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Abstract 
 

Wide-area measurement systems (WAMS) are quickly becoming an important part of modern 

power system operation. By utilizing the Global Positioning System, WAMS offer highly accurate time-

synchronized measurements that can reveal previously unobtainable insights into the grid’s status. An 

example WAMS is the Frequency Monitoring Network (FNET), which utilizes a large number of Internet-

connected low-cost Frequency Disturbance Recorders (FDRs) that are installed at the distribution level.  

The large amounts of data collected by FNET and other WAMS present unique opportunities for 

data mining and machine learning applications, yet these techniques have only recently been applied in 

this domain. The research presented here explores some additional applications that may prove useful 

once WAMS are fully integrated into the power system. Chapter 1 provides a brief overview of the FNET 

system that supplies the data used for this research. Chapter 2 reviews recent research efforts in the 

application of data mining and machine learning techniques to wide-area measurement data. In Chapter 

3, patterns in frequency extrema in the Eastern and Western Interconnections are explored using cluster 

analysis. In Chapter 4, an artificial neural network (ANN)-based classifier is presented that can reliably 

distinguish between different types of power system disturbances based solely on their frequency 

signatures. Chapter 5 presents a technique for constructing electromechanical transient speed maps for 

large power systems using FNET data from previously detected events. Chapter 6 describes an object-

oriented software framework useful for developing FNET data analysis applications. 

In the United States, recent environmental regulations will likely result in the removal of nearly 

30 GW of oil and coal-fired generation from the grid, mostly in the Eastern Interconnection (EI). The 

effects of this transition on voltage stability and transmission line flows have previously not been 

studied from a system-wide perspective. Chapter 7 discusses the results of power flow studies designed 

to simulate the evolution of the EI over the next few years as traditional generation sources are replaced 

with greener ones such as natural gas and wind.  

Conclusions, a summary of the main contributions of this work, and a discussion of possible 

future research topics are given in Chapter 8.  
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1. Frequency Monitoring Network (FNET) 

Structure 

Originally developed at Virginia Tech in 2003, the Frequency Monitoring Network (FNET) is a wide-

area phasor measurement system that collects power system data using low-cost, high-accuracy 

Frequency Disturbance Recorders (FDRs). The FDR (Fig.  1.1) can be thought of as a single phase phasor 

measurement unit (PMU) that is designed to take voltage waveform inputs at ordinary 120-V electrical 

outlets, rather than at the much higher transmission-level voltages used by traditional PMUs. Since the 

FDR uses distribution level voltages, it can be installed virtually anywhere. In fact, many FDRs are 

installed in private residences, offices, and schools. A map of the current FDR locations is shown in 

Fig.  1.2.  

 
Fig. 1.1: Frequency Disturbance Recorder 

 
Fig. 1.2: Locations of currently installed FDRs as of March 2012 

By making use of the precise timing information provided by the Global Positioning System, the FDR 

is able to compute the frequency and absolute phase angle of the voltage signal very accurately at 100-

ms intervals. These measurements are then timestamped and transmitted to a phasor data 
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concentrator (PDC) at the University of Tennessee, Knoxville, where they are recorded and archived 

(Fig.  1.3). Since the FNET system went online in 2004, more than 6 TB of data have been collected from 

FDRs located within the United States and around the world. The data are used for a variety of 

applications, including event detection and location, oscillation detection, visualization, and forensic 

authentication of digital evidence [1-8]. A thorough description of the FNET system can be found in [9-

12]. A list of FDRs currently deployed in the Eastern Interconnection can be found in Appendix A.  

 
Fig. 1.3: FNET system architecture. 
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2. Literature Review 

Data Mining and Machine Learning Applications of WAMS Data 

Since the development of the first Supervisory Control and Data Acquisition (SCADA)-based 

wide-area measurement systems (WAMS) in the 1960’s, system operators have sought to automate the 

process of monitoring and controlling the power system. When computers were very expensive, this 

was done in a centralized fashion, with measurements from transducers being sent to a single SCADA 

master, which then made decisions based upon that information and communicated control actions to 

devices in the field. The decision algorithms were usually relatively simple. For example, if a bus voltage 

was found to be low, the system would correct it by adjusting transformer taps or switching the 

appropriate capacitor banks into service. As microprocessors have dropped in cost, some of this control 

functionality has devolved to the remote devices themselves, eliminating much of the reliance on a 

single computer [13]. Still, SCADA systems operate over relatively long time intervals; measurements are 

collected every few seconds, and only then can control actions be determined and executed. This time 

frame is sufficient for correcting a variety of system issues, but is far too long for others.     

Phasor measurement units (PMUs) capable of measuring and calculating a large number of 

quantities at sub-second intervals represent the latest evolution of power system instrumentation 

technology. Although PMUs have existed since the 1980’s, only recently have they been installed 

throughout the power system in significant numbers. Enabled by advances in computing power and 

storage technology, the resulting explosion of data has quickly become overwhelming as utilities and 

researchers struggle with how to efficiently transmit, use, and store these measurements. The problem 

has often been likened by those in the industry to drinking out of a fire hose, particularly since the 

reporting rates of modern PMUs exceed 30 records per second, compared with one record every few 

seconds in SCADA systems. Data mining and machine learning techniques have been developed to deal 

with large quantities of high-dimensional data, and some of these have been applied to wide-area 

measurements collected from electric power systems [14]. This section provides an overview of recent 

developments in this area, which can generally be divided into two categories: classification of system 

phenomena and stability assessment. 

Classification of System Phenomena 

 Research into automated classification of power system events began well before phasor 

measurement units were in widespread use. Before that time, Intelligent Electronic Devices (IEDs) such 

as Digital Fault Recorders (DFRs) and microprocessor-based digital relays were essentially the only 
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means to record and analyze time-domain measurements obtained from substation transducers. Much 

of the early work done in this area focused on methods of detection and classification of faults that 

didn’t require performing extensive pre-processing or the explicit calculation of phasor quantities or 

symmetrical components. Although not explicitly labeled as such, Kezunovic et al. utilized a type of 

decision tree to determine the type of fault (e.g., phase-to-phase, phase-to-ground, three-phase, etc.) 

using actual DFR data, although it was not trained in the classical sense [15]. Later, he used neural 

networks to perform the same function on simulated current and voltage signals, achieving greater than 

90% accuracy [16]. A few years after that, Poeltl and Fröhlich computed phasor quantities from 

simulated measurements that were then fed into a neural network to classify the type of fault. Their 

technique was notable because it could perform the phasor computation and classification within five 

milliseconds, less than a quarter of a cycle on 60-Hz power systems [17]. Most recently, the Tennessee 

Valley Authority used a nearest-neighbor approach to find different types of power system disturbances 

in a large (25 TB) database of PMU data. Due to the size of the dataset, the algorithm was implemented 

using the MapReduce programming model and Apache Hadoop Distributed File System, which are 

popular tools for this type of analysis [18].  

Stability Assessment 

 The literature contains several examples of machine learning techniques being applied to 

synchrophasor data to create to assess both voltage and transient stability. In [19, 20], Bernabeu et al. 

used the Classification and Regression Tree (CART) algorithm on simulated PMU measurements from a 

4000-bus model of the California power grid to create a decision tree capable of classifying the system 

as either stressed or safe. Depending on which classification was chosen, the relay protection scheme in 

use could then be shifted towards dependability or security. The classifier itself was shown to be highly 

accurate – 99% of the scenarios tested were categorized correctly. An interesting by-product of this 

technique was that the tree revealed which PMU locations were actually necessary to assess the state of 

the system.  

In [21], Kamwa et al. applied several different machine learning techniques to the voltage 

stability problem in order to compare the performance of black-box models (e.g., artificial neural 

networks (ANN), support vector machines (SVM),and random forests) with more transparent ones, such 

as decision trees. Using more than 60,000 cases derived from both real and simulated data, they 

concluded that the black-box models were significantly better than those whose structure was more 

easily interpreted. However, the authors also pointed out that a more transparent model with 
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reasonable accuracy is in many cases preferable to a highly accurate one, depending on the perspective 

of the user. 

A variety of machine learning techniques have been applied to the transient stability problem as 

well. He, Zhang, and Vittal described a decision tree-based dynamic security assessment (DSA) 

framework used to classify the system as being secure or insecure based upon simulated PMU data [22]. 

Building on earlier work by Sun and Diao [23-25], they advocated boosting multiple simple decision trees 

as opposed to monolithic ones in order to improve accuracy and reduce the computational complexity 

of the updating and training process. In addition, they introduced continual updating of the trees as new 

cases became available. Finally, principal component analysis (PCA) was applied to significantly reduce 

the dimensionality of the input data. The resulting classifier was found to be highly accurate and 

continued to perform well even after additional contingencies were added. In 2008, a Power Systems 

Energy Research Center report described the creation of a decision tree-based classifier built using the 

CART algorithm that provided good results with PMU data taken from an actual system [26]. Later, 

Hashiesh et al. developed a stability predictor for the Egyptian power system using the derivatives of 

simulated generator bus voltage magnitude and angle as inputs to an ANN with two hidden layers, and 

were able achieve 91% accuracy [27]. In [28], Lezama applied the magnitudes of simulated voltage 

phasors to an SVM-based classifier, which was found to work well on a variety of different power 

systems.  

Environmental Regulation Impacts on the Eastern Interconnection 

Coal-fired generators provide much of the base load generating capacity in the United States 

due to their operational requirements and low marginal costs. Because these plants tend to be larger in 

capacity than other sources, they provide a significant amount of system inertia, which plays an 

important role in the system’s dynamic response. The U.S. Environmental Protection Agency (EPA) 

recently finalized the Mercury and Air Toxics Standards (MATS) and the Cross-State Air Pollution Rule 

(CSAPR), which are regulations designed to reduce power plant emissions such as mercury, NOx, SO2, 

and ozone [29, 30]. Assuming these rules pass judicial review, as much as 30 GW of generation capacity 

(mainly coal and oil-fired units) will be taken offline within the next few years [31].  

The North American Electric Reliability Corporation (NERC) has performed some resource 

adequacy analyses based on the projected deactivations, and found that there is a “significant potential 

impact to reliability” if MATS and CSAPR are implemented in their present forms [32, 33]. Studies 

conducted by the U.S. Department of Energy found that although there should be sufficient resource 

adequacy, “retirements of power plants or other factors could lead to grid reliability challenges in some 
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cases” [34]. To date, however, there do not appear to be any published studies on the possible steady-

state or dynamic implications of these regulations. While it is likely that individual utilities have studied 

the effects of removing generators within their own service territories, the results of these studies are 

typically not made public. Thus, there is no clear overall picture of how the Eastern Interconnection will 

be affected by these regulations. 

Electromechanical Speed Map Development 

Power system disturbances propagate through an interconnection at speeds much less than that 

of light due to electrical inertia in the system, impedance, governor settings, and the amount of spinning 

reserve [35-38]. Thorp et al. modeled this phenomenon in [39] using a nonlinear partial differential 

equation corresponding to a discrete system, and found that their results closely matched phase 

propagation speeds observed in real power systems. This approach, however, requires that an accurate 

dynamics model of the system be known a priori, which is unrealistic since the grid’s topology is 

constantly changing as lines are switched out of service, loads are disconnected, and generators are 

dispatched. Even if the topology is known, it is often difficult to obtain correct model parameters 

needed by time-domain simulation programs. Efforts by Kook to create speed maps using simulated 

data yielded mixed results, with estimates of speed propagation at a given location varying considerably 

from one event to another [35]. In [40], Gardner proposed that measurement-based speed maps could 

be created using PMU or FDR data, which could prove extremely useful for event triangulation 

algorithms such as those used by FNET. Most recently, Backhaus and Liu used techniques borrowed 

from the field of seismology to estimate the Green’s functions for a small number of locations in the grid 

[41]. Unlike earlier methods that used the time delay of arrival (TDOA) during transient events to 

estimate the propagation speed from the disturbance to the sensor, their technique used a nearest-

neighbor approach involving ambient FNET data obtained when the system was more or less in a steady 

state.   
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3. Analysis of Frequency Extrema in the Eastern and Western 
Interconnections 

Introduction 

The power system frequency is an important indicator of the grid’s health and stability [42]. 

Changes in frequency reflect mismatches between generation and load. As the system becomes more 

heavily loaded, generators will slow down unless additional power can be supplied. Similarly, too much 

generation with too little load results in an increase of the system frequency. These changes are usually 

quite small and thus do not seriously affect the operation of the grid. Larger frequency deviations can 

damage machinery and cause generators to trip offline for their own protection, which can then lead to 

islanding, and in extreme cases, blackouts. Thus, the frequency extrema may provide a means to 

determine when the grid is at its most vulnerable state.         

With the advent of wide-area phasor measurement systems, it is now possible to analyze the 

historical frequency characteristics of the grid. This chapter describes the techniques used to search for 

the frequency extrema within the FNET data and discusses some of the challenges associated with this 

type of analysis. Finally, the results of this study are presented. 

Features of FNET Measurement Data 

 Phasor measurement data tends to be voluminous by its nature. By recording 10 data points per 

second from over 120 active FDRs installed throughout the world, the FNET system generates roughly 6 

GB of data each day and more than 1.2 TB each year. Thus, an algorithm performing data-mining tasks 

on this large volume of data must be very time-efficient. 

The FNET data are stored in Microsoft Access Database MDB files, which impose a 2-GB size 

limit [43]. Due to the volume of phasor measurement data being recorded, the FNET server application 

creates several database files each day to store the measurements. In order to perform any type of long-

term analysis, the files must be read individually while taking into account the fact that no file contains 

an entire day’s worth of data. MATLAB was chosen as the analysis platform for this study since its 

database toolbox can read directly from MDB files using freely available Open Database Connectivity 

(ODBC) drivers.   

Because the FDR computes the frequency from the distribution-level voltage, which can be 

easily influenced by random behaviors in the surrounding loads, there tends to be a fair amount of noise 

in the computed frequency data, even after bandpass filtering of the input signal [44]. Additionally, 

random computational and/or sensor errors can introduce spikes in the computed values. Both of these 

factors make it impossible to simply choose the smallest or largest frequency value recorded by an FDR, 
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since such a value may not be a true extremum. To eliminate these values in the extrema results, the 

algorithm described here uses statistical techniques to test the suspected extrema for validity. 

Description of Algorithm 

 The algorithm used in this study was first introduced in [45], but is described here for 

convenience. A flowchart of the algorithm is given in Fig.  3.1.   

First, the program selects the daily extrema candidates for each FDR. In this step, the program 

reads each FDR’s daily data files and selects the first 100 extrema in order of magnitude, excluding the 

obviously out-of-range values that occasionally appear.  At first, it appeared that an element-by-element 

comparison might be required to find the extrema, however this approach proved to be too slow given 

the large volume of measurement data. Due to the fact that the JET database engine used by Access is 

already optimized to perform certain types of queries, the algorithm is designed to simply query the 

database to locate the possible local minimums or maximums, and then use additional program logic to 

determine their validity in the following steps. Thus, when searching for local minimums, it finds the 100 

lowest frequency values and stores them in the candidate list in increasing order. Likewise, when 

searching for maximums, the list is stored in decreasing order. This approach has proven to be much 

faster than an element-by-element comparison. 

Next, each suspected extremum is tested for validity. Two important assumptions are used for 

this process. The first is that the power system frequency does not change drastically (i.e., more than a 

few millihertz) over a short (eight-second) time interval, which is true under steady-state conditions. The 

second is that the small variations that do occur are normally distributed about some average value. 
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Extrema Candidate Validation

Extrema Candidate Selection
Read each FDR’s 
data files by day

Filter out the 
out-of-range values

Select the first 100 extrema 
List of 

100 
extrema

Compute the deviation 
surrounding the potential 

extremum 

Move to the next candidate 
on the list

IF candidate value
within cutoff value

Cutoff value equals 
to 2.5 standard 

deviations 

Calculate the median 
frequency surrounding the 

potential extremum 

Store this median as 
extremum value in Database 

MySQL DB
Table 1

K-means Clustering

MySQL DB
Table 2

Cluster extrema information 
of the FDRs in the same 

interconnection 

Store the average timestamps 
and extrema value in 

Database 

Median Frequency Calculation

YES

NO

IF the list is 
exhausted 

IF all the FDRs’ daily data has 
been processed

YES

NO

NO

YES

 
Fig. 3.1: Flowchart of frequency extrema analysis algorithm 

During this step, the program computes the average and standard deviation of the frequency 

within the eight-second period surrounding the potential extremum. Then the standard error of the 

suspect value is compared with a predetermined cutoff value to check its validity. If the standard error 

of the suspect value is less than the cutoff, it is considered valid and the program goes directly to the 

next step. Thus, the cutoff value must be chosen carefully. For a normally distributed random variable, it 

is unlikely that a valid measurement would be more than a few standard deviations away from the 

mean. Analysis of several real cases showed that erroneous data points are usually more than 10 

standard deviations away from the mean, making them fairly easy to detect. It should be noted that the 

choice of the standard deviation cutoff leaves some room for subjectivity. A smaller cutoff can cause 

truly valid points to be ignored (thus slowing down the program by requiring it to examine more 
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candidates), while a larger one will register more false positives. The cutoff value in this algorithm was 

set to be 2.5 standard deviations, which was chosen as a compromise between speed and accuracy.   

Once a suspected extremum is found to be invalid, the program moves on to the next value in 

the candidate list and restarts the validity checking procedure. This repeats until the initial list of 100 

extrema is exhausted. If no valid extremum can be found by then, no result is reported for this FDR. This 

could happen if the FDR has recorded an unusually large number of erroneous measurements that day, 

or if the suspected extremum is just slightly greater than 2.5 standard deviations from the mean. Using 

this algorithm, it takes roughly 12 minutes to analyze a single day’s worth of FDR data for a particular 

interconnection.  

 After an extremum point has been validated, the program then calculates the median 

frequency of the two-second period surrounding the suspect value and reports this as the extremum. 

(Because the FDR provides data at 100-ms intervals, this leads to a 21-point median.) The goal of this 

step is to lessen the effects of noise in the raw data. It then stores the results in a MySQL database for 

further analysis. 

In the last step, k-means clustering is used to determine the valid extrema results for each 

interconnection for a specific day, based upon the timestamps reported by the FDRs deployed in a 

particular interconnection. Because of the inherent characteristics of the frequency data and the 

algorithm, not all FDRs will necessarily “agree” with one another on the time of the maximum or 

minimum for a particular day. For example, given the data for a certain day, the algorithm might report 

that several FDRs have approximately the same time (within a few seconds) for an extremum, but a few 

others might have completely different times (perhaps hours apart). This could happen if some FDRs are 

not able to report data back to the FNET server during the time when the extremum occurs, such as 

during a network failure, or when GPS synchronization is lost. Given the synchronous nature of the grid 

and the fact that islanding events are extremely rare, it would be highly unlikely for some parts of the 

interconnection to experience extrema while others do not. 

Clustering of the initial results’ timestamps yields one or more sets of extrema values. The 

largest cluster is chosen to represent the true extrema information. Using this cluster, the algorithm 

calculates an average timestamp and extremum value for each interconnection for each day and then 

records the results in a separate database table. More information on k-means clustering can be found 

in [46] and [47]. 
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Results and Observations 

 MATLAB programs were developed to implement the algorithm and run to analyze FNET data 

collected from 2005 to 2011. Additional programs were written to query the result database to extract 

information for data analysis. 

A.  Hourly Analysis 

One motivation of this research is to investigate if frequency extrema are more likely to appear 

during certain periods of the day than others. This can be determined by counting the number of 

extrema occurring within each hour for a particular year categorized by different interconnections and 

extrema type (minimum or maximum). The results for minimums in the Eastern Interconnection are 

shown in Fig.  3.2. Note that Universal Coordinated Time (UTC) is used throughout this study. 

 

Fig. 3.2: Hourly distribution of frequency minimums within the Eastern Interconnection 
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Fig. 3.2: Continued. 
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Fig. 3.2: Continued. 
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Fig. 3.2: Continued. 
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As shown in Fig.  3.2, the hourly distribution of frequency minimums appears to have some 

similarities from year to year within the EI. There are two noticeable spikes around 3:00 and 10:00 UTC 

for most of the years, with the 10:00 spike being present in all years. In most cases, the minimums 

appear to follow a roughly bimodal distribution. Interestingly, the hourly distributions of frequency 

minima in the EI do not seem to correspond strongly with the hourly distributions of generator trips in 

that interconnection as one might expect, though a peak around 3:00 UTC can be observed in both 

(Fig.  3.3). 

 
Fig. 3.3: Number of Generator Trips by Hour - Eastern Interconnection 

The hourly distribution of frequency maximums in the EI are shown in Fig.  3.4. 
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Fig. 3.4: Hourly distribution of frequency maximums within the Eastern Interconnection 
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Fig. 3.4: Continued. 
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Fig. 3.4: Continued. 
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Fig. 3.4: Continued. 

One interesting observation is that the hourly distribution of maximums within the EI shows a 

similar pattern to that of the minimums, particularly in the peaks around 03:00 and 10:00 UTC. 

However, besides those two dominant spikes, the hourly distribution of maximums also has one more 

relatively small peak at the end of the UTC day. Additionally, the 2010 EI maximums are shifted by 

several hours from their usual positions. The hourly distribution of load shedding/pumped storage 

disconnection events in the EI is shown in Fig.  3.5. Here, there is an obvious peak around 10:00 UTC, 

which does seem to correspond with one of the peaks in the frequency maxima distribution. 

 
Fig. 3.5: Hourly distribution of load shedding/pumped storage disconnection events in the Eastern Interconnection 
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 The hourly distributions for minimums within the Western Interconnection (WECC) are shown in 

Fig.  3.6. 

 
Fig. 3.6: Hourly distribution of frequency minimums within the Western Interconnection 
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Fig. 3.6: Continued. 
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Fig. 3.6: Continued. 
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Fig. 3.6: Continued. 

For the WECC, although some cases do show a spike around 10:00 UTC, the hourly distribution 

of minimums does not appear to follow a similar trend over the years as it does in the EI. In a similar 

fashion, the hourly distribution of generator trips appears to be quite random from year to year in the 

WECC (Fig.  3.7). 

 
Fig. 3.7: Hourly distribution of generation trip events in the Western Interconnection 
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The hourly distributions of maximums within WECC from 2005-2011 are shown in Fig.  3.8.  

 
Fig. 3.8: Hourly distribution of frequency maximums within the Western Interconnection 
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Fig. 3.8: Continued. 
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Fig. 3.8: Continued. 
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Fig. 3.8: Continued. 

Some common characteristics can be observed in certain years, most notably the two obvious 

peaks fluctuating around 05:00 and 13:00 UTC from year to year. The 2011 data appear to show a one-

hour shift from the previous years; the reasons for this remain unclear, but different system operating 

procedures could be a possible cause. A peak in the number of load shedding/pumped storage 

disconnection events is also observed around 13:00 UTC as shown in Fig.  3.9. 

 
Fig. 3.9: Hourly distribution of load shedding/pumped storage disconnection events in the Western Interconnection 
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B.  Daily Analysis 

A second goal of this research is to investigate if particular days of the week experience more 

severe extrema than others. To do this, the average extrema values for each day of the week were 

calculated and are shown in Fig.  3.10 and Fig.  3.11.  

 
Fig. 3.10: Average daily values of frequency extrema within the Eastern Interconnection, 2007-2011 
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Fig. 3.11: Average daily values of frequency extrema within the Western Interconnection, 2007-2011  
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Similar to the day-of-week analysis, the results were further examined to see if the magnitude of 

the frequency extrema is affected by the week of the year. These results are shown in Fig.  3.12 and 

59.905
59.91

59.915
59.92

59.925
59.93

59.935
59.94

59.945
59.95

59.955

S M T W R F S

Fr
eq

ue
nc

y,
 H

z 

WECC Minimums vs. Day of Week 

2005

2006

2007

2008

2009

2010

2011

60.03

60.035

60.04

60.045

60.05

60.055

60.06

60.065

60.07

S M T W R F S

Fr
eq

ue
nc

y,
 H

z 

WECC Maximums vs. Day of Week 

2005

2006

2007

2008

2009

2010

2011



30 
 

Fig.  3.13. Some series of the plots have missing data points, probably due to data corruption or failure of 

the clustering algorithm to converge. 

 

 
Fig. 3.12: Average weekly values of frequency extrema within the Eastern Interconnection, 2007-2011 
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Fig. 3.13: Average weekly values of frequency extrema within the Western Interconnection, 2007-2011 
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Fig. 3.14: Average monthly values of frequency extrema within the Eastern Interconnection, 2007-2011 
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Fig. 3.15: Average monthly values of frequency extrema within the Western Interconnection, 2007-2011  

E.    Yearly Analysis 

The analysis of the yearly average extrema may indicate the overall performance of the power 

grid over time. A smaller absolute value between the extrema and the nominal frequency value implies 

better frequency control. The results are shown in Fig.  3.16.  
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Fig. 3.16: Average yearly values of frequency extrema within the Eastern and Western Interconnections, 2007-2011 

 Fig.  3.16 shows that the average minimums in both the EI and WECC increased from 2007 to 

2009, but dropped down to almost the same value in 2010 before increasing slightly in 2011. Likewise, 

the second plot in Fig.  3.16 shows that the average maximums in the EI decreased from 2007 to 2009 

before increasing in 2010 and declining slightly in 2011. The WECC maximums followed a similar trend 

except for the change from 2008 to 2009. The values converge for 2010 and 2011 in a similar fashion. 

 Fig.  3.17 shows the standard deviations of the extrema over time. Interestingly, the deviations 

of both interconnections tend to track each other, though the reason for this remains unclear. 
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Fig. 3.17: Standard deviations of extrema for the Eastern and Western Interconnections 

   

Conclusions 

Using an algorithm developed to detect and validate the extrema, EI and WECC frequency data 

from the past seven years were analyzed. The results of this analysis were then studied to make 

comparisons from year to year. On an hourly basis, the frequency minimums in the EI follow a roughly 

bimodal distribution in most of the cases with two peaks often appearing around 03:00 and 10:00 UTC. 

The maximums show a similar pattern with the addition of one small peak at the end of the day. One 

explanation for the first peak (3:00 UTC) is as follows. This time typically corresponds to 22:00 Eastern 
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Time, which is when a large number of peaker plants are taken offline at the end of each day. The loss of 

these plants removes some amount of inertia from the system, which would necessarily weaken the 

frequency response and result in larger variations in frequency. Other sources [49, 50] suggest that the 

extrema result from mismatches created when generators ramp up and down during these time 

intervals at rates much faster than that of the load. It is likely a combination of these factors that results 

in the regular patterns observed here. 

The hourly distribution of minimums within the WECC does not seem to show an obvious 

pattern like in the EI, though the maximums do tend to have a tri-modal distribution as in the EI. It 

appears that some of the extrema can indeed be attributed to generator trip and load 

shedding/pumped storage disconnection events in these interconnections. Other extrema that occur at 

regular intervals can most likely be explained by operational factors such as those described above. 

The average magnitudes of the frequency extrema were also studied with respect to the day of 

the week and week of the year in which they occurred to investigate possible correlations. From the 

plots, there does not appear to be a definite relationship between these variables in either 

interconnection.  

Analysis of the yearly extrema averages for the EI and the WECC shows that minimums have 

increased since 2007 in both interconnections and arrived at the same value for 2010 and 2011. 

Interestingly, the maximums of the two interconnections also merge in 2010 and 2011 after fluctuating 

in different ways from 2007 to 2009. The standard deviations of the extrema in both interconnections 

have continued to follow similar patterns, a trend that has been observed since 2005.  

Frequency measurement data collected by FNET allows the historical behavior of frequency 

extrema within a power system to be studied. These extrema can indicate when the system is operating 

furthest from its nominal frequency, and provide insight into how the power grid operates across a 

variety of time scales. This information could prove useful to utilities and system operators, as well as 

market designers and regulators. 
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4. Artificial Neural Network-Based Classifier for Power System Events 

Introduction 

 The Frequency Monitoring Network (FNET) receives data from more than 100 Frequency 

Disturbance Recorders located in power grids around the world. These data are processed in real time 

by the FNET application server, which includes a variety of different situational awareness modules. 

Event detection and classification are perhaps the two most important applications of the FNET system. 

Currently, the FNET event classification program relies upon empirically-derived models of system 

behavior to categorize different disturbances. While these perform reasonably well, they are somewhat 

difficult to develop since each trigger must be manually “tuned” for each event type and power grid. It is 

therefore desirable to obtain a classifier that eliminates this trial-and-error-based configuration.  

Recent interest in the application of artificial neural networks (ANN) to phasor measurement 

data has resulted in several potential uses being discovered, including voltage stability assessment, 

protection, and transient stability prediction [27, 51, 52]. This chapter presents several ANN-based 

classifiers for power system disturbances that can reliably identify events in multiple interconnections. 

The ANN is chosen because neural networks can perform pattern recognition even when the input data 

is noisy or incomplete, which is sometimes the case with FNET frequency measurements [53, 54]. 

Beginning with an introduction to power system events and their frequency signatures, this chapter 

describes the existing triggering system and its deficiencies. It then discusses the process of selecting 

training cases, extracting the data, training, and testing the neural networks. Finally, the minimum signal 

length required to reliably classify a disturbance using a particular ANN-based classifier is determined. 

Power System Events 

At its most basic level, an electric power system is composed of generators, transformers, 

transmission lines, and loads (e.g., motors, computers, televisions, etc.). The power system can be 

thought of as an extremely large machine with hundreds of thousands of parts, all working in 

synchronism. In the United States, the power system is divided into the Eastern (EI), Western (WECC), 

and Texas (ERCOT) interconnections, which are not synchronized with each other. 

As with any machine, these parts occasionally experience failures or malfunctions. Even normal 

operations sometimes result in unusual behaviors. Because the system is designed to be resilient, most 

of these phenomena go unnoticed by consumers. In some cases, however, they can lead to widespread 

power outages (“blackouts”) or voltage problems (“brownouts”). 



38 
 

Power system disturbances can be classified into several different categories, which are 

described below. 

Generation Trip 

Mismatches between generation and load result in changes in the system frequency, which is a 

consequence of Newton’s 2nd Law of Motion for rotating masses. In power systems, this relationship is 

governed by the swing equation: 

2𝐻
𝜔0

𝑑𝜔(𝑡)
𝑑𝑡

= 𝑃𝑚𝑒𝑐ℎ − 𝑃𝑒𝑙𝑒𝑐 

Here, H is the normalized inertia constant in seconds, ω0 is the nominal system frequency in 

rad/s, Pmech is the per-unit mechanical power applied to the generator by the prime mover, and Pelec is 

the per-unit electrical load being supplied. As a consequence of the swing equation, when generation 

exceeds load, generators will accelerate. Conversely, a surplus of load causes the generators to slow 

down. Normally, the mismatch is small enough that control systems are able to keep the machines very 

close to their nominal speed. This is done by modulating the amount of mechanical power applied to the 

generator.   

In some cases, generators must be removed from the system very quickly, usually for their own 

protection. For a large generator, this can lead to a dramatic decline in frequency since it takes several 

minutes for additional generators to come online and make up for the lost capacity. Examples of 

generator trips in the Eastern (EI) and Western (WECC) Interconnections are shown in Fig.  4.1 (a) and 

(b), respectively.   

 
Fig. 4.1: (a) Frequency drop after generator trip in the Eastern Interconnection, (b) Frequency drop after generator trip in the 
Western Interconnection. 

From these plots, we can observe that while the frequency declines rapidly in both cases, it 

recovers more slowly in the EI. This is due to the topology of the system, the amount of inertia, and the 
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control schemes being used by system operators. Thus, generation trips result in similar, though slightly 

different frequency signatures from one interconnection to another. 

Load Shedding/Pumped Storage Disconnection 

If the system frequency declines too much, utilities may resort to load shedding, which is the 

temporary disconnection of large numbers of customers. Additionally, disconnection of pumped storage 

power plants can also appear as load shedding. Rapid removal of load increases the system frequency 

since the generators are producing more power than the system can consume. Examples of load 

shedding events for the EI and WECC are shown in Fig.  4.2 (a) and (b), respectively. 

 
Fig. 4.2: (a) Frequency increase after load shedding in the Eastern Interconnection, (b) Frequency increase after load 
shedding in the Western Interconnection. 

Again, while the general trend is similar, the two interconnections respond differently after the 

initial frequency increase. 

Oscillation 

Generator trips, faults, and load shedding events can result in system oscillations as the 

generators try to redistribute power amongst themselves, although it should be pointed out that some 

oscillations have no clear initiating event.  If these oscillations are not properly damped, blackouts and 

islanding can occur as parts of the system disconnect to avoid damage. An example of an oscillation is 

shown in Fig.  4.3. 

Line Trip 

Transmission line switching operations create unique transients in the frequency 

measurements.  These transients are typically not observed system-wide; perhaps only one or two 
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nearby FDRs will “see” this type of event when it occurs.  Currently, FNET does not automatically detect 

line trips. 

  
Fig. 4.3: (a) Oscillation in phase angle, (b) Oscillation in frequency. 

Description of Existing Triggering Mechanism 

FDR data are transmitted over the Internet to the main FNET server, which time-aligns and 

archives the measurements. It then forwards the data to the application server, which hosts the 

programs that detect, classify, and triangulate disturbances in near real-time.   

Event triggers are implemented for each monitored interconnection individually using 

conditional logic. For example, to detect a generation trip or load shedding event, the trigger will 

examine the time derivative of the frequency and compare it to a known threshold value. If the 

derivative exceeds this threshold (and a sufficient number of FDRs agree), an event is declared. 

Oscillation detection is considerably more difficult to implement in this fashion because oscillations vary 

widely in their frequency signature. Also, some events are concurrent (e.g., line trip during oscillation) or 

happen in quick succession (e.g., line trip leading to oscillation). 

Although the source code for the triggers is virtually the same for each interconnection, there 

exist some differences due to the nature of the system being studied. This is because different 

interconnections have slightly different responses to similar events. Thus, each additional trigger adds a 

significant amount (≈400 lines) of code that must be maintained, a factor that has limited the number of 

interconnections that the FNET system can monitor. 

Research Tasks 

Successful training of a neural network usually requires large numbers of previously classified 

example cases. Fortunately, FNET has been detecting disturbances since 2006, and approximately 9,800 
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generation trip/load shedding events and about 8,000 oscillation events have been observed since that 

time. The vast majority of these disturbances are not independently confirmed by utilities or other 

sources; however, no generator trip or load shedding misclassifications were found during visual 

inspection of hundreds of collected disturbance plots. It should also be noted that the FNET trigger 

ignores disturbances of less than 400 MW, 320 MW, and 300 MW in the EI, WECC, and ERCOT regions, 

respectively. 

Event metadata are stored in a database, which facilitates the process of locating suitable 

training cases. Line trips presented a different challenge since there is currently no trigger for them, and 

thus no corresponding FNET data. This section describes the process of selecting event cases, extracting 

(or simulating) their data, performing preprocessing of the data, and training the neural network.  

Event Search Interface 

Event metadata such as size, location, and time are stored in a MySQL database that resides on 

the FNET application server. Until the start of this work, there was no way to quickly conduct refined 

searches on the event database and view the corresponding event plots, much less export the metadata 

for later use. For this research, a PHP-based web search interface was developed for the generation 

trip/load shedding database (Fig.  4.4). This interface allows users to narrow their searches by date 

range, interconnection, and event type. Plots can be viewed by clicking the ‘View’ button for each event. 

The table of results can be downloaded in comma-separated value (CSV) format, which is then used by 

the data extraction tool.  

The oscillation event metadata is currently stored in a separate table. Due to technical 

limitations, it could not be integrated into the load shedding/generation trip table. This did not present 

significant difficulty, since the same information could still be extracted using SQL queries and saved in 

CSV format. 
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Fig. 4.4: FNET Event Database Search tool interface. 

Simulation of Line Trip Data 

Because FNET does not currently detect line trips, there was no database of events or 

corresponding data for this event type. PSS/E, a transmission planning tool, was used to perform time-

domain simulations of line trips. 

Dynamic simulation in PSS/E is a multi-step process that is quite time-consuming if done 

manually. Fortunately, a Python API exists for PSS/E that allows this process to be automated. The 

process can be briefly summarized as follows [55]: 

1. Load the network data 

2. Convert generators and loads to their Norton equivalents and constant-admittance 

equivalents, respectively 

3. Load the dynamic models 

4. Select output channels (measurements) to be recorded 

5. Perform simulation for a brief steady-state period before the event 

6. Apply the disturbance 

7. Perform simulation for some time period after the event 

For this project, a 16,000-bus model of the Eastern Interconnection was used for the 

simulations. Approximately 75 buses corresponding to actual FDRs were selected as the measurement 

points, and lines adjacent to these buses were tripped one at a time. A 20-second simulation was 

performed in each case, with measurement points being saved at 0.1-second intervals (to match the 

reporting rate used by FDRs). The frequency data were saved in PSS/E’s proprietary binary output 

format. Since this format cannot be read by MATLAB, a Python script was written that converted each 



43 
 

file into a MAT file. (It should be pointed out that the extraction process in the script was handled by a 

library produced by Siemens, the developers of PSS/E.) An example of a simulated line trip is shown in 

Fig.  4.5. 

 
Fig. 4.5: Simulated line trip event 

Automated Extraction Tool 

FNET data are presently stored in Microsoft Access MDB files. Originally, an entire day’s data 

could fit into a single MDB file, however the addition of more FDRs has made this impossible. Thus, each 

day’s data is now spread across three different files. Locating and extracting the data given the 

timestamp is nontrivial because the database files are spread across multiple filesystems and use a 

variety of naming conventions. 

A MATLAB-based extraction tool was developed that accepts the CSV file produced by the 

search interface and extracts the corresponding FDR data for each event from the MDB files into MAT 

files. The extracted data are kept at full resolution (10 samples per second) so that the preprocessing 

tool can downsample as needed. Each file is saved in a directory structure that indicates what type of 

event it represents and the interconnection where it took place. This structure makes it easier for the 

preprocessor to segregate the training data for each class. 

Preprocessor 

MATLAB’s ANN toolbox requires that the training data be stored in an m × n matrix where m is 

the number of input nodes, and n is the number of training cases. The classifications for the training 

data are stored in a k × n matrix, where k is the number of classes and n is again the number of training 

cases. MATLAB refers to this matrix as the target matrix. In the target matrix, each column has a ‘1’ in 

the row corresponding to the class for that case, while the other rows have zeroes. 
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A MATLAB-based preprocessor was written to traverse the directory structure produced by the 

extraction tool and create the training and target matrixes, which are then saved. The preprocessor can 

also downsample the training data as needed to reduce the number of input nodes. Because the 

preprocessor relies upon the naming conventions used in the directory structure to delineate the 

classes, a particular class can be easily excluded or included in the training matrix by simply renaming its 

corresponding folder. This feature is quite useful for testing different configurations of networks. 

Training Case Selection 

Significant time was devoted to the selection of appropriate training cases. Because the grid 

behaves differently from season to season and from year to year, cases were selected to cover these 

time frames wherever possible [45, 48]. The simulated line trip data did not reflect any seasonal 

variation. Since line trips are usually a local event whose response does not depend on the system as a 

whole, this should not introduce significant error. It should be noted that there were too few oscillation 

cases in the ERCOT power system that could be used for training data, so this type of event was 

excluded from the classifier. The breakdown of training cases is given in Table  4.1. 

Table  4.1: Breakdown of training case event types. 

 EI WECC ERCOT 

Generation Trip 547 415 189 

Load Shedding 160 346 95 

Oscillation 333 392 0 

Line Trip 257 0 0 

 

Initial testing of the ANN using simulated line trip data resulted in poor performance. Upon 

further examination, it was found that several of the cases did not show much, if any, variation in 

frequency during the simulation period. These cases were subsequently removed from the training set. 

Similarly, some FDR data recorded during oscillation events did not appear to show any oscillatory 

behavior – these cases were also removed. Based upon knowledge of previous oscillations, data were 

then extracted from FDRs in regions in the Eastern Interconnection that typically oscillate against one 

another [5], which seemed to yield better results. WECC oscillation and ERCOT load shedding cases were 

initially excluded from the classifier because of a lack of sufficient data, but were later added once more 

data became available.  
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Network Configuration 

The next task was to determine what level of downsampling, if any, should be used on the input 

data. At first glance, it might be tempting to use all 200 points, however this approach is problematic. A 

large number of input nodes requires more training time and also introduces additional noise into the 

network. Both of these issues can be solved by downsampling, which essentially low-pass filters the 

input signal and reduces the number of points. Repeated training/testing runs with downsampling 

factors ranging from one (every point) to ten (every tenth point) showed that the best performance 

(lowest overall confusion) resulted when every fourth data point was used. As a result, this 

downsampling factor was applied when forming the matrixes for testing and training. 

The choice of the number of hidden nodes was somewhat more difficult. There is no hard and 

fast rule for how many hidden nodes are needed for a particular classification problem, although one 

source states that the number of hidden nodes should never be more than twice the number of input 

nodes [53]. In order to determine the size of the hidden layer for this problem, a MATLAB program was 

written that created neural networks with increasing numbers of hidden nodes. Each network with n 

hidden nodes was trained and tested ten times, and from this the average confusion was calculated. The 

program was run with n ranging from two to 70, which yielded the confusion plot shown in Fig.  4.6. 

Since the performance of the network appeared to roughly flatten (and then increase) after 20 nodes, 

this number of hidden nodes was used in subsequent tests. 

 
Fig. 4.6: Plot of ANN confusion vs. number of hidden nodes. 

Another choice that needed to be made was the overall form of the network. That is, should it 

try to encompass all possible classes, or should several small networks be used instead? To answer this 

question, several different training networks were created, each representing a different type of 
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configuration. For example, one network was designed to identify all possible classes, while another 

contained only generator trips and load shedding events. Additionally, several simple is/isn’t networks 

were created for each distinct disturbance type; these were later broken into interconnection-specific 

classifiers.  

Training and Testing 

Once the training and target matrixes were created, building and training the ANN was fairly 

straightforward. The toolbox only requires the number of hidden nodes and the desired breakdown of 

the cases into training, validation, and testing. For this project, the breakdown used was 70% training, 

15% validation, and 15% testing. In this context, validation refers to the measurement of network 

generalization during the training process. If generalization stops improving, the toolbox ends the 

training process [56]. 

A MATLAB program was written to create, train, and test networks for the different 

configurations. Each configuration was trained and then tested against a corresponding test set of 

previously unseen cases randomly selected from events that occurred during a two-year period 

beginning in September 2009. Approximately 45 cases of each type were used in the testing set. 

Because performance can vary significantly from one training instance to another, the training and 

testing was repeated 10 times for each configuration, and the network having the lowest overall 

confusion was saved for future use. This process was repeated once the data for WECC oscillations and 

ERCOT load shedding events became available. 

Results  

Multi-Type/Location Classifiers 

Confusion matrixes for each multi-type/location network configuration are presented in Fig.  4.7-

Fig.  4.16. For each matrix, the best performing network for that particular configuration was used. The 

class types corresponding to each numerical identifier can be found in the tables preceding each figure. 

Table  4.2 summarizes the overall accuracy of each network, which is defined as the percent of 

disturbances correctly classified according to their major type (generator trip, load shedding, etc.) 

without regard for location (EI, ERCOT, WECC). 
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Table  4.2: Summary results for multi-type classifiers 

Classifier Type Overall Accuracy 
(Original) 

Overall Accuracy 
 (with new categories) 

Monolithic (all types) 88.3 % 65.3 % 
Generator trip/load shedding 99.1 % 99.2 % 
Generator trip/load shedding/line trip 95.1 % 80.8 % 
Generator trip/load shedding/oscillation 96.2 % 94.6 % 
Oscillation/line trip 93.3 % 80.7 % 

 
 

At first glance, the monolithic network (Fig.  4.7) containing all possible classes appears to have 

the worst performance (79.9% accuracy). However, examination of the confusion matrix reveals that the 

classifier usually determined the correct event type, even if it picked the wrong interconnection. Since 

the interconnection of each signal is known a priori, this confusion does not really matter. If the location 

confusion is disregarded, the real accuracy is 88.3%. This network experienced some difficulty 

distinguishing between EI generator trips and oscillations, as well as between line trips and oscillations, 

a result that is not terribly surprising since nearly all line trips exhibit some form of oscillatory behavior. 

However, since line trips tend to be local phenomena observed by only a few FDRs, and oscillations can 

be observed system-wide, this may not present a major problem if additional logic can be used to 

distinguish between the two. After ERCOT load shedding and WECC oscillations were added to the 

monolithic classifier, the overall accuracy declined to 65.3%. Inspection of the confusion matrix (Fig.  4.8) 

reveals that a large part of this error is caused by both EI and ERCOT load shedding events being 

classified incorrectly as WECC oscillation events. Additionally, ERCOT load sheddings and EI/WECC 

oscillations were in many cases misclassified as line trips.  

By removing everything but generator trip and load shedding cases (Fig.  4.9), significantly better 

performance (94%) was achieved. Again, this is somewhat expected since these two events have 

dramatically different frequency signatures. Also, most of the misclassifications were in location, rather 

than event type. Ignoring the location error, the real accuracy is 99.1%. Addition of ERCOT load shedding 

events to this classifier (Fig.  4.10) increased the accuracy slightly to 99.2%.  

Using only generator trip, load shedding, and line trip cases (Fig.  4.11), the overall performance 

degraded slightly (86.3%). Here, we see that the network had some trouble distinguishing between 

generator trips in the EI and WECC regions, and also between generator trips in the WECC and ERCOT 

regions. If the results for the basic event types are lumped together, the true accuracy is 95.1%. Some 

confusion between EI generator trips and oscillations can also be observed, which is to be expected 

given their similar frequency signatures. Once introduced, the ERCOT load sheddings (Fig.  4.12) were 

frequently misclassified as line trips, dropping the overall accuracy to 80.8%.  
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The next classifier was designed to distinguish between generator trips, load sheddings, and 

oscillations. Originally (Fig.  4.13), the network’s overall performance was still quite good (92.4% 

accuracy). Considering that generator trips often contain oscillatory components that would presumably 

confuse the classifier, this result is very encouraging. As before, the classifier is nearly always correct in 

choosing the event type (96.2% accuracy), even if the location is incorrect. Even after WECC oscillations 

are added (Fig.  4.14), the accuracy is still quite high (94.6%).  

Because line trips and oscillations appeared to cause confusion for the monolithic classifier, a 

network was created that could only distinguish between these two types of events (Fig.  4.15). 

Originally, this network performed quite well, correctly classifying 93.3% of the testing cases. But, the 

accuracy declined to 80.7% with the addition of WECC oscillations. In many cases, both types of 

oscillations were misclassified as line trips.  
 

Table  4.3: Composition of training cases: all types 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI 1 (547) 7 (257) 4 (160) 6 (333) 
ERCOT 3 (189)    
WECC 2 (415)  5 (346)  

 

 
Fig. 4.7: Confusion matrix for network containing all types of events.  
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Table  4.4: Composition of training cases, all types (new categories) 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI 1 (547) 9 (257) 4 (160) 7 (333) 
ERCOT 3 (189)  6 (95)  
WECC 2 (415)  5 (346) 8 (392) 

 

 
Fig. 4.8: Confusion matrix for network containing all types, including new categories 
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Table  4.5: Composition of training cases: generator trip/load shedding 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI 1 (547)  4 (160)  
ERCOT 3 (189)    
WECC 2 (415)  5 (346)  

 

 
Fig. 4.9: Confusion matrix for network containing generator trip and load shedding cases only. 
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Table  4.6: Composition of training cases: generator trip/load shedding (new categories) 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI 1 (547)  4 (160)  
ERCOT 3 (189)  6 (95)  
WECC 2 (415)  5 (346)  

 

 
Fig. 4.10: Confusion matrix for network containing generator trips and load shedding only (new categories) 
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Table  4.7: Composition of training cases: generator trip/load shedding/line trip 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI 1 (547) 6 (257) 4 (160)  
ERCOT 3 (189)    
WECC 2 (415)  5 (346)  

 

 
Fig. 4.11: Confusion matrix for network containing generator trip, load shedding, and line trip cases only. 
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Table  4.8: Composition of training cases: generator trip/load shedding/line trip (new categories) 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI 1 (547) 7 (257) 4 (160)  
ERCOT 3 (189)  6 (95)  
WECC 2 (415)  5 (346)  

 

 

 
Fig. 4.12: Confusion matrix for network containing generator trip, load shedding, and line trip cases only (new categories) 
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Table  4.9: Composition of training cases: generator trip/load shedding/oscillation 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI 1 (547)  4 (160) 6 (333) 
ERCOT 3 (189)    
WECC 2 (415)  5 (346)  

 

 
Fig. 4.13: Confusion matrix for network containing generator trip, load shedding, and oscillation cases only 
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Table  4.10: Composition of training cases: generator trip/load shedding/oscillation (new categories) 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI 1 (547)  4 (160) 7 (333) 
ERCOT 3 (189)  6 (95)  
WECC 2 (415)  5 (346) 8 (392) 

 

 
Fig. 4.14: Confusion matrix for network containing generator trip, load shedding, and oscillation cases only (new categories) 
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Table  4.11: Composition of training cases: line trip/oscillation 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI  2 (257)  1 (333) 
ERCOT     
WECC     

 

 
Fig. 4.15: Confusion matrix for network containing line trip and oscillation cases only 
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Table  4.12: Composition of training cases: line trip/oscillation (new categories) 

 Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

EI  1 (257)  2 (333) 
ERCOT     
WECC    3 (392) 

 

 

Fig. 4.16: Confusion matrix for network containing line trip and oscillation cases only (new categories) 

Simple Classifiers  

Confusion matrixes for the simple (yes/no) networks are shown in Fig.  4.17–Fig.  4.20. In the 

confusion matrixes, class ‘1’ indicates that the case is of the event type, while class ‘2’ indicates that it is 

not.  For these classifiers, the training cases for different interconnections were lumped together to 

form the training and testing sets. The overall and average accuracies for each classifier are given in 

Table  4.13. Since the testing sets contained more ‘is not’ examples than ‘is’ examples, the overall 

accuracy is weighted accordingly; here, the unweighted average accuracy is used to provide a fair 

comparison of the results.  
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Table  4.13: Summary results for simple classifiers 

Classifier Type Overall Accuracy Average Accuracy 
Generator trip 92.2 % 92.4 % 
Load shedding 87.2 % 80.9 % 
Line trip 93.2 %  89.4 % 
Oscillation 78.1 % 52.0 % 

 

Although the accuracy of the generator and line trip classifiers were similar to that of the multi-

type classifiers discussed earlier, the load shedding and oscillation classifiers performed noticeably 

worse. In particular, the oscillation classifier provided little better accuracy than random chance. One 

possible reason for this might be that the ‘not’ cases used to train the network contained the remaining 

disturbance types, all of which can sometimes include a noticeable oscillatory component. In contrast, 

the oscillation case examples contained a wide variety of oscillations in terms of magnitude, frequency, 

and duration. It seems plausible that the network could not adequately generalize the positive cases, an 

explanation which is supported by the 99.7% negative case classification accuracy for this network. 

 
Fig. 4.17: Confusion matrix for generator trip classifier 
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Fig. 4.18: Confusion matrix for load shedding classifier 

 
Fig. 4.19: Confusion matrix for line trip classifier 
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Fig. 4.20: Confusion matrix for oscillation classifier 

 

Interconnection-specific Classifiers 

 Classification networks presented in the previous sections included training cases from several 

different interconnections. Although it may be convenient to have a single network that can be applied 

to examples from different power grids, the results indicate that doing so can introduce confusion and 

decrease the overall accuracy. This suggests that a better approach might be to develop networks for 

each individual interconnection.  

Table  4.14 and Fig.  4.21 show the numerical class identifiers and confusion matrix, respectively, 

for an Eastern Interconnection monolithic classifier. This network routinely identifies generator trips, 

line trips, and load shedding events correctly while frequently misclassifying oscillations. For the first 

three types of disturbances, the accuracy was greater than or equal to 89.5%, while for oscillations it 

was correct only 46.7% of the time. Since oscillations were the greatest source of inaccuracy in the 

classifier, these were removed and a generator trip/load shedding/line trip network was created, which 

was 97.7% accurate (Fig.  4.22).  

To see if better accuracy could be obtained by separating out each event type into its own 

network, several yes/no classifiers were created using the EI training data; their confusion matrixes are 

shown in Fig.  4.23 - Fig.  4.26. The results here were somewhat surprising. Although the load sheddings 
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were categorized correctly nearly 95% of the time with the simple network (Fig.  4.24) compared to 

89.5% for the monolithic one, the simple network was slightly less accurate (88.9% vs. 91.1%) in 

identifying generator trips (Fig.  4.23). Both networks performed equally well in identifying line trips 

(Fig.  4.25). Most interestingly, the simple oscillation network (Fig.  4.26) misclassified all of the positive 

examples despite several attempts at retraining. There are two likely explanations for this. First, there is 

great diversity in the characteristics of EI oscillations, which would make them difficult for the ANN to 

generalize. Second, it is possible that some of the oscillation cases were coincident with other types of 

disturbances.  

 

Table  4.14: Composition of training cases: monolithic EI classifier 

Generator 
Trip 

Line Trip Load 
Shedding 

Oscillation 

1 (547) 3 (257) 2 (160) 4 (333) 
 

 
Fig. 4.21: Confusion matrix for EI monolithic classifier 
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Table  4.15: Composition of training cases for EI generator trip/load shedding/line trip classifier 

Generator 
Trip 

Line Trip Load 
Shedding 

1 (547) 3 (257) 2 (160) 
 

 
Fig. 4.22: Confusion matrix for EI generator trip/load shedding/line trip classifier 
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Fig. 4.23: Confusion matrix for EI generator trip classifier 

 
Fig. 4.24: Confusion matrix for EI load shedding classifier 
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Fig. 4.25: Confusion matrix for EI line trip classifier 

 
Fig. 4.26: Confusion matrix for EI oscillation classifier 

Minimum Required Signal Length 

 The artificial neural networks developed in this research were designed to operate on 20-second 

segments of unfiltered FNET frequency data downsampled to every fourth point. This time interval is 

relatively long compared to the duration of an actual event. Since disturbances should ideally be 
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classified as quickly as possible, this raises the question: is there some minimum signal length required 

for the classifier to reliably categorize each disturbance? To answer this, a program was written to 

create and train networks using input signals with lengths ranging from 0.4 seconds to 10 seconds and 

downsampling factors of 1, 2, and 4. Here, the EI generator trip/load shedding/line trip classifier 

described in the previous section was used. Because the MATLAB ANN toolbox randomly selects the 

example and testing cases from the training set, each network configuration was created, trained, and 

tested against an independent testing set 10 times. The lowest confusion rate for each configuration 

was then recorded and plotted in Fig.  4.27. Assuming a desired confusion rate of less than 5%, the 

minimum signal length appears to be about three seconds, regardless of the downsampling factor. But, 

since each example case contains approximately one second of pre-event data, the true answer is in fact 

closer to two seconds, which is much less than the 20 seconds currently required by the FNET server 

application.  

 
Fig. 4.27: Plot of Confusion vs. signal length for ANN-based classifier 

Conclusions 

Development of automated classification techniques for various power system disturbances 

based upon their frequency signatures has traditionally been a tedious, time-consuming task. 

Conditional logic-based classifiers are difficult to create and maintain due to the slight differences 
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between individual events of the same type. Thus, a classifier that could be trained using examples of 

previous events would save both time and effort, and possibly provide better accuracy. 

In this chapter, a variety of different neural network-based classifiers were created and tested 

using data from both PSS/E simulations and FDR measurements associated with disturbances identified 

by the existing FNET logic-based classifier. First, event data from different interconnections were used to 

train multi-disturbance networks of varying complexity. Results showed that the networks were 

generally quite accurate (>90%) in terms of choosing the correct event type. Still, oscillation cases from 

the Eastern Interconnection tended to be misclassified. Although the networks sometimes chose the 

wrong interconnection for a given category, this was inconsequential since the interconnection for a 

particular FDR is already known. As with all the classifiers developed in this work, the accuracy is 

measured with respect to that of the FNET classifier used to produce the training and testing sets. The 

results presented here assume that the existing classifier is highly accurate, which seems reasonable 

given the dearth of misclassifications observed in the FNET event database. Ideally, a list of 

independently confirmed events would be used for creating the training and testing sets; such a list is 

currently being developed. 

Simple interconnection-agnostic networks for each major disturbance type were then created 

using data from the three U.S. power grids. Although generator and line trips were accurately 

categorized with this method, the remaining event types were often misclassified. To further explore 

the source of the observed classification errors, ANNs using data from only the Eastern Interconnection 

were created and tested. A monolithic network designed to distinguish between the four event types 

performed reasonably well, but experienced difficulty with the oscillation cases. Once these were 

removed, 97.7% accuracy was obtained. Subsequent attempts to create simple yes/no networks for 

each event type did not result in significantly better accuracy. Thus, location-specific multi-event 

networks appear to provide the best overall classification performance for this type of problem. 

Traditional modal analysis techniques like the Prony or matrix pencil methods could then be used to 

determine if oscillations are present in the disturbance signature. 

In the final part of this work, different input signal lengths and downsampling factors were 

studied to determine how much data is actually necessary for a particular classifier to reliably obtain 

accurate results. It was found that the minimum signal length was approximately two seconds, 

regardless of the downsampling rate. This represents a major improvement over classification 

techniques currently employed by the FNET system. 
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5. Electromechanical Speed Map Development using FNET Measurements 

Introduction 

Differences in electromechanical wave propagation speeds have long been observed in different 

regions of the power grid [39]. Various attempts have been made over the years to develop “speed 

maps” of the grid, either through analytical means or from measurements. Analytical techniques are 

computationally difficult and require that an accurate model of the system be known a priori, which is 

generally impossible for a large system such as the Eastern Interconnection. Most, if not all, of 

measurement-based techniques introduced to-date assume constant propagation speed between the 

disturbance source and the sensor, which does not reflect reality.  This chapter proposes a new method 

for developing speed maps using FNET data from confirmed disturbances that seeks to eliminate many 

of the issues faced by previous attempts.   

Algorithm 

Consider a power system disturbance resulting in an electromechanical transient (either 

frequency or angle) that propagates throughout the system in all directions (Fig.  5.1). Assuming the grid 

in question has a time-synchronized wide-area measurement system, this disturbance will be detected 

at different times by each sensor (Fig.  5.2). In general, though certainly not always, those sensors (which 

could be PMUs or FDRs) that are closest to the disturbance will detect it first, while those farthest away 

will observe the resulting transient slightly later.  

 
Fig. 5.1: Illustration of disturbance propagation. 
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Fig. 5.2: Plot of frequency vs. time for a generator trip. 

Since the locations of the sensors are known, it may be tempting to simply divide the distance 

by the time delay between the sensor and the event, and use this number as the wave speed. However, 

this approach tends to include regions of the system in between the disturbance and the sensor, which 

could be problematic if the distance is large and contains areas with different amounts of inertia and 

impedance. Additionally, the exact time of the event may not be known with great certainty, which 

further skews the result. Any method of estimating reasonably accurate phase velocities must address 

both of these concerns. One way of doing this would be to only consider the propagations speeds 

between sensors that are fairly close together. This would give less weight to inertially heterogeneous 

regions and eliminate the timing issue since the sensors themselves provide highly accurate timestamps 

that are independent of the event itself. Previous investigations [35, 36, 40] have revealed that different 

regions in a power system can exhibit significantly varying wave velocities depending on their relative 

position to the originating disturbance and the direction of propagation. However, no attempt was 

made to normalize the results, which could possibly reveal relative differences between regions that 

remain consistent over time. A new algorithm for calculating regional phase speeds could be 

summarized as follows: 

1. Compute a distance matrix D, where entry di,j contains the distance between sensors i and j.  

2. Determine the time delay of arrival for each sensor S by observing when its frequency (or 

angle) passes a particular threshold.  
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3. For each sensor S, search the distance matrix to generate a list of neighboring sensors {N1, 

N2, Nn…} that are within some pre-determined radius. Here, a search radius of 300 miles 

was used. 

4. For each neighboring sensor, compute the propagation speed from S to Ni using the time 

delays of arrival found in Step 2.  

5. Estimate the propagation speed for S by averaging the velocities found in Step 4. 

6. If desired, normalize the speeds for each measurement location by the largest observed 

speed. 

Testing Cases 

 Fifteen Eastern Interconnection generator trip cases were selected from the FNET event 

database. These particular cases were chosen because a) they occurred within the past two years; and 

b) their source could be confirmed independently by either a utility or Nuclear Regulatory Commission 

event notification reports. Limiting the test cases to more recent events helps to provide a current view 

of the system, while knowing the actual generator allows the effects of location to be examined. 

Additionally, the Eastern Interconnection contains the largest number of FDRs, which should improve 

the estimation accuracy. The first nine cases were selected to be large events between 900 and 1300 

MW (as estimated by FNET), while the last six were smaller events estimated between 580 and 740 MW. 

Details for each case are given in Table  5.1. 

Table  5.1: Testing Case Descriptions 

Case Generator Date Detected Time (UTC) Estimated Size Generator Size 
1 Watts Bar Unit 1  11/14/2010 11:52:14 1287 1121 
2 John Amos Unit 3 11/26/2010 14:20:13 1294 1300 
3 Mountaineer Unit 1 11/27/2010 11:34:02 1199 1300 
4 Sequoyah Unit 1 12/20/2010 5:50:05 929 1148 
5 Watts Bar Unit 1 5/29/2011 5:54:50 1102 1121 
6 Sequoyah Unit 1 6/26/2011 20:16:09 1067 1148 
7 Gen. James M. Gavin  8/18/2011 6:43:17 1100 1300 
8 Sequoyah Unit 1 8/19/2011 2:50:35 1100 1148 
9 Browns Ferry Unit 3 9/28/2011 9:15:33 1000 1113 

10 Sooner Generating Station Unit 1 11/6/2010 4:07:14 580 569 
11 Iatan Unit 2 11/8/2010 11:14:18 610 850 
12 Mount Storm Unit 3 1/5/2011 12:56:03 593 567 
13 Dolet Hills Unit 1 5/26/2011 3:56:01 622 721 
14 Limerick Unit 2 5/29/2011 9:02:42 673 1200* 
15 Limerick Unit 1 6/3/2011 14:20:44 740 1200 

* Generator was operating at 75% output, according to NRC 
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Results 

 The proposed algorithm was implemented in MATLAB, and the resulting speed calculations 

were stored in a MySQL database. Although the speeds were initially normalized for each case, this did 

not provide any real benefit; thus the actual speeds were used for subsequent analyses. The data were 

then imported into ArcMap, which was used to create shaded gradient maps for each case (Fig.  5.3 

through Fig.  5.17). In addition, the median and average speeds found for each measurement location 

were used to create composite maps, which are shown in Fig.  5.18 and Fig.  5.19. Due to how ArcMap 

renders the raster image for the gradient, some areas such as Texas and Quebec are shaded, even 

though the speeds were not computed for these regions. 

 Although the speeds calculated using this method still demonstrate significant variability, some 

general observations can be made. Transients appear to travel quickly through the northwestern portion 

of the EI, and more slowly in the upper northeast. These observed differences can be explained by the 

fact that the major population centers of the East Coast contain significant amounts of generation 

(Fig.  5.20) and load (Fig.  5.21)1, which both contribute to system inertia and act to slow down the 

propagating wave. In comparison, the northwestern part of the EI is sparsely populated (Fig.  5.22) and 

has a much smaller amount of inertia. The central portion of the EI near eastern Tennessee and 

southeastern Kentucky also appears to be slower than the surrounding regions, perhaps due to the large 

number of generating facilities in that area.  

Aggregated speed estimates for each case and FDR location are given in   

                                                           
1 Fig.  5.20 and Fig.  5.21 were constructed from a 29,000-bus EI model that does not include parts of Florida and 
New England. 
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Table  5.2 and Table  5.3, respectively. It is apparent that the mean and median speeds for each 

case fall within a fairly narrow range, which demonstrates the improved consistency of this technique. It 

can also be observed that the overall speeds are essentially independent of the event size and location. 

Calculated speeds were higher than the 500 miles/s figure typically assumed for the EI, and lower than 

those estimated by Kook using time-domain simulations of the system [35]. One reason for this could be 

that earlier techniques used the time elapsed since the disturbance occurred in the denominator of the 

speed formula, which would result in lower speeds. This approach is problematic since in practice the 

exact time of a disturbance is usually not known to sub-second resolution. The method presented here 

should provide a more realistic estimation of the local propagation speed in each region.  
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Table  5.2: Aggregated speed estimates for each case 

Case Mean 
(mi/s) 

Median 
(mi/s) 

Minimum 
(mi/s) 

Maximum 
(mi/s) 

1 1260 1202 531 2922 

2 1228 1176 428 2539 

3 1311 1252 687 2441 

4 1098 968 533 2710 

5 1232 1180 615 2441 

6 1196 1203 211 2246 

7 1101 940 466 2307 

8 1035 1044 418 1844 

9 1216 1120 452 2077 

10 1178 1242 593 1878 

11 1291 1293 367 2539 

12 886 742 375 1991 

13 1144 1038 459 2758 

14 793 693 40 2406 

15 1048 975 448 1930 
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Table  5.3: Aggregated speed estimates for each FDR 

FDR City State Mean 
(mi/s) 

Median 
(mi/s) 

Minimum 
(mi/s) 

Maximum 
(mi/s) 

673 Montgomery AL 1169 1210 720 1796 

666 Danbury CT 778 762 533 1072 

663 Gainesville FL 1389 1395 894 1930 

796 North Palm Beach FL 1344 1203 780 2406 

674 Pensacola FL 1181 1190 373 1971 

623 Plant City FL 767 775 466 1001 

786 Tallahassee FL 1197 1390 263 1591 

675 Atlanta GA 1052 789 606 1891 

754 Cedar Falls IA 1016 1008 524 1913 

714 Urbandale IA 1408 1293 317 2922 

620 Chicago IL 935 852 537 1469 

767 Marion IL 809 746 459 1521 

778 Matton IL 978 982 422 1342 

755 Urbana IL 1025 992 863 1215 

710 Carmel IN 961 952 87 1578 

713 Hammond IN 959 904 611 1383 

797 Hammond IN 1039 1039 905 1173 

682 Holyoke MA 769 739 40 1203 

684 Waltham MA 701 719 45 1110 

715 Grand Rapids MB 1395 1539 471 2166 

718 Kelsey MB 960 847 424 2246 

719 Thompson MB 977 1057 469 1829 

665 Winnipeg MB 1780 1962 728 2539 

733 Bangor ME 1047 948 75 2018 

621 Detroit MI 1150 1194 675 1591 

679 Grand Rapids MI 1090 1022 235 1819 

712 Houghton MI 1173 1006 245 2758 

750 Kingsford MI 1179 1132 368 2233 

760 Elk River MN 1171 1299 238 1794 

790 Elk River MN 1816 1816 1816 1816 

720 Fergus Falls MN 1640 1749 813 2383 

619 St. Paul MN 1288 1303 121 2336 

832 St. Paul MN 1469 1405 1100 1951 

616 Kansas City MO 1085 1120 705 1612 

781 Kirksville MO 1085 1054 636 2102 

756 Union MO 1006 996 614 1620 

672 Gulfport MS 1158 1093 46 2134 

730 Glendive MT 895 895 895 895 
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753 Hampstead NC 1185 1416 330 1627 

664 Bismarck ND 2080 2226 1164 2710 

740 Devil's Lake ND 1691 1731 1321 2077 

729 Dickinson ND 1295 1247 888 2039 

726 Williston ND 1519 1382 1209 2213 

804 Atlantic City NJ 633 633 613 652 

678 Princeton NJ 751 695 375 1067 

667 Leroy NY 1136 1165 960 1417 

835 Potsdam NY 1844 1844 1844 1844 

707 Troy NY 836 867 279 1265 

830 Cincinnati OH 1164 1131 1117 1269 

696 Cleveland OH 1184 1333 428 1795 

670 Gahanna OH 1199 1222 674 1617 

803 Gahanna OH 1044 1044 1044 1044 

759 Norman OK 1292 1388 925 1388 

669 Simpsonville SC 1141 1002 611 2191 

739 Big Stone SD 1449 1446 905 1948 

868 Gallatin TN 683 683 683 683 

692 Knoxville TN 602 728 254 730 

770 Knoxville TN 558 484 211 1174 

722 Oak Ridge TN 480 459 418 580 

683 Lubbock TX 1292 1388 925 1388 

661 Alexandria VA 962 918 500 1394 

639 Blacksburg VA 1000 1035 560 1309 

785 Blacksburg VA 980 911 771 1308 

857 Fredericksburg VA 1209 1209 1209 1209 

668 Newport News VA 1303 1303 1303 1303 

601 Richmond VA 857 875 582 1067 

686 Roanoke VA 1086 1093 518 1448 

688 Charleston WV 995 1002 574 1350 

744 Morgantown WV 1052 1062 781 1435 

 

 

  



 
 

 

Fig. 5.3: Case 1 - Watts Bar Unit 1 
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Fig. 5.4: Case 2 - John Amos Unit 3 
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Fig. 5.5: Case 3 - Mountaineer Unit 1 
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Fig. 5.6: Case 4 - Sequoyah Unit 1 
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Fig. 5.7: Case 5 - Watts Bar Unit 1 
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Fig. 5.8: Case 6 - Sequoyah Unit 1 
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Fig. 5.9: Case 7 - Gen. James M. Gavin 
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Fig. 5.10: Case 8 - Sequoyah Unit 1 
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Fig. 5.11: Case 9 - Browns Ferry Unit 3 
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Fig. 5.12: Case 10 - Sooner Unit 1 
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Fig. 5.13: Case 11 - Iatan Unit 2 
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Fig. 5.14: Case 12 - Mt. Storm Unit 3 
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Fig. 5.15: Case 13 - Dolet Hills Unit 1 
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Fig. 5.16: Case 14 - Limerick Unit 2 
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Fig. 5.17: Case 15 - Limerick Unit 1 
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Fig. 5.18: Median speeds - all cases 
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Fig. 5.19: Average speeds - all cases 
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Fig. 5.20: Inertia constant (H) of generators in the Eastern Interconnection 
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Fig. 5.21: Buses with loads greater than 50 MW 



 
 

 

 
Fig. 5.22: Population density map of the United States (2011) 

Conclusions 

 This chapter has presented a new, model-agnostic method of determining electromechanical 

wave propagation speeds in power systems using synchronized phasor measurement data. Unlike 

previous techniques that averaged the behavior of large portions of the system together, this method 

only considers the propagation speeds over small areas. By removing the dependence on knowing the 

exact time of the disturbance, a more consistent estimation of the propagation speeds can be obtained. 

Several conclusions can be drawn from this work: 

• It is probably infeasible to produce a single speed map that is always true for the system being 

considered. The topology of a power system is constantly changing, and this has a significant effect 

on its transient behavior. Still, the system should not vary considerably over small periods of time 

(e.g., several hours). This suggests that perhaps the speed map could be continually updated based 

upon the most recent disturbances, which would certainly be possible given that most power 

systems experience several events each day. Such a map should improve the accuracy of FNET’s 

triangulation algorithm and could play an important role in future wide-area control strategies. 

• Additional measurement points would provide better granularity and lessen the effects of random 

errors in the data. Thus, the accuracy of this method should improve as more FDRs are added to the 

system.  
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• Frequency Disturbance Recorder measurements are timestamped at 100-ms intervals. This 

introduces error in the speed calculation since the time delay must always be rounded up to the 

nearest tenth of a second. Ideally, a faster reporting rate should be used.  

• The frequency cutoff value used to determine when a given location observes the disturbance 

should not dramatically affect the estimated speed provided that it is chosen in the linear region 

immediately following the event. While the cutoff is usually easy to obtain visually, it may be 

difficult to determine automatically, particularly if significant noise or oscillation is present in the 

data.   
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6. FNET Software Framework 

Introduction 

 Since its inception in 2004, FNET has experienced steady growth in the number of installed 

Frequency Disturbance Recorders. The 131 FDRs (as of the time of this writing) that have been deployed 

around the world each transmit about 55 bytes of data 10 times per second. This means that the FNET 

server must process and store roughly 6 GB of data per day, which is currently archived in Microsoft 

Access databases. Accessing and preparing the data for offline analysis has traditionally been a tedious 

task for a number of reasons. This chapter examines some of the challenges faced by those working with 

the FDR data, and describes an object-oriented software framework designed to simplify a number of 

common tasks. It is hoped that this framework will allow future researchers to spend more time 

analyzing the data and less time retrieving it. 

Structure of FDR Data 

The FNET server program continuously saves the incoming FDR data to a Microsoft Access MDB 

file, which is rotated three times per day to avoid exceeding the 2-GB size limit of the Access file format. 

Thus, a single day’s data can span multiple files. Each database file contains a table for each FDR within 

FNET. Table names are of the form “FRURawDataXXX,” where XXX is the unique identification number of 

the FDR in question. Each row in the table stores a single measurement point, which includes the 

frequency, phase angle, voltage magnitude, and timestamp. Additional FDR-specific information such as 

the number of locked-on GPS satellites and the latitude/longitude are stored at regular intervals in the 

FirstFreq field, which normally contains the results of the frequency estimation algorithm before 

resampling takes place. The FirstFreq field is not typically used in offline analysis. 

Challenges Associated with FDR Data 

 FNET has used a variety of data storage conventions throughout its history. When the number of 

FDRs was very small, several days’ data could be contained within one MDB file. Once more FDRs were 

deployed, it became necessary to create a new database file each day. Eventually, two files were 

needed, then three. These files are named deterministically based on the local (EST/EDT) date and time 

the file is created, which occurs at fixed times throughout the day according to UTC time. This schedule 

has changed over the years as more files were needed. As a result, the filenames for an event’s data 

depend on what period the data were recorded, the rotation scheme in use at that time, and whether or 

not Daylight Saving Time (DST) was in effect. Thus, determination of the MDB file corresponding to a 
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particular time span is non-trivial, and is one of the primary difficulties encountered when working with 

the FNET data. 

 Once the correct MDB file has been found, the next step is to extract the necessary data into a 

usable form. A program was eventually developed to perform the location and extraction procedure. 

However, this program is somewhat difficult to use and can only output the data to ASCII text files, 

which are an inefficient means to store what is largely numerical content. Additionally, the current 

extraction program encodes timestamps in a non-standard fashion that requires further calculation to 

decode. Since most analysis work takes place in MATLAB, additional steps are needed to import the text 

files into the workspace. Thus, it is desirable to have a way of easily locating and extracting the data to 

MATLAB’s native MAT format, or perhaps some other text-based format. 

 After extracting and importing the data, it must still be checked for the errors and 

inconsistencies that sometimes appear as a result of hardware, software, or network problems. For 

example, missing segments of data need to be flagged, and if desired, replaced with values interpolated 

from surrounding points. Duplicate timestamps must also be detected and corrected. Only after all of 

these steps have been completed are the data in a form that is suitable for plotting and analysis.  

An Object-Oriented Perspective on FNET Data 

 Most modern computer programming languages are object-oriented; that is, they allow 

programmers to represent items as “objects” having particular attributes and actions. Attributes are 

simply properties of an object, such as color, weight, or temperature. Actions, or “methods,” are 

functions that an object can perform [57]. For example, a balloon object might have properties like size, 

material, pressure, and color, and methods for inflating and popping. When writing software that 

models real-world phenomena, the object-oriented paradigm can greatly simplify the development 

process and encourage good programming practices. 

 Offline FNET data analysis programs reflect procedural design patterns more common in older 

software. For example, the data for an FDR might be loaded into several different vectors (frequency, 

angle, voltage, etc.) that are processed independently and have no connection with each other. While 

this approach is sufficient for dealing with a single FDR, the code quickly becomes unwieldy once 

multiple FDRs are introduced. The framework described here views the FDR as an object with 

measurement data “attached” to it. Multiple FDRs are stored in an array, making it possible to work with 

multiple measurement sets at once. Aside from their data, the FDRs each have unique properties such 

as their name, identification number, and map coordinates; the framework accounts for these as well.  
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Framework Overview 

The FNET software framework was developed in MATLAB since that is the analysis tool most 

commonly used in the Power Information Technology Laboratory. It consists of a number of different 

classes and helper functions implemented as m-files that can be readily incorporated into a given 

project.  

The basic unit of the framework is the fdr object, which contains both the FDR’s measurement 

data as well as its unique properties. It provides a number of helpful methods used to prepare the data 

for analysis. Users can call the methods for each fdr object individually, or they can use the fdrlist object 

to perform operations en masse. A user includes the framework by first creating an fdrlist object to hold 

the fdr objects. The fdr objects are populated using functions that can read data from either text files or 

Access MDB files. The metadata for each FDR can be loaded directly from the FNET application server’s 

MySQL database, which ensures that the information is up-to-date. Alternatively, the metadata can be 

imported from a configuration file should the application server be unavailable. Next, several functions 

can be called to check for bad data, interpolate missing data, and perform median filtering. Other 

functions allow the data to be easily exported to tab-delimited or comma-separated value (CSV) files. 

Finally, the framework allows the FDR data to be “replayed” over the network in the proprietary FNET 

message format. This feature enables the creation of “software” FDRs, which could be very useful for 

testing and developing real-time analysis algorithms for the FNET server. 

Class Structure 

 The class structure for the FNET application framework is described below. Example programs 

are given in Appendix B. 

fdr Class 

Attributes: 

• name – The FDR’s given name, which usually reflects its location or host. 

• id – The FDR’s unique numerical identifier. 

• city 

• state 

• interc – The power system interconnection where the FDR resides (e.g., EI, WECC, ERCOT). 

• latitude – The latitude of the FDR’s geographical location, in decimal degrees. 

• longitude – The longitude of the FDR’s geographical location, in decimal degrees. 

• numSats – The number of currently locked-on GPS satellites. 
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• arrivalTime – A scalar to hold the time when the FDR observes an event. 

• isRef – A Boolean value to signify if this unit is the reference unit. 

• time – A vector containing UTC timestamps for measurements. 

• frequency – A vector containing frequency measurements. 

• angle – A vector containing angle measurements. 

• voltage – A vector containing voltage measurements. 

• port – The remote TCP port this FDR connects to on the server. 

• unwrapped – A Boolean value to indicate if the angle vector has been unwrapped. 

• normalized – A Boolean value to indicate if the angle vector has been normalized. 

Methods: 

• fdr(name,id,latitude,longitude,city,state) – A simple constructor for an FDR object. 

• loadDataFile(folder) – Load data from an appropriately named text file in folder into the FDR 

object. This function looks for a text file matching the naming convention used by the existing 

data extraction utility, which is YYYYMMDD-hhmmss-FDRNAMEnnn.txt where nnn is theFDR’s 

unique numerical identifier. The data are expected to be in format ‘2’ produced by the 

extraction utility. One the data have been imported, the timestamps are converted into MATLAB 

serial date numbers and the 11-second firmware correction is applied.  

• loadDataFromAccess(start_date,start_time,duration,unit) – Load data for this FDR from the 

appropriate Access database file given the starting date/time and duration. Different duration 

units can be specified, such as second, minute, or hour. This function assumes that FDR data are 

located in one or more hard drives attached to the computer. The database files should be 

placed in the root directory of the hard drive organized by the year and month they were 

created. For example, the files for data from August 2012 should be located in F:\2012\08. The 

function automatically determines which hard drive contains the data in question. One the data 

have been imported, the timestamps are converted into MATLAB serial date numbers and the 

11-second firmware correction is applied. 

• trimData(startTime,endTime) – Trim data vectors so that they only contain data from startTime 

to endTime. This function is useful if the data from different FDRs do not completely align. 

• unwrapAngle() – Perform angle unwrapping. FDRs report voltage angle measurements in 

radians in the range [0, 2π]. Thus, the resulting waveform resembles a sawtooth-type signal, 

which is essentially useless for analysis purposes. Unwrapping the angle creates a smooth signal 

that is suitable for analysis and comparison with other units. 
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• normalizeAngle() – Subtract the first angle value from the angle vector as a whole. 

• medianFilter(n) – Perform n-point median filtering on the frequency data. 

• missIndex() – Return a vector containing the indices where there are gaps in the time vector. 

• interpolateMissingData() – Fill in missing data for all data vectors using linear interpolation. 

• getArrivalTime(variable,threshold,direction) – Determine the time when variable crosses 

threshold in direction (above/below), where variable could be frequency or angle, and threshold 

is some fixed value.  

• checkTimestampDuplication() – Examine time vector for timestamp duplication and correct any 

duplications found.  

• exportToFile(folder,format) – Export the FDR’s data to a file in folder using the specified format. 

Both comma-separated and tab-delimited formats are supported. The resulting output uses 

conventional representations of dates and times that include the conversion interval and can be 

easily imported into another program. The FDR object itself can be saved in a .mat file for future 

use. 

• sendData(host,protocol,port,override,offset) – Transmit the FDR’s data over TCP/IP to host in the 

specified protocol. Only the native FNET protocol is presently supported, however IEEE C37.118 

support could be added in the future. Specifying the override option will replace the loaded 

timestamps with the local system time. An optional offset (in hours) can be added to simulate 

Greenwich Mean Time, for example.  

fdrlist Class 

The fdrlist class acts as a wrapper for the fdr class. Most of its functions simply call the 

corresponding fdr class methods for each FDR in the list. This reduces the number of for loops that need 

to be written when dealing with a large number of FDRs.  

Attributes: 

• referenceUnit – The numerical identifier of the reference unit for the list. 

• newestStartTime – The most recent starting timestamp found in the time vectors for each FDR 

comprising the list. 

• oldestEnd Time – The oldest ending timestamp found in the time vectors for each FDR 

comprising the list. 

• units – A cell array to hold the fdr objects. 

Methods: 
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• buildListFromFiles(dataDir,[configFilename]) – Create list of FDR objects based on data files 

located in dataDir. This function first creates a list of fdr objects and obtains their metadata 

from a database by default. If a filename is specified as the third argument, the FDR metadata 

will be loaded from there instead. It then loads the data using each FDR’s loadDataFile() 

function. 

• buildListFromArray(idArray,method,[filename]) – Build a cell array of fdr objects from an array 

containing their ID numbers. The FDR metadata can be loaded from either a database or a 

configuration file by specifying ‘database’ or ‘configfile’ for the method argument. If the 

configuration file option is used, a filename must be specified as the last argument. 

• getStartEndTimes() – Determine the newest start time and the oldest ending time across all the 

FDRs in the list. This information is used for the trimData() function. 

• getArrivalTime(var,threshold,direction) – A wrapper function for fdr objects in the list. 

• relativeArrivalTime() – Subtract the earliest arrival time from each unit’s arrival time so as to 

determine the relative arrival times. 

• getSize() – Return the number of fdr objects in the list. 

• checkForMissingData() - A wrapper function for fdr objects in the list. 

• interpolateMissingData() - A wrapper function for fdr objects in the list. 

• unwrapAngle() - A wrapper function for fdr objects in the list. 

• normalizeAngle() - A wrapper function for fdr objects in the list. 

• checkTimestampDuplication() - A wrapper function for fdr objects in the list. 

• trimData() - A wrapper function for fdr objects in the list. 

• medianFilter(n) - A wrapper function for fdr objects in the list. 

• subtractReferenceAngle() – Subtract the reference FDR’s angle vector from the other FDR’s 

angle vectors. 

• referenceUnit(id) – Set the reference unit for the list. This function performs the necessary 

preprocessing such as interpolation, angle unwrapping and normalization before calling 

subtractReferenceAngle() . 

• exportToFile(folder,formatString) - A wrapper function for fdr objects in the list. 

FNETEvent Class 

Attributes: 

• dateStamp – The UTC date of the event. 
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• timeStamp – The UTC time of the event. 

• location – The interconnection where the event occurred. 

• eventType – The type of event that occurred, e.g., generator trip, load shedding, etc. 

Helper Functions 

 Several helper functions are included in the framework. They are: 

• getConfigFromFile(id,filename) – Look up an FDR’s information from an FNET UnitConfig file 

given its ID number. This function returns the name, port, latitude, longitude and 

interconnection.  

• getDataTables(con) – Return cell array of FDR data tables in database with connection handle 

con. 

• getFileByType(folder,filter) – Return a cell array containing a list of files matching filter in the 

given folder, where filter supports normal Windows wildcard expansions like *.txt, etc. 

• getFolders(directory) – Return a cell array of folders in directory. 

• getMDBFileName(date,time,duration,unit) – Determines the filename of the Access database for 

an event occurring at date and time lasting for duration expressed in terms of unit. This function 

also returns the starting and ending timestamps necessary to query the data. 

• getMDBFiles(path) – Return cell array of .MDB files in path.  

• loadFDRInfoFromDB(idArray) – Return a cell array of fdr objects populated with their ID number, 

latitude, longitude, city, and state for each FDR ID contained in idArray. FDR information is 

obtained from the FNET application server database. 

• whichDataDrive(date) – Determines the folder containing Access database file for an event 

occurring on date.  

Conclusion 

 This chapter has presented a MATLAB-based object-oriented software framework for the 

development of FDR data analysis applications. It greatly simplifies the process of locating, importing, 

preparing, and exporting the FNET data and dramatically reduces the amount of code needed to be 

written. Although designed specifically for FNET, the framework could easily be extended to support 

PMU data as well. In addition, virtual FDRs can be created that emulate devices in the field. By removing 

barriers to working with the data, the framework allows users to focus almost exclusively on research 

and development.  
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7. Environmental Regulation Impacts on Eastern Interconnection 
Performance 

Introduction 

  The U.S. Environmental Protection Agency (EPA) recently finalized the Mercury and Air Toxics 

Standards (MATS) and the Cross-State Air Pollution Rule (CSAPR), which are regulations designed to 

reduce power plant emissions such as mercury, NOx, SO2, and ozone [29, 30]. Assuming these rules pass 

judicial review, as much as 30 GW of generation capacity (mainly coal and oil-fired units) will be taken 

offline within the next few years [31], mainly from the Eastern Interconnection. Most of this lost 

capacity is being replaced with natural gas-fired generation, such as gas turbines and combined-cycle 

plants. Since power injections are being removed from some points in the grid and added to others, the 

flow of power will be altered, which could have important implications for voltage stability and 

equipment ratings. This chapter presents a study designed to simulate and quantify the effects of 

MATS/CSAPR-related generator deactivations on bus voltages and transmission line flows in the Eastern 

Interconnection over the next few years. 

Mercury and Air Toxics Standards 

 According to the Environmental Protection Agency, coal and oil-fired power plants are 

responsible for approximately half of the airborne mercury emissions in the United States [30]. Upon 

entering water, biological processes convert the metal to methylmercury, an even more toxic substance 

that bioaccumulates in fish and other aquatic wildlife. Consumption of methylmercury-contaminated 

fish by pregnant women and children is particularly dangerous since it can affect nervous system 

development. In addition, coal and oil-fired power plants release toxic metals such as arsenic, 

chromium, and nickel, which are believed to be carcinogenic. The Mercury and Air Toxics Standards 

establish limits on the amounts of these substances that can be released into the environment, while 

also creating work practices designed to reduce emissions of organic air toxics such as dioxins and 

furans.  

 Power plants can limit their emissions by employing any of several different pollution control 

technologies, such as flue gas desulfurization (FGD), activated carbon injection (AJI), or fabric filtration 

[58]. However, retrofitting existing plants with these controls is both expensive and time consuming. In 

many cases, it would be uneconomical for plant owners to bring their generating stations into 

compliance. Thus, MATS will effectively shutter a large number of coal and oil-fired power plants. 
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Cross-State Air Pollution Rule (CSAPR) 

 In July of 2011, the EPA finalized the Cross-State Air Pollution Rule (CSAPR), which applies to 23 

states located within the Eastern Interconnection. CSAPR replaces the Clean Air Interstate Rule, and 

aims to reduce SO2, NOx, ozone, and fine particulate emissions produced by power plants. The EPA cites 

a variety of health and environmental benefits resulting from the rule, including the annual avoidance 

of: 

• 13,000-34,000 premature deaths 

• 15,000 nonfatal heart attacks 

• 19,000 emergency room visits 

• 1.8 million lost work days or school absences 

• 400,000 asthma attacks [29] 

One of the most striking aspects of CSAPR is the speed at which the EPA expects compliance. The 

first reductions were scheduled to begin in January of 2012, with total implementation being achieved in 

2014. The rule is currently being challenged by utilities in the federal court system, so the actual 

implementation timeline and number of affected plants is unknown. However, some utilities have 

already begun the process of retiring older plants, regardless of whether or not CSAPR takes effect [59-

63].  

Steady-State Analysis 

Electrical power is unique compared to other commodities in that it must be consumed at the 

same time it is produced. Complicating matters, electrical energy is difficult to store in large quantities, 

and cannot be easily routed along a particular transmission path. Rather, the flow of power is 

determined by the structure of the system itself [64]. It is this particular property that makes it difficult 

for significant topology changes to be made to the system without dramatically affecting the line flows 

and bus voltages. 

Power flow (also called “load flow”) studies are the primary means of steady-state analysis used 

by system planners, and form the basis for dynamics studies as well. Given a model of the system and 

the loads it supplies, the load flow computes the load bus voltages, line flows, and generator bus angles. 

These quantities can then be used to determine which system components are operating outside of 

their limits. Because the power flow problem is non-linear, numerical techniques such as various forms 

of the Newton-Raphson method are employed to find the solution. Several commercial software 

packages exist for this purpose, including PSS/E, PowerWorld, and PSLF.  
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  Environmental regulations such as MATS and CSAPR will most likely result in a large number of 

power plants being shut down. This represents a significant loss of generation capacity, which could be 

as small as 14.5 GW, or as large as 30 GW [31]. (Estimates of the actual amount vary depending on who 

is doing the calculation.) Obviously, this capacity must be replaced by some other means. Recent 

advancements in drilling technology have unlocked previously uneconomical natural gas reserves, most 

notably the Marcellus Shale. The drop in natural gas prices created by this additional supply has led 

many utilities to invest in gas-fired generating units, which can be quickly built at a much lower cost than 

nuclear plants [65]. One important constraint for gas plants, however, is that they must be built near 

both major gas pipelines and high-voltage transmission lines.  

 The shutdown of so many large coal and oil-fired units and their replacement with gas-fired 

generators could present some significant challenges to the grid. New plants will in many cases be built 

in different locations than the generators being shut down and will thus alter the topology of the 

system. As a result, the flow of power will be different than it is now. For example, lines that are 

presently operating below their capacity could become congested, which would have implications for 

system reliability and the locational marginal price (LMP) of electricity. Other areas could see voltage 

problems. NERC studied the potential impacts of the draft regulations from the perspective of reserve 

adequacy [32], but has not examined the possible steady-state consequences. Thus, there is a clear need 

for this type of study. 

Study Design 

 The Institute for Energy Research (IER) has compiled a list of power plants that it claims will 

likely be shut down as a result of MATS and CSAPR, which can be found in Appendix C [31]. A map of 

these plants is given in Fig.  7.1. It should be noted here that IER is tied to the energy industry and should 

not be considered a completely unbiased source [66]. But, because IER would presumably be very 

conservative in their estimation of the affected plants, their list can be thought of as a worst-case 

scenario. Using this list and a 29,000-bus model of the Eastern Interconnection, the proposed 

regulations’ effects on the grid under a variety of different conditions were studied to identify those 

regions that would be negatively impacted. 

 Before any simulations could be performed, it was necessary to first develop the information 

infrastructure needed to create, manage, and analyze a large number of simulation cases. The first 

portion of this task involved creating a database table of all generators that could conceivably be added 

or removed from the model. For the affected generators, the IER list mentioned earlier was used to 

populate the table. In a few cases, this list was augmented or corrected by media reports issued after its 
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publication. Data for new generation facilities and nuclear power plants were obtained from the 2010 

U.S. Energy Information Agency Form 860 data file [67] and the Nuclear Regulatory Agency [68], 

respectively. The table structure for the generator data is given in Table  7.1. 

Table  7.1: Description of generator database table. 

Field Description 
generatorId Primary key; a unique identifier for this generator independent of PSS/E 
fuelType Numerical indicator to represent fuel type 
busnum Corresponding bus number in PSS/E. A foreign key tied to the ‘bus’ table. 
unitId Corresponding unit ID in PSS/E 
capacity Summer capacity, in MW 
plantName Name of the plant 
startYear Year the plant went into operation, if known 
endYear Year the plant is scheduled to be taken offline 
lat Latitude 
lng Longitude 
city City 
state State 
inModel Boolean variable indicating if the generator exists in the model or not 
syncon Not used 
 

 Additional tables were created to store data related to the lines, buses, areas, and zones found 

in the PSS/E model. Foreign key constraints were applied to maintain data consistency and integrity. 

These constraints made it impossible to, for example, link a generator to a bus that did not exist in the 

model.  

The Eastern Interconnection model used in this study represents the Summer 2015 peak load 

case. It was developed by the Multiregional Modeling Working Group (MMWG) in 2010, and contains 

approximately 29,000 buses and 4,000 generators. Most of the EI system is included in the model, 

however Florida and some parts of the extreme northeast have been removed. Although the model 

contains the necessary mathematical attributes describing each system component, it does not include 

their geographical information such as latitude and longitude. Fortunately, the Energy Visuals models 

available for Power World include this data for most of the buses in the system (Fig.  7.2). Since the bus 

numbers in both models are generally the same, the latitudes and longitudes could easily be merged 

using SPSS and added to the database. 
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Fig. 7.1: Map of generators by deactivation year 

 
Fig. 7.2: Bus locations in 2015 MMWG EI model 
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  Because the objective of this research was to quantify the effects of adding and removing 

different generators from the system, the next step was to determine which machines in the model (as 

identified by a bus number and two-character unit identifier) corresponded to those found in the 

generator table. Several of the MATS/CSAPR-affected generators had already been located during 

previous studies, which greatly simplified this task. However, some generators (particularly new ones) 

still needed to be located. This was done by manually searching for the plant name in the Energy Visuals 

model to yield the associated bus number, which was then matched against the machines found in the 

PSS/E model. In all, 151 of the 223 generators identified by IER and media reports were successfully 

located using this method. 

Generators that could not be found, as well as new units that needed to be added to the model, 

presented a unique challenge. In order to adequately model the power flow, each unit must be 

connected to a bus in the model that approximates its physical location in the system. This was done by 

utilizing the Google Maps API in Python to convert each generator’s city and state to a latitude and 

longitude, which was then used to find the nearest high voltage (>100 kV) bus in the model. 

To avoid double-counting generators, the PSS/E model needed to be checked to ensure that the 

new units were not already included. This was done by using the Jaro-Winkler string similarity measure 

to compare the 12-character PSS/E bus names to the complete plant names found in the database. The 

Jaro-Winkler distance was chosen because it is well-suited for short strings and provides a similarity 

between zero and one, with one being a perfect match [69]. To limit the number of comparisons that 

needed to be made, the plant names were only matched against buses within 0.5 degrees of latitude 

and longitude. A similarity of at least 0.7 was required for a bus to be considered as a match candidate. 

The list of possible matches was then reviewed manually and the generator database was updated to 

reflect any duplications found.  

Simulation Scenarios  

For this research, sixty different scenarios were developed that reflect the possible evolution of 

the Eastern Interconnection in the next few years. These scenarios are based on projected generator 

deactivations, forecasted demand growth, and likely construction of new generating capacity. Table  7.2 

describes several base cases that serve as the experimental controls. Each cell contains the unique 

numerical identifier assigned to a particular scenario. The first row represents the “do-nothing” or 

“business as usual” case, that is, it assumes that no generators are taken offline, but includes expected 

load growth. The next row represents the removal of generators as a result of MATS and CSAPR. Row 

three describes scenarios where some of the affected generators are instead used as synchronous 
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condensers2. Summer demand forecasts for the Eastern Interconnection from 2012 through 2017 are 

given in Table  7.3 [70]. Since the model used in this study lumps some portions of the system together, 

its load must be scaled proportionally as given in Table  7.4. 

Table  7.2: Base Cases 

 2012 2013 2014 2015 2016 2017 

Anticipated load increases only, all generators in 
place 1 23 27 7 17 14 

With MATS/CSAPR coal-fired generators removed 2 24 28 10 16 15 
With synchronous condensers added 50 51 52 49 53 54 
 

Table  7.3: Forecasted Summer Demand for the Eastern Interconnection 

 
Summer Demand, MW  

 Region 2012 2013 2014 2015 2016 2017 

FRCC 51,499 52,645 53,641 54,862 56,100 57,346 

MRO (US) 48,009 48,786 49,536 50,288 51,101 51,799 

NPCC (US) 66,219 66,952 67,604 68,210 68,758 69,299 

RFC 195,700 198,400 201,100 203,600 206,200 208,600 

SERC 221,590 225,650 230,208 234,597 238,792 243,056 

SPP 47,012 47,715 48,428 49,152 49,876 50,640 

MRO (CA) 6,650 6,717 6,780 6,763 6,821 6,869 

NPCC (CA) 50,392 50,476 50,546 50,347 50,452 50,655 

       Total (MW) 687,071 697,341 707,843 717,819 728,100 738,264 
 

Table  7.4: Adjusted Demand for the 29,000-bus EI Model 

 2012 2013 2014 2015 2016 2017 
Total Load (MW) 554,798 563,120 571,567 580,140 588,842 597,675 
 

 Much of the generation capacity lost due to CSAPR and MATS will be replaced with gas turbines 

or combined-cycle plants. According to the U.S. Energy Information Agency, approximately 21.5 GW of 

gas-fired generation will be built between now and 2017 [71]. A list of planned gas power plants can be 

found in Appendix D. The scenarios given in the first row of Table  7.5 represent the projected 

installations of new gas turbines given anticipated increases in load. The second row includes the 8 GW 

                                                           
2 A synchronous condenser is a synchronous machine operated in such a way that it can either produce or absorb 
reactive power without consuming real power. To the system, it can appear as either a capacitor or inductor. 
Synchronous condensers are used to provide power factor correction, which decreases line losses and improves 
the voltage profile. 
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of wind turbine generation planned in the next five years. A list of planned wind power installations can 

be found in Appendix E.   

Table  7.5: Gas Base Cases 

 2012 2013 2014 2015 2016 2017 

With no wind 3 25 29 12 18 20 
With planned wind buildout 22 26 30 13 19 21 
Gas Base Case with synchronous 
condensers added 55 56 57 58 59 60 

 

 Although fossil fuels will continue to supply a large portion of the electrical demand in the 

United States for the foreseeable future, concerns over global warming and future environmental 

regulations have led to a renewed interest in nuclear power [72]. The U.S. Nuclear Regulatory 

Commission currently has 12 applications for new reactors under consideration [73]. Of these, six are 

scheduled for completion in the next few years [71, 74]. A list of these plants can be found in Appendix 

F. The nuclear base case described in the first row of Table  7.6 includes the new gas-fired generation 

from Table  7.5 and assumes that these reactors are finished on schedule, and that the license renewals 

for existing reactors are granted. Cases in the second row include planned wind generation. Finally, the 

last row describes scenarios where all nuclear plants are removed from the system, similar to what is 

being planned in Germany and Switzerland [75, 76]. 

 

Table  7.6: Nuclear Base Cases 

 2012 2013 2014 2015 2016 2017 

With no wind (includes gas) 31 32 33 34 35 36 
With planned wind buildout 37 38 39 40 41 42 
Nuclear Base Case with synchronous 
condensers added 61 62 63 64 65 66 

With all nuclear plants removed 43 44 45 46 47 48 
 

Each case was then described using a number of different parameters, which were then stored 

in a database table. The table structure for the case descriptions can be found in Table  7.7. 

Table  7.7: Case table description 

Field Description 
caseId Primary key, a unique numerical identifier for the case 
gensRemoved Boolean to indicate if MATS/CSAPR-affected generators should be disabled 
synCon Boolean to indicate if synchronous condenser conversion should be performed 
wind Boolean to indicate if wind generation should be added 
gas Boolean to indicate if gas-fired generation should be added 
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nukesRemoved Boolean to indicate if existing nuclear reactors should be removed 
addNukes Boolean to indicate if planned nuclear reactors should be added 
year The year this case represents 
baseCaseFile The previously saved PSS/E model file that this case should modify 

Simulation Procedure 

 The large number of generators (487) involved in this study made it virtually impossible for the 

PSS/E model to be modified by hand. Thus, the PSS/E Python API was used to automate the process of 

adding and removing generators from the system and running the power flow. A Python script was 

written to load the case description from the database along with its corresponding base case model. 

Next, the script removed each generator from the IER list one-at-time, increasing the remaining 

generation to compensate accordingly, and solved the power flow. If the power flow successfully 

converged, it then saved a backup file to serve as a restore point for further simulations. If the power 

flow failed to converge after removing the generator, it was turned into a synchronous condenser by 

setting its real power output to zero. The power flow solution was then re-attempted. In the event of an 

unsuccessful simulation, the last restore point was reloaded and the simulation continued from that 

point. New generators were added by first scaling the existing generation amount down by the capacity 

of the new unit, followed by the creation of a 22-kV generator bus with a transformer connected to the 

previously identified high voltage bus. Next, the generator was added to the 22-kV bus using the 

parameters calculated according to Table  7.8. In order to improve convergence, the per-unit voltage 

setpoint of the generator was set to be equal to that of the associated high-voltage bus. For this study, it 

was assumed that each generator was designed to operate at a power factor of 0.8. The power flow was 

then solved before adding the next unit. This procedure was repeated for each of the 60 simulation 

cases. 

Table  7.8: Generator Parameter Calculations and Descriptions 

Parameter Calculation Description 
PGEN capacity × 0.95 Scheduled real power output, MW 
PMIN capacity × 0.20 Minimum real power generation capacity, MW 
PMAX capacity Maximum real power generation capacity, MW 
QMAX (capacity/0.8) × 0.6 Maximum reactive power generation capacity, MVAr 
QMIN -(capacity/0.8) × 0.6 Minimum reactive power generation capacity, MVAr 
MBASE capacity/0.8 Machine base apparent power, MVA 

 

Upon completion of the simulations, a Python script was used to extract the high-voltage (>230 

kV) buses and lines exceeding their voltage and current ratings, respectively. This information was 

recorded in the database tables named busresult and branchresult, which were then imported into 

ArcGIS to create intuitive visualizations of each scenario’s results. 
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After performing the initial group of simulations where a large number of MATS/CSAPR-affected 

generators were removed and replaced with gas and wind generators, the bus voltages were used to 

locate areas in the system where synchronous condensers might be needed. Deactivated generators 

whose capacities were greater than 100 MW and within 50 miles of an out-of-limit bus were set as 

synchronous condensers, and the power flow studies were re-run.  

Once all simulations had been performed, the converged cases were checked against the case 

descriptions found in Appendix G and summarized using a Python script. Deviations from the prescribed 

scenario, swing bus output, and the number of out-of-limit bus voltages and overloaded lines can be 

found in Attachment A. In general, deviations resulted when a particular machine could not be removed 

from the model without causing it to diverge during simulation. Since the goal of this study was to 

model the changes in the grid as accurately as possible, these machines were left in the model so that 

the effects of removing the remaining generators could be examined. 

Results 

 The following maps show the out-of-limit bus voltages and overloaded transmission lines 

resulting from each simulation, which are overlaid on the high voltage transmission grid of the Eastern 

Interconnection. The cases are grouped by the year they represent in the order given by Table  7.2, 

Table  7.5, and Table  7.6. Due to the fact that no new nuclear plants are scheduled to begin operation 

between now and 2014, the cases described in the first three rows of Table  7.6 for those years are not 

shown, since they duplicate the corresponding cases in Table  7.5. 

2012 

 Fig.  7.3 shows simulation results from the 2012 business-as-usual case where no generators are 

deactivated and no additional generating capacity is added. It is apparent that many bus voltages are 

above 1.05 p.u., a trend that is visible in all the simulations performed for this study. This is largely due 

to the fact that the model used in these simulations is configured for the high-voltage transmission 

system buses to be slightly above their nominal ratings so that a given contingency will not result in low 

voltages that might violate NERC standards [77].  When the 23 MATS/CSAPR-affected generators are 

removed (Fig.  7.4), little, if any change is observed, possibly due to the relatively small amount of 

generation (4,240 MW) being removed from the system that year. However, it was found that the Bay 

Shore Power Plant in Oregon, Ohio needed to be operated as a synchronous condenser in order for the 

remaining MATS/CSAPR generators to be removed; this was required for many of the subsequent 
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simulations. Since very few of the affected generators are located near the out-of-limit buses, only a few 

were converted into synchronous condensers (Fig.  7.5); their effect appears to be negligible.  

The voltage profile appears to be relatively stable when 6,580 MW of new gas-fired generation 

(Fig.  7.6) and 1,526 MW of wind turbines were added (Fig.  7.7). As before, the addition of synchronous 

condensers did not make much difference (Fig.  7.8). For the final scenario involving the removal of all 

nuclear generators, 48 out of the 92 reactors were successfully disabled before the simulation failed to 

converge. This scenario resulted in a general lowering of bus voltages, with one bus being below 0.95 

p.u. as shown in Fig.  7.9. Also, alterations made to the system did not have much effect on the number 

of overloaded lines, which stayed essentially constant for each of the 2012 scenarios. Because the 

geographical information for these lines could not be found, they are not shown on the maps below.



 
 

 
Fig. 7.3: 2012 base case 
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Fig. 7.4: 2012 base case with generators removed 
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Fig. 7.5: 2012 base case with generators removed, synchronous condensers added 
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Fig. 7.6: 2012 gas base case 
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Fig. 7.7: 2012 gas base case with wind 
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Fig. 7.8: 2012 gas base case with wind generation and synchronous condensers 
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Fig. 7.9: 2012 gas and wind added, nuclear plants removed 



 
 

2013 

 Simulation results from the 2013 base case are shown in Fig.  7.10. Like the 2012 base case, it 

shows a large number of overvoltage buses, though not quite as many. The 1.5% load growth from the 

previous year included in this case is probably responsible for the slight decline in bus voltages. No 

generators are due to be taken offline in 2013 as a result of MATS/CSAPR, thus Fig.  7.11 strongly 

resembles the corresponding figure from the 2012 scenarios. The conversion of some of the previously 

removed generators to synchronous condensers did not significantly affect the bus voltages (Fig.  7.12).  

 Only about 2,000 MW of gas-fired generation are to be added to the EI in 2013. This appears to 

add about 30 overvoltage buses to the system (Fig.  7.13) compared to the base case. The addition of 

1,276 MW of wind generation (Fig.  7.14) has a negligible effect on the system, as does the conversion of 

some of the deactivated generators to synchronous condensers (Fig.  7.15). Only 38 nuclear reactors 

could be removed before the system failed to converge (Fig.  7.16), which is fewer than in the previous 

year. In most cases, only three high-voltage transmission lines were operated above their Rate B limits, 

the only exception being when the nuclear reactors were removed, leading to five overloaded lines. 

    



 
 

 
Fig. 7.10: 2013 base case 



123 
 

 
Fig. 7.11: 2013 base case with generators removed 
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Fig. 7.12:  2013 base case with generators removed, synchronous condensers added 
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Fig. 7.13: 2013 gas base case 



126 
 

 
Fig. 7.14: 2013 gas base case with wind 
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Fig. 7.15: 2013 gas base case with wind and synchronous condensers 
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Fig. 7.16: 2013 gas and wind added, nuclear plants removed 



 
 

2014 

 Simulation results for the 2014 base case are shown in Fig.  7.17. This case includes 1.5% load 

growth from the previous year. Due to convergence issues, Unit 2 of the V.C. Summers Nuclear Power 

Plant near Jenkinsville, South Carolina was left in the model, even though this generator is not scheduled 

to begin production until 2017. Sixty-three generators with a capacity of 6,539 MW are due to be 

deactivated in 2014; the results of the corresponding simulation are shown in Fig.  7.18. The removal of 

these generators resulted in 14 fewer buses being above their nominal limits. The generation scaling 

applied to the remaining units to make up for this loss appears to correct the low voltage condition 

found at two of the buses in the system, and also decreases the flow on four of the overloaded lines 

down to acceptable levels. Conversion of some of the deactivated units to synchronous condensers had 

a negligible effect on the system (Fig. 4.18). 

 Approximately 1,300 MW of gas-fired generating units are scheduled to be brought online in 

2014. The simulation results show that this creates 23 more overvoltage buses (Fig.  7.20) than the 

scenario where the MATS/CSAPR-affected generators have been removed. The addition of 300 MW of 

wind power (Fig.  7.21) to the gas base case results in 11 fewer overvoltages buses. Synchronous 

condenser conversion of deactivated generators causes two additional buses to exceed their nominal 

voltage compared to the gas/wind case (Fig.  7.22). For the final scenario involving the removal of all 

nuclear generators, 28 out of the 92 reactors were successfully disabled before the simulation failed to 

converge. This resulted in several transmission lines in northeastern Maryland being overloaded, as 

shown in Fig.  7.23. 

  



 
 

 
Fig. 7.17: 2014 base case 
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Fig. 7.18: 2014 base case with generators removed 
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Fig. 7.19: 2014 base case with generators removed, synchronous condensers added 
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Fig. 7.20: 2014 gas base case 
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Fig. 7.21: 2014 gas base case with wind generation 
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Fig. 7.22: 2014 gas base case with wind generation and synchronous condensers 
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Fig. 7.23: 2014 gas and wind added, nuclear plants removed 



 
 

2015 

 The 2015 scenarios are perhaps the most important ones in this study, since more generators 

(117) are to be taken offline that year than in the previous three years combined. The 2015 base case 

(Fig.  7.24) is fairly unremarkable in terms of the number of overvoltage buses (156) and overloaded lines 

(3). Once the nearly 16,000 MW of MATS/CSAPR-affected generators are removed (Fig.  7.25), two buses 

in northeastern Ohio drop below allowable voltage levels, and three additional lines become 

overloaded. It should be noted here that two yet-to-be-built generators (V.C. Summers, Unit 2, and 

Vogtle, Unit 3) had to be left in the model in order for these cases to converge. By converting several of 

the generators to synchronous condensers, the bus voltage issues were eliminated (Fig.  7.26). 

 The addition of 3,859 MW of natural gas-fired generation appears to create some undervoltage 

issues around the southeastern shore of Lake Erie, and a few overloaded lines in northeastern Maryland 

(Fig.  7.27), though several of the undervoltage buses are eliminated with the addition of planned wind 

generation (Fig.  7.28). For these two cases, the newly added generators allowed the previously 

mentioned Summers and Vogtle units to be successfully removed from the model. Conversion of some 

of the deactivated generators to synchronous condensers corrected the remaining voltage issues, but 

did not reduce the number of overloaded lines (Fig.  7.29). 

 In 2015, the Watts Bar Unit 2 reactor is scheduled to begin operation, the first nuclear reactor to 

do so in nearly twenty years. Because of its location, the plant does not appear to have much effect on 

the undervoltage buses and overloaded lines previously noted in the gas and wind cases for this year 

(Fig.  7.30 and Fig.  7.31). As before, synchronous condensers were helpful in alleviating some of these 

problems, as shown in Fig.  7.32. Only three nuclear power plants could be removed before the system 

failed to converge (Fig.  7.33).  

  

   



 
 

 

Fig. 7.24: 2015 base case 
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Fig. 7.25: 2015 base case with generators removed 
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Fig. 7.26: 2015 base case with generators removed, synchronous condensers added 
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Fig. 7.27: 2015 gas base case 
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Fig. 7.28: 2015 gas base case with wind 
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Fig. 7.29: 2015 gas base case with wind generation and synchronous condensers 
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Fig. 7.30: 2015 gas base case with new nuclear units 
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Fig. 7.31: 2015 gas, wind base case with new nuclear units 
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Fig. 7.32: 2015 gas, wind, new nuclear units, and synchronous condensers 
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Fig. 7.33: 2015 gas and wind base case, nuclear plants removed 



 
 

2016 

 Simulation results from the 2016 base case are shown in Fig.  7.34. This case contains 146 

overvoltage buses and three overloaded lines. Removal of the 18 MATS/CSPAR-affected generators 

lowers the bus voltages such that only 126 buses exceed their voltage limits (Fig.  7.35). However, six 

additional lines become overloaded, most notably in the vicinity of the Kyger Creek Power Plant in West 

Virginia. This is at least partially due to the fact that the plant serves as the swing bus for the model 

being used. That is, its power output is adjusted by the power flow program to make up for the overall 

load-generation mismatch of the system once the remaining generators have been dispatched. For this 

particular simulation, the swing bus output was very high (8,166 MW), well above the actual 973 MW 

limit. Because this large amount of power must be sent out through the surrounding transmission lines, 

it is not surprising that they would become overloaded. Efforts made to lower the swing bus output to a 

more reasonable value by increasing the remaining generators’ outputs generally resulted in a non-

convergent model. Many of the subsequent cases for 2016 and 2017 also exhibited this phenomenon, 

and their results should be interpreted with caution. Application of synchronous condensers to the 

system (Fig.  7.36) made virtually no difference in the number of out-of-limit bus voltages or overloaded 

lines. 

 Undervoltage buses along the southeastern shore of Lake Erie and overloaded lines in 

northeastern Maryland were again noted once gas-fired generators were introduced into the model 

(Fig.  7.37). Given that the swing bus output for this case was within reasonable limits, this result likely 

provides a decent reflection of reality. However, the apparent improvement in bus voltages provided by 

the added wind generation (Fig.  7.38) may be illusory, since the swing bus output was very high for this 

simulation. This is also true for the synchronous condenser case (Fig.  7.39), which appeared to show 

additional improvements in the bus voltages.  

 Two new nuclear plants (V.C. Summers, Unit 2, and Vogtle, Unit 3) are scheduled to come online 

in 2016. The results of simulations reflecting these additions (Fig.  7.40, Fig.  7.41, and Fig.  7.42) 

essentially mirror those of the previous ones where no new nuclear reactors were added. The 

simulation of a total nuclear shutdown experienced significant difficulties, with only one generator being 

removed before the model failed to converge (Fig.  7.43).   



 
 

 

Fig. 7.34: 2016 base case 



150 
 

 

Fig. 7.35: 2016 base case with generators removed 
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Fig. 7.36: 2016 base case with generators removed, synchronous condensers added 
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Fig. 7.37: 2016 gas base case 
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Fig. 7.38: 2016 gas base case with wind 
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Fig. 7.39: 2016 gas base case with wind generation and synchronous condensers 
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Fig. 7.40: 2016 gas base case with new nuclear units 
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Fig. 7.41: 2016 gas and wind base case with new nuclear units 



157 
 

 
Fig. 7.42: 2016 gas, wind, new nuclear units, and synchronous condensers 
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Fig. 7.43: 2016 gas and wind base case, nuclear plants removed



 
 

2017 

 The results of the 2017 base case simulation are shown in Fig.  7.44, and are similar to the base 

cases from previous years, however there are many fewer overvoltage buses (134). The swing bus 

output for this simulation was negative, indicating that it was absorbing rather than delivering real 

power. Normally, this would not happen in a real system. However, the magnitude of the absorbed 

power remained within the generator limits, so the results may still have some value. Once the 

MATS/CSAPR-affected generators were removed, the number of overvoltage buses dropped to 125, and 

two buses in Manitoba were below their acceptable voltage (Fig.  7.45). Also, four additional lines 

became overloaded. It should be noted that in this simulation, a large number of generators could not 

be removed successfully, and the swing bus output was several hundred MW above its actual limit. This 

was also observed for the synchronous condenser case (Fig.  7.46). 

 While the addition of gas-fired generation seemed to make the case slightly easier to solve, 

there were still 17 generators that could not be removed (Fig.  7.47). The swing bus output of the solved 

model was 7,378 MW, well above the actual limits, and this resulted in several additional overloaded 

lines. The introduction of wind generation (Fig.  7.48) seemed to create some difficulties, resulting in a 

large swing bus output and corresponding voltage problems. Synchronous condensers did not prove 

helpful in significantly improving bus voltages or alleviating overloaded lines, and resulted in a large 

swing bus output (Fig.  7.49). 

 Only one nuclear reactor (Vogtle, Unit 4) is scheduled to come online in 2017. Compared to the 

gas base case, the number of out-of-limit buses remained relatively constant, however 7 additional lines 

became overloaded (Fig.  7.50). As in many of the other 2017 cases, this was due in large part to the high 

swing bus power output required for the case to converge. Compared to the gas/wind case (Fig.  7.51), 

there were 9 fewer undervoltage buses and four fewer overloaded lines. Converting some of the 

removed generators to synchronous condensers appeared to improve the bus voltages in areas where 

they were too low (Fig.  7.52). For the nuclear shutdown case, the system failed to converge if more than 

one reactor was removed (Fig.  7.53).  



 
 

 
Fig. 7.44: 2017 base case 
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Fig. 7.45: 2017 base case with generators removed 
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Fig. 7.46: 2017 base case with generators removed, synchronous condensers added 
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Fig. 7.47: 2017 gas base case 
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Fig. 7.48: 2017 gas base case with wind 
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Fig. 7.49: 2017 gas base case with wind generation and synchronous condensers 
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Fig. 7.50: 2017 gas base case with new nuclear units 
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Fig. 7.51: 2017 gas and wind base case with new nuclear units 
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Fig. 7.52: 2017 gas and wind base case with new nuclear units and synchronous condensers 
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Fig. 7.53: 2017 gas and wind base case, nuclear plants removed 



 
 

Conclusions 

 This chapter has presented a comprehensive study of the impacts of the Cross-State Air 

Pollution Rule and the Mercury and Air Toxics Standards on the Eastern Interconnection. Sixty power 

flow cases were constructed using a 29,000-bus PSS/E model. These cases were based upon planned 

generator deactivations and anticipated construction of new generating capacity, including gas, wind, 

and nuclear plants. Additionally, several cases were developed to examine what would happen if all 

nuclear reactors in the EI were to be shut down. The major conclusions of this study are as follows: 

• It does not appear that there would be widespread voltage stability or line overloading issues in 

the high-voltage transmission system as a result of MATS and CSAPR. Compared to the overall 

size of the system, very few buses and lines would be significantly affected in a negative 

manner. This study did not examine the reliability impacts of these regulations, however, since 

this has been done by others.  

• Low bus voltages were noted in the northeastern Ohio/Lake Erie region, particularly in 2015. 

Nearly all simulations in this study required that the Bay Shore and/or Eastlake power plants in 

this area be set as synchronous condensers in order for the model to converge properly after 

the MATS/CSAPR generators were removed. Since low bus voltages are indicative of a lack of 

reactive power, it is likely that remedial measures will need to be taken in this area. The results 

of this study seem to agree with recent announcements by the owner of the Eastlake plant 

indicating that some of its generators will need to remain operating for a few more years until 

additional transmission capacity can be built, while others will be converted to synchronous 

condensers [78, 79].  

• Conversion of MATS/CSAPR-affected generators to synchronous condensers is probably not 

worthwhile, except where previously noted. However, this option may be appropriate for some 

utilities, depending on their own needs and planning requirements. 

• Newly added gas-fired generation will not create major voltage stability problems or cause 

existing transmission lines to be overloaded. In some cases, the introduction of wind power may 

result in lowered bus voltages due to altered power flows and system operators will need to 

plan accordingly. 

• A total shutdown of all nuclear power plants in the Eastern Interconnection could create 

significant voltage stability issues, not to mention the impact on reserve requirements. Such a 

scenario is highly unlikely, and should remain so.   
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8. Conclusion 
 

The electric power industry is experiencing a transformation unlike anything seen in its 130-year 

history. Advances in computing and electronics technology have led to the creation of intelligent devices 

that will fundamentally alter how the grid is monitored and controlled. Phasor measurement units 

(PMUs) and related devices will form the basis of wide-area measurement systems (WAMS) that will 

play a critical role in the power grid’s operation for the foreseeable future. This creates a new problem, 

since the enormous amount of data produced by these systems will need to be turned into actionable 

information quickly and reliably in order for them to be truly useful. Data mining and machine learning 

techniques will likely be an important part of the solution. At the same time, traditional sources of 

power generation in the United States are being replaced with greener, more efficient technologies, and 

this transition presents additional challenges to utilities and system operators. The research presented 

in this dissertation addresses both of these important topics.  

Much of the work discussed here utilized data obtained from the FNET wide-area measurement 

system. FNET is unique among other WAMS in the sense that it covers entire interconnections, as 

opposed to a single utility’s service territory. Thus, it provides a perspective that cannot be found 

elsewhere. Even more importantly, because Frequency Disturbance Recorders are essentially single-

phase PMUs, the techniques developed in this research can easily be applied to PMU data. 

A number of uses for FNET measurements have been developed in recent years, and this 

dissertation builds upon those contributions by applying methods borrowed from computer science and 

statistics. Clustering techniques allowed patterns of frequency extrema to be found in the FNET data 

that had previously gone unnoticed. Artificial neural networks provided a straightforward means for 

quickly and accurately identifying system disturbances over much shorter time intervals than was 

previously possible. Examination of the time delay of frequency decline at closely situated FDRs led to 

the creation of electromechanical transient speed maps that could improve FNET’s disturbance 

triangulation accuracy. As an added benefit, the software developed for this research can serve as a 

framework for future application development. 

A significant portion of this work was devoted to quantifying the effects of new environmental 

regulations on the Eastern Interconnection (EI). Despite significant changes in how and where power will 

be produced in the system, it appears that from a voltage stability perspective, few significant problems 

will result from the anticipated generator deactivations. In those areas identified as having a lack of 

reactive power, utilities have begun taking steps to forestall possible voltage issues. Other utilities may 
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need to take corrective action to accommodate the addition of new natural gas-fired generators and 

wind turbines, which could lower bus voltages slightly in some areas. Although a small number of 

generators may need to be operated as synchronous condensers in order to provide voltage support in 

certain areas, widespread conversion of deactivated generators appears unnecessary. Finally, attempts 

to simulate the removal of all nuclear power plants from the EI revealed that such an action would likely 

result in significant voltage stability problems. 

Contributions 

 The major contributions of this research include: 

• A survey of existing data mining and machine learning applications for wide-area measurement 

data from electric power systems. 

• A review of recent efforts to assess the effects of environmental regulations on the power grid 

of North America. 

• A survey of previous work on the development of electromechanical transient speed maps for 

power systems. 

• An in-depth analysis of daily frequency extrema occurring in the Eastern and Western 

Interconnections, as well as an algorithm for locating the extrema in the FNET data.  

• A neural-network based classifier for identifying different types of power system disturbances 

based solely on their frequency signatures, as well as the determination of the minimum signal 

length needed for such a classifier. 

• A new method for calculating the propagation speeds of electromechanical transients in a 

power grid that does not rely upon knowing the exact time and location of the disturbance. 

• A MATLAB-based software framework that greatly simplifies the process of developing FNET 

data analysis applications and allows for the creation of virtual, software-based FDRs. This 

framework could also be extended to support PMU data. 

• A comprehensive study of the impacts of possible generator deactivations due to the Cross-

State Air Pollution Rule and the Mercury and Air Toxics Standards on the Eastern 

Interconnection over the next five years. 

• The development of Python scripts used to automate the process of modifying and solving an 

existing power system model in PSS/E using a database of scenario descriptions. 
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• The creation of power flow models simulating the possible evolution of the Eastern 

Interconnection from 2012-2017 with regards to load growth, unit deactivations, and new 

generation. 

Future Work 

• The analysis of frequency extrema in the EI and WECC has been repeated each year for the past 

two years as new data became available. Members of the power engineering community have 

expressed an interest in seeing this work continued for the foreseeable future, particularly as 

electrical markets become more closely aligned with those of natural gas. 

• Artificial neural network-based disturbance classifiers should be implemented as part of the 

openPDC platform. Ideally, these could be made available as modules that other members of 

the synchrophasor community can download and install for their own use. Other types of 

disturbances, like fault-induced delayed voltage recovery (FIDVR) events, could also be added to 

the classifier. 

• The electromechanical transient speed calculation technique can be modified in a number of 

ways. For example, instead of using the simple mean of speeds between a sensor and its 

neighbors, the median speed, or a distance-weighted average could be used. It may also be 

worthwhile to use angle measurements rather than frequency, since those contain less noise. 

Automatic determination of the cutoff frequency (or angle) used by the algorithm would allow it 

to be run unsupervised on a routine basis, which is necessary for the maps to be used for 

disturbance triangulation. 

• A decline in the frequency response of the EI has been observed for the past few years. It is 

likely that this trend will continue as coal-fired generators with large inertia constants are 

replaced with relatively low-inertia gas turbines. The power flow cases developed for the 

Eastern Interconnection study in Chapter 7 could be used to build dynamics models to study the 

frequency response implications of generators being taken offline.  
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Appendix A – List of Currently Deployed FDRs in the EI 

 

Unit 
Number 

FDR Name City State 

523 UsTNKnoxville523 Knoxville TN 

601 UsVaRichmond601 Richmond VA 

616 UsMoKansasCity616 Kansas City MO 

620 UsIlChicago620 Chicago IL 

621 UsMiWayneState621 Detroit MI 

623 UsFlPlantcity623 Plant City FL 

624 UsMoMst624 Rolla MO 

639 UsVaVtech639 Blacksburg VA 

647 UsLaEntergy647 New Orleans LA 

661 UsVaAri661 Alexandria VA 

663 UsFlUfl663 Gainesville FL 

664 UsNdBismarck664 Bismarck ND 

665 CaMbWinnipeg665 Winnipeg MB 

666 UsCtDanbury666 Danbury CT 

667 UsNyLeroy667 Leroy NY 

668 UsVaNewportNews668 Newport News VA 

669 UsScFarris669 Simpsonville SC 

670 UsOhChillicothe670 Gahanna OH 

671 UsAlSoco671 Birmingham AL 

672 UsMsGolfport672 Gulfport MS 

673 UsAlMontgomery673 Montgomery AL 

674 UsFlPensacola674 Pensacola FL 

675 UsGaAtlanta675 Atlanta GA 

678 UsNjNerc678 Princeton NJ 

679 UsMiCalvin679 Grand Rapids MI 

681 UsIaIsu681 Ames IA 

682 UsMaNeiso682 Holyoke MA 

683 UsTxTexasTech683 Lubbock TX 

684 UsMaBoston684 Waltham MA 

686 UsVaRvcs686 Roanoke TX 

688 UsWvCharleston688 Charleston WV 

690 UsVaBlacksburg690 Blacksburg VA 

692 UsTnUtk692 Knoxville TN 

696 UsOhCleveland696 Cleveland OH 

703 CaOnToronto703 Markham ON 

704 UsFlFsu704 Tallahassee FL 

705 UsPaPjm705 Norristown PA 
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706 UsNcNcat706 Greensboro NC 

707 UsNyRpi707 Troy NY 

710 UsInImpa710 Carmel IN 

712 UsMiMitech712 Houghton MI 

713 UsInNipsc713 Hammond IN 

714 UsIaMidaec714 Urbandale IA 

715 CaMbGrandrapids715 Grand Rapids MB 

718 CaMbKelsey718 Kelsey MB 

719 CaMbThompson719 Thompson MB 

720 UsMnOtpc720 Fergus Falls MN 

722 UsTnORNL722 Oak Ridge TN 

726 UsNdMduwilliston726 Williston ND 

728 UsVaDoe728 Fredericksburg VA 

729 UsNdMdudickinson729 Dickinson ND 

730 UsNdMduglendive730 Glendive MT 

733 UsMeBangor733 Bangor ME 

739 UsSdBigstone739 Big Stone SD 

740 UsNdDevilslake740 Devil's Lake ND 

744 UsWvWvu744 Morgantown WV 

747 UsMnCrystal747 Crystal MN 

749 UsMoGape749 Gape MO 

750 UsMiAtc750 Kingsford MI 

753 UsNcHampstead753         Hampstead NC 

754 UsIaCedarfalls754 Cedar Falls IA 

755 UsIlUiuc755 Urbana IL 

756 UsMoFranklin756 Union MO 

759 UsOkNorman759 Norman OK 

760 UsMnElkriver760 Elk River MN 

762 UsSCCharleston762 Charleston SC 

767 UsIlMarion767 Marion IL 

770 UsTnKnoxsolar770 Knoxville TN 

777 UsNeLes777 Lincoln NE 

778 UsIlMatton778 Matton IL 

781 UsMoKirksville781 Kirksville MO 

785 UsVaBlacksburg785 Blacksburg VA 

786 UsFlFsu786 Tallahassee FL 

790 UsMnGre790 Elk River MN 

796 UsFLNPalmBeach796 North Palm Beach FL 

797 UsInNipsco797 Hammond IN 

803 UsOhAep803 Gahanna OH 

830 UsOhDuke830 Cincinnati OH 
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832 UsMnMISOStPaul832 St. Paul MN 

835 UsNyClarkson835 Potsdam NY 

856 UsFlUsf856 Tampa FL 

857 UsVaFredericksburg857 Fredericksburg VA 

861 UsMDFrederick861 Frederick MD 

862 UsNjAtlanticCity862 Atlantic City NJ 

868 UsTnGallatin868 Gallatin TN 

875 UsMiUm875 Ann Arbor MI 

877 UsMnDodgeCenter877 Dodge Center MN 

936 UsTNChattanooga936 Chattanooga TN 
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Appendix B – FNET Software Framework Sample Programs  

 
speedmap2.m 
 
clear; 
% This file holds the connection parameters for the FNET Application 
% server database. 
host = 'localhost'; 
dbname = 'research'; 
user = 'poweritlab'; 
password = ''; 
 
% Create the connection URL. 
conurl = ['jdbc:mysql://' host '/' dbname]; 
 
% Connect to the database. 
con = database(dbname,user,password,'com.mysql.jdbc.Driver', conurl); 
 
for caseId=1:1:15 
    cutoffs = [59.998 59.992 59.990 59.982 59.99 59.985 59.9895 60.024 59.995 
59.978 60.002 59.984 59.998 59.984 59.97]; 
    %cutoffFreq = 59.995; 
    % Create an fdrlist object. 
    A = fdrlist(); 
    % Load the extracted data files. 
    A.buildListFromFiles(['.\\case' num2str(caseId) '\\']) 
    % Trim the data vectors to have the same starting and ending times. 
    A.trimData(); 
    % Check for and fix timestamp duplication. 
    A.checkTimestampDuplication(); % This must be run before interpolation 
    A.interpolateMissingData(); 
    A.medianFilter(5); 
    A.getArrivalTime('frequency',cutoffs(caseId),'below'); 
 
    A.relativeArrivalTime(); 
    A.makeDistanceMatrix(); 
    % Do the speed calculation. This goes through the fdrList in order. 
    % Then, it goes through the distance matrix in an L-shaped path to 
    % determine which FDRs are less than 300 miles away. 
    maxSpeed = 0; 
%     figure; 
%     hold all; 
%     for x=1:1:length(A.units) 
%         plot(A.units{x}.time,A.units{x}.frequency); 
%     end 
%     datetick('x','HH:MM:SS.FFF'); 
    for x=1:1:length(A.units) 
        fdrID = A.units{x}.id; 
        fprintf('FDR %d:\n',fdrID); 
        for i=2:1:length(A.units)+1 
           if(A.distMatrix(i,1) == fdrID) 
               % Traverse Column 
               for a=2:1:i 
                   tempDist = A.distMatrix(a,i); 
                   if (tempDist <= 300 && tempDist > 0) 
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                       for c=1:1:length(A.units) 
                          if (A.units{c}.id == A.distMatrix(a,1)) 
                             deltaT = sqrt((A.units{x}.arrivalTime - 
A.units{c}.arrivalTime)^2); 
                             if deltaT ~= 0 
                                speed = tempDist/deltaT; 
                                fprintf('(%.2f) ==> ',tempDist); 
                                fprintf('%.2f mi/s\n',speed); 
                                if(speed > maxSpeed) 
                                   maxSpeed = speed;  
                                end 
                                A.units{x}.speedArray = 
[A.units{x}.speedArray speed]; 
                             else 
                                 fprintf('deltaT is zero!\n'); 
 
                             end 
                          end 
                       end 
                   end 
               end 
               % Traverse Row 
               for a=i+1:1:length(A.units)+1 
                   tempDist = A.distMatrix(i,a); 
                   if (tempDist <= 300 && tempDist > 0) 
                       %fprintf('FDR %d is close by.\n',A.distMatrix(1,a)); 
 
                       for c=1:1:length(A.units) 
                          if (A.units{c}.id == A.distMatrix(1,a)) 
                             deltaT = sqrt((A.units{x}.arrivalTime - 
A.units{c}.arrivalTime)^2); 
                             if deltaT ~= 0 
                                speed = tempDist/deltaT; 
                                fprintf('(%.2f) ==> ',tempDist); 
                                fprintf('%.2f mi/s\n',speed); 
                                if(speed > maxSpeed) 
                                   maxSpeed = speed;  
                                end 
                                A.units{x}.speedArray = 
[A.units{x}.speedArray speed]; 
                             else 
                                 fprintf('deltaT is zero!\n'); 
                             end 
                          end 
                       end 
                   end 
               end 
           end 
        end 
 
    end 
    fprintf('Normalized speeds:\n'); 
    for i=1:1:length(A.units) 
        fprintf('FDR %d (%s): ',A.units{i}.id,char(A.units{i}.name)); 
        mySpeed = mean(A.units{i}.speedArray/maxSpeed); 
        realSpeed = mean(A.units{i}.speedArray); 
        if ~isnan(mySpeed) 
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%            query = ['INSERT INTO speedmap(caseId,fdrId,speed) VALUES' ... 
%                '(' num2str(caseId) ',' num2str(A.units{i}.id) ',' 
num2str(mySpeed) ')']; 
           query = sprintf('INSERT INTO 
speedmap(caseId,fdrId,normSpeed,realSpeed) VALUES 
(%d,%d,%f,%f)',caseId,A.units{i}.id,mySpeed,realSpeed); 
           %fprintf(query); 
           e = exec(con,query); 
        end 
        fprintf('%.2f\n',mean(A.units{i}.speedArray/maxSpeed)); 
    end 
end 
close(con); 
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nercfreq.m 
 
clear; 
% Create an fdrlist object. 
A = fdrlist(); 
% Load the extracted data files. 
A.buildListFromFiles('.\\case4-edge\\') 
% Trim the data vectors to have the same starting and ending times. 
A.trimData(); 
% Check for and fix timestamp duplication. 
A.checkTimestampDuplication(); % This must be run before interpolation 
A.interpolateMissingData(); 
A.medianFilter(5); 
 
figure; 
subplot(2,1,1); 
plotNames = cell(A.getSize(),1); 
hold all; 
for i=1:1:length(A.units) 
    plot(A.units{i}.time,A.units{i}.frequency); 
    plotNames{i} = char(A.units{i}.name); 
end 
title('Frequency vs. Time'); 
xlabel('Time (UTC)'); 
ylabel('Frequency, Hz'); 
datetick('x','HH:MM:SS.FFF','keepticks'); 
%legend(plotNames); 
 
dataLength = length(A.units{1}.time); 
medianFreq = zeros(dataLength,1); 
temp = zeros(A.getSize(),1); 
 
for i=1:1:dataLength 
    for j=1:1:A.getSize() 
        temp(j) = A.units{j}.frequency(i); 
    end 
    medianFreq(i) = median(temp);     
end 
subplot(2,1,2); 
plot(A.units{1}.time,medianFreq,'LineWidth',2); 
title('Median Frequency vs. Time'); 
xlabel('Time (UTC)'); 
ylabel('Frequency, Hz'); 
datetick('x','HH:MM:SS.FFF','keepticks'); 
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virtualfdrexample.m 
 
clear; 
clc; 
host = 'localhost'; 
myFDR = fdr('Penn',688,34.5,-120,'Knoxville','TN'); 
%myFDR.loadDataFile('.\\'); 
myFDR.loadDataFromAccess('2012-02-29','21:01:11',45,'second'); 
myFDR.port = 9688; 
myFDR.numSats = 5; 
myFDR.sendData(host,'fnet') 
myFDR.exportToFile('.\\export\\','mat');  
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Appendix C – Generators Deactivated due to MATS/CSAPR in the EI 

Plant Name Unit ID 
Capacity 

(MW) Fuel Type Bus Number Year City State 
In 

model 

Philip Sporn 5 220 Coal 242808 2011 Graham Station WV 1 

Philip Sporn 6 220 Coal 242808 2011 Graham Station WV 1 

Albright Power Station 1 1 69 Coal 235564 2012 Albright WV 1 

Albright Power Station 2 1 69 Coal 235565 2012 Albright WV 1 

Albright Power Station 3 1 140 Coal 235566 2012 Albright WV 1 

Alma 3 15 Coal 681543 2012 Alma WI 0 

Alma 2 15 Coal 681543 2012 Alma WI 0 

Alma 1 15 Coal 681543 2012 Alma WI 0 

Bay Shore Z 641 Coal 238567 2012 Oregon OH 1 

Elrama Power Plant 1 100 Coal 254014 2012 Elrama PA 0 

Elrama Power Plant 4 185 Coal 254010 2012 Elrama PA 1 

Elrama Power Plant 3 125 Coal 254014 2012 Elrama PA 0 

Elrama Power Plant 2 100 Coal 254014 2012 Elrama PA 0 

Hutsonville 4 75 Coal 347272 2012 Hutsonville IL 1 

Hutsonville 3 75 Coal 347271 2012 Hutsonville IL 1 

Meredosia 4 166 Oil 347680 2012 Meredosia IL 0 

Meredosia 5 203 Coal 347680 2012 Meredosia IL 0 

Monticello 2 593 Coal 508337 2012 Mount Pleasant TX 0 

Monticello 1 593 Coal 508337 2012 Mount Pleasant TX 0 

Niles 2 133 Coal 239008 2012 Niles OH 0 

Niles 1 133 Coal 239008 2012 Niles OH 0 

State Line3 L 180 Coal 274679 2012 Hammond IN 1 

State Line3 H 318 Coal 274679 2012 Hammond IN 1 

State Line4 L 100 Coal 274680 2012 Hammond IN 1 

State Line4 H 197 Coal 274680 2012 Hammond IN 1 

Blue Valley 1 51 Coal 548806 2014 Independence MO 1 

Brayton Point 5 435 Natural Gas 129475 2014 Somerset MA 0 

Buck 6 38 Coal 306022 2014 Salisbury NC 1 

Buck 1 38 Coal 306309 2014 Salisbury NC 0 

Buck 7 38 Coal 306309 2014 Salisbury NC 0 

Chamois 1 49 Coal 300019 2014 Chamois MO 1 

Dale 1 75 Coal 341443 2014 Winchester KY 1 

Dale 1 75 Coal 341440 2014 Winchester KY 1 

Dale 1 27 Coal 341436 2014 Winchester KY 1 

Dale 1 27 Coal 341433 2014 Winchester KY 1 

Endicott Station 4 55 Coal 256228 2014 Litchfield MI 0 

James De Young 1 27 Coal 256002 2014 Holland MI 0 
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John Sevier 1 176 Coal 100 2014 Rogersville TN 0 

Johnsonville 1 106 Coal 4142 2014 New Johnsonville TN 1 

Johnsonville 1 141 Coal 4148 2014 New Johnsonville TN 1 

Johnsonville 1 106 Coal 4141 2014 New Johnsonville TN 1 

Johnsonville 1 141 Coal 4147 2014 New Johnsonville TN 1 

Johnsonville 1 106 Coal 4146 2014 New Johnsonville TN 1 

Johnsonville 1 106 Coal 4145 2014 New Johnsonville TN 1 

Johnsonville 1 106 Coal 4144 2014 New Johnsonville TN 1 

Johnsonville 1 141 Coal 4150 2014 New Johnsonville TN 1 

Johnsonville 1 106 Coal 4143 2014 New Johnsonville TN 1 

Johnsonville 1 141 Coal 4149 2014 New Johnsonville TN 1 

Lone Star 1 50 Natural Gas 508297 2014 Lone Star TX 0 

Marion 4 170 Coal 350234 2014 Marion IL 1 

New Castle 2A 138 Coal 242940 2014 West Pittsburg PA 0 

New Castle 5 138 Coal 238812 2014 West Pittsburg PA 0 

Philip Sporn 6 41 Coal 242807 2014 Graham Station WV 1 

Philip Sporn 8 41 Coal 242807 2014 Graham Station WV 1 

Philip Sporn 2 105 Coal 242807 2014 Graham Station WV 1 

Philip Sporn 4 105 Coal 242807 2014 Graham Station WV 1 

Philip Sporn 5 41 Coal 242807 2014 Graham Station WV 1 

Philip Sporn 7 41 Coal 242807 2014 Graham Station WV 1 

Philip Sporn 1 105 Coal 242807 2014 Graham Station WV 1 

Philip Sporn 3 105 Coal 242807 2014 Graham Station WV 1 

Plant Mitchell C 42 Oil 383783 2014 Albany GA 1 

R E Burger 6 47 Coal 238583 2014 Shadyside OH 0 

R E Burger 5 47 Coal 238583 2014 Shadyside OH 0 

Riverbend 8 94 Coal 306154 2014 Mount Holly NC 0 

Riverbend 7 94 Coal 306040 2014 Mount Holly NC 1 

Riverton Z 54 Coal 547644 2014 Riverton KS 1 

Riverton 39 38 Coal 547469 2014 Riverton KS 0 

Rivesville 5 1 35 Coal 235575 2014 Rivesville WV 1 

Rivesville 6 1 75 Coal 235576 2014 Rivesville WV 1 

Robert A Reid 1 65 Coal 340572 2014 Robards KY 1 

Salem Harbor 1 82 Coal 221125 2014 Salem MA 0 

Salem Harbor 4 476 Coal 221125 2014 Salem MA 0 

Salem Harbor 3 166 Coal 221125 2014 Salem MA 0 

Salem Harbor 2 82 Coal 221125 2014 Salem MA 0 

Sibley 2 54 Coal 541152 2014 Sibley MO 1 

Sibley 1 54 Coal 541153 2014 Sibley MO 1 
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Sunbury Generation LP 2B 40 Coal 200021 2014 Shamokin Dam PA 0 

Sunbury Generation LP 2A 40 Coal 200021 2014 Shamokin Dam PA 0 

Sunbury Generation LP 1 128 Coal 209017 2014 Shamokin Dam PA 1 

Sunbury Generation LP4 3 94 Coal 200021 2014 Shamokin Dam PA 0 

Valley Z 267 Coal 699506 2014 Milwaukee WI 1 

Wabash River 6 387 Coal 251893 2014 Terre Haute IN 1 

Wabash River 5 125 Coal 251892 2014 Terre Haute IN 1 

Wabash River 4 113 Coal 251890 2014 Terre Haute IN 1 

Wabash River 3 123 Coal 251889 2014 Terre Haute IN 1 

Wabash River 2 113 Coal 251888 2014 Terre Haute IN 1 

Willow Island 1 163 Coal 235578 2014 Willow Island WV 1 

Willow Island 1 50 Coal 235577 2014 Willow Island WV 1 

Armstrong 1 163 Coal 235569 2015 Adrian PA 1 

Armstrong 1 163 Coal 235567 2015 Adrian PA 1 

Ashtubula 5 256 Coal 239036 2015 Ashtabula Township OH 0 

Avon Lake Z 94 Coal 238554 2015 Avon Lake OH 1 

Avon Lake Z 640 Coal 238555 2015 Avon Lake OH 1 

B.C. Cobb 4 156 Coal 256108 2015 Muskegon MI 0 

B.C. Cobb 2 156 Coal 256108 2015 Muskegon MI 0 

Black Dog 4 180 Coal 603066 2015 Burnsville MN 0 

Black Dog 3 114 Coal 603066 2015 Burnsville MN 0 

Blount Street 8 49 Coal 699168 2015 Madison WI 0 

Blount Street 9 48 Coal 699168 2015 Madison WI 0 

Canadys Steam 1 105 Coal 370812 2015 Walterboro SC 1 

Cape Fear 1 175 Coal 304881 2015 Moncure NC 1 

Cape Fear 1 148 Coal 304880 2015 Moncure NC 1 

Clifton 1 73 Natural Gas 539655 2015 Clifton KS 1 

Clinch River 3L 104 Coal 242904 2015 Cleveland VA 1 

Clinch River 3H 126 Coal 242903 2015 Cleveland VA 1 

Conesville 3 165 Coal 243654 2015 Conesville OH 1 

D.E. Karn 2 260 Coal 256007 2015 Essexville MI 0 

D.E. Karn 1 255 Coal 256007 2015 Essexville MI 0 

Dubuque 4 30 Coal 630290 2015 Dubuque IA 1 

Dubuque 3 35 Coal 630290 2015 Dubuque IA 1 

Eagle Valley 4 56 Coal 249613 2015 Martinsville IN 0 

Eagle Valley 3 43 Coal 249613 2015 Martinsville IN 0 

Eastlake Z 1257 Coal 238683 2015 Eastlake OH 1 

Frank E. Ratts1 1 117 Coal 248903 2015 Petersburg IN 1 

Frank E. Ratts2 1 117 Coal 248904 2015 Petersburg IN 1 
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Glen Gardner Z 80 Coal 206333 2015 Glen Gardner NJ 1 

Glen Gardner Z 80 Coal 206331 2015 Glen Gardner NJ 1 

Glen Lyn 6 108 Coal 242651 2015 Glen Lyn VA 1 

Glen Lyn 5 90 Coal 242650 2015 Glen Lyn VA 1 

Glen Lyn 7 127 Coal 242651 2015 Glen Lyn VA 1 

Green River 4 95 Coal 324022 2015 Central City KY 1 

Green River 3 68 Coal 324021 2015 Central City KY 1 

Harllee Branch 2 319 Coal 383692 2015 Milledgeville GA 1 

Harllee Branch 1 262 Coal 383691 2015 Milledgeville GA 1 

Hutchinson Energy Center T1 51 Natural Gas 533441 2015 Hutchinson KS 0 

Hutchinson Energy Center T4 77 Natural Gas 533441 2015 Hutchinson KS 0 

Hutchinson Energy Center T3 56 Natural Gas 533441 2015 Hutchinson KS 0 

Hutchinson Energy Center T2 55 Natural Gas 533441 2015 Hutchinson KS 0 

J.R. Whiting (All Units) Z 328 Coal 256368 2015 Erie MI 1 

Kammer 1L 92 Coal 243193 2015 Captina WV 1 

Kammer 1H 108 Coal 243192 2015 Captina WV 1 

Kammer 2L 92 Coal 243195 2015 Oroville WV 1 

Kammer 2H 108 Coal 243194 2015 Oroville WV 1 

Kammer 3L 92 Coal 243197 2015 Captina WV 1 

Kammer 3H 108 Coal 243196 2015 Captina WV 1 

Kanawha 1H 123 Coal 242895 2015 Glasgow WV 1 

Kanawha 1L 72 Coal 242896 2015 Glasgow WV 1 

Kanawha 2L 123 Coal 242898 2015 Glasgow WV 1 

Kanawha 2H 72 Coal 242897 2015 Glasgow WV 1 

Kraft 1 48 Coal 389008 2015 Port Wentworth GA 1 

Lake Shore 18 256 Coal 238637 2015 Cleveland OH 0 

Lawrence Energy Center 4 110 Coal 532853 2015 Lawrence KS 0 

Lawrence Energy Center 3 48 Coal 532853 2015 Lawrence KS 0 

Meramec 2 138 Coal 345140 2015 St. Louis MO 1 

Meramec L 170 Coal 345156 2015 St. Louis MO 1 

Meramec 1 138 Coal 345132 2015 St. Louis MO 1 

Meramec L 140 Coal 345148 2015 St. Louis MO 1 

Meramec H 190 Coal 345156 2015 St. Louis MO 1 

Meramec H 140 Coal 345148 2015 St. Louis MO 1 

Miami Fort 6 163 Coal 251949 2015 North Bend OH 1 

Muskingum River A 70 Coal 243045 2015 Beverly OH 1 

Muskingum River 4 92 Coal 242940 2015 Beverly OH 1 

Muskingum River 3 92 Coal 243045 2015 Beverly OH 1 

Muskingum River D 113 Coal 242940 2015 Beverly OH 1 
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Muskingum River 2 120 Coal 242940 2015 Beverly OH 1 

Muskingum River C 112 Coal 243045 2015 Beverly OH 1 

Muskingum River 1 120 Coal 243045 2015 Beverly OH 1 

Muskingum River B 70 Coal 242940 2015 Beverly OH 1 

New Castle 4 96 Coal 238812 2015 West Pittsburg PA 0 

P H Glatfelter Z 36 Coal 204639 2015 Spring Grove PA 1 

Picway 1 100 Coal 243522 2015 Lockbourne OH 0 

Portland Z 172 Coal 204661 2015 Mt. Bethel PA 1 

Portland Z 255 Coal 204651 2015 Mt. Bethel PA 1 

Potomac River 5 110 Coal 314053 2015 Alexandria VA 0 

Potomac River 4 110 Coal 314053 2015 Alexandria VA 0 

Potomac River 3 110 Coal 314053 2015 Alexandria VA 0 

Potomac River 2 88 Coal 314053 2015 Alexandria VA 0 

Potomac River 1 88 Coal 314053 2015 Alexandria VA 0 

Quindaro T3 46 Natural Gas 530592 2015 Kansas KS 0 

Quindaro T2 56 Natural Gas 530592 2015 Kansas KS 0 

R Gallagher 1 140 Coal 251857 2015 New Albany IN 1 

R Gallagher 3 140 Coal 251859 2015 New Albany IN 1 

R. Paul Smith 11 75 Coal 235509 2015 Williamsport MD 0 

R. Paul Smith 9 35 Coal 235509 2015 Williamsport MD 0 

Rumford Cogeneration 7 43 Coal 204614 2015 Rumford ME 0 

Rumford Cogeneration 6 43 Coal 204614 2015 Rumford ME 0 

Scholz 2 49 Coal 386752 2015 Sneeds FL 1 

Scholz 1 49 Coal 386751 2015 Sneeds FL 1 

Shawville 1 Z 125 Coal 200715 2015 Shawville PA 1 

Shawville 2 2 125 Coal 200722 2015 Shawville PA 1 

Shawville 3 3 188 Coal 200665 2015 Shawville PA 1 

Shawville 4 4 188 Coal 200666 2015 Shawville PA 1 

Tanners Creek 3 153 Coal 243233 2015 Lawrenceburg IN 1 

Tanners Creek C 145 Coal 243233 2015 Lawrenceburg IN 1 

Tanners Creek 4 215 Coal 243233 2015 Lawrenceburg IN 1 

Tecumseh Energy Center Z 74 Coal 532671 2015 Tecumseh KS 1 

Titus 3 75 Coal 204512 2015 Birsboro PA 0 

Titus 2 75 Coal 204512 2015 Birsboro PA 0 

Titus 1 75 Coal 204512 2015 Birsboro PA 0 

Titus 5 18 Coal 204512 2015 Birsboro PA 0 

Titus 4 18 Coal 204512 2015 Birsboro PA 0 

WC Beckjord 4 163 Coal 251936 2015 New Richmond OH 1 

WC Beckjord 3 125 Coal 251935 2015 New Richmond OH 1 
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WC Beckjord 2 113 Coal 251934 2015 New Richmond OH 1 

WC Beckjord 1 115 Coal 251939 2015 New Richmond OH 1 

WC Beckjord 6 461 Coal 251938 2015 New Richmond OH 1 

WC Beckjord 5 245 Coal 251937 2015 New Richmond OH 1 

Weatherspoon A 49 Coal 304924 2015 Lumberton NC 1 

Weatherspoon A 79 Coal 304927 2015 Lumberton NC 1 

Weatherspoon A 49 Coal 304925 2015 Lumberton NC 1 

Welsh 2 1 528 Coal 509405 2015 Pittsburg TX 1 

WPS Power Niagara 1 53 Coal 135415 2015 Niagara Falls NY 0 

Yates 1 99 Coal 383641 2015 Newnan GA 1 

Yorktown 2 188 Coal 315091 2015 Yorktown VA 1 

Yorktown 1 188 Coal 315090 2015 Yorktown VA 1 

Cane Run 5 209 Coal 324011 2016 Louisville KY 1 

Cane Run 4 163 Coal 324010 2016 Louisville KY 1 

Cane Run 6 272 Coal 324012 2016 Louisville KY 1 

Chesapeake J 16 Coal 315101 2016 Chesapeake VA 1 

Chesapeake G 24 Coal 315100 2016 Chesapeake VA 1 

Chesapeake B 19 Coal 315099 2016 Chesapeake VA 1 

Chesapeake D 24 Coal 315099 2016 Chesapeake VA 1 

Chesapeake H 24 Coal 315100 2016 Chesapeake VA 1 

Chesapeake F 16 Coal 315099 2016 Chesapeake VA 1 

Chesapeake I 16 Coal 315101 2016 Chesapeake VA 1 

Chesapeake 1 1 113 Coal 315094 2016 Chesapeake VA 1 

Chesapeake 2 2 113 Coal 315095 2016 Chesapeake VA 1 

Chesapeake 3 3 185 Coal 315096 2016 Chesapeake VA 1 

Chesapeake 4 4 239 Coal 315097 2016 Chesapeake VA 1 

Green River 1 75 Coal 324144 2016 Central City KY 0 

Green River 2 114 Coal 324144 2016 Central City KY 0 

Northeast Station 3 473 Coal 510396 2016 Oologah OK 0 

Tyrone 3 135 Coal 324042 2016 Versailles KY 1 
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Appendix D – Planned Gas-Fired Power Plants in the EI 

The following is a list of planned gas-fired power plants with winter capacity greater than 100 MW. 

Plant Name Unit ID 
Capacity 

(MW) Fuel Type 
Bus 

Number Year City State In Model 

Astoria Energy II T4 156 Natural Gas 126295 2011 Astoria NY 0 

Astoria Energy II T3 156 Natural Gas 126295 2011 Astoria NY 0 

Astoria Energy II T2 228 Natural Gas 126295 2011 Astoria NY 0 

Bear Garden S1 254 Natural Gas 315193 2011 New Canton VA 1 

Bear Garden G2 170 Natural Gas 315192 2011 New Canton VA 1 

Bear Garden G1 165 Natural Gas 315191 2011 New Canton VA 1 

Buck 10 163 Natural Gas 306119 2011 Salisbury NC 0 

Buck 11 163 Natural Gas 306119 2011 Salisbury NC 0 

Cane Island 4 160 Natural Gas   2011 
Intercession 
City FL 0 

Fremont Energy Center 2 175 Natural Gas 238602 2011 Fremont OH 1 

Fremont Energy Center 3 325 Natural Gas 238603 2011 Fremont OH 1 

Fremont Energy Center 1 175 Natural Gas 238601 2011 Fremont OH 1 

Gillette SBMC G3 7 Natural Gas   2011 Boston MA 0 

Greenland Energy Center 1 148 Natural Gas 200581 2011 Jacksonville FL 0 

Greenland Energy Center 2 148 Natural Gas 200581 2011 Jacksonville FL 0 

Hunlock Power Station 5 49 Natural Gas 234251 2011 
Hunlock 
Creek PA 0 

Hunlock Power Station 6 49 Natural Gas 234251 2011 
Hunlock 
Creek PA 0 

Kleen Energy Systems Project ST 274 Natural Gas   2011 Middletown CT 0 

Kleen Energy Systems Project U1 177 Natural Gas   2011 Middletown CT 0 

Kleen Energy Systems Project U2 177 Natural Gas   2011 Middletown CT 0 

Marshfield Utilities Gas Plant M1 55 Natural Gas 699244 2011 Marshfield WI 0 

Oneida Energy E1 1 Natural Gas 699359 2011 Green Bay WI 0 

Richmond A 200 Natural Gas 304978 2011 Hamlet NC 1 

Richmond B 200 Natural Gas 304978 2011 Hamlet NC 1 

Richmond C 252 Natural Gas 304978 2011 Hamlet NC 1 

Teche 4 33 Natural Gas 335567 2011 Baldwin LA 0 

West County Energy Center 3A 232 Natural Gas   2011 Loxahatchee FL 0 

West County Energy Center ST 523 Natural Gas   2011 Loxahatchee FL 0 

West County Energy Center 3C 232 Natural Gas   2011 Loxahatchee FL 0 

West County Energy Center 3B 244 Natural Gas   2011 Loxahatchee FL 0 

York Energy Center G4 188 Natural Gas 200122 2011 
Peach 
Bottom PA 0 

York Energy Center G2 122 Natural Gas 200122 2011 
Peach 
Bottom PA 0 

York Energy Center G3 122 Natural Gas 200122 2011 
Peach 
Bottom PA 0 
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York Energy Center G1 113 Natural Gas 200122 2011 
Peach 
Bottom PA 0 

Bayonne Energy Center T1 57 Natural Gas 126285 2012 Bayonne NJ 0 

Bayonne Energy Center T4 57 Natural Gas 126285 2012 Bayonne NJ 0 

Bayonne Energy Center T2 57 Natural Gas 126285 2012 Bayonne NJ 0 

Bayonne Energy Center T5 57 Natural Gas 126285 2012 Bayonne NJ 0 

Bayonne Energy Center T3 57 Natural Gas 126285 2012 Bayonne NJ 0 

Bayonne Energy Center T6 57 Natural Gas 126285 2012 Bayonne NJ 0 

Bayonne Energy Center T8 57 Natural Gas 126285 2012 Bayonne NJ 0 

Bayonne Energy Center T7 57 Natural Gas 126285 2012 Bayonne NJ 0 
Cleveland County Generating 
Facility 1 180 Natural Gas 306578 2012 Grover NC 1 
Cleveland County Generating 
Facility 4 180 Natural Gas 306581 2012 Grover NC 1 
Cleveland County Generating 
Facility 3 180 Natural Gas 306580 2012 Grover NC 1 
Cleveland County Generating 
Facility 2 180 Natural Gas 306579 2012 Grover NC 1 

Dan River 3 263 Natural Gas 306572 2012 Eden NC 1 

Dan River 2 163 Natural Gas 306571 2012 Eden NC 1 

Dan River 1 163 Natural Gas 306570 2012 Eden NC 1 

Deer Creek Station 1 300 Natural Gas 659285 2012 Elkton SD 1 

Dresden Energy Facility 1S 223 Natural Gas 246770 2012 Dresden OH 1 

Dresden Energy Facility 1B 158 Natural Gas 246770 2012 Dresden OH 1 

Dresden Energy Facility 1A 158 Natural Gas 246770 2012 Dresden OH 1 

Elkins Generating Center C 20 Natural Gas 506983 2012 Elkins AR 0 

Howard Down 11 56 Natural Gas 228207 2012 Vineland NJ 0 

Jack McDonough 5A 240 Natural Gas 383962 2012 Smyrna GA 1 

Jack McDonough 5 373 Natural Gas 383961 2012 Smyrna GA 1 

Jack McDonough 6B 240 Natural Gas 383885 2012 Smyrna GA 1 

Jack McDonough 6 375 Natural Gas 383883 2012 Smyrna GA 1 

Jack McDonough 4A 240 Natural Gas 383879 2012 Smyrna GA 1 

Jack McDonough 6A 240 Natural Gas 383884 2012 Smyrna GA 1 

Jack McDonough 4 380 Natural Gas 383878 2012 Smyrna GA 1 

Jack McDonough 4B 240 Natural Gas 383880 2012 Smyrna GA 1 

JackMcDonough 5B 240 Natural Gas 383963 2012 Smyrna GA 1 

John Sevier 3 165 Natural Gas 4323 2012 Rogersville TN 1 

John Sevier 2 165 Natural Gas 4322 2012 Rogersville TN 1 

John Sevier 4 383 Natural Gas 4324 2012 Rogersville TN 1 

John Sevier 1 165 Natural Gas 4321 2012 Rogersville TN 1 

New Haven Harbor 3 44 Natural Gas   2012 New Haven CT 0 

New Haven Harbor 2 44 Natural Gas   2012 New Haven CT 0 
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New Haven Harbor 4 44 Natural Gas   2012 New Haven CT 0 

Oneida Energy E3 1 Natural Gas 699359 2012 Green Bay WI 0 

Oneida Energy E2 1 Natural Gas 699359 2012 Green Bay WI 0 

PSEG Kearny Generating Station 33 44 Natural Gas 217000 2012 Kearny NJ 0 

PSEG Kearny Generating Station 31 44 Natural Gas 217000 2012 Kearny NJ 0 

PSEG Kearny Generating Station 42 44 Natural Gas 217000 2012 Kearny NJ 0 

PSEG Kearny Generating Station 41 44 Natural Gas 217000 2012 Kearny NJ 0 

PSEG Kearny Generating Station 34 44 Natural Gas 217000 2012 Kearny NJ 0 

PSEG Kearny Generating Station 32 44 Natural Gas 217000 2012 Kearny NJ 0 
Warren F Sam Beasley Generation 
Station 2 50 Natural Gas 232002 2012 Smyrna DE 0 

Waterloo 13 6 Natural Gas 348776 2012 Waterloo IL 0 

Big Bend T5 56 Natural Gas   2013 Apollo Beach FL 0 

CPV Valley Energy Center 1 281 Natural Gas 148998 2013 Wawayanda NY 1 

CPV Valley Energy Center 1 175 Natural Gas 148997 2013 Wawayanda NY 1 

CPV Valley Energy Center 1 175 Natural Gas 148996 2013 Wawayanda NY 1 

Gowanus Gas Turbines Generating SS 90 Natural Gas 126277 2013 Brooklyn NY 0 
H L Culbreath Bayside Power 
Station 8 56 Natural Gas   2013 Tampa Bay FL 0 
H L Culbreath Bayside Power 
Station 7 56 Natural Gas   2013 Tampa Bay FL 0 

Hamlet Generating Facility S6 56 Natural Gas 304355 2013 Hamlet NC 0 

Wayne County A 170 Natural Gas 304960 2013 Goldsboro NC 1 

Wayne County A 170 Natural Gas 304956 2013 Goldsboro NC 1 

Wayne County A 170 Natural Gas 304957 2013 Goldsboro NC 1 

Wayne County A 170 Natural Gas 304959 2013 Goldsboro NC 1 

Wayne County A 170 Natural Gas 304958 2013 Goldsboro NC 1 

West Deptford Energy Station 1 308 Natural Gas 219121 2013 
West 
Deptford NJ 0 

Big Bend T6 56 Natural Gas   2014 Apollo Beach FL 0 

Garrison Energy Center LLC T1 150 Natural Gas 232003 2014 Dover DE 0 

Towantic Energy LLC G1 165 Natural Gas 126281 2014 Oxford CT 0 

Towantic Energy LLC G2 161 Natural Gas 126281 2014 Oxford CT 0 

Towantic Energy LLC G1 161 Natural Gas 126281 2014 Oxford CT 0 

West Deptford Energy Station 2 308 Natural Gas 219121 2014 
West 
Deptford NJ 0 

Zion Energy Center G4 152 Natural Gas 270940 2014 Zion IL 0 

Zion Energy Center G5 152 Natural Gas 270940 2014 Zion IL 0 

CPV Warren, LLC 1 180 Natural Gas 235110 2015 Front Royal VA 0 

CPV Warren, LLC 2 180 Natural Gas 235110 2015 Front Royal VA 0 

CPV Warren, LLC 1 105 Natural Gas 235110 2015 Front Royal VA 0 

CPV Warren, LLC 2 105 Natural Gas 235110 2015 Front Royal VA 0 
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Cricket Valley Energy 1 346 Natural Gas 126294 2015 Dover NY 0 

Cricket Valley Energy 2 346 Natural Gas 126294 2015 Dover NY 0 

Cricket Valley Energy 3 346 Natural Gas 126294 2015 Dover NY 0 

Garrison Energy Center LLC T2 150 Natural Gas 232003 2015 Dover DE 0 

Gibson County Generation Station 1 371 Natural Gas 141 2015 Rutherford TN 0 

Lima Energy T2 240 Natural Gas 242909 2015 Lima OH 0 

Lima Energy T1 240 Natural Gas 242909 2015 Lima OH 0 

Live Oaks Power Plant 1A 170 Natural Gas 386039 2015 Brunswick GA 1 

Live Oaks Power Plant 1B 170 Natural Gas 386040 2015 Brunswick GA 1 

Live Oaks Power Plant 1 250 Natural Gas 386038 2015 Brunswick GA 1 

Nearman Creek T5 45 Natural Gas 542976 2015 Kansas City KS 0 

Tampa Electric Co NA 2 1 56 Natural Gas   2015 Tampa Bay FL 0 

Washington Parish Energy Center T1 215 Natural Gas 336130 2015 Bogalusa LA 0 

Washington Parish Energy Center G1 172 Natural Gas 336130 2015 Bogalusa LA 0 

Washington Parish Energy Center G2 172 Natural Gas 336130 2015 Bogalusa LA 0 

Stony Brook 3A 289 Natural Gas 137455 2016 Ludlow MA 0 

Tampa Electric Co NA 2 2 56 Natural Gas   2016 Tampa Bay FL 0 

Trigen Trenton Energy 2 1 Natural Gas 219200 2016 Trenton NJ 0 

Trigen Trenton Energy 1 1 Natural Gas 219200 2016 Trenton NJ 0 

Elk Mound Z 90 Natural Gas 680516 2017 Elk Mound WI 1 

Tampa Electric Co NA 2 3 56 Natural Gas   2017 Tampa Bay FL 0 

Tampa Electric Co NA 2 4 56 Natural Gas   2018 Tampa Bay FL 0 

Polk 8 366 Natural Gas   2019 Mulberry FL 0 

Arvah B Hopkins T5 46 Natural Gas 380218 2020 Tallahassee FL 0 
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Appendix E – Planned Wind Power Plants in the EI 

 

Plant Name 
Unit 
ID 

Capacity 
(MW) Fuel Type 

Bus 
Number Year City State 

In 
Model 

Bishop Hill Energy LLC 1 200 Wind 636672 2012 Galva IL 0 
Blue Canyon Windpower VI 
LLC 1 100 Wind 521129 2012 Lawton OK 1 

Cimarron Windpower II 1 131 Wind 531469 2012 Cimarron KS 0 

Crossroads Wind Farm 98 227 Wind 515407 2012 Canton OK 0 

Ironwood Wind 2 167 Wind 531469 2012 Ford County KS 0 

Marble River Wind Farm G1 200 Wind 137200 2012 Clinton NY 0 
Meadow Lake Wind Farm V 
LLC N1 100 Wind 249524 2012 Brookston IN 0 
Post Rock Wind Power Project 
LLC 1 201 Wind 530592 2012 

Ellsworth 
County KS 0 

Prairie Rose Wind Farm R1 200 Wind 602039 2012 Jasper MN 0 

Bingham Wind 1 127 Wind   2013 Bingham ME 0 

Black Prairie Wind Farm LLC N2 200 Wind 270673 2013 
McLean 
County IL 0 

Blackstone Wind Farm IV G2 100 Wind 270852 2013 Pontiac IL 0 
Lexington Chenoa Wind Farm 
II LLC G1 100 Wind 270673 2013 Lexington IL 0 
Lexington Chenoa Wind Farm 
LLC G2 200 Wind 270673 2013 Lexington IL 0 

Number Nine Wind Farm G1 200 Wind   2013 Bridgewater ME 0 

Oakfield Wind Project 2 149 Wind   2013 Oakfield ME 0 

Waverly Wind Farm LLC G1 200 Wind 532797 2013 Waverly KS 0 

Black Prairie Wind Farm LLC N1 200 Wind 270673 2014 
McLean 
County IL 0 

Simpson Ridge Wind Farm LLC N1 100 Wind   2014 Hanna WY 0 
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Appendix F – Planned Nuclear Power Plants in the EI 

 

The following is a list of planned nuclear power plants due to open between 2012 and 2017.  

Plant Name 
Unit 
ID 

Capacity 
(MW) 

Fuel 
Type 

Bus 
Number Year City State 

In 
Model 

Watts Bar, Unit 2 2 1270 Nuclear 4022 2015 Spring City TN 1 

Virgil C. Summer, Unit 2 2 1100 Nuclear 370835 2016 Jenkinsville SC 1 
Vogtle Electric Generating Plant, 
Unit 3 3 1100 Nuclear 383753 2016 Waynesboro GA 1 
Vogtle Electric Generating Plant, 
Unit 4 4 1100 Nuclear 380115 2017 Waynesboro GA 0 
 

Appendix G – Case Index 

 

Case ID 
Generators 
Removed 

Synchronous 
Condensers Wind Gas 

Nuclear 
Removed 

Add 
Nuclear Year Base Case 

1 0 0 0 0 0 0 2012 S2012.sav 

2 1 0 0 0 0 0 2012 S2012.sav 

3 1 0 0 1 0 0 2012 case-2.sav 

7 0 0 0 0 0 0 2015 S15.sav 

10 1 0 0 0 0 0 2015 S15.sav 

12 1 0 0 1 0 0 2015 case-10.sav 

13 1 0 1 1 0 0 2015 case-12.sav 

14 0 0 0 0 0 0 2017 S2017.sav 

15 1 0 0 0 0 0 2017 S2017.sav 

16 1 0 0 0 0 0 2016 S2016.sav 

17 0 0 0 0 0 0 2016 S2016.sav 

18 1 0 0 1 0 0 2016 S2016.sav 

19 1 0 1 1 0 0 2016 case-18.sav 

20 1 0 0 1 0 0 2017 case-15.sav 

21 1 0 1 1 0 0 2017 case-20.sav 

22 1 0 1 1 0 0 2012 case-3.sav 

23 0 0 0 0 0 0 2013 S2013.sav 

24 1 0 0 0 0 0 2013 S2013.sav 

25 1 0 0 1 0 0 2013 case-24.sav 

26 1 0 1 1 0 0 2013 case-25.sav 

27 0 0 0 0 0 0 2014 S2017.sav 

28 1 0 0 0 0 0 2014 S2014.sav 

29 1 0 0 1 0 0 2014 case-28.sav 

30 1 0 1 1 0 0 2014 case-29.sav 
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31 1 0 0 1 0 1 2012 case-3.sav 

32 1 0 0 1 0 1 2013 case-25.sav 

33 1 0 0 1 0 1 2014 case-29.sav 

34 1 0 0 1 0 1 2015 case-12.sav 

35 1 0 0 1 0 1 2016 case-18.sav 

36 1 0 0 1 0 1 2017 case-20.sav 

37 1 0 1 1 0 1 2012 case-31.sav 

38 1 0 1 1 0 1 2013 case-32.sav 

39 1 0 1 1 0 1 2014 case-33.sav 

40 1 0 1 1 0 1 2015 case-34.sav 

41 1 0 1 1 0 1 2016 case-35.sav 

42 1 0 1 1 0 1 2017 case-36.sav 

43 1 0 1 1 1 0 2012 case-37.sav 

44 1 0 1 1 1 0 2013 case-38.sav 

45 1 0 1 1 1 0 2014 case-39.sav 

46 1 0 1 1 1 0 2015 case-40.sav 

47 1 0 1 1 1 0 2016 case-41.sav 

48 1 0 1 1 1 0 2017 case-42.sav 

49 1 1 0 0 0 0 2015 case-10.sav 

50 1 1 0 0 0 0 2012 case-2.sav 

51 1 1 0 0 0 0 2013 case-24.sav 

52 1 1 0 0 0 0 2014 case-28.sav 

53 1 1 0 0 0 0 2016 case-16.sav 

54 1 1 0 0 0 0 2017 case-15.sav 

55 1 1 1 1 0 0 2012 case-22.sav 

56 1 1 1 1 0 0 2013 case-26.sav 

57 1 1 1 1 0 0 2014 case-30.sav 

58 1 1 1 1 0 0 2015 case-30.sav 

59 1 1 1 1 0 0 2016 case-13.sav 

60 1 1 1 1 0 0 2017 case-19.sav 

61 1 1 1 1 0 1 2012 case-37.sav 

62 1 1 1 1 0 1 2013 case-38.sav 

63 1 1 1 1 0 1 2014 case-39.sav 

64 1 1 1 1 0 1 2015 case-40.sav 

65 1 1 1 1 0 1 2016 case-41.sav 

66 1 1 1 1 0 1 2017 case-42.sav 

   



 
 

Appendix H – Maps of New Generators by Startup Year 

 
Fig. H.1: Map of new generators in 2012 
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Fig. H.2: Map of new generators in 2013 
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Fig. H.3: Map of new generators in 2014 
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Fig. H.4: Map of new generators in 2015 
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Fig. H.5: Map of new generators in 2016 
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Fig. H.6: Map of new generators in 2017  
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