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ABSTRACT 

Biological functions of biomacromolecules are often indispensably linked to their internal 

dynamics. To investigate the dynamic nature of biomolecules, molecular dynamics (MD) 

simulation offers unique advantages by providing high spatial and temporal resolution 

over orders of magnitude in time- and length scales. Here, simulations at two different 

scales are used to investigate different aspects of biomolecular dynamics. At the atomistic 

scale, the first study investigates the relationship between the axial methyl group order 

parameter and the corresponding entropy in protein side chains. Three classes of methyl 

group are characterized based on the methyl group’s “topological distance” from the 

backbone (that is the number of bonds between the methyl group axis and the closest 

backbone atom) even when direct effects of the topological distance are removed. This 

distinction implies that methyl groups at the same topological position share similar 

nonbonded environments. Furthermore, consideration of these classes of methyl group 

improves the accuracy of entropy-estimates based upon changes in order parameter. The 

second study investigates the deconstruction of crystalline cellulose, a problem relevant to 

bioenergy research. The large size of crystalline cellulose together with the associated long-

time dynamics exceeds the capabilities of atomistic simulation. Thus, a residue-scale, 

coarse-grained model of cellulose is calculated using the REACH (Realistic Extension 

Algorithm via Covariance Hessian) method. The model is successfully validated against 

experiment using Young’s moduli and the velocity of sound. The coarse-grained analysis of 

the cellulose fibril suggests that the intrinsic dynamics facilitates deconstruction of the 

crystalline cellulose fibril from the hydrophobic surface. Both applications share the same 
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concept of approach (that is, computational modeling and simulation at an appropriate 

scale), which reveals key insights into biomolecules by investigating their dynamic 

behavior. 
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INTRODUCTION 

The present thesis investigates aspects of biomacromolecular dynamics at different scales. 

A macromolecule consists of many identical or non-identical subunits and has a large mass. 

Important biological macromolecules (i.e. biomacromolecules) are nucleic acids (DNA/RNA), 

proteins, polysaccharides, and lipids. They have diverse biological functions, for example, to 

provide structural support, catalyze chemical reactions, store energy, or carry genetic 

information. 

The traditional approach to understand the function of biomolecules is by studying their static 

structure [1]. More than 80,000 (August 2012) high-resolution structures of biological 

macromolecules such as proteins have been determined using X-ray crystallography (XRC) or 

nuclear magnetic resonance (NMR) studies [2], while much less is known about the internal 

dynamics of these molecules [3]. During the last decades, a wealth of evidence has been found 

for the internal dynamics of macromolecules [3-17], which is increasingly recognized as often 

important for function consistent with Richard P. Feynman’s statement from 1963 that 

“...everything that living things do can be understood in terms of the jigglings and wigglings of 

atoms.” This insight is even today underrepresented in biology textbooks, although motion is 

omnipresent in nature. At nonzero temperature, atoms are in motion due to e.g. thermal 

fluctuations around equilibrium positions [18, 19]. The first evidence for a more complex 

dynamics than these fluctuations was provided by NMR experiments, which found ring-flipping 

motions of aromatic protein side chains [8, 9]. Modern spectroscopy [10, 11], time-resolved 

XRC [12, 13], and computation [14-16] have provided evidence for protein backbone and side 
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chain motion on time scales ranging from picoseconds to seconds. Even very long time scales 

(e.g. milliseconds up to hours) have been probed by chemical methods such as 

hydrogen/deuterium exchange, revealing amplitudes of motion of up to 15 Å on the millisecond 

time scale [17]. These studies showed that many macromolecules are highly dynamic not only at 

their solvent-accessible surface, but also in their interior. In addition, dynamics has often been 

found as essential for function [20-23]. 

Various techniques are available to examine molecular motions on different time- and length 

scales (Figure 1; all figures are provided in the Appendix). While experimental techniques 

typically involve averaging over an ensemble of molecules within the sample, parts of each 

molecule, and/or time, molecular dynamics simulation has unmatched advantages in the 

investigation of molecular motion in that, in theory, it can provide a complete picture of the 

system, that is, the exact positions of the atoms in the system at any point in time. Moreover, 

simulations can reveal the underlying reason why a particular motion takes place because the 

forces and energies of each particle are calculated in the simulation [4]. 

Molecular dynamics simulation was introduced by Alder and Wainwright in 1957 and applied to 

the phase transition in a system consisting of hard spheres [24]. More realistic applications 

followed, for example, simulations of liquid argon [25] and water [26]. The lessons learned in 

these early days set the stage for the first macromolecular simulations of the protein bovine 

pancreatic trypsin inhibitor (BPTI) in 1977 [14] and nucleic acids in 1983 [27]. Today, thanks to 

numerous generally available MD programs, molecular dynamics simulations are carried out on 

a routine basis on time scales up to microseconds of simulated time. A few studies have already 

performed simulations up to the millisecond time scale using privileged access to specially 



 

 

3 

 

 

 

developed computational hardware [28]. Prominent success stories involve the investigation of 

the mechanism of folding of twelve fast-folding proteins [16, 28], explanation of the selectivity 

of the aquaporin water channel [29], the mechanism of voltage gating in potassium channels 

[30], the general microscopic interpretation of experimental data [31], and many more reviewed, 

for example, in reference [32]. 

The basic idea behind MD simulation is simple. Starting from an initial configuration usually 

obtained from experiment, the system’s evolution in time is simulated by numerically integrating 

the Newtonian equations of motion of individual atoms that are initially assigned a velocity 

randomly pulled from the Maxwell-Boltzmann distribution at a given temperature. 

Despite the high level of detail provided by simulation, experiment is indispensable. It is needed 

to validate simulation because the description of interactions within the system and the numerical 

algorithms used involve approximations – unfortunately at the expense of accuracy – to increase 

the computational efficiency. Still, a properly carried out, validated, and analyzed simulation can 

complement experiment or give insights in systems that are difficult to investigate using only 

experiment. 

Intimately related to the capability of a simulation to reproduce experiment is the level of detail 

at which the system is modeled. Generally speaking, a higher level of detail promises higher 

accuracy and therefore is preferred if computational cost is disregarded. However, as biological 

processes usually involve relatively large length- and time scales of motions (Figure 1), a highly 

detailed simulation might not be practicable given the currently available computational 

technology. Also, simplistically waiting for increased computational power to become available 
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to tackle a problem is not an option, as, by that time, key problems might already have been 

answered due to a physically sound simplified model in accordance with Einstein’s advice to 

“make everything as simple as possible, but not simpler”. Therefore, the challenge is to find a 

model at a resolution that is just detailed enough to reproduce the investigated physics. 

Typical levels of detail are at the electronic scale, atomistic scale, coarse-grained scale, 

mesoscale, or at a continuum representation (Figure 2). At the electronic scale that is only 

briefly mentioned here, quantum mechanical calculations are performed which involve electronic 

degrees of freedom. To speed up simulation, electronic degrees of freedom are often not treated 

explicitly. Instead, the system is modeled with classical physics using empirical energy functions 

that ideally are chosen to accurately reproduce quantum mechanical ground state energies or 

experimentally-determined condensed-phase properties. Further performance improvements can 

be obtained by condensing the explicit representation of several atoms into one coarse-grained 

bead. Such coarse-grained representations are possible at different scales. The united atom 

approach aims at incorporating the effect of hydrogen into the heavy atoms to which they are 

bonded and thus preserves the chemical detail of different monomers that make up the 

biopolymer. When less detail is required, the number of coarse-grained beads per monomer can 

be further reduced, for example, with one bead corresponding to one monomer. Additional 

simplifications may use one bead per biomolecular domain or per molecule, reaching the 

mesoscale. Finally, in continuum models, properties of the system become a function of a 

variable that depends on the coordinates. The different scales constitute a hierarchy. Ideally, a 

coarse-grained model is derived from a higher level of detail, so that relevant physical principles 
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present in highest resolution are translated along the hierarchy. Therefore, highly detailed 

simulation, e.g., at the atomistic scale, is useful to derive a coarser model. 

At any scale, the interactions within the system must be properly represented. In molecular 

dynamics simulation, these are described by the “force field”, which is an empirical set of 

functions and parameters giving the potential energy of the system for a given configuration. 

Atomistic force fields are designed to represent accurately the interaction of atoms in typical 

bonded and nonbonded environments and thus preserve chemical detail. This makes atomistic 

force fields relatively transferrable within a class of biomacromolecules, for example, the same 

“protein” force field can be used for any protein but not for polysaccharides. Tremendous effort 

has been directed particularly toward developing atomistic force fields [33]. These have been 

successfully validated against many experiments. Still, refinement and validation of these force 

fields is an ongoing effort because, as technology advances, simulation becomes applicable to a 

wider range of problems, in which force fields could experience deficits unknown at present. The 

relatively large transferability of atomistic force fields is usually lost in coarse-grained force 

fields and a new coarse-grained force field must be developed for every system studied. This is 

because parameters become system-dependent
1
, although exceptions, arguably at the expense of 

accuracy, exist [34]. 

The work reported herein has exploited the benefits of simulation for the investigation of 

biomolecular motion in applications on aspects of the dynamics of two systems using both 

                                                 
1
 Given the reduced number of parameters in coarse-grained approaches, the dependence of the parameters on the 

system arises from the need to include the effect of specific (e.g. structural) features into the parameters to model the 

system at sufficient accuracy. 
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atomistic and multiscale simulation to deliver in both cases insights that are inaccessible to 

experimental approaches. 

The present thesis is organized as follows. The Methods section introduces molecular dynamics 

simulation of both atomistic and coarse-grained systems. It is followed by the two major 

scientific sections of this dissertation. These two sections each contain a specialized introduction, 

focusing on the relevance of the particular study in the respective field, specialized methods, 

introducing methods relevant only for the respective section, and conclusions. Finally, the last 

section concludes this thesis and also provides a brief outlook on the future of molecular 

dynamics simulation. 

METHODS 

The following sub-sections provide information on the methods used. The basic concepts of 

statistical mechanics which relate the simulations to experiments are presented. Then, the focus 

is set on atomistic simulation that is treated relatively general. Next, coarse-grained simulation is 

discussed with a bias towards its intended application in the present study. 

STATISTICAL PHYSICS 

Statistical physics provides the framework to relate data from the simulated trajectory quantities 

measurable in experiment for systems in equilibrium. The average of a quantity            that 

depends on the    coordinates   and momenta   of   atoms is 

 
〈 〉  ∬                              Eq. 1 
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with the probability density            being 

 
           

 

 
   (            )  Eq. 2 

  is        ,    the Boltzmann constant,   the temperature,   the Hamiltonian and   the 

partition function which in turn is  

 
  ∬           (            )  Eq. 3 

The ergodic hypothesis implies that a system evolving in time explores the whole phase space 

accessible, i.e. it visits all possible states             in phase space. Thus results do not 

depend on the initial configuration. Therefore, the average in Eq. 1 can be calculated from a time 

average from an ergodic trajectory. A simulation trajectory that is sufficiently long can in 

principle visit all states   and thus be considered approximately ergodic and be used to 

approximate 〈 〉 (Eq. 1) as 

 
〈 〉     

   

 

 
∑ 

 

   

       Eq. 4 

with   being the length of the simulation. The ergodic hypothesis is justified a posteriori due to 

agreement with experiment. 

ATOMISTIC SIMULATION 

FORCE FIELD (POTENTIAL ENERGY) 

The potential energy function   is approximated as sum of pairwise interactions. Those 

interactions are designed to mimic typical interactions as they would arise from a more complex 
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treatment of the system. For example, a harmonic energy term mimics the covalent bonding 

between two atoms resulting from their electronic interaction. A typical functional form used in 

many empirical force fields defines bonded and nonbonded terms: 

   ∑     ∑     ∑     ∑    
⏟                            

      

 ∑        ∑        ⏟                
         

 

Eq. 5 

BOND STRETCHING     : 

Covalent bonds between atoms   and   are described using a harmonic potential: 

 
       

   
 

 
(       )

 
 Eq. 6 

where    
  is the force constant,       is the equilibrium bond length, and   is the instantaneous 

bond length. The atoms   and   oscillate around       with frequency   √        (with the 

reduced mass                 . 

ANGLE BENDING     : 

The angle bending energy is also described with a harmonic potential: 

 
       

   
 

 
(       )

 
 Eq. 7 

  is the angle between the vectors along the bonds connecting atom   to its neighbor and the 

neighbor to atom   (Figure 3).       and    
  are used in analogy to the above discussed bond 
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stretching. Forces for angle bending (   
          kcal/mol deg

2
) can be four orders of 

magnitude smaller then for bond stretching (   
         kcal/mol Å

2 . 

TORSIONAL TERMS (     AND     ): 

Torsional terms involving four atoms are even softer than angle bending. See Figure 4 for a 

definition of the proper dihedral angle  . The proper torsional term is 

 
       ∑

     

 
(     (        ))

 

             Eq. 8 

For each term in the sum,       is the height of the potential,   the multiplicity giving the number 

of minima as   is rotated by     , and       determines the angle of minimum energy. An 

improper dihedral may maintain the planarity or chirality about certain atoms as necessary [35] 

and is modeled as 

 
       

   
 

 
(       )

 
 Eq. 9 

with  ,      , and    
  in analogy to     . See Figure 3 for a definition of the improper dihedral 

angles  . 

VAN DER WAALS INTERACTION        : 

Nonbonded energy terms are calculated between atoms separated by (usually) more than four 

covalent bonds. The van der Waals interaction is described using a Lenard-Jones potential 

 
          ((

 

 
)
  

 (
 

 
)
 

) Eq. 10 
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with the depth   of the potential and the distance   at which          . The repulsive       

and attractive      components mimic a hard repulsive core (Pauli’s principle) and an attractive 

interaction due to the polarisability of the atoms, respectively. 

ELECTROSTATIC POTENTIAL         : 

Partially charged particles in the system interact electrostatically via Coulomb’s law: 

          
    

     
 Eq. 11 

where   is the distance between atoms   and   with partial charge      and    is the dielectric 

constant. 

ATOMISTIC FORCE FIELD PARAMETERS 

Treating the interactions in the system not based on first principles but with a functional form 

derived from empirical knowledge introduces the need to wisely choose the parameters in the 

energy function. Selection of the parameters (e.g. bond length, partial charges) is crucial to 

obtain a realistic simulation for the system and a significant ongoing effort has been directed 

towards parameter development, resulting in diverse parameter sets, for example CHARMM 

[36], AMBER [37], or GROMOS [38] for proteins and CHARMM [39, 40], GLYCAM06 [41], 

GROMOS45a4 [42], or CSFF [43] for carbohydrates. Force field parameters are developed in an 

iterative fitting procedure to reproduce target data from experiment or higher levels of theory at 

selected target conditions (e.g. temperature, condensed phase). Therefore, parameters are strictly 

valid only for those properties and conditions they were developed for. However, transferability 

to other conditions (e.g. temperatures) is commonly assumed and needed to justify simulation in 
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the first place, as there is no sense in calculating only exactly those properties used in parameter 

development (because those are measured experimentally or calculated using a more accurate 

theory). Furthermore, transferability to other state points is also often assumed and may be 

justified a posteriori if agreement with experiment is obtained for relevant properties. 

COARSE-GRAINED SIMULATION 

INTRODUCTION 

Coarse-grained (CG) simulation can only be an alternative to atomistic simulation if atomistic 

simulation is prohibited by resource requirements because the representation of the CG system 

and interactions therein are modeled in lesser detail to simplify the simulation. 

Investigating a system using coarse-grained molecular dynamics (MD) simulation involves three 

steps. The first is the definition of the mapping from the atomisitc to the coarse-grained 

representation. The second step is to define the functional form of the CG potential energy 

function involving for example terms for pseudo-bonds, -angles, -dihedrals, van der Waals 

interaction, electrostatic terms, or a tabulated potential that does not follow a trivial functional 

form. The third step is to select the parameters in the CG potential energy function to best 

reproduce target properties from reference data that often originates from all-atom MD. 

MAPPING FROM ATOMS TO CG-BEADS 

In general, a CG-bead may correspond to any number of atoms and the intended application may 

further dictate the use of multiple types of CG-beads. Chemical intuition is often used to devise 

CG-beads in simple cases, e.g., the mapping from the atomistic to the scale of residues, although 
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systematic approaches are available that aim at reproducing the essential dynamics as given by 

principle component analysis [44].  

FUNCTIONAL FORM OF THE CG FORCE FIELD AND PARAMETERIZATION STRATEGIES 

THE ELASTIC NETWORK MODEL (ENM) 

Several functional forms may be used for the potential energy function. Of specific interest here 

is the elastic network model (ENM), which may be the simplest functional form used in coarse-

graining. An ENM approximates the system as a number of classical masses connected by 

harmonic springs. A mass-point corresponds to a CG-bead. The energy function in the ENM is  

 
     ∑      

    

           
 

 
   (     

 )
 
  Eq. 12 

     is the sum over all pairwise interactions        between CG-beads   and   with the force 

constant     and equilibrium distance    
 . As the      is harmonic, large anharmonic 

conformational changes are neglected and the model is correct only as long as fluctuations 

around the energy minimum are small. 

The only parameters in Eq. 11 are the force constants     and equilibrium distances    
 . The 

equilibrium distances are defined by the structure that is investigated, for example, by the crystal 

structure. Several approaches exist for the selection of the force constants of elastic network 

models [45]. They can be defined to be constant, if the distance between two CG-beads is less 

than a cutoff (typically around     in protein applications using Gaussian network models) and 

zero otherwise, distance-dependent using empirical knowledge [46], dependent on the 

coordination number of the residue [47], different for covalently bonded than for nonbonded 
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interactions [48], dependent on amino acid type [49], or calculated from atomistic simulation to 

reproduce corresponding fluctuations [50]. 

In the coarse-graining work reported in the second application in this theses, the REACH 

(“Realistic Extension Algorithm via Covariance Hessian”) method is used to develop force field 

parameters [50, 53-55]. The aim of REACH is to capture collective dynamics from all-atom 

models. REACH is a self-consistent multiscale approach that obtains elastic network model 

(ENM) force constants directly from the variance-covariance matrix calculated from all-atom 

MD as follows: 

              Eq. 13 

where     is the off-diagonal component of the Hessian associated with   and  . Making the 

harmonic approximation at constant temperature,  , allows the Hessian matrix to be calculated 

from the variance-covariance matrix          〈    〈  〉     〈  〉 〉  as 

           Eq. 14 

where    is the Boltzmann constant.     is then derived by combining Eq. 13 and Eq. 14 as 

follows: 

               
    Eq. 15 

OTHER FUNCTIONAL FORMS 

If a non-ENM functional form is chosen for the force field, it is necessary to use different 

parameterization strategies. These strategies usually rely on reference data that is the target for 
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an iterative fitting procedure aiming at deriving a set of parameters that best reproduce the target 

data. Data from all-atom MD often serves as reference. Fitting this data can be done using one of 

multiple schemes, for example iterative Boltzmann inversion that aims at optimizing structural 

data from all-atom MD. Iterative Boltzmann inversion first requires a reference radial 

distribution function (RDF) [56, 57]. The RDF describes the probability to find two particles   

and   (not necessarily of identical type) separated by the distance   relative to the distribution in 

an ideal gas [58]. The RDF,    
      , from the reference simulation is inverted to yield the 

potential of mean force                 
       , where    is Boltzmann’s constant and   the 

temperature. The potential of mean force       is not the exact pair-wise potential leading to 

   
      , because many body effects from the interaction and packing of particles in the reference 

simulation are included in    
   

   . However,       is a sufficient approximation to the target 

pair-wise potential to start an iterative optimization strategy. A simulation using       is carried 

out. The RDF,    
    , from this simulation is usually different from    

      , and the 

information on this difference can be used to correct       [56, 57], which reads for the     

iterative correction as follows: 

 
                    (

   
    

   
      

) Eq. 16 

If more than one pair-wise potentials shall be used (e.g. van der Waals and electrostatic 

potentials), they, strictly speaking, cannot be obtained by performing independent iterations for 

each as in Eq. 16, because, in principle, the potentials depend on each other. However, the first 

potential can be optimized while others are kept constant and then the next is adjusted again with 
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all others constant. It has proven useful to optimize the potentials according to their relative 

strength, i.e., in the order bond-, angle-, nonbonded-, and dihedral-potentials [57]. 

Other target properties than structure (as given by RDFs) involve fluctuations used only 

infrequently [59] and forces. The force matching approach performes least-squares optimization 

with respect to the parameters in the coarse-grained model in order to minimize the difference 

between the reference force data and predicted force data [60]. The initial force matching 

approach was has been refined to overcome problems arising due to increasing complexity when 

dealing with many parameters in e.g. systems with multiple types of atoms [61]. 

EQUATIONS OF MOTION 

The system’s evolution in in time is described by Newton’s equations of motion that can be 

numerically integrated using finite difference methods. The integration is split into small steps    

during which forces are assumed constant. With an initial set of coordinates and momenta, 

                    at time   , the forces on all atoms are calculated and used to obtain 

        . This procedure is iterated until a trajectory of the desired length is obtained. 

The Verlet algorithm [62] calculates the coordinates   at time      using the coordinates at 

time   and      and the acceleration   at time   as                              . 

Not before the calculation of the coordinates at the next point in time,        , can the 

velocities at time   be obtained as      (               )    . This can be a technical 

problem in some MD algorithms. Furthermore, the algorithm is not self-starting, i.e., the first set 

of velocities needs to be obtained differently. The Leap-Frog-Verlet algorithm [63] is used by 

many MD tools and provides higher accuracy. It calculates the velocities at time         from 
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those at         and from the acceleration:                             . In a next 

step, coordinates are calculated as                          . Apparently, velocities 

and coordinates are asynchronous, so that velocities at time   must be estimated as      

   (                     ). Alternative integrators are the Velocity Verlet [64] and the 

Beeman [65] algorithm synchronizing the calculation of  ,  , and   or improving energy 

conservation, respectively [33]. 

WATER 

Organisms evolved in and adapted to an aqueous environment for billions of years. Their 

machinery of life makes manifold use of the properties of water [66]. For example, water-protein 

interactions are important for protein folding, recognition and binding of a binding partner or 

catalysis [67-69]. Therefore, water must be adequately included in molecular dynamics 

simulation of biological molecules. 

Models for water can be generally distinguished into implicit and explicit ones, the former 

represents water as a continuous medium while the latter treats water atoms explicitly, i.e., 

similar to protein atoms. There are numerous explicit models of water 

(http://www.lsbu.ac.uk/water/models.html), differing in general aspects such as the 

polarizability, flexibility, usage of many-body interactions, or the number of interaction sites, as 

well as in detailed aspects such as the specific value of a parameter such as charge [70]. Today, 

most atomistic simulations are designed for use with an explicit, rigid, non-polarizable water 

model that uses only two-body interactions. These models are more accurate than implicit 

treatments and relatively good simulation performance can still be achieved. Many-body effects 

http://www.lsbu.ac.uk/water/models.html
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are only included in a mean way in the parameterization of these models, e.g., by using the 

condensed phase instead of the gas phase dipole moment. Furthermore, macromolecular force 

fields are developed together with one or few water models [36], so that, in principle, the 

parameters depend on those water models used during parameterization and, strictly speaking, no 

other water models can be used, although there is evidence for some flexibility in the choice of 

the water model [71, 72]. The present study uses the CHARMM protein [36] and carbohydrate 

[73] force fields together with the TIP3P water model [74] in atomistic simulation. The TIP3P 

model uses three interaction sites (one for every atom set at the exact position of the respective 

atom), adapts the experimental gas-phase geometry of water, uses values of the charges of 

           and            , and uses a van der Waals interaction centered on the oxygen 

(            and           kcal/mol). While inclusion of water in atomistic simulation 

can be considered standard, coarse-grained simulations have the tendency to not represent water 

in an explicit way, but include the effect of solvation in the parameters in a mean way or assume 

the effect as negligible at the coarse-grained resolution. 
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DYNAMICS OF METHYL GROUPS IN PROTEINS 

This section includes modified parts of a manuscript entitled “Three Classes of Methyl Group 

Motion in a Globular Protein” by Dennis C. Glass, Marimuthu Krishnan, Jeremy C. Smith, and 

Jerome Baudry. The manuscript is to be submitted for publication to the Journal of Physical 

Chemistry B. The coauthors contributed the following to the submitted manuscript: discussions, 

correcting drafts of the manuscript. 

INTRODUCTION 

Understanding the principles of biomolecular interactions is of particular interest to biomedical 

applications. The overall strength of protein-ligand interactions can be quantified using the free 

energy,          , consisting of an enthalpy,   , and entropy,   . The entropy can be 

decomposed into contributions from the ligand, the solvent, and the protein given that these 

contributions are independent. While much attention has been directed towards understanding 

the non-protein contributions to   , the part of    due to a change of protein entropy and in 

particular that due to protein conformational entropy, has only recently been found to be 

significant [75-80]. Protein conformational entropy can be indirectly measured using information 

on the abundance of different microscopic states, which can be obtained using, e.g., methyl 

groups. 

Methyl groups are abundant in proteins. They can be used as probes reporting on their 

microenvironment and as such inform on the global thermodynamics of biomacromolecules [80-

82]. Significant changes in methyl group rotational dynamics are caused by environmental 

effects [83-85], specifically from changes to the methyl group’s immediate microenvironment 
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[86-88]. In one series of applications on calmodulin using different ligands, changes in methyl 

group dynamics have been found useful to estimate changes in protein conformational entropy 

[78] and an empirically parameterized relation between changes in the dynamics of methyl 

groups and protein conformational entropy was developed [76, 77, 89]. 

Central to the characterization of methyl group dynamics is Nuclear Magnetic Resonance (NMR) 

spectroscopy. NMR spectroscopy describes methyl group dynamics using an order parameter, 

termed    here.    is a model free quantity and measures the angular restriction of an 

isotopically-labelled internuclear vector.    varies between 1 indicating no motion and 0 

indicating isotropic motion [90, 91]. The motion of methyl groups is decomposed into rotation of 

the  - -bond, described by     
 , and reorientation of the methyl group axis (  - -bond in 

Figure 6), described by      
 . If rotational and reorientational motions are uncoupled, the 

experimentally-measured order parameter is 

        
       

   Eq. 17 

When assuming the methyl group geometry as constant in time and   -symmetric,     
  depends 

only on the angle  (  - - ). Furthermore, if   is         (tetrahedral angle),     
  is 0.111 and 

     
  simplifies to        ⁄ . The above approximations may in principle be not strictly true 

[92] and      
  may also be influenced by motion from the part of the side chain preceding the 

methyl group axis [91]. Due to the influence of side chain dihedrals preceding the methyl group 

axis, a segregation of      
  into distinct classes is expected depending on whether or not the 

preceding dihedrals undergo rotameric transitions (see Figure 6B) [79, 93, 94]. For example, the 

     
 -distribution of ILE  , which is influenced by rotamer transitions of    and   ) in principle 
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splits into four bands depending on whether neither    nor   , only   , only   , or both    and 

   transition between rotamers [93]. 

Estimating entropy from order parameters has advanced our understanding of biomolecular 

interactions [76-79]. Typically, changes in order parameter are related to changes in entropy 

using a somewhat arbitrary motional model (for example the diffusion-in-a-cone model), which 

is a limitation because selection of a different model will in principle result in a different 

estimate of conformational entropy [95]. Moreover, the individual changes in entropy from 

methyl group probes may be correlated, but information on this correlation is not available via 

order parameters so that simple summation of all individual estimated changes in entropy gives 

only an upper limit for the cumulative change in methyl group entropy [96-98]. The arbitrary 

selection of a motional model is not needed when using molecular dynamics simulation to 

estimate      
  and entropy. 

The present study has used atomistic molecular dynamics simulation to investigate the dynamics 

of methyl groups in proteins using HIV protease as model system. The exact relation between the 

methyl group axis entropy and order parameter and the potential influence of the nonbonded 

environment on this relation is investigated. Therefore, motion other than that form the methyl 

group has been subtracted from the simulated trajectories. Three classes of methyl group have 

been identified in the relation between the order parameter and entropy and in the potential of 

mean force for methyl group reorientation. Importantly, these classes differ from those expected 

from rotamer transitions [93]. Here, the classes depend on the topological position of the methyl 

group from the protein backbone and are suggested to arise mainly due to the average nonbonded 



 

 

21 

 

 

 

environment of the methyl group. This finding also suggests that methyl groups at different 

topological positions undergo somewhat different dynamics, which is relevant because, as a 

consequence, the change in entropy estimated from the change in order parameter varies with 

topological position.  

SPECIALIZED METHODS 

MODEL SYSTEM 

Human immunodeficiency virus type 1 (HIV) protease (PR) is a model of choice because it is a 

methyl-rich, well-studied system with experimental methyl group order parameters available 

[99-102]. HIV PR is a homodimeric, aspartyl protease that cleaves newly synthezised viral 

proteins that are essential to viral maturation [103-106]. Thus, inhibition of HIV protease renders 

HIV uninfectious [107].  

SYSTEM AND SIMULATION PROTOCOL 

Atomistic molecular dynamics (MD) simulation of human immunodeficiency virus type 1 

protease (HIV PR) were performed with NAMD 2.6 [108] using the CHARMM 27 all-atom 

force field for the protein [109] and the TIP3P water model [110]. The force field for the ligand 

was obtained as described later. Simulations were carried out for three different systems. 

Simulations of apo wild-type HIV PR used the 1.4 Å resolution X-ray structure, PDB ID 2PC0, 

as starting configuration [111], simulations of a mutant HIV PR bound to the inhibitor DMP323 

used the 1.8 Å resolution X-Ray structure, PDB ID 1QBS [112], and the simulations of the wild-

type structure bound to the inhibitor required in-silicio mutation of the mutant sequence (1QBS) 

back to the wild-type sequence (2PC0). Therefore, the modified residues, listed in Table 1 (all 
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tables are placed in the Appendix), were energy-minimized to machine precision keeping the rest 

of the protein fixed. 

The system was setup be placing the protein starting structure in a cubic box of water (767676 

Å
3
) with at least 10 Å between the protein and the box edge. Water in hard contact with the 

protein, that is <2.4 Å, was removed. The total charge of the system was zero after adding 6 Cl
–
 

ions to the MUT and 8 to the WT setup. For energy minimization, in a first step, the water and 

ions were energy minimized keeping the protein and ligand fixed, and then, in a second step, the 

energy of the whole system was minimized. MD simulations were performed at 310 K (37° C) 

and 1 atm using a Langevin thermostat and barostat with a damping coefficient of 5 ps
-1

. 

Nonbonded interactions were smoothly truncated using a switching function between 10 and 12 

Å. The pairlist distance was set to 14 Å. Electrostatic interactions were evaluated using the 

Particle Mesh Ewald algorithm switching from real-space to reciprocal space calculation at 12 Å. 

Bond distances and angles of the water molecules were kept rigid as defined in the TIP3P model; 

protein hydrogen atoms were not constrained. The equations of motion were integrated using a 

time step of 1 fs. Overall, 315 ns of simulation were created using the above protocol. These 

were distributed over 5 replicas of the apo-WT system, 5 replicas of the bound-WT system, and 

5 replicas of the bound-MUT system. Each of the 15 replicas was simulated for 21 ns. Error 

estimates rely on the difference between the simulated replicas. Coordinates were stored every 

100 fs, average velocities were calculated where needed using the difference in coordinates 

between consecutive frames. 
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To improve statistics, 1 µs additional simulation of the apo-WT system were performed, that is 

ten replicas to 100 ns each. GROMACS 4.5.3 [113] was used with the CHARMM 27 protein and 

TIP3P water force field. The PME method was used for electrostatic interactions using a real 

space cutoff of 12 Å, a Fourier grid spacing of 1.6 Å, and sixth-degree B-splines interpolation. 

Van der Waals interactions were truncated between 8 and 11 Å. The LINCS algorithm was used 

to constrain all bonds involving hydrogen atoms to their parameter values [114]. The integration 

time step was 2 fs and coordinates were written every 2 ps. Only apo-WT simulations were 

performed. These were equilibrated for 3 ns using the Berendsen pressure and temperature 

coupling algorithms with coupling time constants of τ=0.4 ps and 0.1 ps [115], followed by ten 

independent production simulations at 300 K, using a Parrinello-Rahman barostat [116] and a 

velocity-rescaling thermostat [117]. 

LIGAND PARAMETERIZATION 

The standard CHARMM force field was missing part of the parameters needed to simulate the 

ligand, DMP323. These missing parameters were created as described in the publication “Three 

Classes of Methyl Group in a Globular Protein“ by Glass et al. (to be submitted for publication 

to JPCB) following the parameterization protocol by MacKerell et al. [109, 118]. The procedure 

resulted in parameters reproducing the interaction energies within     and the geometries within 

0.4 Å heavy-atom RMSD between the structures obtained from quantum mechanics and 

molecular dynamics calculations. 

LOCAL METHYL GROUP COORDINATE SYSTEM 

The direct effect of the methyl group’s position in the side chain (referenced to as “topological 

position”, that is the number of bonds separating the methyl group axis from the backbone C 
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atom) is removed. Therefore, methyl group coordinates in the protein frame of reference are 

transformed into a local frame of reference by superposition of the side chain atoms preceding 

the methyl group as follows. The coordinate origin is defined as the   -atom (Figure 7), the x-

axis is defined as being parallel to the   -  -bond, the x-y-plane is spanned by the   -   and 

  -  -bonds, and the z-axis is defined to point along the positive direction of the cross-product 

between the vectors along the   -   and   -  -bonds. The thus obtained local coordinate 

system, defined by basis vectors  ⃗ ,  ⃗ , and  ⃗ , is illustrated in Figure 7. 

METHYL GROUP ORDER PARAMETERS 

METHYL GROUP ORDER PARAMETERS IN A PROTEIN FRAME OF REFERENCE 

Methyl group order parameters calculated in a protein frame of reference contain, similar to 

experimental order parameters, contributions from all protein internal motions. Methyl group 

axis and backbone amide order parameters,      
  and    

 , are calculated using the isotropic 

Reorientational Eigenmode Dynamics (iRED) method [119, 120]. The elements of the 

isotropically averaged covariance matrix are calculated as       ⁄  〈 ( ⃗  ⃗ )   〉 with the 

vector    (‖ ⃗ ‖   ) along bond  . The bracket 〈 〉 denotes an average over all frames of the MD 

simulation. With eigenvalues    and eigenvectors   ⟩ from the eigenvalue problem    ⟩  

   ⟩ , the order parameters can be calculated over the    modes corresponding to internal 

motion:      ∑         ⟩  . 

METHYL GROUP ORDER PARAMETERS IN A LOCAL FRAME OF REFERENCE 
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Methyl group axis order parameters,          
 , have been calculated in the local frame of 

reference using the  ,  , and   coordinates of the tip of the methyl group axis (atom   in Figure 

6) as follows: 

          
  

 

 
 〈  〉  〈  〉  〈  〉   〈  〉   〈  〉   〈  〉   

 

 
. Eq. 18 

RESULTS 

COMPARISON BETWEEN EXPERIMENTAL AND SIMULATED AXIS ORDER PARAMETERS 

Simulations are validated using the root mean-square fluctuation (RMSF) and the backbone 

amide and methyl group order parameters. Figure 7A shows the RMSF for the different 

simulations of HIV protease (apo/bound wild-type/mutant). As expected, the RMSF is small 

(~0.7 Å) in structurally ordered regions (for example residues 22-32), somewhat increased (up to 

1.5 Å) at the termini and in solvent-exposed loops (for example around residue 17, 39, or 80), 

and large (~2.5 Å) in the flaps of apo-HIV protease [100, 101]. Figure 7B shows the backbone 

amide order parameter,     
 . Small values of     

  indicate angular flexibility of the 

corresponding backbone amide, and such values are found mostly for the regions that have large 

values of the RMSF confirming the above analysis. Unlike the RMSF, the order parameter can 

be measured by NMR. Values of    
  compare favorably to experiment [121] (Figure 7C). Only 

the flexibility in the flaps of HIV protease appears overestimated in the simulations. 

Figure 8 compares side chain order parameters,      
 , from simulation with those from 

experiment [122]. Within error margins, near-quantitative agreement is obtained for many 

residues. Differences between simulated and experimental values of      
  have been previously 
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attributed in part to current force field parameters that are not accurate enough to fully reproduce 

the detailed dynamics of protein side chains and in part to incomplete sampling of the motion of 

protein side chains [93, 123]. The order parameter          
 , calculated in a local methyl group 

frame of reference, shows a strong correlation with      
 , calculated using iRED (Figure 8, 

right) [119, 120]. This indicates that, in the present simulation, most of the contributions to      
  

are from the motion of the methyl group axis itself and not from other parts of the protein. 

ASSUMPTIONS WHEN OBTAINING METHYL GROUP AXIS ORDER PARAMETERS 

Figure 9A shows        
      

  against               
  and thus probes the approximation 

    
       . If     

  were      , the data would lie on the diagonal (      ). However, this 

is not the case in Figure 9A. Instead, the function         (      ) is the best linear fit to 

the data indicating that     
  is not exactly      . The probability distribution (not shown) of the 

calculated     
  varies mainly between       and       with an average of     

 ̅̅ ̅̅ ̅        

      ( 89% of 0.111). The order parameter     
  can be also estimated from the   – –  angle 

  if constant methyl group geometry and 3-fold symmetry is assumed.     
  ( ̅) is       with 

 ̅              [65]. Note that     
  is sensitive to variations of  , with a    deviation from 

tetrahedral geometry (         ) of the methyl rotator translating into a 9% variation of 

    
     . The values obtained for     

  are in agreement with various experiments (neutron 

crystallography [124, 125], gas electron diffraction [126], infrared absorption [127], NMR [128]) 

and simulations (quantum mechanical [129, 130] and MD calculations [131, 132]) on systems in 

the condensed or gas phase which have found   to be in the interval            Figure 9B 

plots the overall    against     
      

 . A linear fit         to the data yields a slope of 
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approximately 1 indicating that the assumption        
      

  is valid and that the relaxations 

described by     
  and      

  are uncoupled.  

Finally,     
  may be different before and after ligand binding while it is assumed as constant. 

This difference can cause potentially relevant changes in entropy impacting the ligand’s binding 

affinity. Figure 9 shows the rotational entropy for every methyl group from (C) apo and ligand-

bound and (D) wild-type and mutant simulations of HIV PR. Both datasets scatter around the 

diagonals, except for two points (one per monomer of HIV PR) in D, which is explained by the 

mutation     changing the type of a methyl group from        to      . The values of      are 

directly related to those of     
  [95], thus, Figure 9C and D show, admittedly in an indirect way 

(due to practical reasons), that the values of     
  remain unchanged upon changes to the methyl 

group’s nonbonded microenvironment arising from ligand binding or mutations because the data 

scatters around the diagonal in both cases C and D. Overall, these results suggest that the 

experimentally-determined order parameter    may be best related to      
  by assuming 

    
        while no correction is necessary for a potential coupling between the relaxations 

described by     
  and      

  and also no correction is necessary for potentially different     
  

before and after ligand binding. 

INFLUENCE OF ABOVE ASSUMPTIONS ON ESTIMATES OF METHYL GROUP AXIS ENTROPY 

Order parameters can be related to entropy using a motional model, for example, the diffusion-

in-a-cone model [95] 
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 )) 

 

Eq. 19 

where    is Boltzmann’s constant and   is the temperature. The relation between order 

parameter and entropy is non-linear [95], so that, two changes of order parameter that are of 

equal values       
     and       

     [      
           

    ], but take place around e.g. 

small and large values of order parameter, will lead to two different changes in entropy       

and       [           ]. This situation is apparent from the diffusion in a cone relation 

shown in Figure 10 where   (1) (corresponding to       
     from      

      to    ) is 

different from   (2) (corresponding to       
     from      

      to    ). Using     
        

instead of       to obtain a better estimate of the order parameter      
  has a two-fold impact, 

first, the value of       
  is slightly changed, and second,      

  is scaled to a larger value (see 

numerical example in Figure 10). Both changes influence also the corresponding change in 

entropy. The numerical example in Figure 10 depicts a ligand binding scenario with a change in 

order parameter,       
        , of     and a corresponding change in entropy,          . 

However, if     
        is used to estimate      

 , the updated change in order parameter, 

      
        , results in a different change in entropy,          , and the two changes in 

entropy differ by a     of approximately     kcal/mol (at 310 K). 

To quantify     for situations involving a real protein binding a ligand, three systems have been 

considered where both apo and ligand-bound order parameters have been reported: HIV PR with 

DMP323 [133], calcium saturated calmodulin with various ligands (Biological Magnetic 

Resonance Data Bank (BMRB) entries 4970, 15183, 15184, 15185, 15187, 15188, and 15191) 
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[78, 79], and barnase with barstar bound (BMRB entries 7139 and 7126) [134]. Only methyl 

groups are considered where both apo and ligand-bound values of      
  have been reported and 

where the change of      
  upon ligand-binding has been larger than      and significant (  ) 

within the reported error, leaving 9, 19, and 146 methyl groups for HIV PR, barnase, and various 

ligand-bound calmodulin systems, respectively. Furthermore, only      
  smaller than      are 

considered to avoid the potentially artificial (model-dependent) effect of the strong variation of 

entropy with order parameter for values of      
  close to 1.0, leaving 145 methyl groups in total. 

Averages of the remaining order parameters are given in Table 2. The average      
  increases 

from      to      upon ligand binding. Using the diffusion-in-a-cone model to estimate entropy 

from      
  gives an average           kcal/mol per methyl group (Table 2). The cumulative 

       for HIV PR is      kcal/mol using only those 9 out of 41 reported methyl groups with 

significant changes in      
  and assuming that their motion is independent from each other. 

Extrapolation of the HIV PR data from those methyl groups investigated in experiment to all of 

them leads to             kcal/mol. This significant value of         indicates that it is 

important to assume an optimal value of     
 , chosen either from simulation or experiment [124-

132]. Furthermore, the average     per methyl group depends on the system investigated. For 

example,          kcal/mol in the case of Barnease is a factor of     larger than for HIV PR 

(Table 2). 

METHYL GROUP AXIS ENTROPY 

The methyl group axis entropy is calculated as  
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dTkS BX ))(ln()(  Eq. 20 

where    is the Boltzmann constant,   is the temperature (310 K), and   is the probability 

distribution of the normalized methyl group axis vector  ⃗ in the Cartesian coordinate system 

local to the methyl group. The probability distribution was obtained by binning the vectors  ⃗ 

using a bin width of 0.1 Å. 

As expected, the entropy decreases with order parameter (Figure 11). Three entropic classes of 

methyl group have been found differing in the number of bonds that separate them from the 

backbone. Class 1 consists of VAL    , THR , and ILE , Class 2 of ILE  and LEU    , and 

Class 3 of MET . The entropy corresponding to an order parameter increases with distance from 

the backbone from Class 1 to 2 to 3. This shows that a given value of the order parameter can 

correspond to different amounts of disorder or entropy. Furthermore, the data in the quasi-linear 

regime from 0.5 to 0.95 was fit with a linear function,              , for classes  . The 

fitted slopes are       and       kcal/mol for classes 1 and 2, respectively. The ratio       is 

approximately     , suggesting that methyl groups in different classes yield different changes in 

entropy from a change in order parameter. As the order parameter calculated in the local 

coordinate system that included only methyl group axis motion (         
 ) showed a strong 

correlation with the order parameter calculated in the protein frame of reference using iRED 

(     
 ), the above conclusion will also hold for the latter order parameter, which is the equivalent 

to the experimentally obtained one. 

The existence of different classes is further investigated using the potential of mean force (PMF), 

                 , where    is the Boltzmann constant,   is the temperature, and      is 
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the ‘single-well’ probability distribution of the dihedral angle that influences the methyl group 

axis orientation, where ‘single-well’ means that the three dihedral angle energy minima are 

superimposed by overlapping the intervals         ,         , and         . The 

inset in Figure 12A shows a probability distribution of MET that is well-sampled. For other 

types of methyl groups, the distribution is often narrower with insufficiently sampled wings 

prohibiting estimates of barriers to rotamer transitions. Therefore, only the width around the 

minimum of the PMF is characterized in terms of         , where    and    are the 

dihedral angles at which the PMF is 1 kcal/mol larger than at its minimum (compare Figure 

12A). Figure 12B shows in good approximation that    decreases with order parameter. Again, 

three classes are apparent differing in terms of their average values of   , i.e., in the shape of the 

PMF around its energy-minimum. 

CONCLUSIONS - DYNAMICS OF METHYL GROUPS IN PROTEINS 

The above application of atomistic molecular dynamics simulation on methyl groups in proteins 

revealed three classes of methyl groups depending on the methyl group’s topological distance 

from the backbone. Class 1 consists of VAL    , THR , and ILE , Class 2 of ILE  and 

LEU    , and Class 3 of MET . The classes have been found in the relation between the methyl 

group axis order parameter and the corresponding entropy. 

Interestingly, the classes are not only caused by the dihedral energy force field parameters 

controlling the orientation of the methyl group axis because the barrier to rotation in the force 

field is 3.6 kcal/mol for both Classes 1 and 2. Owing to the different chemical nature of MET 

(i.e. MET has a sulfur atom at the foot of the methyl group axis) the barrier for Class 3 (MET) is 
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1.86 kcal/mol, which explains its relatively large entropy (Figure 11). The similarity of the 

dihedral energy parameter and the simultaneous difference in axis entropy combined with the 

fact that the analysis was done in the local methyl group frame of reference, in which motion 

other than that of the methyl group axis is absent, suggests that the differences between the 

classes of methyl group at different topological distances from the backbone are caused by 

differences in the average nonbonded environment. Indeed characteristics of the potential of 

mean force close to the energy minimum differ between classes 1 and 2; the PMF for Class 2 

appears more smeared out than for Class 1 motivating its increased entropy in Figure 11. 

Hence, methyl groups on the same side chain are not necessarily similar. Instead, methyl groups 

share similar properties if they are at the same topological distance from the backbone. This also 

suggests that a change in entropy obtained from a change in order parameter will depend on 

topological distance, in agreement with the slopes fitted to the relationship between entropy and 

order parameter based on the data shown in Figure 11. 

  



 

 

33 

 

 

 

DYNAMICS OF CRYSTALLINE CELLULOSE 

This section includes modified parts of a manuscript by the author published in 

Biomacromolecules (doi: 10.1021/bm300460f). The coauthors contributed the following to the 

afore-cited manuscript: discussions, correcting drafts of the manuscript. Furthermore, Dr. Kei 

Moritsugu made available source code for the calculation of the coarse-grained force field and 

dispersion relations. 

INTRODUCTION 

BIOMASS BASED BIOFUELS 

The world was dependent on biomass to meet its energy demand until the first systematic 

exploration and drilling for crude oil began in the 19
th

 century. Crude oil, as inexpensive energy 

source, powered the industrial revolution and promoted the growth of wealth. Consumption of 

oil increased subsequently because more and more economies became dependent on it. However, 

crude oil is a finite resource and the maximum level of global oil extraction may have already 

been passed (reference [135] and references therein). Together with the negative impact of fossil 

fuels on the environment, it became imperative to develop sustainable alternatives. Biomass may 

be such an alternative. Currently, organic carbon and liquid transportation fuels can only be 

sustainably derived from plant-biomass [136]. 

The production of first generation crop-based biofuels (e.g. sugarcane ethanol, rapeseed 

biodiesel) is commercialized today, but still accounts for only few percent of the consumption in 

transportation fuel [137]. The unsustainability of gasoline-fuel raises the need to scale up 

sustainable biofuel production. The social and environmental impact of any biofuel production 
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process must be carefully evaluated. Cultivation of biofuel-crops replaces food-crops so that 

food prices rise increasing the risk of food riots as happened in the developing world in 

December 2007. An expected change in land-use, i.e., the conversion of forest or grassland to 

farmland, was predicted to significantly increase overall greenhouse gas emissions [138] 

although first generation biofuels initially appeared to reduce greenhouse gas emission due to the 

uptake of carbon during plant growth [139]. 

Second generation biofuels have the potential to take center-stage. It was estimated that the U.S. 

could still meet its food and export demands and sustainably produce         metric tons of dry 

biomass per year (        barrels of oil energy equivalent) [140], which would account for 

     of the current U.S. liquid fuel consumption (        barrels of oil per year [141]).  

Second generation biofuels are made from non-food components of biomass, which mainly 

consists of cheap lignocellulosic biomass that is available in abundance. Biomass can be 

obtained from specifically grown energy crops (e.g. on marginally fertile land), aquatic biomass 

(e.g. algae), or waste (e.g. agricultural, forest). The composition of the biomass varies by source 

(Table 3). The three main components are cellulose, hemicellulose, and lignin accounting for 

roughly 40%, 20%, and 20% of the dry weight of woody biomass, respectively [136, 142, 143]. 

The polysaccharide cellulose is a polymerized, unbranched glucose. Glucose can be easily 

fermented to biofuel, e.g. ethanol. Hemicelluloses consist of a variety of different sugar 

monomers that form a branched polymer and lignin is an aromatic, branched heteropolymer. All 

of those components can be converted into biofuels with varying efficiency [136]. However, the 

plant evolved to resist degradation and holds on tightly to its components. Cellulose exists to a 
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large fraction in crystalline forms, in which the sugar polymers strongly interact with each other 

to form a stable microfibril (Figure 13). These microfibrils are embedded in a matrix of, among 

others, hemicellulose that is further shielded with lignin (Figure 13) against cellulose degradation 

through e.g. bacteria and fungi. 

To efficiently produce biofuel, cellulose and hemicellulose must be made accessible and broken 

into their monomeric units for further processing [144]. Therefore, breaking down the protection 

conferred by lignin and the crystallinity of cellulose is the primary goal of various pretreatment 

methods, which include mechanical and chemical treatment, steam explosion, ammonia fiber 

explosion and biological treatment [144]. Furthermore, an ideal pretreatment method minimizes 

inhibitory products that could adversely affect subsequent processing steps that involve the 

hydrolysis of the polymers into sugars using enzymes or acids. 

Pretreatment is the economically most expensive processing step and a detailed molecular 

understanding of all biomass components, especially of cellulose, is desirable to further improve 

pretreatment efficiency. Herein, the focus is on cellulose. 

CELLULOSE 

Carbohydrates are a large group of organic compounds that consist only of carbon, oxygen and 

hydrogen. Carbohydrate is often used synonymous to saccharide. These are distinguished into 

mono-, di-, oligo-, and polysaccharides. Examples for these types are e.g. glucose (“grape 

sugar”), lactose (“milk sugar”), rafinose, and cellulose. Disaccharides are two linked 

monosaccharides. Oligo- and polysaccharides cannot be strictly distinguished, but a common 
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definition requires them to have three to ten and more than ten constituent sugar 

monosaccharides, respectively. 

Cellulose is a polysaccharide of cellobiose, a disaccharide of D-glucopyranose. The chemical 

composition of cellulose is                              with the degree of 

polymerization  . Glucose units are linked together by an  -1,4 glycosidic bond under the loss 

of one water molecule. The conformation of a glucose ring is non-planar and resembles a “chair” 

[145]. Successive glucose units are rotated by 180° around the approximately straight polymer 

axis relative to one another. The typical degree of polymerization for one molecule of cellulose 

ranges between 100 and 20,000 glucose monomers [146]. The top and bottom of each molecule 

is mainly hydrophobic while the sides are capable of hydrogen bonding [136]. 

Approximately    molecules of cellulose associate to form an elementary cellulose microfibril 

with linear cross-section dimensions ranging between 2 and 5    . The chains were proposed to 

interact via their hydrophobic and hydrophilic sides after being co-synthesized. In such a 

microfibril, a single molecule of cellulose is referred to as “chain” (atoms that are directly or 

indirectly connected by covalent bonds). Chains, whose sugar rings reside in the same plane, are 

referred to as “sheet” and sheets are stacked above one another to form the fibril. 

POLYMORPHS 

Cellulose exists in several polymorphs,          and   , whose relative abundance depends on 

source and the history of treatments to the sample [147]. Cellulose   is predominant in nature. It 

can be further separated into cellulose    that is prevalent in bacteria and algae, and cellulose    

that is the main form in plants [148, 149]. Since cellulose    can be irreversibly converted into 
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   by heat treatment, cellulose    was suggested to be the more stable form of Cellulose   [150, 

151]. Cellulose   can be converted to cellulose    by alkali treatment and subsequent washing, or 

in some cases, may be directly biosynthesized depending on temperature [152] or mutations 

present in the bacteria studied [153]. Treatment with ammonia converts cellulose   and    into 

cellulose      and      , and treatment with temperatures larger than      can convert cellulose 

  and    into cellulose     and     , respectively [147]. Furthermore, a significant fraction of 

cellulose is amorphous. 

Detailed crystallographic information is available for cellulose   ,   ,   , and     , in part from 

combined neutron and X-ray diffraction experiments that solved both the hydrogen and heavy-

atom positions and thus allowed conclusions on the hydrogen bonding pattern [154-157]. The 

polymorphs differ in their unit cells [154-157]. Cellulose    and      have one chain in their 

triclinic and monoclinic unit cells, respectively. The monoclinic unit cells of cellulose    and   , 

with two chains per cell, in principle allow for antiparallel chain packing. Such chain packing 

involves alternating reducing and non-reducing chain ends at each tip of the fibril. As cellulose 

   and    can be interconverted by what is called mercerization, it was initially controversial that 

the two polymorphs could have different chain packing, until high resolution diffraction studies 

provided strong evidence for antiparallel packing in cellulose    [147]. 

HYDROGEN BONDS 

The recalcitrance of cellulose towards hydrolysis is in part explained by a robust and strong 

hydrogen bonding network in cellulose. Hydrogen bonds can be classified terms of in-chain, 

interchain, and intersheet hydrogen bonds. In-chain hydrogen bonds connect two atoms within 
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the same chain and increase the stiffness of a single chain, interchain hydrogen bonds connect 

atoms that are within the same sheet, but not within the same chain, and intersheet hydrogen 

bonds connect atoms between sheets. The interchain and intersheet hydrogen bonds connect 

chains and thus stabilize the overall structure of the fibril. The chain arrangement in the 

polymorphs determines the possibilities for hydrogen bonding. In cellulose    and   , there are 

two kinds of in-chain and interchain hydrogen bonds and no intersheet hydrogen bonds of type 

      [154, 157]. Thus, the sheets are held together mainly by hydrophobic interactions, 

although some relatively weak intersheet       interactions may also be formed [154]. 

Besides in-chain hydrogen bonds, only intersheet and hardly any in-sheet hydrogen bonds have 

been found in cellulose    and      [156]. A more detailed comparison of the hydrogen bond 

networks in cellulose is available in reference [156]. Considering cellulose degradation, it is 

noteworthy that enzymatic sacchrification rates are increases 5-fold for cellulose     over    due 

to what was described as “amorphous-like” nature of the surface of cellulose     [158]. 

Destabilization of the hydrogen bond network suggests itself as straightforward route to facilitate 

cellulose deconstruction, however, the hydrogen bond network is particularly stable and can 

resist heat treatment until       in cellulose   [151, 159-161]. 

The strong hydrogen bonding interaction in cellulose is one of several factors explaining the 

recalcitrance of cellulose towards hydrolysis. Equally important might be the assembly of the 

plant cell wall with its other components that protect cellulose from being hydrolyzed. 
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PLANT CELL WALL 

The primary plant cell wall is often described as having a fiberglass-like structure [162, 163] 

built from polysaccharides that are traditionally classified as cellulose and the matrix 

polysaccharides hemicellulose and pectin. 

Cellulose is the only well-structured polysaccharide in the primary plant cell wall. Cellulose is 

synthesized, likely due to its insolubility, in the plasma membrane. Cellulose synthesizing 

proteins form hexameric “rosettes”, as observed by electron microscopy [164]. Possibly six 

rosettes are suggested to assemble into arrays co-localizing 36 CesA proteins, each of which 

synthesizes a chain of cellulose [165] that then interact to form the cellulose microfibril. 

Hemicelluloses are typically grouped into xyloglucan, xylans, mannans and glucomannans and 

have been recently reviewed in detail in reference [166]. Most hemicelluloses share a similar 

      linked backbone with cellulose, but, in contrast to cellulose, can be branched. 

Hemicellulose and other matrix polysaccharides are synthesized in the Golgi apparatus and 

secreted at the cell wall. Then, they can diffuse into the cell wall [167] driven by a pressure 

gradient [168]. Newly secreted fragments have been proposed to be integrated into the existing 

matrix by enzymes [169]. Several models were proposed to explain the cross-linking of 

polysaccharide chains. For example, hemicelluloses could interact with cellulose via hydrogen-

bonds, hemicelluloses could be entrapped during the synthesis of the cellulose microfibril, or 

they may be covalently cross-linked to other wall-polysaccharides (reference [163] and 

references therein). 
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Pectins are a heterogeneous third class of primary plant cell wall polysaccharides also forming a 

cross-linked network. Due to their relatively low fraction of the dry-weight of biomass, pectins 

are of limited importance for bioenergy applications. 

Another abundant component of woody biomass is lignin. Lignin is an integral part of the 

secondary cell wall, which is established in some cell types after the cell has stopped expanding. 

Lignin is a branched and cross-linked phenolic biopolymer formed by various monomers and 

linkages [170]. Lignin confers mechanical strength and is crucially involved in water transport. 

Furthermore, lignin’s indigestibility confers resistance towards pathogens such as bacteria and 

fungi.  

Unfortunately, lignin is also an important factor for biomass recalcitrance. After pretreatment of 

biomass, lignin precipitates back on cellulose posing a physical obstacle for the action of 

cellulases, the enzymes that hydrolyze cellulose [171-173]. Furthermore, lignin nonspecifically 

binds cellulases decreasing the concentration of active enzymes [174, 175]. 

PREVIOUS ATOMISTIC MD STUDIES OF CELLULOSE 

After the hydrogen bond network was established for the cellulose polymorphs using high 

resolution neutron and X-ray crystallographic structures, simulation studies on the cellulose 

polymorphs have been undertaken. Initial studies often simulated a periodic cellulose crystal, 

where the crystal is quasi-infinitely extended due to periodic boundary conditions, often along all 

three base vectors. Such studies investigated, for example, the thermal response of cellulose 

lattice parameters, the density, or elastic properties [161, 176]. However, to avoid potentially 

artificial effects of the periodic boundary conditions, simulations of fully solvated cellulose 
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crystals are preferable as large-scale simulations of cellulose have become feasible [177]. Fibril 

twist is consistently observed in simulations of cellulose    and    but not in cellulose     , 

consistent with the 2-dimensional and 3-dimensional hydrogen bond network of the polymorphs, 

respectively [178-180]. Conclusive experimental proof for fibril twist is not yet available. Also 

the hydrogen bond network received much attention. One study clarified an ambiguity 

considering the exact hydrogen bonding scheme in cellulose    [181], others investigated the 

hydrogen bonding in terms of in-chain, interchain, and intersheet hydrogen bonds in cellulose 

solvated in water [182] or in ammonia [183]. Also, aspects of surface solvation by e.g. water, 

benzene, or ionic liquids raised interest [182, 184, 185]. Furthermore, the interactions of the 

Carbohydrate-Binding Module and an entire cellulase with the cellulose surface were 

investigated [186-189]. Targeted towards bioenergy research have been studies on the free 

energy profile of chain removal from the fibril in water [190] and ionic liquids [191]. Other 

aspects covered are for example the structural conversion of cellulose      to cellulose   [192] or 

amorphous cellulose [193, 194]. 

PREVIOUS COARSE-GRAINED STUDIES OF CARBOHYDRATES 

A first coarse-grained model of carbohydrates used structural and thermodynamic data to derive 

a CG model for gas phase and solvated                 , representing each sugar 

monomer by three and each water by one CG-beads [195]. Bonded interactions have been 

derived using Boltzmann inversion and nonbonded interactions have been modeled with a Morse 

potential. The model successfully reproduces excluded volume interactions, the distribution of 

torsion angles, or the glass transition temperature of hydrated and dry samples. A subsequent 

approach systematically derived a three-site CG-model for  -D-glucopyranose and for a short 
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chain of cellulose (DP=14) demonstrating the feasibility and transferability of the multiscale 

force matching method used [196]. Later on, crystalline cellulose was coarse-grained to study the 

interactions of the carbohydrate-binding module of Trichoderma reesei cellobiohydrolase   with 

the fibril’s hydrophobic face and predicted stable positions of the CBM approximately every 5 

and 10   along the fibril, consistent with the repeat of sugar monomers and cellobiose, 

respectively [197]. Later on, a coarse-grained model for cellulose was derived compatible with 

the family of MARTINI coarse-grained force fields. In principle, this makes possible the 

simulation of combined protein-cellulose and other composite systems [198]. However, the 

initial parameterization based on partitioning free energies in water and cyclohexane did not 

yield the correct crystal structure of cellulose    and an additional interaction was added to 

overcome this problem at the expense of the strict compatibility with other MARTINE-style 

force fields. A restraint-free coarse-grained model of cellulose    has also been published using 

different parameters for the center and origin chains [199]. Furthermore, the model can be 

continuously switched to various degrees of amorphousness in terms of a coupling parameter  . 

THE PRESENT COARSE-GRAINED STUDY 

The large size of cellulose together with the associated long-time dynamics pushes simulation of 

cellulose beyond the capabilities of atomistic MD and coarse-graining must be further followed. 

The above coarse-graining approaches have derived their force field parameters with an (often) 

iterative fitting procedure to reproduce target data. The somewhat arbitrary choices involved 

make these CG force fields less suitable for consistent multiscale approaches. Furthermore, part 

of the physical origin of atomistic force fields is arguably lost in the above CG strategies. 

Previous work introduced the REACH (Realistic Extension Algorithm via Covariance Hessian) 
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methodology that calculates elastic network model force constants from the variance-covariance 

matrix obtained using atomistic MD [50, 53-55]. REACH translates the information on collective 

dynamics contained in the atomistic variance-covariance matrix to the coarse-grained scale. 

Furthermore, REACH is a direct, one-step mapping with no iterative fitting and no need for 

experimental input data, which makes REACH particularly suitable for automated multiscale 

approaches. REACH was already successfully applied to coarse-graining various classes of 

proteins [50, 53-55]. 

In the present study, a REACH force field is developed for crystalline Iβ cellulose. This allows 

the characterization of elastic properties of large cellulosic fibrils and investigation of some 

aspects of cellulose deconstruction. The REACH model is calculated for a cellulose fibril in 

water at temperatures from 100 to 500 K in steps of 50 K and successfully validated against 

experiment. Analysis of the normal modes of motion at different surfaces of cellulose suggests 

that crystalline cellulose might be deconstructed from the hydrophobic surface. 

SPECIALIZED METHODS 

LATTICE DYNAMICS AND NORMAL MODE ANALYSIS 

References [200, 201] describe the calculation of phonon dispersion relations in detail. A brief 

summary is given in what follows. The equation of motion for the displacement of residue   in 

unit cell  ,    , is 

    ̈   ∑   
  

     

  

 Eq. 21 
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where    
  

 is the force constant between residue   in unit cell   and residue   in unit cell  . 

   
  

 can be calculated from the REACH model function using the interatomic distance (Eq. 23). 

With the plane wave approach,       
    

                    , this linear equation is 

derived: 

             ∑  
           

 

 Eq. 22 

where the dynamical matrix is   
     ∑    

  
   [  (     )]  √    . For every  , the 

dynamical matrix can be diagonalized leading to the dispersion relations     . 

Here, the dispersion relations were calculated for a 1-dimensional lattice (1-dimensional in the 

longitudinal fibril direction        ) and at    points of the reduced wave number,     ( 

          ). This corresponds to sampling   in the range from   to     every          . The 

sound velocity is obtained as the gradient of      in the limit    , that is, in the range 

         . Calculations were performed for a    chain cellulose fibril (     ) using the X-

ray crystal structure from reference [154]. 

ATOMISTIC SYSTEM AND SIMULATION PROTOCOL 

The cellulose fibril starting structure consisted of 36 chains of β-1,4 linked D-glucopyranose 

monomers similar to that from Schultz and co-workers [202, 203], but shorter in length with a 

degree of polymerization (DP) of 40. The cellulose fibril was solvated in 28,367 water 

molecules, leaving a distance larger than 1 nm between the fibril and the edge of the simulation 

box. Hard contacts (<2.0 Å) between water molecules and cellulose were removed. The final 
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simulation system had dimensions of approximately 7070227 Å
3
 and the number of atoms 

totaled to 115,509. After solvation, the water was energy minimized while cellulose atoms were 

fixed using harmonic restraints. Then, the full system was energy minimized.  

Atomistic molecular dynamics simulations were carried out using the MD software GROMACS 

4.5.3 [113] together with the CHARMM cellulose force field developed by Guvench et al. [73]. 

Water was represented by the TIP3P [74] model. The Particle Mesh Ewald (PME) electrostatics 

were evaluated using a real space cutoff of 12 Å. A Fourier grid spacing of 1.6 Å together with 

sixth-degree B-splines interpolation was used for better parallel performance. Van der Waals 

interactions were truncated between 8 and 11 Å using a switch function. All bonds involving 

hydrogen atoms were treated as rigid by constraining their bond lengths to equilibrium values 

using the LINCS method [114]. The equations of motion were integrated using a time step of 2 

fs. The trajectory was recorded every 1 ps. 

NPT simulations were performed at temparatures between 100 and 500 K in steps of 50 K and at 

atmospheric pressure. The Berendsen temperature and pressure coupling algorithms with 

coupling time constants of τ=0.1 ps and τ=0.4 ps were used during the initial equilibration of the 

system (1.5 ns) [115]. This was followed by additional 10 ns equilibration and 20 ns production 

dynamics using a Parrinello-Rahman barostat [116] and a velocity-rescaling thermostat [117] at 

each temperature. 

COARSE-GRAINED SYSTEM AND SIMULATION PROTOCOL 

In the coarse-grained simulations, one sugar monomer was represented by one CG-bead. The 

mass of one CG-bead was set accordingly to that of a sugar monomer. GROMACS was used to 
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perform coarse-grained MD simulations with the REACH force field derived in this study. The 

amount of force constants, proportional to the square of the number of CG-beads, rendered 

several tools, whcih are essential to GROMACS, useless, so that those force constants with 

values smaller than 10
-3

 kJ/mol nm
2
 were set to zero, i.e., they were not represented by a 

harmonic potential. The accompanying decrease in the number of interaction pairs circumvented 

previous issues with GROMACS tools and resulted in negligible changes in benchmark 

simulations. The velocity-rescale temperature coupling algorithm with a coupling time constant 

of τ=0.1 ps was used for simulations. These were performed using an integration time step of 2 fs 

and writing coordinates every 1 ps. A total of 100 ns simulation was carried out at each 

temperature. 

RESULTS 

REACH FORCE FIELD FROM ATOMISTIC SIMULATION OF CELLULOSE 

Covariance matrices were calculated from all-atom MD simulation at various temperatures at the 

scale of single residues, i.e., using coordinates of C1 atoms, to then calculate the REACH force 

field using Eq. 15. This corresponds to coarse-graining sugar monomers to single CG-beads, so 

that the mass of one CG-bead was set to that of a sugar monomer.  

The REACH analysis (Eq. 13 to Eq. 15) provides one elementary force constant for every pair of 

CG-beads and thus in principle fully defines the CG force field for the exact system under study. 

To obtain a CG force field that is also applicable to different system sizes and to improve the 

understanding of various interactions in the system, the CG force field was further simplified by 

defining a small number of representative classes of interactions (see Figure 16A). For the 
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present system, these are two-fold: First, there are classes of local in-chain interactions between 

CG-beads separated by 1, 2, or 3 pseudo-bonds modeled by force constants    ,    , and    , 

respectively. These     are obtained as the average of the elementary force constants (Eq. 15) 

belonging to that class. Second, there are classes of interchain interactions. One of these,    , is 

meant to include the effect of interchain hydrogen bonding in the atomistic model. The force 

constant     is also the average of the respective elementary force constants (Eq. 15). The 

remaining interchain interactions are modeled with a distance-dependent function 

    
   

            ⁄   Eq. 23 

with the force constant    
   

    
   between two beads   and   separated by the equilibrium 

distance    
 . 

Figure 16B shows a scatter plot of the elementary force constants belonging to the class    , that 

is used for example between the black and the red CG-bead illustrated in Figure 16A. Also 

shown are contributions from the hydrophobic (   
      

) and hydrophilic (   
      

) surface and 

from the internal (   
        ) of the fibril. The distributions feature a single cluster within a 

narrow range in distance. The few outlying data points, e.g. those smaller than 400 kJ/mol Å
2 , 

are attributed to the ends of the chains. The difference between the average values from the 

hydrophobic (   
           kJ/mol Å

2
) and hydrophilic (   

           kJ/mol Å
2
) surface and 

from the internal (   
             kJ/mol Å

2
) of the fibril indicate that the internal is stiffer with 

lesser fluctuations than the surface of the fibril. In the subsequent study, only the overall average 

of         kJ/mol Å
2
 is used because of the proximity and overlap of the distributions 



 

 

48 

 

 

 

belonging to    
      

,    
      

, and    
        . The value         kJ/mol Å

2
 is consistent with 

the values 459 and 770 kJ/mol Å
2
 obtained in a previous study using Boltzmann inversion as 

coarse-graining scheme [199]. The averages for    ,    , and     are 34, 2, and 32 kJ/mol Å
2
, 

respectively. Instances of negative elementary force constants (in e.g.    ,     shown in 

reference [204]) are unphysical and caused by numerical errors in the matrix diagonalization 

required by REACH and by the anharmonicity in the AA MD, as described in reference [50]. 

Usage of the average of     eliminates the unphysical effect of negative force constants. Figure 

16C shows the distance-dependence of the nonbonded force constant model function,    
       

(Eq. 23). The function    
       was fitted to the nonbonded force constant data at 300 K resulting 

in fitting parameters       kJ/mol Å
2
 and         . The data is well-reproduced. The 

function    
   

 decreases to zero within 12  . Thus, the nonbonded interactions modeled by 

   
       are more short-ranged than the bonded in-chain interactions that decrease less strong, for 

example,     and     corresponding to CG-bead separations of 10.38 and 15.57 Å still have 

values of 34 and 2 kJ/mol Å
2
, which are larger than    

   
 at these distances. At the distance 

          corresponding to typical distances between interchain hydrogen bonded sugar 

monomers,    
   

(      ) is 9 kJ/mol Å
2 . This is significantly smaller than     (33 kJ/mol Å

2
) 

and thus justifies the use of     as separate class of force constants for hydrogen bonded 

interchain CG-beads. 

The temperature-dependence of the classes of force constant introduced above is discussed next. 

Figure 17A,B and Table 4 show that the force constants            , and     decrease with 

temperature. For    , the temperature variation of the components belonging to the hydrophobic 
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(   
      

) and hydrophilic (   
      

) surface and to the internal (   
        ) of the fibril are also 

shown. These follow    
                

          
      

 at all temperatures indicating that 

motion in the inside of the fibril is more restricted than at the surface, and also that motion at the 

hydrophilic surface is more restricted than that at the hydrophobic surface. Also the rate of 

decrease is larger at the surfaces than in the inside of the fibril indicating that the surface softens 

more than the inside as temperature increases. While the decrease with temperature of     and 

    does not have noteworthy specifics,     shows a marked drop around 300 K, coinciding 

with a decrease in the average number of hydrogen-bonds in the simulation of the atomistic 

cellulose fibril at this temperature (see Figure 17C). Figure 17D shows that the nonbonded force 

constant model function,    
      , also decreases with temperature (illustrated by the arrow in 

Figure 17D) indicating that also the nonbonded interactions in the crystalline cellulose fibril 

soften with increasing temperature. This is further highlighted by the inset of Figure 17D 

showing    
 , the integral over    

       from     to     , which is the range from 

approximately the next-neighbor distance until    
       is approximately zero. The values of    

  

decrease monotonically with temperature. 

The above section has fully defined the REACH force field for crystalline cellulose at 

temperatures between 100 and 500 K. The coarse-graining significantly reduced the number of 

particles involved in the simulation relative to the initial atomistic model and significantly 

reduced the complexity of the potential energy function from an anharmonic function to one with 

only harmonic terms. This enabling rapid simulation and analytical calculations on crystalline 

cellulose using the REACH force field. 
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DEPENDENCE OF REACH FORCE FIELD ON FIBRIL MODEL 

The structure of the elementary cellulose micro-fibril depends on the synthesizing organism. 

Therefore, a potential dependence of the REACH force field on the structure of the cellulose 

model must be clarified. This is done by calculating and comparing the REACH force constants 

from simulations of two different cellulose models “A” and “B” whose cross-section is shown in 

Table 5. Please note that only the calculations in this section are based on the older CHARMM 

cellulose force field by Kuttel et al. [43] and a stretched-exponential nonbonded force constant 

model function    
                  

 ⁄   . Table 5 compares the obtained REACH force fields 

for models A and B. The force constants and parameters obtained for both models are in close 

agreement indicating that the REACH method is robust towards relatively realistic variations of 

the cellulose model. 

SPEEDUP OF REACH CG MD SIMULATIONS 

The performance of atomistic and coarse-grained simulation is briefly compared. The general 

protocol for AA and CG MD simulation is given in the methods section. The AA simulations use 

the advantageous domain decomposition algorithm for electrostatic interactions [113]. Similar 

time steps (2 fs) were chosen for the AA and CG MD, although a larger time step could have 

been chosen for the CG calculations.  

Benchmark simulations were carried out on a the local cluster “moldyn” at ORNL, featuring 12-

core/2.4 GHz Infiniband interconnected nodes. Simulations of a cellulose fibril (DP=40) yielded 

7.2 ns/day and 172.5 for the AA and CG systems, respectively, using 48 cores (Table 6). This is 
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a speedup-factor of 24, that remained approximately similar, i.e. >20, with increasing system size 

(DP=80,160). 

COMPARISON OF MEAN-SQUARE FLUCTUATION FROM CG AND AA MD CALCULATIONS 

The root mean-square fluctuations (RMSF) from all-atom (AA) molecular dynamics simulation 

are compared to those obtained using the coarse-grained REACH force field to examine the 

quality of the force field derived. The RMSF from AA MD is calculated as: 

 

         √
 

 
∑          ̅̅̅  

 

   
 Eq. 24 

where       is the position vector of atom   at time  ,   ̅̅̅ is the average position vector of this 

atom, and   is the trajectory length. The RMSF for only the    atom in the backbone of a sugar 

monomer is calculated and taken as representative for the fluctuation of this monomer. 

The RMSF from CG MD is calculated twofold, first using Eq. 24 and the CG MD trajectory, and 

second using normal mode analysis (NMA) from the normal mode eigenvalues    and 

eigenvectors  ⃗    as 

           √
   

 
∑

 ⃗    

  
 

 Eq. 25 

where    is Boltzmann’s constant,   is the temperature,   is the mass of one sugar monomer  , 

and   is the normal mode number. Normal mode analysis solves the equations of motion of the 

same harmonic system that is used in REACH CG MD simulation. Thus, this elegant analytical 

calculation is expected to give the same results as CG MD. However, NMA becomes difficult for 
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large systems as it requires to hold in memory and diagonalize a matrix of size       with the 

number of CG-beads  . 

Figure 18 compares the RMSF from AA MD simulation with that from REACH CG MD and 

REACH NMA at representative temperatures [for the fibril (DP=40) described in methods]. At 

       , the atomistic data agrees with the coarse-grained data as there is mostly harmonic 

dynamics in the system at these temperatures. At larger temperatures, the fluctuation from the 

atomistic simulation is larger than that from the coarse-grained calculations. This indicates the 

presence of anharmonic motion, which is reproduced only imperfectly using linear normal 

modes.  

A part of the difference between the AA and CG MSF might also be due to usage of the average 

of the elementary force constants in REACH calculations while the MSF is non-linear in the 

force constant  , i.e. proportional to    . Therefore, more fluctuations would be removed by 

replacing small force constants with the average than added by replacing large force constants 

with the average. However, averaging is necessary to obtain a force field transferrable to other 

system sizes. Averaging using non-constant weights, i.e., proportional to    , is in principle 

possible but unfeasible in practice because numerical errors in the small nonbonded force 

constants lead to diverging weights. The effect of relatively small REACH-RMSF at large 

temperatures is indicated to be of limited relevance.
2
  

                                                 
2
To investigate a possible effect of the relatively small RMSF in REACH calculations, the force constants were 

iteratively rescaled by a constant value to reproduce the RMSF from AA MD, sacrificing the elegance of REACH, 

i.e., the non-iterative direct calculation of force constants, for only this test-case and the calculations for validation 

were also performed with the rescaled force constants. Qualitative features are similar to the original REACH 
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MEAN-SQUARE FLUCTUATION FROM NORMAL MODE ANALYSIS 

Normal mode calculations allow detailed analysis of the mean-square fluctuations in terms of a 

decomposition into contributions along different directions or from different parts of the system. 

Figure 19A shows the NMA-derived mean-square fluctuations along the longitudinal axis of a 

cellulose fibril (DP=80). The MSF is the largest at the fibril ends (positions #1 and #80), 

somewhat large in the center of the fibril (position #40), and the smallest at “knot” positions 

between the end and the center of the fibril (approximately positions #20 and #60). This pattern 

exists in the relatively large MSF along the hydrophilic axis (Figure 19B) and in the even larger 

MSF along the hydrophobic axis (Figure 19C) while the fluctuations along the longitudinal axis 

(Figure 19D) are approximately an order of magnitude smaller in amplitude. The shape of the 

MSF transversal to the fibril axis resembles the fluctuations of for example an elastic rod and is 

due to the shape of the lowest frequency normal modes, shown in Figure 19E. The motion 

described by the lowest frequency (largest amplitude) normal modes is i) bending along 

hydrophobic axis (mode 1), ii) bending along hydrophilic axis (mode 2), and iii) fibril twist 

(mode 3). This three-membered pattern is in principle repeated with increasing mode number, 

however, one knot is added per repetition of the pattern resulting in overtones. The repetition is 

soon interrupted at mode 12 when different normal modes become relevant, e.g. due to fibril 

stretching. Figure 19F illustrates the motion from typical normal modes, which describe a basic 

bending motion (mode 1), an overtone bending motion (mode 31), a torsion motion (mode 3), a 

                                                                                                                                                             
analysis, particularly pertaining to differences between the hydrophobic and hydrophilic face of cellulose. 

Quantitatively, the reweighted force constants lead to a softer fibril with a shift of the density of states to lower 

frequencies, a decrease in the transverse and a small decrease in the longitudinal Young’s moduli, a somewhat small 

decrease in the persistence length, and an increase in the chain-specific fluctuations. These results are not shown 

here. 
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stretching motion (mode 12), and also a breathing motion (mode 60). The breathing motion 

changes the distance between neighboring chains on the surface of cellulose and is capable of 

displacing chains towards the solvent environment, which suggests that such motion could be 

relevant for the deconstruction of the fibril. Figure 19G shows the fraction of the overall MSF 

that is cumulatively contributed by the   lowest normal modes. The ten lowest modes capture on 

average >60% of the total MSF, a fraction which is reached already by the two lowest modes at 

some positions along the fibril. Overall, Figure 19 illustrates some representative types of 

motion that the fibril undergoes and shows that this motion contributes most of total fluctuations. 

In addition to the overall MSF (its square-root, the RMSF, is defined in Eq. 25), we define the 

effective MSF along a direction 
md


 perpendicular to the fibril surface 

     
  

   

 
∑

 ⃗    

  
 

 Eq. 26 

where    is Boltzmann’s constant,   is the temperature,   is the mass of one sugar monomer  , 

  is the normal mode number, and  ⃗    ( ⃗     ⃗ ) ⃗  is the projection of the normal mode 

vector  ⃗    along the direction  ⃗  (‖ ⃗ ‖   )  perpendicular to the fibril surface. Figure 

20A,B show the temperature-dependence of the overall and effective MSF averaged over the 

CG-beads at the hydrophobic and hydrophilic surface. The MSF increases superlinearly due to 

the softening of the force constants with temperature (compare Figure 17). At all  , the MSF at 

the hydrophilic is larger than that at the hydrophobic surface, as reported by Beckham et al. 

[205], while the effective MSF from chains at the hydrophobic surface is significantly larger than 

from those on the hydrophilic surface (Figure 20B). Hence, the fraction between the effective 
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and total MSF 〈  〉     〈    
   

 ⁄ 〉     is much larger for CG-beads at the hydrophobic side. 

Also, the values of 〈  〉     are approximately constant with temperature. The data shown above 

demonstrates that the MSF perpendicular to the fibril surface is the largest at the hydrophobic 

surface. This is expected, because fluctuations in the direction perpendicular to the hydrophilic 

surface are suppressed by the presence of interchain hydrogen bonds along that direction, while 

such strong      -hydrogen bonds are absent in the direction perpendicular to the 

hydrophobic surface. 

DENSITY OF STATES 

Next, the density of states is derived from the normalized velocity autocorrelation function as 

      ∫
〈 ⃗     ⃗   〉

〈 ⃗ 〉
     

 

  

 Eq. 27 

where  ⃗    is the velocity at time   and the brackets denote the average over all    atoms (or 

CG-beads) and the trajectory. To obtain error bars, ten AA and CG MD simulations were 

performed for 200 ps and velocities from every 5 fs were used to calculate the density of states. 

Figure 21A shows the density of states for the internal of the fibril, the hydrophilic surface and 

the hydrophobic surface. The density of states calculated from the internal of the fibril is shifted 

to larger frequencies than that from the surfaces indicating larger effective force constants for 

beads in the interior of the fibril and thus smaller-amplitude motion than on the surface. 

Moreover, a difference appears in the density of states between the hydrophobic and hydrophilic 

surfaces. The density of states from the hydrophobic surface has larger intensity at small 

(approximately 10-30 cm
-1

) and lesser intensity at large (larger than 80-100 cm
-1

) frequencies 
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than the density of states from the hydrophilic surface. This suggests that the hydrophobic 

surface is softer than the hydrophilic one. The CG MD densities of states are in qualitative 

agreement with the data from AA MD in that the blue-shift of the density of states from the 

interior is reproduced and in that the density of states from the hydrophobic surface is larger than 

that from the hydrophilic surface at small frequencies (Figure 21B). The CG densities of states 

shift to smaller frequencies with increasing temperature (Figure 21C) indicating the expected 

temperature-dependent softening of the motion of the fibril. 

YOUNG’S MODULUS AND VELOCITY OF SOUND 

Young’s modulus    is a characteristic elastic property of materials describing the “stiffness” of 

a material, that is, its relative increase in length      under the influence of a force  : 

 
L

L
AEF Y


  Eq. 28 

where   is the material’s cross section. The Young’s modulus was calculated in the longitudinal 

and transversal fibril directions and compared to experiment. To obtain the relative increase in 

length for the longitudinal fibril direction (Figure 22A), a force  =50,000 kcal/mol nm was 

exerted on the fibril until the fibril length converged (within 10 ns). Such pulling simulations 

were performed at temperatures between 100 and 500 K in steps of 50 K. The maximal relative 

change in length was 5.1%. The cross-section area   was calculated using the cellulose lattice 

parameters to 11.4 nm
2
 and considered temperature-independent. Only for the transversal fibril 

direction, a similar protocol was followed using a force F=20,000 kcal/mol nm and different 

fibril models to reduce noise. These models consisted of 6, 30, and 5 (30, 6, and 5) cellulose unit 
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cells along the transversal base vectors a, b, and the longitudinal c to obtain the Young’s 

modulus along b (a) (Figure 22B). 

Figure 22C shows the temperature dependence of the longitudinal Young’s modulus that 

decreases monotonically between 100 and 500 K. At 300 K,    is 162 GPa in agreement with 

experimental and theoretical estimates that range from 93 to 220 GPa [206-216]. The transversal 

Young’s modulus was calculated at only 300 K to 25 and 41 GPa along the base vectors a and b, 

respectively, which is consistent with previous modeling studies (Young’s modulus along a and 

b estimated as 51 and 57 GPa [217] or 15 and 55 GPa [215], respectively). This is also consistent 

with experiments that found the transversal Young’s modulus to be 15 GPa (using inelastic X-

ray scattering) [218] or to be between 18 and 50 GPa using atomic force microscopy [219]. 

However, experiments were not able to distinguish a specific transversal direction. Altogether, 

the calculated values show that the modulus is significantly larger along the longitudinal than 

along the transversal direction and thus underline the anisotropy of this property in cellulose. 

The Young’s modulus is related to the velocity of sound,   , via Christoffel’s equation 

       
  Eq. 29 

where   is the density of cellulose (taken as 1.67 g/cm
3
 [220]). Thus obtained    is          in 

satisfactory agreement with experiment (                         corresponding to 

           [218]). The velocity of sound can also be estimated from the phonon dispersion 

relation      from lattice dynamics calculations as          for    . The dispersion 

relations have been calculated from the harmonic REACH CG force field and    was calculated 

to          . 
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PERSISTENCE LENGTH 

After previous validation of the REACH force field, it is now applied to estimate the persistence 

length of a cellulose microcrystal. The persistence length,   , of a polymer describes its stiffness. 

The value of    of a cellulose microcrystal is estimated from the elastic bending energy using 

Hook’s law 

      
 

 
     

  

 
 Eq. 30 

where    is the Boltzmann’s constant,   is the temperature,   is the arc length of the bended 

polymer, and   is the bending angle. Eighteen conformations of cellulose microcrystals were 

created and relaxed at 300 K, annealed to 30 K, and relaxed again for 50, 100, and 50 ps, 

respectively. The relaxed structures were then energy minimized using steepest descent and 

conjugate gradient minimization algorithms yielding values of the bending energy at different 

bending angles. Eq. 30 was fit to this data to obtain the persistence length   .  

The average value of    is 378   , values varied between 332 and 423    depending on the 

thickness of the fibril in the given bending direction. Bending the fibril in a direction along 

which it is thick consumes more energy because the further away a chain is from the center of 

the fibril the more will it be stretched. It results intuitively that the resulting persistence length 

depends on the model of the fibril and a different model will in principle result in a different 

value of   . Experimental values for the persistence length of single chains of cellulose were 

previously reported to 160 [221], 252 [222], 110 [223], or 130 Å [224]; a reported theoretical 

value is 145 Å [225]. However, values of   , not for single chains, but for a cellulose 

microcrystal are expected to be considerably larger. Accordingly, atomic force microscopy 
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images and electron micrographs show cellulose microcrystals that are elongated on the length-

scale of several hundreds of nanometers [226-231] and start to show some bending on the length-

scale of tens of micrometer. This is consistent with the current estimate of approximately 380 

  . The persistence length for other materials is for example within 4-17 µm for F-actin [232], 

within 1-8 mm for microtubules [232], or from ~20    to several mm for carbon nanotubes 

[233-236], depending on e.g. tube diameter. To the best of the author’s knowledge, no other 

value of the persistence length of a cellulose microcrystal is known. 

CONCLUSIONS - DYNAMICS OF CRYSTALLINE CELLULOSE 

In the present work on coarse-graining, a harmonic REACH coarse-grained force field was 

calculated for a 36 chain fibril of crystalline    cellulose. The mean-square fluctuation, 

vibrational density of states, longitudinal and transversal Young’s moduli, and velocity of sound  

were calculated for a coarse-grained cellulose fibril and these properties compare favorably to 

atomistic simulation and experiment validating the force field derived. The persistence length of 

a crystalline cellulose fibril has not yet been reported to the best knowledge of the author. It was 

calculated to        . 

Several lines of experimental evidence suggest that the cellulose fibril may be deconstructed 

from the hydrophobic surface. The carbohydrate-binding module of family I Cel7A has a flat 

surface with hydrophobic groups that are spaced apart similar to the sugar rings in cellulose 

suggesting that the CBM might preferentially bind the hydrophobic surface of cellulose [229, 

237]. Furthermore, single molecule fluorescence experiments of CBM linked to green 

fluorescence protein indicate the binding of cellulase to the hydrophobic surface [238]. Studies 
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performing atomic force microscopic imaging experiments suggest said binding and, in addition, 

motion along the binding-surface [228, 230]. The present study adds to this evidence by finding 

that the MSF perpendicular to the hydrophobic surface of cellulose is larger than that 

perpendicular to the hydrophilic surface, by finding that the transversal Young’s modulus along 

the base vector almost perpendicular to the hydrophobic surface is smaller than that 

perpendicular to the hydrophilic surface, and by finding that the vibrational densities of states in 

both atomistic and coarse-grained simulation have increased intensity at small frequencies at the 

hydrophobic surface. With these findings, the present study also suggests that the crystalline    

cellulose may be more easily deconstructed from the hydrophobic surface. 

The present REACH force field is harmonic and thus useful for the investigation of elastic 

properties, as done here. But larger-scale motions involve a considerable anharmonic component 

that can be introduced using a Morse-potential for inter-chain interactions. The associated 

parameters are related to the REACH force constants around the energy minimum. This 

anharmonic extension to the present model will be done in future work. 
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CONCLUSIONS 

The dynamics of biological macromolecules is encoded in their three-dimensional structures and 

is often relevant for their function [15]. In the last decades, structural methods have provided 

high-resolution (atomistic) models for many biomacromolecules while less information has been 

found on the corresponding dynamics using experiment. At the same time, molecular dynamics 

simulation has established itself as a key method for investigating macromolecular motion. As a 

“computational microscope”, simulation provides fine details of the time-evolution of single 

atoms so that properties of the system can be analyzed with a precision and at time scales that are 

otherwise inaccessible. 

The study of methyl group entropy illustrates the capabilities of analyzing simulation data in a 

way that is inaccessible to experiment. The simulated motion of the protein has been 

decomposed with great detail into various contributions of interest not only to calculate the value 

of a quantity but also to understand what influences that quantity. More specifically, simulations 

allows not only the calculation of the methyl group order parameter but also facilitates 

investigations of how certain kinds of motion (e.g. side chain rotation about a dihedral angle) 

affect the order parameter, or to study what influences the relation between the order parameter 

and the corresponding entropy. Such analyses were not possible with only experiment; however, 

experiment still was required for validation of the calculated order parameters to then perform 

the detailed analyses. Furthermore, future experiments will benefit from this work because the 

present findings enable more accurate estimates of methyl group entropy. 
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The study on crystalline cellulose illustrates how simulation can help to understand a system that 

cannot be easily investigated using experiment. Furthermore, the study shows how a large-scale 

simulation can be obtained in the first place using coarse graining. In this study, a coarse-grained 

model of cellulose I was systematically calculated in a one-step process using the REACH 

method. Calculated properties agree surprisingly well with experiment, indicating that physical 

principles present in atomistic simulation have been successfully translated to a coarser scale. 

This success and the fact that, unlike many coarse-graining approaches REACH requires only a 

minimum of decisions to be made by the researcher (e.g. selection of parameters), suggests the 

integration of the REACH method into a future, fully-automated, multiscale, coarse-graining 

toolset that will allow the development of a coarse-grained force field for a given system at the 

push of a button. Such a toolset would be an efficient workaround to the hurdle of limited 

transferability of common coarse-grained force fields as it would significantly reduce the effort 

required to derive a coarse-grained model. Thus, future use of coarse-graining would be greatly 

facilitated and the corresponding cost would be greatly reduced, which increases for many 

researchers the time scale they can access with simulation. 

The present studies and those briefly mentioned in the introduction [16, 28-32, 239] give 

examples of the current capabilities of biomolecular simulation. While the findings in some of 

the studies are already impressive, an even brighter future for the method is to come. With 

microsecond-long atomistic simulations being routinely possible and the apparent success of 

today’s force fields even on the millisecond time scale [16, 28, 240], molecular dynamics 

simulations are beginning to access time scales at which many critical biological processes 

inaccessible to experiments are known to occur [241]. These processes can involve, for example, 
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protein folding, i.e., the folding of a 1-dimensional amino acid chain into its native three-

dimensional structure. Protein folding is one of the oldest unsolved problems addressed by 

biological research and there are many diseases associated with erroneous protein folding, e.g., 

Alzheimer’s or Parkinson’s. It is possible that a fully atomistic molecular dynamics simulation 

will mechanistically explain the detailed origins of misfolding of certain proteins and thus 

ultimately enable development of cures for the diseases they cause.  
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TABLES 

Table 1. Differences in primary sequence between PDB IDs 2PC0 and 1QBS. 

2PC0 residue 1QBS 

ILE 3 VAL 

LYS 7 GLU 

ASP 37 SER 

CYS 95 ALA 
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Table 2. Average of methyl group axis order parameters for apo and ligand bound systems.
a
 

System 

    
            

        
    

           
         

             
           

             
  

BARNASE 0.57 0.67 0.64 0.75 -0.133 

HIV PR 0.42 0.52 0.48 0.58 -0.046 

CALMODULIN 0.44 0.51 0.49 0.57 -0.052 

ALL 0.43 0.53 0.49 0.59 -0.051 
 

a 
Systems investigated: Barnase [134], HIV PR [133], Calmodulin [78]. Methyl group axis order 

parameters are shown using     
        or       (compare Figure 10). Also reported is the 

average difference in the change of entropy when using     
        instead of       to obtain 

     
 . 
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Table 3. Composition of feedstock.
a
 

Feedstock Cellulose Hemicellulose Lignin 

Corn stover 37.5 22.4 17.6 

Corn fiber 14.28 16.8 8.4 

Pine wood 46.4 8.8 29.4 

Popular 49.9 17.4 18.1 

Wheat straw 38.2 21.2 23.4 

Switchgrass 31 20.4 17.6 

 
a
 Units: % of dry weight. Not listed are minor components. Data from reference [143] and 

references therein. 
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Table 4. REACH force constants at various temperatures.
a
 

 Temperature [K] 

 100 150 200 250 300 350 400 450 500 

k12 584 580 56 563 548 535 527 517 507 

k13 50 48 45 41 34 29 27 24 21 

k14 9 7 3 3 2 2 2 1 1 

kHB 58 55 52 48 33 17 16 15 14 

A 652 627 568 521 531 671 721 814 924 

d0 2.0 2.0 2.0 2.1 2.0 1.9 1.8 1.7 1.6 

 
a
 Force constants in units of kJ/mol Å

2
,    in Å. 
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Table 5. REACH force constants for two different models of cellulose.
a
 

 

Model 

A            B 

     
    834 831 

    36 36 

    4 4 

    33 32 

   48 44 

  
  8 8 

  10.9 10.5 

 
a
 The older CHARMM cellulose force field by Kuttel et al. [43] and a stretched-exponential 

nonbonded model function    
   

    was used. 
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Table 6. Performance of atomistic (AA) and coarse-grained (CG) simulation using REACH.
a
 

Length 

(DP) 
CG AA 

Speed 

increase 

40 172.5 7.2 24 

80 88.1 3.7 24 

160 35.2 1.6 22 

 
a 
Units in ns/day. Also given is the factor increase in speed 
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FIGURES 

 

Figure 1. Time- and length scales (  and  , respectively) of various experimental techniques. 

Also shown is the time scale of dynamic processes in macromolecules, specifically proteins 

(bottom). Non-standard abbreviations: X-ray crystallography (XRC), electron microscopy (EM). 

Figure adapted from references [241, 242].  
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Figure 2. Illustartion of modeling at different scales. (Blue, QM) Quantum mechanical modeling 

also considers electronic degrees of freedom and is limited to simulation of tens of atoms for 

picoseconds. Ground or excited states can be addressed. (Red, AA) All-atom modeling 

approximates the QM-ground state energy and only implicitly treats the effect of electronic 

degrees of freedom in terms of an empirical potential energy function and parameters. (Yellow, 

CG) Coarse-grained modeling further reduces the degrees of freedom and simulates beads 

representative of a group of atoms using an effective potential.  
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Figure 3. Harmonic potential for bond stretching (    ), angle bending (    ), and improper 

dihedrals (    ). 
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Figure 4. Proper torsional potential (    ) when expanding the cosine series until    . 
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Figure 5. Van der Waals potential. Energy minimum of depth  at distance 2
1/6
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Figure 6. (A) Illustration of a methyl group on a side chain. The methyl group axis is shown as 

yellow line between atoms   and X1. Xi represents any eligible atom type. A local coordinate 

system is shown spanned by the vectors  ⃗i. Methyl group order parameters O
2

axis and O
2

rot are 

also illustrated. (B) Illustration of an ILE residue and of side chain dihedral angles i influencing 

the ILE  methyl group. ILE  methyl group axis is shown in yellow. 
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Figure 7. Simulated (A) root mean-square fluctuation and (B) backbone amide order parameters 

as function of residue number. (C) Comparison between backbone amide order parameters from 

simulation and experiment for apo wild-type HIV protease. 
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Figure 8. Side chain order parameter from simulation and experiment as function of residue 

number. Only residues with experimental data available are shown. Error bars from simulation 

estimated based on differences among simulated replicas. Also shown is the correlation between 

the axis order parameter calculated in a local and protein frame of reference (right). 
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Figure 9. (A) The order parameter 0.111 O
2

axis is shown against O
2

rot O
2
axis (red). A linear fit 

(blue) and the diagonal (black) are shown as full lines. The inset shows the probability 

distribution of O
2

rot. (B) The order parameter O
2
 is shown against O

2
rot O

2
axis (green). A linear fit 

(orange) and the diagonal (black) are shown as full lines. (C) The methyl group rotational 

entropy from apo and ligand-bound wild-type simulations. (D) Same as C but from apo wild-

type and mutant simulations. One point represents one methyl group in C and D. 
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Figure 10. Diffusion-in-a-cone relation to obtain entropy from order parameter (T=310 K) [95]. 

Also shown is a numerical example of the S when using 0.099 instead of 0.111 as value of 

O
2

rot. 
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Figure 11. Methyl group axis conformational entropy as function of order parameter for Classes 

1 to 3. Values of the axis order parameter are the mean in a bin of width 0.05; error bars are the 

corresponding standard deviation. Also shown are values of the rotational order parameter 

around 0.111. 
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Figure 12. (A) Potential of mean force, f(), around one dihedral energy minimum and 

corresponding probability distribution, () (inset). The values of 
+
 and 

-
 are defined by the 

angles at which the PMF is 1 kcal/mol larger than at its minimum. Shown data is from a MET 

residue. (B) Average width =
+
-

-
 as function of order parameter. Averages taken for bins of 

width 0.1 of the order parameter. The three classes are shown separately. 
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Figure 13. Crystalline and amorphous cellulose, hemicellulose, and lignin form complex 

structure. 
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Figure 14. Illustration of the mapping of the atomistic force field onto the REACH coarse-

grained model. 
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Figure 15. Illustrations of the atomistic system. (A) Side view of the cellulose fibril in a box of 

water. (B) Cross-section view of the cellulose fibril. (C) Top view of part of a chain shown as 

sticks. Atom labels are also shown. (D) Same as (C), but in van der Waals representation. 
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Figure 16. (A) Classes of force constants k that are considered: k12 (black-red), k13 (black-

orange), k14 (black-yellow), kHB (black-blue), and the remaining knb (black-green). (B) Elementary 

force constants k12 as function of distance. (C) The data points for knb obtained as the average of 

elementary force constants within a bin of width 1 Å. The full line shows a fit of Eq. 23 to the 

data. 
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Figure 17. Temperature dependence of force constants for (A) k12 and the components of k12 for 

the internal and the hydrophobic and hydrophilic surfaces of the fibril and for (B) k13, k14, and 

kHB. (C) Total number of hydrogen bonds in the fibril. (D) The nonbonded force constant model 

functions and the integral of those between 5 and 12 Å (see inset) for various temperatures 
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Figure 18. Comparison of the root mean-square fluctuation from AA MD with that from 

REACH CG MD and REACH NMA at representative temperatures. Values of the RMSF are the 

average over all CG-beads at a given position along the fibril and the error bars represent the 

corresponding standard deviation. 
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Figure 19. MSF from a different REACH NMA, i.e., of a fibril 80 monomers in length. Total 

MSF (A) and MSF in X (B), Y (C), and Z (D) direction. (E) Shape of the contribution to the 

MSF of the lowest 10 normal modes. Red and green color illustrates bending and twisting 

modes, respectively. (F) Illustration of shape of normal modes, listing is non-exhaustive. (G) 

Cumulative fraction of MSF from the   lowest modes. 
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Figure 20. (A) Average mean-square fluctuation (MSF), (B) effective MSF, and (C) fraction 

between effective and average MSF. All data is shown as function of temperature for CG-beads 

from the hydrophilic (red) and hydrophobic (blue) surface. 
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Figure 21. (A) Density of states for the interior of the fibril (blue) and for the hydrophobic and 

hydrophilic surface (red and green) from AA MD. (B) Density of states as in panel A but from 

CG MD. (C) Estimate of density of states for the entire cellulose fibril for various temperatures, 

obtained by counting the frequencies of CG normal modes in bins of width 2 cm
-1

. Red lines as 

guide to the eye to illustrate red-shift of the density of states with increasing temperature.   
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Figure 22. (A) Illustration for the relative change in length ΔL/L obtained by performing 

separate pulling simulations. (B) Illustration of transversal base vectors. (C) Temperature 

dependence of Young’s modulus.  
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Figure 23. (A) Illustration of bended configurations. Values of R between 450 and     Å were 

used at constant fibril length (DP=80). 
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