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Abstract

The work of this dissertation describes the design and synthesis of 1,2,4-triazine ligands
and other N-containing heterocycles and their use in the copper-catalyzed azide-alkyne
cycloaddition (CuAAC). A variety of ligands were synthesized to probe the steric and
electronic demands required for use in the CuUAAC reaction. Substituents on the 1,2,4-
triazine were systematically altered and the core 1,2,4-triazine modified to determine the
most active ligand. Additional experiments explored the variability in the reaction
conditions, such as solvent choice, use of reducing agents, and optimal stoichiometry.
Under optimum conditions 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine and copper (Il)
tetrafluoroborate in the presence of triethylamine was found to be an effective
accelerant producing 97% of the desired 1,2,3-triaozle in 1 hour. A broad substrate

scope was conducted with an assortment of azides and alkynes.

The use of 1,2,4-triazine-accelerated CUAAC was applied to the synthesis of solid-
supported catalysts on both polystyrene and silica. Immobilized catalysts provide
advantages over their soluble counterparts in that they can be recycled and can prevent
metal contamination of 1,2,3-triazole products. Results indicated that 1,2,4-triazines
appended to solid supports were more effective when compared to 1,2,3-triazole control
catalysts. In addition, less metal leaching occurred with triazine supports as compared

to triazole controls.

The optimal ligand from the homogeneous screening was then used in the synthesis of
a library of small molecules containing 1,2,3-triazoles and/or 1,2,4-triazoles. Upon
synthesis, compounds were screened for activity against various histone deacetylase
(HDAC) enzymes for both activity and selectivity. Although successfully synthesized,

the molecules did not prove to be active against the selected metalloenzyme.
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Chapter 1.
Azide-Alkyne Cycloaddition and 1,2,3-Triazoles



11. Click Chemistry

In the realm of synthesis, there are two broad schools of thought. One approach is to
construct products using combinations of novel reactions regardless of how difficult the
target might be, as long as a desired activity is present. Natural product synthesis
usually evokes this process to make the difficult molecules or metabolites, naturally
occurring in plants, marine species, or other native environments. Sometimes these
methods are not conducive to scale-up, commercialization, or synthesis of
corresponding analogues. A second approach is to restrict drug discovery targets to
molecules that are easy to make and through methods that can be rapidly modified to
introduce diversity. Researchers estimate that there are on order of between 10° and
10°® druglike candidates.! Druglike candidates are defined as having less than 30 non-
hydrogen atoms, containing C,H, N, O, P, Cl, Br and stable at ambient temperature, in
the presence of oxygen and water.> With the amount of probable druglike molecules, it
is reasonable to attempt synthesis of molecules that can easily be made. This is a shift
to focus more on the activity than the structure of the desired molecule. If the synthesis
can be easily modified for diversity elements, one can more rapidly complete a
structure-activity relationship (SAR) study.

From this idea, was born the “click chemistry” philosophy described by K.B Sharpless et
al.? Reactions that fit into the click chemistry philosophy should be “modular, wide in
scope, high vyielding, generate only inoffensive byproducts removed by
nonchromatographic methods, and stereospecific.” Reaction conditions should be
insensitive to water and oxygen, use no solvent, a benign solvent, or an easily removed
solvent, and be amenable to simple product isolation. Starting materials should be
readily available to further expedite the process.? This process should be as simple as
joining two units together, such as fitting two puzzle pieces together. The reactive
fragments should only react with one another and the reaction conditions should be
tolerable to a wide array of functional groups, without the need for protecting group

chemistry.

The constraints of click chemistry may seem demanding, but several reactions fit into

this category. Figure 1.1 shows examples of click chemistry which include oxidative



additions to carbon-carbon multiple bonds such as epoxidation, aziridination, and
dihydroxylation. Michael additions of nucleophiles to unsaturated systems also fit into
this category, along with nucleophilic ring opening of strained rings, such as aziridines
or epoxides. Non-aldol additions to carbonyls such as in formation of ureas, amides, or
oxime ethers are also consistent with the constraints of click chemistry. Non-aldol
carbonyl chemistry to form aromatic systems also falls within the definition of click
reactions. Finally, several cycloaddition reactions, including Diels-Alder transformations
and 1,3-dipolar cycloaddition reactions fit into the framework of click chemistry. With the
exception of Diels-Alder, the majority of these reactions take advantage of carbon-
heteroatom linkages. These heteroatom linkages can be described as mimics of nature,
as a large number of diverse compounds (nucleic acids, proteins, polysaccharides) are
generated from only a small number of naturally occurring building blocks.

R20-NH, )
]

H
Q/ORZ RV ™M __ o}
2 NH
. o] N\/\/fL
OR? / N
Diels-Alder j/
=

Non-Aldol
Carbonyl Chemistry

=== [O] )
X = OH, NHR

Y
R R'  Nuc

\W Nuc >_/

X - = X

NN
2NfR
R

= X=0H, NH
Copper Catalyzed X=0,NR 2
Azide-Alkyne Additions Nucleophilic
Cycloaddition to C=C Ring Opening

Figure 1.1 Representation of reactions conforming to “click” guidelines. Adapted from

Moses et. al® & Kolb et. al*



Among these reactions, one has emerged as the centerpiece of “click chemistry”
sometimes being incorrectly defined as click chemistry, in itself. Since the discovery of
the copper catalyzed variant of the Husigen azide-alkyne cyclocaddition (CuAAC), the
field of click chemistry has expanded to include drug discovery,* biological applications,’
materials science and polymer chemistry®’ and has produced a number of reviews in
various areas.>® Why has this reaction had such a dramatic impact on the way
scientists approach these fields? This reaction is highly regioselective, involves two
relatively unreactive starting materials, and forms a stable product that has implications

in biological systems.

1.2. 1,2,3-Triazoles as Pharmacophores

The field of drug discovery has been greatly influenced by the discovery of a copper-
catalyzed azide-alkyne cycloaddition (CUAAC). This has allowed the rapid synthesis of
a number of 1,2,3-triazole containing molecules for a wide variety of applications.
Several reviews have summarized the growing trend of triazoles as important

pharmacophores and their use in biological applications.'***

One reason for the growing use of triazoles stems from the suggestion as amide bond
replacements.’® Evidence suggests that 1,2,3-triazoles can be both electronically and
spatially similar to amide bonds. Amide bonds, in either the E or Z conformation, can be
related to disubstituted 1,2,3-triazoles, either in a 1,4- or 1,5-substitution pattern (Figure
1.2).*2 The 1,4-disubstituted-1,2,3-triazoles mimic the Z-amide bond. Electronically, N(2)
or N(3) of the triazole can serve as a hydrogen bond acceptor similar to the carbonyl
oxygen of an amide. Both the amide and the triazole can also serve as hydrogen bond
donors with the C(5)-H of the triazole mimicking the NH of an amide. Both also have
electrophilic carbons (C-O vs. C-N). Although similar, the triazole has a larger dipole
moment, making its hydrogen bond donor and acceptor abilities greater than those of

the amide. This could also contribute to its increased activity in biological systems.
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Figure 1.2 Triazoles as isosteres for amide bonds. Modified from Tron et. al.**> Comparison
between A) Z-amide bond and 1,4-disubstituted-1,2,3-triazole and B) E-amides and 1-,5-
disubstituted-1,2,3-triazole.

The geometry and spatial arrangement of atoms in a triazole ring are similar to that of
the amide bond as well, with the triazole spacing being slightly longer by 1.1 A.*? In
addition, triazoles have also been demonstrated to retain conformational geometries in

secondary structures when replacing amide bonds in a-helices®® and p-turns.’

There are two significant differences between amide bonds and triazoles, both of which
tip the scales in favor of the triazole: stability and ease of synthesis. Triazoles are stable
under a wide array of conditions, including resistance to hydrolysis, oxidation, and
reduction, conditions by which the amide bond is susceptible. Triazoles are compatible
with either acidic or basic media, and degradation by metabolic pathways does not
interfere with the triazole scaffold. With the discovery of copper-catalyzed azide-alkyne

cycloaddition and the analogous ruthenium-catalyzed azide-alkyne cycloaddition, the

5



synthesis of 1,2,3-triazoles is much less laborious and has abounded in a number of
biologically relevant molecules being synthesized. Because triazole synthesis is
amenable to a variety of functional groups, diverse libraries of compounds can be
quickly and efficiently synthesized to screen for a wide array of biological activities.

The triazole core is present in a variety of drug leads (Figure 1.3) such as antiviral,*®

2021 antifungal,?®  anti-inflammatory,”®  and

anti-HIV,*®  antituberculosis  activity,
antiobesity.?* Additional uses of 1,2,3-triazoles are in the design of histone deacetylase
(HDAC) inhibitors,®® or resveratrol mimics,?® and anti-cancer therapeutics.?’” Some
triazole containing compounds have undergone clinical trials or are commercially
available (Figure 1.4). The synthesis of additional triazole molecules is now greatly

aided by the copper-catalyzed azide-alkyne cycloaddition.

antiviral antifungal antituberculosis F

HN-OH
OH o)
H N.

anti-HIV \© HDAC inhibitor

Figure 1.3 Selected molecules containing 1,2,3-triazoles and their potential applications.



40 J “ OTBS O
C(\N'N < g0 N-N Q =
N\
N P
NH COOH S5, OTBS
Rufinamide (Banzel) Tazobactam (Zosyn)
- . - TSAO
Novartis - Eisai Pfizer
NH,
H
N ) m“f ?W
/
Y
cl NMHz 0 N “ NH
NH, o COOH N=N
Carboxyamido-triazole (CAl) cefatrizine

anticancer (Phase I/1l/11l trials)

Figure 1.4 Potential pharmaceuticals containing a 1,2,3-triazole.' Generic and trade names
listed for commercial products along with supplier.

1.3. Azide-Alkyne Cycloadditions

The azide-alkyne cycloaddition has made it possible to synthesize a large number of
1,2,3-triazoles. Even prior to the discovery of the copper catalyzed variant, thousands of
1,4-disubstituted-1,2,3-triazoles had been synthesized. The azide-alkyne cycloaddition
falls into the family of 1,3-dipolar cycloadditions, which was the topic of extensive
research by Rolf Huisgen and colleagues.?® 1,3-Dipolar cycloadditions provide a general
method of synthesizing 5-membered heterocycles, starting from a 1,3-dipole, containing
both electrophilic and nucleophilic atoms and a dipolarophile, containing a multiple
bond. The azide-alkyne cycloaddition focuses on the azide as the dipole and alkyne as
the dipolarophile. The first 1,2,3-triazole synthesis was performed by A. Michael in
1893.%° Further work was explored by Huisgen throughout the 1950s-1970s. The
original reaction between azides and alkynes was thermally controlled, leading to
prolonged reaction times, low yields, and low selectivity. Changes to the electronics of
the azide or alkyne contribute to the overall reactivity, making the scope of the reaction
limited. With cycloadditions, there are two possible overlaps between the dipole HOMO
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and dipolarophile LUMO or dipole LUMO and dipolarophile HOMO. Because the
difference in the molecular orbitals is small, a mixture of regioisomers is formed.®
Electron deficient alkynes could be used to tune the reaction to achieve better
regioselectivity, but this again limits the overall diversity attached to the triazole scaffold.

Although the triazole formation could be slow and non-regiospecific, there was still a
desire to further investigate the azide-alkyne cycloaddition. Organic azides are unique
dipoles in that they can be made, handled, and stored as stable compounds. Azides
and alkynes are relatively non-polar, and can remain hidden from and unreactive with
most other functionalities, allowing their installation early on in a synthetic scheme. The
reaction would also be atom-economical, employing accessible dipoles and
dipolarophiles. Finally, the triazole product is a stable aromatic structure (serving as an
amide bond replacement).’ If the azide-alkyne reaction could be catalyzed and be tuned

for regioselectivity, it had potential to find a place in the “click chemistry” world.

In 2001, the groups of Meldal® and Fokin and Sharpless®* accomplished this feat and
discovered the copper-catalyzed variant of the azide-alkyne cycloaddition, which
exclusively produced the 1,4-disubstituted triazole isomer. The analogous ruthenium
catalyzed reaction to produce the 1,5-disubstituted isomer (or 1,4,5-trisubstituted isomer
if internal alkynes are used) was also discovered by Fokin and Sharpless.®* An
additional method of producing 1,2,3-triazoles was also sought after especially for
biological applications in which copper toxicity limits applications with living cells.
Several researchers have explored the use of strained cyclooctyne systems to perform
selective cycloaddition reactions in living systems.**3* This copper free process has
allowed the selective modification of biomolecules to study proteins, lipids,
bactereriophages, and small organisms, such as zebrafish.®* Although this method can
produce two regioisomers, this would not have an adverse effect on the biological
applications. The four methods of producing triazoles from azides and alkynes are

illustrated in Figure 1.5.
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Figure 1.5 Synthesis of 1,2,3-triazole regioisomers. Synthesis can occur through (A) thermal
cycloaddition, yielding a mixture of regioisomers, through (B) copper-catalyzed variant
producing 1,4-disubstituted-1,2,3-triazoles, or through (C) ruthenium-catalyzed variant
producing 1,5-disubstituted or 1,4,5-tri