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Abstract

We describe and present results of the implementation of the surface and volume

polarization for electrostatics (SVPE) and the iso-density surface solvation models.

Unlike most other implementation of the solvation models where the solute and the

solvent are described with multiple numerical representation, our implementation

uses a multiresolution, adaptive multiwavelet basis to describe both solute and the

solvent. This requires reformulation to use integral equations throughout as well as

a conscious management of numerical properties of the basis.

Likewise, we investigate the effects of solvation on the static properties of a

molecule physisorbed on a spherical particle, modeled as a polarizable continuum

colloid with a static dielectric constant. The effective polarizability of the physisorbed

molecule is enhanced by a factor of 105 in vacuo and by only 102 when solvated. The

variation of the polarizability of the molecules with respect to the changes in their

environment illustrates the importance of electrostatic interaction in the enhancement

of the effective polarizability.

Finally, we investigated the optical properties of 1.4-phenylenedinitrene and 4,4’-

stilbenedinitrene biraradical molecules. Using our computational model, we establish

the structure property relationship in biradical organic compounds. The spin splitting

is shown to be inversely proportional to the separation between the two spin carrying

centers and is partly driven by the coulombic interaction. The intense peaks on the

absorption spectra is the result of the mixing of transitions from the spin carrying

centers with those of π (pi) origin.
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Chapter 1

Introduction

All chemical, biological and physical processes are influenced by their environment:

a molecule is perturbed by the surface on which it is physisorbed, and solvents

are known to provide environmental conditions for chemical reactions and electro-

magnetic interactions. In collaboration with experimentalists, theoreticians develop

computational methods to gauge the environmental changes, provide explanations

to experiment and give insight into those changes. In this work, the focus is on

the development of a theoretical model to study solvent effects on molecules, and

gauge environmental effects on a molecule physisorbed on a metal particle, with

the metal particle represented as a polarizable continuum. The use of a polarizable

continuum metal particle is motivated by the high computational cost involved in the

full quantum mechanical representation of the metallic surface.

In the design and implementation of the methodology, we have taken into

account the available computational resources, and have emphasized on the detailed

description of the molecule while using a polarizable continuum to represent the

environmental effects with the aim of capturing the experimental aspects as much as

possible.

This work has been divided into six chapters. Chapter one is devoted to

background material. In chapter two, we review the many-body method as related to
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density functional theory and the Hartree-Fock method. Chapter three is dedicated

to the polarizable continuum electrostatic solvation model. In chapter four, the

environmental effects are analyzed using the static properties of molecules and in

chapter five, we investigate the tunability of the singlet-triplet equilibrium in organic

biradical materials.

1.1 Electrostatics of Macroscopic Media

The textbook by J. D Jackson [1], provides a comprehensive description of electro-

statics in a macroscopic media. Atoms and molecules are the elements of the media

of interest. When a uniform electric field is applied to a “well” of atoms or molecules,

the electrons bound to the molecules or atoms respond to the applied field. The

molecular charge density in this situation is distorted. In the absence of the field the

thermal average multi-pole moment is zero and the dominant molecular multi-pole

moment is the dipole (for a neutral molecule). An electric polarization P (dipole

moment per unit volume) is produced in the medium

P =
∑

i

Ni〈pi〉, (1.1)

where 〈pi〉 is the average thermal dipole moment of the ith type of molecule and Ni

is the average number of the ith type of molecule per unit volume. If the molecules

have a net charge ei and a macroscopic excess charge ρexcess, the total charge at the

macroscopic level will be defined as

ρ =
∑

i

Ni〈ei〉+ ρexcess. (1.2)

A potential φ and an electric field E is derived from the total charge.

E = −∇φ (1.3)
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and

∇(ǫE) = 4π [ρ−∇ ·P] . (1.4)

Defining the electric displacement D as follows:

D = ǫE+ 4πP, (1.5)

and combining Eq. 1.4 and Eq. 1.5 we obtain

∇ ·D = 4πρ. (1.6)

If the uniform medium does not fill the entire space but has different media

juxtaposed, then boundary conditions are considered on E and D at the interfaces

between the media. The boundary conditions is such that the following equations are

satisfied:

(D2 −D1) · n̂21 = 4πσ (1.7)

and

(E2 − E1)× n̂21 = 0. (1.8)

1 and 2 stand for regions 1 and 2, n21 is the normal to the surface directed from region 1

to region 2, and σ is the macroscopic surface charge density at the boundary surface.

1.2 Dielectric Functions

The dielectric function of a material depends on the changes that occur when the

material is subjected to an electric disturbance. In this section we will look at

the response of the material to electromagnetic radiation. Typically, polarization

is the main response of materials to electromagnetic radiation. The polarizabilities

of molecules can be divided into three parts: electronic polarizability (αe) which

is caused by the redistribution of electrons over atoms (for molecules), geometric
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polarizability caused by the change in molecular geometry, and finally orientational

polarizability which is the realignment of the molecule by an electric field.

To illustrate polarizability from which the dielectric function is obtained, we

assume that an electron is harmonically bound to a particular location in the atom.

The classical equation of motion of this electron is defined by the differential equation

m

(
r̈ +

ṙ

τ

)
= −Kr − eE. (1.9)

where −Kr is the restoring force and E is the perturbing electric field. By setting

E ∝ eiωt, K = mω2
0, and r ∝ eiωt, the proposed solution to the differential equation

is

r =
−eE/m

−ω2 + iω/τ + ω2
0

≡ −P
e
, (1.10)

The dipole moment of the atom will be p = −er and the polarization P =

Np = −Ner ≡ NαeE N is the number of electrons. The frequency dependent

polarizability is naturally obtained as follows:

αe =
(e2/m) [ω2

0 − ω2 − iω/τ ]

(ω2
0 − ω2)

2
+ (ω/τ)2

. (1.11)

From the electric displacement ǫE = E + 4πP the dielectric function is defined as

ǫ = 1 + 4πNαe. The frequency dependent dielectric function then follows:

ǫ(ω) = 1 +
(4πNe2/m) [ω2

0 − ω2 − iω/τ ]

(ω2
0 − ω2)

2
+ (ω/τ)2

. (1.12)

In metals (e.g Drude model) the electrons are free. The restoring force vanishes (i.e

k→ 0, or ω0 = 0) and the electronic polarizability is simplified as follows:

αe =
e2/m

−ω2 + iω/τ
. (1.13)
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The frequency dependent polarizability is also simplified to

ǫ(ω) = 1 +
ω2
p

ω2 − iω/τ
. (1.14)

The metallic dielectric function can be separated into the real and imaginary parts:

Rǫ(ω) = 1−
ω2
pτ

2

1 + ω2τ 2
, (1.15)

and

Iǫ(ω) = −
ω2
pτ

2

ωτ(1 + ω2τ 2)
. (1.16)

where ωp is the plasmon (oscillating electron cloud) frequency, ω0 is the frequency of

the restoring force on the bound electrons, τ is the relaxation time and is a measure

of the duration of the excited state.

1.3 Surface-Enhanced Raman Spectroscopy:brief

background

In 1974 Fleischman observed an unusual intensity of Raman signal for pyridine

adsorbed on an electro-chemically roughened silver electrode [15]. He attributed

the unusual signal to the increased surface area of the electrode. This observation

constituted the starting point for the spectroscopic method which is now known as

surface-enhanced Raman scattering. Eventually, significant steps were made in pro-

viding experimental and theoretical explanations to Fleischman’s observation (Martin

Moskovits called them the discovery of SERS). In 1977, Jeanmarie and Van Duyne [3]

and Albrecht and Creighton [16] began the discovery process when they separately

pointed out that the huge increase in effective Raman cross section could not

have been from an increase in the number of molecules on the roughened surface.

The apogee of discovery was reached in 1978 when Martin Moskovits made the
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remarkable observation that the huge increase in effective Raman cross section was

as result of the excitation of surface plasmons [19]. Building on the observation and

explanations afore mentioned, many other researchers investigated SERS. Kneipp and

coworkers [8, 9, 10, 11, 12, 7] and Nie and coworkers [20, 21, 23, 24, 2, 6] simultaneously

and independently reported the possibility of single molecule detection by SERS on

the condition of intense enough SERS emissions. Moskovits proposal was significant

in making a number of predictions such as the expectations of SERS in metal colloids

and the establishment of the hierarchy of intensification for SERS active materials.

Silver and alkali metals are now known to provide the most intense SERS signals

followed by gold and copper. Other good conductors such as aluminum, indium,

platinum, and transition metals provide SERS signals as well.

SERS activities are globally defined by two main mechanisms, which are electro-

magnetic (originating from the electromagnetic radiation) and electronic (defined

by the electronic structure of SERS active materials as well as that of the

physisorbed/chemisorbed molecule) in nature. Many SERS experiments are aimed at

maximizing these mechanisms while theoretical or computational models lay emphasis

on one or the other and sometimes on both. The SERS active material is sometime

treated as a perfect mirror and the molecule as a point dipole [4] whose image

self-triggers a multi-pole moment of infinite order. In some other description the

physisorbed molecule is described as a point dipole and the SERS active material

described with the jellium model [17] giving it a description which is more realistic

than a reflecting mirror. One other popular approach consist of detailed ab initio

description of the molecule interacting with a metal cluster made up of a few atoms.

This method, though it accounts for chemisorption effects, the small metal cluster

falls short of reproducing the bulk behavior of the SERS-active material which for

a nanosized metal particle is made up of thousands of atoms. S. Corni and J.

Tomasi [18] recognized the difficulty of accounting for chemisorption effects while

retaining the bulk behavior of SERS-active material. They proposed a model in which

the molecule is not chemically bound but is physisorbed on a SERS-active material,
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that is described as a continuous body characterized by electric response properties.

The solute charge density is a priori computed as a sum over occupied molecular

atomic orbitals, each typically represented as a superposition of Gaussian-type basis

function. The most complex part of the computation follows with a discretization of

the cavity encapsulating the continuous body, representation of the surface charge (

or reaction field) in basis on the cavity and finally solution of the integral equation.

Electromagnetic and electronic mechanisms alone are not sufficient for an efficient

and complete SERS process. The molecule or analyte must be held in a suitable

position that allows for maximum exposure to SERS emissions. Electrostatic

interaction is the fixing mechanism that keeps the analyte in a suitable position

for SERS probing. Nano-materials destined for SERS activities are often coated

with charged capping materials. Chemical reducing agents such as sodium citrate,

sodium borohydride, hydrazine, and hydroxylamine hydrochloride are adsorbed on

the nanoparticle surface giving it a negative charge [14]. Synthesis of positively

charge silver nanoparticles have also been reported [22]. Electrostatic-customized

nanoparticles will attract and fix ions of opposite charges for an efficient SERS process.

Furthermore, electro-chemical studies emphasize what happens once the molecule is

on the electrodes neglecting the role of electrostatic interactions in drawing molecules

to the places where surface plasmon resonance enhancements will produce signals.

We develop a theoretical model in which the molecule is physisorbed on a SERS-

active material, described as a continuous body characterized by electric response

properties, and puts into evidence the contribution of electrostatic interactions to

SERS activities. This model uses the same adaptive multi-wavelet basis functions

representation of the solute and the continuous body, thereby, within the user specified

precision, eliminating basis set error.
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1.4 Molecular Interactions in Solution

A realistic simulation of the chemical, biological and physical processes, requires the

effects of solvation to be included. A solution can be defined prima facie as a

large assembly of molecules held together by non-covalent interactions. Under this

definition, the investigation of such interactions in physical systems of increasing

complexity, should begin with dimers, continue through larger clusters and end

with solutions. An alternative way of investigating such interactions in physical

system is an explicit description of a subunit of the whole solution (the solute) and

representing the other components (the solvent) with an interaction potential. This

alternative way is commonly known as the implicit solvation model. In contrast to

other theoretical approaches to studying solvation, implicit solvation models have

substantially evolved to become standard. The theoretical approaches to studying

liquid systems can be classified into four main categories as defined by Jacopo Tomasi

and Maurizio Persico [59], (a) methods based on elaboration of physical function,

(b) methods based on computer simulation of liquids (c) methods based on the

continuum (electrostatic) model, and (d) methods based on the super-molecule

description of the solution.

The use of an explicit or implicit model depends upon the solvation properties to

be probed. Explicit solvation requires a full representation of the electronic structure

of the solvent molecules with computational cost of explicit-solvation simulation

increasing non-linearly with the number of solvent molecules plus averaging over

the degrees of freedom of the molecules [38]. The explicit treatment of the solvent is

necessary in situations where the solute is subjected to the average solvent effects (e.g

ethanol in cyclohexane). Electrostatic effects of solvation dominates this interactions.

The implicit solvation model is therefore more appropriate. The implicit solvation

model focuses on describing the electronic structure of the encapsulated solute

while describing the solvent environment as an unstructured polarizable dielectric

continuum residing outside of the solvation capsule. A typical implicit solvation
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model will have two main contributions to its solvation free energy — the electrostatic

and the cavitation free energies of solvation. Dispersion repulsion is often considered

especially for non polar solutes.

Multitudes of formulations exist to more or less rigorously solve the Poisson

equation for a complicated solute cavity to determine the reaction potential. The

formulations differ in how the quantum mechanical description of the solute is related

to the classical mechanical description of solvent environment. One popular way

consists of solving the Poisson’s equation for an apparent surface polarization charge

density lying exclusively on the solvent cavity. These formulations are grouped

under a variety of appellations and acronyms ranging from the surface polarization

of the electrostatics(SPE) or polarizable continuum model (PCM) to the dielectric

polarizable continuum model (DPCM) [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51].

The assumption that the polarization charge density is exclusively on the surface

is a simplification of the solvent environment and the quantum mechanical charge

distribution. The other popular way of formulating the solvation method is more

general and fully represent the effects of the quantum mechanical charge distribution

on the solvent environment that consist of both surface and volume polarizations. The

volume polarization results from the tail of the electronic charge density extending

into the solvent environment with full solution of the relevant Poisson equation. The

generalized methods are often grouped and called surface and volume polarization

for electrostatics (SVPE) [52, 53, 56, 57, 58]. The solute charge density is a priori

computed as a sum over occupied molecular atomic orbitals each typically represented

as a superposition of Gaussian-type basis functions. From this and the nuclear

charges, the electronic and total potential are computed. The most complex part of

the computation then ensues with discretization of the cavity surface, representation

of the surface charge (or electric field) in basis on the surface (most simply piecewise

constants), and finally solution of the appropriate integral equations.
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1.5 Free Radicals: brief background

Radicals impact our lives in many ways. Our bodies make radicals, radicals are

produced when we light a fire or drive a car. We also use products (plastics)

that are produced from a large scale via radical reactions. The aging process is

also impacted by radicals. A radical is an atom or a compound that contains an

unpaired electron and is described as “free radical” because it exists independently.

Radicals are generally very reactive and are regarded as reactive intermediates.

The reactivity in radicals is diven by the instability of the unpaired; they pair

to form low energy covalent bonds. A reverse process catalyzed by heat or light

leads to bond breaking. A system with one unpaired electron, exists as a doublet

with two degenerate states, represented as
(
ψ 1

2
, 1
2

, ψ 1

2
,− 1

2

)
, A double doublet is a

system with two electrons, far enough apart so that the overlap of their spatial

wave function is negligible. The wave function, a quantum mechanical concept,

is used to illustrate the singlet and triplet electronic states. The total wave

function for a set of particles such as the electron must be antisymmetric with

respect to the interchange of the particles. For two non-interacting electrons, the

symmetric ground state spatial wave function φa(1)φa(2) must be multiplied by

the antisymmetric singlet spin wave function to make the total wave function 1ψ =

φa(1)φa(2)
1√
2
(α(1)β(2)− β(1)α(2)). The excited singlet state will be represented

by 1ψ∗ = 1√
2
(φa(1)φb(2) + φa(2)φb(1))

1√
2
(α(1)β(2)− β(1)α(2)). The triplet state

involving φa and φb has an anti-symmetric spatial wave function and is multiplied

by the symmetric spin wave functions (Eq. 1.17).

3ψ∗1,0 =
1√
2
(φa(1)φb(2)− φa(2)φb(1))

1√
2
(α(1)β(2) + β(1)α(2)) (1.17)

3ψ∗1,1 =
1√
2
(φa(1)φb(2)− φa(2)φb(1))α(1)α(2)

3ψ∗1,−1 =
1√
2
(φa(1)φb(2)− φa(2)φb(1))β(1)β(2)
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1.5.1 Magnetic Field Interaction and Spin Splitting

Figure 1.1: The effects of a magnetic field on the energies of the α and the β species

In the absence of a magnetic field, the two electron spin configurations,
(
ψ 1

2
, 1
2

, ψ 1

2
,− 1

2

)
,

are degenerate and have the same energy. In a magnetic field however, the degeneracy

is lifted. The difference in energy is the electronic Zeeman or fine splitting, it increases

with the magnitude of the field. The magnetic field (B) interaction with the electron

spin is represented by the spin Hamiltonian (H)

H = 2.00231βBS +D(S2
z −

1

3
S2) + E(S2

x − S2
y). (1.18)
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The first term of the Hamiltonian is the interaction of the total spin with the

external field. The next two terms represent the dipole-dipole interaction. β is the

electron Bohr magneton, E and D are the zero field parameters and hold information

about the spatial distribution of the unpaired spins in the molecule. A large D means

the average distance between the two electrons is small [25, 26]. In the triplet states

of aromatic hydrocarbons, the orbitals occupied by the unpaired electron extend over

the entire molecule. As a consequence D decreases with the number of aromatic

rings [25, 26]. E is a measure of the deviation of the two electron distribution from

cylindrical symmetry.

Up to this point, generalities about radicals have been covered. Going forward, a

selective discussion of many-body systems will be the focus. The properties of many-

body systems, depend a great deal on how the the electrons interact with each other

and how apart they are from each other. The exchange integral K is an important

predictor of radical behavior in a many-body system,

K = 〈φa(1)φb(2)|
e2

r12
|φa(2)φb(1)〉. (1.19)

If K = 0, the electrons do not “see” each other’s spin, in this case the diradical is a

double-doublet rather than triplet or singlet. For K > 0, the singlet and triplet states

are distinct from each other. Furthermore, if φa is much lower in energy such that

the lower state is almost purely φa and the upper almost purely φb. The resulting

splitting will include energy contributions from these states (Ea, Eb),

Etriplet − Esinglet = Eb − Ea − 2K. (1.20)

The value of K depends on the structural properties of the molecular system. In

conjugated systems, if the flexibility of the molecule allows for a closer encounter

between the sites holding the two unpaired electrons then the system will exhibit

a strong exchange characteristic. In conjugated systems, the unpaired electrons
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interact with each other and the exchange interaction is further enhanced if the system

exhibit coplanarity. Conjugated dinitrene biradicals fall in this category; they have

conjugated pi-system with inter-connected aromatic rings that favor coplanarity.

1.6 Dinitrene Biradicals

For decades, nitrenes (molecular fragments with unpaired electron on nitrogen) have

been investigated. It is now well established that they are intermediates in the thermal

or photo breakdown of phenyl-azides [27, 28, 29, 30]. The photolysis of aromatic

azides is often investigated in organic matrices (at liquid nitrogen temperatures) ,in

the process, stable nitrenes with distinctive absorption spectra are produced [31].

These nitrenes intermediates are precursors of the dinitrene biradical [31, 34], with

the formation process occurring in two distinctive steps [33, 107]; the second step is

twice as efficient as the first.

Trozzolo et al [33] established the ESR spectrum of 1,4-diphenylenedinitrene

generated from 1,4-diazidobenzene thereby pioneering the first physical evidence

of the existence of a bi-radical in its triplet electronic ground state with electron

deficiencies on two separate atoms . Complexity surrounded the bi-radical formed:

they are now known to be very unstable and will disappear when the organic matrix

in which they are confined is exposed to a temperature as low as 90K [107].

Studies have been made to establish a structure-property relationship with the aim

of controlling ground state multiplicity, which is critical to the design and synthesis

of molecules with organic backbone and magnetic properties. Spin exchange and

spin polarization are the two models generally consider to promote the bi-radical

character in dinitrene. The discovery of the singlet ground state of dinitrene was

a true theoretical test for the exchange model [35]. The conjugated pi-system

in quinonoidal dinitrenes is responsible for the pi-spin polarization that promotes

the indirect communication between the conjugatively separated unpaired electrons.

Spin polarization or delocalization dilution through the addition of pi-conjugated
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spacer group reduces the indirect communication between the conjugatively separated

unpaired electrons [36, 37].The outcome of a complete inhibition of communication

between the unpaired spins is the existence of a non-interacting bi-radical very similar

to that seen in unconjugated systems.

Furthermore, the zero field splitting of quinonoidals bi-radical is not consistent

with what will normally be expected for unpaired electrons with pure bipolar

interactions completely localized on the nitrogen atoms. The zero field splitting

decreases as the distance between unpaired electrons is increased. The larger value

is indicative of the fact that exchange interaction and spin polarization are both

responsible for the indirect communication between the unpaired electrons [35]

Nonetheless, little or no information is available to explain the response ob-

served when a magnetic field or photolysis is used to manipulate the singlet-

triplet equilibrium populations. To extend our understanding of structure-property

relationship, concomitantly providing a theoretical explanation to the magnetic and

optical responses from the singlet-triplet equilibrium population manipulation, two

simple models of electron configuration are used to explore the splitting mechanism

in dinitrene biradicals. In the process, theoretical explanations are provided to the

optical- and magnetic-spectral features.
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Chapter 2

Many Body Methods

Very few electronic systems can be described in detail. Even a qualitative description

is impossible, within the context of classical mechanics, because the electron is a

very light particle with a mass close to zero. Quantum mechanics has emerged as

the reliable method with which electronic structure can be described. Electronic

structures become very difficult to described as the number of electrons increase.

The Schrödinger equation is the fundamental equation of quantum mechanics that

describes the electron distribution in electronic systems. The time-independent

Schrödinger equation in its simplest form is defined as

Ĥψ = Eψ, (2.1)

where Ĥ is the Hamiltonian and ψ is the eigen function of the Hamiltonian. Solutions

of Eq. 2.1 are obtained in two ways: without reference to experimental data (ab

initio) and with reference to experimental data (semi-empirical).

Over the years, significant approximations (Born-Oppenheimer) have been in-

troduced to simplify the complexity of the Shrödinger equation especially for

molecular systems. In the light of these approximations, two popular methods have

been consciously adopted in the Chemistry community, namely density functional
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t‘heory (DFT) and the ab initio hierachy that start with Hartree-Fock (HF). Other

static and dynamic methods are built on DFT and HF

2.1 The Hartree-Fock Method

The Hartree-Fock method is a variational method in which the wave functions of the

many-electron system are represented as an anti-symmetrized product of the one-

electron wave functions, commonly known as a Slater determinant ΦSD,

ΦSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1), φ2(1), . . . , φN(1)

φ1(2), φ2(2), . . . , φN(2)
...

...
...

...

φ1(N), φ2(N), . . . , φN(N)

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.2)

ΦSD can be written in a simple form as follows:

ΨSD(x1, . . . ,xN) =
1

N !

∑

P

ǫPPφ1(x1) . . . φN(xN ), (2.3)

where P is the permutation operator that permutes the coordinates of the spin-

orbitals only and not their labels (otherwise, there will be no effect). ǫP is −1 or

+1 depending on whether the parity of the permutation is odd or even. The direct

consequence of the anti-symmetry requirement is the Pauli principle, which state that

no two electrons can have all quantum numbers equal.

The expectation value of the energy is calculated by applying the Hamilto-

nian (subject to the Born-Oppenheimer approximation) to the Slater determinant.

The result is then minimized with respect to the spin-orbitals in the determinant.

Writing the Hamiltonian as follows:

H =
∑

i

h(i) +
1

2

∑

ij;i 6=j

g(i, j), (2.4)
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with

g(i, j) =
1

|ri − rj|
(2.5)

and

h(i) = −1

2
∇2

i −
∑

n

Zn

|ri −Rn|
(2.6)

h(i) is the one electron Hamiltonian and g(i, j) is the two electron piece. ri and rj are

the electron coordinates while Zn and Rn represent the the nuclei charge and the

nuclei coordinates. The expectation value of the energy is obtained as follows:

E =
∑

k

〈ψk|h|ψk〉+
1

2

∑

kl

[〈ψkψl|g|ψkψl〉 − 〈ψkψl|g|ψlψk〉] (2.7)

Eq. 2.7 is the energy functional and can be written in a simple form as

E =
∑

k

〈ψk|h+
1

2
(J−K)|ψk〉 (2.8)

J is called the Coulomb operator and K the exchange operator, obtained by

interchanging the rightmost spin-orbitals of the Coulomb operator. The ground

state of the many-electron system is obtained by minimizing Eq. 2.8 as a function

of ψk subject to the 〈ψk|ψl〉 = δkl constraint.

Setting ̥ = h + J − K, the Fock operator ̥ is defined and Eq. 2.9 is the

Hartree-Fock equation which can be solved in a self consistent scheme as an eigenvalue

problem. Λkl are the Lagrage multipliers interpreted as molecular orbital energies.

̥ψk =
∑

l

Λklψl (2.9)

2.2 Density Functional Theory

Density functional theory (DFT) is based on the papers by Hohenberg [5] and Kohn

and by Kohn and Sham [13] wherein they compare the density of the system to that
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of a non-interacting particle system moving in a local potential vs(r), defined by the

Kohn-Sham equations (in atomic units)

[
−∇2

2
+ vs[ρ](r)

]
φi(r) = ǫiφi(r) (2.10)

vs[ρ](r) is a linear combination of three potentials: the external potential vext and

the Hartree potential vH , which is calculated from the density and the exchange

correlation potential vxc , the only unknown part of the Kohn-Sham (KS) equations.

vs(r) = vext(r) + vH(r) + vxc(r) (2.11)

The Kohn-Sham orbitals φi(r) experience the effective field, vs, which is a functional

of the electron density. The exact electronic charge density of the system is not

known but can be calculated from the sum of the squares of the Kohn-Sham orbitals

multiplied by their occupation numbers, ni

ρ(r) =
occ∑

i

ni|φi(r)|2 (2.12)

The effective potential and the electronic charge density are interdependent, thus

the KS-equations are solved in a Self-Consistent Field (SCF) scheme, which involves

iteratively adjusting the density until the difference between the successive values of

density and energy are within the defined threshold.

An approximation for the exchange correlation potential is required to solve the

KS-equations, the simplest approximation being the Local Density Approximation

(LDA). The Generalized Gradient Approximations go beyond just the density to take

into account the gradient of the density, thus allowing for a much improved accuracy

in the results for energies and geometries. Many other approximations based directly

on the KS-orbitals are available.
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2.3 Time-dependent Density Functional Theory

Ordinary DFT is restricted to ground-state problems, however excitation energy cal-

culations within the ground-state DFT are possible through the so-called ∇SCF tech-

niques [60, 61, 62, 63]. The latter technique has a less solid theoretical basis than

the time-dependent density functional theory (TDDFT). Furthermore, molecular

properties such as frequency-dependent polarizabilities, hyper-polarizabilities and

their derivatives with respect to the vibrational modes of the molecule as well as the

Van der Waals dispersion coefficients are either not easily accessible or not accessible

at all using ∇SCF .
TDDFT is an extension of the ordinary DFT method, it starts from the time-

dependent Kohn-sham (TDKS) equations, derived for first time by Runge and

Gross [64]

i
∂

∂t
φi(r, t) =

[
−∇2

2
+ vs(r, t)

]
φi(r, t) ≡ Fsφi(r, t) (2.13)

where vs(r, t) is similar to its static counterpart, but for the fact that it is time

dependent.

vs(r, t) = vxc(r, t) + vH(r, t) + vext(r, t) (2.14)

The Hartree potential vH(r, t) is explicitly defined as

vH(r, t) =

∫
ρ(r2, t)

|r1 − r2|
. (2.15)

The time-dependent exchange potential vxc[ρ](r, t) is an unknown functional of the

time-dependent density, now defined as

ρ(r, t) =
occ∑

i

ni|φi(r, t)|2. (2.16)

Solving the TDKS equations iteratively, optimized Kohn-Sham (KS) orbitals are then

used to compute and update the density. Solutions to the TDKS equation can be

obtained perturbatively and non-perturbatively. The perturbative approach allows
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for solutions of large systems and is the solution of interest. Considering the external

potential vlmext(r, ω), of general multi-pole form, and expanding the KS-equation to

first order, the frequency dependent first-order correction to the density is derived.

The coupling matrix Kijσ,klτ from the first order change in density matrix can be

broken down into two components namely, a Coulomb Kijσ,klτ
coul and exchange and

correlation Kijσ,klτ
xc .

Kijσ,klτ = Kijσ,klτ
coul +Kijσ,klτ

xc (2.17)

The functional derivative of vσxc(r, t) with respect to ρτ (r
′, t′) , is defined as

fxc
στ (r, r′, t− t′) =

∂vσxc(r, t)

∂ρτ (r′, t′)
(2.18)

if Eq. 2.18 is non zero only for t = t′, we have an adiabatic approximation, otherwise,

it is a non-adiabatic approximation.

Choosing an appropriate exchange correlation functional, the real part of the

response of the density to the external field is obtained as follows:

[△− 2K] (Re∂P ) = ∂vext (2.19)

where △ is a diagonal matrix. The real part of the first order correction to the density

matrix P, gives access to the frequency-dependent polarizabilities [66, 64, 67]. For an

excitation, the finite external perturbation ∂vext leads to an infinite change in density

matrix such that △ − 2K possesses zero eigenvalue at the excitation energy. After

a unitary transformation, the eigenvalue equation from which the excitation energies

and oscillator strengths are obtained [65]

ΩFi = ω2
i Fi (2.20)
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where ωi are the excitation energies and the oscillator strengths are obtained from the

eigenvectors Fi. The Ω-matrix is split into singlet and triplet parts for spin restricted

calculations.

2.4 Multi-configuration Self-consistent Field

Multi-configuration self-consistent field (MCSCF) is a type of configuration interac-

tion (CI) method in which both the coefficients and the molecular orbitals (MOs) used

in constructing the determinants are optimized. MCSCF calculations are smaller in

size (with respect to the number of electrons) than the CI calculation, for the same

system. MCSCF is generally use for calculations not treated well by HF such as for

systems with multiple electronic configurations. Thus MCSCF is an extension of the

single Hartree-Fock (HF) wave function that gives a qualitatively correct description

of the electronic structure.

The major difficulty with MCSCF, is the selection of the necessary configuration

to include for the property of interest. Many approaches have been proposed and

the most popular among them is the complete active space self-consistent field

method (CASSCF). The selection of the MOs to include in the active space is done

manually, taking in to account the property to be determined and the computational

cost. The MOs selected are usually some of the highest occupied MOs and the

lowest unoccupied MOs from the RHF calculation. Within the active MOs a full

CI is performed and all proper symmetry adapted configurations are included in the

MCSCF optimization. MCSCF calculations therefore will need an initial guess, which

is usually a RHF calculation or another MCSCF calculation.

2.5 Numerical Environment

Ab initio methods derive information by solving the Shrödinger’s equation ideally

without fitting experimental data. When necessary approximations are made,
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including experimental data or simply a reformulation of Shrödinger’s equation. One

of such approximation is the use of known functions to represent the unknown MOs.

An infinite number of functions (known as basis functions) must be used for a complete

representation of the MOs. Theoretical Chemistry, uses a numerical environment

made up of complete and incomplete basis sets.

2.5.1 Basis Sets

There are two types of basis functions, commonly used in electronic structure

calculations, namely: the Slater-type orbital (STO) [68] and the Gaussian-type

orbital (GTO) [69]. The STOs have the functional form

χζ,n,l,m(r, θ, ϕ) = NYlm(θ, ϕ)r
n−le−ζr (2.21)

N is the normalization constant, Ylm are the spherical harmonic functions, r is the

distance from the nucleus to the electron. The GTO on the other hand are represented

with Gaussians or cartesian coordinates.

χζ,n,l,m(r, θ, ϕ) = NYlm(θ, ϕ)r
2n−2−le−ζr2 (2.22)

χζ,lx,ly,lz(X, Y, Z) = NX lxY lyZ lze−ζr2

The most important factor in MOs approximation is the number of functions to

be used. The smallest number of functions possible is the minimal basis in which

each occupied atomic orbital is represented by a single appropriate basis function.

A better description of the electron distribution is done by changing the number of

basis functions. This goes from doubling, tripling, quadrupling to quintupling the

minimal basis. Other specialized functions are added for the purpose of including

polarization, accounting for diffuse charge and electron correlation (functions with

higher angular momentum). There are definitely many varieties of basis sets but our

choice(s) should be guided by the nature of the calculations and the computational
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cost. A new generation of basis sets is coming of age where the approximate existing

basis sets are used as initial guess, after which they are projected onto a numerical

basis set, themselves effectively complete. The Multi-resolution Adaptive Numerical

Environment for Scientific Simulations (MADNESS) uses numerical-complete basis

sets in its numerical framework.

2.5.2 Multi-resolution Multi-wavelet Fundamentals

MADNESS [70] is a general purpose package that provides a high-level environment

for solving differential and integral equations in many dimensions using adaptive

fast algorithm with guaranteed precision based on multi-resolution analysis and

novel separated representation. MADNESS is designed in levels: at the lowest

level is a petascale parallel programming environment that provides programmers

productivity and code scalability while maintaining a backward compatibility with

programming environments such as MPI and Global Arrays. Built upon the parallel

programming environment, is a general framework for solving numerical problems in

as much as six dimensions. The highest levels combines the parallel programming

and the numerical environment to design applications for chemistry and other types

of scientific simulations.

Adaptive refinement in a multi-wavelet basis is the central technique of the

numerical environment in MADNESS. The numerical domain [0,1] is repeatedly

subdivided by factors of two such that at the nth-level of refinement there exist 2n

boxes each of size 2−n, and the orthonormal basis in each box is the first k Legendre

polynomials (termed scaling functions) appropriately scaled and shifted

φi(x) =





√
2i+ 1Pi (2x− 1) , x ∈ [0, 1]

0, otherwise

with the ith function in box l being φn
il(x) = 2

n
2 φi (2

nx− l). Adaptive refinement

occurs locally only if the local error is above a truncation threshold (δ).
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Wavelets arise as the natural basis to describe the difference in the basis between

successive levels of refinement. I.e., the multi-wavelet subspace Wn is complementary

to the scaling function space Vn, with Wn = Vn+1 − Vn. The scaling functions and

multi-wavelets are related through two-scale relations that in turn make possible

controlled adaptive refinement.

A user-defined function f(x) is projected into the basis using orthonormal

projection and can be represented in real space as a sum over adaptively refined

scaling functions (or, equivalently, values at the Gauss-Legendre quadrature points),

or in wavelet space as a sum over scaling functions at the coarsest level and wavelets

at finer length-scales.

fn(x) =

2n∑

l=0

k−1∑

i=0

snilφ
n
il(x) (2.23)

=
k−1∑

i=0

s0i0φ
0
i0(x) +

n−1∑

m=0

2m−1−1∑

l=0

k−1∑

i=0

dmil ψ
m
il (x)

The coefficients snil and d
n
il are respectively referred to as the scaling-function (or sum)

and wavelet (or difference) coefficients. Truncation of negligible coefficients enables

adaptive refinement and is done in the present application according to the local

condition

‖dnl ‖2 ≤ 2
−n
2 δ (2.24)

For the present work, an enabling feature of MADNESS is the efficient and

accurate application of many integral convolution operators

(T ∗ f) (x) =

∫
dyK (x− y) f(y) (2.25)

using the non-standard form [71] and efficient separated representations [72].
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Chapter 3

Polarizable Continuum

Electrostatic Solvation Models

Using the dielectric constant to describe the solvent as a polarizable continuum, a

description of two solvation models is made. The two models are surface-volume

polarizable electrostatics (SVPE), and iso-density solvation models. In both models,

a good description of the molecular cavity is essential: the SVPE model builds the

molecular cavity as a system of interlocking spheres while the iso-density model

uses the molecular electronic charge density to construct iso-density contours. In

the paragraphs that follow, the SVPE and the iso-density solvation models will be

presented. New results include formulation of both models in a form appropriate for

implementation in MADNESS, a new mesh function with much improved numerical

behavior, refined approach to computing the molecular surface area and volume.

3.1 Molecular Volume and Surface

To illustrate the use of interlocking spheres in the design of molecular cavities, a

geometric approach is used to construct the volume and surface of hard spheres .We

limit the volume and surface to that of two spheres; the values obtained thereafter,
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are the exact values of the volume, Ve , and the surface Se. Two intersecting spheres,

of radius r1 and r2 with a distance d between their two centers, has an overlap region,

Oe. Knowing the volume and surface area of the overlap region, the total volume and

surface area of the intersecting spheres are computed analytically with the following

equations:

Oe =
π (r1 + r2 − d)2 (d2 + 2dr2 − 3r2 + 2dr1 + 6r1r2 − 3r21)

12d
(3.1)

Ve =
4π

3

(
r31 + r32

)
− Oe (3.2)

Se =
π (2dr21 + 2dr22 + r31 + r1d

2 − r1r
2
2 + r2d

2 − r21r2 + r32)

d
(3.3)

Figure 3.1: Two interlocking spheres
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The analytical expression for two intersecting spheres is complicated. If one were

to extend this analytical approach into computing the volume and surface area of

N-intersecting spheres, then it will be very cumbersome. This increase in complexity,

is enough for us to consider a simple and easy to implement approach consisting

of constructing a geometric-domain mask as allowed by the effective radii of the

intersecting spheres involved.

3.1.1 Computed Volume and Surface

We designed an efficient way of numerically computing the surface and volume of a

molecule made up of N atoms; each atom defined by a three dimensional coordinate

position ri and a radius, Ri . The construction of the surface begins with the definition

of a regular spherical domain C centered around the three dimensional coordinate of

the center of the sphere and extended within the range of its radius. Each atom

within the molecule has an effective radius Ri, solvent size is included in the radius

of the atom, such that for each atom i with coordinate ri, the signed normal distance

function of an arbitrary point r from the surface of atom is constructed as follows:

s (r, i) = |r − ri| − Ri (3.4)

The characteristic function for the sphere surrounding the ith atom is obtained.

C (r, i) = 1−Θ(s(r, i)) = Θ(−s(r, i)) (3.5)

Θ is the Heaviside step function: its value is zero inside the atom, a half on the surface

of the atom, and one outside the atom.

Θ(s(r, i)) =





0, if s < 0

1
2
, if s = 0

1, if s > 0

(3.6)
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There are many smooth analytic approximation to the Heaviside step function

which we list a few examples.

Θ(s) =





lim
σ→0

[
1

2
+

1

π
arctan

( s
σ

)]

lim
σ→0

1

2

(
1 + erf

( s
σ

))

lim
σ→0

1

2

(
1 + tanh

( s
σ

))
(3.7)

Hence, the characteristic function for the entire molecule is

C(r) = 1−
N∏

i=1

(1− C(r, i)) = 1−
N∏

i=1

Θ (s(r, i)) (3.8)

Integrating this function will yield the molecular volume. The iso-surface with value

one half defines the molecular surface and integrating that will yield the molecular

surface area. A more convenient way to define the molecular surface is to note that

the derivative of the characteristic function normal to the surface is a delta function

positioned at the surface. This is discussed in more detail in section 3.1.2

3.1.2 Molecular Volume and Surface from Soft Spheres

Instead of using the step function we introduce a function that smoothly switches

between 0 and 1 over a controllable distance σ

1

2

(
1 + erf

( s
σ

))
(3.9)

The second of the three expressions in 3.7 is modified to form the smooth

Heaviside-like step function which will be used as a switch between the inside

and the outside of the atom thereby enabling a better handling of the boundary

conditions (discontinuity). The expression as well as its derivative are easier to handle

numerically than the other Heaviside-like expressions. As the value of σ becomes

smaller we approach the description of a step function as shown in Fig. 3.2 . We
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2

(
1 + erf

(
s
σ

))
gets closer to a step

function as σ → 0

now have soft spheres that are much easier to compute with, and are actually a lot

more like real atoms.To define the surface, we define a mathematical expression that

behaves like the outward normal to the surface times a delta function at the surface .

n(r) = −∇C(r) (3.10)

The gradient is automatically oriented normal to the surface and the negative sign

makes it point outward. The surface itself is a spherical shell defined by

S(r) = |n(r)| (3.11)
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For a single atom, we obtain the gradient as follows:

∇C(r, i) = − ∂
∂s(r,i)

Θ (s(r, i), σ)∇s(r, i)
∇s(r, i) = r−ri

|r−ri|

|∇s(r, i)| = 1

∂
∂s
Θ(s, σ) = 1

σ
√
π
exp

(
− s2

σ2

)

|n(r)| = 1
σ
√
π
exp

(
− s2

σ2

)

(3.12)

For molecules, many atoms intersect and we have to compute the different components

of the derivatives. The denominator of the derivative (i.e (1 − C(r))) needs to be

handle with care especially for very small values

∇C(r) =
(

N∏

i=1

(1− C(r, i))

)(
N∑

i=1

∇C(r, i)
1− C(r, i)

)
(3.13)

3.2 The Iso-density Cavity

Contrary to the cavity of the interlocking sphere described above, the dielectric

function is a functional of the electronic density of the molecular system ǫ[ρ(r)]. Just

as in the interlocking sphere model where the switching function is used to switch

smoothly between the inside and outside of the molecular cavity, a similar parameter

exist here to allow for a smooth decay of the dielectric function in the proximity of the

solute-solvent boundary. In the implementation, the dielectric function is described

using two parameters ρ0 and β:

ǫ [ρ(r)] = 1 +
ǫ− 1

2

(
1 +

1− (ρ(r)/ρ0)
2β

1 + (ρ(r)/ρ0)
2β

)
(3.14)

The parameter ρ0 is the density threshold determining the cavity size and β modulates

the smoothness of the transition from ǫ to one. Eq. 3.14 asymptotically approaches

the value of the dielectric constant ǫ (the permitivity of the bulk solvent) in the tailing

region of the electronic charge density. It reaches a maximum value of one in regions
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Figure 3.3: Two dimensional plot of the dielectric function ǫ[ρ(r)] along the x-
component of the simulation cube

where the electronic density is high. This functional is accurately computed and

represented without having to augment the electronic density with some Gaussian

function as is the case in [97]. The nature of the functional suggest numerical

difficulties in its computation, which we overcome by setting a cutoff value of 10−12

of the electronic charge density such that any value of the functional, at given point,

that is less than the cutoff-value is systematically set to zero. The programming

environment contributes to the handling of the roundoff errors, by computing the

functional point-wise, contrary to a step-by-step method which is suggested on a first

view by the functional.
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3.3 Solving The Poisson’s Equation

Two cavity models, to mark the solute-solvent interface, have been presented above.

The cavities will be used to find solutions to the Poisson’s equation. The reference

solution is the vacuo potential which is obtained as a solution to the Poisson’s equation

in the vacuum.

∇2φ = −4πρ (3.15)

What follows from here is a description of how to solve the Poisson’s equation for a

system in a solvent described implicitly by its dielectric property.

3.3.1 Interlocking Spheres

We have developed a function (the molecular mask) that enables us to represent

an irregular domain such as a molecular cavity that we will employ to solve the

Poisson’s equation for an electronic distribution of charge in a solvent. The solvent

is represented implicitly as a dielectric continuum with its dielectric constant ǫ.There

exist two media separated by the boundary of the irregular domain namely, the inside

of the domain which is a vacuum with a unitary dielectric constant and the outside

of the domain which is the solvent. Defining Ω as our irregular domain, we associate

the dielectric constants to the molecular mask C(r) such that we can switch between

the inside and outside of Ω. Thus, for this work we define our position dependent

dielectric function as follows:

ǫ(r) = ǫ0C(r) + ǫ(1− C(r)) (3.16)

The Heaviside-like function of Eq. 3.9 enables the switching between the inside and

the outside of the domain. The value of C(r) determines whether we are in the
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presence of a solvent or a vacuum.

C(r) =




1 inside Ω

0 outside Ω

(3.17)

ǫ0 and ǫ are the dielectric constants of the vacuum (ǫ0 = 1.0) and the solvent

respectively. We now set up the Poisson’s equation for an electronic distribution

of charge within a dielectric medium.

∇ · (ǫ(r)∇U(r)) = −4πρ(r) (3.18)

Finally, we obtain an expression that projects the surface induced charge and the

electrostatic potential inside and outside the molecular volume.

∇2U(r) = −4πρ(r)

ǫ(r)
− ∇ǫ(r) · ∇U(r)

ǫ(r)
(3.19)

The reference potential as earlier defined is the in-vacuo potential, the potential in

the absence of the solvent. We can extract (from Eq. 3.19) the effective volume charge

distribution ρeff and the surface charge distribution σ.

ρeff = 1
ǫ
ρ

σ = 1
4πǫ

∇ǫ · ∇U

(3.20)

We proceed to solving Eq. 3.19 by inverting the Laplacian through the convolution of

the volume and the surface distribution of charges with the free-space Green function.

G(r, r′) =
1

|r − r′| (3.21)
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The electrostatic potential in vacuo Uv and the total electrostatic potential Ut are

computed from Eq. 3.22, and Eq. 3.23.

Ut = G · (ρeff + σ) (3.22)

Uv = G · ρ (3.23)

Setting ǫ0 = 1.0 we can compute the reaction potential, the electrostatic effects of

the solvent on a molecule dissolved in it, by subtracting the vacuo potential from the

total potential.

Ur = Ut − Uv

Ur = G · (σ + ρeff − ρ)

Ur = G ·
(
σ − (ǫ−1)

ǫ
ρ
)

(3.24)

If the charge distribution is localized entirely within the cavity, then the reaction

potential is due to the surface-induced charge distribution. This is not always the

case for the electronic charge distribution. Only the nuclear charge distribution is

entirely localized within the molecular cavity.
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Figure 3.4: Two dimensional plot of the electronic charge distribution (in red) and
the interlocking spheres cavity function (in blue) of the benzene molecule. The plot
is along the x-component of the electronic charge distribution. A fraction of the
electronic charge density is outside the molecular cavity.

The total electrostatic potential could equally be computed directly from the

surface charge distribution, which we obtain by applying the operator Ŝ on Eq. 3.22.

Ŝ =
1

4πǫ(r)
∇ǫ(r) · ∇ (3.25)

The operations then follows:

ŜUt = σ

σ = σ0 +G · σ
σ0 = G · ρeff

G = 1
4πǫ(r)

∇ǫ(r) · ∇G

(3.26)
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For a perfect conductor, the exterior potential is zero, the molecule in the cavity is

completely screened such that it only “sees” the field inside the cavity. The switching

function cannot be used to represent the screening exactly. A new dielectric function

expression is derived using the log-derivative as shown in the equations below.

Figure 3.5: Comparison of the norm of the log-derivative of the dielectric function
for the two forms of the switching function (linear (3.16) and exponential (4.39)) for
σ =0.2 and ǫ∞=78.
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ǫ(r) = ǫ0 exp
(
log ǫ1

ǫ0
(1− C(r))

)

ǫ(r)−1 = ǫ−1
0 exp

(
log ǫ0

ǫ1
(1− C(r))

)

∇ log ǫ(r) = ∇ǫ(r)
ǫ(r)

= log ǫ0
ǫ1
∇C(r)

(3.27)

With this form of discontinuous dielectric function, the charge distribution is always

localized exactly on the surface of the molecular cavity, and this leads to a much

improved numerical behavior and more rapid convergence to the limit σ = 0 and σ

is reduced.
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Figure 3.6: Two dimensional plot of the surface charge distribution Σ(r) on the
interlocking spheres cavity for the benzene molecule.The charge distribution is zero
everywhere except on the molecular cavity surface. The plot is along the x-component
of the electronic charge distribution
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3.3.2 Iso-density Cavity

The solution to the Poisson’s equation described in this section is very similar to

that of the interlocking sphere cavity but for the fact that the dielectric function is a

functional of the electronic charge density:

∇ · (ǫ [ρ(r)]∇φ(r)) = −4πρ(r) (3.28)

Eq. 3.28 is expanded and simplified as was the case in Eq. 3.18:

∇2φ(r) = −4πρ/ǫ [ρ(r)]− ∇ǫ [ρ(r)]
ǫ [ρ(r)]

∇φ(r) (3.29)
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Figure 3.7: Two dimensional plot of the surface charge distribution Σ(r) of the
benzene molecule for the iso-density method. The surface charge distribution is an
outcome of polarization and is represented by the second term on the RHS of Eq. 3.29.
The plot is along the x-component of the electronic charge density.
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Figure 3.8: Two dimentional plot of the quotient of the functional derivative
of ǫ[ρ(r)] with respect to ρ by ǫ[ρ(r)]. Computation is carried out point-wise
to control numerical noise.

The right hand side (RHS) of Eq. 3.29 is computed point-wise before convolution

with the free-space Green’s function. The second term is computed with care, by

setting a cutoff value (10−12) to the electronic charge density (values of ρ(r) less than

the cutoff-value is set to 0). The chain rule is applied on ∇ǫ [ρ(r)] and the partial

derivative of ǫ [ρ(r)] with respect to ρ is combined and simplified before multiplying

with ∇φ and ∇ρ. The programming environment favors the computation of the

second term, point-wise, so as to avoid errors from machine roundoff.
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Figure 3.9: Two dimentional plot of the functional derivative of ǫ[ρ(r)] with respect
to ρ. The use of cutoff value on electronic density is not enough to eliminate numerical
noise.

∇ǫ [ρ(r)] =
(

∂ǫ[ρ(r)]
∂ρ

)
r
∇ρ

∂ǫ
∂ρ
(r) = 1−ǫ

ρ0

2β(ρ(r)/ρ0)
2β−1

(1+(ρ(r)/ρ0)
2β)

2

(3.30)

putting together Eq. 3.14 and 3.30, we obtain the following

∇ǫ [ρ(r)]
ǫ [ρ(r)]

=
2β (1− ǫ)

ρ0

(ρ(r)/ρ0)
2β−1

(
1 + (ρ(r)/ρ0)

2β
)(

ǫ+ (ρ(r)/ρ0)
2β
) · ∇ρ(r) (3.31)
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3.3.3 Electrostatic Potential

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  5  10  15  20  25  30  35  40

U
(r

)(
a
.u

)

r (a.u)

Figure 3.10: Two dimentional plot of the total electrostatic potential of the benzene
molecule for the iso-density method. The plot is done along the z-axis

Eq. 3.19 and Eq. 3.29 are all linear second order Poisson’s equation and the

electrostatic potential for which we solve, appears on both sides of the equation, thus

we solve these equations self-consistently. First, we invert the second order differential

operator through convolution with the free space Greens function that is already

implemented in MADNESS. The self-consistent routine for solving the linear and

nonlinear equations implemented in MADNESS is the Krylov subspace accelerated

inexact Newton method (KAIN) [54]. The interface to the KAIN routine consist of the

vacuo and the initial guess potentials. The vacuo and the initial potentials are used to

compute the residuals with which the KAIN routine is started. The total electrostatic

potential for a solute in a solvent is obtained when the convergence criteria are met

(convergence occurs when the 2-norm of the residuals is less than 10.0 ∗ tol where tol

= max(10−4, threshold) threshold is the accuracy on the MADNESS function)
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3.4 Solute-solvent Reaction

The reference potential is the gas phase potential which is obtained by convolving the

total charge density ρtot, electronic and nuclear charge densities, with the free-space

Green’s function.The electronic ρ(r) and nuclear γN(r) charge densities are computed

separately. The electronic charge density is computed from an initial guess of atomic

orbital vectors, cµ ( obtain from NWchem [102]). The initial guess of the electronic

charge density is made in a small Gaussian basis and converted into a MADNESS

function. The delta function δ (Ri − r) of the nuclear charge density is made of very

small (by width) Gaussian functions computed with very fine mesh. The order (k) of

the numerical basis is chosen such that the nuclei coordinates coincide with dyadic

points (i.e., an integer multiple of some power of two division of the domain) – this

will give the most accurate representation.

γ(r) = γN (r) + ρ(r)

γN(r) =
N∑

i=1

Ziδ (Ri − r)

ρ(r) =
occ∑

i

AO∑

µ

χµcµi

(3.32)

The solute-solvent reaction for both the interlocking sphere and the iso-density models

are very similar in principle and only differ in the steps taken to compute them.

The steps taken to compute the solute-solvent reaction potential and energy for the

interlocking spheres and iso-density approaches are described in the following two

paragraphs.

3.4.1 The Solute-solvent Reaction Potential

The solute-solvent reaction potential energy Erp is the product of the total charge

distribution and the solute-solvent reaction potential which we can expand explicitly

to show the different components. The solute-solvent reaction potential is decomposed
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Figure 3.11: Two dimentional plot of the solute-solvent electrostatic reaction
potential of the benzene molecule for the iso-density method. The plot is along
the x-axis of the simulation cube.
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Figure 3.12: Two dimentional plot of the solute-solvent electrostatic reaction
potential of the benzene molecule for the SVPE method. The plot is along the x-axis
of the simulation cube.
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Figure 3.13: Two dimentional plot of the solute-solvent electrostatic reaction
potential (in red) and the interlocking sphere cavity function of the benzene
molecule (in blue).The surface and volume electrostatic potentials are accounted
for and are indistinguishable. The plot is along the x-component of the simulation
reference.

into the nuclear Urn and electronic Ure components with each of the components being

the convolution of the free-space Green’s function with the nuclear and electronic

charge distributions respectively.

Ur(r) = Urn(r) + Ure(r)

Urn(r) = G · γN(r)
Ure(r) = G · ρ(r)

(3.33)

The solute-solvent reaction potential energy then follows as:

Erp =
(
ρ(r) + γN(r)

)
(Urn(r) + Ure(r))

Erp = ρ(r)Urn(r) + ρ(r)Ure + γN(r)Urn + γN(r)Ure

(3.34)
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The electrostatic solute-solvent reaction potential explicitly fragmented into four

terms, namely the electron-nuclear Een, the electron-electron Eee, the nuclear-nuclear

Enn and the nuclear-electron Ene electrostatic reaction potential energies. The Een

and Ene terms should be equal in magnitude.

Erp = Een + Eee + Enn + Ene (3.35)

Though the iso-density cavity computation is as proposed by Fattebert and

Gygi [97], the solute-solvent potential is the solution of Eq. 3.29 with a fixed cavity.

This is similar to the interlocking sphere approach but for the fact that the iso-density

cavity is a functional of the density and requires the inclusion of the response of the

electronic charge density to the change in cavity. The electrostatic solute-solvent

reaction energy Ees is computed from the total charge density and the solute-solvent

reaction potential Ur(r). ∫
ρtot(r)Ur(r)dr (3.36)

Ees is an augmentation to the Kohn-Sham energy functional for a system of ions and

electrons

E[ρ] = T [ρ] +

∫
v(r)ρ(r)dr + Exc +

1

2

∫
ρ(r)φ[ρ]dr +

1

2

∫
ρtot(r)U [ρ]dr (3.37)

The terms on the right hand side of Eq. 3.37 correspond to the kinetic energy of the

electron, the interaction energy of the electrons and the ions, the exchange-correlation

energy, the electrostatic energy and the solute-solvent reaction energy. Inserting ρtot

from Eq. 3.29 , with fixed cavity, and integrating by parts ,the solute-solvent reaction

energy is rewritten as follows:

Er =
1

4π

∫
ǫ[ρ] (∇U [ρ])2 dr (3.38)

45



The functional derivative of Eq. 3.38 with respect to ρ yields Ur and an extra

term, Uǫ originating from the fact that the dielectric function is a functional of the

electronic charge density.
∂Er

∂ρ
(r) = Ur + Uǫ (3.39)

Uǫ = − 1

4π
(∇U(r))2 ∂ǫ

∂ρ
(r) (3.40)

The self-consistent Kohn-Sham potential is constructed summing Uǫ and the vacuum

corrected solute-solvent reaction potential Ur to which contributions from local

and nonlocal potentials are added. The Uǫ term is very unstable, due mainly to

the (∇U(r))2 term which is very small everywhere except on the surface where the

value of the function is not zero but yet just slightly bigger than the threshold. High

precision is needed to compute this function. The unstable term can be forgone if

the iso-density cavity is kept fixed by using a converged gas phase electronic charge

density to compute the dielectric functional. In this case, the iso-density is kept fixed

and Uǫ cease to be important. J. Dziedzic et al [55] have shown that this modification

greatly improves the methodology and makes the method very efficient.

3.4.2 Electrostatic Free Energy of Solvation

Self-consistent solution of the Kohn-Sham equations for the Hamiltonian of an isolated

solute provides the gas phase internal energy Eg as well as the electronic charge density

to be added to the nuclear charge, to obtain the total charge distribution used in

solving the Poisson equation. The effective Kohn-Sham Hamiltonian is constructed

by adding the solute-solvent reaction potential to the isolated solute Hamiltonian.

The new Kohn-Sham equations are then solved and a new solute charge density that

differs from the gas phase counterpart is obtained. Since the charge density changes,

the final solute internal energy Es changes as well. The solute-solvent reaction energy

is defined as follows:

Er =

∫
d3r′ρtot(r

′)Ur(r
′) (3.41)
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Using the Ben-Naim convention [98] that the solute maintains a fixed position as

it transfered from gas to solvent. The electrostatic free energy of solvation is then

defined by

∆G = Es −Eg +
1

2
Er (3.42)

Note that only half of the solute-solvent reaction energy is available as free energy,

the remaining half is used as work to reversibly charge the solute in the presence of

the solvent.

3.4.3 Cavitation Energy

Cavitation energy ∆G represents the effect of the solute-solvent interaction on the

solvent, in fact, cavitation energy is defined as the work done on the solvent to create

an appropriate cavity inside the solvent for the solute in the absence of the solute-

solvent interaction [73]. As of now, there are no experimental data for the cavitation

energy and different approaches have been introduced for its calculation. The scaled

particle theory [74, 75], originally proposed by Pieriotti and further developed in

different studies [76, 77, 78, 79, 80] wherein parameterization is still needed to

represent the radius of the solvent and those of the spheres centered on the solute

atom, although the approaches rely on a rigorous application of statistical mechanics.

The Pierotti-Clavierie formulation [81] is the most used approximations for non-

spherical cavities. For a system of N interlocking spheres centered on the atoms,

the cavitation free energy is computed as follows:

∆Gcav =

N∑

k=1

Ak

4πR2
k

Gcav(Rk) (3.43)

where Ak is the area of atom k in contact with the solvent, Rk is the Van der Waals

radius, and Gcav (Rk) is the cavitation free energy associated with the creation of a

spherical cavity of radius Rk around the kth atom.
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The macroscopic surface tension of the solvent Γ, as suggested by Uhlig [82, 83, 84]

is used to describe the ∆Gcav. This consists of expressing the work involved in

producing the cavity as the product of Γ by the area of the spherical cavity ∆ =

4πR2Γ. This approach has been extended to include the curvature of the solute-

solvent interface as explained by the Tolman theory for the surface tension of

droplet [85] as simplified in the following expression.

∆Gcav = PV + 4πR2Γ̄

(
1− 2δ

R

)
(3.44)

Γ̄ is the effective surface tension for the interface, R is the radius of the cavity, δ is the

proportionality coefficient accounting for the interface curvature and σ is the Lennard-

Jones radius. Floris et al. [87] and Huang et al. [86] through their simulations, have

assigned to δ a value of 0.0 in TIP4P water, and of the order of -0.5σ for different

Lennard-Jones fluid. This suggest that the curvature correction can be ignored for

cavities with radii above a few Angstroms. Thus we can, as have done Scherlis et al.

[97], compute the cavitation as the product of the surface tension by the area of the

cavity.

∆Gcav = ΓS (3.45)

S is the area of either the iso-density or the interlocking spheres cavity described

herein. The area of the iso-density cavity is computed using its characteristic

function (equation 3.46)together with the idea originally proposed by Cococcioni et

al. [88]

θ [ρ(r)] =
1

2

[
(ρ(r)/ρ0)

2β − 1

(ρ(r)/ρ0)
2β + 1

+ 1

]
(3.46)

The volume Vq of the iso-density cavity can now be computed as an integral sum of

the characteristic function of the iso-density cavity over space.

Vq =

∫
dr3θ (ρ(r)− ρ0) (3.47)
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The area of the iso-density cavity is computed as the 2-norm of the gradient of the

characteristic function i.e

Sq = |∇θ (ρ(r)− ρ0) |. (3.48)

Eq. 3.48 can be further simplified with the aid of the chain rule for functional

derivative, an approach adapted for MADNESS, that is different from the finite-

difference approach (that consist of determining the difference between two adjacent

iso-surfaces around the iso-density threshold ρ0). This is simply a finite difference

with a central difference over the entire space. The MADNESS approach is summed

up in the following equation

Sq =

∣∣∣∣
(
∂θ (ρ(r)− ρ0)

∂ρ

)

r

∇ρ(r)
∣∣∣∣ (3.49)

=

∣∣∣∣∣∣∣
2β

(ρ(r)− ρ0)
2β

(
1 + (ρ(r)− ρ0)

2β
)2

(ρ(r)− ρ0)
· ∇ρ(r)

∣∣∣∣∣∣∣

3.5 Results and Discussion

The SVPE and the iso-density solvation models have been implemented in MAD-

NESS. Molecular systems comprising cations, anions and neutral molecules of

different symmetries as well as different charge distributions have been tested. The

implementation of the two solvation models were carried out at both Hartree-Fock

and DFT/PBE0 levels of theory. We compare our SVPE and the iso-density solvation

models to other existing SVPE model. Likewise we compare the iso-density solvation

model to experiment and similar models in the literature.

3.5.1 Molecular Surface and Volume Results

Using the SVPE model, we compute the molecular volume and molecular surface of

selected molecules and compare them to some well known methods. The molecular

geometries are optimized at the RHF/6-31G* level in NWchem. The molecular face
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model [89] uses the fact that the potential generated by an electron in a molecule and

felt by other electrons and nuclei is equal to the negative of the ionization potential of

that electron. A molecular intrinsic characteristic contour, a unique representation of

the molecular shape is then defined and the molecular face surface area (MFSA)

as well as the molecular face volume (MFV) are computed. The molecular

iso-density contour approach[90] to computing the molecular iso-density surface

area (MIDSA) and the molecular iso-density volume (MIDV) is also considered.

Some hard sphere models with the solvent excluded surface area [91] (SESA), solvent

excluded volume (SEV), the Van der Wall surface area [92] (VdWSA),and the Van

der Waal volume (VdWV) are equally considered.

Finally, we assess the performance of our method with other methods as well as

with experimental results by using Eq. 3.50, The Pearson’s correlation coefficient, to

compute the correlation coefficients. The atomic radii used in the SVPE calculations

are Van der Waals radii. The molecules in general have Carbon, Oxygen, Nitrogen,

Hydrogen, and Chlorine atoms in their composition with atomic radii of 1.70, 1.52,

1.55, 1.20, 1.75 angstrom respectively.

RXY =

∑
XY − (

∑
X)(

∑
Y )

n√(∑
X2 − (

∑
X)2

nX

)(∑
Y 2 − (

∑
Y )2

nY

) (3.50)

RXY is the correlation coefficient,nX is the number of X-values, nY is the number of

Y-values, n is the number of pairs of X and Y values, and X and Y are the data for

which the correlation coefficients are being computed.
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Table 3.1: Molecular surface area of some selected molecules compared to the
molecular surface areas computed using hard spheres and iso-density methods. The
SVPE surface areas are computed with a surface width of 0.3 and areas are reported
in atomic units, squared

Molecules MFSA VdWSA SESA MIDSA SVPE

CH3COCH3 97.53 90.86 98.29 95.23 70.44

CH2CH2 45.89 55.65 62.82 56.43 59.05

C6H12 128.23 128.2 125.98 129.83 130.86

CH3CONH2 86.08 78.78 84.57 81.69 82.25

H2O 28.08 33.45 32.81 36.68 36.56

RXY 0.922 0.956 0.929 0.947 1.0

The molecular surface areas and volumes computed using the interlocking sphere

models (SVPE) generally match the results from other methods. Looking at Table 3.1,

the MFSA and the SESA correlate with the SVPE surface areas at 0.922 and 0.929

respectively. This is a significant level of correlation given that these two methods

use a parameterization (MFSA) and a locus of points (SESA) completely different

from that of the SVPE. On the other hand, the VdWSA and the MIDSA surface

areas have better correlation coefficients (0.956 and 0.947) with the SVPE model.

The VdWSA is computed analytically with the same Van der Waal radii for the

interlocking spheres as with the SVPE model while the MIDSA surface areas are

computed from iso-density contours. The observations from Table 3.2 follow those

from the surface areas calculation. Globally, the different methods agree with the

SVPE volume with the VdWV and MIDV having the same correlation coefficients

with the SVPE models (0.960, 0.960) and at the same time better than the level of

correlation between, the MFV, the SEV and the SVPE (0.913 and 0.929).

51



Table 3.2: Molecular volume of some selected molecules compared to the molecular
volumes computed using hard spheres and iso-density methods. The SVPE volumes
are computed with a surface width of 0.3 and volumes are reported in atomic units
cubed

Molecules MFV VdWV SEV MIDV SVPE

CH3COCH3 77.47 63.56 78.41 73.13 51.64

CH2CH2 26.49 36.43 44.25 38.28 37.59

C6H12 110.26 100.61 118.02 115.71 126.07

CH3CONH2 63.42 51.62 65.06 60.46 58.4

H2O 13.55 16.92 17.5 20.65 20.05

RXY 0.913 0.960 0.929 0.960 1.0

3.5.2 SVPE and Iso-density Results

Solution of the Schrödinger equation for the Hamiltonian of an isolated solute provides

the gas phase internal energy Eg as well as the electronic charge density used in

solving the Poisson’s equation. The effective Kohn-Sham and Fock Hamiltonians are

constructed by adding the reaction potential to the isolated solute Hamiltonians. The

new Kohn-Sham and Fock equations are then solved and a new solute charge density

which differs from the gas phase counterpart is obtained in each case. Since the charge

density changes, the final solute internal energy Es changes as well. The reaction field

energy due to the solute-solvent interaction is defined as follows:

Er =

∫

v

d3r′ρtot(r
′)Ur(r

′) (3.51)
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Using the Ben-Naim convention [98] which states that the solute maintains a fixed

position as it is transfered from gas to solvent, the electrostatic free energy of solvation

(∆Gs) is given by

∆Gs = Es − Eg +
1

2
Er (3.52)

Note that only half of the solute-solvent interaction energy is available as free energy,

because half of it is used as work to reversibly charge the solute in the presence

of the solvent. The total free energy of solvation (∆Gsol), is computed by adding

together, the electrostatic free energy (∆Gelec) of solvation, and the cavitation free

energy (∆Gcav) ∆Gsol = ∆Gcav +∆Gelec.

Table 3.3: SVPE solvation free energy (at the RHF with a threshold of 10−4 and
σ = 0.3). The total solvation free energy (∆Gsol) is the sum of the electrostatic
free energy (∆Gelec) of solvation, and the cavitation free energy (∆Gcav). The free
energies are in kcal/mol and a dielectric constant of 78.304 for water is used through
out. Our results are compared to the experimental values (∆Gexpt) [100, 101] and the
literature (electrostatic free energy) values (∆Glit) [99]

Molecules ∆Gexpt ∆Gsol ∆Gcav ∆Gelec ∆Glit

H2O -6.10 -4.57 3.92 -8.49 -8.59

CH3CONH2 -9.7 -10.59 11.86 -22.45 -10.86

CN− -67.0 -73.42 6.73 -80.15 -67.40

NO+ – -103.78 4.35 -108.14 -89.48

CH4 2.0 4.82 5.69 -0.86 –

C6H6 -0.87 6.96 16.77 -9.81 –
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We have chosen five solutes for illustration and comparison with other svpe

methods (Table 3.3). The most symmetric of these is C6H6 and the simplest and

roughly symmetric is H2O. none-symmetric, and neutral CH3CONH2 are also

reported. To highlight volume polarization effects, we consider two ionic solutes

namely the cation NO+ and the anion CN−. The van der Waals (vdw) radii of the

atoms were rH = 1.20Å, rC = 1.70Å, rN = 1.55Å, rO = 1.52Å, rCl = 1.75Å, for the

SVPE model, and all employ a dielectric constant value of ǫ = 78.304. In Fig. 3.14, we

explore for the water molecule with interlocking spheres, the dependence of the surface

area (computed as the volume integral of the normal derivative of the characteristic

function) on the surface width (σ). Results are reported for the augmented restricted

Hartree-Fock (RHF) equation. Converged SVPE results for the selected systems

are presented in Table 3.3. Free energies (kcal/mol) are computed at the δ and σ

values of (10−4, 0.3). The total free energies of solvation agree satisfactorily with the

experimental [100]. The electrostatic solvation free energy in most cases is different

from the literature values [99]. The latter employs a different cavity definition and a

discontinuous switch between interior and exterior, and hence exact agreement is not

expected.

The iso-density solvation model is similar to the model developed by Chip-

man (both methods use iso-density contours to construct the molecular cavity). The

results reported by Chipman [99], uses an iso-density value of 0.001e/a30 for a fixed

molecular cavity. We use a threshold density ρ0 = 0.001 and a β value of 1.3 to

compute the solvation free energies at the RHF level of theory with a threshold of 10−4.

Results of the computation are reported in Table 3.4. The experimental values agree

satisfactorily with the total solvation free energies. The electrostatic free energies

differ from the literature values. For both the methane and the benzene molecule, the

dispersion-repulsion contribution is not fully captured by the parameterization in both

the SVPE and iso-density models; this can be explained by the fact that the solvation

process includes contributions from three main sources [81]: electrostatic, dispersion-

repulsion, and cavitation (thermal and P∆V contributions are negligible and usually
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Figure 3.14: Parameterizing the molecular cavity of H2O molecule. σ is the surface
width. The surface area decreases with the surface width

not considered in continuum models). The dispersion-repulsion contribution may be

important in hydrophobic and aromatic species, which is not fully captured.
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Table 3.4: Iso-density solvation free energy (at the RHF with a threshold of
10−4, β = 1.3 and ρ0 = 0.001a.u/a30).The total solvation free energy (∆Gsol) is
the sum of the electrostatic free energy (∆Gelec) of solvation, and the cavitation
free energy (∆Gcav). The free energies are in kcal/mol and a dielectric constant
of 78.304 for water is used throughout. Our results are compared to the
experimental values (∆Gexpt) [100, 101] and the literature (electrostatic free energy)
values (∆Glit) [99]

Molecules ∆Gexpt ∆Gsol ∆Gcav ∆Gelec ∆Glit

H2O -6.10 -5.24 4.65 -9.9 -8.59

CH3CONH2 -9.7 -7.35 10.03 -17.38 -10.86

CN− -67.0 -64.04 5.20 -69.24 -67.40

NO+ – -107.92 5.68 -113.59 -89.48

CH4 2.0 5.45 6.27 -0.81 –

C6H6 -0.87 1.67 12.38 -10.77 –

Furthermore, comparism of the iso-density with experiment and the model

developed by Fattebert and Gygi [97] is made. For this comparison, we consider

thirteen molecular systems, neutral and ionic, and determine the correlation between

theory and experiment as well as between literature values and results from this work.

The calculations are carried out at the DFT/PBE0 level of theory, a threshold of 10−4,

threshold density of ρ0 = 0.00088, and a switching parameter β = 1.3. The results

in [97] are reported at the DFT/PBE with a 6-311G(d,p) basis set , ρ0 and β values

of 0.0078 and 1.3 respectively.
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Figure 3.15: Regression analysis of the iso-density solvation model. (a) shows the
correlation between calculated (∆Gcal) and the experimental (∆Gexpt) solvation free
energies, (b) shows the correlation between calculated (∆Gcal) and the literature
values of (∆Glit) solvation free energies, and (c) shows the correlation between
calculated (∆Gcal) and the literature values of the cavitation free energy
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The free energy of solvation of the neutral molecules, correlates very well with

experiment while the solvation free energy of the ionic systems deviates from the

experimental values. Fig. 3.15(a) shows the correlation between the calculated and

the experimental solvation free energies. The points in the range between 0 and -20

kcal/mol correspond to the correlation between the free energies of neutral molecules

while those beyond the -20 kcal/mol value, correspond to the correlation between the

free energies of ionic molecules.

Our calculated free energies correlate (R = 0.67) relatively with the literature

values. The correlation trend follows that observed between the calculated and the

experimental free energies of solvation. The iso-density model over-estimates the

solvation free energies of cations and under-estimates those of anions. In Fig. 3.15(b)

the point at (-74.7, -53.3) is very far off the linear regression line and correspond to the

solvation free energy of the dichloro acetate (CHCl2COO
−) that has an experimental

value of -66.0 kcal/mol.

The cavitation free energy is a theoretical concept and has no experimental results

with which to compare. Thus we compare our results to those obtained by Fattebert

and Gygi [97]. Our results correlate (R = 0.96) Fig. 3.15(c) very well with those

of Fattebert and Gygi. We do not expect a one-to-one correspondence, because

our molecular cavity is kept fixed when solving the self-consistent equation whereas

Fattebert and Gygi molecular cavity changes with the changing molecular charge

density.
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3.6 Conclusion

The SVPE and the iso-density solvation models have been presented. The results of

the use of multi-resolution multi-wavelet basis functions in the modeling of solvation

effects is encouraging. Surface and volume polarization effects are efficiently captured.

Very good agreement is achieved between the calculated and the experimental values.

A complete implementation will in the near future include the dispersion-repulsion

energy and periodic boundary conditions for an extension to periodic systems. The

approach is naturally and readily extended to the linear and non-linear Poisson-

Boltzmann equations and hence to many different physical applications.
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Chapter 4

Gauging Environmental Effects

with Static Properties

The system of interest here is a single molecule, which has a static charge distribution.

The system’s interaction with the external electric field is first treated classically after

which the resultant Hamiltonian (interaction) is cast as an operator in the quantum

mechanical treatment of the interaction. A general treatment of the static properties

are burdensome with complicated formulations [93].

The problem is generally solved in two stages: in the first stage, the assumption

is that the charge is defined in terms of the electric dipole alone with the neglect

of the higher electric multipoles. The electric field is assumed constant over the

charge distribution such that the electric field gradient is zero. In the second stage

a more general treatment is carried out with the electric field not being constant

over the charge distribution. The gradient of the electric field is not zero. As a

consequence, the interaction energy of the distribution of charge will include, the

mono-pole, the dipole, the quadrupole, and higher order of moments of the molecule.

In our implementation the first assumption is considered.

A finite difference (central difference) method based on energy and dipole moment

expansion is used to determine the main static properties. The implementation of
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the derived expressions in MADNESS is such that the values and components of the

dipole moment (µ), the polarizability (α), the first hyper-polarizability (β) and the

second hyper-polarizability (γ) are calculated. The implementation is followed by

some applications in comparison to experiment and existing calculations. A further

validation of the implementation is followed with examples of some complex molecular

systems.

4.1 Molecule in Uniform Static Electric Field

Considering point charges ei located at positions ri placed in an external static

electric field. The point charge “feels” an electrostatic potential φi. The energy of

interaction U of the external electrostatic potential with the distribution of charges

is given by the following equation:

U =
∑

i

eiφi (4.1)

Application of Taylor’s series expansion at the origin to the scalar potential, leads to

the following expressions :

U =
∑

i

ei

[
φ0 +

{(
∂φ

∂xj

)

0

(xi − x0) +

(
∂φ

∂yj

)

0

(yi − y0) +

(
∂φ

∂zj

)

0

(zi − z0)

}]
(4.2)

Eq. 4.2 is further simplified as follows:

U =
∑

i

ei

[
φ0 +

(
∂φ

∂rjρ

)
riρ + 0(r2iρ)

]
(4.3)

where φ0 is the potential at the origin and the subscript ρ denoting cartesian

coordinates component such that riρ could be xi − x0, yi − y0, or zi − z0. The

derivatives are evaluated at the origin. By defining
(

∂φ
∂rρ

)
0
= −(Eρ)0, the interaction
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energy reduces to the following expression:

U = Qφ0 − pρ (Eρ)0 (4.4)

where Q is the total charge on the molecule, (Eρ)0 is the ρ component of the electric

field at the origin and pρ is the ρ component of the electric dipole moment. For a

neutral molecule U is written as −pρ(Eρ)0 and in vector form as follows:

U = −p · ( E)0 (4.5)

Alternatively, Eq. 4.5 is written as U = −p(E)0cosθ where θ is the angle between the

dipole moment vector and the electric field vector. Minimum interaction between the

electric dipole moment vector and the electric field vector occurs when both vectors

lie parallel to each other, that is when θ = 0. Up to this point the treatment has been

classical. The quantum mechanical interaction is given by Eq. 4.6

Ĥ = −r̂ · (E)0 (4.6)

In MADNESS, the Fock operator and the Kohn-Sham equation are augmented by −r̂·
(E)0 this then accounts for the interaction of the electronic charge density with the

external electric field. The molecular dipole is computed in MADNESS as follows:

µ =

∫
rρdτ (4.7)

r̂ is the position operator with cartesian components X̂
−→
i + Ŷ

−→
j + Ẑ

−→
k and the

electric field is decomposed as follows: E0x
−→
i +E0y

−→
j +E0z

−→
k from which we compute

the different components of the dipole moment.
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4.2 Permanent and Induced Molecular Dipole in

a Uniform Static Electric Field

The electric dipole of Eq. 4.7 has a permanent and a component induced by the

external field. For a neutral nonpolar molecule, the dominant dipole is the induced

electric dipole. By assuming a weak interaction between the molecule and the electric

field, the mathematical formulation of the permanent and induced components of the

electric dipole moment are established by expanding the interaction energy U in a

Taylor series expansion about the energy in the absence of the field.

U [(E)0] = (U)0 + (Eρ)0

[
∂U

∂(Eρ)0

]

E0

(4.8)

+
1

2!
(Eρ)0(Eσ)0

[
∂2U

∂(Eρ)0∂(Eσ)0

]

E0

+
1

3!
(Eρ)0(Eσ)0(Eτ )0

[
∂3U

∂(Eρ)0∂(Eσ)0∂(Eτ )0

]

E0

+
1

4!
(Eρ)0(Eσ)0(Eτ )0(Eν)0

[
∂4U

∂(Eρ)0∂(Eσ)0∂(Eτ )0∂(Eν)0

]

E0

+ · · ·

(U)0 is the energy of the molecule in the absence of the field. Defining the ρ component

of the electric dipole moment of the molecule as pρ = −∂U [(E)0]
∂(Eρ)0

, an expression for pρ is

obtained by the partial differentiation of Eq. 4.8 with respect to (Eρ)0 as follows:

pρ = pperρ − αρσ(Eσ)0 +
1

2
βρστ (Eσ)0(Eτ )0 +

1

6
γρστν(Eσ)0(Eτ )0(Eν)0 + · · · (4.9)
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where

pperρ = −
[

∂U

∂(Eρ)0

]

E0

(4.10)

αρσ = −
[

∂2U

∂(Eρ)0∂(Eσ)0

]

E0

(4.11)

βρστ = −
[

∂3U

∂(Eρ)0∂(Eσ)0∂(Eτ )0

]

E0

(4.12)

γρστν = −
[

∂4U

∂(Eρ)0∂(Eσ)0∂(Eτ )0∂(Eν)0

]

E0

(4.13)

The electric dipole moment and the energy of a molecule interacting with the

electric field can be written in a more general form as follows:

µρ = µ0
ρ − αρσ(Eσ)0 +

1

2
βρστ (Eσ)0(Eτ )0 +

1

6
γρστν(Eσ)0(Eτ )0(Eν)0 + · · · (4.14)

U((E)0) = U0 − µρ(Eρ)0 −
1

2
αρσ(Eρ)0(Eσ)0 −

1

6
βρστ (Eρ)0(Eσ)0(Eτ )0 (4.15)

− 1

24
γρστν(Eρ)0(Eσ)0(Eτ )0(Eν)0 + · · ·

From Eq. 4.14 permanent pper and induced pind components of the electric dipole

moments can be obtained, with the induced component further splitted into linear (L)

and none-linear (NL).

pind = α · E+
1

2
β · E · E+

1

6
γ · E · E · E+ · · · (4.16)

pper = µ0 (4.17)

pL = α · E (4.18)

pNL =
1

2
β · E · E+

1

6
γ · E · E · E+ · · · (4.19)
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4.2.1 Calculating the Electric Polarizability

The molecule is considered to be in a uniform electric field aligned along one of the

axis of the system (e.g [Ex, 0.0, 0.0] . The values of the static properties (µρ, αρρ, βρρρ,

and γρρρρ) along the axis under consideration can be obtained. The energy expression

Eq. 4.15 reduces to

U((E)0) = U0 − µρ(Eρ)0 −
1

2
αρρ(Eρ)

2
0 −

1

6
βρρρ(Eρ)

3
0 −

1

24
γρρρρ(Eρ)

4
0 + · · · (4.20)

cutting off Eq. 4.20 at the fourth power of the electric field, and evaluating the energy

at four different electric field values [±Eρ,±2Eρ] leads to four equations with four

unknowns which are solved explicitly with the following results:

µρEρ = −2

3
[U(Eρ)− U(−Eρ)] +

1

12
[U(2Eρ)− U(−2Eρ)] (4.21)

αρρE
2
ρ =

5

2
U0 −

4

3
[U(Eρ) + U(−Eρ)] +

1

12
[U(2Eρ)− U(−2Eρ)]

βρρρE
3
ρ = [U(Eρ)− U(−Eρ)]−

1

2
[U(2Eρ)− U(−2Eρ)]

γρρρρE
4
ρ = 4 [U(Eρ) + U(−Eρ)]− 6U0 − U(2Eρ)− U(−2Eρ)

The off-diagonal components of the polarizability, first hyper-polarizability and

second hyper-polarizability are computed in a similar way as the diagonal components.

Thus, for any combination of two non-zero cartesian component of the external electric

field, a new expression for the energy is described as follows:
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U(Eρ, Eσ) = U0 − µρEρ − µσEσ −
1

2
αρρE

2
ρ − αρσEρEσ (4.22)

−1

2
ασσE

2
σ −

1

6
βρρρE

3
ρ −

1

6
βσσσE

3
σ

−1

2
βρρσE

2
ρEσ −

1

2
βρσσEρE

2
σ

− 1

24
γρρρρE

4
ρ −

1

24
γσσσσE

4
σ

−1

6
γρρρσE

3
ρEσ −

1

6
γρσσσEρE

3
σ

−1

4
γρρσσE

2
ρE

2
σ + · · ·

Using the energy expressions from Eq. 4.22 defined at the field positions, [Eρ, Eσ],

[Eρ, −Eσ], [−Eρ ,Eσ], [−Eρ, −Eσ] , the off-diagonal energy expressions are obtained.

Solving for the unknowns from the derived off-diagonal energy expressions, the

expressions for the off-diagonal polarizability, first hyper-polarizability and second

hyper-polarizability are obtained as follows:

αρσEρEσ =
1

48
[U(2Eρ, 2Eσ)− U(2Eρ,−2Eσ) (4.23)

−U(−2Eρ, 2Eσ) + U(−2Eρ,−2Eσ)]

−1

3
[U(Eρ, Eσ)− U(Eρ,−Eσ)

−U(−Eρ, Eσ)− U(−Eρ,−Eσ)]

βρσσEρE
2
σ =

1

2
[U(−Eρ,−Eσ)− U(Eρ, Eσ) (4.24)

+U(−Eρ, Eσ)− U(Eρ,−Eσ)] + U(Eρ)− U(−Eρ)
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γρρσσE
2
ρE

2
σ = −4U0 − [U(Eρ, Eσ) + U(−Eρ,−Eσ) (4.25)

+U(−Eρ, Eσ) + U(Eρ,−Eσ)]

+2 [U(Eρ) + U(−Eρ)] + 2 [U(Eσ) + U(−Eσ)]

An alternate method consist of using the induced dipole moment following a similar

procedure as for the energy expressions. Evaluating the dipole moment at various

field strengths, the following equations are derived:

µρ =
2

3
[µρ(Eρ) + µρ(−Eρ)]−

1

6
[µρ(2Eρ) + µρ(−2Eρ)] (4.26)

αρρEρ =
2

3
[µρ(Eρ)− µρ(−Eρ)]−

1

12
[µρ(2Eρ)− µρ(−2Eρ)] (4.27)

αρσEσ =
2

3
[µρ(Eσ)− µρ(−Eσ)]−

1

12
[µρ(2Eσ)− µρ(−2Eσ)] (4.28)

βρρρE
2
ρ =

1

3
[µρ(2Eρ) + µρ(−2Eρ)− µρ(Eρ)− µρ(−Eρ)] (4.29)

βρσσE
2
σ =

1

3
[µρ(2Eσ) + µρ(−2Eσ)− µρ(Eσ)− µρ(−Eσ)] (4.30)

γρρρρE
3
ρ =

1

2
[µρ(2Eρ)− µρ(−2Eρ)]− [µρ(Eρ)− µρ(−Eρ)] (4.31)

γρρσσEρE
2
ρ =

1

2
[µρ(Eρ, Eσ)− µρ(−Eρ, Eσ) + µρ(Eρ,−Eσ) (4.32)

−µρ(−Eρ,−Eσ)]− [µρ(Eρ)− µρ(−Eρ)] (4.33)

Once all the necessary components have been determined, expressions for

computing the experimentally relevant quantities are described. For the polarizability,

the quantity of interest is the mean polarizability 〈α〉. This is because the gross

selection rule of Raman spectroscopy is that, the polarizability of the molecule should

change as it vibrates. Polarizability is a measure of the extent of distortion of a

molecule in an electric field, as such, its magnitude not only will depend on the

symmetry, but will also depend on the orientation of the molecule with respect to the

external electric field. In solution or in the gas phase, the experimental observable is
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the mean polarizability.

〈α〉 = 1

3
(αxx + αyy + αzz) (4.34)

For first hyper-polarizability β, an important quantity to be computed is the scalar

projection of the first hyper-polarizability along the dipole moment.

βµ =
3

5

∑

i

βiµi

‖µ‖ , i = x, y, z (4.35)

with

βi =
∑

j

βijj , j = x, y, z (4.36)

Finally the mean value of the second hyper-polarizability is computed as follows:

γ =
1

5
[γxxxx + γyyy + γzzzz + 2 [γxxyy + γxxzz + γyyzz]] (4.37)
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4.3 Molecule Physisorbed on a Polarizable Con-

tinuum Colloid

The ultimate objective here, is the development of a theoretical method to model

surface interaction with a physisorbed molecule. The molecular system will be

modeled in detail using quantum mechanics, while surface and the environment will

be modeled as a polarizable continuum. A static uniform electric field is applied

to the molecule and the static properties of the molecule with the environmental

effects are determined as a measure of the reaction of the molecule to the presence

of the environmental factors. Various parameters such as the size of the polarizable

continuum colloid (PCC), the separation between the PCC and the physisorbed

molecule and the solvation effects on the static properties of the molecule will be

investigated.

4.3.1 Polarizable Continuum Colloid

The designed and implementation of the polarizable continuum colloid model mirrors

the surface volume polarizable electrostatic (SVPE) model developed in Chapter 3,

but for the fact that changes have been made to accommodate the features specific

to the PCC. The PCC is constructed first as a sphere but could also be an

irregular sphere comprising six interlocking (Fig. 4.1) spheres such that its radius

is about the diameter of one of the spheres. This design is meant to mimic the

silver colloids commonly use in SERS experiments. Just as in SVPE model, a

characteristic C function is constructed around the PCC spheres

C (r, i) = 1−Θ(s(r, i)) = Θ(−s(r, i)) (4.38)

The characteristic function (the PCC mask) enables us to represent a regular

as well as an irregular domain such as a PCC cavity that we will employ to solve

the Poisson’s equation for an electronic distribution of charge near the PCC. The
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Figure 4.1: Polarizable continuum colloid. The colloid-like particle is made up of
six interlocking spheres

Figure 4.2: Polarizable continuum colloid. The colloid-like particle is single sphere
of radius 10.0Å
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colloid is represented implicitly as a dielectric continuum with its dielectric constant

ǫc. There exist two media separated by the boundary of the irregular domain namely,

the inside of the domain which is a metal with an infinite dielectric constant and

the outside of the domain which could be a solvent or a vacuum with dielectric

constant ǫenv. Defining Ω as our irregular domain, we associate the dielectric constants

to the molecular mask C(r) such that we can switch between the inside and outside of

Ω. Thus, for this work we define our position dependent dielectric function as follows:

ǫ(r) = ǫ0 exp
(
log ǫ1

ǫ0
(1− C(r))

)

ǫ(r)−1 = ǫ−1
0 exp

(
log ǫ0

ǫ1
(1− C(r))

)

∇ log ǫ(r) = ∇ǫ(r)
ǫ(r)

= log ǫ0
ǫ1
∇C(r)

(4.39)

The dielectric constant of a metal is frequency dependent and has a finite value at

a given frequency. This finiteness of the dielectric constant at a given frequency is

accounted for in the ground state by choosing the dielectric constant that minimizes

the total internal energy Fig. 4.3. This approximation is only valid for the static case.

4.3.2 Physisorption Model

The molecule is placed near the PCC with the assumption that no chemical reaction

is taking place. Thus, the PCC and the molecule, keep their identities. The PCC-

molecule system is subjected to different interactions as defined in the following

equation.

Erxn = Ecoul + Epol + Edisp + Erep (4.40)

Erxn is the total reaction energy; Ecoul is the Coulombic interaction between

the PCC and the molecule, thought of as being isolated from each other; the

polarization term Epol represents the mutual polarization between the PCC and the

molecule; Edisp is the non-classical, quantum mechanical interaction that depends
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Figure 4.3: Convergence study of the total internal energy (Eint in a.u.) of
water molecule physisorbed on spherical dielectric particle of radius 18.89a.u. The
variation of the internal energy is small for a dielectric constant value between 500
and 1600 (∆Eint ≈ 10−4kcal/mol).
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on the dynamic polarization of the PCC and the the molecule; Erep depends on the

“juxtaposition” of the PCC and the molecule’s electronic charge density. Given the

physisorption assumption, only Ecoul and Epol would be treated. An evaluation

of Erep necessitates the knowledge of the electronic structure of both the PCC and

the molecule, which is not possible for our physisorption model. Hence, the molecule

should not penetrate the PCC. Quantum mechanically, the tail of the wave function

will always extend into the PCC in a similar way as in the implicit solvation. The

fact that, there is a spillover of the electronic charge density of the molecule does

not imply the molecular charge density is less the spillover charge density. All of

the electronic charge density of the molecule is taken into account because the PCC

and the molecule keep their identities. Edisp, though important in the solute-solvent

interaction energy [81], it is not of significant importance in the polarizability of the

physisorbed molecule. The Coulombic term is identically zero if the PCC has no

permanent dipole moment, else the Coulombic and the polarization terms are jointly

treated.

4.4 Solving Poisson’s and Laplace’s Equations

At the interface of two dielectrics, the discontinuity leads to surface induced charge.

For a spherical conductor in a uniform electric field, the surface induced charge is the

reaction of the conductor to the uniform electric field Fig. 4.5. This is the same type

of reaction, a spherical PCC will exhibit in the presence of a uniform electric field.

The exact electrostatic potential near the sphere, is a solution of Laplace’s equation

and is given by the following equations:

V (r) =




−E0rcos(θ)

(
3ǫ0

ǫ1+2ǫ0

)
, if r < R

−E0rcos(θ) +
(

ǫ1−ǫ0
ǫ1+2ǫ0

)
E0

(
R
r

)3
rcos(θ), if r > R

(4.41)

where R is the radius of the sphere, r is the distance from the origin of the sphere to
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Figure 4.4: Convergence study of the physisorption free energy of water molecule
physisorbed on spherical dielectric particle of radius 18.89a.u.The distance from the
center of nuclear charge of the water molecule to the sphere’s surface is 3.778a.u.

where the potential is being computed, E0 is the magnitude of the uniform electric

field, and ǫ0 and ǫ1 are the dielectric constants exterior and interior to the sphere

respectively. For a complicated system such as the interlocking sphere PCC, the

calculation of its reaction to an external uniform electric field is not straight forward

but can be computed efficiently with our solver.

The default Coulomb Green’s function (free space) in MADNESS has the Dirichlet

boundary condition (U(r → ∞) = 0) imposed on it, while the PCC reaction potential

requires Neumann’s boundary condition (−∂U/∂z(r → ∞) = E) to be imposed. The

solution to the PCC reaction is the sum of an asymptotic solution (U = −Ez) and a

component that goes to zero at infinity (v(r)). Thus the potential to be inserted into

the Laplace equation is of the form: U(r) = −Ez + v(r), where E is the external

electric field along the reference axis (z). The Laplace’s equation for a complex PCC

is defined by.

∇ (ǫ(r)∇U(r)) = 0 (4.42)
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Figure 4.5: Schematic representation of the spherical polarizable continuum colloid.
The sphere is polarized by an external electric E0. Positive and negative charges are
induced on the sphere such that the total surface induced charge is zero.
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which can be rearranged to

U(r) = ∇−2

(
−∇ǫ(r)

ǫ(r)
∇U(r)

)
(4.43)

Eq. 4.43 is solved self-consistently (before the HF and DFT self-consistent fields) for

the potential near the colloid with v(r) = 0 as the initial guess.

In the limit of ǫ1 → ∞, Vin = 0 and Vext = E0rcos(θ)
((

R
r

)3 − 1
)
. The effective

dielectric coefficient,
(

ǫ1−ǫ0
ǫ1+2ǫ0

)
= 1. A quantitative relationship is established by

applying series expansion on the denominator of the effective dielectric coefficient as

follows:

(
1− ǫ0

ǫ1

)(
1 + 2

ǫ0
ǫ1

)−1

=

(
1− ǫ0

ǫ1

)(
1− 2

ǫ0
ǫ1

)
+O

((
ǫ0
ǫ1

)2
)

(4.44)

=

(
1− 3

ǫ0
ǫ1

)
+O

((
ǫ0
ǫ1

)2
)

Thus, using the first term of the resulting series expansion, for a two digits of accuracy

the following relationship is established:

3
ǫ0
ǫ1

≤ 0.01 (4.45)

this leads to ǫ1 ≥ 300ǫ0, confirming the convergence studies of Fig. 4.3 The reaction

potential of the PCC-molecule system is computed by solving the Poisson’s equation.

The reaction potential from the interaction of the external electric field with the PCC

is reduced by about 28.6% when the PCC is solvated (compare the peaks and the

bottoms of the exact and computed potentials from Fig 4.6 and Fig. 4.7.)

∇ (ǫ(r)∇U(r)) = −4πρtot(r) (4.46)
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Figure 4.6: Exact and computed reaction potential near the PCC (from Laplace’s
equation) due to the external electric field.
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Figure 4.7: Exact and computed reaction potential near the solvated PCC (from
Laplace’s equation) due to the external electric field.
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ρtot(r) is the sum of the nuclear and electronic charge densities. For a physisorbed

molecule in a uniform electric field, the total electrostatic potential Utot near the PCC

is the sum of the electrostatic potentials from solving the Laplace’s and Poisson’s

equations. The reference potential is the free space potential Uvac (electrostatic

potential of the molecule in the absence of the PCC and the uniform electric field).

The potential near the PCC is therefore the difference between these two.

Ueff = Utot − Uvac (4.47)

In the absence of the uniform electric field, only the Poisson’s equation is solved

for the total electrostatic potential near the PCC. Our physisorption model makes

it possible for the inclusion of other environmental effects such as solvation. Our

assumptions are such that the PCC and the molecule keep their identities. Hence,

two different implicit models are used and for which the inclusion of the effects of

solvation is straight forward: through the SVPE implicit model, solvation effects are

included to the PCC and to the molecule through the iso-density model. The SVPE

model could still have been used, but this will mean more parameters.

The same procedure is followed (as in the reaction of the PCC to the external

electric field) to include the effects of solvation. The surface induced charge from

environmental effects, is the reaction of the PCC and is calculated as follows

σ(r) = ∇−2

(
−∇ǫ(r)

ǫ(r)
∇Ueff (r)

)
(4.48)

The surface induced charge gives rise to a surface potential that in turns, polarizes

the molecule

Upol(r) = ∇−2 (σ(r)) (4.49)

Upol(r) is used to augment the Shrödinger’s equation (Hartree-Fock and Density

Functional Theory). The molecular charge density reaction to the presence of the

PCC. Thus, the change in internal energy of the molecule ∆Eint is computed as
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the difference between the internal energy of the molecule in its gas phase and the

internal energy of the physisorbed molecule.

∆Eint = Ephys(ρM)−Evac(ρ
0
M ) (4.50)

Ephys(ρM ) is the internal energy of the polarized molecule and Evac(ρ
0
M) is the internal

energy of the molecule in vacuo. An updated molecular charge density is computed

as the Hamiltonian is updated. The electrostatic interaction energy also changes as

the molecule comes closer to the PCC. The electrostatic potential energy between

the PCC and the molecule is evaluated by making use of the updated total molecular

charge density and surface induced charge of the PCC.

Eelec =
1

2

∫
drU(σ(r))ρtot(r) (4.51)

In cases where solvation and uniform static electric field are included, ρM accounts

for all these reaction fields. The electrostatic free energy of interaction Grxn is then

given by the following equation

Grxn =
1

2

∫
drU(σ(r))ρtot(r) + ∆Eint

(
ρ0M → ρM

)
(4.52)

4.5 Static Properties of Physisorbed Molecule

The static properties of physisorbed molecule are similar to those of a molecule in

a vacuum. The Kohn-Sham’s or Hartree-Fock’s equations are augmented with the

reaction potential from PCC-molecule interaction. The Hamiltonians described below

are added to the vacuo Hamiltonian for a full description of the system.

• In a uniform static electric field, the in-vacuo Hamiltonian is augmented by

− r̂ · (E)0 (4.53)
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• In a solvent, the in-vacuo Hamiltonian is augmented as follows:

Ûrxn(r) (4.54)

• For a physisorbed molecule the augmentation of the in-vacuo Hamiltonian,

includes the polarization potential Upol(r)

Ûpol(r) (4.55)

• physisorbed-solvated molecule, has an in-vacuo Hamiltonian that includes the

reaction potential Urxn(r) of the solvent as well as the polarization potential of

the PCC.

Ûrxn(r) + Ûpol(r) (4.56)

• A physisorbed molecule in a uniform static electric field, has its in-vacuo

Hamiltonian augmented by

Ûpol(r)− r̂ · (E)0 (4.57)

• A solvated molecule in a uniform static electric field, has its in-vacuo Hamilto-

nian augmented by

Ûrxn(r)− r̂ · (E)0 (4.58)

• Finally, a solvated-physisorbed molecule in a uniform static electric field, has

its in-vacuo Hamiltonian augmented by

Ûpol(r) + Ûrxn(r)− r̂ · (E)0 (4.59)

The total Hamiltonian of the entire system changes as well as the density of the

molecule in reaction to the presence of the environmental effects.
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The inclusion of the environmental effects leads to a consideration of the effective

static properties of the physisorbed molecule.These properties are computed, by

taking into account the static properties of the molecule in vacuum to which reaction

fields due to environmental changes have been included. The effective linear static

properties are computed from the induced dipole. The effective dipole (this definition

is same as in [112, 113]) from which the effective polarizability is computed is defined

as follows:

µeff = 〈α〉(E0 + 〈E〉) (4.60)

The effective polarizability then follows:

αeff =
µeff

E0

(4.61)

〈E〉 is the average reaction field, from the environmental effects. It is computed from

the surface reaction potential and the molecular mask C(r) (the boundary around

the molecule). The cartesian component of the surface reaction field Ei is computed

as the negative gradient of the surface electrostatic potential U(σ(r)), i ∈ {x, y or z}.

Ei = − 1

4π

∂U(σ(r))

∂ri
(4.62)

σ(r) is the surface induced charge at a point r on the surface. The average reaction

field, experienced by the molecule, in the x, y and z directions are computed as follows:

〈Ei〉 =
∫
EiC(r)dτ∫
C(r)dτ

(4.63)

The average reaction field, experienced by the molecule, is finally computed as

〈E〉 =
√∑

i

〈Ei〉2 (4.64)
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4.6 Results and Discussion

Systems of different symmetries and charge distribution were tested and their results

compared to other models. The tested systems include, water, acetamide, benzene

and Hydrogen fluoride. The Hydrogen fluoride system was used to carry out a

convergence test for both the energy and dipole expansions.

Table 4.1: Components of the dipole moment and the polarizability of Hydrogen
Fluoride at different magnitudes of the static electric field. The components are
computed with the dipole method at a threshold of 10−6.

Components 0.001 0.002 0.003 0.004 0.005 0.01

µx 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

µy 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

µz 0.7515 0.7515 0.7515 0.7515 0.7514 0.7515

αxx 4.4800 4.4797 4.4799 4.4798 4.4797 4.4798

αyy 4.4792 4.4799 4.4798 4.4796 4.4796 4.4794

αzz 5.6825 5.7028 5.6880 5.6887 5.6927 5.6900

αm 4.8806 4.8875 4.8826 4.8827 4.8839 4.8831

αxy 0.0000 -0.0001 -0.0002 -0.0001 0.0000 0.0000

αyx -0.0002 0.0004 -0.0001 0.0000 0.0000 -0.0001

αxz 0.0005 -0.0001 0.0002 -0.0001 0.0000 0.0000

αyz -0.0007 0.0000 -0.0002 -0.0001 0.0000 0.0000

αzx -0.0006 -0.0153 -0.0075 -0.0072 -0.0059 -0.0028

αzy -0.0043 -0.0156 0.0108 0.0089 0.0075 0.0011
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Components of the dipole and the polarizability in table 4.1 show that sufficient

numerical accuracy is obtained with a field E0 = 0.01. Tables 4.3 , and 4.2 demon-

strate insufficient numerical precision to compute higher moments while Table 4.4

shows that numerical differentiation of the energy does not provide results with

numerical accuracy.

Table 4.2: Components of the second hyper-polarizability of Hydrogen Fluoride at
different magnitude of the static electric field. The components are computed with
the dipole representation at a threshold of 10−6.

Components 0.001 0.002 0.003 0.004 0.005 0.01

γxxxx -165.0000 340.6250 254.2593 293.5156 336.4800 328.1900

γyyyy 1180.0000 238.7500 272.7778 352.5000 314.2400 328.0850

γzzzz 25359.999 -5069.3750 612.9629 205.2344 144.9600 303.7700

γxxzz -55.0000 21.2500 139.4444 96.7969 129.1600 93.0050

γyyxx 595.0000 56.2500 105.5556 105.3125 120.8400 109.3450

γyyzz 480.0000 -8.7500 132.9629 116.2500 121.8400 105.1400

γzzxx 285.0000 -1433.7500 282.2222 152.0312 153.3600 90.8650

γzzyy 6304.9999 -3032.4999 197.4074 282.5000 97.7200 98.4600

γm 5541.0000 -1466.5000 401.7037 314.6563 186.5600 310.652

83



Table 4.3: Components of the first hyper-polarizability of Hydrogen Fluoride at
different magnitude of the static electric field. The components are computed with
the dipole method at a threshold of 10−6.

Components 0.001 0.002 0.003 0.004 0.005 0.01

βxxx 0.0400 0.0617 -0.0529 -0.0021 0.0937 -0.0959

βyyy 0.6300 0.0217 0.0270 -0.1392 0.0484 -0.0176

βzzz 24.083 7.8208 9.5555 8.2721 7.5824 7.8656

βxyy -0.0390 0.0267 -0.0441 -0.0317 -0.0139 -0.0063

βyxx 0.2167 0.0358 -0.0415 -0.0096 -0.0104 -0.0006

βxzz -0.3333 -0.0833 0.0037 0.0298 0.0031 0.0034

βyzz 0.4900 -0.0275 0.0296 -0.0158 0.0089 -0.0044

βzxx 12.1167 0.3633 -0.6400 -0.7133 -0.1859 -0.4312

βzyy 13.7867 -0.5933 0.5070 0.1246 0.1457 -0.4897

βx -0.6833 0.0700 -0.0933 -0.0231 0.0829 -0.0989

βy 1.3367 0.0300 0.01518 -0.1646 -0.0471 -0.0225

βz 49.9867 7.5908 9.4225 7.6833 7.5432 6.9447

β -29.9920 -4.5545 -5.6536 -4.6100 -4.5259 -4.1668
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Table 4.4: Components of the dipole moment and the polarizability of Hydrogen
Fluoride at different magnitudes of the static electric field. The components are
computed with the energy method at a threshold of 10−6.

Components 0.001 0.002 0.003 0.004 0.005

µx 0.0000 0.0000 0.0000 0.0000 0.0000

µy 0.0000 0.0000 0.0000 0.0000 0.0000

µz 0.0000 0.0000 0.0000 0.0000 0.0000

αxx -5.2267 -4.6837 -4.5231 -4.5170 -4.4853

αyy -5.0233 -4.6658 -4.5006 -4.5049 -4.4942

αzz -6.2333 -5.9062 -5.7643 -5.7280 -5.7202

αm -5.4944 -5.0853 -4.9293 -4.9166 -4.8999

αxy -0.0017 -0.0033 -0.0022 0.0000 -0.0016

αyx -0.0017 -0.0033 -0.0022 0.0000 -0.0016

αxz 0.0575 0.0081 0.0127 -0.0022 0.0033

αyz 0.0000 -0.0047 -0.0034 -0.0011 -0.0008

αzx 0.0575 0.0081 0.0127 -0.0022 0.0033

αzy 0.0000 -0.0047 -0.0034 -0.0011 -0.0008
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In table 4.5 , some components of the static properties of Hydrogen Fluoride (FH)

from this work’s implementation is compared to similar components from literature.

It can be observed that our SCF results are in agreement with those of Hideo

Sekino [94]. Besides FH, we have equally compared results from other molecular

systems, especially the mean values. Our computed mean polarizabilities of 8.78a.u

and 65.04a.u for water and benzene molecules are in agreement with 8.54a.u (at

the SCF/t-aug-cc-pVQZ [96]) for water and with 62.72a.u [95] for benzene obtained

using the ab initio computation together with finite field method. The hyper-

polarizabilities of smaller molecules agree with literatures values while those of bigger

molecules show some discrepancies.

Table 4.5: The dipole moment, and selected components of polarizability of
Hydrogen Fluoride compared to other methods [94]. The components are computed
with an electric field magnitude E0 = 0.001 a.u.

Components SCF (this work) SCF TDHF(static) Experiment

µz 0.75 0.76 – 0.707

αzz 5.68 5.76 5.76 6.40

αxx 4.48 4.47 4.47 5.08
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4.6.1 Physisorbed Molecules

The static and response properties of the molecules have been computed in-vacuo

with noticeable agreement with experimental and other literature values. In the

paragraphs that follow, environmental effects on a molecule will be gauged with the

polarizability of the targeted system. For these calculations, we have chosen two

systems: pyridine ( a polar molecule), and methane(a non-polar molecule).

Figure 4.8: Schematic representation of a pyridine molecule physisorbed on spherical
polarizable continuum colloid. The molecule and the sphere are in a uniform external
electric field (E0). pyridine and the PCC are held close to each other by the coulombic
interactions (here represented as dotted lines)
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The gas phase mean value of the polarizability of pyridine, is computed to be 61.3

a30 This is about 4.4% smaller than the experimental value of 64.1 a30 [110]. To gauge

the physisorption effects of a the spherical PCC on pyridine molecule, we vary the

separation r, between the center of charge of the pyridine molecule and the surface of

the spherical PCC (results reported in table 4.6.

Table 4.6: Static properties of physisorbed pyridine. Effective polarizability αeff ,
the mean polarizability αm, the components of polarizability αii (i ∈ {x, y, z}), the
enhancement I, the average reaction electric field, Fcf , from the polarization of the
spherical PCC (with radius of 10.0 Å) by the external field (E0 = 0.001 a.u), and
the average reaction electric, Fcm, from the interaction of the molecule with the
spherical PCC. pyridine is described at the restricted Hartee-Fock level of theory with
a threshold of 10−4. These values are computed at different PCC-pyridine separation,
r (in Å).

r(Å) Fcf Fcm I αeff αm αxx αyy αzz

2.0 0.0041 0.1725 2.17 · 104 9.02 · 103 50.78 42.68 29.00 80.66

2.5 0.0038 0.0736 4.78 · 103 4.24 · 103 54.51 45.51 33.30 83.40

3.0 0.0032 0.0172 4.50 · 102 1.30 · 103 60.65 50.16 45.27 86.53

3.5 0.0033 0.0011 26.20 3.14 · 102 58.17 49.59 40.24 84.67

4.0 0.0030 0.0011 21.60 2.85 · 102 55.88 48.81 34.96 83.86

4.5 0.0028 0.0009 17.60 2.57 · 102 54.67 44.24 37.16 82.62

5.0 0.0026 0.0002 12.90 2.20 · 102 57.83 43.88 48.80 80.81

5.5 0.0024 0.0002 10.40 1.98 · 102 54.89 42.86 41.39 80.42

6.0 0.0024 0.0001 9.71 1.91 · 102 54.67 42.38 42.07 79.55

88



The effective polarizability (αeff ) of the physisorbed pyridine is very high for a

separation, r, between 2.0Å and 3.0Å. This is explained by strong interaction between

the external field and the spherical PCC, as well as with the molecule and the PCC.

The magnitude of the average reaction electric field from the reaction of the spherical

PCC with the external electric field and the molecule is proof of the strength of these

interactions (Table 4.6). The magnitude of, αeff , falls as r > 3.0Å and are within

the range of the mean polarizability of pyridine adsorbed on seven clustered atoms

of coinage metals (αAu7
= 380a30, αAg7 = 412a30, and αCu7

= 343a30) [111]. Another

important observation from Table 4.6 is the smaller value of the mean polarizability

of the physisorbed molecule when compared to the gas phase value.

The non polar molecule ,methane, is physisorbed on a spherical PCC colloid with

a radius of 10.0Å and an external electric field of 0.01 a.u is applied to the system.

The linear (polarizability) and non-linear (first and second hyper-polarizabilities)

static properties are then computed at different PCC-methane separation. Table 4.7

shows the values of linear and non-linear static properties of physisorbed methane.

The average reaction electric fields due to the reaction of the spherical PCC with the

external electric field Fcf and due to the PCC-methane interaction Fcm.
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Table 4.7: Static properties of physisorbed methane. Effective polarizability αeff ,
the mean polarizability αm, the enhancement I, the average reaction electric field,
Fcf , from the polarization of the spherical PCC (with radius of 10.0 Å) by the external
field (E0 = 0.01 a.u), the average reaction electric field, Fcm, from the interaction of
the molecule with the spherical PCC. The methane molecule is described at the
restricted Hartee-Fock level of theory with a threshold of 10−6. These values are
computed at different PCC-methane separation, r (in Å).

r(Å) Fcf Fcm I αeff αm

2.0 0.0412 0.0060 5.7500 91.2300 15.9500

2.5 0.0377 0.0003 4.8082 76.1680 15.8684

3.0 0.0347 0.0002 4.4990 71.2760 15.8745

3.5 0.0320 0.0001 4.2193 66.8390 15.8763

4.0 0.0300 0.0001 4.0100 63.5380 15.8450

4.5 0.0281 0.0000 3.8075 60.3160 15.8309

5.0 0.0264 0.0000 3.4774 55.0870 15.8295

5.5 0.0248 0.0000 3.4769 55.0780 15.8269

6.0 0.0235 0.0000 3.3442 52.9770 15.8139

The relative large external electric field value of 0.01 a.u used to compute the values

in Table 4.7 is to limit the amplification of numerical noise. The magnitude of the

effective polarizability decrease as the PCC-methane separation is increased (Fig. 4.9).

Close to the spherical PCC, the mean polarizability is lager than the polarizability

of methane in the gas phase (15.8412a.u3), this is in contrast to the behavior of the

polarizability of pyridine (polar) near the spherical PCC. Depolarization of methane

is noticed after a PCC-methane separation of 4.5Å.
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Figure 4.9: Schematic representation of a methane molecule physisorbed on
spherical polarizable continuum colloid.

4.6.2 Solvated and Solvated-Physisorbed Molecule

To study the effects of solvation on a physisorbed molecule, we start by computing

the mean and effective polarizabilities of a solvated pyridine molecule. The following

values of polarizabilities were obtained: αxx = 30.72a.u3, αyy = 56.17a.u3, αzz =

53.86a.u3, for a mean value of αm = 46.92a.u3. These values are computed for an

external electric field of 0.001 a.u that interacts with the dielectric solvent, resulting

in a very small average reaction electric field of 4.2 · 10−7a.u, experienced by the

pyridine molecule. An average reaction electric field of 0.0075 a.u also results from

the interaction of the pyridine molecule with the dielectric continuum solvent. The

polarizability of solvated pyridine confirms the trend observed with the polarizability

of the physisorbed molecule. The average reaction field experienced by pyridine, due

to interaction between the external electric field and the PCC, is greather than that

due to the external electric field interaction with the dielectric solvent; this is simply

due to the fact that the PCC is more polarizable than the dielectric continuum solvent.
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The molecule is depolarized in all the directions: a depolarization factor of 1.30 for the

mean polarizability, 1.34 for the x-component, 1.31 for the y-component and 1.28 for

the z-component. the depolarization factor is the ratio of the polarizability in vacuo

with that with environmental effects. Though depolarized, an effective polarizability

of 398.805 a.u3 for the solvated pyridine is obtained.

Likewise, the polarizability of the solvated methane in a uniform external electric

field (E0 = 0.001 a.u) is computed: αxx = 12.59a.u3, αyy = 12.56a.u3, αzz =

12.65a.u3, for a mean value of αm = 12.60a.u3. An average depolarization of

1.26 is achieved. The interaction of methane with solvent gives rise to an average

reaction electric field of 0.0045 a.u. Similarly, the solvent interaction with the uniform

electric field, leads to an average reaction electric field of 7.2 · 10−5a.u. The effective

polarizability of the solvated methane is then computed as 69.3a.u3.

The environmental effects of solvation on the physisorbed molecule is gauged

and the results reported in Table 4.8 and Table 4.9. The different components as

well as the mean and effective polarizabilities are computed and compared to the

polarizability in the gas phase. The molecule is placed in a molecular cavity and the

spherical PCC is also encapsulated by the solvent.
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Table 4.8: Static properties of solvated-physisorbed pyridine. Effective
polarizability αeff , the mean polarizability αm, the components of polarizabil-
ity αii (i ∈ {x, y, z}), the enhancement I, the average reaction electric field, Fcf , from
the polarization of the spherical PCC (with radius of 10.0 Å) by the external
field (E0 = 0.001 a.u), the average reaction electric, Fcm, from the interaction of
pyridine with the spherical PCC, and the average reaction electric, Fsm, from the
interaction of pyridine with the solvent. The pyridine molecule is described at the
restricted Hartee-Fock level of theory with a threshold of 10−4. These values are
computed at different PCC-pyridine separation, r (in Å).

(Å) Fcf Fcm Fsm I αeff αm αxx αyy αzz

2.0 0.0036 0.0006 0.0075 94.115 594.690 46.826 30.588 56.132 53.760

2.5 0.0033 0.0006 0.0075 89.752 580.742 46.834 30.684 56.116 53.703

3.0 0.0030 0.0001 0.0075 80.041 548.426 46.874 30.641 56.149 53.831

3.5 0.0028 0.0000 0.0075 74.774 530.072 46.909 30.713 56.163 53.850

4.0 0.0026 0.0000 0.0075 72.122 520.590 46.900 30.641 56.164 53.895

4.5 0.0024 0.0000 0.0075 69.609 511.439 46.921 30.718 56.188 53.859

5.0 0.0023 0.0000 0.0075 68.271 506.498 46.898 30.640 56.158 53.895

5.5 0.0021 0.0000 0.0075 65.816 497.310 46.916 30.718 56.171 53.860

6.0 0.0020 0.0000 0.0075 64.547 492.492 46.904 30.643 56.171 53.897

The solvated-physisorbed molecules show similar depolarization trend as for

the physisorbed and solvated molecules. However, the calculated polarizabilities

are constant with the change in PCC-molecule separation, they are of the same

magnitudes as those of the solvated molecules. The mean polarizability of the solvated

pyridine and solvated methane are respectively 46.92a.u3 and 12.60a.u3, and are

equal in magnitude to the polarizabilities of the solvated-physisorbed pyridine or
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methane at any given PCC-molecule separation (Table 4.8 and Table 4.9). Despite,

the depolarization, the values of the effective polarizability are still greater than the

mean polarizability in the gas phase, due to the strong interactions between the

targeted systems and the solvent as well as the interaction between the spherical

PCC and the external electric field, giving rise to strong reaction electric fields.

Table 4.9: Static properties of solvated-physisorbed methane. Effective
polarizability αeff , the mean polarizability αm, the components of polarizabil-
ity αii (i ∈ {x, y, z}), the enhancement I, the average reaction electric field, Fcf ,
from the polarization of the spherical PCC (with radius of 10.0 Å) by the external
field (E0 = 0.001 a.u), the average reaction electric, Fcm, from the interaction of
methane with the spherical PCC, and the average reaction electric field, Fsm, from
the interaction of methane with the solvent. The methane molecule is described at
the restricted Hartee-Fock level of theory with a threshold of 10−4. These values are
computed at different PCC-solvated methane separation, r (in Å).

(Å) Fcf Fcm Fsm I αeff αm αxx αyy αzz

2.0 0.0036 0.0000 0.0045 52.56 114.85 12.621 12.609 12.657 12.598

2.5 0.0033 0.0000 0.0045 49.06 110.96 12.612 12.610 12.657 12.572

3.0 0.0030 0.0000 0.0045 45.80 107.21 12.613 12.610 12.656 12.574

3.5 0.0028 0.0000 0.0045 43.67 104.69 12.614 12.612 12.658 12.571

4.0 0.0026 0.0000 0.0045 41.60 102.17 12.614 12.613 12.656 12.573

4.5 0.0024 0.0000 0.0045 39.56 99.64 12.613 12.611 12.656 12.574

5.0 0.0023 0.0000 0.0045 38.58 98.40 12.615 12.613 12.660 12.573

5.5 0.0021 0.0000 0.0045 36.62 95.86 12.613 12.611 12.656 12.574

6.0 0.0020 0.0000 0.0045 35.66 94.60 12.613 12.611 12.656 12.573
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4.6.3 Environmental Effects

Figure 4.10: Environmental effects on the polarizability of pyridine and methane.
(a) and (b) are the effective polarizability (αeff ) of the pyridine and methane
molecules physisorbed on a spherical PCC. (c) and (d) are the effective polarizability
of the solvated pyridine and solvated methane molecules physisorbed on a spherical
PCC. (d) is the enhancement of the polarizability of the physisorbed pyridine molecule
and (e) is the enhancement of the polarizability of the physisorbed solvated pyridine
molecule on a spherical PCC. r (in Å) is the separation between the molecule and the
spherical PCC while I is the enhancement
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Through the computed static polarizability of the targeted systems, we gauge

the environmental effects on the static properties of molecules. In the tables in

section 4.6.1 and section 4.6.2, the static properties of molecules change with changes

to their environment.

The effective polarizability of the physisorbed molecules is greater than the

polarizability of the free molecule. It increases as the molecules move away from the

spherical PCC. The environmental effect is even more important when the molecule is

polar: the effective polarizability of physisorbed pyridine Fig. 4.10(a) is by far greater

than that of methane Fig. 4.10(b), whatever the separation between the molecules

and the spherical PCC.

The effect of solvation and physisorption on the polarizability are all enhancing

when compared to the polarizability of the free molecule in a vacuum (Fig. 4.10(a,

b, c, d). The enhancement is very important for the physisorbed molecule in the gas

phase: the enhancement of the polarizability of physisorbed pyridine in the gas phase

is in the order of 105 Fig. 4.10(e) while the enhancement of the solvated physisorbed

pyridine is of the order of 102 Fig. 4.10(f). Solvated molecules are shielded from the

external electric field. Thus, the molecules are not effectively exposed to the external

electric field. The effective polarizability of solvated physisorbed pyridine Fig. 4.10(c)

is greater (whatever the separation, r) than the effective polarizability of the of

solvated physisorbed methane Fig. 4.10(d).
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4.7 Conclusion

The static properties of molecules have been used to investigate environmental effects

on them. Physisorbed Molecules in vacuum are more effectively polarized than the

free molecule. Solvated molecules are more effectively polarized than the free molecule

but less than the physisorbed molecule in vacuum. Polarization of molecules in a

given environment (physisorbed, solvated and solvated-physisorbed) is driven by the

electrostatic interaction.
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Chapter 5

Tunability of the Singlet-Triplet

Equilibrium in Organic Biradical

Compounds

The work described in this Chapter complements the experimental work carried

out (still ongoing at the time of writing) by Professor Musfeldt’s research group

in the Chemistry Department at the University of Tennessee. The experimental

investigation consisted of using magnetic and optical spectroscopy to investigate

the tunability of the singlet-triplet equilibrium population in organic biradical

compounds [34]. The use of high magnetic field to populate the triplet state is a

departure from the traditional electron paramagnetic resonance-based (EPR) Curie

law methods for determining the spin gap of a reactive biradical. This new approach

provides a more efficient way of determining the spin gap in open shell systems. First

principle calculations provides an insight to the experimentally observed features,

elucidating the structure property relationship.
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Figure 5.1: (a) Chemical structure of the pristine organic precursor 4,4-
diazidostilbene (blue) and the dinitrene biradical 4,4-stilbenedinitrene (red) after the
photochemical reaction. (b) Energy level scheme showing the 1Ag singlet ground state
and the low lying 3Bu triplet excited state of the dinitrene biradical [103]. The triplet
state can be accessed with temperature and magnetic field.

5.1 Chemical Systems

The chemical systems investigated here are commonly referred to as quinonoidal

diiminediyls, generated from their diazide precursors. The resulting biradicals are

stabilized, and trapped in their spin states via low temperature photolysis. In

this work, our focus is on two systems, namely: 1,4-phenylenedinitrene and 4,4’-

stilbenedinitrene. 1,4-diazidobenzene undergoes a photochemical reaction to yield

1,4-phenylenedinitrene, Fig. 5.2 which is persistent in a rigid matrix at T ≤
90K. Its zero-field splitting is estimated by EPR to be about 288K [103].

Likewise, 4,4’-stilbenedinitrene is a chemical-photolytic product of 4,4-diazidostilbene

precursor Fig. 5.1. Its EPR spin splitting is estimated at 235K [103]
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Figure 5.2: (a) Chemical structure of the 1,4-diazidobenzene precursor (blue),
the intermediate after partial photolysis (green), and the dinitrene biradical 1,4-
phenylenedinitrene (red) after full photochemical reaction. (b) Energy level scheme
showing the singlet ground state, low lying triplet, and the high lying quintet excited
states of the biradical [103]

5.2 Computational Method

Our choice of theory and methodology is guided by the nature of the electronic

structure of our systems. 1,4-phenylenedinitrene and 4,4’-stilbenedinitrene both have

two degenerate (or near degenerate) singly occupied molecular orbitals. For clarity,

the singly occupied molecular orbitals (MOs) are labelled a and b. Filling these two

MOs with the two electrons, we arrived at four different wave-functions, notably, one

singlet state and three degenerate triplet states (Fig. 5.3). which we write as follows:
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Figure 5.3: Spin configuration for a two electrons and two states scheme. The singlet
state is a linear combination of two single reference Slater determinants. The triplet
states (lower in energy with respect to the singlet) has one linear combination of two
single reference Slater determinant and two single reference Slater determinants

ψ1
0 = 1/

√
2 (|a(↑)b(↓)| − |a(↓)b(↑)|) (5.1)

ψ3
0 = 1/

√
2 (|a(↑)b(↓)|+ |a(↓)b(↑)|) (5.2)

ψ3
1 = |a(↑)b(↑)| (5.3)

ψ3
−1 = |a(↓)b(↓)| (5.4)

ψ3
1 and ψ3

−1 are single Slater determinants and are straightforward to model in DFT.

The singlet (there are two other singlet states, higher in energy, not shown) wave-

function (ψ1
0) is a linear combination of single Slater determinants and is not readily

modeled with DFT. This very simple scheme of spin combination is indicative of the

possibility of using the density functional theory and wave function methodologies

together in a way as to complement each other. 1,4-phenylene is relatively small in size

and can be modeled with the wave-function methodology while 4,4’-stilbenedinitrene

is a relatively big molecule as far as using wave-function methodology is concerned.
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In the light of this size constraint, both methodologies will be used in a way

to reduce the computational cost and at the same time achieve quantitatively and

qualitatively acceptable results. The wave-function methodology of choice here

is the multi-configuration self-consistency field method (MCSCF) where as the

DFT/B3LYP method is the density functional method of choice. The computational

procedure consist of using DFT/B3LYP to determine the geometry that minimizes

the triplet electronic state energy. The triplet state geometry is then used to carry

out single point calculations with MCSCF to determine the electronic state energies

of the singlet and the triplet.

In oder to test the validity of the procedure, geometry optimization of 1,4-

phenylenedinitrene at the DFT/B3LYP and at the MCSCF with complete active

space self-consistent field, in an active space of n electrons in m orbitals(CASSCF[n,

m]) was carried out. The 6-311G* basis function was used in both cases. The DFT

and the CASSCF[10,10] optimized geometries are then used to carry out single point

MCSCF calculations at various CASSCF[n, m] to determine the singlet and triplet

electronic state energy from which the spin gap is obtained.

Comparing the DFT and CASSCF[n, m] geometries as well as the spin gap of 1,4-

phenylenedinitrene the computational procedure is validated. Having validated the

procedure, the triplet state of 4,4’-stilbenedinitrene is optimized at the DFT/B3LYP

and MCSCF/CASSCF[6, 6] respectively using the 6-31G* basis function. The single

point calculations are then carried out at the MCSCF level with the [6, 6], [8, 8], [10,

10] and [12, 12] CASSCF configurations with the 6-31G* basis set.

Vertical electronic excitations were carried out on the relaxed structures of the

targeted materials. 1,4-phenylenedinitrene was studied using time-dependent density

functional theory (TDDFT, B3LYP functional, 6-311+g* basis), and also with

configuration interaction (CI) energy-selected with a threshold of 0.0001Eh [109](eight

frozen core orbitals, 6-31g* basis using orbitals from complete active space self-

consistent field with an active space of ten electrons in ten orbitals). For both

methods, the lowest 40 states were computed. Although it provides the preferred
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single determinant triplet wave-function, the TDDFT is not expected to yield a good

description of the biradical singlet spectrum since it does not treat near-degeneracy

of the b1g and b3u orbitals (Fig. 5.4).

Similarly, 4,4’-stilbenedinitrene was studied using time-dependent density func-

tional theory (TDDFT, B3LYP functional, 6-311++g** basis, frozen atomic orbitals).

For this method, the lowest 40 states were computed. Although it provides the

preferred single determinant triplet wave-function, again,the TDDFT is not expected

to yield a good description of the biradical singlet spectrum since it does not treat

near-degeneracy of the ag and bu orbitals (Fig. 5.5).

5.3 Results and Discussion

We discuss the results of the calculations in comparison with some experimental

data. The active spaces of the targeted systems are described in a way to capture

the chemistry of the biradical. Vertical electronic excitation spectra are displayed

with distinguished features assigned. Using a simple two state wave-function scheme

coupled with a more complete wave-function scheme that includes singly-occupied,

doubly-occupied and virtual-frontier MOs, simple Hartree-Fock and Configuration

interaction analytical expressions are used to explore spin exchange and their effects

on the electronic spectra of the targeted systems. The spin gap, the vertical

excitations and other molecular properties are used to established a structure property

relationship.

5.3.1 Active Spaces

MCSCF calculations necessitate an understanding of the Chemistry of the system

under investigation such that the the CASSCF active space is reflective of the

chemistry of the system. Normally we will love to include all the electrons in

our wave-function but we are limited by the computing power, thus we limit
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ourself to the valence electrons. The active spaces for our targeted systems

comprise the the pi-electrons, the two unpaired electrons and all the associated

orbitals. For clarity, the active spaces are divided into three subspaces: the doubly-

occupied (DOMO), the singly-occupied (SOMO) and virtual (VMO) molecular

orbitals. Fig. 5.4 and Fig. 5.5 are the CASSCF active spaces of 1,4-phenylenedinitrene

and 4,4’-stilbenedinitrene

For the 3B2u and 1Ag electronic states of 1,4-phenylenedinitrene, the refer-

ence state for CASSCF[10, 10] computations was 2b21u1b
2
3g1b

2
2g1b

1
1g1b

1
3u2b

0
3g1a

0
u1b

0
1u.

The 3Bu and the 1Ag electronic states of 4,4’-stilbenedinitrene, has 2a2u3b
2
g1b

1
u1a

1
g3a

0
u2b

0
g as

reference state for CASSCF[12, 12] computations; a subset of the CASSCF[18,

18] with reference state 4a2u4b
2
g1b

1
u1a

1
g4a

0
u4b

0
g . All of the active space orbitals are

predominantly π and π∗ in character but for the singly-occupied MOs that are

predominantly px or py in character. The SOMOs are localized on the Nitrogen

atoms.

104



VMO

SOMO

DOMO

Figure 5.4: MOLDEN plots of the active space orbitals used in the computations
of 1,4-phenylenedinitrene. 105
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Figure 5.5: MOLDEN plots of the active space orbitals used in the computations
of 4,4’-stilbenedinitrene.
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5.3.2 Spin splitting

With the appropriate identification of the active spaces, we proceed to computing

the spin splitting. Looking at the MCSCF geometries at various CASSCF active

spaces (Table 5.3), the change in active space composition does not affect the relaxed

geometry. The geometry of any the CASSCF active spaces could be used for single

point calculation. Using the MCSCF (CASSCF[10, 10], 6-311G*) relaxed geometry,

single point calculations are carried out on 1,4-phenylenedinitrene for the following

CASSCF active spaces:[6, 6], [8, 8], [10, 10] and [12, 12]. We repeat the single point

calculations with the same CASSCF active spaces, but this time using DFT (B3LYP,

6-311G*) geometry.

Table 5.1: Spin splitting from the DFT (B3LYP, 6-311G*) geometry of the 1,4-
phenylenedinitrene triplet with MCSCF single point at different active spaces. units
are in Kelvin (kcal/mol) for the spin splitting and in Hartree (Eh) for the electronic
state energies

States [6, 6] [8, 8] [10, 10] [12, 12] Expt.(Kcal/mol)

Etriplet -338.31116 -338.34157 -338.39511 -338.40804 –

Spin 58.459 569.722 583.880 353.670 412.64

splitting (0.116) (1.132) (1.160) (0.703) 0.82[106]

Esinglet -338.31135 -338.34338 -338.39695 -338.40916 –
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Table 5.2: Spin splitting from the MCSCF (CASSCF[10, 10], 6-311G*) geometry of
the 1,4-phenylenedinitrene with MCSCF single point at different active spaces. units
are in Kelvin (kcal/mol) for the spin splitting and in Hartree (Eh)for the electronic
state energies

States [6, 6] [8, 8] [10, 10] [12, 12] Expt.(Kcal/mol)

Etriplet -338.30851 -338.34255 -338.39615 -338.40254 –

Spin 72.059 837.769 713.100 681.914 412.64

splitting (0.143) (1.335) (1.417) (1.355) 0.82[106]

Esinglet -338.30874 -338.34520 -338.39841 -338.40469 –

The results of Table 5.1 and Table 5.2 display common features: Single point

calculations for both geometries show a lower energy state for the singlet. In general,

the single point energies of the, [6, 6], [8, 8], and [10, 10] active space singlet with

CASSCF[10, 10] geometry are about 0.0002 Eh (0.1401kcal/mol) on average lower

than the single point energies for similar active spaces with the triplet DFT geometry.

Therefore, by using the DFT geometry of the triplet or any geometry of a CASSCF

configuration with the active space confined to the valence electrons, we arrived at

the same conclusion.
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Table 5.3: Inter-nuclear angles θ of the MCSCF(6-311G*) at CASSCF active spaces
of [6, 6], [8, 8], [10, 10] for singlet(S), triplet(T) and triplet DFT geometries. For
clarity, the MCSCF θ is indexed with the electronic state and the number of electrons.

center 1 center 2 center 3 θS6 θT6 θS8 θT8 θS10 θT10 θDFT

2 C 1 C 6 C 120.41 120.16 120.09 120.10 120.24 121.36 117.40

2 C 1 C 12 N 119.79 119.92 119.95 119.95 119.88 119.32 121.30

6 C 1 C 12 N 119.79 119.92 119.95 119.95 119.88 119.32 121.30

1 C 2 C 3 C 119.79 119.92 119.95 119.95 119.88 119.32 121.30

1 C 2 C 7 H 117.94 117.80 117.81 117.80 117.92 118.15 117.18

3 C 2 C 7 H 122.27 122.28 122.24 122.25 122.20 122.53 121.52

2 C 3 C 4 C 119.79 119.92 119.95 119.95 119.88 119.32 121.30

2 C 3 C 8 H 122.27 122.28 122.24 122.25 122.20 121.36 121.52

4 C 3 C 8 H 117.94 117.80 117.81 117.80 117.92 118.15 117.18

3 C 4 C 5 C 120.41 120.16 120.09 120.10 120.24 121.36 117.40

3 C 4 C 11 N 119.79 119.92 119.95 119.95 119.88 119.32 121.30

5 C 4 C 11 N 119.79 119.92 119.95 119.95 119.88 119.32 121.30

4 C 5 C 6 C 119.79 119.92 119.95 119.95 119.88 119.32 121.30

4 C 5 C 9 H 117.94 117.80 117.81 117.80 117.92 118.15 117.18

6 C 5 C 9 H 122.27 122.28 122.24 122.24 122.20 122.53 121.52

1 C 6 C 5 C 119.79 119.92 119.95 119.95 119.88 119.32 121.30

1 C 6 C 10 H 117.94 117.80 117.81 117.80 117.92 118.15 117.18

5 C 6 C 10 H 122.27 122.28 122.24 122.25 122.20 122.53 121.52
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Given the validation of the computational procedure, we use the MCSCF (CASSCF[6,

6], 6-31g*) geometry as well as that of the DFT (B3LYP, 6-31G*) triplet to compute

the MCSCF single point energies of 4,4’-stilbenedinitrene at various CASSCF active

spaces as represented in Table 5.4 and Table 5.5. A full representation of the

Chemistry, of the targeted system, through the active space require an 18 electrons

in 18 MOs configuration space. NWchem [102] can handle a maximum configuration

space of 20 electrons in 20 MOs for five hundred basis functions. The single point

energy calculations is limited to 12 electrons in 12 MOs CASSCF active space, because

our effort to go higher was hindered by IOS problems.

Table 5.4: Spin splitting from the MCSCF (CASSCF[6, 6], 6-31G*) geometry of
the 4,4’-stilbenedinitrene singlet. The MCSCF/6-31G* single point calculations are
carried out at the specified CASSCF active spaces. The units are Kelvin (kcal/mol)
for the spin splitting, and Hartree for the electronic energies

States [6, 6] [8, 8] [10, 10] [12, 12] Expt.(Kcal/mol)

Etriplet -644.79979 -644.79062 -644.83794 -644.85569 –

Spin 6.688 5.013 1.677 12.299 236.51

splitting (0.013) (0.010) (0.003) (0.024) 0.47[106]

Esinglet -644.79982 -644.79063 -644.83795 -644.855748 –
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Table 5.5: Spin splitting from the DFT (B3LYP, 6-31G*) geometry of the 4,4’-
stilbenedinitrene triplet. The MCSCF/6-31G* single point calculations are carried
out at the specified CASSCF active spaces. The units are Kelvin (kcal/mol) for the
spin splitting, and Hartree for the electronic energies

States [6, 6] [8, 8] [10, 10] [12, 12] Expt.(Kcal/mol)

Etriplet -644.79500 -644.78513 -644.83309 -644.85574 –

Spin 20.9 2.186 3.764 35.176 236.51

splitting (0.042) (0.0043) (0.007) (0.07) 0.47[106]

Esinglet -644.79507 -644.78514 -644.83311 -644.85585 –

Table 5.6: Spin splitting from different experimental techniques. The analysis
method used to extract the spin gap is indicated in bracket: population (pop), and
Beer’s (Beer). The values in squared brackets correspond to the tuning parameter,
The results are compared to the MCSCF results from [106] and this work

Techniques 4,4’-stilbenedinitrene 1,4-phenylenedinitrene

EPR 235k[103] 288k[103] 362K[104] 413K[105]

Optics[T] 190K (pop), 130K (Beer) 230K (pop)[34]

Optics[B] 124K (pop), 90K (Beer) 130K

MCSCF (This work) 35K 354K

MCSCF [106] 20K 352K
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The value of the experimental spin splitting vary with the experimental technique.

Table 5.6 gives a summary of results obtained using different experimental techniques;

from EPR to optics. Magnetic field (B) and Temperature (T) are the experimental

tuning parameters used to populate the triplet state. These results are compared to

our best MCSCF results and those from [106] (1,4-phenylenedinitrene at CASSCF[8,

8] with 6-31G* and 4,4’-stilbenedinitrene at CASSCF[6, 6] with 3-21G)

5.3.3 Vertical Excitations and Frequency Analysis

First principles calculation of the vertical excitation spectra of the target systems

confirms most of the features on the experimental spectra. TDDFT predicts the

b1g → b3u transition to be at 1750 nm while the most intense feature in the singlet CI

spectrum is at 251 nm. On the other hand, since the limited CI expansion recovers

only a fraction of the correlation energy, the CI transitions are expected to be too high

in energy. Nevertheless, the basic trends are apparent Fig. (5.6). The dipole-allowed

spectrum of the triplet species is less intense and at higher energy than that of the

singlet, the features in common between the singlet and triplet spectra are primarily

π → π∗ , and many of the lower energy features are either of low intensity or dipole

forbidden.

We employed a symmetry analysis, comparison with model compounds, and first

principles calculations to assign the transitions. In addition to the strong dipole-

allowed π → π∗ transitions at λ < 300, 308, and 345 nm [107], several weak features

are observed between 400 and 450 nm that we assign as forbidden π → π∗ excitations

activated by vibronic coupling, analogous to the situation in C60 [108].
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Figure 5.6: TDDFT and selected CI spectra (square of the transition dipole,µ2,
in atomic units) of 1,4-phenylenedinitrene. For clarity, dipole-allowed transitions are
indicated in black. Dipole-forbidden transitions are indicated in red as negative 0.1,
weak allowed transitions are increased to 0.1, and intense transitions truncated to
0.5. The most intense feature in the singlet CI spectrum at 251 nm (predominantly
N → N∗ single excitation, with lesser π → π∗ single excitation) has µ2 = 12 and
does not appear in the triplet spectrum that has its most intense feature with µ2 =
0.3 at 162 nm. The spurious low energy features in the singlet TDDFT spectrum are
omitted. N and N∗ indicate the b1g and b3u orbitals, respectively
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Figure 5.7: TDDFT spectra (square of the transition dipole, µ2, in atomic units)
of 4,4’-stilbenedinitrene. For clarity, dipole-allowed transitions are indicated in
black. Dipole-forbidden transitions are indicated in red as negative 0.1, weak allowed
transitions are increased to 0.1, and intense transitions truncated to 0.5. The most
intense feature in the triplet TDDFT spectrum occurs at 364 nm (equal contributions
from N → N∗ and π → π∗ excitations) has µ2 = 10.55 and does not appear in the
singlet spectrum that has its most intense feature with µ2 = 1.607 at 222.8489 nm.
The spurious low energy features in the singlet TDDFT spectrum are omitted. N
and N∗ indicate the ag and bu singly occupied orbitals, respectively
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Figure 5.8: Absolute value of the absorption difference,|∆α| = |α(T )| − |α(T =
5K)|, vs. wavelength for the photolyzed biradical film at 80, 60, 40, and 20 K.
Inset: Example Curie [34] fit at 520 nm. These data allow a direct comparison
of electron paramagnetic resonance and optical methods of spin gap determination.
The determined θ = 230 ± 22K, which compares well with that from electron spin
resonance (288 K) . A schematic view of the calculated triplet state excitations using
the TDDFT method (shown at the bottom) in reasonable agreement with the |∆α|
data in the main panel. The fine structure in the absorption difference spectrum is
discussed in the supplementary material
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From Fig. 5.6, we see that the singlet and triplet state spectra of 1,4-phenylenedinitrene

are predicted to be quite different. The selected-CI results indicate that in the singlet

spectrum π → π∗ excitations acquire significant intensity through simultaneous

excitation of b1g → b3u, whereas the triplet spectrum is dominated by single

excitations. At the lowest temperature, the excitations are essentially those assigned

to the singlet ground state, with weaker features of triplet origin growing at higher

temperatures Fig. (5.8).

The TDDFT spectrum of 4,4’-stilbenedinitrene is very similar to that of 1,4-

phenylenedinitrene. The singlet and triplet spectrum are dominated by π →
π∗ excitations as well as excitations from the ag and bu MOs. The most intense

peak on the singlet spectrum occurs at 223 nm (N → σ∗, µ2 = 1.61), whereas the

triplet spectrum is dominated by one very intense peak occurring at 364 nm (with

equal contributions from N → N∗ and π → π∗, µ2 = 10.55). The dipole-allowed

spectrum of the triplet species is more intense and at higher energy than that of the

singlet, the features in common between the singlet and triplet spectra are primarily

π → π∗ , and many of the lower energy features are either of low intensity or dipole

forbidden.

5.3.4 Structure Property Relationship

Spin splitting has been shown to reduce (Section 5.3.2) with the addition of spacer

groups between the spin carrying atoms. Using a two state problem coupled with

the molecular properties Fig. 5.9, we provide physical insight to features and trends

observed in the spectrum and the electronic structures.
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Figure 5.9: Molecular properties of 4,4’-stilbenedinitrene (a, b, c) and 1,4-
phenylenedinitrene (d, e, f) (a) Electronic charge density distribution (contour
spacing = 0.01) (b) Spin density distribution (contour spacing = 0.02) (c)Molecular
electrostatic potential(contour spacing = 0.05) (d)Electronic charge density
distribution (contour spacing = 0.05) (e) Spin density distribution (contour spacing
= 0.01) and (f) Molecular electrostatic potential(contour spacing = 0.01). The
electronic charge density of 1,4-phenylenedinitrene is uniformly distributed over
the entire molecule whereas the bulk of the electronic charge density in 4,4’-
stilbenedinitrene is accumulated over the spacer groups, between the nitrogen atoms.
Spin density distribution is localized on the nitrogen atoms in both structures.
In (c) and (f) the blue and red contours represent the positive and negative potentials
respectively.
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We will consider the singly occupied molecular orbitals (SOMO), of the active

space Fig. 5.4, of 1,4-phenylenedinitrene and simplify the bi-radical into two

equivalent atomic orbitals, a and b, localized on the nitrogen atoms (Fig. 5.9e). The

b1g and b3u SOMO are the symmetric and anti-symmetric combinations respectively.

The various configuration state function are obtained by putting the two electrons

into the orbitals (Table 5.7.) To simplify the expressions and avoid repeating the

irreducible representation each time, we simply define

Table 5.7: Configuration state functions (ψI). I is the state function index, Ĥ is
the Hamiltonian, 〈S2〉 is the electron spin expectation value and n1 and n2 are the
occupation numbers of the orbitals.

I n1 n2 Symm. 〈S2〉 HII= 〈ψI |Ĥ|ψI〉
1 2 0 1Ag 0 2h11 + 〈11|11〉
2 1 1 3B2u 1 h11 + h22 + 〈11|22〉 − 〈12|12〉
3 1 1 1B2u 0 h11 + h22 + 〈11|22〉 + 〈12|12〉
4 2 0 1Ag 0 2h11 + 〈22|22〉
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φ1 = φb1g =
1√
2
(a+ b) (5.5)

φ1 = φb3u =
1√
2
(a− b)

The only non-zero off-diagonal matrix element between the two 1Ag states is

〈ψ1|Ĥ|ψ2〉 = 〈11|22〉 − 〈12|12〉 (5.6)

In order to get a better interpretation of the states interaction and correlate it to the

electronic structure of the system, we revert to the atomic orbital basis and set some

definitions as well as integrals (making use of the symmetry between a and b)

haa = hbb = h (5.7)

hab = −ν

The one- electron integrals are simplified as follows:

h11 = h− ν (5.8)

h22 = h+ ν

h12 = 0
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The two-electron integrals are simplified as follows:

〈11|11〉 =
1

2
(〈aa|aa〉 + 〈aa|bb〉) + 〈ab|ab〉 + 2〈aa|ab〉 (5.9)

〈22|22〉 =
1

2
(〈aa|aa〉 + 〈aa|bb〉) + 〈ab|ab〉 − 2〈aa|ab〉

〈11|22〉 =
1

2
(〈aa|aa〉 + 〈aa|bb〉)− 〈ab|ab〉

〈12|12〉 =
1

2
(〈aa|aa〉 − 〈aa|bb〉)

〈11|22〉+ 〈12|12〉 = 〈aa|aa〉 − 〈ab|ab〉

〈11|22〉 − 〈12|12〉 = 〈aa|bb〉 − 〈ab|ab〉

The singly occupied molecular orbitals in both 1,4-phenylenedinitrene and 4,4’-

stilbenedinitrene are solely Nitrogen px atomic functions; With the two atomic

functions, a and b, at y = −Y and y = +Y respectively, a probable transition

dipole moment is (assuming 〈a|y+ Y |a〉 = 0 and similarly for b, which is true if they

are pure atomic orbitals).

〈1|y|2〉 = 1

2
(〈a|y|a〉 − 〈b|y|b〉) = −Y (5.10)

Thus the further apart the Nitrogen centers are, the more intense the features.

Table 5.8 and Table 5.9 illustrates the relationship between transitions and the

electronic structure of 4,4’-stilbenedinitrene (singlet and triplet respectively). The

intensities of the features are further enhanced when mixing occurs between the N →
N∗ and the π → π∗ transitions. The features at (364nm, 10.55a.u) on the

TDDFT spectrum of triplet 4,4’-stilbenedinitrene (Fig. 5.7) and at (251nm, 11.8a.u)

on the selected-CI spectrum of 1,4-phenylenedinitrene (Fig. 5.6) are very intense,

consequence of the N → N∗ and the π → π∗ transition mixing.
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Table 5.8: Transition dipole moments (X, Y) of singlet 4,4’-stilbenedinitrene for
selected transitions, at computed wavelength (λ) with the squared dipole oscillator
strength (µ2, in atomic units)

Transitions (X, Y) µ2(a.u) λ(nm)

N → π∗ 0.043, -1.30 0.0026 1008

N → N∗ 0.103, -0.9663 0.0094 295

N → N∗ -0.196, -0.251 0.000099 309

N → σ∗ 0.227, -0.0163 0.000033 275

N → σ∗ 0.398, 0.0389 0.00035 257

σ → N∗ -0.0458, 0.8148 0.0079 228

N → σ∗ 0.1488, -3.046 1.61 223

Table 5.9: Transition dipole moments (X, Y) of triplet 4,4’-stilbenedinitrene for
selected transitions, at computed wavelength (λ) with the squared dipole oscillator
strength (µ2, in atomic units)

Transitions (X, Y) µ2(a.u) λ(nm)

π → π∗+N → N∗ -0.105, 6.24 10.55 364

π → N∗ -0.229, -0.884 0.000035 315

N → π∗ -0.034, -0.279 0.000061 309

N → σ∗ -0.0342, 0.0516 0.000000 245
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The integrals (Eq. 5.9) can be further simplified by assuming that the atomic

orbitals do not overlab (This does not mean that hab = −ν = 0, since this is an

effective one-particle interaction that can be carried out through space via other

orbitals). The integrals then become

〈11|11〉 = 〈22|22〉 = 〈11|22〉 = 1

2
(〈aa|aa〉+ 〈aa|bb〉) (5.11)

〈12|12〉 =
1

2
(〈aa|aa〉 − 〈aa|bb〉)

〈11|22〉+ 〈12|12〉 = 〈aa|aa〉

〈11|22〉 − 〈12|12〉 = 〈aa|bb〉

ǫ1 = h− ν + 〈aa|bb〉

ǫ2 = h + ν + 〈aa|bb〉

Table 5.10: Non-zero matrix elements, from integral simplification, of the Hartree-
Fock equation. We observe that 〈aa|aa〉 > 〈aa|bb〉 > 0

Label Terms

H11 2h− 2ν + 1
2(〈aa|aa〉 + 〈aa|bb〉)

H22 2h+ 〈aa|bb〉
H33 2h+ 〈aa|aa〉
H44 2h+ 2ν + 1

2(〈aa|aa〉 + 〈aa|bb〉)
H14 〈aa|bb〉
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The non-zero matrix elements (outcome of integral simplifications) of the Hartree-

Fock equationn is then represented in Table 5.10.

The eigenvalues of the state functions can then be obtain. First we establish the

following relationships:

1

2
(ǫ2 − ǫ1) = ν (5.12)

1

2
(ǫ2 − ǫ1) = h+ 〈aa|bb〉

The eigenvalues of the 1Ag state functions are:

E1 = 2h+
1

2
(〈aa|aa〉+ 〈aa|bb〉)−

√
4ν2 + (〈aa|bb〉)2 (5.13)

E4 = 2h+
1

2
(〈aa|aa〉+ 〈aa|bb〉) +

√
4ν2 + (〈aa|bb〉)2

Empirically, ν is small (0.0012) whereas 〈aa|bb〉 = O(Y −1). It is thus save to make the

approximation that 〈aa|bb〉 ≫ |ν| and Taylor expand the square root about ν = 0.

Eq. 5.13 then reduces to

E1 = 2h+
1

2
(〈aa|aa〉 + 〈aa|bb〉) +O(Y −1) (5.14)

E4 = 2h+
1

2
(〈aa|aa〉 + 〈aa|bb〉) +O(Y −1)

The eigenvalues of the 1B2u and the 3B2u state functions are:

E3 = 2h+ 〈aa|aa〉 (5.15)

E2 = 2h+ 〈aa|bb〉

The spin splitting and the vertical electronic transition can now be expressed in

atomic orbital basis. The singlet-triplet splitting is written as

E2 −E1 =
1

2
(3〈aa|bb〉 − 〈aa|aa〉) (5.16)
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and the 1Ag → 1B2u transition energy is

E3 − E1 =
1

2
(〈aa|aa〉 − 〈aa|bb〉) (5.17)

Since 〈aa|bb〉 = O(Y −1) whereas 〈aa|aa〉 is constant, making the molecule longer

should stabilize the triplet because for these molecules, the states are essentially

degenerate. This predicts that adding, for instance, more ring spacer should make the

triplet the ground state, giving rise to isolated radicals (double doublets). In reality,

the through-molecule Coulomb interaction will be screened (through correlation

effects) by the intervening ring, and the atomic states, a and b, are readily mixed with

the ring sigma framework. The through-molecule Coulomb interaction is also screen

by the accumulated electronic charge density Fig. 5.9(a) over the spacer group in

4,4’-stilbenedinitrene which is well illustrated by the negative electrostatic potential

Fig. 5.9(c) with red contour lines between the nitrogen atoms on which the spins are

localized Fig. 5.9(b)

The through-molecule coulomb interaction term contributes to the energy of both

the 1Ag and the 3B2u states such that additional ring spacers will lower the energy

of the 1Ag states and at the same time, the energy of the 3B2u states is also changed

but the change is quantitatively less than it is for the triplet state (The singlet-triplet

splitting of 1,4-phenylenedinitrene is 354K whereas that of 4,4’-stilbenedinitrene is

35K.). As more ring spacers are added, the singlet-triplet splitting is expected to

reduce, and constitutes a measure of the bi-radical character.

The fact that the 〈aa|aa〉 term is constant results in the energy of the 1B2u not

being affected by the addition of ring-spacer. Given that the energy of the 1Ag states

change with additional ring-spacers, the intensity of the 1Ag → 1B2u is quantitatively

affected (The singlet spectrum of 4,4’-stilbenedinitrene is less intense than that of 1,4-

phenylenedinitrene). The vibrational modes (Table 5.11) have shown high amplitude

ring stretching which may also be a factor in enhancing the bi-radical character.
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Table 5.11: Vibrational fine structure extracted from the absorption difference data
of the 1,4-phenylenedinitrene biradical (supporting material of [34]) compared with
Bu symmetry mode frequencies and assignments from MCSCF-CASSCF (10, 10)/ 6-
311G* calculations. The calculated frequencies correspond to the singlet state. Those
of the triplet state were not much different.

Obs. (cm−1) Calc. (cm−1) Displacement patterns

1633, 1630, 1608 1612 C-C asym. stretch on ring

+ C-H wag

1494, 1436, 1421 1349, 1391 Asym. C-C stretch in ring

+ C-H scissoring

1208, 1182, 1150 1180 Sym. C1-C ring stretch

+ assym. C-H bend

921 908 C1-C4 bend in ring (oop)

+ C-H bend

896 837 C-H bend (oop)

708, 712 748 Out-of-plane ring bending

centered on C1

400 393 CN wagging (in-plane)

scissor + CN bend (oop)

312, 285 291 CN wagging (oop)
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5.4 Conclusion

We have investigated the role played by both triplet and singlet electronic structures

of 1,4-phenylenedinitrene and 4,4’-stilbenedinitrene in tuning the singlet-triplet

equilibrium. The red-shift (observed in experiment) of both singlet spectra with

respect to the triplet spectra in both targeted systems was confirmed by ab initio

calculations. Furthermore other spectral features such as the high intensity of the

triplet spectrum at higher temperatures and the low intensities of the singlet spectrum

at lower temperatures (no triplet features at lower temperatures) were confirmed.

The importance of Coulombic interaction through spin exchange has been

illustrated. The spin splitting is inversely proportional to the separation between

the spin carrying centers. The mixing of the transitions from spin carrying centers

with π → π∗ transitions, significantly enhances the transition. The vibrational modes

have shown high amplitude ring stretching which may also be a factor in enhancing the

bi-radical character (defined by the size of the separation between the spin carrying

centers).
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Chapter 6

Conclusions

Two solvation models with different molecular cavities have been designed, im-

plemented, and tested in MADNESS [70]. We have designed, implemented and

have applied geometric topology to study environmental and confinement effects of

solvation on a physisorbed molecule. In collaboration with experimentalist we have

investigated, for the first time, the tunability of singlet-triplet equilibrium using a

high magnetic field in organic biradical materials.

The surface volume polarizable electrostatic (SVPE) solvation model that we

have developed, not only captures surface polarization as is the case with the

polarizable continuum model [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51], but

also captures,efficiently, volume polarization. The surface and volume polarization

contributions are computed simultaneously (this reduces roundoff errors and the

cost of computation), unlike other SVPE models [52, 53, 56, 57, 58] where

the surface and volume pieces are often computed separately. The dielectric

function (Eq. 3.16) has been developed to efficiently handle discontinuity. The

Heaviside step function (Eq. 3.6) is used to smoothly switch between the inside and the

outside of the molecular cavity. The improved dielectric function expression is derived

using the log-derivative as shown in Eq. 4.39; this form of discontinuous dielectric

function, assures that the charge distribution is always localized exactly on the surface
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of the molecular cavity, and this leads to a much improved numerical behavior and

more rapid convergence to the limit σ = 0. Selected molecular systems have been used

to illustrate surface and volume polarization. Free energy of solvation (contributions

from the cavitation and the electrostatic solvation free energies) agrees favorably well

with the experimental values (Table 3.3).

Contrary to the cavity of the interlocking sphere used to described the SVPE

model, the dielectric function of the isodensity model is a functional of the electronic

charge density (of the molecular system) Eq. 3.14. Just as in the interlocking sphere

model where the switching function is used to switch smoothly between the inside and

outside of the molecular cavity, a similar parameter exist here to allow for a smooth

decay of the dielectric function in the proximity of the solute-solvent boundary.

The dielectric functional is accurately computed and represented without having to

augment the electronic density with some Gaussian function as is the case in [?]. The

isodensity solvation model has been revised to overcome the challenges encountered

in the previous developments [114, 55]: a new mesh function with much improved

numerical behavior, refined approach to computing the molecular quantum surface

area and quantum volume. The overall performance of the methodology over the

free energies in water on a selected set of molecules compares favorably with the

experimental results, other theoretical methods of similar physical background and

the parameter intensive methods as well.

In this work, we have revised the SVPE and the isodensity solvation models

wherein, both the solute and the solvent environment are represented with the same

adaptive, multi-wavelet basis functions, thereby, within the user-specified precision,

eliminating the basis set error and greatly simplifying their implementations. We

have reformulated both methods to use integral equations throughout as well as a

conscious management of the numerical properties of the basis.

Using the geometric topologies developed for the solvation models, we have

designed, implemented and tested the polarizable continuum colloid. We have used

the spherical polarizable continuum colloid to study the environmental effects of
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solvation on a molecule physisorbed on a metal particle. The numerical differentiation

of the dipole to compute the polarizability and higher order moments of molecules

provides results with sufficient numerical accuracy (Table 4.3, and Table 4.2). On

the other hand, numerical differentiation of energy does not provide results with

numerical accuracy (Table 4.4) .We have used the polarizability of molecules to

analyzed environmental effects on physisorbed molecules.

We have shown that the electrostatic interaction between molecules and the

polarizable continuum colloid (PCC) results in a magnified reflected electric field (Ta-

ble 4.6 and Table 4.7). The magnitude of the reflected electric field depends on

the PCC-molecule separation. A similar magnification effect has been shown for

the reflected field from the PCC-field (external electric field) interaction: a PCC-

pyridine separation of 2.0 Å, gives rise to a reflected electric field that is four times

the magnitude of the incident electric field. The presence of the solvent, reduces

the PCC-molecule interaction as well as the enhancement of the reflected electric

field (Table 4.8 and Table 4.9)

Confinement effects have been observed through the change in the mean polar-

izability of the solvated, physisorbed and solvated-physisorbed molecules: the mean

polarizability of the solvated pyridine and solvated methane are respectively 46.92a.u3

and 12.60a.u3, and are equal in magnitude to the polarizabilities of the solvated-

physisorbed pyridine or methane at any given PCC-molecule separation (Table 4.8

and Table 4.9). The mean polarizability of free methane and pyridine are respectively

61.30a.u3 and 15.84a.u3. We have illustrated the enhancement of the effective

polarizabilities through the environmental effects. The effective polarizability of the

physisorbed molecules in vacuum is greater than that of the solvated-physisorbed

molecules which inturn is greater than that of the solvated molecules.

Through our calculations, we have confirmed the observations made (by experi-

mentalist) about the possibility to use high magnetic field to manipulate the singlet-

triplet equilibrium in biradical organic compounds [34], which is a departure from

the traditional electron paramagnetic resonance-based (EPR) Curie law methods for
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determining the spin gap of a reactive biradical. This new approach provides a more

efficient way of determining the spin gap in open shell systems (Table 5.6)

The role played by both triplet and singlet electronic structures of 1,4-phenylenedinitrene

and 4,4’-stilbenedinitrene in tuning the singlet-triplet equilibrium has been inves-

tigated. The red-shift (observed in the experiment) of both singlet spectra with

respect to the triplet spectra in both targeted systems was confirmed by ab initio

calculations (Fig. 5.6 and Fig. 5.7). Furthermore, other spectral features such as the

high intensity of the triplet spectrum at higher temperatures and the low intensities of

the singlet spectrum at lower temperatures (no triplet features at lower temperatures)

were confirmed.

The importance of Coulombic interaction through spin exchange has been

illustrated. The spin splitting is inversely proportional to the separation between

the spin carrying centers. The mixing of the transitions from spin carrying centers

with π → π∗ transitions, significantly enhances the transition. The vibrational modes

have shown high amplitude ring stretching which may also be a factor in enhancing the

bi-radical character (defined by the size of the separation between the spin carrying

centers).
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Appendix
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The optimized geometries of molecules reported herein were optimized using

NWchem. The optimized geometries all passed the frequency analysis test.
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Benzene

(C6H6)

units angstrom

C 0.98756089 0.98756089 0.00000000

C 1.34903326 -0.36147237 0.00000000

C 0.36147237 -1.34903326 0.00000000

C -0.36147237 1.34903326 0.00000000

C -1.34903326 0.36147237 0.00000000

C -0.98756089 -0.98756089 0.00000000

H 1.75619462 1.75619462 0.00000000

H 2.39900646 -0.64281184 0.00000000

H 0.64281184 -2.39900646 0.00000000

H -0.64281184 2.39900646 0.00000000

H -2.39900646 0.64281184 0.00000000

H -1.75619462 -1.75619462 0.00000000

Water

(H2O)

units angstrom

O 0.00000000 0.00000000 -0.11468157

H -0.75406337 0.00000000 0.45872629

H 0.75406337 0.00000000 0.45872629
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Methane

(CH4)

units angstrom

C 0.00000117 -0.00000369 -0.00000005

H 0.57425115 -0.32269179 0.86047787

H 0.50317965 -0.31185326 -0.90767522

H -0.09018211 1.07984942 0.01024417

H -0.98725568 -0.44528227 0.03695350

Acetamide

(CH3CONH2)

units angstrom

C 1.28901920 -0.50920515 -0.17082984

C -0.05141456 0.15792861 0.05145078

N -1.12848330 -0.66073005 -0.08402011

O -0.16273189 1.31897421 0.32235204

H 2.08075108 0.14330333 0.26305691

H 1.45554474 -0.61984328 -1.28044749

H 1.31364497 -1.53150970 0.29902746

H -2.03037970 -0.23725794 -0.08969604

H -1.04395058 -1.57371645 -0.46634190
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Nitroxide

(NO+)

units angstrom

N 0.00000000 0.00000000 -0.58726848

O 0 .00000000 0.00000000 0.51385992

Ammonia

(NH3)

units angstrom

N 0.00000000 0.00000000 0.11108106

H 0.76718115 0.52856586 -0.25918915

H 0.07416089 -0.92868129 -0.25918915

H -0.84134203 0.40011544 -0.25918915

Methanol

(CH3OH)

units angstrom

C 0.01087820 0.65579786 0.00000000

O 0.08603762 -0.74180734 0.00000000

H -0.49541386 1.03718656 0.88361625

H -0.49541386 1.03718656 -0.88361625

H 1.02521341 1.02985813 0.00000000

H -0.78795582 -1.10455976 0.00000000
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Acetone

(CH3COCH3)

units angstrom

H 2.01607656 0.09998687 0.80468344

C 1.40653656 0.07888687 -0.10790656

H 1.63321656 0.98648687 -0.68240656

H 1.73050656 -0.78252312 -0.70638656

C -0.06876344 -0.00633312 0.17641344

O -0.51074344 -0.04752312 1.30894344

C -0.96042344 -0.03737313 -1.03539656

H -0.81540344 0.86741687 -1.63990656

H -0.71669344 -0.90147312 -1.66707656

H -2.02585344 -0.10079312 -0.77911656

Nitrate

(NO−
3 )

units angstrom

N 0.00000000 0.00000000 0.00011378

O 0.00000000 0.00000000 1.22602830

O -1.06147167 0.00000000 -0.61306393

O 1.06147167 0.00000000 -0.61306393
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Cyanide

(CN−)

units angstrom

C 0.00000000 0.00000000 -0.62297196

N 0.00000000 0.00000000 0.53397596

1,2-Ethanediol

(HOCH2CH2OH)

units angstrom

C 0.51272494 -0.55627861 0.00000000

C -0.51272494 0.55627861 0.00000000

O -0.19084936 -1.76989708 0.00000000

O 0.19084936 1.76989708 0.00000000

H 1.14414533 -0.46154471 -0.87938136

H 1.14414533 -0.46154471 0.87938136

H -1.14414533 0.46154471 -0.87938136

H -1.14414533 0.46154471 0.87938136

H 0.41945418 -2.49296713 0.00000000

H -0.41945418 2.49296713 0.00000000
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Propapanoic Acid

(CH3CH2CO2H)

units angstrom

C -0.09418117 1.96232856 0.00000000

C 0.73607627 0.68506541 0.00000000

C -0.10491519 -0.56547060 0.00000000

O -1.29172331 -0.60940658 0.00000000

O 0.64676539 -1.66543521 0.00000000

H -0.73124732 2.01272628 0.87452364

H -0.73124732 2.01272628 -0.87452364

H 0.55638167 2.83008261 0.00000000

H 1.38886352 0.63591958 0.86644012

H 1.38886352 0.63591958 -0.86644012

H 0.06616984 -2.42018015 0.00000000
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Methylammonium (CH3NH
+
3 ) units angstrom

N 0.00000000 0.00000000 -0.70803263

C 0.00000000 0.00000000 0.79775348

H 0.03360854 0.93945487 -1.07777462

H 0.79678751 -0.49883329 -1.07777462

H -0.83039606 -0.44062158 -1.07777462

H 0.90508977 0.48025235 1.13434380

H -0.03663415 -1.02395691 1.13434380

H -0.86845562 0.54370456 1.13434380

Methyl ether hydronium (CH3OHCH
+
3 )

units angstrom

C -0.24320296 0.01602474 1.27596507

C -0.24320296 0.01602474 -1.27596507

O 0.50249447 0.02389681 0.00000000

H 1.26451655 -0.54881361 0.00000000

H -0.87733962 0.88507503 1.24554394

H -0.80472182 -0.90244713 1.33765730

H 0.49904300 0.10004323 2.05138782

H -0.87733962 0.88507503 -1.24554394

H 0.49904300 0.10004323 -2.05138782

H -0.80472182 -0.90244713 -1.33765730
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Dichloroacetate (CHCl2CO
−
2 ) units angstrom

C -0.30025730 -0.11193841 0.43153365

C 1.16373270 0.22335159 0.35836365

O 1.53734270 1.30775159 -0.06085635

O 2.07544270 -0.67994841 0.76646365

Cl -1.33451730 1.23214159 -0.13093635

Cl -0.63705730 -1.54699841 -0.56725635

H -0.56636730 -0.33833841 1.48503365

Pyridinuim (C5H5NH
+) units angstrom

H 0.00000000 0.00000000 -2.29800577

N 0.00000000 0.00000000 -1.29708352

C 0.00000000 1.17603384 -0.66040538

C 0.00000000 -1.17603384 -0.66040538

C 0.00000000 1.20596207 0.70982540

C 0.00000000 -1.20596207 0.70982540

C 0.00000000 0.00000000 1.40143789

H 0.00000000 2.05665415 -1.27267201

H 0.00000000 -2.05665415 -1.27267201

H 0.00000000 2.14785573 1.22256214

H 0.00000000 -2.14785573 1.22256214

H 0.00000000 0.00000000 2.47614261
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Pyridine (C5H5N)

units angstrom

H 0.00000000 0.00000000 4.67254596

C 0.00000000 0.00000000 2.61854584

C 0.00000000 -2.26500278 1.27196744

H 0.00000000 -4.07772320 2.23478328

C 0.00000000 -2.15844324 -1.36437713

H 0.00000000 -3.89230327 -2.47324704

N 0.00000000 0.00000000 -2.68542530

C 0.00000000 2.15844324 -1.36437713

H 0.00000000 3.89230327 -2.47324704

C 0.00000000 2.26500278 1.27196744

H 0.00000000 4.07772320 2.23478328
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1,4-Phenylenedinitrene

(C6H4N2) CASSCF[10, 10] Singlet

units angstrom

C 0.00000000 1.38949273 0.00000000

C -1.26365775 0.66347452 0.00000000

C -1.26365775 -0.66347452 0.00000000

C 0.00000000 -1.38949273 0.00000000

C 1.26365775 -0.66347452 0.00000000

C 1.26365775 0.66347452 0.00000000

H -2.16718824 1.23245129 0.00000000

H -2.16718824 -1.23245129 0.00000000

H 2.16718824 -1.23245129 0.00000000

H 2.16718824 1.23245129 0.00000000

N 0.00000000 -2.64265911 0.00000000

N 0.00000000 2.64265911 0.00000000
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1,4-Phenylenedinitrene

(C6H4N2) CASSCF[10, 10] triplet

units angstrom

C 0.00000000 1.37821878 0.00000000

C -1.26878034 0.66563197 0.00000000

C -1.26878034 -0.66563197 0.00000000

C 0.00000000 -1.37821878 0.00000000

C 1.26878034 -0.66563197 0.00000000

C 1.26878034 0.66563197 0.00000000

H -2.17004437 1.24037479 0.00000000

H -2.17004437 -1.24037479 0.00000000

H 2.17004437 -1.24037479 0.00000000

H 2.17004437 1.24037479 0.00000000

N 0.00000000 -2.62786693 0.00000000

N 0.00000000 2.62786693 0.00000000
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4,4’-Stilbenedinitrene (C14H10N2) CASSCF[6, 6] Singlet

units angstrom

C -0.11417471 4.72436535 0.00000000

C 1.24319142 4.11191330 0.00000000

C 1.39111300 2.79449856 0.00000000

C -1.26984871 3.78301465 0.00000000

C 0.25412971 1.85650286 0.00000000

C -1.08730343 2.46869129 0.00000000

C 0.49419432 0.53323056 0.00000000

C -0.49419432 -0.53323056 0.00000000

C -0.25412971 -1.85650286 0.00000000

C 1.08730343 -2.46869129 0.00000000

C 1.26984871 -3.78301465 0.00000000

C 0.11417471 -4.72436535 0.00000000

C -1.24319142 -4.11191330 0.00000000

C -1.39111300 -2.79449856 0.00000000

N -0.28212035 5.96980015 0.00000000

N 0.28212035 -5.96980015 0.00000000

H 2.09001516 4.77152070 0.00000000

H 2.37792185 2.36577550 0.00000000

H -2.25573512 4.20750428 0.00000000
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H -1.94597628 1.82540894 0.00000000

H 1.52647172 0.23654159 0.00000000

H -1.52647172 -0.23654159 0.00000000

H 1.94597628 -1.82540894 0.00000000

H 2.25573512 -4.20750428 0.00000000

H -2.09001516 -4.77152070 0.00000000

H -2.37792185 -2.36577550 0.00000000

4,4’-Stilbenedinitrene (C14H10N2) CASSCF[6, 6] Triplet

units angstrom

C -0.11785639 4.73011638 0.00000000

C 1.24674423 4.11197071 0.00000000

C 1.39715861 2.79549066 0.00000000

C -1.27163546 3.77709819 0.00000000

C 0.26090928 1.85389833 0.00000000

C -1.08249187 2.46397820 0.00000000

C 0.49837834 0.53046182 0.00000000

C -0.49837834 -0.53046182 0.00000000

C -0.26090928 -1.85389833 0.00000000

C 1.08249187 -2.46397820 0.00000000

C 1.27163546 -3.77709819 0.00000000
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4,4’-Stilbenedinitrene(cont) (C14H10N2) CASSCF[6, 6] Triplet

C 0.11785639 -4.73011638 0.00000000

C -1.24674423 -4.11197071 0.00000000

C -1.39715861 -2.79549066 0.00000000

N -0.28421831 5.97519444 0.00000000

N 0.28421831 -5.97519444 0.00000000

H 2.09238729 4.77408931 0.00000000

H 2.38548684 2.36966018 0.00000000

H -2.25987145 4.19806332 0.00000000

H -1.93975856 1.81864666 0.00000000

H 1.52945916 0.22878845 0.00000000

H -1.52945916 -0.22878845 0.00000000

H 1.93975856 -1.81864666 0.00000000

H 2.25987145 -4.19806332 0.00000000

H -2.09238729 -4.77408931 0.00000000

H -2.38548684 -2.36966018 0.00000000
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