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Abstract

Molecular dynamics simulation has become an essential tool for scientific discovery and investigation.
The ability to evaluate every atomic coordinate for each time instant sets it apart from other
methodologies, which can only access experimental observables as an outcome of the atomic
coordinates. Here, the utility of molecular dynamics is illustrated by investigating the structure
and dynamics of fundamental models of cellulose fibers. For that, a highly parallel code has
been developed to compute static and dynamical scattering functions efficiently on modern
supercomputing architectures. Using state of the art supercomputing facilities, molecular dynamics
code and parallelization strategies, this work also provides insight into the relationship between
cellulose crystallinity and cellulose-lignin aggregation by performing multi-million atom simulations.
Finally, this work introduces concepts to augment the ability of molecular dynamics to interpret
experimental observables with the help of Markov modeling, which allows for a convenient
description of complex molecule dynamics as transitions between well defined conformations. The
work presented here suggests that molecular dynamics will continue to evolve and integrate with
experimental techniques, like neutron and X-ray scattering, and stochastic models, like Markov
modeling, to yield unmatched descriptions of molecule dynamics and interpretations of experimental
data, facilitated by the growing computational power available to scientists.
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1. Introduction

The fundamental premise of structural biology is that biological function arises from the interactions
and properties of molecules. The power to manipulate biological function in a controlled manner is
thus closely related to the capacity to understand and study molecules and to exert change on the
molecular level. With recent advances in drug design [1, 2] and genetic engineering [3, 4], structural
biology is one of the most successful domains of applied nanotechnology to date [5, 6, 7, 8].

The advancement of structural biology was and still is greatly facilitated by progresses in
experimental techniques which allow the characterization of molecules on many different structural
levels. Mass spectrometry is frequently used to discover molecular chemical composition and
structural motives [9], X-ray and neutron crystallography are used to determine molecular shape and
configuration [10], NMR is used to detect the specific chemical environment within molecules [11],
microscopic methods are used to localize molecules within a given environment or detect their
association with each other [12], and many more techniques exist. It is fair to say that it is the
combination of techniques which gives the experimental toolkit such a versatility.

A subgroup of experimental techniques not only allows the determination of molecular structure
but also dynamics. The time resolution of the technique is closely related to the type of physical
process it is exploiting. E.g. NMR uses spin polarization to study diffusion processes and changes in
chemical environments [13] and probes the millisecond time scale, while the scattering of neutrons
and X-rays is sensitive to time-dependent changes in the positions of atoms [14] and probes the
nanosecond to picosecond and picosecond to femtosecond time scale.

The interpretation of experimental data and the study of molecular dynamics was traditionally
(prior to the establishment of molecular simulation techniques) constrained to simple, yet powerful,
analytical theories. A prominent example is the inverse scattering problem in small angle neutron
scattering (SANS), where the one dimensional scattering vector length dependent scattering
intensity, S(q), can be matched against a library of intensity profiles computed from idealized
geometric shapes [15]. While this approach works fine whenever the particular molecule is static
and resembles an idealized shape, it falls short for most realistic molecules, because they may adopt
a variety of shapes with different probabilities. Molecular dynamics (MD) simulation assisted SANS
solves this problem by computing the molecular shapes and their probability distribution a priori.
However, it requires knowledge of the structural composition of the molecule which may not be
accessible. Another example where the experimental data suffers from underdetermination is in
dynamic neutron scattering in which a relatively simple signal may result from the superposition
of many relaxation processes [16]. Here, MD simulation can be used as a deductive tool, matching
experimental spectral fingerprints to the corresponding fingerprint calculated for various simulation
conditions.

The establishment of Petascale supercomputing facilities [17, 18] and the shift towards massively
parallel computing platforms is rapidly changing the landscape of scientific data analysis. On the
one hand the increase in computational power generates more raw data for the interpretation of
scientific experiments, on the other hand the data analysis can be performed at a much higher fidelity.
Especially molecular dynamics simulation assisted interpretation of neutron and X-ray scattering
experiments is an example of a highly CPU-intensive analysis, which considerably benefits from
massive sampling [19, 20].
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2. Theory

The convergence between supercomputing, molecular dynamics simulation and experimental
scattering techniques brings together a diverse set of aspects, including computational performance,
approximation procedures, and data analysis strategies and interpretation. It is the intent of the
following sections to cover some of those aspects and put them into perspective.

2.1. Molecular Dynamics Simulation

The objective of molecular dynamics simulation is to compute trajectories in time and space by
solving Newton’s equation of motion for each atom within the simulated system. From that, all
thermodynamic and statistical properties of the comprised molecules can be derived. Another
approach to derive these properties usually is a variation of a Monte Carlo based simulation,
where the configurational space of the molecular system is explored by evaluating the value of
the potential energy and creating a set of configurations with a maximum of likelihood. Monte
Carlo is computationally less demanding and offers better task parallelism properties than molecular
dynamics. However, Monte Carlo is a probabilistic scheme and cannot be used whenever the type
of molecular motion and the transitional dynamics between configurations is of interest.

The need for massive sampling has motivated a variety of enhancements to plain molecular
dynamics. Path-sampling methods usually employ artificial potentials to overcome kinetic barriers
by increasing the likelihood of the transition state [21], Replica-exchange methods take advantage
of a general increase in kinetic barrier crossing at higher temperatures and perform configurational
swapping between parallel simulations at different temperatures based on energetic overlap [22], and
multiscale coupled dynamics slaves the slow transitional dynamics of an atomic-detailed simulation
to the smoother and kinetically enhanced dynamics of a coarse-grained simulation [23]. The list
of enhancement protocols is long and continually evolving. However, each enhancement is build
around the basic properties of the plain molecular dynamics methodology, which is to solve the
equations of motions based on a set of well described forces.

Even though this work makes exclusive use of an all-atom description of the molecules, the
methodology itself is independent of the granularity of the involved particles. Hence coarse graining,
i.e. the combination of certain atoms to a single bead with its own properties, is commonly used to
reduce the computational demand for larger scale systems by reducing the degree of freedoms and
removing fast motions, e.g. the hydrogen bond vibrations. However, coarse grained descriptions
are very limited to the specific chemical and molecular environment they were created for, which is
why they frequently rely to a degree on all-atomic simulations for validation.

2.1.1. Force Field

The methodology of molecular dynamics (MD) simulation is based on the premise that the motions
of molecules are governed by a set of clearly distinguishable forces. On a basic quantum mechanical
level every force is based on the electrostatic and spin coupled interactions between electrons and
nuclei, and thus quantum mechanical calculations are frequently used to derive parameters for the

2



set of forces used in MD simulation [24]. The most common form of a molecular force field is given
by the total energy potential, V (~rN ):

V
�
~rN

�
=

X

bonds

k
i

2

(l
i

� l
i,0)

2
+

X

angles

k
i

2

(✓
i

� ✓
i,0)

2
+

X

torsions

V
n

2

(1 + cos(n! � �))

+

NX

i=1

NX

j=i+1

 
4✏

ij

"✓
�
ij

r
ij

◆12

�
✓

�
ij

r
ij

◆6
#

+

q
i

q
j

4⇡✏0rij

!
(2.1)
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P
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,
P
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P

torsions

are the strong bonded interactions which require chemical
cleavage to be resolved and the last term comprises the non-bonded interactions which describe
van der Waals short ranged repulsion and attraction with a Lennard-Jones potential and long-
ranged coulombic interactions. The simple form of this molecular force field does not allow the
simulation of chemical cleavage or dynamic electronic polarization, which can be important under
some special circumstances [25]. Both limitations can be alleviated by using special purpose MD
force fields [26, 27] and hybrid QM/MM simulation software [28]. However, the common form of
the MD force field is a satisfactory approximation for simulation studies which are interested in the
configurational sampling of molecules and their interactions. Additional variety exists for the set
of force field parameters available, because the derivation of the force field coefficients is neither
unique nor constrained to a particular methodology [29, 30]. The main difference between fixed-
charged force fields, like CHARMM and AMBER, tends to be their convergence point for the static
polarization terms in the modeled molecules [31].

Not considered part of the actual force field, but equally important is the treatment of non-
bonded interactions during the calculation, because they need to be truncated for computational
efficiency [32]. While the truncation of the Lennard-Jones term usually just offsets the effective
pressure of the simulation system, artifacts in the electrostatic field calculation can severely alter
the resulting molecular dynamics [33]. Two computationally efficient electrostatic treatments are
Particle Mesh Ewald (PME) [34, 32] and Reaction Field (RF) [35, 36, 37, 38]. PME splits the
computation of the electrostatic field into two terms, one for short-ranged electrostatic with a
cut-off, and a long-ranged term which is solved using the Fourier transform of the global charge
distribution. RF instead avoids the discontinuity of the electrostatic force at the cut-off distance by
assuming each charge to be surrounded by a dielectric material with a significantly higher charge
conductivity, leading to a strong dampening of the electrostatic force at the cut-off distance. RF
was originally derived for neutral molecules, but has been shown to give promising results for locally
charged systems as well [39].

2.1.2. Equations of Motion

The force field is used to compute the acceleration, ~a(t), for each atom from its coordinates, ~x(t),
and the positions of all other atoms. The molecular dynamics software then solves the differential
equation for the equation of motion by integrating with a sufficiently small time step, �t. A
commonly used algorithm to update coordinates, ~x(t), and velocities, ~v(t), is known as Velocity
Verlet [40]:

~x(t + �t) = ~x(t) + ~v(t) · �t +

1

2

~a(t) · �t2 (2.2)

~v(t + �t) = ~v(t) +

~a(t) + ~a(t + �t)

2

· �t (2.3)
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For fully atomistic systems with no motional constrains the typical time step needs to be �t . 1fs
to achieve numerical stability and avoid errors in the calculation of the forces. Integration errors
lead to a loss of energy conservation and affects the apparent temperature of each atom, due to
inaccurate velocities.

Because the stability and the numerical accuracy of the algorithm is mainly related to the
maximum velocities of the particles, the motions of light atoms, like hydrogens, are usually the
limiting factor for the time step. A larger time step of �t = 2fs can be achieved by removing
the hydrogen bond vibration by constraining their position to the equilibrium distance to their
bonded heavy atoms. Even larger time steps are possible by additionally removing their angle
vibrations. Different numerical procedures have been developed to implement these constrains.
The first, which is still in use today, is SETTLE [41], which only works for molecules with 3 atoms
and is thus mainly used for water molecules. Two other constrain algorithms commonly used are
SHAKE [42] and LINCS [43] and are applicable to larger molecules.

A relatively newly developed scheme to retain stability and accuracy for larger time steps, are
virtual sites [44]. They are superior to traditional constrain algorithms in cases which involve
angle constains, e.g. the methyl group rotation dynamics, where SHAKE and LINCS have been
shown to severely alter the macromolecular flexiblity and reduce the number of torsional and angle
transitions [45].

2.2. Scattering Techniques

The theory of X-ray and neutron scattering is well known [14, 15, 46]. In the classical description
of scattering theory the atomic particles are sources of plane waves, which may interfere in different
ways dependent on the type of scattering experiment. The scattering patterns arise from the
constructive interference of atomic scattering amplitudes a(~q, t):

a
n

(~q, t) = b
n

(~q) · ei·~q·~rn(t) (2.4)

where ~q is the scattering vector, b
n

(~q) is the atomic prefactor and ~r
n

(t) is the time dependent
Cartesian position vector of atom n. The total scattering amplitude for all atoms, A(~q, t), and the
associated scattering intensity, F (~q, t), is given by:

F (~q, t) = A(~q, t) · A⇤

(~q, t) = |A(~q, t)|2 (2.5)

where A(~q, t) =

X

n

a
n

(~q, t) (2.6)

and A⇤

(~q, t) is the complex conjugate of A(~q, t). A(~q, t) may be associated with a higher
organizational structure in which the individual atoms are incorporated.

The atomic prefactor b
n

is different for X-ray and neutron scattering. In X-ray scattering it
represents the form factor of the electronic shell of the respective atom and is approximated as a
series of Gaussians [47]:

b
n

(~q) =

X

i

c
i

· e�di·|~q|
2

(2.7)

where the set of c
i

and d
i

are empirically derived constants. In neutron scattering, b
n

is the atomic
scattering length, which is different for each isotope and independent of |~q|. The variation of the
atomic scattering length due to isotopic distribution and random nucleic spin orientations gives rise
to coherent and incoherent scattering, which is described by two distinct scattering lengths for each
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isotope type: bcoh and binc [48]. The resulting total scattering function for neutron scattering is
therefore split into a coherent part F

coh

and an incoherent part, F
inc

:

F (~q, t) = F
coh

(~q, t) + F
inc

(~q, t) (2.8)

F
coh

(~q, t) = |
X

n

acoh
n

(~q, t)|2 (2.9)

F
inc

(~q, t) =

X

n

|ainc
n

(~q, t)|2 =

X

n

(binc
n

)

2 (2.10)

The coherent scattering function is based on the total scattering amplitude A(~q, t) and uses bcoh,
while the incoherent function is associated with atomic scattering amplitudes a

n

(~q, t) and uses binc.
In dynamic scattering experiments the scattering amplitudes at times t and t+ ⌧ are superimposed,
resulting in a correlated time signal of the form:

F (~q, t, ⌧) = A(~q, t) · A⇤

(~q, t + ⌧) (2.11)

or

f
n

(~q, t, ⌧) = a
n

(~q, t) · a⇤
n

(~q, t + ⌧) (2.12)

where F (~q, t, ⌧) and f
n

(~q, t, ⌧) are the total and atom-correlated time signals, respectively.

2.2.1. Solution Scattering

In solution scattering a large number of identical solute particles are in a solvent permitting solute
rotational and translational motion. Thus, there is no preferred orientation and the scattering
signal becomes isotropic, i.e., independent of the sample orientation: F (~q, t) ! F (q, t). Also, the
system can be in any of its thermodynamically allowed states, resulting the scattering representing
the ensemble average of the individual particle dynamics, which is taken as the MD time average:
F (q, t) ! hF (q, t)i

t

. The scattering expression associated with solution scattering conditions is
therefore:

F (q) = N
P

hhF (~q, t)i
t

i⌦ (2.13)

where N
P

is the number of scattering particles and hi⌦ performs the orientational averaging for all
orientations of the scattering vector ~q. For solution scattering, the solute atomic scattering factors
can be adjusted to represent the proper scattering length contrast, as is outlined in Ref. [49].

2.2.2. Crystal Diffraction

In a crystal diffraction experiment the scattering particles are orientationally aligned. The resulting
scattering pattern is a convolution of the scattering due to the lattice and the scattering unit. The
scattering expression associated with diffraction is:

F (~q) = N
P

hF (~q, t)i
t

(2.14)

where N
P

is the number of scattering particles. The scattering function due to the crystal lattice
is neglected for simplicity, but can be modeled explicitly in MD simulations.
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2.2.3. Dynamic Scattering

Dynamic scattering experiments allow the measurement of either the intermediate scattering
function I(~q, ⌧) or the dynamic structure factor S(~q, !). Since S(~q, !) is simply the Fourier transform
of I(~q, ⌧), only the intermediate scattering function I(~q, ⌧) is discussed in the following. In dynamic
X-ray and coherent neutron scattering the scattering intensities arise from a superposition of the
total scattering amplitude A(~q, t) at two times t and t + ⌧ , given by:

I
coh

(q, ⌧) = hhF (~q, t, ⌧)i
t

i⌦ (2.15)

which probes structural-temporal correlations. Dynamic incoherent neutron scattering measures
the superposition of the individual atomic scattering amplitudes a

n

(~q, t) at t and t+ ⌧ , and is given
by

I
inc

(q, ⌧) =

X

n

hhf
n

(~q, t, ⌧)i
t

i⌦ (2.16)

which probes correlations in the displacements of individual atoms. For large correlation times
⌧ ! 1, the coherent and incoherent dynamic scattering function converge, allowing the function
to be split into time-dependent and -independent parts:

I
coh,inc

(q, ⌧) = I⇤
coh,inc

(q, ⌧) + I
coh,inc

(q, 1) (2.17)

where I
coh,inc

(q, 1) are the elastic coherent and incoherent structure factors (EISF) and can be
approximated without the need to compute the autocorrelation:

I
coh

(q, 1) =

D
|hA(~q, t)i

t

|2
E

⌦
(2.18)

I
inc

(q, 1) = EISF (q) =

X

n

D
|ha

n

(~q, t)i
t

|2
E

⌦
(2.19)

2.3. Markov State Modeling

Molecular dynamics simulations produce trajectories, describing the Cartesian coordinates of atoms
in time and space. For molecular systems, the motion can be decomposed into translational,
rotational, and internal dynamics, where the latter can be conveniently described in the framework
of MSM [50]. MSM describes the internal molecular configuration space as a set of conformational
substates s = {1, . . . , m}. The transitional dynamics between these states then follows the
characteristic m ⇥ m matrix T (⌧), which contains the conditional probabilities, T

ij

, of finding
the system in state j at time t + ⌧ given that it was in state i at time t:

T
ij

= P (s
t+⌧

= j | s
t

= i) (2.20)

The transition matrix, T (⌧), is based on the chosen lag time ⌧ (the time step for building the
MSM). The time evolution of the system is governed by the equation

p(t + ⌧) = p(t) · T (⌧) (2.21)

where p(t) is a m-dimensional row vector containing the probability to find the system in each of
its m states at time t. If the time evolution of the probabilities follows the Markov property, then
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for longer time increments, n · ⌧ , T (n · ⌧) = T (⌧)

n holds and equation 2.21 becomes:

p(t + n · ⌧) = p(t) · T (n · ⌧) = p(t) [T (⌧)]

n (2.22)

The approximation of the underlying dynamics with a Markov model requires appropriate choices
for the state space variables and the lag time and needs to be systematically validated [50]. Using
the assumption of detailed balance, which holds true for a system under equilibrium conditions, the
eigenvalue decomposition (EVD) of the transition matrix yields:

T (⌧) = � · ⇤(⌧) · ��1
= R · ⇤(⌧) · R�1

= R · ⇤(⌧) · L (2.23)

where � = (�1, . . . , �m

) and ⇤ = diag(�1, . . . , �m

) are an arbitrary eigenvector decomposition
and the eigenvalue matrix, respectively, and L = (l1, . . . , lm) and R = (r1, . . . , rm) are the left
and right eigenvector matrices, which are normalized against the equilibrium distribution ⇧ =

diag (⇡1, . . . , ⇡m

):

r
k

=

1q
�T

k

·⇧ · �
k

· �
k

(2.24)

The relationship L = R�1 can be used to interconvert left and right eigenvectors. The eigenvectors
l
k

provide information about the structural change, while the corresponding eigenvalues �
k

only
describe the relaxation time. Transitions l

k

with �
k

⌧ 1 correspond to fast processes, while
transitions with �

k

⇡ 1 describe slow ones. Since T (⌧) is a stochastic matrix, the first process,
l1, has, by definition, an eigenvalue of �1 = 1, and thus corresponds to the equilibrium distribution
of the system ⇧ = (⇡1, . . . , ⇡m

). The characteristic relaxation time, t
k

, of each process, l
k

, can be
calculated from the eigenvalues, �

k

:
t
k

= � ⌧

ln �
k

(⌧)

(2.25)

Ideally, the deduced relaxation time, t
k

, is independent on the choice of the lagtime ⌧ . However,
due to different sources of errors, this is usually not the case and finding a suitable ⌧ requires an
implied time scale analysis [51].

2.3.1. Correlation Functions

Any time correlation function between an observable a and b can be expressed as transitions between
states i and j, given their correlation matrix, C (⌧) [16]:

ha(t)b(t + ⌧)i
t

=

X

ij

C
ij

a
i

b
j

(2.26)

Each time instant, t, is associated with one of a finite set of states, s, that the system can be in.
In this case a

i

and b
j

become the expectation values of the observables for states i and j, and the
coefficients C

ij

represent the absolute probabilities of a transition from state i to state j :

C
ij

= P (s(t + ⌧) = j, s(t) = i) (2.27)

Using a
i

and b
j

as expectation values introduces the assumption, that the averaging is mainly
performed over processes which exist on a time scale significantly shorter than the lagtime ⌧ . A
consequence of performing this mapping is that any dynamics within a discrete state s cannot be
resolved and only transitions between states contribute to the time-dependence of the correlation
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function. Eq. 2.26 can be rewritten by using C as the correlation matrix and e
a

and e
b

as the
column vectors containing the expectation values of a and b , i.e.,

e
a,i

= ha(t)i
s(t)=i

e
b,j

= hb(t)i
s(t)=j

(2.28)

which yields:

ha(t)b(t + ⌧)i
t

= eT
a

· C · e
b

(2.29)

The absolute probabilities, C
ij

, and conditional probabilities, T
ij

, are closely related:

T
ij

= P (s
t+⌧

= j | s
t

= i) =

P (s
t+⌧

= j, s
t

= i)

P (s
t

= i)
=

P (s
t+⌧

= j, s
t

= i)

⇡
i

=

C
ij

⇡
i

(2.30)

and the correlation matrix, C(⌧), can be expressed in terms of T (⌧) and the probability distribution,
⇧:

C(⌧) = ⇧ · T (⌧) = LT · ⇤(⌧) · L (2.31)

which leads to an expression connecting the correlation function with the Markov state model:

ha(t) · a(t + ⌧)i
t

= eT
a

· C(⌧) · e
b

= eT
a

· LT · ⇤(⌧) · L · e
b

(2.32)

By using the eigenvector representation of C(⌧):

LT · ⇤(⌧) · L =

X

k

lT
k

· �
k

(⌧) · l
k

(2.33)

the equation 2.32 can be split into a sum over relaxation processes, k :

ha(t) · b(t + ⌧)i
t

= eT
a

·
 

mX

k

lT
k

· �
k

(⌧) · l
k

!
·e

b

=

mX

k

�
eT
a

· lT
k

�
·�

k

(⌧)·(l
k

· e
b

) =

mX

k

�
k

(⌧)·A
k

(2.34)

where
A

k

= (eT
a

· lT
k

) · (l
k

· e
b

) (2.35)

are the time independent and process dependent amplitudes of the correlation function. The
decomposition of the transition kernel into m eigenvectors, leads to a decomposition of the
correlation function into m processes. Each process represents a single exponential decay function
with a relaxation time determined by �

k

(⌧) = exp(�⌧/t
k

) and an amplitude of A
k

= (eT
a

·lT
k

)·(l
k

·e
b

).

2.3.2. X-ray and Neutron Scattering Observables

Both the incoherent and coherent intermediate scattering function, F (~q, t), are time-autocorrelation
functions, which makes it possible to express them in terms of Eq. 2.32. The generalized observable
a(t) for coherent scattering is

a(t) := A(~q, t) =

X

↵

b
↵

· e�i·~q·~r↵(t) (2.36)

and for incoherent scattering:

a(t) := a(↵, ~q, t) = b
↵

· e�i·~q·~r↵(t) (2.37)
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Within the framework of the MSM the observable itself becomes independent of time and is
represented as a multicomponent vector a = (a1, . . . , am), where each component is the expectancy
value of the generalized observable for the particular Markov state i. This means that for coherent
scattering the components of the observable are

a
i

:= hA(~q, t)i
i

=

*
X

↵

b
↵

· e�i·~q·~r↵(t)

+

i

(2.38)

and for incoherent scattering:

a
i

:= ha(↵, ~q, t)i
i

=

D
b
↵

· e�i·~q·~r↵(t)
E

i

(2.39)

The average is carried out for all time instances t for which the system occupies Markov state i.
By applying the decomposition into m processes and making use of the relation t

k

= �⌧/ ln �
k

(⌧),
both the coherent and incoherent intermediate scattering function assume the form:

F (~q, ⌧) =

X

k

�
k

· A
k

(~q) =

X

k

exp(� ⌧

t
k

) · A
k

(~q) (2.40)

For coherent scattering the amplitudes are determined by

A
k,coh

(~q) =

�����
X

i

*
X

↵

b
↵,coh

· e�i·~q·~r↵(t)

+

i

· L
ik

�����

2

(2.41)

where L
ik

is the left eigenvector component i of eigenvector l
k

, corresponding to process k.
For incoherent scattering, the amplitudes are calculated according to

A
k,inc

(~q) =

X

↵

�����
X

i

D
b
↵,coh

· e�i·~q·~r↵(t)
E

i

· L
ik

�����

2

(2.42)

The following features of this representation are interesting:

• F (~q, t) is completely described by the sum of individual exponential decay functions with
individual relaxation times t

k

• The contribution of each atom to a particular process for incoherent scattering can be identified

• Since k = 1 corresponds to the equilibrium distribution, A1,coh and A1,inc instantly provide
information about the elastic structure factor (ESF)

If the scattering particles in the experimental sample have no preferred orientation, the intermediate
scattering function has to be orientationally averaged: F (q, t) =< F (~q, t) >

~q

. The orientational
averaging can be carried out at the level of the individual scattering amplitudes:

A
k,coh

(q) =

*�����
X

i

*
X

↵

b
↵,coh

· e�i·~q·~r↵(t)

+

i

· L
ik

�����

2+

~q

(2.43)

A
k,inc

(q) =

X

↵

*�����
X

i

D
b
↵,coh

· e�i·~q·~r↵(t)
E

i

· L
ik

�����

2+

~q

(2.44)
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2.4. Supercomputing

Supercomputing is a very general term which can be applied to a variety of computational
problems and computational resources. For instance, the Jaguar Petaflop⇤ machine and the
Folding@Home† network are both considered supercomputing platforms, even though their hardware
and network characteristics are very different. The specific hardware layout in turn strongly
determines the performance for scientific applications, because algorithms have to make distinct
choices for data access and inter-node communication patterns. While it is possible that a particular
scientific application may be able to choose from a set of algorithms to exploit different hardware
specifications, most applications are inherently limited to only a few algorithms which are biased
towards a specific hardware layout.

The tight coupling between the hardware specification of the supercomputer and the design
of the algorithm has implications on the preference of scientific applications towards a particular
supercomputing platform. The purpose of this section is to clarify some of the dependence of
scientific applications on hardware requirements. Two relevant scientific applications here are
molecular dynamics and simulation data analysis, which are distinctly different in their parallel
performance characteristics. While molecular dynamics usually needs to make heavy use of message
passing and only occasionally writes results to disk, simulation data analysis may only make
occasional use of message passing and depends heavily on the available IO and network performance
for reading the data into local memory and subsequent processing.

2.4.1. Software and Hardware Characteristics

The introduction and commercialization of personal computers had a profound impact on the
architecture of today’s supercomputers [52]. Early machines were filled with a massive amount
of individual processing units connected through a high performance bus, with all processing units
having access to a shared random access memory (RAM). However, with time it became much
more cost effective to create massively parallel computing platforms by acquiring a large quantity
personal computer hardware and connect them through a high performance network. This created
a paradigm shift for scientific application programming from a shared memory environment towards
a distributed memory environment, where each processing unit holds ownership of only part of the
total memory. One consequence of this paradigm shift is that data access patterns became the
defining criterium for application performance, because processing units need to request data from
other processing units through message passing [53].

Parallel programming in a distributed memory environment requires scientific applications to
express their algorithms as a set of tasks which may need to communicate data with each other.
This puts scientific applications in either of two categories: Embarrassingly parallel, where the
individual tasks do not have to communicate with the exception of initialization and finalization,
and delightfully parallel, were the tasks need to exchange data within the core algorithm either
synchronously or asynchronously. The strategy of task creation, i.e. the partitioning scheme, is a
defining criterium, both for the scalability and the type of parallelism involved. A finely grained
partitioning scheme usually results in an algorithm which is scalable to a large number of processing
units, but may introduce interdependency between the tasks and downgrades the algorithm to
delightfully parallel. For many scientific applications scalability can be distinguished by its strong
and weak performance. Strong scalability denotes the proportion by which the execution time of
an algorithm is reduced as a function of increasing number of processing units for a fixed problem

⇤NCCS: http://www.nccs.gov
†Folding@home: http://folding.stanford.edu
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Figure 2.1.: The generic hardware layout of modern supercomputers. A) High performance
supercomputer consist of a high performance network between equal compute nodes
for message passing and a lower performance network for data access, while B)
distributed supercomputer contain a variety of compute nodes with different hardware
characteristics with a low performance connection to a data server.

size, while weak scalability describes the variation in execution time as a function of the number of
processing units for a fixed problem size per unit.

Figure 2.1 shows the generic layout of two characteristic classes of modern supercomputers.
Fig. 2.1A is comparable to the Jaguar PetaFlop machine, which currently consists of 18,688 compute
nodes connected through a SeaStar type high performance network, where each node contains
two hex-core 2.6GHz AMD Opteron 2435 processors and 16GB of DDR2-800 RAM. Although the
permanent storage data access is usually carried out by a lower performance network, on Jaguar it is
managed by the high performance network as well‡§. Fig. 2.1B is comparable to the Folding@Home
supercomputing project platform¶, in which owner’s of personal computer voluntarily participate
in scientific computing projects. Participants are generally not able to communicate data between
each other, which restricts this type of computing platform to algorithms which are embarrassingly
parallelizable. An additional defining criteria of a scientific application is the amount of data which
has to be retrieved from the file server: even if the algorithm itself is embarrassingly parallel, the
low network performance may make the distributed supercomputer unpractical.

2.4.2. Scaling of Molecular Dynamics

The aim of molecular dynamics simulation is to compute the time evolution of a model structure
in order to explore the thermodynamically allowed configurations. The most simplistic approach
to this is to iterate the differential equation of motion and calculate the forces on each atom for

‡http://www.theregister.co.uk/2010/04/19/cray_third_gen_linux/
§http://en.wikipedia.org/wiki/Portals_network_programming_api
¶http://folding.stanford.edu/
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every time step. The implementation of this algorithm within a distributed memory environment
can be done in a variety of ways which have significant impact on the attainable performance and
scalability [54, 55? ]. E.g. atomistic partitioning schemes assign atoms permanently to compute
nodes based on the initial structure, while domain decomposition assigns atoms temporarily to
compute nodes based on their momentary position in space. The use of domain decomposition
increases the inter-node communication by the number of trafficking atoms, but minimizes the
number of interactions which have to be computed between atoms on different nodes. This is
especially true for model systems in which atoms are allowed to diffuse in space, in which case an
atomic decomposition scheme leads to an overall increase in the number of interaction calculations
between compute nodes.

In many cases, the number of interactions, N
I

, is significantly larger than the number of atoms,
N

A

, because each atom is subject to a variety of forces at the same time. Dependent on the type of
the force, N

I

scales differently as a function of N
A

: the number of bonded interactions, N
I,bond

, scale
with O(N

A

) while non-bonded, N
I,nonbond

, principally scale with O(N2
A

). The scaling for N
I,nonbond

can be reduced to O(N
A

) by introducing distance dependent cutoffs.
Simulation protocols designed for good scalability usually exploit the physical features of the

simulated system and the forces. E.g. non-bonded interactions can be calculated less frequently than
bonded interactions (usually a factor 2), because they are less sensitive to the distance variations of
atoms than bonded interactions. Also, if the system consists of overall neutral molecules, the
electrostatic interactions can be computed using the Reaction Field approximation, instead of
Particle Mesh Ewald (PME) [56, 39].

Other strategies to increase the scalability of molecular dynamics simulations usually involve
minimizing the number of global synchronization points during the simulation, e.g. the frequency
for updating the neighbor atom exchange list, the frequency at which the atomic coordinates are
saved to disk, or the communication of energies (thermostat control).

2.4.3. Scaling of Simulation Data Analysis Algorithms

The analysis of molecular dynamics simulation data involves loading the atomic coordinates into
computer memory and subsequently applying an algorithm to derive the property of interest.
Dependent on the type of property, the simulation data can either be processed in small chunks
or has to be read wholly into computer memory. Because disk access is usually several orders of
magnitude slower than direct memory access or message passing, algorithms must avoid disk access
at any cost, especially for large trajectory files. However, since the data has to be read at least once,
the optimal solution for an algorithm is to request the data only once with the highest performance
achievable and then keep the data available in computer memory.

The calculation of a property from molecular dynamics simulation assumes the generic form

f(n, t, �
i

) 7! F (2.45)

where the macroscopic property F is computed from the set of microscopic properties f(n, t, �
i

),
which describes a function for atoms n at times t with respect to a set of parameters �

i

. Trajectory
files in native format contain atomic coordinates, ~r(n, t), as a series of snapshots of system
configurations, where each frame contains the coordinates for all atoms at a particular time. An
efficient algorithm needs to implement an optimal strategy to compute the macroscopic property
through microscopic properties from the atomic coordinates, i.e.

~r(n, t) 7! f(n, t, �
i

) 7! F (2.46)
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Equation 2.46 makes two aspects apparent which are important for the performance on a parallel
computer with distributed memory:

data locality The operation which computes f(n, t, �
i

) from ~r(n, t) iterates over the set of
parameters �

i

. Whenever this set is large, the latency for retrieving ~r(n, t) adds up and can
outweigh the time to compute f(n, t, �

i

). Putting data close to the processing unit can reduce
latency by several orders of magnitude. The latency itself is dependent on the location of the
data within the memory hierarchy in increasing order: processor cache, RAM, disk/network.

intermediate results The iteration over the set of parameters �
i

generates a large amount of
intermediate data which has to be reduced to derive the macroscopic property. However,
intermediate data which belongs together may be scattered throughout the parallel computer
and need to be collected on one node.

Fulfilling data locality and eliminating intermediate data exchange, with the exception of a final
communication step, is possible but can be mutually exclusive for some algorithms and mainly
depends on the size of the total data. Good examples, which are also of relevance here, are
the incoherent and coherent dynamic neutron scattering functions. An algorithm for computing
incoherent scattering can easily fulfill both data locality and eliminate exchange of intermediate
results because the principal microscopic properties, f(n, t, �

i

), are specific to individual atoms and
require only a part of the total simulation data (see Equation 2.16):

f (n, t, �
i

) := f
n

(~q, ⌧) = ha
n

(~q, t) · a⇤
n

(~q, t + ⌧)i
t

(2.47)

F := F (~q, ⌧) =

X

n

hf
n

(~q, ⌧)i
~q

(2.48)

Thus, putting the complete data for atom n on a single node allows to compute partial results,
f
n

(~q, ⌧), which only need a final reduction step. Task parallelization is then achieved by assignment
for atom n and scattering vector length q. On the contrary, the coherent scattering function has
to trade between data locality and exchange of intermediate data. Splitting the computation into
its two steps, calculation of total scattering amplitudes, A(~q, t) =

P
n

a
n

(~q, t), and subsequent
autocorrelation F (~q, ⌧) = hA(~q, t) · A⇤

(~q, t + ⌧)i
t

, makes this apparent: The individual A(~q, t)
require the atomic coordinates for all atoms at a particular time, while the autocorrelation requires
the series of A(~q, t) for all times. The only way to avoid the exchange of A(~q, t) between compute
nodes is to store a full copy of the simulation data on each node and compute all A(~q, t) locally.
However, this approach prevents the time parameter from being used as a decomposition parameter
for parallelization, which has negative effects on scalability.
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3. Scattering and Simulation Studies

This work contains both published and unpublished results. The first section, “Cellulose”, contains
mainly unpublished data and is intented to illustrate the ability to perform extensive structural
and dynamical characterization of simulated biomolecules using experimental scattering techniques.
Section “Lignocellulose” and “Alanine Dipeptide” contain excerpts from manuscripts which are
currently being reviewed or prepared for publication, respectively. The work presented in the last
section, “High Performance Calculation of Scattering Profiles” has been successfully published and
is available in the Journal of Computer Physics Communications [19].

This work brings together applied scattering theory and molecular dynamics simulation to derive
comprehensive structural and dynamical fingerprints of cellulose fibers (Section 3.1, Cellulose), it
provides strategies to simulate and analyze highly heterogeneous molecular systems on a massive
scale (Section 3.2, Lignocellulose), it shows how advanced statistical tools like Markov Chain
Modeling can be used to decompose and interpret the dynamical scattering functions of molecules
(Section 3.3, Alanine Dipeptide), and it explains how the scattering functions can be calculated
at high performance by exploiting the architecture of modern supercomputers (Section 3.4, High
Performance Calculation of Scattering Profiles). The common aspects of these projects point
towards a general theme: The convergence between supercomputing, molecular dynamics simulation
and experimental scattering techniques.

3.1. Cellulose

Cellulose is a natural biopolymer and an integral part of the cell wall of plants. It is
synthesized within the plasma membrane by multi-protein complexes, called cellulose-synthesizing
complexes [57, 58]. The particular structural arrangement of the protein components within the
complex has a strong influence on the molecular structure and shape of cellulose. In terrestrial
plants the most common form of these complexes are rosettes, which consists of 36 individual
proteins organized in 6 domains, as illustrated in Figure 3.1. During synthesis, each protein
produces a single glucose chain by successively adding D-glucose molecules to the existing polymer,
which results in the creation of a microfibril containing 36 glucose chains. The resulting glucose
chain, shown in Figure 3.2, consists of repeating units of cellobiose, which is comprised of
two screw symmetrical glucose molecules. The tight packing of the individual chains induces
crystallization, with the most common forms being I-↵ and I-�. The crystal symmetry has been
determined experimentally using a combination of fiber-aligned X-ray and neutron scattering [59]
(a=7.784Å�1,b=8.201Å�1,c=10.380Å�1,](a, b) = 96.5�,](a, c) = ](b, c) = 90

�). The structure of
a I-� crystalline fiber is provided in Figure 3.3.

Plants produce a significant amount of cellulose during their lifetime leading to a large natural
abundance and the largest source for sugar molecules on earth, making it an attractive feedstock for
the production of biofuels. However, since cellulose acts as a structural component in the anatomy of
plant cells [60], its evolution has caused it to be highly resilient to thermal degradation or enzymatic
digestion [62]. Additionally, cellulose tends to be incorporated into a network of noncovalently and
covalently bonded biomolecules, mainly comprised of hemicellulose and lignin [63], which protects
cellulose even further from enzymatic digestion. To increase the efficiency of hydrolytic enzymes,
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Figure 3.1.: The Cellulose Synthesis Complex is a particle embedded in the plasma membrane
of plant cells and facilitates the production of cellulose chains. Graphic taken from
Ref. [60]. Each subunit of the hexameric rosette structure is composed of 3 different
cellulose synthase (CESA) proteins which is indicated by different colors.

Figure 3.2.: The molecular structure of a single cellulose chain (�-1,4-glucan). The cellobiose
subunit contains two glucose molecules linked via a �-1,4 bond, where the second
unit is rotated 180 degrees around the chain axis. Graphic taken from Ref. [58].

Figure 3.3.: Molecular structure of I-� crystalline cellulose. The unit cell vectors indicate the
extend of the crystallographic unit cell. The interaction between neighboring chains
are is non-covalent. Cellulose is organized in a sheet-like structure. The interaction
within a sheet is dominated by hydrogen bond, while the interaction between sheets is
governed by van der Waals forces. The graphic illustrates a consensus model described
in Ref. [61].
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this biomass is commonly pretreated using one of the major pretreatment technologies, e.g. dilute
acid pretreatment, steam explosion or ammonia fiber expansion [64]. While each pretreatment
technique has a distinct effect on the structural features of biomass, two aspects are considered the
determining factor of the remaining recalcitrance to enzymatic digestibility: Cellulose crystallinity
and the amount of remaining lignin [65].

3.1.1. Crystallinity of Cellulose

The crystallinity of cellulose within a biomass sample is commonly assessed in terms of a crystallinity
index CrI by measuring the wide angle X-ray scattering (WAXS) spectrum and estimating the
intensity of amorphous background, I

am

, and the 200 Bragg peak, I200, at 1.6 Å�1, which is also
known as the Segal method [66]:

CrI =

I200 � I
am

I200
(3.1)

The finite size of the cellulose crystallites leads to errors in the estimation of the crystallinity
index because a significant amount of the scattering intensity falls in between the theoretical Bragg
peaks. Different methods have been explored previously to yield better estimates for the amount of
crystallinity, including Fourier-Transform Infrared Spectroscopy, Nuclear Magnetic Resonance and
Fourier-Transform Raman [67]. However, WAXS remains the most commonly used method, likely
because of its apparent simplicity and availability.

The reason for the existence of crystallinity within cellulose, i.e. the strong translational symmetry
of the D-glucose molecules, is attributed to the formation of a regular hydrogen bonding pattern
within chains and between neighboring chains. While the intra-chain hydrogen bonding contributes
to the persistence length of individual cellulose chains, i.e. their tendency to remain rigid, the
hydrogen bonds between chains prevent the cellulose fibril from disintegrating into individual chains.
The dominant hydrogen bonding patterns have been determined previously for the I-↵ and I-�
crystal symmetry with the help of neutron scattering [59, 68]. They revealed that inter-chain
hydrogen bonds within cellulose are organized into a sheet pattern, where cellulose chains strongly
hydrogen bond with neighboring chains along the cyclic plane of the glucose molecules, while the
interaction between the stacked sheets is mostly van der Waals. The combination of the intra-
and inter-chain hydrogen bonding network together with the high degree of polymerization is what
protects cellulose efficiently from thermal degradation.

The crystallinity of cellulose elementary fibrils can be investigated directly by computing the
scattering intensities for all possible scattering vectors q. This has been done for crystalline cellulose
and the 2D directional X-ray scattering diagram perpendicular to the elementary fiber axis is shown
in Figure 3.4. Each Bragg peak is tightly connected to an existing symmetry within the cellulose
fiber. One of the three dominant peaks in the cellulose fiber is the 200 peak, which describes the
nearest distance between a sheet comprised of origin chains and one consisting of center chains. The
two other peaks, 110 and 1-10, originate from the nearest distance between planes comprised of an
alternating mix of origin and center chains.

Experimentally, directional scattering experiments on cellulose are challenging, because the fibers
need to be perfectly aligned to yield a diffraction diagram similar to Figure 3.4. However, most
of the time scattering analysis is performed on cellulose samples which contain fibers pointing in
random directions, which yields orientationally averaged scattering diagrams which can be reduced
to one dimension (WAXS). The WAXS of the I-� cellulose model fiber is shown in Figure 3.5.
The WAXS pattern has been decomposed into the contributions from the major peaks (200,110,1-
10) by fitting with gaussians and the background has been estimated from the intensity minimum
between the 110 and 200 peak. The fitting parameters are provided in Table 3.1. Using the Segal
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Figure 3.4.: Directional X-ray scattering diagram for I-� crystalline cellulose (left) and illustrations
of the scattering geometries (right).

WAXS diagram peak fitting parameters for crystalline cellulose:
peak location width height

1-10 0.96468 0.056318 7314.9
110 1.0978 0.095805 13037
200 1.5748 0.10558 25899

Table 3.1.: Fitting parameters for the WAXS diagram of a I-� cellulose elementary microfibril.
The baseline has a value of 9593.4. A standard gaussian function was used for fitting
each peak.

equation 3.1, the estimated crystallinity index for a I-� crystalline cellulose elementary fibril is 75%.
The underestimation of the crystallinity index due to the Segal method is caused by the finite size
of the cellulose crystal. In an infinite crystal, the scattering intensity between the 110 and 200 peak
would resolve to the individual peaks other than 110 and 200 which fall into the interval and the
width of the 110 and 200 would approach zero.
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pattern is decomposed into the contributions of the 1-10,110 and 200 peak. Other
peaks are ignored for simplicity. The choice for the background level is consistent with
the experimental practice to estimate the amorphous contribution from the intensity
at the minimum between the 110 and 200 peak.
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Hydrogen bond statistic for cellulose models:
Model # Hydrogen Bonds # Hydrogen Bonds/Glucose

n-0 20180 3.5
n-10 19790 3.4
n-20 19256 3.3
n-30 18441 3.2
n-40 18168 3.2
p-40 17627 3.1
p-30 16693 2.9
p-20 16276 2.8
p-10 15661 2.7
p-0 14939 2.6

np-inner 16209 2.8
np-outer 18132 3.1

Table 3.2.: Hydrogen bond statistic for the cellulose models featuring different crystallinities. Used
a distance cutoff of 3.2 Å and an donor acceptor angle of larger than 110 degree.
Hydrogen bonds were counted using the VMD software. The number for hydrogen
bonds per glucose was rounded to ±0.1.

3.1.2. Disorder in Cellulose

Even though cellulose is capable of forming regular hydrogen bonding patterns which stabilize the
crystalline form, a significant portion of biomass contains cellulose which is in a noncrystalline
state [66]. The amount of noncrystalline cellulose present in a cellulose sample is commonly
determined indirectly through the crystallinity index [67]. However, these measurements do not
provide information on how the crystallinity is distributed within a cellulose fiber and where
noncrystalline cellulose is located. In particular, it is not known how different forms of disorder
contribute to the measurement of the crystallinity index. This question is explored here with a help
of a set of artificial cellulose fiber models, shown in Figure 3.6.

The models contain different amounts of crystalline cellulose, with two models exhibiting disorder
along the cylindrical axis and the remaining ones as segments embedded in the fiber. The number
of internal hydrogen bonds for the different cellulose models are listed in Table 3.2, which shows
that with increasing amount of noncrystalline cellulose, the average number of hydrogen bond per
glucose molecule decreases. This is consistent with the experimental observation that noncrystalline
is more readily hydrolyzable [69].

The WAXS diagram for selected cellulose fiber models are shown in Figure 3.7, which reveals two
striking features: Noncrystalline cellulose also produces identifiable peaks in the WAXS diagram,
albeit shifted to smaller q values, and WAXS diagrams for different models makes can be very similar.
For example, model n-20 and np-outer show nearly an identical WAXS profile, even though their
models are qualitatively different. On the other hand, the composite WAXS pattern of crystalline
and noncrystalline cellulose can not perfectly reconstitute patterns calculated for the mixed phase
models. This is illustrated in Figure 3.8, which compares the WAXS patterns of the n-40 mixed
phase model to a superposition of 40% crystalline (n-0) and 60% noncrystalline (p-0) cellulose. The
intensities are slightly off, which can be attributed to the fact that n-40 features structural regions
between the crystalline and noncrystalline phase, which are only partially disordered.

The crystallinity of each model in Figure 3.7 was analyzed using the Segal method. Due to the
peak shifts for the noncrystalline models the method was reinterpreted in the spirit of the original
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Figure 3.6.: A structural library of I-� cellulose models, with varying degree of crystallinity.
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Figure 3.8.: WAXS pattern comparison between two models for mixed cellulose crystallinities. The
difference in the scattering intensity between q = 0.5 Å�1 and q = 1.6 Å�1 illustrates
that the particular manifestation of crystallinity within cellulose has a strong influence
on scattering profile.
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Crystallinity indexes for selected cellulose fiber models:
Model 200 Peak Height 200 Peak Background Minimum Crystallinity

n-0 34700 1.6 8600 1.35 0.75

n-20 28500 1.6 12400 1.25 0.56

p-20 23300 1.4 18400 1.25 0.21

p-0 30700 1.35 17400 1.0 0.43

np-inner 28900 1.4 14000 1.05 0.51

np-outer 28300 1.55 15600 1.35 0.45

Table 3.3.: Crystallinity indexes and fitting parameters for the different cellulose models. The
values were rounded to ±100, ±0.05, ±0.01, ±100, ±0.05 and ±0.01, respective to
listed column.

method by identifying the highest peak and the minimal intensity between the peaks originating
from the 110 and 200 peak. This leads to fitting parameters and crystallinity indexes listed in
Table 3.3. The Segal method leads to the counter intuitive result that the crystallinity index for p-
20 is lowest, instead of p-0, even though p-20 still has a portion of crystalline cellulose incorporated
into the elementary fibril. With the exception of p-20, the range of crystallinity indexes is between
43% for noncrystalline and 75% for crystalline cellulose. Thus even an experimental sample with
purely noncrystalline cellulose may yield a significant crystallinity index.

The particular features of the WAXS diagrams in Figure 3.7 can be understood by investigating
the corresponding directional scattering diagrams perpendicular to the cellulose fiber axis and are
shown in Figure 3.9. The rigorous peak assignment is possible by inspecting model n-0. The peak
assignment for the np-inner and np-outer model can be inferred from the n-0 model. Also apparent
from Figure 3.9 is the loss of distinct Bragg peaks for the p-0 model, which is symptomatic for
noncrystalline structures.
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Figure 3.9.: Directional (2D) scattering diagrams for selected cellulose fiber models.
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Figure 3.10.: Intermediate scattering function for crystalline and noncrystalline cellulose at
different values for the scattering length density. Scattering analysis was performed
using incoherent neutron scattering lengths for the atomic scattering amplitudes.

3.1.3. Cellulose Dynamics

The analysis of molecular dynamics simulation using scattering theory does not only provide
information about structural symmetries, but also about spatio-temporal correlations within
molecules. This is particularly interesting for cellulose, because its crystallinity is expected to
influence its intra-molecular diffusional and vibrational characteristics.

Here, two dynamic scattering techniques are applied to the question how cellulose crystallinity
affects the scattering signal: Incoherent inelastic neutron scattering (INS) and inelastic X-ray
scattering (IXS) (which is coherent). INS probes the self diffusion of individual atoms and is a
direct measure for the phase-space volume explored by the atoms, and is defined in Equation 2.16.
IXS on the other hand is defined as the autocorrelation of the total scattering signal and thus probes
fluctuations in the scattering density of the molecule and is formally described by equation 2.15.

3.1.3.1. Incoherent Inelastic Neutron Scattering

Two cellulose models were simulated: n-0, which is fully crystalline, and p-0, which is noncrystalline
(simulation details are provided in the supporting information). Figure 3.10 shows the intermediate
scattering function (derived using neutron scattering density lengths) for long time scales up to
10 ns which probe slow relaxations and is based on a trajectory with a total of 25 ns and 5 ps
sampling time. It shows that the dynamics is qualitatively independent of q and that values above
1.0 Å�1 are needed to achieve a significant decay of the intermediate scattering function (60% decay
at q =1.5 Å�1 ). This indicates that the phase-space volume explored by cellulose is small compared
to the size of the molecule, which is a signature of a rigid molecule.

The INS between crystalline and noncrystalline has been directly compared in Figure 3.11 for
q =1.5 Å�1. The differences have been grouped into three different time regimes: ps, sub ns, and ns.
In the ps regime, both crystalline and noncrystalline cellulose exhibit a decay in the intermediate
scattering function. However, the relative difference in the absolute value doesn’t vary much as a
function of correlation time. This means that the crystalline and noncrystalline cellulose exhibit the
same relaxation processes in the ps regime, and the initial difference can be attributed to additional
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Figure 3.11.: Intermediate scattering function for crystalline and noncrystalline cellulose at
q=1.5 Å�1 and their subdivision into several characteristic time regimes.

relaxation for noncrystalline on the sub ps time scale. On the sub ns time scale, both models exhibit
a reconstitution of the intermediate scattering function (increase), which is typical for well defined
oscillations. However, the oscillation peak for crystalline and noncrystalline cellulose are located at
different times: 300 ps and 600 ps, respectively. This indicates that crystalline cellulose is stiffer
and the corresponding oscillation is associated with a higher force constant and frequency than
noncrystalline cellulose.

Crystalline and noncrystalline cellulose also differ in their longtime (sub ns, ns) relaxation: While
the INS for crystalline cellulose flattens out above 100 ps, noncrystalline cellulose keeps decaying
well above the 5 ns mark. This indicates that noncyrstalline cellulose features an additional diffusion
process, allowing its atoms to achieve larger displacements over time.

The origin of the oscillation in the sub ns time regime was investigated by computing the local
intermediate scattering function for different segments along the fiber axis. From visual inspection
the fiber is observed to exhibit a strong normal mode perpendicular to the fiber axis, forming a
standing wave with two knots near the end of the fiber. Figure 3.12 illustrates how this mode
dominates the sub ns time regime by causing strong local differences between the intermediate
scattering function at the different locations along the fiber axis. Those segments which are located
at the knots of the standing wave have a reduced relaxation and do not show the characteristic
oscillation peak, while segments located in the middle and at the end of the fiber clearly show the
oscillation in the intermediate scattering function.

The ability to detect dynamical differences between surface and core cellulose chains with the
help of the intermediate scattering function was also investigated and is shown in Figure 3.13, for
both crystalline and noncrystalline cellulose. As expected the core chains exhibit less decay than the
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Figure 3.12.: Spatially decomposed intermediate scattering function of crystalline and noncrys-
talline cellulose for q = 1.5 Å�1. The functions are grouped into three categories
based on their spacing. The mapping onto the position on the fiber axis reveals that
the decay of the scattering function corresponds to a standing wave along the fiber
axis, with two knots, i.e. locations with minimal amplitude.

surface chains throughout the whole time scale. However, a significant part of the difference already
exists at a correlation time of 5 ps and increases slightly for larger time scales. This indicates that
the relaxation processes which distinguish surface from core cellulose chains are rooted in the sub ps
time scale. Interestingly, crystalline and noncrystalline cellulose exhibit the same trend for their
surface and core chains, which indicates that the processes which inhibit the relaxation within the
core of the cellulose are the same for crystalline and noncrystalline cellulose.

The fast time scale dynamics for relaxation times up to 10 ps is shown in Figure 3.14 and is
based on a trajectory with a total of 100 ps and a 1 fs sampling time. As in Fig. 3.13, the data
is decomposed into contributions from cellulose chains at the fiber surface and the core region.
The data reveals that any differences arise only above a relaxation time of 0.2 ps and the slopes
become similar again for times above 2 ps. Also two distinct differences arise at about the same
time scale: crystalline core cellulose chains start to deviate at about 200 fs (less relaxation) which
indicates the loss or a modification of a relaxation process with respect to surface chains and any
chain within noncrystalline cellulose. Another fork happens at about 300 fs when the core chains
of noncrystalline and the surface chains of crystalline cellulose experience a loss of decay (change in
slope). This means that the origin of the dynamical difference between surface and core cellulose
chains is associated with an additional relaxation process for surface chains in the 0.2-2 ps time
regime.

The origin of the split between core and surface chains for the crystalline fiber only was further
clarified by investigating the fast time scale for different locations along the fiber axis, similar to
Figure 3.12. The variation along the fiber axis leads to differences in the decay of the intermediate
scattering function even below the 100 fs time regime, which is shown in Figure 3.15. However,
significant differences between core and surface cellulose chains only arise at time scales above
100 fs (Fig. 3.16) and coincides with the fork between core and surface chains observed earlier
(Fig. 3.15). This leads to the conclusion that the whole body motions experience by the cellulose
fiber significantly affects the relaxation of the intermediate scattering function on all time scales, and
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Figure 3.14.: Fast time scale intermediate scattering function for cellulose, decomposed into
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that the dynamical difference between surface and core cellulose chains is due to larger displacements
of surface chains by global motions.

3.1.3.2. Inelastic X-ray Scattering

IXS is a scattering technique which resolves X-ray photon energies after the scattering event and
allows the vibrational density of states of the sample to be deduced. In crystals the q vector
dependence of the transferred energy of the X-ray photons are quantized solutions to the vibrational
spectrum of the lattice and follow an anisotropic dispersion relation. The IXS signal S(q, E) can be
calculated as the Fourier transform of the coherent intermediate scattering function and a subsequent
renormalization with the energy-frequency relationship E = hv, where h is Plank’s constant. The
characteristic function is:

S(q, v) = FT
�
hhF (q, t, ⌧)i

t

i⌦
 

(3.2)

IXS experiments on aligned cellulose fiber samples were used to deduce the velocity of sound along
the fiber axis [70]. However, the experimental IXS data are very noisy and preclude the identification
of different phonon branches. Here the corresponding IXS signals have been calculated for crystalline
and noncrystalline cellulose for three relevant directions and are shown in Figure 3.17. The IXS
data along the fiber axis clearly shows the imprints of acoustic phonons around the 002 and 004
peaks. Also visible for the crystalline cellulose is an acoustic branch in the direction perpendicular
the fiber axis centered around the 010 peak, albeit much weaker. The remaining spectra do not
reveal any significant phonon branches. The weak and noisy dispersion along the 010 and 100
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Figure 3.15.: Surface/core and spatially decomposed intermediate scattering function of crystalline
cellulose.
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scattering function of crystalline cellulose.

29



directions for crystalline cellulose may be attributed to the relatively small diameter of the cellulose
fiber: the surface chains do not see an homogeneous lattice and thus experience a multitude of
effective force constants which give rise to a broad spectrum of vibrational frequencies. The same
argument explains the absence of any characteristic phonon branches in the 010 and 100 spectra for
noncrystalline cellulose: the additional disorder perpendicular to the fiber axis gives rise to a broader
spectrum of effective force constants. Also in the noncrystalline fiber the distinction between the
010 and 100 direction vanishes, which causes their corresponding IXS spectra to become similar.
The phonon dispersion along the 001 direction for crystalline and noncrystalline cellulose reveal an
interesting difference: The additional phonon branch located at the midpoint between 002 and 004
in crystalline cellulose is absent in noncrystalline cellulose. Also the spectra for crystalline cellulose
feature a fine structure at the peak 002 and 004 positions which is absent in noncrystalline cellulose.

The identified phonon branches in cellulose can be used to infer the sound velocities and the
elastic modulus along the given crystalline directions. The sound velocities can be deduced by using
the dispersion relation for acoustic phonons [70]:

E(q) =

2~
⇡

v
L

q
max

����sin
✓

⇡

2

q

q
max

◆���� (3.3)

As illustrated in Figure 3.18, for the 001 direction the v
L

can be fairly well approximated by fitting
the branch with a line and using the relation v

L

=

�E

~·�q

. For the 010 direction, however, the branch
is less pronounced, which is why q

max

and E(q
max

) =

2~
⇡

v
L

q
max

are approximated independently
with individual error assignments.

The crystalline and noncrystalline models both yield a v
L

= 9240±70

m

2 , which translates into an
elasticity modulus of 149±2 GPa using the relationship G = ⇢·v2

L

and ⇢ = 1.676

g

cm

3 which compares
with the experimentally reported values of v

L,exp

= 11450 ± 1290

m

s

and G = 220 ± 50 GPa [70].
Additionally, the crystalline model features a less pronounced phonon branch in the low energy
region at the midpoint between the 002 and 004 peak, which is estimated here to v

L

= 3390±420

m

s

and G = 19 ± 3 GPa. The branch along the 010 direction for crystalline cellulose is estimated
to v

L

= 2900 ± 500

m

s

and G = 14 ± 3 GPa, which has been reported experimentally to lie at
v
L

= 2973 ± 85

m

s

and G = 14.8 ± 0.8 GPa.
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3.2. Lignocellulose

The previous section provided extensive information on cellulose which is the main component of
plant cells and the target substrate for biomass to biofuel conversion. However, in most terrestrial
plants, cellulose is incorporated into a network of other biopolymers, which mainly comprise
hemicellulose and lignin [58, 71]. To achieve efficient conversion of biomass towards simple sugars
and the subsequent conversion into ethanol, the composite of cellulose, hemicellulose and lignin
has to be modified to provide cellolytic enzymes increased accessibility to cellulose [62]. Different
pretreatment strategies have been explored so far, each having a distinct effect on the molecular
structure and arrangement of the various components [72]. For example, dilute acid pretreatment
leads to the breakdown of the hemicellulose, a reduction of lignin content and enforces a redeposition
of the fragments, while ammonia fiber expansion only leads to redeposition. Dilute acid pretreatment
leads to an observed increase in cellulose crystallinity, while ammonia fiber expansion leads to a
decrease [64].

Recalcitrance is strongly influenced by the physicochemical properties of lignocellulosic biomass [73].
However, the complexity of biomass has so far precluded detailed experimental characterization of
the interaction of lignin with itself and cellulose at the molecular scale, and, in particular, the effect
of cellulose crystallinity on lignin reprecipitation is not known.

Atomic-detail information on molecular processes in model biomass systems can be provided
by MD simulation. Previous MD work have studied the structure and dynamics of cellulosic
oligomers, whole cellulose fibrils [74, 75, 76, 77], and lignin [78]. Early MD studies of cellulose-lignin
association examined the binding of 10- and 20-unit guiacyl oligomers to cellulose [79, 80], and these
studies found that the adsorption of lignin onto different surfaces of a crystalline cellulose model
yielded similar interaction energies. However, to study the aggregation processes of a statistically
significant number of lignin molecules with a cellulose fiber the required time and length scales are
considerable and have only recently been rendered attainable for all-atom MD simulation, facilitated
by the establishment of peta-scale supercomputing facilities and the formulation of specialized
parallelization strategies [56].

3.2.1. Modeling of Lignocellulose

Due to the heterogenous nature of lignin the construction of a realistic model for lignin
reprecipitation onto cellulose requires a large set of individual lignin molecules. Lignin clusters found
experimentally range in size from 5 nm up to 10 µm [81, 82], imposing a limit on the minimum
size of the simulation box. Also, the degree of polymerization for cellulose is typically very large,
ranging from 100 to 10000 [83]. The size of the system determines the time scale simulated, since
lignin molecules must be able to translate within the simulation box, and the distance they travel
is inherently diffusion limited. For a spherical particle with a radius of 2 nm, the self diffusion
constant provided by the Stokes-Einstein equation is on the order of 10

�6cm2s�1, which results
in an estimated translational diffusion of 17 nm in 500 ns. This determines the approximate
minimum simulation time scale required to study lignin precipitation since lignin molecules must
undergo multiple binding events with cellulose and other lignin molecules. Each lignin molecule
modeled consists of 61 monomers, corresponding to a molecular weight of 13 kDa, i.e., within the
experimentally determined range [84]. The monomer chemical composition and linkage were also
obtained from experiment [85]. The cellulose fiber model consists of 36 chains with a chain length
of 160 monomers and is depicted in Figure 3.19A. The atomic starting coordinates for the cellulose
are based on the I-� crystal phase, derived from crystallographic studies [59], and the consensus
model for the fiber [61]. The noncrystalline cellulose model was generated by simulating crystalline
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cellulose at a high temperature (650 K) for 1 ns, which is well above the melting point for the
internal hydrogen bonding network. The crystallinity of the cellulose was assessed by computing
the 1D and 2D Bragg scattering diagrams [19] and is shown in Figs. 3.19B and 3.19C. The fully
crystalline model exhibits strong Bragg peaks typical for I-�, which are absent in the noncrystalline
model.

Three models were simulated, each consisting of a cellulose fibril surrounded by 52 softwood
lignin molecules in explicit water. The differences between the models lie in the initial random
lignin placement and the crystallinity of the cellulose fiber and are visualized in Figure 3.20. The
following nomenclature is used:

Model NC places the lignin molecules initially “near”, i.e. 2-10 Å, from a crystalline fiber

Model FC places the lignin molecules initially “far”, i.e. 4-20 Å, from a crystalline fiber

Model FN places the lignin molecules initially “far”, i.e. 4-20 Å, from a noncrystalline fiber

3.2.2. Preferential Association of Lignin with Crystalline Cellulose

All lignocellulose simulation models showed the same overall behavior involving lignin molecules
aggregating with each other and binding to the cellulose fiber. The precipitation of lignin onto
cellulose and lignin self aggregation can be quantified by the time-evolution of the total number
of atomic contacts, N, for each of the 3 simulation models. N exhibited strong linear correlation
with the buried surface area (data not shown, but provided in the corresponding manuscript), and
therefore these quantities can be interchanged without affecting the conclusions.

3.2.2.1. Cellulose-Lignin Aggregation

In all simulations the number of cellulose-lignin contacts, N(CL) rises sharply over the first 100 ns
before converging by the end of the simulations (Fig. 3.21A), with a variation of less than 20% in
the second half of the simulation. N(CL) is clearly different for each model throughout the whole
simulation time. For the NC model the near placement of the lignin molecules leads to a larger
N(CL) at all times of the simulation than in the “far” models, in which the lignin molecules were
initially placed further away from the fiber. Interestingly, a significantly higher number of cellulose-
lignin contacts is seen for FC than FN, even though the lignin molecules were initially placed in a
similar manner around the fiber. Thus, Fig. 3.21A indicates that two factors affect the proportion of
lignin reprecipitation onto cellulose: the average initial distance from the cellulose and the cellulose
crystallinity. To obtain a thermodynamic understanding of the differences in lignin reprecipitation
onto crystalline and noncrystalline cellulose, the cellulose-lignin and lignin-lignin interaction energy
densities, ✏, were calculated. ✏ is derived by dividing the interaction energy, E, by B, the buried
surface area between cellulose-lignin or lignin-lignin. B and E exhibit strong linear correlation
(data not shown). No significant dependence of the cellulose-lignin interaction energy on cellulose
crystallinity is found (Table 3.4). This is consistent with earlier findings suggesting that the lignin
monomer binding interaction energy is independent of the molecular structure of cellulose [80, 79].
As a next step, solvation was investigated as a possible origin of the difference between the FC and
FN models. To characterize the solute-water interactions, separate simulations were performed in
explicit water of individual lignin molecules and of a crystalline and a noncrystalline cellulose fiber.
The solute-water interaction energy was then calculated as the interaction energy per unit solvent
accessible surface area ✏ = E/S.
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Figure 3.19.: A) Cross-sections of the I� crystalline cellulose model. Left: perpendicular to the
fiber axis, indicating the crystal surfaces in contact with the solvent. Right: along
the fiber axis, indicating the fiber thickness and length. B) Top and Middle: 2D
directional X-ray scattering patterns for the crystalline and noncrystalline cellulose
models (based on the average of 1000 snapshots from a 20 ns MD simulation).
Bottom: experimental X-ray scattering diagram from Ref. [70]. The Bragg peaks
are a characteristic feature of the translational symmetry in crystalline cellulose
perpendicular to the fiber axis, and are absent for noncrystalline cellulose. C)
1D spherically-averaged X-ray scattering profile for crystalline and noncrystalline
cellulose simulations. The noncrystalline cellulose has residual peaks shifted away
from the characteristic scattering peaks for crystalline cellulose. As a comparison
the experimental WAXS is also shown for Avicel type cellulose from Ref. [86]. The
calculated WAXS signal features peaks which are systematically shifted to lower q
values when compared to the experimental one.
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Lignocellulose interfacial interaction constants:
Interface Model Interaction Energy Densities

✏ ✏
Coul

✏
LJ

Cellulose/Lignin NC �47.65 �20.43 �27.22

FC �51.80 �22.67 �29.13

FN �50.33 �24.10 �26.24

Lignin/Lignin NC �52.66 �22.19 �30.47

FC �52.95 �22.24 �30.72

FN �52.02 �21.54 �30.48

Table 3.4.: Lignocellulose interfacial interaction constants, ✏, decomposed into coulombic, ✏
Coul

,
and van der Waals contribution, ✏

LJ

. Energies are kJ/mol/nm2. The assumed error
is ±2.0 and ±0.67 for Cellulose/Lignin and Lignin/Lignin, which is derived from the
difference of the values between the two simulations of the NC model (second NC
simulation: ✏(CL) = �50.46 kJ/mol/nm2 and ✏(LL) = �51.71 kJ/mol/nm2). The
true error of ✏

total

depends on the variations in the possible aggregation pathways for
each model.

Solvent:biomass interaction constants:
Solute Solvent Interaction Energy Densities

✏ ✏
Coul

✏
LJ

Lignin �74.1 ± 9.5 �63.0 ± 8.5 �11.2 ± 1.1
Crystalline Cellulose �94.0 ± 1.7 �83.0 ± 1.8 �10.0 ± 0.2

Noncrystalline Cellulose �107.3 ± 0.7 �102.0 ± 0.7 �5.0 ± 0.2

Table 3.5.: Solvent:biomass interaction constants, ✏, decomposed into coulombic, ✏
Coul

, and van
der Waals contribution, ✏

LJ

. Energies are kJ/mol/nm2. Water-solute constants are
based on the simulation of isolated molecules. The standard deviation for water-lignin
reflects the spread across all of the 52 lignin molecules.
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Table 3.5 shows that the enthalpic interaction per unit area between cellulose and water is
significantly larger for the noncrystalline than for the crystalline form. The difference in interaction
energy density was traced back to differences in the capacity of the cellulose to hydrogen bond
with water, which increases from 3.2 ± 0.1/nm2 for crystalline to 3.7 ± 0.1/nm2 for noncrystalline
cellulose. It was also found that, although the average number of hydrogen bonds made by cellulose
(internal+solvent) per glucose molecule is very similar for the two models, with about 3.4 ± 0.1
for crystalline and 3.6 ± 0.1 for noncrystalline cellulose, the ratio of internal to solvent is markedly
different, being 68% to 32% for the crystalline form compared to 47% to 53% for noncrystalline
cellulose. The increased interaction energy between noncrystalline cellulose and water suggests that
noncrystalline cellulose is effectively more hydrophilic than the crystalline form, and explains why
the FN model exhibits less lignin precipitation on to cellulose than the FC model (Figure 3.21A).
The lignin-water interaction energy densities are broadly distributed, ranging between �58 and
�95 kJ/mol/nm2, and also were found to exhibit a strong correlation with the number of lignin-
water hydrogen bonds but only a weak correlation with the total hydrophobic fraction of the surface
area (Fig. 3.22). An example of two lignin molecules with the same solvent accessible surface area
and chemical topology but a very different number of hydrogen bonds with water and thus lignin-
water interaction energy density is also given in Fig. 3.22. In contrast to cellulose, the internal
and solvent hydrogen bonds of lignin do not systematically compensate, and thus lignin molecules
exhibit a varying degree of unsatisfied hydrogen bonding groups.

3.2.2.2. Lignin Aggregation

During the initial phase of lignin self aggregation in the simulations, lignin molecules bind to
macromolecules in their local vicinity. As is apparent from Figure 3.21B, during the first 50 ns
all models show a similar amount of lignin-lignin aggregation, which is a direct consequence of
the models having similar initial distances between the lignin molecules. However, after 50 ns
the FN model diverges from NC and FC, exhibiting a higher degree of lignin self aggregation.
Hence, noncrystalline cellulose also promotes lignin self aggregation. To further quantify the self
aggregation effect, the lignin aggregation process was decomposed into a discrete state model, in
which each state represents a distinct arrangement of molecular contacts. Molecular contacts are
defined here as two molecules having at least one atomic contact, and the state of a lignin molecule
is then defined by the number of molecular contacts formed. The states were labeled L for isolated
lignin, LX for a lignin molecule in contact with X-1 other lignin molecules and a leading C, if the
lignin forms an additional contact with cellulose. The model and the time-dependent population for
all states are provided in Fig. 3.23. At 50 ns, FN shows a striking increase in the L3 and L4 states,
indicating the formation of larger lignin clusters without cellulose contact, which coincides with a
strongly reduced population of the CL2 state, which corresponds to two lignin molecules bound to
each other and to cellulose. Hence, the reduced affinity of noncrystalline cellulose for lignin during
the initial 50 ns leads to a long-term increase in the lignin self aggregation.

3.2.2.3. Metastability and Stickiness

Since NC and FC were simulated with the same structural models for cellulose and lignin, the
quantitative difference in N(CL) between NC and FC provided in Fig. 3.21A indicates that the
simulations have reached different metastable states. One reason for this metastability is the
“stickiness” of lignin for both cellulose and lignin, i.e. the persistent binding of lignin to cellulose or
another lignin molecule. We define the stickiness, S(t), as the conditional probability of finding a
lignin molecule bound to another molecule at time t, given that the two molecules formed a contact
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Cellulose-lignin and lignin-lignin stickiness, S
CL

(t) and S
LL

(t) respectively, are shown in
Figure 3.24. S

LL

(t) converges to 0.70±0.05 for all models within the first 200 ns, which means that
on average each lignin molecule retains 70% of the molecular contacts it initiates with other lignins.
The association of a given lignin molecule with cellulose is influenced by the intrinsic propensity of
the two molecules to bind in aqueous solution and also by extrinsic factors, such as the presence
of other lignins that may block access to the cellulose. To probe the intrinsic factors contributing
to stickiness of lignin on cellulose, S

CL

(t) was computed for the subset of lignin molecules which
enter the CL state first, i.e. bind first to cellulose before binding to other lignins, which makes the
derived S

CL

(t) less sensitive to competing binding of lignin to cellulose. As shown in Fig. 3.24A,
S
CL

(t) converges to 0.80 ± 0.01, 0.75 ± 0.05, and 0.67 ± 0.01 for NC, FC, and FN, respectively.
The difference in S

CL

(t) between the crystalline and noncrystalline cellulose models is consistent
with the overall reduced lignin:noncrystalline cellulose association. Furthermore, the large values of
S
CL

(t) are quantitatively indicative of the high degree of lignin stickiness for cellulose and explains
why the initial conditions in the simulation have a significant effect on the morphology of the final
metastable states.

3.2.2.4. Morphology

The impact of lignin stickiness and cellulose crystallinity on morphological features of the cellulose-
lignin complexes is apparent in the molecular configurations visualized in Figure 3.20B, which
contains 2D projections of the models at the start and end of each simulation⇤. The morphology
of the cellulose-lignin aggregation was investigated by grouping individual lignin molecules either
directly or indirectly connected through other lignin molecules into lignin clusters, and then
⇤Additional visualizations online: http:\\cmb.ornl.gov\material\lignocellulose-reprecipitation.
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Figure 3.25.: A) Probability distributions of atomic contacts between cellulose and lignin based
on cluster morphology, averaged over 50k frames (250 ns to 500 ns, minor structural
rearrangements with a variation in total atomic contacts of less than 20%). B)
Bubble Diagram of the Probability (Size of Bubbles) of lignin clusters of a given
size (x axis) and their cellulose association (y axis), quantified by the fraction of
lignin molecules in contact with cellulose. Cluster sizes of 1 mark lignin molecules
in the L or CL state. FN has large clusters with low association, while NC results
in medium sized clusters with high cellulose association. For visualization, the data
for NC was shifted by 0.25 on the x axis to the lower values and FC was shifted
0.25 to higher values. C) Probability distributions of atomic contacts between lignin
molecules with surrounding lignin, averaged over 50k frames (250 ns to 500 ns).
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quantifying the degree of association of individual lignin clusters with cellulose. Figure 3.25A shows
the probability of a random lignin molecule participating in a cluster forming N(CL) contacts
with cellulose. Due to lignin stickiness, the NC model, in which the lignin molecules are placed
closer to the cellulose, contains lignin clusters which are highly associated with cellulose. The FC
and FN models exhibit similar binding characteristics for clusters with N(CL)  300. However,
the maximum number of contacts for FN (280) is less than the maximum for FC (400). Similar
information can be retrieved from Figure 3.25B, which shows the probability of a lignin cluster
plotted against the cluster size and the degree of association with cellulose (the number of molecular
lignin-cellulose contacts), and reveals, for example, that the FN model contains a large lignin cluster
(17 molecules) with hardly any cellulose association (<10%). Differences in the morphology of lignin
self aggregation can be seen from Figure 3.25C, which shows the number of atomic contacts made
by each individual lignin molecule with its surrounding lignin molecules. While this number is very
similar for NC and FC, for FN it is depleted in the range between 100 and 200 atomic contacts and
significantly higher above 200, again consistent with the observation that the FN model exhibits
larger lignin clusters with an increased number of molecular lignin-lignin contacts.

3.2.3. Modeling of a 24 Million Atom System

The investigation of the effect of cellulose crystallinity onto cellulose-lignin aggregation represents
the first step in a series of investigations to probe and understand the complexity of biomass on
the molecular level using simulation techniques. At the time of writing subsequent simulations have
been performed, which will provide information on the effective interaction of the cellolytic enzymes
Cel7A with crystalline and noncrystalline cellulose in a lignin environment. Here the converged
lignocellulose structures act as building blocks for a cellulase-cellulose-lignin model, which comprises
24 million atoms in total using explicit water. Figure 3.26 provides a rendering of the 24 million atom
system, using different color for cellulase, cellulose and lignin molecules. The model is comprised of
9 cellulose fibers, 9x52 lignin molecules and 54 Cel7A proteins.
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Figure 3.26.: Rendering of the 3x3 lignocellulose model derived from the 3 individual lignocellulose
simulations, combined with the cellolytic enzyme Cel7A. The solvated system
contains up to 24 million atoms.
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3.3. Alanine Dipeptide

Achieving large time and length scales for molecular dynamics simulation using supercomputers
is not the only way of pushing the envelope in understanding the dynamics of molecular systems.
Another active field of research is the application of Markov Chain Modeling towards the analysis of
the configurational dynamics of molecules: Markov Chain Models serve as a rigorous statistical tool
to characterize and classify the molecular configurations and calculate the transition probabilities
between them. Of particular interest is the application of Markov models in the analysis and
interpretation of experimental data, e.g. for fluorescent microscopy [16], where it has been shown
that the transition times derived from a Markov model analysis of a simulated alanine dipeptide,
correspond well to the experimentally measured relaxation times.

Within the scope of this work, the application of Markov model analysis was extended towards
the prediction and interpretation of dynamic neutron scattering spectra. It is shown that, with a
properly chosen Markov model, the complex scattering profile of alanine dipeptide can be easily
understood as the superposition of simultaneous relaxation processes, with distinct relaxation times
and scattering intensities. The complete treatment of the theory and its application towards alanine
dipeptide has been covered in a separate manuscript†. The necessary theoretical foundations are
discussed in section 2.3.

3.3.1. Molecular Structure and Dynamics

The application of Markov State Modeling (MSM) towards the computation of neutron scattering
is exemplified here using the simulated conformational dynamics of alanine dipeptide (N-acetyl-
alanine-N’-methylamide) (see Fig. 3.27). This molecule has long served as a subject for
methodological computational studies because the flexible backbone dihedral angles, � (C � N �
C
↵

� C) and  ( N � C
↵

� C � N), adopt the conformations typical for the ↵ helix and �
strand motifs in proteins [87, 88, 89, 90, 91]. Furthermore, the alanine dipeptide contains one
side-chain (�) and two terminal methyl groups (N-ter and C-ter), which provide additional degrees
of freedom relevant to spectroscopic techniques sensitive to atomic displacements, in particular
dynamic neutron scattering. Previous work has indicated that the N-ter and C-ter methyl groups
in the molecule have low rotational barriers, i.e.,  0.1 kcal/mol [92], leading to rotations on the ps
time scale at 300 K. In contrast, the side-chain methyl (�) group exhibits an intrinsic intramolecular
torsional barrier of about 3 kcal/mol [93] resulting in rotational jump diffusion on the sub ns
time scale. This backbone, side-chain methyl and terminal methyl dynamics makes the system a
good candidate for studying conformational dynamics with the aim of integrating spectroscopic
experiments with MSM.

3.3.2. Modeling with Markov States

The derivation of a Markov state model (MSM) for the configurational dynamics of alanine dipeptide
requires a number of steps, which are outlined in Fig. 3.28. These steps comprise state space
reduction, discretization, implied time scale analysis and kinetic clustering. Each step builds upon
the choices and results of the previous steps. Although the methodology for MSM construction
is well established, the main points of the procedure are briefly summarized here and relevant
information and construction parameters are provided. Further details are provided exhaustively in

†to be published
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Figure 3.27.: Molecular structure of alanine dipeptide. All relevant dihedral and methyl group
rotation angles are indicated.

the current literature [94, 95]. The software package EMMA‡ was used for the discretization of the
trajectory data, the implied time scale analysis and the quality assessment of the MSM.

3.3.2.1. State Space Reduction

The first step in the derivation of a Markov model is to find a number of coordinates to capture the
anticipated transition processes. This commonly reduces the observed state space from 3N degrees of
freedom to only a few. The maximum number of chosen degrees of freedom is limited in practice by
the available sampling: more degrees lead to fewer sampling points per unique state and subsequently
to larger errors in the estimated transition probabilities. The construction of a set of generalized
coordinates is often guided by existing knowledge of the accessible configurations and by the ability
to distinguish between them. The chosen coordinates are also referred to as state variables or
reaction coordinates, due to their ability to distinguish different configurational states. An important
feature of a set of state variables is that they together uniquely identify distinct configurations. In
the case of alanine dipeptide, the internal dihedral rotations are a natural choice for distinguishing
between different peptide configurations. In the present example, the set of rotational angles, �,  ,
C1 (CAY-CY-N-CA), N1 (CA-C-NT-CAT ), C-ter, N-ter, and � methyl were selected as candidates
for state variables (see Fig. 3.27), and their time series are illustrated in Fig. B.1. The values for
�,  and � switch between distinguishable, long-lived (> 10 ps) plateaux, which means that their
associated free energy profiles feature significant barriers with distinct minima. The values for the
C1 and N1 peptide bonds fluctuate around 0±15

� throughout the whole simulation of 1 µs owing to
their strong rigidity, while, in contrast, the C- and N-ter methyl angles have no preferred orientation

‡EMMA: https://simtk.org/home/emma
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and rotate freely, consistent with their low barriers ( 0.1 kcal/mol) [92]. To further illustrate the
individual time evolution of the selected angles, the corresponding NMR based angle-angle self-
correlation functions C

NMR

(⌧) = hP2 [cos (✓(t) � ✓(t + ⌧))]i [96] were calculated and are plotted in
Fig. B.2 P2 is the second-order Legendre polynomial given by P2(x) =

1
2

⇥
3x2 � 1

⇤
. The estimated

relaxation time for � is ⇠200 ps, for � and  about ⇠50 ps, and for C1 and N1 and the C- and
N-ter methyl angles ⇠0.1 ps and ⇠1 ps, respectively. Consequently, only �,  and � were selected
as state variables for the subsequent Markov modeling.

3.3.2.2. Discretization

The three state variables, �, �, and  span a continuous and fully periodic three-dimensional
configuration space, each point representing a distinguishable configuration of the alanine dipeptide.
However, each sampling point occupies a unique location. To allow statistical analysis of the
transitions within this state space, configurations which are geometrically close together must
be clustered and assigned to the same microstate. Two common algorithms for this geometrical
clustering are constant-space clustering and k-centers clustering [95, 97, 98, 50]. Constant-space
clustering applies a regular grid to the complete state space and assigns distinct microstates to
occupied grid elements, while the k-centers clustering algorithm traverses through the sampling data
and generates new microstates for sampling points which do not fall within a certain geometrical
distance of previous microstates. Here, the k-centers clustering algorithm was used to derive a set
of microstates for the alanine dipeptide data using the software EMMA with a target of k = 1000

cluster centers and the Euclidian metric for distance calculation. It has been shown that the
clustering results converge for large k (e.g., k � 1000), independent of the order by which the
trajectory is traversed [95] (see Fig. B.3 for 1000 cluster centers in � �  � � space). After
discretization, each configuration of the alanine dipeptide was assigned to one of a finite set of
distinct microstates. The dynamics of the alanine dipeptide can then be described by a simple
time series of these microstates and serves as the basis for the calculation of transition probabilities
from which the microstate transition kernel of the Markov model is derived. The elements of the
microstate transition matrix, T

ij

, can then be computed as

T
ij

=

P (s = j, t = ⌧ ^ s = i, t = 0)

P (s = i)
(3.6)

where T
ij

is the probability for finding the system in microstate j after a lagtime of ⌧ , given that it
was in microstate i at time t.

3.3.2.3. Time Scale Analysis

The choice of the best lagtime ⌧ , with which to analyze the time series and for which the conditional
probabilities in the Markov kernel should be defined, requires some consideration. Processes
operating on time scales significantly faster than the lagtime cannot be accurately modeled, because
they have already equilibrated at ⌧ , precluding any detailed time-dependent information. On the
other hand the lagtime must be sufficiently long that the described processes exhibit the Markov
property, meaning that the path of the trajectory in configuration space must be free of hysteresis.

Hence, the choice of the lagtime is guided by an empirical approach in which the microstate
Markov transition kernel is solved for a series of lagtimes and the scaled eigenvalues t⇤

i

=

� ⌧

ln|�i(⌧)|
(implied times) [95, 94] are plotted against the lagtime itself. For processes exhibiting the

Markov property the implied time, t⇤
i

, becomes independent of the lagtime, ⌧ , which is indicated
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Figure 3.29.: Implied time scales of the processes associated with individual eigenvectors,
depending on the lag time n⌧ , computed as ⌧⇤

k

(n⌧) =

n⌧

ln[�k(n⌧)]
, where �

k

is the
k-th eigenvalue. The implied time scales of the first 8 eigenvectors become flat at
around 10 ps, which is below the lifetimes of the metastable states, indicating that
the interstate transitions are Markovian.

by reaching a plateau. The ideal lagtime is then given by the minimal value for which all relevant
implied time scales have become independent of the value of the lagtime.

Here, the implied time scale analysis for the derived microstate transition kernel of alanine
dipeptide was performed for the lagtimes (ps)=0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, and is shown in
Fig. 3.29 for the 20 largest eigenvalues. The solid line in Fig. 3.29 marks the onset for the resolution
limit of the Markov kernel which reflects the fact that fast processes cannot be reliably described
by a kernel derived with a large lagtime (lower triangle).

Here, the implied time scale analysis graph suggests two possible reductions of the microstate
towards a macrostate kernel, which are also visible as time scale gaps between the estimated
relaxation times [95, 99]. The first reduction operates on a lagtime of 100 ps and takes advantage of
the first time scale gap between the two slowest processes with any other, and the second reduction
operates on a lagtime of 10 ps and reduces the number of distinguishable processes to 9.

3.3.2.4. Kinetic Clustering

The implied time scale analysis provides a rationale for determining the number of relaxation
processes reliably described by a Markov kernel. Since the number of Markov states is inherently
equal to the number of Markov processes (including the equilibrium distribution), this also provides
the number of distinguishable Markov states. However, more generally, the microstate transition
kernel contains explicit information about the kinetic connectivity between different groups of
microstates expressed as conditional probabilities for transitions. This can be exploited by
remodeling the microstate transition matrix so as to reassign the rows and columns such that those
microstates close together in the matrix are also close kinetically. The result is a kinetic clustering
of microstates into macrostates and is here performed using the improved Perron-Cluster-Cluster-
Analysis (PCCA) method implemented in EMMA [100, 101]. This way two reduced macrostate
Markov kernels were obtained: one 3 state/100 ps kernel and the other a 9 state/10 ps kernel.
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(a) (b)

Figure 3.30.: Cluster centers in metastable states I, II, and III in the configurational space of �,
 and � from MSM using m = 3 (a) and m=9 (b)

The micro- to macrostate assignment was visually inspected using a 3-dimensional plot of the
cluster location and assignment in the � �  � � phase space. Fig. B.4 shows the assignment for
the 3 state/100 ps kernel in which microstates with the same macrostate assignment have the same
indicator, and Fig. 3.30a is a simplified schematic plot of the three macrostates: I (�✏ [�120, 0]), II
(�✏ [0, 120]), and III (�✏ [�180, �120][ [120, 180]) in the �� �� space. These plots indicate that
the 3 state/100 ps kernel describes transitions between states with differing �, which means that it
exclusively describes the methyl group rotational dynamics. The higher resolution of the 9 state/10
ps kernel is required to resolve transitions between point groups with different � and  values, and
these are shown in Fig. B.5a. The Markov states are labeled according to their position in � (I,
II, III) and their location within the � �  plane (a, b, c). The projection of the distribution in
� �  � � phase space onto the � �  plane provides the Ramachandran plot (Fig. B.5b), which
leads to the identification of the Markov states with the Ramachandran states (a represents ↵

R

,
b represents �/C5, and c represents C7

ax

). Fig. 3.30b is a simplified schematic plot of these 9
macrostates.

The derived macrostate kernel, is provided in Table 3.6. The corresponding eigenvalues and
eigenvectors are plotted in Fig. 3.31, and the relaxation times and frequencies are listed in Table 3.7.

3.3.3. Incoherent and Coherent Scattering Analysis

The total incoherent intermediate scattering function, F
inc

(q, ⌧), is shown in Fig. 3.32 for q=1 Å�1,
along with the single-atom incoherent intermediate scattering functions,F

inc

(q, ⌧, ↵) for ↵=HY1,
HB1, and HNT, respectively. These three atoms were chosen as representatives of the hydrogen
atoms on the terminal methyl groups, the side-chain methyl group, and the backbone, respectively.

F
inc

(q, ⌧, ↵) for HY1 decays within ⇠1 ps, that for HNT within ⇠100 ps, and that for HB1
within ⇠1 ns. The spread in relaxation times for the individual hydrogen atoms indicates that the
associated structural relaxation processes do exist on significantly different time scales and affect
individual atoms to a different degree.
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Figure 3.31.: Eigenvalues and Eigenvectors obtained from MSM using m=9.
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9-state transition matrix T {�

0

,�, } for alanine dipeptide:
! Ia ! Ib ! Ic ! IIa ! IIb ! IIc ! IIIa ! IIIb ! IIIc

Ia 0.765 0.202 0.000 0.014 0.002 0.000 0.013 0.003 0.000
Ib 0.266 0.695 0.000 0.005 0.013 0.000 0.005 0.015 0.000
Ic 0.096 0.004 0.846 0.007 0.000 0.046 0.000 0.001 0.001
IIa 0.011 0.003 0.000 0.785 0.186 0.000 0.011 0.003 0.000
IIb 0.003 0.013 0.000 0.312 0.653 0.000 0.004 0.014 0.000
IIc 0.000 0.000 0.042 0.122 0.004 0.832 0.000 0.000 0.000
IIIa 0.012 0.004 0.000 0.012 0.003 0.000 0.767 0.202 0.000
IIIb 0.004 0.015 0.000 0.005 0.013 0.000 0.289 0.674 0.000
IIIc 0.000 0.000 0.002 0.001 0.001 0.002 0.304 0.029 0.662

Table 3.6.: Row stochastic transition matrix T {�

0

,�, } for m=9. Each matrix element describes
the conditional probability for a transition between the originating state (designed by
row) and the destination state (designed by column)

Eigen decomposition for T {�

0

,�, } with coherent and incoherent scattering amplitudes:
Process / Eigenvector

1 2 3 4 5 6 7 8 9
Eigenvalue 1.0 0.95 0.94 0.88 0.79 0.66 0.50 0.47 0.46

⌧
k

(ps) / 205.49 189.13 80.37 43.57 24.23 14.58 13.34 12.94
A

inc,k

0.71 3.4e-2 3.2e-2 1.4e-4 6.7e-5 1.4e-4 2.4e-2 5.5e-3 1.9e-3
A

coh,k

0.92 8.2e-6 2.6e-7 8.3e-5 7.9e-7 6.2e-5 3.5e-2 6.7e-3 5.4e-4

Table 3.7.: Eigenvalues, relaxation times/frequencies, and A
k

for m = 9 and q = 1 Å�1

Figure 3.32.: F
inc

(q, ⌧) for all atoms and selected hydrogens atoms at q = 1 Å�1 directly calculated
from MD trajectories using Eq. 2.16.
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Figure 3.33.: Comparison of F
inc

(q, ⌧), F
coh

(q, ⌧) q = 1 Å�1 between the result from the Markov
state model using Eq. 2.40 with coherent and incoherent amplitudes described by
Eq. 2.41 and 2.42 and the result from the direct calculation from MD trajectories
using Eq. 2.16 and 2.15.

F
inc

(q, ⌧) for the whole molecule calculated from the 9-state kernel MSM is compared with the
result from the direct calculation in Fig. 3.33. The good agreement of the two methods indicates
that the MSM reproduces F

inc

(q, ⌧) very accurately, with small differences found only on fast time
scales as would be expected (<10 ps). The full function F

inc

(q, ⌧) from the 9-state MSM consists of
the 9 components according to Eq. 2.34. The first component, A1,inc(q) , corresponding to �1 = 1,
is the elastic structure factor and the other components,

P9
k=2 exp

⇣
� ⌧

tk

⌘
·A

k,inc

(q) , are associated
with the relaxation processes in the MSM. The process-dependent scattering amplitudes, A

k,inc

(q),
and the corresponding relaxation times, ⌧

k,inc

, are provided in Table 3.7.
The total incoherent intermediate scattering function, F

inc

(q, ⌧), which is that which can be in
principle determined in neutron scattering experiments, cannot be directly used to identify the
set of structural relaxation processes that lead to the decay of F

inc

(q, ⌧). Rather, in a typical
experimental analysis, F

inc

(q, ⌧) would be fitted with a set of simple exponential functions (assuming
a small number of relaxation processes) or one single stretched exponential function (assuming a
distribution of relaxation times [102]). This leads to an understanding of the system in terms of
time scales, but not in terms of structural processes. In contrast, the MSM explicitly provides the
decomposition into structural relaxation processes based on the molecular dynamics simulation and
thus serves as an intermediary between the simulation and experiment.

F
coh

(q, ⌧) calculated directly from the molecular dynamics trajectory using Eq. 2.15 and from
the MSM using Eq. 2.40 together with Eq. 2.41 are plotted in Fig. 3.33. The agreement of the
results illustrates that the MSM can also reliably reproduce the coherent scattering functions. The
scattering amplitudes, A

k,coh

(q), are listed in Table 3.7 for q = 1.0 Å�1. F
coh

(q, ⌧) decays more
rapidly than F

inc

(q, ⌧, ↵) the processes corresponding to �2 = 0.96 and �3 = 0.94 have small
A

k,coh

(q) but relatively large A
k,inc

(q).
From inspection of Fig. 3.34 it follows that the dominant components for incoherent scattering are

A2,inc(q) and A3,inc(q), while for coherent scattering the largest contribution arises from A7,coh(q).
An analysis of the eigenvectors shows (see Figure 3.31) that the 2nd and 3rd process correspond to
the methyl group rotation, while process k = 7 is associated with a backbone dihedral rotation.
The relative lack of sensitivity of coherent scattering to the rotation of the methyl group is a result
of the methyl group rotation involving a symmetry operation that does not change the value of the
associated observable in Eq. 2.41 [103, 104, 105]. Conversely, structural changes that strongly affect
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(a) (b)

Figure 3.34.: Q dependence of scattering amplitudes A
k,inc

(a) and A
k,coh

(b) of each process.

the observables in Eq. 2.41 and Eq. 2.42 , are expected to manifest themselves in correspondingly
large amplitudes A

k

(q).
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3.4. High Performance Calculation of Scattering Profiles

Molecular dynamics simulation has traditionally been a high performance computing problem, which
is why many research groups have spent significant effort on producing algorithms for molecular
dynamics which run efficiently on massively parallel supercomputing hardware [106, 107, 54].
However, the analysis of the generated simulation data is still often performed with algorithms
which cannot fully exploit the architecture of massively parallel computers. One reason for this is
that in many cases the short-term incentive to refactor the analysis algorithms is not strong enough,
which leads to a situation where a moderate amount of effort is spent on achieving a satisfactory
scalability through the use of embarrassingly parallel schemes. E.g. the parallel computation of
the time-averaged root-mean squared deviation (RMSD) can be achieved by splitting the trajectory
into different time segments and assign each segment to a different processing unit.

However, some analysis algorithms are not embarrassingly parallelizable or are a mix between
embarrassingly and delightfully parallel. Two of those cases, which are presented here, are the
calculation of the incoherent and coherent dynamic scattering intensities from molecular dynamics
simulation trajectories. While previous software solutions for calculating all the different scattering
functions already exists [108, 49, 109, 110, 20], they have not been specifically designed for execution
on a massively parallel computer. This work introduces algorithmic solutions for achieving good
scalability on modern supercomputing architectures. The discussed data staging and calculation
schemes were implemented in the software SASSENA § [19], which has been made available to the
general public.

3.4.1. Data Staging Schemes

The calculation of the incoherent intermediate scattering function, F
inc

(q, ⌧) requires the computa-
tion of the following quantity:

F
inc

(q, ⌧) =

X

n

hha
n

(~q, t) · a⇤
n

(~q, t + ⌧)i
t

i
~q

(3.7)

where q is the scattering length, ⌧ is the correlation time, a
n

(~q, ⌧) is the complex scattering amplitude
for atom n and hhi

t

i
~q

denotes the time and the orientational average. The coherent intermediate
scattering function is given by

F
coh

(q, ⌧) = hhA(~q, t) · A⇤

(~q, t + ⌧)i
t

i
~q

(3.8)

where A(~q, t) =

P
n

a
n

(~q, t) is the total scattering amplitude computed from the scattering
amplitudes of all atoms within the system. The distinction between a

n,inc

(~q, t) and a
n,coh

(~q, t)
is neglected for simplicity.

A significant difference between the calculation of the incoherent and coherent scattering is the
position for the summation over atoms,

P
n

, which is the innermost part for coherent and the
outermost part for incoherent scattering. Thus, the high-performance calculation of incoherent
scattering requires the data to be organized into a sequence of blocks, each containing the coordinates
of a single atom for all time instances (atom decomposition), while coherent scattering requires each
block to contain the coordinates for all atoms for a particular time (frame decomposition). The
relationship between data alignment and the algorithmic access pattern is illustrated in Figure 3.35.
Patterns which place data elements as neighbors for access in a consecutive fashion benefit for
two reasons: First the computing hardware can better avoid latencies, by loading several data
§http://www.sassena.org
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aXtY atom X, time Y algorithm sequence:

Figure 3.35.: Data alignment and access patterns. Consecutive access on neighboring data
elements is the preferred scheme for high performance computing.

frame 0 frame 1 .... frame S ... frame T-1 frame T

frame atom 0 atom 1 ... atom N=

Generic Data Layout of Molecular Dynamics Trajectories

atom =

Frame Header

File Header

x coord y coord z coord

Figure 3.36.: Generic data layout of a molecular dynamics simulation file

elements at the same time into the processing unit. Second, which is even more important in a
distributed memory environment, the alignment of the data into independent blocks leads to a clear
task assignment, where each processing unit works on a consecutive chunk of data, with little or no
overhead of moving data elements around.

Thus the first priority of any high performance algorithm targeted towards a massively parallel
computing environment, is to place the data accordingly into the distributed memory. The generic
data layout for a molecular dynamics trajectory file is provided in Figure 3.36. For coherent
scattering the optimal data layout matches the data layout usually found in molecular dynamics
simulation trajectories. Thus little effort is necessary to place the data accordingly into memory,
which is illustrated in Figure 3.37. In contrast, incoherent scattering requires a transposed data
layout, which requires a reshuffling of the data at the time the data are read from disk. This is
achieved at almost no overhead cost by introducing a midstate during the reading of the trajectory
data which prepares the data for a MPI AlltoAll call, after which the data is distributed among the
processing units in a transposed form as illustrated in Figure 3.37.

56



Frame Decomposition:

node 0 node ... node X

endstate time 0 time 1 ... time 1 time T-1 time T...

frame 0
0 1 N

frame 1
0 1 N

frame S
0 1 N

frame T-1
0 1 N

frame T
0 1 N

... ...
disk

Atom Decomposition:

node 0 node ... node X

midstate

MPI AlltoAll

atom 0 atom 1 ... atom N-1 atom N

time 0 time 1 ... time 1 time T-1 time T...

frame 0
0 1 N

frame 1
0 1 N

frame S
0 1 N

frame T-1
0 1 N

frame T
0 1 N

... ...
disk

endstate

node 0 node ... node X

Figure 3.37.: Data staging schemes for coherent and incoherent scattering. In coherent scattering
the required data layout matches the layout in the trajectory file. In incoherent
scattering a transposition of the data is necessary, which is performed by introducing
a midstate into the data staging, followed by a MPIAlltoAll call.

57



Calculation scheme for self scattering
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iterate q vector orientations
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integrate
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t1...tn trajectory data N1...Nn nodes

a1...an scattering amplitudes f1...fn scattering signal

fq2 fq fqt output

calculate amplitudes

Figure 3.38.: Calculation scheme for incoherent (self) scattering.

3.4.2. Calculation Schemes

For incoherent scattering, also denoted as self scattering, the atom decomposition leads to a
calculation scheme where each processing unit acts independently and no communication of
intermediate results are necessary, as indicated in Figure 3.38. For coherent scattering, the frame
decomposition achieves full data locality for the resulting calculation scheme. However, it requires a
global communication for the exchange of intermediate results, which is implemented as MPIAlltoAll
call, which is indicated in the corresponding Figure 3.39. The DSP step corresponds to the
computation of the autocorrelation (ha(t) · a⇤(t + ⌧i

t

or hA(t) · A⇤

(t + ⌧)i
t

), and the final function
is stored in a data array denoted by fqt (the remaining symbols are explained in Ref. [19]).

3.4.3. Partitioning Scheme

The calculation schemes for coherent (all) and incoherent (self) scattering impose a limit on the
number of cores that can be used in parallel. For coherent (all) scattering this is equal to the
number of frames, whereas for incoherent (self) scattering it is the number of atoms. However,
most scattering calculations require the computation of the scattering signal for many independent
scattering vectors ~q. This allows an additional layer of parallelism to be added based on the number
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Calculation scheme for all scattering
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Figure 3.39.: Calculation scheme for coherent (all) scattering.
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NNPP

NN

CAF

CQ

Partitioning Scheme

RNNPP NNPP

NP

CAF

P1 P2 ... Pn

1

...

n

symbol description
NN all nodes
NP number of partitions
NNPP number of nodes per partition
NQ number of independent q vectors
NAF decomposition parameter (atoms or frames)
R remaining nodes (not used)
CAF cycles per q vector
CQ q vector cycles

Figure 3.40.: Illustration of the underlying partitioning strategy (top) and definition of the
symbols used (bottom). For a given partition size, NNPP , the utilization, U ,
of the available parallel bandwidth is pre-determined (see text).

of independent scattering vectors. This results in a 2-dimensional partitioning scheme with the
partition size being a parameter of choice with the following restrictions: Memory and Utilization.

Memory is a limiting factor since each partition has a full copy of the trajectory data. For
trajectory data which exceed the available memory per node, the minimum allowed partition size
is determined by the minimum number of nodes capable of holding the trajectory data in memory.

The utilization, U is a performance characteristic of the chosen partition size and equals the
fraction of time the cores are being used to compute scattering amplitudes. U can be precomputed:

U =

NAF · NQ

NN · CAF · CQ
(3.9)

CAF =

(
NAF ÷NNPP 0 ⌘ NAF modNNPP

(NAF ÷NNPP ) + 1 else

CQ =

(
NQ÷NP 0 ⌘ NQmodNP

(NQ÷NP ) + 1 else
(3.10)

The partitioning scheme and the origin of equations 3.9 and 3.10 are illustrated in Figure 3.40
together with the list of symbols.

Since the utilization can be computed in advance, the software calculates U for each possible
decomposition and selects that partition size NNPP yielding the highest utilization. Sometimes
a particular partition size is favorable even though it may not yield the best utilization U , as,
for example, when the partition size should be equal to or a multiple of the number of cores per
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Figure 3.41.: Overall computational flow. After initialization, data is read from disk or the network
file system and optimally distributed among the available computer nodes. During
the compute phase all MPI communication is local to its partition.

computer node. In cases where the partition size is equal to the number of cores per computer
node, communication within a partition is local and avoids network latencies. These non-trivial
aspects of the partition scheme make it hard to automatically select the overall best partition size
for a given problem, which is why the user usually has room for performance optimization, given
enough knowledge about the hardware layout of the parallel computer. If the selected partitioning
scheme results in more than one partition, the trajectory data are read by the first partition and
subsequently cloned into the remaining partitions.

3.4.4. Software Performance and Scalability

The data staging and calculation schemes were implemented using the programming language C++
and the software was made available to the general public free of charge [19]. The I/O performance
and the scalability of the software was characterized using a set of benchmark files. Each time the
software is executed, it performs two main tasks: staging of the trajectory data and calculation of
the scattering signal, which is illustrated in Figure 3.41. The performance characteristics of these
two tasks depend on different aspects of the underlying hardware, which is why they are discussed
separately. Data staging is dependent on factors such as the number of available file servers, the file
protocol and the trajectory format, while scattering calculations depend mainly on the partitioning
scheme, the available high performance network and, in particular, on the type of scattering function.
The performance was assessed by software internal timers. The single node computational efficiency
of the scattering routine (which computes the scattering amplitudes) was measured with CrayPAT
and was 850 MFlops at double precision with default optimization settings using the GNU C++
compiler, which corresponds to about 8.2% of the single node peak performance.
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Benchmarked computing platforms:
Feature System

Moldyn Jaguar Hopper
File System NFS/Gigabit LUSTRE LUSTRE
Interconnect Infiniband Cray Seastar2+ Cray Gemini
Cores/Node 12 12 24
CPU Type AMD Opteron 2431 AMD Opteron 2435 AMD Opteron 8378

GB RAM/Node 16 16 32
Nodes 100 18688 6392

Table 3.8.: Systems used to run the performance benchmarks. Moldyn is a computational cluster
owned by the Center for Molecular Biophysics at ORNL. Jaguar and Hopper are Cray
supercomputers, administered by NCCS and NERSC, respectively.

Benchmark sets:
System ID Atoms Benchmark 8 Benchmark 48 Benchmark 240

Frames XTC DCD Frames XTC DCD Frames XTC DCD
SL 613 400k 831M 2.8G 2M 4.1G 14G 5M 11G 35G
MM 120k 2k 930M 2.8G 15k 6.9G 21G 50k 24G 68G
LS 3.7M 60 845M 2.6G 500 6.9G 22G 2.5k 35G 107G

Table 3.9.: Benchmark systems used characterized by their minimum job sizes. The symbols SL,
MM and LS stand for small-large, medium-medium and large-small respectively. The
benchmark files were tailored for minimum partition sizes of 8, 48 and 240.

3.4.4.1. IO

The IO performance is given by the time required to stage the trajectory data and was characterized
by running a set of benchmarks on different computer systems, listed in Table 3.8. Moldyn is
a computer cluster of 100 12-core compute nodes with an Infiniband network to perform MPI
communication and possesses 2 file servers, one located on the head node and the other on a
dedicated node, on which the benchmark data was placed. The file servers are connected to the
compute nodes via Gigabit Ethernet. Jaguar is a Cray XT5 supercomputer at Oak Ridge National
Laboratory and possesses 18688 12-core compute nodes, a LUSTRE file system and a CRAY
SeaStar2+ network for high performance communication. Hopper is a Cray XE6 supercomputer
hosted by NERSC and possesses 6392 24-core compute nodes, a LUSTRE file system and a CRAY
Gemini network. Jaguar and Hopper are similar architectures common for supercomputers, while
Moldyn is the intermediate cost solution of a high fidelity computational cluster.

Three benchmark sets were prepared, corresponding to partition sizes of 8, 48 and 240 cores, which
also determines the number of instances used to read the trajectory in parallel. Each benchmark
set contains three molecular systems with distinct characteristics (frames/atoms) and file formats
(XTC/DCD). The benchmark sets are listed in Table 3.9.

The IO performance results are given in Figure 3.42. The performance was assessed as the time
to finish the data staging phase and was determined as the minimum out of 10 trial runs for each
case. The stage time was additionally renormalized by the file sizes to yield effective bandwidths in
MByte/sec, shown in Figure 3.43.

Moldyn shows an approximately linear increase in data staging time with the partition size,
stemming from the availability of only one file server and the bandwidth limitations of the Gigabit
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Figure 3.42.: IO performance results measured by time to completely load the trajectory data
into memory for all and self scattering on Moldyn, Jaguar and Hopper for the three
benchmark sets.

network. The time to stage data for all scattering is similar to that for self scattering. Jaguar shows
significantly better scaling characteristics since more file servers and a better network are available.
This causes the maximum effective bandwidth to approach the 1 GByte/sec mark. However, for
the SL benchmark files Moldyn actually performs better than Jaguar, especially for small partition
sizes. The SL system features a large number of small frames, thus generating much more file
access requests than the other systems, and this seems to be a problem for the LUSTRE file system
in the current case. Hopper exhibits IO characteristics similar to Jaguar, as expected since both
supercomputers have very similar IO systems.

3.4.4.2. Scattering Calculations

The computational demand depends on the type of scattering calculation to be performed.
All scattering requires global MPI communication during the calculation because the data are
decomposed by frames and the DSP step requires the full time signal. Thus, for each orientation
of the q vector, the signal must be aggregated on one node, which then performs post-processing
operations and puts the result into local buffers. Self scattering does not require data exchange
during the calculation since the trajectory data has been placed accordingly. However, self
scattering requires a post-processing operation for each single atom, i.e., the computation of an
autocorrelation, which can become significant for long trajectories (FFTW scales with O(T ·log(T ))).
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The performance characteristics were sampled with a set of 3 benchmark files and 4 variations of
the scattering function, consisting of all vs. self scattering and a calculation for one scattering vector
with 100 orientations (V1/O100) and 100 scattering vectors with one orientation each (V100/O1).
The DSP setting was set to autocorrelate, which computes dynamic scattering functions and allowed
the investigation of the impact of significantly different computational costs for DSP (complexity
O(T · log(T )) on the scalability for the three systems SL, MM and LS. Figure 3.44 shows the scaling
results for Jaguar. Hopper and Moldyn have similar scaling characteristics (data not shown).

The heterogeneity in the type of function to compute makes it difficult to derive a single
performance measure. However, from Figure 3.44, a few observations are apparent. Computing
the signal for the SL system in case of V1/O100 does not scale well. For self scattering the reason
is trivial since the partitioning is limited by the number of atoms. For all scattering the reason
is more complex and has been investigated by decomposing the total calculation time into its
components, shown in Figure 3.45.

The decomposition shows that the time to compute an autocorrelation becomes significantly larger
than the time to compute the scattering amplitudes for larger partition sizes, and therefore there is
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no effective speed-up when increasing the number of cores. Instead the increase in the number of
cores increases the MPI overhead in the global communication until the overhead becomes dominant.

The scalability of V1/O100 self scattering for the SL system can be increased by employing
threads, which is illustrated in Figure 3.46. By placing a single MPI process on each 12-core
compute node, the partition can span 12 ·631 cores instead of 631. The cores on each compute node
are then utilized using threads.
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4. Conclusion

Physical experiments have long served as the cornerstone for scientific discovery and investigation.
The growing complexity of the scientific data has inspired the development of a rich set of
analytical and computational techniques to reduce the data into meaningful and digestible pieces of
information. Starting out as yet another analytical technique [111, 112], in recent years, molecular
dynamics has evolved from a simple computational tool for analyzing experiments towards a
powerful framework of studying molecules and biomolecular systems in a level of detail unmatched
by real physical experiments. Three factors have largely contributed to this development: The
rapid progression of computational power, the sustained financial investment into computational
infrastructure and tools, and the large scale support by the scientific community. However, despite
all the progress of the molecular dynamics methodology, development efforts have never been
stronger and they usually split into several camps: Increasing the raw computational performance of
molecular dynamics code on the available computational platforms [55? ], implementing intelligent
algorithms to sample relevant configurations [23, 113], devising new analytical strategies to study
complex systems [94, 98] and exploring the validity of new simulation protocols [56], to name a few.
This work particularly benefited from the large scale parallelization work performed by the scientific
code developer Roland Schulz.

As illustrated by the study of cellulose crystallinity and dynamics through the use of scattering
theory in Section 3.1, the analysis of molecular dynamics simulation and atomistic models can
leverage from the rich set of existing experimental techniques for studying complex matter, with
the added benefit of having the full atomistic information available. This ultimately leads to a deeper
understanding of the experimental method in terms of structure/dynamics vs. signal relationships.
It also brings computational and experimental scientists closer together by developing a common
analytical framework.

The study of lignocellulose, as discussed in Section 3.2, provides an example for a highly complex
molecular system and process which cannot be easily studied in nature, due to experimental
limitations. By leveraging the extensive computational resources made available through the Oak
Ridge National Laboratory and the Department of Energy, this work provided the first clue in
scientific history that an increase in cellulose crystallinity correlates with an increase in the amount
of cellulose-lignin aggregation on the molecular level.

A proof that not all methodological advancements require extensive computational power, was
provided in Section 3.3, which illustrated the utility of using Markov models for decomposing and
interpreting dynamical neutron scattering functions. It shows how the molecular dynamics method-
ology and experimental scattering techniques can be combined in future to derive unequivocal
descriptions of the conformational dynamics of molecules and their experimental observables.

The last section of this work, Section 3.4, presented the extensive work involved in creating
a high performance software package for calculating the dynamical neutron scattering functions
on modern supercomputer architectures. The recent shift in programming paradigms from serial
towards parallel computing creates a performance gap which has to be closed by devising calculation
schemes which work well on the available computing platforms. This work has shown that the full
dynamic scattering function of molecules can be computed on massively parallel computing platform
without making compromises in computational efficiency, leading to nearly perfect scaling.
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Figure 4.1.: The association of the various methods and approaches discussed here with the
four scientific subdomains they cover: high performance computing, experimental
scattering techniques, Markov modeling and molecular dynamics. The culmination
point yields the direction for future developments.

The connection of the various methods and approaches discussed here with the various scientific
subdomains is visually illustrated in Figure 4.1. Each of the projects operates on an intersection of
at least two of the four domains: high performance computing, experimental scattering techniques,
Markov modeling and molecular dynamics. The culmination point of all subdomains yields the
logical progression of the methodology as a whole. It suggests that the future of molecular dynamics
lies within combining experimental techniques (e.g. scattering theory) and stochastical tools (e.g.
Markov modeling) to yield unmatched descriptions of molecular dynamics and its experimental
observables. The level of complexity of the simulated systems and the level of analysis will determine
the amount of computational resources required.
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A. Simulation and Calculation Parameters

A.1. Cellulose

The library of cellulose models was constructed by starting from a fully I-� crystalline model based
on the crystallinity parameters provided in Ref. [59] and a consensus model for the fiber provided
in Ref. [61]. The noncrystalline regions in cellulose were attained by aligning the fiber axis along
the z direction and applying strong harmonic positional constrains to the x and y coordinates of
a selected segment within the cellulose fibers and simulate the fiber at a high temperature (650
K). These simulations were performed with the GROMACS MD suite [55] using the TIP3P water
model [114] and the CHARMM Carbohydrate Solution Force Field (CSFF) [115] for cellulose.
Since this work was completed the carbohydrate force field has been revised [116]. However, the
results concerning the crystallinity vs. noncrystallinity of cellulose are general enough, to allow for
inaccuracies in the cellulose force field description.

The calculation of the WAXS pattern of cellulose was performed as an isotropic orientational
average over 10 times 100,000 vectors. The intense orientational averaging is necessary for the
WAXS to converge, which takes signifantly longer for crystalline samples. All scattering calculations
were performed using the software SASSENA.

The INS calculations were based on simulations performed at room temperatue (300 K) for
solvated models of fully crystalline (n-0) and noncrystalline (p-0) cellulose and averaged over 100
random orientations. Simulations were performed for 25 ns, with a time step of 2 fs and using
LINCS for hydrogen bond constrains. The coordinates were saved at intervals of 5 ps. The short
time INS analysis and IXS calculation was based on simulations performed for 100 ps and a 1 fs
timestep, and the coordinates were saved at each time step. The simulation protocol of the cellulose
fiber was otherwise identical to the one described for Lignocellulose in Section A.2.

A.2. Lignocellulose

All models were hydrated with a 1 nm shell of explicit water, resulting in simulation sizes of 3.31, 3.43
and 3.80 million atoms for the NC, FC and FN models, respectively. All models contain 1.56 MDa of
biomass. The size of the cellulose fiber and the amount of lignin used in the simulation matches the
experimentally-observed ratio of molecular weights in softwood (cellulose:lignin = 1:0.52) [85]. The
simulations were performed with the GROMACS MD suite [55] using the TIP3P water model [114]
and the CHARMM Carbohydrate Solution Force Field (CSFF) [115] for cellulose and the CHARMM
Lignin Force Field [117]. Since this work was completed the carbohydrate force field has been
revised [116]. However, the changes made, which affect principally details of crystal structure
geometries, are unlikely to impact any of the properties examined is the present work, which concern
principally solvation and interfacial energies. Each of the models was simulated for 500 ns at 300 K
using the NPT ensemble at 1 atm, with the NC model simulated twice with different initial starting
velocities to examine the dependence of the aggregation on random fluctuations in the thermostat
and barostat, giving a total of 2 µs simulation time. No significant difference was found between
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the two NC simulations (see Supporting Information of the corresponding manuscript) and hence
only data for one NC model are shown. The trajectories were saved for analysis every 5 ps.

The system was simulated with periodic boundary conditions. The size of the simulation
box is the result of the geometric dimensions of the cellulose fiber, the placement criteria for
the lignin molecules and the additional solvent shell to allow for sufficient solvation. The mass
specific hydration (biomass:water) is 8.2:91.8, 7.5:92.5 and 7.3:92.7 for the NC, FC and FN models,
respectively. The non-bonded electrostatic interactions were calculated using the Reaction Field
Zero (RFZ) method [38, 118] with a 1.2 nm force and 1.5 nm neighbor-list cut-off. It has been
shown that RFZ is of accuracy similar to the commonly-used Particle Mesh Ewald method [34] for
biomass systems while allowing significantly better parallel computational efficiency above 10000
cores [56]. Van der Waals interactions were reduced to zero between 0.8 nm and 1.2 nm using
a “switch” function [118]. Bonds containing hydrogen were constrained using LINCS [43]. Water
internal dynamics was constrained using the SETTLE routine [41]. All systems were simulated
in the NPT ensemble. The systems were first simulated for 1 ns to reach equilibrated values for
temperature and pressure. Initial equilibration for 1 ns up to 300 K in steps of 30 K and semi-
anisotropic pressure at 1 atm with a simulation time step of 1 fs was followed by a production run
at 300 K and isotropic pressure coupling and a simulation time step of 2 fs. During equilibration,
the temperature and pressure were controlled with the Nose-Hoover (t =1 ps) (author?) [119] and
Berendsen algorithms (author?) [120] (t =4 ps), respectively, while for production, the temperature
and pressure were controlled using the Berendsen thermostat (t=0.1 ps) and the Parrinello-Rahman
barostat (t =4 ps) (author?) [121]. The values for t above denote the characteristic relaxation
constants for the respective thermostat and barostat. Neighbor searching was performed every 10
time steps. The simulations were carried out on the Jaguar XT5 Petaflop Supercomputer at the
Oak Ridge National Laboratory, using 40000 cores at a peak performance of 27 ns/day.

A.3. Alanine Dipeptide

Equilibrium MD simulations were performed using NAMD [? ] with the CHARMM22 all-atom force
field [122] for the alanine dipeptide and TIP3P for the explicitly modeled water molecules [114]. The
alanine dipeptide was placed inside a cubic box with a distance of 7 Å�1 to the closest edge, and was
solvated by water molecules. Periodic boundary conditions were used and electrostatic interactions
were calculated using the Particle Mesh Ewald (PME) method [32] with a grid spacing of 1 Å�1.
Short range electrostatic and van der Waals interactions were switched to zero between 10 Å�1 and
12 Å�1. Neighbor lists were updated every 10 steps and the non-bonded interactions were calculated
every second step. Internal water motion was constrained using the SHAKE algorithm [42]. The
simulated system was first energy minimized for 10000 steps using the conjugate gradient algorithm,
followed by 1 ns MD equilibration and 1µs of production. The integration time step of the MD
simulations was 1 fs and the recorded trajectory time step was 100 fs. During the equilibration
the temperature was gradually increased from 0 to 300 K at a rate of 10 K/ps. The temperature
was kept at 300 K using the Langevin thermostat with a 5 ps time constant coupled to the heavy
atoms. The pressure was maintained at 1 atm using the Nosé-Hoover Langevin piston barostat with
a period of 100 fs, a decay time of 50 fs and a temperature of 300 K.

80



B. Supporting Data

B.1. Alanine Dipeptide
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(a) (b) (c) (d) (e)

(f)

(g)

Figure B.1.: Time-dependence of seven dihedral angles (�,  , C1, N1, C � ter, N � ter, and �
methyl angles)
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(a)

(b)

Figure B.2.: The self-correlation functions of the seven dihedral angles from the 1 µs MD
trajectory.
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Figure B.3.: 1000 cluster centers in the configurational space of �,  and � using k -means
clustering method.
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(a)

(b)

Figure B.4.: and III in the configurational space of �,  and � from MSM using m = 3.
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(a)

(b)

Figure B.5.: Cluster centers in 9 metastable states in the configurational space of �,  and � from
MSM using m = 9.
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