2. Likewise, if recombination does occur, then the

offspring will have a 1/2 chance of having genotype Ab and a 1/2 chance of having

genotype aB. Therefore, the probability an offspring has genotype Ab given parents

with genotypes AB and ab is r/2.

If the loci are on separate chromosomes and therefore independently distributed

(or independently segregated), then r = 1/2. Usually recombination rates of less

than 1/2 indicate that the loci are physically close together on the strand of DNA.

Low recombination rate may help certain genotypes to be maintained in the genetic

pool longer because they are more often inherited together. This may slow evolution

seeking to separate badly matched alleles (for example, if an organism had an allele

at one locus that made it a predator, but possessed at a nearby locus an allele that

caused an allergy to eating the prey). On the other hand, low recombination can make

evolution proceed faster once it is on the right track, because good combinations of

alleles will also be inherited [30].

4



1.2.5 Non-random mating

There are other mechanisms of evolution that can promote the formation of good

combinations of alleles at loci. Non-random mating occurs when certain mating

pairs form more often than others. One case of this is called assortative mating in

which like individuals are more likely to mate. This can be an active choice or can

result from a preference for particular mating conditions [30]. For example, if an insect

has a genotype that causes it to prefer a particular plant on which to seek mates, it

is highly likely that the mates it encounters will also have the same genotype at that

preference loci. It is highly likely then, that their offspring will have the same plant

preference. Now suppose that another locus determines the insects color and that

during mating the insect’s color does not match the plant’s color, it is vulnerable to

selection by predators. Thus, combinations of alleles at the two loci that both prefer

and are color adapted to the same plant would be favored in this case. Then the

system would evolve to eliminate genotypes that prefer one plant and are adapted to

different plants [30].

1.3 Consequences of Evolution

Biodiversity can occur on a variety of levels, including at the genetic level. A

polymorphic locus is a locus for which there are many allele forms available in

the genetic pool, and it is a type of within-population genetic diversity. Different

populations can have different allele forms available at their loci. This is an example

of between-population genetic diversity [42]. As these and other genetic differences

accumulate, these populations can divide into separate species, a process known as

speciation. The exact point of transition to species is often a point of controversy.

The end result is often that a certain amount of reproductive isolation between the

species is present. In other words, the populations have accrued enough differences

that they no longer, or rarely, mate with each other [30].
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1.3.1 Speciation

The origin of species is often classified into three types based on the physical

location of the populations under consideration, sympatric, parapatric, and allopatric.

Sympatric speciation is when two sub-populations that diverge and speciate from a

single population in one habitat together. Parapatric speciation is when speciation

occurs where there are different habitats next to each other which are not completely

mixed. The population diverges, and each adapt to the different habitats. Allopatric

speciation occurs when the populations are separated completely from each other,

and then each evolves independently along different trajectories [30]. These three

cases can also be considered sub-cases of parapatric speciation with an index given for

the frequency of population mixing, allopatric populations and sympatric populations

being opposite ends of the extreme [30].

1.3.2 Coevolution

One-to-one coevolution is defined here as two interacting ecological partners

evolving together. One-to-one coevolution characterizes coevolution the majority of

the time between coevolutionary events. There are 4 major types of coevolutionary

events: cospeciation, sorting, duplication, and host-switching, see Figure 1.1 [77].

In cospeciation or lineage-tracking, speciation in one class leads to speciation

in the other class [77]. If this event alone was the only result of coevolution, then each

of the resulting species stays in a one-to-one correspondence with its coevolutionary

partner. This produces matching phylogenetic trees, i.e. display cophylogeny. An

exception to this one-to-one matching rule would be during periods of transition where

speciation has occurred in one partner and the other lags behind [22]. In sorting, a

speciation event in one evolutionary partner occurs, but the other partner does not

cospeciate or retain ecological connection to the new species [77]. Similar to sorting

is duplication, in which a speciation event in one ecological partner occurs, but

all ecological connections are maintained between the new species and the ancestral
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partners [77]. Host-switching is where one ecological partner trades (complete)

or expands (incomplete) its existing relationship for another partner [93]. Host-

switching interrupts the formation of cophylogeny.

Figure 1.1: Schematic of the 4 major results of coevolution on phylogenies: cospeciation,
sorting, duplication, and host-switching (complete and incomplete). The shaded area in
the figure of incomplete host-switching indicates that the speciation event itself in the blue
phylogentic tree is incomplete, so there is still exchange of genetic information between the
species.

Cophylogeny is phylogenetic trees of coevolving groups taken together with

their associations. In the mutualistic network, plants are connected to pollinators

only and not to other plants directly (and vice versa) [77]. This type of network

is represented by a bipartite graph in which only interactions between plants and

pollinators are considered. A graph is a set of nodes (species) and edges (ecological

associations) [7]. A graph connected if there is a path that connects every pair

of nodes. Any graph that is not connected can be partitioned into connected

components or disjoint connected subgraphs [4]. This will be important later

as disjoint connected subgraphs of a network will act independently of each other over

time.
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1.4 Plant-Pollinator Coevolutionary Theory

Ecological relationships affect the evolution of communities. In particular, species

diversity and the resulting interactions determine stability of complex community

networks and also may be an important driving force behind speciation and thus

biodiversity [19, 25, 46]. Interactions between two sets of species, e.g. host-parasite,

plant-herbivore, and plant-pollinator, are well studied biologically [11, 13, 26, 45, 77,

97]. The majority of theoretical and experimental work in evolution as a result of

species interactions has focused on antagonistic interactions, like predator-prey or

host-parasite. This work demonstrated that antagonism promotes genetic diversity

[16, 51, 59], but mutualism is another important way in which species can interact

and affect coevolution.

Mutualisms between plant-pollinator, animal-plant, or host-symbiont are widely

studied for their ecological value. With the exception of some model systems, little

is known about how these mutualisms shape evolutionary trajectories and ecological

networks [47]. Several model biological systems involving obligate mutualisms, like

that of the fig-fig wasp and yucca-yucca moth, are studied to understand the results

of mutualistic interactions [3, 14, 15, 44, 78]. The goal of this dissertation is to

develop simple yet biologically realistic models of evolution as a result of obligate

mutualisms. These models will help form intuition about how mutualism affects

evolutionary trajectories.

An obligate mutualism is a specific type of mutualism in which each population

needs to participate in the mutualistic interaction in order for the population to

survive. The interaction is beneficial and necessary to both parties. Obligate

mutualisms are considered rare, yet are the subject of intense investigation. There are

several reasons for this. First, the populations often develop very specialized organs

or traits in order to efficiently continue the mutualistic interaction; the populations

coevolve. Second, because the interaction is necessary, there is very strong selection

on these traits. Lastly, some investigations have focused on why obligate mutualisms
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should persist when reproductive success depends so crucially on another species.

The plant-pollinator cases considered here are obligate mutualisms in which the insect

needs the plant as a larval food source and in return pollinates the plant [93]. Since the

benefit provided by the insect and the plant are exclusive and therefore is necessary, it

is an obligate mutualism. The fig-fig wasp system is a particularly interesting model

system because of its high species diversity, boasting over 750 fig tree species and an

estimated 1300 fig wasp species [71].

Theoretical studies of plant-pollinator obligate mutualisms showed how co-

evolution could result in the allopatric or sympatric speciation in both species

[22, 36, 58, 59]. The quantitative trait loci model in Kiester, et al., showed

that random genetic drift can move phenotypes in different directions in different

populations. This sets the stage for allopatric speciation. This model assumes that

each mutualistic partner has only one continuous, normally distributed trait with a

fixed variance upon which the mutualistic interaction is based. An example is style

length in plants and ovipositor length in insects. Fixed variance can limit the ability

of bimodal distributions to form, as seen in fig plants. Kopp and Gavrilets [59] relax

this fixed variance assumption by considering a multilocus model for a quantitative

trait. This gives the ability of genetic variances to evolve independently of mean

trait values. This allows for more equilibria due to the multilocus structure. As a

result, coevolution between mutualists results in mean trait matching and can evolve

towards a stable polymorphic equilibria at one locus. This is because fitness depends

on success of matching and on some physiological optimum. The overall results for

the mutualistic and antagonistic cases mirror a similar single-locus model of mimicry

presented in Gavrilets and Hastings [32]. Cases of coevolution between a species and

its mimic were modeled using a single-locus model. “Mutualism” is considered as

Müllerian mimicry, and results in solely monomorphic stable equilibria. Notably, all

polymorphic equilibria are unstable. In the adaptive dynamics model of Doebeli, et

al., sympatric speciation in one species is followed by secondary or cascade speciation

in the other mutualistic partner species. The major drawback to adaptive dynamics
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models is that there is no explicit underlying genetic basis upon which the fitness

landscape is defined. This makes relating data to models difficult. In the gene-for-gene

model in Gomulkiewicz, et al. [36], co-existence of multiple genotypes is mediated

through fluctuating environments. In this system, the interaction itself fluxuates

from being a positive interaction to a negative interaction which encompasses both

mutualistic and antagonistic relationships. The two mutualism only models predict

co-speciation, which over the long term would predict a matching cophylogeny.

Field studies confirm the generality of this one-to-one matching relationship [43].

However, the phylogenetic signal does not always predict congruent co-phylogenies

between plant and pollinator [21, 44, 96]. There are also exceptions to the one-to-

one rule in which two pollinator species can be found on the same plant [65, 71].

Theoretical work indicates that this is possible in periods of brief transience [22]

after speciation in one ecological partner occurs, but before cospeciation in the other

partner occurs. However, the roles of host-switching and hybridization must also

be considered [98, 100]. Whether or not a simple mutualistic system can maintain

diversity long term is explored. The Levene two-resource model with two fixed

available resources predicts that genetic variation can be maintained, especially with

niche based assortative mating [61]. To what extent will this result be modified when

the resource is reciprocally evolving? Other aspects of the biology and ecology of

model mutualistic systems such as asynchronous flowering times and availability of

alternate host types, may also strongly influence coevolving phylogenies [93, 98].

In order to further understand the evolutionary outcomes of mutualistic relation-

ships in general, an obligatory mutualistic relationship between a moth and plant

species with a simple life cycle, Greya moth Greya politella and its host plants,

Lithophragma parviflorum and Huechera (H-GM) is modeled. The plant has one

diallelic locus describing state, such as chemical profile, and includes a parameter for

overlapping generations in plants. The pollinator is described by two diallelic loci, one

for preference for a plant and the other for larval adaptation for the plant. Included are

parameters for selection, preference bias, and recombination between loci. Then the
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H-GM model is expanded to the well-studied fig-fig wasp system (F-FW). The fig and

fig wasp system is more complex in its dynamics due to an asynchronously flowering

plant population. Therefore we consider more than one flowering plant population.

In the case of H-GM, host switching in the system has been well recognized [93]. Yet

in the case of F-FW only now is this system receiving recognition for the prevalence

of host-switching and non-one-to-one plant-pollinator correspondences [98].

The H-GM and F-FW models give further insight to the types of coevolutionary

events that arise as a consequence of mutualism. The next step is to examine

how those coevolutionary events shape coevolving phylogenies. The nature of the

coevolutionary relationship between figs and fig wasps is not as clear as overlaying

congruent phylogenies. Not only are there violations to the one-to-one rule between

phylogenies, but hybridization confuses the resolution of the phylogenies as well as

rampant host-switching [49, 100]. Verbal models up to this point are careful to

not assume perfect matching of traits in coevolutionary systems and acknowledge

there may be other events happening on a larger geographic scale that influence local

examinations [49, 50, 93, 100]. Still the expectation is that cophylogeny is the rule and

that nearly related members of insects should be pollinating nearly related members

of plants. Phylogenetic coevolution reconstructs phylogenetic relationships between

coevolving partners and in doing so places penalities on events like host-switching

when resolving these phylogenies [77]. Therefore, it is important to know how often

host-switching happens and the effects of a higher or lower host-switch probability on

coevolving phylongenies. Only then can we determine if patterns other than perfect

cophylogeny are the exception or part of the rule.

A 2007 paper by Rezende et al. [83] suggested that evolutionary history should be

included into models of network formation and maintenance. In 2009, Ings et al. made

the same suggestion in their comprehensive review paper, that ecological networks

needed to take evolutionary history under consideration [47]. Doing so provides a

better understanding of the mechanisms behind patterns in networks, such as low

connectedness. Also, an event like a host-switching occurs often between coevolving
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phylogenetic trees can highly influence the extent to which overall cophylogeny should

be the expectation. A stochastic model is developed here as to understand how

phylogenies coevolve based on intuition gained from the H-GM and F-FW models.
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Chapter 2

Modeling a simple mutualistic

system: Greya moth and its host

2.1 Greya Moth and its Host (H-GM) Model

Consider the life cycle of the Greya moth and its host plant beginning at the larval

stage. The larvae drop to the ground and overwinter in the soil, the adults emerging

in the spring. Adult moths find mates on the host plant and copulate, then females

deposit their eggs in flowers [36]. There is a large number of plants on which mating

and oviposition, mathematically we assume infinitely many, and plants are pollinated

by ovipositing females.

Assume that the mutualism is controlled by two major loci in the pollinating

insect: insect adaptation to a plant type (locus A) and insect preference bias for a

plant type (locus B), with recombination probability r. Assume also that the plant is

haploid and that one locus controls the type of plant under investigation. For example,

locus C could be interpreted as controlling chemical profile, and that chemical profile

both attracts a certain type of insect and provides a chemical environment for the

insect. The insect may or may not be optimally fit on this environment. See Table
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2.1 for a full list of loci, variables and parameters under consideration in the H-GM

model.

Table 2.1: List of H-GM model loci, variables, and parameters.

Loci under consideration

Locus A Adaptation in insect for plant

Locus B Preference in insect for plant

Locus C Chemical profile of plant

Variables Range

xi Frequency of type i insect [0, 1]

ym Frequency of type m plant [0, 1]

Variables Range

s Selection coefficient [0, 1]

ε Preference bias [0, 1]

r Recombination probability [0, 1/2]

β 1/(Avg lifespan of plant) [0, 1]

2.1.1 Dynamics of insects

To understand how insect genotype frequencies change over time, consider the change

that occurs in each generation as a difference equation. Let xi be the frequencies of

insect genotypes in the pool of adults emerging from soil and let ym be the frequencies

of the plant types at that time. πim is the preference of an insect with genotype i for

a plant of type m. We will use indices i, j, k for insects and l,m, n for plants.

The frequency of adult insects of type i found on plants of type m is

xi,m =
πimxi∑
i πimxi

≡ P (i,m)xi. (2.1)
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where

P (i,m) =
πim∑
i πimxi

. (2.2)

can be interpreted as the preference of insect i for plant m relative to the average

preference of insects for this plant.

The proportion of the adult insects found on plants of type m is

cm =
ym
∑

i πimxi∑
m ym

∑
i πimxi

, (2.3)

the frequency of insects joining a particular mating pool m, normalized and weighted

by plant frequency.

Assuming random mating on host, the frequency of mating pairs formed by females

i and males j on a plant of type m is

Mij,m = xi,mxj,m. (2.4)

The frequency of eggs with genotype k produced by pairs (i, j) mating on a plant of

type m is Mij,mR(i, j → k), where R gives the corresponding offspring frequencies for

a given set of parental genotypes.

We assume the contribution of each mating pool (i.e. plant type) to the overall

offspring pool is equal to the proportion of insects that came to the pool. Thus, the

proportion of eggs with genotype k and carried by mothers with genotype i in the

whole set of eggs before oviposition is

Ek,i =
∑
m

cm
∑
j

Mij,mR(i, j → k). (2.5)

The frequency of eggs with genotype k oviposited on a plant of type n (by all females

i) is

ek,n =

∑
iEk,iπin∑

k

∑
iEk,iπin

. (2.6)
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After selection on a plant of type n, the frequencies of larvae dropping to the soil

from that plant are

e′k,n =
ek,nWk,n

W n

, (2.7)

where Wk,n is fitness, i.e. viability, of genotype k on a plant of type n and W n =∑
k ek,nWk,n is the average fitness of the population on a plant of type n. We assume

that the contribution of each larva pool (i.e. plant) to larvae is equal to the proportion

of the eggs deposited on the plant. Note that variations on this assumption will be

explored in a later model. The frequencies of the insect genotypes in the pool of

adults emerging from soil in the next generation are

x′k =
∑
n

cne
′
k,n. (2.8)

The difference equation for insect genotypes in the next generation is then

x′k =
∑
i

∑
j

∑
m

∑
n

cmcnP (i,m)P (j,m)P (i, n)xixjR(i, j → k)
Wk,n

W n

. (2.9)

2.1.2 Dynamics of plants

Now consider the genotype frequency change in plants. The probability that a female

of type i goes to a plant of type m for mating and then to a plant of type n to lay

the eggs is
πimym∑
m πimym

πinyn∑
n πinyn

= Q(i,m)ymQ(i, n)yn, (2.10)

where

Q(i,m) =
πim∑
m πimym

. (2.11)

By doing this the female pollinates a plant n by pollen from plant m. The term

Q(i,m) can be interpreted as the probability that an insect i visits a particular plant

of type m. Thus, the frequency of plant l produced as a result of mating of plants m

16



and n is

yl,o =
∑
i

xiQ(i,m)ymQ(i, n)ynS(m,n→ l) ≡ FmnymynS(m,n→ l), (2.12)

where S(m,n → l) is the corresponding segregation probability (recall there is no

recombination since we only consider one plant loci), and the term

Fmn =
∑
i

xiQ(i,m)Q(i, n) (2.13)

can be interpreted as fertility of mating pair m and n.

Finally, to account for the fact that the host plants are perennial we assume that

only a proportion β of plants is replaced each generation by the offspring. Therefore

β may also be interpreted as 1 over the average number of years in a plant lifespan.

Then

y′l = (1− β)yl + β
∑
i

∑
m

∑
n

xiQ(i,m)Q(i, n)ymynS(m,n→ l) (2.14)

1−β is the proportion of plants that are perennial from the last generation of plants.

This may also be interpreted as the proportion that were randomly wind pollinated

(and thus have no change in frequency).

2.1.3 Plant resource dependent model

In creating our initial model, it is assumed the frequency of adult insect types in the

next generation is proportional to the larva frequency types surviving on each plant

and the frequency of egg types laid on the each plant. This assumes there is no plant

resource limit or larval competition on plants. In a variation of that model, we assume

the contributions of larva types remaining after viability selection are weighted in the

next generation by the frequencies of the plant they are on. This changes Equation
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2.8 to

x′k =
∑
n

yne
′
k,n. (2.15)

Then the equation for the next generation of adult insect is

x′k =
∑
i

∑
j

∑
m

∑
n

cmynP (i,m)P (j,m)P (i, n)xixjR(i, j → k)
Wk,n

W n

, (2.16)

which can be compared to Equation 2.9 above:

x′k =
∑
i

∑
j

∑
m

∑
n

cmcnP (i,m)P (j,m)P (i, n)xixjR(i, j → k)
Wk,n

W n

.

2.1.4 Model without re-assortment

To further simplify the above models, one of the multiple moth assortments to its host

plant is eliminated. If multiple re-assortment merely shuffles insects but maintains

the same frequencies on each plant, then mathematically we could delete one of the

trips the female insect makes. In this model variation, instead of re-assorting to lay

eggs, she lays eggs on the plant she mates on. In doing so, analytical tractability

is improved without changing the qualitative behavior. The modification is made to

the H-GM plant resource dependent model. This eliminates the cm term, because

females no longer have to re-assort to lay eggs:

x′k =
∑
i

∑
j

∑
m

ymP (i,m)P (j,m)xixjR(i, j → k)
Wk,n

W n

. (2.17)

2.2 H-GM Model Analytic and Numerical Results

2.2.1 Assumptions

For the following numerical and analytic analysis, we consider the case where each

locus is diallelic. Let xi (i = 1, 2, 3, 4) be the frequencies of four insect genotypes,

AB, Ab, aB and ab, respectively, in the pool of adults emerging from soil. Let
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ym (m = 1, 2) be the frequencies of the two types of plants (C and c, respectively)

during the insect mating period. A list of insect and plant genotypes matched up

with indicies is in Table 2.2.

Table 2.2: A list of insect and plant genotypes in the H-GM model listed by index.

Insect Genotypes

Index Genotype

1 AB

2 Ab

3 aB

4 ab

Plant Genotypes

Index Genotype

1 C

2 c

Recall πim is the relative preference of an insect with genotype i for a plant of type

m. We consider the case where an insect having allele A encountering plant of type C

will chose that plant with probability π1,1 = π2,1 = (1 + ε)/2, but will chose a plant of

type c with probability π1,2 = π2,2 = (1− ε)/2 (vice versa for an insect carrying the c

allele). ε can be interpreted as the bias of an insect towards a particular plant choice

and 0 ≤ ε ≤ 1. When ε = 0, the insect has no preference and chooses whomever it

encounters first. When ε = 1, the insect will choose the matching profile every time

and will never make a “mistake.” Likewise, insect larvae born on a matching plant

type will have higher fitness.

At the local adaptation loci an insect may have either allele A or a, which are best

adapted to plant types C and c, respectively. We consider the case where a larvae

laid on a matching plant to which it is adapted will have fitness W = 1, and a larva
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developing on a non-matching plant will have fitness W = 1 − s. s is referred to as

the selection coefficient and 0 ≤ s ≤ 1.

2.2.2 Analytical Methods

The model introduced above is a non-linear discrete dynamical system. Time is

described by generations, and each generation’s genotype frequencies are calculated

from the previous generation’s. To predict the outcome of the system after many

generations of evolution, equilibria and their stability are examined. Stable equilibria

are of particular interest, because the system will evolve toward a stable equilibrium

in the long term. Full analytical investigation of each model is presented in Appendix

A.

Classic 1-1 co-evolution with one’s evolutionary partner, host-switching and

speciation or the maintenance of genetic variation are the primary points of interest.

For classic co-evolution and host-switching to occur, fixation of each set of matching

alleles (A, B, and C or a, b, and c) must be a stable equilibria for the system.

Whether cospeciation or host-switching is taking place is inferred from initial

conditions. Thus both numerical simulations and analytic work are performed to

determine where the basin of attraction is for each fixed equilibrium when they are

both stable. This means that one can determine how the system behaves long term

based on the initial conditions. For the case of speciation, if the polymorphic state is

stable, it is possible for both types of plants to co-exist in the system.

2.2.3 H-GM model results

Twenty equilibria emerge from the H-GM model, sixteen of which are listed in Table

2.3 and four additional biologically unrealistic equilibria, which are not listed. The

full analysis proving the stability of the equilibria is presented in Appendix A.1.

The system is bistable, as illustrated through the analytic and numerical

simulations. This means there are two steady states to which the system could evolve
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Table 2.3: All equilibria are either always stable or always unstable for all biologically
realistic parameters unless otherwise noted. **Note, numerical simulations indicate that
this point seems to be unstable, however, this result is not shown analytically. z∗3 and z̄∗3 ,
are +/− solutions to a quadratic equation and are functions of r, s, and ε; the exact form
is shown in Appendix A.1.

y1 = 1 C fixed

x = [1, 0, 0, 0] AB fixed stable

x = [0, 1, 0, 0] Ab fixed unstable

x = [0, 0, 1, 0] aB fixed unstable

x = [0, 0, 0, 1] ab fixed unstable

x =

[
(ε+3)(1+ε)

8ε , −(1−ε)(3−ε)
8ε , 0, 0

]
biologically unrealistic

x =

[
0, 0, (ε+3)(1+ε)

8ε , −(1−ε)(3−ε)
8ε

]
biologically unrealistic

y1 = 0 c fixed

x = [1, 0, 0, 0] AB fixed unstable

x = [0, 1, 0, 0] Ab fixed unstable

x = [0, 0, 1, 0] aB fixed unstable

x = [0, 0, 0, 1] ab fixed stable

x =

[
(ε+3)(1+ε)

8ε , − (1−ε)(3−ε)
8ε , 0, 0

]
biologically unrealistic

x =

[
0, 0, (ε+3)(1+ε)

8ε , −(1−ε)(3−ε)
8ε

]
biologically unrealistic

y1 = x1−x2+x3−x4+ε
2ε

Polymorphic

x = [ 1
2 ,

1
2 , 0, 0] fr(C) = 1/2 unstable

x = [0, 0, 1
2 ,

1
2 ] fr(C) = 1/2 unstable

x =

[
1
4 + 1

4z
∗
3 ,

1
4 −

1
4z
∗
3 ,

1
4 −

1
4z
∗
3 ,

1
4 + 1

4z
∗
3

]
fr(A) = fr(B) = fr(C) = 1/2 unstable**

x =

[
1
4 + 1

4 z̄
∗
3 ,

1
4 −

1
4 z̄
∗
3 ,

1
4 −

1
4 z̄
∗
3 ,

1
4 + 1

4 z̄
∗
3

]
biologically unrealistic
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depending on the initial conditions. More specifically, the system will always go to

fixation for either the A, B, C alleles or the a, b, c alleles. This is illustrated in

Figure 2.1 in which the trajectories of 100 numerical runs are plotted for the same

set of parameter values, but with random starting initial conditions.

Figure 2.1: Phase portrait showing 100 trajectories of the H-GM model for random initial
conditions. Parameter values are set to ε = 0.5, r = 0.2,s = 0.6, and β = 0.2. Red dots
indicate the value of the allele frequencies after 500 generations.

To see more closely what effect the initial conditions have on the long-term

dynamics, trajectory plots of allele frequencies over time are examined. Figure 2.2

shows the case in which the insect population, despite being nearly fixed for the A

and B alleles in the population, evolves to a population fixed for a and b alleles.

This results from the large initial proportion of c plants in the system. Therefore,

this system has experienced a host-switch, where the insects evolve to adapt to the

more plentiful resource type. Because c plants are the most available, the insects

that prefer the c plants (Ab and ab) are going to have larger frequencies in the next
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generation due to mating in higher frequencies. Ab will have a selective disadvantage

on c plants, so the insect genotype that eventually prevails is ab.

Figure 2.2: Parameter values ε = 0.2, r = 0.1,s = 0.1, and β = 0.2. This simulation shows
how the frequency of an alternate plant type drives host-switching.

In Figures 2.3a-d, the parameter sets are the same, but have different initial

conditions. In Figures 2.3a and 2.3b, the plant and insect allele types that are

most predominant are those which survive long term. This means a small amount

of introduced genetic variation into either the plant or insect population will not

interrupt the co-evolutionary congruence. However, a slightly higher proportion of C

plants in the system will be enough to allow the insects to fix for the A and B allele

and will instead induce the plants to follow that trajectory. This is shown in Figures

2.3c and 2.3d, where the plant population starts with a frequency only 0.1 less than

its upper counterpart, but instead evolves to become fixed with only the C type of

plant. In all cases, linkage disequilibrium goes to zero.

2.2.4 Effect of parameters on H-GM model

Initial conditions influence the final outcome of the bistable system, however varying

strength of parameters will change the speed to which equilibria are attained and

may also influence the basin of attraction for the stable equilibria. A discussion of
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Figure 2.3: H-GM model simulations showing systems robust to some introduced variation,
but that can also result in host-switching with a critical relative abundance of alternate host
type. Parameter values for each of these graphs are the same set to ε = 0.5, r = 0.2,s = 0.6,
and β = 0.2. The blue and red lines are nearly overlapping in these cases. The graphs in
each column (a,c and b,d) have the same initial insect frequencies, but the plant frequencies
in the top and bottom graphs differ by only 0.1. This shows that the frequency of an
alternate plant type heavily influences the long-term relationship.
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the effects of parameters as well as special cases when parameters at the endpoints

of their ranges is below.

Parameter ε. Recall that that ε can be interpreted as the bias of an insect towards

a particular plant choice. Therefore, ε = 0 implies that the insect has absolutely

no preference for a particular plant and ε = 1 implies that the insect has a strict

preference for the matching plant type. In this case varying ε along points in the

interior of its range (0, 1) can change the outcome of the system as seen in Figure 2.4.

This Figure illustrates how varying ε under a particular initial condition can affect

the basin of attraction and therefore the final outcome.

Figure 2.4: Simulations of the H-GM model with initial conditions ~x0 =
[0.1837, 0.8617, 0.0326, 0.3320] and ~y0 = [0.7487, 0.2513] under the parameter set r = 0.2698,
s = 0.4896, and β = 0.4949, with ε varied. From left to right and top to bottom, the values
of ε are 0, 0.01, 0.05, 0.1, 0.25, 0.75, 0.9, 0.99, and 1.

In the case of ε = 0, regardless of whether an insect has allele A or a, it will choose

a plant of type C or c when presented with equal relative probability, π = 1/2. This

results in random assortment on plants, which maintains genetic diversity of both

plants and insects. The equilibria that emerge in this case are planes of equilibria:
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z = [x1, 1− x1, 0, y1] is stable only for y1 <
1−s
2−s , unstable elsewhere,

z =
[
x1,

1
s
((2− s)y1 − x1s− (1− s)), (1−2y1+y1s)x1

(2−s)y1−(1−s) , y1

]
is a stable manifold only for

1−s
2−s < y1 <

1
2−s , unstable elsewhere, and

z = [0, 0, x3, y1] is stable only for y1 >
1

2−s is unstable elsewhere, as shown in 2.5.

Figure 2.5: Phase portrait diagram showing unstable and stable planes of H-GM model
under the parameter set to ε = 0, r = 0.2 , s = 0.6, and β = 0.2, and given that x1x4−x2x3 =
0. There are three planes of equilibria here which intersect, leading to two transcritical
bifurcations. These bifurcation lines are at {y1 = 1−s

2−s = 2
7 , x1 = 0, x1x4 − x2x3 = 0} and

{y1 = 1
2−s = 5

7 , x1 = 1, x1x4 − x2x3 = 0}. The unstable planes are indicated by gray
shading, and the stable planes are given by black shading.

In the case of complete preference, where ε = 1 and a non-matching plant type

is never chosen, the system quickly settles to an all AB or ab insect types system,

depending on the dominant plant. Separate populations are maintained in this case

because the insects are assorting perfectly on their preferred plants and never mix
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populations. The more frequent plant type has a higher mating probability, so will

increase frequency until it becomes fixed in the population. The corresponding insect

type that prefers and is adapted to the dominant plant type shortly follows.

Parameter s. When the selection coefficient is 0, lack of selection means the

first adaptation locus is neutral and there is no penalty for choosing a non-matching

plant. Insects with preference for the most abundant plant will have more abundant

offspring, thereby driving the preference locus and the more abundant plant type to

fixation.

In the case where s = 1, selection against non-adapted insects means the only

surviving offspring leaving a plant C are AB and Ab. Likewise, the only surviving

offspring to leave plant c are aB and ab. Those who have preference for and are

adapted to the most abundant plant type will have a strong selective advantage as

their offspring are likely to have the same qualities. This selective advantage will

quickly drive the system to fixation for the most abundant plant type and the insects

that prefer and are adapted to it.

Parameter r. r is the recombination rate. For r = 0, there is no recombination

between the adaptation locus and the preference locus, like a “magic trait” locus

[30]. All mixed genotypes, Ab and aB, quickly die out because they are selected

against and cannot be recreated by the more fit AB and ab gene pool. Here,

the most abundant plant again has the advantage in producing the most successful

insects. Thus the system eventually fixes for the most abundant plant type and its

associated best match insects. In the case of r = 0.5, assortment of the adaptation

and the preference gene are independent. This works to increase the rate that Ab

and aB genotype are replaced with AB and ab genotypes. As fixation is approached,

retaining AB or ab genotypes is more difficult. As in the previous cases, we eventually

see fixation of the most abundant plant type.

Parameter β. Recall that that β is the fraction of plant population in the next

season made up by offspring produced by the insect pollination activity. β = 1 for

annual plants without any secondary random pollination (like wind pollination). A

27



population where β = 0 would never have new offspring or all offspring would result

from random wind pollination and thus would remain unchanged in composition. In

this case varying β along points in the interior of its range (0, 1) can change the

outcome of the system as seen in Figure 2.6. It is a rather rare in occurrence for any

random set of parameters and initial conditions. This means the basin boundary does

not significantly shift as a result of varying ε. This Figure illustrates how varying ε

under a particular initial condition can affect the basins of attraction and therefore

the final outcome. Note that if one does remain in the same basin of attraction low

values of β will be much slower to reach equilibrium, because only a small fraction

of the population is being replaced by the population responding to the mutualistic

interaction.

Figure 2.6: Simulations of the H-GM model with initial conditions ~x0 =
[0.1289, 0.4327, 0.1469, 0.2914] and ~y0 = [0.6991, 0.3009] under the parameter set r = 0.1702,
s = 0.9597, and β = 0.5853, with β varied. From left to right and top to bottom, the values
of β are 0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, and 1.
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2.2.5 Approximation of H-GM model

To gain more intuition into the model and its behavior, a weak selection approxima-

tion is used. Here, we assume that ε, s << r so that higher order terms are negligible.

Below are the results for approximations of all models under consideration. Note that

this assumption will result in D = 0, so the transformation that results in variables

p1, p2, y and D will be reduced to only 3 variables. Recall that D=0 was satisfied

in the full models’ equilibria, so this simplification will maintain important aspects

about the equilibria.

Performing the above approximation, the following equations result, where q1 =

1− p1, q2 = 1− p2, and y2 = 1− y1.

dp1

dt
= sp1q1(y1 − y2)

dp2

dt
= 3εp2q2(y1 − y2) (2.18)

dy1

dt
= 2βεy1y2(p2 − q2)

Note: the rate of change in p1, the frequency of the locus controlling adaptation,

is proportional to the selection coefficient, the heterogeneity or variance at the

adaptation locus, and the difference in plant type frequency. If there are more of plant

type 1 than 2, then the frequency of those adapted to plant 1 will increase. If there

are more of plant type 2 than 1, then the frequency of those adapted to plant type 1

will decrease (and so those adapted to plant type 2 will increase). Likewise, the rate

of change in p2, the frequency of the locus controlling plant preference, is proportional

to the genetic variance of the plant preference locus and to the difference in plant

types. This sets the stage for the preference and locus to go to fixation dependent on

which type is the most dominant.

The rate of change in y1, the locus controlling plant type, is proportional to the

variance at that locus and to the difference between the frequency of those having a

preference for plant type 1 and those having a preference for plant type 2. Therefore
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relative plant type abundance is influenced by the relative abundance of pollinators

that prefer it.

Theorem 2.2.1. The solutions to the set of equations 2.18 are

p2(1− p2) = A (y1(1− y1))
3

2β

p2 = B

(
p1

1− p1

) 3ε
2s

(y1(1− y1))
3

4β .

Proof. The two differential equations that depend on each other are

dp2

dt
= 3εp2q2(y1 − y2)

dy1

dt
= 2βεy1y2(p2 − q2),

which, when divided, yield

dp2

dy1

=
3p2q2(y1 − y2)

2βy1y2(p2 − q2)
.

Recall that q2 = 1− p2 and y2 = 1− y1. Then

dp2

dy1

=
3p2(1− p2)(2y1 − 1)

2βy1(1− y1)(2p2 − 1)
.

Separate variables and integrate:

∫
2p2 − 1

p2(1− p2)
dp2 =

3

2β

∫
2y1 − 1

y1(1− y1)
dy1.

Integration using partial fractions:

ln|p2(1− p2)| = 3

2β
ln|y1(1− y1)|+ C1,

where C1 is a constant of integration.

This implies that p2(1− p2) = A [y1(1− y1)]
3

2β , where A = eC1 .
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Now consider

dp1

dt
= sp1q1(y1 − y2)

dp2

dt
= 3εp2q2(y1 − y2).

Again, divide and separate by variables:

∫
dp1

p1(1− p1)
= s

3ε

∫
dp2

p2(1−p2)
⇒

ln|p1| − ln|(1− p1)| = s
3ε

(ln|p2| − ln|(1− p2)|) + C2.

Recall from above ln|p2|+ ln|(1− p2)| = 3
2β
ln|y1|+ ln|(1− y1)|+ C1, so

2ln(p2) =
3ε

s
ln

(
p1

1− p1

)
+

3

2β
ln(y1(1− y1)) + C3.

Thus, we conclude

p2 = B

(
p1

1− p1

) 3ε
2s

(y1(1− y1))
3

4β .

Phase Plane

Note that the adaptation locus does not influence the dynamics at the preference

locus or the plant type relative abundance. Therefore, analysis of the solutions and

phase portrait of p2 versus y1 reveals how the initial conditions determine long term

dynamics. This phase portrait is illustrated in Figure 2.7 for a particular parameter

set. It shows that the equilibrium point at
(

1
2
, 1

2

)
is a saddle point. Also note that the

boundary separating the basin of attraction for (0, 0) and (1, 1) is the stable manifold

for the saddle point [90].
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Figure 2.7: Phase portrait of p2 vs y1 for Equation 2.18 for ε = 0.1 and β = 0.2.
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Theorem 2.2.2. The separatrices, which are the trajectories of the stable manifold

of the equilibrium point at
(

1
2
, 1

2

)
are

4p2(1− p2) = [4y1(1− y1)]
3

2β ,

for p2 ∈
(
0, 1

2

)
and p2 ∈

(
1
2
, 1
)
.

Proof. The solutions depicted in the phase portrait in Figure 2.7 are in the proof of

the previous theorem:

p2(1− p2) = A [y1(1− y1)]
3

2β

.

Both trajectories end in frac12, frac12 as t− > inf. With this condition we get

that the basin boundary is:

4p2(1− p2) = [4y1(1− y1)]
3

2β

.

The basin of attraction is influenced by β, but the ε cancels when finding the

solution. Figure 2.4 does not satisfy the parameter assumptions of this approximation,

so the approximation does not conflict with full numerical results. Note that the

approximation loses the ability to predict the small changes in the basin boundary

due to modifying ε.

Host-switching

A host-switch to a C (type 1) plant is defined as a trajectory with initial condition

p2 > .5 and y1 < .5 that goes to the stable equilibrium at (p2, y1) = (0, 0). In the

example illustrated in Figure 2.7 where β = 0.2, the percentage of area in which this

scenario happens is approximately 13.2 percent. This result is attained by integrating

the area under the separatrix with the aforementioned limits. Similarly, since the
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system is symmetrical, 13.2 percent of the initial condition area will result in a host

switch to a c (type 2) plant (defining a host-switch to type 2 plant to be trajectory

with initial condition p2 < .5 and y > .5 that tend towards the stable equilibrium at

(p2, y1) = (1, 1)).

2.3 H-GM Model Variations

2.3.1 H-GM plant resource dependent model

The full analytical results are shown in the Appendix. A total of twenty equilibria

emerge, sixteen of which are listed in Table A.1.

This model variation is also bistable for the fixed states and the final solution

depends on the initial condition. Numerical work confirms the instability of the

polymorphic equilibrium whose stability matrix was rather intractable for confirming

analytically. Figure 2.8 depicts the trajectories of 100 numerical runs plotted for the

same set of parameter values, but with random starting initial conditions.

To see the effect of the initial conditions on the long-term dynamics, simulations

shown in Figure 2.9 are compared and contrasted. In these figures, parameter sets

are the same, but have different initial conditions. Figure 2.9c shows the host-switch

case in which the insect population, despite being nearly fixed for the A and B alleles,

evolves to a population fixed for a and b. This is because of the initial proportion of

c plants in the system. Note the similarity to the original model.

Using the approximation techniques discussed above for the H-GM plant resource-

dependent model, the following equations result:

dp1

dt
= sp1q1(y1 − y2)

dp2

dt
= 2εp2q2(y1 − y2) (2.19)

dy1

dt
= 2βεy1y2(p2 − q2).
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Figure 2.8: Phase portrait showing 100 trajectories of the plant frequency dependent H-GM
model for random initial conditions. Parameter values are set to ε = 0.5, r = 0.2, s = 0.6,
and β = 0.2. Red dots indicate the value of the allele frequencies after 500 generations.
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Figure 2.9: Plant-frequency dependent H-GM model simulations showing systems robust
to some introduced variation, but that can also result in host-switching with a critical
relative abundance of alternate host type. Parameter values for each of these graphs are
the same set to ε = 0.5, r = 0.2, s = 0.6, and β = 0.2. The blue and red lines are nearly
overlapping in these cases. The graphs in each column (a,c and b,d) have the same initial
insect frequencies, but the plant frequencies in the top and bottom graphs differ by only 0.1.
This shows that the frequency of an alternate plant type heavily influences the long-term
relationship.

This model is the same as 2.18. This explains why this variation of the full model

has dynamics like that of the original H-GM model.

2.3.2 H-GM plant resource dependent model without re-

assortment

In the above models, the qualitative dynamics are exactly the same, even down to

the eigenvalues. Considered next is the model variation in which mating and egg-

laying were done on the same plant without the re-assortment of females. Qualitative

dynamics appear to be the same from numerical simulations, but the analytical

advantages are not significant. Therefore, this model is less useful because this

simplification requires a biologically less realistic assumption.
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Using approximation techniques to the H-GM plant resource dependent model

without reassortment, the following equations are derived:

dp1

dt
= sp1q1(y1 − y2)

dp2

dt
= 2εp2q2(y1 − y2) (2.20)

dy1

dt
= 2βεy1y2(p2 − q2)

This model again reduces to 2.18. This explains why this variation of the full

model also has dynamics like that of the original H-GM model.

2.4 Discussion

2.4.1 Discussion of the H-GM model

Analytic results show the cases of fixation of AB and C genotypes or ab and c

genotypes are stable equilibria to which the system evolves long term for realistic

parameter conditions. A few exceptions exist as a result of special cases discussed

above. Interestingly, numerical simulations and analytical results from model

approximations show host-switching as a possible outcome - where a system that

has a majority of one type of insects evolves to exploit a dominant plant population

of the other type. This agrees with biological observations about this system [36, 93]

in which host-switching can occur rather easily. Whether or not a host-switch occurs

is influenced mostly by the parameter β which controls how fast the plant population

responds to matching insect abundance. It is less affected by the relative preference

insects have for their matching plant, but this observation is not captured in the

reduced model.

From analytic work and numerical simulations, like that in Figure 2.5, it is

shown that a complete lack of preference leads to a long-term maintenance of genetic

variation in the population. This is counterintuitive, because it has been conjectured
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that cases of co-existence in these mutualistic systems are a result of strict preferences

[57]. However, if the insects are choosing to oviposit randomly in plants, then the

plant frequencies remain unchanged. This essentially converts the system to a two

resource problem with only the insect evolving, and thus maintains genetic variability

in the population.

Maintenance of genetic variation in this Greya moth system is more likely due to

a Geographic Mosaic of Co-evolution [93] rather than a complete lack of pollinator

preference. However, in many plant-pollinator systems, insects do not show significant

correlation between adaptation and preference [1], and strict preferences can both

facilitate and prevent speciation [30]. This lack of preference for host may contribute

to observed instances of more than one species of wasp ovipositing on the same fig

as well as explaining the large amount of hybridization among fig types. This will be

revisited in models of the fig fig-wasp system.

2.4.2 Discussion of the H-GM model variations

It was shown that multiple reassortment merely shuffles insects, maintaining their

frequencies on each plant. Therefore, deletion of one or more trips that the female

insect would not make a qualitative difference and may be used to simplify our

model. These models share the qualitative behavior of the original model despite the

quantitative changes in model formulation. Unfortunately the variations considered

did not make the stability analysis for the nontrivial equilibrium simpler, and thus

there is no advantage to using one model over the other unless one of the model

variations more closely matches the life-cycle of a different model organism under

consideration.

2.4.3 Conclusion

Maintenance of genetic variation in individual populations are not possible in the

H-GM system, except for in special cases of no relative preference (ε = 0) or absolute
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relative preference (ε = 1). Instead, the system will always evolve to one fixed state

or another for a particular matching allele set. Whether or not the coevolutionary

result is to maintain status quo or to host-switch depends primarily on the relative

abundance of alternate host type and how fast the plant population can evolve to

insect pressure to host-switch. In the example considered in the approximation of the

H-GM model in Figure 2.7, 26 percent of all initial conditions result in host-switch,

which is rather high probability of occurance. Next, the H-GM model is expanded to

the well-studied biological model system fig and fig wasp. The life cycle is different

because fig plant populations do not all flower at the same time. This may affect

the ability for the system to experience maintenance of genetic variation and host-

switching.
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Chapter 3

Modeling the Fig-Fig Wasp

Mutualism

Results from Chapter 2 provide a baseline for understanding what life-cycle features

and parameter values may be important in studying the effect of mutualistic

interactions on coevolution. Next, a model is developed for the fig-fig wasp mutualism.

In Ficus-Courtella wardi [96], the female enters a female phase fig, but in doing so

loses her wings and dies within the fig after laying eggs in each ovule. During the

interfloral phase of the fig, the fig wasp larvae mature then mate within the fig. When

the fig reaches the male phase, the male fig wasps chew an opening for the females,

and the females leave the fig carrying pollen. The plant genetics, however, become

much more complicated. The male phase of the fig from which females emerge, laden

with eggs, must overlap with the female phase (the start of a new floral generation

of another fig) so that the fig wasp can pollinate the fig and oviposit her eggs. These

overlapping generations are a major biological difference from the H-GM system.

Suppose networks of asynchronously flowering fig tree populations are closed.

That is, the last flowering event pollinates the first population’s next generation of fig

trees. Consider a small pollination network of only two populations of figs that flower

asynchronously. Note that this implies that fig wasps have only two generations in
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the time that it takes for both fig populations to go through their male and female

phases; see Figure 3.1.

Figure 3.1: Figure showing the overlapping asynchronously flowering plant populations Y
and Z, and how they match up with the insect generations.

3.1 Fig-fig Wasp Model

3.1.1 Dynamics of insects

The frequency of adult insects of type i found on plants of type m is denoted by xi,m

∗. Let ym and zm be the frequencies of the types of plants during the insect mating

period in male and female phase during even during odd generations, respectively,

and female and male phase during even generations, respectively. Again, indices

∗Note: This model starts with the part of the insect life-cycle after larval selection. So if we
assume all loci under consideration are diallelic, then we have 8 insect types to consider. We also
now have 4 types of plants, 2 types in each population. This contrasts the H-GM model in which we
started the life cycle with the females in the air assorting to plants to mate. In the fig wasp, most
of the life cycle takes place within one fig (so 8 cases between the two fig types currently harboring
a population), and when the female leaves, she leaves with eggs (so 16 cases).
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i, j, k are used for insects and l,m, n for plants. Assuming random mating on host,

the frequency of mating pairs formed by females i and males j on a plant of type m

is

Mij,m = xi,mxj,m. (3.1)

Therefore, the frequency of eggs with genotype k produced by pairs (i, j) mating on a

plant of type m is Mij,mR(i, j → k), where R gives the corresponding recombination

frequencies for the genotypes in this system.

Females leave the fig carrying eggs†. Assume each fig has a carrying capacity of

wasps that it can support. Therefore, the frequency of females leaving a particular

fig, i.e. the contribution of each mating pool to offspring, is equal to the proportion

of the fig type in that system. This is a reasonable assumption since there is a limited

resource inside the fig which leads to larval competition[98]. Females leave the male

phase figs and bring pollen to female phase figs. The proportion of eggs with genotype

k and carried by mothers with genotype i in the whole set of eggs before oviposition

is

Ek,i =
∑
m

ym
∑
j

Mij,mR(i, j → k). (3.2)

Females then search for a suitable female phase fig in which to oviposit the eggs.

The frequency of eggs with which genotype k oviposited on a plant of type n is

ek,n =

∑
iEk,iπin∑

k

∑
iEk,iπin

=
∑
i

Ek,iPy(i, n), (3.3)

where

Py(i,m) =
πim∑

i πim
∑

m ymxi,m
. (3.4)

After selection on a plant of type n, the frequencies of larvae in the plant are

x′k,n = e′k,n =
ek,nWk,n

W n

. (3.5)

†This is the only time females are in the air, leaving the host plant. This is unlike the original
Greya moths which required they mate and lay eggs on different plants, assorting multiple times.
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Recall it is assumed that the percentage contribution of each larva pool (i.e. plant) to

the total larvae population is equal to the proportion of each plant type. Therefore the

final equation for insects going from the Y population of plants to the Z population

of plants is

x′k,n =
∑
i

∑
j

∑
m

ymPy(i, n)xi,mxj,mR(i, j → k)
Wk,n

W n

. (3.6)

Two plant populations need to be fertilized consecutively to complete a full plant

generation of both male and female phase plant ‡. Therefore, two generations of

insects are modeled consecutively. The second generation is calculated in the same

way above except the plant population in the male phase is Z, so where y was used,

now z is used.

x′′k,n =
∑
i

∑
j

∑
m

zmPz(i, n)x′i,mx
′
j,mR(i, j → k)

Wk,n

W n

. (3.7)

3.1.2 Dynamics of fig trees

The probability that a female of type i goes to a plant of type n to lay the eggs is

πinzn∑
n πinzn

= Qz(i, n)zn, (3.8)

where

Qz(i, n) =
πin∑
n πinzn

. (3.9)

The female insect pollinates a plant n in population Z by pollen from plant m in

population y with probability

Fm,n =
∑
i

ymxi,mQz(i, n)zn (3.10)

‡To model the second plant population, one more insect generation needs to be modeled. This
second insect generation will depend on z, as Z is now the plant population that is in the male phase.

43



which can be interpreted as mating probability of male plant type m from the Y

population of fig trees and female plant type n from the z population of fig trees.

Thus, the frequency of plant l produced as a result of mating of plants m and n is

FmnS(m,n→ l), where S(m,n→ l) is the corresponding segregation probability.

Assume flowering time is paternally inherited, i.e. the offspring of these matings

from the Y population to the Z population will contribute offspring only to the Y

flowering population. So the frequency of offspring is

yl,o =
∑
m

∑
n

FmnS(m,n→ l) =
∑
i

∑
m

∑
n

ymznxi,mQz(i, n)S(m,n→ l). (3.11)

Finally, to account for the fact that figs last more than one generation, let only a

proportion β of plants be replaced each generation. Then

y′l = (1− β)yl + β
∑
i

∑
m

∑
n

ymznxi,mQy(i, n)S(m,n→ l). (3.12)

The model developed thus far models Y pollinating Z. Modeling the next

generation of fig wasp pollination, when Z pollinating Y, leads to a final equation of

z′l = (1− β)zl + β
∑
i

∑
m

∑
n

zmy
′
nx
′
i,mQz(i, n)S(m,n→ l). (3.13)

3.2 Fig-Fig Wasp Model Results

The long term behavior of the F-FW model is the same as the H-GM model for most

parameter values, except those discussed below. See the phase portrait in Figure 3.2.

The F-FW model is bistable, where the system will evolve to completely AB, C or

ab, c depending on initial conditions. It can also experience some robustness to a

moderate amount of introduced variation, or can experience host-switching given a

high enough relative abundance of alternative plant type (See Figure 3.4 to see a

close-up of simulations in the first 50 generations).
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Figure 3.2: Phase portrait showing 100 trajectories of the F-FW model for random initial
conditions. Parameter values are set to ε = 0.5, r = 0.2, s = 0.6, and β = 0.2. Red dots
indicate the value of the allele frequencies after 2000 generations.

3.2.1 The effect of parameters in the F-FW model

Parameter ε. Like the H-GM model, numerical simulations indicate that for ε = 0,

corresponding to no preference bias for like plant types, the system will maintain

genetic diversity. For intermediate values of ε, the system is bistable for the fixation

of either capital or lower-case alleles. Furthermore, host-switching as well as classic

1-1 coevolution can occur as seen in Figure 3.3.

The transient behavior of the F-FW model differs from the H-GM model with

respect to the preference parameter, ε as seen in Figure 3.4. If the odd generation

flowering plants are different in composition from the even generation flowering

plants, then the insect genetics will oscillate between the two until the odd and even

generation flowing plants are genetically similar in composition. For values of ε nearer

to 1, corresponding to very specific preference, the population eventually goes to a

fixed state. This is achieved only after several hundreds to thousands of generations of
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Figure 3.3: Possible trajectories of the F-FW model over 2000 total pollinator generations.
The simulations in each column have the same set of initial conditions, and values for r, s,
and β (0.2, 0.6, and 0.02, respectively). Each row varies ε from 0 (top row) to 1 (bottom
row) in increments of 0.25. Note that the solid blue areas are actually very rapid oscillations
of both the red and blue solutions. For better resolution of this, see Figure 3.4
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oscillating insect populations affected by the plant populations’ plant type frequencies.

At complete pollinator preference (ε = 1), this period-two oscillation is stable, with

the genetic frequencies of the pollinator populations forever oscillating between what

is optimal for each flowering population. Note that these results are only attainable

in the F-FW model with asynchronous flowering, not the H-GM model. This result

is discussed later in context of the resulting fig and fig wasp phylogenetic trees.

The parameter, ε, also affects the time to fixation and basin of attraction that

divides the two stable fixed points, like in the H-GM model. This is illustrated in

Figure 3.5, where the final outcome changes as ε is increased.

Parameter s. The selection coefficient, s, does not impact the stability of

equilibria, except in special cases (e.g. when there is no selection), but does affect

the time to equilibrium, and can shift the basin of attraction for the stable equilibria,

like in the H-GM model as seen in Figure 3.6.

Parameter r. The probability of recombination or recombination rate, r,

between the two insect loci under consideration also affects the basin of attraction

and the time to equilibrium as seen in Figure 3.7. For r = 0, as in the H-GM model,

Ab and aB genotypes are quickly removed as the system goes to a fixed state. In

the special case of r = 0.5, favorable genotypes can be produced quickly initially, but

the high recombination rate can also break apart favorable combinations. In both

special cases only the AB, C, C and ab, c, c states are possible for insect and the

two asynchronously flowering plant populations.

Parameter β. The contribution of seeds to the next generation, β, impacts the

trajectories that divides the basin of attraction for the two fixed points and influences

the time to equilibrium. We see this in FigureFig:FIG b basin. If β = 0, then there is

no fixation of a single genotype because the plant populations cannot evolve, whereas

if β = 1 evolution is very rapid as plants can respond more quickly.

47



Figure 3.4: These are the same F-FW model simulations as shown in Figure 3.3, but zoomed
in over the first 50 generations to show the oscillatory behavior.
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Figure 3.5: Simulations all with the same parameters and same initial conditions, but
varying ε. Parameters are s = 0.3899, r = 0.5909, b = 0.4594 and ε values moving from left
to right then top down are 0, .1, .25, .5, .75, and 1. Initial conditions for all runs are y0 =
0.2180, z0 = 0.5716, and x0 = [0.0446, 0.4091; 0.2026, 0.0370; 0.7390, 0.3169; 0.0138, 0.2369]
This illustrates that varying the relative preference only, ε, can affect final outcome, i.e.
affects the basin of attraction.
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Figure 3.6: Simulations all with the same parameters and same initial conditions, but
varying s. Parameters are r = 0.6393, b = 0.2554; , er = 0.0887 and s values moving from
left to right then top down are 0, .1, .25, .5, .75, and 1. Initial conditions for all runs are y0 =
0.4425, z0 = 0.3934, and x0 = [0.3447, 0.3096; 0.2404, 0.1510; 0.38980.4383; 0.0251, 0.1011]
This illustrates that varying the selection coefficent only, s, can affect final outcome, i.e.
affects the basin of attraction.
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Figure 3.7: Simulations all with the same parameters and same initial conditions, but
varying r. Parameters are s = 0.9521, b = 0.9759, er = 0.0309 and r values moving from left
to right then top down are 0, .1, .2, .25, .3, .4 and .5. Initial conditions for all runs are y0 =
0.9044, z0 = 0.6804, and x0 = [0.2029, 0.4459; 0.3545, 0.3447; 0.0998, 0.0012; 0.3428, 0.2081]
This illustrates that the recombination rate affects the basin of attraction.
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Figure 3.8: Simulations all with the same parameters and same initial conditions, but
varying β. Parameters are s = 0.7267, r = 0.5158, er = 0.7906 and β values moving from
left to right then top down are 0, .1, .2, .25, .3, .4 and .5. Initial conditions for all runs are y0 =
0.5100, z0 = 0.6149, and x0 = [0.1178, 0.2585; 0.3906, 0.3604; 0.0302, 0.0349; 0.4614, 0.3461]
This illustrates that β affects the basin of attraction.
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3.3 Discussion of Fig-Fig Wasp Model Results

The major difference in behavior between the F-FW model and the H-GM model is in

the transient behavior and response to the preference bias parameter, ε. Even under

intermediate values of ε, oscillatory insect and differing plant frequencies between

flowering populations can persist for thousands of insect generations. A typical fig

wasp lineage may rely on 8-10 different flowering fig populations in order to maintain

its viability. In this case, it is expected that the transient behavior seen in the

two population case will last even longer, perhaps tens of thousands of generations

under realistic parameter conditions. This may be extremely important in clarifying

why so many fig phylogenies are extremely difficult to resolve, pointing to extensive

hybridization and confusion when determining historical relationships with pollinators

[100].

Looking at larger evolutionary time scales, reproduction of three major co-

evolutionary phylogenetic patterns in the fig-fig wasp system are observed: robustness

of the 1-1 co-evolutionary relations between plant and pollinator, host-switching

of pollinator to another fig type, and extensive hybridization among figs leading

to violations in the 1-1 relationship between fig and fig-wasp. Initial plant type

distributions and magnitude of preference bias, ε, will determine which of these

scanerios is observed. A study of fig and fig wasp species pairs in the Ogasawara

Islands revealed that F. nishimurae and the Higashidaira type selected their own

host fig odors significantly more often, while wasps of F. boninsimae did not show

specific preference for a particular fig odor [103]. This preference bias parameter does

vary in situ and may explain some major variations in evolutionary trajectories in

different fig-fig wasp systems.

All parameters can also change outcomes of the model, primarily by moving the

trajectory that divides the basin of attraction between the fixed point solutions, and

by affecting the time to reach equilibrium. This differs from the H-GM model in that

the H-GM model only ε and β could affect the basin of attraction.
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3.4 Conclusion

Asymptotic behavior in the F-FW model remains unchanged. There is no mainte-

nance of genetic variation (except for the cases of ε = 0 or ε = 1), but there is the

ability to host-switch. However, the F-FW model differs markedly in results from

the H-GM model in transient behavior. Genetic variation in the short term can be

maintained much longer in the F-FW model with up to tens of thousands of insect

generations of incomplete host-switch observed due to the asynchronous flowering

in plants delaying fixation of only one type. The effect of incomplete and complete

host-switch on the coevolution of phylogenetic trees is considered in the next section.
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Chapter 4

Effect of Mutualisms on

Coevolving Phylogenies

4.1 Introduction

Until now, the focus has been a 2 plant types possible in one or two population. This

allowed the exploration of a the relative likelihood that host-switching, maintenance

of genetic variation, or maintenance of the specialized relationship. It was established

that reciprocal evolution will always encourage traits to match, and small asymmetries

in relative plant and pollinator abundances will cause strict fixation of only one

type of each in the system. Therefore, maintenance of multiple types is unlikely to

persist unless other mechanisms are present. For example, opposing forces exerted by

multiple pollinators, plant partners as seen in the fig-fig wasp system, or a genetic basis

that allows for many phenotypes, like a quantitative trait model. It is possible that

understanding the contribution of mutualistic relationships to patterns of biodiversity

lays within exploring the entire mutualistic network [7, 26, 92], more specifically a

quantitative trait-driven mutualistic network based on both evolution and ecology

[7, 18, 47, 83].
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4.2 Ecological Network Theory

As ecology is the study of community processes, network theory gives the quantitative

tools for describing the community interactions [76]. Ecological network theory has

focused for decades primarily on food webs, experiencing an exponential increase in

publications over the past four decades. Studies of mutualistic webs and antagonistic

webs have been slower to emerge, but are now experiencing similar trends over the

past two decades [47]. Jordano’s 1987 paper [52] was the seminal paper on mutualistic

networks which led this field of study. Since then, mutualistic interactions have been

suggested as driving the ”architecture of biodiversity” [7].

Community-level studies of mutualisms are on the rise giving insight into ecological

complexity, but this has also strengthened the argument that more work needs to

be done [7, 47]. A review of network stability concluded plant-pollinator networks

appeared the most fragile of any type of ecological network[80]. This network

perspective has added insight to the nature of the structure of mutualistic webs,

but has also added a new tool for ecosystem restoration [8, 28, 53, 80, 95].

Due to the increase in field studies and data collection, mathematical network

theory is also advancing, now addressing questions particular to the structure of

bipartite networks, eg. [39, 63, 91]. Bipartite, or two-mode, networks are communities

which are divided into two sets of nodes and relationships are only possible between

them. A recent review of advances and insights into mutualistic networks is now

presented.

4.2.1 Properties of Mutualistic Networks

Although mutualistic webs encompass several functional types, such as plant-

pollinator and plant-frugivore webs, several climates, of various sizes, several

commonalities in network structure persist [7, 94]. A recent review of mutualistic

networks by Vazquez [94] noted seven general properties. I will use a similar
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framework below to introduce mutualistic network theory while expanding on

observations by Vazquez.

Low connectance: Only a few of the potential interspecific interactions

occur.

From the ecological perspective, one might consider the example of body size [18].

Interaction predictions based on body-size similarity alone might produce an over-

prediction of interactions, e.g. every like-sized insect pollinator interacting with the

exact same plants. On the other hand these apparent ”missing links” may actually be

a result of biological constraints to matching [20, 47, 75]. Constraints like this might

occur as a result of coevolving with other organisms throughout the species history

[7].

From a network perspective, consider each animal species as a set of nodes and

each plant species as a set of nodes. Then define an interaction matrix, A, with each

entry Aij as either 1 or 0 depending on whether or not there occurs an interaction

between animal species, i, and plant species, j. Then the matrix of real mutualistic

systems is much more sparse, i.e. more zeros, than would be expected by trait-

matching alone. There have been some attempts at ascertaining the role of evolution

in determining links. For example Rezende et al. reconstructed the phylogenies

behind several plant-pollinator networks and found that in many cases relatedness

was a predictor of interaction [83], and termed this phylogenetic signal.

Connectance is a way of measuring how sparse this interaction matrix is as a

measure of the total number of links relative to the total connections possible in

a network, C =
∑∑

Ai,j
mJ∗nI

. A review by Jordano [52] of several mutualistic webs

indicated that connectance is on average around 30%, with higher connectance in

smaller networks. Also it is conjectured that connectance must decrease as the size of

the network increases to maintain stability [9, 47, 67, 68]. Robert May suggested that

complex ecological networks are stable if i(SC)1/2 < 1, where S is the total number

of species and i is the mean interaction strength.
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Node size asymmetry: An imbalance in the number of species of plants

and animals in the network.

Meta-analyses consistently find more pollinators observed than plants, though the

difference in species number, or relative number of nodes for plants versus pollinators

seems to vary depending on the type of mutualism. The ratio of plant to animal

nodes ranged from 1:2 to 1:6 with plant-pollinators webs at 1:4 [12, 41, 94]. Sampling

effects, however, should not be ignored [76, 94]. Since most plant-pollinator studies

rely on the observations of plant visitors, this may give us a skewed view of the node

number. For example, it is possible in observing 2 plant species that 5 pollinator

species visit. However, this is a sampling of a piece of the network, and may not

mean that the entire network has the ratio 2:5. In fact, those 5 pollinator species, if

one is a generalist, may be the same species observed if a 3rd plant were included,

and in this case, the ratio would be 3:5. This may also skew connectance levels [47].

Research that explores the properties of mutualistic networks of varying sizes and

random network sampling may be useful in determining how sampling effects may

skew observations.

Heterogenous: Most species have few links, few have many links.

Ecologically, this means a few generalists and several specialists. In network theory

terms, the binary connectivity matrix, A, when summed by row or column indicate

the number of partners or degree, k, a particular animal or plant species has. In

networks with more specialists and a few generalists, these degree distributions to be

highly skew left, but with a long tail, [53]. The term heterogeneous describes networks

in which most species have few interactions, and a few have more interactions than

would be expected by chance [2, 6, 7]. Jordano also used the term heterogeneous in

his 1987 paper to more specifically describe that the variance in degree was higher

than the average degree [52].
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Many real networks other than mutualistic webs seem to share this property of

heterogeneity and are referred to as scale-free. Scale-free means that the cumulative

degree distribution probability function, P (k), follows a power-law (i.e. P (k) ∝ ek).

Preferential attachment is the current mathematical explanation for the mechanisms

behind these distributions [5, 81, 87]. In this explanation, new nodes at each time

step interact with other nodes preferentially with respect to the degree. This is

affectionately known as the ”rich-get-richer” process. However, it is important to

understand what biological mechanisms could drive a preferential attachment-like

behavior in mutualistic networks.

The structure of the network, such as the larger number of animal species versus

plant species, may also promote a natural skew for plant species to have more

generalists than expected by chance. Instead of a power-law connectivity, a truncated

power-law (i.e. P (k) ∝ kγek/kc) has also been suggested as an alternative best-

fit. Jordano examined 29 plant-pollinator networks and 24 plant-frugivore networks

and determined that the best fit for pollinators was either truncated power-law or

power-law, but for pollinated plants it was truncated power-law. Here the power-law

exponent was on average 1.23 for pollinators and .84 for plants [53]. In plant-seed

networks the best-fit was a truncated power-law. It is possible that a preferential

attachment-like process in combination with size asymmetry could produce the

truncated effect on the power-law distribution.

Unfortunately, even some of these data sets may also be influenced by inconsisten-

cies in sampling processes. A popular complaint is that sampling may be influenced

by abundance [88, 89]. In this case, the worry is that some low-abundance pollinators

may be mistaken for specialist pollinators because they are only observed on one

plant by chance. This can be extended to low in relative visitation frequency, not

just as a result of low population size, but including variations in visitation due

to flowering times, emergence times of pollinators or the availability of other more

preferred partners. In fact, longer-term community studies which explicitly control for

such sampling effects, found high ”turnover” in plant-animal mutualistic interactions.
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This means visitations changed depending on various conditions, including seasonality

and flowering time [76]. Simulations studies by Morales [72] suggest that spatial

effects of searching and interactions may affect also decreasing connectance. Therefore

observations for a small time period might conclude specialist designation when in

fact, that pollinator may visit a few different plants throughout the entire year.

In addition, one should also consider the grouping of nodes in a study before

making comparisons between networks. One extensive community-level study by

Inoue, et al. [48] used in a review by Bascompte and Jordano [7] to illustrate the

power-law connectivity distribution was not data taken at the species association

level, but rather at the family or sub-family level. It is important to understand how

this might affect the extremely high specificity suggested by some studies ??.

Weak and asymmetric dependences: Most links are weak, few are strong.

Strength in a link in one direction of an interaction is often coupled by a

weak link in the opposing direction.

Mutualism strength or the dependence of a plant species on an animal species, dPij is

(estimated as) the relative frequency of visits to plant species i by the frugivore or

pollinator species j. Likewise, dAji, the dependence of an animal species on a plant

species, is (estimated as) the relative frequency of visits pollinator j makes to a

particular plant species i [9, 52]. The distributions of these dependences are highly

skew right in mutualistic communities [9], meaning that most interactions are weak.

In food webs, weak interactions are recognized for their ability to buffer perturbations

through the entire community contributing stability [7, 9, 47, 67].

In addition to many weak links and few strong links, strength in one direction

of an interaction is often coupled by weak dependence in the other direction. This

is called dependence asymmetry [9, 88, 95]. For example, ants are more dependent

on the plants than the reverse, but plants tend to be more dependent on pollinator

or frugivores than vice versa [27]. Even though the directionality of asymmetry is

not always the same, the property of dependence asymmetry is universal and likely
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results from differential fitness benefits between mutualistic partners [27]. Bascompte

et al. suggested based on a population dynamics model, that communities are

stable if the product of mutual dependences is less than the products of the average

intraspecific competition coefficients divided by the product of the number of animal

and plant species [9]. This means that to stability (especially in large networks) is

best maintained by minimizing the product of mutual dependences, dPijd
A
ji, which is to

make them asymmetrical. Thus stable communities will have dependence asymmetry.

One measure of this asymmetry is as follows:

AS(i, j) = ‖dPij − dAji‖/max(dPij, d
A
ji)[9].

Note that if plants and animals have similar strength in dependence in both directions,

then AS will be near 0, but if they are highly asymmetric, then AS will be near 1. The

skew left of these distributions suggests high asymmetry in dependence, and further

simulation results of null models suggests that these asymmetry index distributions

in nature are a direct result of the skewed distribution of dependence values [9].

Nested: specialists interact with subsets of the species with which

generalists interact.

Bascompte et al., 2003, described the nestedness of mutualistic networks with the

following analogy: ”if we rank plants from the most specialized to the least specialized,

we find that the set of animals a plant interacts with are contained in a larger set,

which in turn is contained in a larger set, and so on, as in nested Chinese boxes,” [8].

There are several theories as to why one should observe nestedness in mutualistic

networks, and in fact up to 95% of all real world networks exhibit this feature [86].

For example, it is possible that nestedness is merely a sampling artifact of relative

abundance. Null models have shown that if one observes many species, it is more

likely to observe the rare event of a less abundant species [47, 62]. At the very least,

it is reasonable to assume that sampling and relative abundance may contribute
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to patterns, but other mechanisms may also be at play. Several have suggested

that weak and asymmetric link distributions result in nestedness as generalists cores

are connected weakly to many species which in turn are connected asymmetrically

strong (i.e. specialists), eg. [6, 7, 88]. Ings, et al. in their review paper in

2009, suggested determining the mechanisms for nestedness was an open question

for theoreticists [47], but it seems reasonable to assume that that the mechanism that

produces many weak and asymmetric links may also produce nestedness by default.

Medan et al., 2007, showed that the isocline of perfect nestedness and cumulative

degree distributions were fundamentally related, geometrically through derivates of

the degree distributions, and both approached a truncated-power law for perfect

nested bipartite networks [69].

A nested system describes a system with stability and cohesiveness. The generalist

core interacting with a large number of specialists means that these core groups have

small degrees of separation and specialists may not have to put all their eggs in one

basket, but could adapt if there were an extinction event [7, 74]. Also generalists,

pulled by many different pollinator needs are less likely to experience large shifts in

phenotype or population size changes that would discourage specialists, assisting in

the persistence of specialists [7, 8, 35]. In fact analysis has suggested that generalists

also can have weak links to each other giving further cohesiveness to the network [35].

The latter observation has ecosystem management implications as rare or specialist

species may need management of also its more common or generalist partners [7, 34].

But it also is presented by Bascompte et al. as a result of nestedness may actually

hold a clue for determining a mechanistic explanation for the emergence of nestedness:

a result of the stability in relative phenotype or abundance of generalist core groups.

Ecological theory, statistical meta-analysis, and network theory support the notion

that if a mechanism produces a cumulative degree distribution that is truncated-power

law, it likely also produce nestedness [7, 35, 69, 75].
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Modular or compartmentalized: contain subgroups of species that interact

amongst themselves mostly and with others much less.

The example above of a generalist core group and its specialists is also an example

of modularity in mutualistic networks. ”A module is a group of species that interact

strongly among themselves, but very little with species belonging to other modules,”

[6]. Detection algorithms for modularity have improved dramatically and have allowed

meta-analysis of modularity in real networks [47, 63, 73].

Trait complementarity and convergence could explain the presences of modularity

in mutualistic networks, eg. [7, 27, 53, 62, 92]. Furthermore, Rezende, et al. found

that phenotypic complementarity in combination with similar evolutionary history

produced modularity and nestedness. They argue phenotype in combination with

evolutionary history may play a large role in determining the structure of mutualistic

networks and should be integrated into a single, more broad framework [82]. In

essence, the debate in the ecological network community about whether ecological

interactions or simply species abundance and sampling play a role in creating observed

interaction patterns should not be considered mutually exclusive, but should be

expanded as pieces of a complex puzzle of factors including evolutionary history

[7, 9, 18, 47, 82]. An essay series in PLoS called ”Highlighting fundamental, unifying

challenges in biology,” included a piece called ”Evolution, Interactions, and Biological

Networks,” extending this challenge outside the realm of mutalistic network theory

and to biological network theory in general [101].

4.2.2 Mathematical Modeling of Mutualistic Networks

Modeling in food webs has long been the leading edge of ecological network theory [47],

but interest in mutualistic network modeling has emerged as well. More community

level interaction data has become available and these networks are being mined

for patterns using emerging tools in network theory. At the same time there has

been a simultaneous rising interest in community approaches to inform ecosystem
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management and restoration [6, 80]. The scientific community is interested in the

intrinsic structure of networks to anticipate effects due to species loss or climate

change.

Heterogeneous networks, like mutualistic networks are robust to random node

removal [2]. Recall this is a result of cohesive modules containing a generalist core

and many weak and asymmetric connections. Fonseca and Bascompte [27] used

existing real networks to overlay onto heterogeneous landscapes and manipulate

the metapopulation landscape to look at network changes. They concluded that

real networks are more robust than would be expected by chance. Memmott et

al. simulated cextinctions on real pollinator-plant networks, concluding that those

networks with truncated power-law distributions in connectivity were most robust

[53, 70]. Simulated coextinctions on real pollination networks revealed that removing

specialized species preferentially has little impact on the stability of the whole

system until a substantial fraction of the nodes are removed [83]. A model that

uses statistical properties to generate a Boolean framework for network assembly

simulation concluded that assembly time to stable networks was relatively fast for

mutualistic networks in comparison to food webs [17]. However, meta-analysis of

ecological network stability through simulated extinctions discovered that while real

ecological networks were robust, plant-pollinator webs were still the most fragile of

the group [80].

The debate between abundance and geography versus trait complementarity as

explanations for network features as well as the field’s background in food web models

has also driven current modeling studies. Assembly models have therefore focused

on incorporating species abundance and geographic availability. Lockwood, 1997,

tested how robust these assembled networks of Lotka-Volterra population dynamic

assembled networks were to the invasion of these new nodes [64]. Santamaria and

Rodŕıguez-Gironés, 2007, built a model based on trait matching and threshold levels

to trait matching in an effort to reproduce ”missing links” or the low connectances

levels observed in mutualistic webs. Stang et al. [88, 89]. Meta-analysis suggests
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flowering time dynamics are more important than phylogenetic signal in predicting

interactions, though both were important [94].

Recall Albert and Barabasi determined preferential attachment mechanisms were

responsible for power law-connectivity distributions [2]. Guimarães et al., 2007, built

a model based on this preferential attachment for bipartite networks. They concluded

that for bipartite networks, this could explain both power-law distributions and

truncated power-law distributions. The differential growth rate between node groups

determined the exact distribution. If node group B grew slower than A, then P (kA)

was best fit by power law. If B grew faster than A, then P (kB) was best-fit by

a truncated power-law [41]. Thus preferential attachment can explain both of the

connectivity distributions observed in mutualistic networks, though why preferential

attachment should exist as an assembly mechanism is less clear [41, 53].

In an article in Nature, Saavedra et al., [85], adopted food web assembly

models and then applied this to business-consumer mutualistic networks. They also

showed that it was better at producing desired degree distributions, nestedness, and

modularity patterns than earlier models presented by Santamaria and Rodŕıguez-

Gironés [86] and Guimarães et al. [40]. In this rule based stochastic model, partners

were chosen randomly from a pool and assigned links based on an exponential

probability of cooperation. This was found to be a function of current link number,

the number of nodes in the group, and a reward. Another model meta-analysis

including food web models and mutualistic models by Pires, 2011, concluded, like

Rezende, 2007, that evolutionary history, more specifically, hierarchy may play a

role in the structure of mutualistic webs [79, 82]. Rezende had simulated various

hierarchal structures independently than based interaction matrices off of resulting

traits and their complementarity. He found that matching hierarchal structures lead

to nestedness of mutualistic networks.

To date, mutualistic models which incorporate evolution by looking at the network

assembly process are lacking in the realism of their genetic basis (if any is included

at all). Statistical mechanics models which employ hundreds of species interacting
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with either have yet to incorporate bipartite structure [19, 19]. Some have purposely

excluded a genetic basis to create null models based solely on maximizing entropy

[102], which is an observation in some ant and pollinator mutualistic systems [12].

Other assembly models assume some random probability of a trait being affected by

its partners [40], and no standard evolutionary notion of fitness has been incorporated.

However, the addition of trait coevolution in the assembly process may comple-

ment some of this earlier work in null modeling based on observations of statistical

mining. For example, the equilibrium state which maximizes the discrete Shannon

entropy, H = −
∑
pi ln pi [29], means that the pressures, pi, (inverse of the number

of links [102] or interaction frequency [12]) either are very weak to minimize pi or

very strong to minimize ln pi, i.e. heterogeneous networks are stable. Ecologically

speaking, pollinators seek to maximize entropy by forming network structures that

promote more information reliability, i.e. less likelihood of strong perturbations.

This means complexes of generalists that have pressures from many directions have

phenotypes that remain approximately fixed, and specialists adhere themselves to

these complexes so that they are less likely to lose their partners for which they are

so specialized. Perhaps this assembly process indicates an evolutionary mechanism

for the formation of heterogeneous networks. Despite many calls for ecological and

evolutionary history to be integrated into the field of ecological network theory,

relatively little has been done [6, 47, 80, 94].

4.2.3 Cophylogeny: Coevolution and Phylogeny

One advantage of incorporating evolution into network assembly models is that

one can explore open questions in cophylogeny, phylogenies and the connections

between coevolving groups. The expectation is that matching phylogenies are the

rule in cophylogenies and other patterns are the exception. The nature of the

coevolutionary relationship between figs and fig wasps is not as clear as overlaying

congruent phylogenies. Not only are there violations to the one-to-one rule between
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phylogenies, but also presence of hybridization that confuses the resolution of the

phylogenies as well as rampant host-switching [49, 100]. However, analysis on real

mutualistic networks indicates that many have a positive phylogenetic signal [83].

Current phylogenetic tree reconstruction efforts between coevolving partners often

places penalties on events such as host-switching when resolving these phylogenies

[77]. Little is known about how often these events are expected to happen. Verbal

models are careful to not assume perfect matching of traits or phylogenies in

coevolutionary systems and acknowledge there may be other events happening on

a larger geographic scale that influence local examinations [49, 50, 93, 100]. A

recent paper attempted to merge evolution with ecological interaction by simulating

independently simulated phylogenies then creating associations based on character

matching [83]. This null model investigation concluded that the amount of

phylogenetic hierarchy, to what degree phylogenetic trees experience speciation within

a main branch versus in many branches, could play a role in determining the observed

nestedness of connections in mutualistic webs. However, this approach added little

to the understanding of how continuous interaction might shape coevolving trees and

ecological networks. The results of coevolving phylogenies on connectivity patterns,

timing of speciation events, frequency of apparent host switches, etc. is a territory

that remains to be explored [47].

Next, stochastic simulation model is developed to understand how mutualistic

interactions shape cophylogeny and mutualistic networks. Plant-pollinator systems

are used to compare and explain results, but the model is general enough to apply to

other mutualistic webs with little modification. These resulting bipartite coevolving

networks may provide insight into the formation of observed ecological network

patterns and cophylogeny patterns as a result of ecological interactions.
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4.3 Model Description

4.3.1 Coevolution of mutualism trait

A model is developed for the coevolution of a trait involved in a mutualistic

interaction. Then a stochastic model is introduced which will couple the deterministic

trait coevolution model with stochastic processes like speciation and extinction and

will allow for evolution of networks based on historical associations and the fitness of

each connection.

Let each mutualism characteristic be a 1-D quantitative trait. An example in the

fig-fig wasp systems is the style length of the fig population and ovipositor length of

the fig wasp population [47, 54, 99]. Each initial plant and pollinator has a starting

mean trait value of 0 (this could mean some distance from a reference length like

10 mm). The trait value for each species, i, in plants is denoted xi at an arbitrary

generation and x′i in the next generation. The trait value for each species, j, in

pollinators is denoted yj at an arbitrary generation and y′j in the next generation.

The fitness depends on the relative frequency of visits between any two coevolutionary

partners as it affects pollination rate and food gathering. So fitness is a function of

encounter rate and the visitation preference based on matching of traits [7, 18, 58, 89].

4.3.2 KLS Model

A model of the coevolution of a quantitative trait between one plant and one pollinator

was done by Kiester, et al., [58] and is presented in this section to lay the foundation

for the models that follow. The KLS model was intended for one plant and one

pollinator population only. After this section, an extension of this model is introduced

that will incorporate an entire set of available partners with which to interact.
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Plant model

Let Ψ(x|y) be the relative preference for a plant with phenotype x by a pollinator

with phenotype y. Given two interacting populations i and j, the probability of a

visit to plant xi given pollinator yj is determined by,

p∗i (xi|yj) =
pi(xi)Ψ(xi|yj)∫
pi(x)Ψ(x|yj)dx

. (4.1)

Define Ψ∗(xi|yj) so that p∗(xi|yj) = Ψ∗(xi|yj)p(xi). Then Ψ∗ can be interpreted as

the relative contribution of yj pollinator to the xi plant population, discussed above:

Ψ∗i (xi|yj) = Ψ(xi|yj)/
∫
pi(xi)Ψ(xi|yj)dxi. (4.2)

Assume an infinite population or that all pollinator types will visit the same

number of plants so that contribution to the next generation only depends on plant

type frequency and not the number or density of plant type. Then, the total relative

fitness for a particular plant population xi depends on the contribution of each

pollinator type multiplied by the relative abundance of pollinator types.

wx(x) =

∫
Ψ∗i (x|y)py(y)dy. (4.3)

Then the mean phenotypic value of population i in the next generation is

x′ =
1

wx

∫
xpx(x)wx(x)dx, (4.4)

where wx =
∫
px(x)wx(x)dx = 1 is the average fitness of plant population i.

Pollinator model

The derivation of the KLS pollinator model is not a mirror of the plant derivation.

Instead, Kiester, Lande and Schemske posit that the ”relative fitnesses of pollinator

phenotypes are proportional to the total frequency of plant that they visit,” [58],
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thereby producing a fitness equation of

wy(y) =

∫
px(x)p∗x(x|y)dx. (4.5)

This formulation of the fitness equation is awkward because the probability of a visit

to a plant with trait value x by a given pollinator of trait value y is already defined

as p∗x(x|y), in which the plant trait distribution is already accounted for. However,

visits here are a probability distribution so using p∗x(x|y) alone would result in equal

fitness values across pollinator phenotypes if the additional px(x) was not inserted.

As in plants, the pollinator phenotype in the next generation is calculated by

y′ =
1

wy

∫
ypy(y)wy(y)dy. (4.6)

Analysis

Selection differentials are used to describe change in mean trait value, or Sx = x′− x

and Sy = y′ − y. For specialist pollinators an absolute preference function for Ψ

is employed. This assumes pollinators prefer a certain trait value, regardless of its

distribution in the population is defined as

Ψ(x|y) = e−(x−y)2/2v2

. (4.7)

This form for a matching function was used in Kiester et al. [58], but the need for

matching between corrolla length and fruit cross width in many systems was also

noted by Jordano’s 1987 review on pollinator networks [52].

Plants and pollinators are assumed distributed normally with mean x and y,

respectively, and with variance σ2
x and σ2

y , respectively. In this case, the selection
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differential derived for plants can be described by the following equation,

Sx
σ2
x

=
y − x
v2 + σ2

x

(4.8a)

Sy
σy

=
x̄− ȳ

σ2
x + (v2 + σ2

x) (2v2 + σ2
x) /σ

2
x

. (4.8b)

This is equivalent to

x′ = (1− α)x+ αy (4.9a)

ȳ′ = (1− β)ȳ + βx̄, (4.9b)

where α = σ2
x/ (v2 + σ2

x) and β = σ2
xσ

2
y/
(
σ2
xσ

2
y + (v2 + σ2

x) (2v2 + σ2
x)
)
.

Note: The line of equilibrium at x̄ = ȳ is stable. Kiester et al. note in their

model between one plant and one pollinator that this stable line of equilibria could

mean that geographically isolated populations could evolve to different trait values,

thus providing a mechanism for allopatric speciation [58]. However, the total trait

distribution of all possible interaction partners needs to be considered in networks.

Developing these interaction probabilities as this has been recognized as important

in pollination networks [89], but is not addressed in models.

4.3.3 Kiester, Lande and Schemske Extension and Symmet-

ric Fitness Modification

The equations for the mean trait value in the next generation are derived following

Kiester et al. and extends the 1-1 plant-pollinator case to m plant and n pollinators

interacting. Consider plant species i pollinator species j. The interaction or

connectivity matrix, A, is an m × n matrix such that A(i, j) = 1 if population i

and j interact and A(i, j) = 0 if they do not. J is the set of all plant species that

interact with pollinator species j and is of size mJ . Likewise, I is the set of all
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pollinator populations that interact with plant species i and is of size nI . Note that

0 ≤ mJ ≤ m and 0 ≤ nI ≤ n. Also note A(i, j) = 1 if and only if i ∈ J or j ∈ I.

Define pi(x) as the trait probability distribution function of the ith population of

plants. The probability of picking an individual with phenotype x from all interactors

of j, J , is determined by

pJ(x) =
1

mJ

∑
i∈J
pi(x). (4.10)

Analogously, define pj(y) as the probability distribution function of the jth population

of pollinators. The probability of picking an individual with phenotype y from all

interactors of i, I, is determined by

pI(y) =
1

nI

∑
j∈I
pj(y). (4.11)

Refer to Table 4.1 for a list of all functions used in this model and the models below.

The probability of a visit to a plant of phenotype x from the ith population given

phenotype y pollinator from population j and the set of its interactors J is determined

by,

p∗J(xi|yj) =
pJ(xi)Ψ(xi|yj)∫
pJ(x)Ψ(xi|yj)dxi

. (4.12)

Define Ψ∗(xi|yj) so that p∗(xi|yj) = Ψ∗(xi|yj)p(xi).

Ψ∗J(xi|yj) = Ψ(xi|yj)/
∫
pJ(xi)Ψ(xi|yj)dxi. (4.13)

Then Ψ∗ can be interpreted as the relative contribution of yj pollinator to the

xi plant population relative to all of the other interacting populations this partner

services.

Plant model

Assume an infinite population or that all pollinator types will visit the same number

of plants so that contribution to the next generation only depends on plant type
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Table 4.1: List of Coevolving Phylogenies models’ variables and functions.

Variables

x Trait value for mutualistic character in plant

y Trait value for mutualistic character in insect

x̄i Mean trait value for mutualistic character in plant population i

ȳj Mean trait value for mutualistic character in insect population j

I The set of all insect populations, j ∈ I, that interact with plant population i

J The set of all plant populations, i ∈ J , that interact with insect population j

Probability Distribution Functions

pi(x) Frequency of trait value x in plant population i

pj(y) Frequency of trait value y in insect population j

pJ(x) 1
mJ

∑
i∈J

pi(x) Frequency of trait value x among all plant interactors with insect j

pI(y) 1
nI

∑
j∈I

pj(y) Frequency of trait value y among all plant interactors with plant i

Functions

Ψ(x|y) Relative preference for plant phenotype x given insect phenotype y

p∗i (xi|yj)
pi(xi)Ψ(xi|yj)

mJ

∫
pJ(xi)Ψ(xi|yj)dxi

Frequency of visits to a plant with phenotype x in population i given a pollinator yj

p∗j (xi|yj)
pj(yj)Ψ(xi|yj)

nI
∫
pI(yj)Ψ(xi|yj)dyj

Frequency of visits to a plant with phenotype x in population i given a pollinator yj

p∗J(xi|yj)
∑
i∈J

p ∗i (xi|yj) Frequency of visits by pollinator yj given a plant xi

p∗I(xi|yj)
∑
j∈I

p ∗j (xi|yj) Frequency of visits to a plant with phenotype xi given a pollinator yj

Ψ∗i (x|y)
Ψ(xi|yj)

mJ

∫
pJ(xi)Ψ(xi|yj)dxi

Relative contribution of xi plant to the yj pollinator)

Ψ∗j (x|y)
Ψ(xi|yj)

nI
∫
pI(y)Ψ(xi|yj)dyj

Relative contribution of yj pollinator to the xi plant pollination visits)
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frequency and not the number or density of plant type. Then, the total relative

fitness for a particular phenotype in plant population i depends on the contribution

of each pollinator type multiplied by the relative abundance of pollinator types.

wi(xi) =

∫
Ψ∗i (xi|yj)pI(yj)dyj. (4.14)

Then the mean phenotypic value of population i in the next generation is

x′i =
1

wi

∫
xipi(xi)wi(xi)dxi, (4.15)

where wi =
∫
pi(xi)wi(xi)dxi is the average fitness of plant population i.

Pollinator Model

The pollinator’s fitness depends on the relative frequency of plant visits it makes.

Three variations of this fitness function are explored. The first two are considered

below and the third is a stochastic model considered in a later section. The first

version is a direct extension of the model developed in Kiester, Lande, and Schemske

[58] and so is referred to as the KLS Extension:

wj(yj) =

∫
p∗J(xi|yj)pJ(xi)dxi. (4.16)

The second definition for the fitness, as done in Chapter 3 for the explicit genetic

model, calculates the appropriately scaled conditional probability on the choice of

plant by any particular insect. This model, will be referred to as the Symmetric

Fitness Coevolver (SFC) Model since the pollinator fitness calculation is symmetric

to that of the plant fitness.

wj(yj) =

∫
Ψ∗j(xi|yj)pJ(xi)dxi. (4.17)
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In both cases, the mean of the pollinator population j in the next generation is

y′j =
1

wj

∫
yjpj(xj)wj(yj)dyj, (4.18)

where wj =
∫
pj(yj)wj(yj)dyj is the average fitness of pollinator population j.

4.4 Analysis

Assume the following relative preference for a plant with phenotype x by a pollinator

with phenotype y.

Ψ(x|y) = e
−(x−y)2

2v2 . (4.19)

v can be interpreted as a tolerance for matching of traits. Assume that traits in each

population are normally distributed with the constant variance, so

pi(xi) = e
−(xi−x̄i)

2

2σ2
x , (4.20a)

pj(yj) = e

−(yj−ȳj)
2

2σ2
y . (4.20b)

Approximate the probability distribution of a group of interactors by a normal

distribution with a mean that is the average of the group’s means.

pJ(xi) = e
−(xi−x̄J )2

2σ2
J , (4.21a)

pI(yj) = e

−(yj−ȳI)
2

2σ2
I , (4.21b)

where

xJ =
1

nJ

∑
x̄i =

Ai,jyn,j∑Nx
j=1 Ai,j

, (4.22a)

yI =
1

mI

∑
ȳI =

Ai,jxn,i∑Ny
i=1 Ai,j

. (4.22b)
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Note that populations in a particular interactor group have similar mean to that of

its coevolutionary partner.

4.4.1 KLS Extension

Under the assumptions above, and assuming that pJ(x) is normal with mean xJ and

standard deviation σx and pJ(x) is normal with mean yI and standard deviation σy,

equivalent equations from Kiester, Lande and Schemeske should and do emerge [58].

The only difference is the mean of all partners is replaces the mean of one partner.

x̄′i =
v2xi + σ2

xyI
v2 + σ2

x

= (1− α) x̄i + αȳI , (4.23a)

ȳ′j =
v2yi + σ2

yxJ

v2 + σ2
y

= (1− β) ȳj + βx̄J , (4.23b)

where α = σ2
x/ (v2 + σ2

x) and β = σ2
xσ

2
y/
(
σ2
xσ

2
y + (v2 + σ2

x) (2v2 + σ2
x)
)
.

The α and β terms determine how important selection for trait matching are for

the plant and pollinator, respectively. If they are close to 0, then the trait matching

with its mutualistic partners applies less selective force, and so the next generation

will have trait value likely more similar to its parents. Note that when σ2
x > σ2

y,

α > β. In this case, plants responds less quickly to insect evolution.

4.4.2 SFC Model

In the Kiester, Lande, and Schemske paper, they use the same conditional preference

function, and try to modify the form to fit both uses. The Symmetric Fitness

Coevolver modification requires that each species has the same functional effect on

each others evolution.

Under these new assumptions, and assuming that pJ(x) is normal with mean xJ

and standard deviation σx and pJ(x) is normal with mean yI and standard deviation

σy, the result is the same dynamic fitness equation as in the KLS Extension (Equations
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4.9a and 4.9b), but with more symmetry in the α and β parameters. The parameters

are now α = σ2
x/ (v2 + σ2

x) and β = σ2
y/
(
v2 + σ2

y

)
.

4.4.3 Equilibria

For a particular set of interactions between plants and pollinators, described by

interaction matrix, A, the trait values at equilibria for both the KLS Extension and

the SFM are described by

x̄i = ȳI , for i = 1, ..,m, (4.24a)

ȳj = x̄J , for j = 1, .., n. (4.24b)

If the entire network is a connected graph, then this implies that x̄1 = ... = x̄m = ȳ1 =

... = ȳn, forming a line of equilibria. If the entire network is not connected, then mean

trait values will converge within each disjoint connected subgraph, but independently

between subgraphs. Kiester, et al., [58], discusses how two or more geographically

independent populations might allopatrically speciate as a result of independent

evolution along a line of equilibria. This is extended to two or more disjoint subgraphs

or metapopulations which vary independently due to high specificity in trait matching.

Theorem 4.4.1. For the dynamical system in Equations 4.23a and 4.23b, the line

of equilibria in Equations 4.24b in a connected network are stable.

Proof. The dynamical system of equations in 4.23a and 4.23b can be rewritten in

vector form using the interaction matrix, A where n−1 is an array with 1/the number

of interactors each plant population i has and m−1 is 1/number of interactors that

each pollinator population j has:

x̄′ = (1− α)x̄ + α (Aȳ) •m−1 (4.25a)

ȳ′ = (1− β)ȳ + β (x̄A) • n−1. (4.25b)
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Note that for both models 0 < α, β < 1. Since it is expected that the network

is completely connected at this equilibria because all phenotypes are the same, we

assume A is a m × n ones matrix. All entries of m−1 = 1/n, because there are

n pollinator populations and n−1 = 1/m, because there are m plant populations.

Therefore, the dynamical system is

x̄′ = (1− α)x̄ +
α

n
(ȳ1 + ...+ ȳn) (4.26a)

ȳ′ = (1− β)ȳ +
β

m
(x̄1 + ...+ x̄m) . (4.26b)

This is a linear difference equation system, z′ = Lz where L can be described as

a block matrix: 
(1− α) Im

α
n
Nm×n

β
m
Nn×m (1− β) In

 ,
where L2 and L3 are some constant coefficient interaction matrix with dimensions

indicated by the subscripts.

To find the eigenvalues, we solve det (L− λIn+m) = 0. Note that the left hand

side is also a block matrix:
(1− α− λ) Im

α
n
Nm×n

β
m
Nn×m (1− β − λ) In

 ,
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We can use the Schur complement of the block matrix to rewrite the determinant of

this block matrix as either form below:

det (L− λIn+m) = det ((1− α− λ) Im) det

(
(1− β − λ) In −

β

m
Nn×m

In
1− α− λ

α

n
Nm×n

)
,

(4.27a)

det (L− λIn+m) = det ((1− β − λ) In) det

(
(1− α− λ) Im −

α

n
Nm×n

Im
1− β − λ

β

m
Nn×m

)
.

(4.27b)

Two cases are considered, m ≥ n and m < n, respectively. Each case is the same

proof, but with different forms of the Schur complement. Using the first form, we can

rewrite the Schur complement as

(1− α− λ)m−n det

(
(1− α− λ) (1− β − λ) In −

αβ

n
Nn×n

)
. (4.28)

Note that the eigenvalue 1 − α has multiplicity m − n. Solving the second

determinant in the Schur complement for = 0 reveals the other 2n eigenvalues. This

determinant can be rewitten in the form∣∣∣∣∣∣∣∣∣∣
(1− α− λ) (1− β − λ)− αβ ((1− α− λ) (1− β − λ)− αβ)N1×n−1

− (1− α− λ) (1− β − λ)Nn−1×1 (1− α− λ) (1− β − λ) In−1

∣∣∣∣∣∣∣∣∣∣
= ((1− α− λ) (1− β − λ)− αβ)∣∣∣∣∣∣∣∣∣∣

1 N1×n−1

− (1− α− λ) (1− β − λ)Nn−1×1 (1− α− λ) (1− β − λ) In−1

∣∣∣∣∣∣∣∣∣∣
,

revealing another set of eigenvalues, at 1 and 1− α− β.
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The remaining determinant can be written as the sum of n determinants of size

n− 1:

|(1− α− λ) (1− β − λ) In−1|

+ (1− α− λ) (1− β − λ)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 (1− α− λ) (1− β − λ) 0 · · · 0

0 0 (1− α− λ) (1− β − λ)
...

...
...

. . . 0

0 0 · · · 0 (1− α− λ) (1− β − λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− (1− α− λ) (1− β − λ)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

(1− α− λ) (1− β − λ) 0 0 · · · 0

0 0 (1− α− λ) (1− β − λ)
...

...
...

. . . 0

0 0 · · · 0 (1− α− λ) (1− β − λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ . . . .

The latter n − 1 determinants are all In−2 with a column of zeros inserted in each

column and row of ones at the top, and with alternating signs. This means these can
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be rewritten:

|(1− α− λ) (1− β − λ) In−1|

+ (1− α− λ) (1− β − λ)
∑
|(1− α− λ) (1− β − λ) In−2|

= n ∗ (1− α− λ)n−1 (1− β − λ)n−1 .

Therefore, the other 2(n − 1) eigenvalues are 1 − α and 1 − β with multiplicity

n − 1 each. In summary, the eigenvalues for the m ≥ n case are λ = 1, 1 − α − β,

1− α with multiplicity m− 1, and 1− β with multiplicity n− 1. Through the same

argument, but using the second form of the Schur complement, we find the same

eigenvalues apply to the m < n case as well. Because one eigenvalue is 1 and |λ| < 1

for all others, the line of equilibria is stable.

To illustrate how connected networks and disjoint networks differ in equilibrium

solutions, consider the following cases.

Connected network example

Suppose there are 3 plants and 2 pollinators such that plant populations 1 and 2 are

connected to pollinator population 1 and plant populations 2 and 3 are connected to

pollinator population 2. The network graph looks like:

Figure 4.1: Graph of interacting plant pollinator populations in a connected network. The
blue nodes are plant nodes and the red nodes are pollinator populations.
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Then associated interaction matrix is a 3× 2 matrix:

A =



1 0

1 1

0 1


The network equilibrium equations in Equation 4.24b are:

x̄1 = ȳ1, (4.29a)

x̄2 =
ȳ1 + ȳ2

2
, (4.29b)

x̄3 = ȳ2, (4.29c)

ȳ1 =
x̄1 + x̄2

2
, (4.29d)

ȳ2 =
x̄1 + x̄2

2
. (4.29e)

This implies that x̄1 = x̄2 = x̄3 = ȳ1 = ȳ2. Therefore, without stochasticity, mean

trait values of all plants and all pollinators converge to a single value.

Disjoint connected networks example

Figure 4.2: Graph of interacting plant pollinator populations in a network comprised of
disjoint connected subgraphs.
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Then associated interaction matrix is a 3× 2 matrix:

A =



1 0

1 0

0 1


The network equilibrium equations in Equation 4.24b are:

x̄1 = ȳ1, (4.30a)

x̄2 = ȳ1, (4.30b)

x̄3 = ȳ2, (4.30c)

ȳ1 =
x̄1 + x̄2

2
, (4.30d)

ȳ2 = x̄3. (4.30e)

This implies that x̄1 = x̄2 = ȳ1 and x̄3 = ȳ2. Therefore, without stochasticity, average

trait values in each subgraph evolve to a single value. Since the subgraphs are disjoint,

each can evolve to a different value. This extends the original results of Kiester et

al. [58], but geographic isolation was considered necessary for divergent evolutionary

drift to occur. Next, ecological network independence will be examined through a

quantitative trait value mismatch such as ovule and ovipositor length or flowering

time versus emergence time is sufficient.

The effects of choosiness

In the case of no preference or lack of choosiness, characterized by v → ∞, and in

the absence of stochasticity, we examine the resulting mean phenotypes in the next
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generation in Equations 4.23a and 4.23b. In this case, α→ 0 and β → 0, so

x̄′i = ȳI (4.31)

ȳ′j = x̄J . (4.32)

This means that in the absence of choosiness or preference, phenotypes will tend

to evolve to match the mean phenotype of all of the cooperating partners. They will

show no bias towards any particular partner more strongly than any other.

In the case of a highly choosy partner, where preference v → 0, α → 1 and

β → 1. The resulting equations for the next generation phenotype in the absence of

stochasticity are:

x̄′i = x̄i (4.33a)

ȳ′j = ȳj. (4.33b)

Under a highly choosy system, the next generation phenotypes will be near

the current phenotype, with little ability to evolve towards the phenotype of all

available resources. In the absence of any stochasticity in maintaining connections,

this might be fine, but as long as there is some probability in losing connection if

partner phenotypes drift or evolve away, high choosiness could also result in network

instability.

4.5 Stochastic Simulation Models

4.5.1 Connections Between Species

Interactions between plant population i and pollinator population j are tracked via a

connectivity matrix, A. Mutualistic connections are maintained, created, and lost

with some probability proportional to the new trait distance between all of the

mutualistic candidate partners. Each entry in the connectivity matrix in the next
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generation, A′, is either 0 for not connected or 1 for connected.

P (A′ (i, j) = 1) = (1− c)m(i, j) + cAi,j (4.34)

where m(i, j) is a probability function that describes how likely species i and j will

interact in the absence of previous association for phenotype matching between plant

and pollinator.

The parameter c affects how strongly having a current connection determines

a connection in the next generation. For example, when partners are interacting,

there maybe several traits involved in the interaction, and we are only measuring the

matching of one. So a decrease in the matching level in one trait may not be enough

reason to justify a full loss of association. If c = 0, then historical associations

do not matter. Under this scenario, even if m(i, j) = .9998, the probability that

they would maintain their connection for 5000 generations is only about 0.37. If

c = 1, then historical connection matters only, and mean trait matching between a

plant and pollinator population does not, so any association that is inherited after

speciation continues forever. In this case, if the initial conditions of the simulation

are a connected network of plants and pollinators, then only those connections will

inherit and never be lost. This results in a well connected network after any period

of time. If initial conditions were a disjoint network, then it would remain a disjoint

network due to the inability to create new connections other than what is inherited. It

has been theorized that historical coevolution may be responsible for ”missing links”

observed in pollination webs [7].

If historical connection plays an intermediate role ( i.e. c is some intermediate,

between 0 and 1), then connections can persist for a long period of time, but can

evolve based on how well beneficial the connection is. In our prior example, for c = 0,

the probability of persistence of a desirable connection between closely matching

partners for 5000 generations was only 0.37. For c = 0.5, this is increased to 0.67,

and new connections are formed approximately 50% of the time that a partner of that
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match is available. For an even higher relative importance of historical connection,

c = .9, peristance probability in this example increased to approximately 0.90, but the

probability of making a new connection with a similarly matched partner is decreased

to 10%. A value of c near 1 may be an appropriately justifiable expectation if we think

that associations with partners are based on multiple traits and/or that mutualistic

webs are likely to persist in a constant environment.

4.5.2 Species Birth-death

Species birth is a random event for both plants and pollinators and is a random event

with probability bx and by, respectively. The lineage of parent species is copied as

the evolutionary history of the new species and the trait value of the new species

is the parental trait value plus some random variation from the parental. When a

species birth happens, the column (or row) of lineage connections is duplicated and

addended to the end of the connectivity matrix. Now the mean phenotypic value of

each population can be modified independently by stochastic forces like drift.

Species death happens when a species cannot maintain its connections. If at any

time mJ (or nI) = 0, species j or i is removed from the connectivity matrix and

the list of extant species. However, a delay of several generations for some systems

may be an appropriate modification if loss of connections is frequent as discussed in

the previous section. The biological reasoning is a plant species like fig would not

go extinct after 1 generation without reproduction. Pollinator species would then be

given a reasonable chance to (re-)establish the mutualistic relationship.

At each update, the average trait value of each species is derived from its current

trait value and the average trait value of all of the species to which it is connected,

reflecting selective pressures on the mutualistic trait. In addition, it experiences

stochastic fluctuation, which reflects possible environmental stochasticity and drift.

This fluctuation, ξx and ξy, is a normal random variable with mean 0 and standard

deviation Vx and Vy, respectively. Multiple external and internal stochastic influences
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act on the quantitative trait (e. g. environment and mutation), each with small effect

and in random direction with respect the trait. Therefore, the sum of these effects

on the quantitative trait is approximated by a normal distribution.

Recall that bx and by are the probability of speciation/species birth in the plant

population and the pollinator population, respectively. When speciation occurs, the

new population has mean trait value equal to the parent population, plus some

random fluctuation, ξs. ξs is a normal random variable with mean 0 and standard

deviation Vs.

4.5.3 KLS Extension and Symmetric Fitness Model

Accounting for stochastic effects due to environmental factors or drift, we calculate

the phenotype in the next generation as

x′i = (1− α) x̄i + αȳI + ξx, (4.35a)

y′j = (1− β) ȳj + βx̄J + ξy. (4.35b)

To determine mean partner trait values, we now incorporate the evolving

interaction matrix. For this SFC model, we use the absolute trait preference function

used in [58] as the matching function which helps determine connectivity:

m(i, j) = e−(x̄n+1,i−ȳn+1,j)
2/2θ2

, (4.36)

where θ is some tolerance for phenotype matching between plant and pollinator.

4.5.4 Stochastic Asymmetric Coevolving Network Model

In previous analysis, a trait matching function determined the connectivity matrix.

For ease of analysis, it was also assumed that the fitness of species is independent of

the other species interacting with its partners. These assumptions have been used in

food web construction models, though not for quantitative traits.
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Fitness is now assumed to be dependent on other plants and pollinators and

will also determine entries of the connectivity matrix. This is computationally more

complex, but more accurately emulates how fitness affects the evolution of partner

interactions. Plants and insects may desire partners that are not sharing their

resources with too many other populations. Thus, it makes sense to consider how

many suitors your partner has when trying to decide whether a particular relationship

is worth pursuing [12].

In the new connectivity matrix, each entry in the connectivity matrix in the

next generation, A′, is either 0 for not connected or 1 for connected based on a

probability determined by both historical connection and average contribution of the

candidate plant population to the pollinator’s fitness. This introduces asymmetry as

the matching function is defined as the pollinator’s perceived fitness, not the plants:

m(i, j) = wj(i|j)/w̄j. (4.37)

Recall the prior discussion about the ecological interpretation for the process of

maximizing network entropy. The interaction matrix will evolve so that maximum

resources are being obtained by insects. The question is to what extent will this

result in a network that does this by balancing generalist relationships with many

weak dependences with fragile specialist relationships that could be disrupted by the

evolutionary pressures on traits by any other connections or external pressures.

Under these new assumptions, the following equations are for the next generation

of plant population i,

x̄′i = (1− α) ȳI + αx̄i + γ1

(
ȳI

1

nI

∑
j∈I

x̄J

)
, (4.38a)

ȳ′j = (1− β) x̄J + βȳj + γ2

(
x̄J −

1

mJ

∑
i∈J

ȳI

)
, (4.38b)
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where α =
σ2
I+σIv+v2

σ2
I+σIv+v2+σxv

, γ1 = σIσx
σ2
I+σIv+v2+σxv

, β =
σ2
J+σJv+v2

σ2
J+σJv+v2+σyv

and γ2 =

σJσy
σ2
J+σJv+v2+σyv

.

4.6 Numerical Results

The following are simulation results for the full stochastic network. Initial conditions,

unless otherwise specified, are one plant and one pollinator species, each with trait

value 0 and connected to each other. Unless otherwise noted, all simulations have

parameter values, T = 400 (number of iterations), bx = by = 0.01 (probability

of speciation/species birth so number of generations is approximately 106bT = 4

million), v2 = 1, θ2
x = θ2

y = .1, Vx = Vy = .05, and Vs = .2.

The stability of mutualistic networks increased as c, the relative importance of

historical connection, increased. Since c = 1 would result in a completely connected

network with no possibility of losing or forming new connections, we set c only close

to this upper limit at c = 0.99 for the default choice.

4.6.1 KLS Extension

As expected, simulations using c parameter values close to one were less likely to

suffer from full extinction. For c = .5, 54% of all runs survived to T = 400 iterations.

At c = .99, 99% of runs survived to T = 400 iterations. Those that survived were

extremely well-connected.

Connectance is a measure of the total number of links relative to the total

connection possible in a network,

C =

∑∑
Ai,j

mJ ∗ nI
.

For the default parameter set, connectance level in simulated networks is much larger

than the 30% seen in meta-analysis [52]. For c = .5, average connectance was
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Table 4.2: List of simulation models and parameters.

Stochastic Model Equations KLS Extension SFC Model Asymmetric Fitness Model

Dynamic Equations

x̄′i = (1− α) ȳI + αx̄i α =
σ2
x

v2+σ2
x

α =
σ2
x

v2+σ2
x

α =
σ2
I+σIv+v2

σ2
I+σIv+v2+σxv

+γ1

(
ȳI

1
nI

∑
j∈I x̄J

)
+ ξx γ1 = 0 γ1 = 0 γ1 = σIσx

σ2
I+σIv+v2+σxv

ȳ′j = (1− β) x̄J + βȳj β =
σ2
xσ

2
y

σ2
xσ

2
y+(v2+σ2

x)(2v2+σ2
x) β =

σ2
y

v2+σ2
y

β =
σ2
J+σJv+v2

σ2
J+σJv+v2+σyv

+γ2

(
x̄J − 1

mJ

∑
i∈J ȳI

)
+ ξy γ2 = 0 γ2 = 0 γ2 =

σJσy

σ2
J+σJv+v2+σyv

Assumptions about pI(y) and pJ(x)

pI(y) N(ȳI , σI) σI = σy σI = σy/nI

pJ(x) N(x̄J , σJ) σJ = σx σI = σy/nI

Interaction Matrix Entries

P (A′(i, j) = 1) = (1− c)m(i, j) + cA(i, j) m(i, j) = e−(x̄′
i−ȳ

′
j)

2
/2θ2 m(i, j) = wj(i|j)/w̄j

Default Parameter set

T = 400 Number of iterations

bx = by = 0.01 Probability of speciation, plant and pollinator, respectively

Note: the number of generations simulated is approximately 106bT = 4 million

v2 = 1 Mutualism trait matching tolerance

θ2
x = θ2

y = .1 Variance of mutualism trait in plant and pollinator population, respectively

Vx = Vy = .1 Standard deviation of stochastic drift of trait in each iteration, ξ N(0, V )

Vs = .5 Standard deviation of stochastic change in trait value due to speciation event, ξs N(0, Vs)

c = .99 Proportion of connection probability based on historical association
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approximately 90%, and for c = .99, average connectance was approximately 91%.

The results of typical simulation is illustrated in Figure 4.3.

Figure 4.3: Typical simulation of an evolving KLS plant-pollinator network in the default
parameter set (see Table 4.2) that results in a well-connected network with connectance
level, C = 68.47%. The simulations in the upper left indicate value of the mutualistic
trait under consideration for each species in plant (top, x) and pollinator (bottom, y).
The right is an illustration of which species is connected to which, dark squares indicating
connected plant and pollinator and light squares indicating no interaction. Bottom left
indicated connectance level over time, and bottom right indicates the frequency of pollinator
connections. The skew left behavior of the connectivity histogram indicates a high number
of generalists and no specialist.

In the default simulation parameters, with equal generation to generation variation

in plants and insects, Vy = Vx, we are not likely to get an extinction scenario since

both plants and pollinators evolve with the same restriction on drift. Thus extremely

well-connected networks are produced. If the variation in plants is increased so that
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Vy ≤ Vx = Vs, the qualitative outcome does not change, but the number of network

extinction events increases.

In the well-connected networks observed, removal of a node means the network

will still be well-connected. Therefore, it is unlikely disjoint bipartite subgraphs

will emerge by stochasticity alone. In Figure 4.4, the initial condition is two sets

of one plant and one pollinator species connected to each other, so that the initial

network is a disjoint subgraph. If the trait value of a plant does not drift too close

to that of a member pollinator in a disjoint network to start a new association, then

these disjoint subgraphs can be maintained. As associations begin, the whole newly

connected network will evolve toward a single trait value.

In general, the simulations produce overconnectedness, with an average of

approximately 90% where real plant-pollinator systems are observed to have only

a 30% connectance level [52]. This also results in skew left connectivity distributions

because of the large number of generalists. We now examine how symmetry in fitness

definitions affects connectivity.

4.6.2 SFC Model

Recall that the SFC model is constructed so the fitness definitions are now symmetric.

Since this symmetry can lead to faster and more close trait matching in plants and

pollinators, this leads to networks with extremely high connectivity, near 99.8%. We

also get increased stability, with no observed network extinction. A typical run is

shown in Figure 4.5.

Although the mathematical formulation of this model seems more realistic,

the higher connectivity and the skew left connectivity distribution for reasonable

parameter choices is not. A more biologically realistic stochastic Asymmetric Network

Model is now investigated.
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Figure 4.4: Simulation of an evolving KLS plant-pollinator network with a disjoint bipartite
network as the initial condition. Parameter set is the default set as in Table 4.2, except to
allow two disjoint networks to remain disjoint for longer, I reduced the drift by an order so
that Vx = Vy = 0.01 and Vs = 0.05.
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Figure 4.5: Typical simulation of an evolving SFC plant-pollinator network under the default
parameter set (Table 4.2) that results in a well-connected network with connectance level,
C = 97.3%

4.6.3 Stochastic Asymmetric Coevolving Network Model

The following results are for the Stochastic Asymmetric Coevolving Network (ACM)

model. For the purpose of implementing these simulations, σ2
J = σ2

x/mJ and σ2
I =

σ2
y/nI as might be predicted by the central limit theorem had partners been picked

randomly from a probability distribution of means.

Cophylogeny

Four major coevolutionary events are highlighted when reconstructing cophylogenies:

cospeciation, sorting, duplication, and host-switching [77]. Figure 4.6 illustrates a

small network in early stages of development. At iteration 18, the first speciation event

occurs in the plant lineage. We will call this plant species 2. It is a duplication event,

but by the 100th iteration, it forms a 1-1 connection with pollinator species 3, which

arose in iteration 68. This begins as a duplication event but results in a host-switch
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from the plant perspective and a sorting event from the pollinator perspective. Note

that this simulation model does not impose cospeciation, but cascade-like cospeciation

events do occur by chance as one can see from the timing of speciation events that

result in pollinator species 2 and plant species 3 at iterations 29 and 65, respectively.

Figure 4.6: Left: Zoom of the first 100 iterations of a simulated cophylogeny. Color indicates
speciation order with blue as the initial connected species, then green, red, and light blue
(if applicable). Right: Associated untangled cophylogenetic network.

Figure 4.7 shows the evolution of a cophylogenetic network over 300 iterations.

Both patterns of modularity and phylogenetic conservation as well as one-to-one

specificity in concordance with phylogenetic signal are present at various points

of time in the network. This is one outcome, where as Figure 4.6 illustrates

how mutualistic processes can result in host-switching and associations that are

unexpected based on phylogenetic signal alone. Therefore patterns other than perfect

concordance with phylogenetic signal alone are part of the rule, not an exception.

Connectance

Recall that survival probability is related to its connectance and the relative

importance of historical connection, c. We showed that the highest values of c

would produce the most stability for a connection over time. Since the loss of all
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Figure 4.7: The following are snapshots of a cophylogenetic network over time at iteration 0,
100, 200, and 300. Notice how at iteration 200 there is a 1-1 correspondence in accordance
with phylogenetic signal, and snapshots at 100 and 300 show modularity and phylogenetic
conservation without the 1-1 correspondence.
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connections for a species results in the immediate extinction of a species, it might be

guessed that higher values of c confer more stability on networks. It was confirmed

this mathematical intuition via a bar graph representing survival probabilities for a

networks under various parameter conditions in Figure 4.8.

Figure 4.8: Bar graph of the probability of network survival levels after T = 400 iterations of
500 simulations of the stochastic ACN model under 81 parameter set combinations, varying
4 parameters over 3 values each. Those parameters not shown in the figure are set at the
default parameter set.

Recall that a review by Jordano [52] of several mutualistic webs indicated

that connectance is on average around 30%, with higher connectance in smaller

networks. Results indicate an average connectance level in stochastic simulations of

approximately .3175 or 34.75% (Figure 4.9) for all networks surviving until the end

of the simulation time length with the default parameter set. To look at the effects of

parameter choice on connectance level, more extensive simulations under 81 variations

of the parameter set as shown in Figure 4.10 show average connectivity levels ranging

from .3117 to .4003. Less connectance is generally observed for smaller drift of plant

phenotype versus pollinator phenotype. This could be due to less environmental

pressure on plants or smaller population sizes or inbreeding in pollinators, like in
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fig-wasp. In this case, randomly walking specialist plants would take longer to

explore the phenotype space and intersect with another pollinator who could exploit

it. Alternatively, less fluctation in plant phenotype could mean less risk for specialists.

Figure 4.9: Histogram of connectance levels of surviving networks after T = 400 iterations
of 500 simulations of the stochastic ACN model under the default parameter set. Of the
500 simulations run, 241 survived to 400 iterations. Average connectance was calculated at
.3481.

Several models were fit to the relationship between connectance levels and species

number from simulations generated, see Table 4.3. The best fit model was an

inverse power-law model with exponent of 0.5. Results displayed in Figure 4.11 also

indicate an inverse power-law relationship between connectance and network size,

also reflected in a meta-analysis of field studies [52]. Those some studies suggest a

stronger relationship with exponent 2 [7].

Recall that the connectivity matrix, A, is a function of mostly historical

connection, but also a probability based on the fitness effect of the connection.

Bascompte, et al. observed that connectance must decrease as the size of the network

increases to maintain stability [9]. A general feature of these simulations is that
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Figure 4.10: Bar graph of average connectance levels after T = 400 iterations of 500
simulations of the stochastic ACN model under 81 parameter set combinations, varying
4 parameters over 3 values each. Those parameters not shown in the figure are set at the
default parameter set.

Table 4.3: List of best fit models for connectance versus number of species for 50 runs of
the Asymmetric Coevolving Network model.

Equation type Best-fit model r2

Linear C = −0.0019N + 0.4708 0.2763

Quadratic C = 0.00001N2 − 0.0054N + 0.5945 0.3756

Exponential C = 0.4573e−0.008N 0.4725

Power C = 2.5257N−0.583 0.5607
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Figure 4.11: A visual comparison between connectance values versus network size for typical
plant-pollinator webs and simulations from the AFC model with the best fit line from Table
4.3. The left is from a meta-analysis of field data [52]. The right includes data points from
a run of 50 simulations that fell into network size range and connectance levels of those
inventoried by that meta-analysis.

connectance level decreases over time as networks grow. See the simulation in Figure

4.12 for a typical graph of connectance level over time.

4.6.4 Node Asymmetry

One observation is that animals tend to have more species then their mutualistic

plant partners. For 500 simulations, an index was calculated for node asymmetry:

AN =
the number of extant plants - animals

the total number of extant plants and animals
.

A network with no node asymmetry should have on average AN = 0 and should be

negative if there are more plants on average than animals. Recall pollination networks

experience a ratio of 1:4 plants vs pollinators, AS = −0.6. For the default parameter

set which assumes equal speciation rates for both plants and pollinators, the average

index of node asymmetry is .0235 over a batch of 500 simulations. Therefore,

increasing the speciation rate of pollinators from .01 probability per iteration to .015,

increases the average index of node asymmetry to -0.5112 and decreases average
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Figure 4.12: A typical simulation of the Asymmetric Coevolving Network model under
the default parameter set in Table 4.2. The upper left figures show the evolution of the
mutualistic trait under consideration and the upper right shows the interaction matrix. The
lower left is a graph of the network connectance level over time, and the lower right is a
connectivity distribution showing the number of connections per pollinator.
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connectance to .2594. A histogram of node asymmetry index is provided in Figure

4.13.

Figure 4.13: Histogram of connectance levels of surviving networks after T = 400 iterations
of 500 simulations of the stochastic ACN model under the default parameter set, but with
by = 0.015. Average node asymmetry index is at -0.5112 showing a ratio of approximately
1:3 plants:animals.

An argument for differential rates of speciation is not unreasonable, especially

since differences in dispersal ability for plants and animals could result in higher

rates of speciation in animals that can more readily encounter and exploit new habitat

[41, 92]. It has also been found that differential growth rate (and differential limiting

size) promote power-law truncations best fit models for connectivity distributions

[41]. A second parameter set, termed ”differential speciation rate parameter set,”

will be investigated extensively as an alternative to the default parameter set. It is

the default parameter set with a modified pollinator speciation rate 50% higher than

the plant rate (i.e. at 0.015).
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Link distributions

Frequency distributions of the number of interactions per pollinators in some studies

suggest that there are many specialist pollinators and with a long tail of generalist

pollinators [7, 48]. Simulations which include connectivity distributions are usually

near normal or skew right, but do not show the extent of specialist pollinators as

predicted in some communities. A sample of 46 simulation runs in the default

parameter set yielded 45 surviving networks, 60% of which had a greater or equal

number of pollinators than plants. The result is a possible abundance of specialist

pollinators. In these networks, only 24% had pollinators visiting one plant species as

the most common strategy, but the rest were all either normal or skew right. In the

networks where the number of plant species were greater, only 8% of networks had a

specialist pollinator. In these cases, this strategy was just as common as pollinating

a few plant species. 60% of these networks were skew left. Figure 4.14 is a histogram

representing the connectivity of pollinators.

The effect of parameters on the frequency of specialist pollinators was also explored

(see Figure 4.15). The average proportion of specialists in each of 81 parameter

sets ranged from 0.0278 to 0.3251. For each value of c, variation was small in the

proportion of pollinator specialists in the network. However, the runs in which

c = 0.99 had significantly more specialists than for lower values of c (p = 0.000).

Therefore, coevolutionary history promotes specialization. Specialization may also

be promoted by size asymmetry which can be exaggerated though sampling. One

network’s plants were sampled at rate of 18%, but still interacted with %77 of the

pollinator species in the full network.

Recall that a feature of mutualistic networks is heterogeneity in link connection

distributions. This is described by the large number of low connectivity members

and long tail of highly connected members. Power-law distributions were suggested

as an alternative to exponential connectivity distributions for some networks, but in

mutualistic networks, truncated power-law is the most common best-fit of the three
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Figure 4.14: Histogram of the number of connections pollinators have from 45 simulations
surviving to T = 400 out of 50 simulations of the ACN model under the default parameter
set.

scenarios [53]. Exponential, power-law and truncated power-law models were fit to 16

sets of data (4 networks for plants and for pollinators in each default parameter set

analyzed at T=400). In each case, truncated power-law was the best fit. See Figure

4.16 for illustrative examples of how the truncated power-law best-fits our generated

networks. See [53] to compare this with results on real networks.

Although power-law fits to plant-pollinator networks are not the best-fit, they

can still convey the relative abundance of specialists. The best power-law fit to

these networks has an average exponent of 1.23± 0.04 for pollinators and 0.84± 0.04

for plants [53]. Table 4.4 shows average exponents for power-law fits for simulated

networks of the ACN model. These networks do capture the higher power law

exponent for pollinator connectivity over plant connectivity. The fits shown in the

bottom of Figure 4.16 have exponents of 0.5396 and 0.3303 for pollinator and plants,

respectively. However the smaller values of γ in simulated networks indicated less

psecialism is expected under the ACN model than is observed in field studies. One
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Figure 4.15: Bar graph of relative abundance of specialists after T = 400 iterations of 500
simulations of the stochastic ACN model under 81 parameter set combinations, varying 4
parameters over 3 values each. Those parameters not shown in the figure are set at the
default parameter set.
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Figure 4.16: Example best fit models to simulated bipartite networks. The top is a bipartite
network simulated using the default parameter set and the bottom is a network simulated
using the differential speciation rate set. In all cases shown above, the truncated power-law
was the best-fit.
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contributing factor is the role of sampling. For the same simulated community, 18%

of all plants were sampled randomly. Despite only a small fraction of plants under

consideration, 77% of all pollintors interact with these plants. Power-law fits to this

new sub-community yielded exponents of 1.4718 for pollinators and 0.2837 for plants

(see Table 4.4). This example shows how dramatically sampling may affect network

properties.

Table 4.4: List of exponents of the power-law model fit for simulated networks. Eight plant
and pollinator connectivity distributions are represented here from four simulated networks
in each parameter set. Power-law model used: p(k) ∝ k−γ .

Parameter set Animal or Plant γ̄± SE ¯γA − γB± SE

Default Animal 0.435± 0.076 −0.068± 0.107

Plant 0.503± 0.039

DSR Animal 0.619± 0.029 0.2779± 0.023

Plant 0.341± 0.011

Description Animal or Plant γ γA − γB

DSR, full Animal 0.5396 0.2093

Plant .3303

DSR, sample Animal 1.4718 1.1881

Plant 0.2837

Dependence distributions describe the connectivity of one’s connections. Depen-

dence is defined as the sum of the proportions of partners your partners have or as

a relative frequency of visitation. Recall the review of Jordano, 1987 [52], in which

the dependence histograms from real mutualistic communities where often skew right

for both plants and pollinators. Simulation results confirm that this same pattern

emerges, including a more pronounced peak of weak animal dependences on plants.

See Figures 4.17 and 4.18 for average results over 100 simulations. In addition, Figure

4.17 shows that quantitative measures of dependence via relative interaction frequency
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Figure 4.17: Dependence histograms resulting from the combined result of 500 simulations
of the ACN model under the default parameter set. The left shows dependence as calculated
from the binary interaction matrix and the right set uses frequency of visitation as a
quantitative measure of dependence. Histograms at the top show dependence of plants
on animals (dark) and animals on plants (light). Histograms at the bottom show the
dependence asymmetry.

when speciation rates are equal can quite difference than measures of dependence via

a binary interaction matrix. This does not happen on average when speciation rates

are different, see Figure 4.18.

4.6.5 Dependence asymmetry, nestedness and modularity

Dependence asymmetry between plants and pollinators occurs primarily when strong

relative size asymmetry is present, but also agrees with prior observations that

high frequency of weak dependence values and their asymmetry occur when one

dependence is large [9]. The bottom histograms in Figures 4.17 and 4.18 show the

distribution of dependence asymmetry using the same method of Bascompte et al.,

2006 [9]. A value near one indicates strong asymmetry i.e. that strong dependence in

one direction is accompanied by weak dependence in the other direction. Therefore
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Figure 4.18: Dependence histograms resulting from the combined result of 100 simulations
of the ACN model under the differential speciation rate parameter set. The left shows
dependence as calculated from the binary interaction matrix and the right set uses frequency
of visitation as a quantitative measure of dependence. Histograms at the top show
dependence of plants on animals (dark) and animals on plants (light). Histograms at the
bottom show the dependence asymmetry.
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the skew left nature of the asymmetry index indicates that simulated networks often

have attachment of specialists to generalists. This pattern is more pronounced in the

case of the differentiated speciation rate as seen in Figure 4.18 and can be compared

to asymmetry histograms of real mutualistic networks in Bascompte, 2009 [6].

Recall that heterogeneity coupled with this pattern of generalists attached to

specialists may also be related to nestedness and modularity. Some examples of

interaction matrices ordered according to their connectivity are in Figure 4.19.

These can be compared to the figures of nested mutualistic networks in Figure

?? [6]. Modularity and nestedness are likely mechanistically related, and in these

cophylogenetic networks is considered the result of phylogenetic conservation [7]. In

the simulations of the ACN model presented here, modularity is the result of both

the importance of historical association in addition to the trait matching necessary to

confer fitness onto one’s partner to maintain connections. Figure 4.20 is a simulation

which shows this modularity strongly.

4.7 Discussion

The incorporation of populations with 1-dimensional distributions of quantitative

traits and ecological interactions throughout their evolutionary history seems to

produce a relatively realistic mutualistic network. The ASN model has few

mechanisms at play, but all are biologically realistic. Therefore this should provide

intuition into why certain network patterns emerge as a result of coevolution.

The ASN simulations replicated all patterns of cophylogenetic ”events” discussed

early on: cospeciation, sorting, duplication, and host-switching. Duplication events

are how all speciation events are defined in this model. Within a small number of

iterations, these duplicated lines can result in sorting, cospeciation or host-switching,

as the lineage evolves toward connections with partners that can provide the most

attention or relative frequency of visits. For example, in our model, ”cospeciation”

starts as a duplication event with one species splits and sharing all partners. Because
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Figure 4.19: Simulation showing nestedness of interactions. The top figure is an example
under the default parameter set and the bottom is under the differential speciation rate set.

relative fitness contributions are lowered when partners are shared, a novel partner

species can be favored. Therefore, cospeciation can happen merely as a result of

chance that two partners speciate at similar times, but when this does occur, it

is maintained preferentially over other chance speciation events as are favored by

selection.

We can also observe the evolution of cophylogenies with both specificity and

modularity. All of these patterns are consistent with meta-analysis of phylogenetic

reconstruction efforts [65, 66].

The models presented here only consider the effect of 1-dimensional traits. In

random walk theory, the probability that in one dimension, a random walk will

eventually return back to its point of origin is 1. The probability that the difference
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Figure 4.20: Simulation of the ACN model under the default parameter set with a strong
clustering effect resulting.

between any two random walks will be zero at some point is 1 [38]. Regardless

of the matching tolerance, eventually any two disjoint subgraphs will evolve to one

connected group. This is due to each subgraph making an independent random

walk along a line through stochastic fluctuations in the model. Therefore complete

ecological isolation, for even a short time, could be enough to allow populations to

diverge and/or reproductively isolate before connecting again.

If there is more than one quantitative trait involved in the mutualism, the

probability of such disjoint subgraphs reconnecting could decrease. Two independent

traits, representing a 2-dimensional random walk would return with probability 1.

For n independent traits, n > 2, the probability of return decreases [10, 38]. This

also supports the notion that the c parameter should be close to 1 as c represents

the importance of historical connection. It is likely multiple traits are involved in

the mutualism meaning matching in any one trait is not predicted to enable a new

association. Using the analogy of intersecting random walks may also help us to

understand why some systems maintain one-to-one connections much longer than we
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might expect. Random walks with small steps on average will take a long time to

explore phenotype space in search of a more fit interaction.

Relative importance of historical connection is also significant to maintain stability

and to mimic results of field meta-analysis. This suggests that specialization

actually confers stability to the network since many traits are involved in a

mutualism. Although biologically non-intuitive, mathematically, this makes sense

because interactors are much less likely to host-switch due to the availability of

alternate resources that match in terms of just one trait, as seen in prior models

in this paper. However, it is also partially an artifact of extinction that is determined

only by a loss of connections instead of also by random environmental influence.

Testing whether or not these networks are robust to sudden and random node loss

could help us understand the fragility of plant-pollinator systems. Testing this loss

on varying types of realistically evolved networks with varying configurations could

also improve predictive efforts.

Power-law connectivity scaling associated with ”rich get richer” arguments [5] are

observed in these distributions, but are formed here with out any direct preferential

node attachment imposed. Instead, there is an underlying biological mechanism

in which species with many connections are more likely to experience a partner

speciation event in any particular time step. Species with many connections will

likely gain more nodes in any particular interaction since these new species inherit

parental connections. This is also likely to contribute to patterns of nestedness

and modularity seen in mutualistic webs. Furthermore, the cumulative probability

distributions of mutualistic webs are even best-fit by truncated power-law models,

both in real networks and in the networks simulated here [53].

Connectance levels simulated are similar to that of meta-analysis results [52], both

on average at the end of simulations and over time as networks grow. Dependence

and connectivity distributions vary, but are all skew left as predicted by meta-

analysis and other numerical investigations [7, 9]. Dependence distributions seem

to agree, but connectivity distributions show less specialization by pollinators than

113



is indicated by some studies. There are multiple explanations for this, the most

plausible is connectivity distributions may vary depending on community. The

extreme example given in [7] may not be reflective of all communities. Another

is that the penalty for sharing partners may need to be weighted higher. The

best indicator of specialization in simulated networks is high relative importance of

historical connectedness. Recall another interpretation for a large c is that multiple

traits are involved in the mutualism. Lastly, one has to consider the effect of sampling

on network properties. This currently remains an open question. In the case of

specialist as indicated by the exponent of power-law fits to connectivity distributions.

It is possible that sampling only a portion of the community in combination with

observing only a fraction of interactions due to time-scale or rare interactions would

increase specialism noted in field studies.

It would be interesting to compare the evolution of mutualistic networks with

that of evolving antagonistic networks. A synthesis of the two would likely give the

best insight into systems like fig-fig wasp, since that mutualistic system is parasitized

by cheater non-pollinators. Overall, these models as a whole show that the role of

ecology is important in determining evolution and the role of evolution is important

in shaping ecological networks. This is a network of its own, in which each piece alone

may not give the whole story.
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Chapter 5

Summary and Future Directions

In summary, the following points are made throughout this paper

• Adding a reciprocally evolving environment to a two-loci, diallelic resource user

model results in the instability of the polymorphic equilibria. This means that

although fixed resources can promote genetic biodiversity as percentages of

resource and user match, biological environments will reciprocally evolve to

meet the need of the dominant resource user. Although this means that most

plant-pollinators relationships are robust to any small amount of introduced

variation, this process leads to rapid fixation of one type and so may promote

a loss of biodiversity.

• The same process that promotes fixation in mutualistic systems, also can

promote rapid host-switch. This is driven primarily by the relative abundance

in alternate-host type. As long as pollinators are not strict in their preference,

any variation enabling adaptation to a more abundant host can be exploited.

• The time to fixation in mutualistic systems is influenced by the choosiness of the

pollinator. If pollinators can visit even just two plant populations, as in the fig-

fig wasp system modeled, the time to fixation can be lengthened considerably.

This can lead to extensive hybridization among plant phylogenies in closely
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related species. If one considers the effect of visiting multiple plant populations,

a lag in time to reproductive maturity for fig-trees, and environmental variation,

these processes could promote the maintenance of biodiversity.

• In the models discussed in the three points above, the models predicts two

stable equilibria at the fixed genotypes. However, the biologically interesting

consequences deal with more than just stability of equilibria. The second

point is only elucidated from the understanding of the phase-portrait and the

differences in long term dynamics due to initial conditions. The third is a result

of investigating numerically the time to fixation.

• If historical connectedness plays no role in future mutualistic associations, then

networks will go extinct rapidly. If historical connectedness plays the only role in

future mutualistic associations, then completely connected networks will always

result.

• The relative importance of historical connectedness is a proxy for the importance

of the evolutionary energy devoted to specialized traits. One might surmise

then that high levels of this relative importance would lead to higher rates of

specialism in networks, which is true. However, one might also infer that this

specialism may make these networks less stable, which is not true. Networks

have the highest survival probability when the relative importance of historical

connectedness is close to one, indicating that the probability of losing or gaining

a new partner based on the anticipated fitness gain on one trait is very low. This

helps network stability as the network is not continuously reorganized based on

the whim of pursuing potentially better partners. This explanation is analogous

also to the idea that information reliability or Shannon entropy is maximized

in complex networks [29, 102].

• Even with a high relative importance of historical connectedness, resulting

simulated networks do not display perfect cophylogenetic matching. This agrees
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with cophylogenetic analysis of fig and fig wasp trees [55]. It is part of the rule,

and not the exception, that host switches through out a long lineage history

have occurred and have contributed to this mismatch. Also is it part of the

rule that multiple connections and many crossings among interacting species

are present in the tips, and that this becomes more common in lineages that

have interacted over a long period of time [49].

• A network whose connections evolved over time based on fitness of relationships

can produce many of the phenomena observed in real networks. Shannon

entropy is maximized through the reliability of partners. There are few

generalists and many specialists, confirmed by emerging truncated power-law

distributions of node connectivities. The emergent networks are biodiverse and

stable, despite low overall connectivity. Modularity and some nestedness can

occur. This is a mechanistic approach to network assembly that employs the

fundamentals of ecology and evolution. Niche trait-models and models that

maximize Shannon entropy may result in good models[17, 29, 85], but they

do not explain how mutualistic networks evolve over time through natural

principles.

• Sampling of real ecological networks may dramatically affect observed results

for important network features, such as the decay parameter on the truncated

power-law curves for connectivity distributions. This amplifies the potential

issue with creating networks based on mined patterns. It is possible that models

based on observations from sampling networks may lead to conclusions different

than for simulations of full networks. This becomes important as simulated

networks are used as experimentally to understand how climate change or

biodiversity loss may affect ecosystems.

The simplest models of mutualism with a genetic basis between plant and

pollinator illustrate both robust one-to-one associations as well as host switching.

Relative abundance of alternate plant type is the primary driver in these simple
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systems. When pollinators utilize a network of plants because of seasonality or

flowering times, time to fixation of a single plant and pollinator increases. Variation

is maintained long-term, especially for increased choosiness. Therefore, pollinator

specificity contributes biodiversity. It would be a natural extension to increase the

number of loci under consideration and/or network these models in space with varying

backgrounds. This might more realistically approximate mutualistic networks and

give rise to longer maintenance of biodiversity.

The effect of mutualistic interactions on the formation of cophylogenic and

mutualistic web patterns was next explored. To date cophylogeny models are limited

to reconstruction and web models have focused on assembly rather than evolution

[47]. Using ecological and evolutionary principles of mutualistic interactions on a

quantitative trait, we simulated evolved phylogenies and networks. These principles

gave rise to many similar properties as observed in real mutualistic webs, but with

realistic biological mechanisms. The most important feature in these models were

that associations were based on relative fitness and historical connectedness. Relative

fitness takes into consideration what proportion of visits any partner population

comprises. Historical connectedness is how important prior association in determining

a future connection. Increased importance of historical connectedness is associated

with increased network stability and increased specialism. Therefore stability and

specialism are intertwined mechanistically. Simulations also reveal the complexity

of cophylogeny. Mutualism with high importance of historical association does not

imply perfect cophylogenetic matching.

The importance of this historical connectedness, c warrants further investigation.

Alternatives to this paramter include describing as a function of the number of

consecutive years associated or modeling trait matching explicitly by considering

many more traits involved in the mutualism. Another fruitful avenue of this modeling

effort would be in the analysis of simulated networks. For example, many simulated

networks are tested for robustness to species extinction. An R-package exists for

bipartite networks that can do automated connectivity distribution best fits and
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calculate nestedness and modularity [23]. One could use these established tools to

be able to compare results across papers. Also the automation provided by a code

conversion to R would enable the data-mining of large numbers of generated networks

as seen in recent PNAS, Nature, and Science papers [9, 17, 85]. Once networks are

simulated on a large scale with automated data mining techniques, one can answer

questions about the role of sampling effects on realistically evolved mutualistic webs

and observed webs.

Lastly, the role of mutualistic webs within larger webs which include antag-

onistic interactions and population dynamics are also possible future avenues for

investigations. However, as each of these complexities is added to the model, it is

more difficult to discern which underlying mechanisms are contributing to overall

patterns. Therefore, this work is fundamental in connecting biological mechanisms to

results from large complex simulated networks with varying population and ecological

dynamics. Knowing the underlying mechanisms increases understanding of biodiverse

network stability and therefore informs policy on conservation measures [80].
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Appendix A

A.1 Analysis of Equilibria for H-GM Model

In order to more easily find equilibria analytically and characterize the stability, we

apply a linear transformation to the insect frequencies [31, 56]. We let

u1 = x1 + x2 + x3 + x4 (A.1)

u2 = x1 − x2 + x3 − x4 (A.2)

u3 = x1 + x2 − x3 − x4 (A.3)

u4 = x1 − x2 − x3 + x4 (A.4)

be the new variables that describe the frequencies of the insect genotypes. Because

u1 = x1 + x2 + x3 + x4 = 1, we can immediately replace u1 in Equation A.1 by 1 and

reduce our system from four variables, to only three, u2, u3, and u4. Because x1 is

the frequency of genotype AB and x2 is the frequency of genotype Ab, x1 + x2 is

the frequency of the allele A. This is a helpful observation because when we interpret

our results, we can talk about the evolution at each loci. The frequency of allele A

will be denoted by p1, and the frequency of allele B will be denoted by p2 . Notice

that (1 + u3)/2 = x1 + x2 = p1 so u3 is directly related to the frequency of allele

A, and (1 + u2)/2 = x1 + x2 = p1 so u2 is directly related to the frequency of allele

B. Another helpful measure of genetic structure is linkage disequilibrium, defined as
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D = x1x4 − x2x3. This measure indicates whether or not there is any bias toward

particular genotypes [42]. In terms of the new variables, D = (u4 − u2u3)/4.

The genetic composition of the plant population, in Equation 2.14, is described

by y1 and y2. Since y1 + y2 = 1 we can reduce the equations describing the plant

allele frequency dynamics down to only one variable by the substitution y2 = 1 −

y1. Therefore, our biological model system depends on only four dynamic variables:

u2, u3, u4, and y1, which we have renamed vector z for the purposes of finding equilibria

and determining their stability.

The full model is a non-linear discrete dynamical system. For an equilibrium to

be stable, it must satisfy the condition that |λi| < 1 for all eigenvalues, λi, otherwise

the equilibrium is unstable [60].

Recall the range of parameters: ε ∈ [0, 1] is the bias of an insect towards a

particular plant choice, r ∈ [0, 1/2] is the probability of insect loci recombination,

s ∈ [0, 1] is the selection coefficient, and β ∈ [0, 1] is the proportion of plants is

replaced each generation.

For the analysis below, when the result yields an inconclusive eigenvalue of 1 or

-1, these special cases will be examined using numerical simulations.

A.1.1 z = [1,1,1,1], AB and C fixed, stable

Eigenvalues are

λ1 =
1− ε

(1 + ε)2 ,

λ2 = 1− 2
βε

1 + ε
,

λ3 = 1− s, and

λ4 =
(1− ε) (1− s) (1− r)

(1 + ε)2 .

λ1 ∈ (−1, 1) because each term is positive, the numerator is less than 1, and the

denominator is greater than 1 (ε 6= 0). When ε = 0, λ1 = 1. When ε or β equal
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0, λ2 = 1. For all other biologically realistic parameter values, λ2 ∈ (−1, 1) because

2 βε
1+ε
∈ (0, 1]. λ3 ∈ (−1, 1) for s 6= 0, in which case, λ3 = 1. λ4 = 1 when ε, s, and r

all equal 0. For all other biologically realistic parameter values, each term is positive,

the numerator is less than 1, and the denominator is greater than 1, so |λ3| < 1.

Because |λi| < 1 for i = 1, 2, 3, 4, this equilibria is stable.

A.1.2 z = [−1,1,−1,1], Ab and C fixed, unstable

Eigenvalues are

λ1 =
1 + ε

(1− ε)2 ,

λ2 = 1 + 2
βε

1− ε
,

λ3 = 1− s, and

λ4 =
(1 + ε) (1− s) (1− r)

(1− ε)2 .

Note that λ2 > 1, for β, ε 6= 0. This means that this equilibrium will be unstable.

A.1.3 z = [1,−1,−1,1], aB and C fixed, unstable

Eigenvalues are

λ1 =
1− ε

(1 + ε)2 ,

λ2 = 1− 2
βε

1 + ε
,

λ3 = (1− s)−1, and

λ4 =
(1− ε) (1− r)
(1 + ε)2 (1− s)

.

Since λ3 > 1 for 0 < s < 1 this equilibrium is unstable.
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A.1.4 z = [−1,−1,−1,1], ab and C fixed, unstable

Eigenvalues are

λ1 =
1 + ε

(1− ε)2 ,

λ2 = 1 + 2
βε

1− ε
,

λ3 = (1− s)−1, and

λ4 =
(1 + ε) (1− r)
(1− ε)2 (1− s)

.

Thus, λ3 = (1− s)−1 > 1 for s 6= 0, therefore this equilibrium is unstable.

A.1.5 z = [−3+ε2

4ε ,1,−
3+ε2

4ε ,1], biologically unrealistic

This equilibria corresponds to the insect frequencies

x =

[
(ε+3)(1+ε)

8ε
, −(1−ε)(3−ε)

8ε
, 0, 0

]
.

One can see that x2 = − (1−ε)(3−ε)
8ε

< 0 for 0 < ε < 1. That means that this

equilibrium is not biologically meaningful. When ε = 0, this equilibria does not

exist, and when ε = 1, this is the same as the insect frequency genotypes x = [1, 0, 0, 0].

A.1.6 z = [−3+ε2

4ε ,−1, 3+ε2

4ε ,1], biologically unrealistic

This equilibrium corresponds to the insect genotype frequencies

x =

[
0, 0, (ε+3)(1+ε)

8ε
, −(1−ε)(3−ε)

8ε

]
.

One can see that x4 = − (1−ε)(3−ε)
8ε

< 0 for 0 < ε < 1. That means that this

equilibrium is not biologically meaningful. When ε = 0, this equilibria does not

exist, and when ε = 1, this is the same as the insect frequency genotypes x = [0, 0, 1, 0].
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There are two additional equilibria in which plant C is fixed. However, the

equilibria solutions for the insects are too long to write out. Results of testing at

several parameter sets indicate that they are not biologically realistic.

A.1.7 z = [1,1,1,0], AB and c fixed, unstable

Eigenvalues are

λ1 = 1 + 2
β ε

1− ε
,

λ2 =
1 + ε

(1− ε)2 ,

λ3 = (1− s)−1 , and

λ4 =
(1 + ε) (1− r)
(1− ε)2 (1− s)

.

Since λ3 = (1− s)−1 > 1, for 0 < s < 1, this equilibrium is unstable.

A.1.8 z = [−1,1,−1,0], Ab and c fixed, unstable

Eigenvalues are

λ1 = 1− 2
βε

1 + ε
,

λ2 =
1− ε

(1 + ε)2 ,

λ3 = (1− s)−1 , and

λ4 =
(1− ε) (1− r)
(1 + ε)2 (1− s)

.

Since λ3 > for 0 < s < 1, this equilibrium is unstable.
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A.1.9 z = [1,−1,−1,0], aB and c fixed, unstable

Eigenvalues are

λ1 = 1 + 2
βε

1− ε
,

λ2 =
1 + ε

(1− ε)2 ,

λ3 = 1− s, and

λ4 =
(1 + ε) (1− s) (1− r)

(1− ε)2 .

Note λ2 > 1 for 0 < ε < 1 because the numerator is greater than 1 and the

denominator is less than 1. Therefore, this equilibrium is unstable.

A.1.10 z = [−1,−1,−1,0], ab and c fixed, stable

Eigenvalues are

λ1 = 1− 2
βε

1 + ε
,

λ2 =
1− ε

(1 + ε)2 ,

λ3 = 1− s, and

λ4 =
(1− ε) (1− s) (1− r)

(1 + ε)2 .

When ε or β equal 0, λ1 = 1. For all other biologically realistic parameter values,

λ1 ∈ (−1, 1) because 2 βε
1+ε
∈ (0, 1]. λ2 ∈ (−1, 1) because each term is positive, the

numerator is less than 1, and the denominator is greater than 1 (ε 6= 0). When ε = 0,

λ1 = 1. λ3 ∈ (−1, 1) for s 6= 0, in which case, λ3 = 1. λ4 = (1−ε)(1−s)(1−r)
(1+ε)2 will be 1

when ε, s, and r all equal 0. For all other biologically realistic parameter values, each

term is positive, the numerator is less than 1, and the denominator is greater than 1,

so |λ3| < 1. Because |λi| < 1 for i = 1, 2, 3, 4, this equilibria is stable.
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A.1.11 z = [3+ε2

4ε ,1,
3+ε2

4ε ,0], biologically unrealistic

This equilibria corresponds to the insect frequencies

x =

[
(ε+3)(1+ε)

8ε
, − (1−ε)(3−ε)

8ε
, 0, 0

]
.

One can see that x2 = − (1−ε)(3−ε)
8ε

< 0 for 0 < ε < 1. That means that this

equilibrium is not biologically meaningful. When ε = 0, this equilibria does not

exist, and when ε = 1, this is the same as the insect frequency genotypes x = [1, 0, 0, 0].

A.1.12 z = [3+ε2

4ε ,−1,−3+ε2

4ε ,0], biologically unrealistic

This equilibrium corresponds to the insect genotype frequencies

x =

[
0, 0, (ε+3)(1+ε)

8ε
− (1−ε)(3−ε)

8ε

]
.

One can see that x4 = − (1−ε)(3−ε)
8ε

< 0 for 0 < ε < 1. That means that this

equilibrium is not biologically meaningful. When ε = 0, this equilibria does not

exist, and when ε = 1, this is the same as the insect frequency genotypes x = [0, 0, 1, 0].

There are two additional equilibria in which plant c is fixed. However, the

equilibria solutions for the insects are too long to write out. Results of testing at

several parameter sets indicate that they are not biologically realistic.
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A.1.13 z = [0,1,0,1/2], half Ab, half AB, half C, half c,

unstable

Eigenvalues are

λ1 = 1− 1

2
βε2 +

1

2

√
βε2(6 + ε2β − 2ε4),

λ2 = 1− 1

2
βε2 − 1

2

√
βε2(6 + ε2β − 2ε4),

λ3 =
1

4(1− s)
(
(s2 − 2s+ 2)(2− r + rε2)

−
√
ε2s2(s2 − 4s+ 8)(1 + ε2)2 + r2(1− ε2)(s2 − 2s+ 2)2

)
, and

λ4 =
1

4(1− s)
(
(s2 − 2s+ 2)(2− r + rε2)

+
√
ε2s2(s2 − 4s+ 8)(1 + ε2)2 + r2(1− ε2)(s2 − 2s+ 2)2

)
.

Note that λ1 > 1 if

βε2 <
√
βε2(6 + ε2β − 2ε4),

or

β2ε4 < βε2(6 + ε2β − 2ε4),

which is true, because 0 < βε2(6− 2ε4). Therefore, this equilibria is unstable.
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A.1.14 z = [0,−1,0,1/2], half aB, half ab, half C, half c,

unstable

Eigenvalues are

λ1 = 1− 1

2
βε2 +

1

2

√
βε2(6 + ε2β − 2ε4),

λ2 = 1− 1

2
βε2 − 1

2

√
βε2(6 + ε2β − 2ε4),

λ3 =
1

4(1− s)
(
(s2 − 2s+ 2)(2− r + rε2)

−
√
ε2s2(s2 − 4s+ 8)(1 + ε2)2 + r2(1− ε2)(s2 − 2s+ 2)2

)
, and

λ4 =
1

4(1− s)
(
(s2 − 2s+ 2)(2− r + rε2)

+
√
ε2s2(s2 − 4s+ 8)(1 + ε2)2 + r2(1− ε2)(s2 − 2s+ 2)2

)
.

Note that λ1 > 1 if βε2 <
√
βε2(6 + ε2β − 2ε4), or β2ε4 < βε2(6 + ε2β − 2ε4). Which

is true, because 0 < βε2(6− 2ε4). Therefore, this equilibria is unstable.

A.1.15 z = [0,0, z∗3,1/2], half A, half B, fr(AB)=fr(ab), fr(Ab)=fr(aB),

half C

This point is equivalent to the insect gene frequencies of

−→x =

[
1
4

+ 1
4
z∗3 ,

1
4
− 1

4
z∗3 ,

1
4
− 1

4
z∗3 ,

1
4

+ 1
4
z∗3

]
,

so note that 0 ≤ z∗3 ≤ 1 for this equilibrium to exist and be biologically realistic. z∗3 is

the solution to z2
3 + 2Bz3−1 = 0 that satisfies this constraint, where B = r(2−s)(1−ε2)

εs(ε2+1)
.

Since the candidate equilibria solutions for z3are −B±
√
B2 + 1, we note that because

B < 0 for our considered parameter space, −B −
√
B2 + 1 < 0, so this solution does

not satisfy the constraint. However, B <
√
B2 + 1 implies that −B +

√
B2 + 1 > 0,

so in this case, we need just to ensure that −B +
√
B2 + 1 < 1 . Solving this
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constraint for B, we find that for this equilibrium to exist, B > 0, which is always

true for the parameter range under consideration, so this equilibria always exists, and

z∗3 = −B +
√
B2 + 1. We denote the conjugate, biologically unrealistic solution by

z∗3.

The eigenvalues at our non-trivial equilibrium can be solved for, but most are ex-

tremely unwieldy. We can easily write one of them, λ3 = −(sε(1+ε2))2+4(5−4s)(1−r(1−ε2))

[2(2−s)+z∗3εs(1+ε2)]
2 .

λ3 is easily shown as always positive, however it is not always greater than one.

Therefore analytic results are inconclusive and we rely on numerical simulations to

complement our findings.

A.2 Special Cases of the H-GM Model

Here D = x1x4 − x2x3.

Special case where ε = 0

The stability here is determined by numerical simulations as eigenvalue analysis alone

was inconclusive because some eigenvalues are 1.

A.2.1 z = [x1,1− x1,0,y1]

If D = 0, All AB or Ab insects, completely adapted to dominant plant type, stable

only for y1 <
1−s
2−s , unstable elsewhere.

A.2.2 z = [x1,
1
s ((2− s)y1 − x1s− (1− s)), (1−2y1+y1s)x1

(2−s)y1−(1−s) ,y1]

If D = 0, completely adapted, stable manifold only for 1−s
2−s < y1 <

1
2−s , unstable

elsewhere.
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A.2.3 z = [0,0,x3,y1]

All aB or ab insects, completely adapted to dominant plant type, stable only for

y1 >
1

2−s , unstable elsewhere. ε = 1

A.2.4 z = [1,1,1,1], AB fixed, C fixed, D=0, stable

Eigenvalues are

λ1 = 0,

λ2 = 1− β,

λ3 = 1− s, and

λ4 = 0.

Because |λi| < 1 for i = 1, 2, 3, 4, and s, βε(0, 1), this equilibria is stable.

A.2.5 z = [1,−1,−1,1], aB fixed, C fixed, D=0, unstable

Eigenvalues are

λ1 = 0,

λ2 = 1− β,

λ3 = 0, and

λ4 =
1

1− s
.

Note λ4 = 1
1−s > 1 for all s ∈ (0, 1), so this equilibrium is unstable.
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A.2.6 z = [−1,1,−1,1], Ab fixed, c fixed, D=0, unstable

Eigenvalues are

λ1 = 0,

λ2 = 1− β,

λ3 =
1

1− s
, and

λ4 = 0.

Since λ3 = 1
1−s > 1 for all s ∈ (0, 1), this equilibrium is unstable.

A.2.7 z = [−1,−1,1,1], ab fixed, c fixed, D=0, stable

Eigenvalues are

λ1 = 0,

λ2 = 1− β,

λ3 = 0, and

λ4 = 1− s.

Because |λi| < 1 for i = 1, 2, 3, 4, and s, β ∈ (0, 1), this equilibria is stable.
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A.2.8 z = [0,0,1, 12 ], half AB, half ab, half C, half c, D=0.25,

unstable

Eigenvalues are

λ1 = −1

2
β + 1 +

1

2

√
β2 + 4β,

λ2 = −1

2
β + 1− 1

2

√
β2 + 4β,

λ3 = 1− s, and

λ4 = 1− s.

Since β <
√
β2 + 4β,λ1 = −1

2
β+1+ 1

2

√
β2 + 4β > 1 for all β ∈ (0, 1), this equilibrium

is unstable.

A.2.9 z = [0,0,−1, 12 ], half aB, half Ab, half C, half c, D=-

0.25, unstable

Eigenvalues are

λ1 = 0,

λ2 =
4

1− β
,

λ3 =
1

1− s
, and

λ4 =
1

1− s
.

Since λ2 > 1 for all βε(0, 1), this equilibrium is unstable.
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A.2.10 z = [0,1,0, 12 ], half AB, half Ab, half C, half c, D=0,

unstable

Eigenvalues are

λ1 =
−1

2(1− s)
√
s4 − 4s3 + 8s2 − 8s+ 4 + s(2− s)2,

λ2 =
1

2(1− s)
√
s4 − 4s3 + 8s2 − 8s+ 4 + s(2− s)2,

λ3 = −1

2
β + 1 +

1

2

√
β2 + 4β, and

λ4 = −1

2
β + 1− 1

2

√
β2 + 4β.

Since β <
√
β2 + 4β, λ3 => 1 for all β ∈ (0, 1), so this equilibrium is unstable.

A.2.11 z = [0,−1,0, 12 ], half AB, half ab, half C, half c, D=0,

unstable

Eigenvalues are

λ1 =
1

(1− s)
,

λ2 = 1− s,

λ3 = −1

2
β + 1 +

1

2

√
β2 + 4β, and

λ4 = −1

2
β + 1− 1

2

√
β2 + 4β.

Since λ1 > 1 for all s ∈ (0, 1), this equilibrium is unstable.
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A.3 Analysis of Equilibria for H-GM Model with

Host Frequency Dependence

Recall the range of our parameters: ε ∈ [0, 1] is the bias of an insect towards a

particular plant choice, r ∈ [0, 1/2] is the probability of insect loci recombination,

s ∈ [0, 1] is the selection coefficient, and β ∈ [0, 1] is the proportion of plants is

replaced each generation.

For the analysis below, when the result yields an inconclusive eigenvalue of 1 or

-1, these special cases will be examined using numerical simulations.

A.3.1 z = [1,1,1,1], AB and C fixed, stable

Eigenvalues are

λ1 = 1− 2
βε

1 + ε
,

λ2 =
1− ε

(1 + ε)2 ,

λ3 = 1− s, and

λ4 =
(1− ε) (1− s) (1− r)

(1 + ε)2 .

When ε or β equal 0, λ1 = 1. For all other biologically realistic parameter values,

λ1 ∈ (−1, 1) because 2 βε
1+ε
∈ (0, 1]. λ2 ∈ (−1, 1) because each term is positive, the

numerator is less than 1, and the denominator is greater than 1 (ε 6= 0). When ε = 0,

λ2 = 1. λ3 = 1 − s ∈ (−1, 1) for s 6= 0, in which case, λ3 = 1. λ4 = 1 when ε,

s, and r all equal 0. For all other biologically realistic parameter values, each term

is positive, the numerator is less than 1, and the denominator is greater than 1, so

|λ3| < 1. Because |λi| < 1 for i = 1, 2, 3, 4, this equilibria is stable.
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y1 = 1 C fixed

x = [1, 0, 0, 0] AB fixed stable

x = [0, 1, 0, 0] Ab fixed unstable

x = [0, 0, 1, 0] aB fixed unstable

x = [0, 0, 0, 1] ab fixed unstable

x =

[
(ε+3)(1+ε)

8ε , −(1−ε)(3−ε)
8ε , 0, 0

]
biologically unrealistic

x =

[
0, 0, (ε+3)(1+ε)

8ε , −(1−ε)(3−ε)
8ε

]
biologically unrealistic

y1 = 0 c fixed

x = [1, 0, 0, 0] AB fixed unstable

x = [0, 1, 0, 0] Ab fixed unstable

x = [0, 0, 1, 0] aB fixed unstable

x = [0, 0, 0, 1] ab fixed stable

x =

[
(ε+3)(1+ε)

8ε , −(1−ε)(3−ε)
8ε , 0, 0

]
biologically unrealistic

x =

[
0, 0, (ε+3)(1+ε)

8ε , −(1−ε)(3−ε)
8ε

]
biologically unrealistic

y1 = x1−x2+x3−x4+ε
2ε

Polymorphic

x = [ 1
2 ,

1
2 , 0, 0] fr(C) = 1/2 unstable

x = [0, 0, 1
2 ,

1
2 ] fr(C) = 1/2 unstable

x =

[
1
4 + 1

4z
∗
3 ,

1
4 −

1
4z
∗
3 ,

1
4 −

1
4z
∗
3 ,

1
4 + 1

4z
∗
3

]
fr(C) = 1/2 unstable**

x =

[
1
4 + 1

4 z̄
∗
3 ,

1
4 −

1
4 z̄
∗
3 ,

1
4 −

1
4 z̄
∗
3 ,

1
4 + 1

4 z̄
∗
3

]
biologically unrealistic

Table A.1: All equilibria are either always stable or always unstable for all biologically
realistic parameters unless otherwise noted. **Note, numerical simulations indicate that
this point seems to be unstable, however, this result is not shown analytically. z∗3 and z̄∗3 ,
are +/− solutions to a quadratic equation and are functions of r, s, and ε.
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A.3.2 z = [−1,1,−1,1], Ab and C fixed, unstable

Eigenvalues are

λ1 = 1 + 2
βε

1− ε
,

λ2 =
1 + ε

(1− ε)2 ,

λ3 = 1− s, and

λ4 =
(1 + ε) (1− s) (1− r)

(1− ε)2

Note that λ1 > 1, for β, ε 6= 0. This means that this equilibrium will be unstable.

A.3.3 z = [1,−1,−1,1], aB and C fixed, unstable

Eigenvalues are

λ1 = 1− 2
βε

1 + ε
,

λ2 =
1− ε

(1 + ε)2 ,

λ3 = (1− s)−1, and

λ4 =
(1− ε) (1− r)
(1 + ε)2 (1− s)

.

Since λ3 > 1 for 0 < s < 1, this equilibrium is unstable.
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A.3.4 z = [−1,−1,1,1], ab and C fixed, unstable

Eigenvalues are

λ1 = 1 + 2
βε

1− ε
,

λ2 =
1 + ε

(1− ε)2 ,

λ3 = (1− s)−1, and

λ4 =
(1 + ε) (1− r)
(1− ε)2 (1− s)

.

Since λ3 = (1− s)−1 > 1 for s 6= 0, this equilibrium is unstable.

A.3.5 z = [−3+ε2

4ε ,1,−
3+ε2

4ε ,1], biologically unrealistic

This equilibria corresponds to the insect frequencies

x =

[
(ε+3)(1+ε)

8ε
, −(1−ε)(3−ε)

8ε
, 0, 0

]
.

One can see that

x2 = −(1− ε) (3− ε)
8ε

< 0

for 0 < ε < 1. That means that this equilibrium is not biologically meaningful.

When ε = 0, this equilibria does not exist, and when ε = 1, this is the same as the

insect frequency genotypes x = [1, 0, 0, 0].

A.3.6 z = [−3+ε2

4ε ,−1, 3+ε2

4ε ,1], biologically unrealistic

This equilibrium corresponds to the insect genotype frequencies

x =

[
0, 0, (ε+3)(1+ε)

8ε
, −(1−ε)(3−ε)

8ε

]
.
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One can see that

x4 = −(1− ε) (3− ε)
8ε

< 0

for 0 < ε < 1. That means that this equilibrium is not biologically meaningful.

When ε = 0, this equilibria does not exist, and when ε = 1, this is the same as the

insect frequency genotypes x = [0, 0, 1, 0].

There are two additional equilibria in which plant C is fixed. However, the

equilibria solutions for the insects are extremely unwieldy. Numerical results of testing

at several parameter sets indicate that they are not biologically realistic.

A.3.7 z = [1,1,1,0], AB and c fixed, unstable

Eigenvalues are

λ1 =
1 + ε

(1− ε)2 ,

λ2 = 1 + 2
βε

1− ε
,

λ3 = (1− s)−1 , and

λ4 =
(1 + ε) (1− r)
(1− ε)2 (1− s)

.

Since λ3 = (1− s)−1 > 1, for 0 < s < 1, the equilibrium will be unstable.

A.3.8 z = [−1,1,−1,0], Ab and c fixed, unstable

Eigenvalues are

λ1 = 1− 2
βε

1 + ε
,

λ2 =
1− ε

(1 + ε)2 ,

λ3 = (1− s)−1 , and

λ4 =
(1− ε) (1− r)
(1 + ε)2 (1− s)
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Since λ3>1 for 0 < s < 1, this equilibrium will be unstable.

A.3.9 z = [1,−1,−1,0], aB and c fixed, unstable

Eigenvalues are

λ1 = 1 + 2
βε

1− ε
,

λ2 =
1 + ε

(1− ε)2 ,

λ3 = 1− s, and

λ4 =
(1 + ε) (1− s) (1− r)

(1− ε)2 .

Note that λ2 > 1 for 0 < ε < 1, because the numerator is greater than 1 and the

denominator is less than 1. This implies the equilibrium is unstable.

A.3.10 z = [−1,−1,1,0], ab and c fixed, stable

Eigenvalues are

λ1 = 1− 2
βε

1 + ε
,

λ2 =
1− ε

(1 + ε)2 ,

λ3 = 1− s, and

λ4 =
(1− ε) (1− s) (1− r)

(1 + ε)2 .

When ε or β equal 0, λ1 = 1 − 2 βε
1+ε

. For all other biologically realistic parameter

values, λ1 ∈ (−1, 1) because 2 βε
1+ε
∈ (0, 1]. λ2 ∈ (−1, 1) because each term is positive,

the numerator is less than 1, and the denominator is greater than 1 (ε 6= 0). When

ε = 0, λ2 = 1. λ3 = 1−s ∈ (−1, 1) for s 6= 0, in which case, λ3 = 1. λ4 = (1−ε)(1−s)(1−r)
(1+ε)2

will be 1 when ε, s, and r all equal 0. For all other biologically realistic parameter
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values, each term is positive, the numerator is less than 1, and the denominator is

greater than 1, so |λ4| < 1. Because |λi| < 1 for i = 1, 2, 3, 4, this equilibria is stable.

A.3.11 z = [3+ε2

4ε ,1,
3+ε2

4ε ,0], biologically unrealistic

This equilibria corresponds to the insect frequencies

x =

[
(ε+3)(1+ε)

8ε
, − (1−ε)(3−ε)

8ε
, 0, 0

]
.

One can see that

x2 = −(1− ε) (3− ε)
8ε

< 0

for 0 < ε < 1. That means that this equilibrium is not biologically meaningful.

When ε = 0, this equilibria does not exist, and when ε = 1, this is the same as the

insect frequency genotypes x = [1, 0, 0, 0].

A.3.12 z = [3+ε2

4ε ,−1,−3+ε2

4ε ,0], biologically unrealistic

This equilibrium corresponds to the insect genotype frequencies

x =

[
0, 0, (ε+3)(1+ε)

8ε
− (1−ε)(3−ε)

8ε

]
.

One can see that

x4 = −(1− ε) (3− ε)
8ε

< 0

for 0 < ε < 1. That means that this equilibrium is not biologically meaningful.

When ε = 0, this equilibria does not exist, and when ε = 1, this is the same as the

insect frequency genotypes x = [0, 0, 1, 0].

There are two additional equilibria in which plant c is fixed. However, the

equilibria solutions for the insects are too unwieldy to display here. Numerical results

of testing at several parameter sets indicate that they are not biologically realistic.
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A.3.13 z = [0,1,0,1/2], half Ab, half 1/2 AB, half C, half c,

unstable

Eigenvalues are

λ1 = 1− 1

4
ε2(2β + 1 + ε2)

+
ε

4

√
ε2(1 + ε2)2 − 4βε2(1− β) + 12β(2− ε4),

λ2 = 1− 1

4
ε2(2β + 1 + ε2)

− ε
4

√
ε2(1 + ε2)2 − 4βε2(1− β) + 12β(2− ε4),

λ3 =
1

4(1− s)
(
(s2 − 2s+ 2)(2− r + rε2)

−
√
ε2s2(2− s)2(1 + ε2)2 + r2(1− ε2)(s2 − 2s+ 2)2

)
,

λ4 =
1

4(1− s)
(
(s2 − 2s+ 2)(2− r + rε2)

+
√
ε2s2(2− s)2(1 + ε2)2 + r2(1− ε2)(s2 − 2s+ 2)2

)
.

Note λ1 > 1 if,

ε(2β + 1 + ε2) <
√
ε2(1 + ε2)2 − 4βε2(1− β) + 12β(2− ε4)

or

ε2(2β + 1 + ε2)2 < ε2(1 + ε2)2 − 4βε2(1− β) + 12β(2− ε4)

is required. Since 0 < 8β(3−2ε4−ε2) for β > 0, this condition is satisfied. Therefore,

this equilibria is unstable.
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A.3.14 z = [0,−1,0,1/2], half aB, half ab, half C, half c,

unstable

Eigenvalues are

λ1 = 1− 1

4
ε2(2β + 1 + ε2)

+
ε

4

√
ε2(1 + ε2)2 − 4βε2(1− β) + 12β(2− ε4),

λ2 = 1− 1

4
ε2(2β + 1 + ε2)

− ε
4

√
ε2(1 + ε2)2 − 4βε2(1− β) + 12β(2− ε4),

λ3 =
1

4(1− s)
(
(s2 − 2s+ 2)(2− r + rε2)

−
√
ε2s2(2− s)2(1 + ε2)2 + r2(1− ε2)(s2 − 2s+ 2)2

)
,

λ4 =
1

4(1− s)
(
(s2 − 2s+ 2)(2− r + rε2)

+
√
ε2s2(2− s)2(1 + ε2)2 + r2(1− ε2)(s2 − 2s+ 2)2

)
.

Note λ1 > 1 if

ε(2β + 1 + ε2) <
√
ε2(1 + ε2)2 − 4βε2(1− β) + 12β(2− ε4)

or

ε2(2β + 1 + ε2)2 < ε2(1 + ε2)2 − 4βε2(1− β) + 12β(2− ε4).

This is true, because 0 < 8β(3 − 2ε4 − ε2) for β > 0. Therefore, this equilibria is

unstable.
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A.3.15 z = [0,0, z∗3,1/2], half A, half B, fr(AB)=fr(ab), and

equal C and c

This point is equivalent to the insect gene frequencies of

−→x =

[
1
4

+ 1
4
z∗3 ,

1
4
− 1

4
z∗3 ,

1
4
− 1

4
z∗3 ,

1
4

+ 1
4
z∗3

]
,

so note that 0 ≤ z∗3 ≤ 1 for this equilibrium to exist and be biologically realistic. z∗3 is

the solution to z2
3 + 2Bz3−1 = 0 that satisfies this constraint, where B = r(2−s)(1−ε2)

εs(ε2+1)
.

Since the candidate equilibria solutions for z3 are −B±
√
B2 + 1, we note that because

B < 0 for our considered parameter space, −B −
√
B2 + 1 < 0, so this solution does

not satisfy the constraint. However, B <
√
B2 + 1 implies that −B +

√
B2 + 1 > 0,

so in this case, we need just to ensure that −B +
√
B2 + 1 < 1 . Solving this

constraint for B, we find that for this equilibrium to exist, B > 0, which is always

true for the parameter range under consideration, so this equilibria always exists, and

z∗3 = −B +
√
B2 + 1. We denote the conjugate, biologically unrealistic solution by

z∗3.

The eigenvalues at our non-trivial equilibrium can be solved for, but most are

extremely unwieldy. The tractable one is

λ3 =
4(2− s)2(1− r + rε2)− ε2s2(1 + ε2)2

[2(2− s) + z∗3εs(1 + ε2)]2
.

λ3 is easily shown < 1 for 0 ≤ z∗3 ≤ 1, so analysis of this eigenvalue alone is

inconclusive for determining the stability.
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