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ABSTRACT 

 

In the quest for new types of information processing and storage, complex oxides stand out as 

one of the most promising material classes. The multiple functionalities of complex oxides 

naturally arise from the delicate energy balance between the various forms of order (structural, 

electronic, magnetic). In particular, multiferroic and magnetoelectric oxides which 

simultaneously exhibit more than one type of ferroic orders have many advantages over existing 

materials. Widespread practical applications will require a single-phase multiferroic material 

with a transition temperature that lies considerably above room temperature, large electric and 

magnetic polarizations, and strong coupling between ferroic orders. 

Recently, multiferroic LuFe2O4 has attracted great interest because it has relatively high 

transition temperatures, large polarization, high magnetic coercivity, and the strong 

magnetoelectric coupling. Compared to the large amount of effort to study bulk LuFe2O4, there 

are only a couple of reported attempts to grow LuFe2O4 thin films, presumably due to difficulties 

in the sample preparation. In this thesis, a comprehensive growth diagram of Lu-Fe-O 

compounds on MgO (111) substrates using pulsed laser deposition is constructed based on 

extensive growth experiments. The LuFe2O4 phase can only be grown in a small range of 

temperature and O2 pressure conditions. An understanding of the growth mechanism of Lu-Fe-O 

compound films is offered in terms of the thermochemistry at the surface. Superparamagnetism 

is observed in the LuFe2O4 film and is explained in terms of the effect of the impurity hexagonal 

LuFeO3 (h-LuFeO3) phase and structural defects. 

In addition to LuFe2O4, we also succeeded in growing hexagonal-LuFeO3 (h-LuFeO3) epitaxial 

films in single crystalline form on either insulating or metallic substrates using pulsed laser 

deposition (PLD). H-LuFeO3 thin films exhibit hysteresis in piezoresponse force microscopy 
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(PFM) measurements indicative of ferroelectricity, and simultaneously show antiferromagnetic 

order, with both properties coexisting at room temperature. 
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Chapter 1:  
Introduction and Background 
 
 
1.1 Introduction of multiferroics 

 
In recent years, Multiferroics have attracted great interest in the condensed matter physics 

community due to their scientific and technological importance. Multiferroics are materials that 

exhibit more than one ferroic orders simultaneously, such as ferroelectricity, ferromagnetism 

(antiferromagnetism) and ferroelasticity, and also exhibit coupling between these ferroic order 

parameters (Fig. 1.1).  In particular, magnetoelectric multiferroics have ferroelectricity and 

ferromagnetism (antiferromagnetism) in the same phase and coupling between each other. In 

these materials, polarization or spin orientations can be switched by applying a magnetic field or 

an electric field which leads to potential applications for multifunction device. For example, a 

multiple state memory can store data in both the electric and magnetic polarizations; and data 

can be written electrically and read magnetically in a novel memory media. This will resolve the 

energy dissipation problems associated with FRAMS   (ferromagnetic random access memory) 

and FeRAMs( ferroelectric random access memory). Instead of applying a current to generate the 

field for writing, applying an electric field to write the data can avoid the dissipation effects; also, 

instead of discharging and recharging the capacitor during the read to reset the memory back to 

the initial value, applying an electric field and reading the data magnetically will  also save 

energy.   

 



2 
 

1.2   History of multiferroics 
 

In the nineteenth century, James Clerk Maxwell proposed four famous equations governing the 

dynamic of the electric field, magnetic field and electric charge. In these equations, the 

accelerated electric charge can produce magnetic field and the changed magnetic field can 

induce a voltage.  However, electric and magnetic ordering in solids are often treated separately, 

because the former arises from the charges of electrons or ions while the latter are associated 

with the spins of unpaired electrons. Around 1950s, Pierre Curie suggested  the presence of 

materials that can be electrically polarized by magnetic field and magnetized by electric field.1 

And later Landau and Lifshitz pointed out 2  that  piezomagnetism, which consists of linear 

coupling between a magnetic field in a solid and a deformation (analogous to 

piezoelectricity) ,and magnetoelectricity, which consists of linear coupling between magnetic 

and electric field could exist in solid state system.  

These effects were first discovered by Dzyaloshinsky theoretically and Astrov experimentally. 

They confirmed the existence of the electric field induced magnetization and magnetic field 

induced polarization in the Cr2O3. This discovery generated tremendous interest in 1970s.3  

However, these materials have small magnitude of the induced polarization and magnetization, 

low magnetic ordering temperature and relatively weak magnetoelectrical (ME)  coupling, which 

are mainly because the single phase materials with both properties could not be widely produced. 

More than 20 years later, major progresses were obtained both theoretically and experimentally 

in this field. The new technique which can produce high-quality single crystal samples provides 

new types of multiferroics with new mechanisms for ferroic orders. In addition, more theoretical 

studies using the first-principles computation techniques give a comprehensive understanding of 
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this ME effect. The advances in oxide thin film growth techniques also provide a way to tune the 

structure and properties of materials through strain. 

 

Figure 1.1 P, M, ε are spontaneously formed to produce ferromagnetism, ferroelectricity and 
ferroeleasticity, respectively. In multiferroics, the coexistence of at least two ferroic forms of 
ordering leads to additional interactions. In a magnetoelectric multiferroic, a magnetic field may 
control P or an electric field may control M (green arrows).4  
 
 

1.3 Magnetoelectric coupling  
 
The magnetoelectric effect can be explained by the expansion of the free energy of a material:5,6  
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where E and H as the electric field and magnetic field; ε and μ are the electric and magnetic 

susceptibilities; the tensor α is a tensor describing linear magnetoelectric coupling; β and γ 
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represent higher-order magnetoelectric coefficients. Here the magnetoelectric effects can be 

established as the differentiation of the free energy: 
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where Pi and Mi are the spontaneous polarization and magnetization, respectively.  If we only 

focus on the linear ME effect, the tensor αij is a critical factor. By forcing the sum of the first 

three high order terms to be larger than zero, and ignoring the higher order coupling terms in 

equation (1), we can get the equation  

jjiiij  00
2     (4) 

which shows the αij is bounded by the tensors of electric and magnetic susceptibilities. It is 

evident that multiferroics can achieve strong ME effects because ferromagnetic and ferroelectric 

materials often possess a large εii and μjj respectively.  

 

1.4 The classification of multiferroic compounds  
 
Multiferroic materials are rare in nature because ferromagnetic (antiferromagnetic) or 

ferroelectric orders are associated with different degree of freedom of electron and lattice. In 

ferromagnetic (antiferromagnetic) materials, magnetic order arises from the exchange 

interactions of partially filled d or f shells of transition metal or rare earth compounds. When the 

magnetic order develops, time-reversal symmetry is spontaneously broken. This means the 
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magnetic moment changes the sign under the symmetry operation M(-t)=-M(t) whereas the 

polarization remains invariant P(-t)=P(t). However, in the conventional ferroelectricitic materials, 

the positively charged transition metal ions will loss the d orbital electrons and form the covalent 

bond with the neighboring negative ions, As a result, the space-inversion symmetry is 

spontaneously broken P(-x)=-P(x) whereas the magnetization remains invariant M(-x)=M(x) as 

shown in Fig. 1.2. The collective shift of cations and anions inside the periodic crystal will 

induce a spontaneous electric polarization.  In this respect, one needs partially filled d orbital and 

the other one needs the empty d orbital; and the two mechanisms are mutually exclusive. In 

practice, the microscopic origin of magnetism is basically the same in all magnets. In order to 

achieve the coexistence of ferroelectricity and magnetism in single phase, it is important to 

search for alternative mechanism for ferroelectricity. Here we classify the multiferroic 

compounds by different origins of ferroelectricity. The first type of multiferroic materials (such 

as BiFeO3) always show large spontaneous polarization P (10-100 μC/cm2) and high transition 

temperature. However, because the ferroelectricity and ferromagnetism have different origins 

and are formed by different subsystems (different ions), the coupling between different orders is 

very weak.  For the type II materials (such as LuFe2O4), the ferroelectricity and magnetic order 

still have different origins, but are formed by the same subsystem, so these materials show 

stronger couplings between ferroic orders. In the type III multiferroics (such as TbMnO3), 

ferroelectricity is caused by the ferromagnetism (antiferromagnetism) and therefore, the coupling 

between ferroic orders are very strong. However, the transition temperatures are always very low 

and the polarizations are very small (10-2 μC/cm2) in these materials. As shown in the Table 1.2, 

from type I materials to type III materials (left to right), both the transition temperatures and the 

polarizations decrease while the couplings increase.  
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Figure 1.2 Time-reversal and spatial-inversion symmetry in multiferroics. (a) Ferromagnets 
(antiferromagnets). The local magnetic moment m can be seen as a current carrying loop with 
i=dq/dt, a spatial inversion produces no change, but time reversal switches the direction of the 
current and thus m. (b) Ferroelectrics. The local dipole moment p will be reversed by spatial 
inversion, no net time dependence. (c) Multiferroics break both ferromagnetic and ferroelectric 
symmetry.7 
 
 

Table 1.2 Categories of multiferroics 
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1.4.1  Type I multiferroics 
 
In this group, ferroelectricity and ferromagnetism (antiferromagnetism) have different origins 

and from different subsystem. As mentioned above, this kind of multiferroics has high transition 

temperatures for both ferroic orders, but the coupling between magnetism and ferroelectricity is 

usually rather week. We classify this group of multiferroics by the mechanism of ferroelectricity. 

 

I. Ferrelectricity due to lone pair.  
 

There are hundreds of the perovskites with magnetic order or ferroelectric order. However, there 

is almost no overlap between the two classes of materials. In the case of ferroelectric materials, 

ferroelectricity arises from the ‘empty d shell’. When d electrons move from the transition ions 

to the neighboring oxygen, the transition metal ions will shift from the center of the octahedral, 

which causes the ferroelectricity.  As for magnetism, one needs partially filled d shell of the 

transition metal.  One way to achieve the magnetic order in these materials is to put both 

magnetic ion and the empty d shell transition metal ions together but on different sites, such as 

BiFeO3, BiMnO3 and PbVO3. BiFeO3 has been widely studied in recent years because of the 

high transition temperature (TFe=1100K, TM=643K) and large polarization 100μC/cm2. The 

formally trivalent Bi contains a lone pair of 6s electrons in BiFeO3 (the valence electron 

configuration of Bi is 6s26p3). Such 6s2 lone pairs are often very active from a structural 

viewpoint. The lone pairs will move away from the centrosymmetric position with its oxygen 

surrounding and create local dipoles, resulting in a distorted monoclinic structure as shown in 

Fig. 1.3.  In terms of magnetism, BiFeO3 displays a G-type antiferromagnetic ordering of Fe3+ 

ions below T = 643 K. 
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Figure 1.3 Ferroelectricity (TC=1100 K) from displacement of Bi3+ from the centrosymmetric 
position in its oxygen surrounding. The structure changed from a cubic to a distorted monoclinic. 

 
II. Ferroelectricity due to geometric distortion  

 
Haxagonal-RMnO3 is one of the most intensively studied materials to integrate into 

heterostructures for their high polarization, high ferroelectric transition temperature (900-1000K). 

The ferroelectricity in this class of compound originates from the coordinated movement of 

atoms at the rare earth site and a simultaneous rotation of the MnO5 trigonal-bipyramids. In the 

h-RMnO3 system, the formation of the ferroelectricity from the high temperature phase to low 

temperature phase can be decomposed into two steps8. As shown in the Fig. 1.4, the tilting of the 

MnO5 bipyramids and corrugating of the R layers generating two inequivalent sites of R atoms: 

1/3 of R atoms are above the other 2/3 of them, corresponding to a √3×√3 reconstruction in the 

a-b plane. High temperature (HT) symmetry P63/mmc changes to the low temperature (LT) 

symmetry P63cm. Then the Oap-Mn-Oap axis in MnO5 bipyramid moves along z axis and 

generates a spontaneous polarization. Besides the high transition temperature and strong 
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polarization, it was also discovered that the magneto-elastic coupling is strong in the h-RMnO3. 
9 

Since the ferroelectricity in h-RMnO3 is induced by the distortion of the atoms, the giant 

magneto-elastic coupling will produce the desired coupling between the ferroelectric moment 

and the antiferromagnetic moment. However, the magnetic ordering temperature (<100 K) of 

RMnO3 is relatively low. Interestingly, the magnetic ordering temperature in isostructural h-

RFeO3 is expected to be muchhigher than that of RMnO3 due to the much stronger exchange 

interaction between Fe3+ ions.  Recently, h-RFeO3 phase was successfully stabilized as thin film 

(on what substrate).10 The polar structure of the h-RFeO3 films suggests that ferroelectricity may 

also exist in this system.  

 

 
 

Figure 1.4 Haxagonal manganites order in two steps. (a) Tilting of the MnO5 trigonal-
bipyramids and corrugates of the R layer. (b) Oap-Mn-Oap axis is displaced (c) Spontaneous 
electric polarization is generated. 8 
 
 
 
1.4.2 Type II multiferroics : Ferroelectricity due to charge ordering 
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In this class of multiferroics, the ferroelectricity is driven by the charge ordering in the magnetic 

materials, and both ferroelectricity (charge ordering) and magnetic orders originate from the 

same subsystem (same ion sites).  Before discussing the details of charge ordering multiferroic 

materials, let’s use a simple one dimensional chain model to explain the essential mechanism of 

the appearance of ferroelectricity by charge ordering.11 Inferroelectric materials, the space 

inversion symmetry is spontaneously broken below the ferroelectric transition temperature. 

Imaging there is a one dimensional chain, all the atoms on this chain are equally charged on each 

site, and the distances between atoms are the same. So the system is uniform and keeps spatial 

inversion symmetry. Then, instead of have the same charge, one atom is charged with +e and the 

neighboring two atoms are charged with –e; we call it site-centered charge ordering. The chain 

still has the spatial inversion symmetry and there is no net dipole moment in the system. If all 

atoms still have the same charge on each site, but with different distances between atoms, we call 

it bond-centered charge ordering with centrosymmetry. As shown in the Fig. 1.5, when we 

combine both site-centered and bond-centered charge ordering in one system, clearly, the space 

inversion symmetry is broken and system becomes ferroelectric.  

 

Figure 1.5 One dimensional charge arrays. The combination of site-centered and bond-centered 
charge ordering break the spatial inversion symmetry and induce ferroelectricity. 
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In the case of 3D materials, such as LuFe2O4, the situation is more complicated. LuFe2O4 

contains double layers of Fe2O2 with a triangular lattice that are sandwiched by LuO2 layers. An 

equal amount of Fe2+ and Fe3+ coexist at the same site of the hexagonal lattice. Because of the 

average Fe valence is 2.5+, the Fe2+ and Fe3+ ions can be regarded as an excess and a deficiency 

of half an electron, respectively. At high temperature, Fe2+ and Fe3+ are randomly distributed in 

the triangular lattice. With decreasing temperature, the interaction between Fe ions prefers Fe2+ 

and Fe3+ as nearest neighbors in the triangular lattice in order to minimize the coulomb energy, 

which is similar to the case of spin frustration. As shown in the Fig. 1.6, in each bilayer, the 

lower layer has 2:1 ratio of Fe2+ and Fe3+ and the upper layer has the inverse 1:2 ratio. The 

double layer displays net polarization from the upper layer to the lower layer. The coexistence of 

the geometric frustration and the stacking of the triangular nets leading to forming a 3D charge 

ordering state at TCO=320 K.12 In the meanwhile, the strong magnetic interaction between Fe 

moments develop as a ferrimagnetic ordering with Neel temperature TN=240K.  

 

Figure 1.6 Double layer structure shows an upper layer to lower layer direction of net 
polarization. 

 

Because both ferroic orders are from the same Fe ions in LuFe2O4, coupling between two ferroic 

orders is expected. In the Fig. 1.7, dielectric constant of LuFe2O4 is frequency dependent and it 

shows a large dielectric dispersion around the Neel temperature.13  At low temperature, when the 
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fluctuation on the dipoles is frozen, the whole system lost the polarizability and the dielectric 

constant decreases. Interestingly, this decrease happens at the Neel temperature, indicating that 

the magnetic ordering is coupled with the electric ordering. In addition, significant changes of 

dielectric properties have been observed upon applying a small magnetic field at room 

temperature (inset).  It was suggested that the charge fluctuations on the Fe sites were the main 

contributor to polarizability at high temperature.  The Fe3+ is more strongly influenced by the 

magnetic field than Fe2+, so the fluctuation in the system is weaker and the polarizability and 

dielectric constant will decrease under a magnetic field. The relatively high transition 

temperatures for the ferroic ordering and strong coupling of spins and electric dipoles at room 

temperature make LuFe2O4 a unique multiferroic material.  

 

Figure 1.7 Dielectric constant (real part) versus temperature measured at various frequencies for 
LuFe2O4 under no magnetic field. The inset shows the variation of k with magnetic field at room 
temperature at 20 kHz.14 
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1.4.3   Type III multiferroics 
 
In type III multiferroics, ferroelectricity occurs only in the magnetically ordered state. The 

ferroelectricity sets in at the same temperature as a certain type of magnetic ordering and is 

driven by it. Because the ferroelectricity is induced by the magnetic order, this type of materials 

always has strong coupling between the different ferroic orders. However, the transition 

temperature is always very low in this system. 

 

I. Spiral magnets 
 

In some of the materials such as Tb(Dy)MnO3 and Tb(Dy)Mn2O5, the onset of ferroelectricity is 

correlated to the appearance of spiral magnetic ordering. This spiral magnetic ordering induced 

polarization can be understood microscopically by spin current model developed by Katsura15 or 

by a phenomenological theory presented by Mostovoy16. They suggested that when the magnetic 

phase has sinusoidally modulated collinear magnetic order, the space inversion symmetry 

remains and the system doesn’t have net electric moment. But the noncollinear incommensurate 

magnetic order breaks inversion symmetry and thus gives rise to electric polarization. This 

mechanism is theoretically shown as following function. The magnetic coupling has the form16  
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Consider a spiral-spin-density-wave state with the wave vectorQ


,  
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So the average polarization is 
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From this equation, we can see that if only M1 or M2 is nonzero, equation (7) describes a 

sinusoidal wave and the average polarization is zero. If both M1 and M2 are nonzero, then this 

equation describes a helix with the spin rotation axis 3e


. The system shows spontaneous 

polarization. In the case of TbMnO3 (TN=41 K) the Mn3+ shows a collinear sinusoidal order and 

no electric order between 41K and 28K in the system. Below 28K, the sinusoidal order is 

replaced by a spiral order with Q


//b, Mn3+ rotate in the b-c plane with the rotation axis 3e


 //a, 

then, the system  shows electric polarization with P  //c (Fig. 1.8). 

 

Figure 1.8 (a) The sinusoidal magnetic structure does not induce electric polarization. (b) Spiral 
magnetic structure inducing a net polarization.16  
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Since the ferroelectricity appears only in the spiral magnetic structure, it is not surprising the 

coupling between magnetic and ferroelectric order is especially strong. As shown in Fig. 1.9, 

TbMnO3 shows a spin-flop transition under an external magnetic field.17 The polarization vector 

rotates by 90 degree from c axis to a axis due to the flop of spin spiral from the a-b plane to the 

b-c plane. Because the intimately link between the polarization and the dielectric constant, the 

dielectric constant also changes significantly.  

 

 

Figure 1.9  5T magnetic field changes the electric polarization direction in TbMnO3 from the c 
axis to a axis.17  
 

II. Frustrated collinear magnetic multiferroics 
 

In addition to the spiral magnetic order, collinear frustrated magnetic order can also lead to 

ferroelectricity. In such a system, the magnetic moment aligns along one axis which can be 
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described using an Ising spin chain model. Polarization appears as a consequence of exchange 

striction because the magnetic order is coupled with the atomic positions. For example, in the 

case of Ca3CoMnO6,
18 Co2+ and Mn4+ ions alternating along the Ising chains exhibit an up-up-

down-down (↑↑↓↓) magnetic order as shown in Fig. 1.10. Because the competition between the 

nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic interaction, the 

superexchange shortens the bonds between the parallel, and stretches the antiparallel spin. 

Therefore, the magnetic order breaks the space-inversion symmetry and induces electric 

polarization via exchange striction.  

 

Figure 1.10 Ising chains with the up-up-down-down spin order and alternating ionic order. The 
possible magnetic configurations leading to the polarization is shown. The original atomic 
positions are shown with dashed circles.  
 
 

 

1.5 From Bulk to thin film 

 

Most multiferroic materials were studied as bulk form. In recent years, more attention was paid 

to the thin film form because thin films have lots of advantages. In the view of the practical 
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application, to obtain the materials in the form of thin film is necessary. At the same time, by 

using different substrates, one can tune the properties and phases of the materials; the doping 

process will be much easier in the thin film form than the bulk. Also, thin film growth techniques 

can provide routes to structures and phases that are inaccessible by traditional chemical methods. 

The most studied thin films are Bi-based perovskites and hexagonal manganites. By using 

different substrates and different substrates’ surface orientations, one can get  BiFeO3 films of 

different symmetries. For example, monoclinic phase is stabilized on the (001) and (101) SrTiO3 

substrate, while the rhombohedra phase is crystallized on (111) SrTiO3. 
19,20 The ferroelectric 

transition temperature for bulk BiFeO3 is 830C,  which  decreases to 650C under a strong 

epitaxial strain or 750C under a weak strain. Early bulk BiFeO3 samples show a small 

polarization  of 6.1μC/cm2, which can reach 50-90μC/cm2 in the thin film form.21 The large 

polarization of the thin film is not only because of the epitaxial strain effects but also because of 

less defects in the thin films which can avoid the leakage effect.  The magnetic properties of 

BiFeO3 thin film can also be markedly different from bulk form. From the first principle 

calculation22, it shows that spin canting is permitted in BiFeO3 which can give a weak 

ferromagnetic moment. However, because the long wavelength period of the spiral spin structure 

in this material, as shown in Fig. 1.11, all the possible macroscopic magnetization are inhibited, 

Because this spiral spin structure can be suppressed through the strain in the thin film, a 

significant magnetization and a strong magnetoelectric coupling have been observed.23  

In addition, thin films are also easy to change the properties through doping. If we substitute Tb 

at Bi sites in BiFeO3, the sample displays good ferroelectric and magnetic properties and a 

coupling between them.23   
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Figure 1.11 Magnetic structure of the BiFeO3 with the spin spiral plane (1-10)hex  

 

The thin film technology can also provide routes to obtain structures that are inaccessible by 

traditional chemical methods. As introduced before, hexagonal structured RMnO3 is one of the 

most intensively studied materials to integrate into heterostructures for their high polarization 

and high ferroelectric transition temperature. The low magnetic ordering temperature (<100 K) 

of RMnO3 makes it hard to be used as multifunctional devices. Ferrites RFeO3 normally 

crystallize as orthorhombic phase (o-RFeO3), o-RFeO3 is a non-polar antiferromagnet due to its 

central symmetric structure. Inspired by the h-RMnO3, people realized that spin frustration on 

the hexagonal lattice will lead to a more interesting magnetic behavior in h-RFeO3. Besides, 

replace Mn by Fe may increase the magnetic ordering temperature due to the much stronger 

bonding energy between Fe3+ ions. However, h-RFeO3 is only stable at high temperature and 

metastable at room temperature. In previous work, few reports can be traced where h-RFeO3 

were synthesized through quenching high temperature melt rapidly to get some h-RFeO3 phase 
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nanoparticles as an impurity in o-RFeO3 bulk.24 Recently, it was discovered that room 

temperature h-RFeO3 can be stabilized as thin film by using epitaxial strain. 10 This high quality 

single crystalline thin film is very important for the properties’ study and potential application.   

To summarize, the enhancement of magnetic and ferroelectric properties by changing the 

microscopic structure; easily doping different elements to tuning the physical properties; 

possibility of stabilizing new structure through the epitaxial strain; controlling the surface 

orientation by changing substrate’s orientation make the thin film multiferroics represent new 

degrees of freedom for steering the ME properties toward an improved suitability for device 

applications. There is no doubt that in the forthcoming years, multiferroic thin films will be a 

topic of great interest, both in science and technology. 
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Chapter 2:  

Growth Diagram and magnetic properties of LuFe2O4 thin 
films 
 
 
2.1 Introduction and motivation  
 
Multiferroics like BiFeO3 where the magnetic and electric orders originate from different parts of 

the structure have high ordering temperatures but weak coupling between different orders.25 

Other materials, like TbMn2O5, exhibiting ferroelectricity due to the broken symmetry caused by 

the spiral magnetic moment have strong magnetoelectric coupling.26 However, here the ordering 

temperature is very low and the electric polarization is small. LuFe2O4 contains layers of Fe2O2 

with a triangular lattice that are sandwiched by LuO2 layers. Combined with the mixed valance 

of Fe, the Fe2O2 layers with triangular lattice form a charge ordered state at TCO=320 K, followed 

by a ferrimagnetic order at TN=240 K.27 Significant changes in dielectric properties have been 

observed upon application of a small magnetic field at room temperature.14 The relatively high 

transition temperature, large polarization, high magnetic coercivity and the strong magneto-

electric coupling make LuFe2O4 a unique multiferroic material. Recently, the possibility of fast 

switching and high tunability of LuFe2O4 due to the electronic origin of its charge order was 

demonstrated.28 Compared to the large amount of effort to study bulk LuFe2O4, little work has 

been reported on LuFe2O4 at low dimensions, presumably due to difficulties in the sample 

preparation. Here we study the growth of LuFe2O4 thin films on MgO(111) substrate using 

pulsed laser deposition (PLD). We have constructed a growth diagram based on our results. The 

parameter space for growing epitaxial LuFe2O4 thin films turns out to be a narrow window of 

temperature and oxygen pressure, which creates significant experimental difficulties. While the 
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observed Neel temperature of the film is very close to the bulk value, the hysteresis is 

surprisingly weaker, resulting in superparamagnetism in the films. The demonstration of 

epitaxial growth of LuFe2O4 thin films and the distinct magnetic properties open up new 

possibilities for studying multiferroicity of low dimensional LuFe2O4, tuning of its properties, 

and eventual functionalization. 

Compared to the large amount of effort to study bulk LuFe2O4, there are only a couple of 

reported attempts to grow LuFe2O4 thin films on α-Al2O3 (0001) and on Si substrates using 

pulsed laser deposition (PLD).29,30 Liu et al found that the growth of LuFe2O4 on α-Al2O3 (0001) 

needs substrate temperatures as high as 850 °C.29 In addition, significant deviation of the Lu:Fe 

stoichiometry from 1:2 was observed which was attributed to different ablation efficiencies of Lu 

and Fe in the target. This problem was circumvented by enriching the Fe concentration of the 

target material. However, as a result, Fe3O4 and Fe2O3 impurities were introduced as 

intermediate layers between the LuFe2O4 film and the α-Al2O3 substrate.  

In this thesis, I did a comprehensive study on the growth of Lu-Fe-O compound thin films on 

MgO(111) substrate using pulsed laser deposition (PLD). The experimentally constructed growth 

diagram shows that the parameter space for growing epitaxial LuFe2O4 thin films turns out to be 

a narrow window of temperature and oxygen pressure, which creates significant experimental 

difficulty. Based on these results we have gained fundamental understanding of the growth of 

Lu-Fe-O compound films: the growth temperature needs to be high enough to stabilize the 

metastable phase LuFe2O4. On the other hand the loss of Fe at high temperature also changes the 

resulting phase from LuFe2O4. These two effects cause the narrow window of the growth 

condition. Typical LuFe2O4 films exhibit superparamagnetism, which is consistent with the fact 

that the LuFe2O4 in the film are epitaxially sandwiched by the impurity phase hexagonal-LuFeO3 
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(h-LuFeO3). The demonstration of epitaxial growth of LuFe2O4 thin films and the distinct 

magnetic properties open up new possibilities for studying multiferroicity of low dimensional 

LuFe2O4, tuning of its properties, and eventual functionalization. 

This chapter is organized as the following: Section 2.2 describes the experimental conditions; In 

section 2.3, the growth mechanism learned from the experiments is explained; Section 2.4 shows 

the detailed structure analysis of the grown phases; Section 2.5 discusses the magnetic properties 

of typical LuFe2O4 thin films with epitaxial inclusion of impurity h-LuFeO3 phase. 

 

2.2 Experimental details  

Lu-Fe-O compound thin films were grown using PLD with a KrF (λ=248 nm) laser. In principle, 

all the parameters will have to be scanned and optimized in order to realize the growth of high 

quality LuFe2O4 thin films. We are more focused on elucidating the mechanism of the growth. 

Therefore, fine scan of the substrate temperature and the oxygen pressure were carried out to 

map out the growth diagram involving the growth of more than one hundred samples, while all 

the other parameters were kept constant. The laser density is 2.5 J cm−2 with a repetition rate of 1 

Hz. The thickness of the films is about 100 nm. The substrate is MgO(111) single crystal 

annealed in O2 for 24 hours at 1100 °C. The target material used is polycrystalline LuFe2O4, 

whose properties are verified using powder x-ray diffraction (XRD) and a superconducting 

quantum interference device (SQUID). After growth, the sample heating is turned off so that the 

sample cools down to room temperature within 5 minutes. The substrates were clamped on a Pt 

heating plate with temperatures measured by a pyrometer using emissivity of 0.3. The growth 

was monitored using reflection high energy electron diffraction (RHEED) for the entire process 
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from heating up the substrates to cooling down after growth. Transmission Electron Microscopy 

(TEM) work was carried out on a Cs-corrected FEI Titan 80/300-kV TEM/STEM. TEM 

specimen was prepared with traditional mechanical polishing followed by ion milling. High 

resolution Z-contrast images were acquired using 300KV and a beam size of 0.7Å. The magnetic 

properties were measured using SQUID. The subtraction of background is done by assuming that 

the magnetization saturates in large field at 300 K. In principle, all the parameters described 

above will have to be scanned and optimized in order to realize the growth of high quality 

LuFe2O4 thin films. In this thesis, we are more focused on elucidating the mechanism of the 

growth. Therefore, fine scans of the substrate temperature and the O2 pressure were carried out to 

map out the growth diagram involving the growth of more than one hundred samples, while all 

the other parameters were kept constant. 

 

2.3 Growth diagram, structural characterizations and magnetism 
 
In this thesis, we start from the ternary phase diagram of the bulk Lu-Fe-O system, a section of 

which is shown in Fig. 2.1(a) at 1200 °C.31,32 This system belongs to the D-type of lanthanoid-

Fe-O compounds for which there are four stable three-element phases: LuFe2O4 (A) and 

Lu2Fe3O7 (B), LuFeO3 (perovskite or P), Lu3Fe5O12 (garnet or G).33 In principle, one way to 

form a single LuFe2O4 phase is to keep atomic ratio Lu:Fe=1:2 and vary the oxygen pressure, 

shown as a thick dashed line in Fig. 2.1(a).  
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Figure 2.1 (a) The phase diagram of the bulk Lu-Fe-O ternary system at 1200 °C. (b) The 

experimental growth diagram of the Lu-Fe-O thin films on MgO(111) substrates. 
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Figure 2.2(a) presents the X-ray diffraction (XRD) data of films grown at 1050 °C in various O2 

pressures. The LuFe2O4 phase is not observed. In addition, the Lu:Fe stoichiometry of the films 

is very different from that of the target. The dominant phase is always Lu2O3 (L). The 

concentration of LuFeO3 rises with O2 pressure. At high enough O2 pressure, hexagonal (h)-

LuFeO3 compound starts to appear.34 
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Figure 2.2. XRD data of the films grown at (a) T=1050 °C and at two different O2 pressures, 
(region 1 and 3). (b) The ratio between the intensity of the P phase (LuFeO3) I(P) and L phase 
(Lu2O3) I(L) as a function of the temperature. The line is a fit with the thermochemistry model 
(see text). (c) Typical XRD data of a LuFe2O4 film that shows the LuFe2O4 c-axis to be 
perpendicular to the substrate surface as expected. Also present is a significant amount of h-
LuFeO3 (region 4). (d) XRD data of region 2 and 5. The lower curve corresponds to the growth 
region 2. The upper curve corresponds to the growth region 5 

 

To elucidate the mechanism of the growth of Lu-Fe-O coumpound films, we carried out fine 

scan of the substrate temperature and the oxygen pressure to map out the growth diagram. Figure 

2.1(b) is the resulting experimental growth diagram. The important observations can be 

summarized as follows. (1) In the low temperature region the growth follows more or less the 

behavior predicted by the bulk phase diagram Fig. 2.1(a): at high pressure, the existing phases 

are LuFeO3, Lu2O3 and h-LuFeO3; when the pressure is decreased, the Fe3O4 phase starts to 

appear. This is consistent with the fact that LuFe2O4 and Lu2Fe3O7 phases are not stable at low 
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temperature.34 (2) In the high temperature region, the growth deviates strongly from the thick 

dashed line in the bulk phase diagram Fig. 2.1(a) in that the Lu:Fe stoichiometry differs 

dramatically from that of the polycrystalline LuFe2O4 target. As shown in Fig. 2.2 (a), the 

LuFe2O4 phase is not observed in the films grown at 1050 ̊C. The dominant phase is always 

Lu2O3 (L).35 The concentration of LuFeO3 rises with increasing O2 pressure. At high enough O2 

pressure, h-LuFeO3 compounds start to form.34 The formation of Lu-Fe-O compounds in the 

films qualitatively follows the dash-dotted line in Fig. 2.1(a). (3) Only in the small range of 

pressure and temperature indicated by the elliptical area in Fig. 2.1(b) is the growth of LuFe2O4 

the most effective. In this case, the growth follows qualitatively the dotted line in Fig. 2.1(a). 

Typical XRD data are displayed in Fig. 2.2(c) showing both LuFe2O4 and h-LuFeO3, indicating 

deviation of Lu:Fe stoichiometry from that of the target even in this narrow window. 36  

From the experiment growth phase diagram, it shows 5 growth regions: 

1. Lu2O3 (cyan);  

2. Lu2O3+LuFeO3 (blue) 

3. Lu2O3+LuFeO3+h-LuFeO3 (orange)  

4. LuFe2O4+h-LuFeO3 (white) 

5. Lu2O3+Fe3O4+h-LuFeO3 (pink) 

 

The representative XRD of the following regions are given in Fig. 2.2: Fig. 2.2(a) lower curve 

corresponds to the region 1). Fig. 2.2(a) upper curve corresponds to the region 3). Fig. 2.2(c) 

corresponds to the region 4). The representative XRD of the region 2) and 5) is given in Fig. 2d. 

Note that, at low temperature, the crystallization of the films is poor. 
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Figure 2.3. RHEED data corresponding to the pattern of the MgO(111) substrate taken with the 
electron beam along [1-10] (a) and [11-2] (b) directions, respectively, and to the pattern of 
LuFe2O4 film taken with the electron beam along MgO[1-10] (c) and MgO[11-2] (d) directions. 
All panels have the same scale. 

(a) (b)

 

Figure 2.4. RHEED images corresponding to the patterns of the Lu2O3 (a), Fe3O4 (b) islands 
taken with the electron beam along MgO[1-10] direction.  All panels have the same scale. 
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Table 2.1. Morphology and epitaxial relation of compound grown on MgO (111) substrates. 

 

 

 

The combination of in-situ structure characterization using RHEED and ex-situ characterization 

by XRD allows assignment of the epitaxial relation between the existing phases and the 

substrates. The results are given in Table 2.1. The XRD data in Fig. 2.2 indicate that all the 

grown compounds have one unique plane parallel to the substrate surface, which simplifies the 

analysis. From the RHEED pattern, one can measure the two dimensional (2D) lattice constant 

for the grown film. If three dimensional (3D) island growths occur, the RHEED pattern 

corresponds to the diffraction pattern of the transmitted electron beam which contains more 

structural information. Figure 2.3 shows the RHEED patterns of the MgO (111) substrates and 

the LuFe2O4 film with the direction of the electron beam along MgO [1-10] and MgO [11-2], 

respectively. The strong LuFe2O4 (003), (006) and (009) peaks observed in Fig. 2.2(b) indicate 

that the epitaxial relation is LuFe2O4 [001]//MgO[111], which is expected because both faces 

have 3-fold rotational symmetry. The streaky RHEED patterns in Fig. 2.3(c) and (d) suggests 

quasi-2D growth of LuFe2O4. The 2D lattice constant of the film can be calculated from the 
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separation of the streaks calibrated by the RHEED pattern of the MgO substrates. It is consistent 

with the LuFe2O4 lattice constant 3.44 Å within the experimental uncertainty of 2%. Hence, the 

in-plane epitaxial relation is LuFe2O4 [100]//MgO[1-10] (Fig. 2.5(a)). This is unexpected from 

the point of view of lattice matching, which predicts LuFe2O4 [100]//MgO[11-2] because 

a 33   supercell of LuFe2O4 with 30 degree rotation along the [001] direction has less than 

0.1% mismatch with a 2×2 supercell of MgO (111) surface as shown in Fig. 2.5(b) . Contrasting 

with the apparent quasi-2D growth of LuFe2O4, Lu2O3 forms quasi-3D structures on the substrate 

as shown in Fig. 2.4(a). However, the RHEED pattern suggests a face centered cubic structure 

with a lattice constant half of that of bulk Lu2O3. The detailed structure is not clear at present. At 

low pressure and low temperature, the RHEED signal is dominated by the diffraction pattern of 

3D Fe3O4 islands along the [11-2] direction (Fig. 2.4(b)), with the [111] direction perpendicular 

to the substrate surface. This is consistent with the XRD data. The lattice constant is the same as 

that of bulk Fe3O4 within the experimental uncertainty (of 2%).  

To give a general idea about the lattice match relations between the thin films and the substrates, 

Table 2.2 lists the lattice constants of each compound. The structure parameters of the planes 

(the in-plane) that are observed to be parallel to the MgO(111) are also given. 
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LuFe2O4 [100] // MgO [1-10]
Observed expitaxial relation

LuFe2O4 [1-10] // MgO [1-10]
Expected expitaxial relation

LuFe2O4 [100]
MgO [1-10]

LuFe 2
O 4

[001]

MgO [1-10]

(a) (b)

30o

 

 

Figure 2.5. Epitaxial relation between LuFe2O4 films and MgO(111) substrates. (a) Observed 
expitaxial relation. (b) Expected epitaxial relation from geometry 

 

  Table 2.2. Structure parameters of each compound 

Compound Space group Lattice constants In-plane lattice constants

MgO  Fm-3m a=b=c=4.211Å; α=β=γ=90 ̊ 37 (111): a'=b'=5.955Å 

LuFe2O4 R-3mH a=b=3.441Å, c=25.28Å; α=β=90 ̊, 

γ=120 ̊ 38 

(001): a'=b'=3.441Å 

h-LuFeO3 P63cm a=b=5.965Å, c=11.702 Å; 

α=β=90 ̊, γ=120 ̊ 39 

(001): a'=b'=5.965Å 

LuFeO3 Pbnm a=5.213Å, b=5.547Å, c=7.565 Å; 

α=β=γ= 90 ̊ 40 

(100): a'=5.213Å, 

b'=5.547Å 

Fe3O4 Fd-3m a=b=c=8.396Å; α=β=γ= 90 ̊ 41 (111): a'=b'=11.87Å 

Lu2O3 Ia-3 a=b=c=10.355Å; α=β=γ= 90 ̊ 42 (111): a'=b'=14.6Å 
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High resolution transmission electron microscopy (HRTEM) reveals the detailed structure of the 

LuFe2O4 films. As shown in Fig. 2.6(a), a layered structure of the film is obvious with some 

variation for different locations. The fast Fourier transforms (FFT) of the HRTEM image at 

different locations confirms the epitaxial relation observed from RHEED images: the FFT of the 

substrate (Fig. 2.6(d)) indicates the reciprocal lattice of MgO viewed from [11-2] direction. The 

FFT of the majority of the film (Fig. 2.6(c)) is consistent with the reciprocal lattice of LuFe2O4 

viewed from the [1-10] direction while at some locations (Fig. 2.6(b)) suggests h-LuFeO3 viewed 

from the [1-10] direction. These two phases LuFe2O4 and h-LuFeO3 were further confirmed by 

direct observation using atomic-resolution Z-contrast imaging, which is shown in Fig. 2.6(e) and 

(f). The LuO2-FeO-FeO-LuO2 ordering in the LuFe2O4 phase and the LuO2-FeO-LuO2 ordering 

in the h-LuFeO3 phase are clearly observed. 

Although the intensity of the XRD peaks originating from the h-LuFeO3 phase seems 

comparable to that of LuFe2O4 phase, the actual dominant phase is still LuFe2O4 due to the lower 

X-ray scattering cross section of the LuFe2O4 as compared with that of the h-LuFeO3 phase. This 

is consistent with the low population of the h-LuFeO3 phase in the HRTEM image. In addition, 

the RHEED patterns of h-LuFeO3 and LuFe2O4 are supposed to be different according to their 

structures.43 The fact that the observed RHEED patterns do not show any indication of h-LuFeO3 

within the detection limit also suggests a low concentration of the h-LuFeO3 phase in the films. 
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Figure 2.6. (a) Typical HRTEM image around the interface, where the interface is marked as a 
dashed line. (b-d) The Fourier transforms of various positions of (a), where (d) is from MgO 
substrate and (c) is from the majority of the film, and (b) is from the small top left part of the 
image. (e) and (f) are the atomic-resolution Z-contrast images corresponding to (b) and (c) 
respectively. 
 

Ferrimagnetism, large magnetization and giant coercivity are of the key properties of LuFe2O4. 

This makes the study of the magnetic properties of LuFe2O4 films critical. As shown in Fig. 

2.7(a), little hysteresis is observed for these LuFe2O4 films.44 When magnetization is plotted 

against magnetic field over temperature (H/T), the data of 12, 50, 100 and 150 K fall on top of 

each other (Fig. 2.7(b)), which can be fitted by the Langevin function: L(x)=coth(x)-1/x, where 

x=μB/kBT, μ is the magnetic moment, B is the magnetic field, kB is the Boltzmann constant and T 

is the temperature, indicating the superparamagnetic behaviour.45,46 Figure 2.5 (d) shows an 
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example fit for 12 K data. 

One can calculate the magnetic moment from the slope of the low field magnetization data with  

0

2

3


kT

N

dH

dM
  ,  (1) 

where μ, N, μ0 and k are the moment of the superparamagnetic domains, number of the domains 

per unit volume, the vacuum permeability and the Boltzmann constant, respectively.47 The 

magnetic moments normalized to their maximum value as a function of temperature are plotted 

in Fig. 2.7(c), which follows the temperature dependence of the bulk saturation magnetization 

closely, suggesting that the Neel temperature of the films is not very different from the bulk 

value of 240 K.  
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Figure 2.7. Magnetic properties of typical LuFe2O4 films. (a) The field dependence of the 
magnetization at various temperatures. (b) Magnetization plotted again magnetic field over 
temperature (H/T). (c) The temperature dependence of the magnetic moment of the 
superparamagnetic phase normalized to the maximum value and the bulk saturation 
magnetization from Reference 44. The magnetic field is perpendicular to the plane of the film. (d) 
Magnetization data fitted with Langevin function at 12 K. 
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2.4 Discussion 

 

The most surprising observation of the growth diagram is that the Lu-Fe-O compound formation 

at high temperature deviates strongly from the Lu:Fe stoichiometry of the target. Here we 

propose an explanation in terms of competition between nucleation and desorption of adatoms 

and its dependence on temperature and supersaturation. The residence time τad of an adsorbed 

atom is given by: 

)exp(
1

kT

Edes
ad 
   ,  (2) 

where υ is the vibrational frequency and Edes is the desorption energy. Clearly, the residence time 

of an adatom is shorter at high temperature due to the higher desorption rate. The observed loss 

of Fe atoms suggests a smaller desorption energy (higher desorption rate) for Fe atoms. At low 

temperature, because )exp(
kT

Edes  is large for both Lu and Fe adatoms, the Lu:Fe stoichiometry 

can be close to that of the target. The nucleation speed of deposited adatoms is: 

 )exp()(
*

2/1
*

kTT
J nuc 







  ,    (3) 

where Δμ* is the effective supersaturation (molar bulk Gibbs free energy change with surface 

energy consideration), while κ is proportional to the square of the edge energy of the nuclei per 

unit length.48 Therefore, at the high temperature limit, the nucleation speed decreases with 

temperature and a high supersaturation favors a high nucleation speed. Consider the reaction 

3232 4

3

2

1
LuFeOOOLuFe   ,  (4) 



37 
 

which takes place under thermodynamic equilibrium during the annealing time in between the 

laser pulses, the supersaturation of oxygen is related to the O2 pressure as: 

)ln(
4

3
)(

2

*
0

*
)( OadO PRTT    ,  (5) 

where NA is the Avogadro constant. Eq. (5) suggests that higher O2 pressure always corresponds 

to larger supersaturation, resulting in faster nucleation and better Lu:Fe stoichiometry. 

Combining Eqs. (5) and (3), one has the analytical relation between the nucleation speed and the 

O2 pressure: 

]
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   ,  (6) 

Figure 2.2 (b) inset shows XRD intensity (peak area) of the LuFeO3 phase relative to Lu2O3 

(I(P)/I(L)) as a function of the O2 pressure at 1050 °C. Assuming that the nucleation speed is 

proportional to the XRD intensity, one can fit experimental data with Eq. (6). The result shows 

Δμ*(T)=269 kJ mol-1, similar to the bulk value found as Δμ0=ΔH0-TΔS0=258.2 J/mol, taking the 

ΔH0=-41.8 kJ mol-1 and ΔS0=-121.4 J mol-1 K-1 and T=1050 °C.31 

The chemical reactions related to the boundaries in the growth diagram and the corresponding 

standard entropy and enthalpy changes are listed in the Table 2.3. 

 

 

 

 

 



38 
 

Table 2.3 Standard enthalpy and entropy changes of the chemical reactions of Lu-Fe-O 

compounds 

Reaction  )/(0 molkJH   )//(0 KmolJS

3232 4

3

2

1
LuFeOOOLuFe   

‐41.8.8 49  ‐121.4 49 

3222

3
2 OFeOFe   

‐827.2 50  ‐274.7 50 

43223 OFeOFe    ‐1120.9 50  ‐322.2 50 

32243 3
2

1
2 OFeOOFe   

‐239.8 50  ‐179.7 50 

323242 2

1

4

1
OFeLuFeOOOLuFe   

‐179.6 49  ‐100.35 49 

422332 335 OLuFeOLuFeOOLuFe  ‐1538 49  ‐353.8 49 

 

 

In the above analysis, the assumptions we made are: 1) the nucleation speed is proportional to 

the XRD intensity; 2) at high temperature the thermodynamic equilibrium gained during the 

annealing between the laser pulses determines the growth. These assumptions appear to be valid 

because the thermo-chemical parameters extracted from the model quantitatively agree with 

those from the literature. In other words, the growth of Lu-Fe-O at 1050 °C can be described 

using equilibrium thermodynamics, presumably due to the thermodynamic equilibration that 

occurs in between the laser pulses. Here the competition between the desorption and nucleation 

determines the Lu:Fe stoichiometry. When the temperature is high enough, the time scales of the 

nucleation and desorption are comparable. In this case, change of nucleation speed (due to the 
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change of supersaturation which is a function of O2 pressure) affects the Lu:Fe stochiometry 

dramatically. 

Based on this analysis, we expect the optimal growth conditions for LuFe2O4 films to be a 

narrow temperature and pressure window considering the necessary high temperature for the 

stability of LuFe2O4 phase that sets a lower limit, and the different desorption speed of Lu and Fe 

adatoms which sets an upper limit to the temperature. As we will describe below, this is indeed 

what has been observed in our experiments. 

The observation of superparamagnetism in the LuFe2O4 films is unusual considering the bulk 

magnetic properties of LuFe2O4: an easy axis along the [001] direction with anisotropy energy as 

large as 100 K/spin and gigantic coercivity (9 T at 4 K). 44,51,52,53–55 These unique bulk properties 

were attributed to arise from the significant contribution of orbital magnetic moments (0.8 μB/f.u.) 

plus the collective freezing of magnetic domains with the size of approximately 100 nm in the 

Fe2O2 layer and 30 nm along the [001] direction.47,44 The following scenario may explain the 

reduction of coercivity qualitatively: the structure of LuFe2O4 and h-LuFeO3 both consist of 

layers of triangular lattices with a similar lattice constant. For LuFe2O4, the stacking is 

Fe2O2/LuO2 while for h-LuFeO3, FeO layers replace Fe2O2.
56,57 From XRD data, one can see the 

co-existence of both LuFe2O4 and h-LuFeO3 phases. HRTEM indicates that the LuFe2O4 layers 

are divided into clusters by the h-LuFeO3 layers and defects. According to a recent study, h-

LuFeO3 is weakly ferromagnetic, i.e. much less magnetic than LuFe2O4.
58 Therefore, when these 

clusters are much smaller than the magnetic domain dimensions in the bulk, one expects to see a 

reduction in coercivity. On the other hand, given the large anisotropy energy 100 K/spin, the 

observed hysteresis is too small even for clusters having a size as small as a few nanometers. 
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Further study on the microscopic magnetic structure is needed to understand the difference 

between the bulk and films. 

 

2.5 Conclusion 

In conclusion, we studied the growth dynamics of LuFe2O4 films on MgO (111) substrates and 

constructed the growth diagram. According to our understanding, application of the correct 

thermochemistry is the key to preferential formation of the LuFe2O4 phase: 1) at low temperature, 

LuFe2O= is not a thermodynamically stable phase; 2) at high temperature, the Lu:Fe 

stoichiometry is off by so much due to the faster desorption of Fe adatoms that LuFe2O= can not 

be formed; 3) in a narrow range of substrate temperature and O2 pressure, LuFe2O4 dominates 

the grown phases with some h-LuFeO3 phase epitaxially sandwiched in between due to the loss 

of Fe atoms. Superparamagnetism is observed in the film of LuFe2O4 containing h-LuFeO3 

impurities. The extracted Neel transition temperature is similar to that of bulk. 

This work reveals the growth mechanism of Lu-Fe-O compound thin films, paving the way to 

the growth of high quality LuFe2O4 thin films and offers an approach to tuning their properties. 

This will be critical for future applications using LuFe2O4, a unique multiferroic material with 

large polarizations, high ordering temperatures, and strong magnetoelectric coupling. 
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Chapter 3:  

Room-temperature coexistence of magnetic order and 
ferroelectricity in single crystal hexagonal LuFeO3 films 
 

 
3.1 Introduction and motivation  
 

According to Khomskii, the multiferroics can be divided into two types: Type I (e.g. BiFeO3 and 

YMnO3) represents materials with robust ferroelectric and magnetic order. But the 

magnetoelectric coupling is relatively weak; Type II represents materials (e.g. TbMnO3 and 

Ca3CoMnO6) whose ferroelectric order is caused by certain spacial-symmetry breaking magnetic 

ordering.59 These materials normally have low ordering temperatures and small polarizations, 

although the magnetoelectric coupling is way higher than type I. Currently, BiFeO3 and RMnO3 

(R=Ho, … Lu, Y or Sc) are the most intensive studied material to integrate into heterostructures 

for their high polarization and high transition temperature. 60 For the BiFeO3, it known as the 

only one material which exhibit ferroelectricity and magnetic order above room temperature. 

Moreover, integrating the advantages offered by these materials into existing technologies will 

require them to be interfaced with other materials without compromising their properties. 61 For 

the RMnO3, the low magnetic ordering temperature (around 70K to 100 K) makes most of the 

effort focused on the ferroelectricity part. In order to increase the magnetic ordering temperature, 

one possible way is to replace Mn with Fe. Due to the much stronger interaction between Fe3+ 

ions in the lattice structure, the magnetic ordering temperature is expected to be dramatically 

higher.  
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RMnO3 compounds crystalize in either hexagonal structure with C6V
3 symmetry for small R 

ionic radius (R=Ho, … Lu, Y or Sc), or an orthorhombic structure with D2h
16

 symmetry for large 

R ionic radius (R= La,…Dy, Bi). For orthoferrites RFeO3, for all the R, the stable and most 

known structure is the orthorhombic phase (o-LuFeO3) as shown in table 3.1. O-RFeO3 is a non-

polar antiferromagnet below TN=620K due to its central symmetric structure. The a-axis is its 

magnetic easy axis. The canting in the a-c plane results in weak ferromagnetism.62  In contrast, 

spin frustration on the hexagonal lattice will lead to a more interesting magnetic behavior in h-

RFeO3. H-RFeO3 is only stable at high temperature and metastable at room temperature. In 

previous work, few reports can be traced where h-RFeO3 were synthesized through quenching 

high temperature melt rapidly to get some h-RFeO3 phase nanoparticles as an impurity in o-

RFeO3 bulk. Recently, people show the room temperature h-RFeO3 can be stabilized by using 

epitaxial strain. Amongst the ABO3 compounds that crystallize in a hexagonal structure, a non-

polar P63/mmc (YAlO3) phase forms at large tolerance factor, but a polar P63cm (LuMnO3) 

phase is found for t < 0.88.63 This polar structure, which lies as the origin of the ferroelectricity 

of YMnO3 
64,65 and results in a polarization perpendicular to the hexagonal plane, is in fact found 

in metastable bulk h-LuFeO3 
39 and inferred from second harmonic generation in epitaxial films 

63,66. Thus, there is a possibility of a robust room-temperature ferroelectric polarization with 

structural origin exist in h-LuFeO3. 
39,63,66,67 In our recently study on the single crystal h-LuFeO3 

film, beside the previously reported weak ferromagnetic at 130K, we first observe the room-

temperature antiferromagnetic order from the elastic neutron scattering measurement and derived 

the possible magnetic structure. We also see the ferroelectric switching in h-LuFeO3 through the 

Piezo Forced Microscopic measurement.  Coexistence of antiferromagnetism and ferroelectricity 

at room temperature make h-LuFeO3 a material not only promising for technological applications 
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but more importantly, extremely intriguing for fundamental research. Based on this, detailed 

study of the structure and ferroelectric behavior changes should be very critical to have a 

comprehensive understand of this new h-RFeO3 multiferroic material. 

 

Table 3.1 Neel temperatures of RMnO3 and RFeO3 compounds. RMnO3 compounds crystalize in 
either hexagonal structure for small R ionic radius or an orthorhombic structure for large R ionic 
radius (h means hexagonal structure). In RFeO3 compounds, the stable phase has orthorhombic 
structure.  
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3.2 Experimental details   

 

In this thesis, epitaxial hexagonal LuFeO3 thin films were grown using pulsed laser deposition 

(PLD) with a KrF (=248 nm) laser on Al2O3 (0001) substrates (CrysTec) and onto sputtered 

epitaxial Pt films (30 nm) on Al2O3 (0001) at 750 oC in 5 mTorr oxygen pressure. Sapphire 

substrate was degreased in acetone, methanol and then annealed in O2 for 3 hours at 1000 °C. 

After growth, the films were annealed at 950 oC in the growth chamber at the same oxygen 

pressure to improve the crystallinity before cooling to room temperature. The energy density of 

the laser was 1-2 J cm-2 with a repetition rate of 3-10 Hz. The target was a sintered mixture of 

Lu2O3 and Fe2O3 (Alpha Aesar 99.99%) with 1:1 molar ratio. The target-substrate distance was 

3.5 cm. The substrates were clamped on a Pt foil covered heater. No adhesive is involved. The 

sample temperature was measured by a pyrometer (Omega).  

The film structure was determined from in-situ reflection high energy electron diffraction 

(RHEED) and ex-situ by X-ray diffraction (XRD) and transmission electron microscopy (TEM) 

data. Piezoresponse force microscopy (PFM) was carried out on a film deposited on an epitaxial 

30 nm Pt film on Al2O3 substrates. The neutron scattering experiments were carried out on the 

HB1A thermal triple axis spectrometer at the High Flux Isotope Reactor, Oak Ridge National 

Laboratory. We used pyrolytic graphite (PG) as a monochromator and analyzer with the incident 

and final neutron energies fixed at Ef = 14.7 meV. Two PG filters were used to eliminate higher 

order neutron contamination. The background and any high temperature nuclear contributions to 

the intensities have been subtracted. The temperature and field dependence of the magnetization 

were measured using a superconducting quantum inference device (SQUID) magnetometer. The 

background subtraction of the magnetization is done by assuming the magnetization is saturated 
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at high magnetic field at 300 K. Notice that the choice of background subtraction will not affect 

the ZFC-FC splitting. The temperature dependence of X-ray magnetic linear dichroism (XMLD) 

was studied using polarized synchrotron x-rays at beam line 4-ID-C at the Advanced Photon 

Source. Transmission electron microscopy (TEM) work was carried out on a Cs-corrected FEI 

Titan 80/300-kV TEM/STEM at the Oak Ridge National Laboratory. TEM specimen was 

prepared with traditional mechanical polishing followed by ion milling. 

 

3.3 Growth, epitaxial relation and lattice constant 
 

Figure. 3.1(a) shows a unit cell of the bulk h-LuFeO3 viewed from the [1 0 0] direction. 39 This 

polar structure is isomorphic with that of hexagonal YMnO3. As shown in Fig. 3.1(b), the XRD 

pattern displays sharp and intense (00L) (L=2n) peaks of the h-LuFeO3 film and the (00L’) 

(L’=2n+1) peaks of the Al2O3 substrate, suggesting that the films are grown along the (001) 

direction without detectable impurity phases. The interference fringes around the h-LuFeO3 

peaks, as exemplified in the inset, indicate high film quality. The full width at half maximum of 

h-LuFeO3 (002) is about 219 arcsec (Fig. 3.2(a)), which is also an indication of high film quality. 

Pole-figure scans of the h-LuFeO3 {ī22} peaks as shown in Fig. 3.2(b) exhibiting the expected 

six-fold symmetry. The radial direction is the tilt angle  between the normal direction of the 

film and the diffraction plane (0° to 90°); and the angular direction is the rotation angle ϕ (0° to 

360°). The sharp spots without satellites or broadening indicate that the as-grown film has a 

highly crystalline structure. Atomic force microscopy (AFM) images of an α−Al2O3 (0001) 

substrate and a 20 nm h-LuFeO3 film showing atomic terraces, indicate the flatness of the films 

(Fig. 3.3 (a,b)).  
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Figure 3.1 (a) The structure of bulk h-LuFeO3 viewed from the [1 0 0] direction. The trigonal-

bipyramid local environment of Fe atoms in the middle layer is displayed. (b) The typical -2 
scan of an h-LuFeO3 film. 

 

 

Figure 3.2 (a) Typical ω/2θ rocking curve of the h-LuFeO3 (002) peak. (b) Pole-figure scans of 
the h-LuFeO3 {ī22} peaks exhibiting the expected six-fold symmetry. The radial direction is the 

tilt angle  between the normal direction of the film and the diffraction plane (0° to 90°); and the 
angular direction is the rotation angle ϕ (0° to 360°).  
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Figure 3.3 Atomic force microscopy (AFM) images of an α−Al2O3 (001) substrate (a) and a 20 
nm h-LuFeO3 film (b) showing atomic terraces. The terrace structure of the h-LuFeO3 film is 
similar to that of the substrate, confirming a high film quality. 

 

The combination of in-situ structure characterization using RHEED and ex-situ characterization 

by XRD allows assignment of the epitaxial relation between the h-LuFeO3 film and the Al2O3 

substrates. The strong h-LuFeO3 (002), (004), (006) and (008) peaks observed in x-ray 

diffraction -2  scan in Fig. 3.1(b) indicate that the epitaxial relation is h-LuFeO3 [001]//α-

Al2O3[0001]. Fig. 3.5 (a), (b), (c), (d) show the RHEED patterns of the Al2O3  substrates and the 

h-LuFeO3 film with the direction of the electron beam along Al2O3 [100] and Al2O3 [1-10], 

respectively. This result indicates that the in-plane epitaxial relation is h-LuFeO3 

[100]//Al2O3[100], which was further confirmed by the x-ray ϕ-scan measurement(Fig. 

3.4(a)).The ϕ-scan measurement on both the substrate and film show that the Al2O3 {ī23} planes 

are well aligned with h-LuFeO3 {ī24} planes in terms of the angle ϕ, which also approves the in-

plane epitaxial relation is Al2O3 [100]//h-LuFeO3 [100].  
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Figure 3.4  (a) The ϕ-scan of an h-LuFeO3 films indicating epitaxial relation h-LuFeO3 [0 0 1]// 

Al2O3 [0 0 1]. (b) Typical XRD ω-2 scan with the peaks of Al2O3(-123) and h-LuFeO3 films (-
122). 

 

 

Figure 3.5 RHEED patterns of Al2O3 substrates (a,b) and  h-LuFeO3 (c,d)films with the electron 
beam // Al2O3 [100] direction and Al2O3 [1-10] direction respectively at 300 K. 
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Since the epitaxial strain will change the lattice constant of the film and further influence the 

electronic as well as magnetic properties of material, it is very important to accurately measure 

lattice constant values of the epitaxial thin film. In our experiment, we use X-ray diffraction to 

measure the lattice parameters of the h-LuFeO3 films. Typical XRD ω-2 scan is shown in Fig. 

3.4(b). The right and left peaks originated from the Al2O3 (-123) and h-LuFeO3 films (-122). The 

result shows that the two planes have almost the same offsite angle, which also confirmed that 

the in plane epitaxial relation is Al2O3 [100]//h-LuFeO3 [100].  From both the c direction -2 

scan and h-LuFeO3 (-122)’s ω-2 scan, the lattice constants of h-LuFeO3 thin film are 

a=b=5.789Å, c= 12.000Å, indicating   an expansion at a and b axis while a contraction at c-axis 

as compared to the reported bulk values a=b=5.965Å and c=11.702Å.  

In this thesis, most of the measurements were done on the h-LuFeO3 film grown on Al2O3 (0001)  

substrate, but we also grown high quality single crystal thin film on top of sputtered epitaxial Pt 

(111) films on Al2O3 (0001), yttrium stabilized zirconium oxides (YSZ) (111) and MgAl2O4(111) 

substrates. The crystal structure and observed epitaxial relationship between substrate and h-

LuFeO3 films are shown in Fig. 3.6. The lattice mismatch between the film and the substrate on 

Pt, YSZ and MgAl2O4 are -6.3%, 5.6% and -4.3% respectively.  
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Figure 3.6 Crystal structure of substrate Al2O3 with the (0001) growth plane highlighted (a); Pt 
with the (111) growth plane highlighted(c); YSZ with the (111) growth plane highlighted (e); 
MgAl2O4 with (111) plane highlighted (f). The epitaxial orientation relationship of a LuFeO3 
lattice on (0001) Al2O3(b); (111) Pt(d); (111)YSZ and (111)MgAl2O4(g).  
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3.4 Crystal field splitting and optical band gap  

 

We investigate the electronic properties of h-LuFeO3 films using x-ray absorption and optical 

spectroscopy. The analysis of the x-ray absorption spectra (XAS) using crystal field theory 

reveal a splitting of the Fe 3d levels significantly higher than that of Fe3+ in LuFe2O4, indicating 

stronger Fe-O interactions. The extracted optical band gap from optical absorption spectra is 2.0 

± 0.1eV, somewhat smaller than perovskite ferrites68. The experimental findings have been 

confirmed by our electronic structure calculations.  

The x-ray absorption spectroscopy was carried out on 50 nm h-LuFeO3 films grown on Al2O3 

substrates using PLD with 30 nm Pt buffer layer (Fig. 3.7(a)) to avoid charging effect. The XAS 

was taken at beam line 4-ID-C at the Advanced Photon Source using polarized synchrotron x-

rays. A 20 nm thick h-LuFeO3 film was grown on YSZ(111) substrates using PLD (Fig. 3.7(b)) 

for optical spectroscopy measurements. Part of the substrate was covered by a mask during 

growth so it can be used as a reference in the optical transmittance measurement. Optical spectra 

were collected in transmittance mode using a Varian Cary 5000 spectrometer.  
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Figure 3.7 The x-ray diffraction spectra of h-LuFeO3 films grown on (a) Al2O3 substrates with 
Pt buffer layer and (b) YSZ substrates. 

 

 
Figure 3.8 (a) shows the XAS corresponding to transitions from a Fe 2p63d5 to a Fe 2p53d6 

multiplet. In the spectra, two groups of peaks separated by approximately 12eV can be 

distinguished. For each group, fine structures depending on the polarization can be recognized: 

two well-separated peaks (709.1 and 710.7eV) are observed for the s polarization, while 

additional intensity is observed for p polarization as a peak at 709.8 eV.  
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Figure 3.8 Crystal field splitting of Fe site (300 K). (a) The x-ray absorption spectra 
corresponding to Fe 2p to Fe 3d excitation. The symbols are the calculated matrix elements from 
the initial to the final on-electron states (see text). (b) Schematics of the experimental setup. (c) 
Schematics of the local environment of Fe sites. (d) The crystal splitting extracted from the XAS 
spectra. 
 

These spectra details are determined by dipole and spin selection rules and a combination of 

effects from crystal-field, spin-orbit coupling, d-p and d-d interactions and Fe3d O2p 

hybridization69,70. In terms of one-electron energy, the Fe 2p states are split into 2p1/2 and 2p3/2 by 

the spin-orbit coupling, which has the energy scale of 15eV, resulting in the two groups of 

excitations L2 (2p1/2→3d) and L3 (2p3/2→3d) in Fig. 3.8(a)69,71. For the Fe 3d states, the one-

electron states are mainly split by crystal fields, which is on the order of one eV69,71. Here the 

trigonal-bipyramid local environment of Fe gives rise to a symmetry that can be represented by 

the D3h point group as a good approximation, as shown in Fig. 3.8 (c). In this case, Fe 2p orbitals 
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can be reduced to states corresponding to irreducible representations (IR) e′(x, y) and a′′2 (z) 

states while Fe 3d states split into IR e′′(xz, yz), e′(xx−yy, xy) and a′1 (zz)72.A recent work on 

LuFe2O4 in which Fe3+ also sit in a trigonal-bipyramid local environment, has shown that the 

energies of these crystal field states follow Ea′1 > Ee′ > Ee′′ 52 . Similar results are also found for 

Mn3+ in a D3h symmetry73. 

According to Hund’s rule, the ground states of Fe3+ are a multiplet 6A′1 for an 

1
'

2
'

2
"

2
21

4
23 1

33322 aee dddpp  electronic configuration. In the ionic model that ignores hybridization 

between Fe3d and O2p state, the spin-allowed excited state multiplets and the corresponding 

one-electron state populations can be listed as shown in Table 3.270. These multiplets are divided 

into groups due to the p-d interactions, which have an energy scale of 5 eV 69. Since the ground 

states multiplet have a symmetry of A′1, the dipole-allowed excited states need to contain E′ or 

A′′2 to satisfy the dipole selection rules for a D3h symmetry72. The resulting dipole-allowed 

transitions are listed in Table 3.2. It is clear that the photon with z polarization cannot excite an 

electron from Fe 2p to Fe 3de′ state. These selection rules are verified in the L3 part of the XAS: 

for s polarization, the peak in the middle is much weaker, which suggests that the three peaks at 

709.1, 709.8 and 710.7 eV are coming from the effect of crystal field.  

The transition probability in the XAS depends on the matrix
2ˆ  fi rE  
, where the ψi and 

ψf are the initial and final one-electron states, Ê  is the direction vector of the electric field, and 

r


is the position vector. As shown in Fig. 3.8 (a) as symbols, the calculated matrix elements 

qualitatively agree with the dichroism for L3 excitation. The less obvious agreement for L2 

excitations is presumably due to a mixed energy splitting from crystal field and p-d interactions69. 

The peak positions allow for a rough determination of the crystal field splitting assuming similar 
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d-d interactions for different Fe 3d states: Ee′ − Ee′′=0.7 eV and Ea′1 − Ee′=0.9 eV, as also 

shown in Fig. 3.8(d). These splitting are significantly larger than those in LuFe2O4 (Ee′ − 

Ee′′=0.4 eV and Ea′1 −Ee′=0.8 eV for Fe3+ sites)52. The differences indicate a stronger Fe-O 

interactions, as also suggested by the different Fe-O bond length in h-LuFeO3 and those in 

LuFe2O4.
38  

 

Table 3.2: The spin-allowed excited states and the dipole selection rules from the 6A′1 

(
1

'
2
'

2
"

2
21

4
23 1

33322 aee dddpp )  ground state with a linearly polarized photon. 

 

 

 

In order to further elucidate the electronic structure of the h-LuFeO3, we measured optical 

absorption of the h-LuFeO3 films. The observed spectra (Fig. 3.9) shows three peak-like features 

at approximately 2.3, 2.9 and 3.9 eV, consistent with the recently reported optical properties of 

h-HoFeO3 and h-ErFeO3 films74. Based upon the overall intensity ~ 107 cm−1, these peaks 

correlate to dipole-allowed excitations. Since the Fe3+ has a 3d5 configuration, all the on-site 

excitations are spin forbidden. Therefore, the peak at 2.3 eV is coming from charge transfer 
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excitations68. A 2.0 ± 0.1 eV optical band gap was extracted using plots of α2 versus energy (Fig. 

3.9 in-set), assuming a direct gap. 

 

 

Figure 3.9 Optical absorption coefficient α as a function of photon energy. Inset: α2 as a function 
of photon energy which indicates an optical band gap of 2.0 eV. 
 
 
 First-principles electronic structure calculations can provide insightful picture of crystal field 

splitting. We determined our projected density of states (PDOS) by the density functional theory 

(DFT) implemented in the Vienna ab initio simulations package (VASP)75,76. We adopted the 

Perdew-Burke-Ernzerhof functional revised for solids (PBEsol)77 in which the spin-polarized 

generalized gradient approximation (GGA) is made in treating the exchange correlation effect of 

electrons. The resulting PDOS is presented in Fig. 3.10. One can clearly see that our theoretical 

results are consistent with the experimental data where the crystal field states follow Ea′1 > Ee′ > 

Ee′′. An unambiguous assignment of the crystal field states and energies can be further obtained 
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by generating Maximally Localized Wannier Functions (MLWFs)78 based on the ground state 

electronic structure in the selected energy window spanning all the crystal field states under 

consideration. The resulting MLWFs for each crystal field state are shown in Fig. 3.10 and the 

resulting energies are Ee′ − Ee′′ = 0.41 eV and Ea′1 −Ee′ = 0.81 eV, which are close to the 

experimental values of 0.7 and 0.9 eV respectively. This qualitative agreement between 

experiment and theory is expected within the frame work of DFT. However we should be aware 

that a more proper treatment of electron-hole excitations by GW based Bethe-Salpeter 

method79,80 can further improve the theoretical prediction. To overcome the severely 

underestimated band gap due to the delocalization error arising from the incomplete cancellation 

of the spurious self-interaction, we used the GGA+U with the effective U value (Ueff=U-J) of 

4.61eV81. This gives a band gap of Eg = 1.35 eV which still underestimates our experimental 

value. Again, amore proper treatment of self-energy by GW method will further bring the 

theoretical predictions closer to the experimental value.  

We have studied h-LuFeO3 films using x-ray and optical spectroscopy. Clear dichroism observed 

in XAS is attributed to the effect of crystal field splitting which is found significantly larger than 

that of Fe3+ in LuFe2O4, suggesting stronger Fe-O interaction. A 2.0 eV optical band gap 

originated from charge transfer excitations is determined from the optical spectra. This important 

information of electron structure, confirmed by DFT calculations will definitely benefit further 

studies of h-LuFeO3. 
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Figure 3.10 Projected density of states for conduction band of h-LuFeO3 with theoretical ground 
state structure (space group P63cm) and MLWFs (by WIEN2k software package82,83) with 
crystal field splitting states characters. 
 
 
 
 

3.5 Structure characterization and Ferroelectricity  
 

As depicted by Fig. 3.1(a), the local environment of Fe can be characterized as FeO5 trigonal-

bipyramids, the tilted FeO5 trigonal-bipyramids generating two inequivalent sites of Lu atoms: 

1/3 of Lu atoms are above the other 2/3 of them, corresponding to a √3×√3 reconstruction in the 

a-b plane. The weak streaks at 1/3, 2/3 positions in the room-temperature Reflection High 

Energy Electron Diffraction (RHEED) pattern (Fig. 3.5(b)) are in fact consistent with this 

reconstruction. Figure 3.11 shows the image of high resolution TEM, demonstrating clear 

layered structure of the h-LuFeO3 films. Fig. 3.11(b) is the scanning TEM image at room 
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temperature, viewed from [010] direction. The Bright lines correspond to the rows of Lu atoms, 

which are sandwiched between rows of Fe atoms. The z positions of the Lu rows show clear 

oscillation with period of three, while Fe rows are close to straight lines, consistent with the h-

LuFeO3 structure in Fig. 3.1(a). The observation of this structure is a direct evidence of the non-

central symmetry of the h-LuFeO3 films, which is a precondition for ferroelectricity. Looking 

carefully at the oscillation pattern, one may notice that the oscillating pattern is slightly different 

from that derived from the bulk h-LuFeO3 structure, which is depicted in Fig. 3.11(c). Rather it is 

more like the pattern displayed in Fig. 3.11(d). In order to elucidate the detail of the oscillation 

pattern, we quantified the position of Lu atoms by using Gaussian fit of the intensity profiles. We 

then calculated the z-position difference between the neighboring atoms, i.e. the position of the 

Lu atoms subtracted by the position of the Lu atoms on their immediate right. The resulting 

histogram is shown in Fig. 3.11(e). For the pattern in Fig. 3.11(c), one would expect three peaks 

with equal population: one at positive position, one at negative position and one at zero position, 

which is not observed in Fig. 3.11(e). Instead, there are only two peaks in the histogram. The 

positive (negative) peak represents a set of Lu atoms that are lower (higher) than their left 

neighbor. The fact that the center of the positive peak is about twice as much as the absolute 

center of the negative peak and the total counts is only about one half is in good agreement with 

the pattern in Fig. 3.11(d). This subtle distortion from the h-LuFeO3 bulk structure may be 

related to the epitaxial strain. In fact, it was also observed in h-LuFeO3 epitaxially embedded in 

LuFe2O4 matrix.  
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Figure 3.11 (a) High resolution TEM of an h-LuFeO3 film showing clear layered structure. (b) A 
Scanning TEM image of the h-LuFeO3 film showing positions of Lu atoms. (c) The 
displacement pattern of Lu atoms derived from the bulk h-LuFeO3 structure. (d) The 
displacement pattern of Lu atoms proposed for the h-LuFeO3 films. (e) The histogram of the z 
position difference between neighboring Lu atoms. 

 

The isomorphic polar structure of the h-LuFeO3 films and RMnO3 and the similar structural 

transition suggests that ferroelectricity with the same mechanism may also exist in h-LuFeO3. 

For the hexagonal RMnO3, the ferroelectric transition temperature (TFE) is several hundred 

Kelvin lower than the reported non-polar to polar structure transition temperature (Tnpt). 

According to Landau’s theory of structural phase transitions, any atomic displacements from the 

high symmetry phase to low symmetry phase could be transform as a linear combination of 
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irreducible representations. Table 3.3 show the possible phase transition from P63/mmc to P63cm 

in terms of irreducible representations.8 Δ(X) means the distortions of atom X.  

 

Table 3.3  The possible high-temperature phase transition P63 /mmc to P63cm in terms of 
irreducible representations 
 

 

 
 

(1) Г1
+

 is a one dimensional mode, it gives P63/mmc to P63/mmc;  

  Δ(O(1)) = -Δ(O(2)) = λ1(Oap) Ĉ 

(2) Г2
- is a one dimensional mode, it gives P63/mmc to P63mc; 

Δ(Mn) = λ2(Mn) Ĉ 

      Δ(R(1)) = -Δ(R(2)) = λ2(R) Ĉ 

Δ(O(1)) = Δ(O(2)) = λ2(Oap) Ĉ 

Δ(O(3)) = Δ(O(4)) = λ2(Oeq) Ĉ 

(3) К1 is a two dimensional mode, it gives P63/mmc to P63/mcm; 
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Δ(Mn) = λ3(Mn) Ā 

Δ(O(1)) = Δ(O(2)) = λ2(Oap) Ā 

(4) К3 is a two dimensional mode, it gives P63/mmc to P63cm; 

      Δ(R(1)) = -Δ(R(2)) = λ4(R) Ĉ 

Δ(O(1)) = -Δ(O(2)) = λ2(Oap) Ā 

Δ(O(3)) = -Δ(O(4)) = λ2(Oeq) Ĉ 

In the h-RMnO3 system, it has been shown that the atomic displacement of h-RMnO3 from the 

high temperature phase to low temperature phase can be decomposed by two irreducible 

representations K3 and Г1. In the K3 mode, the tilting of the MnO5 bipyramids and corrugating of 

the R layers causes a tripling of the unit cell and form the√3×√3 reconstruction in the a-b plane. 

High temperature (HT) symmetry P63/mmc changes to the low temperature (LT) symmetry 

P63cm. This polar structure does not create ferroelectric moment at this moment. In the second 

mode Г1, the symmetry is still P63cm, the Oap-Mn-Oap axis in MnO5 biphyramid move through z 

axis and generates a spontaneous polarization. At this stage, we attempt to find this non-polar to 

polar transition temperature (Tnpt) and ferroelectric transition temperature (TFE) of h-LuFeO3. 

Because the distortion from a non-polar symmetry P63/mmc to polar symmetry P63cm 

corresponds to an in-plane √3×√3 reconstruction, which manifests itself as the extra peaks in the 

XRD. So XRD measurement was used to approach this reconstruction. We measuring the 

diffraction peaks near Q=(-126), (-1/3,2/3,2) and (-2/3,4/3,4) (P63/mmc notation) at 300 K. As 

shown in Fig. 3.12(a), the presence of (-1/3,2/3,2) and (2/3,4/3,4) super lattice peaks suggests 

that the inversion symmetry was broken at room temperature. To study the structure change 

through the temperature, we focus on the diffraction peak (-1/3,2/3,2) and increase the 
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temperature from 298K to 1025K. As shown in Fig. 3.12(b), a decrease of intensity (-1/3,2/3,2) 

peak with increase temperature was observed. Because the limitation of the xrd measurement, 

the highest temperature it can reach is 1025 K , but the peak remained clearly visible at 1025K 

indicating Tnpt >1025K.   

 

 

Figure 3.12 (a) -2 scan of the h-LuFeO3 super lattice peaks in the P63/mmc notation at room 
temperature.(b) Temperature dependence XRD measurement of the (-1/3,2/3,2) peak from 298K 
to 1025K. (c) The structure of h-LuFeO3 viewed along the [0 0 1] direction and the trigonal-
bipyramid local environment of Fe atoms in the middle layer is displayed, also the (-126), (-
1/3,2/3,2) and (-2/3,4/3,4) planes are highlighted. Top view of the a-b planes are shown with the 
intersection line between (-126), (-1/3,2/3,2) and (-2/3,4/3,4) planes. (d) RHEED patterns of h-
LuFeO3 films with the electron beam // h-LuFeO3 [1-10] direction at 300 K.  
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To prove the XRD measurement and figure out the Tnpt, we use RHEED as another way to 

approach this structure change. From the Fig. 3.12(c), we can see that the atoms aligned 

vertically to intersection line between the (-1/3,2/3,2) and (2/3,4/3,4)  planes with the a-b plane 

are exactly the atoms which show this in-plane √3×√3 reconstruction and corresponding to the 

extra streaks in the RHEED pattern at the 1/3 and 2/3 position shown in Fig. 3.12(d).  Using 

these weak streaks as an indicator of the lattice structure, we were able to track the structural 

changes with temperature. As shown in Fig. 3.13(b), (c), these reconstruction streaks are visible 

at 298 K but are absent at 1100 K. The intensity contrast between the reconstruction streaks and 

the main streaks are over plotted with the integrated intensity of (-1/3,2/3,2) peak from the XRD 

measurement in Fig. 3.12(b) as a function of temperature. Both XRD and RHEED measurement 

are consistent very well which shows that Tnpt is around 1100 K.   

To clarify whether the observed structure change from RHEED pattern originates from the thin 

film itself or a surface effect, we measured the RHEED pattern of the thin film after growth at 

room temperature with different angles between the electron beam and sample surface. The 

incident electron beam energy is 34 keV. According to electron beams mean free path, the 

penetration depth of a 34 keV electron beam is much more than 10 nm. Normally, a grazing 

incident angle (around 1°) between electron beam and sample surface is used to achieve the good 

surface sensitivity. However, larger angle can still probe the bulk properties. As shown in Fig. 

3.14(a), when the angle between electron beam and sample is small (1.3°), no reconstruction 

streaks are observed, which means that there is no reconstruction on the surface. On the other 

hand, the RHEED pattern shows very clear reconstruction streaks (Fig. 3.14(b)) at bigger angle 

(3.4°), where the electron beam can go much deeper into the sample. This result is also 

confirmed by the Low energy electron diffraction (LEED) with the energy of 180eV. LEED only 
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probes the surface structure, because the penetration depth of low energy electron is only about 

1-2nms. We see clear hexagonal structure without reconstruction in LEED pattern (Fig. 3.14(d)). 

Therefore, it is evident that the reconstruction originates from the thin film itself instead of the 

surface. 

 

Figure 3.13 (a) Temperature dependence of the intensity contrast between the reconstruction 
streaks and the main streaks from the RHEED image(blue) are over plotted  with the integrated 
intensity  of (-1/3,2/3,2) peak from the XRD measurement (red). The structure models for low 
temperature symmetry  and high temperature symmetry are shown as the insets. (b) and (c) are 
the RHEED pattern of an h-LuFeO3 films with the electron beam // Al2O3 [100] direction at 300 
K and 1100 K respectively. 
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Figure 3.14  RHEED and LEED patterns of the h-LuFeO3 films at 300K. The angle between 
electron beam and sample surface is 1.3  ̊(a) and 3.4  ̊(b) ; (c) Set up of the RHEED; (d) LEED 
pattern with the electron energy of 180eV. 
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Through the structure study, h-LuFeO3 shows the polar structure. To assess possible 

ferroelectricity in our h-LuFeO3 films, we also studied the switchability of films on the Pt 

electrodes using PFM  84(The xrd scan of the h-LuFeO3 film grown on 30 nm (111) Pt epitaxial 

on (0001) Al2O3 shown in Fig.  3.15(a) ).  Here we used Band Excitation Switching Spectroscopy 

with an ac imaging voltage of 2 Vac and a maximum switching voltage of 12 Vdc;
85 a metal 

coated tip (Nanosensors) is used. We measured three piezoresponse loops each on a 10 × 10 

point grid in one 3 × 3 μm2 area and extracted the average switching behavior as displayed in 

Fig. 3.15(b). The piezoelectric loops show square-shaped loops with switching voltages around 5 

V and -7 V, which are indicative of ferroelectric switching. 

To concluded, h-LuFeO3 thin films have been shown to have polar structure and 

ferroelectric switching effect, indicating ferroelectricity. 

 

 

 

Figure 3.15 Ferroelectric switching effect of the h-LuFeO3 films grown on 30 nm Pt epitaxial on 

Al2O3 substrate. (a) The -2 scan of the h-LuFeO3 film grown on 30 nm Pt epitaxial on Al2O3. 
(b) PFM response showing square-shaped hysteresis loop. The amplitude and phase of the PFM 
are shown in the insets. 
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3.6 Magnetic characterization 
 

We now turn our attention to the magnetic properties of these films. Neutron diffraction 

experiments were carried out to study the magnetic order of h-LuFeO3 thin films. The films were 

aligned in the (h 0 l) diffraction plane in a closed-cycle refrigerator. At low temperature, several 

Bragg peaks were clearly observed (Fig. 3.16). As shown in Fig. 3.16 (a) and (c), the (1 0 0) 

peak intensity drops as the temperature increases up to 130 K while for the (1 0 2) peak the 

transition occurs at approximately 440 K (Fig. 3.16 (b) and (d)). In contrast, the change of the 

diffraction peaks (3 0 0) and (0 0 4) with temperature is minimal between 4 K and 450 K (Fig 

3.17(a) and (b)). In addition to neutron diffraction, measurements using a superconducting 

quantum interference device (SQUID) magnetometer revealed that the zero-field-cool (ZFC) 

magnetization and fieldcool (FC) magnetization split at 130 K under magnetic field along the c-

axis, indicating the appearance of a ferromagnetic component of the magnetic moment along the 

c-axis (Fig. 3.18(a)). 

Since h-LuFeO3 is similar in structure with RMnO3 (space group P63cm) and their magnetic 

structures can be characterized with the same propagating vector K=0 (magnetic unit cell is the 

same as the chemical unit cell), we can analyze the magnetic structure of h-LuFeO3 following the 

symmetry analysis in RMnO3. In this case, the Bragg peaks (1 0 2) and (1 0 0) are in principle 

coming from a combination of nuclear and magnetic diffractions. However, our structure 

characterizations do not indicate any clear transition close to 440 K, which is consistent with the 

fact that in RMnO3 the magnetic diffraction constitutes the majority of the intensity for (1 0 2) 

peak.86 Therefore, the transition at 440 K corresponds to the appearance of a long range 

antiferromagnetic order. Taking TN=440 K as the antiferromagnetic phase transition temperature, 



69 
 

one can fit between 200 K<T<440 K the peak intensity using I=In+Im(1-T/TN)α where In and Im 

are the nuclear and magnetic contributions of the intensity respectively and T is temperature. The 

result shows α=0.46 +/- 0.08, falling well in the reported value range of YMnO3.
87,88  In contrast, 

the fit for (1 0 0) peak intensity gives a much larger value α=0.69 +/- 0.15. The development of 

ferromagnetic component below TR=130 K suggest that the system displays a second magnetic 

phase with a ferromagnetic component at low temperature. 

 

Figure 3.16  Magnetic Bragg peaks and the temperature dependence of their intensities from 
neutron diffraction. Diffraction intensity profile near the (1 0 2) (a), and (1 0 0) (c) magnetic 
Bragg points. The lines are the Gaussian fits. Temperature dependence of the intensity of the (1 0 
2) (b) and (1 0 0) (d) magnetic Bragg peak. The curves in b and d are fits to the data points (see 
text). The inset of d shows the temperature dependence of magnetization in ZFC and FC 
processes with the magnetic field along the c-axis. 
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Figure 3.17  Intensity profiles of neutron diffraction near Bragg point (300) (a) and (004) (b). 

 

 

Figure 3.18 Temperature dependence of magnetization (M-T) of h-LuFeO3 grown on 
Al2O3(0001) (a) and YSZ (111) substrates (b),(c) at field-cool (FC) and zero-field-cool (ZFC) 
conditions (H=500Oe). (b) Raw data whose paramagnetic background is so strong that the 
splitting between ZFC and FC data is not obvious. (c) Data after subtracting the paramagnetic 
background. 

 

The XMLD measurements confirmed the spin reorientation at low temperature and suggest a 

magnetic ordering temperature much higher than that. Here the h-LuFeO3 films are illuminated 

by a synchrotron x-ray polarized along p (in plane) and s direction, as shown in Fig. 3.19(a). The 
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photoluminescence and photoelectron signal was collected as a function of incident photon 

energy at a zero magnetic field. However, the photoelectron spectra are often distorted by the 

charging effect due to the insulating nature of the h-LuFeO3 films. Therefore, only the 

photoluminescence data is discussed below. The XMLD signal is proportional to the excitation 

strength of an electron from deeper level to the valence level by a photon. It measures directly 

the orbital information of the valence electrons while the spin information is also included due to 

the spin-orbital coupling. Therefore, it is sensitive to the orientation of the spin (e.g. in-plane or 

out-of-plane) but no to the sign (e.g. up or down). The advantage of XMLD is that one can 

specifically examine the magnetic behavior of a certain element. Here we focus on the Fe-L2 

edge, i.e. only the spin orientations of Fe atoms are measured. As shown in Fig. 3.19(b) and (c), 

the XMLD spectra show an obvious difference for s-polarized and p-polarized incident photons, 

indicating a large orbital anisotropy of the Fe3+ for in-plane and out-of-plane. What’s more 

interesting is the temperature dependence. As shown in Fig. 3.19(d), the contrast (defined as the 

integration of the difference spectra between the two polarization directions first increases when 

the temperature is lowered, but decreases quickly after the temperature is lower than 110 K. If 

there is no structural transition in the temperature range 50-300 K, the temperature dependence 

of the XMLD intensity represents the spin structure as a function of temperature. In general the 

spin order is strengthened at lower temperature, corresponding to the increase of the XMLD 

intensity. In addition, a spin reorientation toward out of plan tends to decrease XMLD intensity. 

The competition of the two effects could result in a peak at slight lower than the spin 

reorientation temperature. The spin reorientation is consistent with that observed from the 

SQUID data discussed above. Judging from the XMLD data, the magnetic ordering temperature 
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TN is very unlikely to be the same as the spin reorientation temperature TR because of the XMLD 

intensity keeps changing way above TR. 

 

Figure 3.19 X-ray magnetic linear dichroism (XMLD) measurements. (a) Experimental setup for 
the XMLD measurements. (b) Profiles of the fluorescence intensity of the Fe-L2 edge of for s and 
p polarized incident X-ray (after background subtraction) which shows significant anisotropy. (c) 
The difference between the two profiles in (b). (d) The XMLD contrast as a function of 
temperature at zero magnetic field.  
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We can derive the magnetic structure of h-LuFeO3 films to a certain degree by taking both the 

neutron scattering data and the magnetization measurements into account. Since h-LuFeO3 is 

similar in structure with RMnO3 (R=Y, Sc, Ho-Lu) (space group P63cm) and their magnetic 

structures are characterized with same propagating vector K=0, we can try to analyze the 

magnetic structure of h-LuFeO3 following the same practice of the symmetry analysis in 

RMnO3.
89–92   Fig. 3.20 summarizes the possible magnetic structures with the propagating vector 

K=0 in a Hexagonal LuFeO3. Here 1, 2, 3 and 4 are irreducible representations; and 

5=1+2, 6=3+4.  We notice that the ferromagnetic component along c-axis is only 

compatible with 2 (P63cm symmetry) and 1 +2 (P63 symmetry).91 Because (1 0 0) magnetic 

peak is absent in 2 and 4,
93

 it is evident that only 1 +2 can account for the data below TSR. 

Since 1 and 3 will lead to substantial magnetic intensity near (1 0 0), they can be ruled out for 

the magnetic structures at temperatures TSR<T<TN, where (100) magnetic peak disappears. In 

addition, the presence of 2 will generate ferromagnetic component along the c-axis, as it does 

for T<TSR, since the corresponding spin interaction is not suppose to disappear at TSR. Therefore, 

the only candidates is 4 for the magnetic structures at temperatures TSR<T<TN. 
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Figure 3.20 The possible magnetic structure of the Fe sites (irreproducible 
representations) in the P63cm crystallographic symmetry and the assignments for h-LuFeO3 
according to the neutron scattering and magnetization measurements. The darker (lighter) balls 

represent Fe atoms at z/c=0 (z/c=0) and the arrows indicate the magnetic moment direction. 1 

(3) and 2 (4) are related by the in-plane rotation angle . The 1 (2) and 3 (4) are a 

homometric pair. P63
’ (P63) is a superposition of 3 and 4 (1 and 2). The magnetic structure of 

h-LuFeO3 takes the form P63 at T<TR and 4 at TR<T<TN. 

 

We propose that the microscopic mechanism for the ferromagnetic moment is 

Dzialoshinskii-Moriya (DM)94,95 interaction in which the effective Hamiltonian is 

 
ji

jiijDM SSDH
,

)(


, where iS


is the spin on site i, and ijD


 is the interaction coefficient. 

Here the spin canting toward c-axis allows a slight reduction of the spin-spin angles from 120o, 
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gaining energy according to the DM interaction, while keeping the in-plane projections of spin-

spin angles 120o. Note that the DM interaction was first proposed to explain the weak 

ferromagnetism in -Fe2O3, which disappears below approximately 260 K due to spin 

reorientation.94–96 This DM interaction is also cited as the origin of weak ferromagnetism in 

orthoferrites and ScMnO3. 
62,91 The contributions from Fe and Mn to the net magnetic moments 

in those materials are all in the range of 0.01-0.1μB/formula unit. 62,91 We note this type of spin 

reorientation was also proposed previously to explain the magnetization of h-RFeO3 (R: Lu, Er-

Tb) films grown on (1 1 1) YSZ using metal organic chemical vapor deposition (MOCVD). 63,97  

What distinguishes our results from these previous reports is the clear observation of 

room-temperature antiferromagnetic order, which is difficult to detect using magnetization 

measurements alone, especially with the strong paramagnetic background from the YSZ 

substrate. 63,97 We also did the SQUID measurement of the temperature dependence of 

magnetization (M-T) of h-LuFeO3 grown on yttrium stabilized zirconium oxide (YSZ) substrates 

at field-cool (FC) and zero-field-cool (ZFC) conditions (H=500Oe). Fig. 3.18 (b) shows the raw 

data whose paramagnetic background is so strong that the splitting between ZFC and FC data is 

not obvious. After subtracting the paramagnetic background assuming the Curie’s law: M=CH/T, 

the ZFC and FC data split at around 130 K (Fig. 3.18(c)), consistent with that of sample grown 

on Al2O3. Clearly the background subtraction causes artificial drops of magnetization at T<20 K. 

Therefore, further quantitative analysis on this sample may not be reliable. (Note that the 

diamagnetic background from the substrate which is temperature independent is not subtracted 

here, which is why the magnetization is negative. The magnetization data of h-LuFeO3 on Al2O3 

substrates shown in the paper is without paramagnetic background subtraction because the 

paramagnetic signal from the substrates is minimal.) Interestingly, previously studied 
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orthoferrites show weak ferromagnetism all above 600 K, 98 but the magnetic ordering 

temperature of h-RFeO3 is expected to be lower due to the frustration created by the triangular 

spin lattice.98–102 On the other hand, the magnetic ordering temperature of the geometrically 

frustrate lattices also depend strongly on anisotropy.101,102 Therefore, the future investigation on 

the interplay between exchange interaction, frustration and anisotropy of h-RFeO3 will be very 

interesting. 

 

3.7  Conclusions  

The difficulty in finding single phase materials that exhibit both ferroelectric and magnetic order 

at room temperature has puzzled researchers because there are no physical principles prohibiting 

their existence. The observation of coexisting ferroelectricity and antiferromagnetism in single 

phase h-LuFeO3 demonstrates another good example besides BiFeO3. In addition, the high 

magnetic ordering temperature enables the application potential such as electric field control on 

magnetic phase that is unfortunately less practical in RMnO3 due to the low TN. Therefore, the 

combined room temperature ferroelectric and magnetic order make h-LuFeO3 a material not only 

promising for technological applications but more importantly, extremely intriguing for 

fundamental research. 
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Chapter 4: 

Surface Science Techniques 

   

4.1 Pulsed Laser Deposition (PLD)103 

PLD (Pulsed Laser Deposition) is an ideal technique for thin film deposition. The basic setup of 

our PLD system is shown in Figure (4.1). A high power pulsed laser beam is focused on a 

desired target in a UHV chamber. The ejected materials, which contain energetic electrons, ions, 

molecules and atoms, are directed onto a substrate facing the target. Those atoms are experienced 

very complex processes and deposited on the surface of the substrate and form a thin film. Once 

the laser ablation generates a large atomic flux corresponding to peak arrival rate of 10e18 to10e19 

atoms/cm2s, these incoming atoms are deposited on the surface and become adatoms which 

diffuse on the substrate’s surface. Some coalesce and become nuclei and some attach to the 

existing nuclei and contribute to the step advance. After a certain time t, if an adatom doesn’t 

attach to the existing step, it will be re-evaporating out of the substrate’s surface.  A relatively 

longer time follows with small arrival rate after the pulse of high instantaneous atoms’ arrival. 

During this time, the background gas contributes mostly to the new adatoms. The small nuclei 

forms in the previous step may become unstable and decay into adatoms. The laser-solid 

interaction and the process of the deposition are extremely complex. We will use a simple 

thermal dynamic model to describe this process in chapter 2.  
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Figure 4.1 The basic setup of PLD system 

 

4.2. Reflection High Energy Electron Diffraction (RHEED) 

RHEED is a technique to characterize the surface of crystalline materials. The setup is shown in 

Figure (4.2): an electron gun generates a beam of electrons which strikes on the sample surface 

with a very small angle. The electrons diffracted from the sample surface will be collected by the 

detector. In my experiment, I used RHEED technique to characterize the crystallography of the 

sample and monitor the growth of the thin films. The incident electrons which have the wave 

vector ki (which is the reciprocal of the wavelength of the incident electrons) will interact with 

the sample and the diffracted electrons with the wave vector kf will constructively interfere at 

specific angles. Because the process is elastic scattering, so we have |ki|=|kf|. Take |ki| as the 

radius of the Ewald’s sphere, kf which corresponds to an allowed direction condition will also 

fall on the Ewald’s sphere (Fig. 4.3). Based on these, we can calculate the epitaxial relation 

between the substrate and the film.  We can also use RHEED to monitor the film’s layer by layer 

growth and surface quality. RHEED is very sensitive to the sample’s surface, with a glazing 

angle,  only the first several layers of the atoms at the film surface contribute to the RHEED 
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pattern. So the intensity of individual spots on RHEED pattern can show single monolayer’s 

growth process. Figure (4.4) shows the relation between the RHEED pattern intensity’s periodic 

fluctuation and a single monolayer growth. Each full period represents formation of a single 

atomic layer. The prefect full filled layer corresponds to the highest RHEED intensity. The 

rougher of the surface, the less intense of the RHEED pattern we observe. The intensity is 

weakest on a half-filled layer. Once one layer growth is finished, the intensity recovers. 

                         

 

Figure 4.2  Basic setup of  RHEED  system 

 

 

           Figure 4.3 Ewald sphere show the interference relation in a diffraction experiment 
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Figure 4.4 Relation between the RHEED pattern intensity’s periodic fluctuation and a single 
monolayer growth 

 

4.3  Low Energy Electron Diffraction (LEED)104 

Similar to the RHEED, LEED is another tool we use to study the sample’s surface structure. 

When monoenergetic electrons (10-200eV) are directed to the sample surface, electrons 

diffracted from the surface will be gathered on a phosphor screen which biased at a large positive 

potential on the order of several kilovolts. Only those scatted electrons which have the same 

energy as the incident electrons will passing through a repeller grid, accelerated and finally strike 

on the screen with a high energy. The crystal having long range order will show a diffraction 

pattern. From the diffraction pattern we will be able to determine the symmetry and size of the 

surface unit cell. Intensities of the diffraction spots provide the information of the amplitude of 

surface atom vibrations.   
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4.4  X-Ray Diffraction (XRD) 

X-ray diffraction is an extremely useful tool for determining the crystallographic structure, 

chemical composition, and physical properties of thin films. When a monochromatic X-ray beam 

with wavelength λ is projected onto a crystalline material at an angle theta (Fig. 4.6), diffraction 

occurs only when the Bragg’s law conditions are satisfied as shown is the Fig.4.5. Bragg’s law is 

defined as 2d sin(θ) = nλ where d is the inter-planar distance, θ is the angle between the incident 

beam and the scattering plane, n is an order determined integer, and λ is the wavelength of the 

incident photon. By varying the angle theta, it will produce a pattern conclude all phases. There 

are several different kinds of XRD measurements to characterize the film sample. X-rays theta-

2theta scan is used to probe crystalline planes in a film parallel to the substrate’s surface. X-ray 

texture measurements is often plotted in polar coordinates, it measures at a fixed scattering angle 

with a series of φ, ω scan at different tilt ψ angles. We can also do the φ scan at both fixed 

scattering angle and tilt ψ angles on substrate and thin film to testify the epitaxial relationship 

between substrate and the film. All the real crystals will have some imperfection in it which is 

known as mosaic structure. So the whole film will broke up into some small blocks, those blocks 

are slightly disoriented one from another. Suppose the disorientation angle is ∆, then the 

diffraction peaks of a single crystal are not exactly at the angle of θ but at all angles between θ-∆ 

and θ+∆. The Rocking curve measurement is a way to characterize the quality of the single 

crystal. The better quality film will have smaller number of the full width of half maximal 

(FWHM) of the rocking curve. The influence of those defects and mosaic are difficult to be 

observed and separated from other features from the single scans. Reciprocal space maps can be 

collected, which provides more information about the defects. 
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Figure 4.5 Bragg’s law 

 

Figure 4.6 XRD basic set up 
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4.5 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) is a vital tool to probe the atomic structure of crystal 

in which a focused electron beam is transmitted through an ultra-thin sample.  The electrons go 

through the sample, interact with the sample and finally are projected onto a screen. This 

technique allows us to study the fine details of the structure of the sample. For example, 

orientation of the film, misfits, stacking faults and twinning in the sample. 

 

4.6  Superconducting Quantum Interference Device (SQUID) Magnetometer 

SQUID magnetometer is an extremely sensitive instrument used to measure extremely weak 

magnetic field, which makes it the ideal for studies thin film sample because of the small volume 

of thin film. The Quantum Design SQUID which consists of two superconductors separated by 

thin insulating layers to form two parallel Josephson junctions. Up to 7T magnetic fields  can be 

applied in our SQUID with the temperature range from 4K to 400K, and has a sensitivity of 

2*10e-8 emu. We also used the high temperature SQUID with an external furnace in the setup. 

The high T SQUID has a stable temperature range from room-T to 800 K.   

 

4.7. Atomic Force Microscopy (AFM) and Piezo Force Microscopy (PFM) 

The atomic force microscope is a high resolution type of scanning probe with a resolution on the 

scale of nanometers.  Unlike the  STM (scanning tunneling microscopy), which can only image 
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conducting and semiconducting surface, Atomic Force Microscopy can image almost all kinds of 

surface such as insulator, polymers and biological samples. A cantilever with a probe tip radius 

of curvature of several nanometers can be used to see the surface when brought into very close to 

a sample surface. The force between the tip and the sample is not measured directly, but 

calculated by measuring the deflection of the cantilever which is measured using a laser spot. 

The laser spot is reflected from the tip into an array of photodiodes. This force is calculated by 

treating the cantilever as a spring, obeys the Hooke’s law F=-kz, where F is the force, k is the 

spring constant,  z is the tip deflection, which is shown as the position change of a laser beam 

that reflects off the tip on the cantilever. Figure (4.7) shows the relation between the force and 

the probe distance from sample. AFM is very useful because the tip can interact with the surface 

through many different forces, such as Van der Waals force, magnetic force, chemical bonding 

force and electrostatic forces. Here, we mainly introduce two kinds of operation modes: contact 

mode and tapping mode. For the contact mode, we keep the force between the tip and the surface 

as a constant during the scanning by maintaining a constant deflection. This means the tip will 

keep a constant height above the surface and the overall force is repulsive. For the tapping mode, 

the cantilever is oscillated near its resonance frequency, and the tip is close to the sample surface 

with the amplitude around 100nm to 5um. During the scan, the oscillating tip moves toward the 

surface until it taps the surface. The cantilever intermittently contacts the surface. There is an 

electronic servo used to adjust the height between the cantilever and the sample to maintain 

constant oscillation amplitude. When the tip scans over a bump, the amplitude of oscillation 

decreases; when it passes over a depression, the oscillation amplitude increases. Once the 

amplitude changes, the electronic servo will give a feedback signal, and then adjust the tip height 

to maintain the constant amplitude.  
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Figure 4.7   Relation between the force and the probe distance from sample 

 

Piezoelectric force microscopy is a variant of Atomic force microscopy that can be used to study 

the piezoelectric response of materials under applied voltage. Since all ferroelectrics are also 

piezoelectric, we use PFM image and P-E loop to study the piezoelectric response of our samples.   

In our experiment setup, a conductive AFM tip is brought into contact with a ferroelectric 

surface or piezoelectric materials and an AC modulation is applied with an optional DC offset 

bias to the tip. This bias will establish an external electric field within the sample. Due to the 

inversed piezoelectric effect, an applied electric field can produce a mechanical strain and the 

sample surface will locally expand or contract. Figure (4.8) shows the schematic diagram of the 

PFM. Suppose we have out-of-plane electric polarization, when the applied electric field is 



86 
 

parallel to the electric polarization, the electrical domain would experience a vertical expansion; 

when the applied electric field is anti-parallel to the electric polarization, the electric domain 

would experience a vertical contraction. The domain size changes will directly result in a 

decrease or increase of the cantilever deflection. The AFM tapping mode is used to probe 

sample’s mechanical response. The image shows contrast which corresponds to the vertical 

movement of the AFM tip.   

 

 

Figure 4.8 How to use the PFM to study the ferroelectric materials 
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4.8  X-Ray magnetic Circular Dichroism (XMCD) and X-Ray Magnetic 

Linear Dichroism (XMLD)105  

 

I. XMCD 
 

XMCD spectroscopy is usually used to study the materials which have ferromagnetic properties. 

During the measurement, either right or left circularly polarized photons will be provided, these 

two kinds of polarized photons have different absorption process between the spin-up or spin-

down electrons, so it is spin dependent. The polarized photons transfer the angular momentum to 

the excited photoelectron, during this process; right circular photons transfer the opposite 

momentum as left circular photons. Since L3 and L2 edge have opposite spin orbital coupling, 

the polarization will be opposite at these two edges. As shown in the Figure 4.9.  

 

 

Figure 4.9   XMCD spectrum of Fe 
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II. XMLD 
 

X-ray magnetic linear dichroism is to use the linearly polarized x-ray to study the magnetic 

properties. It can determine the orientation of the magnetic axis. The XMLD signal is 

proportional to the excitation strength of an electron from deeper level to the valence level by a 

photon. It measures directly the orbital information of the valence electrons while the spin 

information is also included due to the spin-orbital coupling. Therefore, it is sensitive to the 

orientation of the spin (e.g. in-plane or out-of-plane) but no to the sign (e.g. up or down). The 

orbital anisotropy of the detected atoms will lead to an asymmetry of the X-ray absorption signal. 

This effect is very easy to observe at the multiplet splitting, as shown in the Figure 4.10.  

 

 

Figure 4.10   XMLD spectrum of Fe 
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4.9 Neutron scattering 

Neutron scattering is a powerful tool to study the magnetic structure and spin excitations of 

condensed matter system because neutrons have magnetic moments which can interact with the 

magnetic field in the sample. In neutron scattering experiment, the sample will be put into the 

neutron beam and the scattered neutron intensity as a function of scattering angle and neutron 

energy will be detected. The scattering process is ruled by the laws of momentum and energy 

conservation: 
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In a neutron diffraction (elastic scattering) experiment, the energy transfer is fixed at (ћω=0). 

The sample can be examined to obtain a diffraction pattern that provides information of the 

magnetic and nuclear structure of the material.   
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