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Abstract

With the rapid growth in the networked environments for different industrial, scientific

and defense applications, there is a vital need to assure the user or application a

certain level of Quality of Service (QoS). Environments like the industrial environment

are particularly harsh with interference from metal structures (as found in the

manufacturing sector), interference generated during wireless propagation, and

multipath fading of the radio frequency (RF) signal all invite novel mitigation

techniques. The challenge of achieving the benefits like improved energy efficiency

using wireless is closely coupled with maintaining network QoS requirements.

Assessment and management of QoS needs to occur, allowing the network to adapt

to changes in the RF, information, and operational environments. The capacity to

adapt is paramount to maintaining the required operational performance (throughput,

latency, reliability and security).

This thesis address the need for accurate radio channel modeling techniques

to improve the performance of the wireless communication systems. Multiple

different channel modeling techniques are considered including statistical models, ray

tracing techniques, finite time-difference technique, transmission line matrix method

(TLM), and stochastic differential equation-based (SDE) dynamic channel models.

Measurement of ambient RF is performed at several harsh industrial environments

to demonstrate the existence of uncertainty in channel behavior. Comparison of

various techniques is performed with metrics including accuracy, applicability, and

computational efficiency. SDE- and TLM-based methods are validated using indoor
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and outdoor measurements. Fast, accurate techniques for modeling multipath fading

in harsh environments is explored. Application of dynamic channel models is explored

for improving QoS of wireless communication system.

The TLM-based models provide accurate site-specific path loss calculations

taking into consideration materials and propagation characteristics of propagating

environment. The validation studies confirm the technique is comparable with

existing channel models. The TLM-based channel models is extended to compute

the site-specific multipath characteristics of the radio channel eliminating the need

for experimental measurement. The TLM-based simulator is also integrated with

packet-level network simulator to perform end to end-to-end site specific calculation

of wireless network performance. The SDE-channel models provide accurate online

estimations of the channel performance along with accurate one-step prediction of

the signal strength. The validation studies confirm the accuracy of the technique.

Application of the SDE-based models for adaptive antenna control is formulated

using online recursive estimation.
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Chapter 1

Introduction

Wireless technology is fueling new paradigms in government, personal, commercial,

and industrial communication systems throughout the marketplace. The industrial

community is poised to adopt wireless technology to support technical innovations,

e.g., widespread use of wireless sensors forecasted to improve manufacturing produc-

tion and energy efficiency and reduce emissions[39]. Mobile broadband networks have

revolutionized information access and personal communications, virtually changing

the culture. Wireless sensors provide better process visibility (in situ sensing) to

facilitate better control systems and inferential process control systems. The result

will be improved process and energy efficiencies and reduced emissions.

With the rapid growth in the networked environments for different industrial,

scientific and defense applications, there is a vital need to assure the user or

application a certain level of Quality of Service (QoS). Environments like the

industrial environment are particularly harsh with interference from metal structures

etc. (as found in the manufacturing sector), interference generated during wireless

propagation, and multipath fading of the radio frequency (RF) signal all invite

novel mitigation techniques. The challenge of achieving benefits like improved

energy efficiency using wireless is closely coupled with maintaining network QoS

requirements. Assessment and management of QoS needs to occur, allowing the
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network to adapt to changes in the RF, information, and operational environments.

The capacity to adapt is paramount to maintaining the required operational

performance (throughput, latency, reliability and security).

Wireless communication channels encompass the link between transmitter and re-

ceiver antennas. Understanding the electromagnetic wave propagation and information-

theoretic capacities of wireless channels is necessary for successfully deploying wireless

networks for the above-mentioned applications. The performance of a channel is

influenced by the physics of the environment, interference sources, and coexistence of

different wireless networks. Often times the channel has varying characteristics over

time due to changing interferers and physical changes in the environment. Users of

the wireless channel can have limited influence on the performance of the channel.

However, accurate representation and understanding of the wireless channel will

inevitably help improving the performance of the wireless devices.

1.1 Propagation Modeling Techniques

Propagation of an electromagnetic wave is primarily attributed to three different kinds

of phenomena - reflection, diffraction, and scattering[43]. Propagation models have

focused on predicting average signal strength at the receiver for a given transmitter

distance along with the variation in signal strength as a function of time. Estimating

signal strength at a large distance from the transmitter useful in estimating radio

coverage is called large-scale propagation modeling. Estimating signal variations due

to short travel distances over short periods of time is called small-scale propagation

modeling. Depending on how rapidly the propagating signal changes due to variation

in the channel, a channel may be classified as fast fading or slow fading. The

four fundamental parameters used to describe the fading channel are delay spread,

coherence bandwidth, Doppler spread, and coherence time.

Delay spread characterizes the time-dispersive properties of the channel by

defining the multipath density in the environment. It is simply the difference between

2
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Figure 1.1: Types of Fading Classification

the time of arrival of the first significant multipath component and the time of

arrival of the latest multipath component. This is usually obtained by observing the

power delay profile (PDP) in channel sounding experiments. Three main parameters

observed from the PDP are mean excess delay, rms delay spread, and excess delay

spread (X dB)[43]. Mean excess delay is the first moment of the PDP and defined by

τ̄ =

∑
k P (τk)τk∑
k P (τk)

(1.1)

The rms delay spread is the square root of the second central moment of the PDP

and is defined by

στ =
√
τ̄ 2 − (τ̄)2 (1.2)

Where, τ̄ is the mean excess delay. The maximum excess delay (X dB) of the PDP is

the time delay during which the multipath energy falls to X dB below the maximum.

The values of the three parameters depend on the choice of noise threshold used

to process P (τ). This threshold is used to differentiate between various received

multipath components and thermal noise. If the noise threshold is too low, the noise

may be processed as multipath, and the three parameters can be artificially high. The

noise threshold is typically related to the receiver sensitivity of the communication

3



Figure 1.2: Indoor Multipath Measurements

device. Typical receiver sensitivities in IEEE 802.15.4 and IEEE 802.11 devices is -95

dBm. Figure 1.2 shows various multipath metrics for an indoor received signal [43]

Coherence bandwidth is derived from rms delay spread and indicates a statistical

measure of the range of frequencies over which the channel is considered to have

equal gain and linear phase for all components. Coherence bandwidth is inversely

proportional to the delay spread in the channel. A 50% coherence bandwidth is given

by

Bc =
1

5στ

(1.3)

If the transmitted signal’s bandwidth is greater than the 50% coherence bandwidth

then the transmitted signal will experience frequency selective fading. If the

transmitted signal bandwidth is less than the 50% bandwidth then the transmitted

signal will experience flat fading [43].
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Doppler spread, BD, describes the time varying nature of the channel, particularly

due to mobility of the receiver or transmitter, and expressed as a range of frequencies

over which the received Doppler spectrum is non-zero. When a sinusoidal tone of

frequency fc is transmitted, the Doppler spectrum will have components from fc− fd

to fc + fd, where fd is referred to as Doppler shift. if the baseband signal bandwidth

is greater than the Doppler spectrum the effect of the Doppler spread are negligible

[43].

Coherence time,Tc, is the measure of the time duration over which the channel

impulse response is essentially invariant. The coherence time thereby quantifies the

similarity of the channel response at different times. Coherence time is inversely

proportional to the maximum doppler shift, fm experienced by the channel. If the

reciprocal of the baseband signal bandwidth is greater than the coherence time of the

channel then the signal will experience distortion at the receiver [43].

TC =
1

fm
(1.4)

While the above four parameters describe the distortion a signal suffers during

propagation, the ambient noise plays a significant role in the QoS of a communication

system. These noise sources vary from non-communication RF source to multi-band

communication systems.

Apart from the characteristics of the channel, there is a significant impact on

the communication system when the desired signal is corrupted by another signal at

the receiver [26],[29]. Two potential forms of interference sources include (1) wireless

networks operating in the same frequency band whose operations are not coordinated,

(2) industrial equipment producing wide-band interference in the same frequency band

as the communication system.

Federal Communications Commission (FCC) has shared several unlicensed spec-

trum that can be used for industrial, scientific, and medical (ISM) applications.

While ISM bands exist across the FCC spectrum the most commonly used bands

5



Frequency Range Center Frequency Bandwidth
433.050 - 434.790 MHz 433.920 MHz 1.74 MHz
902.000 - 928.000 MHz 915.000 MHz 26 MHz
2.4000 - 2.4835 GHz 2.445 GHz 83.5 MHz
5.725 - 5.875 GHz 5.800 GHz 150 MHz

Table 1.1: Unlicensed ISM Band Frequencies and Bandwidths

are given in Table 1.1. Choice of the frequency of operation impacts the attenuation

characteristics of the signal and subsequently the range of wireless transmission.

Figure 1.7 and Figure 1.8 demonstrate the attenuation of the signal experienced in

indoor propagation at 900MHz and 2.45GHz respectively.

Figure 1.3 is a two minute snapshot of the time and frequency domain measure-

ment at the industrial floor of a plastics manufacturing plant. The top portion of

the figure indicates the instantaneous time-series signature of the RF channel. The

center portion of the signal is a time-frequency spectrogram of the RF channel over

two minutes. The bottom part of the figure indicates the frequency domain activity

of the RF channel. This measurement is done as part of a survey prior to a IEEE

802.15.4 network installation. The thermal noise floor is at -80dBm while a frequency

hopping network used for mobile worker handheld devices occupy the band with peak

power at -50dBm. This is a demonstration of the first form of interference as described

above. Without better coordination, networks in the same band will incur significant

information losses due to collisions.

Significant interference sources exist particularly in the industrial environments

that negatively effects the signal-to-noise ratio (SNR) and signal-to-interference ratio

(SIR) of the communications systems. Microwave ovens operate in the 2.4GHz band

and poor shielding often results in these devices acting as broadband electromagnetic

interferers [30]. Figure 1.4 shows the noise patterns generated in the 2.4GHz band

by a jet turbine engine. Figure 1.5 shows the periodic burst ultra wide-band noise

generated in a coal power plant that shifts the noise floor to -45dBm (from -80dBm).

Figure 1.6 demonstrated a periodic wide-band noise generated by an electric arc

6



furnace in a steel mini mill. Such non-traditional noise sources require careful

communication system deployment plan including (1) adaptive frequency/channel

hopping to avoid noise band, (2) adaptive time synchronized transmission protocols

for transmitting around noise, and (3) advanced spread spectrum modulation

techniques with high signal to interference noise ratio (SINR, also called process

gain) to accommodate harsh environments.

1.2 Contributions Summary

The contributions of the research undertaken here are as follows:

• RFmeasurements of various industrial and building environments to understand

characteristics of various noise sources and path loss experienced by RF signals

in these environments.

• Survey of various channel modeling techniques and comparison of computational

needs and accuracy.

• Measurement based validation of the transmission-line matrix method for indoor

and outdoor propagation environment.

• Measurement based validation of dynamic channel models using stochastic

differential equations for indoor and outdoor propagation environments.

• Fast, accurate method for delay spread estimation for highly reflective environ-

ments using transmission-line matrix model.

• End-to-end network simulation of wireless networks using TLM-based propaga-

tion models.

• Application of the dynamic channel models towards adaptive array antennas

for optimal signal to noise ratio.

7



1.3 Outline of Thesis

The outline of the thesis is as follows:

Chapter 2 describes a comparative study of four channel modeling techniques

including ray tracing, finite difference time domain (FDTD), event based transmission

line matrix (TLM), and stochastic channel modeling used for understanding propaga-

tion environments. Chapter 3 performs experimental validation of existing Stochastic

and TLM-based channel models with propagation measurements. Chapter 4 describes

modeling techniques for simulating multipath parameters using TLM-based model.

Chapter 5 demonstrates the application of channel modeling for improving QoS in

communication systems. Chapter 6 draws conclusions for the work performed in this

research.
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Figure 1.3: Ambient Channel Activity in a Plastics Plant
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Figure 1.4: Ambient Noise Generated by a Jet Turbine Engine
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Figure 1.5: Ambient Noise Generated in a Coal Power Plant
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Figure 1.6: Ambient Noise Generated in a Steel Mini Mill
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Figure 1.7: Attenuation of 900MHz Signal Inside a Building with TX Power 30dBm
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Figure 1.8: Attenuation of 2.4GHz Signal Inside a Building with TX Power 29dBm
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Chapter 2

Comparative Study of Different

Technologies

2.1 Introduction

Accurate radio channel models are essential for predicting the performance of wireless

networks that operate in cluttered environments as shown in [8], [22], and [23].

Network performance in these types of environments is determined by interactions

between the application traffic pattern, network protocol stack, and radio channel

characteristics. Accurate performance predictions can only be obtained by accounting

for all three of these elements, but radio channel characteristic is the key random

variable in this context with limited to no radio designer control.

Network protocol simulation models, including those designed for modeling

wireless networks, typically rely on empirical models of the physical radio channel.

Empirical models are attractive because they are computationally cheap to use. This

computational simplicity, however, comes at the cost of geometric simplicity that does

not accurately represent the site-specific propagation characteristics

Empirical models are constructed in one of two ways. They can be based on

simplifying assumptions concerning the physical geometry of the propagation space.
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For example, free space propagation models assume that the radio wave propagates

through empty space. Empirical models can also be constructed with a best-fit to

experimental measurements obtained in a particular environment. For example, an

equation can be constructed that approximates measured path loss as a function of

distance, where the measured path loss data was obtained in an urban canyon. [43]

[24] describes several empirical models of both types.

Physically based radio channel models are required to obtain site-specific predic-

tions of radio channel behavior as shown in [46], [14], and [17]. There are two basic

approaches to physical modeling of radio channels: ray tracing methods and finite

difference methods. Ray tracing methods are based on the geometric theory of optics,

and are, in fact, closely related to the computer graphics technique of the same name.

Finite difference methods, which can be broadly considered to include transmission

line matrix and finite difference time domain techniques, are discrete approximations

to Maxwell’s equations that directly simulate the propagation of an electromagnetic

wave.

Ray tracing and finite difference methods are computationally expensive. Finite

difference techniques in their complete form [50] are widely regarded as being

unsuitable for simulating wave propagation over large areas. However, simplifications

that can be incorporated into transmission line matrix methods have allowed for

relatively large scale path loss predictions to be computed [34]. Ray tracing techniques

are relatively insensitive to the dimensions of the space under consideration, but they

can scale poorly when the geometry is complex, there are a large number of radio

receivers, or both.

A event driven variation of the transmission line matrix method is described in

[36]. The event driven model is designed for use in cluttered environments comprising

many objects that do not effectively transmit radio waves. The event driven model

is executed on a three dimensional spatial grid, with grid points being updated only

when the electric field amplitude at that point is sufficiently strong. This significantly

reduces the computational effort needed to simulate areas in which the radio wave can
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not penetrate large volumes of space. Moreover, because the method is grid based,

the computational cost is independent of the number of receivers [46].

Attempts to integrate physically based radio propagation models into network

protocol simulators have been described in [14] and [51]. Largely, these efforts attempt

to compute path loss using ray tracing techniques, with FDTD methods being used

in small areas where ray tracing does not provide accurate results. When considering

large areas and very large numbers of receivers, this approach suffers from the same

computational drawbacks as ray tracing techniques. The FDTD addition largely

serves to improve accuracy in those areas were ray tracing is likely to give poor

results.

This chapter describes various techniques of importance for simulation the

behavior of propagation channels with specific application to wireless network

deployment in cluttered wireless environments

2.2 Ray Tracing

Ray tracing models are based on the geometric theory of optics. The basic assumption

is that high frequency waves can be closely approximated by a discrete number of

rays emanating from the wave source. Associated with each ray is its power, which

diminishes with distance according to some empirical model (frequently, a free space

model is used). However, the distance travelled by the ray is determined directly

from its path through a three dimensional geometric model. Calculating this path is

the computationally difficult part of the ray tracing model.

Ray tracing begins with the generation of a single ray by the transmitter. The

ray follows a straight line until it encounters a surface. At a surface, the ray can be

split into new rays that describes different physical effects. Typically, these include

reflection from the surface, transmission through the surface, and possibly diffraction

around the sharp edge of a surface. Other effects can also be simulated as shown

in [32], [53], and [16]. The ray tracing process terminates when the ray reaches
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the receiver or some threshold criteria is met (e.g., after some distance travelled or

number of reflections/transmissions/diffractions). This process is repeated typically

until some predefined number of rays have found a path to the receiver or some number

of rays have been attempted. At this point, the approximate signal characteristics of

the ray channel can be computed.

The ray tracing technique has been shown to be accurate for a broad range

of scenarios [53] and [51]. The computational costs, however, can be rather high

[16]. The computational effort required to complete a ray tracing scenario grows

as the number of surfaces, and hence number of ray intersection tests, grows. The

computational effort also increases as the number of receivers is increased, since at

least one ray is required for each possible receiver, and in practice the number of

required rays is roughly proportionally to the number of receivers.

Ray tracing techniques also require accurate geometry description of the environ-

ment. For highly cluttered environments, as shown in Chapter 1, obtaining accurate

geometry description is often times infeasible. This limitation makes it difficult to

obtain site-specific propagation characteristics.

2.3 Finite Difference Time Domain (FDTD)

Finite difference time domain methods are a class of numerical techniques, which

broadly includes transmission line matrix methods, for solving the time domain

Maxwell’s equations. The four equations are:

• Gauss’s Law: Relationship between electric field and charge

∇.E =
ρ

ε0
(2.1)

• Gauss’s Law of Magnetism: Sum total magnetic flux is zero

∇.B = 0 (2.2)
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Figure 2.1: 2D Example of Ray Tracing

• Maxwell-Faraday Equation: Electromagnetic induction

∇× E = −∂B

∂t
(2.3)

• Maxwell corrected Amperes Law: Changing electric field induces magnetic field

and vice versa

∇× B = μ0J + μ0ε0
∂E

∂t
(2.4)

where ∇. is the divergence operator, ∇× is the curl operator, E is the electric field

intensity, B is the magnetic flux density, ε0 is the permittivity of the free space, μ0 is

the permeability of the free space, and J is the total current density.
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Simpler schemes that are based on the linear wave equation and using low order

numerical methods are generally preferred for radio wave propagation modeling. In

their simplest form, finite difference methods approximate physical geometry with a

three dimensional grid, and compute the field evolution at each grid point. In more

complex models, a regular three dimensional grid is replaced with an irregular mesh

that more accurately conforms to the shape of geometric features.

Finite difference methods, and related transmission line matrix methods, are

grounded in well established physical laws, and as such can they can be applied

to a very large class of problems. The computational effort needed to conduct a

simulation is proportional to the number of grid points. For a three dimensional

problem on a regular grid, the computational cost grows roughly as the third power

of the grid resolution. The grid resolution is determined, in part, by the size of the

space and, in part, by the type of information that is required. To compute, e.g., the

impulse response of a radio channel requires a grid resolution that is much smaller

than the signal wave length. Typically FDTD requires 10 cells per wavelength for

effective simulation results.

2.4 Event Based Transmission Line Matrix (TLM)

The event driven TLM method is based on a simple model of radio wave propagation

through a homogeneous, three dimensional space. This simple model is given by the

linear wave equation

∂2

∂t2
U(t, x, y, z) = c2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
U(t, x, y, z) (2.5)

where t is time, c is the propagation speed, x, y, and z are Cartesian spatial

coordinates, and U(t, x, y, z) is the scalar electric field potential at the space-time

coordinate (t, x, y, z). A discrete approximation of this partial differential can be

constructed using finite-differences. This finite difference approximation can be
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viewed as a real valued cell space model [52]. This model can, in turn, be optimized

for computation by reinterpreting it as a discrete event system [55]. The details of

this transformation for the wave equation are given in [36] [37] [38].

In an inhomogeneous space, different wave-carrying mediums are modeled as

described above. The different media are joined using reflection/transmission

junctions that model reflection, transmission, and speed changes when a wave moves

across the medium interface. A detailed description of the medium interface model

can be found in [36] [38]. The resulting method is second order accurate within a

homogeneous space, and first order accurate at material interfaces.

Two simplifications can be made without reducing the model’s utility for

predicting radio channel path loss. Both of these simplifications are based on the

fact that the most useful portion of the radio signal is carried by the wave front

that is moving through the air. This suggests, first, that waves traveling in other

types of materials (e.g., concrete, earth) can be discarded. A simplified version of the

reflection/transmission junction that only propagate reflected waves implements this

simplification.

The second simplification restricts propagation calculations to the wave front by

using two distinct cutoff thresholds. The first threshold is an absolute threshold,

and a cell will not propagate any disturbance with a magnitude that is below this

threshold. The second threshold is a relative threshold, and it defines a local cutoff

threshold relative to the largest disturbance that has passed through the point. To be

precise, let Umax be the largest signal amplitude observed at a point, y the junction

output being considered, cabs the absolute cutoff, and crel the relative cutoff. Then

the output y will be propagated only if y > cabs and y > Umax · crel.
If this model is simulated with a very coarse grid, then accurate path loss

predictions can be made for receivers for which there is an open air (not free space)

path to the transmitter. With a very fine grid, it is possible to construct the impulse

response of the virtual radio channel between the transmitter and each individual

grid point.
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The computational cost of the event based TLM method are determined by the

number of active grid points. If the propagation space is cluttered with objects

that do not transmit radio signals, then the number of active grid points will

be small when compared to the total number of grid points in the space. This

can significantly reduce the computational complexity with respect to other finite

difference techniques. Significantly, the accuracy of the method is similar to a

complete low order finite difference technique and, as with other finite difference

approaches, the signal characteristics are computed at every discrete grid point.

2.4.1 Equivalence of FDTD and TLM

The FDTD method is based on central difference approximations of Maxwells curl

equations. The TLM method is based on a physical model of wave propagation. Both

techniques are suitable for simulating Maxwell’s equation in a given media. Literature

exists demonstrating the formal equivalence of FDTD and TLM methods [12] [48].

These show that by using precise computer arithmetic, both methods would provide

identical values at any time instant and at any location. The equivalence includes

properties in terms of stability, energy conservation and flexibility in modeling

irregular surfaces.

2.5 Dynamic Channel Modeling

While several techniques exist for modeling the propagation of electromagnetic waves

as described in the sections above, there is a need for site-specific dynamic channel

models [9]. These models are particularly useful for online estimation of the channel

parameters and predicting the future states of the channel. Applications for such

models include power control, adaptive antennae, and dynamic interference mitigation

[42][31][41]. This includes system identification which is a process of constructing a

mathematical model for a dynamic system from observations and prior knowledge.
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2.5.1 State Space Model

State space models are widely used to model control systems and communication

channels [11]. A state space model of a wireless channel has the form:

xt+1 = Atxt +Btwt

yt = Ctxt +Dtvt (2.6)

where xt ∈ �n is the state vector, yt ∈ �d is a measurement vector sampled at

the output of the channel, wt ∈ �m is a state noise, and vt ∈ �d is measurement

noise. Channel parameters θ = {At, Bt, Ct, Dt} and states {xt}t, are the unknown

parameters of the channel and shall be estimated using measurement data {yt}. At is

the state matrix, Bt denotes the process noise matrix, Ct denotes the output matrix,

and Dt denotes the measurement noise matrix. The time varying property of the

parameters adapts dynamically to the variety of outputs. Figure 2.2 shows the block

diagram of relationship between the parameters θ.The Gaussian noise terms wt and

vt capture the uncertainties introduced at each time step. These properties make the

use of state space models appropriate to capture the time-varying stochasticity of the

wireless channels. Future states of the received signal can be estimated based on the

previous states.

Figure 2.2: A Stochastic State Space Model
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2.5.2 System Parameter Estimation

Channel parameters θt = {At, Bt, Ct, Dt} are estimated using Expectation-Maximization(EM)

algorithm. The EM algorithm is an iterative numerical scheme to compute maximum

likelihood estimates of the parameters given the measurement data YN . This is

computed in two steps:

Step 1 : This step evaluates the conditional expectation of the log-likelihood function

given the complete data as

Λ(θ, θl) = Eθl{log
dPθ

dPθl

|yT} (2.7)

Step 2 : This step finds

θl+1 ∈ arg maxθ∈ΘΛ(θ, θl) (2.8)

Step 1 and Step 2 are repeated until the system parameters converge to the real

parameters ‖θl−θl−1‖ ≤ ε. P0 denotes a fixed probability measure; and {Pθt ; θt ∈ Θ}
denotes a family of probability measures induced by the system parameters θt. If the

original model is a white noise sequence, then {Pθt ; θt ∈ Θ} is absolutely with respect

to P0. Moreover, it can be shown that under P0 we have

P0 =

⎧⎨
⎩ xt+1 = wt

yt = vt
(2.9)

The EM algorithm is described in [10][21] with the following equations:

Â = E

(
N∑
t=1

x̂t
ˆxT
t−1 |YN

)
×

[
E

(
N∑
t=1

x̂t x̂T
t |YN

)]−1

B̂2 =
1

N
E

(
N∑
t=1

(x̂t − A ˆxt−1) (x̂t − A ˆxt−1)
T |YN

)

C = E

(
N∑
t=1

ŷt x̂T
t |YN

)
×

[
E

(
N∑
t=1

x̂t x̂T
t |YN

)]−1
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D̂2 =
1

N
E

(
N∑
t=1

(ŷt − Cx̂t) (ŷt − Cx̂t)
T |YN

)
(2.10)

E(x) denotes the expectation operator to variable x, N denotes the total number

of observed samples, an x̂t denotes the estimated values at time t computed using the

Kalman filter. The system 2.10 gives the EM parameter estimates at each iteration

for the state space model. The advantage of the EM algorithm is that the parameter

computation is less expensive than the Newton-Raphson method because the updated

parameters at each iteration is linear. The system parameters can be computed from

the conditional expectations [10]:

L
(1)
N = E

{
N∑
t=1

xT
t Qxt|YN

}

L
(2)
N = E

{
N∑
t=1

xT
t−1Qxt−1|YN

}

L
(3)
N = E

{
N∑
t=1

[
xT
t Rxt−1 + xT

t−1R
Txt

] |YN

}

L
(4)
N = E

{
N∑
t=1

[
xT
t Syt + yTt S

Txt

] |YN

}
(2.11)

Where Q, R, S are defined by

Q =

{
eie

T
j + eje

T
i

2
; i, j = 1, 2, ......,m

}

R =

{
eie

T
j

2
; i, j = 1, 2, ......,m

}

S =

{
eie

T
n

2
; i, j = 1, 2, ...m;n = 1, 2, ....d

}
(2.12)
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in which ei is the unit vector in the Euclidean space; that is et = 1 in the ith

position, and 0 elsewhere. consider the case when m=2, then

E

(
N∑
t=1

x̂t
ˆxT
t−1 |YN

)
=

⎡
⎣L(3)

N (R11) L
(3)
N (R21)

L
(3)
N (R12) L

(3)
N (R22)

⎤
⎦ (2.13)

The other terms in 2.10 can be computed similarly from 2.11.The filters defined in

2.11 can be obtained as derived in [21] as follows:

1) Filter estimate for L
(1)
N

L
(1)
N = E

{
N∑
t=1

xT
t Qxt|YN

}

= −1

2
Tr

(
N

(1)
N PN |N

)
− 1

2

N∑
t=1

Tr
(
N

(1)
t−1P̄t|t

)

− 1

2

N∑
t=1

[−2xT
t|tP

−1
t|t r

(1)
t + 2xT

t|t−1P
−1
t|t−1r

(1)
t|t−1

− xT
t|tN

(1)
t xt|t + xT

t|t−1B
−2
t−1At−1P̄t|tN

(1)
t−1P̄t|tAT

t−1B
−2
t−1xt|t−1]

Where, Tr(.) denotes the trace of the matrix, r
(1)
t and N

(1)
i satisfy the following

recursions:

r
(1)
t =

(
At−1 − Pt|tCT

t−1D
−2
t−1Ct−1At−1

)
r
(1)
t−1

+ 2Pt|tQxt|t−1 − Pt|tN
(1)
t Pt|tCT

t−1D
−2
t−1

(
yt − Ct−1xt|t−1

)
r
(1)
t|t−1 = At−1r

(1)
t

r
(1)
0 = 0m×1

N
(1)
t = B−2t−1At−1P̄t|tN

(1)
t−1P̄t|tAT

t−1B
−2
t−1 − 2Q

N
(1)
0 = 0m×m
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2) Filter estimate for L
(2)
N

L
(2)
N = E

{
N∑
t=1

xT
t−1Qxt−1|YN

}

= Eθ

{
xT
0Qx0|Yt

}
+ Eθ

{
N∑
t=1

xT
t Qxt|Yt

}

− Eθ

{
xT
NQxN |YN

}

Therefore, L
(2)
N can be obtained from filter L

(1)
N

3) Filter estimate for L
(3)
N

L
(3)
N = E

{
N∑
t=1

(
xT
t Rxt−1 + xT

t−1R
Txt

) |Yt

}

− 1

2
Tr

(
N

(3)
N PN |N

)
− 1

2

N∑
t=1

Tr
(
N

(3)
t−1P̄t|t

)

− 1

2

N∑
t=1

(−2xT
t|tP

−1
t|t r

(3)
t + 2xT

t|t−1P
−1
t|t−1r

(3)
t|t−1 − xT

t|tN
(3)
t xt|t

+ xT
t|t−1B

−2
t−1At−1P̄t|tN

(3)
t−1P̄t|tAT

t−1B
−2
t xt|t−1)

Where, r
(3)
t and N

(3)
t satisfy the following recursions

r
(3)
t =

(
At−1 − Pt|tCT

t−1D
−2
t−1Ct−1At−1

)
r
(3)
t−1

− Pt|tN
(3)
t Pt|tCT

t−1D
−2
t−1

(
yt − Ct−1xt|t−1

)
+

(
2Pt|tR + 2Pt|tB−2t−1At−1P̄t|tRTAt−1

)
xt−1|t−1

r
(3)
t|t−1 = At−1r

(3)
t

r
(3)
0 = 0m×1

N
(3)
t = B−2t−1At−1P̄t|tN

(3)
t−1P̄t|tAT

t−1B
−2
t−1

− 2RP̄t|tAT
t−1B

−2
t−1 − 2B−2t−1At−1P̄t|tRT

N
(3)
0 = 0m×m
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4) Filter estimate for L
(4)
N

L
(4)
N = E

{
N∑
t=1

(
xT
t Syt + yTt S

Txt

) |Yt

}

=
N∑
t=1

(
xT
t|tP

−1
t|t r

(4)
t − xT

t|t−1P
−1
t|t−1r

(4)
t|t−1

)

Where r
(4)
t satisfies the following recursions:

r
(4)
t =

(
At−1 − Pt|tCT

t−1D
−2
t−1Ct−1At−1

)
r
(4)
t−1 + 2Pt|tSyt

r
(4)
t|t−1 = At−1r

(4)
t

r
(4)
0 = 0m×1

Using the filters for L
(i)
N (i = 1, 2, 3, 4) and the Kalman filter described in the next

section, the system parameters θt = {At, Bt, Ct, Dt} can the estimated through the

EM algorithms.

2.5.3 System State Estimation

Given the system parameters θt and measurements Ytthe Kalman filter estimates the

system state xt. If wk and vk are assumed to be independent zero mean and unit

variance Gaussian processes, then the Kalman filter estimates the state optimally in

mean square sense and the filter-based EM algorithm yields a maximum likelihood

(ML) parameter estimate. The Kalman filter can be described as follows [6]:

x̂t|t = At−1 ˆxt−1|t−1 + Pt|tCT
t−1D

−2
t−1

(
yt − Ct−1At−1 ˆxt−1|t−1

)
ˆxt|t−1 = At−1 ˆxt− 1|t− 1

ˆx0|0 = m0 t = 0, 1, 2, .....N (2.14)
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The sequence Pt|t, the estimate covariance, can also be given as the following [28]:

¯P−1t|t = P−1t|t + AT
t−1B

−2
t−1At−1

P−1t|t = CT
t−1D

−2
t−1C + B−2t−1 − B−2t−1

¯P−1t|t A
T
t−1B

−2
t−1

Pt|t = At−1Pt−1|t−1AT
t−1 + B2

t−1 (2.15)

where B2
t = BtB

T
t , and D2

t = DtD
T
t . Pt|t and x̂t|t can be computed recursively.

Upon estimating the system parameters one-step prediction can be performed using

Kalman filter as follows:

ˆyt+1 = Ĉt

(
Âtx̂t|t + K̂t

(
yt − Ĉtx̂t|t

))
(2.16)

where ˆyt+1 is the predicted channel state at time t + 1 and Kalman gain K̂t is

given by:

K̂t =
(

ˆAt−1Pt|t ˆCT
t−1

)(
ˆCt−1Pt|t ˆCT

t−1 +
ˆD2
t−1

)
(2.17)

2.6 Conclusion

Various different static and dynamic channel modeling techniques are explained in

this chapter and compared for their computational efficiency. Different techniques

are well suited for different applications. For example, wireless network deployment

is primarily guided by received signal strength along with multipath characteristics

of the channel. Measurement of channel characteristics at each network deployment

is cost prohibitive. Simulation-based techniques that are computationally fast and

accurate are needed for rapid deployment of wireless networks for various applications.

In the following chapters validation of TLM and SDE-based techniques will be

performed along with techniques for modeling the multipath characteristics of the

channel along with application of the channel models.
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Chapter 3

Model Validation

3.1 Introduction

Performing simulations of wireless channels involves choosing a tradeoff between

higher accuracy (complex models, long simulation time) and lower compute time

(simple models, lower accuracy). Ubiquitous use of wireless technology for various

applications have shed a new light towards research into faster accurate channel

models, particularly to assist in understanding the behavior of new generation of data

protocols specific to applications. IEEE 802.11-based protocols, which are essentially

ethernet packets-on-air, are identified as not optimal for various low-power,low-data

rate wireless (sensor) networks. New channel models have to be validated against

experimental data to understand their effectiveness. Validation of channel models

can be divided into two major activities (1) performing validation in RF anechoic

chambers to isolate interference from ambient RF sources, and (2) performing

measurements in real-world environments. While anechoic chambers provide the

luxury of fine-grained measurement instrumentation, [57] shows minimal advantages

for practical purposes. Real-world measurements require careful understanding of the

ambient RF conditions. Chapter 1 shows snapshots of the ambient RF environment.

This chapter performs measurement-based validation of event-based TLM model and
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compares the performance with ray-tracing and FDTD methods. A measurement-

based validation of outdoor dynamic channel model is also performed.

3.2 Validation of Event-based TLM model

This section demonstrates by validation that the event driven transmission line matrix

method described in [36] is suitable for generating large scale, site specific path loss

databases for cluttered environments. The argument is based on a demonstration of

the techniques computational efficiency and accuracy when compared to ray tracing

and complete finite difference time domain methods. If these types of databases can

be constructed quickly, then it would allow for accurate, site specific predictions of

wireless network performance in cluttered environments.

3.2.1 Indoor Propagation

The accuracy and computation costs of these simulation methods were compared for

a small, indoor propagation problem. This example problem is based on a laboratory

room at Oak Ridge National Laboratory (ORNL). A transmitter was placed at one

bench in this room, and signal strength measurements were taken at 90 locations on

a bench at the opposite side of the room. These measurements are used as the basis

for the accuracy comparison. A virtual reality modeling language (VRML) model of

the room was constructed that describes its dimensions and large objects that might

have a significant impact on the measured signal strength. The VRML model was

constructed with one centimeter accuracy. Large objects, such as shelves and tables,

were modeled, but small objects, such as bench equipment, were omitted.

Fig. 3.1 shows the floor plan of the room and the location of the 90 receivers and

the transmitter. The transmitter (TX) is 80 cm from the edge of the bench on the

right, and the 90 receivers (RXs) were set up on the opposite bench as indicated. The

receivers were placed at 3.12 cm intervals. The first receiver was located 50 cm from
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the bench edge. The dimensions of the room are 7.39 m x 7.39 m x 3.66 m. The wall

is concrete and 25 cm thick. The table and benches consisted of wood and metal.

Note that several small pieces of equipment were not included in the floor plan.

A pair of IEEE 802.15.4-based transceivers were used to obtain the experimental

data. One node was configured as a transmitter and the other node as a receiver.

The transmitter parameters were chosen as follows; 0 dBm transmitter power at 2405

MHz and vertically polarized antenna with 0 dB gain. The Receiver Signal Strength

Indicator (RSSI) was used to measure the received signal strength.

Before taking measurements, the devices were calibrated in a shielded enclosure.

One ZigBee transmitter and one receiver were placed in a small chamber made from

Figure 3.1: 3D View of the Room for the Validation Study
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Eccosorb absorbing foam. Two calibration measurements were taken, one of which

had transmitter and receiver separated by 20 cm, and the second at a distance of 30

cm. The measured RSSI value was 5 dB less than the expected path loss value, as

calculated with the free space propagation equation, for the 20 cm case, and 7 dB

less for 30 cm case. This indicates that the receiver power is actually 5 dB lower than

the RSSI value.

To obtain the measurements, the transmitter was placed as shown in Fig. 3.1.

The receiver was used to take measurements at 90 positions along the line shown in

Fig. 3.1. Thirty packets with 50 byte payloads were transmitted for each of the 90

measurements, and the resulting RSSI values were recorded.

The VRML model for the room described above was used as input to three

different radio channel modeling tools. Wireless Insite[45], a commercial ray tracing

tool, was used as a representative example of available ray tracing software. XFDTD,

from the same company that provides Wireless Insite, was used as an example of

available finite difference tools. Our own event-based TLM simulator implements the

TLM model.

Fig. 3.2 shows the measured path loss, path loss computed using Wireless Insite,

and the path loss computed with the event based TLM simulators with different grid

resolutions. The absolute and relative cutoff thresholds for the event based TLM

model were set at 10−6 and 10−2, respectively.

Fig. 3.3 shows the difference between the measured path loss and the path loss

computed with Wireless Insite and the 10 cm resolution runs of the event driven TLM

model. With a 10 cm grid resolution, all the methods provide accurate results with

respect to measured path loss data.Figure 3.4 compares the measured and computed

path-loss for the event based TLM simulation over a range of grid resolutions. The

accuracy of the method is determined by the grid resolution, with more finely resolved

grids giving better results. Fig. 3.5 and Fig. 3.6 show the 3D model used for FDTD

simulation and the resulting field snapshot.
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Figure 3.2: Measured and Simulated Path Loss as a Function of Receiver Location

0 10 20 30 40 50 60 70 80 90
−25

−20

−15

−10

−5

0

5

10
discrepancy between recieved and simulated RX power

rx number

po
w

er
[d

B
m

]

Insite
DEVS

Figure 3.3: Error between Predicted and Measured Path Loss
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For the event based TLM and XFDTD simulators, the model execution time

increases as the grid resolution decreases. Fig. 3.7 shows the simulation completion

time for the event based TLM and Ray Tracing software, including simulator

initialization. These performance results were obtained using a 32-bit, 1.8 GHz

Pentium 4 computer with 1.5 GB of RAM running the Windows operating system.

Also included in this plot is the execution time of the Wireless Insite ray tracing

simulation using the 90 receivers for which measurement data was available.

Fig. 3.8 shows the relationship between number of receivers in the simulation

and the simulation time for each of the three simulation tools. Observe that as the

number of receivers is increased, the ray-tracing simulation time increases. However,

the XFDTD and event based TLM simulators have fixed execution times so long as

the grid resolution is fixed. Note that the number of receiver positions for the XFDTD

Figure 3.4: Comparison of Simulated and Measured Path Loss for Multiple Grid
Resolution

35



and event based TML simulators is equal to the number of grid points, about 262,440

with a 10 cm grid resolution.

The event based TLM method is comparable in accuracy with commercial ray

tracing and FDTD simulators. The accuracy of the simulations is validated using RF

received power measurement. However, the execution times are not similar. In the

case of ray tracing the execution time is linearly proportional to the number of nodes,

Figure 3.5: 3D Model for FDTD Simulation

36



the FDTD and TLM models are dependent on the grid size. The execution time

of the TLM model is about 20,000 times less computationally intensive than FDTD

technique for the same grid size and cutoff thresholds. Adaptive grid resolution is a

topic of future research.

Figure 3.6: EM Field using FDTD Technique
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The simulation completion time for the ray tracing, FDTD, and event based

methods are shown in Table 3.1. These execution times include simulator initial-

ization. The ray tracing simulation includes only the 90 receiver locations for which

measurement data were obtained. Two of these simulation runs were done using a

1.8GHz Pentium 4 PC with 1.5GB RAM and running the Windows operating system

the remainder were executed on a AMD Athlon(tm) 64 X2 Dual Core Processor

3800+ PC with 1GB RAM and running the Linux operating system.

Note that, while the 10cm event based simulation and ray tracing simulation

require roughly the same amount of execution time, the event based simulation

provides received signal power at every grid point. In contrast to this, the execution

time of the ray tracing simulation is proportional to the number of receiver locations.
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Figure 3.7: Execution Times for Multiple Grid Resolutions and Ray Tracing
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This is clearly apparent in Fig. 7, which shows the execution time for the ray tracing

simulation as new receiver locations are added.

Figure 3.8 illustrates the advantage of the proposed simulation scheme over ray

tracing for use in mobile wireless network simulations. At 10cm, the simulation grid

contains about 256,000 grid points. This corresponds to 256,000 potential receiver

locations. Extrapolating from Fig. 7, obtaining path- loss data at 10cm resolution

using the ray tracing method would require nearly 240 hours. In contrast, the event

based TLM method needs only 5 minutes 13 seconds.
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Model Execution Time
Ray Tracing 4 minutes 55 seconds

Event based TLM 5 minutes 13 seconds
FDTD 14 hours 32 minutes 22 seconds

Table 3.1: Execution Times of Various Models

3.2.2 Outdoor Propagation

A second validation study was conducted in the visitors courtyard at Oak Ridge

National Laboratory (ORNL). A three dimensional geometric model of the courtyard

was obtained from the facilities management office at ORNL. This model describes

the three key structures in the courtyard, but it does not model a slight elevation

rise along the norther edge of the model. Ornamental building features, windows, a

series of low stone pedestals, and the details of the road and other small objects at

the northern edge of the courtyard are also neglected. Figure 3.9 shows the VRML

model used in the simulation; Figure 3.10 shows a birds eye view of the courtyard.

The simulation modeled the ground as clay, buildings as concrete, and a large glass

section of the eastern most building (the section is shown in light gray) as glass. The

clay, glass, and concrete were non-propagating.

Signal strength measurements were obtained at the receiver points indicated in

Figure 3.9. The transmitter was placed near the entrance of the southern most

building; its location is also shown in Figure 3.9. The height of the transmitter and

every receiver except 8 was 1m; 8 was 2m due to a set of steps at that location.

Several received signal measurements, using a spectrum analyzer, were taken at each

receiver point, and the minimum, maximum, and average values were recorded. In

this instance, the transmitter power was 15 dBm at 900 MHz.

Two simulation runs were done, one using a grid resolution of 1m and the second

with a grid resolution of 0.5m. The simulation was configured with cutoff parameters

vc = 10−8 and cr = 10−3. Figure 3.11 shows simulated and measured path-loss

data for this experiment. The simulated data closely follows the average measured
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Figure 3.9: Top view of the courtyard with RX and TX locations used for study

received signal strength, and falls between the maximum and minimum received power

measurements at every receiver location but 2. The agreement is reasonably accurate,

but with a noticeable growth in the error for the farthest receivers. This increased

error is likely due to a larger number of unaccounted for physical features at those

locations. Also notice that the 0.5m simulation predicts a slightly smaller signal

strength than the 1m resolution simulation.
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Figure 3.10: Bird’s Eye View of the Courtyard Used for Outdoor TLM Validation

3.3 Validation of SDE models

This section describes the validation of the dynamic channel models using SDEs as

described in [40]. Outdoor wireless channels suffer from long term fading due to

shadowing from buildings, vehicles, and terrain. The generalized spatio-temporal

lognormal model in discrete time is given by:

xt+1 = Atxt +Btwt

yt = ste
kxt +Dtvt (3.1)
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where s(t) is the information signal and k is the attenuation coefficient given by

−ln(10)/20

3.3.1 Prediction

Kalman Filter

Upon estimating the system parameters one-step prediction can be performed using

Kalman filter as follows:

ˆyt+1 = e
K
(
KÂt ˆxt|t+ ˆKGt

(
yt−eK ˆxt|t

))

+ D̂t

(
yt − eK ˆxt|t

)
(3.2)

Figure 3.11: Comparison of the measurements and TLM simulations for outdoor
TLM model
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where ˆyt+1 is the predicted channel state at time t + 1 and Kalman gain ˆKGt is

given by:

ˆKGt =
(

ˆAt−1Pt|t ˆCT
t−1

)(
ˆCt−1Pt|t ˆCT

t−1 +
ˆD2
t−1

)
(3.3)

Prediction Error Minimization

Another technique for parameter estimation and prediction is prediction error

minimization (PEM) [33]. The state space equation is written in the following form:

xt+1 = Atxt +Btet

yt = Ctxt + et (3.4)

where et is the error between measured and predicted values. This algorithm

minimizes the cost function defined as follows:

VN =
N∑
t=1

et
T et (3.5)

PEM uses the set of received measurements to estimate At, Bt, and Ct and repeats the

process for each set of measurements. One-step prediction using PEM is computed

using the following:

ˆyt+1 = Ĉt

(
Âtx̂t + B̂t

(
yt − Ĉtx̂t

))
(3.6)

where ŷt+1 is the predicted received signal strength at time t + 1. Ât, B̂t and Ĉt are

the estimated parameters and x̂t is the estimated state at time t.

The channel parameters are estimated along with the path loss experienced by

the signal using the received signal strength measurements from two datasets. The

first data set was collected by driving through the ORNL campus and measuring

a the signal strength from an antenna array transmitting at 5.8GHz as shown in

Figure 3.12. Figure 3.13 shows the representation of the signal strength driving in
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Figure 3.12: Transmitting Antenna on Top of a Building

the ORNL campus. Figure 3.14 shows the measured and estimated signal using EM

and Kalman filter. The algorithm converges in less than 30 samples. The dataset

includes over 1100 samples. The results demonstrate the effectiveness of the algorithm

in tracking the statistics of the measured signal. However the algorithm over shoots

during abrupt jumps of the signal. Figure 3.15 shows the error between measured

and estimated signal. The average error is ±2dBm with the peak error occurring at

abrupt signal jumps at 15dBm.

Second dataset used is from SELECT Lab in Carnegie Mellon University [15]. This

data expresses significant variation in received signal strength due to shadowing from

downtown buildings and structures. The particular dataset used for this validation
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Figure 3.13: Received Signal Strength Measurement

belongs to the access point with MAC address (00 : 0d : 97 : 04 : 8e : 0d). The receiver

experiences loss of signal several times, thereby generating abrupt jumps in the

measured signal. Figure 3.16 shows the comparison between measured and estimated

signal using EM and Kalman filter. The dataset comprises of over 5500 samples. The

algorithm converges in less than 20 samples. This data set has significant variation

in signal strength and the algorithm captures the statistics of the signal with error

as shown in figure 3.17. The average error is ±6dBm and significant error during

abrupt jumps. The EM and Kalman algorithm is proven to be adequate for all

practical applications for performing state estimation of long-term fading.

Figure 3.18 represents the prediction using Kalman filter as described by equations

3.2 and 3.3. Figure 3.19 demonstrates the effectiveness of PEM algorithm as described

in 3.6. The ORNL dataset is used to illustrate the effectiveness of the prediction
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Figure 3.14: Measured and Estimated Values of ORNL data
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Figure 3.15: Error between Measured and Estimated Values of ORNL data

algorithms. The Kalman-based prediction takes about 30 samples to converge and

predicts the statistics of the signal with minimal over shoot during abrupt signal
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Figure 3.16: Measured and Estimated Values of WiFiPittsburgh data

changes. Figure 3.20 represents the error between measured and predicted signal

using Kalman filter. The PEM-based prediction expresses minimal error but the

algorithm over shoots and under shoots during abrupt jumps of the signal. Figure

3.21 shows the error between measured and predicted signal using PEM method.

The experimental-based validation of the stochastic models demonstrated using

numerical simulations illustrates the application of the models for designing modern

communication infrastructure.
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Figure 3.17: Error between Measured and Estimated Values of WiFiPittsburgh
data
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Figure 3.18: Prediction using EM Kalman and Measurement Values of ORNL data
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Figure 3.19: Prediction Using PEM and Measurement Values of ORNL Data
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Figure 3.20: Error between Prediction Using KM and Measurement Values of ORNL
Data
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Figure 3.21: Error between Predicted Using PEM and Measured Values of ORNL
Data
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Chapter 4

Models for Multipath Propagation

Characteristics

With the rapid growth in the networked environments for different industrial, scientific

and defense applications, there is a vital need to assure the user or application a

certain level of QoS. Environments like the industrial environment are particularly

harsh with interference from metal structures (as found in the manufacturing sector),

interference generated during wireless propagation, and multipath fading of the RF

signal all invite novel mitigation techniques. The challenge of achieving benefits

like improved energy efficiency using wireless is closely coupled with maintaining

network QoS requirements. Assessment and management of QoS needs to occur,

allowing the network to adapt to changes in the RF, information, and operational

environments. The capacity to adapt is paramount to maintaining the required

operational performance that is parameterized by throughput, latency, reliability and

security. Key aspect of the radio communication is the propagation environment the

transmitters and receivers reside.

Modeling techniques that perform pre-deployment validation of the environment

performance measured by key parameters like received signal strength along with

time and frequency dispersion characteristics of channel will provide information
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for exploiting degrees of freedom in modulation schemes, antenna parameters, and

transmit power. This chapter presents the use of event-based transmission line matrix

method for performing computationally efficient modeling of indoor and outdoor

propagation environments particularly to derive multipath characteristics of channel.

4.1 Multipath Characteristics

Indoor and outdoor radio channel typically has objects that continuously causes

reflections from the structures that are large in size compared to the wavelength

of transmission. This results in generating multiple versions of the signal at the

receiver displaced with respect to one another in time and spatial orientation [43].

The multipath propagation results in signal smearing due to multiple copies of the

transmitted signal and can result in inter-symbol interference. The received signal

consists of a series of time-delayed and phase-shifted replicas of the transmitted signal

resulting in a baseband channel impulse response is given by

hb(t, τ) =
N−1∑
i=0

ai(t, τ)exp[j(2πfcτi(t) + φi(t, τ))]δ(τ − τi(t)) (4.1)

Where ai(t, τ) and τi(t) are the amplitudes and excess delays of the ith multipath

component. τ represents the excess delay bin size used to create a uniformly

discretized delay axis of power delay profile (PDP). The term 2πfcτi(t) + φi(t, τ)

represents the phase-shift experienced by the signal. δ is the unit impulse function.

If the channel impulse response is assumed to be time invariant over small intervals

of time then the channel impulse response [43] can be simplified as

hb(τ) =
N−1∑
i=0

aiexp(−jθi)δ(τ − τi) (4.2)

The PDP of the channel is obtained by taking the time average of the channel impulse

response |hb(t; τ)|2. As shown in [19] if the probing pulse p(t) = δ(t − τ) has a time
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duration that is much smaller than the channel impulse response, then p(t) does not

have to be deconvolved from the received signal r(t) = h(τ) ∗ p(t). In this case, the

PDP is given by |r(t; τ)|2.
Delay spread characterizes the time-dispersive properties of the channel by

defining the multipath density in the environment. It is simply the difference between

the time of arrival of the first significant multipath component and the time of arrival

of the next multipath component. This is usually obtained by observing the PDP in

channel sounding experiments [43]. Three main parameters observed from the PDP

are mean excess delay, rms delay spread, and excess delay spread (X dB)[43]. Mean

excess delay,τ̄ is the first moment of the PDP and is defined by

τ̄ =

∑
k P (τk)τk∑
k P (τk)

(4.3)

τk represents delay of the kth multipath component. The RMS delay spread is

the square root of the second central moment of the PDP and is defined by

στ =

√
τ̄ 2 − (τ̄)2 (4.4)

The maximum excess delay (X dB) of the PDP is the time delay during which

the multipath energy falls to X dB below the maximum. The values of the three

parameters depend on the choice of noise threshold used to process PDP P (τ). This

threshold is used to differentiate between various received multipath components and

thermal noise. If the noise threshold is too low, the noise may be processed as

multipath, and the three parameters can be artificially high. The noise threshold

is typically related to the receiver sensitivity of the communication device. Typical

receiver sensitivities in IEEE 802.15.4 and IEEE 802.11 devices is −95dBm.

Measurement of delay spread is performed in two different ways[43]: (1) Direct

RF Pulse System - This system transmits a narrowband pulse repetitively through a

channel and a simple envelope detector is used to receive the signal along with a digital
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storage oscilloscope. The local PDP can be observed by setting the oscilloscope in

averaging mode; (2) Spread Spectrum Sliding Correlator - In this system the carrier

signal is spread using a long pseudo-noise (PN) sequence and the received signal is

filtered and despread using the same PN sequence. Maximum correlation peaks are

tracked providing the PDP of the observed channel.

Measurement is not convenient and significantly time consuming when placing

hundreds of wireless devices, for example, in an industrial plant. Most deployments

need a fast and accurate method to estimate the channel parameters.

4.2 Transmission Line Matrix Method

The event-based transmission line matrix (TLM) method is based on a simple model

of radio wave propagation through a homogeneous, three dimensional space. This

simple model is given by the linear wave equation

∂2

∂t2
U(t, x, y, z) = c2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
U(t, x, y, z) (4.5)

Where t is time, c is the propagation speed, x, y, and z are Cartesian spatial

coordinates, and U(t, x, y, z) is the scalar electric field potential at the space-time

coordinate (t, x, y, z). A discrete approximation of this partial differential can be

constructed using finite-differences. This finite difference approximation can be

viewed as a real valued cell space model (see, e.g., [52]). This model can, in turn, be

optimized for computation by reinterpreting it as a discrete event system (see, e.g.,

[55]). The details of this transformation for the wave equation are given in [36] [37]

[38].

The fundamental computational element in this simulation is a simple junction

structure that includes a variable for the state v of the junction and six input variables

v+1 , v
+
2 , v

+
3 , v

+
4 , v

+
5 , v

+
6 and six output variables v−1 , v

−
2 , v

−
3 , v

−
4 , v

−
5 , v

−
6 . The state and
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output variables are computed by

v =
6∑

i=1

v+i (4.6)

v−i =
v

3
− v+i (4.7)

In an inhomogeneous space, different wave-carrying mediums are modeled as

described above. The different media are joined using reflection and transmission

junctions that model reflection, transmission, and speed changes when a wave moves

across the medium interface. A detailed description of the medium interface model

can be found in [36] [38]. The resulting method is second order accurate within a

homogeneous space, and first order accurate at material interfaces.

The junctions are coupled to their neighbors using a memoryless function zi,j where

i and j indicate opposite directions. Input to a junction i is computed using junction

output yi and neighboring junction output yj. the resulting input is computed using

xi = zi,j(yi, yj) = Ryi + Tyj (4.8)

Where R is the reflection coefficient and T is the transmission coefficient of the

junction connection. If Zi is the impedance of the junction generating output wave

yi and Zj is the impedance of the junction generating output wave yj, then the

coefficients R and T are given by

R =
Zi − Zj

Zi + Zj

(4.9)

T =
2Zj

Zi + Zj

(4.10)

Figure 4.1 shows the cubic 3D structure used for simulation. If this model is

simulated with a very coarse grid, then accurate path loss predictions can be made

for receivers for which there is an open air (not free space) path to the transmitter.
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Figure 4.1: Junction Couplings Shown in a 2-D slice of a 3-D Mesh

With a very fine grid, it is possible to construct the impulse response of the virtual

radio channel between the transmitter and each individual grid point.

The computational cost of the event-based TLM method are determined by the

number of active grid points. If the propagation space is cluttered with objects that

do not transmit radio signals, then the number of active grid points will be small

when compared to the total number of grid points in the space. This can significantly

reduce the computational complexity with respect to other grid-based simulation

tools. Significantly, the accuracy of the method is similar to a complete low order

finite difference technique and, as with other finite difference approaches, the signal

characteristics are computed at every discrete grid point. Furthermore, the finite-

difference methods are based on central difference approximations of Maxwells curl

equations. The TLM method is based on a physical model of wave propagation. Both

techniques are suitable for simulating Maxwell’s equation in a given media. Literature

exists demonstrating the formal equivalence of finite-difference time domain (FDTD)

and TLM methods [12] [48] demonstrating that by using precise computer arithmetic,

both methods would provide identical values at any time instant and at any location.

The equivalence includes properties in terms of stability, energy conservation and

flexibility in modeling irregular surfaces.

Figure 4.2 shows the excitation signal for obtaining the unit impulse response of

the channel. A large air box is used for demonstrating the free space propagation
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Figure 4.2: Excitation Pulse Used for TLM Simulation

modeling of the channel. Figure 4.3 shows the received signal or the impulse response

of the channel. The TLM algorithm introduces a numerical decay of the signal

due to partial voltages from neighboring scattering junctions. [25] elaborates the

truncation and velocity errors in TLM-based wave propagation schemes and correction

techniques.

The TLM method described above is excited with unit impulse and at each

junction the signal is partly reflected and partly transmitted based on the junction

impedance. At the measurement point we obtain a stream of pulses that arrive from

six different directions. These approximate the impulse response of the channel.
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Figure 4.3: Free Space Received Signal and Associated Numerical Decay of the
Algorithm

The time resolution of event-based TLM method is dependent upon the grid

resolution chosen for the 3D mesh as follows:

dt =
l√
3c

(4.11)

Where l is the grid resolution and c is the speed of light. For example, 1 meter grid

resolution will have the transmit pulse width of approximately 2ns. The minimum

resolvable delay between multipath components using this method is given by dt.

The selection of dt is dependent on the propagation frequency of interest. The grid

resolution is chosen as at least half-wavelength of the frequency of interest to capture

the reflections at the order of one wavelength within the environment. For example,

grid resolution of 2.4GHz signal propagation is approximately 6cm.

4.3 Simulator Setup and Experiments

The event-based TLM method simulator takes as input the 3-D CAD file of the

building and draws a mesh based on the user-specified mesh-size. Typically the mesh
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size is chosen to be 0.5− 0.25 times the wavelength of interest. This allows accurate

computation of reflections from different materials of interest with in the environment.

Figure 4.4 shows the snapshot of the 3-D model used for the simulations. The material

properties (impedance (ohms) and attenuation(Nepers/m)) of various components in

the 3-D model are given as input to the simulator using a text file. The simulator uses

these values to compute the reflection and transmission coefficients at each junction

direction. The simulator records voltages v received at a particular user-specified

junction over the duration of the simulation. To demonstrate the impulse response

Figure 4.4: 3-D CAD File as Simulator Input
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Figure 4.5: Free Space Box with Metal Wall

of the channel with multipath characteristics, a free space (air) box is created with

one of the sides as a metal wall with zero impedance and attenuation, approximating

a perfect reflecting surface for incident electromagnetic waves. Figure 4.5 shows the

free space propagation environment with a metal wall. Figure 4.6 shows the slice of

the simulation in the transmitter plane. Blue denotes the strongest signal and red

denotes the weakest signal. The receiver lies in the center of the box. Figure 4.7

shows the received signal over the duration of the simulation. The time step is given

by equation 4.11. Notice the line-of-sight (LOS) is the first strongest signal arriving at

the receiver and the subsequent receptions are reflections from the metal wall. From

[19] this received signal approximate the impulse response of the channel. Figure 4.8

gives the PDP of the channel with noticeable peaks, initial reception and subsequent

four resolvable copies, depicting the multipath effects captured by the simulator.

While the free space with metal wall box is shown as a calibration example of

the simulator, the simulator can take as input complex geometry for propagation

modeling. Figure 4.9 is the simulated output of the room shown in Figure 4.4
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Figure 4.6: Free Space Box with Metal Wall Output of Simulator

consisting of cement, metal, and wood. The room is 8m x 8m x 4.5m in dimension

and the simulation is done using a 5cm mesh-size. The time-domain received signal

is recorded on the top left corner of the room in the same plane as transmitter.

Figure 4.10 shows the impulse response of the room and Figure 4.11 is the PDP

of the room. The PDP reveals at least six significant paths. This demonstrates

the ability to synthetically simulate site-specific channel impulse response and

subsequently extract multipath characteristics of the environment. The mesh size

is proportional to the resolvable multipath signals providing the flexibility to derive

detailed channel characteristics with corresponding increase in computation time.

4.4 Conclusions and Future Work

Wide usage of wireless networks are beginning to require site-specific propagation

models to assist in wireless network deployments. Event-based TLM method for

wave propagation is demonstrated to extract multipath characteristics of the channel

and serves a fast, accurate, site-specific in cluttered environments. The demonstrated
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Figure 4.7: Impulse Response of Free space Box with Metal Wall

model is based on established transmission line matrix method that approximated

Huygens’ principle but with optimizations to restrict computations to the active

wavefronts. The method is useful to approximate the influential multipath effects

of the channel. Multipath effects can be destructive or constructive depending

on the vector cancellations in the channel. If the symbol rate is less than the

delay spread estimated for the channel, the communication can suffer from inter-

symbol interference. In future work, the output of the simulator is validated

using experimental data from pulse propagation measurement setup. Data for

this validation is collected as shown in Figure 4.12 and 4.13. The output of

the simulator can be used towards better communication parameter optimization

including symbol rate, data rate, and frequency selection. The simulator currently

uses a cubic 3D structure, this work can be extended to use spherical 3D structure
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Figure 4.8: PDP of Free space Box with Metal Wall

Figure 4.9: Propagation in Room

to explore the directionality (polarization) of propagation mechanism. This can

assist in optimization of antennas for a given environment with specific materials.

Further more, using the simulated pulse-propagation technique demonstrated here
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Figure 4.10: Impulse Response of Room

along with a packet-level network simulator, can assist in understanding the end-

to-end performance of communication systems, particularly multiple-input multiple

output (MIMO) systems. Capacity planning for micro- and femto-cell antennas for

next generation urban cellular basestations can also be performed using this tool.
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Chapter 5

Application of Channel Models

Accurate modeling of the propagation of radio waves is a critical shortcoming in

existing, packet-level network simulation tools. Widely used simulators employ

empirical models, such as the log-distance, two ray ground, and Raleigh and Rician

fading models [43], to represent the radio channel. These models are designed for the

general study of how network protocols behave in a typical propagation environment,

but cannot predict performance within any specific environment.

New communication networks that are currently being, or planned to be, deployed

will reside in cluttered environments for which empirical propagation models are

not sufficient to determine if the network will deliver adequate performance. These

future networking technologies include 3GPP Long Term Evolution (LTE), fourth

generation (4G), industrial wireless networks (ISA 100, Wireless HART etc.), cellular

infrastructure that uses medium- to small-sized base stations (often called femto-,

micro-, pico-, and metro-cells; these support users in densely crowded, urban areas

[35]). A characteristic of these new communication networks is that they reside in

complex, sometimes highly metallic, environments and often operate without a line-

of-sight between the transmitter and receiver.

Consequently, there is a growing interest in the modeling of radio propagation in

complex environments [26][29][24]. The accurate modeling of radio channels is also
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of considerable interest for Military Operations in Urban Terrain (MOUT), which, as

rural populations migrate into large cities, are an increasingly important theatre for

operations. While empirical models of propagation can represent behaviors that are

typical of large-scale or small-scale, point-to-point radio channels, site-specific models

are needed for the predicting performance of applications that require a deterministic

quality of service (QoS) within a specific propagation environment.

Site specific predictions can be made with finite difference time domain (FDTD)

models and ray tracing models, but these require significant computation and are

therefore impractical to integrate with packet-level simulations of a communication

network. In this chapter, we discuss the integration of the computationally efficient

RCSIM propagation model, which is derived from the event-driven transmission line

matrix method [38], with the ns-3 network simulator and how these collectively can be

used to perform end-to-end-simulations of wireless networks. The RCSIM propagation

model is described in Section 5.1 and its integration into ns-3 along with a case study

of end-to-end simulation.

5.1 End-to-End Network Simulation

The event driven transmission line matrix (ETLM) method is based on a simple

model of radio wave propagation through a homogeneous, three dimensional space.

This simple model is given by the linear wave equation

∂2

∂t2
U(t, x, y, z) = c2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
U(t, x, y, z) (5.1)

where t is time, c is the propagation speed, x, y, and z are Cartesian spatial

coordinates, and U(t, x, y, z) is the scalar electric field potential at the time-space

coordinate (t, x, y, z). A discrete approximation of this partial differential can be

constructed using finite-differences. This finite difference approximation can be

viewed as a real valued cellular automaton (see, e.g., [52]). This cellular automaton
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can, in turn, be optimized for computation by reinterpreting it as a discrete event

system (see, e.g., [55]). The details of this transformation are given in [37, 38].

The fundamental computational element in this model is a junction structure that

has a variable for the state v of the junction, six input variables v+1 , v
+
2 , v

+
3 , v

+
4 , v

+
5 , v

+
6 ,

and six output variables v−1 , v
−
2 , v

−
3 , v

−
4 , v

−
5 , v

−
6 . The state and output variables are

computed by

v =
6∑

i=1

v+i (5.2)

v−i =
v

3
− v+i (5.3)

In an inhomogeneous space, different wave-carrying mediums are modeled as

described above. The different media are joined using reflection and transmission

junctions that model, respectively, reflection and transmission of the radio signal as

it moves across the medium interface. A detailed description of the medium interface

model can be found in [36] [38]. The resulting method is second order accurate within

a homogeneous space and first order accurate at material interfaces.

The event-driven transmission line matrix method is implemented by the RCSIM

simulator (see [44]), and can be invoked by NS3 to provide site-specific path loss and

multipath characteristics. The RCSIM simulator uses a voxel-based model of the

propagation environment to calculate a three dimensional map of the radio coverage

provided by a transmitter located in a particular voxel. NS3 uses this capability in the

following way to calculate the path-loss of a radio channel connecting a transmitter

at location A with a receiver at location B.

1. At the start of a simulation, NS3 creates (or, optionally, reuses) a directory to

cache the signal maps generated by RCSIM.

2. When a path-loss calculation is requested for a transmitter at position A and

receiver at position B, NS3 first looks into a cache directory for a coverage map
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Figure 5.1: End-to-End Simulation Architecture

for a transmitter located at A. If this coverage map is found, then NS3 extracts

the path-loss for location B and returns that value to the simulation.

3. If a coverage map is not found for the transmitter located at A, then NS3 invokes

the RCSIM simulator to calculate this coverage map. The coverage map is then

stored in the cache and the path-loss for the receiver at location B is extracted

from the coverage map and returned to the simulation.

This propagation model for NS3 is implemented using the standard interface for

radio propagation models in NS3, and so can be used interchangeable with the
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empirical models provided in the NS3 package. Figure 5.1 shows the integrated

simulation architecture. We take advantage of this to compare the path-loss predicted

by site-specific and empirical models for the 3D model shown in Fig. 5.2. LTE

Figure 5.2: City Block Used for Demonstration

is a wireless networking system standardized by 3GPP to succeed the Universal

Mobile Telecommunication System (UMTS) [1]. NS3 includes a module for simulating

LTE [4] with empirical models of the path-loss of the radio channel. The downlink

transmission of the LTE uses orthogonal frequency division multiplexing (OFDM)

by converting single wide-band frequency selective channel to a multiple flat fading

subchannels to improve downlink system performance. The LTE module described

in [4] uses Jake’s multipath fading model [43] along with empirical shadowing and

penetration loss models to compute the received signal strength of a given subchannel.

Figure 5.3 compares simulations of the path-loss at a mobile, LTE receiver using

the empirical model and RCSIM model for the path-loss component of the LTE

propagation model. Figure 5.2 shows the propagation environment and transmitter.

The site-specific simulations, which in this case combines empirical models for small-

scale propagation phenomena with a site-specific model for large-scale propagation

phenomena, captures critical effects, such as shadowing by the buildings (illustrated

in Fig. 5.2), that are absent from the purely empirical model. The simulations based

on RCSIM are therefore expected to provide more accurate predictions of system

performance. Similarly, the WiFi channel models described in [3] can be enhanced in
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Figure 5.3: Comparison of Empirical and Site-specific Propagation Models

this way to provide site-specific predictions of application-level performance. Table

5.1 shows the comparison of various network performance indicators between two

propagation models in an LTE uplink scenario. TxBytes and RxBytes denotes the

number of radio link control (RLC) bytes transmitted and received. PduSize denotes

the average size of the RLC protocol data unit (PDU). min and max denotes the

minimum and maximum RLC PDU size. MCS denotes the modulation coding scheme

selected by the device based on the channel quality indicator (CQI). SE denotes

the spectral efficiency of the radio channel. The table shows that the end-to-end

simulation provides differences in performance estimates based on the propagation

model chosen.
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Model TxBytes RxBytes PduSize min max MCS SE
RCSIM 200210.38 199706 804.33 716.75 807 14 1.6953125
Freespace 419690.38 418632.88 1686.07 1491.13 1692 24 4.212890625

Table 5.1: Uplink Parameters With Different Propagation Models

5.2 Optimal Weights for Array Antenna

With the rapid growth in the networked environments for different industrial, scientific

and defense applications, there is a vital need to assure the user or application a

certain level of Quality of Service (QoS) in performing a particular transaction. For

example, if an industrial site incorporates a distributed control of certain processing

equipment or networked control of robots in the manufacturing plant, the QoS of the

network carrying the control packets defines the functionality or performance of the

industrial process. For a long time the QoS has been perceived as a quoted parameter

of a particular network but not as a real-time measurable or quantifiable parameter.

The bandwidth and throughput metrics of the entire network are dependent on the

robust connectivity during topology formation. Deploying highly dense radios across

a geographical area and the robust network formation of these radios continues to be a

challenge. The key to the mesh formation is being aware of the network neighborhood,

nature of the traffic in the network and information about the RF environment.

The different smart antennae technologies available [7] to accomplish robust

network formulation are:

• Diversity: multiple antennas to spatially cover different areas.

• Switched Beamforming: A narrow band to service a predetermined area that is

discretely selectable

• Adaptive Beam Forming: This is similar to switched beamforming but the

selection of the beams is done in real-time using a feedback mechanism.
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• Multi-input Multi-output (MIMO): Transmitting with multiple antennas and

recollect the signals with multiple antennas achieving an improved spatial

diversity and controllability.

The challenge as discussed in [47], [49], [5], [20], [13], it is evident that the capacity

and the QoS of service of the WSN can be improved upon using a combination of

adaptive, beamforming, reconfigurable antenna. [54], [56] demonstrate the measured

and simulated results for MEMS-switched reconfigurable antennas. [20], [27] discuss

the beamforming, reconfiguring and control schemes for antenna arrays.

Adaptive antenna is typically an array antenna whose pattern and frequency

response can be controlled [18]. Typical interference patterns among multiple

elements of modern wireless communication antennas is correlated and adaptive

weights are needed to maximize signal to noise ratio [2]. Consider an Applebaum

array, also known as Howells-Applebaum array, which focuses on maximizing the

desired-to-undesired (interference and noise) signal ratio at the output of the array

[18]. Figure 5.4 shows an N-element adaptive antenna array with arriving signals at

each element xi(t) and weight of each element as wi. The output of the array is shown

as y(t). The antenna input X, weights W , and output y(t) are given by:

X = [x1(t), x2(t), ......, xN(t)]
T (5.4)

W = [w1, w2, ......, wN ]
T (5.5)

y(t) = W TX (5.6)

In [18][2] it is shown that the optimum weights are determined by

MW = μS∗ (5.7)

W = μM−1S∗, (5.8)

Where M is the covariance of noise outputs from each element, μ is a scalar

constant, and S∗ represents the inter-element phase shifts and element patterns in
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Figure 5.4: N-element Adaptive Antenna Array

the desired direction θfrom the mechanical boresight given by

M = [μkl] (5.9)

μkl = E(nk ∗ nl) (5.10)

S = [s1, s2, ......, sN ] (5.11)

sk = exp

(
j
2πkd

λ
sinθ

)
(5.12)

Where nk and nl denote the noise in kth and lth channel and d is the element spacing

and λ is the wavelength. The time-varying nature of the wireless channels is captured

using stochastic differential equation (in continuous time) or a stochastic difference

equation (in discrete time)[11] described in Chapter 2.

xt+1 = Atxt +Btwt

yt = Ctxt +Dtvt (5.13)
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where xt ∈ �n is the state vector, yt ∈ �d is a measurement vector sampled at

the output of the channel, wt ∈ �m is a state noise, and vt ∈ �d is measurement

noise. {At, Bt, Ct, Dt} and states {xt}t are the unknown parameters of the channel

and shall be estimated using measurement data {yt}t. The time varying property

of the parameters adapts dynamically to the variety of outputs. The Gaussian

noise terms wt and vt can also capture the uncertainties introduced at each time

step. Channel parameters θ = {At, Bt, Ct, Dt} can be estimated recursively using

Expectation-Maximization(EM) algorithm. Dt represents the covariance of the noise

at each time step and can be used for optimal weight computation. The ability to

track the noise and interference is dependent upon the process chosen to represent

the noise vt. At each time step t the noise covariance can be computed and used

for weights in time t + 1. This formulation enables application of real-time dynamic

channel modeling to track undesired signals and improve signal to noise ratio of the

adaptive antenna. Further research is required for improving the noise models to

include discontinuous process, for e.g., using Levy process.

5.3 Conclusion

In this chapter a site-specific radio wave propagation model based on event-based

TLM is integrated into a discrete-event based packet-level network simulator. This

enables rigorous end-to-end performance measurements of wireless networks including

LTE, industrial wireless network, and public WiFi networks. The event-based TLM

ensures realistic computation time for these simulation (in the order of several

minutes). Typical industrial environments have 3D computer aided design (CAD)

models of the facility and 3D models of the urban areas are available in open source

libraries like Google Sketchup. These models along with digital elevation maps can

increase the accuracy of the application-level network performance simulations. An

online stochastic estimation technique is formulated for recursive weight estimation

of the multi-element array antenna.
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Chapter 6

Conclusion

This study discussed the use of site-specific and dynamic channel models for improving

the deployment and commissioning of wireless communication systems. We first

measured the two potential forms of interference sources (1) wireless networks

operating in the same frequency band whose operations are not coordinated, (2)

industrial equipment producing wide-band interference in the same frequency band

as the communication system.

Second, a wave propagation simulation is described that offers a fast, reasonably

accurate, physically based, site specific method for calculating path-loss in cluttered

environments. The simulation technique is derived from the well established

transmission line matrix method. Two validation studies show that the method is

suitable for generating grid based path-loss data that could be integrated with a

mobile wireless network simulation. Applications of such an integrated simulator

include, urban combat network planning and deployment, deployment of future

combat systems, city-wide wireless network deployment, and industrial (RF harsh)

wireless network deployment.

Third, a novel dynamic channel model based on expectation maximization

and Kalman filter is demonstrated for recursive state estimation of the received

signal. This model is demonstrated to provide accurate channel state estimation
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and prediction of the received signal strength. Kalman filter and prediction error

minimization techniques are demonstrated for one-step prediction. Two validation

studies show the method is suitable for estimation and prediction. .

Fourth, event-based TLMmethod for wave propagation is demonstrated to extract

multipath characteristics of the channel and serves a fast, accurate, site-specific

method in cluttered environments. The demonstrated model is based on established

transmission line matrix method that approximated Huygens’ principle but with

optimizations to restrict computations to the active wavefronts. The method is useful

to approximate the influential multipath effects of highly cluttered environments.

Measurement of multipath parameters is often times not possible. This simulation-

based techniques provides accurate multipath parameter estimates that can be used

for communication system design, configuration, and deployment.

Finally, applications of the site-specific and dynamic channel models is demon-

strated using two applications. The site-specific radio wave propagation model

based on event-based TLM is integrated into NS3, a discrete-event based packet-level

network simulator. This enables rigorous end-to-end performance measurements of

wireless networks including long term evolution (LTE), industrial wireless network,

and public WiFi networks. The event-based TLM ensures realistic computation time

for these simulation (in the order of several minutes). Typical industrial environments

have 3D computer aided design (CAD) models of the facility and 3D models of the

urban areas are available in open source libraries like Google Sketchup. These models

along with digital elevation maps can increase the accuracy of the application-level

network performance simulations. The dynamic channel models are used to derive the

optimal weights of multi-input multi-output array antennas to counteract the noise

and interference in the environment.

In future work, the dynamic channel models can be used for real-time applications

like power control, adaptive antennas, and control over wireless networks. The model

described in this research assumes Gaussian noise. However, perturbations induced

by buildings are abrupt and can cause received signal measurements that are not
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captured by assuming Gaussian measurement noise. These abrupt perturbations

may be captured using Levy process. Alternatively the perturbations can be

modeled using dual Gaussian processes to model the signal variations and abrupt

changes respectively. The dynamic channel models, in its state-space representation,

provides accurate estimation of the channel state and the time-varying properties of

interference and noise. This model can be used to describe multi-input multi-output

communication systems and can be used for optimizing the performance of adaptive

antenna arrays, particularly in noisy environments.

Also, in future the output of the TLM-based simulator can be used towards

better communication parameter optimization including symbol rate, data rate, and

frequency selection. The simulator currently uses a cubic 3D structure, this work can

be extended to use spherical 3D structure to explore the directionality (polarization)

of propagation mechanism. This can assist in optimization of antennas for a given

environment with specific materials. Further more, using the simulated pulse-

propagation technique demonstrated along with a packet-level network simulator,

can assist in understanding the end-to-end performance of communication systems,

particularly multiple-input multiple output (MIMO) systems. Capacity planning for

micro- and femto-cell antennas for next generation urban cellular basestations can

also be performed using this tool.
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