
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2013

Semi-Implicit Direct Kinetics Methodology for Deterministic, Time-Semi-Implicit Direct Kinetics Methodology for Deterministic, Time-

Dependent, Three-Dimensional, and Fine-Energy Neutron Dependent, Three-Dimensional, and Fine-Energy Neutron

Transport Solutions Transport Solutions

James Ernest Banfield
University of Tennessee - Knoxville, jbanfie1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Nuclear Engineering Commons

Recommended Citation Recommended Citation
Banfield, James Ernest, "Semi-Implicit Direct Kinetics Methodology for Deterministic, Time-Dependent,
Three-Dimensional, and Fine-Energy Neutron Transport Solutions. " PhD diss., University of Tennessee,
2013.
https://trace.tennessee.edu/utk_graddiss/1694

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1694&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/314?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1694&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by James Ernest Banfield entitled "Semi-Implicit

Direct Kinetics Methodology for Deterministic, Time-Dependent, Three-Dimensional, and Fine-

Energy Neutron Transport Solutions." I have examined the final electronic copy of this

dissertation for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering.

G. Ivan Maldonado, Major Professor

We have read this dissertation and recommend its acceptance:

Kevin Clarno, Brian Wirth, Robert Grzywacz, Bobby Philip

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Semi-Implicit Direct Kinetics Methodology for

Deterministic, Time-Dependent, Three-Dimensional, and

Fine-Energy Neutron Transport Solutions

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

James Ernest Banfield

May 2013

ii

Copyright © 2013 by James Banfield

All Rights Reserved

iii

ACKNOWLEDGEMENTS

Some of the work presented in this dissertation was supported by a research contract between the

University of Tennessee Nuclear Engineering Department and the Reactor and Nuclear Systems Division

of the Oak Ridge National Laboratory, which is managed by UT-Battelle for the United States

Department of Energy (DOE). In addition, the author of this dissertation was supported by a DOE

Nuclear Engineering University Programs (NEUP) three-year fellowship received during his graduate

studies at the University of Tennessee.

I would like to thank my professor, G. Ivan Maldonado, and my technical mentor, Kevin Clarno, for

all of their hard work and support during my dissertation. I would also like to thank the entire Advanced

Multi-Physics Team for all of their contributions and support including: Kevin Clarno, Bobby Philip,

Steven Hamilton, Markus Piro, Bill Cochran, Rahul Sampath, Srikanth Allu, Pallab Barai, Srdjan

Simunovic, Larry Ott, Sreekanth Pannala, Phani Nukala, Gary Dilts, Bogdan Mihaila, Cetin Unal,

Gokhan Yesilyurt, Jungho Lee, Mark Berrill, Mark Baird, John Turner, David Pugmire, Aaron Phillipe,

and Thomas Evans. I would also like to thank my fellow students; Shane Hart for his invaluable

assistance in compiling software, and Brenden Mervin for his assistance with the Exnihilo package.

iv

ABSTRACT

Using a semi-implicit direct kinetics (SIDK) method that is developed in this dissertation, a finer

neutron energy discretization and improved fidelity for transient radiation transport calculations are

facilitated to reduce uncertainties and conservatisms in transient power and temperature predictions.

These capabilities are implemented within a parallel computational solver framework, which is able to

represent an arbitrary number of neutron energy groups, angles, and spatial discretizations, while

internally coupled to an unstructured finite element multi-physics code for temperature and displacement

calculations. This capability is demonstrated on a three-dimensional control rod ejection simulation run

in parallel utilizing forty-four neutron energy groups.

An improved transient nuclear reactor simulation capability is developed by adapting the steady-state

radiation transport code Denovo to solve the time-dependent Boltzmann transport equation for transient

power distributions. The developed SIDK method is compared to fully-implicit direct kinetics, higher

order time integration methods, as well as various computational benchmarks. Errors resulting from time

integration, spatial discretization, angular treatment, multi-group treatment, homogenization of

temperature, and power over the time step representation are explored.

For verification, the SIDK method is developed and tested externally and independently employing a

few-group time-dependent neutron diffusion code which is compared to one and two-dimensional

benchmarks with and without temperature feedbacks. The results of the semi-implicit direct kinetics

method (SIDK) are shown to be accurate to within ~0.2% of direct kinetics and to execute roughly an

order of magnitude faster, using a consistent space and time discretization. For sufficiently severe

transients, the direct method is shown to produce lower errors with medium time steps than the SIDK

method with fine steps, but proves to be subject to more severe oscillations at very coarse time steps than

the SIDK method, in addition to producing similar errors (within 0.2 %) at medium spatial discretization

with consistent time steps.

The objective of this dissertation is to provide developers of next generation high-performance

computing neutron kinetics methods a guide to the benefits and costs of the dominant discretization

strategies of time, space, neutron energy, and angle for the solution of the time-dependent Boltzmann

transport equation.

v

Table of Contents

Chapter 1 Introduction .. 1

1.1 Motivation ... 3
1.2 Organization Of This Dissertation ... 4
1.3 Underlying Framework For This Research ... 6
1.3.1 Description Of Computer Codes ... 7

1.4 Overview of Fundamental Principles ... 9
Chapter 2 Literature Review ... 16

2.1 Relevance of predictive simulation tools... 17
2.2 Time Integration .. 17
2.2.1 Matrix Exponential Methods .. 19

2.2.2 Multi-Stage Methods ... 20

2.2.3 Multi-Step Methods ... 22

2.3 Reactor Transport and Kinetics Codes ... 22
2.3.1 Steady-State Flux Calculations .. 24

2.3.2 Transient Flux Calculations .. 25

Chapter 3 Derivations .. 28

3.1 Neutron Kinetics and the SIDK Derivation ... 30
3.1.1 Quasi-Static Kinetics .. 30

3.1.2 Direct Kinetics .. 33

3.1.3 Higher Order Backward Discretization Kinetics ... 34

3.1.4 Semi-Implicit Direct Kinetics ... 36

Chapter 4 Point Kinetics ... 38

4.1 Burner Reactor Integrated Safety Code (BRISC) .. 38
4.2 Development Of Nuclear Data .. 39
4.3 Point Kinetics Without Feedback.. 43
4.4 Point Kinetics With Thermal Feedback .. 45

Chapter 5 Time-Dependent Neutron Diffusion ... 49

5.1 One-dimensional Fast Reactor Benchmark without Feedback (ANL-16-A1) 50
5.1.1 16-A1 Problem Description .. 50

5.1.2 16-A1 Results ... 52

5.1.3 16-A1 Analysis ... 54

5.2 Two-dimensional TWIGL Seed-Blanket Reactor Problems without Thermal Feedback
 57
5.2.1 TWIGL Problem Description .. 57

5.2.2 TWIGL Results and Analysis .. 59

5.2.3 Higher-Order Representations ... 62

vi

5.3 Two-dimensional BWR Benchmark with Thermal Feedback (ANL-14-A1) 64
5.3.1 LRA Problem Description .. 65

5.3.2 LRA Steady-State Results .. 66

5.3.3 LRA Transient Results .. 68

5.3.4 LRA Comparison with Literature Solution Discussion.. 72

5.3.5 LRA Efficiency Analysis .. 74

Chapter 6 Time-Dependent Neutron Transport ... 77

6.1 Infinite Homogeneous Medium (IHM) Problem ... 77
6.1.1 IHM Problem Description ... 79

6.1.2 IHM Results and Analysis .. 80

6.2 Transport - One-Dimensional Fast Reactor Benchmark ... 83
6.2.1 16-A1 Transport – Steady-State Results ... 83

6.2.2 16-A1 Transport – Transient Results ... 85

6.2.3 16-A1 Transport - Analysis .. 87

6.3 Halden Reactor ... 89
6.3.1 Denovo - Eigenvalue .. 90

6.3.2 Scaling Study... 92

6.3.3 Multi-Physics - Thermal Sensitivity .. 94

6.3.4 Energy-Group Sensitivity .. 97

6.3.5 Three-Dimensional Control Rod Ejection ... 99

Chapter 7 Conclusions .. 105

7.1 Summary .. 105
7.2 Closing Comments .. 109

Works Cited ... 111

APPENDIX A .. 118

APPENDIX B .. 120

VITA .. 158

vii

List of Figures

Figure 1 Multi-scale approach ... 1

Figure 2 Typical Transient Core Simulator Process

(33) .. 13

Figure 3 Geometry from pin cell case, 4*4 mesh. .. 40

Figure 4 Group 1 fluxes (first 200 groups collapsed) .. 40

Figure 5 Reactivity as a function of fuel temperature .. 41

Figure 6 Point Kinetics Power Changes ... 44

Figure 7 RK45 Point Kinetics with Thermal Feedback vs. SKINATH ... 47

Figure 8 RK45 Temperature vs time vs. SKINATH .. 48

Figure 9 Diffusion - Group 1 Steady-State and Perturbed Fluxes ... 53

Figure 10 Diffusion - Group 2 Steady-State and Perturbed Fluxes ... 53

Figure 11 Errors of SIDK with and without dφ/dt and direct kinetics (diffusion implementation) versus

spatially integrated benchmark powers at t=0.01s .. 55

Figure 12 Errors of SIDK with and without dφ/dt and direct kinetics (diffusion implementation) versus

point kinetics powers at t=0.01s .. 56

Figure 13 Errors of SIDK with and without dφ/dt and direct kinetics (diffusion implementation) versus

fine mesh direct kinetics powers at t=0.01s ... 56

Figure 14 TWIGL Benchmark Compositions (Colors Denote 1, 2, and 3) .. 58

Figure 15 Normalized Power Distribution (t=0s) ... 59

Figure 16 Ramp Results .. 60

Figure 17 Step Results ... 60

Figure 18 TWIGL step problem errors at t=0.5 s versus fine time step (1E-5s) direct kinetics 61

Figure 19 Convergence orders of various solvers ... 63

Figure 20 Performance of various solvers ... 64

Figure 21 Geometry and region numbers for LRA benchmark .. 65

Figure 22 LRA steady-state case (SIDK program left, benchmark right) ... 67

Figure 23 Percent Error of SIDK Diffusion code vs. CUBBOX Benchmark .. 68

viii

Figure 24 Normalized Power, t=.4s (SIDK left, CUBBOX right) ... 69

Figure 25 Percent Error of SIDK Diffusion code vs. CUBBOX benchmark, t=.4 s .. 69

Figure 26 Temperature, t=2s (SIDK left, CUBBOX right).. 70

Figure 27 Power vs. Time ... 70

Figure 28 Temperature vs. Time .. 71

Figure 29 Errors resulting from the 352 time step mesh versus the reference solution from the 1000 time

step mesh in final average fuel temperature .. 75

Figure 30 Semi-Implicit Direct Kinetics with dφ/dt (red largest time step, pink smallest time step) versus

Two-group point kinetics using eigenvalue decomposition, which is exact (in black) 80

Figure 31 Relative error of semi-implicit decoupled direct kinetics with and without inclusion of dφ/dt . 81

Figure 32 Infinite Homogeneous medium test problem .. 82

Figure 33 Infinite homogeneous benchmark error of coarse time step size vs. analytic solution.................. 82

Figure 34 Denovo vs. ONEDANT group 1 (fast) flux solution ... 84

Figure 35 Errors at t=0s versus 16-A1 Benchmark in %, Group 1 Flux for Denovo and Diffusion 84

Figure 36 Transport - Group 1 Steady-State and Perturbed Fluxes ... 86

Figure 37 Transport - Group 2 Steady-State and Perturbed Fluxes ... 86

Figure 38 RK45 vs TDTort Amplitude .. 88

Figure 39 Cross Sectional Schematic of the Halden Reactor Core ... 90

Figure 40. Denovo Multi-pin solution unnormalized fast flux (left) and NEWT unnormalized fast flux

(right). .. 91

Figure 41 Denovo Scaling Study .. 93

Figure 42 Denovo unnormalized power ... 95

Figure 43 AMP normalized specific powers in W/g. Maximum power legend shown on left, minimum

power legend on right ... 95

Figure 44 AMP pin temperatures (Kelvin) Maximum pin on Left, Minimum on Right 95

Figure 45 Initial Conditions Thermal Flux (unnormalized) at 3.8, 3.0, 2.5 m from top to bottom 101

Figure 46 Perturbed Halden case vs. Point Kinetics ... 103

Figure 47 Eigenvalue, perturbed and analytic precursor source powers at 0.01 s ... 104

ix

List of Tables

Table 1: Delayed Neutron Fractions and Decay Constants .. 40

Table 2: Reactivity as a function of Fuel Temperature ... 41

Table 3: Reactivity as a function of Structure Temperature .. 42

Table 4: Reactivity as a function of Moderator Temperature ... 42

Table 5: BRISC, RK45, Analytic, and AMP power changes at t=3 s .. 44

Table 6 Point Kinetics with Feedback Problem Parameters .. 46

Table 7 Point Kinetics with Feedback System Parameters .. 46

Table 8: Cross Sections for Benchmark Problem 16-A1 .. 51

Table 9: Delayed Neutron Parameters for Benchmark Problem 16-A1 ... 51

Table 10: Point-Kinetics Parameters for Problem 16-A1 ... 51

Table 11: Mesh Intervals for Problem 16-A1 ... 51

Table 12 Eigenvalues of Diffusion program vs. 16-A1 Benchmark ... 52

Table 13: Speed and Accuracy for 16-A1 Comparison at t=0.01s at various mesh refinement levels 55

Table 14 TWIGL Composition Parameters .. 58

Table 15 Delayed Neutron Data ... 58

Table 16: Speed and Accuracy for TWIGL Comparison ... 61

Table 17 Cross Sections .. 66

Table 18 Delayed Neutron Data ... 66

Table 19 Eigenvalue Comparison .. 67

Table 20: Speed and Accuracy for LRA Benchmark Comparison, SIDK versus Direct Kinetics 71

Table 21: LRA Benchmark Comparison, FMFD versus Nodal and Transport Methods 71

Table 22: Point Kinetics Parameters ... 79

Table 23 IHM Cross Sections .. 79

Table 24: Infinite Homogenous Medium Power at t=10 s Comparison .. 80

x

Table 25 Eigenvalue Sensitivity to Cross-Section Temperatures .. 96

Table 26 Eigenvalue and Reactivity Sensitivity .. 98

1

Chapter 1 INTRODUCTION

Nuclear power supplies approximately 20% of the electrical power generation in the United States,

which is currently produced by 104 operating commercial Light Water Reactors (LWRs). The most

fundamental components within the core of a reactor -where the heat from nuclear fission is generated-

are the nuclear fuel elements, also referred to as fuel rods or fuel pins, which contain the fissile material in

the form of low enriched uranium dioxide sintered pellets. Ensuring a safe and reliable operation of every

single fuel pin in a reactor is the combined responsibility of fuel vendors, utilities, and regulators. Figure

1 below illustrates the large range of physical dimensions involved between a reactor vessel, the core, the

fuel assemblies, and the individual pins representative of a typical Boiling Water Reactor (BWR).

Figure 1 Multi-scale approach

1
5
 m

e
te

rs

Reactor Vessel Radial Slice

8 meters

5
 m

m

Single Pincell

Reactor
Core

Single Lattice

2
0
 c

m

2

In a pressurized water reactor (PWR), there are approximately 200 fuel assemblies (or bundles) each

containing approximately 289 fuel rods

(1). This corresponds approximately to 57,800 fuel rods per

reactor, which amounts to roughly 6 million 12ft long fuel rods loaded in a US reactor at any given time.

There is an estimated average fuel failure rate of 5 rods per million

(2), so with an average core residence

time of six years (PWR), this translates into an average of five fuel failures per year. In many cases,

failed fuel has to be removed from the core, which corresponds to an unscheduled outage and loss of

generating capacity for a utility. So if a reactor has to be shut down for a typical three to five days to

replace or reconstitute failed fuel, this easily translates into financial losses that exceed several million

dollars for even the shortest of shutdowns and restarts. The impact upon operation and safety cannot be

measured in terms of dollars, but let it suffice to say that fuel failures cause significant impact and

uncertainty upon the day to day operations of a nuclear power plant.

Of fuel failures, approximately 70% are due to grid to rod fretting

(3). This is a complex tightly

coupled time-dependent phenomenon by which the mechanisms (dimples and springs) holding a rod in

place weaken, allowing the rod to vibrate. These flow-induced vibrations wear away at the rod over time

until a hole is punched in the rod. The next most frequent fuel failure mechanism is pellet-clad

interaction

(3), also known as PCI, which accounts for 15% of fuel failures. This is another tightly

coupled multi-physics phenomenon by which the pellet comes into thermo-chemical-mechanical contact

with the clad, causing a weakening or cracking of the cladding. Of the remaining 15% of fuel failures, the

largest percentage is unknown. In some cases, the failure was not investigated, but in many cases the

cause could not be determined.

In order to calculate thermo-mechanical response, fuel performance codes such as FRAPTRAN (4)

can be used. These codes are extremely sensitive to power, primarily due to its effect upon temperature,

which in turn has a positive feedback mechanism through fuel physics phenomena, such as fission gas

release. Fission gas release occurs when gaseous byproducts from fission (primarily xenon) are released

from the fuel pellet into the gap between the pellet and the clad, which is originally filled with a

3

pressurized gas (typically helium). Xenon has a considerably lower thermal conductivity than helium

does, which increases the temperature difference across the gap. A slight increase in power causes a

temperature increase, which increases fission gas release, which further increases temperature. Therefore,

an accurate spatial and time-dependent prediction of power is essential to correctly modeling most other

coupled physical processes affecting fuel performance (5).

As plant capacity factors in the US are now routinely exceeding 90% and new sources of nuclear

power are slow to arrive, the demand for additional nuclear power generation is currently being met by a

combination of plant life extensions, maximizing irradiation (burnup) of fuel, and through power uprates.

This translates into more aggressive fuel and core designs that are likely to push the operational envelope

of failure mechanisms.

1.1 MOTIVATION

The motivation for the development of a computationally efficient kinetics method is the practical

implementation of the spatial kinetics method within modern, massively parallel, three-dimensional

multi-physics packages which include solutions of neutron transport and nuclear fuel performance,

primarily thermo-mechanical response of fuel elements. There are two primary kinetics methods in use,

which are quasi-static kinetics and direct kinetics, described and derived in Chapter 3. The basis of the

quasi-static method is a pseudo separation of variables where the time dependent angular flux is separated

into a weakly time-dependent spatial component and a strongly time-dependent, spatially independent

amplitude function. Quasi-static kinetics is typically fast and accurate for transients in which the flux

shape changes slowly, but can in fact be slower than direct kinetics for transients where the shape changes

rapidly

(6). The basis of direct kinetics is to solve the precursor and flux equations simultaneously,

assuming a finite difference approximation of the temporal derivative of both the flux and the precursor

concentrations. The theta method is then applied to the equations in order to discretize time. Fully

implicit direct kinetics is the most accurate kinetics solution

(7), but requires the solution of a much larger

4

system of equations and very fine time steps. Therefore, hybrid kinetics methods sharing the quasi-static

analytic representation of the precursors as well as the theta solution method for the flux equations have

been developed in previous works, such as the implementation used by PARCS

(8).

A new, simplified hybrid method is developed in this dissertation for the purpose of improved

computational time that can still be highly accurate for rapid shape changes, where weighted methods are

typically slower

(6). This new hybrid method is a modification to a previous diffusion developed kinetics

method

(9) which will allow the realization of the full potential of the multi-physics framework as well as

the utilization of a time-dependent three-dimensional many neutron energy group approach that is still

computationally efficient for problems with rapidly changing shapes. The semi-implicit direct kinetics

method (SIDK) is also implemented as the higher order backward differentiation formulae (BDF) method

presented in (9) if larger time step sizes are required for problems without thermal feedback, since the

SIDK method is shown to outperform the higher order backward discretization (HOBD) method for these

problems in terms of accuracy, as a single time step for a full fuel assembly coupled neutron transport –

fuel performance solution using a moderate amount of neutron energy groups (forty-four) took 400,000

CPU hours on the Jaguar supercomputer at Oak Ridge National Laboratory

(10). Thus, computational

savings of the SIDK hybrid method versus direct kinetics methods, which ranged from a factor of two to

an order of magnitude, are expected to be highly important for the largest computational problems. In

particular, it should be noted that the computational savings of an order of magnitude occurred for

problems with six neutron precursor groups, where accuracy increases with an increasing number of

neutron precursor groups.

1.2 ORGANIZATION OF THIS DISSERTATION

This dissertation is divided into seven chapters, including this introductory chapter, which provides an

overview of nuclear reactor simulation and the motivation for this work in the preceding section.

Following this section is a description of the computer codes used in this work, the fundamental equations

5

to be solved, and biases introduced by current practice implementations. Chapter 2 consists of a detailed

literature review of current multi-physics modeling efforts, time integration strategies, and core

simulators. Chapter 3 outlines the derivation of the two-primary kinetics methods in use today, which are

the factorization method and the direct (or theta) method, and also provides the derivation of the Semi

Implicit Direct Kinetics methodology herein introduced as well as the HOBD method implemented in a

two-group diffusion framework

(9).

Chapter 4 through Chapter 6 contains the bulk of results presented in this dissertation. Chapter 4

focuses upon point kinetics. This chapter includes the point kinetics equations with and without thermal

feedback as well as a description of codes employed. Following this is the development of kinetics

parameters, including β and λ values for non-benchmark problems that need this information. Finally,

point kinetics results with and without thermal feedback are presented. Chapter 5 and Chapter 6 focus

upon spatial kinetics results, primarily presenting a variety of benchmark problems as well as a

“demonstration of capability” problem. These benchmarks consist of:

 Infinite Homogeneous Medium (IHM) (11) - An infinite homogeneous medium problem to

demonstrate linear convergence to an analytic (exact) solution.

 16-A1 (12) (11) - A one-dimensional fast reactor transient without feedback to demonstrate speed

and accuracy of the method versus the direct method for diffusion and transport implementations.

 TWIGL (13) (6) - A two-dimensional seed blanket reactor with two transients to demonstrate the

speed and accuracy of the method versus a number of other fully-coupled time integration

strategies.

 LRA (6) (12) (14) - A two-dimensional prompt-supercritical transient with feedback to

demonstrate the speed and accuracy of the method versus quasi-static (factorization), direct and

HOBD methods.

While the “demonstration of capability” problem is:

6

 Fully-Heterogeneous Mini-Assembly (FHMA) - A three-dimensional transport based, forty-four

energy group control rod movement that is compared to point kinetics to demonstrate the

capabilities of the SIDK method and the AMP-Denovo framework developed.

Within these problems, the following comments are provided on discretization of time, neutron energy,

angle and space which is the focus of this dissertation:

 IHM – Discretization of time only, as there is no spatial or angular dependence, and a two-group

neutron energy structure is used.

 16-A1 – Discretization of space, time and angle are all examined in this problem as there is time,

space and angular dependence. Two-group neutron energy structure used.

 TWIGL – Discretization of time and space, neutron diffusion with two-group neutron energy

structure.

 LRA – Discretization of time and space in the presence of thermal feedback, neutron diffusion

with two-group neutron energy structure.

 FHMA – Discretization of time, space, angle, and energy as all are finely treated in the fully-3d

radiation transport calculation utilizing fine angle and neutron energy treatment.

Lastly, Chapter 7 presents the conclusions of this dissertation. The conclusions include a summary of

relevant findings as well as closing comments including proposed future research.

1.3 UNDERLYING FRAMEWORK FOR THIS RESEARCH

Of primary focus in this dissertation is the development of space-time neutron kinetics models that

can readily interface within the multi-physics framework Advanced Multi-Physics (AMP) (15) (16) (17)

(18) which present a stable choice that is a decent starting point for large scale, parallel simulations of

multi-physics neutron kinetics problems with thermal feedback. This dissertation illustrates the ranges of

problems that the theta method with an analytical representation of precursors, denoted as a “hybrid

method” in this dissertation, can be expected to work well for in parallel, neutron transport, multi-physics

7

implementations. The novel components of this dissertation include the refinement of hybrid kinetics

methods within a neutron transport framework, the implementation of fine neutron energy discretization

in the time-dependent Boltzmann transport solutions, and the application of supercomputing

environments to the solution of the time-dependent Boltzmann equation (19) (10). This work is further

supported by an in-depth study of various space, time, and angle discretization strategies, some of which

have been studied or compared in previous works (6) (13) (9), among others.

The neutronics analysis capabilities are herein provided by the Denovo (20) radiation transport code.

In order to develop and flexibly test the hybrid methodology, an independent two-group time-dependent

“surrogate” neutron diffusion code was written which is used for problems with and without thermal

feedback (this is denoted as the SIDK program, named for the SIDK method). Time integration analysis

for every problem is provided by codes written with the MATLAB (21) program, which has proven to be

a robust point and spatial kinetics solver for problems with and without thermal feedback. The point

kinetics and spatial kinetics amplitude function calculations come from the Burner Reactor Integrated

Safety Code (BRISC) (22), which is integrated with the multi-physics framework, the AMP code (17).

1.3.1 DESCRIPTION OF COMPUTER CODES

A bulleted list of the codes that were used or modified is shown below, with key citations noted and

followed by brief descriptions of these codes.

 AMP

(15) – Advanced Multi-Physics Nuclear Fuel Integrated Performance and Safety Code.

Used as multi-physics framework.

 BRISC

(22) – Point and spatial kinetics package incorporated within AMP. Being used for point

kinetics calculations.

 MATLAB (23) (21)– Generic mathematical solution package. Utilized for point and spatial

kinetics calculations utilizing a variety of time integration techniques.

8

 SIDK (11) – Time-dependent two-group neutron diffusion code written for this dissertation based

on the SIDK method, developed in this dissertation. Used for investigation of comparison with

fully implicit direct kinetics with and without thermal feedback, as well as time integration

strategies.

 CONQUEST (6) – Nodal three-dimensional time-dependent neutron diffusion code based on

quasi-static kinetics implementation. Used as benchmarking for two transients.

 TDTORT (13) – Discrete ordinate three-dimensional time-dependent transport code based on

quasi-static kinetics implementation. Used as benchmarking for two transients.

 Denovo

(20) – Discrete ordinate three-dimensional steady-state radiation transport code. Adapted

for time-dependent calculations in this dissertation via the SIDK method.

 SCALE

(24) – Neutronics code suite used for cross section processing and radiation transport.

o CSAS-I – Cross section collapsing routine used to prepare cross sections for Denovo.

o TRITON/NEWT – Two-dimensional discrete ordinate radiation transport code being

used for development of point kinetics parameters, benchmarking Denovo and

development of problem dependent collapsed cross section libraries for CSAS-I.

Neutron transport codes used in this work primarily consist of: NEWT and Denovo, for 2D and 3D

applications, respectively. The primary purpose of these codes is to solve the Boltzmann neutron

transport equation. All of these codes can solve problems from the pin to the core scale and are often

used as lattice-physics codes to feed cross sections for neutron diffusion applications. NEWT and

Denovo are both deterministic codes, as opposed to a stochastic code such as MCNP (25). SCALE

modules and the MCNP code are both extremely well validated. Denovo has been validated against the

NEA’s C5G7 MOX benchmark

(26), as well as other problems.

Software used in this work for point kinetics primarily consists of: BRISC, MATLAB, and AMP.

The primary use of these codes is to solve the spatially-independent point kinetics equations. Point

kinetics equations form a system of ordinary differential equations (ODEs) that must be integrated over

9

time. Time integrators used in this work include: Eigenvalue decomposition (27), Pade

(28), Runge-Kutta

(29), and numerical differentiation formulas (NDFs) (30). Point kinetics is typically applied at the core-

wide scale.

For the solution and evaluation of the time and space-dependent Boltzmann neutron transport

equation, software utilized consists of the SIDK time-dependent neutron diffusion program, MATLAB,

and the Denovo radiation transport solver herein adapted. Comparison programs consist of TDTORT and

CONQUEST. Spatial kinetics is also typically applied at the core-wide scale, which involves solving an

eigenvalue problem, perturbing the system, and then solving repeated fixed source problems to advance in

time, with the time step size dependent upon the method selected, for reasons of accuracy or numerical

stability. Time integration strategies considered in this work include: trapezoidal rule followed by

implicit Runge-Kutta (TR-BDF2), numerical differentiation formulas (NDFs), HOBD, SIDK, fully-

implicit direct kinetics, and second order SIDK.

1.4 OVERVIEW OF FUNDAMENTAL PRINCIPLES

In brief, a nuclear reactor’s primary purpose is to steadily and safely generate full rated power while

satisfying reactivity and thermal margins (i.e., operating within licensing limits and plant technical

specifications). At a steady “critical” state (zero reactivity) the reactor is generating the same amount of

neutrons between successive generations, or as a function of time. These neutrons are produced from

fission, a subset of neutron absorption reactions that lead to compound nuclei that spontaneously split into

fission fragments (products) and generate two to three additional neutrons. These generally high energy

neutrons, if they don’t leak or aren’t lost to resonance absorptions, are moderated (slowed down) by the

hydrogen in the water of a light water reactor, thereby increasing the probability of subsequent fissions,

which each releases about 200 MeV of energy, most of it recoverable. These neutrons also activate

materials, as well as produce elements heavier than uranium (known as transuranics) through absorptions.

The fission process and neutron absorptions create other unstable isotopes that radioactively decay, some

by delayed neutron emission. Delayed neutrons, although a small fraction of the total number of neutrons

10

in a reactor (a fraction of about 0.0065 of the total neutron generation in U-235 based fuel), are an

important aspect of the controllability of nuclear reactors and constitute the focus of neutron kinetics.

A key equation that describes the balance and spatial and time-dependent characteristics of neutrons

is the Boltzmann transport equation

(1). This equation governs the transport, absorption, scatter, and

production of neutrons. The terms in this equation at a given energy are production and destruction,

where production is from fission, in-streaming, in-scattering, or delayed neutron emission while

destruction is from absorption, out-scattering, or out-streaming

(31). A steady-state version of the

Boltzmann neutron transport equation is shown below:

 ̂ (⃑ ̂) (⃑ ̂) (⃑ ̂)

∫ ̂
 ∫ (⃑

 ̂ ̂) (⃑ ̂)

∫ ̂
 ∫ (⃑

 ̂) (⃑ ̂)

 (⃑ ̂) Equation 1.1

This equation has seven independent variables. The independent variables are three spatial

coordinates (x, y, z), two angles (azimuthal and polar, combined into solid angle), energy, and time. The

terms on the left represent angular flux streaming (leakage) and absorption, respectively. The terms on

the right represent in-scatter, eigenvalue, production from fission, and external source. Equation 1.1 is

typically solved in steady-state form (neglecting temporal derivatives) with a slow-varying time

dependence primarily coming from transmutation (depletion/burnup).

The general equation for the concentration of one nuclide Ni can be expressed as the difference

between the formation rate and the destruction rate:

 . Equation 1.2

Any process in which a nuclide Ni is converted to another nuclide (or multiple nuclides) is considered a

destruction of that nuclide, i.e. the (n,γ) reaction

 . Any process in which another

nuclide is converted to Ni is considered a formation, i.e.

 . There are a multitude of

reactions which can take place under the presence of a high neutron flux, including (n,2n), (n,p), (n,γ),

11

(n,f), etc. However, the rates of change of nuclide concentrations are generally dominated by the (n,γ)

and (n,f) reactions, as well as radioactive decay. The result is the time-dependent nuclide concentration

equation. Equation 1.3 below characterizes the rate of change of the number density for an arbitrary

isotope based on gains from radioactive disintegrations from isotopes via branching fractions , gains

from neutron absorptions from isotopes via branching fractions , and losses from disintegration, ,

and neutron absorptions, , of isotope .

 ∑

 ̅∑

 (̅) Equation 1.3

where the summation over j encompasses all nuclides Nj which may produce Ni as a result of radioactive

disintegrations, and the summation over k encompasses all nuclides Nk which may produce Ni as a result

of neutron absorptions . The other terms account for the destruction of Ni via neutron capture or decay.

The neutron flux Φ is a function of the neutron energy, as is the effective cross section σ. The key to

solving this equation for every nuclide Ni is obtaining accurate estimates of the neutron flux and effective

cross sections as a function of neutron energy, which comes from the solution of Equation 1.1.

(32)

An accurate and detailed depiction of the power distribution is essential for thermo-mechanical

response calculations, which are provided by fuel performance simulations, whereby power is directly

related to the neutron flux density and, more specifically, to the fission reaction rate density distribution.

However, predicting the actual power distribution is quite challenging because it requires a global (core-

wide) assessment (typically handled by a decoupled neutronics code), while fuel performance evaluations

need very localized inputs at the pin or even within-pellet level. Therefore, in practice, feedbacks such as

fission gas release on the fuel pin scale are only loosely incorporated, as well as a coarse temperature

feedback within core physics codes. These difficulties are further compounded in time-dependent

problems because there are global effects (i.e., rod insertions) as well as local effects (e.g., radial power

profiles from steady-state are not necessarily appropriate when the temperature distribution in the pin

deviates from a standard quadratic shape). Therefore, accurate temperature feedback treatment within

12

transient simulations is paramount to achieving high fidelity in predictive nuclear fuel performance

evaluations. This accurate treatment necessitates the development of a high-fidelity radiation transport

solver utilizing a computationally efficient and accurate method which is coupled to a fuel performance

code, which is one of the objectives of this dissertation. The radiation transport solver used is Denovo,

the fuel performance and multi-physics framework that is coupled with Denovo is AMP (10), and the

method developed in the dissertation is referred to as the SIDK method, which is demonstrated as an

accurate and efficient approach, and it constitutes a new space-time kinetics direct method with an

analytic representation of neutron precursors that has been implemented within the framework of the

neutron transport equation.

An overview of a typical transient calculation by a core simulator is shown in Figure 2 below. In this

diagram, Step 1 constitutes a typical cross section generation process for a simulator that leads to a steady

state criticality search calculation. Step 2 postulates a reactivity insertion that perturbs the critical

condition leading to a point kinetics time-dependent calculation. The outcome of Step 2 leads into the re-

evaluation of the temperature distribution based upon the changes in the power distribution, which

constitutes Step 3. Although Figure 2 does not show this, the output from Step 3 would effectively

provide the inputs needed by a fuel performance code, which is where a designer would evaluate the

fuel’s thermo-mechanical performance based upon operational or design conditions.

13

Figure 2 Typical Transient Core Simulator Process

(33)

In order to account for time-dependent changes in reactor operation, the time-dependent form of the

Boltzmann transport equation must be used which is presented as Equation 1.4, below:

(⃑ ̂) ̂ (⃑ ̂) (⃑ ̂) (⃑ ̂) ∫ ̂

 ∫ (⃑
 ̂

 ̂) (⃑ ̂) ()()∫ ̂
 ∫ () (

) (⃑ ̂)

∑
 ()

 (⃑ ̂) Equation 1.4

14

where υ is velocity and t is time. Introducing time-dependence further complicates the solution of the

transport equation, as the vast majority of neutrons (over 99%) are “prompt neutrons” and are generated

extremely fast (within less than 1 ms), while the generation time of the remainder of neutrons is quite

long (8 to 12 s). These more slowly released neutrons come from radioactive decay of isotopes that decay

by neutron emission and are called “delayed neutrons,” while their parent isotopes are called delayed

neutron precursors. This allows the fission source to be split into the prompt and delayed fission

neutrons, which is an important aspect of reactor kinetics, and an aspect of traditional neutronics that is

generally ignored within fuel performance codes.

Given the lack of use of transport calculations within fuel performance codes, due to computational

limitations, the neutron kinetics evaluations are typically limited to space independent or “point” kinetics.

However, even this lower-level of fidelity in the treatment of neutron kinetics is not present in any fuel

performance code, point or otherwise (34) (35). Likewise, from the literature reviewed, the treatment of

thermal responses or feedback also appears to be absent within the realm of fuel performance evaluations;

in particular, the evaluation of spatially dependent thermal feedback that results from coupling transport

theory to spatial neutron kinetics to generate space-time-dependent power distributions at the pin level

scale.

Contemporary fuel performance codes typically employ user-provided power inputs, which are often

calculated by external core simulators (such as PARCS

(8)). However, as described by Hursin et al

(36),

these analyses generally smear entire assemblies into homogenized regions, both for thermal feedback

and for power calculation purposes. Therefore, the pin power reconstruction data (which relied on

assembly averaged temperatures) are missing a significant amount of local information, which is being

relied upon heavily by the time-dependent fuel performance codes. As mentioned previously, fuel

performance codes (and their accompanying results) are extremely sensitive to power inputs. In addition

to this, the simplifications typified in steady-state fuel performance codes (such as one-dimensional radial

representation of within-pin powers) is carried through to time-dependent fuel performance codes as well.

15

These factors comprise the motivation for the development within this dissertation of a

computationally efficient and accurate time-dependent neutron transport method that is generically

applicable as well as coupled with a fuel performance code in a parallel multi-physics framework (37)

(10). This compounding level of smearing and simplifying in current approaches could potentially limit

the understanding of space-time-dependent power-temperature distributions, which are vital to calculating

material performance for a design basis or beyond design basis accident. This type of information or lack

thereof, can impact fuel failure mitigation (through design), can affect core licensing applications, and has

had a measurable impact upon limiting or denying power uprate applications

(4)

(38).

16

Chapter 2 LITERATURE REVIEW

The DOE Office of Nuclear Energy (DOE/NE) established an Advanced Modeling and Simulation

Office (AMSO) for the development of predictive simulations tools that will develop integrated

performance and safety codes for the predictive modeling of key nuclear energy problems. The concept

of predictive simulation is to remove (or minimize) the use of experiments to define simulation tools by

incorporating the first-principle effects of the physics and upscaling them to the traditional “engineering”

scale. There are currently two parallel efforts– the Consortium for Advanced Simulation of LWRs

(CASL) (39), focusing primarily upon Pressurized Water Reactors (PWRs), and the Nuclear Energy

office of Advanced Modeling and Simulation (NEAMS) (40), which is developing tools that can be

applied to a wide variety of applications. In the European Union, there is a similar effort (F-BRIDGE)

(41) for advancing nuclear software to better leverage advanced computing platforms and improve the

predictability of the software.

There are several individual physics components (neutronics, fuel physics, flow, mechanics,

chemistry, etc.) associated with each of these programs and each leverages some form of a computational

backplane to integrate the physics into a useable form for the engineer analyst. These include AMP (17),

Bison/Marmot (42), and Pleadies (43), for fuel performance, and Denovo (20), MPACT (44), and DeCart

(45) for radiation transport, which are built upon various (similar, but different) platforms, including

LibMesh (46), MOOSE (42), LIME (22), SHARP (47), and MOAB (47). Each of these programs is built,

to a degree, on the knowledge that there are significant aspects that are being neglected by the traditional

tools, which limits their ability to be predictive to within only their empirically derived bounds. One

example of this is a traditional empirical limitation in fuel performance codes, which are validated for

uranium-dioxide (UO2) fuel under 5% enrichment, where enrichment refers to the weight percent of the

uranium that is
235

U.

17

2.1 RELEVANCE OF PREDICTIVE SIMULATION TOOLS

The research described in this dissertation aims toward a higher level of resolution by employing a

new approach to kinetics, denoted the semi-implicit direct kinetics (SIDK) method. This approach is

demonstrated to be robust, accurate, faster executing than traditional direct kinetics by roughly an order of

magnitude and amenable to high performance computing, thus, capable of producing high resolution

neutronics for fuel performance applications. The key improvement metric of the SIDK method over all

other methods considered in this work, including the HOBD and other higher order methods, is the error

versus run time ratio, in contrast to the higher order methods for suitably high error tolerances (0.1 %

relative error). In addition, the SIDK method exhibits improved stability specifically on problems with

thermal feedback when contrasted against traditional direct kinetics and the HOBD method.

One of the key areas of focus is the application of the SIDK methodology to interface with the AMP-

Denovo framework for transient applications. There were two specific tasks completed to facilitate this

objective; first, to integrate an existing kinetics package within AMP, verify the package, and to couple

this package within AMP’s multi-physics canvas in order to provide spatial thermal feedback to the

neutron kinetics (Chapter 4). This development included the development of kinetics parameters from

transport solutions as well as integration with Denovo (20). The second task implemented a spatial

kinetics capability within Denovo using the new semi-implicit direct kinetics method (Chapter 6). This

work is compared to reactor level simulations for verification (Chapter 5), and then applied to fuel pin

level simulations (Chapter 6).

2.2 TIME INTEGRATION

Traditionally, reactor kinetics is applied as a time-stepping scheme for the space-energy discretized

Boltzmann neutron transport equation shown in Equation 1.4, which represents a splitting of the space-

time dependence of the equation. This approach is consistent with that used in other fields, such as in the

advection-diffusion problem (48). As such, the primary purpose of reactor kinetics is to develop a

18

computationally efficient and accurate temporal representation of Equation 1.4. Therefore, we will start

the kinetics literature review by examining various temporal solution methods, both applied to kinetics

problems and general problems.

There are three basic approaches to time integration. These approaches consists of explicit methods,

semi-implicit methods, and fully implicit methods, where explicit refers to using the evaluation of the

function at the previous time step to advance the solution, implicit refers to using the evaluation of the

function at the current time step, and semi-implicit is some combination thereof. To illustrate this, we

will examine a common semi-implicit method, which is the Crank-Nicholson method, a finite difference

method that is of second order in time and is numerically stable (8). The Crank-Nicholson method is

effectively the average of the solution to the differential equation set at time t and time t+1, or basically a

weighted average of the forward Euler and backward Euler methods, or the fully explicit and fully

implicit methods. It should be noted that when using an explicit or unstable semi-implicit approach,

numerical instabilities can lead to oscillations in the solution process if the ratio of time step size to the

dimensional mesh area (i.e., Δt/Δx
2
) is larger than around one half (49). The equations below illustrate

the flux dependence on time in the above-noted approaches: (28)

 Flux Dependence on time Equation 2.1

 Forward-Euler (explicit) Equation 2.2

 Backward-Euler (implicit) Equation 2.3

 Crank-Nicholson (semi-implicit) Equation 2.4

),,,(
2

2

tt
tF

t 










 




),,,(
2

21

tt
tF

t

t

i

t

i

t

i












 




),,,(
2

2

1
1

tt
tF

t

t

i

t

i

t

i












 
 




)),,,(),,,((
2

1
2

2

2

2

1
1

tt
tF

tt
tF

t

t

i

t

i

t

i

t

i





















 
 







19

2.2.1 MATRIX EXPONENTIAL METHODS

Another solution method for time integration, which is available in the BRISC package, is a Pade

approximant (28) (27), which is basically the best approximation of a function by a rational function of a

given order. The default BRISC order for the Pade solver is of third-order. The Pade approximant will

usually give a better approximation of a function than its truncated Taylor series and may also offer a

solution when a function does not have a convergent Taylor series. So, for example, an arbitrary function

F, which depends on flux, time, and first and second partial derivative of the flux with respect to time, is

given by Equation 2.5.

 (

) Equation 2.5

Thus, the Pade approximant of this function of order (m,n) is given as the rational function which is:

 ()

 Pade Approximant

(28) Equation 2.6

Where R is the evaluation of the function and p and q are coefficients.

Alternatively, for a matrix that is fixed in time (linear), an eigenvalue decomposition can be used.

For the infinite homogeneous medium problem that is presented in section 6.1 , this is the implementation

that was used, as it is one of the few ways to obtain an exact solution to a multi-group kinetics problem

(27). Starting from the time-dependent Boltzmann equation with explicit representation of delayed

neutrons given by Equation 1.4 and the change in precursor concentrations given by:

 Equation 2.7

We can form a matrix A such that

 () , Equation 2.8

20

which is exact, as long as A is not changing with time, where A is given by a combination of Equation

1.4 and 2.7 yielding:

 [
[()]

] Equation 2.9

As can be seen, the only difference between these equations and the traditional point kinetics

equations is the discretization of powers by neutron energy group to allow for the explicit representation

of the mean generation time of each energy group. The net rate of power change is computed by

summing the individual power changes. There are two common solution approaches employed in the

point kinetics solutions, which are matrix exponential methods (such as Pade) and Runge-Kutta methods

(such as backward Euler, RK4, RK45, TR-BDF2, etc.). Two such methods were developed are

benchmarked in the point kinetics section 4.3 . While the Runge-Kutta methods are typically quite fast,

they can become unstable for stiff systems, such as fast reactor transients, which can necessitate such

small time steps that the method is no longer fast. Pade iterative matrix methods are generally slow, but

highly accurate for such systems, depending upon the order of Pade selected. The orders of convergence

of both methods were explored. Alternatively, an eigenvalue decomposition can be used, which it is in

section 6.1 such that the exponential A matrix is decomposed into A=XDX
-1

 where X is composed by the

eigenfunctions of the system

(27).

2.2.2 MULTI-STAGE METHODS

In order to verify the BRISC kinetics package prior to and following its integration into AMP,

independent MATLAB programs were written using a multi-step adaptive Runge-Kutta fourth and fifth

order method for testing and comparison. This was done using a built in time integration scheme for

coupled ODEs that is available in MATLAB. The time dependence is approximated using a number of

sub-steps (or stages), and the error is approximated by using a Runge-Kutta of an order one higher than

the methods number of sub-steps. This is advantageous in that few additional calculations per time step

21

need to be done to approximate the error with a higher order Runge-Kutta method. The general

formulation for a Runge-Kutta method is

(28):

 ∑

 , Equation 2.10

where y is a function, n denotes the time index, i is an integer, b is a coefficient, k is the value of the

function evaluated at a sub-interval, and s is the order of the method. Here, the set {ki} for i=1,s is the

same as for the higher order method. The error is then given by:

 ∑ (

)

 . Equation 2.11

Where e is the error and h is the time step size. The RK4 method, specifically, is given by:

(), Equation 2.12

 (), Equation 2.13

 (

), Equation 2.14

 (

), Equation 2.15

 () . Equation 2.16

Where t is time. Other multi-stage methods utilized in this work included TR-BDF2 which is a

trapezoidal rule followed by a second order Runge-Kutta solution of order two. While the Runge-Kutta is

a multi-stage method, as it requires multiple calculations per time step solution, the TR-BDF2 is also a

multi-step method, as it uses information from more than just the previous time step. Multi-step methods

are covered in the following sub-section, 2.2.3 .

22

2.2.3 MULTI-STEP METHODS

In order to improve the convergence and time step size of implicit or explicit methods, an alternative

to the multi-stage methods are multi-step methods. These methods offer higher order of convergence

with no additional computational cost by using several previous solutions in the current solution, which

does add a minimal amount of increased storage. These methods are typically the most useful when very

high accuracy is desired (50). The general backward method for time dependent change in function U can

be written as:

 () () () () (()), Equation 2.17

where c and α are coefficients whose values can be found in Ginestar (9)

as well as many other references.

Multi-step methods considered in this work include: HOBD (order 2), SIDK (order 2), TR-BDF2 (order

2), and NDF (variable order).

2.3 REACTOR TRANSPORT AND KINETICS CODES

Modeling a nuclear reactor in great detail and with high fidelity ideally requires an integrated multi-

physics approach consisting of a full neutronics analysis coupled to a full thermo-mechanical-flow

analysis, potentially also incorporating chemical effects. The primary physics for the neutronics typically

include neutron transport methods which can be modeled by modules within the SCALE code suite or

also by stochastic codes such as MCNP. Isotopic depletion, transmutation, and decay can be handled in a

number of ways, including by simplified macroscopic depletion models or by direct coupling to well-

known microscopic depletion codes such as ORIGEN (24).

A quasi-static approach is used for standard operation, with depletion (Eq. 1.2) used to calculate the

changing isotopics for each large time step. The next subset of physics typically modeled is the thermo-

mechanical response, which uses quasi-static powers generated from the neutronics analysis. Examples

of fuel performance codes include FRAPCON (5), FALCON (35), TRANSURANUS (51), Bison, and

AMP. Historically, neutronics codes have placed a primary focus upon thermal-hydraulic response, as

23

this is the primary mechanism that affects the neutron cross-sections via temperature feedback. Codes

that calculate this thermal-hydraulic response include RELAP (52), STAR-CD (36), or COBRA (53).

For transient analysis, it is more difficult to decouple the inherently coupled feedback of thermo-

mechanics from spatial dependent reactor kinetics, for which three main implementations are described in

the literature for this coupling (8) (36) (54) (33). The first implementation is to totally decouple the

thermo-mechanical-flow analysis, and use spatially dependent reactor kinetics to predict power changes

in a reactor. These power changes can then be fed on a pin-by-pin basis to thermo-mechanics codes to

calculate the thermo-mechanical response, with the idea that the spatial flux distribution is sufficiently

decoupled from thermal response to make this a realistic approach. (13)

The second approach is to couple the thermo-mechanical response with the spatially independent

(point) kinetics equations. This approach essentially adds a number of ordinary differential equations

(ODEs) to the point kinetics system, and solves the entire system with no spatial dependence, or lumped

spatial dependence (55). The heat equation is applied to entire regions (fuel, clad, coolant, control banks),

with one equation for each region. A related approach entails using lumped capacitance models for each

region in conjunction with the point kinetics equations. These results can be fed to a quasi-static flux

calculation (33). The third approach is to couple the spatial kinetics to spatial thermal-hydraulic

calculations, which is done in core simulators such as NESTLE, PARCS, and DeCart with Star-CD (36).

The BRISC

(22) kinetics package is an example of a point kinetics package, which has been

implemented within AMP. These calculations require a solution of the “shape” or transport function.

One approach is to couple the kinetics equations using diffusion theory, which is similar to how kinetics

are handled in the NESTLE nodal simulator. Both a diffusion solution and a kinetics solution were run as

part of the integration with AMP. In BRISC, the 2D diffusion package RASCAL (56) is used to solve the

shape function. Following is a brief overview of common methods and equations used in both steady-

state and time-dependent diffusion and transport approaches to kinetics and coupled calculations.

24

2.3.1 STEADY-STATE FLUX CALCULATIONS

There are several ways to model neutron transport including diffusion, discrete ordinates, method of

characteristics, Monte Carlo statistical methods, and integral transport, to name some of the most

common. Method of Characteristics (MOC) and integral transport are described in (45) while the Monte

Carlo technique is described in (25). Of these approaches, diffusion theory is typically the fastest and

simplest, thus, described first. The multi-group diffusion theory eigenvalue equation is described as

follows:

 () () () ∑ () ()

 ∑ () ()

 Equation 2.18

where D is the diffusion coefficient, g is the energy group, ϕ is flux, ΣRg is the removal cross section, k is

the multiplication factor (inverse of the eigenvalue), χg is the fission spectrum, ΣSg is a scattering cross

section, G is number of energy groups, νg is neutrons per fission, and Σfg is fission cross section (1). One

common discretization of these equations is via the finite difference approximation, by which one

approximates derivatives by using a first-order Taylor series estimate based on functional values at

discrete “nodes” which then become unknowns within a coupled linear system of equations.

 ()
 () ()

 Equation 2.19

NESTLE

(54) is an example of a code that uses a finite difference discretization but which employs what

is referred to be a “nodal” method. Nodal methods effectively employ higher order estimates to the

derivatives or gradients, thus, are more accurate at capturing neutron leakage across coarse-mesh or larger

nodes (assembly or bundle size nodes). The cross sections for diffusion or nodal simulators are provided

by transport based lattice physics codes such as CASMO

(57) or TRITON, as with the BRISC package.

The numerical version of Equation 2.18 effectively becomes a linear system of equations described by the

following eigenvalue and eigenfunction system of equations:

 ̿ ⃗

 ̿ ⃗ Equation 2.20

25

where A is the diffusion matrix, ϕ is the flux vector, k is the multiplication factor, and B is the source

matrix. Alternatively, the flux and other properties can preserve their angular dependency by solving the

Boltzmann transport equation. One approach to solve this equation is the discrete ordinates approach,

which is the primary approach considered in this work and which discretizes the continuous variable of

angle into discrete angles. At these discrete angles, integrated values of angular flux are calculated.

These discrete angular fluxes can be converted to scalar fluxes using a weighted sum via quadratures in

order to calculate angle independent reaction rates as described below.

 () ∫ ()

 ∑ ()

 , Equation 2.21

where ϕ is scalar flux, ψ is angular flux, Ω is solid angle, and ω is quadrature weight. In order to calculate

the flux distribution, a discrete ordinates code such as Denovo

(20) can be used. Denovo can solve the k-

eigenvalue as well as the fixed source formulation of the transport equation, both of which are heavily

utilized in this work. The k-eigenvalue form of the Boltzmann transport equation is described by

Equation 1.1.

2.3.2 TRANSIENT FLUX CALCULATIONS

In order to calculate time-dependent flux distributions, a simplification that was previously made in

Equation 1.1 neglecting the temporal derivative of the flux must be removed, as it was in Equation 1.4.

Furthermore, as the generation time of the vast majority (over 99%) of “prompt” neutrons is extremely

fast (less than 1 ms), while the generation time of the remainder of “delayed” neutrons is quite long (8-12

s), the fission source must be split into the prompt and delayed fission neutrons. This approach to treating

the fission neutrons on the basis of their generation time forms the basis for the reactor kinetics equations,

which are based upon accounting for the concentrations of delayed neutron precursors, so to adjust the

source term. By modeling their concentrations, the reactor’s time-dependent behavior can be determined

with a fair degree of accuracy, even if using 0D models

(22).

26

The above-noted 0D models are also known as the “point kinetics equations” and are effectively the

same equation set as Equations 1.4 and 2.7, but which neglects spatial dependencies, and in this case, also

energy dependence. Point kinetics are used for verification purposes as well as comparison with

analytical solutions.

If one uses the multi-group diffusion equations (54), the time-dependent form becomes

 ()

∑ () ()
 ()

 ∑ () ()
 ∑

 () ()

 () () () () () Equation 2.22

In these equations, β is the delayed neutron fraction, superscript P denotes prompt neutrons, i is the

precursor group number, superscript D represents delayed neutrons, C represents delayed precursor

concentration, and λ represents decay constant. The change in delayed neutron precursors is given by

 ()

 ∑ ()

 () () Equation 2.23

If one wishes to initiate an eigenvalue-based transient, the fission term is divided by the eigenvalue,

which forces the transient to start the system from a critical state (eigenvalue is unity). The problem is

then solved at each time step as a fixed source problem. In NESTLE, a fixed source problem (FSP)

backward difference method is used to ensure stability.

The time-dependent Boltzmann transport equation with explicit representation of delayed neutrons is

given by Equation 1.4 where precursor rate of change is expressed by:

 () ∫ ̂

 ∫ () (
) (⃑ ̂)

 () Equation 2.24

One example of this formulation is given by Goluoglu

(13), which describes a quasi-static

implementation for a time-dependent transport code called TDTORT. This is the formulation that is

27

handled in TDTORT through the improved-quasi-static method, after some derivation and

rearrangement

(13).

28

Chapter 3 DERIVATIONS

Neutron kinetics methods focus upon the discretization of time in the time-dependent Boltzmann

equation. Various methods also handle the discretization of space and angle differently, while neutron

energy for this work’s purposes is treated in a multi-group fashion. In order to meet the stated objective

of this dissertation, which is the development of a robust, accurate, and computationally efficient

transport-based space-time neutron kinetics method for deployment in a multi-physics framework capable

of providing space-time thermo-mechanical-hydraulic feedback, a number of other neutron kinetics

methods and discretizations of space, time, angle, and neutron energy are explored. In this chapter, we

derive the two ends of the spatial neutron kinetics spectrum, which are factorization methods (quasi-static

kinetics) and fully-coupled methods (direct kinetics). We then proceed with an example hybrid method

(HOBD), as well as the developed hybrid method SIDK.

In the new generation of high performance computing, it is desired to develop new algorithms with

multi-physics based predictive capabilities to improve upon legacy empirical models. These new

predictive capabilities should be based on scientific first principles allowing for the simulation of failure

scenarios. These scenarios should be based on actual failures, so to enable new insights at the design

stage that could potentially mitigate these mechanisms in the future, as well as avoiding the related

failures. An example of these types of failures are the fuel failures that occurred at the Edwing I. Hatch

nuclear power plant during a routine control blade movement (10), a pellet-clad-interaction (PCI) event

which could have been potentially identified a priori had the proposed multi-physics tools been available

to evaluate the impact of blade movement and BWR channel bow upon the kW/ft generated at the axial

height where the failures occurred. Clearly, the targeted application for these integrated multi-physics

capabilities is nuclear fuel performance and safety, modeled in an integrated environment. This includes

the software integration with focus upon the verification and validation of selected couplings as these

physics are assembled.

29

The software integration herein described is between historically decoupled nuclear models of

neutron transport and reactor kinetics with thermo-mechanical-chemical fuel performance models in the

AMP framework. Two kinetics methods are implemented and tested within the AMP framework, which

are the BRISC point kinetics package as well as a new implementation of semi-implicit direct kinetics

(SIDK) that couples to the Denovo radiation transport package. The point kinetics derivations for BRISC

are included in Chapter 4 as point kinetics is relatively straight forward and the derivation of the spatially

independent equations is readily obtainable in any nuclear engineering textbook, such as (1) or (58).

Key physics involved in accurate prediction of reactor fuel element performance include neutron

transport and thermal hydraulics. The thermal hydraulic feedback mechanism is primarily coupled to

neutronics through cross sections, given that these are strong functions of temperature and density.

Historically, this type of coupling has been routinely employed in nodal reactor core simulators, however,

these generally capture thermal hydraulic conditions in coarse dimensions (typical node size may be a 6-

inch axial section of a BWR bundle), thus giving a coarse treatment to individual fuel pins. In addition,

these models need to be streamlined for quick execution, thus, they tend to be simplified models for

thermal hydraulic calculations (a BWR simulation likely employs an approximate drift-flux model to

model two-phase flow). The poor resolution on the primary coupling mechanisms can lead to

unnecessary conservatisms that could be removed in order to improve fuel design and performance.

This dissertation seeks to quantify appropriate discretization strategies for the time-dependent

Boltzmann transport equation that can be readily and non-intrusively implemented within a multi-physics

framework. Space, time, and angle discretization strategies are explored with regards to several codes

and methods employing direct, quasi-static, HOBD and the SIDK method with and without thermal

feedback in one and two-dimensional geometries to determine the most appropriate strategies for

massively parallel multi-physics implementations in Chapter 5. The non-intrusive implementation of the

SIDK method, derived in this chapter, with large scale heterogeneous geometry neutron kinetics

calculations employing an arbitrary number of neutron energy groups with variable order quadrature

30

representation of angle is shown in Chapter 6. The coupling between the neutron transport and the

thermal feedback is extremely important in this highly coupled problem, as it is primarily applicable to

reactivity induced accidents (RIA) and loss of coolant accidents (LOCA), which is demonstrated in

Chapter 5. An improvement in resolution and coupling is herein proposed by developing neutron

transport models that are ideally suited for internal coupling with high fidelity within fuel pin thermal

calculations in a multi-physics framework. Accordingly, good agreement with benchmarks and problems

from the literature is shown.

3.1 NEUTRON KINETICS AND THE SIDK DERIVATION

A new approach to transport-based neutron kinetics has been developed within this dissertation to

facilitate high performance computing through reduced storage requirements, speed of calculation, and

ease of implementation in modern parallel, high fidelity steady-state radiation transport codes. The new

kinetics methodology is a semi-implicit direct kinetics method, called the SIDK method

(11). The SIDK

method is herein presented in contrast to the two primary methods of neutron kinetics in use today, which

are direct methods or factorization methods

(7) as well as another hybrid method, the HOBD method (9).

The sections which follow describe the derivation of the primary factorization method used, which is

improved quasi-static kinetics

(13). Then, the derivation of the direct method (7) is provided followed by

the HOBD hybrid method. Finally, the SIDK methodology is derived and described.

3.1.1 QUASI-STATIC KINETICS

In the quasi-static kinetics implementation, the time-dependent angular flux is assumed to be the

product of a weakly time-dependent angular flux multiplied by an amplitude function that is only a

function of time:

, Equation 3.1)(),,,(),,,(tTtErtEr 

31

where ψ is the true time-dependent angular flux, Ψ is the weakly time-dependent angular flux, and T is

the amplitude function which is only a function of time. When Equation 3.1 is substituted into the time-

dependent Boltzmann equation, Equation 3.2 is produced.

(

 ()

 ()) ̂ (⃑ ̂) (⃑ ̂) (⃑ ̂) ∫ ̂

 ∫ (⃑

 ̂ ̂) (⃑ ̂) ()()∫ ̂
 ∫ () (

) (⃑ ̂)

 ()
∑

 ()

 (⃑ ̂) Equation 3.2

In this equation, υ represents velocity, Ω represents the normal vector in each direction for each angle,

Σt represents a macroscopic total cross section, Σs represents a macroscopic scattering cross section, χp

represents prompt fission yield, β represents total delayed neutron fraction, ν represents neutrons per

fission, Σf represents a macroscopic fission cross section, λ represents a decay constant, C represents a

precursor concentration, i represents a precursor group, and χi represents a precursor neutron yield. In

order to solve for the amplitude function, the point kinetics equations are typically used. There are some

choices on how to obtain the amplitude function and the associated weighting parameters; however,

typically a normalization condition is applied using the adjoint transport equation such that:

∭
 () ()

 ()
 Equation 3.3

Where Ψ* is the adjoint angular flux. The steady-state adjoint equation is given by:

 ̂ (⃑ ̂) (⃑ ̂) (⃑ ̂) ∫ ̂
 ∫ (⃑ ̂ ̂) (⃑ ̂)

 (
) ∫ ̂

 ∫ () () (⃑ ̂)

 Equation 3.4

After some manipulation, the amplitude equation is given by the point kinetics equations, where the point

kinetics parameters are determined by a series of integrations over the phase space which can be found in

Goluoglu (13). The point kinetics equations are given by:

 ()

 () () Equation 3.5

32

 ()

 ()

 () ∑ ()

 Equation 3.6

In the first equation, c is the spatially independent precursor concentration, t is time, β is the delayed

neutron fraction, T(t) is the power (or amplitude function), and λ is the decay constant. In the second

equation, T(t) represents the rate of change of the power as a function of time (the amplitude function),

where ρ is the reactivity insertion as a function of time, and Λ is the mean generation time. The key of

the factorization method relies on the derivation of the spatially dependent precursors, or Ci(r,t). In the

following derivation, the variable dependences are suppressed for simplicity. The spatially dependent

precursors are given by:

 ()

 ∫∫ () (⃗⃑ ̂) (). Equation 3.7

If we define the product of νΣf and Ψ integrated over angle and energy to be proportional to power, P(t),

then we arrive at the following first-order ODE:

 () (), Equation 3.8

which can be solved analytically with the use of an integrating factor to yield:

() () (). Equation 3.9

Upon application of the chain rule, we have:

 ()

 () ()() . Equation 3.10

33

3.1.2 DIRECT KINETICS

Starting from the Boltzmann transport equation in operator notation,

 () ∑

 , Equation 3.11

where L is the leakage operator, S is the scattering matrix, F is the fission matrix, M and D are the angular

prolongation and restriction matrices, respectively, and I is the number of precursor groups. The time-

dependent change in angular flux is:

 [()] ∑

 , Equation 3.12

and the time-dependent change in precursors is defined by:

 Equation 3.13

In order to solve these equations in a fully-coupled manner, we define a matrix that contains both

variables:

 [

], Equation 3.14

where we can now define A, B, E, and G respectively:

 [()] Equation 3.15

 ∑

 , Equation 3.16

 , Equation 3.17

and,

 . Equation 3.18

This allows us to write the matrix in compact form:

 [

] [

]. Equation 3.19

We then proceed with a finite differencing scheme for time using a fully implicit formulation, whereby

the right hand side of Equation 3.19 is evaluated at the future time step “i+1”.

 [

]. Equation 3.20

iiC

iiC

34

After rearrangement, we have:

[
(

)

 (

)

] [

] [

]. Equation 3.21

Yielding the above coupled matrix system of equations that is solved for a direct kinetics solution.

3.1.3 HIGHER ORDER BACKWARD DISCRETIZATION KINETICS

As stated, the SIDK method is not the first hybrid of kinetics methods, where hybrid refers to a

combination of the direct and factorization approaches, where the predominant factorization method in

use is the quasi-static kinetics method. Three examples of hybrid methods are the Crank-Nicholson

method as implemented in PARCS

(8), the unified approach to kinetics solutions

(7), and the higher order

backward discretization (HOBD) that will be presented here from Ginestar et al

(9). It should be noted

that all of the hybrid methods previously mentioned are applied to the time-dependent neutron diffusion

equation, while the SIDK method developed herein is applied to both the time-dependent neutron

diffusion equation and the time-dependent Boltzmann equation. The higher order backward discretization

method is chosen for derivation here as in the literature reviewed, it was the most similar method to the

SIDK method developed in this dissertation, as well as the possible applications of the higher order

method.

There are three potential applications offered by the higher order backward method. These three

applications include a linear representation of the power over the time step (as opposed to the constant

power at the beginning of the time step used in the SIDK method), higher order treatment of the temporal

derivative of angular flux (as opposed to the first order backward difference common to most kinetics

methods), as well as an adaptive time stepping strategy. These applications could potentially improve

accuracy or run time of the SIDK method, at the potential cost of run time or accuracy, respectively,

which is explored in Chapter 5.

Starting from the time-dependent multi-group neutron diffusion equation, in operator notation:

 () ∑

 Equation 3.22

35

Where φ is the scalar flux, which is used in the diffusion formulation as there is no angular prolongation

or restriction operators applied to the scalar flux which is solved for in the diffusion implementation, the

neutron group precursor derivative with respect to time is given by:

 Equation 3.23

The only differences in the derivation given in Ginestar

(9) and this derivation are that the scattering

term has been included in the leakage operator and the Ginestar derivation is for two groups, specifically.

As noted in the SIDK and quasi-static derivations, the time-dependent change in precursors can be solved

analytically with a selection of a representation of the power over the time step Δt, here expressed as h.

While the SIDK method developed uses a constant power over the time step, where the constant power is

the power at the beginning of the time step, the higher order backward method presented here from

Ginestar

(9) uses a linear representation of the power over the time step, where the linear representation is

given by:

 ()
 (

) Equation 3.24

where a and b are coefficients given by:

()()

. Equation 3.25

As mentioned, a variable time stepping strategy is presented in Ginestar

(9) which is applied to the

SIDK method with some modification, using the higher order discretization of the temporal flux

derivative. Alternatively, the higher order representations of the power over the time step from either

Ginestar

(9) or PARCS

(8) can be used with an arbitrary order of the temporal flux derivative, which is

shown for the HOBD method in Chapter 5. Lastly, it is possible to use the higher order method to

estimate the error of the lower order method, which allows the development of an adaptive time stepping

strategy based on the error estimator provided by the higher order calculation. Examples of adaptive

methods used in this work include the multi-step predictor-corrector approach used in MATLAB’s

implementation of a Runge-Kutta fourth and fifth order method (RK45)

(23), which is discussed and

36

compared to Pade approximant solutions for matrix exponential solutions in section 4.3 , as well as the

NDF and TR-BDF2 methods (21) (30).

3.1.4 SEMI-IMPLICIT DIRECT KINETICS

In order to derive the developed SIDK method, we will represent some of the proceeding equations for

flow and consistency highlighting the new method. Starting again from the time-dependent Boltzmann

transport equation in operator notation, we have:

 () ∑

 . Equation 3.26

If we take the direct kinetics matrix and assign every term implicitly (at time j+1) with the exception of

the precursors (at time j), and apply a backward finite difference approximation to the derivative of the

angular flux with respect to time, then we arrive at:

 () ∑

. Equation 3.27

Which is consistent with the angular flux formulation from direct kinetics (Equation 3.21) as shown

below:

[
(

)

 (

)

] [

] [

] [

] [

]. Equation 3.28

Where it should be noted that representing the precursors explicitly allows us to solve the transport

equation separately from the precursor equation. Finally, as many transport codes do not save the angular

fluxes from one step to the next, the previous angular flux is approximated as the zeroth scalar moment:

[

 ()] ∑

. Equation 3.29

Or alternatively, using the direct kinetics notation we have:

(

)

 . Equation 3.30

37

We now require a representation for the time-dependent precursors in order to solve for C
i+1

. We will

borrow this representation from quasi-static kinetics, without the use of weighting functions. This makes

the semi-implicit direct kinetics method a hybrid in the sense that the same number of time steps as direct

kinetics are used, but the system required to solve is much smaller. In contrast, a larger number of time

steps than the quasi-static method typically employs are used; however, there are no adjoints or other

weighting parameters that are problem-dependent that need to be solved. So, as the transport equation

can now be solved independently of the precursor equations, the precursors at time t can now be solved

analytically, following the quasi-static derivation without the introduction of the amplitude function. The

spatial and group dependent precursor concentrations as a function of time simply become:

 ()

 ()() Equation 3.31

There are two major advantages to this implementation and two drawbacks. The two advantages are:

the angular fluxes from each time step do not need to be saved, which significantly reduces memory

requirements. Also, the equations are now sequentially solvable, which further reduces memory

requirements and run time. The first drawback to this implementation is that precursors are represented

explicitly, which may require finer time steps than those typical of direct kinetics and could impact run

time adversely. The potential benefits and disadvantages of this approach are explored in Chapter 5. In

addition to this drawback, the time-dependent change in angular flux has been represented isotropically,

which is not a good assumption in areas where there is a high degree of anisotropy. However, for typical

reactor applications, the flux is largely isotropic, which has been demonstrated in other works

(11)

(59).

Although anisotropic behavior cannot be fully represented, as reactors are largely isotropic in nature, this

approximation is expected to be mitigated by memory savings, which are significant

(14).

38

Chapter 4 POINT KINETICS

The simplest approximation of transient reactor response is to calculate an overall, or average, power

change using reactivity coefficients. The process to obtain reactivity coefficients and other fundamental

nuclear data is illustrated in Section 4.2 for various non-benchmark scenarios for which these data is

needed and not provided. Using the point kinetics ODEs, it is possible to calculate an average reactor

response. Two cases are examined for point kinetics without feedback, as well as an additional case for

point kinetics with thermal feedback. These cases encompass verification via code to code comparisons,

analytical problems, and benchmark comparisons. This work seeks to demonstrate the transient thermal

evaluation capability that is present in AMP by interacting with point kinetics.

4.1 BURNER REACTOR INTEGRATED SAFETY CODE (BRISC)

The BRISC (Burner Reactor Integrated Safety Code) package has two primary components that run

both in C++ and in FORTRAN. The first component of the BRISC package is RASCAL, which is a 2D

diffusion code. RASCAL takes geometry input, as well as energy-collapsed and region-homogenized

neutron cross section data, which is obtained from running a lattice physics code such as SCALE, in order

to get cross sections such as νΣf, Σa, Σtr, etc. These cross sections are then used in conjunction with the

geometry file to generate a cell-dependent fission source using RASCAL. The geometry file is

compatible with either vacuum or symmetric boundary conditions. RASCAL also computes the critical

eigenvalues (keff), as well as a fission source, as mentioned above.

The kinetics package then provides the user with power changes as a function of time. The inputs to

this package include reactivity coefficients. Some of these reactivity coefficients (such as original fuel

temperature) can be obtained from AMP quasi-static calculations. There are two solution methods

employed by the kinetics package; the Crank-Nicholson approach and the Pade approximant. The Crank-

Nicholson solution method uses two inputs. These are the number of sub-cycles and the alpha value,

39

where the alpha value represents a range between forward Euler, backward Euler, and Crank-Nicholson.

The default value of alpha=1 denotes an implicit method which utilizes a backward Euler method.

4.2 DEVELOPMENT OF NUCLEAR DATA

To begin the integration of the kinetics module from BRISC (KMB) with AMP, the SCALE code was

used in order to generate relevant inputs. Typically, when developing a point or spatial kinetics code,

computational benchmarks are selected, which include reactivity coefficients as well as beta and lambda

values. Initial temperatures and thermal feedback models (if present) are also given. However, from an

applications perspective, this data must be generated for real world problems. This section illustrates the

process employed to obtain the basic nuclear data needed.

The main inputs needed for the kinetics calculations and subsequent comparisons were the reactivity

coefficients and the delayed neutron fraction (β) values. Thus, a 2D NEWT calculation was performed to

obtain keff and β values. The NEWT input can be found in APPENDIX A. From the base case (at the

first time step conditions), keff was found to be 1.0370. So to obtain reactivity coefficients, it is necessary

to perturb the fuel temperature and determine the reactivity response. This was done by raising and

lowering the fuel temperature by ±300K while other temperatures were not changed. For this data

generation, a pin cell case was run, consisting of a fuel rod, the helium gap, the zirconium-4 cladding, and

heavy water. A square cell with sides equal to the pitch was used in conjunction with reflecting boundary

conditions; which effectively assumes infinitely repeated pin cells, no neutron leakage and, thus, kinfinity

equal to keff. As this is a very simple case, a 4x4 and 8x8 mesh were employed, but this showed no effect

on the results. The pin cell, mesh, and results obtained are shown below in Figure 3 through Figure 5, as

well as in Table 1 and Table 2.

40

Figure 3 Geometry from pin cell case, 4*4 mesh.

Table 1: Delayed Neutron Fractions and Decay Constants

Delayed Spectrum Neutron
Group Constant Decay Mean Generation
 (Beta) Lambda Time (Λ)
 Fraction (1/s) s
1 2.40E-04 1.27E-02
2 1.45E-03 3.17E-02
3 1.34E-03 1.17E-01
4 2.94E-03 3.15E-01
5 1.07E-03 1.39E+00
6 2.65E-04 3.85E+00
Total 7.31E-03 1.00E-4

Figure 4 Group 1 fluxes (first 200 groups collapsed)

41

Table 2: Reactivity as a function of Fuel Temperature

keff Reactivity Tfuel (K)
1.061 0.0575 300
1.037 0.0357 607
1.021 0.0206 900

Figure 5 Reactivity as a function of fuel temperature

The Reactivity Coefficient (Tfuel) obtained from Figure 5 is -6*10-5 (per degree Kelvin), which is

small and negative similar to the typical value for a CANDU fuel reactivity coefficient (60). After the

reactivity coefficient for the fuel temperature was determined, a few other reactivity coefficients were

needed as inputs into KMB for the transient being run in KMB. This transient would alter several of the

temperatures simultaneously, which is fairly realistic; if you have something like a loss of coolant

accident (LOCA), the remaining coolant temperature will be elevated along with the structure, gap, and

fuel temperature. The next temperature reactivity coefficient was found for the structure, which is the

zirconium cladding. As expected, the reactivity coefficient for the zirconium cladding is smaller than that

for the fuel temperature. This is shown below in Table 3. Next, the moderator temperature reactivity

y = -6E-05x + 0.0745

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

R
e
a
c
ti

v
it

y
 (

U
n

it
le

s
s
)

Temperature (Kelvin)

Reactivity

Linear
(Reactivity)

42

coefficient was determined. This was done in a similar manner to the structure, or clad, temperature

reactivity coefficient. The moderator temperature appeared to have a negligible and unclear effect upon

reactivity, as is seen Table 4 below, where both calculations estimated the reactivity coefficient at -2E-06

(per degree Kelvin).

Table 3: Reactivity as a function of Structure Temperature

keff Reactivity Tstructure (K)
1.03699 0.035673 520
1.03698 0.035664 525
1.03697 0.035656 530

Reactivity Coefficient (Tclad) =-2E-06 (per degree Kelvin)

Table 4: Reactivity as a function of Moderator Temperature

keff Reactivity Tmod (K)
1.03699 0.035673 508
1.03698 0.035664 513

Reactivity Coefficient (Tmoderator) = -2E-06

43

4.3 POINT KINETICS WITHOUT FEEDBACK

The point-kinetics equations are a set of ordinary differential equations (ODEs)

(58), where there is

one equation for the power and one additional equation for each precursor group used. These equations

were presented in section 3.1.1 as Equations 3.5 and 3.6. If thermal feedback is neglected, the point-

kinetics equations predict an exponential jump in power followed by a slow exponential rise in power.

The KMB code implemented within AMP is compared to an externally developed Runge-Kutta multistep

predictor-corrector fourth- and fifth-order (RK45) code for comparison purposes as well as the NDF and

TR-BDF2 time integration strategies. In addition, both codes are compared to a one-group formulation for

the same problem, which can be solved analytically. The problem considered is an eight cent (where cent

is percent of βeff) step change positive reactivity insertion over a postulated ten second transient in a

representative fuel pin from the Halden research reactor (61) during startup (low power). Figure 6 and

Table 5 provide independent verification of the point-kinetics package KMB implemented within AMP.

Both solutions were shown as convergent under mesh refinement with comparable run times of less than

1 min with a time step size of 0.01 s for the problem shown.

44

Figure 6 Point Kinetics Power Changes

Table 5: BRISC, RK45, Analytic, and AMP power changes at t=3 s

Quantity
Power

(W)

Power
Change

(W)

Power Percent
Error

(from RK45)

Power Percent
Error

(from Analytic)
Six-group
(BRISC)

631.28 88.28 -0.01% 1.72%

Six-group
(NDF)

630.69 87.69 -0.1% 1.63 %

Six-group
(TR-BDF2)

630.68 87.68 -0.1 % 1.63 %

Six-group
(RK45)

631.21 88.21 1.71%

One-group
(Analytic)

620.60 77.60 1.68%

Six-group
(AMP)

631.30 88.30 -0.01% 1.72%

0.00001

0.0001

0.001

0.01

0.1

1

10

540

560

580

600

620

640

660

680

700

0.001 0.01 0.1 1 10

R
e

la
ti

ve
 e

rr
o

r
o

f
A

M
P

 v
s.

 R
K

4
5

 %

P
o

w
e

r
(W

)

Time (s)

AMP

RK45

NDF

TR-BDF2

Error

45

4.4 POINT KINETICS WITH THERMAL FEEDBACK

Using the point kinetics equations independently, it is possible to obtain power changes in a reactor in

response to a given reactivity insertion. If these equations are decoupled from thermal feedback, the

power first jumps rapidly, then grows approximately linearly. If a few seconds later, the power calculated

is fed to a similarly decoupled thermal calculation, the mathematical prediction of thermal response can

be several hundred degrees K for a modest reactivity insertion. In reality, the thermal response is not this

drastic in reactors due to thermal feedback and the coupling of the thermal equations through this

mechanism to the kinetics equations. Typical methods of handling this coupling include adding an ODE

to the point kinetics equations or to calculate thermal response on a larger scale, using thermal-hydraulic

response

(62).

Including thermal feedback adds one additional ODE to the system, which is shown below.

 Equation 4.1

(63)

In this equation, T is temperature, cp is specific heat capacity, ε is the fraction of fission energy

deposited as heat, H is height, D is diameter, A is a material-dependent constant, Tc is coolant

temperature, and t is time (where the geometry considered is a cylinder and the heat transfer considered

is natural convection.). For comparison purposes, the point-kinetics parameters developed by Dodds

(63)

were used with the point-kinetics-with-feedback model. The relevant parameters for the problem are

presented below in Table 6 and Table 7:

]
)(

])([
)([

1)(
25.0

25.175.0

tT

TtTAHD
tP

cdt

tdT c

p


 

46

Table 6 Point Kinetics with Feedback Problem Parameters

Parameter Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

β (Fraction) 2.2E-4 1.42E-3 1.27E-3 2.57E-3 7.5E-4 2.7E-4

λ (s) 1.24E-2 3.05E-2 1.11E-1 3.01E-1 1.14 3.01

Table 7 Point Kinetics with Feedback System Parameters

Parameter Value Units

P(t=0) .01 W

ρ(t=0) 4.3 Cents

Λ 5e-5 s

D 0.2 m

H 0.23 m

A 17.52 constant

Cp 1.012e4 J/kg-C

ε 1.0 unitless

Tc and T(t=0) 20 C

Δρ(t) -0.306 Cent/K

The problem considered was a step change in reactivity using six neutron precursor groups and

thermal feedback through a reactivity coefficient expressed in cents per degrees Celsius. The problem was

run for 1000 minutes, simulating an extended transient longer than 10 hours. The code developed for this

work used a Runge-Kutta multistep predictor corrector method using MATLAB, as well as the NDF and

TR-BDF2 time integrators. This code is compared to SKINATH, developed by Dodds

(63).

This method is similar to the methodology employed in AMP. However, the temperature distribution

is calculated by a 3D transient thermal solver within AMP using the IDA

(64) time integrator. This

integrator drives both the thermal and power calculations in AMP.

 The power and temperatures (system averaged) as a function of time from the reference SKINATH

and the RK45 code developed are shown in Figure 7 and Figure 8. The RK45 time integrator uses a

higher-order method relative to the first-order method (LSODE) used by SKINATH, which leads to a

47

peak power predicted by the RK45 method that is lower than that predicted by SKINATH, as well as to a

lag in time throughout the transient’s peaks and valleys. However, in fact, it is observed that both of the

variable higher order methods (NDF and TR-BDF2) also exhibit consistent behavior with the RK45

method. This agreement and the trends are consistent with the agreement demonstrated in Dodds

(63)

against an RK4 method. Similar trends and results are observed in the temperature plot presented in

Figure 8.

Figure 7 RK45 Point Kinetics with Thermal Feedback vs. SKINATH

-8

-6

-4

-2

0

2

4

6

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000

R
e

la
ti

ve
 E

rr
o

r
o

f
N

D
F

to
 T

R
-B

D
F2

 (
%

)

P
o

w
e

r
(W

)

Time (minutes)

SKINATH

RK45

NDF

TR-BDF2

Error

48

Figure 8 RK45 Temperature vs time vs. SKINATH

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000

R
e

la
ti

ve
 E

rr
o

r
o

f
N

D
F

to
 T

R
-B

D
F2

 (
%

)

Te
m

p
e

ra
tu

re
 (

C
e

lc
iu

s)

Time (Minutes)

SKINATH

RK45

NDF

TR-BDF2

Error

49

Chapter 5 TIME-DEPENDENT NEUTRON DIFFUSION

This chapter serves to explore the spatial and temporal discretization of the time-dependent

Boltzmann neutron transport equation with and without thermal feedback in fast and thermal reactors on a

core-wide scale. As such, for all problems considered in this chapter, independent two-group time-

dependent neutron diffusion codes were written for comparison to two-group benchmarks that are

primarily diffusion based, with the exception of the first benchmark considered. The first benchmark

considered is a one-dimensional fast reactor which was computed, by the benchmark (12), utilizing quasi-

static one-dimensional neutron transport. We will see the impact of using a neutron transport solution,

where angular discretization is treated, by revisiting the same benchmark problem in Chapter 6 with the

use of the Denovo radiation transport solver. The next two benchmark problems considered are reactivity

insertions in two-dimensional thermal spectrum reactors, where the first problem has no thermal feedback

and the second problem has thermal feedback. The problem without thermal feedback, the TWIGL

problem, is used to consider a number of time discretization strategies including comparisons to neutron

transport solutions, while the problem with thermal feedback, the LRA problem, is used to quantify errors

introduced primarily by frequency of cross-section update, which is where the SIDK method is shown to

be the strongest method, for medium error tolerances and spatial resolutions. The LRA problem

represents the primary target problem of the developed SIDK method, which would be in a multi-physics

framework where heterogeneous geometry including high fidelity neutron transport and thermal feedback

calculations could be included.

As has been demonstrated in the literature (6), quasi-static kinetics is the fastest of the spatial kinetics

methods when the flux shape changes slowly. However, if the flux shape is changing rapidly, such as

during a prompt supercritical transient like a control rod ejection, quasi-static kinetics can in fact be

slower than direct kinetics, due to the calculation of the collapsed point kinetics parameters that are not

adding any performance

(6). The SIDK method developed in this work does not share this approximation

50

of slow shape change, as it uses the same fine time step that is typical of direct kinetics, which for

medium error tolerances, can make the SIDK method faster than direct kinetics. For fine error tolerances,

higher order methods are recommended. This is demonstrated independently by a 1D neutron diffusion

program written by the author. This one dimensional diffusion program was developed to study the

performance increase of the method developed versus direct kinetics for the 16-A1 benchmark. In

addition, this section serves to illustrate the spatial convergence behavior of the SIDK method versus

direct kinetics, while section 5.2 will illustrate the temporal convergence for various methods including

higher order methods, and section 5.3 will illustrate the combined effects of spatial and temporal

convergence in the presence of thermal feedback, which introduces temporal errors that are not due to the

representation of the temporal derivative of the flux.

5.1 ONE-DIMENSIONAL FAST REACTOR BENCHMARK WITHOUT FEEDBACK

(ANL-16-A1)

The first benchmark problem chosen is a one-dimensional fast reactor benchmark. This is an

excellent problem to examine the impact of transport versus diffusion solutions, as the benchmark is one

of the few transport based spatial kinetics benchmarks available in the literature. In addition, the reactor

considered is a fast spectrum reactor, which have very different neutron mean generation times than

thermal reactors (typical thermal reactor mean generation time is 1E-4s, while typical fast reactor mean

generation time is 1E-7 s). The benchmark that was selected for this effort was ANL Benchmark problem

16-A1, which is a 1D spatial kinetics benchmark for a fast reactor (13)

(12). In this section, a presentation

of the problem description will be followed by a results subsection and an analysis subsection.

5.1.1 16-A1 PROBLEM DESCRIPTION

The problem features seven material regions and two energy groups, for which the cross sections are

provided in the benchmark. The parameters for the problem are shown below in Table 8 through Table

11.

51

Table 8: Cross Sections for Benchmark Problem 16-A1

Zone Group Sigma F Sigma T Sigma g->g Sigma g->g’

1 and 7 1 8.3441e-4 2.411e-1 2.336e-1 3.598e-3

 2 3.2776e-4 4.172e-1 4.07e-1 0

2,4, and 6 1 7.4518e-3 1.849e-1 1.777e-1 2.085e-3

 2 1.1061e-2 3.668e-1 3.537e-1 0

3 and 5 1 0 9.432e-2 8.571e-2 1.717e-3

 2 0 1.876e-1 1.713e-1 0

Table 9: Delayed Neutron Parameters for Benchmark Problem 16-A1

Delayed Neutron Group Delayed Neutron Fraction, Beta Decay Constant, lambda

1 8.1e-5 .0129

2 6.87e-4 .0311

3 6.12e-4 .134

4 1.138e-3 .331

5 5.12e-4 1.26

6 1.7e-4 3.21

Table 10: Point-Kinetics Parameters for Problem 16-A1

Reactivity Total Effective

Delayed Neutron

Fraction

Mean Generation

Time

Velocity

Group 1

Velocity

Group 2

1.110e-3 3.2e-3 3.655e-7 s 5.402e8 cm/s 9.191e7 cm/s

Table 11: Mesh Intervals for Problem 16-A1

Zone Number of Intervals Width

1 20 40 cm

2 24 47.374 cm

3 5 9 cm

4 16 34 cm

5 5 9 cm

6 24 47.374 cm

7 20 40 cm

52

This section serves to quantify the accuracy of the spatial discretization strategies implemented by the

SIDK approach as well as to demonstrate the computational advantage of the method developed over

using direct kinetics which is particularly large for this six neutron group precursor transient, so that the

SIDK may serve as an intermediate option between direct kinetics and quasi-static kinetics methods.

5.1.2 16-A1 RESULTS

The eigenvalue was within 600 percent-mille (pcm) of the 16-A1 benchmark and was shown to be

convergent under mesh refinement. An identical mesh to that presented in the 16-A1 benchmark yielded

an eigenvalue of .991826, which is within 1000 pcm of the benchmark. This difference is primarily

attributable to the fact that the 16-A1 benchmark is a transport benchmark. We will see in Chapter 6 this

error removed when utilized the Denovo code. The eigenvalues under spatial mesh refinement are shown

in Table 12 while a comparison of the steady-state fluxes and perturbed group 1 and 2 fluxes are shown

below in Figure 9 and Figure 10.

Table 12 Eigenvalues of Diffusion program vs. 16-A1 Benchmark

Mesh Eigenvalue Error from Benchmark

(pcm)

Error from fine mesh

(pcm)

114 0.991826 837.2 184.9

228 0.992923 727.5 75.2

456 0.993431 676.7 24.4

912 0.993675 652.3 0

53

Figure 9 Diffusion - Group 1 Steady-State and Perturbed Fluxes

Figure 10 Diffusion - Group 2 Steady-State and Perturbed Fluxes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 50 100 150 200 250

N
o

rm
al

iz
e

d
 F

lu
x

Radius (cm)

16-A1 t=.01s

16-A1 t=0s

Diffusion t=0s

Diffusion - DK -
t=.01s

Diffusion - SIDK -
t=.01s

SIDK_wdy/dt .01 s

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250

N
o

rm
al

iz
e

d
 F

lu
x

Radius (cm)

Diffusion - t=0s

Diffusion - DK -
t=.01s

Diffusion - SIDK
- t=.01s

SIDK_wdy/dt
.01 s

54

As it can be observed, all solutions employed in the SIDK diffusion code produce reasonable results

with respect to the benchmark. It is also observed that the SIDK method is extremely close to the direct

kinetics method, with a power rise within 0.2 % of the direct method. This difference is almost entirely

attributable to the exponential treatment of precursor change in addition to utilizing the beginning of time

step powers to compute the precursor change.

However, the semi-implicit direct kinetics method ran an order of magnitude faster than the direct

method. This difference may be somewhat lessened if iterative instead of direct solvers were employed,

which will be illustrated in section 5.3 ; however, it is still substantial. A speed comparison is shown

below in Table 13, in which the speed-up is largely due to the fact that the problem is a two-group

diffusion problem; hence, for the SIDK method, the matrix to be inverted is a matrix of rank=2*nodes. In

contrast, for the fully implicit direct kinetics, there are six spatial precursors at every spatial point, causing

the matrix to be inverted to be of rank=8*nodes, so having a 4 times larger rank matrix requires

substantially greater computational effort to invert. It is also shown that this performance increase

increases with spatial refinement, or as the problem size grows. It can also be observed in Figure 9 and

Figure 10 that for this problem, the inclusion of the time-dependent change in flux (scalar flux for the

diffusion case) made very little impact (less than 0.7 %) on the computed power magnitudes. This is due

to the fact that this case is a fast reactor which has a very high velocity, which makes the temporal

derivate of angular flux a less important term.

5.1.3 16-A1 ANALYSIS

Table 13 illustrates that using the same time step, spatial refinement causes a largely constant error

between the SIDK method and direct kinetics, and that the inclusion of the time-dependent change in flux

reduces this error. It is observed at finer spatial mesh sizes that this error is reduced, again for both cases.

The fine-mesh finite-difference diffusion code implementation is shown to have quadratic convergence in

space, which is the expected convergence of a finite-difference implementation. The following series of

55

figures will compare the error of the SIDK method with and without the time-dependent change in

angular flux to the fine spatial mesh direct kinetics solution, the 16-A1 benchmark point kinetics solution,

as well as the 16-A1 benchmark spatially integrated solution, using the same time step size of 0.01 s.

Table 13: Speed and Accuracy for 16-A1 Comparison at t=0.01s at various mesh refinement levels

Mesh Direct

Kinetics

(Reference)

Normalized

Power

Semi-Implicit

Direct-Kinetics

w/ dφ/dt

Normalized

Power

Power Error

(from Direct

Kinetics in

%)

Semi-Implicit

Direct-Kinetics

without dφ/dt

Normalized

Power

Power Error

(from Direct

Kinetics in

%)

Speed-up

(SIDK to

Direct)

114 1.603749 1.600722 0.1887 1.612184 0.5260 15.7

228 1.580238 1.577371 0.1814 1.588226 0.5055 25.8

456 1.568914 1.566122 0.1780 1.576690 0.4956 36.4

912 1.563355 1.560600 0.1762 1.571028 0.4908 36.6

Figure 11 Errors of SIDK with and without dφ/dt and direct kinetics (diffusion implementation)

versus spatially integrated benchmark powers at t=0.01s

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r
vs

.
Sp

at
ia

lly
 I

n
te

gr
at

e
d

 B
e

n
ch

m
ar

k
fl

u
xe

s
(i

n
 %

)

Number of Nodes

SIDK w d(phi)/dt

Direct Kinetics

SIDK no d(phi)/dt

56

Figure 12 Errors of SIDK with and without dφ/dt and direct kinetics (diffusion implementation)

versus point kinetics powers at t=0.01s

Figure 13 Errors of SIDK with and without dφ/dt and direct kinetics (diffusion implementation)

versus fine mesh direct kinetics powers at t=0.01s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r
vs

.
B

e
n

ch
m

ar
k

P
o

in
t

K
in

e
ti

cs
 in

 %

Number of Nodes

Direct Kinetics
SIDK w d(phi)/dt
SIDK no d(phi)/ddt

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r
vs

.
D

ir
e

ct
 K

in
e

ti
cs

 f
in

e
 m

e
sh

 a
t

t=
.0

1
 s

 in
 %

Number of Nodes

SIDK w d(phi)/dt

Direct Kinetics

SIDK no d(phi)/dt

57

5.2 TWO-DIMENSIONAL TWIGL SEED-BLANKET REACTOR PROBLEMS

WITHOUT THERMAL FEEDBACK

The TWIGL problem

(6)

(13) was selected as a benchmark to demonstrate the performance of the

method on problems without thermal feedback compared to a number of time integration strategies for

two-dimensional geometries for thermal spectrum reactors. In this section, a problem description

subsection will be followed by results and analysis subsections, which is concluded with an examination

of higher order methods applied to the same problem.

5.2.1 TWIGL PROBLEM DESCRIPTION

The compositions, cross sections, and delayed neutron data are as follows in Figure 14, Table 14, and

Table 15, while the remaining specifications are shown below. Each block in Figure 14 is 8 cm by 8 cm.

ν = 2.43

v1 = 1*107 cm/s

v2 = 2*105 cm/s

Dimensions = 80 X 80 cm

Perturbations

Step

ΔΣa2 = -.0035 t=0 s

Ramp

Σa2(t) / Σa2(t) = 1 – 0.11667*t t<=0.2 s

 0.97666 t>0.2 s

58

Figure 14 TWIGL Benchmark Compositions (Colors Denote 1, 2, and 3)

Table 14 TWIGL Composition Parameters

Composition Group i Di (cm) Σai (cm
-1

) υΣfi (cm
-1

) Σ1→2 (cm
-1

)

1 1 1.4 0.01 0.007 0.01

2 0.4 0.15 0.2

2 1 1.4 0.01 0.007 0.01

2 0.4 0.15 0.2

3 1 1.3 0.008 0.003 0.01

2 0.5 0.05 0.06

Table 15 Delayed Neutron Data

Group βi λi (s
-1

)

1 0.0075 0.08

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

 1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Y
n

o
d

e

Xnode

59

5.2.2 TWIGL RESULTS AND ANALYSIS

The eigenvalue computed with the developed two-dimensional two-group diffusion code (designed to

test the SIDK method) was within 65 pcm of that reported in the benchmark. Spatial mesh refinement

also caused greater agreement in transient results, demonstrated further for the LRA problem in section

5.3 . Figure 15 depicts the normalized power distribution in the reactor at time t=0 s. As can be observed

in Figure 16 and Figure 17, the powers computed with the SIDK approach were extremely consistent with

those computed in the same code using direct methods, while the results from TDTort and CONQUEST

basically illustrate different methodologies employed, where TDTort is a 3D time-dependent transport

code and CONQUEST is a 3D time-dependent nodal diffusion code, both using quasi-static kinetics.

This specific comparison shows a two-fold advantage for the SIDK methodology in terms of

computational speed relative to direct kinetics. The reason the SIDK method speed-up is not as

substantial as that observed in the 16-A1 problem is due to the fact that this problem uses only one

delayed neutron group, which reduces the additional size of the matrix utilized in direct kinetics.

Figure 15 Normalized Power Distribution (t=0s)

0
2

4
6

8
10 0

2

4

6

8

10

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 P
o

w
er

 P
ea

k
in

g

Xnode

Ynode

60

Figure 16 Ramp Results

Figure 17 Step Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.1 0.2 0.3 0.4 0.5 0.6

P
e

rc
e

n
t

Er
ro

r
(%

)

N
o

rm
al

iz
e

d
 P

o
w

e
r

Time (s)

SIDK

CONQUEST

TDTort

Direct

SIDK Error vs. Direct

SIDK error vs. CONQUEST

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.1 0.2 0.3 0.4 0.5 0.6

P
e

rc
e

n
t

Er
ro

r
(%

)

N
o

rm
al

iz
e

d
 P

o
w

e
r

Time (s)

SIDK

CONQUEST

TDTort

Direct

SIDK Error vs. Direct

SIDK Error vs. CONQUEST

61

Figure 18 TWIGL step problem errors at t=0.5 s versus fine time step (1E-5s) direct kinetics

It is observed from Figure 18 that the SIDK method converges under temporal refinement to the fine

mesh direct kinetics solution linearly and faster than the direct method, implying that the analytic

representation of the precursor concentrations is in fact out-performing the first order finite difference

approximation in direct kinetics, even though the direct kinetics representation is fully implicit. A speed

comparison is shown below in Table 16.

Table 16: Speed and Accuracy for TWIGL Comparison

Method Direct Kinetics (Reference, fully

implicit)

Semi-Implicit Direct-Kinetics

Normalized Power 1.990 1.986

Error N/A 0.2 %

Speed (s) 2 s 1 s

Speed-up (Relative to Reference,

in x faster)

N/A 2 x faster

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0.00001 0.0001 0.001 0.01 0.1 1

Er
ro

r
(%

)

Time Step (seconds)

SIDK Error

Direct Error

62

5.2.3 HIGHER-ORDER REPRESENTATIONS

As the TWIGL problem is a well known, relatively simple problem, a number of perturbations were

done on the problem in order to determine the advantages and disadvantages offered by the SIDK (11) as

well as the HOBD (9) methods. In addition to these hybrid kinetics methods, different time integration

strategies were also tested for the fully implicit direct solutions, including trapezoidal rule – backward

difference formulation, second order (TR-BDF2) (23) (30) as well as a variable order solver based on the

numerical differentiation formulas (NDFs) (21). Also, the data presented for a BDF6 method in (59) is

included for comparison purposes. TR-BDF2 is a multi-stage, multi-step method which is an implicit

Runge-Kutta method. The TR-BDF2 method uses two-stages which consist of a trapezoidal rule stage

followed by a second-order BDF stage. Both the TR-BDF2 and the NDF methods are adaptive methods

utilizing variable time stepping strategies with error estimation. The developed SIDK method is very

similar to the HOBD method, with the main difference being that the HOBD method uses a semi-implicit

representation of the power over the time step which is a weighted average of the initial and final powers,

where the SIDK method uses an explicit representation of the power over the time step.

Both first and second order SIDK methods, using the multi-step approach to discretize the time-

derivative of the flux, were used where the HOBD method only utilized a second-order formulation. The

fully-implicit direct, SIDK methods and HOBD methods all utilized constant time steps. Figure 19 and

Figure 20 are convergence and efficiency plots, respectively. The convergence plot is present in order to

determine the actual order of convergence of each method. In Figure 19, it is demonstrated that for the

fully-implicit direct kinetics, the first and second order SIDK, the second order HOBD, as well as the

NDF solvers are all first order solution methods.

63

Figure 19 Convergence orders of various solvers

The efficiency of each solver is shown in Figure 20. Of all of the first order choices, the HOBD

represents the best run time at coarse error tolerance, suffering no run time penalty vs. the SIDK method

and giving lower errors at very coarse time step sizes. The SIDK method represents the best choice at

intermediate error tolerances, giving slightly lower errors at the same run times as the other methods. At

low error tolerances, the TR-BDF2 solver is by far the most effective solver, yielding extremely low

errors (1E-7 %) with fairly coarse time steps. However, the TR-BDF2 method is slow due to the multi-

stage, multi-step process and is therefore not preferred at larger error tolerances. The TR-BDF2 method

is demonstrated to be a second order method.

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0.0005 0.005 0.05 0.5
Er

ro
r

(%
)

Time Step Size

NDF

BDF6

TR-BDF2

SIDK

HOBD

Direct

SIDK2

64

Figure 20 Performance of various solvers

5.3 TWO-DIMENSIONAL BWR BENCHMARK WITH THERMAL FEEDBACK (ANL-

14-A1)

The 14-A1 (or LRA benchmark

(12)) was selected to demonstrate the feasibility of the method for

complex geometries with thermal feedback as applied to light water reactors. The purpose of the two-

dimensional, two-group diffusion code was to test the SIDK method to compute the time and spatially

dependent power distribution with thermal feedback and compare with fully implicit direct kinetics, the

HOBD method, as well as reference solutions

(12)

(6)

(14). The developed program used first-order finite

difference spatial discretization, as described in section 2.3.1 . Temperatures were represented with a

first-order backward difference formulation, while cross sections were represented with a first-order

forward Euler formulation. In this section, a problem description subsection will be followed by a series

of subsections describing results and analysis.

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100
R

el
at

iv
e

Er
ro

r
(%

)

Run Time (s)

SIDK

Direct

NDFs

TR-BDF2

HOBD

SIDK2

65

5.3.1 LRA PROBLEM DESCRIPTION

Some of the benchmark parameters are presented below. The geometry, cross sections, and thermal

feedback model for the benchmark are included in Figure 21, as well as in Table 17 and Table 18,

followed by the thermal feedback specifications and equations 5.1 through 5.3.

ν = 2.43

v1 = 3*107 cm/s

v2 = 3*105 cm/s

Dimensions = 165 cm X 165 cm (Each block in Figure 21 is 15 cm by 15 cm)

Initial Mean Power in Fuel Regions = 1*10
-6

 W/cm
3

Axial Buckling (B
2
) = 1*10

-4
 for all regions, both energy groups

Material 6 is the control blade

Perturbation

Σa2(t) / Σa2(t) = 1 – 0.0606184*t t<=2 s

 0.8787631 t>2 s

Figure 21 Geometry and region numbers for LRA benchmark

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11

 1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Xnode

Y
n

o
d

e

66

Table 17 Cross Sections

Region Material Group i Di (cm) Σai (cm
-1

) υΣfi (cm
-1

) Σ1→2 (cm
-1

)

1 Fuel 1 with

rod

1 1.255 0.008252 0.004602 0.02533

2 0.211 0.1003 0.1091

2 Fuel 1 with-

out rod

1 1.268 0.007181 0.004609 0.02767

2 0.1902 0.07047 0.08675

3 Fuel 2 with

rod

1 1.259 0.008002 0.004663 0.02617

2 0.2091 0.08344 0.1021

4 Fuel 2 with-

out rod

1 1.259 0.008002 0.004663 0.02617

2 0.2091 0.073324 0.1021

5 Reflector 1 1.257 0.0006034 0 0.04754

2 0.1592 0.01911 0

Table 18 Delayed Neutron Data

Group βi λi (s
-1

)

1 0.0054 0.00654

2 0.001087 1.35

α = 3.83*10-11 Kcm3

γ = 2.034*10
-3

 K
-1/2

ε = 3.204 10
-11

 J/fission

 [
() ()

() ()]

 () Equation 5.1

()

() [(√ () √ ()] Equation 5.2

 () [
() ()

() ()] Equation 5.3

5.3.2 LRA STEADY-STATE RESULTS

The eigenvalue computed with the developed two-dimensional two-group diffusion code (designed to

test the SIDK method) was within 1 pcm of that reported in the benchmark. The control blade worth was

within 6 pcm of that reported in the benchmark. The steady-state normalized powers were within a

maximum difference of 3% of the benchmark, with an average of less than 1% error, as were the

normalized powers at 0.4 s into the transient. In order to make extensive mesh refinement possible, an

67

iterative solution strategy was adopted. The iterative package utilized for these solutions was Trilinos

(65). The iterative Aztec solver from Trilinos was employed for the solution of the linear systems

involved. The Aztec solver uses a Krylov

(66) subspace method with an incomplete LU (ILU)

factorization pre-conditioner. A comparison of the eigenvalues is shown below in Table 19, while the

normalized steady-state powers are shown below Figure 22 and differences in Figure 23. Employing the

Trilinos iterative solution strategy greatly sped up the run times, and was what made the comparison with

the direct method possible. The SIDK method still outperformed the direct method (in run-time) by a

factor of 2, which validates the computational advantage of using this method. Table 19 clearly

demonstrates that the eigenvalue of the code had converged to the correct solution.

Table 19 Eigenvalue Comparison

Code Mesh Size Eigenvalue Pcm Difference

CUBBOX 15 X 15 cm 0.99663 Ref

SIDK 15 X 15 cm 0.99790 127

SIDK 5 X 5 cm 0.99722 59

SIDK 2.5 X 2.5 cm 0.99683 20

SIDK .9375 X .9375 cm 0.99664 1

Figure 22 LRA steady-state case (SIDK program left, benchmark right)

0 2 4 6 8 10

0
5

10
0

0.5

1

1.5

2

2.5

0
5 10

15

0
5

10
15
0

0.5

1

1.5

2

2.5

Ynode
Xnode Ynode

Xnode

N
o

rm
al

iz
ed

 P
o

w
er

s

N
o

rm
al

iz
ed

 P
o

w
er

s

68

Figure 23 Percent Error of SIDK Diffusion code vs. CUBBOX Benchmark

5.3.3 LRA TRANSIENT RESULTS

 The transient represents a control blade drop, which is initiated by decreasing the thermal absorption

cross section of the rodded fuel in four adjacent assemblies. This results in a super prompt critical

transient. Below, in Figure 24 through Figure 28 are power and temperature comparisons of SIDK vs.

nodal codes CUBBOX and CONQUEST as well as the MOC code DeCart. We can see the differences in

the powers at t=0.4 s (Figure 25) are very similar to those shown in Figure 23. Note that detailed

comparisons of power shapes as a function of time were not provided in Gehin

(6). Table 20 compares

methods within the previous work while Table 21 compares the SIDK results to the results from the

literature (6) (12) (14).

0
2

4
6

8
10

0

2

4

6

8

10

0

1

2

3

4

Ynode

Xnode

N
o

rm
al

iz
ed

 P
o

w
er

 E
rr

o
r

in
 %

69

Figure 24 Normalized Power, t=.4s (SIDK left, CUBBOX right)

Figure 25 Percent Error of SIDK Diffusion code vs. CUBBOX benchmark, t=.4 s

0
2

4
6

8
10

0

5

10
0

0.5

1

1.5

2

2.5

0
2

4
6

8
10

0

5

10
0

0.5

1

1.5

2

2.5

0
2

4
6

8
10

0

2

4

6

8

10

0

1

2

3

4

Ynode
Xnode Ynode Xnode

N
o

rm
al

iz
ed

 P
o

w
er

s

N
o

rm
al

iz
ed

 P
o

w
er

s

Ynode

Xnode

N
o

rm
al

iz
ed

 P
o

w
er

 E
rr

o
r

in
 %

70

Figure 26 Temperature, t=2s (SIDK left, CUBBOX right)

Figure 27 Power vs. Time

0
2

4
6

8
10

0

5

10
0

500

1000

1500

2000

2500

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

0 0.5 1 1.5 2 2.5 3 3.5

P
o

w
e

r
(W

/c
m

3
)

Time (s)

SIDK

Direct

DeCart

CONQUEST

CUBBOX

MATLAB

HOBD

Ynode

Xnode Ynode
Xnode

T
em

p
er

at
u

re
s

(K
)

T
em

p
er

at
u

re
s

(K
)

71

Figure 28 Temperature vs. Time

Table 20: Speed and Accuracy for LRA Benchmark Comparison, SIDK versus Direct Kinetics

Code Direct Kinetics

(Reference)

SIDK HOBD MATLAB

(Independent)

Peak Power 9441 W/cm
3
 9460 W/cm

3
 9957 W/cm

3
 9202 W/cm

3

Difference N/A 0.2 % 5.58 % 2.53 %

Time 1.4395 1.44 s 1.44 s 1.4115 s

Difference N/A 0.03 % 0.03 % 1.95 %

Average Temperature 1796.4 K 1800 K 1881.3 K 1733.7 K

Difference N/A 0.2 % 2.19 % 3.5 %

Speed (s) 94 s 60 s 60 s 43 s

Speed-up N/A 1.6 x faster 1.6 x faster 2.2 x faster

Table 21: LRA Benchmark Comparison, FMFD versus Nodal and Transport Methods

Code SIDK CONQUEST

(Reference)

(6)

CUBBOX

(12)

DeCart

(14)

Peak Power 9460 W/cm
3
 5439 W/cm

3
 5734 W/cm

3
 2570 W/cm

3

Difference ~30 % N/A ~ 10 % ~ 50 %

Time 1.44 s 1.438 s 1.421 s -

Difference 0.1 % N/A ~ 2 % -

Average Temperature 1800 K 1154 K 1070 K 800 K

Difference ~30 % N/A ~ 10 % ~ 30 %

Speed (s) 60 s 163 s 180 s -

Speed-up N/A N/A 1.1 x slower -

0

500

1000

1500

2000

2500

0 0.5 1 1.5 2 2.5 3

Te
m

p
e

ra
tu

re
 (

K
)

Time (s)

CUBBOX

CONQUEST

SIDK-2000 step, 16X16 per
assembly
SIDK-1000 step, 3X3 per
assembly
Direct - 1000 step, 6X6 per
assembly
DeCart

MATLAB, 1000 step, 16X16
per assembly
HOBD

72

5.3.4 LRA COMPARISON WITH LITERATURE SOLUTION DISCUSSION

For the benchmark calculations, the methods used in this work versus those reported in the

benchmark were similar in nature, in as much as the benchmark calculations herein reported utilized a

two-group, two-dimensional diffusion solver. However, the benchmark was designed to test coarse mesh

or “nodal” methods, one of which utilized a sixth order polynomial Nodal Expansion Methods (NEM) to

treat transverse leakage between large or coarse nodes. Other codes reported in the benchmark used

similar types of higher-order expansions

(12)

(6). As such, the benchmark used one node per assembly,

resulting in 15 cm X 15 cm cells. Initially, the program developed herein to test the benchmark used a

first-order linear discretization, and was not designed to be a coarse mesh method. In addition, the initial

program utilized dense matrix direct solvers, which made only limited mesh refinement possible. Two

different direct solver packages were employed: a generic open source package, and the GNU Scientific

Library Package (67). The GNU Scientific Library (GSL) implementation employed an LU

decomposition, which was not optimized for the bandwidth of the problem. This implementation was

further limited by the dense storage method utilized by GSL. The semi-implicit direct kinetics (SIDK)

program used 15 X 15 cm mesh cells, or one node per assembly, as well as 5 X 5 cm mesh cells, or nine

nodes per assembly, utilizing the direct solvers. The finer mesh necessary for the lower order

discretization to reproduce the higher order nodal methods also results in a difference in the thermal

feedback implementation, as there was now considerable thermal variation, and therefore cross section

variation permitted within an assembly. Averaging the fluxes for each assembly to use assembly

averaged temperatures had a few percent effect on the results, which increased as the mesh was refined,

which is presented below.

At t=0s, the SIDK program is very consistent with the benchmark solutions. At t=0.4s, the SIDK

method is still very consistent with the benchmark, where thermal feedback has not had an impact yet. At

this time in the transient, the temperatures in the nodal codes as well as the diffusion program are nearly

identical to 300 K. It appears that the boundary conditions are handled differently between the nodal

73

codes and the fine-mesh finite difference (FMFD) code created to test the SIDK method. The initial

differences (Figure 23) are quite low, but it can be seen that they are the highest close to the reflected

boundary condition. Similarly, at t=0.4s, the highest differences (Figure 25) are near the reflected

boundary conditions, suggesting there may be some small leakage approximation differences between the

FMFD and the Nodal methods, but that overall the two methods agree well. Therefore, it appears that the

difference in the two results (Nodal methods versus FMFD) is coming from a difference in the thermal

feedback implementation. It is possible that the authors of the nodal codes interpreted the feedback

model to mean removal cross section, rather than absorption cross section, which would lead to a

substantially greater thermal feedback. It is also possible that some other relevant parameter is not being

interpreted in the same fashion by the authors’ of the nodal methods versus this work.

In order to verify the program developed, the first co-author on this work in conference publications

(11)

(68) Steven Hamilton wrote an independent verification program in MATLAB utilizing fine mesh

finite difference. Though the program created by Hamilton used a different discretization (cell centered

instead of face centered), it utilized the same kinetics method (SIDK). The agreement demonstrated

below between the Hamilton MATLAB program and the SIDK C++ program written by the author is

within 4 %, which is quite consistent with the agreement between the various nodal methods. Despite the

discrepancies between the two FMFD codes and the Nodal methods, we can see that the general trends,

shapes, and overall predictions of the SIDK program are still reasonable for such a severe transient, which

results in a prompt supercritical configuration. In addition, the smaller mesh did produce values that were

closer to the published values of a number of codes obtained from the benchmark and other references

(6)

(12).

Furthermore, a direct kinetics (fully-implicit) approach was also utilized in the SIDK test program.

This approach yielded powers that were closer to the benchmark published values and within 0.2 % of

those predicted by the SIDK method. Lastly, there has been some contemporary effort by others to

reproduce these results, using the MOC code DeCart

(14). Similar substantial differences between the

74

nodal methods and DeCart were shown in that work, indicating that this problem, due the severity, is

highly sensitive to the method selection, which is definitive in the sense that two independent methods

applied by three independent authors had substantial differences from the benchmark. Therefore, on this

transient where quasi-static methods are slower than direct methods, it is observed that the SIDK method

still performs faster by roughly a factor of 2 with acceptable accuracy for kinetics results of within 0.2 %.

Note that for this type of challenging problem, accuracy within ~5 % is deemed adequate

(12)

(6).

Above, in Figure 27 Power vs. Time, we can see the SIDK program captures the same trends and

general results as the coarse mesh methods. However, Figure 28 illustrates that SIDK over-predicts the

power, resulting in a large over prediction of average fuel temperature. This is due to the fact that for the

adiabatic model used, there is no way for the fuel to cool off. Therefore, the temperature is essentially

just the power integrated over time multiplied by a constant. The over prediction of power does appear to

be due to differences between FMFD and Nodal Expansion Methods (NEM). However, given the similar

differences observed in Table 20 from the DeCart approach

(14), the SIDK method still performs

comparably on this complex and highly severe LWR transient with thermal feedback, considering the

errors resulting from the discretization and the spread of results seen in current attempts to duplicate

benchmark results. This is particularly illustrated by the favorable results and run time comparison

against the direct method, utilizing both direct and iterative solvers. Figure 28 further illustrates the

homogenous temperatures for each assembly in the nodal codes, versus the heterogeneous temperatures

within an assembly of the FMFD approach.

5.3.5 LRA EFFICIENCY ANALYSIS

In order to quantify the impact of the thermal resolution on temperature feedback, the FMFD SIDK

code was altered so that each assembly would use an assembly averaged power in order to compute an

assembly averaged temperature, which would then be used in the adiabatic thermal feedback model to

update the cross sections. The errors in average fuel temperature, which is the best integral quantity over

the transient due to the use of the adiabatic model, for various spatial and temporal discretizations for both

75

the SIDK method and direct are presented in Figure 29. It is observed that the direct kinetics 352 time

step mesh, at fine spatial meshes, has a lower error than the 1000 step SIDK method, demonstrating that

for this problem, the direct method outperforms the SIDK method also due to the low number of

precursors for this problem, which is two. The 1000 step fully implicit direct method is used as the

reference solution.

Figure 29 Errors resulting from the 352 time step mesh versus the reference solution from the 1000

time step mesh in final average fuel temperature

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160

Er
ro

r
o

f
3

5
2

 t
im

e
st

ep
 v

er
su

s
1

0
0

0
 t

im
e

st
ep

 in
 %

Number of nodes per assembly

Direct 352 step

SIDK 352 step

Direct 1000 step

SIDK 1000 step

Direct - Homogenized Temp 352

SIDK - Homogenized Temp 352

HOBD 352 step

HOBD 1000 step

76

Though at intermediate time meshes (352 step), fully-implicit direct kinetics produces lower error and

run-times than the SIDK method at 1000 time steps, direct kinetics was found to be subject to large

oscillations with a suitably large time step (92 step). In addition to this, the SIDK method using either

352 steps or 1000s steps outperforms the direct method as medium spatial resolutions (at 36 or less nodes

per assembly). The SIDK method, with its explicit representation of power over the time step, utilizing

the power at the beginning of the time step, was found to be more accurate versus the HOBD method on

this problem, as the error due to the explicit update of cross-sections led to higher power rises per time

step with the semi-implicit representation of power.

77

Chapter 6 TIME-DEPENDENT NEUTRON TRANSPORT

This chapter serves to examine the resolution of angle and neutron energy of the time-dependent

Boltzmann equation in high fidelity, massively parallel radiation transport solvers able to represent an

arbitrarily high number of neutron energy groups, where up to forty-four energy groups are used. The

first problem examined is an infinite homogeneous medium, which serves to quantify temporal errors

resulting from various time step sizes as well as to ensure that the method as coded into the Denovo

radiation transport package is numerically identical (within machine precision) to the method as

implemented in MATLAB (for the infinite homogeneous problem only). The second problem examined

is the 16-A1 benchmark, previously examined in Section 5.1 . This section serves to quantify the

advantage of discretizing angle via the discrete ordinates approach versus the neutron diffusion approach

where angle is not treated. In addition, this problem serves to quantify the errors introduced by the

Denovo implemented SIDK method. The third problem serves to illustrate the potential fidelity and

scalability of the method by modeling a 3X3 “mini-assembly” control rod ejection using forty-four

neutron energy groups in fully heterogeneous geometry, where the problem and transient is comparable to

the current state of the art with the exception of the significant increase in neutron energy group fidelity

and within pin temperature distirbutions offered in this dissertation work (59) (36).

6.1 INFINITE HOMOGENEOUS MEDIUM (IHM) PROBLEM

The SIDK method was derived and introduced in section 3.1.4 following the descriptions of the

factorization and the direct methodologies. The SIDK method shares some features of both of these

approaches, while featuring its own approximations. There are two main approximations: the first

approximation involves replacing the angular flux with the scalar flux moments in the source term,

initially using only the zeroth moment, or neglecting the temporal flux derivative altogether, both of

which are considered in this work. It is demonstrated that for fast reactors with high velocities or for

thermal reactor undergoing mild transients this assumption is quite valid, generally introducing errors that

78

are 1 % or less. The second approximation entails treating the precursor source term explicitly, which

enables a sequentially solvable form of the coupled transport and precursor equations, and allows the

transport equation to be solved separately from the precursors for the direct method. The computational

advantages of this method include the ease of implementation in high-fidelity massively-parallel transport

codes and comparatively low memory requirements

(59), as well as faster speeds than direct methods

using the same time discretization.

In order to confirm convergence as well as the order of convergence of the SIDK method to an exact

solution, an infinite homogenous medium problem was selected that could be solved exactly using point

kinetics, as there is no shape dependence. In the creation of this verification program, an off-the-shelf

academic program was leveraged (MATLAB) which explored several new aspects of point kinetics for

verification and solution approaches.

In order to obtain an exact solution for the two-group infinite homogeneous medium problem, point

kinetics can be used. However, without solving the adjoint problem, each energy group must be

represented explicitly to obtain the exact solution. The difference in using multiple energy groups in the

point kinetics equations is the addition of one ODE for each additional energy group, which allows

explicit representation of each group’s mean generation time. This difference primarily shows up in the

prompt jump portion of the transient; however, the difference is minor after the prompt jump.

The SIDK method was coded into MATLAB for an infinite homogeneous benchmark problem. This

method, which is the method used for the spatial kinetics calculations in Denovo, was compared to a

multi-group point kinetics formulation to ensure that the method was numerically stable and error

bounded. The method is convergent when the time-dependent change in flux term is included, which it is

in this problem; some other problems considered however, have a minimum error due to the neglect of

this pseudo absorption term. Therefore, in addition to the verification of the coding of the method in

Denovo and the demonstration of the linear convergence of the method, an examination of the importance

79

of the inclusion of the time-dependent change in flux is also included here. The parameters considered in

this problem are consistent with the mean generation time of a fast reactor. It is demonstrated that in the

fast reactor case, neglecting the time dependent change in flux term introduces a small error, particularly

for short time periods. This is relevant in the results presented in the section 5.1 , for which the impact of

neglecting the time dependent change in scalar flux is also considered. The SIDK method used time steps

ranging from 0.1 seconds to 1e-5 seconds.

6.1.1 IHM PROBLEM DESCRIPTION

The problem considered is a two-dimensional evaluation of an infinite homogenous medium. There

is no material variation and all boundary conditions are reflective. The perturbation considered is a 69

cent step in reactivity. The parameters are shown below in Table 22 and Table 23, for which this

reactivity perturbation results in a power increase of a factor of three. The Denovo case is compared to

MATLAB for the same conditions.

Table 22: Point Kinetics Parameters

Parameter Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Beta 2.42734e-4 1.45207e-3 1.33159e-3 2.91368e-3 1.03430e-3 2.5233e-4

Lambda 1.27172e-2 3.16469e-2 1.16552e-1 3.13889e-1 1.38265 3.82153

Table 23 IHM Cross Sections

Group Sigma F Sigma T Sigma g->g Sigma g->g’ Velocity

1 7.4518e-3 1.849e-1 1.777e-1 2.085e-3 5.402e8 cm/s

2 1.1061e-2 3.668e-1 3.537e-1 0 9.191e7 cm/s

80

6.1.2 IHM RESULTS AND ANALYSIS

The power rise comparison is shown below in Table 24, which effectively shows identical results

(using all significant figures the difference was 2.5E-8 %). The Denovo computed powers for the SIDK

method were compared to the Matlab computed powers to ensure that the method was coded properly into

Denovo, yielding errors all below 2E-8 %, which is effectively the tolerance of the solvers utilized. The

results of the various time steps versus the two-group point kinetics solution solved using the eigenvalue

decomposition (which is exact for the infinite homogeneous problem) is shown in Figure 30, while the

error of the semi-implicit method with and without the time-dependent change in angular flux is shown in

Figure 31.

Table 24: Infinite Homogenous Medium Power at t=10 s Comparison

Code Final Power Percent Difference

Denovo 1426.442992 0.0 %

MATLAB 1426.442992 N/A

Figure 30 Semi-Implicit Direct Kinetics with dφ/dt (red largest time step, pink smallest time step)

versus Two-group point kinetics using eigenvalue decomposition, which is exact (in black)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

Time (s)

N
or

m
al

iz
ed

 P
ow

er

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Time (s)

N
o
rm

a
liz

e
d
 P

o
w

e
r

delt = 0.1s

delt = 0.01s

delt = 1e-03s

delt = 1e-04s

delt = 1e-05s

Exact Solution

81

Figure 31 Relative error of semi-implicit decoupled direct kinetics with and without inclusion of

dφ/dt

 Figure 30 clearly illustrates that the semi-implicit direct kinetics (SIDK) method converges to the

multi-group point kinetics solution (solved exactly). It is clear from Figure 31 that the error decreases

linearly with time step size, and that the method is linearly convergent when the time-dependent change

in angular flux is included. It is clear when this term is neglected that there is a minimum error with time

refinement that comes from treating the initial power rise, which takes a fixed amount of time, as an

instantaneous jump. It is demonstrated that the magnitude of this error is proportional to the mean

generation time of the neutrons; therefore, the prompt jump approximation is generally acceptable for fast

systems, while generally inacceptable for thermal systems. The normalized powers of the SIDK method

using the coarse time step size of 0.01 s with and without the inclusion of ∂φ/dt as well as the exact multi-

group point kinetics utilizing the eigenvalue decomposition method are presented in Figure 32, while the

error as a function of time resulting from the coarse time step size of 0.01s or the neglect of ∂φ/dt is

shown in Figure 33.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00

R
el

at
iv

e
Er

ro
r

Time Step Size (s)

Error w d(phi)/dt

Error w/o d(phi)/dt

82

Figure 32 Infinite Homogeneous medium test problem

Figure 33 Infinite homogeneous benchmark error of coarse time step size vs. analytic solution

1

201

401

601

801

1001

1201

1401

1601

0 2 4 6 8 10 12

N
o

rm
al

iz
ed

 P
o

w
er

s

Time (s)

SIDK t=.01s no d(phi)/dt

SIDK t=.01s w d(phi)/dt

Eigenvalue Decomposition -
exact

0

1

2

3

4

5

6

7

0.01 0.1 1 10

Er
ro

r
(%

)

Time (s)

Error SIDK t=.01s w d(phi)/dt vs
analytic

Error SIDK t=.01s no d(phi)/dt vs.
SIDK t=.01s w d(phi)/dt

83

6.2 TRANSPORT - ONE-DIMENSIONAL FAST REACTOR BENCHMARK

This section will serve to verify the spatial kinetics implementation in Denovo as well as

demonstrating the impact of using a neutron transport solution, where angular discretization is treated, by

revisiting the same benchmark problem that was in Chapter 5 with the use of the Denovo radiation

transport solver as opposed to the SIDK time-dependent diffusion code.

6.2.1 16-A1 TRANSPORT – STEADY-STATE RESULTS

The first step in the spatial kinetics process is the eigenvalue calculation. As Denovo is only two- or

three-dimensional, the problem was run with reflecting boundary conditions on the top and the bottom to

convert the problem to be effectively 1D. The eigenvalue calculated was within 1 pcm of the 1.000198

reported in the benchmark, which is substantially closer than the 650 pcm difference from the finest mesh

case of the diffusion program. In addition, the comparison of diffusion versus the transport benchmark

and Denovo serves to illustrate the advantages of transport solutions. It is demonstrated that due to poor

treatment of interfaces in diffusion approximations to the transport equation, both the eigenvalue and

spatial flux distribution calculated in the diffusion implementation suffer spatial errors that are not

removed under mesh refinement. The spatial flux comparison is shown below in Figure 34, which

illustrated that all of the fluxes were within 1 % of the benchmark. As relative error is plotted, this

quantity is generally highest on the boundaries of the problem, as that is where the flux is the lowest. The

flux comparison with the diffusion program from section 5.1 is shown in Figure 35, quantifying the error

typically introduced in diffusion approximations, particularly at the material boundaries.

84

Figure 34 Denovo vs. ONEDANT group 1 (fast) flux solution

Figure 35 Errors at t=0s versus 16-A1 Benchmark in %, Group 1 Flux for Denovo and Diffusion

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

R
e

la
ti

ve
 E

rr
o

r
(%

)

N
o

rm
al

iz
e

d
 F

lu
x

Radius (cm)

Denovo

Benchmark

Rel Error

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250

P
e

rc
en

t
Er

ro
r

(A
b

so
lu

te
)

Radius (cm)

Denovo Error

Diffusion Error

85

6.2.2 16-A1 TRANSPORT – TRANSIENT RESULTS

To continue the development of the spatial kinetics capability for the AMP-Denovo multi-physics

framework, the next step was to obtain the time-dependent fluxes, starting with the benchmark solution at

t=0.01s, where this simulation neglected the time-dependent flux term. The impact of using the isotropic

approximation in Equation 5.11 has been demonstrated in other works

(59)

(14). The impact of including

this term is shown above in section 6.1.2 as well for this problem in section 5.1 . The initial fluxes come

from the steady-state solution shown in Figure 34. The perturbation is a change in material densities in

two of the fissile regions, which constitutes an increase in the fission cross section in the leftmost region

while simultaneously decreasing the fission cross section in the rightmost region by 5 % each. The time-

dependent flux solutions are run as fixed source problems. The prompt jump or first time step is run

using steady-state spatially dependent precursors as the fixed source. All subsequent time steps are run

using analytically determined space and time-dependent precursors. The comparison of the Denovo

fluxes using the SIDK method versus the benchmark flux at the only time-step included in the benchmark

where the error (of the benchmark codes) was deemed acceptable was at t=.01 s after the perturbation,

which is shown below in Figure 36, which exhibit a very reasonable agreement. All of the perturbed

fluxes were within 5 % of those given in the benchmark solution.

86

Figure 36 Transport - Group 1 Steady-State and Perturbed Fluxes

Figure 37 Transport - Group 2 Steady-State and Perturbed Fluxes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250

N
o

rm
al

iz
e

d
 F

lu
x

Radius (cm)

DENOVO t=0

DENOVO t=.01s

16-A1 t=.01s

16-A1 t=0s

Diffusion t=0s

Diffusion - DK -
t=.01s
Diffusion - SIDK -
t=.01s
SIDK_wdy/dt .01 s

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250

N
o

rm
al

iz
e

d
 F

lu
x

Radius (cm)

Diffusion - t=0s

Diffusion - DK -
t=.01s
Diffusion - SIDK
- t=.01s
Denovo - t=0s

Denovo - t=.01s

SIDK_wdy/dt
.01 s

87

6.2.3 16-A1 TRANSPORT - ANALYSIS

In order to tie the BRISC package, implemented in AMP, to the Denovo SIDK computed powers, as

well as compare with the point kinetics results reported in (12), the BRISC package was utilized within

AMP to compute the time-dependent spatially averaged powers for the 16-A1 problem. The successful

completion of this objective further verifies the point kinetics capability implemented in AMP for fast and

thermal systems, which demonstrates its readiness to be utilized as a point kinetics package for a quasi-

static spatial kinetics implementation within the AMP multi-physics framework. In order to calculate the

amplitude weighting function for quasi-static kinetics, point kinetics is used. The parameters for the point

kinetics solutions come from the adjoint flux collapsed over energy and angle, which were taken from the

point kinetics parameters presented by Goluoglu

(13). The comparison of the amplitude function using a

Runge-Kutta multi-step predictor corrector algorithm, the BRISC package as implemented in AMP and

the 16-A1 benchmark are shown below in Figure 38, which exhibit excellent agreements. The benchmark

utilized a quasi-static implementation, for which a reactivity coefficient is calculated for each time step.

The SIDK implemented method in Denovo uses the perturbation from the benchmark, which

neglecting the time-dependent change in flux, causes Denovo to over-predict the powers at very short

time scales. After 0.001 s however, the Denovo results are in good agreement (within 5 %) with the point

kinetics results reported in the benchmark, where the results reported are from the adjoint weighted point

kinetics functions, or the aforementioned amplitude function.

As noted previously, there were some discrepancies in the results reported in the benchmark. For

example, as quasi-static kinetics uses the amplitude function as a weighting function for the magnitude of

the integrated spatial powers, the integrated spatial powers from the benchmark should exactly match the

amplitude function. While the agreement reported in the benchmark is not exact, it is evident that the

spatially integrated magnitude of the benchmark solution at 0.01s does closely match the amplitude

function from the benchmark, as well as the AMP and RK45 computed powers. In addition to this

discrepancy, as the codes used in the benchmark deviated from one another by more than 2 % after 0.01s

88

(which was the maximum deviation allowed in the benchmark problems

(12)), this was the only time step

that the spatially dependent powers were available for. The Denovo results between 1 and 2 s are slightly

lower than the point kinetics results from the benchmark, which was also the case for the spatially

integrated values from the benchmark versus the point kinetics results in the benchmark at t=0.01s. As

mentioned, this benchmark was primarily chosen for several reasons: it is a neutron transport based

benchmark, which is not common for kinetics benchmarks, it allowed a point kinetics comparison with

the amplitude function, which offered a chance to benchmark the AMP point kinetics, and it is a fast

reactor, while many other kinetics benchmarks are thermal reactors. Given the discrepancies of the codes

utilized in the benchmark, the 5 % agreement exhibited by Denovo with the benchmark results is deemed

to be reasonable.

Figure 38 RK45 vs TDTort Amplitude

0

1

2

3

4

5

6

0.00001 0.0001 0.001 0.01 0.1 1 10

P
o

w
e

r
(N

o
rm

al
iz

e
d

 t
o

 1
 a

t
st

ar
t)

Time (seconds)

RK45 - Point Kinetics

AMP - Point Kinetics

16-A1 - Point Kinetics

DENOVO- Spatial Kinetics

16-A1 - Spatial Kinetics

89

6.3 HALDEN REACTOR

In order to demonstrate the parallel, high-fidelity, heterogeneous geometrical treatment, arbitrarily

high number of neutron energy group advantages offered by implementing the demonstrated non-

intrusive stable and robust SIDK method within steady-state radiation transport solvers internally coupled

in a multi-physics framework, a heterogeneous reactor problem that had been verified and validated with

the AMP thermo-mechanics code was chosen for a kinetics problem (17) (69) (70) (16). The reactor

problem considered is the Halden research reactor, which is a heavy boiling water reactor (HBWR)

located in Norway near the Swedish border. The reactor is a heavy boiling water reactor with a maximum

power of 25 MW thermal, with a water saturation temperature is 240 C (513 K) and the reactor operates

at a pressure of 33.3 bar. A cross-section of the reactor is shown below in Figure 39 Cross Sectional

Schematic of the Halden Reactor (61) (71). There are several advantages of using this problem as a

demonstration of capability with some drawbacks. The advantages are that the Halden reactor is a well

characterized research reactor, with many thermo-mechanics experiments including in-core thermal

couples and detectors, experimental temperature data from SCRAM experiments, as well as post-

irradiation experiments (PIEs). In addition to the experimental nature of the reactor, the thermo-

mechanics benchmarks from the reactor have been widely used to validate fuel performance codes

including FRAPCON (5) (72) (73) and AMP (15) (16), among others.

There were some drawbacks to this selection of demonstration problem, which were primarily

centered on the fact that the reactor geometry was highly irregular; furthermore, it proved quite difficult

to obtain detailed loading patterns for neighboring fuel rod and assembly information, due to the number

of active test locations during any single test. Due to the highly irregular lattice, the geometry for the

demonstration problem in Denovo was simplified to standard square pitch, as to make the demonstration

problem more general in nature. As such, there are no experimental comparisons available for the results

of the benchmark problem.

90

Figure 39 Cross Sectional Schematic of the Halden Reactor Core

6.3.1 DENOVO - EIGENVALUE

The steady-state calculation begins with a data processing step, which consists of generating nuclear

data with the SCALE (24) code, using the TRITON wrapper or the NEWT 2D discrete ordinates module.

The next step is the generation of cross section libraries for steady-state (initial conditions) radiation

transport using the CSAS-I module. Once these cross sections are generated, they are fed to an

eigenvalue calculation using Denovo, which saves a cell wise spatial steady-state precursor source for

spatial points owned by each processor.

In order to verify the geometry configuration for the initial conditions of the modified Halden

problem, as there was no external verification or validation information available for the modified case,

the NEWT 2D discrete ordinates module for SCALE was used. The results of the Denovo and

91

corresponding NEWT solution are shown in Figure 40. The geometry for the control rod ejection

problem is a 3 × 3 mini-assembly. This assembly consists of typical fuel pins from the Halden research

reactor, which are ten percent enriched UO2 fuel with Zirc-4 cladding. The fuel pins are approximately

five mm in radius, with a pitch of 1.4224 cm. The Halden reactor is a Heavy-Boiling Water Reactor

(HBWR) which is D2O cooled and moderated. This geometry was modeled in NEWT, within SCALE,

which employs a rigorous cross-section treatment able to provide multi-group cross sections that preserve

reaction rates from 1D continuous energy data (from CENTRM) through the 238-group ENDF library.

The CSAS-I module within SCALE was also used to generate cross sections for Denovo. The NEWT

results were compared with the Denovo results, and the eigenvalues were 145 pcm different. Denovo

yielded a keff of 1.06899, while NEWT yielded a keff of 1.07054. These differences are attributable to

cross section processing differences between CSAS-I and CENTRM, used in NEWT. The visual

differences in Figure 40 are due to the fact that Denovo uses a structured Cartesian mesh with volume

weighted materials in each cell, while NEWT uses an unstructured extended step characteristic mesh

which auto-refines to capture material boundaries. Mesh refinement mitigates these visual differences.

Figure 40. Denovo Multi-pin solution unnormalized fast flux (left) and NEWT unnormalized fast

flux (right).

92

6.3.2 SCALING STUDY

A scaling study was performed on the University of Tennessee Nuclear Engineering Computational

Cluster (NE-Cluster) (74) in order to determine the relative speed-ups to be expected in massively-parallel

cases such as those run on supercomputers such as Jaguar (10) or Kraken (19), operated by the National

Center for Computational Sciences and the National Institute of Computational Sciences, respectively.

The NE-Cluster is a medium size, largely heterogeneous cluster consisting of thirty-one computational

nodes possessing between four and forty eight cores each. In order to make a scaling study relevant,

groups of identical cores were selected from the following groups, or queues:

 Gen3 – Core i7 nodes, 12 nodes in group, 8 cores each, 2.8 GHz each

 Gen4- Sandy-Bridge Core i7 nodes, 3 nodes in group, 8 cores each, 3.4 GHz each

 Super – A server node with four processors, each with 12 AMD cores. 48 cores total, 2.4

GHz each

93

Figure 41 Denovo Scaling Study

We can observe that the speed-up of the case is roughly linear from two to sixteen cores. After

sixteen cores however, the small spatial size of the problem (~80,000 mesh elements) is causing a limiting

mesh decomposition, where in the 48 core case, each core is only receiving ~1,600 mesh elements. In

other Denovo scaling studies, it has been determined that going below 2,500 mesh elements per core does

not result in significant speed-ups as more cores are added, due to communication burdens, even if the

cores are on the same processor. Communication overhead from Denovo is further illustrated in Figure

41 by the supernode computational speeds. Even though the supernode has slower cores than the gen3

nodes (2.4 GHz versus 2.8 GHz for the gen3 nodes), the supernode runs roughly 30 % faster than the

gen3 nodes due to the reduced communication burden, which has been observed on the distributed nodes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

0 10 20 30 40 50 60

R
e

la
ti

ve
 S

p
e

e
d

u
p

 o
f

su
p

e
rn

o
d

e
 t

o
 g

e
n

3

C
P

U
 T

im
e

 (
s)

Number of Cores

Super

Gen4

Gen3

Supernode Speedup

94

to be roughly ~40 % of the computational effort (spent in system calls for communication.) This study

illustrates the computational advantages of parallelism for Denovo and acts as a guide for the appropriate

spatial decomposition to use for varying processor/core counts when determining the number of cores

appropriate for a particular spatial case as well as how large a case needs to be to warrant very large

processor counts.

6.3.3 MULTI-PHYSICS - THERMAL SENSITIVITY

The following process has been developed within the AMP framework. The initial step in the process

involves generating delayed neutron data with the SCALE code. The next step is the generation of cross

section libraries for the time dependent transport using the CSAS-I module. Once these cross sections are

generated, they are fed to an eigenvalue calculation using Denovo within the AMP framework. The

power distribution from the Denovo computation is mapped to the AMP code, which computes the

temperature distribution. These temperatures are used in rings to update the cross section generation

parameters in CSAS-I, which generates a new cross section library. These new cross sections are used to

repeat the eigenvalue computation until it is converged (within 1 Kelvin) with the temperatures at which

the cross sections were computed. In Figure 42 through Figure 44, the results of the two-way converged

thermal solution to the Halden 3x3 problem, with the control rod removed, is depicted. The AMP input

files were generated by utilizing the AMP input generator, using the parameters from the Denovo case.

The Denovo inputs can be found in APPENDIX B.

95

Figure 42 Denovo unnormalized power

Figure 43 AMP normalized specific powers in W/g. Maximum power legend shown on left,

minimum power legend on right

Figure 44 AMP pin temperatures (Kelvin) Maximum pin on Left, Minimum on Right

96

This level of within pin resolution is not currently present in any steady-state solutions, let alone

transient solutions (68). In order to begin assessing the impact of the temperatures that were a result of

the 3D calculated powers that were internally mapped to AMP, a sensitivity study was done. The first

case uses cross sections which are all at 300 K, which represents no thermal calculation. The second

case, or the average case, uses average pin temperatures, which is the current standard for high resolution

transport based kinetics with thermal feedback (36). The third case uses within pin temperatures in rings,

which represents a new level of fidelity (75). The sensitivity of the eigenvalues is shown below in Table

25.

Table 25 Eigenvalue Sensitivity to Cross-Section Temperatures

Resolution None Average Ringed

K-eff 1.07658 1.02769 1.03001

Pcm off normal 0 4541 4326

97

In Table 25, predictably, having the temperatures of all materials perturbed several hundred degrees

had a substantial negative impact on the eigenvalue, which is the expected result. However, when the

temperatures were updated to represent the within pin distribution instead of the average, a change of over

200 pcm was observed. This is a fairly substantial change in the eigenvalue, which agrees well with

preliminary related efforts (75). The reason for this shift is the combination of material self-shielding in

the outer ring of the pellet that now has a lower temperature, which will further elevate fission cross

sections. The higher temperature region in the center was already seeing a lower flux, so the fact that it

now has lower chance to fission is mitigated by the increased cross sections in the higher flux outer ring.

6.3.4 ENERGY-GROUP SENSITIVITY

One of the major advantages offered by the Denovo radiation transport package over contemporary

three-dimensional discrete ordinates time-dependent transport solvers (such as TDTORT (13)) other than

its modernism and parallelism is the fact that it can represent an arbitrarily large number of neutron

energy groups. In order to demonstrate the relevance of this addition, a sensitivity study was done on the

44-group library used to see the differences in eigenvalue and reactivity caused by using either a different

number of energy groups or different cross-section processing routines for the same numbers of energy

groups. To carry out this evaluation, a customized 8-group cross section library was prepared using the

SCALE code suite using two different cross section processing options as well as the more traditional two

group structure. The results of this study are shown below in Table 26.

Some background on the collapsing scheme used is needed in order to understand the large changes

in eigenvalue observed in the collapsed libraries. The cross section collapsing mechanism in NEWT uses

the following methodology:

 The eigenvalue and system fluxes are solved for using the fine-group cross section library

 The fine-group fluxes are collapsed using the system average flux

 Reaction rates are therefore only preserved for the system average fluxes.

98

Therefore, the spectral effects of each material are lost in the collapsing process (i.e. the spectrum

should be softer around the guide tube where the water is due to moderation, and the spectrum should be

harder in the fuel pins relative to the system average). This loss of spectral resolution lends itself to the

large variability in eigenvalue shown below (76). As for the variation seen in the BONAMI cross section

processing, BONAMI uses the Bondarenko method, which relies on the Narrow Resonance

approximation, which is best suited to fast reactor applications. As the system under study is a thermal

reactor, the Bondarenko method (using no Dancoff factor corrections) is not the ideal choice of cross

section processing methods; however, its inclusion illustrates that impact of different cross section

processing choices (77).

Table 26 Eigenvalue and Reactivity Sensitivity

Cross Section

Processing

Number of

Energy

Groups k-eff

pcm

difference

to

reference perturbed k

Reactivity

(cents)

Reactivity

% diff to

reference

Continuous Energy

(CENTRM) 44 1.08400 Reference 1.08455 7.60390 Reference

Continuous Energy

(CENTRM) 8 1.10551 2151.3978 1.10604 7.34873 3.35580

Continuous Energy

(CENTRM) 8 1.11730 3330.6138 1.11783 7.22224 5.01926

Bondarenko

Method

(BONAMI) 2 1.14351 5950.9196 1.14413 8.53003 12.17972

99

It can be observed from Table 26 that while the selection of cross section library had substantial

impacts (up to 6000 pcm on eigenvalue), the impact on reactivity was considerably smaller, a maximum

of around 10 %. However, in a three dollar prompt supercritical type transient, such as the LRA

benchmark in section 5.3 , a 12 % difference in reactivity would correlate to a ~36 cent difference, which

was considerably larger than the difference between the developed two-group two-dimensional FMFD

code and the Nodal code CUBBOX (which was 6 pcm).

6.3.5 THREE-DIMENSIONAL CONTROL ROD EJECTION

The transient process using the SIDK method with Denovo begins with a data processing step, similar

to the eigenvalue calculation, which consists of generating nuclear data with the SCALE (24) code, using

the TRITON wrapper or the NEWT 2D discrete ordinates module. The next step is the generation of

cross section libraries for steady-state (initial conditions) and time-dependent transport using the CSAS-I

module. Once these cross sections are generated, they are fed to an eigenvalue calculation using Denovo,

which saves a cell wise spatial steady-state precursor source for spatial points owned by each processor.

This steady-state precursor source (in combination with the eigenvalue) is used to compute the perturbed

state of the system, as in a material change caused by a control rod ejection, which then saves a cell-wise

spatial time-dependent precursor source for spatial points owned by each processor. The analytical

calculation of precursor source allows the use of a variable time stepping strategy over a number of time

steps, which was demonstrated in section 6.2 .

The demonstration problem for the SIDK method in the AMP-Denovo multi-physics framework is a

heterogeneous three-dimensional control rod ejection. The problems considered thus far have largely

been benchmark problems, which for legacy methods employed, involved using homogenized regions

employing two neutron energy groups. In consistency with modern approaches

(59)

(14), the SIDK

method developed for the AMP-Denovo framework is applied in heterogeneous geometry in a high

performance computing application, where heterogeneous refers to the resolution of pellets, gap, and clad

100

utilizing many neutron energy groups with within-pellet thermal distributions and high performance

computing refers to a large, parallel simulation using both multiple cores per compute node and many

compute nodes. The control rod ejection problem involves multiple axial regions which represent a truly

3D problem, as the reactor already has inherent 2D nature with cylindrical fuel pins in a square lattice,

and the control rod being removed axially at some finite speed. Therefore, the Denovo input was

modified to include a second axial region in which the control rod was present in the upper portion of the

assembly which would be withdrawn as well as a third region where the control rod would remain. The

original Denovo input, in section 6.3.1 , did not include a control rod, as the comparison of eigenvalue

was done with two-dimensional NEWT code, which due to the aforementioned cylindrical pins in a

square lattice, would necessitate the control rod being fully inserted or fully withdrawn, for consistency.

In order to facilitate faster run times, the 44 group ENDFB 5 library was used. A 24x24x112 mesh was

used for the eigenvalue solutions, with a non-uniform axial mesh that was finer around the control rod.

From this steady-state run, the steady-state precursor values were generated for each spatial region. The

thermal flux (2 group collapsed) from the initial conditions of the problem is shown in Figure 45 at

different axial heights, which clearly illustrates the three-dimensional nature of the problem. In each slice

shown in Figure 45, the x-y variability of the problem is present due to the fact that there are cylindrical

fuel pins within a square lattice. In the three slices, we can see moving from the lowermost slice to the

uppermost slice that the flux sharply decreases due to the presence of the control rod, where all three plots

are on the same scale. The Denovo inputs for these cases can be found in APPENDIX B.

101

Figure 45 Initial Conditions Thermal Flux (unnormalized) at 3.8, 3.0, 2.5 m from top to bottom

102

The full control rod ejection case uses a 136 (axial) by 24 (x) by 24 (y) mesh with 44 energy groups

(from AMPX via CSASI). The eigenvalue case is run first in parallel where each processor writes out its

own source file that is specific to the mesh elements that it owns. The fixed source run reads in these

source files, using the same number of processors as the eigenvalue run. This limits communication

between processors, but creates an input-output (IO) burden that could be better handled by a script. The

fission source in the fixed source is implicitly converged at each step, which is the most stable and

accurate way of capturing shape changes. The energy fidelity is quite high compared to most kinetics

methods which are two or four group, typically (6).

The rod ejection problem introduces a 6.6 cent reactivity insertion caused by a 4 cm control rod

movement, which occurs over 0.01 s. The accompanying power rise was modeled using point kinetics

which yielded a 0.5 % difference from the point kinetics vs. Denovo. The Denovo results are compared

to point kinetics after 0.1 s, similar to the 16-A1 Argonne Benchmark problem. These results are shown

in Figure 46. Due to neglecting the time-dependent angular flux term, this case represents essentially the

prompt jump approximation. The next step of the problem involves the use of the analytic function to

determine the precursor source. This is the same process that is used for all time steps beyond the second,

demonstrated for the infinite homogenous medium problem. The results of the power rise from this

function are shown in Figure 47, which can be compared to the point kinetics results shown in Figure 46.

103

Figure 46 Perturbed Halden case vs. Point Kinetics

104

Figure 47 Eigenvalue, perturbed and analytic precursor source powers at 0.01 s

105

Chapter 7 CONCLUSIONS

7.1 SUMMARY

The objective of this dissertation was to develop a new kinetics method amenable to modern multi-

physics and massively-parallel code suites that could be applied to solve the time-dependent Boltzmann

transport equation with appropriate discretization strategies for time as well as space, angle, and energy.

The semi-implicit direct kinetics (SIDK) method developed is demonstrated in both diffusion and

transport formulations on fast and thermal reactors undergoing mild to severe transients for both FMFD

and finite element method (FEM) spatial discretizations using from two to forty four neutron energy

groups. The method is demonstrated to be as accurate to within ~0.2% on the same time mesh as direct

kinetics, while executing an order of magnitude faster, for some problems, particularly those with larger

numbers of neutron precursor groups, which constitutes a more accurate representation of delayed neutron

generation rates. The SIDK method, for all problems considered, is shown to be within 0.2 % of direct

kinetics and to execute at least twice as fast. The method is also demonstrated via a number of

benchmark problems with comparisons to a number of time integration strategies, in which it performs

well, with the exception of the discrepancies presented in the results for the LRA Benchmark, and which

are primarily attributable to the difference in the approaches to thermal feedback treatment. The SIDK

method is further demonstrated to be linearly convergent to exact analytical solutions. A new level of

energy fidelity is demonstrated in a heterogeneous 3D control rod ejection problem run in parallel

utilizing forty-four energy groups. A new level of within-pin thermal resolution is demonstrated via the

two-way coupling of the AMP and Denovo codes.

In Chapter 1, the multi-scale nature of reactors and biases in current methods is explored. The

chapter begins with motivation and organization as well as giving a brief description of computer codes

used. This chapter included an overview of the steady-state eigenvalue and time-dependent Boltzmann

transport equation as well as the isotopic depletion equations.

106

In Chapter 2, a literature review was presented with an overview of current multi-physics code

efforts, core power distribution calculations for steady-state and time-dependent scenarios, as well as a

detailed literature review of time-integration strategies. In this chapter, the multi-group diffusion

equations were introduced as well as the time-dependent transport equation. The primary methods of

time integration including implicit, explicit, and semi-implicit as well as multi-step and multi-stage

methods were introduced. Also, the time integration schemes utilized for solutions of the point kinetics

equations are herein presented, which include multi-stage Runge-Kutta methods, matrix exponential Pade

approximant methods, and the semi-implicit Crank-Nicholson method.

In Chapter 3, the theory of the physics included in multi-scale reactor modeling is presented, and the

accompanying motivation for the development of a robust large scale, transport based, computationally

efficient neutron kinetics methodology. The new kinetics method, the semi-implicit direct kinetics

(SIDK) method, is derived in reference to traditional kinetics methods, which include quasi-static, direct,

and hybrid kinetics methods, in particular the HOBD method.

In Chapter 4, the Burner Reactor Integrated Safety Code (BRISC) is described and integrated with

AMP. The integration of BRISC with AMP makes AMP the first fuel performance code to include an

internal kinetics capability. An overview of the nuclear data generation process via the SCALE code

suite is included. An overview of the standard methods applied to generate basic nuclear data for kinetics

calculations (betas, lambdas, and reactivity coefficients) is provided. The BRISC package is verified

externally and within AMP via the implementation of unit tests that check order of convergence,

accuracy, as well as user options in a manner consistent with modern large-scale code development.

BRISC’s integration with AMP’s thermal capabilities is explored, and a point kinetics model with thermal

feedback capability is developed.

107

In Chapter 5, the SIDK method developed in Chapter 3 is implemented in stand-alone two-group

time-dependent one and two-dimensional neutron diffusion implementations, to compare with neutron

kinetics benchmarks as well as to explore multi-step, multi-stage, and adaptive time-integration strategies

with and without thermal feedback. The accuracy is demonstrated to fall within 0.2 % of direct kinetics,

while the speed is demonstrated to be an order of magnitude faster than direct kinetics. The accuracy,

convergence, and speed of the new method are fully explored with regards to multi-step, multi-stage, and

fully implicit solutions for fast and thermal systems with and without thermal feedback. The convergence

is demonstrated to be limited to linear, even if higher order representations of power over the time step

and temporal derivative of flux are used. The spatial convergence of the developed FMFD code is shown

to be quadratic, as is the convergence of the multi-step, multi-stage fully-implicit TR-BDF2. The

accuracy of the SIDK approach is demonstrated for short and longer times on fast and thermal reactors

with and without feedback with regards to a number of other kinetics methods which feature alternative

discretizations of space and time.

In Chapter 6, the necessary framework to implement the SIDK method in high fidelity three-

dimensional parallel arbitrarily high number of energy group multi-physics approaches, developed in

Chapter 3 and benchmarked in Chapter 5, is developed for the AMP Multiphysics framework, utilizing

Denovo. The Denovo radiation transport code is an ideal candidate for the non-intrusive SIDK method,

due to its massively parallel, verified, arbitrary multi-group, neutron transport, and modern nature, as well

as being internally coupled within a multi-physics framework, which is AMP. The accuracy,

convergence, and speed of the SIDK method are fully explored with regards to analytic point kinetics

solutions as well as spatial kinetics transport benchmarks without feedback. The convergence is

demonstrated to be linear to the exact solution. A true 3D control rod ejection study is then undertaken on

a fully-resolved mini-assembly utilizing forty four energy groups.

108

The level of spatial and energy fidelity is higher than that employed by current kinetics methods. The

control rod ejection problem compares favorably with point kinetics, and also provides the spatial power

variation that is crucial in calculating local temperatures. The accuracy of this approach is demonstrated

for short and longer times on representative fast and thermal systems without feedback with regards to a

number of other kinetics methods which feature alternative discretizations of space, time, angle, and

neutron energy, this approach being equal to the fidelity in space, with slightly lower fidelity in time and

angle of the other approaches and superior in energy, thermal feedback resolution, and computational

efficiency. Chapter 5 demonstrates ways to improve the temporal fidelity of the SIDK method, most

applicable for problems without thermal feedback, while angular fidelity could come from saving the

space-angular dependent fluxes, which adds a minimal amount of fidelity and a large memory or

computational burden, particularly for multi-step methods (59) (14).

To summarize the SIDK method, its strength lies in determining power distributions with medium

error tolerances, particularly on problems with large numbers of neutron precursor groups or thermal

feedback where cross section update errors or higher order representation of power introduces more error

than the first order convergence on the temporal derivative of the flux that the SIDK method is limited to.

On problems where lower error tolerances are desired, higher order methods in time or a fine spatial mesh

with the fully-implicit direct kinetics method is recommended. On problems with slow spatial shape

change, quasi-static kinetics is recommended. Therefore, for high-fidelity massively parallel multi-

physics simulation of severe transients with thermal-hydraulic feedbacks where medium error tolerances

are needed on the temporal derivative of power and where employing multi-step methods would require

saving multiple instances of the space-angle dependent flux, the SIDK approach is demonstrated as the

best starting point due to its robust and computationally efficient nature.

109

7.2 CLOSING COMMENTS

It is demonstrated that for the fully-implicit direct kinetics, the first and second order SIDK, the

second order HOBD, as well as the NDF solvers are all first order solution methods. Of all of the first

order choices, the HOBD represents the best run time at coarse error tolerances on problems without

thermal feedback, suffering no run time penalty versus the SIDK method and giving lower errors at very

coarse time step sizes. The SIDK method represents the best choice at intermediate error tolerances,

giving slightly lower errors at the same run times as the other methods, particularly on problems with

thermal feedback. At low error tolerances, the TR-BDF2 solver is by far the most effective solver,

yielding extremely low errors (1E-7 %) with fairly coarse time steps. However, the TR-BDF2 method is

slow due to the multi-stage, multi-step process and is therefore not preferred at larger error tolerances.

The TR-BDF2 method is demonstrated to be a second order method. Fully-implicit direct methods are

preferred at fine space-time resolutions on severe problems with thermal feedback. As intermediate

resolution and error tolerances make an excellent starting point for massively parallel calculations due to

the necessity of not wasting computational time on debugging or overly coarse resolution, the SIDK

method represents an excellent starting point for the rapid prototyping of large scale high-fidelity spatial

kinetics methods.

A new implementation of a hybrid spatial kinetics method, the semi-implicit direct kinetics (SIDK)

method, has been developed and applied within a multi-physics framework. As a result of this

dissertation, Denovo can now solve transient reactor power distributions, in addition to the steady-state

capabilities that already existed, which are three-dimensional eigenvalue and fixed source problems. The

mini-assembly 3D control rod ejection run in parallel with Denovo represents a significant step forward in

high-fidelity kinetics methods, particularly those coupled to multi-physics frameworks, in neutron energy

as well as computational efficiency. The implementation of the SIDK method within the AMP-Denovo

framework represents a capability that is more than legacy equivalent; through 3D space-time-dependent

110

power distributions feeding 3D pin-resolved thermal responses, this capability is able to improve upon

severe transient analysis.

Using these methods, the impact of highly resolved coupled power and temperature distributions

during a control rod ejection transient were evaluated in contrast to current methodologies. Furthermore,

this study demonstrated the fidelity and speed possible using the SIDK method, which is derived and

benchmarked in this dissertation. This resolution, the speed of the method developed, and the highly

amenable nature to modern multi-physics frameworks makes this an attractive option to developers of

massively-parallel multi-physics codes looking to leverage steady-state radiation transport solvers. The

SIDK method was developed and demonstrated to be accurate, fast, and significant with regard to

eigenvalue and temperature prediction fidelity. In addition, viable pathways to possible future work and

areas of improvement have been coherently and concisely presented.

111

WORKS CITED

112

1. J. Duderstadt, L. Hamilton. Nuclear Reactor Analysis. s.l. : John Wiley & Sons, Inc., 1976.

2. IAEA. Current Trends in Nuclear Fuel for Power Reactors. Vienna, Austria : IAEA, 2011.

3. Wirth, Brian. Section 1: An Introduction to Materials Degradation in Nuclear Environments.

Knoxville, TN : University of Tennessee, January 2011.

4. K. J. Geelhood, W. G. Luscher, C. E. Beyer, et al. Predictive Bias and Sensitivity in NRC Fuel

Performance Codes. Richland, WA : Pacific Northwest National Laboratory, October 2009. NUREG-

CR-7001.

5. Gary Berna, D.D Lanning. FRAPCON-3:Integral Assesment. Richland, WA : s.n., 1997. NUREG/CR-

6534, Vol. 3, PNNL-11513.

6. Gehin, J. C. A Quasi-Static Polynomial Nodal Method for Nuclear Reactor Analysis. Cambridge, MA :

Massachusetts Institute of Technology, September 1992.

7. A Unified Numerical Algorithm for Space-Dependent Kinetics Equations. T. Endo, Y. Ban, and A.

Yamamoto. 2005. Transactions of the American Nuclear Society. Vol. 104, pp. 865-867.

8. T. Downar, et al. PARCS Theory Manual, U.S. NRC Core Simulator. W. Lafayette, Indiana : Purdue

University, 2004.

9. Higher order backward discretization of the neutron diffusion equation. D. Ginestar, et al. 1-3, s.l. :

Annals of Nuclear Energy, 1998, Vol. 25. pg 47-64.

10. K. Clarno, S. Hamilton, B. Philip, M. Berrill, R. Sampath, S. Allu, D. Pugmire, G. Dilts, J. E.

Banfield. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level

Simulations. Oak Ridge, TN : s.n., 2012. ORNL/TM-2012/33.

11. A New Semi-Implicit Direct Kinetics Method with Analytical Representation of Delayed Neutrons. J.

E. Banfield, et al. San Diego, CA : Transactions of the American Nuclear Society, 2012. Volume 107,

pg 1111-1114.

12. Society, Mathematics and Computation Division of the American Nuclear. National Energy

Software Center: Benchmark Problem Book, Supplement 3. Argonne, IL : Argonne National

Laboratory, 1986. ANL-7416.

13. A Time-Dependent, Three-Dimensional Neutron Transport Methodology. S. Goluoglu, H. L.

Dodds. s.l. : Nuclear Science and Engineering, 2001, Vol. 139, pp. 248-261.

14. Higher Order Treatment on Temporal Derivative of Angular Flux for Time-Dependent MOC.

Kosuke Tsujita, Tomohiro Endo, Akio Yamamoto, et al. San Diego, CA : ANS TRANSACTIONS,

2012. Volume 107, pg 1101-1104.

15. AMP - An Advanced Multi-Physics Fuel Performance Code. J. E. Banfield, K. Clarno, G. Ivan

Maldonado. North Myrtle Beach, SC : Validation, Verification and Uncertainty Quantification

Conference, May 24-28, 2010. hosted by North Carolina State University.

113

16. Quasi-Static Validation of the AMP Nuclear Fuel Performance Code. J. E. Banfield, et al.

Hollywood, FL : Trans. Am. Nucl. Soc., 2011. Vols. 104, 1, pp. 83-85.

17. The AMP (Advanced MultiPhysics) Nuclear Fuel Performance Code. K. Clarno, B. Philip, W.

Cochran, R. Sampath, S. Allu, P. Barai, S. Simunovic, M. Berrill, L. Ott, S. Pannala, G. Dilts, B.

Mihaila, G. Yesilyurt, J. Lee, J. E. Banfield. Oak Ridge, TN : s.n., 2012, Nuclear Engineering and

Design, Vol. 252, pp. 108-120.

18. K. Clarno, B. Philip. W. Cochran, G. Dilts, B. Mihaila, R. Sampath, S. Allu, P. Barai, G.

Yesilyurt, J. E. Banfield, et al. User Manual for the AMP Nuclear Fuel Performance Code. Oak Ridge,

TN : Oak Ridge National Laboratory, September 2010.

19. Sciences, National Institute of Computational. 48.SpaceTime Neutron Kinetics within a

MultiPhysics Framework for Nuclear Fuel Performance Applications. [Online] Kraken. [Cited:

January January, 2013.] nics.tennessee.edu/science/current_projects. Project 48.

20. Denovo - A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE. T. Evans, et al. s.l. :

Nuclear Technology, 2010, Vol. 171, pp. 171-200.

21. Solving Index-1 DAEs in MATLAB and Simulink. L. F. Shampine, M. W. Reichelt, J. A. Kierzenka.

s.l. : SIAM Review, 1999, Vol. 41, pp. 538-552.

22. R. Schmidt, K. Belcourt, K. Clarno, R. Hooper, L. Humphries, A. Lorber, R. Pryor, W. Spotz.

Foundational Development of an Advanced Nuclear Reactor Integrated Safety Code. Albuquerque,

NM : Sandia National Laboratories, February 2010. SAND2010-0878.

23. The Math Works Inc. Getting Started Guid. Natick, MA : s.n., 1984-2011.

24. SCALE. SCALE: A Modular Code System for Performing Standardized Computer Analyses for

Licensing Evaluation. Available from Radiation Safety Information Computational Center. Oak Ridge,

TN : Oak Ridge National Laboratory, 2005. Version 6.0. ORNL/TM-2005/39.

25. Forrest Brown, Jeffrey Bull, John Goorley, Avneet Sood, Jeremy Sweezy. MCNP5-1.51

Release Notes. Los Alamos, NM : Los Alamos National Laboratory, 2009.

26. Agency, Nuclear Energy. Benchmark on Deterministic Transport Calculations Without Spatial

Homogenization. s.l. : Nuclear Science/NSC/DOC(2003) 16, 2003. ISBN 92-64-02139-6.

27. Efficient numerical solutions of the point kinetics equations in nuclear reactor dynamics. M

Kinard, E Allen. s.l. : Annals of Nuclear Energy, 2004, Vol. 31, pp. 1039-1051.

28. Wikipedia. Wikipedia. [Online] [Cited: October 19, 2010.] http://en.wikipedia.org.

29. Butcher, John C. Numerical methods for ordinary differential equations. s.l. : John Wiley & Sons,

2003. ISBN 0471967580.

114

30. The MATLAB ODE Suite. L. F. Shampine, M. W. Reichelt. s.l. : SIAM Journal on Scientific

Computing, 1997, Vol. 18, pp. 1-22.

31. K. Clarno, J. E. Banfield. Mathematical formulation for the neutronics operators and their

implementation in AMP. Oak Ridge, TN : Oak Ridge National Laboratory, August 4, 2011. AMP

Documentation.

32. Hogle, Susan. Phd Dissertation. The University of Tennessee-Knoxville : Nuclear Engineering,

2012.

33. A spatial kinetic model for simulating VVER-1000 start-up transient. Samira Kashi, Nader

Moghaddam, Shahriari Maleki. s.l. : Annals of Nuclear Energy, 2011, Vol. 38, pp. 1300-1309.

34. K. J. Geelhood, W. G. Luscher, C. E. Beyer, et al. FRAPTRAN 1.4: A Computer Code for the

Transient Analysis of Oxide Fuel Rods. Richland, WA : Pacific Northwest National Laboratory, March

2011.

35. Yagnik, S. Fuel Analysis and Licensing Code: FALCON MOD01: Volume 2: User's Manual. Palo Alto,

CA : s.n., 2004. 1011308.

36. PWR Contorl Rod Ejection Analysis with the MOC Code DECART. M. Hursin, T. Downar. Berkley,

CA : Joint International Workshop: Nuclear Technology Society-Needs for Next Generation, January

6-8, 2008.

37. Coupled Radiation Transport and Thermomechanics using the AMP and Denovo Codes. S.

Hamilton, K. Clarno, B. Philip, R. Sampath, M. Berrill, M. Baird, J. E. Banfield. Copper Mountain,

CO : Twelfth Copper Mountain Conference on Iterative Methods, March 25-30, 2012.

38. Commission, Nuclear Regulatory. NRC. 10 CFR 50.36 Technical Specification. [Online]

http://www.nrc.gov.

39. Doug Kothe, Ronaldo Szilard, Paul Turinsky. CASL: The Consortium for Advanced Simulation

of Light Water Reactors. Oak Ridge, TN : US Department of Energy, 2010.

40. NEAMS. Nuclear Energy Advanced Modeling and Simulation Program. [Online] [Cited: December

17, 2012.] neams.ne.anl.gov.

41. F-Bridge. F-BRIDGE PROJECT. [Online] European Union. [Cited: December 17, 2012.] www.f-

bridge.eu.

42. Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2

nuclear fuel rods. C. Newman, G. Hansen, D. Gaston. 1, s.l. : Journal of Nuclear Materials, July 2009,

Vol. 392, pp. 6-15.

115

43. ALCYONE: the Pleiades fuel performance code dedicated to multidimensional PWR studies. G.

Thouyenin, J. M. Ricaud, D. Planca, P. Thevenin. Salamanaca, Spain : In proceedings of Top Fuel

2006, October 2006.

44. Consortium for Advanced Simulation of LWRs. CASL. [Online] Department of Energy. [Cited:

December 17, 2012.] www.casl.gov/highlights/radiation_transport.shtml.

45. Transient Capability for a MOC-Based Whole Core Transport Code DeCART. Jin-Young Cho, et al.

s.l. : Trans. Am. Nucl. Soc., 2005. Vol. 92, pp. 721-722.

46. Texas, University of. Source Forge. [Online] [Cited: July 12, 2011.]

http://libmesh.sourceforge.net.

47. C. Rabiti, M. A. Smith, W. Yang, G. Palmiotti, et al. Status Report on SHARP Coupling

Framework. s.l. : Argonne National Laboratory, 2007.

48. Stability of the SUPG finite element method for transient advection-diffusion problems. Pavel B.

Bochev, Max D. Gunzburger, John N. Shadid. 193, s.l. : Computer methods in applied mechanics

and engineering, 2004, pp. 2301-2323.

49. R. Courant, K. Friedrichs, H. Lewy. On the partial difference equations of mathematical physics.

New York, NY : AEC Research and Development Report - Courant Institute of Mathematical

Sciences, September 1956 [1928]. p. V +76. This is an earlier version of the paper Courant,

Friedrichs & Lewy circulated as a research report. NYO-7689.

50. Andersson, Christer. Time-stepping schemes for phase-field simulation of dendritic solidifcation.

Royal Institute of Technology. Stockholm, Sweeden : Department of Numerical Analysis and

Computer Science, July 2002. TRITA-NA-0216.

51. A Schubert, C. Gyori, D. Elenkov, K. Lassmann, J. Van de Laar. Analysis of Fuel Centre

Temperatures with the TRANSURANUS Code. Wurzburg, Germany : Bulgarian Academy of Sciences,

March 2003.

52. C.M Allison, G. A. Berna, R. Chambers, et al. SCDAP/RELAP5/MOD3.1 Code Manual. Idaho

National Engineering Laboratory. Idaho Falls, Idaho : s.n., November, 1993. Volume IV: MATPRO - A

Library of Materials Properties for Light-Waater-Reactor-Accident Analysis.

53. Thermal-hydraulic behaviour of a marine reactor during oscillations. I. Ishihida, T. Kusunoki, H.

Murata, T. Yokomura, M. Kobayashi, et al. 2-3, s.l. : Nuclear Engineering and Design, June 1990,

Vol. 120, pp. 213-225.

54. NESTLE. NESTLE Version 5.2.1. Raleigh, NC : NC State University, July 2003.

55. Black Rabbit Ejection Studies and COMSOL Kinetics Modeling Development at HFIR. D. Chandler,

G. I. Maldonado, T. R. Primm, R. Hobbs. Hollywood, FL : Trans. Am. Nucl. Soc., June 2011.

116

56. Clarno, K. Rascal 2-D Multi-Group Reactor Diffusion Code. Decmber 15, 2008.

57. J. M Aragones, C. Diop, U. Rohde. Nuclear Reactor Integrated Simulation Project. s.l. : NURISP -

Document D-1.0, 3/22/2010.

58. Stacey, M. Weston. Nuclear Reactor Physics. Weinheim : WILEY-VCH Verlag GmbH & Co. KGaA,

2007.

59. A. Hoffman, et al. Transient Methods for Neutron Transport. s.l. : CASL RTM PI Meeting, 2012.

60. Canteach. [Online] [Cited: December 09, 2010.] http://canteach.candu.org.

61. Project, OECD Halden Reactor. Halden Boiling Water Reactor. [Online] Institutt for

energiteknikk, January 2003. www.ife.no.

62. Team, RELAP5. RELAP5-3D Code Manual Volume 1: Code Structure, System Models, and Solution

Methods. Idaho Falls, ID : Idaho National Laboratory, April 2005.

63. H.L Dodds, R. M. Westfall. SKINATH - A Computer Program for Solving the Reactor Point Kinetics

Equations with Simple Thermal-Hydrualic Feedback. Oak Ridge, TN : Oak Ridge National Laboratory,

1984. ORNL/CSD/TM-210.

64. Laboratory, Lawrence Livermore National. SUNDIALS. [Online] [Cited: April 10, 2010.]

https://computation.llnl.gov/casc/sundials/main.html.

65. Laboratory, Sandia National. Trilinos. [Online] [Cited: April 15, 2010.]

http://trilinos.sandia.gov/.

66. Jacobian-free Newton-Krylov methods: A survey of approaches and applications. D. A. Knoll, D. E

Keyes. s.l. : Journal of Computational Physics, 2004, Vol. 193, pp. 357-397.

67. GNU. gnu.org. GNU Scientific Library. [Online] Open Source.

68. Benchmarking of Software and Methods for use in Transient Multidimensional Fuel Performance

with Spatial Reactor Kinetics. J. E. Banfield, et al. Chicago, IL : Proceedings of International

Conference on Advances in reactor Power Physics, 2012.

69. A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments. A.

Phillippe, K. Clarno, J. Banfield, et al. s.l. : Nuclear Science and Engineering, 2012, Vol. (in

submission process).

70. A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments. A.

Phillippe, K. Clarno, J. Banfield, et al. s.l. : Nuclear Science and Engineering, 2012, Vol. (in

submission process).

117

71. OECD, Secretary-General of the. Nuclear Fuel Behavior Under Reactivity-initiated Accidents

(RIA) Conditions. s.l. : Nuclear Energy Agency, 2010. nea6847-behaviour-RIA.

72. D. D. Lanning, C. E. Beyer, K. J. Geelhood. FRAPCON-3 Updates, Including Mixed-Oxide Fuel

Properties. Washington DC : U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory

Research, May 2005. Volume 4. NUREG/CR-6534, PNNL-11513.

73. D. D. Lanning, C. E. Beyer, C. L. Painter. FRAPCON-3: Modifications to Fuel Rod Material

Properties and Performance Models for High-Burnup Application. Richland, WA : Pacific Northwest

National Laboratory, October 1997. NUREG/CR-6524 Volume 1, PNNL-11513.

74. Hart, Shane. NE Cluster Wiki. [Online] University of Tennessee. necluster.engr.utk.edu/wiki.

75. Effect of Fuel Temperature Profile on Eigenvalue Calculations. T. Greifenkamp, K. T. Clarno, J. C.

Gehin. s.l. : American Nuclear Society, Student Conference, 2008.

76. Jesse, Matt. R&D Staff Member in Reactor and Nuclear Systems Division at ORNL. Personal

Communication. Oak Ridge, TN, March 18, 2013.

77. SCALE. A Comprehensive Modeling and SImulation Suite for Nuclear Safety Analysis and Design.

Oak Ridge, TN : Available from Radiation Safety Information Computational Center at Oak Ridge

National Laboratory as CCC-785, June, 2011. Version 6.1 ORNL/TM-2005/39.

118

APPENDIX A

119

TRITON input

'Input generated by GeeWiz SCALE 6.0.2 Compiled on February 18, 2009

=t-newt parm=(centrm)

HALDEN pin cell

v7-238

read composition

 uo2 1 0.955 607

 92234 0.005407837

 92235 10

 92238 89.99459 end

 helium 2 1 525 end

 zirc4 3 1 520 end

 d2o 4 1 508 end

end composition

read celldata

 latticecell squarepitch fuelr=0.534035 1 gapr=0.545465 2 cladr=0.639445 3

hpitch=0.7112 4 end

end celldata

READ KEEP_OUTPUT

 newt

END KEEP_OUTPUT

read model

 READ PARAMETER

 drawit=yes run=yes epsouter=-1e-2 epseigen=1e-8 epsinner=1e-9 timed=yes

 sn=10 inners=100 outers=150 echo=yes prtmxsec=no prtmxtab=no

 cmfd=yes xycmfd=1 converg=mix collapse=yes prtxsec=no

 prtbroad=no prthmmix=yes

 END PARAMETER

READ MATERIALS

 1 1 !fuel ! end

 2 1 !helium ! end

 3 1 !clad ! end

 4 1 !coolant! end

END MATERIALS

READ COLLAPSE

 200r1 38r2

END COLLAPSE

READ HMOG

101 pincell 1 end

102 pincell 2 end

103 pincell 3 end

104 pincell 4 end

END HMOG

read geometry

global unit 1

 cylinder 1 0.534035

 cylinder 2 0.545465

 cylinder 3 0.639445

 cuboid 4 0.7112 -0.7112 0.7112 -0.7112

 media 1 1 1

 media 2 1 2 -1

 media 3 1 3 -2

 media 4 1 4 -3

 boundary 4 4 4

end geometry

read bounds

 all=refl

 end bounds

end model

end

120

APPENDIX B

121

CSAS Input Example

'Input generated by GeeWiz SCALE 6.1 Compiled on Mon Jun 6 11:04:33 2011

'batch_args \-x\-m

=csasi

csas-halden

v7-238

read composition

 uo2 1 0.955 300

 92234 0.005407837

 92235 10

 92238 89.99459 end

 helium 2 1 300 end

 zirc4 3 1 300 end

 d2o 4 1 300 end

 b4c 5 1 300 end

end composition

read celldata

 latticecell squarepitch fuelr=0.534035 1 gapr=0.545465 2 cladr=0.639445 3

hpitch=0.7112 4 end

end celldata

end

=shell

 cp ft02f001 "$HOME/new_SCALE/Halden-CSAS_init.lib"

end

DENOVO Eigenvalue – Halden Case

Denovo HALDEN 3X3

Copyright (C) 2008 Oak Ridge National Laboratory, UT-Battelle, LLC.

##---##

generated by /data/denovo/build/debug/bin/pygen built on 20101129

import os, sys, math, string

pykba equation type

from sc import *

unks_cell = 1

Npin = 8 # number of cells per pin in coarse mesh

Ng = 44 #number of energy groups on the AMPX library

Zmax = 410.

pn_order = 0

store_bound = 1

run_problem = 1

generate_hpckba = 0

Starting z value (this places bottom of fuel at z=0)

Zmin = 0.0

122

Number of different axial material levels

num_mat_levels = 3

Pin spacing

pitch = 1.4224

Clad inner/outer radius

clad_in = 0.545465

clad_out = 0.639445

Guid tube inner/outer radius

gt_in = 0.569

gt_out = 0.6448

lat_size = 3

Nx = lat_size*Npin

Ny = lat_size*Npin

plane_cells = Nx*Ny

store_bound = 0

run_problem = 1

generate_hpckba = 0

Parameters for region 0

fuel_id0 = 101

clad_id0 = 102

mod_id0 = 103

axial_cells_region0 = 64

delta_z_region0 = 5.59375

Parameters for region 1

fuel_id1 = 201

clad_id1 = 202

mod_id1 = 203

cr_id1 = 204

axial_cells_region1 = 24

delta_z_region1 = 0.015625

Parameters for region 2

fuel_id2 = 301

clad_id2 = 302

mod_id2 = 303

cr_id2 = 304

axial_cells_region2 = 48

delta_z_region2 = 0.8671875

Nz = axial_cells_region0 + axial_cells_region1 + axial_cells_region2

##---##

BUILD MESH

##---##

print "Defining build_mesh"

def build_mesh(N):

 # uniform layout for reflector/plate regions

 uniform_layout = [1, 1, 1,

 1, 1, 1,

123

 1, 1, 1]

 # fuel lattice arrangement

 fuel_layout = [1, 1, 1,

 1, 2, 1,

 1, 1, 1]

 # Bottom reflector

 lattice = []

 for k in xrange(num_mat_levels):

 lattice[k:] = [Array_0(lat_size)]

 # Number of clean materials per level

 num_mat = [0] * num_mat_levels

 # Number of clean materials total

 num_clean_mat = 0

 # Bottom region

 print "Building level 0"

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id0, clad_id0]

 pin.set_shells(ids, r, mod_id0)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 ids = [mod_id0, clad_id0]

 gt.set_shells(ids, r, mod_id0)

 # Assign reflector pin to bottom level of lattice

 lattice[0].set_objects(fuel_layout)

 lattice[0].assign_object(pin,1)

 lattice[0].assign_object(gt,2)

 lattice[0].build_array(N,0)

 # Set global mixing table

 num_mat[0] = lattice[0].num_mat()

 mix_table = lattice[0].mixing_vector()

 num_clean_mat = num_mat[0]

 # Create all other levels

 for k in xrange(1,num_mat_levels):

 print "Building level ",k

 # Fuel regions

 if k==1:

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id1, clad_id1]

 #ids = [cr_id1, clad_id1]

 pin.set_shells(ids, r, mod_id1)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 #ids = [fuel_id1, clad_id1]

124

 ids = [cr_id1, clad_id1]

 gt.set_shells(ids, r, mod_id1)

 # Build lattice for this level

 lattice[k].set_objects(fuel_layout)

 lattice[k].assign_object(pin,1)

 lattice[k].assign_object(gt,2)

 # Fuel regions

 if k==2:

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id2, clad_id2]

 #ids = [cr_id1, clad_id1]

 pin.set_shells(ids, r, mod_id2)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 #ids = [fuel_id1, clad_id1]

 ids = [cr_id2, clad_id2]

 gt.set_shells(ids, r, mod_id2)

 # Build lattice for this level

 lattice[k].set_objects(fuel_layout)

 lattice[k].assign_object(pin,1)

 lattice[k].assign_object(gt,2)

 # Finish lattice construction for this level

 print "Building array"

 lattice[k].build_array(N,N,0,mix_table,num_clean_mat)

 print "Done building array"

 # Update global mixing table

 num_mat[k] = lattice[k].num_mat()

 mix_table = lattice[k].mixing_vector()

 if num_mat[k]>num_clean_mat:

 num_clean_mat = num_mat[k]

 # Update lower level matids

 print "Updating old mat ids"

 for j in xrange(k):

 lattice[j].set_mixids(lattice[k].update_old_matids(\

 lattice[j].num_mat(), lattice[j].mixids()))

 lattice[j].set_num_mat(num_clean_mat)

 # Build axial mesh

 z = [0.0] * (Nz + 1)

 z[0] = Zmin

 for k in xrange(Nz):

 if k < axial_cells_region1:

 z[k+1] = z[k] + delta_z_region0

 if (k >=axial_cells_region1 and k < axial_cells_region2):

 z[k+1] = z[k] + delta_z_region1

 if (k>=axial_cells_region2):

 z[k+1] = z[k] + delta_z_region2

 # mesh planes in x,y

 xy = lattice[0].xy_planes()

125

 # Set up mixture ids for all cells

 mixids = Vec_Int(Nz*Ny*Nx, 0)

 # Lower material region

 offset = 0

 for local_k in xrange(axial_cells_region0):

 k = local_k + offset

 xyids = lattice[0].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

 # Upper material region

 offset = axial_cells_region0

 for local_k in xrange(axial_cells_region1):

 k = local_k + offset

 xyids = lattice[1].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

 # Upper material region - Control rod In

 offset = axial_cells_region0 + axial_cells_region1

 for local_k in xrange(axial_cells_region2):

 k = local_k + offset

 xyids = lattice[2].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

 # list of ids

 ids = Vec_Int(num_clean_mat)

 for m in xrange(len(ids)):

 ids[m] = m

 return (xy, z, mixids, ids, mix_table, lattice)

##---##

MAIN

##---##

print 'Initializing'

initialize(sys.argv)

if node() == 0:

 print "Denovo - pykba Python Front-End"

 print "-------------------------------"

 print "Release : %16s" % (release())

 print "Release Date : %16s" % (release_date())

 print "Build Date : %16s" % (build_date())

 print

timer = Timer()

timer.start()

126

##---##

DB

##---##

print 'Building database'

db = DB("pykba")

problem type

db.insert("problem_type", "EIGENVALUE")

db.insert("num_z_blocks", 1)

decomposition

if nodes() == 1:

 db.insert("num_blocks_i", 1)

 db.insert("num_blocks_j", 1)

 iblocks = 1

 jblocks = 1

elif nodes() == 2:

 db.insert("num_blocks_i", 2)

 db.insert("num_blocks_j", 1)

 iblocks = 2

 jblocks = 1

elif nodes() == 4:

 db.insert("num_blocks_i", 2)

 db.insert("num_blocks_j", 2)

 iblocks = 2

 jblocks = 2

elif nodes() == 8:

 db.insert("num_blocks_i", 4)

 db.insert("num_blocks_j", 2)

 iblocks = 4

 jblocks = 2

elif nodes() == 16:

 db.insert("num_blocks_i", 4)

 db.insert("num_blocks_j", 4)

elif nodes() == 32:

 db.insert("num_blocks_i", 8)

 db.insert("num_blocks_j", 4)

elif nodes() == 64:

 db.insert("num_blocks_i", 8)

 db.insert("num_blocks_j", 8)

elif nodes() == 96:

 db.insert("num_blocks_i", 12)

 db.insert("num_blocks_j", 8)

127

#db.insert("num_blocks_i", 1)

#db.insert("num_blocks_j", 1)

db.insert("num_sets", 1)

energy partitioning

db.insert("partition_upscatter", 1, 1)

data settings

db.insert("num_groups", Ng)

db.insert("downscatter", 0, 1)

db.insert("Pn_order", pn_order)

solver setup

db.insert("eigen_solver", "arnoldi")

db.insert("mg_solver", "krylov")

#db.insert("within_group_solver","GMRES_R")

db.insert("tolerance", 1.0e-5)

db.insert("aztec_kspace", 30)

db.insert("max_itr", 50)

db.insert("iterate_downscatter", store_bound, 1)

db.insert("use_init_guess", store_bound, 1)

eigenvalue information

db.add_db("eigenvalue_db", "eigenvalue")

db.insert("eigenvalue_db", "L2_tolerance", 1e-5)

#db.insert("eigenvalue_db", "k_tolerance", 1e-5)

db.insert("eigenvalue_db", "diagnostic_level", 2)

db.insert("eigenvalue_db", "keff", 1.0)

db.insert("eigenvalue_db", "inner_tol_relaxer", "CONSTANT")

db.insert("eigenvalue_db", "inner_tol_relax_factor",1.0)

db.insert("eigenvalue_db", "arnoldi_restarts", 10)

db.insert("eigenvalue_db", "arnoldi_kspace", 15)

db.insert("eigenvalue_db", "energy_dep_ev", 1, 1)

db.insert("eigenvalue_db", "calculate_moments", 1, 1)

upscatter database

db.add_db("upscatter_db", "upscatter")

db.insert("upscatter_db", "tolerance", 1.0e-6)

db.insert("upscatter_db", "aztec_diag", 0)

db.insert("upscatter_db", "aztec_output", 0)

Mesh

(x, z, matids, cleanids, table, lattice) = build_mesh(Npin)

print "Done with build_mesh()"

db.insert("x_edges", x)

db.insert("y_edges", x)

db.insert("z_edges", z)

Boundary conditions

bounds = [1, 1, 1, 1, 0, 0]

db.insert("boundary", "reflect")

db.add_db("boundary_db", "bnd_conditions")

db.insert("boundary_db", "reflect", bounds, 1)

db.insert("boundary_db", "store_bnd_state", store_bound, 1)

Angular options

db.add_db("quadrature_db", "quad_options")

128

#db.insert("quadrature_db", "quad_type", "qr")

#db.insert("quadrature_db", "quad_type", "ldfe")

#db.insert("quadrature_db", "order", 3)

db.insert("quadrature_db", "Sn_order", 6)

#db.insert("quadrature_db", "quad_type", "glproduct")

#db.insert("quadrature_db", "polars_octant", 2)

#db.insert("quadrature_db", "azimuthals_octant",2)

##---##

MANAGER

##---##

make manager, material, and angles

manager = Manager()

mat = Mat()

angles = Angles()

partition the problem

print "Manager partitioning"

manager.partition(db, mat, angles)

print "Manager done partitioning"

get mapping and mesh objects

mapp = manager.get_map()

indexer = manager.get_indexer()

mesh = manager.get_mesh()

global and local cell numbers

Gx = indexer.num_global(X)

Gy = indexer.num_global(Y)

Gz = mesh.num_cells_dim(Z)

Nx = mesh.num_cells_dim(X)

Ny = mesh.num_cells_dim(Y)

Nz = mesh.num_cells_dim(Z)

if node() == 0:

 print ">>> Partitioned global mesh with %i x %i x %i cells" \

 % (Gx, Gy, Gz)

##---##

MATERIAL SETUP

##---##

AMPX library

ampx = AMPX()

ampx.read_AMPX("Halden-CSAS.lib")

xsdb = XS_DB(db)

xsdb.set_num(405)

xsdb.assign_ampx(fuel_id0, 1, ampx)

xsdb.assign_ampx(fuel_id1, 1, ampx)

xsdb.assign_ampx(fuel_id2, 1, ampx)

xsdb.assign_ampx(clad_id0, 2, ampx)

xsdb.assign_ampx(clad_id1, 2, ampx)

xsdb.assign_ampx(clad_id2, 2, ampx)

xsdb.assign_ampx(mod_id0, 4, ampx)

xsdb.assign_ampx(mod_id1, 4, ampx)

xsdb.assign_ampx(mod_id2, 4, ampx)

xsdb.assign_ampx(cr_id1, 5, ampx)

xsdb.assign_ampx(cr_id2, 5, ampx)

129

beta_t = .007249

steady_precursors=Vec_Dbl(mesh.num_cells(),0.0)

##---##

DELAYED GROUPS

##---##

beta=Vec_Dbl(6,0.0)

beta[0]=2.43e-04

beta[1]=1.45E-03

beta[2]=1.34e-03

beta[3]=2.92e-03

beta[4]=1.04e-03

beta[5]=2.56e-04

lamb=Vec_Dbl(6,0.0)

lamb[0]= 1.27e-02

lamb[1]= 3.17e-02

lamb[2]= 1.17e-01

lamb[3]= 3.14e-01

lamb[4]= 1.38

lamb[5]= 3.83

make macro mixer

mixer = Macro_Mixer(xsdb)

mixer.set(cleanids, table)

make the material database

mixer.mix_with_global_ids(matids, mat)

##---##

ENERGY PARTITIONING

##---##

print "Partitioning energy"

manager.partition_energy(mat, angles)

erg_set = manager.get_erg_set_comm()

##---##

SOURCE SETUP

##---##

allocate problem state (use a zero source)

print "Allocating state"

source = Zero_Source()

manager.setup(source)

##---##

SOLVE

##---##

if node() == 0:

 print ">>> Setup complete"

 print ">>> Solving with %s differencing and %s quadrature (%i angles)" \

 % (manager.spatial_descriptor(), angles.quad_label(), angles.num_angles())

if run_problem==1:

130

 print "Running problem"

 # solve the problem

 manager.solve(angles)

 steady_precursors= Vec_Dbl(mesh.num_cells(),0.0)

 power = Vec_Dbl(mesh.num_cells(),0.0)

 for cell in xrange(mesh.num_cells()):

 matid = mat.matid(cell)

 if mat.assigned_fission(matid):

 for g in xrange(Ng):

 phi = Moments(g)

 power[cell] += phi.scalar_flux(cell) \

 * mat.fission_data(matid, g, NU_SIGMA_F)

 for cell in xrange(mesh.num_cells()):

 for i in xrange(6):

 steady_precursors[cell]= steady_precursors[cell] + beta[i]*power[cell]

 filename= open('precursors'+str(node())+'.txt','w')

 filename.write(str(mesh.num_cells())+'\n')

 for cell in xrange(mesh.num_cells()):

 filename.write(str(mapp.l2g(cell))+' '+str(steady_precursors[cell])+'\n')

 filename.close()

 flux0 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux5 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux10 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux15 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux20 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux25 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux30 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux35 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux40 = Vec_Dbl(mesh.num_cells(), 0.0)

 phi = Moments(0)

 for cell in xrange(mesh.num_cells()):

 flux0[cell] = phi.scalar_flux(cell)

 phi = Moments(5)

 for cell in xrange(mesh.num_cells()):

 flux5[cell] = phi.scalar_flux(cell)

 phi = Moments(10)

 for cell in xrange(mesh.num_cells()):

 flux10[cell] = phi.scalar_flux(cell)

 phi = Moments(15)

 for cell in xrange(mesh.num_cells()):

 flux15[cell] = phi.scalar_flux(cell)

 phi = Moments(20)

 for cell in xrange(mesh.num_cells()):

 flux20[cell] = phi.scalar_flux(cell)

131

 phi = Moments(25)

 for cell in xrange(mesh.num_cells()):

 flux25[cell] = phi.scalar_flux(cell)

 phi = Moments(30)

 for cell in xrange(mesh.num_cells()):

 flux30[cell] = phi.scalar_flux(cell)

 phi = Moments(35)

 for cell in xrange(mesh.num_cells()):

 flux35[cell] = phi.scalar_flux(cell)

 phi = Moments(40)

 for cell in xrange(mesh.num_cells()):

 flux40[cell] = phi.scalar_flux(cell)

 silo = SILO()

 silo.add_mixer(mixer)

 silo.open(str(lat_size)+"x"+str(lat_size)+"_r"+str(Npin)+"a"+str(Nz)+'eig')

 silo.add("flux0", flux0)

 silo.add("flux5", flux5)

 silo.add("flux10", flux10)

 silo.add("flux15", flux15)

 silo.add("flux20", flux20)

 silo.add("flux25", flux25)

 silo.add("flux30", flux30)

 silo.add("flux35", flux35)

 silo.add("flux40", flux40)

 silo.add("power", power)

 silo.close()

Write HPCKBA input

if generate_hpckba==1:

 print "Generating HPCKBA input"

 out = HPC_Problem_Output(1, Nx, Ny, Nz)

 print out.chunk(), out.num_chunks_per_file(), out.num_files()

 out.open(str(lat_size)+"x"+str(lat_size)+"_r"+str(Npin)+"a"+str(Nz))

 shapes = Vec_Dbl()

 out.write_db(db)

 out.write_mixed_xs(mixer)

 out.write_src_info(ZERO_SOURCE, ZERO_SOURCE, shapes)

 # write matids

 out.start_field_loop()

 ids = Vec_Int(out.chunk(), 0)

 while not out.finished_field_loop():

 k = out.current_chunk()

 if k < Nz:

 print "Writing k-plane %d/%d" % (k, Nz)

 for j in xrange(Gy):

132

 for i in xrange(Gx):

 cell = indexer.g2g(i,j,k)

 index = indexer.g2g(i,j,0)

 ids[index] = matids[cell]

 out.write_matids(ids)

 out.advance_loop()

 out.close()

##---##

TIMING

##---##

output final database (has class-dependent defaults)

db.output()

timer.stop()

time = timer.wall_clock()

keys = timer_keys()

if len(keys) > 0 and node() == 0:

 print "\n"

 print "TIMING : Problem ran in %16.6e seconds." % (time)

 print "---"

 for key in keys:

 print "%30s : %16.6e" % (key, timer_value(key) / time)

 print "---"

##---##

manager.close()

finalize()

end

DENOVO Fixed Source Step 1 – Halden Case

Denovo HALDEN 3X3 - Step 1, CRout

Copyright (C) 2008 Oak Ridge National Laboratory, UT-Battelle, LLC.

##---##

generated by /data/denovo/build/debug/bin/pygen built on 20101129

import os, sys, math, string

pykba equation type

from sc import *

unks_cell = 1

Npin = 8 # number of cells per pin in coarse mesh

Ng = 44 #number of energy groups on the AMPX library

Nz = 40

Zmax = 410.

133

pn_order = 0

store_bound = 1

run_problem = 1

generate_hpckba = 0

Starting z value (this places bottom of fuel at z=0)

Zmin = 0.0

Number of different axial material levels

num_mat_levels = 3

Pin spacing

pitch = 1.4224

Clad inner/outer radius

clad_in = 0.545465

clad_out = 0.639445

Guid tube inner/outer radius

gt_in = 0.569

gt_out = 0.6448

lat_size = 3

Nx = lat_size*Npin

Ny = lat_size*Npin

plane_cells = Nx*Ny

store_bound = 0

run_problem = 1

generate_hpckba = 0

Parameters for region 0

fuel_id0 = 101

clad_id0 = 102

mod_id0 = 103

axial_cells_region0 = 64

delta_z_region0 = 5.59375

Parameters for region 1

fuel_id1 = 201

clad_id1 = 202

mod_id1 = 203

cr_id1 = 204

axial_cells_region1 = 24

delta_z_region1 = 0.015625

Parameters for region 2

fuel_id2 = 301

clad_id2 = 302

mod_id2 = 303

cr_id2 = 304

axial_cells_region2 = 48

delta_z_region2 = 0.8671875

Parameters for region 2

fuel_id3 = 401

clad_id3 = 402

134

mod_id3 = 403

cr_id3 = 404

axial_cells_region3 = 48

delta_z_region3 = 0.8671875

Nz = axial_cells_region0 + axial_cells_region1 + axial_cells_region2 +

axial_cells_region3

##---##

BUILD MESH

##---##

print "Defining build_mesh"

def build_mesh(N):

 # uniform layout for reflector/plate regions

 uniform_layout = [1, 1, 1,

 1, 1, 1,

 1, 1, 1]

 # fuel lattice arrangement

 fuel_layout = [1, 1, 1,

 1, 2, 1,

 1, 1, 1]

 # Bottom reflector

 lattice = []

 for k in xrange(num_mat_levels):

 lattice[k:] = [Array_0(lat_size)]

 # Number of clean materials per level

 num_mat = [0] * num_mat_levels

 # Number of clean materials total

 num_clean_mat = 0

 # Bottom region

 print "Building level 0"

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id0, clad_id0]

 pin.set_shells(ids, r, mod_id0)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 ids = [mod_id0, clad_id0]

 gt.set_shells(ids, r, mod_id0)

 # Assign reflector pin to bottom level of lattice

 lattice[0].set_objects(fuel_layout)

 lattice[0].assign_object(pin,1)

 lattice[0].assign_object(gt,2)

 lattice[0].build_array(N,0)

 # Set global mixing table

 num_mat[0] = lattice[0].num_mat()

 mix_table = lattice[0].mixing_vector()

 num_clean_mat = num_mat[0]

135

 # Create all other levels

 for k in xrange(1,num_mat_levels):

 print "Building level ",k

 # Fuel regions

 if k==1:

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id1, clad_id1]

 pin.set_shells(ids, r, mod_id1)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 ids = [cr_id1, clad_id1]

 gt.set_shells(ids, r, mod_id1)

 # Build lattice for this level

 lattice[k].set_objects(fuel_layout)

 lattice[k].assign_object(pin,1)

 lattice[k].assign_object(gt,2)

 # Fuel regions

 if k==2:

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id2, clad_id2]

 #ids = [cr_id1, clad_id1]

 pin.set_shells(ids, r, mod_id2)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 #ids = [fuel_id1, clad_id1]

 ids = [cr_id2, clad_id2]

 gt.set_shells(ids, r, mod_id2)

 # Build lattice for this level

 lattice[k].set_objects(fuel_layout)

 lattice[k].assign_object(pin,1)

 lattice[k].assign_object(gt,2)

 # Fuel regions

 if k==3:

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id3, clad_id3]

 #ids = [cr_id1, clad_id1]

 pin.set_shells(ids, r, mod_id3)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 #ids = [fuel_id1, clad_id1]

 ids = [cr_id3, clad_id3]

 gt.set_shells(ids, r, mod_id3)

136

 # Build lattice for this level

 lattice[k].set_objects(fuel_layout)

 lattice[k].assign_object(pin,1)

 lattice[k].assign_object(gt,2)

 # Finish lattice construction for this level

 lattice[k].build_array(N,N,0,mix_table,num_clean_mat)

 # Update global mixing table

 num_mat[k] = lattice[k].num_mat()

 mix_table = lattice[k].mixing_vector()

 if num_mat[k]>num_clean_mat:

 num_clean_mat = num_mat[k]

 # Update lower level matids

 for j in xrange(k):

 lattice[j].set_mixids(lattice[k].update_old_matids(\

 lattice[j].num_mat(), lattice[j].mixids()))

 lattice[j].set_num_mat(num_clean_mat)

 # Build axial mesh

 for k in xrange(Nz):

 if k < axial_cells_region1:

 z[k+1] = z[k] + delta_z_region0

 if (k >=axial_cells_region1 and k < axial_cells_region2):

 z[k+1] = z[k] + delta_z_region1

 if (k >=axial_cells_region2 and k < axial_cells_region3):

 z[k+1] = z[k] + delta_z_region2

 if (k >axial_cells_region3):

 z[k+1] = z[k] + delta_z_region3

 # mesh planes in x,y

 xy = lattice[0].xy_planes()

 # Set up mixture ids for all cells

 mixids = Vec_Int(Nz*Ny*Nx, 0)

 # Lower material region

 offset = 0

 for local_k in xrange(axial_cells_region0):

 k = local_k + offset

 xyids = lattice[0].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

 # Upper material region

 offset = axial_cells_region0

 for local_k in xrange(axial_cells_region1):

 k = local_k + offset

 xyids = lattice[1].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

 # Upper material region - Control rod In

137

 offset = axial_cells_region0 + axial_cells_region1

 for local_k in xrange(axial_cells_region2):

 k = local_k + offset

 xyids = lattice[2].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

 # Upper material region - Control rod In

 offset = axial_cells_region0 + axial_cells_region1 + axial_cells_region2

 for local_k in xrange(axial_cells_region3):

 k = local_k + offset

 xyids = lattice[3].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

list of ids

 ids = Vec_Int(num_clean_mat)

 for m in xrange(len(ids)):

 ids[m] = m

 return (xy, z, mixids, ids, mix_table, lattice)

##---##

MAIN

##---##

initialize(sys.argv)

if node() == 0:

 print "Denovo - pykba Python Front-End"

 print "-------------------------------"

 print "Release : %16s" % (release())

 print "Release Date : %16s" % (release_date())

 print "Build Date : %16s" % (build_date())

 print

timer = Timer()

timer.start()

##---##

DB

##---##

db = DB("pykba")

problem type

db.insert("problem_type", "FIXED_SOURCE")

db.insert("num_z_blocks", 1)

decomposition

if nodes() == 1:

 db.insert("num_blocks_i", 1)

 db.insert("num_blocks_j", 1)

138

 iblocks = 1

 jblocks = 1

elif nodes() == 2:

 db.insert("num_blocks_i", 2)

 db.insert("num_blocks_j", 1)

 iblocks = 2

 jblocks = 1

elif nodes() == 4:

 db.insert("num_blocks_i", 2)

 db.insert("num_blocks_j", 2)

 iblocks = 2

 jblocks = 2

elif nodes() == 8:

 db.insert("num_blocks_i", 4)

 db.insert("num_blocks_j", 2)

 iblocks = 4

 jblocks = 2

elif nodes() == 16:

 db.insert("num_blocks_i", 4)

 db.insert("num_blocks_j", 4)

elif nodes() == 32:

 db.insert("num_blocks_i", 8)

 db.insert("num_blocks_j", 4)

elif nodes() == 64:

 db.insert("num_blocks_i", 8)

 db.insert("num_blocks_j", 8)

#db.insert("num_blocks_i", 1)

#db.insert("num_blocks_j", 1)

db.insert("num_sets", 1)

energy partitioning

db.insert("partition_upscatter", 1, 1)

data settings

db.insert("num_groups", Ng)

db.insert("downscatter", 0, 1)

db.insert("Pn_order", pn_order)

solver setup

#db.insert("eigen_solver", "arnoldi")

db.insert("mg_solver", "krylov")

#db.insert("within_group_solver","GMRES_R")

db.insert("tolerance", 1.0e-5)

db.insert("aztec_kspace", 50)

db.insert("max_itr", 50)

db.insert("iterate_downscatter", store_bound, 1)

139

db.insert("use_init_guess", store_bound, 1)

eigenvalue information

db.add_db("eigenvalue_db", "eigenvalue")

db.insert("eigenvalue_db", "L2_tolerance", 1e-5)

#db.insert("eigenvalue_db", "k_tolerance", 1e-5)

db.insert("eigenvalue_db", "diagnostic_level", 2)

db.insert("eigenvalue_db", "keff", 1.0)

db.insert("eigenvalue_db", "inner_tol_relaxer", "CONSTANT")

db.insert("eigenvalue_db", "inner_tol_relax_factor",1.5)

db.insert("eigenvalue_db", "arnoldi_restarts", 10)

db.insert("eigenvalue_db", "arnoldi_kspace", 15)

db.insert("eigenvalue_db", "energy_dep_ev", 1, 1)

db.insert("eigenvalue_db", "calculate_moments", 1, 1)

upscatter database

db.add_db("upscatter_db", "upscatter")

db.insert("upscatter_db", "tolerance", 1.0e-6)

db.insert("upscatter_db", "aztec_kspace", 250)

db.insert("upscatter_db", "aztec_diag", 1)

db.insert("upscatter_db", "aztec_output", 1)

Mesh

(x, z, matids, cleanids, table, lattice) = build_mesh(Npin)

print "Done with build_mesh()"

db.insert("x_edges", x)

db.insert("y_edges", x)

db.insert("z_edges", z)

Boundary conditions

bounds = [1, 1, 1, 1, 0, 0]

#bounds = [0, 0, 0, 0, 0, 0]

db.insert("boundary", "reflect")

db.add_db("boundary_db", "bnd_conditions")

db.insert("boundary_db", "reflect", bounds, 1)

db.insert("boundary_db", "store_bnd_state", store_bound, 1)

Angular options

db.add_db("quadrature_db", "quad_options")

#db.insert("quadrature_db", "quad_type", "qr")

#db.insert("quadrature_db", "quad_type", "ldfe")

#db.insert("quadrature_db", "order", 3)

db.insert("quadrature_db", "Sn_order", 6)

#db.insert("quadrature_db", "quad_type", "glproduct")

#db.insert("quadrature_db", "polars_octant", 2)

#db.insert("quadrature_db", "azimuthals_octant",2)

##---##

MANAGER

##---##

make manager, material, and angles

manager = Manager()

mat = Mat()

angles = Angles()

partition the problem

print "Manager partitioning"

manager.partition(db, mat, angles)

print "Manager done partitioning"

140

get mapping and mesh objects

mapp = manager.get_map()

indexer = manager.get_indexer()

mesh = manager.get_mesh()

global and local cell numbers

Gx = indexer.num_global(X)

Gy = indexer.num_global(Y)

Gz = mesh.num_cells_dim(Z)

Nx = mesh.num_cells_dim(X)

Ny = mesh.num_cells_dim(Y)

Nz = mesh.num_cells_dim(Z)

if node() == 0:

 print ">>> Partitioned global mesh with %i x %i x %i cells" \

 % (Gx, Gy, Gz)

##---##

MATERIAL SETUP

##---##

AMPX library

ampx = AMPX()

ampx.read_AMPX("Halden-CSAS.lib")

xsdb = XS_DB(db)

xsdb.set_num(405)

xsdb.assign_ampx(fuel_id0, 1, ampx)

xsdb.assign_ampx(fuel_id1, 1, ampx)

xsdb.assign_ampx(fuel_id2, 1, ampx)

xsdb.assign_ampx(fuel_id3, 1, ampx)

xsdb.assign_ampx(clad_id0, 2, ampx)

xsdb.assign_ampx(clad_id1, 2, ampx)

xsdb.assign_ampx(clad_id2, 2, ampx)

xsdb.assign_ampx(clad_id3, 2, ampx)

xsdb.assign_ampx(mod_id0, 4, ampx)

xsdb.assign_ampx(mod_id1, 4, ampx)

xsdb.assign_ampx(mod_id2, 4, ampx)

xsdb.assign_ampx(mod_id3, 4, ampx)

xsdb.assign_ampx(cr_id1, 4, ampx)

xsdb.assign_ampx(cr_id2, 5, ampx)

xsdb.assign_ampx(cr_id3, 5, ampx)

beta_t = .007249

#normal_keff =1.07039043

normal_keff = 1.044

print 'Creating New XSDB on Node ',node()

xsdb_mod = XS_DB(db)

xsdb_mod.set_num(xsdb.num_mat())

for imat in xrange(xsdb.num_mat()):

 if(xsdb.assigned(imat)):

 xs_chi = [0.0]*Ng

 xs_nusigf = [0.0]*Ng

 for g in xrange(Ng):

 if(xsdb.assigned_fission(imat)):

 xs_chi[g] = xsdb.fission_data(imat,g,CHI)

 xs_nusigf[g] = xsdb.fission_data(imat,g,NU_SIGMA_F)/normal_keff

 total_g = xsdb.total(imat,g)

141

 scatter_g = []

 cols = [0]*(Ng-g-1)

 for gp in xrange(Ng):

 scatter_g += [[0.0]]

 if(gp>g):

 cols[gp-g-1] = gp

 if(gp<=g or xsdb.has_upscatter(imat,g,gp)):

 scatter_g[gp] = [xsdb.scatter(imat,g,gp,0)]

 for ipn in xrange(1,pn_order+1):

 scatter_g[gp] += [xsdb.scatter(imat,g,gp,ipn)]

 if xsdb.assigned_fission(imat):

 scatter_g[gp][0] += ((1.0-

beta_t)/normal_keff)*xsdb.fission_data(imat,g,CHI)*xsdb.fission_data(imat,gp,NU_SIGMA_

F)

 xsdb_mod.assign_upscatter(imat,g,total_g,cols,scatter_g)

 if(xsdb.assigned_fission(imat)):

 xsdb_mod.assign_fission(imat,xs_nusigf,xs_chi)

##---##

DELAYED GROUPS

##---##

beta=Vec_Dbl(6,0.0)

beta[0]=2.43e-04

beta[1]=1.45E-03

beta[2]=1.34e-03

beta[3]=2.92e-03

beta[4]=1.04e-03

beta[5]=2.56e-04

lamb=Vec_Dbl(6,0.0)

lamb[0]= 1.27e-02

lamb[1]= 3.17e-02

lamb[2]= 1.17e-01

lamb[3]= 3.14e-01

lamb[4]= 1.38

lamb[5]= 3.83

make macro mixer

mixer = Macro_Mixer(xsdb_mod)

mixer.set(cleanids, table)

make the material database

mixer.mix_with_global_ids(matids, mat)

##---##

ENERGY PARTITIONING

##---##

print "Partitioning energy"

manager.partition_energy(mat, angles)

erg_set = manager.get_erg_set_comm()

##---##

SOURCE SETUP

##---##

allocate problem state (using Isotropic source)

142

print "Allocating state"

source = Isotropic_Source()

Read source term from file and assign to source object

num_files = 64

ids = Vec_Int(mapp.num_global(), 0)

qext = Vec_Dbl(mapp.num_global())

for ifile in xrange(num_files):

 thisfile = open('precursors'+str(ifile)+'.txt','r')

 firstline = thisfile.readline()

 numcells_file = int(firstline.strip())

 for isrc in xrange(numcells_file):

 thisline = thisfile.readline()

 thisline = thisline.strip()

 thisline = thisline.split()

 global_cell = int(thisline[0])

 src_cell = float(thisline[1])

 qext[global_cell] = src_cell / normal_keff

 thisfile.close()

print 'Done reading source on ',node()

spectrum = Vec_Dbl(Ng)

for g in xrange(Ng):

 spectrum[g]=xsdb.fission_data(fuel_id0,g,CHI)

Set up manager

print "Setting up manager"

manager.setup(source)

Set the source

source.set(1,spectrum,ids,qext)

##---##

SOLVE

##---##

if node() == 0:

 print ">>> Setup complete"

 print ">>> Solving with %s differencing and %s quadrature (%i angles)" \

 % (manager.spatial_descriptor(), angles.quad_label(), angles.num_angles())

if run_problem==1:

 print "Running problem"

 # solve the problem

 manager.solve(angles)

 steady_precursors = Vec_Dbl(mesh.num_cells(),0.0)

 power = Vec_Dbl(mesh.num_cells(),0.0)

 for cell in xrange(mesh.num_cells()):

 matid = mat.matid(cell)

 if mat.assigned_fission(matid):

 for g in xrange(Ng):

 phi = Moments(g)

 power[cell] += phi.scalar_flux(cell) \

 * mat.fission_data(matid, g, NU_SIGMA_F)

 for cell in xrange(mesh.num_cells()):

143

 for i in xrange(6):

 steady_precursors[cell] = steady_precursors[cell] + power[i]*beta[i]

 filename= open('precursors'+str(node())+'_step2.txt','w')

 for cell in xrange(mesh.num_cells()):

 filename.write(str(steady_precursors[cell])+'\n')

 filename.close()

 flux0 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux5 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux10 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux15 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux20 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux25 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux30 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux35 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux40 = Vec_Dbl(mesh.num_cells(), 0.0)

 phi = Moments(0)

 for cell in xrange(mesh.num_cells()):

 flux0[cell] = phi.scalar_flux(cell)

 phi = Moments(5)

 for cell in xrange(mesh.num_cells()):

 flux5[cell] = phi.scalar_flux(cell)

 phi = Moments(10)

 for cell in xrange(mesh.num_cells()):

 flux10[cell] = phi.scalar_flux(cell)

 phi = Moments(15)

 for cell in xrange(mesh.num_cells()):

 flux15[cell] = phi.scalar_flux(cell)

 phi = Moments(20)

 for cell in xrange(mesh.num_cells()):

 flux20[cell] = phi.scalar_flux(cell)

 phi = Moments(25)

 for cell in xrange(mesh.num_cells()):

 flux25[cell] = phi.scalar_flux(cell)

 phi = Moments(30)

 for cell in xrange(mesh.num_cells()):

 flux30[cell] = phi.scalar_flux(cell)

 phi = Moments(35)

 for cell in xrange(mesh.num_cells()):

 flux35[cell] = phi.scalar_flux(cell)

 phi = Moments(40)

 for cell in xrange(mesh.num_cells()):

 flux40[cell] = phi.scalar_flux(cell)

 silo = SILO()

 silo.add_mixer(mixer)

 silo.open(str(lat_size)+"x"+str(lat_size)+"_r"+str(Npin)+"a"+str(Nz)+'fixed')

 silo.add("flux0", flux0)

144

 silo.add("flux5", flux5)

 silo.add("flux10", flux10)

 silo.add("flux15", flux15)

 silo.add("flux20", flux20)

 silo.add("flux25", flux25)

 silo.add("flux30", flux30)

 silo.add("flux35", flux35)

 silo.add("flux40", flux40)

 silo.add("power", power)

 silo.close()

Write HPCKBA input

if generate_hpckba==1:

 print "Generating HPCKBA input"

 out = HPC_Problem_Output(1, Nx, Ny, Nz)

 print out.chunk(), out.num_chunks_per_file(), out.num_files()

 out.open(str(lat_size)+"x"+str(lat_size)+"_r"+str(Npin)+"a"+str(Nz))

 shapes = Vec_Dbl()

 out.write_db(db)

 out.write_mixed_xs(mixer)

 out.write_src_info(ZERO_SOURCE, ZERO_SOURCE, shapes)

 # write matids

 out.start_field_loop()

 ids = Vec_Int(out.chunk(), 0)

 while not out.finished_field_loop():

 k = out.current_chunk()

 if k < Nz:

 print "Writing k-plane %d/%d" % (k, Nz)

 for j in xrange(Gy):

 for i in xrange(Gx):

 cell = indexer.g2g(i,j,k)

 index = indexer.g2g(i,j,0)

 ids[index] = matids[cell]

 out.write_matids(ids)

 out.advance_loop()

 out.close()

##---##

TIMING

##---##

output final database (has class-dependent defaults)

db.output()

timer.stop()

time = timer.wall_clock()

keys = timer_keys()

if len(keys) > 0 and node() == 0:

 print "\n"

 print "TIMING : Problem ran in %16.6e seconds." % (time)

 print "---"

145

 for key in keys:

 print "%30s : %16.6e" % (key, timer_value(key) / time)

 print "---"

##---##

manager.close()

finalize()

end

DENOVO Fixed Source Step 2 – Halden Case

HALDEN 3x3 - CRout Step 2

Copyright (C) 2008 Oak Ridge National Laboratory, UT-Battelle, LLC.

##---##

generated by /data/denovo/build/debug/bin/pygen built on 20101129

import os, sys, math, string

pykba equation type

from sc import *

unks_cell = 1

Npin = 8 # number of cells per pin in coarse mesh

Ng = 44 #number of energy groups on the AMPX library

Nz = 40

Zmax = 400.

pn_order = 0

store_bound = 1

run_problem = 1

generate_hpckba = 0

Starting z value (this places bottom of fuel at z=0)

Zmin = 0.0

Number of different axial material levels

num_mat_levels = 3

Pin spacing

pitch = 1.4224

Clad inner/outer radius

clad_in = 0.545465

clad_out = 0.639445

Guid tube inner/outer radius

146

gt_in = 0.569

gt_out = 0.6448

lat_size = 3

Nx = lat_size*Npin

Ny = lat_size*Npin

plane_cells = Nx*Ny

store_bound = 0

run_problem = 1

generate_hpckba = 0

Parameters for region 0

fuel_id0 = 101

clad_id0 = 102

mod_id0 = 103

axial_cells_region0 = 64

delta_z_region0 = 5.541015625

Parameters for region 1

fuel_id1 = 201

clad_id1 = 202

mod_id1 = 203

cr_id1 = 204

axial_cells_region1 = 24

delta_z_region1 = 0.15625

Parameters for region 2

fuel_id2 = 301

clad_id2 = 302

mod_id2 = 303

cr_id2 = 304

axial_cells_region2 = 48

delta_z_region2 = 0.8671875

Nz = axial_cells_region0 + axial_cells_region1 + axial_cells_region2

##---##

BUILD MESH

##---##

print "Defining build_mesh"

def build_mesh(N):

 # uniform layout for reflector/plate regions

 uniform_layout = [1, 1, 1,

 1, 1, 1,

 1, 1, 1]

 # fuel lattice arrangement

 fuel_layout = [1, 1, 1,

 1, 2, 1,

 1, 1, 1]

 # Bottom reflector

 lattice = []

 for k in xrange(num_mat_levels):

 lattice[k:] = [Array_0(lat_size)]

147

 # Number of clean materials per level

 num_mat = [0] * num_mat_levels

 # Number of clean materials total

 num_clean_mat = 0

 # Bottom region

 print "Building level 0"

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id0, clad_id0]

 pin.set_shells(ids, r, mod_id0)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 ids = [mod_id0, clad_id0]

 gt.set_shells(ids, r, mod_id0)

 # Assign reflector pin to bottom level of lattice

 lattice[0].set_objects(fuel_layout)

 lattice[0].assign_object(pin,1)

 lattice[0].assign_object(gt,2)

 lattice[0].build_array(N,0)

 # Set global mixing table

 num_mat[0] = lattice[0].num_mat()

 mix_table = lattice[0].mixing_vector()

 num_clean_mat = num_mat[0]

 # Create all other levels

 for k in xrange(1,num_mat_levels):

 print "Building level ",k

 # Fuel regions

 if k==1:

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id1, clad_id1]

 pin.set_shells(ids, r, mod_id1)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 ids = [cr_id1, clad_id1]

 gt.set_shells(ids, r, mod_id1)

 # Build lattice for this level

 lattice[k].set_objects(fuel_layout)

 lattice[k].assign_object(pin,1)

 lattice[k].assign_object(gt,2)

 # Fuel regions

 if k==2:

 pin = Pincell()

 pin.set_pitch(pitch)

 r = [clad_in, clad_out]

 ids = [fuel_id2, clad_id2]

148

 #ids = [cr_id1, clad_id1]

 pin.set_shells(ids, r, mod_id2)

 gt = Pincell()

 gt.set_pitch(pitch)

 r = [gt_in, gt_out]

 #ids = [fuel_id1, clad_id1]

 ids = [cr_id2, clad_id2]

 gt.set_shells(ids, r, mod_id2)

 # Build lattice for this level

 lattice[k].set_objects(fuel_layout)

 lattice[k].assign_object(pin,1)

 lattice[k].assign_object(gt,2)

 # Finish lattice construction for this level

 lattice[k].build_array(N,N,0,mix_table,num_clean_mat)

 # Update global mixing table

 num_mat[k] = lattice[k].num_mat()

 mix_table = lattice[k].mixing_vector()

 if num_mat[k]>num_clean_mat:

 num_clean_mat = num_mat[k]

 # Update lower level matids

 for j in xrange(k):

 lattice[j].set_mixids(lattice[k].update_old_matids(\

 lattice[j].num_mat(), lattice[j].mixids()))

 lattice[j].set_num_mat(num_clean_mat)

 # Build axial mesh

 z = [0.0] * (Nz + 1)

 z[0] = Zmin

 for k in xrange(Nz):

 if k < axial_cells_region0:

 z[k+1] = z[k] + delta_z_region0

 elif (k >=axial_cells_region0 and k <

(axial_cells_region0+axial_cells_region1)):

 z[k+1] = z[k] + delta_z_region1

 else:

 z[k+1] = z[k] + delta_z_region2

 # mesh planes in x,y

 xy = lattice[0].xy_planes()

 # Set up mixture ids for all cells

 mixids = Vec_Int(Nz*Ny*Nx, 0)

 # Lower material region

 offset = 0

 for local_k in xrange(axial_cells_region0):

 k = local_k + offset

 xyids = lattice[0].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

149

 # Upper material region

 offset = axial_cells_region0

 for local_k in xrange(axial_cells_region1):

 k = local_k + offset

 xyids = lattice[1].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

 # Upper material region - Control rod In

 offset = axial_cells_region0 + axial_cells_region1

 for local_k in xrange(axial_cells_region2):

 k = local_k + offset

 xyids = lattice[2].mixids()

 for j in xrange(Ny):

 for i in xrange(Nx):

 cell = i + Nx * (j + k*Ny)

 plane_cell = i + Nx*j

 mixids[cell] = xyids[plane_cell]

list of ids

 ids = Vec_Int(num_clean_mat)

 for m in xrange(len(ids)):

 ids[m] = m

 return (xy, z, mixids, ids, mix_table, lattice)

##---##

MAIN

##---##

initialize(sys.argv)

if node() == 0:

 print "Denovo - pykba Python Front-End"

 print "-------------------------------"

 print "Release : %16s" % (release())

 print "Release Date : %16s" % (release_date())

 print "Build Date : %16s" % (build_date())

 print

timer = Timer()

timer.start()

##---##

DB

##---##

db = DB("pykba")

problem type

db.insert("problem_type", "FIXED_SOURCE")

db.insert("num_z_blocks", 1)

decomposition

if nodes() == 1:

 db.insert("num_blocks_i", 1)

150

 db.insert("num_blocks_j", 1)

 iblocks = 1

 jblocks = 1

elif nodes() == 2:

 db.insert("num_blocks_i", 2)

 db.insert("num_blocks_j", 1)

 iblocks = 2

 jblocks = 1

elif nodes() == 4:

 db.insert("num_blocks_i", 2)

 db.insert("num_blocks_j", 2)

 iblocks = 2

 jblocks = 2

elif nodes() == 8:

 db.insert("num_blocks_i", 4)

 db.insert("num_blocks_j", 2)

 iblocks = 4

 jblocks = 2

elif nodes() == 16:

 db.insert("num_blocks_i", 4)

 db.insert("num_blocks_j", 4)

elif nodes() == 32:

 db.insert("num_blocks_i", 8)

 db.insert("num_blocks_j", 4)

elif nodes() == 64:

 db.insert("num_blocks_i", 8)

 db.insert("num_blocks_j", 8)

#db.insert("num_blocks_i", 1)

#db.insert("num_blocks_j", 1)

db.insert("num_sets", 1)

energy partitioning

db.insert("partition_upscatter", 1, 1)

data settings

db.insert("num_groups", Ng)

db.insert("downscatter", 0, 1)

db.insert("Pn_order", pn_order)

solver setup

#db.insert("eigen_solver", "arnoldi")

db.insert("mg_solver", "krylov")

#db.insert("within_group_solver","GMRES_R")

db.insert("tolerance", 1.0e-5)

db.insert("aztec_kspace", 250)

db.insert("max_itr", 250)

151

db.insert("iterate_downscatter", store_bound, 1)

db.insert("use_init_guess", store_bound, 1)

eigenvalue information

db.add_db("eigenvalue_db", "eigenvalue")

db.insert("eigenvalue_db", "L2_tolerance", 1e-5)

#db.insert("eigenvalue_db", "k_tolerance", 1e-5)

db.insert("eigenvalue_db", "diagnostic_level", 2)

db.insert("eigenvalue_db", "keff", 1.0)

db.insert("eigenvalue_db", "inner_tol_relaxer", "CONSTANT")

db.insert("eigenvalue_db", "inner_tol_relax_factor",1.5)

db.insert("eigenvalue_db", "arnoldi_restarts", 10)

db.insert("eigenvalue_db", "arnoldi_kspace", 15)

db.insert("eigenvalue_db", "energy_dep_ev", 1, 1)

db.insert("eigenvalue_db", "calculate_moments", 1, 1)

upscatter database

db.add_db("upscatter_db", "upscatter")

db.insert("upscatter_db", "tolerance", 1.0e-6)

db.insert("upscatter_db", "aztec_kspace", 250)

db.insert("upscatter_db", "aztec_diag", 1)

db.insert("upscatter_db", "aztec_output", 1)

Mesh

(x, z, matids, cleanids, table, lattice) = build_mesh(Npin)

print "Done with build_mesh()"

db.insert("x_edges", x)

db.insert("y_edges", x)

db.insert("z_edges", z)

Boundary conditions

bounds = [1, 1, 1, 1, 0, 0]

#bounds = [0, 0, 0, 0, 0, 0]

db.insert("boundary", "reflect")

db.add_db("boundary_db", "bnd_conditions")

db.insert("boundary_db", "reflect", bounds, 1)

db.insert("boundary_db", "store_bnd_state", store_bound, 1)

Angular options

db.add_db("quadrature_db", "quad_options")

#db.insert("quadrature_db", "quad_type", "qr")

#db.insert("quadrature_db", "quad_type", "ldfe")

#db.insert("quadrature_db", "order", 3)

db.insert("quadrature_db", "Sn_order", 6)

#db.insert("quadrature_db", "quad_type", "glproduct")

#db.insert("quadrature_db", "polars_octant", 2)

#db.insert("quadrature_db", "azimuthals_octant",2)

##---##

MANAGER

##---##

make manager, material, and angles

manager = Manager()

mat = Mat()

angles = Angles()

partition the problem

print "Manager partitioning"

manager.partition(db, mat, angles)

152

print "Manager done partitioning"

get mapping and mesh objects

mapp = manager.get_map()

indexer = manager.get_indexer()

mesh = manager.get_mesh()

global and local cell numbers

Gx = indexer.num_global(X)

Gy = indexer.num_global(Y)

Gz = mesh.num_cells_dim(Z)

Nx = mesh.num_cells_dim(X)

Ny = mesh.num_cells_dim(Y)

Nz = mesh.num_cells_dim(Z)

if node() == 0:

 print ">>> Partitioned global mesh with %i x %i x %i cells" \

 % (Gx, Gy, Gz)

##---##

MATERIAL SETUP

##---##

AMPX library

ampx = AMPX()

ampx.read_AMPX("Halden-CSAS.lib")

xsdb = XS_DB(db)

xsdb.set_num(405)

xsdb.assign_ampx(fuel_id0, 1, ampx)

xsdb.assign_ampx(fuel_id1, 1, ampx)

xsdb.assign_ampx(fuel_id2, 1, ampx)

xsdb.assign_ampx(clad_id0, 2, ampx)

xsdb.assign_ampx(clad_id1, 2, ampx)

xsdb.assign_ampx(clad_id2, 2, ampx)

xsdb.assign_ampx(mod_id0, 4, ampx)

xsdb.assign_ampx(mod_id1, 4, ampx)

xsdb.assign_ampx(mod_id2, 4, ampx)

xsdb.assign_ampx(cr_id1, 4, ampx)

xsdb.assign_ampx(cr_id2, 5, ampx)

beta_t = .007249

normal_keff = 1.0839975787

print 'Creating New XSDB on Node ',node()

xsdb_mod = XS_DB(db)

xsdb_mod.set_num(xsdb.num_mat())

for imat in xrange(xsdb.num_mat()):

 if(xsdb.assigned(imat)):

 xs_chi = [0.0]*Ng

 xs_nusigf = [0.0]*Ng

 for g in xrange(Ng):

 if(xsdb.assigned_fission(imat)):

 xs_chi[g] = xsdb.fission_data(imat,g,CHI)

 xs_nusigf[g] = xsdb.fission_data(imat,g,NU_SIGMA_F)

 xs_nusigf[g] = xs_nusigf[g]/normal_keff

 total_g = xsdb.total(imat,g)

 scatter_g = []

 cols = [0]*(Ng-g-1)

 for gp in xrange(Ng):

153

 scatter_g += [[0.0]]

 if(gp>g):

 cols[gp-g-1] = gp

 if(gp<=g or xsdb.has_upscatter(imat,g,gp)):

 scatter_g[gp] = [xsdb.scatter(imat,g,gp,0)]

 for ipn in xrange(1,pn_order+1):

 scatter_g[gp] += [xsdb.scatter(imat,g,gp,ipn)]

 if xsdb.assigned_fission(imat):

 scatter_g[gp][0] += ((1.0-

beta_t)/normal_keff)*xsdb.fission_data(imat,g,CHI)*xsdb.fission_data(imat,gp,NU_SIGMA_

F)

 xsdb_mod.assign_upscatter(imat,g,total_g,cols,scatter_g)

 if(xsdb.assigned_fission(imat)):

 xsdb_mod.assign_fission(imat,xs_nusigf,xs_chi)

##---##

DELAYED GROUPS

##---##

beta=Vec_Dbl(6,0.0)

beta[0]=2.43e-04

beta[1]=1.45E-03

beta[2]=1.34e-03

beta[3]=2.92e-03

beta[4]=1.04e-03

beta[5]=2.56e-04

lamb=Vec_Dbl(6,0.0)

lamb[0]= 1.27e-02

lamb[1]= 3.17e-02

lamb[2]= 1.17e-01

lamb[3]= 3.14e-01

lamb[4]= 1.38

lamb[5]= 3.83

make macro mixer

mixer = Macro_Mixer(xsdb_mod)

mixer.set(cleanids, table)

make the material database

mixer.mix_with_global_ids(matids, mat)

##---##

ENERGY PARTITIONING

##---##

print "Partitioning energy"

manager.partition_energy(mat, angles)

erg_set = manager.get_erg_set_comm()

##---##

SOURCE SETUP

##---##

allocate problem state (using Isotropic source)

print "Allocating state"

source = Isotropic_Source()

154

Read source term from file and assign to source object

num_files = 64

ids = Vec_Int(mapp.num_global(), 0)

qext = Vec_Dbl(mapp.num_global())

for ifile in xrange(num_files):

 thisfile = open('precursors'+str(ifile)+'_step2.txt','r')

 firstline = thisfile.readline()

 numcells_file = int(firstline.strip())

 for isrc in xrange(numcells_file):

 thisline = thisfile.readline()

 thisline = thisline.strip()

 thisline = thisline.split()

 global_cell = int(thisline[0])

 src_cell = float(thisline[1])

 qext[global_cell] = src_cell

 thisfile.close()

print 'Done reading source on ',node()

spectrum = Vec_Dbl(Ng)

for g in xrange(Ng):

 spectrum[g]=xsdb.fission_data(fuel_id0,g,CHI)

Set up manager

print "Setting up manager"

manager.setup(source)

Set the source

source.set(1,spectrum,ids,qext)

##---##

SOLVE

##---##

if node() == 0:

 print ">>> Setup complete"

 print ">>> Solving with %s differencing and %s quadrature (%i angles)" \

 % (manager.spatial_descriptor(), angles.quad_label(), angles.num_angles())

if run_problem==1:

 print "Running problem"

 # solve the problem

 manager.solve(angles)

 steady_precursors = Vec_Dbl(mesh.num_cells(),0.0)

 power = Vec_Dbl(mesh.num_cells(),0.0)

 for cell in xrange(mesh.num_cells()):

 matid = mat.matid(cell)

 if mat.assigned_fission(matid):

 for g in xrange(Ng):

 phi = Moments(g)

 power[cell] += phi.scalar_flux(cell) \

 * mat.fission_data(matid, g, NU_SIGMA_F) \

 / (1-beta_t)

 power_sum = 0.0

 for cell in xrange(mesh.num_cells()):

 power_sum += power[cell]

155

 print power_sum

 concentration = ([], [], [], [], [], [])

 # Read source term from file and assign to source object

 num_files = 64

 ids = Vec_Dbl(mesh.num_cells(), 0)

 for ifile in xrange(num_files):

 thisfile = open('concentrations'+str(ifile)+'_step2.txt','r')

 firstline = thisfile.readline()

 numcells_file = int(firstline.strip())

 for isrc in xrange(numcells_file*6):

 thisline = thisfile.readline()

 thisline = thisline.strip()

 thisline = thisline.split()

 global_cell = int(thisline[0])

 group = int(thisline[1])

 conc = float(thisline[2])

 concentration[group].append(conc)

 thisfile.close()

 for cell in xrange(mesh.num_cells()):

 for i in xrange(6):

 steady_precursors[cell] = steady_precursors[cell] + lamb[i] *

\

 (concentration[i][cell] * math.exp(-

lamb[i]*0.01) + \

 (1.0/lamb[i]) * beta[i] * power[cell]

\

 * (1.0 - math.exp(-lamb[i]*0.01)))

 filename= open('precursors'+str(node())+'_step3.txt','w')

 for cell in xrange(mesh.num_cells()):

 filename.write(str(steady_precursors[cell])+'\n')

 filename.close()

 flux0 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux5 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux10 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux15 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux20 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux25 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux30 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux35 = Vec_Dbl(mesh.num_cells(), 0.0)

 flux40 = Vec_Dbl(mesh.num_cells(), 0.0)

 phi = Moments(0)

 for cell in xrange(mesh.num_cells()):

 flux0[cell] = phi.scalar_flux(cell)

 phi = Moments(5)

 for cell in xrange(mesh.num_cells()):

 flux5[cell] = phi.scalar_flux(cell)

 phi = Moments(10)

 for cell in xrange(mesh.num_cells()):

 flux10[cell] = phi.scalar_flux(cell)

156

 phi = Moments(15)

 for cell in xrange(mesh.num_cells()):

 flux15[cell] = phi.scalar_flux(cell)

 phi = Moments(20)

 for cell in xrange(mesh.num_cells()):

 flux20[cell] = phi.scalar_flux(cell)

 phi = Moments(25)

 for cell in xrange(mesh.num_cells()):

 flux25[cell] = phi.scalar_flux(cell)

 phi = Moments(30)

 for cell in xrange(mesh.num_cells()):

 flux30[cell] = phi.scalar_flux(cell)

 phi = Moments(35)

 for cell in xrange(mesh.num_cells()):

 flux35[cell] = phi.scalar_flux(cell)

 phi = Moments(40)

 for cell in xrange(mesh.num_cells()):

 flux40[cell] = phi.scalar_flux(cell)

 silo = SILO()

 silo.add_mixer(mixer)

 silo.open(str(lat_size)+"x"+str(lat_size)+"_r"+str(Npin)+"a"+str(Nz)+'fixed')

 silo.add("flux0", flux0)

 silo.add("flux5", flux5)

 silo.add("flux10", flux10)

 silo.add("flux15", flux15)

 silo.add("flux20", flux20)

 silo.add("flux25", flux25)

 silo.add("flux30", flux30)

 silo.add("flux35", flux35)

 silo.add("flux40", flux40)

 silo.add("power", power)

 silo.close()

Write HPCKBA input

if generate_hpckba==1:

 print "Generating HPCKBA input"

 out = HPC_Problem_Output(1, Nx, Ny, Nz)

 print out.chunk(), out.num_chunks_per_file(), out.num_files()

 out.open(str(lat_size)+"x"+str(lat_size)+"_r"+str(Npin)+"a"+str(Nz))

 shapes = Vec_Dbl()

 out.write_db(db)

 out.write_mixed_xs(mixer)

 out.write_src_info(ZERO_SOURCE, ZERO_SOURCE, shapes)

 # write matids

157

 out.start_field_loop()

 ids = Vec_Int(out.chunk(), 0)

 while not out.finished_field_loop():

 k = out.current_chunk()

 if k < Nz:

 print "Writing k-plane %d/%d" % (k, Nz)

 for j in xrange(Gy):

 for i in xrange(Gx):

 cell = indexer.g2g(i,j,k)

 index = indexer.g2g(i,j,0)

 ids[index] = matids[cell]

 out.write_matids(ids)

 out.advance_loop()

 out.close()

##---##

TIMING

##---##

output final database (has class-dependent defaults)

db.output()

timer.stop()

time = timer.wall_clock()

keys = timer_keys()

if len(keys) > 0 and node() == 0:

 print "\n"

 print "TIMING : Problem ran in %16.6e seconds." % (time)

 print "---"

 for key in keys:

 print "%30s : %16.6e" % (key, timer_value(key) / time)

 print "---"

##---##

manager.close()

finalize()

end

158

VITA

James Ernest Banfield grew up in military family that moved a number of times to various countries

and states, including Germany and Japan. James graduated from Lake Braddock Secondary School in

Burke, VA in 2004 as a Valedictorian. While in High School, James was awarded an Honorable Mention

in the National Teachers Science Association competition of 2002 for work in experimental ultrasound.

He then went to the University of Mississippi where he graduated Suma Cum Laude, earning a BS in

Mechanical Engineering in 2008. James also graduated from the Sally-Mcdonnel Barksdale Honors

College at the University of Mississippi, completing an Undergraduate Thesis on The

MagnetoRheological Effect of MagnetoRheological Elastomers. While at the University of Mississippi,

James was awarded a variety of scholarships, the most notable of which was the Pichintino Honors

College Scholarship. Also as an undergraduate, James worked at Rowan University in a Research

Experience for Undergraduates program as well as a design engineering intern at Advanced Distributor

Products. Following graduation, James moved to Los Alamos National Laboratory. There, he worked as

an intern prior to beginning graduate study in Nuclear Engineering at the University of Tennessee. Once

at the University of Tennessee, James was awarded the Department of Energy’s Nuclear Engineering

University Programs (NEUP) fellowship for three years to pursue a PhD in Nuclear Engineering. During

this time, he met his girlfriend Trista Busch as well as adopted a cat, Darius. During his time at

Tennessee, James has worked in a continual partnership with Los Alamos, Argonne and Oak Ridge

National Laboratories, contributing to a number of technical memos, conference papers, and journals.

When not working or volunteering, James enjoys extreme sports such as snowboarding and

skateboarding. In skateboarding, James has won two team contests at Woodward Skate Camp in

Pennsylvania, where he worked as a counselor in the summer of 2005. James hopes to continue his work

with the Department of Energy’s National Laboratories, hopefully as a postdoctoral associate or full staff

member in the Reactor Physics group of the Reactors and Nuclear Systems Division at ORNL.

	Semi-Implicit Direct Kinetics Methodology for Deterministic, Time-Dependent, Three-Dimensional, and Fine-Energy Neutron Transport Solutions
	Recommended Citation

	tmp.1366050622.pdf.2dS6m

