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Abstract

Wide-area measurement systems (WAMS) are quickly becoming an important part of modern
power system operation. By utilizing the Global Positioning System, WAMS offer highly accurate time-
synchronized measurements that can reveal previously unobtainable insights into the grid’s status. An
example WAMS is the Frequency Monitoring Network (FNET), which utilizes a large number of Internet-
connected low-cost Frequency Disturbance Recorders (FDRs) that are installed at the distribution level.

The large amounts of data collected by FNET and other WAMS present unique opportunities for
data mining and machine learning applications, yet these techniques have only recently been applied in
this domain. The research presented here explores some additional applications that may prove useful
once WAMS are fully integrated into the power system. Chapter 1 provides a brief overview of the FNET
system that supplies the data used for this research. Chapter 2 reviews recent research efforts in the
application of data mining and machine learning techniques to wide-area measurement data. In Chapter
3, patterns in frequency extrema in the Eastern and Western Interconnections are explored using cluster
analysis. In Chapter 4, an artificial neural network (ANN)-based classifier is presented that can reliably
distinguish between different types of power system disturbances based solely on their frequency
signatures. Chapter 5 presents a technique for constructing electromechanical transient speed maps for
large power systems using FNET data from previously detected events. Chapter 6 describes an object-
oriented software framework useful for developing FNET data analysis applications.

In the United States, recent environmental regulations will likely result in the removal of nearly
30 GW of oil and coal-fired generation from the grid, mostly in the Eastern Interconnection (El). The
effects of this transition on voltage stability and transmission line flows have previously not been
studied from a system-wide perspective. Chapter 7 discusses the results of power flow studies designed
to simulate the evolution of the El over the next few years as traditional generation sources are replaced
with greener ones such as natural gas and wind.

Conclusions, a summary of the main contributions of this work, and a discussion of possible

future research topics are given in Chapter 8.
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1. Frequency Monitoring Network (FNET)

Structure

Originally developed at Virginia Tech in 2003, the Frequency Monitoring Network (FNET) is a wide-
area phasor measurement system that collects power system data using low-cost, high-accuracy
Frequency Disturbance Recorders (FDRs). The FDR (Fig. 1.1) can be thought of as a single phase phasor
measurement unit (PMU) that is designed to take voltage waveform inputs at ordinary 120-V electrical
outlets, rather than at the much higher transmission-level voltages used by traditional PMUs. Since the
FDR uses distribution level voltages, it can be installed virtually anywhere. In fact, many FDRs are
installed in private residences, offices, and schools. A map of the current FDR locations is shown in

Fig. 1.2.

Fig. 1.2: Locations of currently installed FDRs as of March 2012

By making use of the precise timing information provided by the Global Positioning System, the FDR
is able to compute the frequency and absolute phase angle of the voltage signal very accurately at 100-

ms intervals. These measurements are then timestamped and transmitted to a phasor data



concentrator (PDC) at the University of Tennessee, Knoxville, where they are recorded and archived
(Fig. 1.3). Since the FNET system went online in 2004, more than 6 TB of data have been collected from
FDRs located within the United States and around the world. The data are used for a variety of
applications, including event detection and location, oscillation detection, visualization, and forensic
authentication of digital evidence [1-8]. A thorough description of the FNET system can be found in [9-

12]. A list of FDRs currently deployed in the Eastern Interconnection can be found in Appendix A.

Appl

Frequency Disturbance | :
Recorders (FDRs)
Backup Server

Fig. 1.3: FNET system architecture.



2. Literature Review

Data Mining and Machine Learning Applications of WAMS Data

Since the development of the first Supervisory Control and Data Acquisition (SCADA)-based
wide-area measurement systems (WAMS) in the 1960’s, system operators have sought to automate the
process of monitoring and controlling the power system. When computers were very expensive, this
was done in a centralized fashion, with measurements from transducers being sent to a single SCADA
master, which then made decisions based upon that information and communicated control actions to
devices in the field. The decision algorithms were usually relatively simple. For example, if a bus voltage
was found to be low, the system would correct it by adjusting transformer taps or switching the
appropriate capacitor banks into service. As microprocessors have dropped in cost, some of this control
functionality has devolved to the remote devices themselves, eliminating much of the reliance on a
single computer [13]. Still, SCADA systems operate over relatively long time intervals; measurements are
collected every few seconds, and only then can control actions be determined and executed. This time
frame is sufficient for correcting a variety of system issues, but is far too long for others.

Phasor measurement units (PMUs) capable of measuring and calculating a large number of
guantities at sub-second intervals represent the latest evolution of power system instrumentation
technology. Although PMUs have existed since the 1980’s, only recently have they been installed
throughout the power system in significant numbers. Enabled by advances in computing power and
storage technology, the resulting explosion of data has quickly become overwhelming as utilities and
researchers struggle with how to efficiently transmit, use, and store these measurements. The problem
has often been likened by those in the industry to drinking out of a fire hose, particularly since the
reporting rates of modern PMUs exceed 30 records per second, compared with one record every few
seconds in SCADA systems. Data mining and machine learning techniques have been developed to deal
with large quantities of high-dimensional data, and some of these have been applied to wide-area
measurements collected from electric power systems [14]. This section provides an overview of recent
developments in this area, which can generally be divided into two categories: classification of system

phenomena and stability assessment.

Classification of System Phenomena
Research into automated classification of power system events began well before phasor
measurement units were in widespread use. Before that time, Intelligent Electronic Devices (IEDs) such

as Digital Fault Recorders (DFRs) and microprocessor-based digital relays were essentially the only



means to record and analyze time-domain measurements obtained from substation transducers. Much
of the early work done in this area focused on methods of detection and classification of faults that
didn’t require performing extensive pre-processing or the explicit calculation of phasor quantities or
symmetrical components. Although not explicitly labeled as such, Kezunovic et al. utilized a type of
decision tree to determine the type of fault (e.g., phase-to-phase, phase-to-ground, three-phase, etc.)
using actual DFR data, although it was not trained in the classical sense [15]. Later, he used neural
networks to perform the same function on simulated current and voltage signals, achieving greater than
90% accuracy [16]. A few years after that, Poeltl and Frohlich computed phasor quantities from
simulated measurements that were then fed into a neural network to classify the type of fault. Their
technique was notable because it could perform the phasor computation and classification within five
milliseconds, less than a quarter of a cycle on 60-Hz power systems [17]. Most recently, the Tennessee
Valley Authority used a nearest-neighbor approach to find different types of power system disturbances
in a large (25 TB) database of PMU data. Due to the size of the dataset, the algorithm was implemented
using the MapReduce programming model and Apache Hadoop Distributed File System, which are

popular tools for this type of analysis [18].

Stability Assessment

The literature contains several examples of machine learning techniques being applied to
synchrophasor data to create to assess both voltage and transient stability. In [19, 20], Bernabeu et al.
used the Classification and Regression Tree (CART) algorithm on simulated PMU measurements from a
4000-bus model of the California power grid to create a decision tree capable of classifying the system
as either stressed or safe. Depending on which classification was chosen, the relay protection scheme in
use could then be shifted towards dependability or security. The classifier itself was shown to be highly
accurate — 99% of the scenarios tested were categorized correctly. An interesting by-product of this
technique was that the tree revealed which PMU locations were actually necessary to assess the state of
the system.

In [21], Kamwa et al. applied several different machine learning techniques to the voltage
stability problem in order to compare the performance of black-box models (e.g., artificial neural
networks (ANN), support vector machines (SVM),and random forests) with more transparent ones, such
as decision trees. Using more than 60,000 cases derived from both real and simulated data, they
concluded that the black-box models were significantly better than those whose structure was more

easily interpreted. However, the authors also pointed out that a more transparent model with



reasonable accuracy is in many cases preferable to a highly accurate one, depending on the perspective
of the user.

A variety of machine learning techniques have been applied to the transient stability problem as
well. He, Zhang, and Vittal described a decision tree-based dynamic security assessment (DSA)
framework used to classify the system as being secure or insecure based upon simulated PMU data [22].
Building on earlier work by Sun and Diao [23-25], they advocated boosting multiple simple decision trees
as opposed to monolithic ones in order to improve accuracy and reduce the computational complexity
of the updating and training process. In addition, they introduced continual updating of the trees as new
cases became available. Finally, principal component analysis (PCA) was applied to significantly reduce
the dimensionality of the input data. The resulting classifier was found to be highly accurate and
continued to perform well even after additional contingencies were added. In 2008, a Power Systems
Energy Research Center report described the creation of a decision tree-based classifier built using the
CART algorithm that provided good results with PMU data taken from an actual system [26]. Later,
Hashiesh et al. developed a stability predictor for the Egyptian power system using the derivatives of
simulated generator bus voltage magnitude and angle as inputs to an ANN with two hidden layers, and
were able achieve 91% accuracy [27]. In [28], Lezama applied the magnitudes of simulated voltage
phasors to an SVM-based classifier, which was found to work well on a variety of different power

systems.

Environmental Regulation Impacts on the Eastern Interconnection

Coal-fired generators provide much of the base load generating capacity in the United States
due to their operational requirements and low marginal costs. Because these plants tend to be larger in
capacity than other sources, they provide a significant amount of system inertia, which plays an
important role in the system’s dynamic response. The U.S. Environmental Protection Agency (EPA)
recently finalized the Mercury and Air Toxics Standards (MATS) and the Cross-State Air Pollution Rule
(CSAPR), which are regulations designed to reduce power plant emissions such as mercury, NO,, SO,,
and ozone [29, 30]. Assuming these rules pass judicial review, as much as 30 GW of generation capacity
(mainly coal and oil-fired units) will be taken offline within the next few years [31].

The North American Electric Reliability Corporation (NERC) has performed some resource
adequacy analyses based on the projected deactivations, and found that there is a “significant potential
impact to reliability” if MATS and CSAPR are implemented in their present forms [32, 33]. Studies
conducted by the U.S. Department of Energy found that although there should be sufficient resource

adequacy, “retirements of power plants or other factors could lead to grid reliability challenges in some

5



cases” [34]. To date, however, there do not appear to be any published studies on the possible steady-
state or dynamic implications of these regulations. While it is likely that individual utilities have studied
the effects of removing generators within their own service territories, the results of these studies are

typically not made public. Thus, there is no clear overall picture of how the Eastern Interconnection will

be affected by these regulations.

Electromechanical Speed Map Development

Power system disturbances propagate through an interconnection at speeds much less than that
of light due to electrical inertia in the system, impedance, governor settings, and the amount of spinning
reserve [35-38]. Thorp et al. modeled this phenomenon in [39] using a nonlinear partial differential
equation corresponding to a discrete system, and found that their results closely matched phase
propagation speeds observed in real power systems. This approach, however, requires that an accurate
dynamics model of the system be known a priori, which is unrealistic since the grid’s topology is
constantly changing as lines are switched out of service, loads are disconnected, and generators are
dispatched. Even if the topology is known, it is often difficult to obtain correct model parameters
needed by time-domain simulation programs. Efforts by Kook to create speed maps using simulated
data yielded mixed results, with estimates of speed propagation at a given location varying considerably
from one event to another [35]. In [40], Gardner proposed that measurement-based speed maps could
be created using PMU or FDR data, which could prove extremely useful for event triangulation
algorithms such as those used by FNET. Most recently, Backhaus and Liu used techniques borrowed
from the field of seismology to estimate the Green’s functions for a small number of locations in the grid
[41]. Unlike earlier methods that used the time delay of arrival (TDOA) during transient events to
estimate the propagation speed from the disturbance to the sensor, their technique used a nearest-
neighbor approach involving ambient FNET data obtained when the system was more or less in a steady

state.



3. Analysis of Frequency Extrema in the Eastern and Western
Interconnections

Introduction

The power system frequency is an important indicator of the grid’s health and stability [42].
Changes in frequency reflect mismatches between generation and load. As the system becomes more
heavily loaded, generators will slow down unless additional power can be supplied. Similarly, too much
generation with too little load results in an increase of the system frequency. These changes are usually
quite small and thus do not seriously affect the operation of the grid. Larger frequency deviations can
damage machinery and cause generators to trip offline for their own protection, which can then lead to
islanding, and in extreme cases, blackouts. Thus, the frequency extrema may provide a means to
determine when the grid is at its most vulnerable state.

With the advent of wide-area phasor measurement systems, it is now possible to analyze the
historical frequency characteristics of the grid. This chapter describes the techniques used to search for
the frequency extrema within the FNET data and discusses some of the challenges associated with this

type of analysis. Finally, the results of this study are presented.

Features of FNET Measurement Data

Phasor measurement data tends to be voluminous by its nature. By recording 10 data points per
second from over 120 active FDRs installed throughout the world, the FNET system generates roughly 6
GB of data each day and more than 1.2 TB each year. Thus, an algorithm performing data-mining tasks
on this large volume of data must be very time-efficient.

The FNET data are stored in Microsoft Access Database MDB files, which impose a 2-GB size
limit [43]. Due to the volume of phasor measurement data being recorded, the FNET server application
creates several database files each day to store the measurements. In order to perform any type of long-
term analysis, the files must be read individually while taking into account the fact that no file contains
an entire day’s worth of data. MATLAB was chosen as the analysis platform for this study since its
database toolbox can read directly from MDB files using freely available Open Database Connectivity
(ODBC) drivers.

Because the FDR computes the frequency from the distribution-level voltage, which can be
easily influenced by random behaviors in the surrounding loads, there tends to be a fair amount of noise
in the computed frequency data, even after bandpass filtering of the input signal [44]. Additionally,
random computational and/or sensor errors can introduce spikes in the computed values. Both of these

factors make it impossible to simply choose the smallest or largest frequency value recorded by an FDR,
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since such a value may not be a true extremum. To eliminate these values in the extrema results, the

algorithm described here uses statistical techniques to test the suspected extrema for validity.

Description of Algorithm

The algorithm used in this study was first introduced in [45], but is described here for
convenience. A flowchart of the algorithm is given in Fig. 3.1.

First, the program selects the daily extrema candidates for each FDR. In this step, the program
reads each FDR'’s daily data files and selects the first 100 extrema in order of magnitude, excluding the
obviously out-of-range values that occasionally appear. At first, it appeared that an element-by-element
comparison might be required to find the extrema, however this approach proved to be too slow given
the large volume of measurement data. Due to the fact that the JET database engine used by Access is
already optimized to perform certain types of queries, the algorithm is designed to simply query the
database to locate the possible local minimums or maximums, and then use additional program logic to
determine their validity in the following steps. Thus, when searching for local minimumes, it finds the 100
lowest frequency values and stores them in the candidate list in increasing order. Likewise, when
searching for maximumes, the list is stored in decreasing order. This approach has proven to be much
faster than an element-by-element comparison.

Next, each suspected extremum is tested for validity. Two important assumptions are used for
this process. The first is that the power system frequency does not change drastically (i.e., more than a
few millihertz) over a short (eight-second) time interval, which is true under steady-state conditions. The

second is that the small variations that do occur are normally distributed about some average value.
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Fig. 3.1: Flowchart of frequency extrema analysis algorithm

During this step, the program computes the average and standard deviation of the frequency
within the eight-second period surrounding the potential extremum. Then the standard error of the
suspect value is compared with a predetermined cutoff value to check its validity. If the standard error
of the suspect value is less than the cutoff, it is considered valid and the program goes directly to the
next step. Thus, the cutoff value must be chosen carefully. For a normally distributed random variable, it
is unlikely that a valid measurement would be more than a few standard deviations away from the
mean. Analysis of several real cases showed that erroneous data points are usually more than 10
standard deviations away from the mean, making them fairly easy to detect. It should be noted that the
choice of the standard deviation cutoff leaves some room for subjectivity. A smaller cutoff can cause

truly valid points to be ignored (thus slowing down the program by requiring it to examine more



candidates), while a larger one will register more false positives. The cutoff value in this algorithm was
set to be 2.5 standard deviations, which was chosen as a compromise between speed and accuracy.

Once a suspected extremum is found to be invalid, the program moves on to the next value in
the candidate list and restarts the validity checking procedure. This repeats until the initial list of 100
extrema is exhausted. If no valid extremum can be found by then, no result is reported for this FDR. This
could happen if the FDR has recorded an unusually large number of erroneous measurements that day,
or if the suspected extremum is just slightly greater than 2.5 standard deviations from the mean. Using
this algorithm, it takes roughly 12 minutes to analyze a single day’s worth of FDR data for a particular
interconnection.

After an extremum point has been validated, the program then calculates the median
frequency of the two-second period surrounding the suspect value and reports this as the extremum.
(Because the FDR provides data at 100-ms intervals, this leads to a 21-point median.) The goal of this
step is to lessen the effects of noise in the raw data. It then stores the results in a MySQL database for
further analysis.

In the last step, k-means clustering is used to determine the valid extrema results for each
interconnection for a specific day, based upon the timestamps reported by the FDRs deployed in a
particular interconnection. Because of the inherent characteristics of the frequency data and the
algorithm, not all FDRs will necessarily “agree” with one another on the time of the maximum or
minimum for a particular day. For example, given the data for a certain day, the algorithm might report
that several FDRs have approximately the same time (within a few seconds) for an extremum, but a few
others might have completely different times (perhaps hours apart). This could happen if some FDRs are
not able to report data back to the FNET server during the time when the extremum occurs, such as
during a network failure, or when GPS synchronization is lost. Given the synchronous nature of the grid
and the fact that islanding events are extremely rare, it would be highly unlikely for some parts of the
interconnection to experience extrema while others do not.

Clustering of the initial results’ timestamps yields one or more sets of extrema values. The
largest cluster is chosen to represent the true extrema information. Using this cluster, the algorithm
calculates an average timestamp and extremum value for each interconnection for each day and then
records the results in a separate database table. More information on k-means clustering can be found

in [46] and [47].
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Results and Observations
MATLAB programs were developed to implement the algorithm and run to analyze FNET data
collected from 2005 to 2011. Additional programs were written to query the result database to extract

information for data analysis.

A. Hourly Analysis

One motivation of this research is to investigate if frequency extrema are more likely to appear
during certain periods of the day than others. This can be determined by counting the number of
extrema occurring within each hour for a particular year categorized by different interconnections and
extrema type (minimum or maximum). The results for minimums in the Eastern Interconnection are

shown in Fig. 3.2. Note that Universal Coordinated Time (UTC) is used throughout this study.
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Fig. 3.2: Hourly distribution of frequency minimums within the Eastern Interconnection
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Fig. 3.2: Continued.
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Fig. 3.2: Continued.
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Fig. 3.2: Continued.
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As shown in Fig. 3.2, the hourly distribution of frequency minimums appears to have some

similarities from year to year within the EI. There are two noticeable spikes around 3:00 and 10:00 UTC

for most of the years, with the 10:00 spike being present in all years. In most cases, the minimums

appear to follow a roughly bimodal distribution. Interestingly, the hourly distributions of frequency

minima in the El do not seem to correspond strongly with the hourly distributions of generator trips in

that interconnection as one might expect, though a peak around 3:00 UTC can be observed in both

(Fig. 3.3).
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Fig. 3.3: Number of Generator Trips by Hour - Eastern Interconnection

The hourly distribution of frequency maximums in the El are shown in Fig. 3.4.

15



2005 El Maximums by Hour

50
45
40
35
30
25
20
15
10

Number of Maximums

0123456 7 8 91011121314151617181920212223
Hour of Day, UTC

2006 EI Maximums by Hour

60

50

40

30

20 -

Number of Maximums

0123456 7 8 91011121314151617181920212223
Hour of Day, UTC

Fig. 3.4: Hourly distribution of frequency maximums within the Eastern Interconnection
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Fig. 3.4: Continued.
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2011 El Maximums by Hour
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Fig. 3.4: Continued.

One interesting observation is that the hourly distribution of maximums within the El shows a
similar pattern to that of the minimums, particularly in the peaks around 03:00 and 10:00 UTC.
However, besides those two dominant spikes, the hourly distribution of maximums also has one more
relatively small peak at the end of the UTC day. Additionally, the 2010 El maximums are shifted by
several hours from their usual positions. The hourly distribution of load shedding/pumped storage
disconnection events in the El is shown in Fig. 3.5. Here, there is an obvious peak around 10:00 UTC,

which does seem to correspond with one of the peaks in the frequency maxima distribution.

Number of Load Shedding Events vs. Hour - Eastern Interconnection
250
200
m 2005
H 2006
150 —
m 2007
H 2008
100
= 2009
m 2010
50 2011
2012
0
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour of Day (UTC)

Fig. 3.5: Hourly distribution of load shedding/pumped storage disconnection events in the Eastern Interconnection
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The hourly distributions for minimums within the Western Interconnection (WECC) are shown in

Fig. 3.6.

2005 WECC Minimums by Hour

Number of Minimums

0123456 7 8 91011121314151617181920212223
Hour of Day, UTC

2006 WECC Minimums by Hour

16
14
12
10

Number of Minimums

O N & O
_

0123456 7 8 91011121314151617181920212223
Hour of Day, UTC

Fig. 3.6: Hourly distribution of frequency minimums within the Western Interconnection
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Fig. 3.6: Continued.
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Fig. 3.6: Continued.
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2011 WECC Minimums by Hour
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Fig. 3.6: Continued.

For the WECC, although some cases do show a spike around 10:00 UTC, the hourly distribution

of minimums does not appear to follow a similar trend over the years as it does in the El. In a similar

fashion, the hourly distribution of generator trips appears to be quite random from year to year in the

WECC (Fig. 3.7).
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Fig. 3.7: Hourly distribution of generation trip events in the Western Interconnection
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The hourly distributions of maximums within WECC from 2005-2011 are shown in Fig. 3.8.
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Fig. 3.8: Hourly distribution of frequency maximums within the Western Interconnection
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Fig. 3.8: Continued.
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2011 WECC Maximums by Hour
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Fig. 3.8: Continued.

Some common characteristics can be observed in certain years, most notably the two obvious

peaks fluctuating around 05:00 and 13:00 UTC from year to year. The 2011 data appear to show a one-

hour shift from the previous years; the reasons for this remain u