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ABSTRACT 

Engineering gene networks offers an opportunity to harness biological function for 

biotechnological and biomedical applications. In contrast to cell-based systems, cell free 

extracts offer a flexible and well-characterized context in which to implement predictable 

gene circuits. Critical to these efforts is the availability of a library of ligand sensitive 

gene regulatory systems. Here, I describe efforts to develop molecular tools to control 

gene expression and implement a negative feedback circuit in E.coli cell extracts. First, a 

strategy to regulate T7 RNA polymerase using DNA aptamers is detailed. I test the 

hypothesis that a DNA aptamer, when placed near the transcription start site, interferes 

with transcription in the presence of the target molecule. A DNA aptamer that binds 

thrombin is used as a model system for demonstrating feasibility of the approach. I show 

that for the hybrid T7-aptamer promoter, thrombin addition results in up to a 5-fold 

reduction in gene expression. I further demonstrate that gene expression be tuned by 

altering the position of the aptamer relative to the transcription start site. I then devised a 

mechanism to engineer dual regulation of T7 promoters using LacI and TetR repressor 

proteins. To achieve this, a LacI binding site (lacO) was positioned 92bp upstream from a 

T7lacO promoter, which resulted in an increased repression from T7lacO promoters 

presumably by a looping based mechanism. TetR binding sites were introduced into this 

framework to disrupt the DNA looping to create T7 promoters that respond to both LacI 

and TetR. I show that positioning a tetO operator between the upstream lacO and the 

T7lacO promoter results in relieving lacO mediated repression by TetR. Finally, a 

negative feedback circuit was realized using T7lacO promoters. To this end, mono-

cistronic and bi-cistronic system assembly approaches for system assembly are examined 

leading to the realization of an inducible negative feedback circuit in cell free systems. 

Collectively, the tools developed in this work pave the way for expanding the library of 

ligands that can be used for regulating gene expression, enabling signal integration at T7 

promoters and facilitating engineering of gene networks in cell free systems.  
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Chapter 1- Introduction 
 

Background 

A synthetic gene circuit involves “novel regulation of pre-existing or novel 

cellular function”[1]. This discipline falls under the field of synthetic biology, which 

encompasses efforts to forward engineer biological function. The discipline entails 

construction of modules from well characterized components or redesigning an existing 

module to examine a system in isolation from the rest of the biological circuitry[2]. In 

contrast to the traditional genetic and biochemistry based approaches, synthetic biology 

takes an engineering approach to biology- which is to rationally design minimal systems 

from well characterized parts to test its effect on function[3]. Furthermore, engineered 

biological cells are being programmed to realize functions that have been traditionally 

realized from hard materials. The confluence of methods from engineering, biology and 

mathematics has propelled the development of systems that achieve precision associated 

with synthetic inorganic materials while utilizing biological systems.   

The often-cited inaugural devices namely the toggle switch[4] and the 

repressilator [5] that showed bi-stability and oscillations paved the way for a construction 

and implementation of synthetic gene circuits and modules that alter biological function. 

Since then remarkable improvements in the available parts and development of 

methodologies to construct circuits of predetermined function have been used to 

construct “toy systems” to test biological hypotheses and for the construction of 

application driven systems. Engineered biological systems in contrast to engineered 

silicon based circuits offer the distinct advantage of being interfaced with the living 
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world and the ability to link computation and signal output with biologically meaningful 

responses.  

 A majority of these synthetic gene circuits are implemented in living cells. These 

studies rely on the rich diversity of molecular gene regulatory components to assemble 

gene networks. In contrast to enabling circuits in cells, cell free systems offer a flexible 

platform in which to enable biological function. However, efforts to realize engineered 

function in cell free systems have lagged behind those in cell-based systems largely due 

to the lack of molecular tools to regulate gene expression. This thesis details molecular 

tools and approaches to realize engineered function in cell free systems. In this 

introductory chapter, first an overview of the current state of progress in enabling 

synthetic gene circuits in cells is discussed. This is followed by a discussion of a few 

examples of in vitro gene networks. And finally, a primer for strategies adopted for 

enabling transcriptional control and network motifs that have been implemented in 

chapters 2, 3 and 4 is provided. 

 

Synthetic Gene Circuits in Cells: Opportunities, Approach and Challenges 

The inherent value of a forward engineering approach to biological investigation 

lies in the fact that construction of rationally designed genetic circuitry aids in identifying 

gaps in and assesses the completeness of our understanding of biological systems[6]. 

Such a synthetic approach has been employed to probe different aspects of cellular 

function. For instance, Cox et.al [7] and Guet et.al [8] utilized combinatorial promoter 

libraries constructed using well-defined parts to correlate promoter architecture with 

transcriptional regulation. Likewise, synthetic gene circuits have been invaluable for 
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evaluating and validating theoretical predictions about functional consequences of 

recurring network motifs[9, 10]. For example, whereas negative feedback circuits 

accelerate transcriptional response[11] and are resistant to noise[12], positive 

autoregulation promotes bi-stability in a system[13].  

 Lessons from synthetic semiconductor based systems have thus far guided the 

progress made in the field. Given the engineering origins of the field, standards that apply 

to engineered synthetic devices such as abstraction, modularity, predictability and 

extensibility are being sought in engineered biological circuits [14]. Parts for constructing 

synthetic circuits such as transcriptional factors, promoters and other determinants are 

often derived from well-studied model biological systems. These parts, which have 

evolved to function within natural biological networks, are adapted for use in synthetic 

gene circuits. To aid the task of assembling engineered circuits, well-characterized 

standardized components that function in a variety of cellular contexts have been 

assembled[14, 15]. These contain well-characterized genetic components such as native 

and synthetic ligand sensitive promoters, of bacterial and eukaryotic origins, ribosome 

binding sites and transcriptional terminators that function in predictable manner[16, 17]. 

Analogous to the manner in which parts such as capacitors and resistors are wired 

together into circuits that process signals in a desired format, synthetic biologists aim to 

utilize potentially modular genetic components (that function in a variety of cells), and 

assemble these components into smaller modules [14] (Figure 1.1).  
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Figure 1.1 - Approach for assembling synthetic gene circuits - Synthetic gene circuits are typically 
assembled from a library of well-characterized genetic parts. These genetic parts are then assembled into 
small modules called network motifs, larger sophisticated networks can then be constructed from these 
modules that can be linked with a biological function. Often several iterations in the assembly process is 
required before a network that displays a desired phenotype can be assembled 

 

 

 

Reporters

Transcriptional factors

RBS

Promoters

Terminators

System Assembly

Negative feedback

Positive feedback

Synthetic gene circuit

Phenotype

Network assembly
Optimize circuit design



 
 

5 

Different strategies have been used for assembling synthetic gene circuits[18, 19]. 

Iterative rational design, which involves computational modeling of the performance of a 

gene circuit, construction and evaluation of the circuit and refining the original circuit has 

yielded synthetic enhancers, and oscillators [20, 21] that are more robust than their 

original counterparts. Yet another strategy involves constructing circuits comprising 

different genetic components arranged in a variety of configurations and selecting the 

circuit variant displaying the desired function. While these two strategies constitute the 

rational design approach, directed evolution methods are being applied to fine tune DNA, 

RNA and protein components for use in synthetic gene circuits[1, 22]. 

The majority of these circuits are embedded within a larger cellular context. The 

advantages of implementing gene expression in cell-based systems are manifold. 

Biological cells contain a large repository of ligand sensitive transcription and translation 

mechanisms and machinery for tuning protein and RNA synthesis and degradation. 

Consequently, implementation of gene circuits in cells provides access to existing genetic 

parts in the cell and harnesses the ability of cells to self-sustaining[23]. Cell division 

provides a convenient method of diluting the built up components. Furthermore, cell 

based system provides a more biologically relevant context for elucidating network 

function.  

However, exclusive reliance on existing strategies for design and testing 

biological circuits will ultimately yield systems that remain systems of limited 

complexity and functionality[18].  The synthetic gene circuits implemented in these 

systems are extraneous to cell survival and therefore impose fitness effects upon the cells. 

The evolutionary forces that in nature optimize cellular architecture, function to 
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deactivate the synthetic system that imposes a heavy burden on cellular machinery.   In 

addition the assembly of biological circuits in a predictable manner remains a non-trivial 

process because of the lack of predictive power stemming from the use of incompletely 

understood biological parts[3]. Furthermore, unintended interactions between different 

components further complicate implementation of reliable computation units. As 

mentioned earlier, synthetic circuits implemented in cells make use of cellular machinery 

to achieve a balancing of rate of synthesis and degradation of cellular components. In the 

case of cell based synthetic gene circuits, the user does not have control over several 

cellular parameters that play a role in the successful implementation of synthetic gene 

circuit. These factors include component dilution achieved by the means of cellular 

replication, relative component concentrations, effects of spatial organization, cellular 

size and endogenous synthesis and degradation machinery play a role in achieving 

balance of different RNA and protein components required for proper functioning of a 

circuit. Incomplete understanding of cellular processes and components further 

complicate the assembly of predictable systems circuits in vivo.  

Several approaches are being sought to make biological systems more tractable 

for implementing predictable engineered systems. Several studies have outlined insulated 

promoter systems, used orthogonal viral polymerases[24, 25] and orthogonal translation 

machinery to decouple synthetic systems from endogenous cellular processes[26]. One 

approach to addressing the task of eliminating or reducing the system complexity is to 

understand minimal cells[27, 28]. These minimal cells comprise a small genome and 

contain a fairly limited set of components and yet are self replicating, signal processing 

mini bioreactors that perform computations that outperform synthetic systems in terms of 
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the functional density. Not surprisingly then, minimal systems have emerged as the focal 

point for performing whole cell computation[29], synthesis of a synthetic genome[30] 

and construction of a bacterial cell whose genome was chemically synthesized[31]. These 

efforts feed into the goal of uncovering hitherto unknown interactions and design 

principles that contribute towards cellular functionality.   

A complementary approach to constructing engineered gene networks is to 

reconstitute systems in vitro. In contrast to in vivo systems, in vitro systems that comprise 

either purified protein components or crude cell extracts for driving gene expression offer 

a stripped-down “chassis” to realize synthetic gene networks. It is possible to precisely 

control parts, components and proteins that make up the system. Yet, lack of molecular 

tools greatly limits the utility of these systems to realize sophisticated engineered 

functions. The focus of this dissertation is to develop transcriptional tools and employ 

these tools for enabling simple gene circuits in an E. coli cell extract.  

 In the following section, I describe in vitro examples of engineered systems that 

perform a predetermined function. Herein, I limit the discussion to transcriptional and 

translational circuits. I then highlight the tools that would be needed to expand the 

applicability of cell free systems for implementing gene circuits. 

 

Synthetic Gene Circuits in Cell Free Systems 

Gene circuits in well defined buffer systems 

Reconstituted biochemical systems have long served as a prelude to in vivo 

biochemical investigations. Versatility and the ease of precisely controlling the chemical 

environment of in vitro systems are amenable to precise control and quantitative analysis 
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of the system under investigation. Since reconstituted in vitro systems are devoid of 

cellular material, they hold great value in defining components that are necessary and 

sufficient for explaining observed phenomenon. For instance, a reconstituted system that 

comprises three proteins involved in circadian rhythms –KaiA, KaiB and KaiC proteins 

purified from cyanobacteria has been shown to exhibit oscillatory phosphorylation 

behavior in a buffer system with a periodicity of approximately 24 hours in the absence 

of any other component[32].  Consequently, implementation of simple nucleic acid 

analogues of natural circuits in well-defined buffer systems provides a great starting point 

for providing a more reliable quantitative description of circuit behavior. Most prominent 

examples of in vitro transcription based regulatory modules have come from 

transcriptional circuits built from nucleic acid components[33, 34]. In keeping with the 

goal of engineering reliable networks, nucleic acid based systems that utilize a small 

number of proteins that drive transcription and RNA degradation to realize surprisingly 

sophisticated functionality such as bistability and oscillations have been developed. In 

both of these nucleic acid based systems, DNA complementation of a promoter sequence 

is used to mediate transcriptional activation or repression. A DNA oligo that “completes” 

a T7 promoter was designated as the activator, whereas an RNA oligo that sequesters the 

activator DNA oligo repressed transcription (Figure 1.2 A). A negative feedback loop 

between an activator circuit and a repressor circuit resulted in oscillations for about 10 

hours[34].  
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Figure 1.2- Examples of transcription based cell free circuits- A) shows the principle for oligonucleotide 
mediated regulation of T7 promoter – the red sections of the DNA template represents the non –template 
strand of T7 promoters. The green oligonucleotide corresponds to a portion of the template strand of T7 
promoter, While the green oligonucleotide is hybridized to the promoter region, the template can function 
as a substrate for transcription, Removal of the template strand results in repression of transcription from 
the template. B) The transcription scheme described is was utilized for the construction of a transcriptional 
oscillator consisting a mutually activating and repressing circuit that generates an oligonucleotide that 
forms a complete promoter and a repressor circuit that generates an RNA oligonucleotide that sequesters 
the short oligonucleotide away from the template. The insulator circuit was included in the design that 
siphons partially digested oligonucleotides. Oscillator circuit was linked to DNA based tweezers or an 
aptamer that binds malachite green and oscillations were monitored by changes in fluorescence intensity. 
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In a remarkable achievement, in their subsequent work, nucleic acid based 

oscillators were utilized to drive other nucleic acid based dependent functions namely a 

nanomechanical DNA tweezer and release of an aptamer that binds a fluorescent dye 

thereby coupling a timing device with an in vitro DNA based function[35] (Figure1.2 B). 

These systems were able to provide a semi-quantitative model to account for the 

experimental observations.  

Even with these simplified systems, the authors encountered several issues that 

will prove instructive for future implementation of predictable gene circuits. Build up of 

short incompletely degraded RNA and DNA fragments was found to interfere with the 

proper functioning of the circuit. The authors had to build an insulator circuit to eliminate 

unwanted waste products from interfering with the output circuit.  Furthermore, the 

circuits were found to be sensitive to batch-to-batch variations in the enzymatic 

machinery, which interfered with the quantitative prediction of circuit behavior. These 

efforts involve assembling all the components required to enable a dynamic system and 

therefore represent a bottom up approach to understanding the functioning of a network. 

Further, they underscore the power of in vitro technologies to implement sophisticated 

functions using relatively simple components and highlight the challenges that would be 

needed to overcome for realizing larger and diverse systems.  

 

Gene networks with protein intermediates 

a) Engineered gene circuits PURE reconstituted systems- In vitro biological systems 

provide a good compromise between using biological material and implementing 

synthetic protein generating systems without regard for effect on cell viability. In the 
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following section, I describe features of cell free systems followed by a discussion of the 

progress made and lessons learnt from implementing synthetic gene circuits in these 

systems.  

PURE (reconstituted translation systems built from bacterial components) offers a 

great step forward in enabling predictable gene networks in precisely defined chemical 

environments. PURE systems offer a simplified and precisely defined medium in which 

to implement these systems[36]. The commercially available reconstituted system 

comprises T7 RNA polymerase and purified E.coli translation proteins. This system has 

been utilized for synthesis and assembly of protein macromolecular complexes as well as 

for demonstration of simple regulatory motifs. Asahara and Chong demonstrated the 

reconstruction of bacterial holoenzyme in a cell free system. The authors showed that at 

least five different genes encoding the different subunits of E.coli RNA polymerase could 

be simultaneously expressed in these systems to form a functional E.coli polymerase 

holoenzyme [37]. PURE systems have also been used for regulatory motifs that are 

present in biological system. Karig et.al demonstrated that a negative feedback motif 

could be implemented in these reconstituted translation systems and in traditional cell 

extracts [38] from T7tetO promoters that drove the expression of a transcriptional fusion 

of tetR and GFP genes. Unfortunately, the prohibitively high cost of these reconstituted 

systems prevents their extensive use towards the implementation of circuits in these 

systems. Although expensive, these expression systems offer an exciting minimal 

platform for future implementation of predictable systems.  
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b) Engineered gene circuits in cell extracts – The development of cell extracts for early 

biochemical investigations was based on the fact that cellular protein synthesis machinery 

is functional in the absence of cellular structural material [39]. The ease of carrying out 

complementation assays combined with the ability to define protein components in 

environments that simulate cellular conditions long fueled biochemical investigations in 

cell free systems.  

In addition, the capacity of these extracts to achieve high yield protein synthesis 

has been accomplished. Since their inception in the 1950s, the fundamental technology 

for generating cell extracts for protein synthesis has not undergone a major change. 

Extract that furnishes the protein synthesis machinery is supplemented with rNTPs, 

amino acids, energy sources and stabilizing agents that provide the substrate for protein 

synthesis[40]. However, in recent years a push in the field of functional genomics has 

spurred an interest in maximizing yield of protein synthesis in cell free systems mainly by 

the way of changes in different components of cell free protein synthesis reactions. 

Extracts derived from different sources have been utilized for producing extracts for high 

yield protein synthesis and serve as a vehicle for driving biological investigations[41, 42]. 

Specific components of a cell extract such as composition, bioenergetic components[43, 

44] and reaction configuration[45, 46] can be customized for desired applications.  
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Figure 1.3 - Examples of synthetic gene circuits implemented in cell extracts - A) shows a schematic for 
cascaded repressor circuit developed by Noireaux et.al . SP6 RNA polymerase was exogenously added to 
the cell extract, which drives the expression of T7 RNA polymerase and lac repressor from a SP6 promoter. 
T7 Polymerase in turn drives the expression of the reporter gene from T7lacO promoter which is repressed 
by lac repressor. Addition of IPTG relieves the repression from T7lacO promoter thereby leading to an 
induction of expression from T7lacO promoter B) is an example of AND gate using E.coli promoters. 
Wherein the E.coli promoter P70 which drives the expression of a sigma factor and ntrC both of which are 
necessary to activate expression from P54 promoter, which drives the expression of a reporter gene. 
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Alongside these developments, impressive progress has been made in harnessing 

the protein synthetic capabilities of cell free in vitro systems for enabling synthetic gene 

networks [47]. Noireaux and colleagues put forth one of the earliest efforts to encode 

novel functions in cell free systems[48]. In their pioneering study, they described efforts 

to implement cascading gene networks wherein the authors employed a combination of 

two viral polymerases and LacI to realize a cascading network[48]. The authors made a 

modification to the wheat germ extract that allows for long term expression of proteins (6 

hours). This modification proved critical to the success of the experiment that involved 

the expression of T7 RNA polymerase from a SP6 promoter. T7 polymerase then 

transcribed both a GFP gene and the lac repressor gene. Expression of the GFP gene was, 

in turn, driven by T7lacO promoters. The authors balanced the DNA template 

concentrations to yield a system in which expression levels were appropriately balanced 

to realize a cascading network in the SP6 polymerase expressed T7 RNA polymerase that 

in turn transcribed the GFP gene. (Figure 1.3 A) Furthermore, mRNA turnover rate was 

found to be a rate-limiting step for achieving cascaded expression from the three 

components as saturation of the translational machinery with the products from the first 

step of the cascade proved detrimental to expression from the subsequent stages [48]. 

Subsequent studies by Ishikawa et.al on cascading networks reported a shortened length 

of time delay in the onset of expression. Their studies utilized endogenous polymerase to 

drive the expression of phage polymerase [49]. This resulted in the induction of 

expression of the reporter gene much more rapidly in the analogous system implemented 

earlier, because lower mRNA levels generated by endogenous polymerases do not 

saturate the expression machinery.  
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This conclusion is further supported by subsequent studies in which expression 

cascades were implemented exclusively using a host of E.coli promoters and a molecular 

sink for built up proteins in the form of directed protein machinery. Shin et.al first 

developed a bacterial cell extract optimized for the utilization of endogenous polymerases 

and ClpXP protease to achieve targeted degradation of ssrA tagged proteins[50, 51].  

Shin et.al utilized these extracts to show that complex signal processing networks could 

be achieved using a broad range of endogenous transcriptional regulation mechanisms 

and targeted protein degradation[52] (Figure 1.3 B). 

Yet another approach to enabling a gene circuit is to tune genetic determinants for 

gene expression so as to prevent saturation of translation machinery. Accordingly, Karig 

et.al showed that negative feedback motifs could be realized using T7tetO promoters in 

bacterial cell extracts by modulating other genetic determinants of expression such as 

altering the tetO operator position relative to transcriptional start site, ribosome binding 

sites and transcriptional terminators [38].   

In addition to encoding function in gene circuits, compartmentalization and 

temporal separation of processes is key to enabling complex cell like behavior. Use of 

physical platforms to achieve spatial separation of expression in in vitro systems and 

investigate effects of diffusion on expression dynamics has been demonstrated. For 

instance, Isalan et.al attempted to mimic gap patterning observed in drosophila embryos 

using a wheat germ cell free system. In this study, DNA was immobilized at specific 

locations in the reaction chamber and a protein expression gradient was established based 

on the diffusion of transcriptional activator across the chamber. The study provided 

insights into some of applicability and limitations of using simple diffusion based models 
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to explain a complex patterning phenotype in eukaryotes[53]. In addition, spatial 

patterning of DNA molecules on a chip has been utilized for realizing a transcriptional 

cascade akin to those implemented in bulk solution[54]. In addition, physical platforms 

can also enable prolonged expression in cell free systems[55-58] and examine the effects 

of confinement on expression dynamics[57]. 

Taken together, these studies represent significant achievement in demonstrating 

that by tuning parameters of gene expression, a desired network that performs a 

predetermined function can be implemented.  

Challenges to implementing gene networks in cell extracts 

Transcriptional regulation – The ability to implement complex function in cell free 

systems will be greatly enhanced by the availability of modular transcriptional regulation 

mechanisms that respond to a ligand of choice and achieve signal integration at the 

transcriptional level. As mentioned earlier, T7 promoters are widely used in cell free 

systems because of their high processivity and specificity. However, absence of 

transcriptional regulation strategies with T7 promoters has resulted in cascading networks 

and negative feedback circuits of limited complexity. Therefore, mechanisms for 

achieving transcriptional activation and repression akin to those available with  bacterial 

and eukaryotic systems would greatly extend their applicability to cells and cell free 

systems.  

Tuning expression dynamics -As mentioned earlier, cell extracts have traditionally 

been optimized for achieving protein synthesis, but now are being considered for 

implementing gene circuits. A common requirement for commercial kits and cell extracts 

for implementing dynamic behavior is the attainment of high yield protein production. 
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The goal of commercial cell free protein synthesis extracts is on enabling cost effective 

mechanisms that can maximize protein production. On the other hand, efficient high yield 

protein synthesis systems are critical to the success of a network as introduction of 

several stages of gene expression in cell free systems places a severe burden on 

expression machinery. However, modifications in commercial cell extracts which include 

inactivation of RNA and protein degradation mechanisms present a barrier to 

construction of dynamic gene circuits that require careful balancing of protein and RNA 

products obtained from different reaction stages. Therefore, cell extracts that have active 

mechanisms for tuning RNA and protein levels but all the while ensuring high protein 

productivity would be useful for construction of synthetic gene circuits[59]. In addition, 

efforts to provide quantitative description of synthetic circuits remain difficult because 

the cell extracts remain poorly defined and are not robust. Therefore, availability of cost 

effective cell free protein synthesis systems that contain precisely defined protein and 

small molecule components would be extremely valuable for enabling robust gene 

circuits that can be effectively modeled. 

To summarize, I hope the examples show the reader that the unprecedented flexibility 

in terms of the physical components used together with technologies to achieve spatial 

separation of processes will be incredibly useful for testing biological hypothesis and for 

creation of metabolic networks for production of industrially relevant products. 

Therefore, efforts to enable and study complex biochemical reactions would benefit 

greatly from the following tools- 

1) Availability of simple and modular ligand sensitive mechanisms for regulating 

RNA and protein production levels,  
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2) Molecular tools to tune RNA and protein amounts in cell free systems 

3) A protein synthesis “Chassis” that is comprised of precisely defined components 

4) Physical platform that provides a sink for removal of built up RNA and protein 

products and approaches for maximization of reaction lifetimes  

Here, I focus on developing tools that would greatly expand the utility of cell free 

systems in implementing synthetic gene circuits. As mentioned earlier gene circuits often 

possess a sensory domain that perceives external signals and an actuator circuit that 

performs signal integration and mobilizes an appropriate response. Therefore to expand 

the utility of cell extracts for implementing gene circuits, I set out to develop tools for 

signal sensing and signal integration. In addition, parameters for assembling gene circuits 

in a cell free environment that lacks active RNA and protein degradation machinery were 

examined. Figure 1.4 shows a hypothetical synthetic gene network that might be 

assembled from tools developed in this dissertation 

Objective 

The objective of this dissertation is to develop transcriptional switches and gene 

circuits in cell free systems. In the following sections I describe the progress made in 

development of molecular tools for following applications: 

1) Develop transcriptional control in a cell free system 

2) Enable transcriptional signal integration and logic control in cell free systems 

3) Examine parameters for system assembly and implement negative feedback 

systems in cell free systems. 
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Figure 1.4 - Schematic showing a hypothetical circuit that might be assembled from the tools developed in 
this work.- Chapter 2 describes a method to achieve ligand dependent transcriptional regulation. Chapter 3 
details a strategy to implement a logic gate that is based on T7 promoters. Finally, A negative feedback 
motif assembled from T7lacO promoter is described in chapter 4. 

 
 

 

 

 
 

Chapter 2. Develop transcription regulation mechanism

Chapter 4. Construct a negative feedback
motif

Chapter 3. Implement a mechanism for achieving 
signal integration regulating from T7 promoters
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Enabling transcriptional control in cell free system 

Living cells harbor several ligand sensitive gene regulation mechanisms that enable 

them to recognize environmental and intracellular stimuli and cause the cells to mount an 

appropriate response. Ligand dependent gene regulation allows the cell to mobilize 

cellular resources for the expression of gene products at the time of need thereby 

preventing wasteful expenditure of energy and resources. Biological macromolecules 

bearing specificity for a type of signal is often coupled to a specific biological pathway 

that mediates cellular response to the stimuli.   

In addition to their role in biological systems, ligand sensitive gene regulation 

mechanisms are important tools in basic research and in biotechnological applications. In 

contrast to genetic changes in the system, ligand dependent mechanisms can effect gene 

expression changes in a spatial and temporal manner[60]. Furthermore, dose dependent 

responses allow the investigation of effects of intermediate responses of cells in contrast 

to all or none responses obtained with genetic mutations in the system. However, 

naturally occurring ligand dependent gene regulation strategies are geared towards 

molecules and modulate specific cellular processes that are important for cell survival but 

may not be relevant to biotechnological applications. Therefore, development of modular 

tools that regulate specific aspects of cellular molecular machinery in response to user 

defined signal molecules hold the key to harnessing and redesigning biological systems 

for biotechnological applications[61].  

Regulation at different levels of gene expression enables cells to process the 

information and respond at different rates thereby optimizing response to signals from the 
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environment. For reasons of economy, transcriptional regulation is a key step in 

regulating gene expression in bacterial as well as eukaryotic systems[62]. As with 

biological systems, several efforts to regulate gene expression have centered on 

modulating transcription in response to user-defined signals. While transcriptional 

response to an external stimulus is slower than a translational or post-translational 

response, it offers distinct advantages over other gene regulation mechanisms. Firstly, 

since transcription is the first level of expression, regulation of transcription achieves a 

large dynamic range of expression and enables broad regulation of a variety of gene 

expression targets[61]. Secondly, signal amplification can be achieved, whereby a few 

signal molecules engender a large change in gene expression[3]. Finally, concatenation of 

operator subunits enables facile signal integration at the transcriptional level. Therefore, 

in our quest for building gene networks, here I focus on engineering promoters to respond 

to ligands that can in turn be used in gene networks[7, 63, 64].  

T7 RNA polymerases are extensively used in cell free and cellular environments for 

achieving high yield protein synthesis[65, 66]. In contrast to the multi-subunit bacterial 

and eukaryotic polymerases, monosubunit T7 RNA polymerase does not require any co-

factors to initiate expression from a specific 17 base pair promoter[67]. While the 

simplicity of expression is an asset for high yield protein synthesis, availability of ways 

to achieve transcriptional regulation of T7 RNA polymerase is critical to the ability to 

create complex gene circuits[18]. As a substrate for engineering transcriptional control, 

T7 polymerase mediated systems are ideal for rational design because of the simplicity 

and limited number of parameters that need to be accounted for while designing a novel 

mechanism for transcriptional regulation. Indeed, Temme et.al recently engineered T7 
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RNA polymerases that recognize different promoters thereby creating four different 

polymerase promoter pairs which were used for demonstrating an AND logic 

operation[25]. For these reasons, here we focused on engineering mechanisms for ligand 

dependent transcriptional regulation that will serve to broaden the applicability of T7 

promoters for enabling in vivo and in vitro synthetic gene circuits. 

Present strategies involve repression of T7 RNA polymerase by well-characterized 

transcriptional repressors. Here we tackle the following aspects of gene regulation in cell 

free systems –  

1) Development of easy to implement and potentially modular strategy for regulating 

transcription using DNA aptamers. 

2) Testing mechanisms for developing multi-input responsive T7 promoters for use 

in cell free systems.  

 

Nucleic acid aptamers for regulation of gene expression -Cellular mechanisms for signal 

sensing have served as a template for efforts geared towards rationally designing 

synthetic sensors and gene switches, which most often is a protein, peptide or a nucleic 

acid molecule. In theory, transcriptional promoters, transcriptional regulators, location of 

binding site relative to the promoter region, nascent RNA molecule and the RNA 

polymerase itself can be engineered for regulation. Most commonly though, 

transcriptional regulation is achieved by engineering protein based transcriptional 

repressors and activators. Signal specificity is often encoded onto the sensing molecule, 

which is transduced to functional domain that operates at the transcriptional, translational 

or post translational levels[68].  
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Natural switches contain two components, a signal sensing and an effector 

domain that allow them to transduce signal changes into a measurable cellular response. 

Affinity of a sensory domain to a signal often sets the sensory threshold of a system. 

Ligand binding often induces a conformational change in binding domain, which is 

transmitted to the effector domain thereby modulating its function[61]. Several proteins 

and peptides have been utilized for achieving signal specific sensing of molecules. These 

are based on harnessing the chemical complexity of proteins that enables highly specific 

and efficient signal transduction. Protein based transcription factors with novel ligand 

sensitivity have been typically designed by fusing a natural ligand-sensing domain with a 

DNA binding domain[69-72]. However, rational design of complex tertiary interactions 

govern the formation of 3D structures of proteins that are responsible for sensing, binding 

and catalytic functions which makes protein engineering a rather challenging exercise. 

Therefore, encoding novel signal specificity and rational design of extensible signal 

transduction mechanisms that are based on protein based transcription factors presents 

significant challenges. 

Nucleic acid (DNA and RNA) aptamers offer a complementary approach for 

conferring ligand sensitivity onto a recognition module. DNA and RNA aptamers are 

single stranded nucleic acid molecules that bind their target molecules with high affinity 

and specificity. Since the breakthrough papers from Szostak and Gold groups 

demonstrated the selection of RNA ligands that bind T4 DNA polymerase and an organic 

dye with high affinity[73, 74], aptamers that bind a wide variety of small molecules such 

as ATP[75], proteins[76, 77] and even whole cells[78] that otherwise do not have nucleic 

acid recognition properties have been selected. Aptamers that bind to their target 
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molecule are typically selected from combinatorial library of consisting of 1012-1013 

oligonucleotides. The subset of oligonucleotides that bind to their target are then 

subjected to subsequent rounds of selection, until, a nucleic acid ligand that binds its 

target with high affinity is selected (Figure 1.5). Furthermore, automated strategies for 

aptamer selection have been developed that permit the rapid selection of RNA aptamers 

against a target of interest[79]. 

Naturally occurring RNA structures that bind their target molecules, known as 

riboswitches, form elaborate structures that regulate gene expression are believed to be 

amongst the earliest mechanisms for achieving ligand dependent regulation of gene 

expression[80]. Naturally occurring riboswitches modulate gene expression by coupling a 

change in nucleic acid conformation that accompanies ligand binding with transcriptional 

or translational regulation[81-83]. For instance, riboswitches that block ribosome 

scanning, facilitate or interfere with availability of ribosome binding sites and 

transcriptional terminators have all served as mechanisms for regulating gene 

expression[84].  
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Figure 1.5 - Schematic of SELEX  - First a pool of single stranded DNA is generated from a double 
stranded DNA pool that consists of a randomized pool of DNA molecules . a DNA oligonucleotide that 
binds the target of interest is selected  from a single stranded DNA oligonucleotide library by affinity 
purification procedure. The DNA oligonucleotide thus selected is used to then generate a library of double 
stranded and single stranded DNA that can then be used to generate a double stranded pool of double 
stranded DNA. This selection procedure is repeated several times until a aptamer that binds with very high 
affinity is selected. 
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While RNA aptamers have found uses in gene regulation, DNA aptamers have 

largely been adapted for development of in vitro biosensors [91]. Several properties of 

DNA aptamers make them suitable for in vitro applications. Firstly, in contrast to protein-

based sensors, nucleic acid based sensors show greater temperature stability and have 

extended shelf-life. Secondly, since aptamers can be selected in an in vitro buffer system, 

an aptamer that binds a ligand of choice in the system of interest can be selected [79]. 

And thirdly, ease of chemical modification and immobilization without a significant 

alteration in the aptamer structure make them amenable to a variety of analytical formats. 

Hence, aptamer molecules conjugated to fluorophores [92, 93] and nanoparticles[94] to 

create biosensors harness the conformational change accompanying the target binding 

that can lead to biochemical, electrochemical and spectroscopic response. In addition, 

label free methods in which aptamers have additionally been incorporated into longer 

nucleotide sequences to enable detection via proximity ligation, and ligand dependent 

amplification of the nucleic acid sequence using RT-PCR[95] and rolling circle 

amplification[96] have been developed.  

However, difficulty in incorporating single stranded DNA aptamers into cells has 

precluded their use for modulating gene expression. Since we seek to employ 

transcriptional regulation mechanisms that operate in a cell free context, use of ssDNA 

does not pose a major obstacle. In Chapter 2, a strategy for harnessing DNA aptamers to 

regulate transcription in cell free system is described.   
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Combinatorial promoters for signal integration in cell free systems 

Mechanisms to integrate and respond to multiple cellular and environmental cues 

underlie a biological cell’s ability to adapt to its ever-changing environment.  Living cells 

harbor a rich diversity of mechanisms that operate at the level of transcriptional factors, 

RNA and protein signaling pathways to perform the task of integrating environmental 

signals and mobilizing a cellular response. Description of these responses as a logic 

function succinctly captures the nature of the response to different inputs. Transcriptional 

and translational regulation strategies are often wired to execute certain cellular tasks in 

response to a combination of internal and external signals.  

In addition to their requirement for cell survival, logic control is central to the 

construction of synthetic gene circuits. Logic gates can be cascaded and integrated and 

program cellular behavior to respond to multiple signals from the environment. Like their 

semiconductor-based counterparts, synthetic biological logic gates are critical to our 

efforts to develop large-scale circuits that perform sophisticated functions. 

Accordingly, several designs that rely on nucleic acid substrates and utilize 

enzyme based transformation for construction of logic gates that function in vivo and in 

vitro have been developed. Nucleic acid based logic gates rely on DNA hybridization, 

nucleic acid catalysis driven by DNA or RNAzymes to perform computation[97-100]. 

Alternatively, biocatalysts that carry out substrate transformation in the presence of 

specific input signals have been utilized to implement a single[101] logic operation and a 

series of concatenated logic gates using a series of enzymes [102]. The output from these 

two designs is either short DNA or RNA oligonucleotides or transformed small 

molecules or proteins. In contrast to these strategies, genetic logic gates perform signal 
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integration at the transcriptional or translational level and can transform a small molecule 

or protein-based signal to code for an actuator protein. These logic operations that are 

inspired from natural mechanisms to achieve signal integration can be performed either at 

the transcriptional level [103, 104], translational level [86] or in a strategy that is a hybrid 

of the two mechanisms[24]. 

The simplest and one of the best studied of these mechanisms is combinatorial 

regulation that occurs at transcriptional promoters. Bacterial cells contain several 

transcriptional factors that respond to environmental signals and either activate or repress 

gene expression[64]. Most often global regulators of gene expression such as cAMP and 

non-specific DNA binding proteins that modulate course in gene expression of several 

genes, act in concert at a promoter with local activators and repressors thereby effecting 

stimuli specific changes in the expression of the target genes. For instance, regulation of 

the lac operon that expresses enzymatic machinery to utilize lactose perhaps is one of the 

best studied examples of achieving combinatorial regulation of expression wherein, the 

enzymes are expressed if lactose is the sole carbon source in the media[105].  

Combinatorial promoter libraries in which promoters of different strength express 

a reporter gene such as luciferase and GFP have been valuable for generating synthetic 

combinations of promoters that differ from each other in terms of promoter strength, and 

relative location of operators that bind transcriptional repressors and activators[106].  

Several studies have taken a synthetic approach to provide quantifiable relationships 

between promoter architecture and transcriptional activity from a promoter. E.coli 

promoters comprises of a -35 box and a -10 box separated by a core region and regulatory 

regions that exert an effect on the promoter and span about 100 bases upstream and 
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downstream to the promoter[62, 107]. While transcriptional activators recruit the 

polymerase to an otherwise weak promoter, transcriptional repressors block transcription 

by either sterically occluding transcriptional factor binding to the promoter or preventing 

promoter clearance. Along with the biochemical role of the transcriptional factor, 

position of the transcriptional binding is critical to its function. For instance, a 

transcriptional activator that binds upstream might function to recruit the polymerase to 

the promoter but when bound at the core region prevents polymerase binding to the 

promoter and functions as a repressor[108]. Taken together, these results indicate that a 

detailed understanding of the effects of location of the operators relative to promoter and 

the proximity of the operator is critical for rational programming of transcriptional logic. 

These rules have been elucidated for E.coli promoters are shown in Figure 1.6. 

As mentioned earlier, we set out to engineer transcriptional logic on T7 

promoters. A key challenge to regulating T7 promoters is the absence of transcriptional 

activators and the limited regulatory region flanking the T7 promoter. Unlike multi-

subunit polymerases, these polymerases lack activators and co-factors for recruiting the 

polymerase to the promoter thereby greatly reducing the number of components to 

regulate expression from T7promoters[67]. Moreover, T7 polymerase responds to 

repressors that bind at a site proximal to and downstream from the T7 promoter and not 

to distal sites thereby reducing the region from which to regulate the T7 promoter [109]. 

In chapter 3, we address the task of constructing multiple input responsive T7 promoters 

for achieving logical control of gene expression in E.coli and in cell free systems by 

using DNA looping.   
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Figure 1.6 Cis regulatory schemes for implementing logic gates with bacterial promoters  A) Two 
repressors bound downstream from transcriptional start site that can repress the promoter individually form 
a NOR gate , B) whereas if co-operative interaction between two repressors is needed an NAND gate is 
generated wherein binding of both transcriptional repressors is necessary to repress transcription from the 
promoter. C) Similarly, two activators that can activate transcription individually form a OR gate where 
presence of either one of the transcriptional factors is sufficient for activating expression D) a AND gate 
can be formed when interaction between two activators co-operatively repress expression. 
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Examine modes of system assembly and implement negative feedback motifs in cell-free 

systems 

Thus far mechanisms and strategies to regulate transcription have been described. 

These and other ligand sensitive gene regulation mechanisms serve as communication 

channels from which to communicate with the synthetic device. However the manner in 

which these signals are processed, is dictated by the information-processing network that 

exists in cells. Biological systems are characterized by features such as modularity and 

robustness to fluctuations[110]. Understanding how network connectivity confers these 

properties onto biological systems is an active area of investigation. The prevailing view 

is that there may be an underlying simplicity to these complex networks[110, 111]. The 

simplicity is attributed to the occurrence of network motifs in biological networks that 

large scale systems biology investigations have revealed [10]. A network motif is a 

complete sub-network that occurs in biological networks at a frequency higher than that 

would be expected from a random network built from the same number of modes. 

Recurrence of sub-networks indicates that network design has functional consequences. 

Consequently, uncovering and experimentally validating the functional implications of 

network motifs has garnered considerable interest for understanding biological systems. 

In addition, the knowledge would be valuable for constructing engineered biological 

circuits that perform sophisticated tasks.  
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Figure 1.7 Commonly occurring network motifs in biological cells – in a negative feedback circuit, the 
promoter drives the expression of its own repressor whereas a promoter. The promoter expresses its own 
activator. In a feedforward loop a transcriptional activator activates the expression of another gene, which 
in turn activates the expression from a third gene along with its own activator.  
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Accordingly, several simple network motifs have been built from well-

characterized components and their behavior has been evaluated in several biological 

systems (Figure 1.7). For instance, investigation into transcriptional connectivity in E.coli 

cells revealed that nearly 50 % of transcriptional factors are negatively 

autoregulated[112]. Experimental evaluation of synthetic negatively autoregulated circuit 

indicates that the circuit speeds up cellular response to a signal and achieves the same 

steady state protein levels when compared to a system lacking regulation by a protein 

whose expression is driven from another promoter[113].  Therefore regulating 

transcriptional factors that ought to be maintained at a steady state level and be resistant 

to fluctuations inside a cell, a negative feedback motif is utilized. In contrast, positive 

autoregulation promotes bistability in a system and helps maintain a mixed population of 

cells that can respond to changes in the environment[114, 115].  

 Networks implemented in cells often are encoded onto a single plasmid. 

However the requirement of transforming plasmids with compatible origins and antibiotic 

resistance places an upper limit on the number of plasmids that can be transformed into 

cells. Additionally, manipulating large DNA fragments that span tens of thousands of 

bases as would be required for assembling large scale networks can be experimentally 

challenging[116]. In contrast, genetic elements encoded onto different plasmids can be 

conveniently used in enabling gene networks in cell free systems. Given the limited 

expression capacity of cell free systems, small changes in RNA expression levels become 

significant. For instance, transcription termination from even the most efficient 

mechanisms is known to be only 70% efficient in stopping readthroughs[117]. While this 

may not have a significant impact on expression from a single gene, these losses become 
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significant in a regime that involves multiple plasmids and limited energy sources. In 

chapter 5 therefore, the impact on the efficiency of expression from two assembly 

schemes was evaluated. 

Implementation of analogous networks requires an understanding for tuning 

expression dynamics in cell free systems. In cells, genetic components such as ribosome 

binding sites and promoter strength are tuned to generate the required behavior[68]. On 

the other hand, the parameter space for optimizing expression is greatly expanded in cell 

free systems. Parameters such as gene dosage, effect of introducing genes in single versus 

multi- plasmid systems and RNA polymerase concentrations can be precisely controlled 

in cell free systems and might prove critical in assembly of systems of increasing 

complexity[117]. In chapter 5, we focus on altering transcriptional rates by modulating 

polymerase concentrations thereby implementing a negative feedback circuit in cell free 

systems from well-characterized T7lacO promoters.   

The rich diversity of molecular components in biological system provides a 

valuable arsenal of tools for designing circuits geared towards testing biological 

hypotheses and for biomedical and biotechnological applications. The availability of 

well-characterized genetic parts and chassis will be critical to rationally designing 

predictable biological circuits. To this end, in vitro cell extracts provide a flexible 

platform in which to implement gene circuits. Here, ligand sensitive regulation 

mechanisms and strategies for signal integration were developed for use in cell free 

systems. Additionally, methods for system assembly were evaluated and a negative 

feedback motif was implemented. The tools developed in this study will greatly bolster 
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efforts to implement gene circuits for biotechnological applications and for testing 

biological hypotheses. 

Chapter Outline 

The aim of this dissertation is to develop transcriptional switches and gene circuits in cell 

free systems.   

Chapter 1- Introduction 

Chapter 2- Ligand mediated transcriptional regulation using DNA aptamers- In the 

quest for developing a potentially modular strategy for achieving gene regulation a DNA 

aptamer mediated ligand dependent transcriptional regulation mechanism was developed. 

In Chapter 2, strategies for assembling DNA templates from phagemids DNA and 

thrombin binding aptamers to regulate transcription in E.coli extracts are described.  

Chapter 3- Dual regulation of T7 promoters using lac and tet repressors in cell and 

cell free systems. Here I turn to engineering a transcriptional dual regulation of T7 

promoters using lac and tet repressors. T7lacO promoters that harness a looping based 

mechanism to repress expression were first developed. Tet repressor was then introduced 

into this framework and an IMPLIES function was realized in E.coli cells as well in cell 

extracts. 

Chapter 4- Implementation of negative feedback using T7lacO promoters in cell 

free systems- In this chapter, I explored different methodologies to assemble gene 

networks and realized simple negative feedback in cell extracts using T7 lacO promoters. 

This chapter contains excerpts from the paper “Expression optimization and synthetic 

gene circuits in cell free systems”.  
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Chapter 5 – Conclusions and future directions - I summarize the conclusions and 

indicate future directions for this work. 

Appendix A Here, I discuss the DNA assembly techniques that were tested but 

ultimately not used for the experiment.  

Appendix B describes the efforts to repress translation by DNA aptamers. 

Appendix C –Finally, I turn to implement cell free reactions in silicon based microfluidic 

devices. 
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Chapter 2- Ligand mediated transcriptional regulation using DNA 
aptamers in cell free systems 
 

Introduction 

Synthetic gene circuits comprised of novel genetic regulatory mechanisms have 

emerged as powerful tools for understanding and harnessing biological function [1]. 

Engineered arrangements of well characterized genetic components have resulted in 

systems capable of predetermined functions such as bistability [4], logic control[86] and 

oscillation[4] of gene expression. Synthetic gene circuits also offer the opportunity to 

redesign biological systems for the production of biofuels and other chemicals as well as 

for constructing devices for sensing and responding to biomedical conditions. In practice, 

the majority of synthetic gene circuits have been implemented in cell-based systems. 

While these demonstrations benefit from natural mechanisms to sustain a living cell, such 

as protein synthesis and degradation, creating predictable engineered systems can be 

complicated by interference from endogenous host machinery and selection pressures that 

act against unneeded, resource consuming systems[3, 18]. Additionally, conflicts occur 

when sensing or generating materials that can compromise cell viability and survival.  

Therefore, alternative strategies to harness and understand biological complexity are a 

needed complement to existing cell-based approaches. [118].  

In this regard, cell free systems provide a versatile platform for understanding and 

applying the design elements that underlie cellular efficiency [119-121]. Cell free 

approaches employ select cellular components, produced naturally or synthetically, to 

carry out defined biological processes. Issues related to plasmid compatibility, protein 

toxicity or maintenance of a living cell can be mostly ignored, allowing focus on defining 
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essential system components[122] and implementing predictable dynamic behavior. The 

flexibility, simplified context and precise specification of system components are distinct 

advantages of the cell free approach. A number of cell free, in vitro gene circuits have 

been demonstrated. For example, simplified nucleic acid templates in which transcription 

was regulated by DNA hybridization were co-opted to build bistable switches and 

oscillators that reasonably agree with quantitative predictions [33, 34]. Additionally, 

expression cascades[48], negative feedback[38] and logic gates[52] have been realized 

using circuits involving protein intermediates in cell free protein extracts.  

Well-characterized molecular tools for signal sensing and tuning gene expression 

are essential for the design and construction of synthetic gene circuits in cells and cell 

free systems [68] [52, 109, 123].  In particular, ligand responsive gene regulation 

strategies are key. While a myriad of gene regulatory mechanisms are used in natural 

cells, ligand dependent transcriptional control strategies that function in cell free extracts 

remain fairly limited. In general, the library of gene promoters available for synthetic 

constructs is limited.  When compared to cell based systems, cell free systems afford an 

opportunity to expand the repertoire of regulation strategies [28].  

Commonly, synthetic gene constructs take advantage viral RNA polymerases and 

their associated promoter elements for gene expression. For example, T7 RNA 

polymerase is commonly used in cell extracts for driving transcription due to the 

enzyme’s stability and high processivity [124]. While these characteristics are desirable 

for achieving high yield protein synthesis, their use in synthetic biology is limited 

because of the lack of sufficient ligand sensitive T7 promoters[48]. Attempts to engineer 

ligand regulatable T7 promoters rely on either protein based transcription factors or 
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modified nucleic acid bases to confer ligand sensitivity [125-127]. For example, existing 

strategies to regulate transcription by T7 RNA polymerase involve placing a cis acting 

promoter element, that binds to a repressor, downstream to the transcription start site 

[128] [109].  

While the use of traditional protein-based transcription factors allows for effective 

and tight transcriptional repression, lack of accurate structure prediction methods makes 

altering ligand specificities or creating new transcriptional factors with ligand specificity 

remains non trivial [129].  The use of nucleic acid aptamers presents an alternate 

approach and can potentially allow regulation of gene expression in response to a wide 

variety of small molecules and proteins. Aptamers are single stranded DNA and RNA 

molecules that can be engineered to bind to specific target molecules with high affinity 

and specificity. RNA aptamers have found extensive application and often couple the 

binding event and the ensuing conformational change for regulation of transcription or 

translation [87, 130-132].  Nucleic acid aptamers offer several practical advantages. First, 

aptamers can potentially be selected against any ligand of interest from a combinatorial 

library using an iterative affinity selection procedure [73, 74]; second, aptamer target 

molecules with different affinities can be selected to set different sensory thresholds 

appropriate for different applications [90, 133]; and finally known hybridization rules 

facilitate predictive and rational design of DNA domains.  The ease and predictability of 

engineering nucleic acid domains make DNA and RNA molecules particularly useful 

substrates for engineering flexible platform for achieving tunable sensing and actuation.  

 Here we describe a new approach to using aptamers to control gene 

expression at the transcriptional level using viral promoters.  The approach involves the 
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insertion of a DNA aptamer sequence proximal to the T7 promoter such that binding 

prevents transcription (Figure 2.1).  The required single stranded regions are well 

tolerated by viral polymerases [67, 134] and easily employed in a cell free context.  

Thrombin binding DNA aptamer (TBA) was selected for demonstrating analyte specific 

transcriptional control. TBA is well-characterized and is known to bind to human α-

thrombin with high affinity (Kd of 10-100nM) and specificity. Presence of additional 

flanking sequences and aptamer immobilization are not detrimental to thrombin binding, 

which facilitates the insertion of the aptamer sequence into the DNA template[95, 135]. 

We show that thrombin can be used to effectively repress expression from single stranded 

thrombin aptamer containing templates in a cell free context. In addition, exogenous 

addition of thrombin aptamer oligonucleotides led to the effective reversal of gene 

expression from these templates.  
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Figure 2.1 Hypothesis for aptamer mediated transcriptional regulation. ssDNA aptamer binding region is 
placed downstream to the T7 promoter . We tested the hypothesis that thrombin binding to the DNA 

aptamer represses transcription from T7-aptamer promoters. 
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Results  

Approach for template assembly for achieving aptamer mediated gene regulation 

To enable transcriptional regulation using DNA aptamers, double stranded DNA 

templates were created that contain an unpaired “bubble” DNA region, which contain 

DNA aptamers on the template and the non-template strands, after the double stranded 

promoter (Figure 2.2). These structures were created from hybridization of single 

stranded DNA templates, generated from phagemids, containing complementary and 

non-complementary regions. ssDNA templates generated from phagemids offer the 

advantage of producing high yield  ssDNA that are long enough to code for a 

protein[136]. The bubble DNA template was created by placing the thrombin binding 

aptamer downstream to the transcriptional start site in pBluescript KS II (+) and 

pBluescript KS II (-) plasmids. Restriction digestion of the double stranded segment of 

DNA and mung bean nuclease digestion of ssDNA section of the template confirmed 

formation of bubble regions in double stranded template (Figure 2.3). In addition, to these 

bubble templates, single stranded templates containing a double stranded T7 promoter 

were generated by annealing an oligonucleotide to pBluescript KS II (-) phagemid .  
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Figure 2.2. Schematic of steps for template assembly assembling 1) bubble DNA templates 2) ssDNA with 
ds promoter. 
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Figure 2.3 Fluorescence anisotropy measurements from bubble templates (top panel) and ssDNA 
templates(bottom panel). The thrombin concentrations  before the logarithmic transformation were in 

nM. 
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Effect of template on aptamer mediated repression 

Fluorescence anisotropy experiments with ssDNA and bubble DNA confirmed thrombin 

binding to the aptamer (Figure 2.3). To examine the ability of thrombin to repress 

transcription from a T7 promoter, an aptamer sequence was placed immediately 

downstream from the transcription start site. . In addition, a 4bp stem loop structure was 

added to the thrombin aptamer to facilitate the formation and increase the stability of the 

thrombin aptamer [137]. GFP coding sequence was inserted in the template and the 

efficiency of transcriptional repression was monitored by cell free protein synthesis 

reaction (Figure 2.4). Fluorescence measurements of GFP expression from these 

templates indicated that placing the aptamer in close proximity to the promoter sequence 

exhibits increased regulatory efficiency and is accompanied by a lowered basal 

expression level As expected constitutive expression from plasmid templates was higher 

when compared to ssDNA templates and the bubble templates. While addition of 1.8 µM 

thrombin results in modest changes in gene expression from the plasmid template and 

bubble template, up to a five-fold change in gene expression was observed with the 

ssDNA aptamer templates. Modest changes in gene expression from double stranded 

templates indicates that the addition of thrombin does not interfere with transcription and 

translation in the cell free extract and that thrombin is specific to the single stranded 

DNA template. Further, rapid repression of expression was observed upon the addition of 

thrombin (Figure 2.5). 
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Testing the specificity of thrombin mediated repression 

To test the specificity of thrombin dependent repression, the non-specific, single 

strand DNA binding T4 gene 32 protein [138] was tested for transcription repression on 

T7 aptamer promoters.  The addition of ssDNA binding protein did not have a significant 

effect on transcription demonstrating that specific protein binding to the aptamer placed 

proximal to the transcriptional start site is required for effective transcriptional repression 

(Figure 2.6A). 

We tested the specificity of the transcriptional repression further by evaluating 

competitive inhibition of gene repression by exogenously added thrombin aptamer 

oligonucleotides to 10nM aptamer template bound to 2µM thrombin (Figure 2.6B).  We 

observed that the addition of thrombin aptamer (12µM), in excess of thrombin protein, 

completely relieved thrombin mediated gene repression, whereas the addition of a non-

specific DNA oligonucleotide did not affect repression. Therefore, the addition of 

exogenous DNA aptamer allows for “induction” of expression from these promoters.  
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Figure 2.4 Effect of template on aptamer mediated repression A) is a schematic of templates used – The 
grey cartoon represents the double stranded plasmid with a thrombin aptamer downstream from the 

promoter, the green template is a “bubble template” that contains an aptamer structure both at B) 
Flourescence measurements at the end of 6 hours from these templates in absence or presence of thrombin 

concentrations  
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Figure 2.5 Time course for response of ssDNA ATKS construct to the addition of 1.8µM Thrombin –the 
graph shows fluorescence values after 6 hours. The column indicating 0 mins indicates shows thrombin 

was added after extract was added to ssDNA ATKS template. Times on the graphs indicate the duration for 
which thrombin was incubated with ATKS template. 
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Table 2.1 –List of plasmids used in this study. 

Plasmid Name TBA position (relative to TSS) Reporter  Backbone 

pKSGFP - EGFP pBluescriptKS (-) II 

pANTGFP +2 EGFP pBluescriptKS (+) II 

pATGFP +2 EGFP pBluescriptKS (-) II 

pNTAGFP +9 EGFP pBluescriptKS (+) II 

pETAGFP +9 EGFP pBluescriptKS (-) II 

pETA26GFP +26 EGFP pBluescriptKS (-) II 

pDETAGFP +9 EGFP pBluescriptKS (-) II 
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Figure 2.6 Testing specificity of aptamer mediated transcriptional regulation.A)Fluorescence values have 
been normalized to expression from ssDNA generated from KSGFP. B) Fluorescence values from have 

been normalized to expression from ssDNA generated from ATKS templates in the absence of thrombin. 
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Table 2.2 – Table denoting the basal level expression relative to a ssDNA template lacking an aptamer 
downstream from transcriptional start site. Fold change column indicates the change in expression from 

these templates in response to 1.8 µM thrombin.  

 

 

 

 

 

 

 

 

 

 

 



 
 

52 

Effects of position and number of the aptamer sequences on transcriptional 

regulation - Effects of placement of the thrombin aptamer, relative to transcriptional start 

site on transcriptional efficiency were explored. The thrombin aptamer was placed at 

three positions relative to the transcription start site- +2, +9 and +26 (Table 2.2). Results 

from the assay show that placement of the DNA aptamer away from the transcriptional 

start site resulted in an increase in basal gene expression levels, the magnitude of change 

in gene expression decreased. Dose response curves with the aptamer at +2 and + 9 

positions show a half maximal repressor concentration of 218.00 ± 1.58 nM and 567.90  

± 2.21 nM respectively (Figure 2.7). 

To test if the addition of tandem thrombin aptamers results in improved gene 

repression, we constructed a dimeric DNA aptamer template and tested the template for 

repression. However, the templates did not express very well (Figure 2.8).  
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Figure 2.7 Dose response curves for +2 and +9 aptamer constructs- X-axis indicates log of thrombin 
concentration. The thrombin concentrations were in nM before the logarithmic transformation 
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Figure 2.8 Effect of placement of dimeric aptamers downstream to the transcriptional start site. The 
constructs tested are depicted on the left, whereas the graph indicating the response of the DNA templates 

to 1.8µM thrombin. 
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Discussion  

Cell free systems are a promising platform for implementing engineered networks from 

defined components [33, 34]. Effective application of network designs will require the 

availability of a library of environmentally responsive promoters [27].   Controlling gene 

expression at the transcriptional level offers several advantages [3]. Being the first level 

of gene expression, multiple downstream targets can be regulated simultaneously. In 

addition, signal amplification can be achieved since binding of a single transcriptional 

factor regulates the expression of several hundred resulting RNA and protein 

molecules[61].  

 Aptamers are a promising approach to creating ligand dependent promoters 

of arbitrary design. The flexibility afforded by RNA aptamers has been utilized to bring 

about ligand dependent transcription termination, [84, 87, 139, 140]. However, ligand 

dependent DNA aptamer mediated regulation of transcriptional initiation has not yet been 

achieved [129].  A first roadblock to employing DNA aptamers for control at the gene 

transcription level is the requirement for single stranded templates.  Several strategies for 

generating linear ssDNA templates such as affinity purification of biotin labeled ssDNA 

generated from PCR[141] and rolling circle amplification[142] were evaluated. However, 

these approaches result in only small amounts of ssDNA, which were insufficient for 

optimizing protein synthesis reactions (data not shown). The use of ssDNA derived from 

phagemids allows creation of templates long enough to code for a protein sequence and 

generates templates in quantities needed for refining transcriptional control of cell free 

protein synthesis reactions.  
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 Two types of templates for aptamer-mediated regulation were constructed. 

For preparation of bubble templates, two different, largely complementary phagemid 

molecules that correspond to the template and non-template strand were annealed.  An 

unpaired, non-complementary region containing the aptamer structure(s) was inserted 

downstream of the promoter. Templates that contain an aptamer on both template and 

non-template strands were poor substrates for transcription. DNA topology is known to 

have a significant effect on transcription both in vitro and in vivo. Non-canonical DNA 

structures such as DNA quadruplexes present an obstacle to transcription from T7 

promoters, with the effect being more pronounced when they are located proximal to the 

transcriptional start site [143-145]. The second template design consisted of a single 

phagemid product, corresponding to the template strand, and hybridization to a short, 

synthetic oligonucleotide to create a double stranded T7 promoter. Not surprisingly, 

expression from single stranded DNA templates were found to be lower than expression 

from corresponding plasmid templates.  This is likely a result of non-canonical DNA 

structures that can form with ssDNA templates. Interestingly, basal transcriptional levels 

from bubble templates that harbor the thrombin quadruplex aptamer were much lower 

than corresponding single stranded DNA regions and from annealed templates lacking 

secondary structures immediately downstream from the transcription start site. 

 Amongst the different templates designs examined, the single stranded DNA 

template with a double stranded T7 promoter was the most responsive to thrombin-

mediated repression of gene expression. By contrast, the largely double stranded bubble 

DNA templates, with aptamer DNA on both strands, did not show any thrombin mediated 

repression. Fluorescence anisotropy data with short, model DNA templates assembled 
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from oligonucleotides indicates that thrombin binds both the single stranded DNA 

template and double stranded templates that contain aptamers in the bubble region. The 

low expression levels from these latter templates may mask any repression that might be 

occurring. T7 RNA polymerase is known to bypass gaps and discontinuities in the 

template strand with the aid of the non-template DNA strand [67, 146]. It is therefore also 

possible that the presence of an alternative path allows the polymerase to bypass the 

obstacle posed by thrombin binding.  

 The specificity of repression to thrombin in comparison to T4 ssDNA 

binding protein, which binds single stranded DNA non-specifically, was tested. Only 

limited changes in gene expression upon ssDNA binding protein are observed.  This is 

indicative that the position at which the protein binds to the DNA template is critical for 

effective ligand based gene repression and that this effect was specific to thrombin. 

Several previous reports have shown that protein binding at a position proximal to the 

transcription start site is essential for achieving effective repression from T7 

promoters[109, 123, 127].  This suggests that aptamer positioning that facilitates the 

protein binding close to the transcriptional start site is important for specific control of 

gene expression.  Thrombin mediated repression can be reversed by the addition of 

thrombin aptamer DNA oligonucleotides. This provides additional support that repression 

is mediated selectively by thrombin and that the DNA aptamer can bind to thrombin in a 

complex cell extract system. Further, a mechanism for reversing thrombin mediated gene 

repression from aptamer templates is possible. 

 Effective implementation of cell free circuits will require the ability to tune 

gene expression in response to a ligand. To investigate ways to alter the fold change in 
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expression levels from T7-aptamer promoters, the thrombin aptamer was placed at 

different positions relative to the transcriptional start site. We anticipated that the fold 

change in gene expression would decrease as the aptamer was moved away from the 

transcription start site. Accordingly, placement of thrombin binding DNA aptamer 2 

bases away from the transcriptional start site resulted in up to a 5-fold change in gene 

expression from ssDNA templates. While moving the aptamer away from the 

transcription start site increases basal transcriptional levels, only a 1.8 fold change in 

gene expression upon thrombin addition was observed. T7 promoters are highly 

conserved in the region between -17 and +6 region while aptamer placement at  +2 TBA  

position disrupts the original promoter sequence, +9TBA and +26TBA templates do not. 

In addition, thrombin binding aptamer is known to form a DNA quadruplex structure [76, 

147] and alternate DNA secondary structures such as DNA quadruplexes [143, 148], and 

Z DNA[149] sequences can pose a block to transcription in vitro.  Taken together, these 

results indicate the disruption of native promoter sequence and the formation of 

secondary DNA structures close to the transcriptional site might contribute to lower basal 

expression levels from the +2TBA construct. The finding that operator placement 

proximal to the transcriptional start site achieves effective repression from T7 aptamer 

promoters at the expense of lower basal expression mirrors results obtained with T7lacO 

and T7tetO promoters[109, 123].  

 

 

 

 

 



 
 

59 

Table 2.3 Summary of fold changes in gene expression obtained from synthetic ligand dependent gene 
regulation strategies in cell free systems. 

Mechanism for gene regulation Fold change Reference 

Triplex DNA 3 [126] 

DNA aptamers 5 Present study 

Azobenzene mediated photo-

regulation 

7.6 [150] 

T7tetO 10 [123] 

 

  Several in vitro small molecule/signal sensitive T7 gene regulation systems 

have been developed [123, 126, 150, 151]. These previous gene regulation systems 

resulted in 2 to 10 fold changes in gene expression upon the addition of the ligand (Table 

2.3). The repression values obtained in this study compare favorably with the most 

utilized gene regulation systems while offering a strategy for extending the range of 

signals that can be used to control gene expression.  The use of DNA aptamers for 

transcriptional repression paves the way for creation of cell free feedback circuits with 

novel sensory capabilities. Selection and use of DNA aptamers that work with known 

promoter elements will result in new approaches to regulating gene expression in 

response to a wide range of molecules. 

Materials and Methods 

Plasmid construction 

 All the plasmid constructions were carried out using standard techniques 

[152]. GFP was cloned into pBluescript KS (+) II and pBluescript KS (-) II vector 
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backbones and the aptamer sequences were then inserted downstream to T7 promoters 

using inverse PCR. The aptamer constructs are listed in Table 2.1.  

 

Single stranded DNA template preparation 

 ssDNA templates were assembled by annealing template strands generated 

from pBluescript KS (-) II variants with T7 promoter oligo in 10mM Tris-HCl pH 7.5 

50mM KCl and 1mM MgCl2.  

 Thrombin aptamer sequence was cloned into the phagemid vectors 

pBluescript KS II (+) and pBluescript KS II (-) at different locations downstream to 

transcription start site. These two backbones differ from each other only with respect to 

the orientation of the F1 origin. ssDNA molecules were then generated using a standard 

procedure[152]. For the preparation of double stranded templates with a bubble regions, 

ssDNA generated from ANTKS + DNA was annealed to complementary oligonucleotide 

that is complementary to a HindIII site on the KS+ DNA backbone prior to digestion with 

HindIII restriction endonuclease. The resulting template was purified and annealed to the 

single stranded DNA template derived from pBluescript KS II (-) by slow cooling from 

95° C to room temperature in a thermocycler in the presence of 10mM Tris HCl, 50mM 

KCl and 1 mM MgCl2. The resulting construct contains a mismatch bubble region 

corresponding to the f1 origin region. The efficiency of annealing and dsDNA generation 

was verified by digesting the DNA template using restriction endonucleases. 
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Cell free protein synthesis experiments (CFPS) 

The Promega S30 T7 High-Yield Expression System kit (Promega TM306) was 

used for the CFPS experiments. The S30 premix and the cell extract were mixed in 

proportions recommended by the manufacturer and 300ng of the template was used per 

reaction. Reactions were set up following manufacturer’s instructions except that the final 

reaction volume was 15 µL. Reactions were set up in Corning CLS3820 plates. Samples 

were incubated at 30°C with shaking and measured every 7 minutes in a Biotek Synergy 

2 plate reader.  Error bars on the florescence measurements represent standard deviation 

of three replicates. 

Thrombin dependent gene repression was tested by incubating the DNA templates 

with thrombin (diluted into 10mM Tris-HCl pH 7.5 and 50mM KCl) along with 

0.01%Tween-20 for one hour at room temperature, followed by the addition of the cell 

extract. Human α-Thrombin was purchased from Haematologic technologies,VA.  To 

test the effect of different thrombin aptamer and non-specific oligonucleotide 

concentrations on thrombin mediated repression, different oligonucleotide amounts were 

heat denatured and slowly cooled to room temperature in the presence of 10mM Tris-HCl 

pH 7.5, 5mM KCl and 1mM MgCl2 before they were added to cell free protein synthesis 

reaction. The data in the figure 2.6b is normalized to expression from ATKS templates in 

the absence of thrombin. 

 

Fluorescence Anisotropy 

 Fluorescently labeled, gel purified DNA oligonucleotides were purchased 

from IDTDNA (Corville,IA) The Oligonucleotides were annealed in the presence of 
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binding buffer (100mM Tris-HCl pH 7.5, 200mM NaCl, 2 mM MgCl2  Fluorescence 

anisotropy measurements were made in the presence of 10mM Tris HCl pH 7.5, 5mM 

KCl, 1 mM MgCl2 and 0.02% Tween 20. 10nM DNA templates were incubated with 

different Thrombin concentrations and anisotropy measurements were made on Biotek 

Synergy 2 plate reader. 
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Chapter 3- Engineering Dual regulation of T7 promoter using LacI and 
TetR repressors 
 
Introduction 

Synthetic gene circuits entail redesigning of existing or creating novel genetic 

function to perform a predetermined task[1]. Construction of these circuits has been 

invaluable in attaining a bottom up understanding of biological systems and offers 

potential for harnessing biological function for biotechnology and biomedicine. A library 

of well-characterized genetic components have been integrated into circuit components 

that function as logic gates[153], memory elements[4], clocks[5] and counters[154]. 

Ultimately, like their electronic analogues, components that could be assembled into 

larger circuits that might find applications in medicine, bioremediation[90] and 

production of synthetic compounds[155] that are of commercial interest. 

These circuits are embedded within cellular systems that comprise of well-

characterized components often utilize endogenous promoters and translational 

machinery to drive circuit function. However, unintended interactions with endogenous 

processes make implementation of predictable and rationally designed circuits rather 

difficult. Consequently, several orthogonal expression systems are being sought to 

insulate the expression of the synthetic gene circuits from biological networks.  

One such orthogonal expression systems is the mono-subunit T7 polymerase. T7 

RNA polymerase is commonly utilized to drive the expression of genes in cell free 

systems because of its stability, simplicity and processivity. Furthermore, since T7 

polymerase is highly specific for their promoters, its use permits exclusive expression 

from user-defined genes in a variety of cell cellular backgrounds. In contrast to multi-

subunit bacterial RNA polymerases, T7 polymerase recognizes a specific 17 base pair 
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promoter sequence and does not require any co-factors to activate transcription [67]. For 

these reasons, T7 promoters have been utilized for achieving expression in cells but are 

also favored for achieving high yield protein synthesis in cell free systems. Therefore, 

circuit elements assembled using T7 promoters will be valuable not just in cell based 

systems for achieving orthogonal expression but can also be used in cell free systems to 

assemble sophisticated circuits.  

Here we focused on constructing logic gates based on T7 promoters. Like their 

electronic counterparts, logic gates are key circuit components that enable integration of 

multiple signals and are critical for implementation of sophisticated gene circuits. 

Consequently, several strategies have been described for achieving logic control of gene 

expression using bacterial promoters. Most commonly logic control of gene expression is 

achieved at the transcriptional level wherein a combination of activators and repressors 

that function individually or act in concert to generate responses from promoters. These 

promoters facilitate complex gene responses by the action of a multiple transcriptional 

factors temper transcriptional output to a combination of environmental signals. Indeed, 

combinatorial promoters have been critical for enabling synthetic devices and motifs such 

as feed-forward motifs[156] and logic gates[104].   

However, unlike bacterial promoters, viral promoters have very few mechanisms 

for activating or repressing gene expression from T7 promoter. Moreover, T7 promoters 

are repressed by transcriptional factors such as LacI and TetR that bind a relatively short 

regulatory region that is proximal to and downstream from the transcription start site [38, 

109, 128, 151]. An alternative to cis-regulation is to harness DNA looping to enable 

regulation of T7 promoters from locations distal to the T7 promoter. DNA looping 
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mediated by protein dimerization is commonly used to enable regulation of transcription 

by the synergistic action of repressors bound at two different locations [157]. For 

instance, Lac repressor proteins (LacI) bind their operators as a tetramer or a dimer of 

dimers [158]. Native E.coli lac promoters contain auxiliary Lac operators (LacO) 

upstream and downstream to the E.coli lac promoter. At low LacI concentrations, 

presence of additional Lac operators induces a DNA loop formation in the intervening 

DNA thereby increasing the probability of LacI occupancy of E.coli lac promoter [159, 

160], which results in enhanced repression from E.coli promoters.  

Here, a rational design approach to engineer logic control of T7 promoters by 

harnessing a DNA looping mechanism is described. Existing versions of lac repressible 

promoters contain LacO downstream from T7 promoters. We hypothesized that as with 

E.coli lac promoters, an improvement in repression of T7lacO promoters could be 

attained by appropriately a spaced lac operator upstream to a T7lacO promoter. We then 

examined the effect of placement of tetO, which is the binding site for the TetR protein 

into this framework to generate T7 promoters that respond to both TetR and LacI (Figure 

1). These TetR and LacI repressible T7 promoters were tested in both E.coli cells and in 

cell extracts and constitute the first demonstration of logic control of T7 promoters using 

two different transcription factors. 
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Results 

Addition of auxiliary operators upstream to T7lacO promoter results increases 

repression levels from T7 promoters 

Existing T7lacO promoters contain the lacO1 operator 4 bases from the 

transcriptional start site.  While presence of this operator represses transcription, it is 

effective in reducing the basal level expression only upon substantial accumulation of 

LacI in the cell (Figure 3.2). T7lacO promoters were constructed that utilize an auxiliary 

lac operator to enable effective repression.  

We set out to increase LacI dependent repression of T7lacO promoters by 

harnessing DNA looping mechanism.  A LacO1 operator was placed proximal to and 

downstream from the transcriptional start site of a T7 promoter. An auxiliary Lac 

operator LacO1 was placed 92 bases upstream to the primary LacO1 operator (Figure 

3.1a) These plasmids were co-transformed into BL21-AI E.coli cells along with a 

pTetRLacI plasmid that expresses tet (TetR) and lac (LacI) repressors from an E.coli 

promoter. The cells were induced with L-arabinose and response of the promoters to lac 

repressors was measured by monitoring fluorescence changes in response to Isopropyl β-

D-1-thiogalactopyranoside (IPTG), which is a negative regulator of Lac repressor. 
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Figure 3.1 Design strategy for achieving combinatorial regulation of expression from T7promoters.A) 
Auxiliary lacO are placed 92 bases upstream to T7lacO promoters to create strong LacI repressible T7 

promoters. The upstream lacO increases repression from T7lacO promoters due to DNA looping. B) TetR 
binding regions (tetO) are placed within this framework at regions indicated by grey boxes.  
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Figure 3.2 Effect of presence of additional lacI gene in the plasmid containing T7lacO promoters A) 
compares expression from T7lacO promoters in pET15b backbone with O1O1GFP pET3a in the presence 
and absence of 30µM IPTG. pET15b  vector has an additional copy of lacI B) Shows expression responses 

to addition of IPTG from O1GFP and O1O1GFP encoded on pET3a backbones. The graphs indicate 
fluorescence values normalized to optical density readings. 
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Figure 3.3 Effect of auxiliary operators on LacI mediated repression of T7lacO promoters A) indicates 
promoter sequences contain T7lacO promoters with auxiliary operator sequences of different strengths. B) 

Graph depicts responses to 30µM IPTG from the constructs depicted in A). C) Dose response to IPTG from 
the different constructs. Fluorescence response values are normalized to Optical density values. 
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The presence of the auxiliary operator was found to increase repression from 

T7lacO1 promoters (Figure 3.2). In addition, reducing the arabinose concentrations from 

0.2% as recommended by the manufacturer, to 0.02% resulted in a greater fold change in 

gene expression upon L-arabinose addition (Figure 3.4). In the analogous E.coli lac 

regulation scheme, auxiliary operators upstream increase the local concentration of lac 

repressor around the T7lacO operators and increase the probability of LacI binding to the 

Lac operator resulting in an increase in repression levels from E.coli, lac promoters[159]. 

Consistent with this hypothesis, weakening the upstream operator by introducing lac 

operators (LacO3) that bind with lower affinity than lacO1 did not result in improved 

repression from T7lacO promoters over the control constructs without the auxiliary 

operators. Overall, these results show that presence of an auxiliary operator that binds 

with high affinity to the lac repressor 92 bases upstream to the primary operator results in 

improved repression from T7lacO promoters.  (Figure 3.3) 

Engineering dual regulation of T7promoters using LacI and TetR 

A tet operator site (tetO) that binds tet repressor was inserted into the T7lacO 

framework. TetO was positioned such that it could potentially interfere or alternatively 

co-operatively repress along with the LacI dependent repression and therefore result in a 

multi-input responsive T7 promoter.  We tested the effect of placing tet operators at 3 

different locations- downstream from the primary lac repressor, at positions interfering 

with T7 promoters and in between the two lac operators (Figure 3.1b). To test the 

responses of these dual input promoters, the plasmids were co-transformed with 

pTetRLacI into BL21-AI cells and fluorescence response to the addition of 

anhydrotetracycline (aTc) and IPTG was measured. 
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Table 3.1 List of plasmids used in this study- the subscripts next to the T7 promoter indictes the number of 
bases that were removed from T7 promoter 

Plasmid Name Promoter Upstream 
Operator 

Downstream 
operators 

Gene Backbone 

pT7lacOGFP T7lacO   EGFP pET3a 

pLacO1T7O1GFP T7lacO LacO1  EGFP pET3a 

pLacO3T7O1GFP T7lacO LacO3  EGFP pET3a 

pLacOIDT7O1GFP T7lacO LacOID  EGFP pET3a 

pT7lacOtetOGFP T7lacO  LacO, tetO EGFP pET3a 

pLacO1T7lacOtetOGFP T7lacO  LacO, tetO EGFP pET3a 

placO1tet21T7lacOGFP T7-6lacO1 LacO1,TetO LacO EGFP pET3a 

pLacO1tet23T7lacOGFP T7-4lacO1 LacO1,TetO LacO EGFP pET3a 

pLacO1tet25T7lacOGFP T7-2lacO1 LacO1,TetO LacO EGFP pET3a 

pLacO1tet27T7lacOGFP T7lacO1 LacO1,TetO LacO EGFP pET3a 

placO159tetT7lacOGFP T7lacO1 LacO1,TetO LacO EGFP pET3a 

p59tetT7lacOGFP T7lacO1 TetO LacO EGFP pET3a 

pTetRLacI E.coli promoter   TetR ,lacI pPROLAR 
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Figure 3.5 Effect of tetO placed downstream from T7lacO promoters. Upper panel depicts the schematic of 
the pT7lacOtetOGFP and pLacOT7lacOtetOGFP. The graphs indicate the response of pT7lacOtetOGFP 

and pLacOT7lacOtetOGFP TO 30 µM IPTG and 200ng/ml aTc. 
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Figure 3.6 Effect of TetR on T7lacO repression when tetO overlaps T7lacO promoters.  Upper panel 
depicts the schematic of the placO1tet21T7lacOGFP, placO1tet23T7lacOGFP, placO1tet25T7lacOGFP 

and placO1tet27T7lacOGFP. The graphs indicate the response of these plasmids to 30 µM IPTG and 
200ng/ml aTc. 
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Effect of TetR on T7lacO repression when tetO is positioned downstream from T7lacO 

promoter 

The placement of operators that bind to different repressor can elicit a NOR 

response from the promoter wherein, both repressors independently repress from the 

promoter[64]. Therefore hypothesized that placing a tetO downstream from T7lacO 

promoter would lead to LacI and TetR repressible T7 promoters. So to test this 

hypothesis, the tet operator was positioned 34 bases (distance between +1 base and the 

center of tetO) and downstream from the transcriptional start site to create placT7lactet. 

Contrary to our hypothesis, however, we observed that while LacI repressed expression 

from T7 promoters, the TetR appeared to counter the effect of lac repression instead of 

repressing expression from T7 promoters (Figure 3.5). By comparison, the control 

template (pT7lacOtetOGFP) without the auxiliary LacO operator did not show any 

significant LacI or TetR dependent change in gene expression at 200 minutes. This result 

indicates that although TetR bound downstream to a lac operator interfered with LacI 

mediated repression of T7 promoters, it has little to no effect on repression from T7 

promoters on its own.  

 

Effect of TetR on T7lacO repression when tetO is overlaps with T7lacO promoter 

Several studies show that barring a few key positions on the T7 promoter, several 

bases can be mutated at the expense of reduced transcriptional output [161]. We therefore 

examined if replacing a portion of the T7 promoter with tetO would repress transcription. 

Therefore, tetO were centered at 21, 23, 25 and 27 bases upstream from transcriptional 
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start site of T7lacO promoters to create placO21tetT7lacOGFP, placO23tetT7lacOGFP, 

placO25tetT7lacOGFP, and placO27tetT7lacOGFP respectively. While the construct 

placO27tetT7lacOGFP contains tet operator 27 bases upstream from the transcriptional 

start site contains an intact T7 promoter, placO21tetT7lacOGFP, placO23tetT7lacOGFP 

and placO21tetT7lacOGFP contain truncated versions of the T7 promoters with 15, 13 

and 11 bases of the wild type T7 promoter remaining, respectively. As expected, we 

observed that progressively decreasing six bases from the T7 promoter had a significant 

effect on basal expression levels from T7 promoters. (Figure 3.6) Furthermore, LacI 

mediated repression was observed for the placO21tetT7lacOGFP, placO23tetT7lacOGFP 

and placO25tetT7lacOGFP constructs. Intriguingly, however, the tet repressor did not 

repress expression at -21, -23, -25 and -27 positions. Instead, the tet repressor bound at -

27 position, which abuts the T7 promoter, was found to interfere with LacI repression 

from the T7lacO repressors but did not completely relieve LacI based repression. An 

additional construct was created from placO27tetT7lacOGFP in which the distance 

between the lacO was shortened to 70 bases while retaining the tetO at -27 position to 

yield p70lac27tetT7lacOGFP. Although LacI mediated repression from this construct was 

found to be stronger, as with p92lac27tetT7lacOGFP TetR negatively regulated LacI 

mediated repression.  

 

TetR bound to tetO placed in between the Lac operators effectively alleviates Lac 

mediated repression 

We asked if placing a tet operator between the two lac operators and in phase with 

the lacO loop that might form relieve LacI mediated transcriptional repression. Therefore, 
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the tetO was placed 59 bases upstream to the primary lac operator in placO1T7lacGFP to 

create pLacO159tetT7lacOGFP. As a control, the tet operator was introduced 59 bases 

upstream to T7lacO operator in pT7lacO which does not have the auxiliary lac operator. 

Protein expression as measured by fluorescence at 200 minutes showed that the tet 

repressor at this position effectively interferes with LacI repression and presence of TetR 

repressor at the operator site relieved LacI dependent repression (Figure 3.7) We further 

tested the response of this construct in response to a wide range of aTc and IPTG 

concentrations. The plasmid exhibited an IMPLIES gate, wherein the tet repressor 

hinders LacI loop mediated repression.  
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Figure 3.7 –Effect of tetO on LacI mediated repression of T7lacO when tetO was in between the two lac 
operators- A) Depicts the schematic of p59tetOT7lacOGFP and pLacO59tetOT7lacOGFP B) Graph 
indicates the responses of these plasmids to IPTG and aTc C) Contour plot indicates the Normalized 

Fluorescence responses to a range of IPTG and aTc concentrations. The X axis indicates the logarithm of 
aTc concentrations (ng/ML) and whereas Y-axis contains the Log of IPTG concentrations (µM)  

Fluorescence measurements in B and C were normalized to the optical density measurements at 600 nm D) 
is a schematic of the IMPLIES logic gate realized using the pLacO59tetOT7lacOGFP plasmid.  
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Testing dual input promoters in cell free systems 

The plac59tetT7lacOGFP constructs were tested in commercial extracts to test 

their response to LacI and TetR repressors. The extracts were chosen since they contained 

a cache of LacI protein. To enable tetR-mediated repression, purified TetR protein was 

added to the reaction and the response of the multi-input promoters was measured by 

monitoring fluorescence changes upon the addition of IPTG and aTc. 

The responses of the pLacO159tetT7lacOGFP and p59tetT7lacOGFP (control 

without the auxiliary operator) to IPTG indicate that auxiliary operators improve LacI 

dependent repression by about 8 fold at the concentrations of LacI and template 

concentrations tested here (Figure3.8). Furthermore, TetR was found to relieve LacI 

dependent repression and expression levels were found to be similar to those from the 

constructs lacking the auxiliary operators. This provides support to the fact that the 

presence of an upstream operator improves LacI dependent repression presumably 

through a looping based mechanism. In addition, similar expression levels from 

pLacO159tetT7lacOGFP and p59tetT7lacOGFP in the absence of inducers implies that 

TetR bound in between the lac operators eliminates the advantage conferred by the 

upstream operator.  
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Figure 3.8 Effect of tetO on LacI dependent repression of T7lacO when placed between two lac operators 
in cell extracts-  A) Depicts the schematic of p59tetOT7lacOGFP and pLacO59tetOT7lacOGFP plasmids 

B) Graph showing fluorescence response from pLacO59tetOT7lacOGFP LacI and TetR proteins. C) Shows 
fluorescence response from p59tetOT7lacOGFP and pLacO59tetOT7lacOGFP plasmids to addition of 

300µM IPTG and 200ng/ml aTc  
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Discussion 

Several studies have outlined the relationship between promoter architecture and 

function [7, 8, 162] using a combination of well-characterized activators and repressors 

with bacterial promoters [7, 8]. These studies rely on the fact that bacterial promoters 

respond to transcriptional activators and repressors that bind cis-regulatory regions that 

span at least 100 bp upstream and downstream to the promoter [62, 107]. Consequently, a 

broad array of regulation mechanisms can be incorporated that operate either individually 

or in concert to create programmable multiple input responsive promoters. Varying the 

location of the transcriptional factor binding sites relative to the promoter, tuning the 

affinity of transcriptional factors to their respective operator sites and controlling the 

interaction between the transcriptional factors results in a wide variety of combinatorial 

responses with bacterial systems[7, 8]. As an illustration of the power of this approach to 

realize diverse functions, Hunziker et.al designed 12 different types of logic functions 

using a combination of cAMP-CRP activator protein, GalR repressor protein and 

promoters of diverse strengths [163].  Whereas several reports have attempted to define 

rules for achieving logic control by modulating cis-regulatory regions around bacterial 

promoters, similar systems have not yet been established for use with viral promoters 

such as T7 promoters.  This paper described efforts to engineer an IMPLIES gate in live 

cells and in cell free systems using T7 promoters. 

A difficulty with engineering T7 promoters that respond to multiple transcription 

factors arises from the fact that T7 polymerase has no known recruiters or transcriptional 

activators and are repressed only by proteins that bind at a location close to the 
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transcriptional start site. To circumvent this limitation, a DNA looping based mechanism 

was harnessed in order to achieve gene regulation from distal locations. Specifically, a 

LacO1 auxiliary operator was placed 92 bases upstream from the primary LacO1 operator 

to enable strong repression from the T7lacO promoter. Within this framework the effects 

of placing a TetR binding site at three sets of locations relative to the T7 promoters - 

downstream from T7lacO, region overlapping the T7lacO promoter and in between the 

two lac operators, were examined. 

Protein mediated DNA looping has been utilized for achieving transcriptional 

control in both natural and synthetic promoters. In particular, the role of DNA looping in 

the regulation of promoters such as lac[159, 164], araBAD[165] and gal[166]  has been 

extensively studied in prokaryotes[167].  Zhan et.al utilized two different LacO binding 

sites to introduce looping thereby enabling regulation by the concerted action of two 

different repressors bound at different sites[103].   

Previous demonstrations of LacI dependent repression of T7 promoters have 

relied on LacI binding to a location downstream to the transcriptional start site[109, 151]. 

While LacI enhances repression from T7 lacO promoters, efficient repression requires 

sufficient build up of lac repressor protein in the cell.  In addition, pTetRLacI is 

expressed from an E.coli promoter that is weaker than the T7 promoter that drives the 

expression of the reporter gene. The high processivity of T7 polymerase generates a large 

amount of RNA transcript that saturates the translational machinery[66] and therefore 

masks repression that might occur at later time points. 

To develop lac repressible T7 promoters that are strongly repressed at low LacI 

concentration, a DNA looping based mechanism was utilized. In native E.coli lac 
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promoter systems, looping facilitates tight repression of E.coli lac promoters even at low 

LacI repressor concentrations[168]. Our results mirror the effect of auxiliary operators on 

expression from E.coli lac promoters whereby, as shown in Figure 3.2, introduction of an 

auxiliary lac mediated operator 92 bases upstream to the primary lacI binding site 

resulted in a 4 fold increase in LacI repression in comparison to T7lacO promoters 

lacking the auxiliary distal operator. Additionally, changing the auxiliary operator 

strength facilitated the tuning of repression levels from T7lacO promoters. In contrast to 

these results, Dubendorff and Studier observed that an auxiliary operator placed 238 bp 

away from T7lacO promoter resulted only a modest increase in repression from T7lacO 

promoter[151]. The difference between their study and findings described here can be 

reconciled from that fact that the distance and the phase difference between lac operators 

is critical for achieving LacI mediated repression [168]. Muller et.al observed that a 

substantial decrease in repression levels accompanied an increase in operator distance. A 

50-fold change in gene expression was observed at an inter-operator distance of 70.5, 

while only a 15-fold change in expression was found where the distance was 150 bp. 

Thus an auxiliary operator located a distance of 238bp might be too far to increase 

repression from T7lacO promoters. Moreover, at shorter distances, the energy required 

for formation of a LacI dependent loop between operators located on the same side of the 

DNA helix is lower than the energy required for formation of a loop between operators 

that are on opposite phases[160, 168]. Therefore, the interoperator distances of 92 and 72 

were chosen based on in vivo data for lac mediated transcriptional control with E.coli 

promoters and lead to a significant increase in repression levels from T7lacO promoters.  
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These redesigned operators were then utilized in conjunction with a tet operator to 

realize T7 promoters that can be regulated by multiple signals. As has been postulated in 

several studies, the nature of the promoter, placement of repressors and activators relative 

to the transcriptional start site and the nature of interaction between the different proteins 

affect the response from promoters [64, 169]. A simple design to achieve repression from 

two transcriptional factors involves placement of two transcriptional repressors 

downstream from the transcriptional start site. Binding of two strong repressors 

downstream from the transcriptional start site of bacterial promoters is known to result in 

repression from both repressors. In fact, a similar design with T7 promoters regulated by 

two distinct zinc finger proteins that bind contiguous binding sites has been utilized to 

realize a NOR gate with T7 promoters[53]. In a sharp contrast to these studies, however, 

upon simultaneous binding of LacI and TetR repressors downstream from the initiation, 

tet repressor bound downstream from lac operator interfered with LacI dependent 

repression instead of repressing expression from T7 promoters. These observations can 

be ascribed to the higher processivity of T7 promoters in comparison to E.coli promoters. 

Repressors placed several bases downstream from transcriptional start site of a T7 

promoter are known to be weaker repressors of transcription[38] thereby placing an upper 

limit on the region downstream from the T7promoter that regulates expression from it.  In 

contrast to short 9 bases zinc finger operators, the 19 and 21 base length tetO and lacO 

pushes the secondary operator further downstream from the transcriptional start site 

thereby reducing the efficiency of repression from the secondary operator[53]. In fact, 

binding of a strong protein such as TetR downstream from lacO affects the ability of LacI 

to bind to its cognate operator.  
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Our finding that interruption of the T7 promoters with tetO did not yield tet 

regulatable promoters was surprising. Only in the case of positioning tetO centered at -25 

site did we observe a slight effect of TetR. Interruption of the binding region of the T7 

promoter is thought to facilitate promoter release during transcriptional initiation thereby 

increasing transcriptional efficiency. Therefore, any tet repression that may have occurred 

might be offset by the higher transcriptional output from the truncated promoters. 

The high processivity of T7 RNA polymerase makes it difficult to maintain tight 

repression. Data from the constructs containing interrupted promoters suggest that 

mutations in the promoter region result in a tighter LacI dependent repression of 

expression from T7lacO promoters. At later time points, expression from 

placO1tet21T7lacOGFP, placO1tet23T7lacOGFP and placO1tet25T7lacOGFP, is 

effectively repressed in the absence of IPTG, whereas expression from 

placO1tet27T7lacOGFP with the intact promoter sequence shows a steady rise in 

fluorescence even in the absence of IPTG at later time points (Figure 3.8).    Therefore, it 

is likely that the apparent lack of repression observed with pT7lacOGFP plasmids is a 

reflection of weak repression of T7lacO promoters and the resulting accumulation of 

mRNA at low LacI concentrations.  
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Figure 3.8 Time course of expression from interrupted T7promoters. The graph depicts change in 
fluorescence from truncated T7lacO promoters in response to 30 µM IPTG.  
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Finally, we were able to demonstrate that placement of a TetR repressor at a 

region between the two lac operators interferes with LacI dependent repression of the 

T7lacO promoter. Participation of protein tetramers for achieving repression contributes 

to the steepness of the response to IPTG. This resulted in a logic behavior characterized 

by sharp transition between the on and the off states. At short distances, stable formation 

of lac repressor mediated looping requires that the operators be in phase as significant 

energy is expended for the formation of the loop. TetR was placed in between lac 

operators and found to effectively interfere with the mediated repression of T7 promoters. 

One scenario that would explain this observation is that binding of the tet repressor may 

stiffen the DNA template thereby increasing the persistence length of the DNA and 

making the formation of the DNA loop energetically unfavorable. Alternatively, it is 

possible that the tet repressor sterically hinders the formation of the LacI based loop. In 

the case of E.coli promoters, especially at short distances, periodic dependence on 

intervening distances between the lac operators has been observed with a repression 

maxima for distances that place the operators in phase and minima for those on the 

opposite sides of DNA. Repression maxima have been shown to occur with a periodicity 

of 11.5 bp with E.coli promoters of 59 bases, 70.5, 81.5 and 92 bases. Based on this 

model tetO centered 59 base upstream to the primary lac operator would be in phase with 

the primary lac operator and may sterically hinder lac mediated loop formation. In any 

case, binding to the tet operator at a distal site interfered with LacI dependent repression 

and enabled an IMPLIES function. 

The T7 promoter regulated by both lac and tet repressor were finally tested in cell 

extracts and constitutes the first demonstration of an IMPLIES gate in E.coli cell free 
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systems using T7 promoters. Cell free systems are ideal test-beds for implementing 

simple regulatory circuits and as sensors of environmental signals[122]. Cell free extract 

combine the simplicity of an in vitro system along with the remarkable capability for 

continuous protein production from DNA encoded instructions for enabling synthetic 

gene circuits[47].  As mentioned earlier, the high processivity of T7 polymerase is ideal 

for cell free applications and has been used in conjunction with E.coli promoters and the 

SP6 promoter to realize cascading networks in cell free systems[48, 52].  The lac and tet 

reguatable promoters described here would be valuable tool for assembling cell free gene 

circuits[51].  

In conclusion, LacI mediated looping has been shown to increase repression from 

T7lacO promoters. In addition, binding of TetR protein in between the lac operators 

interferes with LacI dependent looping to realize an IMPLIES function for T7 dependent 

protein expression. This study paves the way for introducing modular transactivating 

domains with the help of additional transcription factors. Temme et.al recently reported 

the development of set of orthogonal a set of T7 RNA polymerase- promoter pairs[25]. 

The strategy put forth here combined with the availability of promoters of varied 

strength, provides the opportunity to harness the portability of T7 promoters for realizing 

networks in cells and in cell free systems. 

 

Materials and Methods 

Plasmids and Bacterial strains 

All plasmids used in this study were constructed using standard molecular biology 

techniques.  The plasmids constructed and used in this study are listed in Table 3.1 .DNA 
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used in cell free experiments was prepared using Qiagen Plasmid Midi prep kits or 

Biorad midi prep kits.  E. coli strain BL21-AI (Invitrogen Inc, WI) was used for protein 

purification and for live cell expression experiments.  LB media with 100 µg/mL 

ampicillin was used to culture cells for protein purification and preparation of starter 

cultures for live cell experiments. Minimal media for testing plasmids has the following 

composition- M9 salts with Casamino acids (Amresco), 2 mM MgSO4, 0.5% glycerol, 

300 µM thiamine, and 100 µg/mL ampicillin.  

 

Purification of TetR  

TetR was purified as previously described. Briefly, BL21-AI E.coli strains (Invitrogen 

Inc, WI) harboring pET-TetRHis[38] was grown in LB media with 100 µg/mL ampicillin 

at 37°C and were induced using 0.2% L Arabinose. The cells were resuspended in 

binding buffer (50 mM Sodium Phosphate buffer pH 8.0 300, mM NaCl, 10 mM 

Imidazole) and lysed by sonication. The supernatant obtained after centrifugation of the 

samples was applied to a Ni-NTA column. The column was subsequently washed with 

buffer (50mM Sodium Phosphate buffer pH 8.0, 300mM NaCl, 50 mM imidazole). TetR-

His6 was then eluted with elution buffer (50mM Sodium Phosphate buffer pH 8.0, 300 

mM NaCl, 500mM imidazole). Finally, the purified protein was concentrated and 

dialysed into the final storage buffer (20mM sodium phosphate pH 7.2, 50 mM NaCl). 

 

 GFP measurements from E. coli experiments 

The GFP expressing plasmids bearing different T7lacO and tet operator regions were co-

transformed along with pTetRLacI plasmids into BL21-AI cells.  A single colony from 
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the transformation plate was used to initiate an overnight culture in LB media. A small 

aliquot of overnight culture was then transferred into M9 minimal media (M9 salts with 

Casamino acids (Amresco), 2 mM MgSO4, 0.5% glycerol, 300 µM thiamine) 

supplemented with the 100ug/mlAmpicillin and 50ug/ml Kanamycin. The culture was 

incubated at 37°C for about 5 hours before this starter culture was again diluted in M9 

media to a final Optical Density of 0.01. 0.02% L-arabinose was added to the culture to 

induce the expression of T7 RNA polymerase.  100 ul aliquots of culture were dispensed 

into a 96-well plate (Corning 3370). Subsequently, IPTG and aTc were added to the wells 

as indicated. 50 µl of mineral oil was added to each of these wells to prevent drying of 

the samples. Absorbance (at 600 nm wavelength) and fluorescence measurements 

(485/20 nm, emission was 528/20 nm) were made at intervals of 7 minutes. Fluorescence 

values were corrected for background fluorescence of the media, and absorbance readings 

at 600 nm were used to normalize for cell density. 

 

Cell-free expression experiments 

Qiagen cell free protein synthesis kits were used to carry out cell free protein synthesis 

reactions. Reactions were set up following the manufacturer’s instructions, but the  final 

reaction volume was reduced to 15 µL .The reactions were overlaid with 10 µL mineral 

oil was added to prevent drying. 300µM IPTG and 200ng/ul aTc were added to the 

reactions to induce expression. Reactions were set up in Corning CLS3820 plates. 

Fluorescence measurements were made at an interval of 7 minutes in a Biotek Synergy 2 

plate reader. The fluorescence units shown the Figure 3.7 represent values obtained after 

6 hours. 
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Chapter 4 -Implementing Negative Feedback in Cell free systems using 
T7lacO promoters 
(This chapter contains excerpts from the paper  “Expression optimization and synthetic 

gene networks in cell-free systems” by David K. Karig, Sukanya Iyer, Michael 

L.Simpson and Mitchel J.Doktycz) 

 

Introduction 

 The field of synthetic biology, which aims to forward engineer biological systems, 

offers a tremendous opportunity to harness biological function for biomedical and 

biotechnological applications[68].  Synthetic gene circuits that perform a predetermined 

operation in response to external input have been successfully enabled in cells. These 

circuits have been used to program cells to integrate multiple input using logic gates 

[153] , encode memory using bi-stable switches[4] and program periodic behavior by 

incorporating oscillators[5]. Consequently, engineered gene circuits have found extensive 

applications in bio-sensing, bioremediation and biomedicine[68]. However, undesired 

crosstalk between the synthetic and the host networks make engineering gene circuits in 

live cells very challenging. Furthermore, use of living cells precludes sensing and 

production of compounds that might be toxic to living cells.  

 Cell free systems offer a unique opportunity to tap transcriptional and translational 

capabilities for applied uses. Logical behavior and the controlled synthesis of 

commercially important bio-molecules can be enabled [120]. The open nature of cell free 

systems and the ability to synthesize and process bio-molecules, without concern for cell 

viability, present significant advantages over natural cells for the synthesis of potentially 

toxic bio-molecules. Furthermore, the ability to exclusively direct the biosynthesis 

machinery of cell free systems for the desired application, without interference from the 
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host machinery, can facilitate implementation of predictable, engineered systems. 

Furthermore, the user has precise control over the components that comprise a system 

thus making in vitro systems ideal for implementing predictable networks for diagnostics 

and for testing hypotheses about phenomena in isolation from the host system. Cell free 

systems have been utilized for realizing cascading systems [48, 49], for demonstrating 

pattern formation in cell extracts [170] and for creating logic gates[52]. In addition, 

flexibility and the open nature of cell free systems can fast track testing of genetic 

components before being transferred to cell based systems.  Implementation of networks 

in cell free systems serves as a stepping-stone for realizing complex functions.  

Gene circuits programmed to elicit a particular response impinges on attaining a 

proper balance between the RNA and protein components[3, 171]. As a starting point for 

construction of gene circuits, we selected the simple yet important negative 

autoregulatory circuit as a starting point for our investigations[2]. In a negative 

autoregulatory motif, transcriptional factor represses its own expression. The ability of 

these motifs to accelerate circuit response and reduce gene expression noise makes them 

important components of natural and synthetic gene circuits[5, 11, 12]. Given the 

importance and the simplicity of this system, construction of a negative autoregulatory 

circuit would be useful not only for assembling increasingly complex gene circuits but 

also highlight the parameters that can be tuned for encoding functionality in cell extracts. 

Karig et.al have implemented a negative autoregulatory circuit that utilizes TetR 

repressible T7 promoters for enabling a negative feedback circuit[38]. The authors 

showed that tuning genetic determinants for expression such as promoter strength, 

ribosome binding site and terminator strength that can be used to program negative 
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feedback response that demonstrates a desired level of expression. Here we use a 

complementary approach for enabling negative autoregulatory circuits using a LacI 

repressible T7 promoter (Figure 4.1). Because LacI is a weaker repressor of the T7 

promoter, different determinants for system assembly that would facilitate the realization 

of negative feedback in cell free systems were examined. Two different variants of 

T7lacO promoters with and without auxiliary operators (that have been described and 

characterized in detail in chapter 3), were utilized to demonstrate negative feedback in 

cell free systems. As a step towards assembling circuits in cell free systems, the 

expression outputs between multi-cistronic systems and multi-plasmid systems were 

compared. We then examined repression of T7lacO promoters by LacI encoded on 

separate plasmids. Finally, a negative feedback circuit expressing lacI and GFP from 

T7lacO promoters were implemented. 
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Figure 4.1 Approach for assembling synthetic gene circuits in cell free systems- Construction of gene 
circuits requires the availability of well-characterized genetic parts such as ligand sensitive promoters, 

ribosome binding sites. These components are then assembled into small recurring network motifs such as 
negative feedback circuits and positive feedback circuits. An understanding of how to assemble these 

networks would be critical to construction of more sophisticated circuits such as bi-stable switches in cell 
free systems. 
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Results 

System composition 

 As a step towards creating larger and more complex synthetic systems, we 

explored the effect of different system composition approaches.  One system composition 

approach, which is commonly employed in living cells, involves the use of multi-

cistronic sequences for co-regulating subsets of genes in the system.  As a simple 

investigation into expression efficiency in multicistronic sequences, two bicistronic 

sequences were constructed.  The first, placI-GFP consists of lacI inserted upstream of 

GFP and the second pGFP-lacI consists of lacI inserted downstream of GFP (Figure 

4.2a).  As expected, fluorescence measurements for all of the bicistronic sequences were 

significantly lower than for the pKSGFP control. (Figure 4.2b) While fluorescence of the 

lacI bi-cistronic constructs were approximately 25% lower than pKSGFP, no significant 

difference was observed between the insertions of lacI upstream vs. downstream of GFP. 

 

Table 4.1- Monocistronic plasmids used in this study. 

Plasmid Name Promoter Gene1 Backbone 

pKSGFP T7 EGFP pET3a 

pT7LacI T7 LacI pET3a 

pT7LacOGFP T7LacO EGFP pET3a 
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An alternative to multi-cistronic sequences is to use a separate plasmid for each 

gene in the system.  As later discussed, this approach is particularly amenable to cell-free 

systems.  However, it is important to understand the effect of altering the concentrations 

of the different plasmids on expression.   To this end, we combined a plasmid expressing 

only GFP (pKSGFP) and a plasmid expressing only LacI (pT7lacI) in different molar 

ratios, while keeping the sum of the molar concentrations fixed at 8 nM.  The resulting 

GFP fluorescence exhibited a non-linear increase as a function of the percentage of the 

GFP plasmid.  Specifically, the effect of increasing the percentage of pKSGFP grew 

more pronounced at higher pKSGFP percentages. (Figure 4.2c) 

 

Table 4.2 List of bi-cistronic plasmids used in this chapter. 

Plasmid Name Promoter Gene 1 Gene2 Backbone 

placIGFP T7 LacI EGFP pBluescriptKS(+) II 

pGFPLacI T7 GFP LacI pET3a 

pLacOLacIGFP T7LacO1 LacI EGFP pET3a 

pLacOT7LacOLacIGFP 92LacO1T7LacO1 LacI EGFP pET3a 
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Figure 4.2 Plasmids and results for exploring different system composition approaches.  a) Constitutive T7 
construct pKSGFP, pT7lacI and bicistronic constructs placI-GFP, and pGFP-lacI.   b) Fluorescence after 10 
hours of EGFP expression from these constructs.  c Results for co-expression of pKSGFP and pT7lacI for 

different percentages of pKSGFP by molar concentration. 
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To compare GFP expression for the two different system composition approaches, 

we expressed the bicistronic constructs pLacI-GFP and pGFP-LacI at the concentrations 

shown in figure 4.3, and we also co-expressed pKSGFP and pLacI such that the molar 

concentrations of each plasmid were also as shown in the figure.  Thus each 

concentration on the x-axis corresponds to the same number of copies of the EGFP and 

lacI genes for each approach.  Lower EGFP expression, as measured by fluorescence 

after 10 hours of expression, was realized with the two-plasmid approach. 
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Figure 4.3 Comparison of bicistronic and two-plasmid systems.  Normalized fluorescence after 10 hours of 
expression is shown for the bicistronic constructs pLacI-GFP and pGFP-lacI, along with the two-plasmid 

system pKSGFP/pLacI.   

 

 

 

 
 
 



 
 

99 

 

Repression of T7lacO promoters by lacI encoded on different plasmids   

 Effective negative regulation of a promoter by a repressor expressed in the same 

milieu depends on factors such as relative transcription and translation efficiency of the 

repressor and reporter gene, affinity of the promoter for the repressor and efficiency of 

repression by the bound repressor[25, 172]. Here, we adopted a multi-plasmid approach 

to vary relative gene copy number instead of varying genetic determinants of expression 

efficiency such as ribosome binding site [173] and terminators to control protein amounts 

in the extract. Accordingly, a repressor cascade was implemented using two separate 

plasmids –pT7lacI that expresses LacI from a T7 promoter and pT7lacOGFP in which 

T7lacO promoters drive the reporter gene GFP expression (Figure 4.4a) . We 

hypothesized that addition of plasmid expressing LacI in excess of T7lacOGFP might 

ensure that lac repressor was present in sufficient amounts in the extract. Accordingly, 

200ng pT7lacI along with 80 ng of pT7lacOGFP was added to the cell extract and 

response to 1mM IPTG that binds and relieves lac repression was measured. Intriguingly, 

only a 1.2 fold increase in fluorescence was observed upon IPTG addition when the 

pT7lacI and pT7lacOGFP were expressed simultaneously, even though pT7lacI was 

present in greater amounts (Figure 4.4b). 

  To investigate whether build up of sufficient lac repressor in the extract would bring 

about repression, 100ng of pT7lacI was incubated in the cell extract for 10 minutes prior 

to the addition of 200ng pT7lacOGFP. In this case, higher amounts of pT7lacOGFP 

plasmid were added in comparison of pT7lacI to compensate for the loss of expression 

capacity. Presence of lac repressor cache prior to the addition of pT7lacOGFP resulted in 
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a 3.5 fold increase in expression from pT7lacOGFP in response to the addition of 1mM 

IPTG (Figure 4.4c). Increasing the time of incubation of T7lacI to 30 minutes severely 

affected the expression capacity from the extract and high GFP expression could not be 

achieved even when 800 ng GFP was used in the reaction (Figure 4.5). These results 

suggest that large quantities of GFP transcripts that saturate the translation machinery 

were synthesized before lac repressor reaches a concentration that can effectively repress 

T7lacO promoters. In addition, while prior accumulation of lacI addresses this issue, 

effective repression of T7lacO promoter is attained at the expense of expression capacity. 
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Figure 4.4 Repression of T7lacO by LacI encoded on a separate plasmid A) schematic of repression 
strategy B) shows expression from T7lacOGFP plasmids upon incubation with pT7lacI C) Repression from 

pT7lacOGFP added 10 mins after incubating pT7lacI in the extract. 
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Figure 4.5  Effect of ratios of pT7lacOGFP and pT7lacI on expression from T7lacO promoters. 
pT7lacOGFP in the indicated ratios 30 minutes after  the addition of pT7lacI. 
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Negative feedback from T7 lacO promoters 

A circuit in which a transcription factor negatively regulates its own expression is 

called a negative autoregulation motif. Typically a transcriptional fusion of this motif 

with a reporter gene is constructed to provide a read-out of repression dynamics. [11, 12]. 

Here a T7lacO promoter that drives the expression of lacI and GFP was constructed to 

demonstrate negative autoregulation. Repression cascade experiments suggested that for 

effective repression from T7lacO required accumulation of lac repressor in the extract. 

Since temporal separation of lacI and GFP expression from a bicistronic construct is 

difficult to achieve, it was hypothesized that a variant of T7lacO promoters that tightly 

represses expression from T7lacO promoters at low lac repressor concentration will 

enable the construction of negative feedback circuit. To this end, auxiliary lac operators 

upstream to the T7lacO promoters were incorporated into the design of negative feedback 

circuits. As shown in chapter 3, the presence of an auxiliary lacO operator located 92 

base upstream to the T7lacO promoter enables stronger repression from T7lacO 

promoters, presumably by increasing the probability of lacI binding the T7lacO promoter. 

To examine the effects of auxiliary operators to realize a negative feedback motif , two 

different negative feedback bicistronic circuits expressing lacI and GFP that differed in 

the promoters from which they were expressed were constructed- while pT7lacOlacIGFP 

contained T7lacO promoter, placOT7lacOlacIGFP contained the lacO operator 92 bases 

upstream to the T7lacO promoter. (Figure 4.6a) To test negative feedback response, 1mM 

IPTG, the negative regulator of lacI, was added to the cell free reactions and fluorescence 

response was measured. As a control, placIGFP was constructed, in which the lacI and 
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GFP genes are expressed from a T7 promoter. Interestingly, addition of IPTG resulted in 

a little to no change in expression from any of these constructs (Figure 4.6b).  

It is known that the high processivity of T7 polymerase results in a rapid 

saturation of translation machinery thereby masking the repression occurring in cell free 

systems. We hypothesized therefore, that rapid accumulation of RNA transcripts from T7 

promoters might result in the saturation of translational machinery. Hence, to reduce the 

mRNA load, T7 RNA polymerase amounts were reduced to 20% of the amount 

prescribed by the manufacturer for the reaction. Under this new regime, whereas 

expression from pT7lacIGFP and pT7lacOlacIGFP remained unchanged, 

LacOT7lacOlacIGFP showed a 1.6 fold change in gene expression between the induced 

and uninduced states thereby showing the benefits of using a stronger repression 

mechanism and optimization of transcription for achieving negative feedback in cell free 

extracts (Figure 4.6c)  
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Figure 4.6 Demonstration of negative feedback from pLacOT7lacOlacIGFP and pT7lacOlacIGFP. 
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Discussion 

Cell extracts provide a simplified context for implementing cell free gene circuits. 

Here, a cell free negative feedback motif and repression cascades using T7lacO 

promoters are described. First, we investigated monocistronic and bicistronic strategies to 

assemble cell free circuits. This was followed by a demonstration of a repression cascade 

built from T7lacO promoters and lac repressors. Finally,a negative feedback system using 

the lacO – lac repressor system was constructed.  

Beyond offering a simplified context, several features of cell-free synthetic 

biology are appealing for direct applications and also for the initial prototyping of both 

genetic devices and assembled systems in live cells.  Our characterization of assembly 

methods exemplifies benefits of forward engineering biological functionality in cell-free 

contexts.  Specifically, direct quantitative characterization of transcriptional regulation is 

greatly facilitated.  By contrast, in live cells, such dosage responses must be inferred 

indirectly through careful analysis of single cell responses with consideration of the 

significant amounts of noise in gene expression [174].  Another advantage of cell-free 

systems is that they enable fast screening of construct libraries, as transformation is not 

required.  Also, as shown in Figure 4.4, multi-plasmid systems may be implemented 

without regard to backbone compatibility, and DNA concentration is easily tunable, 

unlike in cells.  Finally, testing regulatory systems in a context free of mutation and 

recombination can simplify initial system development can aid troubleshooting efforts in 

live cells systems. 

First, we sought to examine different approaches for assembling regulatory 

networks in cell-free systems.  When implementing large gene networks in live E. coli, 
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one option is to integrate the genetic components into the chromosome.  However, with 

this approach, it is cumbersome to explore a large number of combinations of different 

network variants, in terms of different ribosome sites, different promoter variants, 

different protease tags, etc.  In addition, location in the genome can impact expression.  

For these reasons, most live E. coli systems in synthetic biology have relied on the use of 

plasmids.  Still, at most two or three different plasmid types can be used, and plasmid 

compatibility must be carefully considered in terms of the origins of replication and the 

antibiotic resistances.  On the other hand, with cell-free systems, the same backbone can 

be used for different system components.  This enables an approach for constructing large 

synthetic gene networks, whereby each component is encoded on a separate plasmid, and 

different plasmids are combined in cell-free extract to form the final system.  The DNA 

copy number of each network component can be easily and precisely tuned, whereas in 

live cells, copy number can only be coarsely tuned for each plasmid by using different 

origins of replication.  Thus, with this multi-plasmid approach, a large number of network 

variants can be quantified without the need for chromosomal integrations or 

transformations. 

As expected, when either tetR or lacI was inserted in a bicistronic sequence with 

GFP, fluorescence decreased due to sharing of expression capacity between the repressor 

and GFP (Figure 4.2b).  Insertion of tetR reduced expression by approximately half, 

while insertion of lacI reduced expression by approximately a quarter.  This difference in 

the effects of inserting tetR vs. lacI implies that inserting a gene in a bicistronic sequence 

impacts relative expression in a manner that is dependent on the particular gene inserted.  

Trading the order of GFP and lacI had no impact on fluorescence. 
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By comparison, when each gene is expressed on a separate plasmid, normalized 

fluorescence is reduced by half even when the EGFP expressing plasmid comprises 80% 

of the total plasmid concentration (Figure 4.2c).  In general, one tradeoff with this 

approach is that the flexibility of easily tuning relative gene copy numbers can potentially 

come at the cost of weaker expression, as shown in Figure 4.3.  For example, due to the 

higher ratio of promoters to genes, the effects of inefficiency in transcriptional 

termination may be more pronounced.  Nonetheless, it has previously been shown that, 

with the multiple plasmid approach, properly tuning the ratio of plasmids, along with the 

use of common downstream box sequences, can help to achieve efficient expression of all 

genes in the system [175].  Interestingly, we observed a nonlinear relationship between 

relative plasmid ratio and expression (Figure 4.2c).  This is potentially due to a 

competition between the constructs for translational resources [175], and future 

experiments to quantify the yield of both proteins will help to further elucidate the cause 

of this nonlinearity. 

As a step toward implementing negative feedback circuits, we set out to 

investigate the gene dosing effects on repression from T7lacO promoters. Implementation 

of dynamic gene circuits in cell free systems entails attaining a proper balance between 

the RNA and protein components[1, 176]. Typically, different genetic elements 

specifying protein expression efficiency are explored to provide appropriate dosing of 

RNA and protein components to enable a particular function[38, 117]. Here, a multi-

plasmid approach to control the gene copy number in cell extracts to generate LacI 

proteins in different proportions for negatively regulating T7lacO promoters. Use of a 

cell free platform offers unprecedented opportunity to control the DNA components and 
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achieve temporal separation of expression from pT7lacI and PT7lacOGFP plasmids to 

demonstrate effective repression. In fact, such a multiplasmid approach has been recently 

used in assembling a variety of circuits such as multistep cascades, AND logic gates and 

feedback loops in cell free systems[52]. Oue results show that whereas simultaneous 

addition of pT7lacI and pT7lacOGFP did not have a significant effect on GFP expression, 

incubating pT7lacI for 10 minutes before the addition of pT7lacOGFP plasmid resulted in 

an effective repression that could be reversed by the addition of 1mM IPTG. This result 

mirrors a similar study done in wheat germ extracts where the authors observed no 

repression upon simultaneous expression from similar constructs[48]. This could be 

because a critical concentration of lac repressor needs to be attained before it can 

effectively repress T7lacO promoters. In case of simultaneous expression of both 

pT7lacOGFP and pT7lacI, GFP transcripts are rapidly generated before lac repressor 

concentration that can repress T7lacO promoters can be reached. Accumulation of lac 

repressor prior to GFP expression addresses this need effectively. Increases in repressor 

plasmid concentration result in an increase in the repression levels from T7lacO come at 

the cost of expression levels. In addition, the increase in GFP expression with increasing 

T7lacOGFP concentration indicates that translation machinery was not saturated for the 

tested plasmid concentrations and that this parameter can be tuned to achieve the desired 

level of expression from a multiplasmid system. Tuning operator –repressor interactions 

and parameters to achieve efficient gene expression in cell free systems might be used to 

mitigate this issue.  

Efficient genetic components in our negative feedback circuit such as g10 RBS 

and T7 terminators were used to ensure high expression levels[38]. To demonstrate 
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simple cell-free gene networks, negative feedback circuits based on two different lac 

repressible promoters were constructed. Presence of auxiliary lac operators 92 bases 

upstream to T7lacO promoters facilitates effective repression even in the presence low 

repressor concentration (Chapter 3). The two negative feedback designs tested relied two 

different lac repressible promoter systems, T7lacO promoter and T7lacO promoters with 

auxiliary operators to drive the expression of lac repressor and the reporter gene GFP. 

Surprisingly, addition of IPTG, which is expected to induce expression from T7lacO 

promoters, did not result in any observable increase in expression from either of these 

templates. In cell extracts using highly processive T7 RNA polymerases, this balance is 

skewed in favor of product accumulation due to rapid synthesis of RNA and protein 

products and absence of mechanisms to dilute RNA and protein[48, 50]. This combined 

with the time lag that occurs due to synthesis of repressor protein, operator binding and 

repression of expression from the promoter contribute to lower change in expression 

realized in cell free systems in contrast to a cell based system. This effect is particularly 

pronounced with bacterial cell extracts that have a limited reaction lifetime that prevents 

the manifestation of repression that occurs at later time points.  

Reduction in T7 RNA polymerase amounts addressed the overshoot issue and 

resulted in a 1.5 fold increase in fluorescence levels from pLacOT7lacOlacIGFP whereas 

no observable change was observed with pT7lacOlacIGFP plasmids showing the benefits 

of using a tightly repressible T7 lacO promoter and reducing the transcriptional output by 

lowering polymerase concentrations in the extract. As with the repressor cascades, 

repression of T7lacO promoters in pT7lacOlacIGFP plasmids can occur only after the 

formation of functional lac repressor tetramers. The initial burst of transcripts before the 
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LacI mediated repression tends to saturate the translation machinery thereby masking the 

effects of repression that occurs at later time points. In fact, similar saturation of 

translational machinery has been observed even in cells[66]. To address the issues arising 

from saturation of translational machinery, Karig et.al showed tuning of genetic 

determinants of gene expression such as strength of ribosome binding site and 

terminators resulted in different magnitudes of fold change in expression between the 

uninduced and induced state[38]. They observed a 1.8 fold induction with a tet 

repressible negative feedback circuit. Lowering polymerase concentrations, weakening 

the expression determinants and use of directed RNA and protein degradation 

mechanisms together might yield greater fold changes in expression [38, 50].  

  All cell-free reactions were performed in batch mode, which prevents the influx 

of nutrients and the efflux of waste products and consequently limits the reaction 

dynamics [43, 45, 177-180].  Extension to a continuous flow system would help to 

harness the advantages of repressible T7 promoter variants [39, 181].  The flow of fresh 

nutrients and removal of waste products would help to preserve the initially strong rate of 

expression.  The additional incorporation of mechanisms to actively degrade mRNA and 

EGFP [50] would mitigate the previously described overshoot problem with cell free 

negative feedback circuits and would reduce the high yield in the absence of inducer.  

Alternative approaches to engineering regulation in cell-free contexts avoid the 

use of translational machinery, thus further simplifying the engineering of fast, complex 

systems [182, 183].  At the same time, protein expression is clearly useful for a number 

of applications such as production of protein-based therapeutics and chemical sensors.  

Ultimately, the expression components and simple feedback systems that we present can 
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be interfaced to more complex regulatory networks based on a simplified set of 

mechanisms [184]. 

 Our results contribute to bottom-up approaches to engineering biological function 

[185].  The simplified context and the facilitation of direct, quantitative component 

characterization offered by cell-free systems will aid efforts to transcend the complexity 

of systems currently engineered in living cells [18].  For assembling regulatory systems 

in cell-free contexts, both the traditional multicistronic approach and an approach 

whereby a separate plasmid is used for each gene appear to be viable.  Furthermore, the 

successful demonstration of inducible negative feedback embodies an initial step towards 

more complex regulatory systems.  In the future, coupling the ability to forward engineer 

cell-free genetic regulation with efforts to compartmentalize reaction components in 

small liposomes [186-188] or nanofabricated wells [189-192] will help to close the gap 

between harnessing the unique capabilities of living cells and capitalizing on the 

comparative ease of engineering in simpler contexts. 

 

Materials and Methods 

Plasmids and strains 

All plasmids used in this study were constructed using standard methods.  These plasmids 

are described in Table 4.1 and 4.2. DNA used in cell free experiments was prepared using 

Qiagen Plasmid Maxi prep kits.   

 
Cell-free expression experiments 

The Promega S30 T7 High-Yield Expression System kit (Promega TM306) was used for 

the experiments depicted in Figures 4.2 and 4.3 and Expressway high yield protein 
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synthesis kit (Invitrogen) was used for carrying out expression in depicted in rest of the 

figures.  For experiments in Figure 4.2 and 4.3 samples consisting of reaction mix with 

no DNA were assayed to quantify background fluorescence of the reaction mix, and 

samples with pDEST17-EGFP [191, 192] were assayed for the purpose of normalizing 

fluorescence values.  “Normalized fluorescence” (NFU) for a given sample was 

calculated by subtracting background fluorescence of the reaction mix from that sample’s 

fluorescence value and then dividing by the background corrected fluorescence of the 

benchmark construct pDEST17-EGFP.  Results depicting final yield (Figure 4.2 and 4.3) 

are the normalized fluorescence values after 10 hours of expression. In case of figure 3 

and 4, reactions were set up following manufacturer’s instructions except that the final 

reaction volume was 15 µL and the reaction was treated as a batch reaction instead of a 

fed batch reaction format with the feed buffer containing both 2.5X IPVS and 2XIVPS 

buffers provided in the kit. 15 µL mineral oil was added to each of the reactions to 

prevent drying.  For induction experiments, IPTG [193] was added in the denoted 

concentrations. Reactions were set up in Corning CLS3820 plates. Samples were 

incubated at 30°C with shaking and measured every 6 minutes in a Biotek Synergy 2 

plate reader.  For the measurements, excitation was 485/20 nm, emission was 528/20 nm, 

the optics position was set at “Top 510,” and the sensitivity was set at 40. Error bars in all 

figures represent standard deviation of at least three replicates. 
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Chapter 5 Conclusions and future directions 
  

Advances in molecular biology and genetic engineering have offered unprecedented 

insights into the molecular workings of a cell. Decades of biological research are 

providing glimpses into the molecular underpinnings of biological systems. Omics 

technologies are transforming the field from defining the cell as a sum of molecular parts 

to describing biological systems in terms of the nature of interactions. One approach to 

understanding interactions is to computationally identify recurring patterns of network 

connectivity. These motifs are embedded in networks along with other components, 

which makes the investigation of its individual contribution to the properties of the 

system rather difficult. Synthetic construction of these motifs provides an alternative 

approach to investigation of the role of these components in a larger network.  

Synthetic biology is aimed at forward engineering biological function using well-

characterized molecular components. The driving philosophy for synthetic biology is the 

iterative design and understanding of a system entwined. Deliberate design of biological 

systems serves as a reductionist approach to understanding the design principles that 

govern biological processes. Biological systems offer advantages of miniaturization, self-

replication and obvious biocompatibility for realizing engineered functions that can be 

harnessed for biotechnological and biomedical applications.  

Analogies with traditional engineering disciplines are being evoked for describing and 

designing engineered circuits using biological parts. Yet, there are important distinctions 

between traditional engineered circuits and biological circuits that require a 

fundamentally different approach to designing cellular systems that perform desired 

tasks. Unlike semiconductor based circuits, biological systems are not inherently 
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engineered and therefore the components are not standardized and are difficult to 

interface with cells. 

Therefore, there is a growing interest in implementing information processing gene 

circuits in cell free systems akin to those that have been implemented in cells[34]. In 

addition to offering flexible platforms for implementing logical behavior, as discussed 

earlier, cell free systems allow for quantitative component characterizations that may be 

extended to cell based systems[123].  

Accordingly, the approach taken in this work was to construct systems from the bottom 

up to facilitate the implementation of dynamic cell like behavior in a cell free system. A 

large portion of this dissertation work was devoted to the development of tools to achieve 

gene regulation. As mentioned earlier in this document, the strength of cell free systems 

lies in the opportunity to decouple viability of the system and utilize biological 

machinery for translating DNA based instructions. The field would benefit from 

advancements in the production of extracts for achieving robust and high-yield 

expression, tools to manipulate gene expression and a platform in which to implement 

cell free reactions. The approaches outlined here would greatly bolster efforts to 

implement network motifs in cell free systems. 

In this thesis, I focused on developing mechanisms for gene regulation and engineering 

T7 promoters for use in synthetic gene circuits. Noireaux et.al have asserted that ligand 

responsive expression and implemention transcriptional logic is difficult to achieve with 

T7 promoters[51, 118]. Contrary to this perception, here I have shown that the T7 

transcriptional system is tractable. Innovative designs for regulating T7 promoters have 
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been harnessed to demonstrate that the simplicity of the polymerase can be asset to signal 

sensing and integration.   

T7 RNA polymerase can transcribe through several DNA structures, DNA lesions and 

even gaps in template that might otherwise block other polymerases. These properties 

along with the use of cell free systems provide the flexibility to utilize novel gene 

regulation mechanisms that might be difficult to implement in living cells. At the same 

time, for the regulation strategy to be widely applicable, it must be specific, sensitive, 

tunable, modular and achieve a large dynamic range of gene expression upon target 

addition. To this end, in chapter 2, a DNA aptamer based strategy to achieve gene 

regulation was utilized. An aptamer that binds thrombin with high specificity was 

selected to demonstrate proof of principle. Firstly, ssDNA generated from phagemids was 

utilized to assemble the appropriate DNA structures. This technique allows for easy and 

large-scale preparation of an aptamer harboring single stranded DNA strands that can be 

used to direct protein synthesis in cell free systems. Up to a 5-fold change in gene 

expression could be attained from these systems. Furthermore, repression levels could be 

easily tuned by moving the aptamer away from the transcriptional start site. This work 

sets the stage for testing other aptamers for regulating gene expression. Aptamers 

selected to bind their target in cell free systems might be still more effective in regulating 

expression from these templates. It also remains to be seen whether the nature of the 

target molecule (small molecule or protein), and aptamer structure has an effect on the 

efficacy of this gene regulation strategy. 

In addition to their use in transcriptional regulation, DNA aptamers were also adapted for 

translational regulation as described in Appendix B. The mechanism harnessed the ability 
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of RNaseH enzyme to digest an RNA transcript hybridized to a DNA oligo. The 

repressor oligonucleotides were designed to contain a sensing domain comprised of the 

thrombin DNA aptamer oligonucleotide and a repressor domain with a sequence 

complementary to the RNA transcript. The repressor oligo was designed such that, in the 

absence of thrombin, the repressor secondary structure sequesters the binding domain and 

prevents it from hybridizing to the RNA transcript. Addition of thrombin exposed the 

repressor domain thereby allowing it to hybridize to the RNA transcript and repressing 

expression by 10 fold.  This result, together with transcriptional repression, shows that 

the modularity of DNA aptamers can be effectively used to regulate both transcription 

and translation in cell free systems. 

Along with mechanisms to engineer ligand sensitivity, it is beneficial to develop 

strategies to achieve signal integration with T7 promoters. To this end, chapter 3 

described two different transcriptional factors TetR and LacI for regulating expression 

from T7 promoters in concert. To achieve this, first lac operators that utilize DNA 

looping to achieve tight repression from T7lacO promoters were used.  Next tetO sites 

were placed in this framework to achieve combinatorial regulation of gene expression 

from these promoters. Placement of tetO operators downstream from lacO and at 

locations overlapping the T7 promoter did not alter response to lac repressors. However, 

TetR binding to a site upstream from T7lacO promoters resulted in interference with lac 

dependent looping and therefore lac repression. This resulted in the first demonstration of 

an IMPLIES gate implemented in vivo and in vitro with T7 promoters. This gate was also 

realized in cell free systems using TetR and LacI. It might be interesting to investigate the 

effects of combining the operator arrangement with different T7 promoter strengths to 



 
 

118 

investigate the range of phenotypes that can be achieved. This study provides a way 

forward for using the gate developed here for enabling synthetic gene circuits. 

Finally, in chapter 5 a negative feedback circuit was implemented in cell free systems. 

We have shown that successful design of a functional gene circuits requires attention to 

component details, quantitative component characterizations and tradeoffs associated 

with achieving high signal levels and gene circuit function [122]. In addition, synthetic 

DNA aptamer based systems for achieving modular gene regulation in cell free systems 

have been developed. Insights garnered from the implementation of the simple negative 

feedback circuits described here will enable the realization of predictable information 

processing systems of higher complexity that will find use in a variety of 

biotechnological applications and for bottom up understanding of biological network 

organization.  

To be a valuable tool for scientific investigation, cell free systems need to be easy to 

implement, cost effective and robust. For cell free systems to be recognized as a viable 

complement to existing technologies, applications that take advantage of the flexibility of 

this system would be necessary. Physical platforms such as those described in Appendix 

C would be beneficial for enabling long-term gene expression and for implementing more 

sophisticated functions. Moreover, spatial separation of biochemical reactions on a 

microfluidic platform would facilitate the construction of evermore sophisticated 

synthetic gene circuits[194, 195].  

One could argue that operation and investigation within biological complexity might be 

necessary to replicate biological function. Indeed, redundancy of function in almost all 

biological systems is thought to confer robustness to biological systems and a reductionist 
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approach might be stripping the system out of its inherent advantages. Yet, incomplete 

knowledge of components even in model systems such as E.coli cells, present 

overwhelming challenges in defining all interactions. Therefore, a minimal model that 

comprises a minimal set of genes to enable cell like functionality such as replication and 

protein synthesis would be valuable for implementing predictable networks. Indeed, 

Mycoplasma genitalium, a model minimal system has been a subject of several recent 

efforts to construct and understand the functions of a minimal cell[196]. As a 

demonstration of the power of a pared down system to understand primary workings of 

the cell, researchers from JCVI (J Craig Venter Institute) and Stanford University put 

forth the computational simulation of a whole working cell[29]. Although the 

investigations might be far from complete, efforts such as these represent a step forward 

in providing a complete description of biological systems.  

 These studies along with the approach taken in this dissertation, highlight the potential to 

understand biological networks from the bottom up. As the costs associated with gene 

synthesis reduce and we have precise control over protein components present in the 

system, these bottom-up strategies can be expected to yield more tractable and cost 

efficient approaches for engineering biology. The tools developed here would expand the 

applicability of cell free systems for implementing predictable gene circuits that would 

ultimately facilitate bottom-up understanding of biological function. Ultimately, 

implementation of predictable synthetic biological networks would enable us to harness 

the power of biological circuitry for biotechnological applications.  
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Appendix A- Methods for construction of double stranded DNA templates with 

ssDNA regions 

 
Several strategies were tested to construct double stranded DNA templates with melted or 

ssDNA regions inserted downstream to transcriptional start site- Here, I summarize the 

strategies that were tested but eventually not adopted for assembling dsDNA templates 

with ssDNA regions. The pros and cons of each of these techniques are also described. 

 

1. Ligation of PCR products for generation of linear templates with gap regions 

The initial design of the aptamer templates was generate to linear templates with a gap in 

the template strand so as to accommodate the aptamer on the non-template strand. 3 

different fragments of DNA templates corresponding to promoter, aptamer and reporter 

DNA were ligated together to generate the desired template. The long linear template that 

encoded GFP was generated using PCR. The PCR primer that annealed on the 5’ end 

contained a Hpy99I restriction site and was subsequently digested with Hpy99I 

restriction enzyme to generate a template with a 5 base long 3’ overhang. A short oligo 

corresponding to the IgE aptamer with ends complementary to the GFP fragment and T7 

promoter region were added to a 20µl ligation reaction. The gapped template output was 

difficult to evaluate as the length of the fragment attached was ~50 bases long which does 

not yield an observable shift on an agarose gel. The strategy was discarded because of the 

low yield of the reaction (Figure A1). 
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Figure A1- Schematic showing ligation based strategy to generate templates for testing aptamer-mediated 
regulation. 

 

 

 

 

 
Figure A2 Schematic for aptamer template assembly from ssDNA templates generated using Streptavidin-

Biotin purification 
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2.Generation of linear ssDNA templates using biotinylated PCR 

As an alternative strategy to assembling gapped linear DNA templates, instead of ligating 

three DNA products, ssDNA strands corresponding to the template and the non-template 

strands were generated. Single strands for assembling the DNA templates were generated 

using a streptavidin-biotin mediated affinity purification strategy[1]. Briefly, a biotin tag 

on the strand complementary to the strand needed for template generation was 

incorporated on a PCR primer. PCR product was amplified using this primer and purified 

using Qiagen PCR purification kit.  The product was resuspended in Biotin binding 

buffer (10mM Tris-HCl pH 7.5, 1M NaCl, 0.01% Triton X-100) and added to 100 µl 

streptavidin agarose beads (Thermoscientific) and incubated overnight at 4 °C. The beads 

were subsequently washed with the binding buffer 3 times and finally incubated with 

150µl of 0.2M NaOH for 6 minutes to denature dsDNA. The beads were added to a 

column and the ssDNA eluted and neutralized using acetic acid. The resulting DNA was 

purified once using the Qiagen PCR purification kit and subsequently annealed with the 

complementary ssDNA to yield a double stranded DNA template. The individual 

products were analyzed using agarose gel electrophoresis.    

 

We were able to generate ssDNA using this procedure, although some dsDNA products 

were also present in the final DNA preparation. The annealed products were found to be 

1kb, which corresponds to the size of correctly annealed DNA products. However, the 

yield was around 50ng/µl in 30µl volume, which is not sufficient for driving high yield 

expression in cell extracts (Figure A2).  
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3.Generation of ssDNA templates using rolling circle amplification 

Finally we tested a strategy to generate long ssDNA templates using phi29 DNA 

polymerase. Phi29 DNA polymerase is commonly used to achieve repeated extension of 

a primer annealed to a circular DNA template thereby generating tandem copies of the 

DNA template[2]. Commonly, a primer is annealed to the template and the resulting 

double stranded DNA is digested using a restriction enzyme to resolve the amplified 

product into shorter DNA fragments that correspond to a complement of the original 

DNA template. To generate ssDNA, T7 terminator primer was annealed to ssDNA 

template generated from pBluescript KS II (+) and amplified by phi29 DNA polymerase 

(NEB) for 16 hours at room temperature. The template thus obtained was annealed to 

cT7asymterm primer that contained an EcoRV restriction site and subsequently digested 

using EcoRV restriction enzyme.  While the yields of amplified DNA were fairly high 

(5ug of DNA from 100ng of ssDNA), the products were insufficient for generating DNA 

for cell free protein synthesis. 

 

1. Mitchell, L.G. and C.R. Merril, Affinity generation of single-stranded DNA for 

dideoxy sequencing following the polymerase chain reaction. Anal Biochem, 

1989. 178(2): p. 239-42. 

2. Lin, C.X., et al., Rolling circle enzymatic replication of a complex multi-crossover 

DNA nanostructure. Journal of the American Chemical Society, 2007. 129(46): p. 

14475-14481. 
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Appendix B- Translational Regulation of gene expression using DNA aptamers 

 
Introduction 

Ligand sensitive mechanisms for gene regulation find extensive use in 

biotechnology and in applied sciences. They allow for temporal regulation of expression 

in response to environmental signals and facilitate communication between the external 

environment and the components of a gene circuit[1].  

In this regard, nucleic acid aptamers have been extensively used for achieving 

expression regulation. The conformational change that ensues ligand binding is coupled 

to a functional domain that mediates the change in expression. These responses include 

change in access of the ribosome to the ribosome-binding site, blocking ribosome 

scanning or by transcription attenuation[2].  In addition, RNA aptamers coupled to an 

antisense RNA molecule added in trans enables modular control of expression. While 

RNA aptamers have been used to achieve gene regulation, the potential of DNA aptamers 

to regulate translation has not yet been realized.  

DNA has several advantages over RNA as a regulation molecule. DNA 

oligonucleotides have longer lifetimes in cells and cell free systems. In addition, end 

protected DNA protected by phosphorothioate bonds prevent digestion of DNA in cells 

and cell free systems. As there are no membrane barriers, cell free systems are 

particularly amenable for utilizing large amounts of exogenous oligonucleotides.  

Here, translational regulation of gene expression using DNA aptamers in cell free 

systems is described. DNA oligonucleotides have been harnessed for regulating gene 

expression in cells and in vitro systems and have been promising candidates for gene 

therapy. DNA oligonucleotides have been utilized for regulating both transcription and 
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translation in cell free systems. For instance, DNA oligonucleotides have been targeted to 

polypyrimidine tracts, which are capable of forming triplex structures and have been 

employed to repress transcription from viral, bacterial and eukaryotic promoters[3, 4]. 

These strategies suffer from the disadvantage that DNA triplexes can be formed by 

specialized sequences and under specific ionic conditions. Alternatively, chemically 

modified oligonucleotides may be used that allow for triplex formation under a variety of 

conditions. 

Perhaps the most extensively used DNA based gene regulation strategy is the 

antisense regulation of expression. A DNA oligonucleotide is hybridized to a 

complementary RNA sequence, which is subsequently cleaved by RNaseH thereby 

knocking down gene expression[5].  This strategy has been widely adopted for use in 

both cells and cell free systems. In contrast to the triplex DNA strategy, antisense DNA 

technology does not have special sequence requirements or ionic conditions for enabling 

DNA hybridization.  

While these strategies describe constitutive repression from these templates, an 

approach to enable ligand responsive antisense DNA aptamers would be very useful. 
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Figure B1- Schematic of translation activation and repression using DNA aptamers. 
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Results and Discussion 

Here we describe preliminary of efforts to enable ligand sensitivity onto DNA aptamers 

for achieving ligand dependent translational regulation (Figure B1). Published studies on 

translational repression from trans-acting DNA oligonucleotides utilized a 20 bases DNA 

oligonucleotide to knock down gene expression in E.coli cell extracts[6].  

Table B1  List of oligonucleotides used for translational regulation in this study 

 

A 22 base and an 18 base long antisense DNA oligonucleotide were utilized to 

repress gene expression. The 5’ end of antisense DNA oligonucleotide was modified to 

contain a thrombin aptamer region such that, in the absence of thrombin, the thrombin 

aptamer region would hybridize with the antisense region thereby preventing its 

interaction with the cognate RNA molecule. It was hypothesized that upon binding to 

thrombin, however, the antisense region on the DNA would be exposed thereby 

repressing expression. An RNA sequence bearing partial complementarity to the 

thrombin aptamer region was selected to facilitate the design. The oligonucleotides used 

in this study are listed in Table B1. The red sequence corresponds to the thrombin 

aptamer region and blue sequence refers to the antisense sequence. The program MFOLD 

was used to predict the secondary structure under the salt conditions used[7].  

 
 

Antisense 
DNA length 

Sequence 

Antil1thr 22 CGTACGGTTGGTGTGGTTGGTGTACGTTTTTTTATCTTGAAAAGCATTGAACACCA 

Antil2thr 22 CGTAGGGTTGGTGTGGTTGGTCTACGTTTTTTTATCTTGAAAAGCATTGAACACCA 

Antis1thr 18 CGTACGGTTGGTGTGGTTGGTGTACGTTTTTTGAAAAGCATTGAACACCA 

Antis2thr 18 CGTAGGGTTGGTGTGGTTGGTCTACGTTTTTTGAAAAGCATTGAACACCA 

Antis 18 GAAAAGCATTGAACACCA 

Antil 22 TATCTTGAAAAGCATTGAACACCA 
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Figure B2 Graph shows response from pKSGFP plasmids to long and short versions of aptamer containing 
repressor oligonucleotides. 
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Before using them in an experiment, 9µl of 100µM oligonucleides in a volume of 

10 µl of solution were heat denatured in the presence of 10mM Tris-HCl pH 7.5 and 

50mM NaCl. 2µl of the heat-denatured oligonucleotide was incubated with 1ul of 270µM 

thrombin solution and 0.1% Tween-20 for 10 minutes. To test the effect of 

oligonucleotides on gene expression in cell extracts, these oligonucleotides in the 

presence and absence of thrombin were added to E.coli cell extract along with 180µg of 

GFP expressing plasmid (pKSGFP described in chapter 2). To carry out protein 

synthesis, the High yield protein synthesis kit from Promega corporation was used and 

the reactions were assembled as recommended by the manufacturer except that the final 

reaction volume was 15µl and the reaction was assembled in a Corning 384 well plate. 

To prevent drying 10ul of mineral oil was overlaid on the reaction and fluorescence 

measurements were made every 7 minutes for 6 hours.  

 As shown in Figure B2, oligonucleotides Antil1 and Antil2 that have longer 

antisense regions resulted in an increased thrombin dependent repression of gene 

expression over oligonucleotides with shorter antisense region. Furthermore, as shown in 

Figure B3, thrombin dependent repression was observed only with the aptamer 

containing repression oligonucleotide AntiL1 and AntilL2. Extract that contained just the 

antisense DNA region showed the same level of reduction in the presence of thrombin as 

the control reaction without any antisense oligonucleotides added.  
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Figure B3 – Graph shows changes in expression upon addition of repressor with (Antil1 and Antil2) and 
without (Antil) thrombin aptamer 
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Future work 

Different concentrations of thrombin and oligonucleotides would need to be tested to 

determine the critical concentrations of these agents for achieving effective repression. 

Furthermore, designs for achieving thrombin dependent activation would need to be 

explored to examine if DNA aptamer mediated activation of expression can be achieved.  
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Appendix C-Towards continuous exchange cell free protein synthesis reactions in 

microfluidic devices  

Synthetic gene circuits consist of a network of sensory elements that are 

integrated to perform a logical operation [1]. Successful implementation of gene circuits 

requires proper balancing of RNA and protein products in the reaction. Accordingly, gene 

circuits have been implemented in vitro in a batch reaction format. Prominent examples 

of these include cascaded gene circuits[2, 3] and a bi-stable stable switch that does not 

rely on protein intermediates[4]. Yet, these circuits lag behind analogous circuits 

implemented in cells. In particular, two features of commercially available E.coli cell 

extracts for cell free protein synthesis pose a challenge toward enabling elaborate in vitro 

gene circuits akin to those that have been built in vivo- 

a. Absence of mechanisms to specifically degrade RNA and proteins built up in the 

cell extracts- Higher order networks can be created in environments that allow for 

continuous turnover of accumulated RNA and protein products. Commercially 

available cell extract contain proprietary optimizations that increase the mRNA and 

protein lifetimes. While this ensures high protein yields, this poses a significant 

challenge with regard to enabling cell free gene circuits in a batch reaction. 

b. Limited lifetime of cell free protein synthesis - The cell free protein synthesis 

reactions in a batch mode typically last for ~2 hours. The transcription and translation 

reactions are inhibited by inhibitory by-products of protein synthesis and depletion of 

energy resources. Hence, to achieve sustained cell free protein synthesis for long 

periods of time require a mechanism for continuous supply of precursors and energy 

sources and removal of inhibitory by products. 
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To address these issues, I worked on developing physical platforms that extend 

cell free protein synthesis reaction life times and allows for removal of built up RNA and 

protein products. Large-scale continuous cell free protein synthesis reactions have been 

implemented by enclosing the cell extracts in a dialysis chamber that is suspended in the 

feed buffer solution. Continuous influx of fresh nutrients and efflux of inhibitory by 

products from the dialysis chamber extends the reaction life-time to about 24 hours[5, 6]. 

In addition to large-scale studies, continuous exchange reactions have also been enabled 

in nanoporous microfluidic platforms. These devices have been built to facilitate rapid 

evaluation of gene products using small amounts of extracts[7] and to mimic the size and 

scale of biological cells and evaluate its effect on reaction rates[8]. 

As a step towards achieving greater functionality in cell free systems, cell free 

protein synthesis reactions were conducted in picoliter scale devices. These devices have 

been described by Retterer et.al[9] and Siuti et.al[8]. The “cell mimic” devices are 

nanoporous reaction containers that are integrated with a microfluidic system. These 

reaction vessels have 40 micron inner diameter and the walls of the container are 15 

micron high with a working volume of 18 picoliters. These vessels are embedded in a 

microfluidic channel to facilitate addition of fresh substrate and removal of by 

products[9]. The pores on the walls of the device are designed to facilitate substrate 

exchange between the channel and the reaction vessel. Siuti et.al have shown constitutive 

cell free protein synthesis using E.coli cell extracts for 24 hours using these devices[9]. 

The devices might ultimately be used as platforms for biosensing and for testing 

biological hypotheses in a cell free context (Figure C1). 
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 Figure C1- Schematic of an application for proposed cell mimic devices in biosensing and actualtion- A 
DNA program encoding genes of interest is introduced into the cell mimic device along with the cell 
extract containing the protein synthesis machinery. The analyte such as glucose traverses the device 

enclosure through the nanoporous membrane. The analyte activates expression of a gene such as insulin 
and the protein is then released from the device. 

 

Figure C2- Graph showing change in fluorescence as a function of time in cell mimic devices- DNA 
encoding GFP from a T7 promoter was introduced into the device along with E.coli cell extract. Change in 

fluorescence was monitored using epifluorescence microscope. 
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In an effort to extend the functionality of these devices and enable negative 

feedback circuits in these devices, I attempted to express bi-cistronic constructs from 

pT7lacIGFP that expresses both the lac repressor LacI and GFP from a T7 promoter. In 

addition, a cell extract preparation from a different manufacturer was employed to carry 

out protein synthesis (High yield protein synthesis kit from Invitrogen.inc). The extracts, 

premixed with the buffer that supplies small molecule substrates for protein synthesis, 

were loaded onto the mimic device using a micromanipulator, as has been described 

earlier.  

The device was then covered with a thin PDMS layer, which contained bores that 

aligned with the inlet and outlets of the microfluidic channel. The feed buffer comprising  

2.5X IVPS buffer, 2X IVPS buffer and the amino acid mixture provided by the 

manufacturer was injected into the channel by means of a syringe pump at a rate of 

5µl/hr. Change in fluorescence was monitored using an epifluorescence microscope while 

the silicon device rested on a heated stage set at a temperature of 37°C. As shown in 

Figure C2, increase in fluorescence (which is indicative of GFP expression) was observed 

for ~ 20 minutes and fluorescence was retained in the devices for 2 hours, as is the case 

of a batch reaction on a conventional scale. A decline in fluorescence was also observed 

at the end of the two hours, which might be due to bleaching of GFP and/or diffusion of 

GFP out through the pores of the device. 

Several difficulties were encountered with implementing the reaction in these mimic 

devices 

1) Large surface area to volume ratio hastened the evaporation of extract material 

from the device 
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2) Reproducible loading is rather difficult to achieve when devices are loaded using 

a micromanipulator. The devices are loaded with the cell extract by tapping the 

surface of the device with a fine loading needle attached to the micromanipulator. 

This prevents the loading a predetermined volume of the cell extract into the 

device. 

3) Tight sealing of the silicon device with PDMS is needed to ensure continuous 

flow of liquid in the device. To accomplish this, PDMS and the silicon devices 

were plasma cleaned before the PDMS slab was placed on the silicon device. The 

extract loaded in the device appeared to be washed away upon flowing the buffer 

through the microfluidic channel. It is possible that there may be a gap between 

the top surface of the mimic device and the PDMS slab through which the extract 

was washed out. 

 

To address these issues, a new device was tested which consisted of two long 

microfluidic channels, each of which contained the cell extract and the buffer that was 

separated by a porous membrane. (Figure C3) The extract was fed into the channel using 

a syringe pump, which eliminates the problem of uneven device loading and drying of the 

device. 

 Preliminary device characterization involved flowing the fluorescein through one 

channel and examining its diffusion into the other channel (Figure C4). 
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Figure C3- New microfluidic devices with extended channels for achieving protein synthesis on a 
microfluidic platform 

 

 

Figure C4 Comparing diffusion of fluorescein across a nanoporous membrane coated with 4 minutes, 6 
minutes and 7 minutes PECVD. 
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 We observed that devices with 4 minutes and 6 minutes PECVD permitted the 

diffusion of the small molecule across the membrane, whereas devices with 7 minutes 

PECVD did not allow for fluorescein diffusion from the fluorescein channel. Further 

device characterizations will be required for creating a new platform for achieving long-

term protein synthesis. 

Conclusions 

 The primary requirement for enabling long term gene expression in cell extracts is 

the continuous exchange of metabolites across a porous membrane that facilitates the 

influx of nutrients and the efflux of inhibitory by-products into the cell extract containing 

enclosure. To this end, picoliter cell mimic devices were employed to enable protein 

synthesis in a nanoporous microfluidic platform. Several issues such rapid drying of 

extract and incomplete sealing of the device were encountered with the picoliter devices. 

To address these issues a new device for enabling protein continuous protein synthesis 

was tested. As a prelude to enabling protein synthesis, and to model diffusion of small 

molecules across the nanoporous membrane, the effect of PECVD times on fluorescein 

diffusion across a nanoporous membrane was examined. Among the devices tested, 4 and 

6 minutes PECVD devices were found to permit the diffusion of fluorescein across the 

channel. These devices may be used in the future to enable long-term protein synthesis in 

these devices.   
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