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ABSTRACT 

The Upper Cambrian Nolichucky Shale and Maynardville Limestone 

(upper Conasauga Group) crop out along a succession of southeastward 

dipping imbricate thrust sheets, which trend northeast-southwest in the 

Valley and Ridge of eastern Tennessee. In the vicinity of Oak Ridge and 

Knoxville, Nolichucky and Maynardville outcrop and drill core have been 

examined at six localities. The Nolichucky contains an abundance of 

thick shale and thinly bedded shale and limestone, whereas the 

Maynardville is composed of very thick-bedded carbonate, predominantly 

limestone. In central east Tennessee fourteen major lithofacies are 

identified in the upper Conasauga Group. The Nolichucky/Maynardville 

sequence is subdivided into three parts representing: ( 1 )  a slightly 

"deeper" intracratonic basin (30-50 m water depth; lower Nolichucky, 

( 2 )  a shallow intracratonic basin (5-30 m deep; upper Nolichucky), and 

(3)  a peritidal platform (0-5 m deep; Maynardville). 

The Nolichucky Shale was deposited in a storm-dominated paleo

environmental setting, whereas the Maynardville Limestone is similar to 

other ancient tidally-influenced deposits. In the Nolichucky, the 

majority of carbonate production occurred in and around shoals and 

within cyanobacterial mats. Storms were effective in moving carbonate 

sediment off the shoals and mats into adjacent shale-dominated subtidal 

areas. The Maynardville represents small tidal flats that accreted 

vertically and migrated laterally. Sediment was produced in open-water 
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subtidal areas, which were adjacent to tidal flats, and tides, storms, 

and fairweather waves transported sediment to nearby low-relief 

intertidal banks and supratidal islands. The distribution of facies 

along the Nolichucky/Maynardville bathymetric profile was much more 

irregular (mosaic-like) than predicted by the depositional model of 

earlier workers. 

An integrated approach of overlying substitutability analysis, 

embedded Markov chain analysis, and modified autoassociation analysis to 

verify statistically the occurrence of cycles in stratigraphic sequences 

is applied to the upper Conasauga Group of central east Tennessee. 

Stratigraphic sections within the Nolichucky Shale and in the 

Maynardville Limestone show weakly developed cyclicity, which is 

probably a result of the storm- and tide-dominated paleoenvironmental 

setting. Local processes were more important in controlling lithologic 

repetition than were larger-scale processes (e.g., geoidal, tectonic, or 

glacioeustatic). Large-scale processes have been documented in modern 

and other ancient settings, but their record may be masked in many 

sequences by local events. 
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CHAPTER 1 

INTRODUCTION 

General Geologic Setting 

The Cambrian System records the first major episode of cratonic 

flooding on the North American continental plate ( Sloss , 1963) . Seas 

transgressed onto the Canadian Shield resulting in an onlap of predomi

nantly fine-grained siliciclastics and carbonates during much of the 

Cambrian ( Lochman-Balk, 197 1) .  Remnants of these sedimentary rocks now 

occur as a discontinuous fringe around the shield area ( Figure 1 . 1) .  

Coeval rocks in areas such as Australia, Argentina , Siberia , and China 

were deposited in a similar depositional style (Ross , 1975 ; Scotese and 

others , 1979) . In North America, Cambrian rock units have been studied 

extensively for at least a century . However ,  detai led paleoenviron

mental and sedimentologic investigations have been conducted only during 

the past 25 years and have focused primarily on carbonate rocks 

(Table 1.1) . 

Along the southeastern margin of the North American craton 

(Figure 1 . 2) ,  much of the Cambrian System represents shallow water 

depos ition on a vast carbonate platform or rim complex ( Palmer, 197 1) . 

Southeast of the platform margin a subsiding oceanic-type basin trapped 

deep water pelitic sediments ( Rodgers, 1968 ; Bird and Dewey, 1970) (Fig

ure 1 . 2) .  In a transect from the platform edge , northwestward onto the 
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Figure 1 . 1 .  Present outcrop and subsurface distribution ( cross-hatched) 
of Cambrian rocks in North America, after Cook and Bally ( 1975) . 
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Table 1 . 1 .  Representative paleoenvironmental and sedimentologic studies 
of the Cambrian System in North America (published c itations focus 
on carbonate or integrated carbonate and f ine-grained siliciclastic 
analyses) .  

Region 

Southern Canadian Rocky Mts . 

Western United States 

Texas 

U .  S .  Appalachian Mts . 

Canadian Appalachian Mts . 

Citation 

Aitken � 1966 
Aitken, 1 967 
Aitken� 1 978 

Palmer� 1971  
Kepper � 1 972 
Lohmann , 1976 
Rees and others , 1 97 6  
Taylor and Cook , 1976 
Cook and Taylor� 1977  
Mcilreath� 1977 
Kepper , 1981  
Rees , 1986 

Ahr , 1971  

Harris � 1973  
Hubert and others , 1977  
Keith and Friedman , 1977  
Reinhardt, 1977  
Pfiel and Read� 1 980 
Markello and Read , 1982 
Demicco , 1 985 

Chow and James , 1987a 
Chow and James , 1987b 
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Precambrian 
(Keweenawan) Granite 

Precambrian 
(Grenville) 

metasediments 

;.-=----r--/,L--�---J.�/�oeep-Water 
Pelitic Facies 

of the Piedmont 
150 KM 

I 

Figure 1. 2. Tectonic framework of the craton during late Precambrian 
and Cambrian time ( features presented on this map are derived from 
several sources ; see reference list under paleogeography/tectonic 
setting) . 
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craton, progressively younger Cambrian-aged sedimentary rocks onlapped 

the Precambrian Shield and older Cambrian deposits . Figure 1 .  3 shows 

generalized Cambrian stratigraphic nomenclature in Tennessee and nearby 

areas . 

Paleogeography/Tectonic Setting 

The following discussion (and associated paleogeographic maps ) 

relies on the work of many investigators (Freeman , 1953 ; Rodgers , 1953 ; 

Calvert , 1962 ; Buschback, 1964 and 1970 ; Harris , 1964 ; Derby, 1965 ; 

Rodgers , 1968 ; Webb, 1969 and 1980 ; Colton , 1970 ;  Lochman-Balk, 197 1 ; 

Palmer , 197 1 ; Janssens , 197 3 ;  Milic i ,  1973 ; Samman , 1975 ; Kidd and 

Neatherly, 1976 ; Bearce , 197 7 ;  Ammermann and Keller, 1979 ; Mack , 1980 ; 

Gilbert , 198 1 ; Markello and Read, 1982 ; Beardsley and Cable, 1983 ; 

Denison and others , 1984 ; Howe and Thompson , 1984 ; Hasson and Haase , 

1988) . The quality of these investigations varies , and that coupled 

with the absence of established biostratigraphic markers throughout much 

of the Cambrian in the area of concern· produce some disparity in 

regional stratigraphic relationships . As a result , only a generalized 

discussion is presented here . Yet , this discourse is necessary to 

establish a basic framework from which future work can bui ld .  

The Appalachian basin was extensive during the Cambrian and 

included much of the eastern and southern United States and portions of 

southeastern Canada . Cambrian sediments of the Appalachian bas in were 

deposited on a Precambrian surface of two distinct terranes : 
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)1: 
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...J 

Figure 1. 3. Generalized stratigraphic nomenclature of Cambrian strata 
in east Tennessee and nearby areas . For references , see c itation 
list under paleogeography/ tectonic sett ing . 
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Figure 1 . 3  ( continued) 
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( 1 )  unmetamorphosed rhyolitic and trachytic volcanic rocks and epizonal 

granitic rocks and ( 2 )  grani te-gneiss , medium-grade metamorphic rock, 

and anorthosite (Keller and others , 197 5 ;  Denison and others , 1 984 ) . 

These terranes are separated by the Grenville Front , which trends along 

the eastern flank of the ancestral Cincinnat i  Arch then south through 

central Kentucky and Tennessee ( Figure 1 . 2 )  (Ammerman and Keller , 1979) . 

In the area of this study, two fault zones affected Cambrian deposition 

(Figure 1 . 2 ) . The Rough Creek and the Rome fault zones are east-west 

trending and are part of a large continental transcurrent system, which 

extends northeast through West Virginia and Maryland (Webb, 1 980 ) . 

Although this fault system formed during late Precambrian rifting , 

periodic rejuvenation occurred when the region received sediment (Webb, 

1969 ) .  

In east Tennessee and nearby areas the Precambrian craton has a 

southeast-facing basement slope (Webb , 1980 ),  and during Early Cambrian 

time sea level transgressed this slope . According to Lochman-Balk 

( 1971 ) ,  great quanti t ies of predominantly medium- to coarse-grained 

siliciclastic material was deposited along the craton margin in 

alluvial,  beach, and marine shelf settings . These sediments are 

represented today by stratified rock units of the Chilhowee Group . 

Throughout the Early Cambrian, sea level rose further onto the craton , 

and in southwest Virg inia, east Tennessee, and northwest Georgia upper 

Lower Cambrian deposits of sand, silt,  clay, and carbonates (Rome 

Formation) graded southeastward into offshore platform-edge carbonates 

of the Shady Format ion (Figures 1 . 4  and 1 . 5) .  Most of the Lower 



9 

Figure 1 . 4 .  Regional l ithofacies distribution 
Cambrian ( during deposition of the 
Tennessee) .  See Figure 1 .  5 for key to 

during the late 
Rome Formation 
symbols used to 

Early 
in east 
indicate 

environments of deposition . 
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ENVIRONMENTS OF DEPOSITION 

Deep-water pelitic facies of Piedmont 

�!�!�!�!�� S ubtldal carbonates (predominantly dolostone) and shale-shelf edge deposits 

Subtidal shale and limestone 

I: : : : l I Subtidal limestone and shale 

ll H H H H ::1 S ubtidal limestone 

f&����-:-�� Subtidal and peritidal sandstone, siltstone, and mudstone 

IJ:UJ:U Peritidal dolostone (may contain considerable sandstone) 

11H������q Marine and non-marine sandstone 

Basal Arkose "granite wash" 

I Z: I Shoreline 

Exposed Precambrian basement (land) 

Figure 1 . 5 .  Key to symbols used to indicate environments of deposition 
in the series of paleogeographic maps ( Figures 1 . 4, 1 . 6 ,  1 . 7, 1 . 8 ,  
and 1 .  9 ) . 
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Cambrian sediments remained to the southeast of the Rough Creek and Rome 

fault zones (Ammerman and Keller , 1979 ) . 

As the sea encroached further inland during the Middle Cambrian ,  

siliciclastics accumulated immediately offshore i n  central and southern 

Kentucky, eastern Tennessee , and in parts of Virg inia , Alabama, and 

Georgia . This embayment received sediment from a delta system which 

drained northern Kentucky, Ohio , and perhaps southern Canada (Webb, 

1 980 ) . In Kentucky and Tennessee the embayment ,  more specifically known 

as the M iddle and Late Cambrian intrashelf basin, trapped primarily 

sand , silt , and clay (Rome Formation in Kentucky; Conasauga Group in 

Tennessee, Georgia , and Alabama; Nol ichucky Formation in southwestern 

Virginia) .  Well-washed sand dominated nearshore areas in central 

Kentucky. C lay, silt , and rare sand are found offshore . In addition, 

periodic lowstands in sea level or decreased water turbidity ( perhaps 

associated with channel lobe migration of the delta system or sea level 

highstands which trapped clastics in drowned river valleys) enabled 

l imestone to be deposited offshore . By late Middle Cambrian the 

intrashelf bas in was completely rimmed by peritidal dolostone along the 

seaward margin ( Markello and Read , 1 982 ) ( Figure 1 . 6 ) . According to 

Markello and Read ( 1982) the rim developed because sedimentation rates 

equalled or exceeded rates of sea level rise and/or platform subsidence . 

The Rome Trough in east-central Kentucky (Figure 1 . 6 )  formed the 

northern boundary of the intrashelf bas in . A thick clastic sequence 

accumulated within the trough . This depocenter was established by 

periodic downwarping of fault blocks , however ,  the absence of 
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conglomerates or unsorted detritus adj acent to the fault zone precludes 

the presence of a major fault scarp (Silberman, 1 972 ) . Active 

development of the Rome Trough was short l ived; by the close of the 

Middle Cambrian, much of the Rome Trough had been filled . Only minor 

episodes of fault reactivation occurred after this t ime (Webb, 1 980 ) . 

By Late Cambrian t ime , shallow seas covered parts of Ohio , Indiana , 

Illinois , and Missouri resulting in widespread deposition of clastics 

( Lochman-Balk , 197 1 )  ( see Figure 1 . 7 ) .  To the south and east,  deltaic 

sediments ( predominantly shale) were still being shed into the 

intrashelf basin (Webb, 1980 ) . Limestone was the dominant depositional 

product along the southern and eastern portion of the intrashelf basin 

(Figure 1. 7 ) .  Bordering much of the intrashelf basin was peritidal 

dolostone of the peritidal carbonate rim complex ( Lochrnan-Balk , 1 97 1 ; 

Markello and Read, 1982)  (Figure 1 . 7 ) .  

During deposition of the Maynardville Limestone in east Tennessee 

( Figure 1 . 8 ) ,  the intrashelf basin , now cut off from the clastic source , 

became greatly constricted in size as limestone filled the basin . By 

late Maynardville time the intrashelf basin had shoaled nearly to sea 

level . At this t ime and continuing throughout the remainder of the 

Cambrian , shallow epicontinental seas became so widespread that thick 

dolostone sequences were laid down over a wide geographic area 

(Figure 1 . 9 ) . Although much of the dolostone may be secondary in origin , 

a considerable portion is believed to have formed penecontemporaneously 

with sedimentation , further supporting deposition under very shallow 

water ( Laporte , 1 97 1 ; Harris , 1973 ) . 
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Location/Stratigraphy 

Within the Valley and Ridge of east Tennessee , Middle and Late 

Cambrian rocks crop out along a succession of southeastward dipping 

imbricate thrust sheets , which trend northeast to southwest 

( Figure 1 . 10 ) . The Valley and Ridge is from 90 to 140 kilometers wide. 

It is bounded on the northwest and southeast by the Cumberland Plateau 

and Southern Blue Ridge provinces , respectively . 

In the vicinity of Knoxville , Middle and Upper Cambrian formations 

( excluding the Copper Ridge Dolostone) comprise the Conasauga Group 

(Figure 1 . 1 1 ) .  From base to top the Conasauga Group includes : the 

Pumpkin Valley Shale , Rutledge Limestone , Rogersville Shale, Maryville 

Limestone , Nolichucky Shale , and Maynardville Limestone . Only the Upper 

Cambrian Nolichucky Shale and Maynardville Limestone ( subsequently 

referred to as upper Conasauga Group) are of primary concern here . The 

entire Group grades from dominantly dolostone in the east ( northeastern 

Tennessee and southwestern Virginia) ,  through intercalated carbonate and 

shale units in the Knoxville area to a sequence dominated by shale, west 

and southwest of localities D and F of Figure 1 . 10 ( see Figure 1 . 1 1 ) .  

The Conasauga Group is underlain by the Lower Cambrian , predominantly 

siliciclastic Rome Formation of tidal flat origin . Above the Group are 

very shallow subtidal and peritidal carbonates of the Upper Cambrian 

Copper Ridge Dolostone , the lowermost Formation of the Cambro-Ordovician 

Knox Group . 
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During the course of this research, six localities ( Figure 1 . 12 )  

have been examined i n  detail . Attention i s  focused on Nolichucky and 

Maynardville outcrop and drill core which are located in the vicin ity of 

Knoxville and Oak Ridge, Tennessee . Detailed descriptions are found in 

Appendix B .  

The localities analyzed were chosen after field reconnaissance 

because they represent the most well-preserved and complete strati

graphic intervals without s ignificant structural complication in the 

Knoxville and Oak Ridge area . In addition , their geographic distribu

tion is sufficiently broad to reveal environmental patterns or trends , 

but not too broad to prevent adequate correlation of stratigraphy, 

paleoenvironmental gradients , etc . 

Depositional Environment/Previous Work 

Prior to 1970,  geologic investigations of the Nol ichucky Shale and 

Maynardville Limestone within Tennessee and Virginia stressed 

generalized lithologic descriptions and paleontologic data (e . g . , Hall  

and Amick, 1934 ; Butts , 1940 ; Rodgers and Kent , 1948 ; Raymond , 1959 ; 

Oder and Bumgarner , 196 1 ;  Havryluk, 1963 ; Harris , 1964 ; Rasetti , 1965 ; 

Derby , 1965 ; Helton , 1 967 ; McConnell,  1967 ; Tarkoy , 1 967 ) . In recent 

years , several workers have inferred depositional models for upper 

Conasauga strata in east Tennessee and southwest Virginia ( see Milici 

and others , 1973 ; Markello, 1979 ; and Markello and Read , 1981 and 1 982 ) . 

Milici and others ( 1973)  conducted an examination of the Nolichucky 
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Shale and Maynardville Limestone exposed along U . S .  Interstate 75 

( locality C of this study) on Copper Ridge . They discerned several 

lithofacies : (1) stromatolitic bioherms , ( 2 )  thin , irregularly bedded 

algal limestones , ( 3 )  cobbly weathering l imestones , ( 4 )  banded 

argillaceous limestones , ( 5 )  oolitic calcarenites , ( 6 )  intraclastic and 

oolitic washover beds , and ( 7 )  subaerially exposed limestones and 

dolostones . In general ,  strata from this locality were interpreted as 

"lagoonal" sediments , protected from oceanic currents and waves , bounded 

to the east by an extensive carbonate bank and to the west by 

siliciclastic sediment . 

Markello and Read ( 1981 and 1982 ) studied the Nol ichucky Shale and 

Maynardville Formation in Virgin ia . They defined three major 

depositional environments: an intrashelf basin ( Nolichucky Shale) , a 

carbonate ramp with subtle westward slopes (Maynardvi lle Limestone) ,  and 

a peritidal carbonate platform ( Elbrook and/or Honaker Formations) . 

Deposition in the intrashelf basin , as described by Markello and Read 

( 1 98 1 ) , resulted in a complex interbedded assemblage of storm-generated 

calcareous shale , laminated calcareous siltstone , intraformational 

flat-pebble conglomerate , bioclastic limestone , and oolitic limestone . 

The carbonate ramp is characterized by subwave base accumulations of 

fossil-rich "ribbon" carbonates , thin intraclastic limestone , and 

oolitic shoals . 
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Biostratigraphy of Upper Conasauga Group 

In the southern Appalachians very few stratigraphic studies have 

used paleontologic information from the Middle and Late Cambrian as a 

basis for chronologie determination (McLaughlin, 1 973 ) .  Although 

biostratigraphic investigations have been conducted in this region 

(Raymond ,  1959 ; Derby, 1965 ; Palmer , 197 1 ;  Gilbert, 1981 ) ,  more 

commonly , only generalized fossil lists are encountered in the 

literature ( e . g . , McCalley, 1897 ; Butts , 1926 , 1940 , and 1 94 1 ; Woodward , 

1929 ; Howell and Mason, 1938 ; Resser , 1938 ; Palmer , 1 962 ; McKinney, 

1 977 ; Bearce and McKinney, 197 7 ;  Bel l ,  1978 ) . Reasons for the paucity 

of biostratigraphic investigations in the southern Appalachian region 

are : 

1 .  Good quality exposure of thick stratigraphic intervals is 

necessary to establish a working biostratigraphic reference 

section . Most Cambrian outcrops are vegetated . 

2 .  Many of the generalized fossil lists which have been published 

are difficult to evaluate because of inadequate location , 

incomplete description , or questionable identification ( see 

McLaughl in ,  1973 for further discussion) . 

3 .  Many stratigraphic horizons lack fossils because Cambrian 

marine life ,  relative to other Phanerozoic time periods , 

exhibits low divers ity . Also , pervasive diagenetic replacement 

is common and tends to destroy fossil remains . 
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4 .  Few Cambrian macrofossil groups serve as useful biostrati

graphic indicators because of strong environmental controls on 

their distribution . 

5 .  Cambrian-aged microfossils (acritarchs and conodonts ) have only 

recently been recognized as potentially useful biostratigraphic 

indicators and regional biostratigraphic zonations are as yet 

unavailable . 

Solutions to these and other biostratigraphic problems are beyond the 

scope of the present research . 

In east Tennessee, siliciclastic and carbonate beds of the Lower 

Cambrian Rome Formation are generally devoid of megascopic fossil 

remains ( Samman , 1975 ) .  In addition , within the thick , Upper Cambrian 

Knox dolostone section, the poor state of knowledge concerning 

intra-Knox Group biostratigraphy results from the scarcity of shelly 

fossils . Stressful shallow marine environments represented by most of 

the pre- and post-Conasauga Group lithologies ( of Cambrian age ) 

apparently precluded the development of diverse shelly communities . 

Within the Conasauga Group faunally and florally impoverished strata 

abound , but certain l imestone and rare shale horizons do display a rich 

and abundant megascopic biota (McLaughlin,  197 3 ) . Trilobites , 

echinoderms , inarticulated brachiopods , gastropods , and various taxa of 

unknown affinities occur within the upper portion of the Conasauga Group 

( Nolichucky Shale and Maynardville Limestone) . With the exception of 

trilobites , these fossils are not useful biostratigraphically 

(McLaughlin , 1973 ) . In recent years , two microfoss i l  groups ( conodonts 
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and acritarchs ) have been increasingly studied on a world-wide basis 

because of their biostratigraphic potential in the Cambrian (Brasier , 

1 980 ) . Detailed examination of these groups has not been conducted in 

east Tennessee . The usefulness of trilobites , conodonts , and acritarchs 

as biostratigraphic indicators in upper Conasauga strata is briefly 

discussed below . 

Trilobites 

Worldwide biostratigraphic zonation of Middle and Late Cambrian 

sequences is based almost entirely on trilobites . Fossil evidence 

indicates that trilobites were the most abundant, diverse , and 

widespread macrofauna inhabiting Cambrian seas . Many trilobite taxa 

have short ranges and thus serve as excellent " index" fossils . 

Trilobites in the Nolichucky Shale and Maynardville Limestone 

parallel the uppermost Middle to early Late Cambrian (Dresbachian) 

trilobite zonation proposed by Lochman-Balk and Wilson ( 1958 )  for the 

mid-continent region ( Figure 1 . 1 3 ) . Three complete trilobite zones are 

present in the upper Conasauga sequence . Cedaria and Crepicephalus Zones 

occur through much of the Nolichucky Shale , whi le the base of the 

overlying Aphelaspis Zone occurs in the upper portion of the Nolichucky 

Shale and continues through the Maynardville Limestone (Figure 1 . 13 ) .  

Comparison of stratigraphic and time boundaries along a transect 

from the Knoxville area northeast into southwest Virginia reveals a 

discrepancy between l ithostratigraphic and biostratigraphic subdivis ion 

(Raymond ,  1959 ; Derby , 1 965 ; McLaughlin , 1973 ) .  It is possible that the 
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environment rather than time succession exerted the dominant control 

over the observed faunal associations . When describing trilobite 

zonation in the Conasauga of Virginia � Markello and others ( 1979)  noted 

that individual zones were assemblage zones and thus , were likely to 

show some degree of environmental control . Additional work is necessary 

to determine precise age relationships within the upper Conasauga Group 

in east Tennessee. 

Conodonts 

Although the biostratigraphic potential of conodonts in the upper 

Conasauga Group has not been evaluated to date , a p i lot study by the 

present author revealed that conodonts are present in the Nolichucky 

Shale . Four 1 kg limestone samples ( BG-6-65 . 2 ,  I - 6 1 - 2 . 0 �  I-62- 1 . 2 �  and 

I-8 1 - 1 . 4 )  were dissolved in formic acid , but only sample 1-61-2 . 0  

contained conodonts . The total of 32 conodonts represented 6 form 

species ( Furnishina furnishi � Prosagittodontus dunderbergiae, 

Prooneotodus tenuis � Prooneotodus n .  sp . A of Miller ( 1981 ) ,  Nogamiconus 

cambricus , and Muellerodus pomeranensis ) .  Apparently� all three maj or 

types of conodonts are represented . The most abundant protoconodont is 

Prooneotodus tenuis , which has also been found in great numbers from 

Upper Cambrian strata in Nevada and eastern California (Miller � 1981 ) .  

Furnishina furnishi , a paraconodont �  is the most common form species 

from the Nolichucky sample and represents approximately 60% of the total 

population . Euconodonts may be represented by Prooneotodus n. sp . A of 

Miller ( 198 1 ) ,  which closely resembles the euconodont genus , Oneotodus . 
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These results suggest the need for further investigation . The occurrence 

of euconodonts in the Nolichucky is unl ikely because the earliest 

euconodonts are not known to appear unti l  mid to upper Franconian (J . F . 

Miller , verbal communication , 1985 ) , and 

Dresbachian ( early Late Cambrian )  in age 

the Nolichucky Shale 

( see Figure 1 . 13 ) . It 

is 

is 

possible that the specimen in question has been misidentified or that 

R . H. Miller 1 s interpretation relating euconodonts to Prooneotodus n .  

sp . A is invalid . 

It  has been suggested by Miller ( 1984 ) that Cambrian conodont taxa 

are too long-ranging and not presently useful for precise biozonation . 

This is especial ly true for mid-Franconian and older rocks (Miller , 

1984 ) . Upper Dresbach ian and lower Franconian conodonts have been 

studied from southern Nevada (Miller and others , 1981 ) ,  and the 

distribution of these conodonts is primarily controlled by paleo-

environment and geographic pos ition on the shelf . Despite these 

preliminary findings which suggest conodont biostratigraphy is not 

currently possible throughtout much of the Cambrian ,  Chinese workers 

have developed conodont zones to the base of the M iddle Cambrian (An , 

1981 and 1982 ) . 

Acritarchs 

Acritarchs are m icroscopic marine planktonic a lgae which existed 

primarily during the Paleozoic ( Tappan , 1980 ) . In the Cambrian a rich 

and abundant f lora of acritarchs is found in most mar ine deposits 

( Downie,  1984 ) . According to Downie ( 1984 ) , a substantial amount of 
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research has been conducted in Great Britain where stratigraphic ranges 

of Cambrian acritarch species are constrained in well-dated sections . 

Ultimately , biostratigraphic zonation in the Cambrian will be based on 

acritarchs ( a  personal assessment) , but knowledge of acritarchs is still 

very incomplete . 

There are as yet no published reports of acritarchs from the upper 

Conasauga Group in the Knoxville and Oak Ridge vicin ity . It is important 

to note that acritarchs have been identified from the Nolichucky 

Formation in extreme eastern Tennessee and southwestern Virginia 

( Clendening , 1 978 ) .  

Purpose 

The obj ectives of this investigation are as follows : ( 1 )  to 

achieve an integrated interpretation of depositional environments based 

on examination of stratigraphy, sedimentology, petrography, and 

petrology , ( 2 )  to present a new statistical approach in order to 

obj ectively analyze stratigraphic sequences for cyclic trends and to 

apply this approach to the Nolichucky Shale and Maynardville Limestone, 

( 3 )  to propose a model for the evolution of the Late Cambrian intrashelf 

shale basin to shallow carbonate succession by examining lateral and 

vertical facies relationships , bas in morphology, and paleoenvironmental 

information, ( 4 )  to compare results of this investigation to the model 

developed by Markello and Read ( 1 982 ) , ( 5 )  to provide a framework on 

which subsequent work in the upper Conasauga Group may bui ld,  and ( 6 )  to 
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provide information which might aid Oak Ridge Nat ional Laboratories and 

the Department of Energy in their hazardous materials d isposal work . 
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CHAPTER 2 

STRATIGRAPHY, SEDIMENTOLOGY, PETROLOGY, AND DEPOSITIONAL 

ENVIRONMENTS OF THE UPPER CONASAUGA GROUP 

( NOLICHUCKY SHALE AND MAYNARDVILLE 

LIMESTONE) IN EAST TENNESSEE 

Introduction 

The Conasauga Group is a thick sequence of lower Paleozoic rocks 

which were deposited during Middle and Late Cambrian time . Today, this 

stratigraphic interval crops out in northeast to southwest trending 

belts (Figure 1 . 10 )  in the thrust faulted Valley and Ridge physiographic 

subprovince of the Southern Appalachian Major Highland Division . In 

east Tennessee Middle and Late Cambrian strata are recognized as having 

three distinct phases of sedimentation , as revealed by regional 

lithofacies patterns (Rodgers , 1953 ; modified by Hasson and Haase, 1 988 ) 

( Figure 2 . 1 ) .  Between the Holston Mountain and Pulaski faults 

( southeastern phase) ,  Conasauga Group equivalents ( Honaker and Elbrook 

formations ) crop out in a series of anticlinal folds ( Hardeman and 

others , 1966) and are composed of dolostone and less abundant l imestone . 

Northwest of the the Pulaski thrust fault,  Conasauga rocks are exposed 

along southeasterly dipping imbricate thrust sheets . In a wide belt 

extending from the Pulaski Fault to the Wallen Valley Fault ( Central 

phase) ,  the Conasauga Group is divided into six formations (Figure 1 . 1 1 )  
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alternately dominated by shale and limestone . Northwest of the Wallen 

Valley Fault and presumably of the Whiteoak Mountain Fault ( northwestern 

phase) ,  Middle and Late Cambrian Conasauga strata are predominantly 

shale ( Hasson and Haase, 1988 ) . 

Descriptive Stratigraphy 

During Middle and Late Cambrian time a maj or transgress ion occurred 

over a subsiding , aggrading , and rimmed carbonate shelf ( Rodgers , 1 968 ; 

Palmer , 197 1 ;  Samman , 1975 ; Markello and Read , 1 981 and 1 982 ) . The 

carbonate shel f  rim complex located in extreme east Tennessee and in 

southwest Virginia is made up of the Early Cambrian Shady Dolomite 

( Pfeil and Read, 1980 ) . Southeast or seaward of the Shady, deep-water 

pelitic sediments were deposited in the Proto-Atlantic Ocean . The Shady 

thins northwestward and intergrades in that direction with the Rome 

Formation . Throughout much of east Tennessee the Rome Formation is 

overlain by the Middle and Upper Cambrian Conasauga Group (Samman , 

1975 ) .  In this area the Rome and Shady formations underwent deposition 

primari ly in intertidal and supratidal environments ( Samman, 1975 ) .  The 

Shady is composed of dolostone with locally abundant red shale and 

siltstone . The Rome is principally dolostone and shale where it 

intergrades with the Shady, but toward the craton , red and green 

sandstone, mudstone, shale , and dolostone occur which exhibit halite 

crystal casts and mudcracks (Samman, 1975 ) .  

A brief d iscussion follows concerning Conasauga Group stratigraphy . 

This section focuses on our knowledge of these format ions within the 
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central phase of sedimentation (as previously defined) near Knoxville 

and Oak Ridge, Tennessee . In particular , the northwestern extreme of  the 

central phase is of primary 

treatment of the stratigraphy, 

Rodgers ( 1953 ) ,  Derby ( 1965 ) ,  

( 1988 ) . 

Pumpkin Valley Shale 

interest here . For a more regional 

the interested reader is referred to 

Milici ( 1973 ) , and Hasson and Haase 

The lowermost Formation of the Conasauga Group is the Pumpkin 

Valley Shale . It is characterized by maroon and gray-green shale, 

burrow-mottled siltstone , and planar- laminated to microhummocky 

cross-stratified subarkosic siltstone (Haase and others , 1985 ) . 

Limestone and sandstone lithologies are observed occasionally . Haase 

and others ( 1985) subdivided the Pumpkin Valley Shale into two informal 

members . The lower member is separated from the upper member midway 

through the Formation where the rocks above tend to be more shale rich .  

The contact a t  the base o f  the Pumpkin Valley Shale i s  conformable and 

sharp . It  is placed j ust above the uppermost sandstone bed in the Rome 

Format ion at the bottom of a several meter thick shaly, gray siltstone 

( Hasse and others , 1985 ) . 

Because the Pumpkin Valley Shale is not well-exposed and is 

commonly faulted, estimates of formational thickness are not trustworthy 

(Hasson and Haase , 1988) . In addition, the environment of deposition is 

not well  understood , however , subtidal sedimentation is proposed due to 
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an absence of features suggestive of subaerial exposure (Walker and 

Simmons , 1985) . 

Rutledge Limestone 

The Rutledge Limestone conformably overlies the Pumpkin Valley 

Shale . This contact is gradational over several meters , but is placed 

where carbonate becomes consistently more abundant than shaly s iltstone 

or silty shale ( Haase and others , 1985 ) . The Rutledge limestone is made 

up of nodular to thinly bedded lime mudstone with subordinant 

fossiliferous and peloidal packstone . Quartz s i lt is s ignificant at 

some localities and forms graded sequences capped by microhummocky 

cross-stratification . The Rutledge Limestone varies considerably in 

thickness ; avai lable data indicate a range from 30 m to 100 m (Milic i ,  

1973 ; Haase and others , 1985 ) . 

Rogersville Shale 

Overlying the Rutledge Limestone is the Rogersville Shale . The 

Rogersville consists of maroon and gray-green massive to laminated 

noncalcareous mudstone , and wavy-bedded current-rippled calcarenite and 

subarkosic siltstone which display basal scoured surfaces and mud-draped 

tops ( Haase and others , 1985 ) .  According to Haase and others ( 1985 ) ,  

glauconite is ubiquitous throughout the Rogersville shale and may 

comprise as much as 307. of the rock . Although Formation thickness may 

exceed 70 m at some localities , 30 m to 50 m is common throughout 

central east Tennessee (Knoxville and Oak Ridge vicin ity) (Milici , 1973 ; 
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Haase and others , 1985 ; Hasson and Haase , 1988 ) . Within the middle and 

upper portion of the Rogersville Shale, a carbonate unit of variable 

thickness called the Craig Limestone Member is observed . The Craig 

Limestone Member consists primari ly of mottled , fine-grained l imestone 

and dolostone , to coarse-grained intraclastic and oolitic l imestone 

(Walker and Simmons , 1985 ) . The Craig is local ly stromatolitic (Hasson 

and Haase , 1988) . 

Maryville Limestone 

The lower contact of the Maryville Limestone is conformable with 

the Rogersville Shale and is placed at the base of the first thick 

limestone bed , where limestone becomes more abundant than shale 

(Simmons , 

carbonate 

1984 ) . The 

litholog ies . 

Maryville contains a diverse assemblage of 

Whereas lenticular- to nodular-bedded lime 

mudstone and fossi liferous , oolitic , and peloidal packstone are commonly 

observed , limestone clast conglomerates account for the maj ority of the 

sequence ( Haase and others , 1985 ; Kozar , 1 986 ) . Within the Whiteoak 

Mountain and Hunter Valley strike belts , calcareous siltstone is 

abundant and displays current ripples , climbing ripples , and micro

hummocky cross-stratification (Kozar , 1986 ) . Southwest and northwest of 

Knoxville, maroon and gray-green shale becomes s ignificant , especially 

at the base and top of the Formation . Thickness values for the Maryville 

range from 75 m to 150 m (Milici , 1973 ; Kozar , 1986 ) .  

Based on the work of S immons ( 1984 ) and Kozar ( 1986 ) , much is known 

about the depos itional environments of the Maryville in this area . 
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Generally, deposition took place above storm wave-base , but below normal 

wave-base along a gently sloping surface . According to Kozar ( 1986 ) , in 

central east Tennessee deposition took place within a transition between 

fine-grained s i liciclastics to the northwest and carbonates to the 

southeast . 

Nolichucky Shale 

The lower boundary of the Nolichucky Shale occurs at the base of 

the lowest thick shale unit which overlies thinly interbedded limestone 

and shale of the upper Maryville (Derby , 1 965 ) . Although the Nolichucky 

contains many of the same lithologies as found in the Maryville 

Limestone , a maj or difference between the two Formations is apparent .  

Shale dominates the Nolichucky accounting for 40% to 707. o f  the total 

thickness . Shale is maroon to dark gray-green and is commonly 

interbedded with intraclastic , oolitic , peloidal , and foss iliferous 

limestone . Rare calcareous s iltstone interbeds are present within the 

lower 30 m to 50 m and are present toward the top of the unit . 

The Nol ichucky Shale has been subdivided into a lower and upper 

shale ( Haase and others , 1 985 ; Hasson and Haase, 1988 ) . Between the 

shale intervals is a regionally traceable unit known as the Bradley 

Creek Limestone Member (Helton, 1967 ; Hasson and Haase , 1988 ) .  In 

central east Tennessee this member is not always present ; where it is 

present , it is generally less than 20 m thick . The Bradley Creek Member 

consists predominantly of algal (Renalcis and Girvanella )  wackestone and 

packstone with interstratified lime mudstone and oolitic limestone 
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(Haase and others , 1985 ) . The total thickness of the Nol ichucky Shale 

is variable , but ranges from 140 m to 180 m (Milic i ,  1 973 ) . 

A prime objective of the p resent investigation is to derive an 

environmental interpretation for the Nolichucky Shale . This discussion 

will be presented later in this chapter . However , Markello and Read 

( 1981 and 1982) have implied that much of the Nolichucky underwent 

depos ition below normal wave-base but above storm wave-base in an 

intracratonic basin . 

Maynardville Limestone 

Prior to 1953 , the Maynardville was regarded as a transitional 

sequence between thick shale below ( Nolichucky Shale) and thick 

dolostone above (Knox Group) . As a result ,  some workers treated the 

Maynardville as a member of the Nolichucky , while others cons idered the 

Maynardville to more c losely resemble the Knox ( for a detailed summary, 

see Bridge , 1956) . More recently , the Maynardvi lle has been elevated to 

formational status (Rodgers , 1953) . The lower contact is placed at the 

base of the f irst thick ,  predominant l imestone uni t  which is present 

abqve the last thick shale (Tarkoy, 1970 ) . The contact between the 

Maynardville Limestone and the overlying Knox Group is placed 

approximately 100 meters up section at the base of a massive dolostone 

( Copper Ridge Dolostone) ,  which may exceed several hundred meters in 

thickness (Milic i ,  1973 ) .  

The Maynardville is divided into two regionally persistent members : 

the Low Hollow Limestone Member and the Chances Branch Dolostone Member 
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( Harris , 1965 ; Harris and Mixon , 1970 ; Hasson and Haase,  1988 ) . While 

this subdivision may be possible and appropriate in some areas of east 

Tennessee, in the Knoxville and Oak Ridge vicinity ( central east 

Tennessee) ,  placement of the contact between these members is extremely 

subj ective . Generally ,  the Chances Branch Member is characterized by an 

increase in the abundance of dolostone and f ine-grained carbonate 

lithologies ( stromatol ites and cryptalgalaminates ) .  Although an increase 

in dolostone is noted up-section , this increase is gradual and varies 

s ignificantly among localities . Thus , the formal subdivision is not 

used in this investigation . 

The Maynardville consists primarily of thick-bedded oncolitic and 

ool itic packstone and grainstone as well as thrombolites , stromatolites , 

and cryptalgalaminates . According to the model presented by Markello 

and Read ( 1982) , in southwestern Virginia the Maynardville Limestone was 

deposited downslope from peritidal facies ( Elbrook and/or Honaker 

Dolostone) in a subwave-base,  subtidal setting . In central east 

Tennessee this paleoenvironmental interpretation is in need of revision . 

Paleoenvironmental analysis of the Maynardville is presented later . 

Post-Conasauga Group Strata 

The Cambro-Ordovician Knox Group conformably overlies the 

Maynardvi lle Limestone . The Knox has been divided into four widely 

recognized formations ( Copper Ridge , Chepultepec , Kingsport , and Mascot,  

in ascending order) which span from Late Cambrian through Early 

Ordovician time . This sequence is primarily dolostone , depos ited within 
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a broad peritidal setting . The occurrence of desiccation features , 

oolitic and oncolitic lithologies , stromatolitic structures , and thick 

accumulations of finely crystalline dolostone substantiates this 

paleoenvironmental interpretation (Rodgers , 1 953 ; Harris , 1 969 and 197 3 ;  

Weber , 1 985 ) .  

Scope of Study 

Descriptive stratigraphy of the Conasauga Group is well-established 

( e . g . , Haase and others , 1985 ; Walker and S inunons , 1985 ; Hasson and 

Haase ,  1988 ) , but the processes that control lithofacies development and 

distribut ion are not as clearly understood . Recently,  new quantitative 

techniques of stratigraphic analysis and a refined understanding of 

sedimentary processes have increased our ability to decipher the rock 

record in terms of process or dynamic stratigraphy (Mathews , 1984 ) . 

This process-oriented approach is applied here to the Upper Cambrian 

Nolichucky/Maynardville sequence of east Tennessee . Reconstruction of 

dynamic processes is based on hierarchical three-tiered analysis (after 

Aigner , 1985 ) .  At the lowest level ,  individual strata are examined . 

This level involves reconstruction of depositional dynamics . Such 

criteria as erosional and depositional processes , mode of transport , and 

substrate changes , all of which occur over relatively short periods of 

time are of interest . Paleoenvironmental reconst ruction ( i . e . , the 

identification and characterization of facies types ) is accompl ished 

through detailed field work , slab analysis , and petrographic invest iga

tion . Facies dynamics ( facies sequences ) represents an intermediate , 
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more comprehensive level of analysis . At this scale stratigraphic 

sequences are analyzed for lateral and vertical development of facies . 

This sequential approach provides information concerning extent of 

cyclicity and significance of described facies . Basin dynamics , the 

most inclusive leve l ,  incorporates facies dynamics from various 

localities and regions . Here , such aspects as applicability of regional 

facies models , eustacy, and tectonics are considered . This hierarchical 

analysis is not restricted in application . Other basins have been 

modelled in a s imilar way ( e . g . , Shanmugam and Walker , 1980; Walker and 

others , 1983 ; Aigner , 1 985 ) 

This chapter focuses on paleoenvironmental reconstruction 

( depositional dynamics ) . Subsequent chapters will address aspects of 

facies and basin dynamics . 

Methods of Investigation 

Any dependable facies analysis requires detailed evaluation of the 

rocks in the field . In this study over 1300 meters of  section from six 

localit ies ( Figure 1 . 1 0 )  were examined on a centimeter by centimeter 

scale . Each change in lithology as well as the thickness of each 

lithology was recorded . Every practical precaution was taken to 

obj ectively measure and consistently define each lithology . Initially , 

a large number of lithologies was identified in the field . In order to 

reduce the original number of lithologies to a manageable level , a 

statistical procedure was used to systematically recategorize 

subordinant l ithologies into geologically similar lithologies ( details 
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of this procedure are presented in Chapter 3 ) . After completing the 

reduction proces s ,  14 maj or lithologies remained . Next , spec ial 

consideration was given to facies criteria,  such as fossi l  content , 

sedimentary texture and structure , stratigraphic relationship , and 

geometry. This Chapter documents the integration of facies criteria to 

reach an understanding of each maj or lithology . 

During the course of this study, 402 samples were collected from 

carbonate and shale units which appeared conspicuous because of their 

gross lithologic character . In the laboratory, hand specimens were cut 

and polished , and later examined using a hand lens and binocular 

microscope . More than SO acetate peels were prepared from polished 

slabs . Approximately 370 thin-sections were made from rock samples . 

Each thin-section was examined , and characteristic features were 

identified under cathodoluminescent and/or transmitted l ight microscopy. 

Most thin-sections were stained us ing the Dickson ( 1966 ) technique for 

determination of carbonate and noncarbonate mineralogy . 

Because quantification of recognizable features in thin-sections is 

important when characterizing fac ies , 152 thin-sections were point

counted ( 400 to 500 points per slide) using the method described by 

Chayes ( 1956) . The total number of points counted per slide varied 

depending on average grain size and grain distribution . The 

composition of each thin-section is given in Appendix C (note that 

values have been rounded to the nearest 0 . 25%) .  

A wide variety of rock types are present in the upper Conasauga 

Group . As a result,  various rock classification schemes are employed to 



43 

adequately describe the rocks (Table 2 . 1 ) .  Because many of the 

limestone l ithologies of the Nolichucky Shale contain appreciable 

amounts of sil iciclastic material , adj ectives such as argillaceous and 

silty are appropriate to further define the rock . In addition, 

limestone in the Maynardville is partially to pervasively dolomitized . 

Modifiers such as dolomitized , argillaceous , s ilty, sandy, etc . precede 

the main rock name if the abundance of these components exceeds 10  

volume percent of the rock . Also , this invest igation uses other 

standard conventions ; bedding terminology and grain size nomenclature is 

outlined in Appendix A .  

Facies Analysis 

Introduction 

As a result of this investigation , fourteen maj or lithofacies 

(Table 2 . 2) are identified in the upper Conasauga Group . The assemblage 

of facies within the Nolichucky Shale differs s ignificantly from that of 

the Maynardville Limestone (Table 2 . 2 ) .  The Nolichucky contains an 

abundance of thick shale and thinly bedded shale and limestone 

lithologies , whereas the Maynardville is composed of very thick-bedded 

carbonate , predominantly limestone ( compare Figures 2 . 2  and 2 . 3 ;  see 

Table 2 . 2  for geological meaning of symbols ) .  Data presented in 

Figures 2 .  2 and 2 .  3 are based on megascopic criteria which have been 

observed in the field . Further discrimination of lithofacies is possible 

through petrographic analys is . Table 2 . 3  summarizes petrographic 
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Table 2 . 1 .  Rock classification schemes used to describe the 
Nolichucky/Maynardville sequence . 

Rock Type Classification Used 

Field classification of carbonate rocks Dunham, 1969 
(excludes stromatolites , thrombolites , 
cryptalgalaminates ) 

Stromatolites and Thrombolites Kennard and James , 1 987 

Cryptalgalaminates Aitken , 1967 

Petrographic classification of carbonate rocks Folk , 1959 ; 1962 

Siltstone Picard , 197 1 

Shale* Blatt,  Middleton , and Murray, 
1980 

*Shale refers to fine-grained , fissile siliciclastic 
predominantly composed of clay- and silt-sized particles 

material 
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Table 2 . 2 .  The 14 maj or lithofacies which occur in the upper Conasauga 
Group . Symbols are used commonly in the text.  

Symbol Rock Name 

CL Cryptalgalaminates 

STROM Stromatolites 

THROM Thrombolites 

NOPG Oncolitic-oolitic packstone/grainstone 

EPG Peloidal packstone/grainstone 

MWS Mudstone interbedded with shale 

OPG Oolitic packstone/grainstone 

FPG Fossiliferous packstone/grainstone 

FPGWS Fossiliferous packstone/grainstone interbedded with 
shale 

XPG Laminated peloidal packstone/grainstone 

XPGWS Laminated peloidal packstone/grainstone 
interbedded with shale 

SWXPG Shale interbedded with laminated peloidal 
packstone/grainstone 

S Shale 

IPG Intraclastic packstone/grainstone 



LITHOFACIES 

CL 

STROM 

THROM 

NOPG 

EPG 

MWS 

OPG 

FPG 

FPGWS 

XPG 

XPGWS 

SWXPG 

s 

lPG 

NOLICHUCKY 
SHALE 

MAYNARDVILLE 
LIMESTONE 

Figure 2 . 2 .  Comparative analysis between the Nolichucky Shale and 
Maynardvi lle Limestone showing the relative abundance of each 
l i thofacies (NP=Not Present ; VR=Very Rare, <1%;  R=Rare ,  1 -5% ; 
C=Common , 5- 15%;  A=Abundant ,  15-25% ;  VA=Very Abundant , >25%) . For 
example , a lithofacies that is indicated as "abundant" accounts for 
between 15 to 25 meters of a stratigraphic section 100 meters 
thick . The abundance of each lithofacies is calculated for each 
locality . 
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NOLICHUCKY SHALE MAYNARDVILLE LIMESTONE 

Rock-unit Bed tkn. Rock-unit Bed tkn. 
tkn. (em.) (em.) tkn. (em.) (em.) 

Lithofacies Mean Range Mean Range Mean Range Mean Range 

CL 0 -- --- --- 221 28-71 6 221 28-7 1 6  

STROM 0 --- --- --- 1 20 45-2 1 0 1 20 45-2 1 0  

THROM 1 34 1 3-275 1 34 1 3-275 4 1 7 1 1 -2371 4 1 7  1 1 -237 1 

NOPG 54 6-1 69 54 6-1 69 1 52 1 2-548 1 52 1 2-548 

EPG 1 8  8-46 1 8  8-46 282 45- 1 1 00 282 45-1 1 00 

MWS 26 1 -432 --- --- 66 4-330 --- ---
-M --- - 2 < 1 -5 --- --- 2 < 1 -5 
-S --- --- 2 <1 -5 --- --- 2 <1 -5 

OPG 1 9* 2-1 1 5* 1 9* 2-1 1 5* 6 3-8 6 3-8 

FPG 28 2-2 1 1 28 2-21 1 0 --- 0 ---

FPGWS 53 1 5-265 --- --- 0 --- --- ---
-FPG --- --- 3 <1 -5 --- --- 0 ---
-S --- --- 2 <1 -5 --- --- 0 ---

XPG 24 2-208 24 2-208 0 --- 0 ---

XPGWS 33 2-369 --- --- 37 8-1 88 --- ---
-XPG --- --- 3 < 1 -5 --- --- 3 < 1 -5 
-S --- --- 2 <1 -5 --- --- 2 < 1 -5 

SWXPG 40 3-308 --- --- 1 6  3-27 --- ---
-s --- --- 5 <1 - 1 0 --- --- 3 < 1 -5 
-XPG --- --- 1 < 1 -2 --- --- 1 <1 -2 

s 38 2-287 38 2-287 1 9  4-57 1 9  4-57 

lPG 9 2-45 9 2-45 7 3-25 7 3-25 

Figure 2.3 . Comparative analys is between the Nolichucky Shale and 
Maynardville Limestone showing the rock-un it thickness and bed 
thickness of each lithofacies . Astericks { * )  indicate that thick 
ooid shoal units observed at the I - 75 and the Roaring Spring 
sections have not been factored into these values . 
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Table 2 . 3 .  Const ituent compos ition of lithofacies . 
expressed in percent (TR=trace=<0 . 5%) . 

CL STROM THROM 
Constituent 

ave . range ave . range ave . range 

Echinoderms 2 TR- 3  
Inarticulate brachs . 
Trilobites TR 0- 1 TR 0 -TR 1 TR-2 
Girvanella 1 0-4 6 4 - 1 1  
Chancelloria 
Sponge spicules 3 2-6 
Skeletals , Total 1 0-4 TR 0-TR 1 8  9-44 

Intraclasts , Total TR 0-2 2 0-8 
Mudstone TR 0-2 1 0-7 
Peloidal pckst . TR 0-TR 
Fossi l . pcks t .  
Oolitic pckst . 
Qtz . siltstone 

Ooids , Total 1 0-5 1 0-4 
Fibrous/Pris . TR 0-1  
Polycrystalline 1 0-4 
Monocrystalline 
Superficial 1 0-5 

Oncoids 
Peloids 6 0-8 28 22-35 1 0-6 
Micrite/Microspar 23 12-51 23 16-31  58  38-68 

Cement ,  Total 7 0-21 7 S-9  3 0-8 
Fibrous/bladed 
Syntaxial 
Blocky 7 0-21 7 5-9 3 0-8 

Qtz . /feld . s i lt 1 0-4 1 0-6 
Clay/Mica 2 0 - 1 2  
Glauconite 
Dolomite/Stylolite 47 23-71  41  25-58 12 3-23 
Phosphate 

No . of thin-sect ions 4 2 5 

Values are 

NOPG 

ave . range 

1 TR-3  
- - - - - -

3 TR-8 
1 0-3  

TR 0-2 
6 1 - 15 

6 0-25 
1 0-3  
3 0-16  

TR 0-2 
2 0-9 

16 4 -33 
9 4-20 
4 0-8 
2 0-6 

22 14-31  
8 4 - 1 3  

1 4  0-32 

20 TR- 39 
1 9  0-39 

1 0-2  
1 0-4 

6 0- 14 

6 
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Table 2 . 3 .  ( continued) . 

EPG MWS OPG FPG 
Constituent 

ave . range ave . range ave . range ave . range 

Echinoderms 2 0- 13 TR 0-TR 3 0-33 1 2  TR-47 
Inarticulate brachs . TR 0- 1 TR 0-TR 1 0-5 
Trilobites 1 0-5 2 0-6 2 0-9 13 2-46 
Girvanella 5 2-9 1 0-7 3 0- 1 1  
Chancelloria TR 0-6 7 0 - 1 8  
Sponge spicules TR 0 - 1  TR 0-3  
Skeletals , Total 4 0 - 18 7 2 - 1 4  6 TR-35 35 25-50 

Intraclasts , Total 4 0-14  2 0-8 3 0 - 23 1 0-5 
Mudstone 3 0- 14 2 0-8 1 0- 1 2  
Peloidal pcks t .  TR 0-1  TR 0-4 1 0-9 1 0-5 
Fossi l .  pcks t .  TR 0-3 
Oolitic pckst . 1 0-23  
Qtz . siltstone 

Ooids , Total 7 0-34 44 27-57 3 0-12  
Fibrous/Pris . TR 0-2 22 3 -47 1 0-4 
Polycrystalline 15 0-43 
Monocrystalline 7 0-40 2 0 - 1 2  
Superficial 7 0-34 TR 0-2 

On co ids 
Peloids 45 22-64 9 0-24 4 0 - 1 4  1 2  0-34 
Micrite/Microspar 7 0-27 56 35-76 16  0-50 19 0-36 

Cement ,  Total 22 7-33  2 0-7  22 0-52 15 0-32 
Fibrous/bladed 3 0-21 TR 0-3 18 0-52 7 0-27 
Syntaxial 1 0-3  TR 0-2 1 0-23 5 0 - 20 
Blocky 1 8  3- 33 1 0-3  2 0 - 1 1  3 0-8 

Qtz . / feld . silt TR 0-3  TR 0-2 TR 0 - 1  
Clay/Mica 12 5-32 TR 0-5 
Glauconite TR 0- 1 TR 0-8 TR 0-2 
Dolomite/Stylolite 10 0-23 8 3 - 12 4 0 - 1 3  1 3  3 - 3 1  
Phosphate TR 0-5 

No . of thin-sections 7 9 32 10 
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Table 2 . 3 .  ( continued) .  

FPGWS XPG XPGWS SWXPG 
Constituent 

ave . range ave . range ave . range ave . range 

Echinoderms 1 2  0-36 3 0- 1 1  4 1 - 1 1  2 0 - 1 5  
Inarticulate brachs . 1 0-3  1 0-2 TR 0-2 2 0-6 
Trilobites 1 1  0-21 3 0-9 1 1  3 - 1 7  3 0-6 
Girvanella 2 0-8 1 0-4 1 0-3  
Chancelloria 2 0-13  1 0-7  
Sponge spicules TR 0 - 1  
Skeletals , Total 29 18-37 8 TR- 20 14 10-23 6 TR-22 

Intraclasts , Total 1 0-7  3 0-9 3 0-29 
Mudstone 1 0-7 1 0-4 
Peloidal pcks t .  TR 0-TR 2 0-7 3 0-29 
Fossil .  pcks t .  
Oolitic pcks t .  
Qtz . siltstone 

Ooids , Total 2 0- 1 1  TR 0-2  
Fibrous/Pris . 2 0 - 1 1  TR 0-2 
Polycrystalline 
Monocrystalline TR 0 -TR 
Superficial TR 0-TR 

Oncoids 
Peloids 14  4 - 28 35 3-60 23  14-31  20  0-52 
Micrite/Microspar 1 1  0-27 3 0-7 14 5-34 10 0-25 

Cement , Total 1 8  0-54 12 0-32 1 8  6-34 5 0 - 1 2  
Fibrous/ bladed 1 2  0-35 2 0-6 1 0-3  2 0- 1 2  
Syntaxial 4 0-19  3 0-9 3 0-20 
Blocky 2 0-7 7 0-22 1 3  6-25 3 0 - 1 2  

Qtz . /feld . silt 1 0-3 1 1  0-55 1 0-4 6 0-22 
Clay/Mica 10 0-31 5 0-20 1 2  6-26 36 14-62 
Glauconite 3 0-17  2 0-8 TR 0- 1 1 0-4 
Dolomite/Stylolite 7 0 - 1 5  19 0-7 1 8 1 - 19 10 0-21  
Phosphate 2 0-9 TR 0-2  1 0 - 10 

No . of thin-sections 7 10  8 9 
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Table 2 . 3 .  ( continued) .  

s IPG 
Constituent 

ave . range ave . range 

Echinoderms 1 0-4 5 TR- 1 7  
Inarticulate brachs . 4 TR- 13 TR 0-1  
Trilobites 1 0-5 5 TR- 1 5  
Girvanella 1 0-7  
Chancelloria TR 0-3  
Sponge spicules TR 0-2 
Skeletals,  Total 6 TR- 14 1 1  2-27 

Intraclasts , Total TR 0-4 54 27-92 
Mudstone TR 0-3  14 0-67 
Peloidal pckst . TR 0-2 21 0-65 
Fossil .  pcks t .  TR 0-TR 1 3  0-92 
Oolitic pckst . TR 0-3  
Qtz . siltstone 5 0-78 

Ooids , Total 1 0 - 1 0  
Fibrous/Pris . 1 0-10  
Polycrystalline 
Monocrystalline 
Superficial 

Oncoids 
Peloids 30 9-61 8 0-23 
Micrite/Microspar 5 0-21 

Cement ,  Total 8 0-24 
Fibrous/bladed 2 0-8 
Syntaxial 4 0-12  
Blocky 3 0-10 

Qtz . /feld . silt 2 TR-9  TR 0-6 
Clay/Mica 55 3 1 -82 3 0-28 
Glauconite 1 0-3  TR 0 - 1  
Dolomite/Stylolite 4 0-29 7 0-27 
Phosphate 

No . of thin- sections 16 27 
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compos ition for 1 52 thin-sections which have been point-counted . 

Figures 2 .  2 and 2 .  3 and Table 2 .  3 should serve as general reference 

throughout the remainder of this Chapter . 

Temporal and spatial variability of facies and environments will be 

addressed in Chapter 5 .  Thus , columnar sections are displayed more 

appropriately in that chapter . 

Cryptalgalaminate (CL) 

Cryptalgalaminate ( after Aitken , 1967 ) is used here to refer to 

planar- laminated stromatolites . Stromatolites are defined as laminated 

organosedimentary structures built by trapping and binding of detrital 

sediment and/or mineral precipitation in association with microbial 

communities (Kennard and James , 1987 ) .  Recently , it has been 

established that sediment-forming microbial communities are dominated by 

cyanobacteria ( blue-green algae of earlier authors ) ( for a complete 

discussion , see Bauld , 1981 ; Krumbein, 1983 ) . Thus , the term 

"cryptalgal" ( meaning hidden algae) is not literally correct . Revised 

classification schemes have been proposed (Kennard and James , 1987 ; 

Burne and Moore , 1987 ) ,  but at present , cryptalgalaminate is preferred 

because it conveys precise meaning and is widely adopted . 

Description (Table 2 . 4 )  

Cryptalgalaminates are distinctive 

are entirely absent 

features of the Maynardville 

within the Nolichucky Shale Limestone , but 

( Figure 2 . 2 ) . Interlayered laminae that are smooth, wavy, and crinkly 
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Table 2 . 4 .  Characteristics of the CL Lithofacies . 

Features Characteristics 

Lithology ( Folk , 1959 ; 1 962) -Dolomitized pelmicrite 
-Fenestral dolomicrite 
-Dolomitized fenestral micrite 

Bed Thickness -Medium- to very thick-bedded 
-Laterally continuous 

Sedimentary Texture and Structure -Thinly laminated 

Bed Contacts 

-Irregular , planar , wavy laminations 
-Cross- laminated 
-Small-scale truncation 
-Mudcracks 
-Microtepee structures 
-Fenestral fabric 
-Spar-filled pseudomorphs ( ? )  

Upper -Sharp 

Lower -Sharp 

Fossils -Rare ; finely comminuted trilobites , 
Girvanella tubules 

Other -Quartz s ilt 
-Superficial ooids 
-Algal peloids 

No . of Thin-Sections Examined -6 

No . of Thin-Sections Point-Counted -4 
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are the most distinguishing characteristic of this Facies ( Figure 2 . 4A 

and B) . Each individual lamina is made up of dolomicrite , dolomitized 

peloidal packstone/grainstone (Figure 2 . 4C ) , or intraclastic packstone 

with local accumulation of quartz s ilt and superficial ooids . The 

former two types of laminae are most commonly interlayered . Because 

laminae are thin, typically less than 0 . 5  mm thick , numerous laminae are 

bundled to form individual beds . Bed thickness averages about 2 m, but 

may exceed 7 m ( Figure 2 . 3 ) .  Cross-stratified and truncated laminae are 

commonly observed where lateral exposure is sufficient ( Figure 2 . 4D ) . 

Truncation of laminae forms micro-unconformities and reveals small-scale 

channels ( 7 ) . Also, erosion is apparent where large platy clasts of 

laminated rock have been fragmented and locally transported . Other 

diagnostic features of this facies include : 

microtepee structures , 

pseudomorphs ( 7 ) . 

Interpretation 

fenestral fabric , 

rare shallow mudcracks , 

cher t ,  and spar-filled 

The cryptalgalaminates described above are similar in many respects 

to smooth mat- like sheets currently forming in lower to upper intertidal 

zones from Shark Bay ( Logan and others , 1974)  and the Persian Gulf 

(Kendall and Skipwith, 1968 ; Purser and Evans , 1973 ; Kinsman and Park , 

1976) . These modern cyanobacterial sheets resemble the Maynardville 

cryptalgalaminates in the following ways : ( 1 )  planar or smooth laminae 

prevai l  over highly crenulated or pustular laminae , ( 2 )  individual 

laminae are thin ( usually several millimeters or less) ,  ( 3 )  laminae are 
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features of the Cryptalgalaminate (CL) 

A. Outcrop of smooth and wavy laminae which overlie a thin and 
laterally discontinuous interval dominated by laterally- linked 
hemispheroids ( LLH) or domal stromatolites . LLH structures 
occur j ust above the tape measure . Base of tape is 5 em in 
length . Roaring Spring section . 

B .  Polished slab of alternating light and dark laminae . Smooth 
and wavy laminae are dominant . Low-amplitude stylolites should 
not be confused with crinkly laminae . Rock is entirely 
dolomite . Interstate 75 section . Sample I-82-0 . 3 .  

C .  Photomicrograph of dolomicrite (dark bands ) and dolomitized 
peloidal packstone ( light bands ) . Field of view is 6 . 5  mm in 
long dimension . Interstate 75 section . Sample I-80- 1 . 3 .  

D .  Outcrop of buckled , truncated , and ripped-up laminated rock . 
Note that intraclasts are angular and irregular in shape ; this 
suggests that c lasts were locally transported . Pencil is 14 em 
long . Interstate 75 section . 
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composed of alternating lime mud (micrite) and peloids , and ( 4 )  thin 

intraclastic beds may interrupt normal alternation of laminae . In 

addition , mudcracks , microtepee structures , fenestrae , and erosion are 

common to both modern and ancient low-energy tidal flat settings ( James , 

197 9 ;  Shinn , 1983 ) . 

Trapping and binding of detrital sediments by cyanobacteria are the 

primary mechanisms that form Shark Bay and Persian Gulf "cryptalgal" 

laminations . According to Logan and others ( 1974 ) and Davies ( 1970 ) , 

sediment is transported from subtidal areas onto the tidal flats (e . g . , 

trilobites and peloids in the Maynardville ) .  During exceptional storms , 

intraclastic layers are deposited, and algal mats are locally scoured , 

eroded , and reworked ( Logan and others , 1974 ;  Shinn, 1 983) . 

The occurrence of quartz s ilt and fine-grained superficial ooids in 

the Maynardvi lle is enigmatic . Although superficial ooids are 

recognized in facies down depositional dip and could be transported onto 

the tidal flat by tides ( probably storm tides ) ,  quartz silt is not 

ubiquitous anywhere within the Maynardville . However , certain laminae 

on the tidal f lat reveal microlenses of silt-sized ooids and quartz . 

These locally abundant accumulations probably represent wind-transported 

sediment that were either reworked by tidal water or deposited in slight 

topographic depressions . 

Flat- laminated sediments (grossly similar to the Maynardville) 

occur in upper intertidal and supratidal environments in the Bahamas 

(Hardie, 197 7 ) . Differences in composition and thickness of laminae as 

well as the absence of fresh water carbonate ( algal tuffa) may rule out 
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the Bahaman modern analogue . In addition , the Bahaman tidal flat is 

situated in a humid , tropical climate . Markello ( 1979)  infers that the 

southern Appalachians were under the influence of a semiarid climate 

during the Late Cambrian . He cites the following to support his claim :  

the occurrence of collapse breccia , pseudomorphs after evaporites , the 

paucity of burrowing in very shallow sublittoral facies , the presence of 

calcitized anhydrite , and the preservation of stromatol ites . Harris 

( 1973) , Alberstadt and Reesman ( 1978 ) , Friedman and Radke ( 1979) , 

Friedman ( 1980 ) ,  Erwin ( 1981 ) ,  and Demicco ( 1985) provide additional 

evidence to suggest that much of the Middle Cambrian to Lower Ordovician 

sequence along the Appalachian chain was deposited in an arid to 

semiarid climate . 

Planar stromatolites in the Maynardville are interpreted to have 

formed in lower to upper intertidal zones of low-energy tidal flats . 

Mudcracks,  uniformity of laminae , and buckling and brecciation of layers 

support this interpretation . The evidence presented here supports 

deposition from suspension, scour , and subaerial exposure , all processes 

active in intertidal regimes . 

Stromatolites (STROM) 

Description ( see Table 2 . 5 ) 

In this study three types of stromatolites have been observed , but 

only two varieties are cons idered important to this lithofacies . The 

Stromatolite Facies is composed of interstratified domal and planar 
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Table 2 . 5 .  Characteristics of the STROM Lithofacies . 

Features Characteristics 

Lithology ( Folk , 1 959 ; 1962 ) -Dolomitized fenestral pelmicrite 
-Dolomitized pelmicrite 
-Dolomit ized biolithite 
-Dolostone 

Bed Thickness -Thick- to very thick-bedded 
-Laterally continuous 

Sedimentary Texture and Structure -Thinly laminated 

Bed Contacts 

-Fine-grained algal peloids ( pellets? ) 
-Algal peloids rounded to subrounded 
-Fenestral fabric 

Upper -Sharp 

Lower -Sharp 

Fossi ls -Rare ; finely comminuted trilobites 

Other -Domal ·stromatolites are inter
stratified with cryptalgalarninates 
-Digitate stromatolites are inter
stratified with thrombolites 

No . of Thin-Sections Examined -7 

No . of Thin-Sections Point-Counted -2 
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stromatolites which form stratiform units ( beds ) , ranging in thickness 

from 45 em to 210 em ( Figure 2 . 3 ) . Domal stromatolites are observed 

only in the Maynardville Limestone ( Figure 2 . 2 ) . Individual domes range 

from 1 em to 10 em in length and are less than 10 em in vertical 

dimension ( see Figure 2 . 4A ) . Sediment infilling interdomal regions 

includes dolomitized peloidal packstone/grainstone, intraclastic 

packstone , and mudstone . Also , cryptalgalaminates ( s imilar in 

composition to the previously described lithofacies) are juxtaposed to 

domal stromatolites . Laminae which make up these stromatolites are 

composed primarily of alternating bands of peloids and micrite ( now 

dolomicrite) ( Figures 2 . 5A and B ) . Individual laminae are planar to 

curved , rarely more than several millimeters thick. Although this 

lithofacies may resemble the Cryptalgalaminate Lithofacies , s ignificant 

differences exist . Irregular and wavy laminae, mudcracks , microtepee 

structures , and truncation features are not prevalent here . Fenestral 

fabric is locally important ( Figure 2 . 5C) . 

Digitate stromatolites ( the third type of stromatolite) are 

recognized in the Nolichucky Shale and the Maynardville Limestone as low 

relief hemispheroidal finger-like protrusions which tend to coalesce 

upward into thin wavy and planar- laminated bedfoms ( Figure 2 . 5D) . 

Digitate stromatolites are observed in association with thrombolites , 

and commonly form caps that never exceed a few centimeters in 

thickness . Because of the close association of digitate stromatolites 

with thrombolites , both rock types are included in the Thrombol ite 

Lithofacies and will be discussed later . 
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Figure 2 . 5 .  Characteristics of Maynardvi lle stromatolites . 

A .  Photomicrograph of domal and planar stromatolites . 
Fine-grained , curved laminae of dolomicrite ( darker bands ) are 
interlayered with coarsely crystalline dolomitic peloid 
grainstone . Domal stromatol ite ( to right) is overlain by 
smooth/ irregular laminae and peloidal carbonate . Field of view 
is 6 . 5  mm in long dimension . Joy 2 section . Sample J-2 307 . 5 . 

B .  Photomicrograph is similar to A except much f iner grained . 
Field of view is 6 . 5  mm in long dimension . Roaring Spring 
section. Sample R-19 . 

C .  Photomicrograph of irregular fenestrae i n  partially dolomitized 
mudstone . Fenestral voids are filled with blocky calcite and 
dolomite cement .  Field of view is 6 .  5 mm in long dimension . 
Interstate 75 section . Sample I-81-5 . 9 .  

D .  Polished slab of digitate stromatolite .  Abundant spar-filled 
laminoid fenestral voids occur within the stromatolite . 
Micrite is located between adj acent digitate 1 1fingers11 • 
Irregular vugs are apparent in this area and are filled with 
blocky calcite cement .  Also note 11peaked11 stylolites . 
Stratigraphic up is toward top of page in this sample . 
Interstate 7 5  section . Sample I-81-5 . 9 .  
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Interpretation 

Rapid microbial growth and effective binding are requisites for the 

development of domal stromatolites ( laterally l inked hemispheroids or 

LLH structures , after Logan and others , 1964 ) . Mats of colloform 

cyanobacterial which resemble LLH structures occur in modern subtidal 

and lower intertidal settings (Kendall and Skipwith , 196 8 ;  Logan and 

others , 1974 ; Playford and Cockbain , 1976 ) . Ginsburg and others ( 1954 ) , 

Logan and others ( 1964 ) , Aitken ( 1967 ) ,  and Bathurst ( 1975) documented 

the occurrence of domal stromatolites on intermittently exposed tidal 

flats . 

Deposition of the Stromatolitic Facies took place in the lower 

intertidal regime . This interpretation is supported by an absence of 

sedimentary features which suggest long-term exposure.  Smooth flat 

laminations , crinkly lamination ,  shallow mudcracks , and microtepee 

structures are not found . The paucity of burrows and biotic constitu

ents in this Lithofacies , as well as the occurrence of fenestral fabric 

and close stratigraphic association with cryptalgalaminates suggests 

that deposition occurred in an intertidal rather than subtidal setting . 

Energy levels were somewhat higher in the Stromatolitic environ

ment , as compared to the Cryptalgalaminatic environment . However ,  the 

small s ize of domal stromatolites as well as the absence of colunmar 

stromatolites precludes depos ition in high-energy . Hoffman ( 1976)  

suggests that low-relief and laterally discontinuous domal stromatolites 

are diagnostic of lower energy ( protected shorel ine) low intertidal 

settings . 
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Thrombolites (THROM) 

Thromboli tes are microbial structures that are related to 

stromatolites but lack internal lamination (Aitken� 1967 ) .  Thrombolites 

exhibit a megascopic clotted or mottled fabric of primary origin . The 

abundant , finely crystalline ,  and closely spaced mesoclots are easily 

distinguished from mottling caused by bioturbation , tectonism ,  or 

pressure solution . According to Kennard and James ( 1987 ) clots within 

thrombolites represent individual and/or colonial growth forms of 

microbial communities . These growth forms may be poorly differentiated 

but tend to be coccoid-dominated . Stromatolites , on the other hand , 

result from episodic sediment trapping and binding , and/or carbonate 

precipitation of mat- l ike or filamentous microbial communities (Kennard 

and James , 1987 ) .  

Description (Table 2 . 6 )  

In this study biohermal and biostromal thrombolites are similar in 

external appearance to stromatolites � but the internal composition of 

thromboids is strikingly different ( Figure 2 .  6A) .  Internal megascopic 

structure consists of microcrystalline , nonlaminated , upward directed 

network of millimeter- to centimeter-scale fingers (mesoclots ) which are 

separated by patches of carbonate mud ( now burrowed mudstone) and coarse 

sediment ( foss iliferous , oolitic , and peloidal wackestone to grainstone) 

( Figure 2 . 6B) . Mesoclots make up between 25% and 75% of the volume of a 

thrombolite �  and d isplay a wide range of ge�metric shapes ( e . g . , 

arborescent ,  digitate, cerebral)  and spatial patterns ( e . g . � isolated, 
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Table 2 . 6 . Characteristics of the THROM Lithofacies . 

Features Characteristics 

Lithology (Folk, 1959 ; 1962) -Dolomitized biolithite 
-Biolithite 

Bed Thickness -Medium- to very thick-bedded 
-Non-bedded internally 
-Laterally continuous 

Sedimentary Texture and Structure -Mottled or clotted fabric 

Bed Contacts 

-Burrows and bioturbation 
-Fine- to coarse-grained allochems 
-Rare fenestral pores 

Upper -Sharp 

Lower -Sharp 

Fossils -Abundant and diverse ; Girvanella , 
sponge spicules , echinoderms , 
tri lobites , Renalcis , gastropods , 
pelecypods , Epiphyton , hyol ithids 

Other -Girvanella , Renalcis , and lime mud 
make up some mesoclots 
-Vuggy porosity 

No . of Thin-Sections Examined -23 

No . of Thin-Sections Point-Counted -5 
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Figure 2 . 6 .  Selected features of the Thrombolite ( THROM) Lithofacies . 

A .  Outcrop of thrombolitic bioherms . Note that internal 
lamination is distinctly absent from these buildups . Rock 
hammer is 25 em in long dimension . Interstate 75 section . 

B .  Outcrop o f  upward directed mesoclots in a thrombolitic buildup . 
Adjacent to darker colored mesoclots is lime mudstone and 
grainstone. Field notebook is 1 1  em in width. Roaring Spring 
section . 

C .  Photomicrograph of Epiphvton in a clotted micrite matrix . 
Field of view is 6 . 5  mm in long dimension . Interstate 75 
section . Sample I-3-1 . 0 .  

D .  Outcrop of planar-laminated stromatolites which cap a 
thrombolitic interval . Stromatolites are approximately 0 . 5  m 
thick . Interstate 75 section . 
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interconnected , coalesced) . 
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Biotic constituents associated with 

thrombolites are diverse and fairly abundant for the Cambrian 

(Table 2 . 3 ) .  Girvanella , Renalcis , and Epiphyton ( Figure 2 . 6C )  occur in 

association with the clotted micritic matrix.  

The Thrombol ite Lithofacies is composed primarily of thrombolites , 

but digitate stromatolites are also included here . Digitate 

stromatolites , which grade upward into thin wavy-laminated 

stromatolites , cap many thrombolitic horizons (Figure 2 . 6D and see 

Figure 2 . 1 1A) . The stromatolites reveal fenestral fabric, irregular 

lamination , fine-grained dolomite replacement , and preserved Girvanella 

tubules .  

This Facies i s  recognized in the Nolichucky Shale and Maynardvi lle 

Limestone . Thrombolites are a subordinant component of the rock in the 

Nolichucky , whi le in the Maynardville, thrombol ites are the dominant 

facies type (Figure 2 . 2 ) .  This Facies ranges from 1 1  em to more than 

23 m in thickness ( Figure 2 . 3 ) .  

Interpretat ion 

Thrombolites are essentially a lower Paleozoic phenomenon . Lack of 

recognition of these features in the Recent prevents the use of a 

uniformitarian approach, and thus , offers a potential interpretative 

problem. Fortunately , thrombolites have been studied thoroughly 

(Aitken, 1967 ; Ahr ,  1 97 1 ; James and Kobluk , 1 97 8 ;  Pratt and James , 1982 ; 

Demicco , 1985 ) ,  and these studies indicate that thrombol ites were 

deposited within a narrow zone extending from very shallow subtidal to 
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low intertidal settings . Aitken ( 1967 ) studied thrombolites from the 

Cambro-Ordovician sequence in Alberta, Canada and concluded that 

deposition took place in water less than 2 m deep . 

In the upper Conasauga Group , biohermal and biostromal thrombolites 

represent very shallow subtidal conditions based on the following 

features ( no one feature indicates a particular depositional environ

ment) :  

1 .  Irregular distribution of sediment on microbial mat surfaces 

2 .  Irregular surface topography of thromboid "fingers" 

3 .  Disruption by burrows 

4 .  Abundant and diverse in s itu fossil assemblages 

5 .  Capping digitate and planar stromatolites 

6 .  Fenestral fabric 

7.  Close stratigraphic association with the Cryptalgalaminate and 

Stromatolite Facies 

8 .  Absence o f  features which indicate subaerial exposure 

It is l ikely that the tops of many thrombolites shoaled to the lowermost 

intertidal zone . This is supported by the presence of digitate and 

planar stromatolite caps which display laminoid fenestrae . Based upon 

previous work ( see citations above) , thrombolites developed in mildly to 

strongly agitated water . The occurrence of grain-supported fabric and 

intraclasts in inter- thromboid regions of the Nolichucky/Maynardville 

thromboli tes suggests at least moderately high-energy levels during 

certain periods . 
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Oncolitic-Oolitic Packstone/Grainstone (NOPG) 

Description ( Table 2 . 7 )  

Oncolitic carbonates range from 0 . 06 m to 5 . 48 m in thickness 

( Figure 2 . 3) . They are observed most commonly in the Maynardville 

Limestone (Figure 2 .  2 )  as massive beds which average about 1 .  5 m in 

thickness ( Figure 2 . 7A ) . In polished hand specimens and in thin

sections , this Facies is composed of packstone and poorly washed 

grainstone . Oncoids are the most abundant allochemical grain type, but 

skeletal debris , peloids ,  intraclasts , and ooids represent s ignificant 

components of the rock ( Table 2 . 3) . Oncolitic lithologies are composed 

of abundant subelongate to elongate oncoids ( 14-31% ) , some of which 

measure up to 5 mm in long dimension . Girvanella sheaths , Renalcis , 

molluscs , trilobites , echinoderm ossicles , superf ic ia l  ooids , peloids 

and small oncoids serve as nuclei .  

Using the classification of Logan and others ( 1964 ) ,  three 

morphologic types of oncoids are discerned in this study: 

1 .  Type "C" oncoids : shape of oncoid is dependent on the shape of 

the nucleus . Individual laminae are irregular , even , and 

traced around the oncoid . 

2 .  Type "R" oncoids : irregular and dome-shaped oncoids , where 

differential growth of microbes has produced laminae which 

pinch and swell and do not necessari ly conform to nucleus 

shape . Individual laminae are irregular, uneven, and traced 

around the nucleus . 
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Table 2 . 7 .  Characteristics of the NOPG Lithofacies . 

Features Characteristics 

Lithology ( Folk ,  1959;  1962) 

Bed Thickness 

Sedimentary Texture and Structure 

Bed Contacts 
Upper 

Lower 

Fossils 

-Oolitic , oncolitic intramicrudite 
-Fossiliferous , oncolitic oomicrite 
-Dolomitized oolitic oncosparrudite 
-Peloidal,  oncolitic oosparite 
-Dolomitized peloidal oncosparrudite 

-Thin- to very thick-bedded 
-Laterally continuous 

-Coarse-grained ooids and oncoids 
( commonly exceed 2 mm .  in diameter) ;  
rounded to subelongate and well
sorted 
-Hardgrounds 
-Aggregate grains 
-Spar-filled burrows 

-Sharp 

-Sharp 

-Trilobites and rare echinoderms , 
Girvanella tubules , and sponge 
spicules 

Other -Stylolites 
-Pores filled with fibrous cement 

No . of Thin-Sections Examined -6 

No . of Thin-Sections Point-Counted -6 
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Figure 2 . 7 .  Selected features of the Oncolitic-Oolitic 
Packstone/Grainstone (NOPG) Lithofacies . 

A .  Outcrop o f  the upper portion o f  a thick oncolitic bed . Oncoids 
are several mm long . Also note other coarse-grained allochems 
such as ooids and coated trilobite grains . Rock hammer for 
scale . Beech Grove section . 

B .  Photomicrograph of normal ( C )  and irregular dome-shaped (R) 
oncoids . See text for explanation of types of oncoids . Field 
of view is 6 . 5  mm in long dimension . Interstate 75 section . 
Sample I-74-9 . 8 .  

C .  Photomicrograph o f  interrupted oncoid . This type of oncoid 
reveals irregular , wavy laminae which are truncated. Field of 
view is 6 . 5  mm in long dimension . Interstate 75 section . 
Sample I-62- 1 . 2 .  

D .  Photomicrograph o f  hardground surfaces ( arrows ) .  Notice the 
micritic crust ( C )  which occurs on the uppermost hardground 
surface . In general ,  hardgrounds are laterally discontinuous . 
Many t imes they display some evidence of pressure solut ion, and 
thus grade into stylol ites . Field of view is 6 .  5 mm in long 
dimension . Interstate 75 section . Sample I-29-5 . 7 .  
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3 .  Type 1 1I 11 oncoids : interrupted oncoids , where initial oncoid 

formation takes place, and later redeposition ,  dissolution , 

erosion , and/or reorientation occurs . Then , the surface 

undergoes renewed oncoid formation . Individual laminae are 

truncated and thus are not traceable around the oncoid . 

Each type of oncoid is commonly observed in the upper Conasauga sequence 

Figure 2 . 7B and C ) . 

Hardgrounds and scoured surfaces of this Facies are not restricted 

in locality .  Hardground surfaces are planar and undulatory and are 

identified by the presence of truncated grains and/or micritic crusts , 

usually iron-stained , phosphatized , or pyritized ( Figure 2 . 7D) . Where 

closely spaced hardgrounds cut down through previously cemented 

hardgrounds , anastomosing hardgrounds occur . 

Interpretation 

All three maj or oncoid types ( C ,  R ,  and I )  occur in subequal 

abundance in any given oncolitic horizon . These oncoids formed in 

quiet- to moderately agitated-water conditions , but they were 

intermittently reworked by high-energy events , such as currents and/or 

storms ( e . g . , see Bal l ,  1967 ; Shinn , 1969 ; Hagan and Logan , 1974 ; Hine, 

197 7 ;  Flugel ,  1982 ) . Based on our knowledge of modern oncoid-forming 

environments ( Ginsburg , 1960 ; Flugel ,  1982 ) , this Facies probably 

underwent deposi tion in water no more than 3 m deep • Gebelein ( 1976) 

reports that optimum development of oncoids takes place in water less 

than 1 meter deep at Joulters Cay , Bahamas . Based upon evidence 
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presented below, a very shallow subtidal origin is proposed for the 

Oncolitic Facies . 

1 .  This Facies has a grain-supported framework (grainstone and 

packstone) , where porefilling marine cement is volumetrically 

more abundant than micrite . Thick oncoid wackestone beds have 

been identified by Markello ( 1979 ) , Erwin ( 1981 ) ,  and Kozar 

( 1986 ) as deeper water subtidal depos its . 

2 .  In this study all three types of oncoids occur in about the 

same proportion . Greater abundance of Type "R" oncoids has 

been used to imply a deeper subtidal orig in (Erwin, 1 981 ) .  

3 .  An abundant and diverse biota is lacking here . Kozar ( 1986 ) 

described a wide variety of biotic const ituents within his 

deeper-water subtidal oncolitic facies . In addition , Erwin 

( 1 981 ) was able to distinguish a shallow subtidal and a deeper 

subtidal oncolitic facies based largely on the richness of the 

biota . 

4 .  Quartz silt and sand are not observed in the Oncolitic Facies . 

Erwin ( 1981 ) and Kozar ( 1986) described abundant detrital 

quartz from their "deeper" oncolitic facies . 

5 .  Abraded , mechanically fragmented , and spalled oncoids are not 

present in the Oncolitic Facies . The presence of these 

features would imply greater current intensity, capable of 

transporting oncoids into deeper water environments . 
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6 .  The absence of subaerial exposure features such as mudcracks , 

fenestral fabric,  microtepee structures , etc . precludes tidal 

f lat deposition .  

7 .  Periods of  submarine exposure ( substrate stability ) , a s  implied 

by numerous hardgrounds throughout this Facies , and moderate 

agitation enabled cyanobacteria to develop well-formed oncoids . 

Periodic currents and storms transported peloids , ooids , 

intraclasts , and skeletal debris from adj acent areas into this 

oncoid-forming environment . 

Peloidal Packstone/Grainstone ( EPG) 

Description (Table 2 . 8) 

The Peloidal Packstone and Grainstone Lithofacies is observed often 

in the Maynardville Limestone (very rare in the Nol ichucky) ;  it ranges 

from 0 . 5  m to 1 1  m in thickness ,  averaging almost 3 m (Figures 2 . 2  and 

2 . 3 ) . This Facies is composed of two end-member , nonintergrading 

subfacies . The Peloidal-Intraclastic Grainstone Subfacies is composed 

of reworked and rounded pieces of consolidated calcareous mud 

(Figure 2 . 8A and C )  which coincides with very small intraclasts 

( intraclasts are greater than 2 mm, Folk , 1970 ) .  Peloids and intraclasts 

are made up of either calcite (micrite) or dolomite ( dolomicrite) .  

Also , fenestral fabric and blocky porefilling dolomite cement are 

observed in thin-section . Biotic constituents are rare . In outcrop 

low-angle cross-stratification is present in some beds . This Subfacies 
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Table 2 . 8 .  Characteristics of the EPG Lithofacies . 

Features Characteristics 

Lithology (Folk, 1 959 ; 1962) -Pelsparite 
-Dolomitized pelsparite 
-Dolomitized oosparite ( superficial 
ooids ) 

Bed Thickness -Thin- to very thick-bedded 
-Laterally continuous 

Sedimentary Texture and Structure -Moderate sorting ; fine-to medium
grained ; rounded to angular peloids 
-Discontinuous hardgrounds 
-Low-angle cross-stratification 

Bed Contacts 

-Burrows 

Upper -Sharp 

Lower -Sharp 

Fossils -Rare echinoderms and trilobites 

-Other -Stylolites , stylobedding , 
stylocumulate 
-Superficial ooids are radial fibrous , 
from 0 . 05 to 0 . 3  mm . in diameter 
-Peloids average 0 . 2  mm . in diameter 

No . of Thin-Sections Examined - 13 

No . of Thin-Sections Point-Counted -7 
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Figure 2 . 8 .  Selected features of the Peloidal Packstone/Grainstone 
(EPG) Lithofacies . Stratigraphic up is toward top of page in all 
photographs . 

A .  Photomicrograph of the Peloidal-Intraclastic Grainstone 
Subfacies showing both micrite and dolomicrite peloids . 
Thin-section has been stained with Alizarin Red S and potassium 
ferr icyanide . Darker peloids are composed of calcite , whi le 
lighter peloids are dolomite . Pore-filling cement is blocky 
dolomite .  Field of view is 6 . 5 mm in long dimens ion . 
Interstate 75 section . Sample I-79-6 . 2 .  

B .  Polished slab of the Peloidal-Superficial Ooid 
Packstone/Grainstone Subfacies showing cross-stratification . 
Interstate 75 section . Sample I-77-2 . 0 . 

C .  Outcrop of the Peloidal-Intraclastic Grainstone Subfacies . 
Knife is 9 em in length . Interstate 75 section . 

D .  Photomicrograph of the Peloidal-Superficial Ooid 
Packstone/Grainstone Subfacies . Peloids and superficial ooids 
are the dominant allochems . Field of view is 6 .  5 mm in long 
dimension . Interstate 75 section . Sample I -78-0 . 5 .  

-· 
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is recognized through a thin stratigraphic interval in close association 

with cryptalgalaminates at the I-75 Section . 

The Peloidal-Superficial Ooid Packstone/Grainstone Subfacies is 

much more abundant and is recognized from each Maynardvi lle locality 

which has been examined . This Subfacies is characterized by the 

following grain types ( in decreasing order of abundance) :  peloids >>> 

superficial ooids >> Girvanella sheaths > Girvanella tubules > 

Girvanella intraclasts . Abundant allochems tend to be very fine-grained , 

typically between 0 . 05 mm and 0 . 30 mm in diameter ( Figure 2 . 80 ) . Other 

features of this Subfacies include fibrous and blocky calcite 

porefilling cement,  cross-stratified bedforms ( Figure 2 . 88) , thin 

argillaceous interlayers , burrows , and rare fossils . 

Many allochems in the Peloidal Packstone/Grainstone Facies owe 

their origin to the activity of cyanobacteria.  Collectively, these 

grains may account for 507. or more of the volume of a thin-section . 

Girvanella formed tubules , sheaths , peloids , oncoids , and intraclasts . 

There is little doubt that tubules and sheaths ( intertwined tubules ) are 

derived from Girvanella . In these particles Girvanella is well 

preserved as an unbranching , nonseptate tubule that is uniform in 

diameter ( see Figure 2 . 9C ) . Tubules are 5 to 25 microns in diameter and 

may be several hundred microns in length . The tubule wal l  is composed 

of micrite a few microns thick . 

The cyanobacterial origin of peloids and intraclasts may be tenuous 

if Girvanella is �ot identified . The amount of Girvanella in any one 

peloid or intraclast varies . Usually, only a few loose tubules are 
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Figure 2. 9 .  Selected features of the Mudstone Interbedded with Shale 
(MWS ) Lithofacies . 

A .  Outcrop of nodular to thin-bedded lime mudstone which is 
interbedded with partially dolomitized shale . Rock hammer for 
scale . Roaring Spring section . 

B .  Photomicrograph of Girvanella sheaths and peloids . Notice that 
many peloids appear to be cross-sectional and oblique cuts 
through individual tubules and small clusters of tubules . 
Field of view is 1 . 3  nnn in long dimension . Interstate 75 
section . Sample I -58-2 . 5 .  

C .  Photomicrograph of well-preserved Girvanella tubules in lime 
mudstone . Field of view is 1 . 3 mm in long dimension . 
Interstate 7 5  section . Sample I-58-2 . 5 .  

D .  Slab of the undersurface ( ? )  of a mudstone bed 
disrupted , bioturbated fabric . Horizontal burrow 
Planolites . Interstate 75 section . Sample I-60- 1 2 . 1 .  

showing 
may be 
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surrounded by micrite and microspar. The sharpness of the transition 

from the tubule wall to the f ine-grained matrix is variable . If this 

boundary is sharp , preservation is good , but if the boundary is 

gradational ,  preserved tubules are only vaguely recognized , or not 

recognized at all . Generally, the microstructure of Girvanella is 

obscured by micritization and/or micrite infilling of the tubules or by 

neomorphism of carbonate lime mud to micrite and microspar . 

Interpretat ion 

The precise environment of deposition of the Peloidal-Intraclastic 

Grainstone Subfacies is difficult to ascertain . Although deposition 

probably took place on a tidal flat , perhaps in or near tidal channels , 

additional data would be helpful in refining this interpretation . 

However , in central east Tennessee this Subfac ies is not regionally 

extensive. 

The dominant constituents of the Peloidal-Superficial Ooid 

Packstone/Grainstone Facies are peloids . Girvanella also contributed 

s ignificantly to the original sediment . Mechanical fragmentation of 

subtidal Girvanella mats ( see the Mudstone Facies ) by high-energy events 

produced peloids and other subordinant grain types ( tubules , sheaths , 

and intraclasts ) . These Girvanella peloids may be indistinguishable from 

other types of peloids such as fecal pellets , micritized grains , and 

recrystallized particles . However , based upon petrographic evidence , 

most peloids in the upper Conasauga Group appear to be derived from 

cyanobacteria,  pr�marily Girvanella . The role · of cyanobacteria as 
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important sediment producers should not be underestimated . Throughout 

the Phanerozoic , physical breakdown of algae and cyanobacteria is 

regarded as a maj or sediment producing process ( Wolfe, 1965 ; Aitken, 

1966 ; Stockman and others , 1 967 ; Ahr , 197 1 ;  Neuman and Land , 1975 ; Wray , 

1977 ; Mullins and van Buren , 1979 ; Crevello and Schlager , 1980 ; Coniglio 

and James , 1985 ) . 

The peloidal carbonates described here are s imilar to subtidal 

sands of Shark Bay, the Persian Gulf , and the Great Bahama Bank ( Purdy , 

1963 ; Evans and others , 1973 ; Brown and Woods , 1 974 ; Bathurst ,  1975 ) .  

These ancient carbonates . resemble modern pellet sands in bed thickness ,  

internal structure , constituent composition , and location ( i . e . , between 

higher energy shoals and lower energy tidal flats ) . The main difference 

involves the paucity of fecal pellets in the Maynardville . 

Radial fibrous cortices · occur on many peloids in the Peloidal 

Facies . This would suggest that where agitation was sufficient to 

entrain grains superficial ooids formed . Ooids which are less than 0 . 6  

nun in diameter tend to have radial cortices ( Heller and others , 1980 ) . 

Larger ooids reveal a concentric or laminated fabric . This correlation 

has been noted by Medwedeff and Wilkinson ( 1983 ) .  As indicated by 

Heller and others ( 1980 ) , smaller ooids were kept in suspens ion under 

shallow-water , moderate-energy conditions . These conditions permitted 

accretion of a radial cortex without grain abrasion . With increasing 

ooid s ize beyond the 0 . 6  millimeter threshold, bedload transport 

dominated . Superf icial ooids in the Maynardville rarely exceed 0 . 3  nun 

in diameter . 
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This Facies was deposited as a subtidal sand sheet in water which 

was intermittently reworked by high-energy currents and/or storms . The 

occurrence of Girvanella peloids and intraclasts as well  as tubules and 

sheaths support evidence for periodic high-energy events . Sets of 

planar tabular cross-strata , fine-grained and well-sorted peloids , and 

superficial cortices on peloids suggest grain reworking in moderately 

agitated water . Based on modern analogues , water depth was approxi 

mately 0 - 5  m .  The occurrence o f  marine fibrous cement and rare burrows 

is consistent with this interpretation . 

Mudstone Interbedded With Shale (MWS ) 

Description (Table 2 . 9) 

The Mudstone Facies is present in the Nolichucky Shale and 

Maynardville Limestone ( Figure 2 .  2 ) . It is usually observed near the 

Nolichucky/Maynardville contact in close stratigraphic proximity to many 

of the lithofacies described in this study. Nodular- to thin- bedded 

lime mudstone alternates with laminated to thin-bedded shale ( Fig

ure 2 . 9A) . Individual mudstone and shale layers range from <1 to 5 em 

in thickness . The l imestone-shale alternations form rock-units up to 

4 m thick ( Figure 2 . 3) .  On average , rock-unit thickness is 26 and 66 em 

for the Nol ichucky and Maynardville , respectively ( Figure 2 . 3 ) . 

The Mudstone Facies is predominantly composed of lime mud 

(micrite/microspar) along with interbedded shale . Shale is partially to 

pervasively dolomitized; pervasive dolomitization occurs in the 
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Table 2 . 9 . Characteristics of the MWS Lithofacies . 

Features Characteristics 

Lithology ( Fo lk , 1 959 ; 1962) 

Color ( Shale Only) 

Bed Thickness 

Rock-Unit Thickness 

Sedimentary Texture and Structure 

Bed Contacts 
Upper 

Lower 

Fossils 

Other 

-Fossil-bearing micrite interbedded 
with shale 
-Pelmicrite interbedded with shale 
-Biopelmicrite interbedded with shale 

-Dark gray-green 

-Laminated to thin-bedded 
-Discontinuous over 10 ' s of em. 

-Very thin- to very thick-bedded 

-Vertical and horizontal burrows 
-Nodular-bedded 
-Load casts , pseudonodules 
-Stylolite swarms 
-Faint lamination 
-Burrow mottled 

-Sharp 

-Sharp 

-Girvanella , rare trilobites , 
echinoderms , inarticulate brachiopods , 
and sponge spicules 

-Girvanella peloids in Girvanella 
mudstone 

No . of Thin-Sections Examined -23 

No . of Thin-Sections Point-Counted -9 
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Maynardville . Other lesser abundant constituents include peloids , 

intraclasts , and skeletal material (Table 2 .  3 ) . Occasionally, peloids 

and intraclasts form thin beds and lenses ; these allochems resemble 

fragmented mudstone beds . 

Petrography reveals an abundance of Girvanella-formed grains , such 

as peloids (Figure 2 . 9B )  and intraclasts . In addition , Girvanella 

tubules are well preserved in many mudstone beds and nodules (Fig

ure 2 . 9C ) . Girvanella must have played an important role in binding and 

perhaps in cementation of grains in this Facies . Shortly after death , 

intertwined calcified tubules would provide nucleating s ites for micrite 

and other marine porefilling cements . Modern cyanobacteria s imilar to 

Girvanella produce a microcrystalline calcite wall structure during 

life . Precipitation of calcite cement in cyanobacterial tubules has 

been described from both modern and ancient shallow-water carbonate 

environments (Kobluk and Risk , 1977 ) .  

Original sedimentary layering is preserved in the mudstone unless 

the sediment was homogenized by bioturbation (Figure 2 . 90) . Generally ,  

discrete vertical and horizontal burrows are observed and display 

interpenetrative tier ing . Burrow walls show varying degrees of 

preservation ; they are diffuse to sharp . Burrows are filled with 

skeletal debris , peloids , argillaceous materia l ,  and/or pore filling 

cement . 
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Interpretation 

Nodular- to thin-bedded mudstone has been described from a number 

of different environmental settings . Often , this distinct bedding is 

attributed to differential compaction and pressure solution ( see Logan 

and Semeniuk, 197 6 ;  Wanless , 1979 ) .  In the upper Conasauga Group , 

stylolitization is recognized as an important process . Low-amplitude 

stylolites and microstylolite seams are common . However, submarine 

lithification and subsequent erosion are depositional processes that 

also contribute to the overall appearance of this Facies . Lithification 

of subtidal cyanobacterial mats and later reworking during storm events 

would produce a bedding style s imilar to that of differential compact ion 

and pressure solution (Bathurst , 1975 ; Allen , 1984 ) . 

The Mudstone Facies is interpretated as a quiet-water subtidal mud 

accumulation, below normal fairweather wave-base . Relatively slow, 

continuous sedimentation of lime mud is supported by the occurrence of 

interpenetrative t iering of burrows (Aigner , 1985 ; Wetzel and Aigner , 

1986) . Carbonate mud settled out marginal to the higher energy platform 

environments (e . g . , Peloidal and Oncolitic Facies ) , where currents 

winnowed out much of the fine-grained sediment . The fine-grained mud was 

deposited on cyanobacterial mats . Girvanella and other filamentous 

cyanobacteria living within the mats promoted early lithification of 

lime mud . Seafloor lithification is also supported by the abundance of 

burrows with well-defined walls . This suggests that sediment was firm 

(Rhoads , 1970 ; Walker and Diehl, 1986 ) .  Periodic disturbance of 

lithified and semil ithified crusts during storm events r ipped up and 
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transported Girvanella tubules , sheaths , peloids , and intraclasts to the 

carbonate platform as well as to the deeper water fac ies . Shale 

interlayers record the high-energy events , where numerous peloids , 

intraclasts , and skeletal debris are found . 

Deposits similar to the Mudstone Facies are common in the geologic 

record (Wilson , 1 975 ) .  Typically , they form on carbonate ramps as 

widespread mud blankets seaward of shoal-water complexes . Water depth 

varied from approximately 5 m to 1 5  m.  

Oolitic Packstone/Grainstone (OPG) 

Ooid packstone and grainstone beds range from a few centimeters to 

perhaps 10 or more meters in thickness . These ooid carbonates are common 

in the Nolichucky Shale (Figure 2 . 2) where they account for about 10% of 

the sequence . In the Maynardville Limestone this Lithofacies is rare 

(F igure 2 . 3 ) and thin , never exceeding 8 em in thickness (Figure 2 . 3 ) . 

Two types of oolitic packstone/grainstone are recognized in the upper 

Conasauga Group : thick lenticular buildups and thin sand sheets . 

Description of Thick Lent icular Buildups ( Table 2 . 10 )  

Lent icular ooid buildups or shoals are distinctive features of the 

Nolichucky Shale ( Figure 2 . 10A) . They occur as thick ( up to 12 m) 

carbonate units that thin laterally and intergrade into adj acent shale . 

Thin ooid sheets are observed as lateral extens ions of these carbonate 

buildups (Figure 2 . l lB) . Several well-defined ooid shoals are 

recognized from the Interstate-75 and Roaring Spring sections,  however, 
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Table 2 . 1 0 .  Characteristics of the OPG Lithofacies . 

Features Characteristics 

Lithology (Folk , 1 959 ; 1962 ) -Poorly-washed oosparite 
-Oomicrite 
-Foss iliferous oomicrite 
-Poorly-washed fossiliferous oosparite 

Bed Thickness -Very thin- to very thick-bedded 
-Laterally continuous 

Sedimentary Texture and Structure -Bidirectional cross-stratification 

Bed Contacts 

-Megaripples 
-Hardgrounds 
-Fine- to coarse-grained ; well-sorted 
-Discontinuous mudstone interlayers 

Upper -Sharp and planar to irregular 

Lower -Sharp and planar to scoured 

Fossi ls -Rare to abundant , echinoderms , 
trilobites , Girvanella , Chancelloria, 
and inarticulate brachiopods 

Other -Stylolites , stylobrecciation 
-Two varieties : ( 1 )  thin sand sheets 
and ( 2 )  thick lenticular buildups 

No . of Thin-Sections Examined -87 

No . of Thin-Sections Point-Counted -36 
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Figure 2 . 10 .  Selected features of the Oolitic Packstone/Grainstone 
( OPG) Lithofacies . 

A .  Outcrop o f  three distinct carbonate shoal ing bodies . The lower 
two ( /1 1  and /12 )  are oolitic . Cursory examination of the 
uppermost buildup ( #3)  reveals an abundance of trilobites and 
echinoderms ; it most likely represents a fossiliferous shoal . 
The lower shoal is 6 m thick . Interstate 75  section . 

B .  Outcrop of bi-directional cross-beds . Rock hammer for scale . 
Interstate 75 section . 

C .  Outcrop of dolomit ized lime mudstone which thickens within a 
trough. Mud-filled troughs are adj acent to megarippled bed 
surfaces on upper surface of oolite beds . Penci l  is 9 em long . 
Beech Grove section . 

D .  Photomicrograph of marine fibrous cement occluding original 
pore space . Field of view is 1 . 3  mm in long dimension . Photo 
taken under cross-polarized l ight . Interstate 75 section . 
Sample lOA 2 . 8 .  
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Figure 2 . 1 1 .  Additional features of the Oolitic Packstone/Grainstone 
(OPG) Lithofacies . 

A .  Outcrop of prominent hardground ( at top of hammer) which is 
colonized by thrombolites . Mid-way up the sequence digitate 
stromatolites become apparent . These lithologies occur in 
stabilized oolite deposits at tops of ooid shoal buildups . 
Rock hammer is 25 em in lenth . Interstate 75  section . 

B .  Outcrop of lower shoal ( from Figure 2 . 10 A)  showing 
sheets as lateral extensions off of the buildup . 
beds observed from this part of the section are 
sheets . Interstate 75 section . 

thin ooid 
Most thin 
thin ooid 

C. Outcrop of ooid sand sheet . Internal structure ,  with the 
exception of discontinuous hardgrounds , is rare in these beds . 
Ruler is graduated in em. Roaring Spring section . 

D .  Photomicrograph of Chancelloria ( C ) . Chancelloria is 
characterized by its calcite walls and hollow centers , which 
are filled with micrite or void-filling cement . Field of view 
is 6 . 5  mm in long dimension . Interstate 75 section . Sample 
C-53 . 





95 

with improved lateral exposure, these features would probably be 

recognized elsewhere in central east Tennessee . 

A 6 m thick ooid buildup has been examined in detail at the 

Interstate- 75 Section (Weber and others , 1 987 ; Foreman and others , 1988 ) 

( see lowermost carbonate shoal in Figure 2 . lOA) . The ooid shoal is 

underlain by several meters of thinly interbedded shale and coarse-

grained intraclastic and oolitic limestone . 

laterally discontinuous intraclastic lobes 

At the base of the shoal , 

grade upward into well-

sorted , coarse-grained ooids . The lower 4 . 5  m thick interval is 

characterized by bidirectional cross-stratification ( Figure 2 . 10B) , 

shale and lime mudstone interlayers which thicken over troughs 

( Figure 2 . 1 0C ) ,  stylolites , and partial dolomitization . Hardgrounds 

increase in frequency toward the top of this interva l . Ooids and 

fibrous cement account for 907. of the volume of the rock . In fact , all 

original pore space is filled by marine fibrous cement (Figure 2 . 10D) . 

A prominent hardground marks the base of the upper part of the shoal ,  

which extends up 1 . 5  m to the top of the depos it . Thrombolites 

colonized the hardground surface , and digitate stromatolites developed 

on top of the thrombolites ( Figure 2 . 1 1A) . Oncolitic packstone caps the 

upper shoa l .  Characteristics unique to this interval include : ( 1 )  the 

absence of cross-bedding , ( 2 )  burrowed and bioturbated lime mudstone , 

( 3 )  micrite >> cement , and ( 4 )  abundant echinoderms . The shoal is 

overlain by shale and thin beds of intraclastic l imestone . 
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Interpretation 

Our knowledge of modern ooid shoals ( i . e . , Newell  and Rigby, 1957 ; 

Purdy , 1963 ; Bal l ,  1 967 ; Loreau and Purser , 1973 ; Hagan and Logan , 1974 : 

Hine , 1 97 7 ;  Harris , 197 9 ;  Hine and others , 1 98 1 )  reveals that the 

development of oolitic sand bodies is dependent on a number of factors 

( topographic complexity ,  physical processes , sea level history, early 

cementation , etc . ) .  These interacting and complex factors form 

complicated facies mosaics . Nonetheless ,  several subenvironments 

recognized in modern ooid shoals can be discerned in Cambrian shoals . 

Modern shoals often show 4 interrelated subenvironments : ( 1 )  a 

preexisting topographic high on which shoal development was initiated , 

( 2 )  an upcurrent area of mobile oolite sand, ( 3 )  a downcurrent area of 

stabilized oolite/skeletal sand which is crossed by ( 4 )  tidal channels 

and washover lobes . 

Oolitic bui ldups within the Nolichucky Shale show broadly s imilar 

subenvironments to the modern . Shoal development initiated on a raised 

topographic surface ( an intraclastic lobe ) above fairweather wave base . 

Here , ooids formed and accumulated in an area of wave and current 

agitation ( based on modern analogues , water depth was less than 5 m) . 

Within the resultant mobile subenvironment ,  strong tidal currents 

produced large-scale cross -stratified oolite bedforms . Leeward of the 

mobile fringe belt , a stabilized sand flat was formed. Within this 

subenvironment ,  decreased agitation is reflected by an abundance of lime 

mud (micrite )  and by the occurrence of oncoids . In addition , the 

abundance of radial ooids relative to monocrystalline and poly-
. .  
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crystalline ooids 

( Chow and James , 

suggests very shallow ,  yet quiet-water deposition 

1987 ) .  Tidal channels are not observed from the 

Nolichucky oolite at I-75 . 

Description of Thin Sand Sheets (Table 2 . 10)  

Thin sand sheets range from 2 em to  1 1 5  em ( average 1 9  em) in  

thickness ( Figure 2 . 3) . Generally , sheet- like bedforms are laterally 

continuous over the scale of the outcrop (Figure 2 . 1 1B ) . Thin , 

laterally discontinuous bedforms (here included with thin ooid sheets ) ,  

although rare, occur most commonly in the lower Nolichucky, strati

graphically below the thick lenticular ooid buildups . In the f ield ooid 

sand sheets exhibit scoured bases , intraclasts near the base , thin shale 

drapes , and megarippled upper bed surfaces . The absence of tabular 

cross-beds imparts a massive appearance to these rocks (Figure 2 . 1 1C ) . 

Sand sheets occur in close stratigraphic proximity to other carbonate 

and shale lithologies of the Nolichucky . 

Sheet-like ool itic carbonates are composed mainly of ooids 

( 0 .  25- 1 . 25 mm in diameter) ,  spherical to irregular intraclasts 

( mudstone , peloida l ,  or oolitic ) , and skeletal grains (Table 2 . 3 ) .  

Skeletal constituents include echinoderms and tri lobites with lesser 

abundant Girvanella, Chancelloria ( Figure 2 . 1 1D ) , and inarticulate 

brachiopods . Girvanella tubules , sheaths , peloids , and intraclasts are 

locally abundant .  Also,  Girvanella is recognized in thin mudstone 

layers which occas ionally drape the sand sheet . 

Porefilling cement and fine-grained matrix (micrite) occur in 

subequal abundance .(.Table 2 .  3 ) .  Early cement phases include marine 
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fibrous and syntaxial fibrics ; blocky cement ( ferroan and nonferroan) 

occlude remaining porosity during meteoric and burial diagenesis ( see 

Foreman and others , 1988 for a more detailed assessment of porefilling 

history) . 

Interpretation 

Thin sand sheets are interpreted as subtidal sand bodies that 

accumulated in the intrashelf basin, below normal wave- base .  This 

interpretation m ight seem unconventional because oolite formation is 

indicative of rapid sedimentation in very shallow, turbulent water . 

However , in the Nol ichucky Shale, weak current activity is substantiated 

by the presence of l ime mud matrix and thin mudstone ( Girvanella mat) 

interlayers , and by the absence of internal cross-bedding . In addition ,  

the occurrence o f  corrosion surfaces , glauconite , and thin shale drapes 

above hardgrounds indicates periods of decreased sedimentation ( Flugel, 

1 982 ) . Sharp , scoured bases , abundant intraclasts , and megarippled 

upper bed surfaces suggest that high-energy events ( storms ) may have 

been responsible for large-scale movement of sand sheets . Hurr icanes 

are recognized as the primary process for net sand movement in the 

Bahamas ( Ball, 196 7 ;  Hine, 1977 ) .  Kozar ( 1986) derived a simi lar 

interpretation for the thin ooid sheets which he observed in the 

Maryville Limestone . 
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Fossiliferous Packstone/Grainstone ( FPG) 

Description ( Table 2 . 1 1 )  

The foss iliferous Packstone and Grainstone Lithofac ies is only 

recognized in the Nolichucky Shale (Figure 2 . 2 ) . Very thin to very 

thick beds (Figure 2 . 3) of skeletal packstone ( grainstone is rare) occur 

in close stratigraphic proximity to the Oolitic and Shale facies and to 

a lesser degree with other lithofacies of the Nol ichucky . The skeletal 

beds form sheets or layers of limestone which are separated by shale 

partings , hardgrounds , and stylolite seams ( Figure 2 . 12A ) . Internally, 

this Facies is massive , but large widely spaced intraclasts may be 

observed at the base of these units . Where intraclasts occur, grading 

is presen t .  Bed contacts are typically sharp ; bases are scoured . The 

skeletal limestones are medium- to coarse-grained . Skeletal grains make 

up from 25% to SO% of the rock (Table 2 . 3 )  and include trilobites and 

echinoderms , but sediments also contain inarticulate brachiopods , 

Girvanella, Chancelloria,  and sponge spicules . Skeletal allochems may 

be loosely packed in mud-dominated packstone . In tightly packed rocks , 

line and sutured contacts dominate . Fibrous porefilling cement is 

abundant in some thin-sections , but porosity was not completely occluded 

by marine cement . Ferroan and nonferroan varieties of blocky cement fill 

remaining pore space . 

Thick skeletal shoals similar to thick oolitic shoals in geometry 

are present at I-75 and Beech Grove (Figure 2 . 10A ) . Both stratigraphic 

sections were measured and described along a transect which did not 
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Table 2 . 11 .  Characteristics of the FPG Lithofacies . 

Features Characteristics 

Lithology (Folk, 1959; 1 962) -Biomicrite 
-Biopelmicrite 
-Poorly-washed biopelsparite 
- Poorly-washed pelsparite 

Bed Thickness -Very thin- to very thick-bedded 
-Laterally continuous 

Sedimentary Texture and Structure -Hardgrounds 

Bed Contacts 

-Corros ion surfaces 
-Rippled and megarippled tops 
-Burrows 
-Medium- to coarse-grained 

Upper -Sharp and planar , also diffuse 

Lower -Sharp and scoured 

Fossils -Very abundant trilobites , echinoderms , 
and Chancelloria; also Girvanella ,  
inarticulate brachiopods , sponge 
spicules , and mol luscs 

Other -Intraclasts at base 
-Locally abundant glauconite 
-Ooids 
-Stylolites 

No . of Thin-Sections Examined -28 

No . of Thin-Sections Point-Counted - 1 0  

/ 
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Figure 2 . 12 .  Selected features of fossil-dominated lithofacies (FPG and 
FPGWS ) . 

A .  Outcrop of the Fossiliferous Packstone/Grainstone (FPG) 
Lithofacies . This rock contains an abundance of trilobites , 
echinoderms , ooids , and intraclas ts .  Kni fe is 2 em in width . 
Beech Grove section . 

B .  Pol ished slab of fining-upward sequence . Fossil debris fines 
upward into parallel-laminated calcareous shale. The 
transition from limestone to shale is gradational . 
Petrographic analysis reveals four distinct fining-upward 
sequences (arrows ) . A stylolite seam (S ) is also presen t .  
Interstate 75 section . Sample I-69-14 . 5 .  

c. Photomicrograph of load structure . Field of view is 6 . 5  mm in 
long dimension . Interstate 75 section . Sample I-6-2 . 5 .  

D .  Photomicrograph of pseudonodule. Field of view is 6 . 5  nun in 
long dimension . Interstate 75 section . Sample I-6-2 . 5 .  
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intersect the skeletal-rich shoal-like buildups. At present, these 

fossil shoals have not been studied in detail; cursory examination 

revealed packed echinoderm and trilobite debris surrounded by coarsely 

crystalline cement, presumeably fibrous in habit. 

Interpretation 

Characteristic features of this facies (Table 2. 11) and preferred 

stratigraphic position suggest an environmental interpretation which is 

similar to that for ooid sand sheets (see above). In this case however, 

nearby skeletal shoals supplied sediment for skeletal sand sheets. 

The marine sand belt on the western edge of Florida Bay seems to be 

a reasonable modern analogue for skeletal sand sheets of the Nolichucky. 

Skeletal sand shoals are concentrated along shoreparallel belts (Ball, 

1967). Similar facies have been described in the ancient (Anderson, 

1972; Holloway, 1983). According to Ball (1967) and Aigner (1985) sand 

sheets are shed episodically from the shoals by storm events. 

Fossiliferous Packstone/Grainstone Interbedded With Shale (FPGWS) 

Description (Table 2. 12) 

This Facies is similar to the previously described Fossiliferous 

Packstone/Grainstone (FPG) Facies in two important ways. Both 

lithofacies are observed only in the middle and upper parts of the 

Nolichucky Shale as subordinant rock types (Figure 2.2), and they occupy 

similar stratigraphic horizons. Notably, the occurrence of FPGWS is 
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Table 2.12. Characteristics of the FPGWS Lithofacies. 

Features Characteristics 

Lithology (Folk, 1959; 1962) -Biopelmicrite interbedded with shale 
-Poorly-washed biopelsparite 
interbedded with shale 
-Poorly-washed biosparite interbedded 
with shale 

Color (Shale Only) -Dark gray-green 

Bed Thickness -Very thin- to thin-bedded 
-Discontinuous over 101s of em. 

Rock-Unit Thickness -Medium- to very thick -bedded 

Sedimentary Texture and Structure -Basal lags 

Bed Contacts 

-Fining upward sequences 
-Load structures and pseudonodules 
-Contorted bedding 
-Very fine- to medium-grained 

Upper -Diffuse 

Lower -Sharp and irregular 

Fossils -Abundant trilobites and echinoderms; 
also, graptolites, Chancelloria, 
conodonts, and inarticulate 
brachiopods 

Other -Pyrite 
-Stylolites, stylolite seams 

No. of Thin-Sections Examined -12 

No. of Thin-Sections Point-Counted -7 
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dependent on the close stratigraphic proximity of FPG; the reverse 

relationship need not hold true. 

Alternating limestone and shale comprise the FPGWS Facies. The 

limestone component is made up of thin skeletal layers of packstone and 

rare grainstone from <1 em to 5 em in thickness. Limestone beds display 

some degree of lateral persistence. Most beds average 1 em to 2 em in 

thickness, yet they may be laterally continuous for several meters. 

Dominant petrographic features include trilobite and echinoderm debris 

and peloids (Table 2.3). Interbedded with the thin carbonate layers is 

a structureless to faintly laminated green-gray shale, which ranges from 

<1 em to 5 em in thickness. Shale and lime packstone alternate to form 

thick rock -units which exceed 2.5 m in thickness (0.5 m is the mean) 

(Figure 2.3). 

This Facies is further characterized by thin (up to 10 em) 

fining-upward sequences (Figure 2.12B) that consist of coarse silt- to 

fine sand-sized skeletal debris at the base. Fragmented phosphate 

crusts, clay minerals, peloids, and glauconite are also incorporated 

into the sequence. Constituent grain types grade upward into finer size 

grades, until shale dominates. Parallel-laminated to wavy-laminated 

peloidal and fossiliferous silt-sized grains occur just beneath the 

shale dominated portion (Figure 2.12B). The lime packstone to shale 

transition represents continuous sedimentation, because hardgrounds, 

corrosion surfaces, and abrupt changes in grain size do not occur. 

Fining-upward sequences are underlain by sharp basal contacts. Little 

or no evidence of truncation (erosion) of underlying shale is observed. 
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The lower contacts are slightly undulose to planar. Sole structures 

such as tool marks and groove casts are not present. 

Soft-sediment deformation is common (Figure 2.12C). Microload 

structures grade into well-formed pseudonodules (Figure 2.12D) through 

progressive bed loading of limestone on shale. In severe cases of 

differential compaction, contorted-bedding may be observed. 

Interpretation 

Hemipelagic sedimentation is proposed as the most likely process 

responsible for this Facies. Deposition took place below normal wave 

base. Several lines of evidence support this claim. 

1. FPGWS is located in a position seaward of the Mudstone Facies. 

2. FPGWS is interstratified with "deeper" water subwave-base 

basinal facies. 

3. FPGWS contains an abundance of nonwinnowed shale. 

The graded sequences occur in areas proximal to the sediment source. 

This is supported by the close stratigraphic association of FPGWS with 

skeletal shoals and sand sheets. The fining-upward layers probably 

result from high-energy conditions which suspended clay-, silt-, and 

fine sand-sized particles into dilute clouds (i.e., Reineck and Singh, 

1972). Sediment clouds migrated to nearby areas. As the energy level 

decreased, clouds dissipated as coarser grains settled out, followed by 

finer size fractions. The parallel- to wavy-laminated interval is rare; 

this suggests that bottom hugging currents were only locally capable of 

sediment transport and reworking. Parallel laminations may also reflect 

suspension setting of particles. 
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Because this Facies does not occur often, definitive criteria which 

substantiate one depositional regime over another are lacking. For 

example, this Facies could be interpreted as a winnowed autochthonous 

shell bed resulting from storm scouring (i.e., Kreisa, 1981; Kreisa and 

Bambach, 1982). However, the paucity of skeletal debris in any shale 

bed thus far examined, the absence of scoured bases, and the lack of 

wave-formed sedimentary structures would tend to preclude this in situ 

model. In addition, allochthonous storm transport of sediment seems to 

be excluded because sole structures are absent, and bedforms suggestive 

of unidirectional currents are not recognized. Mass-sediment gravity 

transport seems unlikely as well. Depositional slopes necessary to 

initiate mass movement were not present. Also, the discontinuous nature 

of limestone beds distinguishes these deposits from the well-developed 

limestone-shale rhythmes of turbidite origin (e. g., see Shanmugam, 1978 

for discussion). 

Alternating carbonate and shale layers reveal evidence of 

soft-sediment deformation. Load structures, pseudonodules (after 

Skipper and Middleton, 1977), and microconvoluted bedding (after 

Dzulynski and Kotlarczyk, 1962) indicate very rapid sedimentation of 

coarser sediment on a hydroplastic mud layer leading to unequal loading 

(Reineck and Singh, 1980). 
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Laminated Peloidal Packstone/Grainstone (XPG) 

Description (Table 2.13) 

The laminated packstone and grainstone Facies is observed only in 

the Nolichucky Shale (Figure 2. 2). These rocks are characterized by 

very thin- to very thick-bedded peloidal limestone with thin 

argillaceous and dolomitic partings. The limestone commonly forms 

continuous, parallel to wavy-parallel beds that average 24 em in 

thickness (Figure 2.3), and rarely exceed 1-2 m. 

note that many beds, especially those thicker 

It is important to 

than 20-30 em, are 

actually composite units and include the amalgamation of two or more 

depositional events. Where individual amalgamated layers are discerned 

by discrete bedding planes, basal contacts are scoured. Basal surfaces 

cut down into previously deposited sediment. These scours are filled by 

intraclastic, peloidal, and/or fossiliferous packstone and grainstone. 

Small scale scour/fill structures are termed gutter casts (i.e., 

Whitaker, 1973; Goldring and Aigner, 1982) (Figure 2.13A). In some 

instances the sediment is certainly allochthonous, whereas in other 

cases, intraclasts partially fill scours and are composed of the same 

lithology as that of the underlying strata. These clasts are locally 

reworked or autochthonous in nature. The undersides of several beds 

display bi-directional sole structures (e.g., groove casts and tool 

marks) (Figure 2 .13B). Individual beds display fine to medium 

laminations (1-3 mm in thickness) that are composed of peloidal 

grainstone and lesser packstone. Quartz silt, opaque minerals, 
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Table 2.13. Characteristics of the XPG Lithofacies. 

Features Characteristics 

Lithology (Folk, 1959; 1962) -Fossiliferous pelsparite 
-Biopelsparite 
-Peloidal siltstone 

Bed Thickness -Very thin- to very thick-bedded 

Sedimentary Structure -Parallel laminations 

Bed Contacts 

-Low-angle cross-lamininations 
-Amalgamated bedding 
-Microhummocky cross-stratification 
-Sole marks 
-Gutter casts 
-Burrows 

Upper -Sharp and scoured 

Lower -Sharp and scoured 

Fossils -Common trilobites, echinoderms, 
inarticulate brachiopods, and 
Girvanella 

Other -Stylolites 

No. of Thin-Sections Examined -16 

No. of Thin-Sections Point-Counted -10 

/ 
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Figure 2 . 1 3 .  Selected features o f  the Laminated Peloidal 
Packstone/Grainstone (XPG) Lithofacies . 

A .  Outcrop of isolated gutter cast (GC) . Knife is 9 em i n  length. 
Stratigraphic up is toward the top of page in this sample .  
Roaring Spring section . 

B .  Outcrop of sole structures . Groove casts and tool marks are 
shown . Sole structures are not common features . This is 
probably a function of ( 1 )  the paucity of XPG beds and ( 2 )  the 
sparseness of good lateral exposure on the undersurfaces of 
beds . Width of field of view is approximately 1 m .  Interstate 
75 section . 

C .  Polished slab of horizontally laminated peloidal packstone . 
Beech Grove section. Sample BG-3-24 . 0 .  

D .  Polished slab of low-angle cross-lamination within XPG . 
Interstate 7 5  section . Sample I - 1 1 - 1 . 1 .  
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trilobites , inarticulate brachiopods , echinoderms , and Girvanella are 

also present ( See Table 2 . 3) .  

Bedform sequences i n  the Nolichucky o f  central east Tennessee vary 

considerably from those described by other workers from other areas or 

other units . Markel lo and Read ( 1981 , Nolichucky of SW VA) , Erwin 

( 1981 ,  Maryville of NE TN) , and Kozar ( 1986 , Maryville of Central E .  TN) 

describe a complete progression of bedforms as follows : 

An ideal sequence exhibits a sharp , erosional base ,  followed 
by a graded intraclastic or skeletal layer . This is conform
ably overlain by parallel, then low-angle cross-lamination 
(microhummocky cross-stratification) , and f inally by wave 
ripples . The whole sequence is capped by argillaceous 
material . 

In this study, a typ ical complete sequence commences w ith horizontal 

lamination on a sharp scoured base (Figure 2 . 1 3C) , often followed by a 

thin interval of low-angle cross-lamination or microhummocky cross -

laminat ion ( Figure 2 . 13D) ,  which is capped by a clay drape or thick 

shale . Caps display sharp erosional tops . Basal lags and wave ripples 

are rare . 

Interpretation 

Observations suggest that this Facies was deposited under 

conditions of low to high wave and current activity . Deposition 

occurred below normal wave base in deeper water on the basis of its 

stratigraphic position between the Mudstone and Shale Facies . 

Futhermore , sedimentary features characteristic of this Facies are 

strikingly s imilar to storm-dominated , modern and ancient , carbonate and 

siliciclastic shelves ( Hayes , 1 967 ; Reineck and S ingh , 1972 ; Brenner and 
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Davies , 1973 ; Goldring and Bridges , 1973 ; Ager , 1974 ; Kelling and 

Mullin , 1 975 ; DeRaaf and others , 1977 ; Brenchley and others , 1979 ; 

Kreisa , 1981 ; Morton , 1981 ; Nelson , 1982 ;  Aigner , 1982 and 1985 ; Dott 

and Bourgeois , 1982 ;  Einsele and Seilacher, 1 982 ; Kreisa and Bambach , 

1982 ) . Clearly, our understanding of storm depositional systems has 

increased dramatically in recent years . 

Sedimentary structures and bedform succession are particularly 

useful in reconstructing the depositional regime of this  Facies . Basal 

erosion surfaces form as high-energy storm-generated waves and currents 

scour and suspend sediment . Partial truncation at the base of each 

success ive carbonate layer produces sharp upper bed contacts . In this 

way the bedding sequence is formed of irregular amalgamated beds . In 

general ,  amalgamations are minor in vertical profi le .  This suggests 

that erosive currents were weak or short-lived . Based on the thickness 

of gutter casts , erosion rarely exceeded 6 em. Above sharp basal 

contacts , parallel- laminated and low-angle (<10 degrees ) cross-laminated 

(microhummocky) intervals formed during waning energy conditions ( basal 

lags are uncommon in this Facies ) .  Where both bedforms are recognized 

in the same bed , vertical transition is from parallel- to micro

hummocky-laminated . In addition , these bedforms grade laterally into one 

another . Their association may reflect changing hydrodynamic 

conditions . More importantly to this study, the associations of 

bedforms are recognized widely as products of storm deposition below 

fairweather wave base (Walker , 1985) . Fine-grained argillaceous 

sediment usually caps the sequence . This upper unit formed after the 
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storm event , a s  suspended clay-sized particles settled out . Wave ripple 

lamination is not recognized in this Facies . Wave r ipples form as a 

traction lamination under the combined effects of unidirectional and 

ocscillatory currents (Harms and others , 1975) .  According to Brenchley 

( 1985) , wave ripples are observed frequently in proximal (nearshore ) 

storm deposits . Further offshore , wave ripples decrease in abundance or 

may be absent . In addition ,  the paucity of basal lags and burrows , the 

presence of low-angle (versus high-angle) hummocky laminat ions , and the 

absence of a parallel-laminated horizon above the microhummocky interval 

suggest that depos ition took place in deeper ( offshore ) water 

(Brenchley , 1985) .  

A def initive mechanism to explain the molding of silt- and 

sand-sized grains into microhummocky and parallel laminated bedforms 

still remains to be discovered . A number of models have been proposed 

( for discussion, see Walker, 1985) ;  several are l isted below : 

1 .  Deposition from storm-generated density currents and concurrent 

reworking under osci llatory flow (Hamblin and Walker , 1979) 

2 .  Storm-suspension of sediment in nearshore areas and hemipelagic 

redeposition offshore under the influence of wave- , tide- , or 

wind-driven currents (Reineck and Singh , 1972) 

3 .  Sedimentation by high-energy oscillatory bottom-currents 

( Allen , 1 984) 

4 .  Autochthonous or " in s itu" entrainment of sediment during storm 

events and suspension redeposition under the influence of weak 

oscillatory (wave) currents (Kreisa , 1 981) . 
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5. Combined unidirectional and oscillatory f lows ( Swift and 

others , 1983) • 

Laminated Peloidal Packstone/Grainstone Interbedded With Shale (XPGWS) 

Description ( Table 2 . 14) 

Very thin- to thin-bedded peloidal packstone and grainstone is 

interbedded with thin ( laminated) shale beds ( Figure 2 . 14A and B) . 

Individual limestone and shale layers are laterally d iscontinuous and 

range from <1 em to 5 em in thickness (Figure 2 . 3) .  Limestone layers 

are somewhat thicker than shale layers . This criterion is used to 

differentiate XPGWS from SWXPG in the f ield . Sedimentary structures and 

petrographic constituents differ between the two Facies , but these 

diagnostic features are usually microscopic in scale , and as a result 

are observed in polished slabs and thin-sections . 

In the Nolichucky XPGWS accounts for approximately 20% of the total 

rock volume ; XPGWS is rare in the Maynardville ( Figure 2 .  2) . 

Alternating thin limestone and shale form distinct lithological units 

that average 33 em in thickness (Figure 2 .  3) . Various features are 

recognized in limestone and include several types of lamination , 

pseudomudcracks , and soft-sediment deformation . Basal skeletal and 

intraclastic lags , micrograding, and burrows are less frequently 

observed . Pelo ids are the dominant petrographic constituent . Although 

some peloids may be fecal pellets, most are believed to be derived from 

subtidal Girvanella mats . Clay minerals/micas and skeletal debris,  
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Table 2 . 14 .  Characteristics of the XPGWS Lithofacies . 

Features Characteristics 

Lithology ( Folk , 1959 ; 1962 ) -Biopelsparite interbedded with shale 
-Biopelmicrite interbedded with shale 

Color ( Shale Only) -Dark gray-green 
-Maroon 

Bed Thickness -Very thin- to thin-bedded 
-Discontinuous over 101s of em. 

Rock-Unit Thickness -Very thin- to very thick-bedded 

Sedimentary Texture and Structure -Parallel laminations 
-Low-angle cross-laminations 
-Microhummocky cross-stratification 
-Loading , pseudonodules , and 
contorted-bedding 
-Very f ine- to medium-grained 
-Pseudomudcracks 
-Size grading 

Bed Contacts 
Upper -Diffuse or sharp 

Lower -Sharp and scoured 

Fossils -Common; trilobites , echinoderms , 
Girvanella , Chancelloria , inarticulate 
brachiopods , sponge spicules 

Other -Basal lags 
-Silt-sized quartz interlayers 
-Stylolites 

No . of Thin-Sections Examined -38 

No . of Thin-Sections Point-Counted -8 
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Figure 2 . 14 .  Selected features of the Laminated Peloidal 
Packstone/Grainstone Interbedded with Shale (XPGWS) Lithofacies . 

A. Outcrop of XPGWS . Field notebook is 17 em tall . Interstate 75 
section . 

B .  Polished slab o f  XPGWS showing fine-grained peloidal grainstone 
interbedded with thin shale . Internal laminae w ithin l imestone 
beds reveal parallel- , irregular- ,  and low-angle 
cross-laminations . Interstate 75 section . Sample I -74-0 . 3 . 

c. Outcrop of low-angle cross-lamination . 
exhibit erosional boundaries . Pencil 
Beech Grove section . 

Sets are truncated and 
is  1 5  em in length. 

D .  Slab of the undersurface of a l imestone bed which displays 
pseudomudcracks . Keys for scale . Beech Grove section . 
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primarily trilobites are other commonly observed petrographic features 

(Table 2. 3). "As expected� clay minerals are concentrated in shale beds, 

but in addition, fine-grained peloids, mica (biotite and muscovite), and 

quartz silt are locally abundant in shale. With exception of 

inarticulate brachiopods, skeletal allochems are rare in shale. 

Limestone layers are made up of many laminations which are caused 

by compositional and/or grain size variations. In this Facies three 

types of stratification occur in abundance: (1) parallel lamination, 

(2) irregular lamination, and (3) low-angle (< 10 degrees) cross

lamination. Typically� low-angle cross-lamination sets are truncated and 

exhibit erosional boundaries (Figure 2. 14C). This type of bedform 

resembles hummocky cross-stratification (HCS) after Harms and others, 

1975), but in the Nolichucky HCS occurs on a smaller scale, and thus, is 

named microhummocky cross-stratification (Dott and Bourgeois, 1982). 

Wave ripple lamination� although uncommon in the Nolichucky of central 

east Tennessee, is an important feature in coeval rocks of southwestern 

Virginia (Markello and Read, 1981). 

Graded or fining-upward sequences are characterized by sharp bases 

and gradational or diffuse tops. Evidence of scour is not as apparent 

here as in the XPG Facies; gutter casts and sole structures are rare. A 

basal layer of either medium-grained intraclasts or fine-grained 

skeletal debris fines upward into fine- to very fine-grained laminated 

peloidal grainstone. Limestone grades into shale (sharp tops are 

relatively rare). 

Pseudomudcracks (Ksiazkiewicz, 1958) form polygonal patterns on the 

undersurfaces of many limestone beds of this Facies (Figure 2. 14D). The 
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vertical partings are several millimeters wide and up to 3 em deep, and 

are filled with underlying and overlying sediment (shale). Vertical 

displacement of beds on either side of the parting cast produces 

microfaults, suggesting that limestone was lithified prior to movement. 

Interpretation 

Markello and Read (1981) provide evidence supporting a submarine 

origin for pseudomudcracks. In true mudcracks, mud layers are cracked 

and deflected upward along their periphery (i. e. , Hardie and Ginsburg, 

1977). In the Nolichucky, vertical fractures cut through limestone beds 

whereas the under- and overlying shale shows no evidence of cracks. In 

addition, internal laminations in limestone beds are not deflected or 

bowed. These structures probably reflect compaction and volume 

reduction of shale during dewatering (Markello and Read, 1981). 

Much of the diagnostic environmental criteria of this Facies are 

found in the Peloidal Packstone/Grainstone (XPG) Facies. As a result, 

the environmental interpretation of both facies is broadly similar and 

details are not repeated here. However, three pertinent differences are 

recognized: 

1. XPGWS reveals less evidence of scouring because sole 

structures, gutter casts, and amalgamated bedding are less 

common. 

2. Burrows are less abundant in XPGWS. 

3. Thin shale beds are abundant in XPGWS. 

This Facies is interpreted as a storm deposit. Deposition occurred 

below fairweather wave-base in low to high current and wave activity 
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(see under interpretation of XPG). The features above suggest that 

XPGWS was deposited in somewhat deeper water or during less intense but 

more frequent storms when compared to XPG. According to Brenchley 

(1985), distal storm deposits display less scouring (shallow erosion), 

fewer burrows, and thicker capping units. 

Shale Interbedded With Laminated Peloidal Packstone/Grainstone (SWXPG) 

Description (Table 2.15) 

This Facies is up to 3 m thick (averages 40 em) in the Nolichucky 

Shale and is practically nonexistent in the Maynardville Limestone 

(Figures 2. 2 and 2. 3). Shale is interbedded with planar-laminated to 

low-angle cross-laminated peloidal limestone lenses (Figure 2.15A). 

Shale beds are thin (<10 em) and are compositionally identical to shale 

of the Shale Facies (see Shale Lithofacies description). Both Facies (S 

and SWXPG) occur in close stratigraphic proximity. Carbonate layers do 

not exceed 2 or 3 em and are generally less than 0. 5 em in thickness, 

forming laterally discontinuous streaks that pinch and swell. The 

peloidal carbonates are further characterized by (1) sharp bases, 

(2) irregular, diffuse tops, (3) fining upward sequences, (4) thin, 

isolated skeletal lenses, and (5) fine to coarse silt-sized peloid 

grains. 

Interpretation 

This Facies is interpreted as a low-energy deposit which underwent 

deposition in "deeper" water. The basis for this interpretation is the 
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Table 2. 15. Characteristics of the SWXPG Lithofacies. 

Features Characteristics 

Lithology ( Folk, 1959; 1962) -Shale interbedded with (1) pel
sparite, (2) pelmicrite, (3) bio
pelmicrite, (4) biomicrite 

Color ( Shale Only ) -Dark gray-green 
-Maroon 

Bed Thickness -Thinly laminated to thin-bedded 

Rock-Unit Thickness -Thin- to very thick-bedded 

Sedimentary Texture and Structure -Parallel lamination 
-Low-angle cross-lamination 

Bed Contacts 

-Loading, pseudonodules, and 
contorted-bedding 
-Very fine- to medium-grained 
-Fining upward sequences 

Upper -Diffuse and sharp 

Lower -Sharp and planar to irregular 

Fossils -Rare; echinoderms, trilobites, and 
inarticulate brachiopods 

Other -Very thin carbonate layers (<0.5 em.) 
-Phosphate crusts 

No. of Thin-Sections Examined -29 

No. of Thin-Sections Point-Counted -9 
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Figure 2.15. Selected features of the shale-dominated lithofacies 
(SWXPG and S). 

A. Outcrop of shale interbedded with laminated peloidal limestone 
(SWXPG). Notice the thin and discontinuous nature of limestone 
lenses. Rock hammer is 25 em in length. Interstate 75 
section. 

B. Outcrop of Shale (S) Lithofacies. Field notebook is 17 em 
tall. Interstate 75 section. 

c. Photomicrograph of shale showing rare skeletal debris 
(trilobite). Light-colored particles are fine-grained dolomite 
rhombs. Field of view is 6.5 mm in long dimension. Joy 2 
section. Sample J-2 819.5. 

D. Photomicrograph of 11ultra-thin11 thin-section of shale which 
shows an abundance of very fine-grained peloids. Under 
cross-polarized light, peloids are difficult to distinguish 
from the dark shale groundmass. Field of view is 1. 3 mm in 
long dimension. Interstate 75 section. Sample I-29-4.8. 
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occurrence of thin planar- to cross-laminated silt-sized layers which 

grade upward into very fine-grained siliciclastic sediment (shale). The 

laminated and graded silt layers are referred to as "storm layers. " 

During conditions of high wave-energy, sediment is eroded, suspended, 

and transported to the open sea. As the storm subsides, clouds of 

suspended sediment settle out forming planar laminations. Low-velocity 

bottom currents or wave oscillation may rework the sediment, transform-

ing planar laminations into low-angle cross-laminations. Thus, 

carbonate silt lenses result from storm activity. Although not actually 

a storm deposit, these deposits represent distal products of storms. 

Similar types of deposits are recognized in the modern. Reineck and 

Singh (1972 and 1980) note that parallel to cross-laminated clay, silt, 

and fine sand are found as far as 45 km from the coast in the Gulf of 

Mexico and the North Sea at water depths of up to 40 m. In addition, 

DeRaaf and others (1977) recognized similar low-energy deposits from the 

Lower Carboniferous in Ireland. 

Shale (S) 

Description (Table 2.16) 

Shale is very abundant in the Nolichucky (Figure 2. 2) and accounts 

for approximately 40% to 60% of the total rock volume; these fine

grained siliciclastics are very rare in the Maynardville (Figure 2. 2). 

Beds range from several centimeters to several meters in thickness 

(Figure 2. 3). Distinct carbonate beds are absent (Figure 2.15B). The 
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Table 2. 16. Characteristics of the S Lithofacies. 

Features Characteristics 

Lithology -Peloid-rich shale 

Color ( Shale Only) -Dark gray-green 
-Maroon 

Bed Thickness -Very thin- to very thick-bedded 
-Laterally continuous 

Sedimentary Texture and Structure -Faint parallel lamination 

Bed Contacts 

-Very fine-grained 

Upper -Sharp; planar to scoured 

Lower -Sharp 

Fossils -Rare; echinoderms, trilobites, 
graptolites, and inarticulate 
brachiopods 

Other -Rare peloidal and fossiliferous 
lenses, <<1 em. thick 

No. of Thin-Sections Examined -39 

No. of Thin-Sections Point-Counted -16 
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shale is gray-green and maroon, but weathers to gray, olive, brown, or 

black. It is fissile and calcareous, and occasionally reveals scattered 

trilobite, echinoderm, and inarticulate brachiopod debris ( Fig

ure 2.15C). Fossil debris, intraclasts, glauconite, and peloids are 

fine-grained. With exception of peloids, grain types occur as discrete 

and disseminated particles floating in shale. Peloids are notable 

features of this Facies and may account for as much as 50% to 60% of the 

rock ( Figure 2. 3). The precise abundance of peloids is difficult to 

establish because they exhibit diffuse or vague exterior boundaries with 

the surrounding clay and silt matrix (Figure 2.15D). Biotite and 

muscovite flakes, fine quartz and feldspar silt, and dolomite rhombs are 

also identified. X-ray diffraction data reveal a clay mineral suite 

which is dominated by a 10 Angstrom mixed-layered complex (illite

vermiculite and/or hydrated illite-chlorite ), iron-chlorite, and 

kaolinite ( See Appendix D). 

Interpretation 

The Shale Facies formed below normal wave-base in shallow water. A 

quiet water depositional setting is indicated by preserved parallel 

lamination and fine grain size. Although difficult to quantify, water 

depth is thought to have ranged from approximately 10 m to SO m. 

Several lines of evidence are used to support this interpretation: 

1. The Shale Facies is stratigraphically displaced from intertidal 

facies and lacks diagnostic features of extreme shallow water 

deposition or emergence. 
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2. Depositional slopes were very subtle. This is supported by the 

absence of turbidites, slump structures, and intraformational 

truncation surfaces. 

3. Similar shale sequences are described from intrashelf basins of 

the Cambrian (Aitken, 1978; Markello and Read, 1981) and 

Mesozoic ( Eliuk, 1978). These authors postulate comparable 

water depths. 

4. Conformable contacts occur between shoaling carbonate sequences 

and thick shale. 

5. Inferred water depth of interfingering facies is compatible to 

that of the Shale Facies. 

On modern shelves most fine-grained sediment is introduced to the 

marine environment by deltaic depositional systems (Drake, 1976). 

Nearshore wind and tidal currents entrain fine-grained sediment into 

dilute clouds or nepheloid layers which move offshore into outer shelf 

and basinal areas. Settling of suspended particles takes place in quiet 

water ( Swift, 1976; Leeder, 1982). This depositional process is known as 

suspension fallout or hemipelagic sedimentation (Tucker, 1981). The 

Shale Facies underwent deposition in a similar way. Most fine-grained 

siliciclastic particles were introduced into the basin by a river system 

that was located on the northern margin of the intrashelf basin ( see 

Chapter 1). The delta was situated at least 200 km from central east 

Tennessee. According to Curray ( 1965), suspended terrigenous mud and 

silt would be deposited in near shore areas. However, widespread 

distribution of fine sediment is recognized a great distance from known 
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land areas during Nolichucky time. This discrepency can be explained by 

numerous episodes of resuspension and redistribution of sediment during 

storm swells. Storm-generated surface and internal currents transport 

fine-grained sediment over wide geographic areas on modern shelves 

(Drake, 1976). 

Very fine-grained peloids (<0.05 mm) are locally abundant in some 

shale thin-sections. Although the mode of occurrence of these peloids 

would suggest hemipelagic sedimentation, their genesis and source are 

not fully understood. The source of peloids may be threefold. Some may 

have been carried into the basin from the siliciclastic shelf to the 

north; however, most of the peloids probably underwent very local 

transport from nearby carbonate-forming environments or were transported 

in from the more distant carbonate peritidal environments to the east 

and southeast. The origin of fine-grained peloids is even more 

uncertain. Three possible origins are suggested: 

1. Fecal pellets 

2. Finely comminuted particles eroded from subtidal cyanobacterial 

mats 

3. Calcite precipitation within and around clumps of bacteria (for 

further discussion, see Pratt, 1984; Chafetz, 1986). 
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Intraclastic Packstone/Grainstone (IPG) 

Description 

Limestone clast conglomerates in the Conasauga Group (Maryville 

Limestone and Nolichucky Shale) have been examined in detail by Weber 

and others (1985) and Kozar and others (1986). This work is summarized 

in Kozar (1986). The description and interpretation presented here for 

the Intraclastic Packstone/Grainstone Facies are abstracted from these 

previous works. 

Kozar (1986). 

For a more detailed discussion of this subject see 

In the Nolichucky Shale, limestone clast conglomerate (IPG) beds 

range from 2 em to 45 em, but average only 9 em in thickness (Fig

ure 2. 3). They account for about 10% of a stratigraphic section 

(Figure 2. 2). Clasts are derived from nearby deeper water lithofacies. 

The diversity of intraclasts may be high in some beds, but in no case 

are very shallow water platform lithologies (e. g. , cryptalgalaminates, 

stromatolites, or thrombolites) represented as clast types. The 

following intraclasts are recognized: mudstone, peloidal packstone, 

fossiliferous packstone, oolitic packstone, quartz silt, and shale. 

Individual clasts never exceed SO em in length and 10 em in thickness. 

In outcrop most "large" clasts are from 5 em to 10 em in length and 0.5 

em to 2 em thick. 

Shale matrix conglomerates (Figure 2 . 16A), lime mud and coarse

grained matrix conglomerates (Figure 2 . 16B), and coarse-grained matrix 

conglomerates (Figure 2. 16C) are the three types of intraclastic 
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Figure 2.16. Selected features of the Intraclastic Packstone/Grainstone 
(IPG) Lithofacies. 

A. Shale matrix conglomerate. Interstate 75 section. Sample 
I-14-0.0. 

B. Lime mud and coarse-grained matrix conglomerate. Note that 
clasts are normal to bedding. Interstate 75 section. Sample 
I -44-1.5. 

C. Coarse-grained matrix conglomerate. Beech Grove section. 
Sample BG-Renalcid buildup (unit 6-3). 

D. Slab of intraclasts which are projecting above the bed surface. 
Many of these clasts were "rafted" along the top of the debris 
flow. Knife is 9 em in length. Beech Grove section. 
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packstone/grainstot:le beds that occur in the Nolichucky Shale. Their 

characteristics are summarized in Tables 2.17, 2. 18, and 2.19. 

Interpretation 

Limestone clast conglomerates are very distinctive and common 

features of Cambrian and Ordovician rocks. Most conglomeratic deposits 

formed from erosion and redeposition of partially consolidated sediment 

by storm processes in intertidal and shallow subtidal settings ( e. g., 

Jones and Dixon, 1976; Markello and Read, 1981; Sepkoski, 1982; Demicco, 

1983; Whisonant, ·1987, Kopaska-Merkel, 1988). In the Nolichucky Shale 

an alternative explanation is proposed to explain the deposition of some 

conglomeratic beds. Mass-sediment gravity movement ( debris flows) is 

also responsible for the genesis and transport of limestone clasts; 

Mass movement conglomeratic deposits in the Nolichucky differ from those 

described from similar aged rocks in the western United States and 

Canada (e. g. , Cook and Mullins, 1983; Hiscott and James, 1985). Here, 

slump structures, rafted megablocks, and rotational/translational slides 

are absent. 

Shale matrix conglomerates. These intraclastic beds are rare; they 

account for less than 1% of all conglomerate beds. Because they lack 

definitive evidence to support a single depositional mechanism, multiple 

origins are suspected. Small, rounded clasts (<1 em to approximately 5 

em) probably were entrained during storms; larger clasts have an 

irregular shape, and were most likely deposited from subaqueous debris 

flows. It is important to note that some beds display only small 
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Table 2.17. Characteristics of shale matrix conglomerates. 

Features Characteristics 

Associated Lithofacies 

Bed Thickness 

Naure of Bedding Contact 

Bed Geometry 

Grading 

Sorting ( Clasts) 

Clast Orientation 

Matrix 

Clast Shape, Roundness 

-Thick under- and overlying shale 

-Very thin- to thin-bedded (2-8 em) 

-Sharp lower bedding surface 
-Irregular upper bedding surface 

-Laterally discontinuous channels or 
lenses 

-Absent 

-Poor; granule-pebble 

-Random to subparallel 

-Shale 

-Tabular, rounded, rare irregular 
varieties 
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Table 2. 18. Characteristics of lime mud and coarse-grained matrix 
conglomerates. 

Features 

Associated Lithofacies 

Bed Thickness 

Naure of Bedding Contact 

Bed Geometry -Sheets 

Grading 

Sorting (Clasts) 

Clast Orientation 

Matrix 

Clast Shape, Roundness 

Other 

Characteristics 

-Shale 
-Thin-bedded peloidal packstone 

-Thin- to medium-bedded (3-15 em) 

-Planar lower bedding surface 
-Irregular to domal upper surface 

-Domal bedforms 

-Rare to absent 

-Poor; granule-cobble 

-Subparallel to random 

-Fine-grained lime mud 
-Coarse-grained skeletal and peloidal 
packstone 

-Irregular, angular, tabular, and 
discoid 

-Rafted and projecting clasts 
-Mono- or polymictic clast 
associations 
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Table 2. 19. Characteristics of coarse-grained matrix conglomerates. 

Features 

Associated Lithofacies 

Bed Thickness 

Naure of Bedding Contact 

Bed Geometry 

Grading 

Sorting ( Clasts) 

Clast Orientation 

Matrix 

Clast Shape, Roundness 

Other 

Characteristics 

-Interbedded silty, peloidal limestone 
-Typically overlain by shale 

-Thin- to thick-bedded ( 3-45 em) 

-Sharp planar to scoured bottom 
-Planar top 

-Sheets 
-Low-relief channels 
-Thick channels 

-Rare to absent 

-Moderate to poor; pebble-cobble 

-Subparallel 
-Fanned 

-Well-washed skeletal and peloidal 
grainstone 
-Rare trapped lime mud 

-Tabular to discoid, rounded edges 

-Hummocky cross-laminations 
-Planar laminations 
-Sole marks 
-Cement-filled shelter voids 
-Perched micrite 
-Dominantly monomictic 



137 

clasts. Thus, debris flows and clast entrainment during storms were 

probably mutually exclusive events. 

Lime mud and coarse-grained matrix conglomerates. Fine-grained 

matrix support of intraclasts, coupled with random clast fabric suggests 

debris flow transport. About 25% of limestone clast conglomerates are 

of this type. The high proportion of matrix implies that buoyant 

strength of the flow results from the cohesive strength of the matrix. 

Frictional strength caused by grain-to-grain interaction in the matrix 

is not ruled out. Absence of grading, cement-filled shelter voids, 

and/or perched sediment precludes suspension settling of clasts. In 

addition, clasts tend to float on the top of these beds and project 

above the bed surface implying that they were "rafted" along by the flow 

(Figure 2. 16D). Rafted clasts indicate rigid, plug flow (Hampton, 

1972). 

These debris flows moved over slopes which were less than 1 degree 

(Markello and Read, 1982). Also, this statement is supported by 

paleoenvironmental and palinspastic reconstructions in central east 

Tennessee. Flows moving over such low slopes require excess pore 

pressure for initiation of movement (Peirson, 1981). Excess 

pore pressure is caused by deposition on a semipermeable layer, 

overloading of the sediment, and liquefaction caused by storm, tidal, 

and/or wave activity (Nardin and others, 1979). In the Nolichucky 

sediment overloading and/or cyclic wave-loading initiated failure and 

mass-movement. These debris flows are similar to modern subaqueous 

debris flow depo�its which traverse low slopes (Prior and Coleman, 

1982). 
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Coarse-grained matrix conglomerates. Coarse matrix intraclastic 

beds are interbedded with storm-derived lithofacies. Their well-washed 

coarse skeletal and peloidal matrix suggests that sedimentation took 

place by erosion and redeposition during storm events. Storm-derived 

conglomerate deposits make up about 75% of all conglomeratic beds in the 

Nolichucky Shale. Other evidence which supports storm sedimentation 

includes " fanned" clast fabrics. The oscillatory component of storm 

waves reorients clasts. Also, lime mud caps represent suspension 

settling and infiltration of fine-grained sediment during the waning 

stages of storm activity. The absence of imbrication suggests that 

unidirectional currents did not play an important role in these 

deposits. Imbrication is common in current-generated accumulations 

(Whisonant, 1987). 

Storm-generated 

low-relief channels 

currents ( i. e. , 

and transported 

gradient 

intraclasts 

currents) incised 

and coarse-grained 

matrix through the conduits. These channels closely resemble subtidal 

storm-surge channels, rip-channels, and progradational lobes ( Seilacher, 

1982; Markello and Read, 1982). Tractional bedload transport, directly 

related to high-energy conditions at the sediment-water interface, seems 

to be a likely mechanism to explain clast movement (Aigner, 1985). 

Although individual high-energy storm pulses created and filled channels 

or filled preexisting topographic lows with sediment, multiple events 

resulted in amalgamated channels or lobes. Episodic rather than 

continuous sedimentation is postulated for this Facies because of the 

widespread nature of amalgamated bedding geometry. 
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Summary of Depositional Environments 

This Chapter focuses on the petrology and depositional environments 

of 14 lithotypes which are recognized in the Nolichucky/Maynardville 

sequence in central east Tennessee (Oak Ridge and Knoxville vicinity). 

Each lithotype reveals a unique suite of megascopic and microscopic 

features, which result from various depositional and diagenetic 

processes (Table 2.20 ) .  The particular combination of lithologic, 

sedimentologic, paleontologic, and early diagenetic components in the 

rock record was dictated by the local environmental setting. 
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Table 2.20. Summary of depositional environments. 

Lithofacies 
(symbol) 

CL 

STROM 

THROM 

NOPG 

EPG 

MWS 

OPG (buildups) 

OPG (sheets) 

FPG 

FPGWS 

XPG 

XPGWS 

SWXPG 

s 

IPG 

Depositional Process and Paleoenvironmental 
Interpretation 

Cyanobacterial trapping, binding, and/or mineral 
precipitation of sediment; lower to upper intertidal, 
perhaps locally supratidal; low-energy tidal flat. 
Cyanobacterial trapping, binding, and/or mineral 
precipitation of sediment; lower intertidal; 
low-energy tidal flat. 
Bacterially induced; very shallow subtidal, 0 -3 m; 
low- to moderate-energy. 
Oncoids bacterially induced; very shallow subtidal, 
0 -3 m, moderate-energy. 
Peloids derived from Girvanella mats; very shallow 
subtidal, 0-5 m; moderate- to high-energy. 
Girvanella mats; lime mud blankets or veneers; 
subtidal, 5-15 m; low-energy; open marine; 
subwave-base; hemipelagic deposition. 
Ooid-forming environment; very shallow subtidal, 
0 -5 m; moderate- to high-energy. 
Storm sand sheets; subtidal, 5-30+ m; low- to 
high-energy; subwave-base. 
Storm sand sheets; subtidal, 5-30+ m; moderate- to 
high-energy; subwave-base. 
Entrainment of silt- and sand-sized fossil debris 
into dilute "clouds"; subtidal, 5-30+ m; low- to 
moderate-energy; subwave-base; hemipelagic 
deposition. 
Proximal storm reworked peloidal sands; subtidal, 
5-30+ m; moderate- to high-energy; subwave-base. 
Distal storm reworked peloidal sands; subtidal, 
5-50 m; low- to moderate-energy; subwave-base. 
"Storm layers"; subtidal, 5-50 m; low-energy; 
subwave-base; hemipelagic deposition and minor 
current reworking. 
Hemipelagic settling of fine-grained siliciclastic 
particles; subtidal, 10 -50 m; low-energy; 
subwave-base. 
Storm reworking of lithified and semi-lithified 
sediment; ubiquitous; 0 -50 m; shale matrix 
conglomerates deeper, coarse-grained matrix 
conglomerates shallower. 
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CHAPTER 3 

USING MULTIPLE ANALYTICAL TECHNIQUES FOR THE RECOGNITION OF 

SEDIMENTARY CYCLES 

Introduction 

Cyclicity has aroused controversy within the geologic community for 

at least a century. Some geologists place considerable importance on 

stratigraphic cyclicity, perhaps overemphasizing the deterministic 

nature of past events. Others believe that cyclicity is rarely if ever 

observed in actual stratigraphic sections (for discussion see Duff and 

others, 1967; Schwarzacher, 1975). Several factors are responsible for 

this divergence of opinion: ( 1) the "term" cycle lacks a universally 

accepted definition, (2) subjective methods are commonly used to 

identify cyclicity, and (3) many powerful mathematical techniques cannot 

be used to confirm th� presence of cycles. 

A cycle refers to a series of events that occur in repeated order 

and lead back to some starting point: (e.g., ABCDEABCDE or 

ABCDEDCBABCDE • • •  ) (Weller, 1964). Many geologists believe this 

definition is too restrictive. As a result, a preferred definition of a 

sedimentary cycle is as follows: a series of observations (rock types, 

bed thickness measurements, etc. ) that occur in predictable pattern or 

follow certain order (Schwarzacher, 1975). This definition accounts for 

the variability or randomness which certainly exists in natural geologic 
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systems. Assuming ABCDE contains random elements A and E, cyclicity is 

possible within the sequence: BCDAEBCDABCDBCDEA, etc. ) . 

Numerous investigators have identified cycles within sedimentary 

rocks. Most previous studies have based the occurrence of cycles on 

(1) descriptive stratigraphic data, which typically lack statistical 

verification (Aitken, 1978; James, 1984; Aigner, 1985), (2) older, 

flawed versions of Markov chain analysis ( Gingerich, 1969; Doveton, 

1971; Lumsden, 1971; Tewari and Casshyap, 1983), or (3) computer

generated models not closely associated with actual stratigraphic data 

(Turcotte and Willemann, 1983; Read and others, 1986). The approach 

described here uses multiple analytical techniques to recognize cycles, 

but stratigraphic information serves as the data base. 

A serious constraint of stratigraphic data is that many variables 

are based on a nominal or an ordinal scale of measurement. For example, 

rock types ( lithologies) are classified into mutually exclusive 

categories. As a result, powerful techniques of parametric statistics 

cannot be conducted, but useful tests can be employed. A robust 

embedded Markov chain analysis, substitutability analysis, auto

association analysis, and runs test are proposed here for examining 

stratigraphic cyclicity. These statistical techniques are easily 

understood, require few assumptions, use nominal and ordinal data, 

detect subtle trends or cycles not normally observed by unaided 

processing, and employ computers for rapid processing of large data 

sets. 
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Discussion of Techniques 

Markov Chain Analysis 

During the past twenty years, Markov chain analysis has become a 

popular technique to identify cyclicity ( Gingerich, 1969; Doveton, 1971; 

Hattori, 1976; Jones and Dixon, 1976; Tewari and Casshyap, 1983; and 

many others). Many stratigraphers and sedimentologists have not fully 

realized the problems involved with the application of Markov analysis. 

Recently, some investigations have noted potential sources of error 

( Hiscott, 1981; Carr, 1982; Powers and Easterling, 1982), and several 

lesser known but surmountable problems are discussed here. A statisti

cally valid Markov model can be used to assess stratigraphic cyclicity. 

Markov analysis is based on probability theory. The presence of a 

first-order Markovian process indicates that the occurrence of some 

lithology A is dependent only on the immediately preceding lithology 

A-1. Thus, lithology A will have a greater probability of overlying 

lithology A-1 than would be expected of an entirely random sequence of 

lithologies. In order to determine Markovian tendency, the strati

graphic position of each lithology must be recorded ( Figure 3. 1). This 

two-dimensional array is known as a transition frequency matrix, which 

may be structured in one of two ways. Equally spaced observation 

intervals result in a transition frequency matrix similar to Figure 3. 1. 

In this case the transition probabilities are dependent on the 

observation interval ( sample interval) and the thickness of each 

stratigraphic unit. This method poses a problem because successive 
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OVERLYING LITHOLOGIES 

UNDERLYING 
LITHOLOGIES 

A 

B 

c 
D 

N COLUM 
TOTALS 

A B 

21 0 
3 14 
4 1 
0 9 

28 24 

c D 

4 3 
3 4 
8 8 
6 8 

21 23 

RO w 
ALS TOT 

28 
24 
21 
23 
96 TOTAL NUMBER 

OF TRMISITIONS 

Figure 3.1. Transition frequency matrix of a hypothetical stratigraphic 
column composed of four distinct lithologies (A-D). This 4 X 4 
matrix exhibits 16 individual cells. 
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lithologies are usually not of equal thickness. An alternative, superior 

method involves recording each lithology without regard to some 

arbitrary sample interval. The transition from one lithology to an 

overlying, identical lithology is not permitted. A resulting transition 

frequency matrix contains a priori zeros along the main diagonal 

(Figure 3. 2). Matrices structured in this way are examined for embedded 

Markov chains. 

Several chi-square statistics are available to test transition 

frequency matrices for Markov properties (Powers and Easterling, 1982). 

Commonly, Pearson's chi-square statistic is used: 

where 

m m 

Observed Chi-Square (X2)= t 

i=1 j=l 

i=underlying lithology 1 ,  2, • • •  , m 

j=overlying lithology 1, 2, • . •  , m 

m=total number of lithologies 

2 (0 . .  -E • .  ) /E • .  , 1J 1J 1J 

0 .. refers to the observed number of transitions from lithology i to 1J 

lithology j. These values (o1j) are obtained from the transition 

frequency matrix. For example; if in Figure 3. 2, i=2 and j=3, then cell 

E .. is the expected number of transitions from lithology i to j 1J 

which should be observed if the lithologies are randomly distributed. 

The expected frequency ( E  .. ) is calculated for·each cell as follows: 1J 
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OVERL VING LITHOLOGIES 

UNDERLYING 
LITHOLOGIES 

A 
(i= 1) 
B 
(i=2) 
c 
(i=3) 
D 

(i=4) 
LUMN co 

TOTALS 

A B 

(j= 1) (j=2) 

0 22 

6 0 

7 33 

43 0 

56 55 

c D 

(j=3) (j=4) 

15 19 

42 7 

0 20 

3 0 

60 46 

R ow 
OTALS T 

56 

55 

60  

46 

21 7 TOTAL NUMBER 
(N) 0 F TRANSITIONS 

Figure 3.2. Transition frequency matrix. Note the series of zeros 
along the main diagonal. 
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E . .  =n .  n./N, 1J J 1 

N =total number of transitions 

The observed value of Pearson's chi-square statistic is compared to the 

actual chi-square distribution with ( m-1)2 degrees of freedom ( Davis, 

1986) and some level of significance. A chi-square distribution 

table is needed to determine the expected chi-square value. Thus, a 

succession of lithologies exhibits randomness if the observed chi-square 

value is less than the expected chi-square value at some chosen 

confidence level, commonly 95%. If the observed value is greater than 

the expected value, the lithologic sequence displays nonrandom, 

Markovian behavior. 

If a transition frequency matrix exhibits nonrandomness, a 

difference matrix is computed to determine which lithologic transitions 

occur more (or less) frequently than expected. A difference matrix 

( Figure 3.3) results from the difference between the observed and 

expected frequency for each cell or transition (0 . .  -E . .  for each i, j). 
lJ lJ 

Each cell within the matrix contains either a positive or a negative 

number. Positive values reveal transitions that are more likely to 

occur. 



148 

OVERLYING LITHOLOGIES 

UNDERLYING 
LITHOLOGIES 

A 

B 

c 
D 

A 

0 

+.35 

+.03 

-.02 

B c D 

+.12 -.01 -.05 

0 -.47 -.01 

-.08 0 -.03 

-.13 +.47 0 

Figure 3. 3. Difference matrix. It is standard convention to calculate 
values for each cell using the formula 0 . .  -Ei ./n . •  1J J 1 
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There are two problems with the embedded Markov chain procedure 

described above. Because no vertical contacts between units of the same 

lithology are recorded, the observed transition frequency matrix will 

contain structural zeros along the main diagonal. According to 

Schwarzacher ( 1975), these diagonal zeros prevent the generation of a 

valid expected frequency matrix. The chi-square test becomes 

meaningless and order may be perceived in the stratigraphic section 

where no order actually exists. 

Another problem involves the difference matrix. More than one cell 

may contain positive values, but only one positive cell value ( one 

lithologic transition) may actually contribute to the nonrandomness of 

the system ( Carr, 1982). 

Failure to recognize these problems has led to false identification 

of order or cyclicity in the stratigraphic record. To eliminate these 

potential errors, a log-linear model of quasi-independence ( Carr, 1982) 

should be used to test incomplete matrices ( those containing structural 

or diagonal zeros) . The presence of structural zeros does not disrupt 

the calculation of the expected frequency matrix. In addition, Brown 

(1974) described a procedure that isolates lithologic transitions which 

depart from randomness. At each iteration, a zero is substituted in the 

cell ( transition) that causes greatest reduction in the chi-square 

statistic. The computer refits the remaining cells using the log-linear 

model and recalculates the chi-square statistic. This process is 

continued until the probability for chi-square of the observed frequency 
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matrix exceeds some chosen level of significance. This procedure is 

included in the P2F BMDP computer program by Brown (1979). 

Substitutability Analysis 

Substitutability analysis has rarely been applied to stratigraphic 

data (Davis and Cocke, 1972; Doveton and Skipper, 1974; Allen, 1982). 

This is probably due to its obscure origin in speech therapy and image 

processing of satellite photographs (Rosenfeld and others, 1968). In 

geology, substitutability analysis is used to determine whether two or 

more lithologies characteristically substitute for one another in a 

stratigraphic sequence. For example, if two different lithologies are 

commonly underlain by a third lithology, the two overlying lithologies 

exhibit high substitutability. This type of substitution is called 

overlying substitutability (Figure 3.4). Underlying and mutual 

substitutability also occur (Figure 3.4). 

A substitutability matrix is computed from a transition probability 

matrix, which in turn is derived from a transition frequency matrix. 

For a simple procedure see Davis (1986). 

Substitutability matrices contain cells with values ranging from 0 

to 1 and are symmetrical about the main diagonal (Figure 3.5). Because 

these matrices are symmetrical, conventional clustering methods are used 

to hierarchically classify lithologies exhibiting high substitutability. 

Although substitutability analysis does not invoke a formal statistical 

testing procedure, the computer produced 

information of transition frequency matrices 

dendograms retain all 

(Doveton and Skipper, 
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c 

1' 
A�B � 

MUTUAL 
SUBSTITUTABILITY 

c 

1' 
A� B 

1' 
c 

UNDERLYING 
SUBSTITUTABILITY 

I 
c 

Figure 3.4 . Lithologies A, B, and C are used to show the three types of 
substitutability. Horizontal arrows indicate high 
substitutability. Vertical arrows indicate relative stratigraphic 
position. 

OVERLYING LITHOLOGIES 

UNDERLYING 
LITHOLOGIES 

A 
B 
c 
D 

A 
-

.27 

.69 

.12 

B c D 

.27 .69 .12 

- .08 .99 
.08 - .22 

.99 .22 -

Figure 3 . 5 .  An example of a substitutability matrix. High cell values 
( near 1.0 0) indicate high substitutability. 
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1974). However, it should be noted that dendogram linkages exhibit 

differing degrees of stability. 

Auto-Association Analysis 

Auto- association analysis is similar to the time-series technique 

known as autocorrelation. Both determine partial repetition in a 

sequence of data, but a major difference exists. Auto-association 

analyzes nonnumeric data. As a result, it is much less restrictive and 

can be applied to a sequence of lithologies (see Merriam and Sneath, 

1967; Sackin and Merriam, 1969). Auto-association analysis was 

originally developed by Sackin and Sneath (1965) to compare amino acid 

chains. 

Auto-association is a useful method for examining the repetitive 

nature of lithologic data (Davis, 1986). A hypothetical stratigraphic 

section consists of six lithologies which might be portrayed in 

ascending order as: 

13456213141634562612345643456 ------ ------ ------ ------

Lithologies 3, 4, 5, and 6 commonly occur in order throughout the 

sequence. These lithologies represent the repetitive subset or cycle. 

The subset is moved one step at a time, past the complete set of 

lithologies (Figure 3. 6). At each overlap position, the number of 

matches is recorded. The number of matches indicates the degree of 

similarity between the two sequence chains. A plot of match position 
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MATCH OVERLAP NUMBER OF NUMBER OF 
POSITION POSITION COMPAAISONS MATCHES 

13456213141634562612345643456 0 
3456 

2 13456213 ... 2 0 
3456 

3 13456213 ... 3 0 
3456 

4 13456213 ... 4 0 
3456 

5 13456213 ... 4 4 
3456 

6 13456213 ... 0 
3456 

Figure 3 . 6 .  Auto-association analysis using hypothetical stratigraphic 
section and repetitive subset described in text. 
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versus the number of matches graphically displays regions of high and 

low association. Intervals of high association locate cycles within the 

stratigraphic section. 

Runs Test 

The runs test is a nonparametric statistical technique that 

examines sequential data for randomness (Davis, 1986 ) . For example, the 

probability of obtaining 15 tails followed by 1 5  heads in 30 random coin 

tosses is very low. Likewise, the probability of regular alternation of 

heads and tails is also quite low. If the coin is unbiased, each toss 

is independent of the previous toss. The expected order of heads and 

tails should be between the two extremes. 

A run is defined as an uninterrupted sequence of similar 

observations, succeeded and preceded by a different observation (Levin 

and Rubin, 1980 ) .  In order to conduct a runs test, each variable must 

be reduced to dichotomous observations (e.g., + and -, A and B, etc.). 

According to Davis ( 1986 ) , runs tests are particularly applicable to 

many types of geologic data. For example, the unit thickness of 

repetitive lithologies can be compared throughout a stratigraphic 

section (Figure 3 . 7 ) .  

Cycles 1 ,  2 ,  and 3 represent a run because the thickness of each 

cycle increases upward. On the other hand, decreasing unit thickness 

occurs from cycle 3 to 6 resulting in a downward run. Eventually, by 

observing each successive run, thickness data are reduced to a string of 

+ (upward increasing thickness) and - (upward decreasing thickness) 
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BASE 1 2 3 4 5 6 7 8 9 TOP ---7 
NUMBER OF CVCLES FROM BASE TO TOP IN A 

STRATIGRAPHIC SECTION 

Figure 3 . 7 . A plot showing the thickness of each similar cycle versus 
the number of cycles in a stratigraphic section. 
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signs. If a large data set exists, strings of + and - signs can be 

statistically tested ( see Davis, 1986 ) . It is important to note that 

runs tests cannot prove randomness, but are used to suggest that, at 

some level of confidence, a sequence is not random. 

Integration of Techniques 

Past studies have focused almost exclusively on Markov chain 

analysis to validate statistically the presence of cyclicity in 

stratigraphic sequences. As noted, many of the Markov chain analyses 

employed in earlier studies were flawed. These flaws are avoided by 

implementation of the log-linear Markov model. However, for Markov 

chain analyses to be valid, sample sizes must be sufficiently large to 

guarantee similarity between the sampling chi-square distribution 

( observed chi-square statistic) and the theoretical chi-square 

distribution ( expected chi-square value). When expected frequencies are 

too small, the observed chi-square statistic will be overestimated. To 

avoid incorrect inferences from chi-square hypothesis tests, a general 

rule should be followed: no cell may have an expected frequency less 

than 1 ,  and no more than 20% of the cells may have expected values less 

than 5 ( Brown, 1985 ) . According to Brown ( 1985 ) , if this rule is not 

satisfied, the distribution of the chi-square statistic may differ 

widely from the theoretical chi-square distribution. 

Although the log-linear Markov chain model is objective in nature 

and statistically valid, cyclic patterns are most apparent when 
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lithologies are grouped into relatively few categories . Many 

stratigraphic sequences reveal 20 or more distinct l ithologies ( this is 

especially true for carbonate sequences ) .  To satisfy the general rule of 

chi-square hypothesis testing , large numbers of l ithologies must be 

reduced . Reduction often involves cons iderable subj ectivity. The 

log-linear Markov technique is sensitive to minor changes in the 

structure of the original matrix. During this reduction process , 

variations in the procedure for grouping l ithologies can cause 

significant changes to the nature of the Markov chain (Weber and others , 

1986b) . Thus , the presence or absence of cycles is  dependent on the 

subjective criteria that are used to reduce the number of l ithologies . 

Substitutability analysis represents an obj ective approach to 

reduce the number of original l ithologies systematically. Overlying 

substitutability ( rather than mutual or underlying subst itutabi lity) is 

most sensible geologically for we are primari ly interested in the 

temporal development of sequences . It is important to note that the 

reduction process by either subj ective or obj ective means may over 

general ize stratigraphy to such an extent as to lead to geologically 

meaningless , though statistically valid, results . 

Initially, overlying substitutability analysis is applied to a 

success ion of lithologies ( see Figure 3 . 8  for procedure) . Next , 

embedded Markov chain analysis is conducted . I f  serial repetition of 

lithologies is revealed by Markov chain analysis , auto-association is 

carried out . Auto-association is used to locate cycles in the 

stratigraphic section . In addition , partial cycles ( component cycles) 
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can be identified within the sequence by applying auto-association to 

segregated parts of the complete cycle . For example, if A-B-C-D 

represents a complete cycle, partial cycles include : A-B, B-C,  C-D , 

A-B-C,  and B-C-D . 

If the thickness of each lithologic unit is known, the thickness of 

each cycle ( complete or partial ) as well as the thickness between 

successive ,  s imilar cycles can be determined . An increase up section in 

the thickness of a particular cycle would suggest nonrandom process (es ) . 

Runs tests are used to determine the nonrandomness of cycles . The 

nonrandomness is expressed by the presence of too few or too many runs . 

Actual trends are determined by inspection . 

Summary and Conclusions 

Lithologic data ( rock types ) are class ified into mutually exclusive 

categories of equal rank . As a result , many powerful mathematical 

techniques cannot be employed to detect stratigraphic cyclicity . Less 

powerful , but more statistically valid, techniques can be used in order 

to solve this problem. Substitutability analysis , embedded Markov chain 

analysis,  auto-association analysis , and runs test are proposed to 

verify statistically the occurrence of cycles . Initially, overlying 

substitutability analysis is applied to a succession of litholog ies . 

This technique reduces the number of original lithologies systematical

ly. Next , embedded Markov chain analys is is conducted . Markov chain 

analysis is firmly established as a means to val idate cyclicity within 
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stratigraphic sequences . Although many older versions are flawed , the 

log-linear Markov model is objective in nature and statistically val id .  

I f  serial repetit ion of l ithologies i s  revealed by Markov chain 

analysis , auto-association analysis is then carried out . Auto-

association is used to locate cycles in the stratigraphic section . 

Finally, runs tests are appl ied to the thickness of each similar cycle 

( as well as between successive similar cycles ) to determine the 

nonrandomness of the system. 

An integrated approach of substitutability analysis , embedded 

Markov chain analysi s ,  auto-association analysi s ,  and runs tests has 

been applied to lithologic data (Weber and others , 1986a and see 

Chapter 4) . This integration of analyses provides an independent test of 

cyclic trends and gives increased resolution to cycles in stratigraphic  

sequences . These methods eliminate the several sources of  error in 

previously proposed techniques for recogniz ing cyclicity .  
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CHAPTER 4 

CYCLICITY IN THE UPPER CAMBRIAN OF THE SOUTHERN APPALACHIANS : 

A TEST OF OBJECTIVE STATISTICAL TECHNIQUES 

Introduction 

It  has been suggested that stratigraphic cyclicity is so widespread 

in the geologic record it may be considered a normal process (Wilson , 

1 975 ; Read and others , 1986 ) . This theme is encountered often in the 

l iterature (Wanless and Weller , 1932 ; Rona , 1 9 7 3 ;  Dean and others , 197 7 ;  

Hallam, 1 97 7 ;  Vai l  and others ,  197 7 ;  Aitken, 1978 ; Crowell,  1978 ; 

Donovan and Jones , 1979 ; Saunders and others , 1 97 9 ;  Heckel , 1980 ; 

Clifton , 198 1 ; Busch and Rollins , 1984 ; Driese and Dott , 1984 ; James , 

1984 ; Heckel,  1 986 ; Mack and James , 1986 ; Laferriere and others , 1987 ; 

Busch and West , 1 987 ; etc . ) .  Clearly, the importance of cyclicity 

cannot be underestimated . Through the identification of cycles , 

abundant and complex data are simplified into abbreviated trends . Not 

only can stratigraphic descriptions be reduced, but also cyclic patterns 

can be investigated further . For example , paleoenvironmental information 

is much more eas ily ascertained from a repet itive sequence than from 

some seemingly random arrangement of lithologies . Recently , the study 

of cyclicity has aroused a new wave of interes t ,  and cycle models are 

being proposed from the repetitive nature of individual cycles (Read and 

others , 1 986 ; Mack and James , 1986 ; Busch and West,  1987 ) .  Because such 
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a premium is placed on the occurrence of cyclicity ,  care must be taken 

when identifying cyclic phenomena . 

As indicated in the previous chapter , a preferred definition of a 

sedimentary cycle is as follows : a series of observations ( rock types , 

bed thickness measurements , geochemical data,  etc . ) that occur in a 

predictable pattern or follow a certain order ( c . £ . , American Geological 

Institute, Glossary of Geology) .  This definition accounts for the 

variability or randomness which exists in natural geologic systems . 

Various types of cycles have been described in the geologic 

literature ( first , second, and third order depositional sequences , as 

defined by Vail  and others , 197 7 ;  grand cycles , following Aitken , 197 8 ;  

cyclothems , after Wanless and Weller, 1932 and Moore, 1936 ) . These 

cycles as well as numerous others can be placed into a hierarchy of 

genetic transgressive-regressive ( i . e . , deepening-shallowing relative to 

sea level) units ( Busch, 1 983 ; Busch and Rollins , 1 984 ; Busch and West , 

1987 ) .  The focus of this study is cyclothems ( subsequently referred to 

as small scale cycles) which are simply cycles or rhythms of litho

facies . Busch and others ( 1985 ) have noted that cyclothemic patterns 

change laterally within the same genetic-stratigraphic unit 

( transgressive-regressive cycle) and thus are not laterally persistent 

among widely spaced localities . It is important to note that the lateral 

correlation or traceability of individual cyclothems over wide 

geographic areas is not of concern here ; instead, the vertical and 

lateral extent of stratigraphic intervals containing identical,  
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statistically valid cycles are of primary importance ( that is "packages" 

of cyclothems are examined here) . 

The obj ectives of this Chapter are : (1) to examine the Late 

Cambrian Nolichucky Shale and Maynardville Limestone in east Tennessee 

for small scale cycles using a new approach ( substitutability ,  embedded 

Markov chain, and modified autoassociation analyses ) defined in the 

previous chapter ,  ( 2 )  to determine the significance of these cycles , i f  

present and ( 3 )  t o  consider the implications of the techniques and 

examples given here for recognition of larger scale cyclicity in the 

geologic  record . 

Geologic Setting 

Location/Stratigraphy 

In eastern North America, Middle and Late Cambrian strata occur 

from Newfoundland to Alabama . These siliciclastic and carbonate rocks 

were deposited during the first major episode of Phanerozoic cratonic 

flooding along the North American continental margin . Coeval rocks of a 

similar depositional style occur in the western United States , Siberia,  

Australia , Asia,  and elsewhere (Scotese and others , 1979 ) .  

Within the Valley and Ridge of east Tennessee , Middle and Upper 

Cambrian rocks crop out along a succession of southeastward dipping 

imbricate thrust sheets ,  which trend northeast to southwest (Fig-

ure 1 . 1 0 ) .  In the vicinity of Knoxville, formations of this age 

( excluding the Copper Ridge Dolostone) comprise the Conasauga Group 
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( Figure 1 . 11 ) .  From base to top the Conasauga Group includes : the 

Pumpkin Valley Shale , Rutledge Limestone, Rogersvi lle Shale , Maryville 

Limestone, Nolichucky Shale, and Maynardvi lle Limestone (Rodgers , 1953 ) .  

In this study only the Upper Cambrian Nolichucky Shale and Maynardville 

Limestone are examined . The entire Group grades from dominantly 

dolostone in the east (northeastern Tennessee and southwestern 

Virg inia) , through intercalated carbonate and shale units in the 

Knoxville area to a sequence dominated by shale , west and southwest of 

Knoxville ( see Figure 1 .  1 1 )  • The Conasauga Group is under lain by the 

Lower Cambrian, predominantly siliciclastic Rome Formation largely of 

peritidal to marine shelf origin . Above the Conasauga Group are very 

shallow subtidal and peritidal carbonates of the Upper Cambrian Copper 

Ridge Dolostone , the lowermost formation of the Cambro-Ordovi cian Knox 

Group . 

Eight stratigraphic  intervals from five closely spaced localities 

have been examined for cyclicity (measured sections A-F excluding B of 

Figure 1 . 10 ) . Five intervals were in the Nol ichucky Shale, and three 

intervals were in the overlying Maynardville Limestone . 

Lithology 

Detailed stratigraphic analysis on a bed-by-bed scale within the 

Nolichucky Shale and Maynardville Limestone reveals a diverse assemblage 

of lithologies . However ,  only a small number of lithologies actually 

dominates this interval . Several rock types occur less frequently . 

These "rare" lithologies can be recategorized into geologically similar, 
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but more commonly occurring lithologies . Reduction in the original 

number of l ithologies is accomplished by substitutability analysis . 

Each of the eight continuous stratigraphic sequences ( five within the 

Nol ichucky and three in the Maynardville)  was tested independently by 

substitutability analysis . As a result of this  analysi s ,  fourteen 

recurring lithologies are distinguished from this stratigraphic  interval 

( Figure 4 . 1 ) .  The litho logic assemblage within the Nolichucky Shale 

differs significantly from that within the Maynardville Limestone 

( Figures 4 .  2 and 4 .  3 ) . As a result , each format ion was examined for 

cyclicity independently. This test procedure is necessary because 

lithologic homogeneity occurs only within each formation . 

Little variation in the percent occurrence of any particular 

lithology exists from one locality to another (Figures 4 . 4  and 4 . 5 ) .  

For example , in F igure 4 . 4  shale varies from 32% to 37% . Note that 

other lithologies vary to a greater extent , but cons idering that the 

geographic separation between any two localities ranges from 3 km to 60 

km, these differences are minimal . 

Within the Nol ichucky Shale , ten commonly occurring l ithologies are 

important ( Figure 4 . 4 ) . At any one locality from 7 to 9 lithologies may 

be present . Lithologies which are absent at one or more localities 

( e . g . , FPG,  FPGWS , EPG , SWXPG ; refer to Figure 4 .  2 for meaning of 

lithologic abbreviations ) ,  generally are not major constituents at 

localities where they do occur . On the other hand , several lithologies 

occur at every locality ( IPG, MWS , OPG, XPG , XPGWS , S ;  see Figure 4 . 2) . 

Typically, these most frequently observed lithologies exhibit uni formity 
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Figure 4 . 1. Fourteen recurring lithologies within the upper Conasauga 
Group . 

A=FPG , foss iliferous packstone/grainstone; 
B=FPGWS , fossiliferous packstone/grainstone interbedded with shale ; 
C=MWS , mudstone interbedded with shale ; 
D=OPG , oolitic packstone/grainstone; 
E=XPG , laminated peloidal packstone/grainstone ; 
F=XPGWS , laminated peloidal packstone/grainstone interbedded with 

shale ; 
G=EPG , peloidal packstone/grainstone ; 
H=IPG , intraclastic packstone/grainstone ; 
I=S , shale ; 
J=SWXPG, shale interbedded with laminated peloidal 

packstone/grainstone ; 
K=CL, cryptalgalaminate; 
L=STROH , stromatolitic limestone ; 
H=THROH, thrombolitic limestone; 
N=NOPG , oncolitic-oolitic packstone/grainstone 

Scale bar=3 centimeters . 





LITHOLOGY 

FPG .. Fossiliferous 
Pkst/Gmst 

Figure 4.6. A. 

FPGWS=Fossililerous 
Pkst/Grnst interbedded w/ 

Shale 
Figure 4.6. B. 

MWS .. Mudstone 
interbedded with Shale 

Figure 4.6. C. 

OPGaOolitic Pkst/Grnst 
Figure 4.6. D. 

XPGaLaminated peloidal 
Pkst/Grnst 

Figure 4.6. E. 

XPGWS .. Laminatod peloidal 
Pkst/Grnst interbedded with 

Shale 
Figure 4.6. F. 

EPG .. Peloidal Pkst/Grnst 
Figure 4.6. G. 

IPG=Intraclastic Pkst/Grnst 
Figure 4.6. H. 

s .. shale 
Figure 4.6. I. 

SWXPG .. Shale interbedded 
w/ Laminated peloidal 

Pkst/Grnst 
Figure 4.6. J. 
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CHARACTERISTICS 

Thin· to medium·bedded (5·30 em); glauconitic; locally 
graded; trilobites and echinoderms; rippled and 

megarippled tops; abundant intraclasts and hardgrounds 

Very thin· to thin·beddod (1·5 em) limestone; separated by 
shale partings and thin interlayers, dolomite seams, and 

hardgrounds; trHobites and echinoderms; basal lags; 
lining-upward 

Very thin· to thin-bedded (1·5 em) limestone; shale 
interlayers (commonly dolomllized); contacts sharp; faintly 

laminated; vertical and horizontal burrows; stylolites 
common; rare echinoderms and trilobites 

Thin- to thick·bedded (5·50 em); generally spherical 
particles; abundant fossils (echinoderms and tr�oblles); 

megarippled upper surfaces; discontinuous hardgrounds 
and shale drapes; sharp basal contacts 

Thin· to medium-bedded (5·30 em); faint planar· and 
low-angle cross-laminations; bedding-plane traces; tool 

marks and groove casts; gutter casts 

Very thin· to thin-bedded (1·5 em) limestone; separated by 
shale interlayers; linsen·beds; microhummocky and planar 
laminations; burrows; fining-upward sequences; loading; 

mlcroconvolutions; pseudonodules 

Thin· to medium·bedded (5-30 em); reworked and rounded 
pieces of consolidated calcareous mud; coincides with very 

small intraclasts; subrounded micritic particles; 
moderate-sorting; discontinuous hardgrounds 

Thin· to thick·beddod (3·50 em) reworking of other 
consolidated lithologies by bottom currents; internal 

structures absent; subparallel to random clast orientation; 
very poor sorting; clasts associated with line· to 

coarse-grained matrix ; clasts project above upper bedding 
surface: some clasts highly angular 

Fine·gralned silt and clay: megascopic fossils generally 
absent; lack sedimentary structures; color varies from dark 

gray-green to maroon 

Predominantly shale with very thin· to thin·bedded (1·5 em) 
laterally discontinuous peloid interlayers: limestone: sharp, 

scoured bases and diffuse tops; loading: .  
mlcroconvolutlons; pseudonodules 

INTERPRET AT ION 

Subtidal; open marine 
subwave·base: storm sand 

sheets: high·energy 

Subtidal; open marine 
subwave-base; hemipelagic 

deposition; low-energy 

Subtidal; open marine 
subwave·base; hemipelagic 

deposition: low-energy 

Subtidal; open marina 
subwave·base: storm 

reworked oolitic sand sheets; 
lowlhigh·energy 

Subtidal: open marine 
subwave·base; storm 
reworked; high-energy 

Subtidal; suspension 
deposition and current 
reworking: low-energy 

Subtidal; open marina 
subwave-base: storm 

reworked; high-energy 

Subtidal; open marine 
subwava·base; storm 

deposits; high-energy 

Subtidal; hemipelagic 
background deposition: 

low·enargy 

Subtidal; suspension 
deposition and current 
reworking; low-energy 

Figure 4 . 2 .  Dist inguishing features of the 10 most dominant lithologies 
recognized in the Nolichucky Shale . 



LITHOLOGY 

Ct.Cryptalgallamlnites 
Figure 4.6. K. 

STROM .. Stromatolites 
Figure 4.6. L 

THROM .. Thrombolites 
Figure 4.6. M. 

NOPG .. Qncolitlc-oolltic 
Pkst/Gmst 

Figure 4.6. N. 

XPGWSalaminated peloidal 
Pkst/Grnst lntelbedded with 

Shale 
Figure 4.6. F. 

EPG·Peloidal Pkst/Grnst 
Figure 4.6. G. 

IPGalntradastic PkstiGrnst 
Figure 4.6. H. 

SaShale 

SWXPGaShale Interbedded 
w/ Laminated peloidal 

PkstiGmst 
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CHARACTERISTICS 

Medium· to very thick·bodded (10 em to> 1 m); Irregular 
laminations; laminated dolostone; common mudcracks; 
mlcrotepee structures: lacks fossils; frequent doming to 

low·relief LLH stromatolites 

Thick· to very thick·bedded (30 em to > 1 m); laterally linked 
hemispheroids; laterally linked stacked hemispheroids less 

common; mottling; fenestral fabric 

Thick· to very thick·bedded (30 em to> 1 m); unlaminated 
stromatolites with clotted or digitate fabric; Renalcis 

common; burrowed; flanked by fossiliferous. oolitic, and 
oncolitic pkstlgrnst 

Thick· to very thlck·bedded (30 em to > 1 m); ooids and 

oncoids commonly exceed 2 mm In diameter; occasional 
rippled surfaces 

Very thin· to thin·bedded (HO em) limestone; separated by 
discontinuous shale drapes; scoured bases and tops; rare 

burrows; low·angle cross laminations 

Thick· to very thick·bedded (30 em to> 1 m); reworked 
cryptalgal laminile and mudstone peloids; intraclasts 

common; cross·stratilled 

Medium·bedded (10·30 em); generally parallel clast 
orientation; coarse-grained matrix; little or no mudstone or 

shale In matrix 

Minor constituent 

Minor constituent 

INTERPRETATION 

lower to upper Intertidal; 
perhaps supratidal 

lower Intertidal; low-energy 
tidal flat 

Very shaDow subtidal; 
above normal wave·base 

Very shaDow subtidal; 
above normal wave-base; 

moderate·energy 

Subtidal; suspension 
deposition and current 
reworking; low·energy 

Very shallow subtidal; 
above wave·base; 

moderate· to high·energy 

Subtidal; probably above 
normal wave-base: storm 

reworked; high·energy 

Figure 4.3. Distinguishing features of the 9 most dominant lithologies 
recognized in the Maynardville Limestone. 
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Figure 4 . 4 .  Bar graph showing the distribution of  the ten most common 
lithologies in the Nolichucky Shale at five different localities . 
Percent occurrence is standarized for each locality and is based on 
the number of transitions for any particular l ithology divided by 
the total number of transitions at that locality . Each value is 
then normalized to 1 00% . For example, at the Joy #2 locality, OPG 
occurs 1 88 t imes out of 628 total transitions , thus 188/ 628 
( 100 )=29 . 94% . The total number of lithologi c  trans itions is much 
less for I-75  and BG . These sections only represent the upper -90 
meters of Nol ichucky Shale. The lower portion is not exposed at 
these localities . These ten lithologies are the most common 
l i tholog ies in the Nolichucky Shale ( initially a number of other 
subordinant lithologies occurred , but dur ing substitutability 
analys is less common lithologies were recategorized into 
geologically similar lithologies ) .  At any one locality fewer than 
ten lithologies are observed . For example , at I-75  EPG and SWXPG 
are not observed . The absence of lithologies can be explained in 
one of two ways : ( 1 )  missing lithologies did not occur in the 
initial data base (marked by "Not Present" ) or ( 2 )  missing 
lithologies were present initially , but dur ing substitutability 
analysis they were recategorized into a geologically similar 
lithology ( e . g . , at I-75  SWXPG substituted into S ;  it is marked by 
"Subst . to S" ) .  
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Figure 4 . 5 .  Bar graph showing the distribution of the nine most common 
lithologies in the Maynardville Formation at three different 
localities . Percent occurrence calculated as for Figure 4 . 4 .  
Notice that the total number of lithologic transitions at each 
locality is small relative to those observed in Figure 4 . 4 .  Fewer 
transitions result because lithologies are much thicker . Prior to 
conducting embedded Markov chain analysis , transition frequency 
matrices for each locality were combined to increase the data base . 
This procedure reduced the number of sampl ing zeros within the 
matrix , making the Markov chain more statistically valid . 
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in percent occurrence from place to place . Lithologies within the 

Maynardville show a similar pattern (Figure 4 . 5) .  Lithologic assemblages 

within the Nol ichucky Shale and Maynardville Limestone display l ittle 

temporal or spatial variability . This suggests that the depositional 

regime during sedimentation of each of the formations was relatively 

constant . Thus , within the geographic area under investigation, 

signi ficant environmental gradients were not present . However ,  it is 

important to note that a maj or lithologic change does take place across 

the Nolichucky-Maynardville boundary, which has led me to treat the two 

formations separately . 

Depositional Environment 

Prior to 1 970 ,  geologic investigations of the Nolichucky Shale and 

Maynardvi lle Limestone in Tennessee and Virginia stressed generalized 

lithologic descriptions and paleontologic data ( i . e . , Hall and Amick, 

1934 ; Butts , 1 940 ; Rodgers and Kent , 1948 ; Raymond, 1 959 ; Havryluk , 

1963;  and Derby, 1965 ) .  In recent years , several workers have inferred 

depositional models for upper Conasauga strata in the area ( See Milici 

and others , 1973 ;  Markello , 1979 ; and Markello and Read, 1 981  and 1982 ) . 

Milici and others ( 1973)  conducted an examination of the Nol ichucky 

Shale and Maynardville Formation exposed along U . S .  Interstate 75 

( locality B of this study) on Copper Ridge . They discerned several 

lithofacies : ( 1 )  stromatolitic bioherms , ( 2 )  thin, irregularly bedded 

algal limestones , ( 3 )  cobbly weathering limestones , ( 4 )  banded 

argillaceous limestones , ( 5 )  oolitic calcarenites , ( 6 )  intraclastic and 
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oolitic washover beds , and ( 7 )  subaerially exposed limestones and 

dolostones . In general , strata from this locality were interpreted as 

"lagoonal" sediments , protected from oceanic currents and waves , bounded 

to the east by an extensive carbonate bank and to the west by 

siliciclastics . 

Markello and Read ( 1981 and 1982) studied both the Nolichucky Shale 

and the Maynardville Limestone in Virginia.  They defined three major 

depositional environments : an intrashelf basin (Nolichucky Shale) ,  a 

carbonate ramp with subtle westward slopes (Maynardville Limestone) ,  and 

a coeval peritidal carbonate platform to the east ( Elbrook and/or 

Honaker Formations ) .  Deposition in the intrashelf basin, as described 

by Markello and Read ( 1981 ) ,  resulted in a complex interbedded 

assemblage of storm-generated calcareous shale ,  laminated calcareous 

siltstone , intraformational flat-pebble conglomerate , bioclastic 

l imestone , and oolitic limestone . The carbonate ramp was characterized 

by below wave- base accumulations of foss il-rich "ribbon" carbonates , 

thin intraclastic limestone, and oolitic shoals . 

In the vicinity of Knoxville ,  the Nolichucky Shale is characterized 

by dark gray-green to maroon shale ,  which is interbedded with carbonate 

mudstone , packstone, and grainstone ( see Figure 4 . 2) .  Based upon 

environmentally sensitive criteria, this unit was deposited under 

storm-dominated subtidal marine conditions ( Figures 4 . 2  and 4 . 6 ) . 

Conversely , the Maynardville Limestone was deposited in very shallow 

subtidal , intertidal , and perhaps supratidal settings (Figure 4 . 6) and 
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is composed predominantly of algal ( stromatolites , thrombolites , and 

cryptalgalaminates) and oncolitic/oolitic lithologies ( see Figure 4 . 3 ) .  

Procedure 

Overlying subst itutability analysi s ,  embedded Markov chain 

analysi s ,  and modified autoassociation analysis were applied to the 

Nolichucky/Maynardville sequence in central east Tennessee . This 

quantitative approach takes place on three levels : ( 1 )  initial 

classification of lithologies , ( 2 )  categorizing lithologies , and 

( 3 )  testing categorized lithologic data for cycles . The procedure for 

assessing stratigraphic cyclicity is described below using the 

Interstate-75 section ( an identical procedure has been followed when 

testing other localities ) because the most complex cyclic pattern 

emerges from analysis of this locality . 

Classification of Lithologies 

Lithologies must be defined in a rigorous and consistent fashion so 

that rock types remain mutually exclusive . Established rock classifica

tion schemes ( e . g . , Dunham, 1962 ) should be used . Inconsistent 

classification of rock units biases analysis of sequential data . The 

following must be avoided : ( 1 )  nonsystematic classification of 

dissimilar lithologies into one rock type , ( 2 )  indiscriminant assignment 

of a single lithology into several categories , and ( 3 )  generalization of 

a heterogeneous rock unit into a single lithology ( i . e . , fossiliferous 
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packstone with mudstone lenses should be considered distinct from and 

thus independent of fossiliferous packstone with oolitic grainstone 

lenses ) .  

During field examination every practical precaution was taken to 

obj ectively measure and consistently define each lithology. Each change 

in lithology as well as the thickness of each lithology was recorded in 

ascending stratigraphic order . At the I-75 locality, the upper 94 m of 

the Nolichucky Shale wwere examined ; the lower 60 m were not exposed . 

Fifteen distinct lithologies were recognized ( Figure 4 .  7 ) .  The 

stratigraphic position of each lithology was recorded into a transition 

frequency matrix ( Figure 4 . 8) . The transition from one lithology to an 

overlying , identical lithology was not permitted . 

Categorizing Lithologies 

Many stratigraphic sequences reveal numerous distinct lithologies . 

A large number of original lithologies must be reduced for two reasons : 

( 1 )  cyclic patterns are most apparent when lithologies are grouped into 

relatively few categories , and ( 2 )  large matrices tend to invalidate 

Markov chain analysis ( for discussion , see Weber and others , 1986 ) . A 

standard method for reducing the number of lithologies is by subj ec

tively combining them based on experience ; however ,  the embedded Markov 

chain technique used here is sensitive to minor changes in the structure 

of the transition frequency matrix , and variation or inconsistency in 

the procedure for grouping lithologies can cause significant changes in 

the nature of the Markov chain . For this reason , an obj ective, 
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SYMBOL NUMBER OF LITHOLOGIES 
OCCURRENCES 

A 2 THROM= Thrombolite 

B 26 MWS=Mudstone interbedded with Shale 

c 34 FPG=Fossiliferous Packstone/Grainstone 

D 9 FPGWS=Fossiliferous Packstone/Grainstone 
interbedded with Shale 

E 77 IPG=Intraclastic Packstone/Grainstone 

F B M=Mudstone 

G 4 XFPG=laminated Peloidal Packstone/Grainstone 
interlayered with Fossiliferous Packstone/Grainstone 

lenses 

H 1 4  MXPGWS=Mudstone with laminated Peloidal 
Packstone/Grainstone lenses interbedded with 

Shale 

36 OPG=Oolitic Packstone/Grainstone 

J 1 03 S=Shale 

K 1 1  SWXPG=Shale interbedded with laminated Peloidal 
Packstone/Grainstone 

L 1 2  UPG=Giauconitic Packstone/Grainstone with 
abundant Ooids and Fossils 

M 5 XPG=Laminated Peloidal Packstone/Grainstone 

N 1 7  FXPG=Fossiliferous Packstone/Grainstone 
interlayered with laminated Peloidal 

Packstone/Grainstone lenses 

0 6 XPGWS=laminated Peloidal Packstone/Grainstone 
interbedded with Shale 

Figure 4 . 7 .  Lithologies observed at I - 75 ' before grouping simi lar 
lithologies by use of substitutability analysis . Carbonate 
lithologies (except thrombolite ) are after Dunham ( 1962 ) 
classif ication . F ield classification of thrombolites follows 
Kennard and James ( 1987 ) . Shale refers to fine-grained 
siliciclastic material predominantly of clay- and silt-sized 
particles . 
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Figure 4.8. A 15 X 15 transition frequency matrix which represents the 
upper 94 meters of the Late Cambrian Nolichucky Shale located along 
Interstate 75. This matrix exhibits 225 individual cells. 
Darkened cells along the main diagonal indicate structural zeros 
(identical lithologies cannot overlie one another). See Figure 4.7 
for geologic meaning of abbreviated lithologic symbols. Asterisks 
(*) point out four column totals which do not sum to corresponding 
row totals. This row-column discrepancy exists because: (1) the 
lowermost lithology in the sequence differs from the uppermost 
lithology and (2) identical lithologies do not occur directly below 
and above a thin covered interval (see discussion of Driese and 
Dott, 1986). The covered or missing interval is 75 centimeters 
thick and occurs midway up the sequence. 
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OVERLYING LITHOLOGIES 

c D E F G H J K L M N 0 
row 

totals 

0 0 0 0 0 0 0 0 0 1 0 2 

26 0 0 0 0 0 0 0 0 0 0 26 

c 0 0 0 2 21 3 2 0 1 1 34 

D 0 0 0 0 0 4 1 0 0 1 0 10lll 

(/) E 1 0 11 11 29 2 2 4 7 3 76• w 
" 

F 0 0 2 1 1 0 1 0 0 0 8 0 
....J 
0 

G 0 0 1 0 0 0 0 0 0 0 4 I 
t-
:J 

H 0 1 1 0 1 2 0 0 0 1 0 14 
" 
z 
>- 0 0 
....J 

0 2 0 0 1 1 0 0 0 36 
a: 
w J 21 13 1 26 3 1 9 1 4 0 103 0 
z 
::> K 0 2 0 0 2 0 0 1 2 0 11 

L 0 0 3 0 1 0 0 0 0 0 11lll 

M 0 0 0 0 2 0 0 0 0 0 

N 0 2 0 0 10 0 0 0 2 4 0 0 

0 0 0 1 0 5 0 0 0 0 0 0 0 0 

column 2 26 34 9 77 8 4 14 36 103 11 12 364 
totals lll lll • • total number 

of transitions 

Figure 4.8 (continued) 
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iterative approach has been chosen to reduce the matrix size ( number of 

lithologies) incrementally one lithology at a time. Overlying 

substitutability analysis is a classification procedure that uses 

computer clustering techniques to group lithologies on the basis of 

their context in a stratigraphic sequence. Two or more lithologies which 

exhibit high conditional probabilities of being underlain by similar 

lithologic assemblages are considered equivalent. More simply, if two 

different lithologies are commonly underlain by a third lithology, the 

two overlying lithologies exhibit high overlying substitutability. The 

two overlying lithologies are combined, thus reducing the total number 

of lithologies by one. 

Substitutability analysis was applied to the I-75 data, and the 

results are given in Figures 4.9, 4.10, and 4.11. A transition 

frequency matrix (Figure 4.8 ) is used to generate a downward transition 

probability matrix (Figure 4.9). The downward probability matrix 

indicates the relative frequency with which one lithology is preceded by 

another lithology. Next, an overlying substitutability matrix 

( Figure 4.10) is computed from the probability matrix. Lithologic 

similarity is based on the tendency for lithologies to be preceded 

( underlain) by the same lithologies. A simple procedure is presented in 

Davis (1986) for constructing such matrices. The substitutability 

matrix (Figure 4.10) contains cells with values ranging from 0 to 1, and 

is symmetrical about the main diagonal. Because this matrix is 

symmetrical, conventional clustering methods can be used to hierarchi

cally classify lithologies exhibiting high substitutability. Although 
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A B C  D E  F G H J K L M N 0 

A 0 .000 .000 .000 .000 .000 .000 .000 .000 .010 .000 .000 .000 .059 .000 

B .000 0 .000 .000 .338 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

c .000 .000 0 .222 .013 .125 .000 .000 .056 .204 .273 .167 .000 .059 .167 

D .000 .000 .029 0 .039 .000 .000 .000 .000 .039 .091 .000 .000 .059 .000 

E .500 .000 .324 .333 0 .000 .500 .071 .306 .282 .182 .167 .800 .412 .500 

F .000 .000 .059 .111 .000 0 .000 .143 .028 .010 .000 .083 .000 .000 .000 

G .000 .000 .029 .000 .026 .000 0 .071 .000 .000 .000 .000 .000 .000 .000 

H .000 .038 .029 .000 .013 .250 .000 0 .028 .068 .000 .000 .000 .059 .000 

.000 .000 .000 .222 .000 .000 .250 .071 0 .262 .364 .083 .000 .000 .000 

J .500 .808 .382 .111 .338 .375 .250 .643 .500 0 .091 .333 .200 .235 .000 

K .000 .077 .029 .000 .000 .250 .000 .000 .028 .010 0 .167 .000 .118 .000 

L .000 .000 .088 .000 .013 .000 .000 .000 .000 .068 .000 0 .000 .000 .000 

M .000 .000 .000 .000 .026 .000 .000 .000 .000 .010 .000 .000 0 .000 .333 

N .000 .077 .000 .000 .130 .000 .000 .000 .056 .039 .000 .000 .000 0 .000 

0 .000 .000 .029 .000 .065 .000 .000 .000 .000 .000 .000 .000 .000 .000 0 

Figure 4. 9. Downward transition probability matrix. This matrix is 
computed by dividing each cell of the transition frequency 
(Figure 4.8 ) by its corresponding column total. For geologic 
meaning of character symbols see Figure 4.7. 
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A 8 C D E F G H J K L M N 0 

A 1 .700 .967 .649 .475 .500 .866 .754 .960 .443 .381 .775 .858 .910 .567 

8 .700 1 .741 .227 .691 .766 .404 .950 .850 .017 .178 .757 .240 .490 .000 

c .967 .741 1 .628 .518 .558 .815 .807 .958 .436 .369 .811 .789 .887 .504 

D .649 .227 .628 1 .166 .270 .843 .391 .602 .912 .824 .712 .723 .725 .675 

E .475 .691 .518 .166 1 .493 .274 .655 .594 .050 .149 .500 .163 .329 .035 

F .500 .766 .558 .270 .493 1 .289 .679 .662 .1 00 .254 . 775 .172 .524 .063 

G .866 .404 .815 .843 .274 .289 1 .522 .278 .749 .660 .671 .891 .860 .655 

H .754 .950 .807 .391 .655 .679 .522 1 .873 .133 .287 .797 .336 .535 .085 

.960 .850 .958 .602 .594 .662 .278 .873 1 .383 .387 .864 .705 .844 .439 

J .443 .017 .436 .912 .050 .100 .749 .133 .383 1 .903 .513 .608 .602 .636 

K .381 .178 .369 .824 .149 .254 .660 .287 .387 .903 1 .590 .392 .463 .432 

L .775 .757 .811 .712 .500 .775 .671 .797 .864 .513 .590 1 .532 .770 .391 

M .858 .240 .789 .723 .163 .172 .891 .336 .705 .608 .392 .532 1 .908 .778 

N .910 .490 .887 .725 .329 .524 .860 .535 .844 .602 .463 .770 .908 1 .689 

0 .567 .000 .504 .675 .035 .063 .655 .085 .439 .636 .432 .391 .778 .689 1 

Note: This matrix is computed from the downward probability matrix using the 
following equation: 

m 

2:: P
ai 

P
bl 

lz:o1 

m 
2 

m 
2 

2:: P
al 2:: P

bl 
1=1 1=1 

where, 

OS ab =overlying substitutabilil}' of states a and b, 
P al .. transition probabilil}' to the I th state, given state a, 
P bl =transition probability to the I th state, given state b, 
m = nW'Tlber ot states In the system. 
For geologic meaning of character symbols, see Figure 4.7. 

Figure 4.10. Overlying substitutability matrix. 
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M D 0 0 J K N A c L E F 8 H 
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.9 

.8 

.7 

.6 

R
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.4 

.3 

.2 

.1 

0 

Figure 4.11. Overlying substitutability dendogr� (for geologic meaning 
of character symbols see Figure 4.7); R =the squared multiple 
correlation, which is the sum of squares between all clusters 
divided by the corrected to�l sum of squares. Lithologies 
correlated at a high value of R are more likely to substitute for 
each other in the sequence and can therefore be combined into a 
single category. These pairings are combined successively until 
the resultant matrix reaches a more manageable size. 
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substitutability analysis does not invoke a formal statistical testing 

procedure , the computer produced dendograms retain all information of 

transition frequency matrices (Doveton and Skipper , 1974 ) . 

Hierarchical clustering of the overlying substitutability matrix 

reveals a dendogram (Figure 4 . 1 1 ) .  This graph is used to reduce 

incrementally the s ize of the transition frequency matrix . From 

Figure 4 . 1 1 ,  it is  observed that lithologies A and C are the first to 

cluster . This indicates high interchangeabi lity within the strati

graphic  sequence . Subsequently , both lithologies are combined into one 

composite lithology . As a result of this process , the transition 

frequency matrix is reduced from 15 to 14 lithologies . This procedure 

is continued . 

Testing For Cyclicity 

Two compatible techniques 

lithologic data for cyclicity. 

chain analysis  is conducted . 

are employed for testing sequential 

Initially , f irst-order embedded Markov 

If serial repetition of lithologies is 

revealed by Markov chain analysi s ,  modified autoassociation analysis is 

then carried out to locate cycles in the stratigraphic section . 

Although embedded Markov chain analysis is useful , it does have 

some limitations whi ch have not always been apprec iated by geologists . 

First-order embedded Markov chain analys is only indicates Markovian 

tendency between some lithology ! and its immediate predecessor t- 1 .  

Within a stratigraphic sequence the application of Markov chain analysis 

may reveal one or more statistically valid lithologic  trans itions . If ,  
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for example . two lithologic  pairs occur and can be stacked. a longer 

term cycle will result ( two lithologic transitions say ! underlain by 

t-1  and t- 1 underlain by t-2 are typically represented as t-2 overlain 

by t- 1 .  which is overlain by _!:) . This s implistic approach is usually 

followed . However , a problem occurs because according to first-order 

Markov chain theory. t-2 has no affect on the occurrence of t .  Thus . 

the cycle t-2 to t-1  to ! may not actually occur in the stratigraphic 

sequence . A procedure is needed to test stratigraphic columns to 

determine if longer order chains can be recognized . Markov chains 

classified by higher order and greater dependence could be used to 

examine longer term chains . but restructuring of first-order transition 

frequency matrices to higher order matrices is tedious especially if  

several stratigraphic sequences are examined . To c ircumvent the problem 

of recognizing higher order chains . I propose the use of  modi fied 

autoassociation analysis  as an empirical way of assessing cyclicity. 

An iterative approach is used to analyze Upper Cambrian strati

graphic sections for cycles as the number of lithologies are reduced . 

Again. I -75 data are presented . After each one step ( one lithology) 

reduction in the transition frequency matrix . embedded Markov chain 

analysis was conducted. Initially. as the size of  the matrix decreases , 

the complexity of the Markov chain increases . This results because the 

f irst few c lustered lithologic pairs are highly s ignificant . Distortion 

increases as successive levels of clusters are averaged together . As a 

result, Markovian tendency diminishes rapidly, most trends break down in 
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one or two iterations ( Figure 4 . 12 ) . The same general pattern is 

observed for each stratigraphic interval which was tested . 

At I-75  the 8 X 8 ( i . e . , using 8 lithologies ) transition frequency 

matrix ( Figure 4 . 1 3 )  reveals the best developed Markov chain . 

Lithologic transitions which depart from randomness are select ively 

identified by the computer and are shown in Figure 4 . 14 .  Those 

transitions which occur more often than expected are graphically 

displayed in Figure 4 . 15 .  The most significant serial repetition of 

lithologies ( cycle) is chosen . This cycle is further examined through 

modified autoassociation analysis ( Figure 4 . 16 ) , which indicates the 

stratigraphic position and range of each cycle . Also , by knowing the 

thickness of each individual cycle in the stratigraphic sequence , a mean 

thickness value is calculated for each type of cycle . Through this 

approach the s ignificance of cyclicity can be determined . 

Results 

An integrated approach of overlying substitutability analysis , 

embedded Markov chain analysis , and modified autoassociation analysis 

was applied separately to each of five stratigraphic  intervals in the 

Nolichucky Shale and to one composite section , representing three nearby 

localities in the Maynardville Limestone ( the original , unmanipulated 

transition frequency matrices , downward transition probability matrices , 

substitutability matrices , etc . are on file at the Department of 

Geological Sciences) . Lithologic units in the Maynardville are much 



MATRIX SIZE SUBSTITUTED LITHOLOGI ES 

14 X 1 4  

1 3  X 1 3  

1 2 X 1 2  

1 1  X 1 1  

1 0  X 1 0  

9 X 9  

a x  a 

(Number of occurrences of lithologies are in parentheses) 

THROM (2) ---7 FPG (34) 

MWS (26) f- MXPGWS (1 4) 
- ------- -- - --- - -

FXPG (1 7) ---7 FPG (34) [THROM (2)] 

S (1  03) f- SWXPG (1 1 )  

FPGWS (9) f- XFPG (4) 

OPG (36) f- UPG (1 2) 

M (8) ---7 MWS (26) [MXPGWS (1 4)] 

low 

COM PLEXITY OF 
MARKOV CHAIN 

high 

--------------------------------------------------------�b�ak down � 1 
7 X 7 FPGWS (9) [XFPG (4)] f- XPG (5) 
6 X 6 FPG (34) [FXPG ( 1 7) ,  THROM (2}] f- OPG (36) [UPG (1 2)] 

5 X 5 S (1 03) [SWXPG (1 1 }] f- XPGWS (6) 

ITERATION WAS 
TERMINATED 

Figure 4 . 12 .  Iterative approach used to identi fy most complex Markov chain.  By the 
eighth cluster ( 7  X 7 matrix) successive levels of clusters had been averaged 
sufficiently to cause enough distortion to break down the Markov chain . 

-
00 
00 



189 

O VERLYI NG LITHOLO G IES 
C(N, B(H, row 
A) D(G) E F) I (L) J(K) 0 M total s  

(f) 1 1  3 6 29 1 0 52 
w 
-

CJ 1 0 5 0 0 1 4  
0 
...J 
0 E 1 9  1 3  31  3 4 7 6  
I 
.__ B(H, ...J 4 1 3 8 0 0 4 3  
CJ 
z I (L) 3 3 1 1 0 0 4 6  
>-...J 
0: J(K) 21 2 26 37 0 1 1 1 2  w 
0 
z 0 1 0 5 0 0 0 0 6 ::> 

M 0 0 2 0 0 1 

column 51 1 3  77 4 3  4 7  6 
totals 

total number 
of transitions 

Figure 4 . 1 3 .  An 8 X 8 transition frequency matrix for I - 75 outcrop of 
Nol ichucky . This matrix is derived from the original 15 X 15 
matrix . Reduct ion of matrix s ize was accomplished by applying 
overlying substitutability analysis . Symbols are used to 
abbreviate full lithologic names , for interpretation see Figure 
4 . 7 .  



Step Transition Observed Expected (Obs. freq.l Chi Probabi l ity 
no. type frequency frequency N) X 1 00 Square (80% conf.) Remarks 

0 
1 1' 2 0 .0 3  0 .56 1 52.57 0 .0 0 0 0  ? 

M 
E 2 1' 27 3.1 1 7.63 1 1 6.55 0 .0 0 0 0  211: 

B(H}F) 

3 
B(H}F) 

1' 37 3.69 1 0 .45 77.0 8 0 .0 0 0 2  * 

J(K)  
4 

J(K) 
1' 38 5.77 1 0 .73 55.53 0 . 0 257 * 

I (L) 
5 

E 
1' 5 0 .26 1 .41  44.67 0 . 1 523 * 

0 

6 DtG ) 3 0 .36 0 .85 36.0 1 0 .421 1 ? 
I (L) 

Figure 4 . 14 .  Computer-generated table showing results of Markov chain analysis for I-75 
outcrop of Nol ichucky . Symbols are used to abbreviate full lithologic names , for 
interpretation see Figure 4 . 7 .  Under remarks column:  *=likely transitions ; 
?=geologically weak transitions because of their low total number of occurrences 
relative to the total number of transitions . The total number of transitions 
(N)=354 . 

...... \0 0 
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f- 0 % OCCURRENCE OF TRANSITION 
t ARROW WIDTH 

IN SECTION 

M 1' <1% 
t 1-5% 

1' 5-10% 

1' 10-15% 
• >15% 

--7 D(G) 

Figure 4.15. Graphical display of lithologic transitions which are 
observed more often than expected in the Nolichucky outcrop at 
I-75. Note that arrow widths indicate the normalized percent 
occurrence of a lithologic transition with respect to all 
transitions in a stratigraphic section [(observed frequency I total 
number of transitions) X 100]. Shaded area highlights the most 
significant serial repetition. 
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Figure 4.16. Modified autoassociation analysis showing the stratigraphic position and 
range of cycles for Nolichucky Shale at I-75 outcrop. X-Y plots show the complete 
cycle and each partial cycle. Each point which falls along the Y-axis represents a 
failed match of the pertinent cycle at that stratigraphic position. Stratigraphic 
position is in meters. 
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thicker, so data from the Joy 2, Scarboro Road, and S-3 Pond cores were 

combined to increase the total number of lithologic transitions. This 

enables a more valid test of Markov chain analysis to be conducted. 

The results for the I-75 locality have been previously summarized. 

Those for the other four localities analyzed are shown in Figures 4. 17 

and 4. 18 ( transition frequency matrices used to generate cycles and a 

graphical display of pertinent cycles are presented here; computer 

generated tables showing statistical details and autoassociation 

diagrams are available from the Department of Geological Sciences) . 

The vertical and lateral extent of stratigraphic intervals of 

identical, statistically valid cycles at all localities is shown in 

Figure 4. 19. Important observations relative to that figure are as 

follows: 

1. "NC" refers to stratigraphic intervals where cyclicity does not 

occur. 

2. No cycles are observed in the Nolichucky Shale at Beech Grove 

or in the Maynardville Limestone at Scarboro Road. 

3. The Maynardville portion of the Joy 2 section is divided into 

two columns because two distinct cycles that occur there have 

overlapping stratigraphic ranges. 

4. The I-75 section is divided into six columns. The complete 

cycle ( most widely spaced dot pattern) is represented along 

with each of the five partial cycles ( more tightly packed dot 

patterns) . 
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Figure 4.17. Transition frequency matrices that reveal the most complex 
Markov chain. Nolichucky Shale localities include Beech Grove (a), 
Joy 2 (b), Scarboro Road (c), and S-3 Pond (d). The composite 
section (e) reflects lithologic transitions in the Maynardville 
Limestone (combined data from Joy 2, Scarboro Road, and S-3 Pond 
localities). Lithologic abbreviations are keyed to Figures 4.1, 
4.2, and 4.3. Lithologies which occur less often are not displayed 
in parentheses following the dominant lithologic type as in Figure 
4.13. Only the dominant lithologies are presented here. 
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SWXPG b i 
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Figure 4.18. Graphic display of cycles as determined from embedded 
Markov chain analysis of transition frequency matrices in Figure 4.17. 
Only those lithologic transitions which are observed more often than 
expected are displayed. Geologically significant cycles, if present, 
are emphasized by diagonal pattern. Letters a, b, c, and d correspond 
to Nolichucky sections at Beech Grove, Joy 2, Scarboro Road, and S-3 
Pond, respectively. Cycles observed in the Maynardville are shown (e). 
Arrow widths are calculated as in Figure 4.15. 
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1-75 

Maynardville Formation Is poorly exposed 
ati-7Sand BG. This Interval is notexamined 

for cyclicity. 

NC NC 

Lower portion of Nolichucky Shale 
Is not exposed at 1-75 or BG. 

80 

NC 

Figure 4.19. The vertical and lateral extent of stratigraphic intervals 
of identical, statistically valid cycles. Five localities have 
been examined for cyclicity (BG=Beech Grove road cut; 
I-7S=Interstate 75 road cut; Joy 2=Joy 2 core; Scarboro=Scarboro 
Road core; S-3 Pond=S-3 Pond core). NC=no cyclicity discovered in 
this interval. Patterns for cycle types are defined in Figure 
4.20. 
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Figure 4.20 lists pertinent characteristics of each type of cycle 

displayed in Figure 4.19. Examination of Figure 4.20 reveals that 

twelve distinct cycles are recognized in the Nolichucky/Maynardville 

sequence ( only four complete cycles are observed) . Cycles are comprised 

only of seven different lithologies. Other lithologies are present in 

the initial database ( see Figures 4.2 and 4.3), but they are not cyclic 

in occurrence ( e.g., cryptalgal laminites are an important lithologic 

constituent within the Maynardville Limestone, but they do not overlie 

or underlie any particular lithology with sufficient repetition to be 

identified as cyclic) . 

A useful parameter for assessing the "importance" of the various 

cycles is the percent of the total stratigraphic section which is 

composed of each cycle. Only three partial cycles at I-75 and the 

complete cycle at Scarboro Road account for more than 10% of the total 

thickness of their respective stratigraphic sections (see asterisks in 

right column of Figure 4. 20). Three of these cycles appear to be 

variations on a similar theme; shale overlain by mudstone or 

fine-grained pellet lithologies, which underlie intraclastic 

grainstones. In other words, shale which lacks storm beds grades up into 

muddy limestone with faint lamination ( low energy storm reworking) and 

then into storm intraclastic beds reworked from hardgrounds. Cycle tops 

do not exhibit vadose features or other evidence of emergence. 

Occasionally, this cycle is floored by storm reworked ooid grainstones. 

Evidence for cyclicity in the Nolichucky/Maynardville sequence is 

very weak. Most types of cycles are "simple" ( characterized by two 
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Figure 4.20. Characteristics of each cycle shown in Figure 4.19. 
Percent of stratigraphic section composed of each cycle is 
calculated by: [(number of cycles X average thickness of that 
cycle) I total thickness of stratigraphic section] X 100. 
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FORMATION LOCALITY PATIERN WHICH TYPE OF AVE. %OF STAAT. 
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[TKN. OF CYCLE (Cccomplete CYCLES EACH COMPOSED 
CYCLE OF EACH SECTION] cycle; P=partial cycle) (CM) CYCLE 

Nolichucky Beech Grove (BG) NO GEOLOGICALLY S IGNIFICAHT CYCLES OBS ERVEO 
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Figure 4.20 (continued) 
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lithologies ) and are not continuous through a stratigraphic section . 

More complex cycles ( involving three or more lithologies) are revealed 

only in the Nolichucky Shale at I-75 , but the complete ( 4  part) cycle 

occurs only five times . This number should be greater if there was a 

strong cyclic control to the development of the sequence. 

Although substitutability analysis and embedded Markov chain 

analysis indicate that the complete cycle within the Maynardville 

Limestone is statistically valid , autocorrelation analysis shows that 

the complete cycle does not actually occur and thus is not geologically 

meaningful . Three partial cycles occur in the Maynardville composite 

section . Each represents 4% or less of the complete stratigraphic column 

( see Figure 4 .  20) . Thus , the Maynardville Limestone in the sections 

studied here exhibits poorly 

Maynardville represents very 

developed 

shallow 

cyclicity . Because 

subtidal , intertidal , 

the 

and 

supratidal environments where minor changes in sea level would affect 

lithologic distribution , cyclicity should be more apparent . Conversely, 

the Nolichucky which shows greater cyclicity was deposited predominantly 

under shallow to intermediate depth subtidal conditions . 

Problems Involved in Analysis of Cyclicity 

Numerous investigators have identified cycles within sedimentary 

rocks . Many previous studies have based the occurrence of cycles on 

( 1) descriptive stratigraphic data , which typically lack statistical 

verification (e . g . , Aitken , 1978;  Bush and Fischer , 1981 ; Aigner ,  1985 ) , 
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( 2 )  older , flawed versions of Markov chain analysis ( Gingerich, 1969;  

Anderson and Goodman, 1957 ) ,  or 

associated closely 

Willemann, 1983 ) . 

with actual 

( 3 )  computer-generated models 

stratigraphic data ( Turcotte 

not 

and 

The approach described here uses several analytical 

techniques to model cycles , but stratigraphic information serves as the 

data base.  

A serious constraint of  stratigraphic data is  that many variables 

are based on a nominal or an ordinal scale of measurement . For example, 

rock types ( lithologies) are classified into mutually exclusive 

categories . As a result , powerful techniques of parametric statistics 

cannot be used ; I have demonstrated here that useful tests may still be 

employed . These techniques require few assumptions , use nominal and 

ordinal data , detect subtle trends or cycles not observed normally by 

unaided processing , and employ computers for rapid processing of large 

data sets . 

The integrated approach proposed here is superior to many other 

techniques which have been applied to assess stratigraphic cyclicity ;  

nonetheless , this method i s  not without potential drawbacks as noted 

below . 

1 .  Classif ication of lithologies involves some degree of 

subj ectivity . Care must be taken to obj ectively define mutually 

exclusive lithologies . Bias can be reduced through use of rock 

classification schemes such as that of Dunham ( 1962 ) .  

2 .  The chi-square statistic is used to test transition frequency 

matrices for Markov properties ( Powers and Easterling , 1982 ) . 
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Thus , the sample size ( the total number of transitions for each 

matrix) must be sufficiently large to guarantee similarity 

between the sampling chi-square distribution ( observed 

chi-square 

distribution 

statistic ) 

(expected 

and the 

chi-square 

theoretical chi-square 

value ) . When expected 

frequencies are too small ,  the observed chi-square statistic 

will be overestimated . To avoid incorrect inferences from 

chi -square hypothesis tests,  a general rule should be followed : 

no cell may have an expected frequency less than 1 ,  and no more 

than 20% of the cells may have expected values less than 5 

(Brown , 1985 ) . According to Brown ( 1985 ) , if  this rule is not 

satisfied , the distribution of the chi -square statistic may 

differ from the theoretical chi-square distribution . Several 

matrices from the Nolichucky/Maynardville data presented here 

do not meet these requirements . However , the number of 

transitions measured is sufficiently large to obtain 

statistically reliable estimates of the transition probabili-

ties . Several matrices have been tested for Markov chains 

after increasing the sample s ize . 

ately to each cell of the matrix . 

results significantly . 

Data were added proportion

This procedure did not alter 

3. In order to obtain a valid Markov chain , probabilities 

associated with the transitions between lithologies must not 

change substantially through time ( Harbaugh and Bonham-Carter , 

1970 ) . This concept is known as stationarity. If, for example, 
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a thick stratigraphic interval could be divided into smaller 

subintervals, transition frequency matrices constructed from 

each subinterval should be approximately equal to each other 

( should exhibit similar transition probabilities ) . If 

stationarity is not maintained, each subinterval should be 

reexamined separately for cycles . Unfortunately, many times 

subintervals do not exhibit a sufficiently large number of 

transitions ( see #2 above) unless the stratigraphic sequence is 

exceptionally thick and/ or reveals numerous transitions . 

Stationarity is broadly maintained within the Nolichucky Shale 

and within the Maynardville Formation, at least on a large 

scale. Because significant depositional and diagenetic 

environmental gradients were not present in each formation, 

lithologies should exhibit similar trans ition probabilities 

within each formation . However, several cycles occur only in 

selected portions of the complete stratigraphic interval .  This 

suggests that stationarity does not exist at a finer-scale . 

For stationarity to be maintained in the strictest sense, 

cycles would have to recur ( i . e .  , ABCABC • • •  ) throughout the 

stratigraphic interval being investigated . Clearly, few if any 

stratigraphic sequences would display stationarity at this 

scale . 

4 .  The first-order, discrete- lithology, d iscrete-time embedded 

Markov chain is considered in this study . This model was 

selected because it is geologically reasonable and is 
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structurally simple . It seems ideally suited to the complexity 

of natural environments , yet it is robust enough to maintain 

val idity even when "confronted with" rare events . 

higher-order Markov models may be equally appropriate . 

Conclusions 

The following conclusions are drawn from this investigation : 

Other 

1 .  First order Markovian cyclicity is very rare in the shallow 

subtidal , intert idal , and supratidal Maynardville Formation . 

2 .  No small-scale cycles are observed in the Nolichucky Shale at 

the Beech Grove locality or in the Maynardville Limestone in 

the Scarboro Road core . 

3 .  The subtidal limestone and shale lithologies within the 

Nolichucky Shale exhibit the most well-developed cycles . 

However ,  the maj ority of these cycles are "simple ,"  involving 

no more than two lithologies . 

4 .  The absence of well-developed cycles within the 

Nol ichucky/Maynardville sequence is probably attributed to 

local variability in the occurrence and distribution of 

lithologies in response to the storm-dominated paleo

environmental setting ( see Chapter 2 ) .  

5 .  The Markov method ( approach employed here) for stratigraphic 

analysis of small-scale cycles in the Late Cambrian of east 

Tennessee reveals that local processes were probably of prime 
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importance in producing the simple cycles discerned because 

some coeval parts of the sequence show cyclicity at one 

locality but not at another , and some intervals at a given 

locality show no cyclicity at all . 

The results suggest that at the scale of this analysis local 

control of lithologic repetition is more important than larger scale 

controls such as geoidal , tectonic , or glacioeustatic . Although these 

large scale processes doubtless occur , and must have effect on 

sedimentation , their record in the rocks may be almost totally masked by 

the response to very localized events . Thus , I would recommend greater 

caution in the interpretation of the causes of cyclicity, and in the 

testing of theoretical models constructed from assumptions about sea 

level changes , subs idence ,  and sedimentation rates . Although such models 

are important steps in the search for order in the stratigraphic record , 

establishment of the model must be followed by obj ective testing us ing 

real , detailed stratigraphic data . The study by Goldhammer and others 

( 1987 ) is just such a test which seems to validate one model of how 

short- term cyclicity may be produced . The results presented here 

suggest ,  however ,  that the rather regular and predictable cyclicity 

demonstrated by Goldhammer and others ( 1987 ) may be well recorded only 

in some environmental settings while absent in others . 
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CHAPTER 5 

ENVIRONMENTAL SYNTHESIS AND 1-tODEL FOR THE UPPER CONASAUGA 

NOLICHUCKY SHALE AND MAYNARDVILLE LIMESTONE SEQUENCE 

Introduction 

Middle and Late Cambrian time is recorded in much of continental 

North America and elsewhere by the widespread occurrence of carbonate 

and fine-grained siliciclastic rocks . Typically ,  these rocks were 

depos ited in tropical,  cratonic or epeiric seas . During the Late 

Cambrian in central east Tennessee and surrounding areas , deposition 

occurred within an epeiric sea ( see Chapter 1 ) .  Epeiric seas are rare 

today ; the best modern analogues include the Persian Gulf,  Shark Bay, 

Florida Bay and the Bahamas region , and the North Sea . However ,  these 

areas are not nearly as extensive as were most ancient epeiric seas . 

Also , ancient epeiric seas were , in general ,  more uniformly shallow, 

except where they were rarely differentiated into localized deeper 

intracratonic sub-basins . The Nolichucky Shale was deposited within 

such an intracratonic sub-basin . 

The interbedded package of limestone , dolostone , and shale , which 

comprises the Nolichucky Shale and Maynardville Limestone in central 

east Tennessee, was deposited in the transit ion between an intracratonic 

basin and a shallow-water carbonate platform . This transition shows no 

marked change in regional paleoslope . In part icular,  a well-defined 
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shelf-slope break indicated by shoreparallel reefal and sand bank 

accumulations is absent . It has been suggested by Shaw ( 1964 ) ,  Irwin 

( 1965 ) ,  Ahr ( 1973 ) ,  and Wilson ( 1975) that in the absence of a 

shelf-slope break the transition from very shallow- to deeper-water can 

be referred to as a ramp , and that in such a situation depositional 

facies patterns tend to be distributed in bands which are roughly 

parallel to the strandline . Wave and current activity increases as the 

shorel ine is approached (Ahr , 1973) , and carbonate grainstone deposits 

grade offshore into progressively deeper-water, lower-energy carbonates , 

which finally pass into more basinal argillaceous limestone and shale 

( Shaw , 1964 ; Irwin , 1965 ) .  Generally ,  it is assumed that a relatively 

uniform and gently sloping seafloor topography favors widespread 

distribution of facies with monotonous wedge-shaped geometries which 

thicken seaward . Excluding shelf margin environments such as reefs or 

oolitic sand banks , which occur as shore parallel accumulations , 

carbonate shelf facies patterns are more complex . According to these 

other workers , areal distribution of facies on a shelf reveal rapid 

changes in sediment type laterally forming a mosaic pattern of facies 

distinctly different from ramp patterns ( Laporte, 1967 ) . 

The main obj ective of this Chapter is to discuss the vertical and 

lateral association of lithofacies and to generate a paleoenvironmental 

and paleobathymetric model based on the temporal and spatial distribu

tion of facies in the Nolichucky and Maynardville . These reconstruc

tions dispel the not ion that ramp-like paleobathymetric profiles ( i . e . , 

those profiles not characterized by well-developed shelf marginal reefs 
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or laterally extensive carbonate sand banks ) result in broad laterally 

continuous facies belts parallel or nearly parallel to the strand . 

Instead , environmental patterns on this Cambrian ramp were much more 

irregular and mosaic-like than predicted by the ramp depositional model 

of earlier workers . 

Stratigraphic Setting 

During early Late Cambrian t ime deposition took place along the 

eastern margin of North America and was dominated by a broad carbonate 

rim predominantly composed of very shallow peritidal facies ( Bird and 

Dewey, 1970) . Adjacent to the carbonate platform were subtidal 

carbonates and siliciclastics which graded further toward the craton 

(northwest direction) into nearshore s iliciclastic environments . 

Southeast of the platform was a subsiding marine basin . According to 

Hatcher ( 1978 ) ,  an island-arc complex was separated from the eastern 

margin of the North American craton by a back-arc basin . During 

deposition of the Nolichucky and Maynardvi lle formations , eastern 

Tennessee was located in a climatic zone that was approximately 20 

degrees south latitude ( Scotese and others , 1979 ) (Figure 5 . 1 ) .  

Distribution of Lithofacies 

Results of the analysis of cyclicity ( Chapter 4) strongly suggest 

that lithofacies of the Nolichucky and Maynardville formations are not 
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Figure 5 . 1 .  North America showing the location of the equator during 
Middle and Late Cambrian t ime ( after Scotese and others , 1979). 
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stacked i n  any predictable arrangement . Also , they indicate that local 

processes were of prime importance in producing the rare, s imple cycles 

which are observed . Because coeval parts of the sequence show cyclicity 

at one locality but not at another and because some localities reveal no 

cyclicity at all , i t  is not possible to trace stratigraphic intervals of 

cyclicity laterally . The lack of correlation is further elucidated 

through a more traditional graphic approach. Figure 5 . 2  displays 

stratigraphic columns for each exposed locality and drill core which has 

been examined as a part of this study. The variability in lithofacies 

pattern and distribution exists even though geographic separation 

between any two stratigraphic columns ranges from several hundred meters 

to 55 km ( see Figures 1 .  12 and 5 .  3 )  • Clearly, correlative prograda

t iona! sequences , which are common in the Maryvi lle Limestone ( see 

Erwin , 1981 ; S immons , 1984 ; Kozar , 1986 ) ,  are conspicuously absent 

within the Nol ichucky Shale and Maynardvi lle Limestone. Thus , local 

environmental factors ( rather than eustatic sea level changes , tectonic 

events , or regional changes in sediment production/subsidence) 

apparently controlled the temporal and spatial distribution of 

lithofacies . 

Origin of Sedimentary Features and Structures 

The Nolichucky Shale 

paleoenvironmental setting . 

comes from the sedimentary 

includes: 

was deposited within 

Evidence supporting 

structures described 

a 

this 

in 

storm-dominated 

interpretation 

Chapter 2 and 
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Figure 5 . 2 . Columnar section of the Nolichucky Shale . In this figure , 
each stratigraphic column was derived from analysis of each 1 meter 
increment of the complete column . Within each 1 meter thick 
interval, the dominant lithofacies was identified and recorded . As 
a result of this approach , the actual variability of lithofacies is 
greater than that depicted here . 
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Figure 5 . 2  ( continued) . Columnar section of the Nolichucky Shale and 
Maynardville L imestone . 



216 

95 

90 

Cryptalgalaminate Facies (Cl) 
Stromatolite Facies (STROM) 
Thrombolite Facies (THROM) 
Oncolitic/Oolitic Facies (NOPG) 
Peloidal Facies (EPG) 
Mudstone Facies (MWS) 
Oolitic Facies (OPG) 
Fossiliferous Facies (FPG, FPGWS) 
lam. Peloidal Facies (XPG, XPGWS) 
Shale Facies (S, SWXPG) 
lnlraclastic Facies (lPG) 
Covered Interval 

Maryville Ls Scarboro Road GW 130 Core 

Figure 5 .  2 ( continued) .  Columnar section of the Nolichucky Shale and 
Maynardville Limestone . 



Maynardville 
Ls 

Copper Ridge OS 

meters 
100 :t:T.":T.":T.":T.":T.":T.T.;.] 

95 

90 

85 

".T. ":T. ":T. ":T.":T.":T.":T.' 
".T.":T.":T.T.T.T.T.T.T.T.T. :r. :T. :r. :!T,T. :!T,T. 
:r.T.T.T.T.T.T. :r.T.T. :r.T. 
T.TT.T_T.T_T.T_T.T_T.T_T.T. 
:r.T.T.":T.T.T.T.T.T.T.T_T.T. 
T.TT.T_T.T_T.T':!r_T.T_T.T. 

:r.:r.:r.:r. :r::r. ".T.":T.T.T.T.T.T.T.":T.T.T. :t: T. :r. T. :r,..T.T,.., 
!:..!:.!:..!t!:..-:·-::.-: 

80 
:r.T_T.T_T.":T.":T.":T.":T!1 
:r!T!T!T!T!T�T�1 
��-;:.�'�'.:.{'-;:.� 

75 :t',..T,..T. :r,..T. :r. :r.!.1 

70 

65 

60 

-�·'{'"''·'".:�'� ... ,.,,,.l'•tl•rl'•� ., ............. ...... . 
l'•rl•l'•rl•rl' ·�-... , ............. ........... , ,,,,. ,.,., ..... rl' ....... ................ ... , .... ,.,.,.,., ... .......... .. . ...... ,,,. ,,,.,.,.,., 

:r!T!T!T!�!T!T!' 
55 

so 

:r.T.T.T.T.T.T.T.T.T.T.T.'T.T. :r.T.T.T.":T. ":T.T_T. ":T.":T. :r.T.T.T.T.T.'T.T.".T.".T.".T. :r,..T9T,..T9T,..T.T. 
, .,., ... . ... ,.,,, .... .. ..... ............ 

45 
:r.T.".T.".T.T.T.".T.".T.".�, :r.,.T.,.T.,.T.,.T.,.T.,.T..,, 
.. . .... 

40 

35 

�;,T.T.".T.".;".T.".T.T_;T. 
:r.".T.T_T.T_T.T_T.T_T.T_T.T. 
:r.T_T.".T.".T.".T.".T.T_T.T. 
:r.T.T.T.T.T.T.T_T.T_T.T_T.T. 
:r.".T.".T.".T.T.T.T.T.":T.T. 

:r.:r.:r.:r.:r.:r.:r. 
:r ... T. :r. :r. :r. :r. :r. 

30 �=-------.......;;:-t=:::::::::::::::::::::::::::::: 

25 
�F::::::::::::::::::::�; �::::::::::::::::::::::; ��:::::::::::::�;: .............................. --.....: 

20 

15 

10 

5 

0 

:r. :r. :!T,T. :r. :r.':r!1 
:r.T_T.T_T. :r.T_T.T_T.T_T!1 
:r.T_T.T_T.T_T.T_T.T_T.TT.T. 
:r.T.T.".T.T.T.":T.T.T.T.T.T. 
:r.T.T.T.T.":T.T.T.":T.":T.T. 
:r.T.T.'T.T.T.T.'T.T.".T.T_T.T. 
:r.".T.T.T.T.T.T_T.T_T.T_T.T. 
:r.T_T.T_T.T_T.T_T.T_T.T_T!J 
:r.T.T.T.T.T.T.T.T.".T.T_T.T. 
:r.T.T.T.T.".T.T.T.".T.T_T.T. 
:r.T_T.T_T.'T_T.T_T.TT.T_T.!_1 
:r.":T.":T.T.T.T.T.T.T.T_T.T. 
:r.T.T.T.T.T.T.T_T.T_T.T_T.T. 
:r.T.T.T.T.T.T.T.T.".T.T_T.T. :r. :r. :r. :r. :r..,.T. :r. 

Missing Section 

2 1 7  

'·• 

Cryplalgalaminate Facies (Cl) 
Stromatolite Facies (STROM) 
Thrombolite Facies (THROM) 
Oncolitic/Oolitic Facies (NOPG) 
Peloidal Facies (EPG) 
Mudstone Facies (MWS) 
Oolitic Facies (OPG) 
Fossniferous Facies (FPG, FPGWS) 
lam. Peloidal Facies (XPG, XPGWS) 
Shale Facies (S, SWXPG) 
lntraclastic Facies (lPG) 
Covered Interval 

Scarboro Road GW 
131Core 

Figure 5 . 2  ( continued) .  Columnar section of the Maynardville Limestone. 
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1 .  Microhummocky cross-stratification 

2 .  Basal lags 

3 .  Fining-upward sequences 

4 .  Diffuse bed tops 

5 .  Load structures 

6 .  Shale drapes and lenses in thick grainstone units 

7 .  Microconvoluted bedding 

8 .  Amalgamated bedding 

9 .  Sole marks 

1 0 .  Gutter casts 

1 1 .  Thin-bedded carbonate sand sheets as lateral extensions of 

thick lenticular buildups 

Conversely, the Maynardvi lle Limestone is similar in most cases to 

ancient tidally influenced deposits studied by Laporte ( 1967 ) ,  Walker 

( 197 3 ) , and many others . This interpretation is j ustified for the 

following origins for features common in the Maynardville . 

1. Mudcracks form on subaerial exposure as wet sediments 

desiccate . 

2 .  Sediment laminae of planar and domal stromatolites are trapped 

during episodic suspension transport . 

3 .  Ooids , oncoids , and patch "reefs" ( thrombolites ) form in 

environments characterized by some degree of continuous 

turbulence . 

4 .  Evaporites are not observed , suggesting sediments were not 

exposed for prolonged periods . 
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5 .  Transition from intertidal facies ( cryptalgalaminates and 

stromatolites) to subtidal lithofacies ( thrombolites � and 

oolitic and oncolitic lithologies ) indicate horizontal changes 

in degree of exposure and therefore topographic relief ( i . e . �  

Figure 5 . 2  and Walther ' s  Law) . 

Although any individual characteristic could be explained by nontidal 

mechanisms , an origin in the tidal regime provides the most parsimonious 

explanation for the suite of sedimentary features . No doubt storm 

events transported much sediment onto the tidal flat ( e . g . , Dott,  1974 ) 

and wind-generated waves must have also reworked sediment . These forces 

are associated with tidal environments . However , beaches and storm 

ridges , features d iagnostic of wave and storm action on shores not 

strongly affected by tides ( see Wright� 1984 ) , are not observed in the 

Maynardville . 

Depositional Model 

The paleoenvironmental reconstruct ions proposed here are derived 

primarily from information found in Chapters 2 and 4 ,  and the temporal 

and spat ial d istribution of lithofacies as revealed from the columnar 

sections in this Chapter . In central east Tennessee the 

Nolichucky/Maynardville sequence is subdivided into a slightly "deeper" 

intracratonic basin and a shallow intracratonic basin ( Nolichucky Shale) 

(Figure 5 .  4 ) , and a peri tidal platform (Maynardville Limestone) 

( Figure 5 . 5) .  The lower 50 to 75 m of the Nolichucky Shale was deposited 
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in water that was probably on the order of 30 to 50 m deep . Where the 

lower portion of the Nolichucky is exposed , it is  characterized by shale 

and thin ( < 5 em) limestone inter layers ( Figure 5 .  6 ) . Limestone is 

primarily peloidal and intraclastic . Oscillatory currents associated 

with overhead-pass ing storm waves were barely able to rework the 

sediment into lenticular limestone interlayers , and the bases of these 

layers are commonly nonerosional . Carbonate layers are planar to 

low-angle cross-laminated , and fine upward , reflecting deposition from 

combined traction ( bedload) and suspension fallout. 

Above the lower portion of the Nolichucky Shale , an overall balance 

between sediment production/supply and relative sea level rise was 

maintained . Water depth ranged from a meter or less along shoal crests 

to 30+ m in adjacent subtidal areas . The shallow intracratonic basin 

was affected by storm and fairweather wave activity . Oolitic , 

fossiliferous , and thrombolitic shoals were deposited and accreted 

vertically in water depths above fairweather wave-base ( Figure 5 . 7 ). As 

sea level was approached, carbonate production was d iminished greatly or 

was terminated , and shoal development ceased . Continued subsidence and 

subsequent storm-generated sedimentation eventually buried these 

buildups . 

Movement of unconsolidated or nonstabilized portions of the shoals 

resulted in migrating oolitic , skeletal, and intraclastic sand sheets of 

varying hydraulic regimes in association with storm waves and currents . 

Other facies of this bas in display an abundance of  features characteris

tic of storm-dominated settings ( e . g . , gutter casts , microhummocky 
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cross-stratification , amalgamated beds , etc . ) Also, thick accumulation 

of lime mudstone associated with subtidal cyanobacterial mats were 

deposited peripheral to a prograding peritidal carbonate platform 

(Figure 5 . 8 ). 

In central east Tennessee the Maynardville Limestone was depos ited 

in very shallow water ( < 5 m) to locally emergent conditions . This 

interpretation differs significantly from the subtidal setting proposed 

by Markello and Read ( 1982) for the Maynardville in southwestern 

Virg inia.  They indicate that depos ition took place further downslope , 

well below fairweather wave-base . In this study, the Maynardville is 

primari ly composed of the Thrombol itic Lithofacies ( see Figure 5 . 2) . 

The Maynardvi lle Limestone represents small t idal flats that 

accreted vertically and moved laterally ( Figure 5 .  5 ) . Sediment 

production occurred in open water subtidal areas which were adjacent to 

tidal flats . Tides , storms , and fairweather waves transported sediment 

to nearby low-relief intertidal banks and to supratidal islands . In the 

Nolichucky, however , the maj ority of carbonate production occurred in 

and around shoals and within cyanobacterial mats . Storms were effective 

in moving carbonate sediment off the shoals and mats into adjacent 

subtidal areas . In addition ,  intense storms probably transported 

sediment from the peritidal carbonate platform (Maynardville) to the 

subtidal intracratonic basin (Nolichucky) . 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

1 .  Within the Valley and Ridge of the southern Appalachians , 

Middle and Late Cambrian rocks crop out along a succession of 

southeastward dipping imbricate thrust sheets , which trend north

east-southwest . In the vicinity of Knoxville and Oak Ridge ( central east 

Tennessee) , Middle and Upper Cambrian formations ( excluding the Copper 

Ridge Dolostone) comprise the Conasauga Group . From base to top the 

Conasauga Group includes : the Pumpkin Valley Shale, Rutledge Limestone , 

Rogersville Shale, Maryville Limestone , Nolichucky Shale, and 

Maynardville Limestone . 

dolostone in the east 

The Conasauga Group grades 

(northeastern Tennessee 

from dominantly 

and southwestern 

Virginia) , through intercalated carbonate and shale units in the 

Knoxville and Oak Ridge area to a sequence dominated by shale , west and 

southwest of central east Tennessee ( see Chapter 1 ) .  

2 .  Three complete trilobite zones are present in the upper 

Conasauga sequence .  Cedaria and Crepicephalus Zones occur throughout 

much of  the Nolichucky Shale, whereas the base of the overlying 

Aphelaspis Zone occurs in the upper portion of the Nolichucky Shale , and 

that zone continues through the Maynardville ( see Chapter 1 ) .  

3 .  Conodonts are present in the Nolichucky Shale . The most 

abundant protoconodont is Prooneotodus tenuis.  Furnishina furnishi is 
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the most dominant paraconodont .  These forms are, however , long ranging 

and thus have little biostratigraphic significance (see Chapter 1 ) .  

4 .  The interbedded package of limestone , dolostone , and shale that 

makes up the Nol ichucky Shale and Maynardville Limestone in central east 

Tennessee was deposited in the transition between an intracratonic basin 

( intrashelf basin, after Markello and Read, 1981 and 1982) and a 

shallow-water carbonate platform. The transition shows no marked change 

in regional paleoslope (see Chapters 1 and 5) . 

5 .  By early Late Cambrian (Nolichucky time ) , deltaic sediments 

( predominantly shale) were being shed into the basin (near present-day 

Lexington, Kentucky) . The delta drained parts of northern Kentucky, 

Ohio ,  and perhaps southern Canada . At this time l imestone was the 

dominant depositional product along the southern and eastern portion of 

the intracratonic basin . Between the areas dominated by shale and 

limestone is a zone of mixing where fine-grained siliciclastics and 

carbonates occur in subequal abundance . Central east Tennessee is 

located in the zone of mixed carbonate-siliciclastic deposition ( see 

Chapter 1 ) .  

6 .  During deposition of the Maynardville Limestone in central east 

Tennessee , the intracratonic basin was cut off from the clastic source, 

and thus , became greatly constricted in size as l imestone filled the 

basin . By late Maynardville time, the intracratoni c  basin shoaled to 

sea level ( see Chapters 1 and 5) . 

7 .  Throughout much of east Tennessee ,  the Nol ichucky Shale has 

been subdivided into a lower and upper shale . Between the shale 
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intervals is a regionally traceable unit known as the Bradley Creek 

Limestone Member . In the Knoxvi lle and Oak Ridge vicinity this Member 

is not usually present ( see Chapters 1 and 5) . 

8 .  The Maynardville is divided into two regionally persistent 

members : the Low Hollow Limestone Member and the Chances Branch 

Dolostone Member . Although this subdivision may be possible and 

appropr iate in some areas of east Tennessee , in the Knoxville and Oak 

Ridge vicin ity, placement of the contact between these members is 

extremely subj ective and is not used in this investigation . The Chances 

Branch Member is characterized by an increase in the abundance of 

dolostone and fine-grained carbonate lithologies ( stromatolites and 

cryptalgalaminates ) .  Although an increase in dolostone is noted 

up-section, this increase is gradual and varies significantly from one 

nearby locality to another ( see Chapters 1 and 5) . 

9 .  Fourteen maj or lithofacies are identified in the upper 

Conasauga Group . The assemblage of facies within the Nolichucky Shale 

differs significantly from that within the Maynardville Limestone . The 

Nolichucky contains an abundance of thick shale and thinly bedded shale 

and limestone lithologies , whereas the Maynardville is composed of very 

thick-bedded carbonate , predominantly limestone ( see Chapter 2 ) . 

10 . The Nol ichucky Shale was deposited primarily in a subtidal 

setting . Water depth ranged from 5 to 50 m except along crests of 

shoals ( ooliti c ,  fossi liferous , and thrombolitic) , where local emergence 

may have occurred ( see Chapter 2) . 



232 

1 1 .  The Maynardville consists primarily of thick-bedded 

oncolitic/oolitic grainstone, thrombolites , stromatolites , and 

cryptalgalaminates . In central east Tennessee the Maynardville was 

deposited above wave-base in very shallow water , less than 5 m deep . 

According to the model presented by Markello and Read ( 1982), in 

southwestern Virginia the Maynardville Limestone was deposited downslope 

from peritidal facies ( Elbrook and/or Honaker Dolostone) in a subtidal 

setting . They indicate that deposition took place ·well below 

fairweather wave-base ( see Chapters 2 and 5 ) .  

12 . Overlying substitutabi lity analysis, embedded . Markov chain 

analysis, and modified autoassociation analysis applied to upper 

Conasauga Group l ithologic data show that cyclicity is rare in the 

peritidal Maynardville Limestone . Subtidal limestone and shale facies 

within the Nolichucky Shale exhibit the most well-developed cycles . 

However ,  the maj ority of these cycles are "simple , "  involving no more 

than two lithologies ( lithofacies) . The absence of well-developed 

cycles within the Nolichucky/Maynardville sequence is attributed to 

local variability in the occurrence and distribution of lithologies 

( lithofacies) . Local processes ( i . e . , storms and tides ) were probably 

of prime importance in producing the simple cycles discerned ( see 

Chapter 4) . 

1 3 .  In central east Tennessee the Nolichucky/Maynardville sequence 

is subdivided into a slightly "deeper11 intracratonic  basin ( 30-50 m,  

lower Nolichucky) and a shallow intracratonic basin ( 5-30 m, upper 
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Nolichucky) , and a peritidal platform (0-5 m, Maynardville Limestone) 

(see Chapters 5 and 2 ) . 

14 . The Nol ichucky Shale was deposited in a storm-dominated 

paleoenvironmental setting . The maj ority of carbonate production 

occurred in and around shoals and within cyanobacterial mats . Storms 

were effective in moving carbonate sediment off the shoals and mats into 

adj acent subtidal areas . In addition , intense storms probably 

transported sediment from the peritidal carbonate platform 

(Maynardville) to the subtidal intracratonic basin (Nolichucky) ( see 

Chapter 5 ) .  

15 . The Maynardville Limestone represents small tidal flats that 

accreted vertically and migrated laterally . Sediment production 

occurred in open water subtidal areas which were adj acent to tidal 

flats . Tides , storms , and fairweather waves transported sediment to 

nearby low-relief intertidal banks and perhaps also down-ramp to the 

Nolichucky environments ( see Chapter 5) . 

16 . Paleoenvironmental reconstruction indicates that the 

distribution of  facies along the Nolichucky/Maynardville bathymetric 

profi le was much more irregular and mosaic-like than predicted by the 

depositional model of earlier workers (see Chapter 5 ) . 
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STANDARD MEASUREMENT CONVENTIONS 

Bed thickness terminology used in the text and in measured sections 

follows Ingram ( 1954) . Grain size is based loosely on the Wentworth 

( 1 922) size classification . 

Bed Thickness 

Very thick-bedded 

Thick-bedded 

Medium-bedded 

Thin-bedded 

Very thin-bedded 

Laminated 

Thinly laminated 

Grain Size 

Coarse-grained 

Medium-grained 

Fine-grained 

Very f ine-grained 

>100 . 0  em . 

30. 0-100 . 0  em . 

10 . 0-30 . 0  em . 

3 . 0-10 . 0  em. 

1 . 0-3 . 0  em . 

0 . 3 - 1 . 0  em . 

<0 . 3  em . 

grains visible to the unaided eye 
and readily identifiable (>1 . 0  
mm . )  

grains visible with hand lens and 
readily identifiable ( -0 . 25- 1 . 0  
mm . )  

grains vis ible with hand lens , 
but not readi ly identifiable 
(-0 . 10-0 . 25 mm . )  

grains not visible with hand lens 
C<0 . 10 nun. ) 
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NOTE : 

1 .  Field descriptions are recorded in ascending order from 
oldest to youngest . 

2 .  Unit thickness ( Unit tkn . ) and cumulative thickness ( Cum .  
tkn . ) are given i n  meters . 

3 .  Terminology of samples 

4 .  

a .  Each sample i s  prefixed with an alpha-numeric or 
combined alpha-numeric-numeric code to indicate 
locality. For example :  

BG=Beech Grove Section 
RS=Roaring Spring Section 
I - 75=Interstate 75 Section 
A=Interstate 75 Section 
B=Interstate 75 Section 
C=Interstate 75 Section 
IOA=Interstate 75 Section 
J-2=Joy 2 Core Section 
SCAR=Scarboro Road Core Section 
S-J=S-3  Pond Core Section 

b .  Thin-sectioned samples are underl ined . 

c .  Following each sample number , a reference number is 
affixed . The reference number shows where each 
sample was collected with respect to the Noli
chucky/Maynardville contact (mbM=meters below base 
of Maynardville Limestone; maN=meters above top of 
Nolichucky Shale) . 

Thin-sections 
dissertation 
res ides at 
University of 

cited here and elsewhere within this 
are part of a permanent collection which 
the Department of Geological Sciences* , 
Tennessee , Knoxville, TN 37996 - 14 1 0 .  

* Thin-sections which were made from the Joy 2 subsurface 
drill core are housed at ORNL . 
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BEECH GROVE SECTION AND SAMPLES 

Nearly 87 m of exposed Nolichucky Shale crop out along the north
eastern s ide of State Route 33 (Maynardville Highway) j ust north of the 
small community known as Beech Grove . More specifically, the section is 
located 8 . 3  km north of Halls , TN and 1 .  i km south of the Knox-Union 
County l ine . The lower portion of the Nolichucky Shale is highly weath
ered and is not exposed . Field descriptions begin at the base of a 
more-or- less complete road cut exposure . 

UNIT TKN . (m . ) CUM . TKN . (m. ) 

1 - 1  8 . 7  8 . 7  

1 -2 0 . 9  9 . 6  

DESCRIPTION 

UNEXPOSED NOLICHUCKY SHALE 

NOLICHUCKY SHALE. Shale and limestone, 
shale : brown , weathering red to tan
brown ; very fine to fine grained ; lami
nated . Visible mica flakes . Fissile . 
Chippy weathering . Abiotic . Iron and/or 
manganese staining . Calcareous . Lime
stone (mudstone to packstone) :  medium 
gray , weathering light gray; very fine to 
coarse grained ; planar and cross lami
nated to thin bedded , regular and uneven . 
Echinoderms , trilobites , and Chancelloria 
( ? ) .  Partially dolomitized . Argilla
ceous . Gradational lower contact . Thin 
shale drapes cut carbonate laminae . 
Shale dominates at base, limestone in
creases up unit .  Load casts at base of 
limestone which overlie shale . Samples : 
BG-0 , 90 . 5  mbM ; BG- 1 -3 . 1 ,  89 . 1  mbM; 
BG- 1 -4 . 8 ,  88 . 5  mbM ; BG- 1 - 1 7 . 1 ,  84 . 8  mbM; 
BG- 1 -25 . 2 , 82 . 3  mbM . 

Shale and limestone ( shale description 
similar to 1 - 1 ) ,  limestone ( packstone to 
grainstone) : medium gray, weathering 
light gray; medium to coarse grained; 
planar and cross laminated to medium 
bedded , regular and uneven . Sharp lower 
contact .  First occurrence of intra
clastic limestone . Burrows common , 3-5 
millimeters in diameter , perpendular to 
bedding , simple straight tubes . Intra
clastic limestone : · random orientation, 
laminated and cross laminated clast 



2-1  1 . 9  1 1 . 5  

3 - 1  4 . 9  1 6 . 4  
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lithology, many clasts resemble under 
lying beds , mean clast size is 2 centi
meters , maximum clast s ize is  5 . 1 centi
meters , clasts elongate with rounded to 
sharp edges , flat lower bedding surface, 
clasts project above irregular upper 
surface . 

Limestone (mudstone to grainstone) ,  l ight 
gray, weathering light to dark gray, 
brown where dolomitized; very f ine to 
coarse grained ; laminated to thin bedded, 
irregular and uneven . Gradational lower 
contact . Thin shale partings . Low am
pH tude stylolite seams . Near base of 
unit,  laminated mudstones grade laterally 
into fossiliferous grainstones . Grains 
include peloids , ooids , trilobites , and 
intraclasts . Partial dolomitization . 
Well sorted , dolomitized, laterally dis
continuous ( lenticular ) oolitic 
grainstone fills depress ions on underly
ing mudstone to grainstone . Textural 
inversion in oolitic lenses where undu
lating thin shale drapes cut through the 
oolite . Intraclastic grainstone domi
nates upper part of unit . Contacts be
tween various lithologies are sharp . 
Intraclastic limestone : random orienta
tion, laminated and cross laminated clast 
lithology, mean clast s ize 1 to 3 centi
meters long , 0 . 6  to 1 . 3  centimeters 
thick, clasts elongate with rounded to 
sharp edges . Sample : BG-2-5 . 7 ,  78 . 7  
mbM . 

Limestone and shale , limestone (mudstone 
to peloidal packstone) :  medium gray, 
weathering light gray; very fine to medi 
um grained ; laminated t o  thin bedded, 
regular to irregular and uneven . Shale : 
medium to l ight gray to brown, weathering 
tan-gray to brown ; very f ine grained; 
laminated, regular and uneven . Abiotic . 
Sharp lower contact . Partially 
dolomitized . Lower 0 . 3  meters of unit 
exhibit gray, mottled shales and contain 
1 to 5 millimeter limestone ( laminate 
mudstone) nodules . Above 0 . 3  meters 
shales abruptly become brown, less 



3-2 7 . 8  24 . 2  

3 - 3  4 . 3  28 . 5  

3-4 9 . 9  38 . 4  
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calcareous and fossiliferous , and contain 
no l imestone nodules . Samples : BG-3-
6 . 2 ,  78 . 5  mbM; BG-3-2 . 5 ,  77 . 7  mbM ; 
BG-3-5 . 0 ,  77 . 0  mbM . 

Shale and limestone ( shale description 
similar to 3- 1 ) ,  limestone (packstone to 
grainstone) , medium gray, weathering 
light gray ; medium to coarse grained ; 
medium to thick bedded, regular and un
even . Gradational lower contact . 
Oolitic packstone and grainstone 0 .  2 to 
0 .  6 meters thick separated by shale and 
nodular limestone intervals 0 .  3 to 1 .  2 
meters thick . Oolitic beds pinch and 
swell and are laterally continuous over 
observed exposure . Thinner limestone 
beds are fossiliferous peloidal pack-
stones . Laterally discontinuous , 
lenticular, calcareous siltstones . 
Limestone nodules in shale : micritic, 
elongate, flattened , approximately 5 
centimeters long and 1 to 2 centimeters 
thick . Intraclastic packstone/grainstone 
near top of unit . Samples : BG-3-24 . 0 ,  
7 1 . 2  mbM; BG-3-28 . 8 ,  69 . 7  mbM; BG- 3- 35 . 5 ,  
67 . 7  mbM; BG-3-35 . 7 ,  67 . 6 ;  BG-3 -4 1 . 0 ,  
66 . 0  mbM . 

Shale and limestone ( shale description 
similar to 3- 1 ) ,  limestone medium to dark 
gray , weathering l ight gray; very fine to 
coarse grained ; laminated to medium bed
ded , regular and uneven . Echinoderms . 
Gradational lower contact . This unit 
differs from 3-2 in that : ( 1 )  shales are 
more calcareous with locally abundant 
limestone (mudstone) nodules and 
( 2 )  limestone interbeds are commonly 
mudstone . Thickest limestone interbeds 
are oolitic grainstones . As in unit 3-2 ,  
intraclastic grainstones increase toward 
the top of the uni t .  Some thin bedded 
echinoderm-rich packstone . Sample : 
BG-3-55 . 5 , 6 1 . 6  mbM. 

Shale , dark gray to brown , weathering 
tan-gray to brown ; very fine grained ; 
laminated, regular and even . Abiotic . 
Gradational lower contact . Rare thin 



4-1  5 . 3  43 . 7  

267 

bedded intraclastic  limestones (grain
stone) which exhibit clasts proj ecting 
into overlying shales . Uppermost 5 . 5  
meters is partially covered . Samples : 
BG-3-56 . 0 ,  6 1 . 4  mbM ; BG-3-66 . 2 ,  58 . 3  mbM; 
BG-3-69 . 2 ,  57 . 4  mbM; BG-3-70 . 0 ,  57 . 2  mbM . 

Limestone and shale, limestone (mudstone 
to packstone) : medium gray, weathering 
light gray; very f ine to coarse grained; 
laminated to medium bedded, irregular and 
uneven . Shale ( 2  types) :  green-brown and 
gray-black, weathering brown and light 
gray; very fine to medium grained; lami
nated, regular and uneven . Small inar
ticulate brachiopod valves and dis
articulated trilobite carapaces . Grada
tional lower contact . Shale drapes be
tween limestone beds . Intraclastic lime
stone (packstone) :  random orientation , 
largest clasts 0 .  2 meters wide and 0 . 1  
meters long . Intraclast ic beds increase 
up unit,  shale beds decrease to discon
tinuous partings and drapes . Calcareous 
siltstone and silty fossiliferous 
wackestone and packstone , no grading 
observed . Above 2 . 4  meters mottled l ime
stone dominates . Mottled l imestone : 
discontinuous l imestone beds cut by thin 
shale partings , silt ,  or sand lenses , 
which may be partially to pervasively 
dolomitized . Gently undulating stylolite 
seams . Upper surfaces of lime stone beds 
may represent rippled bedforms . From 2 . 4  
to 5 .  3 meters above the base, several 
cycles exis t :  thin limestone interbedded 
with shale grade upward into thin mottled 
limestones which are capped by 0 . 1  to 0 . 2  
meter thick intraclastic fossiliferous , 
oolitic, glauconitic , packstone/ 
grainstone . Two types of shale thicken 
and thin laterally, but overall thickness 
of shale remains the same . Typical 
sequence :  thin brown shale overlies 
limestone which in turn is overlain by 
black shale ; limestone caps the sequence . 
Dark shale appears more calcareous , both 
varieties contain limestone (mudstone) 
nodules . Limestone nodules (mudstone) :  
very common in shales , rare fossils , 



4-2 5 . 3  49 . 0  

5 - 1  6 . 2 55. 2 

5-2 4 . 8  60 . 0  
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distributed as discrete 3-D flattened 
masses paral lel to bedding, and over and 
underlying shale conform exterior 
irregularities around nodules . Samples : 
BG-4-0 . 5 ,  5 1 . 5  mbM; BG-4-1 . 5 ,  5 1 . 2  mbM; 
BG-4-4 . 2 ,  50 . 4  mbM; BG-4-4 . 3 ,  50 . 3  mbM; 
BG-4-8 . 0 ,  49 . 2  mbM; BG-4-9 . 7 ,  48 . 7  mbM; 
BG-4 - 1 7 . 5 ,  46 . 3  mbM .  

Shale and l imestone, shale: predominantly 
gray, weathering light gray; very fine 
grained; laminated. Abiotic . Limestone 
(mudstone to packstone) : medium gray, 
weathering l ight gray; very f ine to 
coarse grained; laminated to thick bed
ded . Trilobites . Gradational lower 
contact .  Shale contains abundant lime
stone (mudstone) nodules . Samples : 
·BG-4 - 18 . 4 ,  46 . 0  mbM; BG-4-25 . 5 ,  43 . 9  mbM; 
BG-4-31 . 5 ,  42 . 1  mbM. 

Limestone (wackestone to grainstone ; 
occasional mudstone) , medium to dark 
gray, weathering l ight gray; fine to 
coarse grained; predominantly medium to 
thick bedded , irregular and uneven . 
Whole inarticulate brachiopods, trilo
bites , ostracodes ( 7 ) ,  and echinoderms . 
Sharp lower contact . Mottled l imestones : 
carbonates occur with continuous to dis
continuous sandy, s i lty, perhaps 
dolomitized partings . Partings : tan to 
brown, weathering brown; f ine to medium 
grained; laminated to cross laminated , 
discontinuous on local scale . Allo
chemical const ituents in l imestone beds 
vary considerably over short lateral 
distance. Coarsening upward cycle from 
5 . 4  to 6 . 2  meters : mottled l imestone 
(wackestone) interbedded with gray and 
brown shale are overlain by oolitic , 
glauconitic, fossiliferous grainstone. 
Samples : BG-5-0 . 0 ,  4 1 . 1  mbM; BG-5-3 . 5 ,  
40 . 0  mbM; BG-5-4 . 8 ,  39 . 6  mbM; BG-5-5 . 7 , 
39 . 3  mbM; BG-5 - 7 . 2 ,  38 . 9  mbM; BG-5 - 12 . 4 , 
37 . 3  mbM; BG-5-1 7 . 3 ,  35 . 8  mbM. 

Limestone and shale ( l imestone and shale 
description similar to S - 1 ) . Sharp basal 
contact . Several 1 to 3 meter coarsening 



6 - 1  4 . 9  64 . 9  
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upward cycles : interbedded l imestones and 
shales which are capped by oolitic , 
glauconitic , fossiliferous pack-
stone/grainstone and discontinuous 
( lenticular) silty beds . Samples : 
BG-5-22 . 5 ,  34 . 2  mbM; BG-5-36 . 0 ,  30 . 1  mbM. 

Shale and limestone, shale : dark gray , 
weathering l ight gray; very fine to medi
um grained ; laminated . Rare fossils,  
inarticulate brachiopods and trilobites . 
Limestone (mudstone to grainstone) : medi 
um to dark gray, weathering l ight gray; 
fine to coarse grained; laminated to thin 
bedded , irregular and uneven . Sharp 
basal contact . 3 types of limestone 
beds : ( 1 ) mudstone to packstone nodules , 
( 2 ) trilobite packstone, and ( 3 ) intra
clastic packstone to grainstone . Lime
stone nodules : discrete 3-D bodies , flat
tened, overlying shale drapes conform to 
nodules , sparsely fossiliferous . Typical 
upward coarsening cycle : ( 1 ) shale , 
( 2 ) nodular limestones (mudstone) in 
shale , ( 3) limestone (mudstone) bed 0 . 13 
to 0 . 25 centimeters thick which is later
ally continuous over several meters ( base 
of limestone sequence is irregular) ,  
( 4 ) intraclastic packstone/grainstone , 
( 5) trilobite packstone ( capping rock ) , 
and ( 6 )  oolitic grainstone ( capping rock) 
( upper surface is irregular) ;  within 
these cycles the base of l imestone inter
vals show : pseudo-mudcracks exhibiting 
shaley/silty material inj ected into 
cracks and vertical,  simple burrows . 
Intraclastic beds are underlain by 
nodular l imestones showing 
pseudo-mudcracks ; clast d iversity : 
trilobite packstone , laminated pelletal 
clasts , non-laminated mudstones , and 
cross laminated c lasts . Deformation 
features common : ( 1) load casts on base 
of limestones which overlie shale and 
( 2) shale drapes which conform to shape 
of limestone nodules . Samples : 
BG-6-0 . 5 ,  29 . 9  mbM; BG-6-2 . 0 ,  29 . 5  mbM; 
BG-6- 3 . 1 ,  29 . 1  mbM; BG-6-7 . 5 ,  27 . 8  mbM; 
BG-6 - 10 . 1 ,  27 . 0  mbM; BG-6-12 . 5 ,  26 . 3  mbM; 
BG-6- 1 5 . 7 ,  25 . 3  mbM . 



6-2 6 . 0  

6-3  0 . 5  

6-4 15 . 4  

6-5 3 . 2  

70 . 9  

7 1 . 4  

86 . 8  

90 . 0  
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Shale (description similar to 6-1 ) .  
Gradat ional basal contact . Thin lime
stone (mudstone to packstone) beds occur . 
0 . 8  meter thick intraclastic limestone 
bed occurs 3 . 1  meters above the base . 
Clasts proj ect above upper irregular 
surface . Clasts exhibit random to 
subparallel orientation with respect to 
bedding . Partially dolomitized . Sam
ples : BG-6-23 . 7 ,  22 . 8  mbM; BG-6-27 . 4 ,  
21 . 7  mbM ; BG-6-28 . 2 ,  21 . 5  mbM . 

Limestone ( boundstone and mudstone to 
grainstone) , medium gray , weathering 
light gray, brown where dolomitized ; fine 
to coarse grained ; thick bedded , irregu
lar and uneven . Trilobites , algae , and 
echinoderms . Sharp basal contact . Unit 
is lensoidal .  Normal fault with 0 . 5  
meter displacement . Upper portion of 
unit consists of in situ growth of algae 
(Renalcis and Girvanella) . Upper surface 
is mound-shaped . 

Limestone and shale ( limestone and shale 
descriptions similar to 6-1 ) .  Sharp 
basal contact . Above the algal limestone 
and extending for 2 . 4  meters , shales are 
interbedded with 3 types of carbonates : 
mudstone , trilobite packstone/wackestone , 
and intraclastic packstone . Throughout 
the remainder of unit 6-4 occur 
pseudo-mudcracks , intraclastic 
packstones , and channels ( ? ) . Normal 
fault with 0 . 6  meters of displacement 
occurs 4 .  0 meters above the base . Sam
ples : BG-6-40 . 5 ,  17 . 7  mbM ; BG-6-50 . 6 ,  
14 . 6  mbM; BG-6-56 . 8 ,  1 2 . 7  mbM ; BG-6-65 . 2 ,  
10 . 2  mbM; BG-6-86 . 9 ,  3 . 6  mbM . 

Covered interval .  

Partially Exposed MAYNARDVILLE LIMESTONE 
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ROARING SPRING SECTION AND SAMPLES 

This section was measured along the east s ide of Hill Road at Roar-

ing Spring . The lower part of the Nolichucky Shale is not exposed here , 

however ,  measurements began 2 . 1  kilometers south of Hill  Cemetery at the 

f irst ,  well exposed oolitic grainstone . At this  locality the Nol ichucky 

Shale is  121  meters thick while the Maynardville - Limestone is  estimated 

to be at least 96 meters in thickness .  

UNIT TKN . (m. ) CUM. TKN . (m . )  

1 12 . 0  1 2 . 0  

2 4 . 0  1 6 . 0  

3 4 . 0  20 . 0  

DESCRIPTION 

UNEXPOSED NOLICHUCKY SHALE 

NOLICHUCKY SHALE . Shale and limestone , 
thin to thick shale interbedded with 
pelletal? , oolitic,  and intraclastic 
limestone . Shale : dark gray green; very 
fine grained; laminated . Limestone 
(packstone and grainstone) :  fine to 
coarse grained ; very thin to medium bed
ded , planar and low angle cross lamina
tion . 

Limestone and shale, pelletal? limestone 
interbedded with thin shale . Limestone 
(packstone) : fine grained; very thin to 
thin bedded, low angle cross lamination . 
Rare intraclastic beds . Shale: dark 
gray green ; very fine grained; faintly 
laminated . 

Shale and limestone, thin to thick shale 
interbedded with oolitic limestone . 
Shale : dark gray green , weathering light 
gray; very f ine grained; faintly laminat
ed . Limestone ( packstone and 
grainstone) : f ine to coarse grained ; 



4 1 . 0  

5 5 . 0  

6 1 . 0 

7 3 . 0  

8 20 . 0  

9 1 . 0  

21 . 0  

26 . 0  

27 . 0  

30 . 0  

20 . 0  

5 1 . 0  
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very thin to mediwn bedded , planar and 
low angle cross lamination . Stylolites? 
Loading . Pseudonodules . 

Limestone (packstone and grainstone) : 
mediwn to coarse grained; thick bedded . 
Fossiliferous , tri lobites and 
echinoderms . Stylolites . 

Limestone and shale, pelletal? intra
clastic , and oolitic limestone 
interbedded with thin shale . Limestone 
( packstone and grainstone) : fine to 
coarse grained ; very thin to thick bed
ded, planar and low angle cross lamina
tion . Loading . Pseudonodules . 
Pseudomudcracks . Sole marks . Shale : 
dark gray green ; very f ine grained . 

Shale and limestone , thin to thick shale 
interbedded with pelletal? l imestone . 
Shale: light to dark green gray; very 
f ine grained; faint ly laminated . Lime
stone (packstone and grainstone) :  fine 
grained ; very thin to thin bedded . 

Limestone and shale , pelletal? and intra
clastic limestone interbedded with thin 
shale . Limestone ( packstone and 
grainstone) : f ine to coarse grained ; 
very thin to thick bedded, low angle 
cross lamination . Limestone clast con
glomerates show monomictic clast associa
tions , variable clast s izes ( <  9 centime
ters in long dimension ) ,  and clasts pro
jecting into overlying shale . Rarely 
oolitic . Gutter casts . 

Shale and limestone , thin to very thick 
shale interbedded with rare pelletal? , 
oolitic , and intraclastic l imestone . 
Shale : dark green brown , weathering light 
brown; very fine grained ; faintly lami
nated . Limestone ( packstone and 
grainstone) :  f ine to coarse grained ; 
very thin to mediwn bedded, planar and 
low angle cross laminat ion . 

Limestone and shale , pelletal? limestone 
interbedded with thin shale . Limestone 



10 1 . 0 

1 1  4 . 0  

12 2 . 0  

13  2 . 0  

14  3 . 0  

15 1 . 0  

52 . 0  

56 . 0  

58 . 0  

60 . 0  

63 . 0  

64 . 0  
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(packstone and grainstone) :  fine 
grained ; very thin to thin bedded , planar 
and low angle cross lamination . Loading . 
Pseudonodules . Intraclastic . 

Shale: gray green ; very · fine grained ; 
faintly laminated; otherwise nondescript . 

Limestone and shale , pelletal? and intra
clastic limestone interbedded with shale . 
Limestone ( packstone and grainstone) :  
fine to coarse grained; thin to thick 
bedded , planar and low angle cross lami
nation . 

Limestone and shale , intraclastic and 
oolitic limestone interbedded with thin 
shale . Limestone ( packstone and 
grainstone) : medium to coarse grained ; 
thin to thick bedded . Limestone clast 
conglomerates show subparallel to random 
clast orientation, polymictic clast asso
ciations , a wide variety of clast sizes , 
and clasts proj ecting into overlying 
lithologies . Shale : dark green brown to 
gray ; very fine grained ; faintly laminat
ed . Perhaps some trilobite debris . 

Shale and limestone , thin to thick shale 
interbedded with intraclastic and oolitic 
limestone . Shale : dark gray green ; very 
fine grained ; faintly laminated . Lime
stone ( packstone and grainstone) : medium 
to coarse grained ; thin to medium bedded . 

Limestone and shale, pelletal? limestone 
interbedded with thin shale . Limestone 
( packstone and grainstone) : fine 
grained ; very thin to medium bedded , 
planar and low angle laminations . Intra
clastic . Oolitic , ooids may exceed 2 
mill imeters in diameter . Shale : dark 
gray green ; very fine grained . Sample : 
RSl ,  59 . 0  mbM . 

Shale and limestone , thin and thick shale 
interbedded with fossiliferous limestone . 
Shale : dark gray green ; very fine 
grained ; faintly laminated . Limestone 
(packstone and grainstone) :  medium to 



1 6  1 . 0  

1 7  9 . 0  

18 1 . 0  

19 1 . 0  

20 1 . 0  

2 1  1 . 0  

22 2 . 0  

23 2 . 0  

65 . 0  

74 . 0  

75 . 0  

76 . 0  

7 7 . 0  

78 . 0  

80 . 0  

82 . 0  
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coarse grained; very thin to medium bed
ded . Trilobites . Echinoderms . 

Limestone ( packstone and grainstone) : 
medium to coarse grained; medium to thick 
bedded . Fossiliferous , trilobites and 
echinoderms . Oolitic . Stylolites . 

Limestone (packstone and grainstone) :  
coarse grained; thick to very thick bed
ded . Oolitic , ooids exceed 2 millimeters 
in diameter . Fossiliferous , trilobites 
and echinoderms . Oolitic shoal . Abun
dant marine fibrous cement . Differential 
packing of allochems . Intraclastic . 
Samples : RS2 , 52 . 5  mbM ; RS3 ,  49 . 4  mbM. 

Shale and limestone, thin to thick shale 
interbedded with intraclastic and oolitic 
limestone . Shale : dark gray green ; very 
fine grained . Limestone ( packstone and 
grainstone) :  medium to coarse grained ; 
thin to medium bedded . 

Limestone and shale, oolitic, intra
clastic , and pelletal? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) :  fine to 
coarse grained ; very thin to medium bed
ded , planar and low angle cross lamina
tion . Shale: dark gray; very fine 
grained . 

Limestone and shale , pelletal? and 
oolitic limestone interbedded with shale . 
Limestone ( packstone and grainstone) :  
fine to coarse grained ; very fine to 
medium bedded . Renalcis? 

Limestone (packstone and grainstone) :  
coarse grained; thick bedded . Oolitic . 
Stylolitic . 

Shale : dark gray green; very f ine 
grained; faintly laminated . 

Limestone and shale , pelletal? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : fine 
grained ; thin bedded, planar and low 



24 1 . 0  

25 28 . 0  

26 2 . 0  

27 1 . 0  

28 2 . 0  

29 2 . 0  

83 . 0  

1 1 1 . 0  

1 13 . 0  

1 14 . 0  

1 16 . 0  

1 18 . 0  
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angle cross lamination . Intraclastic . 
Oolitic . Shale : dark gray green ; very 
fine grained . 

Limestone ( packstone 
coarse grained ; thick 
Coarse ooids range in 
millimeters . 

and grainstone) :  
bedded . Oolitic . 
s ize from 1 to 2 

Shale and limestone, thick shale 
interbedded with rare intraclastic , 
oolitic, and pelletal? limestone . Shale : 
dark gray green ; very fine grained ; 
faintly laminated . Limestone (packstone 
and grainstone) :  fine to coarse grained; 
very thin to thin bedded , planar and low 
angle cross lamination . Sole marks . 
Pseudonodules . Loading . Gutter casts . 
Intraclastic and oolitic lenses . Sam
ples : RS4 ,  36 . 6  mbM ; RS5 ,  30 . 2  mbM; RS6 ,  
24 . 1  mbM; RS7 , 14 . 1  mbM . 

Limestone and shale , pelletal? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : fine 
grained ; thin bedded , planar and low 
angle cross lamination . Oolitic . Intra
clastic . Shale : dark gray green ; very 
fine grained ; faintly laminated . 

Limestone and shale , oolitic and 
pelletal? l imestone interbedded with thin 
shale . Limestone ( packstone and 
grainstone) : fine to medium grained ; 
thin to medium bedded . 

Shale and l imestone , thin to thick shale 
interbedded with oolitic , intraclastic , 
and pelletal? limestone . Shale : dark 
gray green ; very fine grained ; faintly 
laminated . Limestone ( packstone and 
grainstone) : fine to coarse grained ; 
very thin to thick bedded , planar and low 
angle cross lamination . Stylolites . 
Loading . Pseudonodules . Gutter casts . 

Limestone and shale , pelletal? limestone 
interbedded with thin to thick shale . 
Limestone (packstone and grainstone) :  
fine to coarse grained ; very thin to 



30 3 . 0  1 2 1 . 0  

3 1  5 . 0  1 26 . 0  

32 3 . 0  129 . 0  

33 2 . 0  1 3 1 . 0  

34 2 . 0  1 33 . 0  

35 2 . 0  1 35 . 0  
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medium bedded . Loading . Pseudonodules . 
Gutter casts . Shale : dark gray green, 
very fine grained ; faintly laminated . 
Sample : RS8 ,  4 . 1  mbM . 

to thick shale 
pelletal? and 

Shale : dark 

Shale and l imestone, thin 
interbedded with rare 
intraclastic limestone . 
gray green; very fine 
laminated . Limestone 
grainstone) : f ine to 
thin to medium bedded . 

grained; faintly 
(packstone and 
coarse grained ; 
Limestone clasts 
1 .  7 mbM . in shale . Sample : RS9 ,  

MAYNARDVILLE LIMESTONE . Limestone and 
shale, nodular and bedded l ime mudstone 
interbedded with very thin discontinuous 
shale drapes . Limestone (mudstone and 
packstone to grainstone) : fine grained; 
thin to medium bedded . Rare l imestone 
clast conglomerates . Fossiliferous , 
trilobites and echinoderms . Peloidal . 
Oolitic . Burrows . Petrol iferous . 

Limestone and shale , peloidal limestone 
and lime mudstone interbedded with thin 
shale drapes . Limestone (mudstone and 
packstone) : fine to medium grained, thin 
to very thick bedded. Burrows . Superfi 
cial ooids? Algal peloids and 
intraclasts? Dolomitization 

Limestone and shale ,  l ime mudstone 
interbedded with thin shale drapes . 
Limestone (mudstone and packstone to 
grainstone) : fine to medium grained ;  
thin t o  thick bedded , cross stratified . 
Burrows . Superficial ooids? Peloids . 

Limestone (mudstone and packstone to 
grainstone) : fine to coarse grained ; 
thin to thick bedded , cross stratified? 
Rare burrowed lime mudstone interbedded 
with thin shale drapes . Oolitic , some 
ooids may exceed 2 millimeters in diame
ter . Superficial ooids? Dolomitization . 

Limestone (packstone and grainstone) : 
fine to medium grained; very thick bed
ded . Superficial ooids? algal peloids? 



36 1 . 0  

37 3 . 0  

38 1 . 0  

39 1 . 0  

40 3 . 0  

4 1  5 . 0  

42 4 . 0  

1 36 . 0  

1 39 . 0  

140 . 0  

141 . 0  

144 . 0  

149 . 0  

153 . 0  
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Renalcis? Stylolites . Some 
dolomitization . Upper part covered . 
Sample : RS1 1 ,  1 3 . 3  maN . 

Covered interval .  

Limestone ( boundstone and mudstone to 
grainstone ) : fine to coarse grained ; 
very thick bedded . Thrombolite with 
algal peloidal , oolitic , oncolitic , and 
mudstone filling interalgal areas . 
Renalcis? Stylolites . 

Limestone and shale , lime mudstone 
interbedded with thin shale drapes . 
Limestone (mudstone ) : fine grained ; 
thick bedded . Burrowed . Rare fossils ,  
trilobites and echinoderms . Thrombolitic 
at base and top . 

Limestone ( boundstone and mudstone to 
grainstone) : f ine to coarse grained ; 
thick bedded . Thrombolite . Fossil de
bris and ooids fill  interalgal regions . 
Clotted fabric . Stylol ites . 
Dolomitization ( partial ) . 

Limestone ( boundstone and packstone to 
grainstone ) : fine to coarse grained ; 
thick bedded . Thromboli tic at base and 
top of unit,  otherwise oncolitic . 
Oncoids exceed 1 centimeter in diameter . 
Stylolites . Oolitic? 

Limestone ( boundstone and mudstone to 
grainstone) : fine to coarse grained ; 
very thick bedded . Thrombolite . Partial 
dolomitization . Interalgal areas prima
rily filled with mudstone and oolitic 
packstone and wackestone . Stylolites . 
Samples : RS1 2 ,  23 . 9  maN; RS1 3 ,  25 . 1  maN; 
RS 14,  27 . 8  maN . 

Limestone ( boundstone and packstone to 
grainstone ) : medium grained ; very thick 
bedded . Cryptalgal laminites . Ultra 
thin wavy laminations . Microtepee struc
tures? Sample : RS1 5 ,  3 1 . 5  maN . 



43 6 . 0  

44.  3 . 0  

45 3 . 0  

46 1 . 0 

47 1 . 0  

48 1 . 0  

49 1 . 0  

so 1 . 0  

5 1  2 . 0  

52 2 . 0  

159 . 0  

1 62 . 0  

165 . 0  

166 . 0  

1 67 . 0  

168 . 0  

1 69 . 0  

1 70 . 0  

1 72 . 0  

1 74 . 0  
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Limestone and dolostone ( boundstone) : 
fine to medium grained; very thick bed
ded . Thrombolitic .  Fenestral fabric? 
Sample : RS 1 6 ,  36 . 1  maN . 

Dolostone and limestone (boundstone and 
packstone to grainstone) : f ine to medium 
grained; medium to thick bedded . 
Cryptalgal laminite . Rare shale 
interbeds . Laterally discontinuous 
mudstone lenses . Mudcracks? 

Dolostone and limestone ( boundstone) : 
fine grained; thick bedded . 
Stromatolites intergrade with lesser 
abundant cryptalgal laminites . Irregular 
wavy lamination grade laterally into 
laterally linked hemisperoids . 

Dolostone (boundstone and packstone to 
grainstone) : f ine to medium grained; 
thick bedded . Cryptalgal laminites 
intergrade with lesser abundant 
stromatolites . 

Limestone and shale, lime mudstone 
interbedded with thin shale drapes . 
Limestone (mudstone) : f ine grained; thin 
bedded . Algal peloids . Rare fossil 
debris? 

Limestone and dolostone ( bo!lndstone and 
packstone to grainstone) : fine grained ; 
thick bedded . Cryptalgal laminites . 

Covered interval . 

Limestone and dolostone ( boundstone and 
packstone to grainstone) : fine grained; 
thick bedded . Cryptalgal laminites . 

Dolostone (boundstone and grainstone) : 
fine to medium grained; very thick bed
ded . Stromatolites and cryptalgal 
laminites . Fenestral fabric . Sample : 
RS1 7 ,  50 . 6  maN . 

Dolostone and limestone ( boundstone and 
packstone to grainstone) : f ine to medium 
grained; medium to thick bedded . 



53 1 . 0  

54 1 . 0  

55 1 . 0  

56 1 . 0  

57 2 . 0  

58 2 . 0  

59 1 . 0  

60 3 . 0  

6 1  1 . 0  

62 1 1 . 0  

63 8 . 0  

1 75 . 0  

1 76 . 0  

1 7 7 . 0  

1 7 8 . 0  

180 . 0  

1 82 . 0  

1 83 . 0  

1 86 . 0  

187 . 0  

198 . 0  

206 . 0  
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Cryptalgal laminites . Rare dolomitized 
mudstone . 

Covered interval . 

Limestone ( boundstone and packstone to 
grainstone) : fine grained ; thick bedded . 
Covered at base . Stromatolitic above . 

Limestone ( boundstone and packstone to 
grainstone) :  fine grained; thick bedded . 
Cryptalgal laminites . Stromatolites . 
Wavy ultra thin laminations grade later
ally into laterally l inked hemispheroids . 

Limestone ( boundstone and packstone to 
grainstone) : fine to medium grained ; 
thick bedded . Stromatolitic . Rare 
cryptalgal laminites . Stylolitic . 

Dolostone and limestone ( boundstone and 
packstone to grainstone) :  fine grained ; 
thick bedded . Cryptalgal laminites and 
stromatolites . 

Dolostone ( boundstone and packstone to 
grainstone) : fine grained ; very thick 
bedded . Stromatolitic . Covered at top . 

Covered interval . 

Dolostone and limestone ( boundstone and 
packstone to grainstone) : fine grained ; 
very thick bedded . Cryptalgal laminites . 
Covered interval at top . Sample : RS1 8 .  
64 . 2  maN . 

Limestone ( boundstone and mudstone to 
grainstone) : fine grained; thick bedded . 
Cryptalgal laminites at base overlain by 
mudstone . Algal peloids? 

Covered interval . 

Dolostone and limestone ( boundstone and 
packstone to grainstone) :  fine grained ; 
thick to very thick bedded . 
Stromatolitic . Laterally linked 
hemispheroids and domal stromatolites . 



64 11 . 0  217 . 0  
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Fenestral fabric . Microtepee structures . 
Sample : RS19 ,  83 . 8  maN . 

Covered Interval .  

COPPER RIDGE DOLOSTONE . 
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INTERSTATE 75 SECTION AND SAMPLES 

The I-75 section described here is located on the northeastern s ide 

of Interstate 75 approximately 2 km north of the Emory Road interchange . 

Nearly 100 m of Nolichucky Shale and 25 m of Maynardville Limestone are 

exposed continuously along the lowermost bench, at road level . The 

lower part of the Nol ichucky Shale is highly weathered, and thus is not 

exposed . F ield measurements and descriptions begin at the base of the 

well-exposed section at the lowermost observed oolitic grainstone . 

UNIT TKN . (m . ) CUM. TKN . (m . ) 

1 6 . 6  6 . 6  

DESCRIPTION 

UNEXPOSED NOLICHUCKY SHALE 

NOLICHUCKY SHALE. Shale and limestone 
(nodular and undulatory bedded limestone 
in shale ) , shale : green-brown and medium 
gray, weathering brown and l ight gray; 
very f ine to f ine grained. Mottled 
( bioturbated? ) . Shale intervals 0 . 3  to 
15 . 3 centimeters thick . Inarticulate 
brachiopods . Partially dolomitized. 
Intraclasts are randomly oriented in 
shale 2 .  1 meters above base . Limestone 
(mudstone to packstone) : medium gray, 
weathering light gray; f ine to coarse 
grained; planar and cross laminated to 
medium bedded,  irregular and even to 
uneven . Oolitic . Lenticular beds , lime
stone "channels" in shale trend from N 
35°E to N 55°E . Vertical and horizontal 
burrows . Load casts . Groove casts . 
Gutter casts . Fossiliferous . Limestone 
clast conglomerates exhibit fanned 
clasts , subparallel to random clast ori
entation,  abrupt change from polymictic 
to monomictic over short lateral distanc
es . Samples : I - 1 -0 . 0 , 100 . 2  mbM; 



2 0 . 4  7 . 0  

3 1 . 3  8 . 3  

4 1 . 7  10 . 0  
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I- 1 -0 . 3 ,  1 00 . 1  mbM; I - 1 - 7 . 4 ,  97 . 9  mbM ; 
I - 1 -8 . 0 ,  97 . 8  mbM; I - 1 - 1 1 . 6 ,  96 . 7  mbM ; 
I - 1 - 15 . 5 ,  95 . 5  mbM ; I - 1 - 1 7 . 0 ,  95 . 0  mbM . 

Limestone (packstone) , medium to dark 
gray, weathering l ight gray; coarse 
grained ; thick bedded , irregular and 
uneven . Limestone clast conglomerate at 
base . Oolitic-well sorted , shale and 
mudstone drapes . Thin , discontinuous 
shale drapes . Vuggy porosity .  
Fossiliferous-trilobites and echinoderms . 
Laminated and hemispheroidal 
organosedimentary structures near top, 
hemispheroids 6 . 1 centimeters tal l .  
Samples : I-2-0 . 5 ,  93 . 4  mbM ; I-2- 1 . 0 , 
93 . 3  mbM ; I -2-2 . 1 ,  93 . 0  mbM . 

Mottled Limestone ( boundstone and 
mudstone to grainstone) ,  medium to light 
gray, weathering l ight gray; fine to 
coarse grained ; thick bedded . Shale 
pervasively dolomitized-dolomitized areas 
impart a mottled appearance to the uni t .  
Irregular vugs . Planar laminated and 
cross laminated organosedimentary struc
tures . Laterally linked hemispheroids 
toward top . Oolitic . Fossiliferous
trilobites . Stylolites . Domal upper 
surface . Intraclastic . Fluid inj ection 
structures? Samples : I-3-0 . 8 ,  9 3 .  0 
mbM ; I-3-1 . 0 , 92 . 9  mbM; I-3-4 . 2, 91 . 9  
mbM . 

Limestone and shale ( undulatory bedded 
limestone) , Limestone ( predominantly 
mudstone and wackestone) :  medium to dark 
gray, weathering l ight gray; very fine to 
medium grained ; laminated and cross lami
nated to thin bedded, irregular and un
even . Lenticular beds . Vertical and 
horizontal burrows . Fossiliferous
trilobites and inarticulate brachiopods . 
Load casts . Shale : olive green and dark 
gray, weathering green brown to light 
gray; very fine grained ; laminated . 
Partings usually continuous and are 0 .  3 
to 0 . 6  centimeters thick . Sample : 
I-4-0 . 9 ,  91 . 6  mbM . 



5 1 . 6  

6 1 . 6  

7 0 . 2  

8 0 . 5  

1 1 . 6  

1 3 . 2  

1 3 . 4  

1 3 . 9  
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Mottled limestone ( boundstone and 
mudstone to packstone) ,  medium gray , 
weathering light gray to pale tan yellow; 
very fine to coarse grained ; thick bed
ded , irregular and uneven . Lower 15 
centimeters intraclastic-polymictic,  
maximum clast s ize 0 . 4  meters long ; 0 . 06 
meters thick, average size 0 .  09 meters 
long ; 0 .  OJ meters thick , random to 
subparallel clast orientation . Load 
casts . Above 15 centimeters-mottled 
fabric ( limestone interbedded with 
discontinous dolostone partings ) .  Verti
cal fract ures cut algal bodies and are 
filled with shale which has been partial
ly to pervas ively dolomitized . Upper 
surface of unit traces outl ine of algal 
"heads" .  Within algal bodies
fossiliferous and oolitic . Algal lamina
tions near top . Samples : I-5-0 . 0 ,  90 , 2  
mbM; I-5-2 . 8 ,  89 . 3  mbM . 

Limestone and Shale ( undulatory limestone 
in part nodular bedded limestone) , lime
stone (mudstone to wackestone) : medium 
gray, weathering medium to light gray; 
fine to medium grained ; planar laminated 
and cross laminated to thin bedded , ir
regular and uneven . Lenticular . 
Fossiliferous-trilobites . Slump struc
ture? Vertical burrows . Shale : dark 
gray, weathering l ight to dark gray; very 
fine grained ; laminated . Continuous to 
discontinuous shale partings . Sample : 
I-6-2 . 5 ,  87 . 8  mbM . 

Limestone and shale ( undulatory bedded 
limestone) ,  limestone (mudstone to 
wackestone) :  medium to dark gray, weath
ering light gray; fine to medium grained ; 
planar laminated and cross laminated to 
thin bedded, irregular and uneven . Re
sembles unit 6 except contains less 
shale . Very thin and discontinuous shale 
partings . Foss iliferous . Sample : 
I-7-0 . 0 ,  87 . 0  mbM . 

Limestone (mudstone to grainstone) , medi
um gray, weathering light gray to brown ; 
fine to coarse grained ; fine to medium 



9 0 . 9  14 . 8  

1 0  0 . 3  1 5 . 1  

1 1  0 . 9  1 6 . 0  

12 0 . 5  16 . 5  
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bedded , irregular and uneven . Coarsening 
upward sequence . Ooids well sorted and 
partially dolomitized. Rare shale part
ings . Laterally ,  beds difficult to trace 
because of lenticular nature . Samples : 
I-8-1 . 0 ,  87 . 5  mbH; I-8-4 . 0 ,  86 . 5  mbH. 

Limestone and shale ( undulatory bedded 
l imestone) ,  limestone (mudstone to 
packstone/grainstone) :  light to medium 
gray, weathering l ight gray to tan brown; 
very fine to coarse grained; planar and 
cross laminated to thin bedded, irregular 
and uneven . Host beds lenticular . 
Coarsening upward sequence. Upper 25 
centimeters oolitic . Shale partings in 
upper portion of oolite.  Sample : 
I-9-2 . 8 ,  85 . 4  mbH. 

Shale, 
brown ; 
tled . 

brown, weathering brown to gray 
very f ine to f ine grained . Hot 
Abiotic . Iron stained . Cal

careous . Laminated . Sample : I - 1 0 -0 . 8 ,  
85 . 2  mbH 

Shale and limestone ( nodular to undulato
ry bedded limestone) ,  shale : dark gray 
and green brown ( at top ) , weathering gray 
brown to green brown ; very f ine grained . 
Structureless . Abiotic . Iron staining . 
Lacks carbonate interbeds . Limestone 
(mudstone to grainstone) : l ight gray to 
medium gray, weathering l ight gray to 
tan; very f ine to medium grained; planar 
and cross laminated to thin bedded , ir
regular and uneven. Lensoidal,  thin beds 
laterally discontinuous over 1 meter or 
less . Vertical and horizontal burrows , 
0 . 3  centimeters in diameter . Samples : 
I- 1 1 -0 . 8 ,  84 . 9  mbH; I- 1 1- 1 . 1 ,  84 . 8  mbH. 

Limestone and Shale (undulatory bedded 
limestone) ,  l imestone (mudstone to 
grainstone) : l ight gray, weathering 
l ight gray to tan; fine to coarse 
grained ; planar and cross laminated to 
thin bedded , irregular to uneven . Dis
continuous shale partings cut l imestone 
beds , shale partings weather gray-green . 
Dolomitized intervals . Secondary vugs 



1 3  0 . 2  

14 0 . 3  

15 1 . 9  

16 . 7  

1 7 . 0  

1 8 . 9  
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1 -2 millimeters in diameter . Intra
clastic at base . Fossi ls-trilobites and 
Chancelloria? Coarse grained at base , 
fining toward top . Sample : I - 12-0 . 5 ,  8 
4 . 0  mbM . 

Shale and Limestone (nodular and undula
tory bedded limestone) ,  Shale : green 
brown, weathering light to dark brown ; 
very f ine grained ; laminated . Abiotic . 
Discontinuous limestone beds . Limestone 
(mudstone to packstone) :  medium gray, 
weathering light gray; fine to medium 
grained ; planar and cross laminated , 
irregular and uneven . Fossils-trilobites 
and Chancelloria? 

Limestone ( packstone/grainstone) ,  light 
gray where dolomitized tan , weathering 
light gray to tan ; coarse grained ; thin 
to medium bedded , irregular and uneven . 
Stylolites . Limestone clast conglomerate 
exhibits polymictic clasts , random clast 
orientation , clasts from 6 . 1  to 9 . 2  cen
timeters long by 1 . 5  centimeters thick, 
fanned clasts , and clasts which proj ect 
into overlying shale . Unit is 
lenticular . Sample : I-14-0 . 0 ,  53 . 5  mbM . 

Shale and limestone (nodular and undula
tory bedded limestone) ,  Shale : medium to 
dark gray, weathering l ight gray, very 
fine grained. Rare limestone nodules . 
Abiotic . Structureless . Color banding . 
Limestone (mudstone and wackestone) :  
medium gray, weathering light gray; fine 
to medium grained; planar and cross lami
nated to thin bedded, irregular and un
even . Fossiliferous-echinoderms , trilo
bites , Chancelloria? Lense shaped beds 
with scoured bases , irregular top . 
Pseudomudcracks on lower surface . Groove 
casts and tool marks on sole of thin 
limestone beds 48 centimeters from top of 
unit . Sole marks only observed on bases 
of laminated to cross laminated fine to 
medium grained limestone . Rare vertical 
burrows . Thin shale beds , laminations , 
and partings . Samples : I-15-2 . 6 ,  82 . 4  
mbM; I - 15-3 . 8 ,  82 . 0  mbM . 



16 0 . 4  19 . 3  

1 7  2 . 5  2 1 . 8  

18 0 . 2  22 . 0  

19 0 . 4  22 . 4  
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Limestone (predominantly packstone/grain
stone) , medium to dark gray, weathering 
light gray to brown ; fine to coarse 
grained ; thin to medium bedded, irregular 
and uneven . Fossiliferous . Intra
clasti c .  Oolitic . Shale drapes cut ooid 
beds . Intraclasts ( polymictic clast 
types ) within oolitic portion . Thin 
limestone beds separated by dolomitized 
shale and stylolite seams within the 
lower 9 .  2 centimeters . Upper 30 . 5 
centimeters is ool itic . Lense shaped 
beds pinch out over lateral distances o f 
1 0 ' s  of meters . Sample : I - 1 6-0 . 4 ,  81 . 2  
mbM. 

Shale and limestone ( undulatory bedded 
limestone) ,  shale : green brown ( proximal 
to limestone beds) otherwise dark gray, 
weathering green brown to gray to white ; 
very fine grained ; laminated . Rare fos
sils ( inarticulate brachipods ) in gray 
shale . Contact between 2 varieties of 
shale is sharp . Maroon shale rare . 
Vertical burrows . Limestone (packstone/ 
grainstone) :  light to medium gray, 
weathering pale yellow to red brown ; 
medium to coarse grained ; thin bedded , 
irregular and uneven . Beds discontinuous 
over several meters . Load casts . Sole 
marks? Intraclastic, bioclastic , 
oolitic , and pelletal .  Samples : 
I - 1 7 -6 . 4 ,  78 . 9  mbM; I - 1 7 - 7 . 3 , 78 . 7  mbM . 

Limestone and shale ( undulatory bedded 
limestone) ,  limestone (mudstone to 
packstone/ grainstone) : medium gray, 
weathering red brown to pale yellow to 
gray; fine to coarse grained ; thin bed
ded , irregular and uneven . Beds 
lenticular, pinching out over centimeters 
to meters . Load casts . Burrows , usually 
vertical . Groove casts? Clasts at top 
of unit project into overlying shales . 
Shale : green , weathering pale green ; 
very fine grained ; laminated . Discontin
uous drapes . 

Limestone and shale 
limestone ; nodular 

( undulatory bedded 
bedded intervals 



20 1 . 2  23 . 6  

21 3 . 2  26 . 8  
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predominate within lower 2/3 of unit) , 
limestone (mudstone to packstone/ 
grainstone) :  medium gray, weathering 
light gray, brown where dolomitized; f ine 
to coarse grained; planar and cross 
laminated to thin bedded, irregular and 
uneven . Vertical and horizontal burrows . 
Pseudomudcracks at base of thin limestone 
beds . Mudstone at base grading upward 
into wackestone, then fossiliferous 
packstone , and finally near the top , 
intraclastic packstone. Limestone clast 
conglomerate exhibit c lasts which project 
into overlying shales , monomictic clast 
associations , laminated and cross lami
nated clasts . Most beds discontinuous 
over scale of outcrop ( several meters ) .  
Shale : green and medium to dark gray, 
weathering green brown and l ight gray; 
very fine grained; laminated . 

Shale : green brown , dark gray, and ma
roon , weathering pale brown, light gray, 
and maroon ; very fine grained; laminated . 
No limestone interbeds . 

Shale and limestone (undulatory bedded 
limestone) ,  shale : dark gray , weathering 
light gray; very fined grained ; laminat
ed . Limestone (mudstone to packstone/ 
grainstone) :  light to medium gray, 
weathering light brown; fine to coarse 
grained ; planar and cross laminated to 
thin bedded, irregular and uneven . 
Lenticular limestone clast conglomerate 
beds pinch out over short lateral dis
tances resulting in different intra
clastic lithologies from what initially 
appears to be the same bed . Stylolite s .  
Iron staining . Dolomitization . Secon
dary vugs . Pseudomudcracks . Lithologies 
observed from the lower 27 . 5  centimeters 
of the unit include packed intraclastic 
grainstone , isolated clasts in grainstone 
matrix , and brecciated intraclasts with 
chaotic orientation . Isolated clasts in 
grainstone matrix is most abundant and a 
typical sequence includes from base to 
top : randomly oriented coarse pebble 



22 0.7 27.5 

23 0.3 27.8 

24 1.0 28.8 
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clast lag overlain by subparallel clasts 
which are sparsely packed, which is over
lain by tightly packed clasts in shale 
matrix. Samples: I-21-0.0, 76.6 mbM; 
I-21-0.6, 76.4 mbM; I-21-2.2, 75.9 mbM; 
I-21-4.1, 75.3 mbM; I-21-8.2, 72.9 mbM. 

Limestone (packstone/grainstone), light 
to medium gray, weathering light gray to 
red brown where dolomi tized; coarse 
grained; thin to thick bedded. Low am
plitude stylolite seams. Shale drapes, 
partially dolomitized. Lower 24.4 centi
meters is oolitic and intraclastic, but 
predominantly intraclastic. Remainder of 
unit is oolitic. Oolitic shoal exposed 
on bench above road cut. Samples: 
I-22-0.0, 73.4 mbM; I-22-1.8, 72.9 mbM. 
Lower oolite shoal ( first bench above 
road cut). Numbers corres pond to meters 
above base of shoal: IDA 0. 0; IOA 0. 3; 
lOA 0. 9; lOA 1. 0 i lOA 1. 5; IOA 1. 8; lOA 
2.6; lOA 2.8; lOA 3.75; IOA 3.9; lOA 4.5; 
lOA 4.9; lOA 5.1; IOA 5.3; IOA 5.4; lOA 
5.75; IOA 5.9. 

Shale (and one limestone interbed), 
shale: dark gray and green brown, weath
ering brown to gray white; very fine 
grained. Abiotic. Structureless. Rare 
burrows. Limestone (packstone/grain
stone): medium gray, weathering light 
gray; coarse grained; thin bedded. 
Polymictic limestone clast conglomerate 
bed 12.2 centimeters above base. 
Irregular and uneven. Sample: I-23-0.4, 
72.6 mbM. 

Limestone ( mudstone to grainstone), medi
um gray, weathering light gray to red 
brown; coarse grained; laminated to thin 
bedded, irregular and uneven. Rare 
interbeds of shale, partially dolomi
tized. Stylolitic. Fossil debris
trilobites and echinoderms. Oncolitic? 
Burrowed. lntraclastic at base grading 
upward into cross-stratified oolite. 
Ooids are 1 to 2.5 millimeters in 
diameter, commonly dolomitized. Dis
continuous mudstone fills troughs in 



25 1 . 7  30 . 5  

26 3 . 1 3 3 . 6  

27 0 . 7  34 . 3  
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oolite . Oolitic shoal exposed on bench 
above road cut . Samples : I-24- 2 . 2 ,  7 1 . 7  
mbM; I-24-2 . 4 ,  7 1 . 7  mbM. 

Shale with occasional limestone 
interbeds , shale : brown gray and dark 
gray, weathering red brown and medium 
gray; very f ine grained . Abiotic . 
Structureles s .  L imestone (mudstone to 
grainstone) : medium gray, weathering 
l ight gray; f ine to coarse grained; 
planar laminated to thin bedded, irregu
lar and uneven . Burrows . Intraclastic , 
polymictic clast association . Fossilif
erous . Oolitic . Samples : I -25-0 . 6 ,  
7 1 . 2  mbM; I-25- 3 . 9 ,  70 . 2  mbM. 

Limestone (packstone and grainstone) , 
medium gray, weathering l ight gray to 
brown ; coarse grained; thin to thick 
bedded, irregular and uneven . Intra-
clasts , rare . Bioclasts , partially 
dolomit ized . Ooids , partially 
dolomitized, hardgrounds , differential 
packing observed when comparing spar r ich 
horizons to spar poor horizons , skeletal 
material ( debris ) randomly oriented in 
ooid matrix, bedding surfaces not rip
pled, no cross-strati fication , and later
al decrease in grain size. Limestone 
beds are lense shaped, laterally shales 
thicken at expense of l imestone beds . 
Discontinous thin shale partings to 
interbedded shale up to 15 . 3  centimeters 
thick . Fractures f illed with sparry 
calcite cement .  Irregular and low ampli
tude stylolite seams . Samples : 
I-26- 8 . 2 ,  67 . 2  mbM; I-26-core , 67 . 2  mbM; 
I-26-flank, 67 . 2  mbM . 

Shale and limestone (nodular bedded lime
stone) , shale : dark gray, weathering 
light gray; very fine grained . 
Structureless . Abiotic . Limestone 
(mudstone and wackestone) : medium gray, 
weathering l ight gray , fine grained ; 
laminated and thin bedded . Burrowed . 
Fossiliferous, trilobites . Nodules , 
several centimeters long and several 
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centimeters wide and 1 . 5  centimeters 
thick ( on average) .  

Limestone ( packstone and grainstone) , 
light to medium gray, weathering light 
tan gray to red brown; coarse grained ; 
thin to medium bedded, irregular and 
uneven . Fosssiliferous , sparse intra
clasts in bioclastic matrix . Oolitic . 
Thin shale interbeds and partings . 
Intraclasts more common toward top of 
unit .  Sample : I-28- 1 . 6 ,  65 . 4  mbM . 

Shale and l imestone (nodular bedded l ime
stone) ,  shale : dark gray and green 
brown , weathering l ight gray and brown; 
very fine grained; laminated. In part 
mottled . Green shale adjacent to lime
stone beds . Limestone (mudstone to 
grainstone) : medium gray, weathering 
light gray; fine to coarse grained ; thin 
to medium bedded,  irregular and uneven . 
Burrows-vertical ,  straight , s imple , and 
1-2  centimeters in diameter . Pseudo
mudcracks . Intraclastic . Fossiliferous . 
Limestone nodules-elongate, 15 . 3  centi
meters long, f ine grained, mudstone, 
burrowed , and some contain s ignificant 
proportion of s i liciclastic material . 
Samples : I-29-4 . 8 , 63 . 9  mbM; I -29-5 . 7 ,  
63 . 7  mbM; I -29-6 . 9 ,  63 . 3  mbM. 

Limestone (packstone to grainstone) , 
l ight to medium gray, weathering light 
gray to tan brown; coarse grained ; medium 
to thick bedded, irregular and uneven . 
Fining upward sequence-intraclastic 
packstone at base with fossiliferous and 
oolitic matrix, top becomes predominantly 
fossiliferous and oolitic . Very thin 
irregular , discontinuous shale partings 
which are commonly dolomitized . Frac
ture/fills . Stylo lites . Fossiliferous
trilobites , echinoderms , and inarticulate 
brachiopods . 

Limestone (packstone to grainstone) ,  
light to medium gray, weathering l ight 
gray to tan brown ; coarse grained; medium 
to thick bedded, irregular and uneven . 
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Fining upward sequence- intraclastic 
packstone at base with fossiliferous and 
ool itic matrix, top becomes predominantly 
fossiliferous and oolitic . Discontinuous 
to continuous shale partings up to 12 . 2  
centimeters thick which are commonly 
dolomitized . Fracture/fills . Stylo-
lites . Fossiliferous- trilobites , 
echinoderms , and inarticulate brachi
opods . Hardgrounds . Shale : dark gray 
and green brown , weathering light gray 
and brown ; very fine grained; laminated . 
Abiotic . Sample : I-31 - 1 . 3 , 6 1 . 7  mbM. 

Shale and limestone ( nodular and undula
tory bedded limestone) ,  shale: dark 
gray, weathering light gray and green 
brown to white ; very fine grained ; 
structureless to laminated . Iron 
stained . Limestone (mudstone to 
grainstone) : medium gray, weathering 
light gray ; very f ine to coarse grained ; 
planar and cross laminated to thin bed
ded , irregular and uneven . Lenses typi
cally intraclastic and pinch out over 
several meters . Limestone lenses and 
nodules-planar to cross laminated , 
mudstone, burrowed mudstone , nodules are 
very fine grained, and lenses are f ine to 
coarse grained . Intraclastic beds-clasts 
12 . 2  X 1 . 5  centimeters , random to fanned 
orientation , packstone to grainstone 
matrix . Thin discontinuous , burrowed 
mudstone may occur at base of intra
clastic lense . Samples : I-32- 1 . 9 ,  60 . 9  
mbM ; I-32-2 . 0 ,  60 . 9  mbM. 

Limestone ( packstone to grainstone ) ,  
medium gray, weathering l ight gray; medi
um to coarse grained ; thin bedded , irreg
ular and uneven . Intraclasts - 12 . 2  centi
meters long X 12 . 2  centimeters wide X 1 . 5  
centimeters thick, polymictic . Fossil
iferous- inarticulate brachiopods and 
trilobites . Oolitic . Hardgrounds . 
Stylolites . Dolomitization . Thin dis
continuous shale partings . 

Shale and limestone (nodular and undula
tory bedded limestone) , shale : dark 
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gray, weathering light gray to white; 
very fine grained; structureless. 
Abiotic. Pyrite. Limestone (mudstone to 
grainstone): medium gray, weatering 
light gray; very fine to coarse grained; 
planar and cross laminated to thick bed
ded, irregular and uneven. Nodules-typi
cally mudstone in composition, very fine 
to fine grained, and peloidal. Discon
tinuous to continuous bedded limestone. 
Intraclastic beds rare. Slump structure? 
near top. Oolitic. Fossiliferous. 
Stylolitic. Abundant hardgrounds. Sam
ples: I-34-2.5, 58.7 mbM; I-34-10.6, 
56.3 mbM. 

Limestone (mudstone to grainstone), medi
um gray, weathering light gray to brown; 
coarse grained; thin to medium bedded, 
irregular and uneven. Partially 
dolomitized. Intraclastic beds-clast 
diversity increases toward top of unit, 
largest clasts near base (clast size 
decreases upward), clasts project into 
overlying shales, oolitic and 
fossiliferous matrix within intraclastic 
limestone increases in grain size up 
unit. Low amplitude stylolite seams. 
Shale partings and interbeds toward the 
top of unit. Sample: I-35-1.0, 55.7 
mbM. 

Shale and limestone (undulatory and 
nodular bedded limestone), shale: dark 
gray and green brown, weathering light 
gray to white and pale green brown; very 
fine grained; laminated to structureless 
to mottled. Iron stained. Rare inartic
ulate brachiopods and trilobites. Lime
stone (mudstone to packstone): medium 
gray, weathering light gray; very fine to 
coarse grained; planar and cross laminat
ed to thin bedded, irregular and uneven. 
Nodules and thin lenses increase up unit. 
Fossiliferous-trilobites. Samples: 
I-36-2.9, 54.5 mbM; I-36-7.1, 53.2 mbM. 

Limestone (wackestone to grainstone), 
medium gray, weathering medium to light 
gray; fine to coarse grained; thin 
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bedded, irregular and even to uneven. 
Intraclastic beds-polymictic, larger at 
base decreasing in size up unit, random 
clast orientation, subrounded to 
subangular, and thin laminated 
wackestone/packstone partings. Thin, 
partially dolomitized shale partings. 
Stylolites. Vuggy porosity. Fossils and 
ooids as matrix within intraclastic beds, 
matrix grain size increases up unit. 

Shale and limestone ( undulatory and 
nodular bedded limestone), shale; medium 
to dark gray, weathering white to red 
brown; very fine grained; mottled. Lime
stone (mudstone to grainstone ): medium 
gray, weathering light gray; very fine to 
coarse grained; laminated to thin bedded. 
Fossiliferous. Intraclasts-small, poly
mictic. Lenticular limestone beds in 
lower 1 /3 give way to nodules in upper 
part of unit. 

Limestone and shale ( lower 30.5 centime
ters undulatory bedded limestone, rest of 
unit is limestone interbedded with thin, 
discontinuous shale drapes), limestone 
(mudstone to grainstone) : medium gray, 
weathering light gray to brown; fine to 
coarse grained; thin bedded, irregular 
and uneven. Intraclasts-coarsest at 
base, clasts sparser and smaller up unit. 
Fossils-increase in grain size upward 
( near top fossils several mm . in length ), 
trilobites, echinoderms, and inarticulate 
brachiopods. Samples: I-39-1.5, 50.9 
mbM; C39, 51.2 mbM. 

Shale and limestone ( nodular bedded lime
stone), shale: medium to dark gray, 
weathering light to medium gray; very 
fine grained; laminated to structureless. 
Abiotic. Iron stained. Limestone 
( mudstone, in part packstone ): medium 
gray, weathering light gray; very fine to 
medium grained; planar and cross laminat
ed to thin bedded, irregular and uneven. 
Thin nodules and lensoidal beds which are 
discontinuous over 10' s of centimeters. 
Burrowed. Peloidal. 
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Limestone and shale ( undulatory bedded 
limestone) ,  l imestone ( packstone to 
grainstone) : medium gray, weathering 
light gray to tan brown where 
dolomitized ; medium to coarse grained ; 
planar and cross laminated to thin bed
ded, irregular and uneven . Thin shale 
partings . Stylolites . Foss iliferous
trilobites and echinoderms . Vertical 
spar f illed fractures . Intraclastic 
beds-clasts proj ect into overlying beds . 
Sample : I-4 1 -4 . 1 ,  48 . 7  mbM . 

Shale ,  dark gray and olive green , weath
ering light gray to brown ; very f ine 
grained ; laminated . Fossiliferous
trilobites and inarticulate brachiopods . 
Burrows . Sample : I-42-0 . 3 ,  47 . 7  mbM . 

Limestone ( packstone to grainstone) , 
medium gray, weathering light gray to 
patchy brown ; coarse grained ; thin to 
medium bedded , irregular and uneven . 
Pseudomudcracks at base . Occasional thin 
shale drapes and rare interbeds up to 3 . 1  
centimeters thick . Discontinuous bedded . 
Stylolites . Spar f illed fractures . 
Samples : I-43-0 . 5 ,  47 . 4  mbM; I-43-6 . 4 ,  
45 . 4  mbM; C43- 0 ,  46 . 5  mbM; C43- 1 ,  46 . 0  
mbM . 

Shale and limestone ( undulatory and 
nodular bedded limestone) ,  shale : dark 
gray and olive green , weathering light 
gray to pale green ; very fine grained ; 
structureless to mottled . Color banding . 
Thickest shale interval is 9 .  2 centime
ters . Limestone (packstone to 
grainstone) : l ight to dark gray, weath
ering light gray to brown ; f ine to coarse 
grained ; laminated to thin bedded , irreg
ular and uneven . Lensoid shaped beds . 
Intraclastic-clasts project into overly
ing shale , average clast size is 6 . 1  X 
6 . 1 X 1 . 5  centimeters .  Foss iliferous
trilobites . Iron stained . Burrowed . 
Samples ; I -44- 1 .  5 ,  45 . 1 mbM; C44 , 44 . 0 
mbM . 

-
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Limestone ( packstone to grainstone) , dark 
gray, weathering dark gray to black ; 
coarse grained; thin to thick bedded , 
irregular and uneven . Rare thin 
continuus to discontinuous shale partings 
usually dolomitized . Fossiliferous . 
Oolitic . Intraclastic . Low amplitude 
stylolite seams . Sample : I-45- 3 . 2 , 44 . 0  
mbM . 

Shale and l imestone {nodular and undula
tory bedded l imestone) , shale: dark gray, 
weathering medium to light gray to white ; 
very fine grained ; structureless to mot
tled . Trilobite fossi l  zones . Iron 
stained . Pyrite . Limestone (mudstone to 
packstone) :  medium to dark gray, weath
ering light gray; f ine to coarse grained ; 
planar and cross laminated to thin 
bedded , irregular and uneven . Mudstone 
grades laterally into packstone . 
Nodules-mudstone, burrowed mudstone . 
Fossiliferous . Intraclastic . Sample : 
I-46- 1 . 0 ,  43 . 7  mbM . 

Limestone ( packstone to grainstone) ,  
medium gray, weathering light gray ; medi
um to coarse grained ; laminated to medium 
bedded , irregular and uneven . Occasional 
dolomitized shale partings . Stylolitic . 
Coarsening upward sequence .  Spar cement 
fracture filling . 

Shale and limestone (nodular bedded and 
rare undulatory bedded limestone) , shale : 
dark gray, weathering light gray; very 
fine grained ; structureless .  Abiotic . 
Iron stained . Limestone (mudstone to 
packstone ) :  medium gray, weathering 
light gray; fine to medium grained ; 
planar and cross laminated to thin bed
ded , irregular and uneven . Lensoidal 
beds . Sole structures-exclusively from 
laminated and cross laminated 
packstone/grainstone intervals . Tool 
marks/groove casts trend : N 22°E, N 
l9°E,  N 25 °E, N 1 °E,  N 0°E,  and N 4°W .  
Outcrop attitude : N 65°E,  23°SE. Sample : 
I-48-3 . 7 ,  4 1 . 7  mbM . 
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Limestone and shale (nodular bedded lime
stone) ,  limestone ( packstone to 
grainstone) : medium to dark gray, weath
ering light to medium gray to brown where 
dolomitized ; coarse grained ; laminated to 
thick bedded, irregular and uneven . 
Lense shaped beds . Fossi l iferous . 
Oolitic,  upper 36 . 6  centimeters . 
Allochems partially dolomitized . Shale 
drapes . Rare intraclasts . Shale : dark 
gray and olive green, weathering light 
gray and brown ; very f ine grained ; lami
nated . Abiotic . Thickest shale in 
terval is 3 . 1 centimeter thick . Vertical 
fractures filled with calcite cement . 
Sample : I-49- 1 . 1 ,  4 1 . 2  mbM . 

Limestone and shale ( undulatory to 
nodular bedded l imestone) ,  limestone 
(mudstone to grainstone) :  dark gray, 
weathering light gray; very f ine to 
coarse grained ; laminated to thin bedded , 
irregular and uneven . Vertical burrows . 
Fossi liferous-trilobites . Intraclastic
thickest beds , clasts proj ect into over
lying shales , lensoidal beds , some clasts 
up to 9 . 2  centimeter long . Shale : dark 
gray, weathering l ight gray; very f ine 
grained ; structureless . Abiotic . Bur
rows in calcareous shale . Color banded . 
Iron stained . Samples : I-50-0 . 5 ,  40 . 4  
mbM; I-50- 1 . 2 , 40 . 2  mbM . 

Limestone (packstone and grainstone) , 
medium gray, weathering light gray to 
dark gray, brown where dolomi tized ; 
coarse grained ; thick bedded , irregular 
and uneven . Secondary vugs . Lower 15 . 3  
centimeters is intraclastic . Upper 58 . 0  
centimeters- intraclasti c ,  oolitic , 
fossiliferous , and glauconitic/phos
phati c .  Sample : I-51-0 . 5 ,  39 . 6  mbM . 

Limestone and shale (undulatory to 
nodular bedded l imestone) , l imestone 
(mudstone to grainstone) : dark gray, 
weathering light gray; very f ine to 
coarse grained ; laminated to thin bedded , 
irregular and uneven . Vertical burrows . 
Fossiliferous-trilobites . Intraclastic . 
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Shale: dark gray, weathering light gray; 
very f ine grained; structureless . 
Abiotic . Burrows . Iron stained . 

Limestone ( packstone and grainstone) ,  
medium to dark gray, weathering light to 
medium gray, brown where dolomitized; 
medium to coarse grained; thick bedded , 
regular and uneven . Oolitic . 
Fossiliferous-some trilobites several mm .  
long . Rare intraclasts . Dolomitized 
shale partings . Vertical fracture/f ills . 
Stylolites-low to high amplitude, ampli
tude -1 . 5  centimeters . Vuggy porosity . 
Sample : I-53- 1 . 7 , 38 . 0  mbM . 

Limestone (packstone to grainstone) ,  
medium gray, weathering light gray; medi
um to coarse grained; thin bedded , irreg
ular and uneven . Oolitic . Thin discon
tinuous shale drapes . Lower 3 . 1  centime
ters-dark gray shale. Unit 54 is an 
oolitic cap to unit 53 . 

Limestone and shale ( nodular and undula
tory bedded limestone) ,  limestone 
(mudstone to grainstone) : medium to dark 
gray, weathering light gray to red brown 
where iron stained; very f ine to coarse 
grained; planar and cross laminated to 
medium bedded , irregular and uneven . 
Pseudomudcracks . Intraclastic beds
thickest beds , clasts project , fanned 
clasts , lenticular bedded, covered with 
oolitic cap which gives the bed an over
all uniform thickness . Fossiliferous
trilobites and graptolites (Dendroidea) .  
Oolitic . Sole marks-groove casts trend N 
49° E ,  N 24° E .  Burrowed . Secondary 
Vugs . Shale : dark gray, weathering 
gray to white; very fine grained; lami
nated . Typically 0 .  9 centimeters thick 
or less . Abiotic . Samples : I- 55-0 . 2 ,  
36 . 4  mbM; I-55-0 . 8 ,  36 . 3  mbM; I-55 - 10 . 1 ,  
33 . 4  mbM . 

Limestone and shale (undulatory and 
nodular bedded limestone) ,  limestone 
(mudstone to grainstone) :  medium to dark 
gray, weathering light gray to red brown 
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where iron stained; very fine to coarse 
grained ; planar and cross laminated to 
medium bedded, irregular and uneven . 
Intraclastic beds-thickest beds , clasts 
proj ect , fanned clasts , lenticular bed
ded , intraclats in shale matrix.  
Fossiliferous-trilobites , graptolites 
(Dendroidea in calc . shales and argill . 
lmsts . ) .  Oolitic . Burrowed . Shale : 
dark gray, weathering gray to white; very 
fine grained ; laminated . Abiotic . Simi
lar to unit 55 except basal 30 . 5  centime
ters is somewhat more shale rich . Sam
ple: I -56- 1 . 2 , 33 . 0  mbM. 

Limestone and shale ( undulatory bedded 
limestone) ,  limestone ( mudstone to 
grainstone) : medium gray, weathering 
gray, brown where dolomitized; f ine to 
coarse grained ; laminated to thin bedded , 
irregular and uneven. Fossiliferous
graptolites . Intraclasts-monomictic 
clasts float in calcareous shale matrix , 
some clasts normal to bedding . 
Burrowing . Pseudomudcracks-do lomitized 
shale and micrite occur where clasts 
pulled apart . Thin discontinuous shale 
partings . Shale : medium to dark gray, 
weathering gray to brown, fine grained; 
laminated . Dolomitized . Beds rarely 
exceed 3 . 1  centimeters in thickness . 
Fossiliferous-trilobites . Peloidal . 
Sample : I-57 - 1 . 6 ,  3 1 . 7  mbM. 

Limestone and shale (undulatory and mot 
tled bedded limestone) ,  l imestone 
(mudstone to grainstone) :  medium to dark 
gray, weathering gray to red brown; f ine 
to coarse grained; laminated to thin 
bedded, irregular and uneven . Intra
clastic beds , matrix dolomitized, thick
est beds . Lenticular beds . Pseudo
mudcracks filled with dolomit ized shale . 
Vugs . Shale : green to gray, weathering 
green gray; very fine to medium grained; 
laminated . Shale intervals 0 .  3 to 3 .  1 
centimeters thick. Graptolitic . Shales 
are more calcareous when compared to 
previous units · containing shale . 
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Mottled . Samples : 
A l - l ,  28 . 2  mbM . 

I-58- 2 . 5 ,  30 . 4  mbM ; 

Limestone ( packstone) ,  medium to dark 
gray, weathering gray to black to red 
brown ; coarse grained ; laminated to thin 
bedded , irregular and uneven . Low ampli
tude stylolite seams . Thin shale drapes 
near top- 1 . 8  centimeter thick but later
ally thicken and thin . Intraclastic
random to subparallel orientation . 
Vuggy . Samples : I-59-0 . 4 ,  27 . 8  mbM ; 
A2- 1 ,  28 . 2  mbM . 

Limestone and shale ( undulatory and 
nodular bedded limestone) ,  limestone 
(mudstone to grainstone) :  medium to dark 
gray, weathering gray to red brown ; fine 
to coarse grained ; laminated to thin 
bedded , irregular and uneven . Intra
clastic beds , matrix dolomit ized , thick
est beds . Lenticular beds . 
Petroliferous . Fossiliferous-trilobites 
very abundant near top of unit . Vugs . 
Shale : green to gray, weathering green 
gray; very fine to medium grained ; lami
nated . Samples : I-60- 3 . 0 ,  27 . 0  mbM; 
I-60-12 . 1 , 24 . 2  mbM ; I -60- 12 . 6 ,  24 . 1  mbM; 
A2-2 ,  27 . 7  mbM ; A3- l ,  27 . 1  mbM; A4- 0 ,  
26 . 7  mbM ; A4- l ,  26 . 5  mbM ; AS - 1 ,  25 . 8  mbM; 
A6- 1 ,  24 . 7  mbM ; A6- 2 ,  24 . 5  mbM ; C-60 , 
28 . 0  mbM . 

Limestone and shale (mottled and undula
tory bedded limestone) , limestone 
(wackestone to packstone) :  gray, weath
ering gray to brown; medium to coarse 
grained ; laminated to thin bedded , irreg-
ular and uneven . Fossiliferous -
trilobites . Intraclastic-monomictic . 
Pseudomudcracks . Shale : dark gray, 
weathering light gray; very fine grained; 
laminated . Thin partings . Dolomitized . 
Samples : I - 6 1 -0 . 5 ,  23 . 7  mbM; I - 6 1 - 2 . 0 ,  
23 . 3  mbM; A7- 1 ,  23 . 2  mbM; A8- 1 ,  22 . 9  mbM. 

Limestone and shale (mottled and undula
tory bedded limestone) , limestone 
(wackestone to packstone) :  gray, weath
ering gray to brown ; medium to coarse 
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grained ; laminated to thin bedded , irreg
ular and uneven . Pseudomudcracks . 
Fossiliferous-trilobites . Intraclastic
monomictic . Vugs . Shale : dark gray and 
green brown , weathering light gray and 
brown ; very fine grained; laminated . 
Thin partings and continuous beds up to 
6 . 1  centimeters thick . Dolomitized . 
Samples : I-62- 1 . 2, 22 . 2  mbM; I-62-1 . 3, 
22. 2 mbM; A9-T, 21 . 8  mbM . 

Limestone and shale (undulatory and 
nodular bedded limestone) ,  limestone 
(mudstone to grainstone) :  dark gray, 
weathering medium gray to light gray; 
fine to coarse grained; laminated to thin 
bedded, irregular and uneven . Burrows . 
Fosssiliferous-trilobites . Intraclastic . 
Vuggy. Dolomitization . Pseudomudcracks 
(pull-a-parts in cross section) .  Iron 
stained . Mudstone nodules common toward 
top . Shale: dark gray and olive green , 
weathering light gray and green brown; 
very fine to fine grai ned ; laminated . 
Shale intervals from 6 . 1  to 36 . 6  centime
ters thick . Samples : I-63- 2 . 0, 21 . 2  
mbM ; I-63-8 . 9, 19 . 1  mbM ; A10- 1, 21 . 6  mbM; 
A1 1-0, 20 . 1  mbM; A1 1 - 1, 19 . 6  mbM; Al2- 1, 
19 . 0  mbM ; A13-1,  18 . 1  mbM . 

Limestone (packstone to grainstone) ,  dark 
gray, weathering gray to brown; coarse 
grained ; medium bedded, irregular and 
uneven . Intraclastic-polymictic , sub
parallel orientation , largest clasts 15 . 3  
X 3 . 1  centimeters , average clasts 1. 5 X 
0 . 6  centimeters , clasts proj ect into 
overlying shales . Stylolites . Hard
grounds . Rare shale drapes near base . 
Sample:  I-64-0 . 7, 17 . 7  mbM . 

Shale and limestone (undulatory and 
nodular bedded limestone ) , shale : dark 
gray to green gray, weathering green 
gray, brown where dolomitized; very fine 
to fine grained ; laminated . 
Fossiliferous-graptolites , trilobites . 
Mottled . Pelleted . Limestone (mudstone 
to grainstone) :  medium gray, weathering 
light gray; fine to coarse grained ; 
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planar 
bedded, 
clastic . 

and cross laminated to medium 
irregular and uneven . Intra

Fossiliferous-trilobites. 
Limestone nodules-rounded to elongate, 
mudstone to grainstone, fossiliferous
trilobites. Samples : I-65-2. 9, 16 . 8  
mbM ; I-65-5.7, 1 6 . 0  mbM ; A14-1,  16.9 mbM . 

Limestone and shale ( undulatory and 
nodular bedded limestone), limestone 
(mudstone to grainstone ) : medium gray, 
weathering medium gray ; fine to coarse 
grained ; planar and cross laminated to 
medium bedded, irregular and uneven. 
Intraclastic. Fossiliferous-trilobites . 
Shale: dark gray to green gray, weather
ing green gray, brown where dolomitized ; 
very fine to fine grained ; laminated . 
Fossiliferous-graptolites, trilobites. 
Mottled . Pelleted. Sample : I-66-5 . 6, 
13.3 mbM . 

Shale, dark gray, weathering light to 
dark gray ; very fine grained; structure
less . Mottled. Abiotic . Samples : 
I-67-0.5, 1 2 . 6  mbM; A18, 1 2. 2 mbM; B1, 
1 1 . 9  mbM. 

Limestone and shale (undulatory bedded 
limestone), limestone (mudstone to 
grainstone) : medium gray, weathering 
medium gray ; fine to coarse grained ; 
planar and cross laminated to medium 
bedded, irregular and uneven . Pseudo
mudcracks . Vuggy . Intraclastic . 
Fossiliferous-trilobites. Shale : dark 
gray to green gray, weathering green 
gray, brown where dolomitized; very fine 
to fine grained ; laminated. Fossil
iferous-graptolites, trilobites . 
Mottled. Pelleted. Very thin, irregular 
and usually discontinous partings. Sam
ples : I-68-2 . 2, 1 1 . 1  mbM; I-68- 7 . 4, 9 . 5  
mbM; B2, 1 1 . 4  mbM; B3, 9.9 mbM . 

Limestone and shale (undulatory bedded 
limestone), limestone (mudstone to 
grainstone) : medium gray, weathering 
medium gray ; fine to coarse grained; 
planar and cross laminated to thin 



70 0 . 5  95 . 8  

7 1  2 . 6  98 . 4  

72 0.4 98 . 8  

73 1 . 4 100 . 2  
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bedded, irregular and uneven . Pseudo
mudcracks . Calcite filled fractures . 
Vuggy . Intraclastic-stylobrecciated . 
Iron stained . Oolitic . Fossiliferous
trilobites . Shale : dark gray to green 
gray, weathering green gray, brown where 
dolomitized ; very fine to fine grained; 
laminated . Fossiliferous-graptolites, tr 
ilobites . Mottled . Pelleted . Very 
thin, irregular and usually discontinous 
partings . Resembles unit 68 except shale 
more abundant in lower 1 . 5  meters . 
Samples : I-69-4 . 9, 7 . 8  mbM; I-69-9 . 5, 
6 . 4 mbM; I-69- 14 . 5 ,  4 . 9  mbM; BS , 8 . 6  mbM; 
B6, 7 . 9  mbM; B7 , 7 . 0  mbM; B9 , 5 . 6  mbM ; 
B10-A, 5 . 0  mbM . 

Shale, dark gray, tinted green gray, 
weathered dark green gray ; very fine 
grained ; laminated . Mottled . Abiotic . 

Limestone and shale ( undulatory and 
nodular bedded limestone), limestone 
(mudstone to grainstone) : medium gray, 
weathering light gray ; fine to coarse 
grained ; laminated to thin bedded, irreg
ular and uneven . Commonly argillaceous . 
Thin continuous to discontinuous shale 
partings . Intraclasts in shale and 
argillaceous limestone matrix . Pseudo
mudcracks . Lenticular bedded . Samples : 
I-71-2 . 8 ,  3 . 5  mbM; I - 7 1 - 7 . 6 , 2 . 1 mbM; 
BlO-B, 2 . 3  mbM . 

Limestone (wackestone to grainstone), 
medium gray, weathering light gray ; medi
um to coarse grained ; laminated to thin 
bedded, irregular and uneven . Vuggy . 
Stylolites predominant near top of unit . 
Coarsening upward cycle . Oolitic-par
tially dolomitized . Fossiliferous . Thin 
shale drapes . Samples : I-72- 1 . 2 ,  1 . 4  
mbM ; B12, 1 . 4 mbM . 

Shale and limestone ( nodular and rarely 
undulatory bedded limestone), shale : 
green gray, weathering green gray ; very 
fine grained ; structureless . Abiotic . 
Limestone (mudstone to packstone) : medi
um gray, weathering light gray; fine to 



74 3 . 8  1 04 . 0  

75 2 . 2  106 . 2  

76 7.6 113.8 
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medium grained ; laminated to thin bedded, 
irregular and uneven . Laterally continu
ous over several meters . Chaotic clast 
orientat ion . Argillaceous . Elongate 
nodules are randomly oriented . Intra
clastic-some angular clasts, random 
orientat ion . Pseudomudcra cks (pull-a
parts ) .  Samples : I-73-3 . 1, 0 . 5  mbM ; 
B13, 0 . 5  mbM; B14, 0 . 4 mbM . 

MAYNARDVILLE LIMESTONE . Limestone and 
shale ( ribbon to mottled bedded lime
stone), limestone (mudstone to pack
stone) : medium gray, weathering light 
gray ; fine to coarse grained; planar and 
cross laminated to medium bedded, 
irregular and uneven . Burrowed . Intra
clastic-especially at base of unit . 
Oolitic . Iron stained . Fossi liferous
trilobites . rare vugs . Shale : green 
brown, weathering brown ; very fine 
grained ; laminated . Shale intervals 
usually less than 3 . 1  centimeters thick . 
Dolo mitization . Argillaceous . Samples : 
I-74-0. 3, 0 . 1 maN; I-74-9 . 8, 3 . 1 maN; 
B15, 1 . 3  maN ; B17, 1 . 8 maN . 

Limestone and shale ( ribbon to mottled 
bedded limestone ), l imestone (mudstone to 
packstone) :  medium gray, weathering 
light gray ; fine to coarse grained ; 
planar and cross laminated to medium 
bedded, irregular and uneven . 
Stylolitic . Burrowed . Intraclastic . 
Oolitic . Iron stained . Fossiliferous . 
Rock colored black adjacent to fractures, 
petroliferous . Rare vugs . Shale : green 
brown, weathering brown; very fine 
grained ; laminated . Shale intervals 
usually less than 3 . 1  centimeters th ic 
k. Dolomitization . Argil laceous . Sam
ple : I-75-0 . 0, 3 . 8  maN . 

Limestone and shale ( ri bbon to mottled 
bedded limestone), limestone (mudstone to 
packstone) :  dark gray to black, weather
ing light gray to pale brown ; fine to 
coarse grained ; planar and cross laminat
ed to medium bedded, irregular and un
even . Stylolitic . Burrowed . 



77  1 . 5  1 15 . 3  

78 2 . 7  1 18 . 0  

79 3 . 0  1 2 1 . 0  
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Intrac1astic . Ooliti c .  Iron stained . 
Fossiliferous . Rock colored black adj a
cent to fractures , petroliferous . Rare 
vugs . Cross strati fied grainstone near 
to top of the uni t .  Shale : green brown, 
weathering brown; very f ine grained ; 
laminated . Shale intervals usually less 
than 3 . 1  centimeters thick and very 
discontinuous . Dolomitization . Argilla
ceous . Samples : I-76-5 . 0 ,  7 . 5  maN; 
I-76- 1 1 . 4 ,  9 . 5  maN; I-76-24 . 6 ,  1 3 . 5  maN . 

Limestone (grainstone) ,  light gray , 
weathering light gray; f ine to medium 
grained ; thick bedded, irregular and 
uneven . Cross stratified-planar tabular 
cross sets with bent toe sets . Peloidal 
or oolitic . Vuggy . Attitude of outcrop
N 70°E, l2°SE. Paleocurrent trend-N 
20°E . Possi ble herring bone cross beds . 
Sample : I-77-2 . 0 ,  14 . 2  maN . 

Limestone and argillaceous limestone 
(mottled to ribbon bedded l imestone) ,  
Limestone (mudstone to packstone) :  light 
to medium gray, weathering light gray ; 
very fine to coarse grained; thick bed
ded . Stylolites . Vuggy . Lower 0 . 9  
meters-oolitic , fossiliferous . Rest of 
unit-resembles uni t  76 , interbedded l ime
stone and argillaceous l imestone . Sam
ple : I-78-0 . 5 ,  1 5 . 3  maN . 

Lower 52 centimeters s imilar to unit  78 . 
Upper 248 centimeters-limestone and 
argillaceous limestone (mottled to r ibbon 
bedded limestone) ,  l imestone ( packstone 
to grainstone) :  l ight gray, weathering 
light gray ; very f ine to coarse grained ; 
thick bedded . Cross stratification most 
apparent in upper 1/2 of unit . Discon
tinuously bedded . Stylolites . Petro
liferous . Upper 1 . 2  meters intraclastic
small clasts , cross stratified nature of 
clasts , average size 2-4 mm .  in diameter, 
slightly elongate , polymicti c . Coarsen
ing upward cycle . Vuggy . Samples : 
I-79- 0 . 0 ,  1 7 . 8  maN; I -79-6 . 2 ,  1 9 . 7  maN . 



RO 1 . 5  122 . 5  

81  2 . 3  1 24 . 8  

82 0 . 4  125 . 2  
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Limestone (mudstone to packstone to 
boundstone) , medium gray, weathering 
light gray; very fine to coarse grained ; 
medium to thick bedded . Stylolitic . 
Algal laminations-ultra thin laminations , 
wavy, laminations thicken along highs . 
Intraclastic . Laminated and cross lami
nated , scoured base . Dolostone partings . 
Samples : I-80-1 . 3 ,  21 . 2  maN ; I-80-4 . 9 ,  
22 . 3  maN . 

Limestone ( mudstone to wackestone to 
boundstone) , medium to dark gray, weath
ering light gray; fine to medium grained ; 
discontinuous to thick bedded. Stylo
lites , high amplitude . Dolostone part
ings . Mottlea appearance . Vuggy 
porosity .  Peloidal . Fossiliferous
trilobites . Upper part of unit finely 
laminated . Abundant spar filled vugs , 
pseudomorphs after evaporites? Samples : 
I-8 1 - 1 . 4 ,  22 . 7  maN ; I-8 1 -5 . 9 ,  24 . 1  maN . 

Limestone ( mudstone to packstone to 
boundstone) , light and medium gray , 
weathering light gray; very fine to 
coarse grained; medium to thick bedded . 
Stylolitic . Algal laminations-ultra thin 
laminations , wavy, laminat ions thicken 
along highs . Laminated and cross lami
nated . Dolostone partings . Samples : 
I-82-0 . 3 ,  24.7 maN ; I -82-0 . 5 ,  24 . 8  maN . 

UNEXPOSED MAYNARDVILLE LIMESTONE 
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JOY 2 SECTION 

The Joy 2 subsurface drill core is located 1 .  0 km east of the 

Anderson-Roane County l ine and is approximately 5 km southeast of the 

ORNL main plant s ite . The bore hole is collared on the crest of Copper 

Ridge, j ust south of Bearden Creek . A complete Nol ichucky and 

Maynardville section is represented. 

UNIT TKN .  (m. ) CUM . TKN .  (m. ) 

1 16 . 0  16 . 0  

DESCRIPTION 

MARYVILLE LIMESTONE . 

NOLICHUCKY SHALE. Shale and l imestone, 
thin to thick bedded shale interbedded 
with thin limestone . Shale: dark gray 
green to black and maroon ; very fine 
grained; laminated . Mica flakes . skele
tal debris , trilobites and echinoderms . 
Calcareous , often well indurated. Lime
stone (mudstone to grainstone) :  f ine to 
coarse grained ; laminated to thin bedded, 
planar and cross stratified ; irregular 
and even bedded . Thin ( <  2 centimeters ) ,  
laterally discontinuous laminated to 
cross laminated pellet? packstone and 
grainstone . Loading . Pseudonodules . 
Pseudomudcracks? Convoluted bedding . 
Fining upward sequences . Sharp bases . 
Sharp to diffuse tops . Stylolites . 
Hardgrounds . Limestone clast conglomer
ates with mono- and polymictic  clast 
associations , rounded to angular clasts , 
clasts float in shale, and darkened 
micritic rinds around clasts . Oolitic . 
Locally glauconitic . Burrows . Samples : 
J-2 1020 , 168 . 7  mbM ; J-2 1 0 1 9 ,  168 . 4  mbM ; 
J-2 1015 . 5 ,  167 . 3  mbM ; J-2 101 2 ,  1 66 . 2  
mbM ; J-2 1005 , 164�1 mbM ; J-2 997 . 5 ,  
161 . 8  mbM ; J-2 995 , 161 . 0  mbM ;  J-2 985 . 5 , 
158 . 1  mbM ; J-2 980 , 156 . 5  mbM . 



2 1 . 0  

3 46 . 0  

1 7 . 0  

63 . 0  
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Limestone and shale , foss iliferous lime
stone interbedded with thin shale . Lime
stone (packstone and grainstone) : medium 
to coarse grained ; very thin bedded , 
irregular and even . Sharp bases with 
diffuse to scoured tops. Pseudonodules . 
Loading . Contorted bedding . Shale: 
maroon ; very fine grained . 

Shale and limestone , thin to thick shale 
interbedded with thin limestone beds . 
Shale: gray green and maroon; faintly 
laminated . Disseminated skeletal debris 
in shale . Rare limestone clasts . Lime
stone (mudstone to grainstone) : fine to 
coarse grained, thinly laminated to medi
um bedded , planar and low angle cross 
stratigication ; irregular and even bed
ded . Fossils include : inarticulate 
brachiopods , trilobites , echinoderms . 
Limestone clast conglomerates with shale 
and limestone (mudstone to grainstone) 
matrix, clasts proj ecting into overlying 
shale, random to subparallel clast orien
tation, and long d imension of clasts 
commonly exceeding diameter of core ( ap
proximately 8 centimeters ) .  Stylolites . 
Hardgrounds . Pseudonodules . Pseudo
mudcracks? Loading . Contorted bedding . 
Oolitic. Glauconitic . Pelletal? Sharp 
base , planar and irregular . Sharp to 
diffuse tops . Burrows . Fining upward 
sequences . Coarsening upward sequences . 
Microhummocky cross stratification . 
Samples: J-2 972 . 5 ,  1 54 . 2  mbM; J-2 969 , 
153 . 1  mbM ; J-2 963 , 151 . 3  mbM ; J-2 954 , 
148 . 5  mbM ; J-2 952 , 147 . 9  mbM ; J-2 950 , 
147 . 3  mbM; J-2 947 , 146 . 4  mbM ; J-2 94 1 ,  
144 . 6  mbM ; J-2 930 , 141 . 2  mbM ; J-2 926 , 
140. 0 mbM ; J-2 9 1 8 ,  1 37 . 6  mbM ; J-2 9 1 3 ,  
136 . 0  mbM; J - 2  904 . 5 , 1 33 . 4  mbM ; J-2 898 , 
131 . 5  mbM ; J-2 889 . 5 ,  128 . 9  mbM ; J-2 
885 . 5 ,  127 . 6  mbM ; J-2 878 , 125 . 4  mbM ; J-2 
874 . 5 ,  124 . 3  mbM ; J-2 873 . 5 ,  124 . 0  mbM ; 
J-2 864 , 121 . 1  mbM ; J-2 856 . 5 , 1 18 . 8  mbM ; 
J-2 847 . 5 ,  116 . 1  mbM ; J-2 847 , 1 15 . 9  mbM ; 
J-2 844 . 5 ,  1 15 . 1  mbM ; J-2 835 , 1 12 . 2  mbM ; 
J-2 26 . 5 ,  109 . 7  mbM . 



4 1 . 0 

5 1 . 0  

6 1 . 0  

7 3 . 0  

64. 0 

65 . 0  

66 . 0  

69 . 0  
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Limestone and shale, pellet? and oolitic 
limestone interbedded with thin shale . 
Limestone ( packstone and grainstone ) :  
fine to coarse grained ; laminated to 
medium bedded, planar and cross strati
fied ; irregular and even bedded . 
Glauconitic . Stylolites . Loading . 
Sharp irregular base and top , also dif
fuse tops . Pseudonodules . Shale : dark 
gray green ; very f ine grained; faintly 
laminated . Sample : J-2 824 , 1 08 . 9  mbM . 

Shale and limestone, thin to thick shale 
interbedded with thin l imestone . Shale : 
dark gray green; very fine grained ; 
faintly laminated. Limestone ( packstone 
and grainstone) :  fine grained ; laminated 
to thin bedded , planar and cross strat i
fied ;  irregular bedded . Skeletal lags . 
Sharp planar bases and diffuse tops . 
Loading . Convoluted bedding . Sample : 
J-2 819 ,  1 07 . 4  mbM . 

Limestone and shale , pellet? and oolitic 
limestone interbedded with thin shale . 
Limestone (packstone and grainstone) :  
fine to coarse grained ; very thin to 
thick bedded , planar and low angle cross 
stratification . Coarsening upward se
quence . Stylolites . Quartz silt? 
Shale : dark gray green , very fine 
grained ; faintly laminated . Sample : J-2 
816 . 5 , 1 06 . 6  mbM. 

Shale and limestone , thin to thick shale 
interbedded with thin pelletal? , oolitic ,  
and fossiliferous l imestone . Shale : 
dark gray green and maroon ; very fine 
grained ; faintly laminated . Limestone 
(packstone and grainstone) :  fine to 
coarse grained ; very thin bedded to medi
um bedded , planar and low angle cross 
stratified .  Sharp scoured bases and 
diffuse tops . Basal grainstone lags. 
Oolitic intervals coarsen upward . 
Trilobites and echinoderms . Stylolites . 
Glauconite . Samples : J-2 8 1 2 ,  1 05 . 2  
mbM ; J-2 805 , 1 03 . 1  mbM. 



8 1 . 0  

9 9 . 0  

10 1 . 0  

11 15 . 0  

70 . 0  

79 . 0  

80 . 0  

95 . 0  
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Limestone and shale, oolitic , intra-
clastic, and pellet? limestone 
interbedded with shale. Limestone 
(packstone and grainstone ) : fine to 
coarse grained ; very thin to medium bed
ded ,  rare low angle cross stratified 
intervals . Locally fossiliferous . 
Glauconiti c .  Pseudonodules . Loading . 
Hardgrounds . Shale : dark gray green and 
maroon ; very fine grained ; laminated . 
Mica flakes . 

Shale and limestone , thin and thick bed
ded shale interbedded with intraclastic , 
oolitic, and pelletal limestone . Shale : 
dark gray green and maroon ; very fine 
grained ; faintly laminated . Limestone 
( packstone and grainstone) : fine to 
coarse grained ; very thin to medium bed
ded, rare low angle cross stratification . 
Scoured surfaces . Rare fossils . 
Stylolites . Loading . Convoluted bed
ding . Limestone clast conglomerates show 
polymictic clast associations , sub
parallel to random clast orientati on, 
and a wide variety of clast sizes (< 1 to 
> 8 centimeters in long dimens ion ) . 
Quartz s ilt lenses . Amalgamated bedding . 
Samples: J-2 795 , 100 . 0  mbM ; J-2 789 . 5 ,  
98 . 4  mbM; J-2 778 . 5 ,  95 . 0  mbM ; J-2 775 , 
93 . 90 mbM. 

Limestone and shale, oolitic , intra
clastic, and rare pelletal? limestone 
interbedded with thin shale . Limestone 
( packstone and grainstone) : medium to 
coarse grained ; very thin to thick bed
ded ; planar stratification . Oolitic 
intervals show vague coarsening upward 
sequences. Stylolites . Shale : maroon 
and dark gray green ; very fine grained ; 
faintly laminated . Rare fossi ls .  

Shale and limestone , thin to thick shale 
interbedded with fossiliferous , intra
clastic, oolitic , and pelletal? lime
stone . Shale : maroon and dark gray 
green ; very fine grained ; faintly lami
nated . Limestone ( packstone and 
grainstone) : fine to coarse grained ; 



12  1 . 0  96 . 0  

1 3  2 . 0  98 . 0  

14 1 . 0 99.0 
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very thin to medium bedded , planar and 
low angle cross stratification . Lime
stone clast conglomerates show 
monomicitic and polymicitic clast associ
ations , subparallel c·last orientation , 
darkened rinds around clasts , clasts 
which project into overlying rock unit,  
and a wide size range of clasts . Load
ing . Sharp scoured bases and diffuse to 
sharp tops . Vertical and horizontal 
burrows . Pseudonodules . Hardgrounds . 
Skeletal lags . Samples : J-2 768 , 91.8 
mbM; J-2 762 , 90 . 0  mbM ; J-2 755 , 87 . 8  
mbM; J-2 749 , 86 . 0  mbM ; J-2 743 , 84 . 2  
mbM; J-2 735.5 , 81 . 9  mbM; J-2 734 , 81.4 
mbM; J-2 723, 78.1 mbM . 

Limestone and shale , pellet? limestone 
interbedded with thin shale . Limestone 
( packstone and grainstone) :  fine 
grained ; very thin to thin bedded , planar 
and low angle cross stratification . 
Sharp base with diffuse to sharp scoured 
upper bed surfaces . Rare fossil and 
intraclastic lenses . Pseudonodules . 
Loading . Burrows . Shale : dark gray 
green; very fine grained; faintly lami
nated . Sample :  J-2 7 1 8 ,  76.6 mbM. 

Shale and limestone , thin to thick shale 
interbedded with pellet? , oolitic , 
fossiliferous , and intraclastic limestone 
lenses . Shale : maroon and dark gray 
green ; very fine grained, faintly lami
nated . Locally fossiliferous . Limestone 
( packstone and grainstone) : fine to 
coarse grained ; very thin to medium bed
ded . Coarsening upward sequences in 
pellet? rocks . Loading . Pseudonodules . 
Contorted bedding . Glauconitic . Bur
rows . Amalgamated bedding . Sample : J-2 
7 1 1, 74 . 4  mbM . 

Limestone and shale, pellet? l imestone 
interbedded with shale . Limestone 
( packstone) :  fine grained; very thin to 
thin bedded , planar to cross stratified . 
Rare fossil lenses . Locally oolitic . 
Coarsening upward within thin oolitic 
lenses . Shale : maroon ; very fine 



15 4 . 0  103 . 0  

16 1 . 0  104 . 0  

17 3 . 0  107 . 0  
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grained ; faintly 
clasts float in 
707 . 5, 73 . 4  mbM. 

laminated . Limestone 
shale . Sample : J-2 

Shale and l imestone, thin and thick shale 
interbedded with rare fossil,  intra
clasti c ,  and oolitic l imestone . Pellet? 
limestone is somewhat more abundant .  
Shale : dark gray green and maroon ; very 
fine grained; faintly laminated . 
Trilobites . Clasts float in shale . 
Limestone (packstone and grainstone) : 
fine to coarse grained; very fine to 
medium bedded, planar and low angle cross 
stratification . Fossi l  lags . Fining 
upward sequences . Pseudonodules . Coars
ening sequences . Sharp bases and tops . 
Amalgamated scours . Limestone clast 
conglomerates with polymictic and 
multigeneration clast associations . 
Samples: J-2 706 , 72 . 9  mbM; J-2 695 . 5, 
69 . 7  mbM . 

Limestone and shale , intraclastic and 
oolitic limestone interbedded with thin 
shale. Limestone ( packstone and grain
stone) : coarse grained; very thin to 
medium bedded . Predominantly oolitic . 
Stylolites . Coarsening upward sequences . 
Glauconitic . Shale : maroon to dark gray 
green ; very fine grained; faintly lami
nated . 

Shale and limestone, thin to thick shale 
interbedded with oolitic,  pelletal? , and 
intraclastic limestone . Shale : maroon 
and dark gray green ; very fine grained ; 
faintly laminated . Limestone (packstone 
and grainstone) : f ine to coarse grained ; 
very thin to medium bedded , low angle 
cross stratificat ion . Glauconite . 
Hardgrounds .  Pelletal limestone show 
fining upward sequences . Limestone clast 
conglomerates with polymictic clast asso
ciation,  darkened rinds , and clasts gen
erally less than 5 centimeters in long 
dimens ion. Loading. Pseudonodules . 
Scoured bases. Amalgamated bedding. 
Oolitic limestone show common coarsening 



18 1 . 0  1 08 . 0  

19 5 . 0  1 13 . 0  

20 1 . 0 1 14 . 0  

2 1  22 . 0  1 36 . 0  
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upward sequences . Stylolites . 
J-2 685 , 66 . 5  mbM . 

Sample : 

Limestone and shale, oolitic l imestone 
interbedded with shale. Limestone 
(packstone and grainstone) : coarse 
grained ; thin to thick bedded . Oolitic 
beds coarsen upward . Stylolites . 
Fossiliferous , mainly trilobites . 
Hardgrounds . Shale: dark gray green ; 
very fine grained ; faintly laminated . 
Very thin pellet? limestone interlayers 
show f ining upward sequences . 

Shale and limestone, thin to thick shale 
interbedded with oolitic l imestone. 
Shale: dark gray green and maroon; very 
f ine grained ; faintly laminated. Rare, 
thin fossiliferous layers in shale . 
Limestone ( packstone and grainstone) : 
fine to coarse grained; very thin to 
thick bedde, planar and cross stratifica
t ion . Intraclastic. Hardgrounds . 
Fossiliferous , tri lobites , echinoderms , 
and Chancelloria.  Sharp abses and dif
fuse tops . Stylolites . Limestone clast 
conglomerates with darkened micritic 
rims , coarse grainstone matrix, poly
mictic clast association, and random to 
subparallel clast orientation . Loading . 
Pseudomudcracks .  Pseudonodules . Rare 
skeletal lags . Samples : J-2 674 , 63 . 1  
mbM ; J-2 666 , 60 . 7  mbM. 

Limestone and shale, oolitic l imestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : medium to 
coarse grained ; thin to thick bedded . 
Coarsening upward sequences . Fossils 
locally abundant , especially trilobites . 
Stylobrecciation . Sharp bases and dif
fuse tops . Loading . Pseudonodules . 
Rare intraclasts . Shale: dark gray 
green; very fine grained ; faintly lami
nated . 

Shale and limestone, thin to thick shale 
interbedded with intraclastic l imestone . 
Shale: maroon and dark gray green ; very 
fine grained ; faintly laminated . Rare 



22 7.0 143.0 

23 2.0 1 45.0 
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fossil  debris . Clasts randomly oriented 
in shale . Limestone interbeds in shale 
typically less than 1 centimeter in 
thickness .  Limestone (mudstone and 
packstone to grainstone) : very f ine to 
coarse grained ; very thin to thick bed
ded, planar and low angle cross stratifi
cation . Loading . Pseudonodules . Con
torted beds . Amalgamated bedding . 
Hardgrounds . Stylolites , stylobrecci
ation . Burrows . Sharp bases and diffuse 
tops . Fossi l  debris , trilobites and 
echinoderms . Limestone clast con-
glomerates with monomictic clast 
associations primarily,  random clast 
orientations, clasts projecting into 
overlying shale beds , darkened rinds 
around many clasts , and multigeneration 
clasts Oolitic . Nodular and lenticular 
mudstone interbedded with shale . Quartz 
siltstone beds in middle of unit .  
Oncoids? Samples: J-2  655 , 57.3 mbM; 
J-2 647.5 , 55.1 mbM ; J-2 64 1 ,  53.1 mbM ; 
J-2 635 , 51 . 2  mbM; J-2 623 , 47.6 mbM ; J-2 
618 ,  46.1 mbM; J-2 612 ,  44.2 mbM ; J-2 
599.5 , 40.4 mbM ; J-2 595 , 39.0 mbM ; J-2 
590.5 , 37.7 mbM . 

Limestone and shale , nodular and 
lenticular mudstone along with rare 
pelletal? limestone interbedded with thin 
shale . Limestone( mudstone and packstone 
to grainstone) :  very fine to fine 
grained , thin bedded , low angle cross 
stratification . Rare foss il  packstone 
interlayers . Sharp bases and tops , some
times diffuse tops. Loading . Pseudo
nodules . Contorted bedding . Intra
clastic . Oolitic . Mi crohummocky cross 
stratification . Shale : dark gray green ; 
very fine grained ; otherwise nondescript . 
Samples: J-2 585 , 36 . 0  mbM ; J-2 582.5 , 
35 . 2  mbM ; J-2 571.5 , 31.9 mbM ; J-2 570 , 
31 . 4  mbM ; J-2 566 , 30.2 mbM . 

Limestone and shale, pelletal? limestone 
and lime mudstone interbedded with thin 
shale. Limestone ( packstone to grain
stone and mudstone) :  very fine to fine 
grained ; thin to thick bedded , planar and 



24 2 . 0  

25 7 . 0  

26 1 . 0  

27 2 . 0  

147 . 0  

1 54 . 0  

155 . 0  

1 57 . 0  
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low angle cross lamination . Rare 
skeletal lags . Sharp bases and diffuse 
tops . Microhummocky cross strat
ification . Loading . Pseudonodules . 
Burrows . Shale : dark gray green , very 
fine grained ; faintly laminated . Sam
ples : J-2 565 , 29 . 9  mbM; J-2 560 . 5 ,  28 . 5  
mbM . 

Limestone ( oncolitic and oolitic 
packstone) :  fine to coarse grained ; 
medium to very thick bedded . Rare 
mudstone and quartz s iltstone inter
layers . Stylolites . Hardgrounds . Algal 
boundstone toward top . Samples : J-2 555 , 
26 . 8  mbM; J-2 553 . 5 ,  26 . 4  mbM . 

Limestone (algal boundstone with oncoids , 
ooids , intraclasts , fossils,  and shale 
occupying interalgal areas ) :  very fine 
to coarse grained ; thin to very thick 
bedded . Thrombolitic . Stylolites . 
Graptolites . Pseudomudcracks . Syneres is 
cracks? Burrows . Algal peloids . Sam
ples : J-2 545 , 23 . 8  mbM; J-2 540 . 5 ,  22 . 4  
mbM ; J-2 535 , 20 . 7  mbM; J-2 534 . 5 ,  20 . 6  
mbM; J-2 531 . 5 ,  19 . 7  mbM. 

Limestone (nodular mudstone) :  very fine 
to fine grained ; medium bedded . Rare 
shale drapes . Algal peloids . Pellets? 
Stylolites . Sample : J-2 529 , 18 . 9  mbM . 

Shale and limestone ( thin to thick shale 
interbedded with intraclastic and 
pelletal limestone) :  Shale : green gray 
to dark gray green ; very f ine grained ; 
faintly laminated . Some foss iliferous 
inter layers . Limestone clasts in shale 
are randomly oriented . Limestone 
(packstone to grainstone and mudstone) :  
very fine to coarse grained; thin to 
thick bedded, planar to low angle cross 
stratification . Oolitic .  Hardgrounds . 
Lime mudstone interlayers . Limestone 
clast conglomerates with ooid an d peloid 
matrix, subparallel to random clast ori
entation, clasts from 7 to 8 centimeters 
in long dimension , and common 



28 1 . 0  1 58 . 0  

29 3 . 0  161 . 0  

30 8 . 0  169 . 0  
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mu1tigeneration clasts . Samples : J-2 
524 , 17 . 4  mbM; J-2 520 , 16 . 2  mbM. 

Limestone and shale , pelletal? limestone 
interbedded with thin shale. L imestone 
(packstone and grainstone) : fine 
grained; thin to medium bedded, with 
planar and low angle cross strati fica
tion . Intraclastic . Pseudomudcracks . 
Sharp bases and tops . Loading . Pseudo
nodules . Nodular mudstone inter layers . 
Shale : dark gray green; very fine 
grained; faintly · laminated. Limestone 
clasts float in shale matrix . Sample : 
J-2 5 1 8 ,  15 . 6  mbM. 

Shale and limestone, thin shale inter
bedded with intraclastic and oolitic 
limestone and lime mudstone. Shale : 
dark gray green; very fine grained ; 
faintly laminated . Limestone clasts 
float in shale matrix .  Rare fossil
iferous interlayers . Limestone 
(packstone to grainstone and mudstone) : 
fine to coarse grained; very thin to 
thick bedded . Sharp bases and tops . 
Renalcis? clasts . Oncoids? Samples : 
J-2 513 ,  14 . 0  mbM; J-2 509 , 1 2 . 8  mbM . 

Limestone and shale, pellet? and algal 
peloidal limestone interbedded with 
shale. Limestone (packstone and 
grainstone) : f ine to medium grained ; 
very thin to medium bedded, with planar 
and cross stratification . Rare lime 
mudstone, fossiliferous , ooli tic , and 
intraclastic lenses . Stylolites . 
Pseudomudcracks . Hardgrounds . Oncoids . 
Loading . Pseudonodules . Burrows . 
Microhummocky cross stratification? 
Skeletal lags . Contorted bedding . 
Shale: dark gray green; very fine 
grained; faintly laminated. Limestone 
clasts and discontinuous interlayers? 
randomly oriented in shale. Samples : 
J-2 504, 1 1 . 3  mbM; J-2 502 . 5 ,  10 . 8  mbM; 
J-2 499 , 9 . 8  mbM ; J-2 498 . 5 ,  9 . 5  mbM; J-2 
497 , 9 . 5  mbM ; J-2 493 , 7 . 9  mbM ; J-2 492; 
7 . 6 mbM; J-2 491 , 7 . 3  mbM; J-2 485 , 5 . 5  



31 4.0 1 73 . 0  

32 5.0 1 78 . 0  

33 8 . 0  186 . 0  

34 1.0 1 87.0 
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mbM; J-2 483 . 5 ,  5 . 0  mbM; J-2 482 , 4 . 6  
mbM . 

Shale and limestone, thin to thick shale 
interbedded with intraclastic and 
pelletal limestone . Shale : dark gray 
green ; very fine grained ; faintly lami
nated . Limestone clasts randomly orient
ed in shale matrix . Limestone ( packstone 
and grainstone) : fine to coarse grained ; 
thin to medium bedded, planar and cross 
stratification . Limestone clast conglom
erates with monomicti c  clast associa
tions, coarse peloidal and oolitic ma
trix, and darkened r inds around clasts . 
Loading . Pseudonodules . Sharp bases and 
scoured tops . Samples : J-2 478 . 5 ,  3.5 
mbM; J-2 473 ,  1 .  8 mbM; J-2 470 . 5 ,  1.1  
mbM ; J-2 468 , 0 . 3  mbM . 

MAYNARDVILLE LIMESTONE. Limestone and 
shale, intraclastic and pelletal? lime
stone interbedded with thin shale drapes . 
Limestone ( packstone and grainstone): 
fine to coarse grained ; very thin to 
medium bedded, low angle cross stratifi
cation . Limestone clast conglomerates 
with polymictic clast associations, small 
clast size (2-3  centimeters),  and 
peloidal matrix . Loading . Pseudo
nodules . Pseudomudcracks . Rare fossil
iferous inter layers and basal lags . 
Shale : dark gray green ; very fine 
grained ; faintly laminated . Samples : 
J-2 461 . 5 ,  1 . 7  maN; J-2 459 , 2 . 4  maN; J-2 
455 , 3 . 7  maN ; J-2 453 , 4 . 3  maN . 

Limestone (packstone and grainstone) : 
fine to coarse grained ; thin to very 
thick bedded . Oncolitic . Oolitic , nor
mal and superficial ooids . Quartz silt? 
Algal peloids . Rare mudstone lenses . 
Stylolites . Rare glauconite . Hard
grounds . Samples : J-2 438 , 8 . 9  maN; J-2 
428 , 11 . 9  maN; J-2 426 . 5 ,  12 . 4  maN . 

Limestone ( packstone) :  coarse 
thick bedded . Oncolitic . 
Hardgrounds . Stylolites . 
coarsening upward sequences . 

grained ; 
Oolitic . 
Numerous 



35 3 . 0  1 90 . 0  

36 1 . 0  191 . 0  

37 2 . 0  193 . 0  

38 1 . 0  1 94 . 0  

39 1 . 0  195 . 0  

40 2 . 0  1 97 . 0  

41 1 1 . 0  208 . 0  

42 2 . 0  210 . 0  
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Limestone (packstone and grainstone ) : 
fine to coarse grained ; thick to very 
thick bedded . Oncolitic . Algal 
peloidal . Oolitic . Sample : J-2 417, 
15 . 3  maN. 

Limestone (packstone and grainstone ) : 
coarse grained ; thick bedded . Stylo
lites . Oncolitic , oncoids up to 1 
centimeter in diameter . Oolitic , ooids 
exceed 2 millimeters in diameter . 
Hardgrounds . Sample : J-2 409 . 5 ,  1 7  . 5 
maN . 

Limestone (packstone and grainstone ) : 
fine to medium grained ; thick to very 
thick bedded . Peloidal . Oolitic . Rare 
argillaceous interlayers . Stylolites . 
Hardgrounds . Burrows . Superf icial 
ooids . Fossiliferous , trilobites . Sam
ple : J-2 404, 1 9 . 2  maN . 

Limestone (packstone and grainstone ) : 
coarse grained; thick bedded . Oolitic , 
Oncolitic.  Rare argillaceous and quartz 
silt? interlayers . Fossiliferous hori
zons , mainly trilobites . 

Limestone ( packstone and grainstone ): 
fine grained ; thick bedded perhaps cross 
stratified? Superficial ooids . Algal 
peloids. Stylolites . Hardgrounds . 
Dolomitized mudstone . Burrowed? 
Stylocummulate . Sample : J-2 397 . 5, 21 . 2  
maN . 

Limestone ( packstone and grainstone ) : 
coarse grained; thick to very thick bed
ded . Oncoids . Ooids . · Stylolites . 
Hardgrounds . 

Limestone (packstone and grainstone ) : 
fine grained ; very thick bedded . Super
ficial ooids? Algal peloids . Samples : 
J-2 382 . 5, 25 . 8  maN ; J-2 372 . 5, 28 . 8  maN ; 
J-2 359, 32 . 9  maN ; J-2 356 ,  33 . 9  maN . 

Limestone ( boundstone and packstone to 
grainstone ) : fine to coarse grained ; 
thick bedded . Thrombolite with algal 



43 1 . 0  2 1 1 . 0  

44 7 . 0  218 . 0  

45 3 . 0  221 . 0  

46 7 . 0  228 . 0  

47 1 . 0 229 . 0  

48 20 . 0  249 . 0  
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peloidal, 
mudstone 
Renalcis? 
350 , 35 . 7  

oolitic , oncolitic , and 
filling interalgal areas . 
Stylocummulate . Sample : J-2 

maN . 

Limestone ( packstone and grainstone) : 
coarse grained; thick bedded . Stylo
lites . Oncoids less than 1 cent imeter in 
diameter . Ooids generally less than 2 
millimeters . High amplitude stylolites . 

Limestone (boundstone and packstone to 
grainstone) : f ine to coarse grained ; 
very thick bedded . Thrombolite . Oncoid , 
ooid, and algal peloidal grainstone to 
packstone fills interalgal areas . Clot
ted fabric . Dolomitized in part . Bur
rowed? Samples : J-2 338 , 39 . 4  maN; J-2 
334 , 40 . 6  maN; J-2 330 . 5 ,  41. 6 maN; J-2 
321 . 5 ,  44 . 4  maN . 

Limestone and dolostone ( boundstone and 
packstone to grainstone) :  medium 
grained ; very thick bedded . Cryptalgal 
laminites . Algal peloidal packstone and 
grainstone alternating with algally? 
bound algal peloids . Stylolites . Wavy 
ultra thin laminations . Samples : J-2 
319 , 45 . 1  maN ; J-2 3 1 2 ,  47 . 3  maN ; J-2 
310 . 5 ,  47 . 7  maN . 

Limestone and dolostone ( boundstone and 
packstone to grainstone) :  fine to coarse 
grained; very thick bedded . Renalcis? 
Stylobrecciated . Oncoids . Numerous 
stylolites . Oolitic interlayers . Algal 
peloids . Samples : J-2 307 . 5 ,  48 . 7  maN; 
J-2 305 , 49 . 4  maN; J-2 300 . 5 ,  50 . 8  maN; 
J-2 296 , 52 . 2  maN; J-2 287 , 54 . 9  maN . 

and dolostone ( boundstone and Limestone 
packstone 
grained ; 
laminites . 
Stylolites . 

to grainstone) :  medium 
thick bedded . Cryptalgal 

Dolomitized interlayers . 

Limestone (boundstone and packstone to 
grainstone) : fine to coarse grained ; 
very thick bedded' . Thrombol ite . Oolitic 
grainstone fills interalgal areas . 



49 2 . 0  

50 7 . 0  

51  2 . 0  

52 1 . 0  

53 2 . 0  

54 4 . 0  

251 . 0  

258 . 0  

260 . 0  

261 . 0  

263 . 0  

267 . 0  

3 1 9  

Aggregate grains . Oncoids . Dolomitized 
interlayers ( mudstone ) .  Stylocummulate. 
Fossil debri s ,  trilobites common through
out. Samples : J-2 282 . 5 ,  56 . 3  maN; J-2 
268 , 60 . 7  maN ; J-2 264 , 61 . 9  maN; J-2 
255 , 64 . 7  maN; J-2 250 . 5 ,  66 . 0  maN; J-2 
238 , 69 . 9  maN ; J-2 234 . 5 ,  70 . 9  maN; J-2 
232 . 5 , 71 . 5  maN ; J-2 224 , 74 . 1  maN . 

Dolostone (boundstone and grainstone) :  
fine to medium grained; very thick bed
ded . Laterally linked hemispheroids . 
Perhaps grades laterally into cryptalgal 
laminites . Sample : J-2 2 1 7 ,  76 . 3  maN . 

Limestone and dolostone (boundstone and 
packstone to grainstone) :  fine to coarse 
grained ; very thick bedded . Thrombolo
tic . Fenestral fabric . Oolitic grain
stone fills interalgal areas . Stylo
lites . Samples : J-2 21 1 ,  78 . 1  maN; J-2 
205 , 79 . 9  maN; J-2 204 . 5 , 80 . 1  maN; J-2 
1 93 . 5 ,  83 . 4  maN; J-2 189 , 84 . 8  maN. 

-

Dolostone and limestone ( boundstone and 
grainstone ) :  fine to medium grained; 
very thick bedded . Laterally l inked 
hemispheroids . Domal stromatolites? 
Fenestral fabric . 

Limestone (boundstone and packstone to 
grainstone) : fine to medium grained ; 
thick bedded. Thromboliti c .  Oolitic and 
oncolitic? packstone and grainstone. 
Algal peloids occur sporatically. 

Dolostone and limestone {boundstone) :  
fine grained ; very thick bedded . 
Fenestral fabric . Stromatoliti c .  Later
ally linked hemispheroids? Sample:  J-2 
1 76,  88 . 8  maN. 

Limestone and dolostone ( boundstone and 
packstone to grainstone) :  fine to medium 
grained ; thick to very thick bedded . 
Thrombolitic. Rare ooids and oncoids . 
Fenestral fabric . Vuggy porosity .  Algal 
peloids . Thrombolites interfinger with 
thin cryptalgal laminites. Samples : J-2 



55 4 . 0  271 . 0  

56 3 . 0  274 . 0  

57 3 . 0  277 .o 
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168 . 5 ,  91 . 0  maN; J-2 166 . 5 ,  9 1 . 7  maN ; J-2 
162 , 93. 0 maN. 

Dolostone and limestone (boundstone and 
packstone to grainstone ) : medium 
grained; very thick bedded . Cryptalgal 
laminites . Wavy, ultra thin laminations . 
Antigravitational sedimentation . Stylo
l ites . Fenestral fabric . Samples : J-2 
151 . 5 ,  96 . 2  maN; J-2 150 ,  96 . 7  maN; J-2 
147 , 97 . 6  maN. 

Limestone and dolostone (boundstone and 
packstone to grainstone ) : fine to medium 
grained; very thick bedded . Thromboli
t ic? Algal peloids bound together 
exhibiting an overall fenestral fabric . 
Vuggy porosity. Samples: J-2 143 , 98 . 8  
maN; J-2 140 . 5 ,  99 . 6  maN. 

Dolostone (boundstone and packstone to 
grainstone ) : medium grained; very thick 
bedded . Rare limestone inter layers . 
Cryptalgal laminites . Wavy, ultrathin 
laminations . Samples : J-2 1 35 ,  101 . 3  
maN; J-2 133 ,  1 0 1 . 9  maN ; J-2 1 3 1 , 1 02 . 5  
maN. 

COPPER RIDGE DOLOSTONE . 
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SCARBORO ROAD SECTION 

The Scarboro Road subsurface drill core (ORNL GW 130 and GW 131} is 

located at the east end of the Y- 12  weapons plant adjacent to Scarboro 

Road along grid line E64 , 500 . A complete Nolichucky and Maynardville 

section is represented . 

ORNL GW 130 ( 590 ft . east- -offset from grid line} 

UNIT TKN . (m. ) CUM . TKN . (m . }  

1 1 . 0  1 . 0  

2 2 . 0  3 . 0  

3 43 . 0  46 . 0  

DESCRIPTION 

MARYVILLE LIMESTONE. 

NOLICHUCKY SHALE . Shale : dark gray 
green ; very fine grained ; faintly lami
nated . Rare thin intraclastic lenses . 

Limestone and shale , pelletal? limestone 
interbedded with thin to thick shale . 
Limestone (packstone and grainstone} : 
fine grained; very thin to thin bedded, 
planar and low angle cross lamination . 
Pseudonodules . Loading . Shale : dark 
gray green and maroon ; very fine grained ; 
faintly laminated . 

Shale and limestone, thin to thick shale 
interbedded with pelletal? , intraclastic,  
fossiliferous , and oolitic limestone . 
Shale: dark gray green and maroon; very 
f ine grained; laminated . Rare fossils? 
Contact between dark gray green and ma
roon colored shale is sharp and planar . 
Limestone (packstone to grainstone and 
rare mudstone} : f ine to coarse grained; 
very thin to medium bedded , planar and 
low angle cross lamination . Loading . 
Pseudonodules . Contorted bedding . Sharp 
bases and sharp to diffuse tops . 



4 1 . 0  

5 2 . 0  

6 2 . 0  

7 ' 1 . 0  

47 . 0  

49 . 0  

5 1 . 0  

52 . 0  
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Limestone clast conglomerates show 
variable clast sizes ( < 8 centimeters) ,  
clasts which proj ect into overlying rock 
units , a wide variety of clast types 
(pellet grainstone is most common) ,  and 
shale as the dominant matrix type . Ooid 
and lime mudstone lenses are rare . 

Limestone and shale, pellet? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : f ine 
grained, thin to medium bedded , low angle 
cross lamination. Loading . Pseudo
nodules . Stylolites . Sharp scoured 
bases and scoured to diffuse tops . 
Shale : dark gray green and maroon, very 
fine grained; faintly laminated . 

Shale and limestone, thin to thick shale 
interbedded with pellet? and oolitic 
limestone . Shale: dark gray green; very 
fine grained; faintly laminated . Lime
stone ( packstone and grainstone) :  f ine 
to coarse grained, very thin to medium 
bedded, planar and low angle cross lami
nation . Fossiliferous , trilobites and 
echinoderms . 

Limestone and shale, pelletal? and intra
clastic limestone interbedded with thin 
shale . Limestone ( packstone and 
grainstone) :  f ine to coarse grained; 
very thin to medium bedded , pellet? l ime
stone shows low angle cross lamination . 
Pseudonodules . Loading . Stylolites . 
Rare oolitic lenses . Limestone clast 
conglomerates with clasts from 1 to 6 
centimeters in long dimension . Shale : 
dark gray green and maroon ; very fine 
grained; faintly laminated . 

Shale and limestone, thin to thick shale 
interbedded with pellet? limestone . 
Shale: dark gray green and maroon ; very 
fine grained . Calcareous . Mica flakes . 
Limestone ( packstone and grainstone) : 
fine grained; very thin to thin bedded , 
low angle cross laminations . Rarely 
intraclastic . Loading . Contorted bed
ding . 



8 2 . 0  

9 2 . 0  

10 2 . 0  

1 1  4 . 0  

12 4 . 0  

54 . 0  

56 . 0  

58 . 0  

62 . 0  

66 . 0  
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Limestone and shale, pelletal? and 
oolitic limestone interbedded with thin 
shale . Limestone ( packstone and 
grainstone) :  f ine to coarse grained, 
very thin to medium bedded , planar and 
low angle cross lamination . Rare l ime
stone clast conglomerates . Sharp bases 
and sharp to diffuse tops . Glauconitic , 
especially in ooid grainstones . Shale : 
dark gray green and maroon; very f ine 
grained; faintly laminated . 

Shale and limestone, thin to thick shale 
interbedded with rare ooid and intra
clastic limestone . Shale : dark gray 
green and maroon; very fine grained; 
laminated . Dark gray green shale occurs 
in close stratigraphic proximity to lime
stone lenses . Limestone ( packstone and 
grainstone) :  medium to coarse grained; 
thin to medium bedded . Stylolites . 
Loading . 

Limestone and shale, oolitic limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : coarse 
grained ; thick bedded . Rare pelletal? 
lenses . Ooid beds show vague coarsening 
upward sequences . Fossiliferous , 
trilobites and echinoderms . Shale: dark 
gray green and maroon ; very fine grained; 
laminated. 

Shale and limestone , thin to thick shale 
interbedded with pelletal? and oolitic 
limestone . Shale :  primarily dark gray 
green ; very fine grained ; faintly lami
nated . Locally fossils float in shale . 
Limestone (packstone and grainstone) : 
fine to coarse grained ; very thin to 
medium bedded, planar and low angle cross 
laminations . Loading . Pseudonodules . 
Convoluted bedding . Rare intraclastic 
lenses . 

Limestone and shale , pelletal? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) :  fine 
grained; very thin to thin bedded, low 
angle cross laminations . Rare oolit ic 



1 3  2 . 0  

1 4  2 . 0  

15 3 . 0  

16 4 . 0  

1 7  1 . 0  

68 . 0  

70 . 0  

73 . 0  

7 7  .o 

78 . 0  
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and intraclastic lenses interlayered with 
shale . Shale : dark gray green ; very 
fine grained; faintly laminated . 

Shale and limestone, thin to thick shale 
interbedded with pelletal? limestone . 
Shale : maroon and dark gray green ; very 
fine grained ; faintly laminated . Lime
stone clasts in shale . Limestone 
(packstone and grainstone) :  fine 
grained ; very thin to thin bedded , planar 
and low angle cross lamination . Rare 
oolitic and intraclastic lenses . Load
ing . Pseudonodules . Sharp bases and 
diffuse tops . 

Limestone and shale, pellet? limestone 
interbedded with thin to thick shale . 
Limestone (packstone and grainstone) : 
fine grained; very thin to thin bedded , 
planar and low angle cross laminiation . 
Rare oolitic and intraclastic lenses . 
Locally fossiliferous , trilobites . Amal
gamated bedding . Sharp bases and scoured 
sharp tops . Skeletal lags . Shale : 
maroon and dark gray green; very fine 
grained ; faintly laminated . 

Shale and limestone , thin to thick shale 
interbedded with pelletal? limestone . 
Shale: dark gray green; very fine 
grained ; laminated . L imestone nodules . 
Mica flakes . Quartz silt? Limestone 
( packstone and grainstone) :  fine 
grained ; very thin to thin bedded,  low 
angle cross lamination . Intraclastic and 
oolitic lithologies are rare . Loading . 
Pseudonodules . 

Limestone and shale, pellet? and oolitic 
limestone interbedded with thin shale . 
Limestone (packstone and grainstone) :  
fine to coarse grained ; very thin to 
medium bedded, low angle cross lamina
tion . Sharp bases and diffuse tops . 
Loading . Shale :  dark gray green ; very 
fine grained ; laminated . 

Shale and limestone , thin to thick shale 
interbedded with pelletal? and 



1 8  1 . 0  

19  1 . 0  

20 1 . 0 

2 1  . 5 . 0  

79 . 0  

80 . 0  

8 1 . 0  

86 . 0  
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intraclastic limestone . Shale : dark 
gray green and maroon; very fine grained . 
Limestone ( packstone and grainstone) :  
fine to coarse grained; very thin to 
medium bedded, planar and low angle cross 
lamination . Mica flakes . Quartz silt . 
Rare oolitic lenses . 

Limestone and shale, intraclastic and 
pelletal? limestone interbedded with thin 
shale . Limestone ( packstone and 
grainstone) :  fine to coarse grained ; 
very thin to medium bedded,  low angle 
cross lamination . Limestone clast con
glomerates show a wide variety of clast 
sizes ( 1-7 centimeters in long dimen
sion) , polymictic and monomictic clast 
association, and clasts which project 
into overlying rock units . Loading . 
Pseudonodules . Basal skeletal lags • 

Sharp bases and diffuse tops . Shale : 
dark gray green; very fine grained; 
laminated . Disseminated fossil  debris , 
primarily trilobites . 

Shale and limestone, thin to thick shale 
interbedded with intraclastic limestone . 
Shale : dark gray green to maroon ; very 
fine grained; faintly laminated. Lime
stone (packstone and grainstone) : coarse 
grained; thin to medium bedded . Rare 
pellet? interlayers . 

Limestone and shale, pellet? and intra
clastic limestone interbedded with thin 
shale . Limestone (packstone and grain
stone) : fine to coarse grained ; very 
thin to medium bedded, planar and low 
angle cross lamination . Shale : dark 
gray green; very f ine grained . 

Shale and limestone , thin to thick shale 
interbedded with pellet? and intraclastic 
limestone . Shale: dark gray green and 
maroon; very fine grained; faintly lami
nated. Disseminated trilobite debris 
throughout . Limestone ( packstone and 
grainstone) :  f ine to coarse grained; 
very thin to medium bedded , low angle 
cross lamination. Loading . 



22 1 . 0  8 7 . 0  

23 1 . 0 88.0 

24 2 . 0  90 . 0  

25 2 . 0  92 . 0  

26 1 . 0  93 . 0  
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Pseudonodules . Contorted bedding . 
Glauconitic . Oolitic.  Fossiliferous , 
trilobites and echinoderms . 

Limestone and shale, pellet? and intra
clastic limestone interbedded with thin 
to thick shale . Limestone ( packstone and 
grainstone) : fine to coarse grained; 
very thin to medium bedded, low angle 
cross lamination . Shale : dark gray 
green and maroon; very fine grained; 
faintly laminated . 

Shale and limestone, thin to thick shale 
interbedded with intraclastic l imestone . 
Shale: dark gray green and maroon; very 
fine grained . Limestone (packstone and 
grainstone) : coarse grained; thick bed
ded. Limestone clast conglomerates show 
polymictic clast associations , multi 
generation clasts , bored and burrowed 
clasts , subparallel to random clast 
orientation (with respect to bedding) , 
and a coarse grained fossil iferous matrix 
supporting clasts . 

Limestone and shale, pellet? l imestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : f ine 
grained ; very thin to thin bedded , low 
angle cross lamination. Rare intra
clastic beds , commonly less than 3 centi
meters in thickness . Shale : dark gray 
green and maroon ; very f ine grained ; 
faintly laminated . 

Shale and l imestone, thin to thick shale 
interbedded with rare pellet? and intra
clastic l imestone . Shale : dark gray 
green and maroon; very fine grained . 
Limestone (packstone and grainstone) : 
fine to coarse grained; very thin to thin 
bedded, low angle cross lamination . 

Limestone and shale, pellet? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : fine 
grained; very thin to thin bedded, low 
angle cross lamination. Rare 
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intraclastic lenses. Shale : dark gray 
green; very fine grained; laminated. 

Shale and limestone , thin to very thick 
shale interbedded with pelletal? , 
oolitic , and intraclastic limestone. 
Shale: dark gray green and maroon ; very 
fine grained ; faintly laminated. Lime
stone ( packstone and grainstone) :  fine 
to coarse grained ; very thin to medium 
bedded, planar and low angle cross lami
nation. Loading. Stylolites. Pseudo
nodules. 

Limestone and shale ,  pelletal? and 
oolitic limestone interbedded with thin 
shale. Limestone ( packstone and 
grainstone) : fine to coarse grained ; 
very thin to medium bedded, low angle 
cross lamination. Shale : dark gray 
green and maroon; very fine grained. 

Shale and limestone, thin to thick shale 
interbedded with oolitic limestone. 
Shale : dark gray green and maroon ; very 
fine grained ; faintly laminated. Lime
stone (packstone and grainstone) :  coarse 
grained ; medium bedded . Rare intra
clastic and pellet limestone lenses and 
thin beds. 

Limestone and shale , oolitic and intra
clastic limestone interbedded with thin 
shale drapes. Limestone ( packstone and 
grainstone) : coarse grained ; medium to 
thick bedded. Rare pellet? limestone 
lenses. Shale : maroon; very fine 
grained ; laminated . 

Shale and limestone, thin to thick shale 
interbedded with pellet? limestone. 
Shale : dark gray green and maroon; very 
fine grained ; faintly laminated. Lime
stone (packstone and grainstone) :  fine 
grained ; very thin to thin bedded , low 
angle cross lamination. Rare intra
clastic interlayers. 

Limestone and shale ,  oolitic and 
pelletal? limestone interbedded with thin 



33 1 . 0 1 04 . 0  

34 7 . 0  1 1 1 . 0  

35 1 . 0 1 1 2 . 0  
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shale . Limestone (packstone and 
grainstone) :  fine to coarse grained; 
very thin to medium bedded, low angle 
cross lamination . Shale : dark gray 
green; very fine grained; faintly lami
nated. Limestone clasts float in shale 
matrix . 

Limestone and shale, pelletal? l imestone 
interbedded with thin shale .  Limestone 
(packstone and grainstone) :  fine 
grained ; very thin to thin bedded , low 
angle cross lamination . Rare intra
clastic interlayers . Shale: dark gray 
green and maroon ; very f ine grained . 

Shale and limestone, thin to thick shale 
interbedded with pelletal? , oolitic , and 
intraclastic limestone . Shale : dark 
gray green and maroon , maroon predomi
nates ; very f ine grained; faintly lami
nated . Limestone clasts occur randomly 
oriented in shale matrix . Limestone 
(packstone and grainstone) :  f ine to 
coarse grained ; very thin to thick bed
ded , planar and low angle cross lamina
tion . Rare fossiliferous interlayer, 
trilobites and echinoderms . 

Limestone and shale , pelletal? and 
oolitic limestone interbedded with thin 
shale . Limestone (packstone and 
grainstone) :  fine to coarse grained; 
very thin to medium bedded,  low angle 
cross lamination. Shale: maroon and 
dark gray green; very f ine grained . 

Shale and limestone, thin to very thick 
shale interbedded with pelletal? , 
oolitic , and intraclastic limestone and 
l ime mudstone . Shale : dark gray green 
and maroon ; very f ine grained . Lime
stone clasts randomly oriented in shale . 
Limestone (packstone to grainstone and 
mudstone) :  fine to coarse grained ; very 
thin to thick bedded, low angle cross 
lamination in pellet? lithology. Load
ing . Pseudonodules . Convoluted bedding . 
Sharp bases and sharp to diffuse tops . 
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Lime mudstone most abund ant toward top 
of uni t .  

Limestone and shale. pelletal? and intra
clastic l imestone interbedded with thin 
shale. Limestone (packstone and 
grainstone) : f ine to coarse grained; 
very thin to medium bedded. low angle 
cross lamination . Rare lime mudstone and 
oolitic interlayers and lenses . Shale: 
dark gray green; very f ine grained; lami
nated . 

Shale and limestone. thin to thick shale 
interbedded with intraclastic l imestone. 
Shale : dark gray green and maroon; very 
fine grained ; faintly laminated . L ime
stone (packstone and grainstone) : coarse 
grained; medium bedded . Rare pellet 
interlayers . 

Limestone and shale. pelletal? and intra
clastic limestone interbedded with thin 
shale . Limestone (packstone and 
grainstone) : f ine to coarse grained; 
very thin to thin bedded . Shale : dark 
gray green and maroon ; very f ine grained ; 
faintly laminated . 

Shale and limestone. thin to very thick 
shale interbedded with peloidal lime
stone . Shale : dark gray green and rna
roon ; very fine grained; faintly laminat
ed . Limestone (packstone and grain
stone) : coarse grained; medium to thick 
bedded . Rare intraclastic. oolitic. 
pelletal. and lime mudstone lithologies . 
Superficial ooids . Stylolites . 
Stylocummulate . 

MAYNARDVILLE LIMESTONE. L imestone and 
shale, lime mudstone interbedded with 
very thin dolomitized shale interlayers 
and drapes . Limestone (mudstone and rare 
grainstone) : fine grained; thick to very 
thick bedded . Superficial ooids . "Nor
mal" ooids exceed 2 millimeters in diame
ter . Shale : brown ; very fine to fine 
grained . Burrows • .  Vugs . 
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Limestone (boundstone? and packstone to 
grainstone) : f ine grained; thick bedded . 
Internal and irregular swirled lamina-
tions resemble laterally l inked 
hemispheroids . Stylolites . Partial 
dolomit ization. 

Limestone and shale, l ime mudstone 
interbedded with very thin dolomitized 
shale . Limestone (mudstone to grainstone 
and boundstone) : fine to medium grained ; 
thin to thick bedded . Superficial ooids . 
Mudstone rip up peloids and small 
intraclasts . Thrombolitic toward top . 
Fossiliferous , trilobites , echinoderms , 
and mollucs f ill  interalgal areas . 
Shale : brown ; sugary; fine grained; 
laminated . Burrowed? 

Limestone and shale , peloidal l imestone, 
and lime mudstone interbedded with very 
thin dolomitized shale.  L imestone 
(mudstone and grainstone) : f ine to medi
um grained ; thin to thick bedded . Super
ficial ooids . Mudstone rip up peloids . 
Stylolites . Burrows . Shale : brown ; 
fine grained ; laminated. 

Limestone (boundstone and packstone to 
grainstone) : fine to coarse grained ; 
thick to very thick bedded . Thromboli
tic . Fossil debris fills interalgal 
areas . Renalcis , trilobites , echino
derms, and mollucs dominate . Laminated 
fabric, may be fenestral . Rare oolitic 
grainstone interlayers . 

Shale: dark gray green; 
grained; faintly laminated . 
at base and top . 

very fine 
Thrombolitic 

Limestone (boundstone and packstone to 
grainstone) : fine to coarse grained; 
thick to very thick bedded . Thromboli
tic . S imilar to  unit  45 . Superficial 
ooids toward top . 

Limestone (grainstone) : fine to medium 
grained; very thick bedded. Peloidal . 
Mud rip up grains and superficial ooids 
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in grain to grain contact . Fenestral 
fabric? Stylolites . Mottled . Partially 
dolomitized . Dolomite pore f illing ce
ment??  

Limestone (boundstone and packstone to 
grainstone) : fine to coarse grained ; 
thick to very thick bedded . Thromboli
t ic. Similar to unit 45 . Oncolitic 
toward top . 

Limestone (packstone) : medium to coarse 
grained ; very thick bedded . Oncoliti c .  
Oolitic . Oncoids may exceed 4 centime
ters in long dimension . Oncoids are 
elongate to subrounded . 

Limestone and dolostone (boundstone and 
packstone to grainstone) : f ine to coarse 
grained; thick to very thick bedded . 
Thrombolitic . S imilar to unit 45 . 

Limestone and dolostone 
medium to coarse grained; 
bedded. Oncolitic . Oolitic . 
unit SO . 

(packstone) : 
very thick 
S imilar to 

Limestone and dolostone (boundstone and 
packstone to grainstone) : f ine to medium 
grained ; very thick bedded . Thromboli
tic . Mottled fabric .  Fenestral fabric? 
In part laminated , cryptalgal or 
stromatolitic? 

Limestone and dolostone (packstone and 
grainstone) : coarse grained; very thick 
bedded . Oncolitic . Oncoids more abun
dant here than below . Oncoids rarely 
exceed 2 centimeters in long dimension . 

Limestone and dolostone (boundstone and 
packstone to grainstone) : fine to medium 
grained; very thick bedded . Thromboli
tic . 

Well collared in upper 
MAYNARDVILLE LIMESTONE . 

part of 

ORNL GW 1 3 1  ( 525 ft .  east--offset from grid l ine) 
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Lower -s meters of Maynardville limestone 
not penetrated .  

MAYNARDVILLE LIMESTONE . Limestone 
( boundstone and packstone to grainstone) :  
f ine to coarse grained; very thick bed
ded. Thrombolitic . Ooids and skeletal 
debris fill inter algal areas . Styloli
tic . Stylobrecciated. Mottled . 
Burrows? Renalcis . Partial dolomitiza
tion . 

Limestone ( packstone and grainstone) : 
fine to medium grained; very thick bed
ded . Superficial ooids . Partial to 
Pervasive dolomitization . Stylolites . 
Rare oncoids and "normal ooids" . 

Limestone (boundstone and packstone to 
grainstone) :  f ine to coarse grained; 
thick bedded . Thrombolitic . Stylolites . 

Limestone ( grainstone) : fine to medium 
grained; very thick bedded . Superficial 
ooids . Algal peloids . Dolomitization . 
Stylolites . 

Limestone (boundstone and packstone to 
grainstone) :  f ine to coarse grained ; 
thick bedded . Thrombolitic . Stylolites . 

Limestone ( grainstone):  fine to medium 
grained; very thick bedded . Superficial 
ooids . Algal peloids . Fenestral fabric . 
Dolomitization . Dolomite pore filling 
cement? 

Limestone and dolostone ( boundstone and 
packstone to grainstone) :  fine to medium 
grained ; very thick bedded . Thrombo
litic . Stylolites . Stylobrecciation . 
Mottled fabric . 

Limestone (packstone and grainstone) :  
coarse grained; thick bedded . 
Oncolitic.  Stylolites . Blocky pore 
filling cement .  Oncoids irregular in 
shape. 



9 4 . 0  

1 0  2 . 0  

1 1  6 . 0  

12  1 . 0  

1 3  3 . 0  

14 8 . 0  

15  3 . 0  

16  1 . 0  

48 . 0  

50 . 0  

56 . 0  

57 . 0  

60 . 0  

68 . 0  

7 1 . 0  

72 . 0  

333 

Limestone (boundstone and packstone to 
grainstone) : f ine to coarse grained; 
very thick bedded . Thrombolitic . 
Oncoids and ooids commonly fill 
interalgal areas . Stylolites . 

Limestone (packstone to grainstone and 
boundstone) :  fine to coarse grained ; 
medium to thick bedded . Oncolitic . 
Oolitic.  Thrombolitic at base and top . 

Limestone (boundstone): fine grained ; 
very thick bedded . Thrombolitic . 
Stylolites and stylocununulate . Mottled 
fabric . 

Limestone ( packstone and grainstone) : 
coarse grained; thick bedded . Oncolitic . 
Oolitic . Oncoids exceed 1 centimeter in 
diameter , ooids are much smaller ( < 3 
millimeters) .  Stylolitic . 

Limestone and dolostone ( boundstone and 
packstone to grainstone):  fine to coarse 
grained; very thick bedded. Thrombolite . 
Oncolitic and oolitic at base.  Stylo
brecciated . 

Limestone (packstone and grainstone): 
fine to coarse grained ; medium to very 
thick bedded . Oncoliti c .  Oolitic . Rare 
shale, pellet? , and intraclastic 
interlayers . 

Limestone and shale ,  oolitic and intra
clastic limestone and lime mudstone 
interbedded with very thin shale . Lime
stone (mudstone and packstone to 
grainstone): f ine to coarse grained ; 
thin to thick bedded . Burrows? Limestone 
clast conglomerates exhibit coarse ooid 
rich matrix . Stylolites . Shale : gray 
green to light gray; very fine grained ; 
laminated. 

Limestone and shale, lime mudstone 
interbedded with very thin shale . Lime
stone (mudstone): fine grained ; thin 
bedded . Rare pellets? in mudstone . 
Burrows . Fossil de�ris , trilobites and 
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perhaps echinoderms . Shale : gray green; 
very f ine grained; very thin bedded .  

Limestone (packstone and grainstone) : 
coarse grained; thick bedded . Oolitic . 
Normal marine ooids , well formed . Ooids 
may exceed 2 millimeters in diameter . 
Lime mudstone interbedded with very thin 
shale at base . 

Limestone (boundstone and packstone to 
grainstone) :  f ine to coarse grained; 
very thick bedded . Thrombolitic . 
Oncoids and ooids interlayered toward the 
top of the unit .  Stylolites . 

Limestone (packstone and grainstone) : 
coarse grained; very thick bedded .  
Oncolitic. Ool it i c .  Carbonate allochems 
are dark gray to black in color . 

Limestone ( boundstone and packstone to 
grainstone) :  primarily fine grained , 
rarely coarse grained; very thick bedded . 
Thrombolitic . Packstone and grainstone 
which fill interalgal areas are becoming 
increasing less common . Stylolites . 

Limestone and dolostone (packstone and 
grainstone) :  coarse grained; thick bed
ded . Oncolitic . Oolitic . Interlayered 
limestone and dolostone , where whole 
areas between bedding parallel stylolites 
may be limestone or dolostone. Limestone 
is dark gray, dolostone is light brown to 
beige . 

Limestone and dolostone ( boundstone) :  
fine grained; very thick bedded . 
Thrombolitic . Stylolites . Rare 
cryptalgal laminations . Renalcis? 

Dolostone (boundstone and packstone to 
grainstone) :  f ine to medium grained ; 
very thick bedded . Ultra thin wavy lami
nations . Perhaps cross stratified . 
Algal peloids? Fenestral fabric? 



24 2 . 0  1 0 1 . 0  
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Limestone and dolostone (boundstone) :  
fine grained; thick bedded .  Thrombo
litic . Large Vugs . Fenestral fabric . 

COPPER RIDGE DOLOSTONE. 
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S-3 POND SECTION 

The S-3 Pond subsurface drill core (ORNL GW 134 and GW 135)  is 

located at the westernmost edge of the Y- 12  weapons plant along grid 

line E52 , 500 . A complete Nolichucky and Maynardville section is repre-

sented . 

ORNL GW 1 34 (20 ft . west--offset from grid l ine) 

UNIT TKN . (m. ) CUM. TKN . (m. ) DESCRIPTION 

1 1 . 0  

2 1 . 0  

3 . 3 . 0  

1 . 0 

2 . 0  

5 . 0  

MARYVILLE LIMESTONE. 

NOLICHUCKY SHALE. Shale : dark gray 
green ; very fine grained; faintly lami
nated . Rare thin intraclastic lenses . 

Limestone and shale, intraclastic and 
pelletal? limestone interbedded with thin 
shale . Limestone ( packstone and 
grainstone) :  f ine to coarse grained ; 
very thin to thick bedded, planar and low 
angle cross lamination . Pseudonodules . 
Loading . Limestone clast conglomerates 
exhibit wide a variety of clast s izes , 
monomictic clast association, and clasts 
floating in a shale matrix. Shale: dark 
gray green and maroon; very f ine grained; 
faintly laminated . 

Shale and l imestone, thin to thick shale 
interbedded with pelletal? and intra
clastic limestone . Shale : dark gray 
green and maroon ; very fine grained; 
laminated . Abiotic Contact between dark 
gray green and maroon colored shale is 
sharp and planar . Color alterations in 
shale occur often . Limestone ( packstone 
to grainstone) : f ine to coarse grained; 
very thin to medium bedded, planar and 
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6 . 0  

28 . 0  
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low angle cross lamination . Loading . 
Pseudonodules . Contorted bedding . Sharp 
bases and sharp to diffuse tops . Lime
stone clast conglomerates show variable 
clast sizes ( 1 -7 centimeters) ,  clasts 
which project into overlying rock units , 
a wide variety of clast types ( pellet 
grainstone and lime mudstone is most 
common) ,  and shale as the dominant matrix 
type. 

Limestone and shale, pellet? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) :  fine 
grained, thin to medium bedded, low angle 
cross lamination . Loading . Pseudo
nodules . Stylolites . Sharp scoured 
bases and scoured to diffuse tops . 
Shale: dark gray green, very fine 
grained; laminated . 

Shale and limestone , thin to very thick 
shale interbedded with pellet? and intra
clastic limestone . Shale : dark gray 
green and maroon ; very fine grained; 
faintly laminated . L imestone ( packstone 
and grainstone) : f ine to coarse grained , 
very thin to medium bedded, planar and 
low angle cross lamination . Lime 
mudstone interlayered with thin shale 
occurs as a 1 6  centimeter thick bed in 
the center of this uni t .  Limestone clast 
conglomerates exhibit monomictic clast 
associations , platey and tabular clasts 
many of which exceed 8 centimeters in 
long dimension , and random clast orienta
tion with respect to bedded . 

Limestone and shale, pelletal? and intra
clastic l imestone interbedded with thin 
shale.  Limestone ( packstone and 
grainstone) :  fine to coarse grained; 
very thin to medium bedded, pellet? lime
stone shows low angle cross lamination . 
Pseudonodules . Loading . Stylolites . 
Limestone clast conglomerates with clasts 
from 3 to 5 centimeters in long dimen
sion . Shale : dark gray green and 
maroon ; very f ine grained; faintly 
laminated . 
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Shale and limestone, thin to thick shale 
interbedded with pellet? , intraclastic,  
and fossiliferous l imestone. Shale : 
dark gray green and maroon ; very f ine 
grained . Calcareous . Mica flakes . 
Limestone (packstone and grainstone) : 
fine grained ; very thin to medium bedded, 
low angle cross laminations in pellet? 
lithology . Loading . Contorted bedding . 
Becoming fossiliferous in the upper part 
of uni t .  Trilobites and echinoderms . 

Limestone and shale ,  pelletal? and 
oolitic l imestone interbedded with thin 
shale . Limestone (packstone and 
grainstone) : f ine to coarse grained, 
very thin to medium bedded, planar and 
low angle cross lamination in pellet 
lithology. Rare fossil iferous l imestone . 
Sharp bases and sharp to diffuse tops . 
Glauconitic, especially in ooid 
grainstones . Shale:  dark gray green and 
maroon; very fine grained ; faintly lami
nated . 

Shale and limestone , thin to thick shale 
interbedded with rare ooid and intra
clastic limestone . Shale : dark gray 
green and maroon ; very f ine grained ; 
laminated . Pellets? or algal peloids 
occur disseminated in shale . Dark gray 
green shale occurs in close stratigraphic 
proximity to l imestone lenses . Limestone 
(packstone and grainstone) : medium to 
coarse grained; thin to medium bedded . 
Stylolites . Loading . 

Limestone and shale, pellet? and oolitic 
l imestone interbedded with thin shale . 
Limestone (packstone and grainstone) : 
fine to coarse grained ; very thin to 
medium bedded . Coarsening upward se
quences . Shale : dark gray green and 
maroon; very fine grained ; laminated . 

Shale and l imestone, thin to thick shale 
interbedded with pelletal? and oolitic 
limestone . Shale : dark gray green and 
maroon; very f ine grained; faintly lami
nated . Limestone (packstone and 
grainstone) : fine to coarse grained; 
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very thin 
low angle 
lithology . 
Convoluted 
lenses . 

to medium bedded, planar and 
cross laminations in pellet 

Loading . Pseudonodules . 
bedding . Rare intraclastic 

Limestone and shale, oolitic and 
pelletal? limestone interbedded with thin 
shale . Limestone (packstone and 
grainstone) :  fine to coarse grained ; 
very thin to thick bedded, low angle 
cross laminations in pellet lithology. 
Thin discontinuous shale drapes occur 
throughout oolitic grainstone . Shale : 
dark gray green; very f ine grained ; 
faintly laminated. 

Shale and limestone, thin to thick shale 
interbedded with oolitic l imestone . 
Shale : maroon and dark gray green; very 
fine grained; faintly laminated . Lime-
stone clasts in shale . Limestone 
( packstone and grainstone) :  coarse 
grained ; thin bedded . Rare pellet? or 
algal peloidal lenses . 

Limestone and shale , oolitic and pellet? 
limestone interbedded with very thin 
shale . Limestone (packstone and 
grainstone) :  fine to coarse grained; 
very thin to medium bedded, planar and 
low angle cross laminiation in pellet 
lithology. Sharp bases and scoured sharp 
tops . Skeletal lags? Shale : maroon and 
dark gray green; very fine grained; 
faintly laminated . 

Shale and limestone , thin to thick shale 
interbedded with oolitic and pelletal? 
limestone . Shale: dark gray green and 
maroon; very fine grained; laminated. 
Limestone nodules . Quartz s ilt? Lime
stone ( packstone and grainstone) : fine 
to coarse grained ; very thin to medium 
bedded, low angle cross lamination in 
pellet lithology. Loading . Pseudo
nodules . 

Limestone and shale , pellet? and oolitic 
l imestone interbedded with thin shale . 
Limestone ( packstone and grainstone) : 
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fine to coarse grained ; very thin to 
medium bedded, low angle cross lamina
tion . Sharp bases and diffuse tops . 
Loading . Shale : dark gray green and 
maroon ; very f ine grained ; laminated . 

Limestone and shale , oolitic and 
pelletal? limestone interbedded with thin 
shale . Limestone (packstone and 
grainstone) : fine to coarse grained ; 
thin to medium bedded, planar and low 
angle cross lamination. Ooids exceed 2 
millimeters in diameter. Thin, discon
tinuous shale drapes in oolitic 
grainstone Shale : dark gray green and 
maroon ; very fine grained ; laminated . 
Rare intraclastic lenses in shale .  

Limestone and shale , pelletal? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : f ine 
grained ; very thin to thin bedded , low 
angle cross lamination in pellet 
1 i tho logy. Loading . Pseudonodules . 
Basal skeletal lags? Sharp bases and 
diffuse tops . Rare oolitic and intra
clastic interlayers . Shale : dark gray 
green ; very f ine grained ; laminated . 
Disseminated fossi l  debris , primarily 
trilobites . 

Shale and limestone , thin to thick shale 
interbedded with pelletal? and intra
clastic limestone . Shale : dark gray 
green to maroon ; very fine grained ; 
faintly laminated . L imestone (packstone 
and grainstone) : fine to coarse grained ; 
thin to medium bedded . Rare oolitic 
inter layers . 

Limestone and shale, pellet? and intra
clastic limestone interbedded with thin 
shale . Limestone (packstone and 
grainstone) : fine to coarse grained; 
very thin to medium bedded , planar and 
low angle cross lamination in pellet? 
1i tho logy . Shale : dark gray green and 
maroon; very f ine grained . 



21 3 . 0  

22 1 . 0  

23 2 . 0  

24 2 . 0  

88 . 0  

89 . 0  

9 1 . 0  

93 . 0  

341 

Shale and limestone, thin to thick shale 
interbedded with pellet? limestone . 
Shale : dark gray green and maroon ; very 
fine grained; faintly laminated . Dissem
inated trilobite debris throughout . 
Limestone (packstone and grainstone) : 
fine grained ; very thin to medium bedded, 
low angle cross lamination . Loading . 
Pseudonodules . Contorted bedding . 
Glauconitic.  Rare oolitic and intra
clastic interlayers . 

Limestone and shale, pellet? limestone 
interbedded with thin to thick shale . 
Limestone (packstone and grainstone) : 
f ine grained ; very thin to medium bedded , 
low angle cross lamination . Rare intra
clastic lenses . Shale : dark gray green 
and maroon ; very f ine grained ; faintly 
laminated . 

Shale and limestone, thin to thick shale 
interbedded with intraclastic limestone . 
Shale : dark gray green and maroon ; very 
f ine grained . Limestone ( packstone and 
grainstone) : coarse grained ; medium 
bedded . Limestone clast conglomerates 
show a wide variety of clast sizes ( 1-7  
centimeters in  long dimension ) ,  poly
mictic and monomictic clast association , 
and clasts whi ch proj ect into overlying 
rock units . Rare pellet? interlayers . 

Limestone and shale, pellet? and intra
clastic limestone interbedded with thin 
shale . Limestone (packstone and 
grainstone) :  f ine to coarse grained ; 
very thin to medium bedded , low angle 
cross lamination in pellet? lithology. 
Limestone clast conglomerates show 
polymictic clast associations , 
multigenerat ion clasts , bored and bur
rowed clasts , subparallel to random clast 
orientation (with respect to bedding) ,  
and a coarse grained fossiliferous matrix 
supporting clasts . Shale : dark gray 
green and maroon; very fine grained ; 
faintly laminated . 



25 16 . 0  

26 1 . 0  

27 3 . 0  

28 1 . 0  

29 2 . 0  

109 . 0  

1 10 . 0  

1 1 3 . 0  

1 14 . 0  

1 16 . 0  
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Shale and l imestone, thin to thick shale 
interbedded with pellet? and intraclastic 
limestone . Shale : dark gray green and 
maroon; very f ine grained . Limestone 
(packstone and grainstone) : fine to 
coarse grained; very thin to medium bed
ded, low angle cross lamination in pel
let? lithology. Ool itic interlayers 
become abundant toward top of unit . 

Limestone and shale, pellet? and oolitic 
limestone interbedded with thin shale . 
Limestone (packstone and grainstone) : 
fine to coarse grained; very thin to 
medium bedded , low angle cross lamination 
in pellet? lithology. Rare intraclastic 
lenses . Shale: dark gray green; very 
fine grained; laminated . 

Shale and limestone, thin to very thick 
shale interbedded with oolitic, pelletal , 
and intraclastic l imestone . Shale : dark 
gray green and maroon; very f ine grained ; 
faintly laminated. Limestone (packstone 
and grainstone) : fine to coarse grained; 
very thin to medium bedded, planar and 
low angle cross lamination . Loading . 
Stylolites . Pseudonodules . 

Limestone and shale, oolitic limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : 
grained ; thin to medium bedded. 
intraclastic lenses . Shale: dark 

coarse 
Rare 
gray 

green and maroon; very f ine grained . 

Shale and limestone, thin to thick shale 
interbedded with intraclastic and pellet? 
l imestone . Shale : dark gray green and 
maroon; very f ine grained; faintly lami
nated. Limestone (packstone and 
grainstone) : f ine to coarse grained; 
thin to medium bedded . Limestone clast 
conglomerates show polymictic and 
monomictic clast associations , bored and 
burrowed clasts , subparallel to random 
clast orientat ion (with respect to bed
ding) , and a coarse . grained matrix and 
shale matrix supporting clasts • •  



30 1 . 0  

3 1  1 1 . 0  

32 1 . 0  

33 1 8 . 0  

34 6 . 0  

1 17 . 0  

1 28 . 0  

1 29 . 0  

147 . 0  
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Limestone and shale, oolitic limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : coarse 
grained; medium to thick bedded . Rare 
pellet? and intraclastic limestone lens
es . Shale : maroon; very f ine grained ; 
laminated . 

Shale and limestone, thin to thick shale 
interbedded with rare pellet? oolit ic , 
intraclastic,  and fossiliferous lime
stone . Shale : dark gray green and ma
roon; very fine grained; faintly laminat
ed . Limestone (packstone and 
grainstone) : f ine to coarse grained; 
very thin to medium bedded, low angle 
cross lamination in pellet? lithology. 
Very rare lime mudstone interlayers . 

Limestone and shale , pelletal? limestone 
interbedded with thin shale . Limestone 
(packstone and grainstone) : f ine 
grained; very thin to medium bedded ,  low 
angle cross lamination . Shale: dark 
gray green ; very f ine grained ; faintly 
laminated . Limestone clasts float in 
shale matrix . 

Shale and limestone , thin to very thick 
shale interbedded with lime mudstone and 
intraclastic limestone . Shale : dark 
gray green and maroon , maroon ; very fine 
grained; faintly laminated . Limestone 
clasts occur randomly oriented in shale 
matrix . Limestone (mudstone and 
packstone to grainstone) : fine to coarse 
grained; very thin to thick bedded . Rare 
oolitic, algal peloidal,  and pelletal? 
limestone interlayers . Lime mudstone 
interbedded with thin shale becomes very 
abundant toward top of uni t .  Loading . 
Pseudonodules . Convoluted bedding . 
Sharp bases and sharp to diffuse tops . 

ORNL GW 1 35 ( 7 1 0  ft . east- -offset from grid line) 

153 . 0  MAYNARDVILLE LIMESTONE. Limestone and 
shale, lime mudstone interbedded with 
thin shale . L imestone (mudstone) : f ine 
grained; very thin to thin bedded . Rare 
intraclastic and oolitic lenses . Shale : 



35 1 . 0  

36 1 . 0  

37 1 . 0  

38 38 . 0  

39 2 . 0  

40 4 . 0  

41  1 . 0  

42 3 . 0  

1 54 . 0  

1 55 . 0  

156 . 0  

1 94 . 0  

196 . 0  

200 . 0  

201 . 0  

204 . 0  
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dark green gray and brownish where 
dolomitized; very f ine grained; laminat
ed . 

Limestone ( boundstone and packstone to 
grainstone) :  f ine to coarse grained; 
thick bedded. Thrombolitic . Oolitic 
grainstone fills interalga1 areas . 
Stylolites . 

Shale and limestone, thin partially 
dolomitized shale interbedded with pel
let? limestone . Shale: dark gray green , 
very fine grained. L imestone ( packstone 
and grainstone) : fine grained; thin 
bedded . Thrombolitic at base . Lime 
mudstone interbedded with shale at top . 

Limestone and shale, lime mudstone 
interbedded with thin shale. Limestone 
(mudstone) : fine grained; very thin to 
thin bedded . Burrowed. Mottled . Rare 
pellet and intraclastic  lenses . Shale : 
dark gray green; very f ine grained . 

Limestone ( boundstone and packstone to 
grainstone) : f ine to coarse grained; 
very thick bedded . Thrombol itic . Ooids , 
oncoids , and algal peloids fill inter-
algal areas . Stylolites . Vugs . 
Discontinuous algal? laminations . 
Renalcis? 

Limestone (packstone and grainstone) : 
coarse grained; very thick bedded . 
Oncolitic . Ooliti c .  

Limestone ( boundstone and packstone to 
grainstone) :  f ine to coarse grained ; 
very thick bedded. Thrombolitic.  
Oncoids common throughout .  Stylolites . 

Limestone ( packstone and grainstone) :  
coarse grained; thick bedded . Oncolitc . 

Limestone ( boundstone and packstone to 
grainstone) :  fine to coarse grained; 
very thick bedded . Thrombolitic . 
Dolomitization . Stylolites . 



43 2 . 0  

44 2 . 0  

45 2 . 0  

46 6 . 0  

47 1 . 0  

48 2 . 0  

49 2 . 0  

so 4 . 0  

51  1 . 0 

52 1 . 0 

206 . 0  

208 . 0  

210 . 0  

2 16 . 0  

217 . 0  

219 . 0  

221 . 0  

225 . 0  

226 . 0  

227 . 0  
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Limestone ( packstone and grainstone) : 
coarse grained ; very thick bedded . 
Oncolitic . Oolitic . Ooids commonly 
replaced by ferroan dolomite . 

Limestone ( boundstone and packstone to 
grainstone) :  f ine to coarse grained ; 
very thick bedded . Oncolitic at base . 
Thrombolitic throughout remainder of 
unit . Ooids and skeletal debris fill 
interalgal regions . Stylolites . 

Limestone ( packstone and grainstone) :  
coarse grained; very thick bedded . 
Oncolitic . Oolitic . Stylolitic . 

Limestone ( boundstone and packstone to 
grainstone) : f ine to coarse grained ; 
very thick bedded . Thrombolitic . 

Limestone ( packstone and grainstone) :  
fine to medium grained; thick bedded .  
Peloidal, superficial ooids , oncoids , and 
normal marine ooids . Stylolitic . Algal 
peloids and some mudstone rip up 
intraclasts . 

Limestone ( boundstone and packstone to 
grainstone) :  fine to coarse grained ; 
very thick bedded . Thromboli tic . 
Dolomitization . Finer grained when com
pared to previous thrombolites . 

Limestone ( packstone and 
fine grained; thick bedded . 
ooids? and algal peloids? 
tion . 

grainstone) :  
Superficial 
Dolomitiza-

Limestone and dolostone ( boundstone) :  
fine grained; very thick bedded . 
Thrombolitic . Superficial ooids at base 
and top . 

Limestone ( packstone and grainstone) :  
fine grained ; thick bedded . Superficial 
ooids? Dolomite pore filling cement? 

Limestone ( boundstone and packstone to 
grainstone) :  f ine to coarse grained; 
thick bedded . Thrombolitic . Ooids fill 



53 2 . 0  

54 3 . 0  

55 1 . 0 

56 4 . 0  

57 2 . 0  

58 3 . 0  

59 2 . 0  

60 4 . 0  

61  1 . 0  

229 . 0  

232 . 0  

233 . 0  

237 . 0  

239 . 0  

242 . 0  

244 . 0  

248 . 0  

249 . 0  
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interalgal regions . Partial dolomit iza
tion . 

Limestone ( packstone and grainstone) : 
fine to medium grained ; very thick bed
ded . Superficial ooids and algal 
peloids . Stylobrecciation . 

Limestone and dolostone ( boundstone) : 
fine grained ; thick bedded. Thrombo
litic . Renalcis . 

Limestone and 
grainstone) : 
thick bedded . 
algal peloids . 

dolostone ( packstone and 
fine to medium grained; 

Superficial ooids and 

Limestone ( boundstone and packstone to 
grainstone) : fine to coarse grained ; 
very thick bedded . Thrombol itic . 
Stylolites . Vugs . Faint laminations . 

Limestone (packstone and grainstone) : 
fine grained ; thick bedded . Superficial 
ooids? Algal peloids? Thrombolitic at 
base and at top . 

Limestone (packstone and grainstone) : 
coarse grained; very thick bedded . 
Oncolit ic . Oolitic . Superficial ooids 
at base . 

Limestone (packstone and grainstone) : 
medium grained; very thick bedded . Nor
mal marine ooids . Ooids are much finer 
grained than in previous units , between 1 
and 2 millimeters in diameter . Oncol itic 
toward top . 

Limestone and dolostone (packstone and 
grainstone) : coarse grained; very thick 
bedded . Oncolitic . Some ooids . Partial 
dolomit ization . 

Limestone and shale, l ime mudstone and 
intraclastic l imestone interbedded with 
thin shale. Limestone (mudstone and 
packstone to grainstone) : fine to coarse 
grained; very thin to medium bedded . 
Shale : green gray; very fine grained. 
Partially dolomitized . 



62 2 . 0  

63 1 . 0  

64 1 . 0  

65 12 . 0  

66 5 . 0  

67 1 . 0  

68 4 . 0  

69 1 . 0  

70 1 . 0  

251 . 0  

252 . 0  

253 . 0  

265 . 0  

270 . 0  

271 . 0  

275 . 0  

276 . 0  

277 . 0  
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Limestone ( packstone and grainstone) :  
coarse grained; thick bedded. Oncolitic . 
Rare intraclastic  and l ime mudstone 
interlayers . Thin shale drapes . 

Limestone and shale, l ime mudstone and 
intraclastic l imestone interbedded with 
thin shale drapes . S imilar to unit  61 . 

Limestone ( packstone and grainstone ) : 
coarse grained; thick bedded . Oncoli
tic . Oolitic . 

Limestone and dolostone ( boundstone and 
packstone to grainstone) :  fine to coarse 
grained; very thick bedded . Thrombo
litic . 

Dolostone and l imestone ( boundstone and 
packstone to grainstone) :  fine to medium 
grained; very thick bedded . Stromato
litic . Ultra thin wavy laminations 
forming lateral ly l inked hemispheroids . 
Stylolites . 

Dolostone ( boundstone and packstone to 
grainstone) : f ine grained; thick bedded . 
Cryptalgal laminites . M icrotepee struc
tures? Fenestral fabri c .  Algal peloids . 
Dolomite pore filling cement? 

Limestone and Dolostone ( boundstone and 
packstone to grainstone) :  fine grained ; 
very thick bedded. Stromatolitic . Simi
lar to unit  66 . 

Limestone and Dolostone ( boundstone and 
packstone to grainstone) :  f ine grained ; 
thick bedded . Thrombolitic . Stylolitic . 
Renalcis? Absence of algal or cryptalgal 
lamination . 

Limestone and dolostone ( boundstone and 
packstone to grainstone) :  fine grained , 
thick bedded . Cryptalgal laminites . 
S imilar to uni t  67 . 

COPPER RIDGE DOLOSTONE . 
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Table C . l .  Analysis o f  CL Lithofacies (Volume % ) .  

Sample Number 
Constituent 

I-80· 1 . 3  !·80·4 . 9  1·82·0. 3 J-2 162 

Trilobites 0 . 00 0 . 50 0 . 00 0 . 00 
Girvane lla 0 . 00 3 . 75 o . oo o . oo 

Fossil allochems , Total 0 . 00 ( 4 . 25)  o . oo o . oo 

Intraclasts , Total ( 1 .  75)  0 . 00 0 . 00 0 . 00 
Mudstone 1 .  75 o . oo 0 . 00 o . oo 

Ooids , Total (0. 75)  ( 4 . 50) 0 . 00 0 . 00 
Fibrous/Prismatic 0 . 75 0 . 00 0 . 00 o . oo 

Superficial 0 . 00 4 . 50 0 . 00 0 . 00 
Peloids 8 . 00 6 . 50 0 . 00 7 . 50 
Micrite/Microspar 50 . 75 1 2 . 00 29 . 50 49 . 00 

Void Pilling Cement, Total ( 2 . 00 )  o . oo ( 5 . 25 )  ( 2 1 .00) 
Blocky 2 . 00 0 . 00 5 . 25 2 1 .00 

Detrital quartz silt 3 . 50 0 . 00 0 . 00 0 . 00 
Pyrite 2 . 00 2 . 25 0 . 00 0 . 00 
Dolomite/Stylolite 3 1 . 25 70 . 50 65 . 25 22. 50 

Total 100 . 00 100 . 00 100 . 00 1 00 . 00 
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Table C . 2 .  Analysis o f  Stromatolite Lithofacies (Volume %) . 

Sample Number 
Consti tuent 

RS1 9  J - 2  307 . 5  

Trilobites 0 . 00 0 . 25 
Foss i l  a llochems . Total o . oo ( 0 . 25) 

Peloids 34 . 50 21 . 50 
Hicrite/Hicrospar 3 1 .00 1 5 . 75 

Void Filling Cement . Total ( 9 . 25 )  ( 5 . 00) 
Blocky 9 . 25 5 . 00 

Dolomite/Stylolite 25 . 25 57 . 50 

Total 1 00 . 00 1 00 . 00 
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Table C . 3 .  Analysis o f  Thrombolite Lithofacies (Volume % ) .  

Sample Number 
Constituent 

I-2-2 . 1  I-3- 1 . 0  I-3-4 . 2  I-5-2 . 8  I - 14-0 . 0  

Echinoderms 0 . 25 0 . 25 1 .  75 2 . 75 2 . 25 
Trilobites 2 . 00 0 . 25 0 . 25 2 . 00 1 . 50 
Girvanella 4 . 75 4 . 00 3 . 50 5 . 75 1 1 . 00 
Cyanobacteria 0 . 00 3 . 50 3 . 75 0 . 75 2 7 . 00 
Gastropods 0 . 00 0 . 00 0 . 25 o . oo 0 . 00 
Sponge spicules 2 . 00 5 . 50 3 . 00 2 . 00 2 . 00 
Fossil allochems . Total ( 9 . 00 )  ( 1 3 . 50 )  ( 1 2 .  50) ( 13 . 25)  ( 4 3 . 75 )  

Intraclasts.  Total 0 . 00 0 . 00 0 . 00 0 . 00 ( 7  . 50) 
Hudstone o . oo o . oo o . oo o . oo 7 . 25 
Peloidal packstone 0 . 00 0 . 00 0 . 00 0 . 00 0 . 25 

Ooids . Total (4 . 00) 0 . 00 0 . 00 0 . 00 0 . 00 
Polycrystalline 4 . 00 0 . 00 0 . 00 0 . 00 0 . 00 

Peloids o . oo o . oo 0 . 00 o . oo 5 . 75 
Hicrite/Hicrospar 62 . 25 66 . 25 68 . 25 54 . 00 3 7 . 50 

Void Filling Cement . Total ( 1 . 50) ( 8 .00) o . oo o . oo ( 3 . 00 )  
Blocky 1 . 50 8 . 00 0 . 00 0 . 00 3 . 00 

Detrital quartz silt o . oo o . oo 0 . 00 5 . 75 o . oo 
Clay/Hica 0 . 00 0 . 00 0 . 00 1 1 . 7 5  0 . 00 
Pyri te 0 . 25 o . oo o . oo o . oo 0 . 00 
Dolomite/Styloli te 23.00 7 . 25 1 6 . 25 1 2 . 75 2 . 50 
Fracture/Fill Veins o . oo 5 . 00 3 . 00 2 . 50 0 . 00 

Total 100 . 00 100 . 00 100 . 00 1 00 . 00 1 00 . 00 
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Table C . 4 ,  Analysis o f  NOPG Lithofacies (Volume % ) .  

Sample Number 
Const i tuent 

I-62- 1 . 2  I-62-1 . 3  I -74-9 . 8  A9-T B9 J-2 300 . 5  

Echinoderms 0 . 50 2 . 75 0 . 75 2 . 00 2 . 25 0 . 25 
Tri lobites 0 . 50 6 . 50 0 . 25 7 . 50 1 . 50 0 . 75 
Girvanella 1 . 75 0 . 25 0 . 00 2 . 75 o . oo 1 . 00 
Gastropods 0 . 00 o . oo 0 . 00 0 . 50 o . oo o . oo 

Molluscs undifferentiated 0 . 00 1 . 25 0 . 00 0 . 7 5  0 . 25 o . oo 

Sponge spicules 0 . 00 0 . 00 0 . 00 1 . 50 0 . 00 0 . 00 
Fossil allochems , Total ( 2 . 75)  ( 10 .  75)  ( 1 . 00) ( 1 5 . 00) ( 4 . 00 )  ( 2 . 00 )  

Intraclasts,  Total ( 24 . 25)  ( 4 . 25) ( 2 . 75) ( 6 . 25)  0 . 00 0 . 00 
Mudstone 0 . 00 0 . 75 2 . 75 o . oo 0 . 00 o . oo 

Peloidal packstone 1 5 . 75 0 . 25 0 . 00 4 . 75 0 . 00 o . oo 

Foss i l iferous packstone o . oo 1 . 50 0 . 00 0 . 00 o . oo 0 . 00 
Ool i t ic packstone 8 . 50 1 . 75 o . oo 1 . 50 0 . 00 0 . 00 

Ooids , Total ( 16 . 00) ( 1 8 . 25) ( 1 1 . 00) ( 12 .  75) ( 3 3 . 00 )  ( 3 . 50) 
Fibrous/Prismatic 6 . 75 1 5 . 00 3 . 50 7 . 75 20 . 00 3 . 50 
Polycrystalline 5 . 75 0 . 75 7 . 50 2 . 50 7 . 25 o . oo 
Monocrystalline 3 . 50 2 . 50 o . oo 2 . 50 5 . 75 0 . 00 

Oncoids 1 6 . 00 24 .00 3 1 . 00 1 3 . 75 1 7 . 50 30 . 75 
Peloids 4 . 25 3 . 50 3 . 75 1 3 . 00 1 0 . 75 1 1 . 50 
Micrite/Microspar 1 8 . 00 32 . 25 1 . 50 28 . 50 6 . 50 o . oo 

Void Fill ing Cement , Total ( 1 1 . 50) ( 0 . 25)  ( 35 . 75 )  ( 10 . 75) ( 26 . 50) (38 . 75)  
F ibrous/Bladed 8 . 00 0 . 25 34 .25 6 . 75 24 . 75 38. 75 
Syntaxial 0 . 00 o . oo 1 . 50 2 . 00 1 .  75 o . oo 
Blocky 3 . 50 0 . 00 0 . 00 2 . 00 0 . 00 o . oo 

Detrital quartz s ilt 0 . 00 o . oo 0 . 00 0 . 00 o . oo 0 . 00 
Clay/Mica 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Glauconi te 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 
Pyrite 0 . 00 o . oo 0 . 00 0 . 00 o . oo o . oo 
Dolomite/Stylolite 7 . 25 4 . 25 9 . 75 0 . 00 0 . 75 1 3 . 50 
Fracture/Pill  Veins 0 . 00 2 . 50 3 . 50 0 . 00 1 . 00 o . oo 

Total 1 00 . 00 100 . 00 100 . 00 1 00 . 00 1 00 . 00 1 00 . 00 
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Table C . 5 .  Analysis of EPG Lithofacies (Volume % ) .  

Sample Number 
Const ituent 

I-76-24 . 6  I-77-2 . 0  I -78-0 . 5  I-79- 0 . 0  I-79-6 . 2  1-81 - 1 . 4  

Echinoderms 0 . 00 0 . 25 0 . 25 1 3 . 00 0 . 00 0 . 00 
Trilobites 0 . 00 0 . 25 0 . 75 5 . 00 0 . 00 0 . 00 
Sponge spicules 0 . 00 0 . 00 o . oo o . oo 2 . 25 0 . 00 
Foss il allochems , Total 0 . 00 (0 . 50) ( 1 . 00 )  ( 18 . 00) ( 2 . 25)  0 . 00 

Intraclasts, Total ( 1 . 00) 0 . 00 0 . 00 ( 10 . 50) ( 13 .  75) o . oo 
Mudstone 0 . 25 o . oo 0 . 00 7 . 25 1 3 . 75 o . oo 
Peloidal packstone 0 . 75 0 . 00 0 . 00 0 . 00 o . oo o . oo 
Foss ili ferous packstone o . oo 0 . 00 o . oo 3 . 25 0 . 00 0 . 00 

Ooids , Total ( 8 . 50) ( 4 . 50 )  ( 33 . 50 )  0 . 00 0 . 00 ( 2 . 75) 
F ibrous/Prismatic 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 

Superficial 8 . 50 4 . 50 3 3 . 50 0 . 00 0 . 00 2 . 75 
Peloids 57 . 50 58 . 50 2 1 . 50 28 . 25 48.25 64 . 00 
Micrite/Microspar 0 . 00 o . oo o . oo 27 . 00 0 . 00 0 . 00 

Void F i lling Cement, Total ( 1 9 . 75 )  (27 . 25) ( 20. 75) ( 7 . 25)  ( 2 1 . 50 )  ( 23 . 50 )  
Fibrous/Bladed 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 21 .00 
Syntaxial o . oo 0 . 25 2 . 50 1 . 25 0 . 00 0 . 00 
Blocky 1 9 . 75 27 .00 1 8 . 25 6 . 00 2 1 . 50 2 . 50 

Pyri te 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 3 . 50 
Dolomite/Styloli te 1 3 . 25 3 . 00 23 . 25 9 .00 1 4 . 25 o . oo 
Fracture/Fill Veins 0 . 00 6 . 25 o . oo 0 . 00 0 . 00 6 . 25 

Total 1 00 . 00 1 00 . 00 100 . 00 100 . 00 100 . 00 100 . 00 



Constituent 

Echinoderms 
Trilobites 
Sponge spicules 
Fossil allochems . Total 

Intraclasts . Total 
Mudstone 
Peloidal packstone 
Fossi l iferous packstone 

Ooids , Total 
Fibrous/Prismatic 
Superficial 

Peloids 
Micrite/Microspar 

Void Pilling Cement . Total 
Fibrous/Bladed 
Syntaxial 
Blocky 

Pyrite 
Dolomite/Stylolite 
Fracture/F i l l  Veins 

Total 
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Table C.5.  ( continued) .  

I-81-5 . 9  

0 . 00 
o . oo 
3 . 75 

( 3 . 75 )  

0 . 00 
0 . 00 
0 . 00 
0 . 00 

( 2 . 00) 
2 . 00 
0 . 00 

37 . 50 
1 6 . 00 

( 32 . 50 )  
o . oo 
o . oo 

32 . 50 
0 . 00 
6 . 00 
2 . 25 

1 00 . 00 

Sample Number 
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Table C . 6 .  Analysis o f  HWS Lithofacies (Volume % ) . 

Sample Number 
Consti tuent 

1· 1 · 1 1 . 6  I - 1 - 1 5 . 5  I-4-0 . 9  I-7-0 . 0  1·50-0. 5  1·58- 2 . 5  

Echinoderms 0 . 00 0 . 00 o . oo o . oo 0 . 00 0 . 25 
Inarticulate brachiopods 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 25 
Trilobites 0 . 50 0 . 25 0 . 00 0 . 00 5 . 50 2 . 25 
Cirvanella 2 . 25 4 . 25 8 . 25 4 . 25 8 . 25 2 . 75 
Sponge spicules o . oo 0 . 50 0 . 00 0 . 00 0 . 50 0 . 00 
Fossil allochems . Total ( 2 . 75)  ( 5 . 00) ( 8 . 25)  ( 4 . 25 )  ( 14 . 25)  ( 5 . 50) 

Intraclasts . Total o . oo 0 . 00 0 . 00 ( 7 . 50) ( 6 . 00) ( 3 . 75)  
Mudstone 0 . 00 0 . 00 0 . 00 7 . 50 6 . 00 0 . 00 
Peloidal packstone 0 . 00 0 . 00 0 . 00 o . oo o . oo 3 . 75 

Peloids 0 . 00 0 . 00 6 . 25 22. 50 u . oo 23 . 50 
Micrite/Microspar 75. 75 53 . 00 7 3 . 75 50 . 75 45 . 75 42 . 25 

Void Filling Cement . Total o . oo 0 . 00 o . oo ( 2 . 50 )  ( 3 . 00 )  0 . 00 
Fibrous/Bladed 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 

Syntaxial 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 
Blocky 0 . 00 0 . 00 0 . 00 2 . 50 3 . 00 o . oo 

Detrital quartz silt  o . oo 3 . 25 o . oo 0 . 25 0 . 00 0 . 25 
Clay/Hica 7 . 50 32.00 8 . 25 5 .00 1 1 . 50 1 1 . 50 
Glauconite 0 . 00 0 . 25 0 . 00 o . oo 0 . 50 0 . 00 
Pyrite 0 . 75 1 . 25 0 . 25 0 . 25 2 . 25 1 . 50 
Dolomite/Stylolite 1 0 . 00 5 . 25 3 . 00 7 . 00 3 . 75 6 . 75 
Fracture/Fi l l  Veins 3 . 25 0 . 00 0 . 25 o . oo 2 . 00 5 . 00 

Total 100 . 00 100 . 00 100 . 00 100 . 00 100 . 00 100 . 00 
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Table C . 6 .  (continued) .  

Sample Number 
Constituent 

I -63- 8 . 9  I-69-4 . 9  BG- 6-86 . 9  

Echinoderms 0 . 25 0 . 00 o . oo 

Inarticulate brachiopods 0 . 00 1 . 00 o . oo 

Trilobites 0 . 25 3. 75 2 . 25 
Glrvanel la 1 . 50 6 . 00 9 . 25 
Sponge spicules 0 . 00 0 . 00 o . oo 
Foss i l  allochems , Total ( 2 . 00) ( 1 0. 75) ( 1 1 . 50) 

Intraclasts,  Total 0 . 00 0 . 00 0 . 00 
Mudstone 0 . 00 o . oo o . oo 
Peloidal packstone 0 . 00 0 . 00 0 . 00 

Peloids 8 . 50 4 . 50 4 . 50 
Hicrite/Hicrospar 6 1 . 00 35 . 00 63. 00 

Void F i ll ing Cement ,  Total ( 2 . 00 )  ( 7 . 25) o . oo 
Fi brous/Bladed o . oo 3 . 00 o . oo 
Syntaxial 0 . 00 2 . 25 0 . 00 
Blocky 2 . 00 2 . 00 0 . 00 

Detri tal quartz s i lt 0 . 00 o . oo o . oo 
Clay/Hica 9 . 50 1 7 . 25 6 . 50 
Glauconi te 0 . 25 0 . 00 0 . 00 
Pyrite 0 . 25 2 . 75 0 . 25 
Dolomite/Stylolite 1 1 . 50 1 5 . 50 1 1 . 00 
Fracture/Fill  Veins 5 . 00 7 . 00 3 . 25 

Total 100 . 00 100 . 00 100 . 00 
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Table C .  7 .  Analysis o f  OPG Lithofacies ( Volume % ) .  

Sample Number 
Constituent 

1 - 1 - 0 . 0  1 ·8·4 . 0  I-9-2 . 8  1-16-0 . 4  1-21-0.0  1-26-Core 

Echinoderms 0 . 25 0 . 75 0 . 50 1 . 25 0 . 25 o . oo 
Inarticulate brachiopods o . oo o . oo o . oo 0 . 00 0 . 00 0 . 00 
Trilobites 1 .  75 0 . 75 2 . 00 1 . 75 0 . 25 0 . 00 
Girvanella 0 . 00 o . oo o . oo o . oo 3 . 25 0 . 50 
Gastropods 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Pelecypods 0 . 00 o . oo o . oo 0 . 00 o . oo 0 . 00 
Chancelloria o . oo 0 . 00 0 . 00 0 . 00 0 . 00 5 . 75 
Fossi l  al lochems , Total ( 2 . 00) ( 1 . 50) ( 2 . 50) ( 3 . 00) ( 3 . 75)  ( 6 . 25)  

Intraclasts , Total ( 1 . 50 )  ( 1 3 . 50) ( 2 . 75) ( 8 . 75 )  ( 4 . 25)  0 . 00 
Hudstone 0 . 00 12 . 25 0 . 00 2 . 25 0 . 00 0 . 00 
Peloidal packstone 1 . 50 0 . 00 0 . 00 o . oo 4 . 25 o . oo 
Oolitic packstone o . oo 1 . 25 o . oo 6 . 50 0 . 00 o . oo 
Other types 0 . 00 0 . 00 2 . 75 0 . 00 0 . 00 0 . 00 

Ooids , Total (49. 00) (41 . 25) (41 . 75) ( 44 . 00 )  ( 46 . 00) ( 37 . 00) 
Fibrous/Pr ismatic 46. 25 5 . 50 22 . 75 32 . 00 1 5 . 25 1 9 . 50 
Polycrystalline 0 . 00 34 . 00 1 7 . 75 8 . 50 o . oo 2 . 25 
Honocrystall ine 2 . 75 1 . 75 1 . 25 3 . 50 30 . 75 1 5 . 25 

Peloids 1 4 . 00 6 . 75 3 . 75 5 . 75 4 . 00 2 . 50 
Hicrite/Hicrospar 25 . 75 0 . 00 37 . 50 28 . 25 1 0 . 50 1 2 . 75 

Void Fill ing Cement,  Total ( 7 .  75) ( 22 . 75)  ( 1 1 . 75)  ( 10 . 25)  ( 3 1 . 50) (26 . 25)  
Fibrous/Bladed 5 . 50 1 9 . 25 8 . 25 5 . 75 25 . 00 1 5 . 25 
Syntaxial 0 . 00 o . oo o . oo 0 . 00 0 . 00 o . oo 
Blocky 2 . 25 3 . 50 3 . 50 4 . 50 6 . 50 1 1 . 00 

Detrital quartz silt 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Clay/Hica o . oo 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Glauconite 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 
Pyrite o . oo 0 . 00 0 . 00 0 . 00 0 . 00 0 . 50 
Dolomite/Stylolite o . oo 1 1 . 75 0 . 00 0 . 00 0 . 00 1 2 . 00 
Fracture/Fi ll Veins 0 . 00 2 . 50 0 . 00 0 . 00 0 . 00 2 . 75 

Total 100 . 00 1 00 . 00 1 00 . 00 1 00 . 00 1 00 . 00 100 . 00 
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Table C . 7 .  (continued) . 

Sample Number 
Constituent 

I -26-Flank I-31- 1 . 3  I-35- 1 . 0  I - 55-0 . 8  I-72- 1 . 2  BG-0 

Echinoderms 1 . 50 7 . 25 0 . 25 5 . 75 0 . 25 1 . 50 
Inarticulate brachiopods 0 . 00 0 . 00 0 . 00 o . oo 0 . 25 0 . 00 
Trilobites 0 . 00 4 . 50 7 . 25 2 . 50 2 . 50 1 .  75 
Girvanella 0 . 00 0 . 00 6 . 50 5 . 25 2 . 50 0 . 00 
Gastropods 0 . 00 0 . 00 0 . 00 o . oo o . oo 0 . 00 
Pelecypods o . oo o . oo o . oo 0 . 00 0 . 00 0 . 00 
Chancelloria 0 . 00 0 . 00 2 . 75 0 . 00 0 . 00 0 . 00 
Fossil allochems , Total ( 1 .  50) ( 1 1 .  75)  ( 16 .  75)  ( 13 . 50 )  ( 5 . 50 )  ( 3 . 25)  

Intraclasts , Total 0 . 00 ( 6 . 25)  ( 3 . 75 )  ( 1 3 . 00) ( 1.  25) 0 . 00 
Mudstone o . oo 0 . 00 o . oo 1 . 50 1 . 25 0 . 00 
Peloidal packstone 0 . 00 6 . 25 0 . 00 9 . 25 0 . 00 0 . 00 
Ool itic packstone 0 . 00 0 . 00 3 . 75 2 . 25 o . oo o . oo 

Other types 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Ooids , Total ( 47 . 50 )  (29. 75) ( 3 2 . 50 )  ( 19 . 00 )  ( 52 . 50) ( 54 .  50 ) 

Fibrous/Pr ismatic 35 . 25 4 . 75 1 8 . 75 1 8 . 75 35 . 50 4 7 . 25 
Polycrystalline 3 . 75 23 . 00 1 1 . 00 0 . 00 1 6 . 75 o.oo 

Monocrystalline 8 . 50 2 . 00 2 . 75 0 . 25 0 . 25 7 . 25 
Peloids 3 . 00 5 . 50 6 . 25 6 . 25 8 . 25 7 . 50 
Micrite/Microspar o . oo 3 . 75 37 . 00 22 . 00 4 . 00 1 9 . 50 

Void Filling Cement , Total ( 42 . 00) ( 35 . 75 )  ( 3 . 75)  ( 1 2 .  75) ( 20 . 50 )  ( 2 . 25)  
Fibrous/Bladed 42.00 22 . 00 3 . 00 3 . 50 9 . 25 2 . 25 
Syntaxial 0 . 00 7 . 50 0 . 00 4 . 00 0 . 00 0 . 00 
Blocky 0 . 00 6 . 25 0 . 75 5 . 25 1 1 . 25 0 . 00 

Detrital quartz s i lt 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Clay/Mica 0 . 00 o . oo 0 . 00 o . oo 0 . 00 5 . 00 
Glauconite 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Pyrite 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Dolomite/Stylolite 6 . 00 . 7 . 25 0 . 00 1 1 . 25 8 . 00 8 . 00 
Fracture/F ill  Veins 0 . 00 0 . 00 0 . 00 2 . 25 o . oo 0 . 00 

Total 100 . 00 100 . 00 100 . 00 100 . 00 100 . 00 100 . 00 
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Table C. 7 .  (continued ) .  

Sample Number 
Constituent 

BG-3-28 . 8  BG-3-55 . 5  BG-4-25 . 5  lOA 0 . 0  lOA 0 . 3  lOA 0 . 9  

Echinoderms o . oo 33. 00 8 . 75 2 . 50 2 . 50 0 . 50 
Inarticulate brachiopods 0 . 00 0 . 00 o . oo o . oo 0 . 00 o . oo 

Trilobites 4 . 00 2 . 25 8 . 50 0 . 75 0 . 50 0 . 50 
Girvanella 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 o . oo 

Gastropods 0 . 00 o . oo 0 . 00 o . oo 0 . 00 o . oo 

Pelecypods o . oo 0 . 00 o . oo 0 . 00 o . oo 0 . 00 
Chancelloria o . oo 0 . 00 0 . 25 o . oo 0 . 00 o . oo 

Fossil allochems . Total ( 4 . 00 )  ( 35 . 25)  ( 17 . SO )  ( 3 . 25)  ( 3 . 00) ( 1 . 00) 

Intraclasts.  Total o . oo 0 . 00 o . oo ( 2 3 . 25) ( 1 .  25) ( 0 . 50) 
Mudstone 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 o . oo 

Peloidal packstone 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 o . oo 
Ool itic packstone 0 . 00 o . oo 0 . 00 23 . 25 1 . 25 0 . 50 
Other types 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 

Ooids. Total ( 3 7 . 00) (27 . 00) ( 3 1 . 25)  ( 30 . 50 )  ( 3 6 . 00 )  ( 55 . 50) 
Fibrous/Prismatic 37 . 00 27 . 00 31 . 25 2 . 75 5 . 75 1 4 . 00 
Polycrystalline 0 . 00 o . oo 0 . 00 o . oo 1 6 . 50 38.00 
Honocrystalline o . oo 0 . 00 0 . 00 27 . 75 1 3 . 75 3 . 50 

Peloids 7 . 50 9 . 25 5 . 50 1 . 00 0 . 75 0 . 25 
Micrite/Microspar 4 1 . 25 0 . 00 1 7 . 75 o . oo 0 . 00 0 . 00 

Void Filling Cement . Total ( 5 . 50) ( 26 . 25) ( 1 7 . 75)  ( 29 . 00 )  ( 52 . 25) (41 . 25)  
Fibrous/Bladed 1 .  75 2 . 50 5 . 50 23 . 75 52 . 25 41 . 25 
Syntaxial 0 . 00 22. 50 8 . 75 2 . 50 o . oo 0 . 00 
Blocky 3 . 75 1 . 25 3 . 50 2 . 75 0 . 00 0 . 00 

Detrital quartz silt 0 . 00 2 . 25 0 . 00 o . oo 0 . 00 0 . 00 
Clay/Mica 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Glauconite 0 . 00 0 . 00 8 . 25 0 . 25 0 . 00 0 . 00 
Pyrite o . oo o . oo 0 . 00 o . oo 0 . 00 0 . 00 
Dolomite/Stylolite 4 . 75 o . oo 2 . 00 1 2 . 75 2 . 25 0 . 25 
Fracture/Fill Veins 0 . 00 0 . 00 0 . 00 o . oo 4 . 50 1 . 25 

Total 100 . 00 100 . 00 100 . 00 1 00 . 00 1 00 . 00 1 00 . 00 
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Table C. 7 .  ( continued) .  

Sample Number 
Constituent 

lOA 1 . 00 lOA 1 . 5  lOA 1 . 8  lOA 2 . 6  lOA 2 . 8  lOA 3 . 75 

Echinoderms 2 . 25 0 . 25 0 . 75 0 . 25 0 . 25 1 . 25 
Inarticulate brachiopods o . oo 0 . 00 o . oo 0 . 00 0 . 00 o . oo 

Trilobites 1 . 00 0 . 00 0 . 00 0 . 25 0 . 50 0 . 25 
Girvanella o . oo 0 . 00 0 . 00 o . oo 0 . 00 o . oo 

Gastropods 0 . 00 0 . 00 0 . 00 0 . 00 o . oo o . oo 

Pelecypods o . oo 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 

Chancelloria 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 
Fossil allochems , Total ( 3 . 25)  ( 0 . 25) (0. 75) ( 0 . 50) ( 0 . 75)  ( 1 . 50) 

Intraclasts , Total ( 1 . 00) 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 
Hudstone o . oo 0 . 00 0 . 00 o . oo 0 . 00 o . oo 

Peloidal packstone o . oo 0 . 00 0 . 00 o . oo 0 . 00 o . oo. 

Oolitic packstone 1 . 00 0 . 00 o . oo 0 . 00 o . oo 0 . 00 
Other types 0 . 00 o . oo 0 . 00 0 . 00 o . oo 0 . 00 

Ooids , Total ( 50 . 25) ( 50 . 75)  ( 54 . 75) ( 53 . 00 )  ( 57 . 00) (50 . 25)  
Fibrous/Prismatic 1 2 . 50 1 7 .00 1 0 . 00 1 7 . 50 1 7 . 50 1 3 . 75 
Polycrystalline 20 . 25 29 . 25 42. 75 29 . 25 33.00 31 . 50 
Honocrystalline 1 7 . 50 4 . 50 2 . 00 6 . 25 6 . 50 5.00 

Peloids 0 . 75 2 . 50 1 .  75 4 . 25 2 . 50 2 . 50 
Hicrite/Hicrospar 0 . 00 1 . 25 0 . 00 1 . 50 0 . 75 1 6 . 75 

Void Fill ing Cement , Total ( 36 . 00 )  (44 . 00) ( 40 . 50 )  ( 36 . 50 )  ( 3 9 . 00) ( 22 . 00 )  
Fibrous/Bladed 36 . 00 44.00 50 . 50 36 . 50 39 . 00 22.00 
Syntaxial 0 . 00 o . oo o . oo 0 . 00 0 . 00 0 . 00 
Blocky o . oo 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 

Detrital quartz silt 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 
Clay/Hica 0 . 00 0 . 00 0 . 00 o . oo o . oo 0 . 00 
Glauconite 0 . 00 o . oo o . oo 0 . 00 0 . 00 0 . 00 
Pyrite 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 
Dolomite/Stylolite 0. 75 o . oo o . oo 0 . 50 0 . 00 0 . 75 
Fracture/Pill Veins 8 . 00 1 . 25 2 . 25 3 . 75 0 . 00 6 . 25 

Total 1 00 , 00 100 . 00 1 00 . 00 100 . 00 1 00 . 00 1 00 . 00 
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Table C . 7 .  ( continued ) .  

Sample Number 
Constituent 

IDA 3 . 9  IDA 4 . 5  lOA 4 . 9  IDA 5 . 1 lOA 5 . 3  lOA 5 . 4  

Echinoderms 1 . 25 0 . 75 1 . 50 2 . 00 2 . 50 6 . 75 
Inarticulate brachiopods 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 o . oo 

Trilobites 0 . 25 0 . 00 0 . 50 3 . 50 4 . 00 2 . 00 
Girvanella o . oo 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Gastropods 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Pelecypods 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Chancel lor is 0 . 00 o . oo o . oo o . oo 0 . 00 0 . 00 
Foss il allochems , Total ( 1 . 50 )  (0. 75)  ( 2 . 00 )  ( 5 . 50 ) ( 6 . 50) ( 8 . 75) 

Intraclasts , Total o . oo 0 . 00 o . oo ( 1 . 25) o . oo o . oo 
Mudstone 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Peloidal packstone 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Oolitic packstone 0 . 00 0 . 00 0 . 00 1 . 25 0 . 00 0 . 00 
Other types 0 . 00 0 . 00 o . oo o . oo 0 . 00 0 . 00 

Ooids , Total ( 52 . 75)  (52 . 75) (49 . 25)  ( 49 . 50 )  (42. 75) (43. 75) 
Fibrous/Prismatic 1 0 . 75 7 . 50 1 0 . 25 3 7 . 25 37 . 00 27 . 75 
Polycrystall ine 37 . 50 41 .00 29 . 00 5 . 00 5 . 00 1 4 . 75 
Honocrystall ine 4 . 50 4 . 25 1 0 . 00 7 . 25 0 . 75 1 . 25 

Peloids 5 . 50 1 .  75 2 . 00 0 . 25 1 . 50 0 . 75 
Hlcrite/Hicrospar 1 .  75 20. 50 20 . 25 40 . 75 42 . 75 27 . 00 

Void Filling Cement ,  Total ( 30 . 75)  ( 19 . 25) ( 20 . 50) ( 1 . 25 )  ( 3 . 50 )  ( 7 . 00 )  
Fibrous/Bladed 30 . 75 1 9 . 25 20 . 50 1 . 25 3 . 50 7 . 00 
Syntax ial 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 0 . 00 
Blocky o . oo o . oo 0 . 00 0 . 00 0 . 00 0 . 00 

Detrital quartz silt 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 0 . 00 
Clay/Hica 0 . 00 o . oo 0 . 00 o . oo 0 . 00 0 . 00 
Glauconite 0 . 00 0 . 00 o . oo o . oo 0 . 00 0 . 00 
Pyrite o . oo 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 
Dolomite/Stylolite 0 . 75 0 . 50 6 . 00 1 . 50 3 . 00 1 2 . 75 
Fracture/Fill  Veins 7 . 00 4 . 50 o . oo 0 . 00 0 . 00 0 . 00 

Total 1 00 . 00 100 . 00 100 . 00 100 . 00 1 00 . 00 1 00 . 00 
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Table C. 7 .  ( con t inuod) .  

Sample Number 
Consti tuent 

lOA 5 . 75 lOA 5 . 9  A2· 1 A2-2 A6-2 Al l -0 

Echinoderms 6 . 00 1 7 . 50 4 . 00 2 . 25 1 . 50 5 . 00 
Inarticulate brachiopods 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 0 . 25 
Trilobites 4 . 75 3 . 50 5 . 50 1 . 50 3 . 75 6 . 25 
Girvanella 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 
Gastropods 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 25 
Pelecypods 0 . 75 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Chancel loria 0 . 00 o . oo 0 . 00 0 . 00 o . oo 0 . 50 
Fossil al lochems , Total ( 1 1 . 50 )  (21 . 00) ( 9 . 50 )  ( 3 . 75)  ( 5 . 25)  ( 1 2 . 25)  

Intraclasts , Total ( 0 . 75) o . oo ( 9 . 00) ( 1.  75) ( l .  75) o . oo 

Mudstone 0 . 00 o . oo 

Peloidal packstone 0 . 00 0 . 00 
Oolitic packstone 0 . 75 0 . 00 
Other types 0 . 00 0 . 00 

Ooids , Total ( 3 7 . 75) ( 35 . 50) ( 1 8 . 00 )  ( 3 8 . 00 )  ( 4 5 . 00) ( 24 . 50 )  
Fibrous/Prismatic 34 . 75 20 . 25 
Polycrystalline 0 . 00 0 . 25 
Honocrystall ine 3 . 00 1 5 . 00 

Peloids 0 . 00 0 . 50 1 9 . 75 3 . 25 0 . 00 1 4 . 75 
M icrite/Microspar 49 . 50 4 1 . 50 6 . 75 1 2 . 25 4 . 00 1 1 . 50 

Void P i l l ing Cement ,  Total 0 . 00 (0 . 75 )  ( 34 . 50) (41 . 00 )  ( 43 . 75)  ( 3 1 . 75)  
Fibrous/Bladed 0 . 00 0 . 75 
Syntaxial 0 . 00 0 . 00 
Blocky 0 . 00 o . oo 

Detrital quartz silt  0 . 00 0 . 00 0 . 00 0 . 00 o . oo o.oo 

Clay/Mica 0 . 00 o . oo 0 . 00 0 .00 0 . 00 o . oo 

Glauconi te 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 o . oo 

Pyrite o . oo 0 . 00 o . oo 0 . 00 0 . 25 1 . 00 
Dolomite/Stylolite 0 , 25 0 . 75 2 . 50 0 . 00 0 . 00 4 . 00 
Fracture/Pill Veins 0 . 25 0 . 00 0 . 00 0 . 00 0 . 00 0 . 25 

Total 100 . 00 100 . 00 100 . 00 1 00 . 00 100 . 00 100 . 00 
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Table C . 8 .  Analysis o f  FPC Lithofacies (Volume %) . 

Sample Number 
Constituent 

I-28- 1 . 6 I-34-2 . 5  I-39- 1 . 5  I-60-3 . 0  BG-3-24 . 0  BG-5 -4 . 8  

Echinoderms 3 1 . 25 5 . 25 6 . 25 2 . 75 46. 75 6 . 75 
Inarticulate brachiopods o . oo 0 . 25 0 . 00 1 . 00 1 . 50 0 . 00 
Trilobites 6 . 00 1 3 . 25 9 . 00 2 1 . 25 2 . 00 4 . 25 
Girvanella 0 . 00 1 1 . 00 1 . 50 0 . 00 o . oo 2 . 75 
Gastropods 0 . 00 0 . 25 0 . 00 o . oo o . oo 0 . 25 
Pelecypods 0 . 00 1 . 25 0 . 25 0 . 00 o . oo 0 . 25 
Chancelloria o . oo 3 . 75 1 2 . 50 0 . 00 0 . 00 1 4 . 00 
Sponge spicules o . oo 0 . 25 0.25 o . oo 0 . 00 o . oo 

Fossil allochems , Total ( 37 . 25)  ( 35 . 25)  (29. 75) ( 25 . 00) ( 50. 25) ( 28 . 25)  

Intraclasts,  Total o . oo 0 . 00 0 . 00 o . oo 0 . 00 o . oo 

Peloidal packstone o . oo 0 . 00 0 . 00 o . oo 0 . 00 o . oo 

Ooids , Total o . oo ( 5 . 75)  ( 3 . 50 )  o . oo ( 1 1 . 75)  0 . 00 
Fibrous/Prismatic o . oo 3 . 75 1 . 50 o . oo 0 . 00 0 . 00 
Honocrystalline 0 . 00 o . oo 2 . 00 0 . 00 1 1 . 75 0 . 00 
Superficial o . oo 2 . 00 0 . 00 o . oo 0 . 00 0 . 00 

Peloids o . oo 1 5 . 50 1 6 . 00 1 5 . 75 0 . 00 1 1 . 75 
Hicrite/Hicrospar 30. 50 8 . 00 26. 25 20 . 50 0 . 00 1 5 . 25 

Void Filling Cement , Total (20 . 25) ( 16 . 50) ( 14 . 50) ( 26 . 00) ( 22. 50) ( 7 .  75) 
Fibrous/Bladed 9 . 00 2 . 00 4 . 75 1 9 . 25 2 . 75 0 . 00 
Syntaxial 1 1 . 25 7 . 00 6 . 50 2 . 00 1 9 . 75 1 . 50 
Blocky 0 . 00 7 . 50 3 . 25 4 . 75 o . oo 6 . 25 

Detrital quartz s i lt 0 . 00 0 . 75 0 . 00 0 . 00 0 . 00 0 . 00 
G lauconite 0 . 00 0 . 25 0 . 00 0 . 00 0 . 00 0 . 00 
Pyrite 0 . 00 o . oo 0 . 50 0 . 00 o . oo 0 . 00 
Dolomite/Stylolite 1 2 . 00 1 8 . 00 9 . 50 8 . 75 1 5 . 50 3 1 . 25 
Fracture/Fill  Veins 0 . 00 o . oo 0 . 00 4 . 00 0 . 00 5 . 75 
Phosphate 0 . 00 0 . 00 o . oo o . oo 0 . 00 0 . 00 

Total 100 . 00 100 . 00 100 . 00 100 . 00 1 00 . 00 100 . 00 
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Table C . 8 .  ( continued) .  

Sample Number 
Constituent 

BG·5·22 . 5  BG-6-50 . 6  C39 C60 

Echinoderms 3 . 50 2 . 75 1 1 . 50 0 . 25 
Inarticulate brachiopods 0 . 25 0 . 25 0 . 00 4 . 50 
Trilobites 6 . 00 45 . 50 7 . 25 1 2 . 50 
Girvanel la 0 . 00 0 . 50 2 . 50 8 . 25 
Gastropods 0 . 00 0 . 00 0 . 00 o . oo 

Pelecypods 0 . 00 0 . 00 o . oo o . oo 

Chancelloria 1 8 . 00 o . oo 1 6 . 75 0 . 00 
Sponge spicules 0 . 00 0 . 25 2 . 75 o . oo 

Fossi l  allochems , Total ( 2 7 . 75)  (49 . 25 )  (40 . 75 )  ( 25 . 50 )  

Intraclasts , Total 0 . 00 ( 5 . 00)  o . oo o . oo 

Peloidal packstone 0 . 00 5 . 00 0 . 00 0 . 00 
Ooids , Total ( 4 . 75) 0 . 00 0 . 00 o . oo 

Fibrous/Prismatic 3 . 25 0 . 00 0 . 00 o . oo 

Monocrystalline 1 . 50 0 . 00 0 . 00 0 . 00 
Superficial 0 . 00 0 . 00 0 . 00 o . oo 

Peloids 8 . 75 2 . 75 14 . 75 33.50 
Micrite/Microspar 35 . 50 1 9 . 00 26 . 75 6 . 75 

Void Filling Cement , Total ( 5 . 75 )  0 . 00 ( 9 . 50) ( 32 . 00 )  
Fibrous/Bladed 3 . 50 0 . 00 2 . 00 27 . 25 
Syntaxial 0 . 00 0 . 00 4 . 75 0 . 00 
Blocky 2 . 25 o . oo 2 . 75 4 . 75 

Detrital quartz silt 0 . 00 0 . 00 0 . 00 o . oo 
Glauconite 1 .  75 0 . 00 0 . 00 0 . 00 
Pyrite 0 . 00 3 . 75 0 . 00 0 . 00 
Dolomite/Stylolite 1 2 . 25 1 5 . 50 8 . 25 2 . 25 
Fracture/Fill Veins 3 . 50 o . oo o . oo 0 . 00 
Phosphate 0 . 00 4 . 75 0 . 00 o . oo 

Total 100 . 00 100 . 00 • 100 . 00 100 . 00 
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Table C . 9 .  Analys is o f  FPGWS Lithofacies (Volume % ) .  

Sample Number 
Consti tuent 

I - 1 - 7 . 4  I-60- 1 2 . 6  I-65- 5 . 7  BG-4 - 1 7 . 5  J-2 878 C43-0 

Echinoderms 1 4 . 00 0 . 00 6 . 00 1 1 . 50 36.00 8 . 00 
Inarticulate brachiopods 1 . 50 2 . 75 2 . 00 0 . 25 o . oo 1 . 00 
Trilobites 2 1 . 25 1 5 . 50 1 4 . 25 9 . 75 0 . 00 1 3 . 75 
Girvanella o . oo o . oo 7 . 50 5 . 50 0 . 00 4 . 25 
Cbancelloria 0 . 00 0 . 00 0 . 00 2 . 00 o . oo 0 . 00 
Fossi l  allochems , Total ( 36 . 75) ( 18 . 25) ( 29 . 75)  ( 29 . 00) ( 36 . 00) ( 27 . 00) 

Peloids 3 . 75 4 . 50 1 2 . 25 28.00 5 . 75 24 . 50 
Micrite/Microspar 0 . 00 o . oo 1 9 . 50 1 9 . 50 0 . 00 1 3 . 50 

Void Filling Cemen t ,  Total ( 5 3 . 50) ( 17 .  00 ) ( 14 . 25)  ( 1 3 . 00) 0 . 00 (24 . 25)  
Fibrous/Bladed 35.00 1 7 .00 1 3 . 75 3 . 75 0 . 00 15 . 75 
Syntaxial 1 8 . 50 o . oo 1 . 50 2 . 00 0 . 00 4 . 25 
Blocky 0 . 00 0 . 00 0 . 00 7 . 25 0 . 00 4 . 25 

Detrital quartz silt 0 . 00 1 . 50 0 . 00 3 . 00 0 . 00 o . oo 
Clay/Mica 0 . 00 3 1 . 00 8 . 00 2 . 00 1 0 . 00 9 . 00 
Glauconite 0 . 00 o . oo 0 . 00 0 . 25 1 7 . 25 o . oo 
Pyrite 0 . 00 2 . 75 1 . 25 2 . 50 3 . 75 0 . 25 
Dolomite/Stylolite 6 . 00 1 5 . 25 1 2 . 75 o . oo 6 . 75 1 . 25 
Fracture/Fill Veins 0 . 00 0 .75  o . oo 2 . 75 20 . 50 0 . 25 
Phosphate o . oo 9 . 00 2 . 25 o . oo 0 . 00 o . oo 

Total 100 . 00 100 . 00 100 . 00 100.00 100 . 00 100 . 00 



Constituent 

Echinoderms 
Inarticulate brachiopods 
Tri lobites 
Girvanella 
Chancelloria 
Fossi l  allochems . Total 

Peloids 
Micrite/Microspar 

Void Filling Cement . Total 
Fibrous/Bladed 
Syntaxial 
Blocky 

Detrital quartz s i lt 
Clay/Hica 
Glauconite 
Pyrite 
Dolomite/Stylolite 
Fracture/Fill Veins 
Phosphate 

Total 
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Table C . 9 .  (continued ) .  

C43 - l 

6 . 50 
0 . 00 
5 . 25 
o . oo 

1 2 . 75 
(24 . 50 )  

20 . 75 
26.75  

( 2 . 50 )  
1 . 50 
1 . 00 
o . oo 

0 . 25 
8 . 75 
o . oo 

0 . 75 
9 . 75 
6 . 00 
0 . 00 

100 . 00 

Sample Number 
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Table C . 10.  Analysis of XPG Lithofacies (Volume %) . 

Sample Number 
Constituent 

I-6-2 . 5  I- 1 1 - 1 . 1  J-2 819 J-2 812 BG-4· 0 . 5  BG-4- 1 . 5 

Echinoderms 3 . 25 0 . 00 o . oo o . oo 4 . 00 1 1 . 25 
Inarticulate brachiopods 1 . 50 0 . 50 0 . 25 0.25 0 . 25 0 . 25 
Trilobites 0 . 50 o . oo o . oo o . oo 7 . 25 8 . 25 
Girvanella 0 . 00 0 . 00 0 . 00 0 . 00 4 . 00 0 . 00 
Foss i l  allochems , Total ( 5 . 25)  ( 0 . 50) ( 0 . 25)  ( 0 . 25)  ( 1 5 . 50) ( 19 . 75) 

Intraclasts , Total o . oo o . oo o . oo o . oo o . oo ( 6 . 50 )  
Mudstone 0 . 00 0 . 00 0 . 00 o . oo o . oo 6 . 50 
Peloidal packstone 0 . 00 o . oo o . oo o . oo o . oo o . oo 

Ooids, Total 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Fibrous/ Prismatic o . oo 0 . 00 o . oo o . oo o . oo o . oo 

Monocrystalline o . oo 0 . 00 0 . 00 o . oo o . oo 0 . 00 
Superficial 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 0 . 00 

Peloids 6 . 50 1 7 . 75 8 . 50 2 . 50 56 . 75 3 8 . 00 
Micrite/Microspar o . oo 0 . 00 4 . 50 0 . 00 o . oo 7 . 25 

Void Filling Cement , Total o . oo 0 . 00 o . oo o . oo ( 8 . 75) ( 15 . 50 )  
Fibrous/Bladed 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 1 . 50 
Syntaxial 0 . 00 0 . 00 0 . 00 0 . 00 2 . 25 9 . 25 
Blocky 0 . 00 0 . 00 0 . 00 0 . 00 6 . 50 4 . 75 

Detrital quartz silt 1 3 . 75 1 . 25 39 . 25 55 . 00 0 . 25 1 .  75 
Clay/Hica 1 1 . 00 6 . 00 20 . 00 14 . 75 0 . 75 0 . 00 
Glauconite 4 . 25 3 . 75 4 . 25 7 . 50 0 . 50 0 . 00 
Pyrite 1 . 50 0 . 00 0 . 00 0 . 25 0 . 00 0 . 00 
Dolomite/Stylolite 57 . 75 70 . 75 1 7 . 75 1 6 . 00 1 7 . 00 8 . 25 
Fracture/Fil l  Veins 0 . 00 o . oo 5 . 50 3 . 75 o . so 3 . 00 

Total 100 . 00 100 . 00 100 . 00 100.00 100 . 00 100. 00 
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Table C . lO.  ( continued ) .  

Sample Number 
Const ituent 

A l · l  A6- l  B5 C44 

Echinoderms 3 . 75 3 . 25 0 . 25 2 . 50 
Inarticulate brachiopods 0 . 00 0. 75 1 . 50 0 . 25 
Trilobites 0 . 25 8 . 50 7 . 25 1 .  75 
Girvanella 0 . 00 2 . 25 4 . 00 0 . 00 
Fossil al lochems , Total ( 4 . 00) ( 14 .  75) ( 13 . 00) ( 4 . 50 )  

Intraclasts , Total ( 1 . 50 )  o . oo o . oo o . oo 
Mudstone 0 . 00 o . oo 0 . 00 o . oo 
Peloidal packstone 1 . 50 0 . 00 0 . 00 0 . 00 

Ooids , Total ( 8 . 00) ( 0 . 50) ( 1 . 00) ( 10. 75) 
Fibrous/Prismatic 6 . 75 0 . 25 1 . 00 1 0 . 75 
Monocrystalline 1 . 25 o . oo o . oo o . oo 
Superficial o . oo 0 . 25 o . oo o . oo 

Peloids 52 . 00 53 . 75 59 . 75 5 1 . 50 
Micrite/Microspar 6 . 75 3 . 75 4 . 50 1 . 75 

Void Filling Cement, Total ( 1 8 . 25) (21 . 75)  ( 19 . 75 )  ( 3 1 . 50 )  
Fibrous/Bladed 5 . 50 3 . 00 5 . 25 2 . 75 
Syntax ial 1 . 50 4 . 25 0 . 00 7 . 25 
Blocky 1 1 . 25 1 4 . 50 1 4 . 50 2 1 . 50 

Detrital quartz silt 0 . 00 0 . 00 0 . 75 0 . 00 
Clay/Mica o . oo 0 . 00 0 . 00 0 . 00 
Glauconite 0 . 00 0 . 00 o . oo o . oo 
Pyrite 0 . 00 0 . 00 0 . 00 0 . 00 
Dolomite/Stylolite 2 . 50 o . oo o . oo o . oo 
Fracture/Fill Veins 7 . 00 5 . 50 1 . 25 o . oo 

Total 100 . 00 100 . 00 100 . 00 100 . 00 
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Table C. l l .  Analysis of XPGWS Lithofacies (Volume X) . 

Sample Number 
Constituent 

I-32- 1 . 9  I-32-2 . 0  I-42-0. 3  I -57-1 . 6  I - 74 -0 . 3  BG-4-9 . 7  

Echinoderms 3 . 25 1 1 . 25 6 . 25 1 . 00 1 . 25 1 . 50 
Inarticulate brachiopods o . oo o . oo 0 . 00 0 . 25 0 . 25 0 . 25 
Trilobites 1 6 . 00 3 . 25 6 . 00 1 7 . 25 5 . 50 1 2 . 25 
Girvanella 3 . 00 o . oo 0 . 00 o . oo 3 . 25 0 . 00 
Chancellor! a 0 . 25 0 . 00 6 . 50 0 . 00 0 . 00 o . oo 

Sponge spicules 0 . 50 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 
Fossi l  allochems , Total ( 23 . 00) ( 14 . 50) ( 1 8 . 75)  ( 1 8 . 50) ( 1 0 . 25 )  ( 1 4 .00) 

Intraclasts , Total ( 9 . 00) ( 2 . 00) ( 7 . 25)  0 . 00 0 . 00 ( 4 . 00) 
Mudstone 4 . 25 0 . 00 0 . 00 0 . 00 0 . 00 4 . 00 
Peloidal packstone 4 . 75 2 . 00 7 . 25 o . oo o . oo 0 . 00 

Ooids , Total 0 . 00 ( l .  75) o . oo o . oo 0 . 00 0 . 00 
Fibrous/Prismatic 0 . 00 l .  75 0 . 00 0 . 00 0 . 00 o . oo 

Peloids 2 1 . 25 20 . 25 1 3 . 50 24 . 25 2 1 . 00 3 1 . 25 
Micrite/Microspar 1 5 . 00 32 . 00 8 . 25 8 . 75 3 3 . 50 6 . 25 

Void Filling Cement , Total ( 1 5 . 25 )  ( 10 . 25) ( 33 . 50) ( 1 0 . 50) ( 5 . 75 )  ( 2 1 . 25) 
Fibrous/Bladed 2 . 75 o . oo 2 . 00 2 . 25 0 . 00 1 . 50 
Syntaxial 0 . 00 4 . 00 20. 25 0 . 00 o . oo o . oo 

Blocky 1 2 . 50 6 . 25 1 1 . 25 8 . 25 5 . 75 1 9 . 75 
Detrital quartz silt  0 . 00 1 . 00 0 . 00 0 . 25 o . oo 3 . 50 
Clay/Mica 1 5 . 25 7 . 50 1 7 . 25 25.50 6 . 50 1 9 . 00 
Glauconite 0 . 00 0 . 25 0 . 00 0 . 00 o . oo o . oo 

Pyrite 0 . 00 3 . 25 0 . 25 1 . 50 0 . 00 0 . 25 
Dolomite/Stylolite 1 . 25 3 . 00 1 . 25 6 . 25 1 8 . 75 1 0 . 25 
Fracture/Fill Veins 0 . 00 4 . 25 0 . 00 4 . 50 4 . 25 0 . 25 
Phosphate 0 . 00 0 . 00 0 . 00 0 . 00 o . oo o . oo 

Total 1 00 . 00 100 . 00 1 00 . 00 1 00 . 00 1 00 . 00 1 00 . 00 



Constituent 

Echinoderms 
Inarticulate brachiopods 
Trilobites 
Girvanel la 
Chancellor ia 
Sponge spicules 
Fossi l  a llochems , Total 

Intraclasts , Total 
Mudstone 
Peloidal packstone 

Ooids , Total 
Fibrous/ Prismatic 

Peloids 
Hicrite/Hicrospar 

Void Filling Cement, Total 
Fibrous/Bladed 
Syntaxial 
Blocky 

Detrital quartz s i lt 
Clay/Hica 
Glauconite 
Pyrite 
Dolomite/Stylol ite 
Fracture/Fi l l  Veins 
Phosphate 

Total 
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Table C . 1 1 .  (continued) . 

BG-4-31 . 5  BG-6-27 . 4  

6 . 25 3 . 00 
0 . 50 2 . 25 
8 . 25 1 6 . 50 
0 . 00 o . oo 

o . oo o . oo 
0 . 00 0 . 00 

( 1 5 . 00 ) ( 2 1 . 75) 

( 5 . 50) 0 . 00 
o . oo o . oo 
5 . 50 0 . 00 
o . oo 0 . 00 
0 . 00 o . oo 

29 . 00 20. 50 
4 . 50 5 . 75 

( 20 . 75 )  (27 . 75)  
0 . 25 2 . 75 
3 . 25 0 . 25 

1 7 . 25 24 . 75 
2 . 25 0 . 25 
6 . 25 1 1 . 50 
0 . 00 0 . 75 
0 . 00 0 . 00 

1 1 . 25 9 . 50 
5 . 50 0 . 25 
o . oo 2 . 00 

100 . 00 100 . 00 

Sample Number 
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Table C . 1 2 .  Analysis o f  SWXPG Lithofacies (Volume % ) .  

Sample Number 
Constituent 

I -25-3 . 9  I -66-5 . 6  I -68- 2 . 2  I-68- 2 . 2  I - 7 1 -7 . 6  I-73-3 . 1  

Echinoderms 0 . 00 o . oo 0 . 00 0 . 25 2 . 50 1 . 50 
Inarticulate brachiopods 1 . 50 0 . 25 o . oo 0 . 00 5 . 75 0 . 50 
Trilobites 0 . 50 2 . 50 3 . 25 4 .25 2 . 25 6 . 25 
Fossil allochems . Total ( 2 . 00 )  ( 2 . 75)  ( 3 . 25 )  ( 4 . 50 )  ( 10 . 50 )  ( 8 . 25 )  

Intraclasts . Total 0 . 00 o . oo 0 . 00 o . oo o . oo 0 . 00 
Peloidal packstone 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 o . oo 

Peloids 1 8 . 00 52. 25 36 . 75 25. 75 35.75 4 . 00 
Hicrite/Hicrospar 0 . 00 6 . 25 1 1 .00 1 3 . 50 25 . 25 25. 00 

Void Filling Cement . Total 0 . 00 ( 1 2 .00) ( 1 1 . 50) ( 5 . 25)  ( 1 . 50) ( 1 1 . 50 )  
Fibrous/Bladed 0 . 00 0 . 00 0 . 00 1 . 75 1 . 50 1 1 . 50 
Blocky o . oo 12 .00 1 1 . 50 3 . 50 o . oo 0 . 00 

Detrital quartz s ilt 2 1 . 50 0 . 25 0 . 00 0 . 25 0 . 00 6 . 25 
Clay/Hica 49 . 75 1 4 . 00 24 . 00 27 . 25 16 .00 25.00 
Glauconite 2 . 50 0 . 00 0 . 25 0 . 00 0 . 00 0 . 00 
Pyrite 0 . 00 0 . 00 0 . 25 0 . 00 1 .  75 1 .  75 
Dolomite/Stylol ite o . oo 1 2 . 50 1 3 . 00 20 . 75 9 . 25 8 . 25 
Fracture/ Fill Veins 6 . 25 0 . 00 o . oo 2 . 75 0 . 00 0 . 00 
Phosphate 0 . 00 o . oo o . oo 0 . 00 0 . 00 1 0 . 00 

Total 100 . 00 100 . 00 100.00 100 . 00 100 . 00 100.00 
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Table C. 12.  ( continued) . 

Sample Number 
Constituent 

J-2 997 . 5  J-2 612 J-2 459 

Echinoderms o . oo 1 4 . 50 0 . 25 
Inarticulate brachiopods 0 . 25 2 . 75 1 . 50 
Trilobites 0 . 00 5 . 00 0 . 00 
Fossil allochems . Total ( 0 . 25)  ( 22 . 25)  ( 1 .  75) 

Intraclasts . Total o . oo 0 . 00 (28 . 50) 
Peloidal packstone 0 . 00 o . oo 28 . 50 

Peloids 3 . 75 6 . 25 0 . 00 
Hicrite/Hicrospar 0 . 00 9 . 25 0 . 00 

Void Filling Cement . Total 0 . 00 0 . 00 0 . 00 
Fibrous/Bladed 0 . 00 0 . 00 o . oo 
Blocky o . oo o . oo o . oo 

Detrital quartz silt 21 . 25 0 . 25 1 . 50 
Clay/Hica 62. 25 47 . 25 54 . 00 
Glauconite 3 . 50 0 . 00 0 . 25 
Pyrite 2 . 00 2 . 50 3 . 50 
Dolomite/Stylolite 2 . 50 1 2 . 25 1 0 . 50 
Fracture/Fill Veins 4 . 50 0 . 00 o . oo 
Phosphate o . oo o . oo o . oo 

Total 100 .00 100 . 00 100.00 
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Table C . 1 3 .  Analysis o f  Shale Lithofacies (Volume %) . 

Sample Number 
Constituent 

1 · 1 ·0 . 3  1· 10·0 . 8  1·21·2 . 2  1·29·4 . 8  1·36-2 . 9  I-48·3 . 7  

Echinoderms 1 . 50 0. 00 3 . 00 0 . 00 o . oo 0 . 00 
Inarticulate brachiopods 2 . 75 6 . 25 1 . 25 1 .  75 1.  75 0 . 25 
Trilobites 0 . 25 0 . 50 0 . 25 0 . 25 o . oo o . oo 
Fossi l  allochems. Total ( 4 . 50) ( 6 . 75 )  ( 4 . 50) ( 2 . 00) ( 1 .  75) ( 0 . 25)  

Intraclasts. Total ( 3 . 50) 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Mudstone 3 . 25 o . oo 0 . 00 o . oo 0 . 00 0 . 00 
Peloidal packstone 0 . 25 o . oo 0 . 00 0 . 00 0 . 00 o . oo 
Fossi l iferous packstone o . oo 0 . 00 0 . 00 0 . 00 o . oo o . oo 

Peloids 1 6 . 25 36 . 25 2 7 . 50 44 . 25 6 1 . 25 49. 75 

Detrital quartz silt 0 . 25 0 . 50 2 . 25 0 . 25 0 . 50 0 . 75 
Clay/Hica 7 1 . 50 53 . 25 54 . 00 45 . 50 3 1 . 00 45. 75 
Glauconite 0 . 00 0 . 75 0 . 00 0 . 75 o . oo o . oo 
Pyrite o . oo o . oo 0 . 25 4 . 25 0 . 00 1 .  75 
Dolomite/Stylolite 4 . 00 2 . 25 1 1 . 50 3 . 00 5 . 50 l .  75 
Fracture/F i l l  Veins 0 . 00 0 . 25 o . oo o . oo 0 . 00 0 . 00 

Total 100 . 00 100 . 00 100 . 00 100 . 00 100 . 00 100 . 00 



374 

Table C . 1 3 .  (continued) . 

Sample Number 
Constituent 

I-67-0 . 5  BG-4-4. 5  BlO J-2 941 J-2 904 . 5  J-2 8 1 6 . 5  

Echinoderms o . oo o . oo 0 . 25 2 . 25 0 . 25 0 . 00 
Inarticulate brachiopods 1 . 50 2 . 75 1 . 75 2 . 75 1 2 . 50 6 . 50 
Trilobites 0 . 00 o . oo 5 . 00 0 . 25 o . so 0 . 00 
Fossi l  allochems, Total ( 1 .  SO) ( 2 . 75)  ( 7 . 00) ( 5 . 25)  ( 13 . 25 )  ( 6 . 50) 

Intraclasts, Total 0 . 00 0 . 00 ( 2 . 25 )  0 . 00 0 . 00 0 . 00 
Mudstone 0 . 00 o . oo 0 . 00 o . oo o . oo 0 . 00 
Peloidal packstone o . oo o . oo 2 . 25 o . oo 0 . 00 0 . 00 
Fossi l iferous packstone 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 0 . 00 

Peloids 43 . 25 39.25 1 1 . 7 5  43 . 75 32 . 75 8 . 75 

Detr ital quartz silt 1 . 25 0 . 50 3 . 50 9 . 25 4 . 25 1 . 25 
Clay/Hica 50 .25 56 . 25 45 . 25 37 . 00 46 . 00 82 . 25 
Glauconite 0 . 75 0 . 25 o . oo 0 . 50 1 . 25 0 . 75 
Pyr ite 1 . 50 0 . 00 1 . 50 2 . 50 2 . 00 0 . 25 
Dolomite/Stylolite 1 . 50 1 . 00 28 . 75 1 . 75 0 . 50 0 . 25 
Fracture/Pill  Veins 0 . 00 0 . 00 0.00 0 . 00 o . oo o . oo 

Total 1 00 . 00 100 . 00 100 . 00 1 00 .00 1 00 . 00 1 00 . 00 
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Table C . 1 3 .  (continued ) .  

Sample Number 
Constituent 

J-2 7 1 1  J-2 595 J-2 509 J-2 468 

Echinoderms 0 . 00 0 . 00 3 . 75 2 . 25 
Inarticulate brachiopods 4 . 75 1 1 . 75 9 . 00 1 . 25 
Trilobites o . oo 0 . 00 1 . 25 0 . 00 
Fossi l  allochems . Total ( 4 . 75) ( 1 1 .  75) ( 14 . 00 )  ( 3 . 50 )  

Intraclasts . Total o . oo 0 . 00 0 . 00 ( 2 . 00) 
Mudstone o . oo o . oo 0 . 00 o . oo 

Peloidal packstone 0 . 00 0 . 00 o . oo 1 . 75 
Foss iliferous packstone o . oo o . oo o . oo 0 . 25 

Peloids 2 1 . 25 1 5 . 00 1 9 . 00 9 . 75 

Detri tal quartz silt 3 . 25 2 . 00 6 . 25 1 . 50 
Clay/Hica 69 . 00 53 . 50 56 . 25 79 . 75 
Glauconi te 1 . 50 0 . 25 3 . 25 1 . 25 
Pyrite 0 . 25 3 . 00 0 . 00 1 . 50 
Dolomite/Stylolite 0 . 00 6 . 00 1 . 25 0 . 75 
Fracture/F i l l  Veins 0 . 00 8 . 50 o . oo o . oo 

Total 100 . 00 1 00 . 00 100 . 00 100. 00 
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Table C . l 4 .  Analys is o f  IPG Lithofacies (Volume % ) .  

Sample Number 
Const ituent 

I - 1 - 1 7  . 0  I-2-0 . 5  I -5-0 . 0  I- 1 2-0 . 5  I-22-0 . 0  I-23-0 . 4  

Echinoderms 0 . 25 6 . 25 2 . 00 0 . 25 1 5 . 25 3 . 50 
Inarticulate brachiopods 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Trilobites 2 . 00 4 . 00 2 . 50 1 . 75 8 . 75 2 . 25 
Girvanella o . oo o . oo 0 . 00 3 . 50 3 . 25 0 . 00 
Molluscs undifferentiated 0 . 00 0 . 00 o . oo o . oo 0 . 00 o . oo 

Chancel lor ia 0 . 00 0 . 25 o . oo o . oo o . oo o . oo 

Sponge spicules o . oo 0 . 75 o . oo o . oo 0 . 00 0 . 00 
Other fossil allochems o . oo 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Foss i l  allochems , Total ( 2 . 25)  ( 1 1 . 25)  ( 4 . 50 )  ( 5 . 50) ( 27 . 25)  ( 5 . 75 )  

Intraclasts , Total (62. 25) (37 . 50 )  ( 50. 25) (53.00) (42 . 50 )  ( 46 . 25)  
Mudstone 33 . 50 22 . 50 38 . 50 4 1 . 75 3 . 50 30 . 75 
Peloidal packstone 28. 75 1 1 . 50 0 . 25 1 1 . 25 39 . 00 1 5 . 50 
Foss i l i ferous packstone 0 . 00 o . oo o . oo 0 . 00 o . oo 0 . 00 
Oolitic packstone 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 o . oo 

Quartz s i ltstone o . oo o . oo 0 . 00 0 . 00 o . oo 0 . 00 
Other types o . oo 3 . 50 1 1 . 50 o . oo 0 . 00 0 . 00 

Oo ids , Total 0 . 00 0 . 00 o. oo 0 . 00 0 . 00 o . oo 

Fibrous/Prismatic o . oo o . oo 0 . 00 0 .00 o . oo 0 . 00 
Peloids 0 . 25 1 6 . 00 22 . 00 1 1 . 75 5 . 25 22.75 
Hicrite/Hicrospar o . oo 9 . 00 9 . 25 9 . 25 2 . 75 8 . 50 

Void Filling Cement, Total 0 . 00 ( 14 . 25) ( 6 . 25)  ( 12 . 25)  ( 1 1 . 00 )  ( 7 . 25)  
Micrite 0 . 00 0 . 00 o . oo 0 . 00 o . oo 0 . 00 
F ibrous/Bladed o . oo 8 . 25 1 .  75 2 . 75 4 . 50 3 . 75 
Syntaxial 0 . 00 2 . 50 0 . 00 0 . 00 6 . 50 0 . 00 
Blocky o . oo 3 . 50 4 . 50 9 . 50 o . oo 3 . 50 

Detr ital quartz silt  2 . 25 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 
C1ay/Hica 28 . 00 0 . 00 0 . 00 0 . 00 0 . 00 o . oo 

Glaucon ite 0 . 75 0 . 00 o . oo 0 . 00 o . oo 0 . 00 
Pyrite 1 . 50 o . oo 0 . 00 0 . 00 4 . 75 2 . 00 
Dolomite/Stylolite 1 . 75 9 . 00 6 . 25 4 . 25 6 . 50 7 . 50 
Fracture/Pill  Veins 1 . 00 3 . 00 1 . 50 4 . 00 0 . 00 0 . 00 

Total 1 00 . 00 100 .00 1 00 . 00 1 00 . 00 1 00 . 00 1 00 . 00 
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Table C . 1 4 .  (continued) .  

Sample Number 
Constituent 

I -29-5 . 7  I-44- 1 . 5  I -50- 1 . 2  I-51-0 . 5  1 -59-0 . 4  1-61 - 2 . 0  

Echinoderms 9 . 00 1 . 50 6 . 25 1 . 75 4 . 50 0 . 25 
Inarticulate brachiopods 0 . 00 0 . 00 0 . 00 o . oo 0 . 25 o . oo 

Trilobites 2 . 50 4 . 75 3 . 00 1 0 . 50 9 . 50 2 . 00 
Girvanel la o . oo 2 . 25 2 . 25 o . oo 1 . 50 0 . 00 
Molluscs undi fferentiated o . oo o . oo 0 . 00 0 . 00 0 . 00 o . oo 

Chancel loria 0 . 00 3 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Sponge spicules 0 . 25 0 . 75 0 . 00 1 . 50 o . oo o . oo 

Other foss i l  allochems o . oo 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 
Fossi l  allochems , Total ( 1 1 .  75) ( 12 . 25) ( 1 1 . 50) ( 1 3 .  75) ( 1 5.  75) ( 2 . 25)  

Intraclasts , Total (27 . 00 )  ( 3 1 . 25)  ( 36 . 75) ( 38 . 75) ( 57 . 50 )  (65. 25) 
Mudstone 1 4 . 50 1 4 . 25 o . oo 4 . 25 0 . 00 o . oo 

Peloidal packstone 1 0 . 00 1 0 . 25 32 . 25 34 , 50 27 . 25 65 . 25 
Fossi l iferous packstone 0 . 00 4 . 50 4 . 50 o . oo 30 . 25 0 . 00 
Oolitic packstone o . oo 2 . 25 o . oo o . oo 0 . 00 0 . 00 
Quartz siltstone 0 . 00 0 . 00 0 . 00 o . oo o . oo 0 . 00 
Other types 2 . 50 0 . 00 o . oo o . oo o . oo 0 . 00 

Ooids , Total ( 9 . 75) ( 6 . 50) o . oo 0 . 00 0 . 00 o . oo 

Fibrous/Pr ismatic 9 . 75 6 . 50 o . oo 0 . 00 0 . 00 0 . 00 
Peloids 1 2 . 00 22 . 50 1 6 . 50 4 . 50 1 1 . 50 2 . 50 
Micrite/Microspar 1 6 . 50 3 . 75 2 . 75 12 . 50 3 . 75 2 . 75 

Void Filling Cement , Total ( 10 . 00) ( 1 3 .  75) (24. 25) ( 10 . 00) ( 1 1 . 00 )  (0 . 50) 
Micrite 2 . 50 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Fibrous/Bladed 6 . 00 4 . 50 3 . 75 7 . 50 2 . 75 0 . 25 
Syntaxial 1 . 50 3 . 00 1 2 . 00 o . oo 3 . 75 o . oo 

Blocky o . oo 6 . 25 8 . 50 2 . 50 4 . 50 0 . 25 
Detrital quartz silt 0 . 50 0 . 00 0 . 00 0 . 00 o . oo o . oo 

Clay/Mica 0 . 00 0 . 00 0 . 00 3 . 75 0 . 00 0 . 25 
Glauconite 0 . 25 0 . 00 0 . 00 0 . 00 o . oo o . oo 

Pyrite 2 . 00 4 . 25 5 . 00 o . oo 0 . 25 0 . 00 
Dolomite/Stylolite 1 0 . 25 2 . 75 3 . 25 1 6 . 7 5  0 . 25 26 . 50 
Fracture/Fill  Veins 0 . 00 3 . 00 0 . 00 o . oo o . oo 0 . 00 

Total 100 . 00 100 . 00 100 . 00 100 . 00 100 . 00 100 . 00 
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Table C. 1 t. .  ( cont inued ) .  

Sample Number 
Const ituent 

I-M-0 . 7  I -68-7 . t.  BG- 1 - 1 7 . 1  BG - 1 -25 . 2  BG- 2- 6 . 2  BG-3-35. 5  

Echinoderms 1 1 . 25 5 . 50 2 . 50 0 . 25 1 3 . 75 3 . 75 
Inarticulate brachiopods o . oo 0 . 00 o . oo o . oo 0 . 00 0 . 00 
Tri lobites 6 . 25 1 5 . 25 1 . 50 3 . 25 4 . 75 0 . 25 
Girvanel la 1 . 50 0 . 00 0 . 00 0 . 00 0 . 25 0 . 00 
Molluscs undi fferent iated 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Chancelloria 0 . 00 0 . 00 o . oo o . oo 0 . 00 0 . 00 
Sponge spicules o . oo o . oo 0 . 00 1 . 25 0 . 00 o . oo 

Other foss i l  al lochems o . oo o . oo 0 . 00 0 . 00 0 . 00 0 . 00 
Fossi l  allochems , Total ( 1 9 . 00) ( 20 . 75) ( 4 . 00) (4 . 75) ( 1 8. 75) ( 4 . 00) 

Intraclasts , Total (t.6 . 50) (t.t. . 75) ( 66 . 50) (65.50 )  ( 51 . 50 )  ( 70 . 00) 
Mudstone 1 2 . 50 5 . 50 66 . 50 t.6. 00 o . oo 0 . 00 
Peloidal packstone 5 . 50 6 . 25 o . oo 1 9 . 50 5 1 . 50 6 . 75 
Foss i l i ferous packstone 1 2 . 25 33.00 0 . 00 0 . 00 0 . 00 4 . 75 
Oolitic  packstone o . oo 0 . 00 0 . 00 0 . 00 0 . 00 0 .00 
Quartz s i ltstone o . oo o . oo o . oo o . oo 0 . 00 58 . 50 
Other types 1 6 . 25 o . oo 0 . 00 0 . 00 0 . 00 o . oo 

Ooids, Total (0. 25) 0 . 00 0 . 00 0 . 00 (0. 25) 0. 00 
Fibrous/Prismati c  0 . 25 0 . 00 0 . 00 o . oo 0 . 25 0 . 00 

Peloids 2 . 50 5 . 50 7 . 75 3 . 75 2 . 75 2 . 50 
Micri te/Microspar 0 . 00 0 . 00 1 2 . 00 1 8 . 50 0 . 00 0 . 00 

Void F i l l ing Cement ,  Total ( 1 8 . 50) ( 16 . 50) 0 . 00 ( 3 . 75)  ( l t. . 25)  0 . 00 
Hicrite o . oo 0 . 00 o . oo o . oo 0 . 00 0 . 00 
Fibrous/Bladed 1 . 50 2 . 75 0 . 00 0 . 00 1 .  75 0 . 00 
Syntaxial 1 1 . 50 6 . 75 0 . 00 o . oo 9 . 75 o . oo 
Blocky 5 . 50 7 . 00 0 . 00 3 . 75 2 . 75 0 . 00 

Detrital quartz silt o . oo o . oo o . oo o . oo 0 . 00 5 . 50 
Clay/Mica o . oo 0 . 00 3 . 25 o . oo o . oo 1 7 . 00 
Glauconite o . oo 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Pyrite 0 . 50 0 . 75 0 . 00 o . oo 0 . 00 o . oo 

Dolomite/Stylolite 12 . 75 1 1 . 75 6 . 50 3 . 75 1 0 . 50 1 . 00 
Fracture/Fi l l  Veins 0 . 00 0 . 00 o . oo 0 . 00 2 . 00 o . oo 

Total 1 00 . 00 100 . 00 1 00 . 00 1 00 . 00 100 . 00 1 00 . 00 



3 79 

Table C . l 4 .  ( continued) . 

Sample Number 
Constituent 

BG-3-41 . 0  BG-4-8 . 0  BG-5-0 . 0  BG-6·2 . 0  BG-6-28 . 2  BG-6-56 . 8  

Echinoderms 1 6 . 75 3 . 50 1 1 . 25 0.25 6 . 75 1 . 75 
Inarticulate brachiopods 0 . 50 0 . 50 0 . 25 0 . 00 0 . 75 0 . 50 
Trilobites 6 . 75 8 . 50 6 . 00 4 . 25 7 . 00 4 . 25 
Girvanel la 0 . 50 6 . 75 0 . 25 o . oo 0 . 75 0 . 25 
Holluscs und ifferentiated o . oo o . oo 0 . 00 0 . 00 0 . 50 0 . 25 
Chancellor ia 0 . 00 0 . 25 0 . 75 o . oo 0 . 00 0 . 00 
Sponge spicules 0 . 75 1 .  75 1 .  75 0 . 00 0 . 50 0 . 00 
Other foss i l  allochems 0 . 00 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 
Fossil allochems , Total (25. 25) (21 . 25) ( 20 . 25)  ( 4 . 50 )  ( 1 6 . 25)  (7  . 00) 

Intraclasts , Total ( 44 . 25) (45.00) ( 34 . 25)  ( 70 . 50 )  ( 47 . 75)  ( 77 . 00 )  
Mudstone 6 . 00 0 . 00 6 . 25 30 . 25 0 . 00 o . oo 

Peloidal packstone 38 . 25 45.00 28.00 40 . 25 3 1 . 25 0 . 00 
Fossi l iferous packstone o . oo o . oo 0 . 00 0 . 00 1 6 . 50 7 7 . 00 
Oolitic packstone o . oo 0 . 00 0 . 00 o . oo o . oo 0 . 00 
Quartz s i ltstone 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 o . oo 
Other types o . oo o . oo 0 . 00 0 . 00 o . oo 0 . 00 

Ooids , Total o . oo 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
Fibrous/Prismatic o . oo 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 

Peloids 5 . 50 1 8 . 00 5 . 50 5 . 75 1 2 . 00 0 . 00 
Micrite/Microspar 2 . 75 0 . 00 20 . 50 0 . 00 6 . 00 4 . 50 

Void F i l l ing Cement,  Total ( 14 . 00) ( 1.  50 ) ( 1 1 .  50 ) ( 2 . 25)  ( 1 1 . 00) 0 . 00 
M icrite 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 
F ibrous/Bladed 3 . 50 0 . 00 1 . 75 0 . 00 2 . 75 o . oo 

Syntaxial 9 . 50 0 . 00 5 . 75 o . oo 4 . 00 0 . 00 
Blocky 1 . 00 1 . 50 4 . 00 2 . 25 4 . 25 0 . 00 

Detrital quartz s ilt 0 . 00 0 . 00 o . oo 0 . 00 0 . 00 0 . 00 
Clay/Mica o . oo 3 . 50 0 . 00 8 . 00 0 . 00 5 . 25 
Glauconi te o . oo 0 . 00 o . oo o . oo 0 . 00 o . oo 

Pyrite 1 . 50 o . oo 0 . 75 0 . 00 0 . 50 0 . 00 
Dolomite/Stylol ite 6 . 75 1 0 . 75 6 . 25 9 . 00 6 . 50 6 . 25 
Fracture/F i l l  Veins o . oo o . oo 1 . 00 0 . 00 0 . 00 0 . 00 

Total 100 . 00 100 . 00 1 00 . 00 1 00 . 00 1 00 . 00 1 00 . 00 
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Table C . 1 t. .  (continued).  

Sample Number 
Constituent 

BG-6-65 . 2  J-2 1005 J-2 972 . 5  A3-l A4-0 A7-1  

Echinoderms 0 . 75 7 . 50 1 .  75 8 . 00 2 . 00 5 . 75 
Inarticulate brachiopods 0 . 00 0 . 25 o . oo 0.75  o . oo 0 . 00 
Trilobites 3 . 25 1 . 50 0 . 75 5 . 50 7 . 75 5 . 50 
Girvanella 0 . 00 o . oo 0 . 00 o . oo 0 . 00 o . oo 
Molluscs undifferentiated o . oo o . oo 0 . 00 o . oo 0 . 00 0 . 00 
Chancelloria o . oo 0 . 00 o . oo o . oo o . oo 0 . 00 
Sponge spicules o . oo o . oo 0 . 00 0 . 00 0 . 00 0 . 00 
Other fossil  allochems 0 . 00 0 . 00 o . oo 3 . 25 o . oo 1 . 00 
Foss i l  allochems , Total ( 4 . 00) ( 9 . 25) ( 2 . 50) ( 1 7 . 50) ( 9 . 75) ( 1 2 .  25) 

Intraclasts , Total ( 7 7 . 75)  (77 .  50 ) ( 92 . 00 )  ( 20 . 25 )  ( 25 . 75) ( 5t. . 50 )  
Mudstone 0 . 00 0 . 00 o . oo 
Peloidal packstone 8 . 00 0 . 00 0 . 00 
Fossi liferous packstone 69. 75 o . oo 92 . 00 
Oolitic packstone 0 . 00 0 . 00 0 . 00 
Quartz s i ltstone o . oo 77 . 50 0 . 00 
Other types o . oo 0 . 00 0 . 00 

Ooids , Total 0 . 00 o . oo 0 . 00 o . oo 0 . 00 o . oo 
Fibrous/Prismat ic o . oo o . oo 0 . 00 

Peloids 0 . 00 6 . 50 0 . 75 1 6 . 7 5  3 1 . 25 9 . 50 
Micrite/Microspar 0 . 00 o . oo 0 . 00 1 0 . 25 6 . 25 0 . 25 

Void Filling Cement,  Total 0 . 00 ( 3 . 25)  0 . 00 ( 29 . 25 )  ( 9 . 00 )  ( 1 8 . 50) 
Micrite o . oo 0 . 00 0 . 00 
Fibrous/Bladed o . oo 1 . 50 o . oo 

Syntaxial 0 . 00 1 . 75 o . oo 

Blocky 0 . 00 0 . 00 o . oo 

Detrital quartz s ilt o . oo 1 .  75 1 . 25 o . oo 0 . 00 o . oo 

Clay/Mica 1 4 . 00 0 . 25 3 . 25 0 . 00 o . oo 0 . 00 
Glauconite o . oo 0 . 50 0 . 25 0 . 00 0 . 00 0 . 00 
Pyrite 0 . 00 0 . 75 o . oo 1 . 75 0 . 75 o . oo 

Dolomite/Stylolite 4 . 25 o . oo 0 . 00 4 . 25 1 7 . 25 5 . 00 
Fracture/Fill  Veins o . oo 0 . 25 o . oo 0 . 00 o . oo 0 . 00 

Total 100 . 00 1 00 . 00 100. 00 1 00 . 00 100 . 00 100 . 00 
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Table C.ll •. (continued) • 

Sample Number 
Constituent 

AlJ-1 Alll-1 AlB 81 813 

Echinoderms 2.50 1.50 o.oo 0.00 0.00 
Inarticulate brachiopods 0.25 1.25 0.75 0.75 o.oo 

Trilobites 6.75 7.75 13.00 19.00 4.75 
Girvanella o.oo o.oo 0.00 o.oo 0.00 
Holluscs undifferentiated 0.00 0.00 0.00 0.00 0.00 
Chancelloria 0.00 0.00 o.oo o.oo 0.00 
Sponge spicules 0.00 o.oo o.oo 0.00 o.oo 

Other fossil allochems 0.00 0.00 0.00 0.00 0.00 
Fossil allochems. Total (9.50) (10.50) (13. 75) (19.75) (4.75) 

Intraclasts. Total (31.00) (37.50) (35.00) (34.00) (35.00) 
Hudstone 
Peloidal packstone 
Fossiliferous packstone 
Oolitic packstone 
Quartz siltstone 
Other types 

Ooids. Total 0.00 0.00 0.00 0.00 0.00 
Fibrous/Prismatic 

Peloids 16.75 14.25 30.00 26.00 0.75 
Hicrite/Hicrospar 11.00 12.00 11.00 7.00 50.75 

Void Filling Cement. Total (29.00) (20.00) (2.00) (2.00) (1.75) 
Micrite 
Fibrous/Bladed 
Syntaxial 
Blocky 

Detrital quartz silt 0.00 o.oo o.oo 0.00 0.25 
Clay/Hica o.oo 0.00 0.00 0.00 0.00 
Glauconite o.oo o.oo 0.00 0.00 0.00 
Pyrite o.oo o.oo 0.00 o.oo 0.00 
Dolomite/Stylolite 1.50 3.00 5.00 8.00 6.75 
Fracture/Fill Veins 1.25 2.75 3.25 3.25 0.00 

Total 100.00 100.00 100.00 100.00 100.00 



APPENDIX D 

X-RAY DIFFRACTION ANALYSIS OF SHALE 
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EXPERIMENTAL PROCEDURE AND DISCUSSION 

Twenty-two shale samples from the Nolichucky Shale were selected 

for X-ray analysis ( Table D . 1 ) . Each sample was excavated and carefully 

bagged . Every practical precaution was taken to acquire uncontaminated 

and nonweathered samples . In the laboratory, approximately 10 gm of 

each sample was weighed out and ground down for 30 minutes to a fine 

powder using a mortar and pestle . Then , each 10 gm sample was suspended 

in a 1000 ml beaker filled with deionized water . The sediment was 

stirred vigorously for 5 minutes . After 30 minutes of particle 

settling , the upper 500 ml of water were pipetted into a 600 ml beaker . 

Deionized water was added to fill the 600 ml beaker ; the water level 

( column) in the beaker was 10 em deep . The sediment was suspended by 

stirring for 3 minutes . The sample which remained in the 1000 ml beaker 

was discarded . The f ine-grained sediment in the 600 ml beaker settled 

for 3 hours , after which time the upper 5 em of the water column was 

pi petted to another beaker . The pi petted mixture represents the < 2 

micron s ize fraction . One week ( 7  days ) was allotted for the c lay-sized 

particles to settle out of suspension . From the accumulation of 

sediment on the bottom of the beaker, 1 elutr iated slide mount was 

prepared . An elutriated slide was prepared for each of the 22  samples 

using the procedure described above. 

A Philips diffractometer was used to analyze each slide ; the 

diffractometer was set up for Cu K alpha radiation at 35 kv and 1 7  ma . 

Three analyses were conducted on each sample: ( 1 ) untreated , { 2 )  

treated with ethylene glycol at 6 0  degrees C for 1 2  hours , and ( 3 )  
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heated to 550 degrees C for 1 hour . Each analysis was performed with 

the normal scale set at 1 00 counts with a time constant of 2 seconds . 

The goniometer drive was set at 1 degree 2 theta per minute . 

Results of the X-ray diffraction analysis are shown in Tables D . 2  

and D . 3 .  It i s  important to note that virtually no temporal o r  spatial 

variability is observed in the clay mineral suite . That is , individual 

samples reveal identical clay mineral assemblages . Figure D . 1 shows a 

typical X-ray diffractogram from the Nolichucky Shale . 
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Table D . 1 .  Samples used in XRD analysis  of shale . 

Unit Number Feet Above Base Meters Below Base 
(keyed to units in Of Unit  Of  Maynardvi lle 

Appendix B ) (mbM) 

1 3 . 0  99 
6 1 . 2  87 

1 5  3 . 4  82 
20 3 . 0  76 
29 4 . 8  64 
36 7 . 1  53 
46 1 . 0 44 
56 1 . 0  33 
63  12 . 4  18  
7 1  7 . 6  2 
73  2 . 4  1 

1 1 . 7  90 
1 21 . 3  83 
3 17 . 5  74 
3 57 . 5  6 1  
4 5 . 0  so 
4 26 . 0  44 
4 32 . 0  42 
5 19 . 7  35 
6 20 . 8  28 
6 38 . 7  1 8  
6 82 . 1  5 
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Table D. 2 .  D-spacings ( in Angstrom units) of the observed X-ray 
diffraction peaks . 

Peak Untreated 

1 14 . 5( 22 )  

2 1 0 . 1 ( 22 )A 

3 7 . 1 4 ( 20 )  

4 4 . 9 9 ( 22 )  

5 4 . 25 ( 22 )  

6 3 . 54 ( 14 )  

7 3 . 34 ( 22 )  

Glycolated 

1 5 . 5( 1 9 )B 

1 0. 0( 22)A 

7 . 13( 1 9 )  

5 . 00(22)  

4. 25( 22) 

3 . 55 ( 1 8 )  

3 . 34 ( 22 )  

Heated 

14 . 2( 22 )  

1 0 . 1 ( 22 )  

5 . 02 ( 22 )  

4 . 25 ( 22 )  

3 .  5 3 (  1 1 )  

3 . 34 ( 22 )  

Numbers i n  parentheses indicate the number o f  samples i n  which the peak 
was observed ( maximum ·is 22) . Broad peaks are labelled B ;  asymmetrical 
peaks are labelled A .  
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Table D. 3 .  Identification of the princ ipal clay minerals and quartz in 
the Nolichucky . 

Peak Untreated Glycolated Heated Identified Minerals 

1 14 . 5  expands dehydrates Fe-chlorite 

2 10 . 1  no change no change Mixed layer i llite-Vermicu-
lite ;  hydrated illite-chlorite 

3 7 . 14 no change disappears Fe-chlorite ;  kaolin ite ( ? )  

4 4 . 99 no change no change Illite 

5 4 . 25 no change no change Quartz 

6 3 . 54 no change no change Chlorite ; kaolinite ( ? ) ; illite 

7 3 . 34 no change no change Illite ;  quartz 

Values are expressed in Angstrom units . 
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Figure D. l .  Typical X-ray diffractogram of the Nolichucky Shale . 
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