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Abstract 

  

Rarely are microbes found in isolation in the environment, but rather form symbiotic 

associations with other microbes or eukaryotic hosts. The advent of the systems biology era has 

allowed global characterization of these symbiotic associations at levels not previously possible. 

However, while metagenomic studies have revealed microbial membership and potential 

genomic information among members taking part in the symbiosis, there is still a significant lag 

in the functional characterization within these symbiotic associations. Thus, in this dissertation, 

we utilized a metaproteomic approach to study microbial symbiotic associations. We have 

developed and applied this robust platform to investigate various symbiotic associations ranging 

in complexity. Beginning with perhaps one of the simplest symbiotic systems, we investigated 

the proteomic response of infection of S. thermophilus with bacteriophage 2972, to reveal 

insights into the anti-viral CRISPR/Cas response. Then, transitioning to a more complex but 

tractable symbiotic interaction, we evaluated co-occurring proteobacterial endosymbionts of the 

marine worm Olavius algarvensis and uncovered novel pathways for carbon and energy use, in 

addition to unraveling abundant transposase protein expression. Finally, we progressed to a 

complex microbial community and its commensalistic association with its human host in the 

infant gut microbiome. Simultaneous measurements of microbial and human proteins over a time 

course during early infant development revealed functional adaptation of the host in response to 

the changing microbiome, resulting in a dynamic interplay between the host and its resident 

microbes. In each of these symbiotic systems, we found that a proteomics/metaproteomics 

approach was very powerful for the characterization of the functional signatures of all members 

of the symbiotic interaction, and yielded biological insights into each system that would have 

been unattainable by any other platform. 
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CHAPTER ONE 

Introduction to Proteomic Elucidation of Microbial Symbiotic Associations 

 

 

Microbial Symbiotic Relationships 

 

Symbiosis, as translated from ancient Greek, means ‘living together’, and in the 

context of this work, will focused on long-term interactions between two or more species 

(1). The nature of symbiotic relationships can vary depending on whether they are 

beneficial for both/all species, detrimental to one species, or one organism benefits 

without affecting the other(s). These are classified as mutualistic, parasitic, or 

commensalistic, respectively (1). Microbial symbiotic relationships can range in their 

complexity and nature, as well as in the number of organisms involved in the 

relationship. Within the environment, microbes are rarely found in isolation, but rather 

usually exist and function in some type of symbiotic interaction with other organisms. 

While some microbes exist in a free-living state, or are facultatively associated with 

their host, others are obligately host-associated and are incapable of reproducing outside 

their host. The nature of these states can vary, with organisms transitioning from one to 

the other. In addition, hosts can acquire symbiotic microbes either through vertical 

transmission (from parent to offspring during reproduction), or horizontal transmission 

(through the environment each host generation) (2). Throughout this dissertation, we will 

highlight and examine several types of symbiotic interactions, and specify how a 

proteomics/ metaproteomics approach can provide detailed insights. Specifically, we will 

begin with investigation of a simple dualistic symbiosis: a single bacterial isolate 
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Streptococcus thermophilus and its phage 2972. Next, we will move on to a moderately 

complex system involving interaction of multiple co-symbionts with their invertebrate 

host: namely proteobacterial endosymbionts of the gutless marine worm Olavius 

algarvensis. Then, we will progress to a complex microbial community and its 

commensalistic association with its human host in the infant gut microbiome. In 

addition, we will extend the discussion to the very basic genetic level while examining 

transposable elements, which are oftentimes considered to be parasitic. These various 

systems were chosen for their range in complexity and nature of their symbiotic 

associations. In addition, due to limited available studies which use “omics’ platforms in 

these systems, there is a significant knowledge gap which has led to incomplete 

characterization of these symbiotic interactions at the global level.  However, with rapid 

advancements in the systems biology field, exciting new avenues have been opened up 

for symbiosis research.  Therefore, in this dissertation work, we have utilized a common 

proteomics/ metaproteomics approach to study these various symbiotic associations, 

and unraveled novel biological insights unattainable by other available methods.  

 

Symbiosis in the Systems Biology Era 

 

The advent of high throughput DNA sequencing has revolutionized the field of 

biology such that entire complements of genes can be measured and characterized 

through a genomics approach (Figure 1.1). Likewise, the recent development of RNA 

sequencing (RNA-Seq) has enabled suites of RNA transcripts to be measured, escalating 

the field of transcriptomics (3). In turn, complete set of proteins can be characterized 

through proteomics, and sets of small molecules measured through metabolomics: 
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primarily due to recent rapid advances in mass spectrometry techniques (4, 5). Each of 

these –omics techniques provides unique, yet valuable information. While genomic data 

provides information about the encoded potential of a cell, and transcriptomics tells 

which genes are turned on, it is only through proteomics, a direct measure of actual 

proteins produced, that a viewpoint of functional signatures and metabolic activities at a 

particular time or under certain conditions can be obtained. Through a proteomic 

approach, proteins can be identified, quantified, localized, and post-translational 

modifications characterized (6). 

While the majority of microbes in the environment still remain unidentified and 

uncultivable, the ability to “shotgun sequence” environmental samples in situ through 

metagenomics has offered the advantage of unraveling previously unattainable 

information about microbial community memberships and encoded metabolic potentials. 

Likewise, the rapidly developing field of metaproteomics, measuring the complement of 

proteins expressed by microbial communities in the environment, has offered the 

advantage of determining functional signatures and metabolic activities of a microbial 

community as a whole as well as those from individual members. Through the advent of 

these –omics technologies (Figure 1.1), a new era of Systems Biology has arisen in which 

microbes and microbial communities can be characterized at a level not previously 

possible, and in turn, novel insights into symbiotic relationships can be obtained.  
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 Figure 1.1: The Systems Biology Era. The application of  –omics techniques allows 

characterization of microbial symbiotic relationships at a level not previously possible. 

Genomics allows characterization of complete set of genes within a cell, as is depicted 

above for the Citrobacter (7) genome. Transcriptomics measures suites of RNA 

transcripts expressed under certain cellular conditions/ times, for example via RNA-Seq 

as shown above. Proteomics characterizes complete sets of proteins expressed by a cell, 

typically via mass spectrometry and metabolomics measures suites of small molecules. 

 

 

Mass Spectrometry-Based Shotgun Proteomics and Metaproteomics 

 

Mass spectrometry has become an unparalleled platform for proteomic 

measurements due to very recent advances including: the development of electrospray 

ionization (ESI) (8), improvements in multi-dimensional chromatographic separations 

using high performance liquid chromatography (HPLC) (9, 10), rapid advances in mass 

spectrometry instrumentation (11-15), increased availability of genomic sequence 

information, and development of MS-based bioinformatic tools and algorithms (16, 17). 

The combination of these developments have allowed high throughput, sensitive, and 

accurate measurements which identify thousands of peptides and proteins from microbial 

isolates, as well as complex environmental samples.       

http://fiehnlab.ucdavis.

edu/staff/kind 
Morowitz, et. al, 

PNAS, 2011 

Genomics Transcriptomics Proteomics  Metabolomics 

http://www.fraserlab.org/

transcriptomics 
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Proteolytic digestion of proteins into peptides, followed by peptide mass and 

sequence analysis by tandem mass spectrometry, termed “shotgun” proteomics or 

“bottom-up” proteomics (9, 18) has become the preferred method for large-scale analyses 

of high-complexity samples. Through this method, microbial proteomes can be 

characterized with greater depth, accuracy, and levels of quantitation than ever observed 

before (9, 19-23).  Specifically, it is possible to identify 1500-3500 proteins from a single 

growth state of a microbial isolate in 1-2 days, as well as make quantitative comparisons 

on hundreds to thousands of these proteins  (22, 24, 25). Furthermore, by analyzing 

multiple growth states, it is possible to identify 50-90% of the predicted proteome from 

microbial isolates (26). In addition, complex microbial community proteomes can now be 

measured at depths in which representation of even the lower abundance organisms can 

be obtained. 

It has just been within the last decade that landmark studies were carried out from 

microbial communities in Acid Mine Drainage (AMD) biofilms. These include the first 

metagenomic sampling and reconstruction of whole genomes directly from 

environmental samples (27) followed by subsequent metaproteomic characterization (28), 

and strain level resolution to infer sequence types via proteogenomics (29, 30). Studies 

from this system have revealed novel biological insights into ecological divergence, niche 

partitioning, and metabolic roles of different members within the community (30-32). 

These and other groundbreaking investigations, in combination with technological 

advancements, have paved the way for additional metaproteomics analyses in more 

complex microbial ecosystems including plants, soil, oceans, and the human body (25, 



 

 6 

33-36), and enabled comprehensive characterization of symbiotic relationships discussed 

throughout this dissertation work. 

 

Virus: Host Symbiotic Interactions 

 

Viruses are typically classified as obligate intracellular parasites, relying on the 

host’s cell machinery to replicate and reproduce. However, viruses can oftentimes affect 

their microbial hosts in a beneficial way by transmitting genes which add certain 

capabilities to the microbial host, such as toxins, virulence genes, or other functional 

genes (37). Bacteriophages, viruses that infect bacteria, are the most abundant and 

ubiquitous organisms on the planet, with an estimated 10
31

 particles found in seawater 

alone (38). Phages are found in virtually every natural environment, including seawater, 

soil, and the human body, and play a major role in the structure and function of microbial 

communities by altering host fitness, facilitating genetic exchange, and driving host 

evolution.  In addition, phage are ubiquitous in many industrial settings, such as 

microbial fermentation processes used in making yogurt and cheeses, where they can 

prove detrimental in interrupting batch fermentation (39). 

 Despite the fact that the first completely sequenced genome was bacteriophage 

phiX174 (40) and to date, over 3,000 phage genomes have been sequenced (41), the 

majority of viruses are still uncultivated and unidentified, and thus one of the most 

unexplored life forms on Earth.  The newly emerging field of viral metgenomics allows 

in situ high-throughput sequencing of viruses and virus-like particles from environmental 

samples; however, it is estimated that 65-68% of virus sequences show no similarity to 

any other sequences in the NCBI non-redundant database, and most viral open reading 
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frames (ORFs) are novel (42).  In addition, there is no single gene common to all viruses, 

like the 16S rRNA gene in bacteria, which can aid in their identification. While viral 

metagenomics studies have provided biological insights into microbial ecosystem 

functions, for example, in the human gut microbiome (1, 41, 43), and acid mine drainage 

communities (44), the field of phage proteomics has lagged behind (45) consisting mostly 

of studies characterizing bacteriophage structural proteomes (proteins comprising the 

structure of the phage particles ) (46-49), with only one study elucidating the proteomic 

response of the host upon phage infection (26) (discussed in chapter 4). 

 The parasitic nature of bacteriophage is to infect microbial hosts, using the host’s 

machinery to replicate itself, and either lyse the host (in the case of lytic phages) or 

incorporate itself into the host’s chromosome (lysogenic phages). However, bacteria have 

developed counter strategies to protect themselves against phage attack including anti-

viral mechanisms such as the restriction-modification (R-M) system, abortive infection 

system (ABI), and the CRISPR-Cas system (Clustered Regularly Interspaced Short 

Palindromic Repeats) (discussed in chapter 3). This dynamic interplay between phage 

and bacteria is constantly evolving, redefining the nature of this symbiotic relationship. 

 Studying the interaction of a bacteriophage infecting its bacterial host, while 

dynamic in nature, is a relatively simple (two-party) interaction. This becomes more 

complicated when multiple phage and different microbial species are present in an 

ecosystem, which is usually the case in the environment, where the rise and fall of 

different microbial populations can be regulated by bacteriophage predator-prey 

interactions (50). Hence, the complexity of symbiotic associations increases dramatically 

when dealing with multiple microbial members. In the following section, we will begin to 
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look at increasingly complex symbiotic interactions while examining multiple co-

occuring bacterial symbionts, and how they interact with each other and their eukaryotic 

host. 

 

Symbiotic Associations of Chemosynthetic Bacteria with Eukaryotic Hosts 

 

 Many marine invertebrates form symbiotic associations with chemoautotrophic 

bacteria that prove beneficial to both parties by increasing their metabolic capabilities, 

and thus the number of ecological niches (51) . Specifically, in these chemosynthetic 

symbiotic associations, chemoautotrophic microbes provide the host with organic 

compounds through CO2 fixation using reduced compounds, while the host provides 

access to substrates needed for the symbionts energy and biomass (51-53). The first 

demonstration of a chemoautotrophic bacteria-marine invertebrate association was 

discovered in Riftia pachyptila, a gutless tubeworm found in hydrothermal vents 

possessesing a - Proteobacterial symbiont, which is solely responsible for providing 

nutrition to the worm by oxidizing sulfide and fixing carbon dioxide (51, 53). While this 

is an eloquent example of one symbiont providing for the needs of its host, many marine 

invertebrates house multiple co-occurring symbionts. 

A notable example of a more complex chemosynthetic symbiotic association is 

the marine worm Olavius algarvensis and its co-occuring proteobacterial endosymbionts. 

O. algarvensis is a small worm living in shallow water sediments in the Mediterranean, 

and belongs to a group of oligochaetes which lack a mouth, gut, anus, and nephridia (54). 

To compensate for this, the worm relies solely on four proteobacterial endosymbionts to 

provide its nutrition. Specifically, it possesses two sulfur oxidizing Gammaproteobacteria  
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and two sulfate reducing Deltaproteobacteria working in a beneficial syntrophic 

relationship (nutritional relationship where two organisms combine metabolic capabilities 

to use a substrate neither could use alone) (53).  

Studying chemosynthetic symbiotic relationships proves challenging due to many 

of the same abovementioned issues: the majorities of these microbes are uncultivable, 

and need to be studied in their natural environment. The first genomes sequenced from 

chemosynthetic endosymbionts were those inhabiting Olavius algarvensis (55) in a 

metagenomics analysis which revealed the metabolic potential of these symbionts to fix 

carbon, oxidize sulfur (gammas), reduce sulfate (deltas), take up and recycle worm waste 

products, and demonstrating capabilities of a versatile metabolism needed for optimal 

energy to shuttle between changing oxygen conditions in the worm’s environment (55). 

However, it was only through metaproteomic and metabolomics analyses that direct 

evidence of novel pathways, which compensate for nutrient and energy limitations in this 

system, was achieved (specific results discussed further in chapters 4 and 5 (56)). 

Metaproteomic analysis was also performed on the Gammaproteobacterial 

symbiont from Riftia pachyptila, revealing the symbiont uses the reductive TCA cycle 

and Calvin cycle for CO2 fixation (57). These findings, which would not have been 

possible by any other methodology, highlight the importance of proteomics in elucidating 

functional capabilities in chemosynthetic symbiotic associations. Of note, this is the only 

metaproteomic study on chemosynthetic symbiotic associations to date, besides that from 

O. algarvensis endosymbionts reported in this dissertation work (chapters 4 & 5 (56)). 

While chemosynthetic symbioses represent associations of relatively low 

complexity, being comprised of only a few microbial members and their eukaryotic hosts, 
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it is vital to evaluate the metaproteomic approach for a more complex ecosystem of 

microbes and their eukaryotic host, microbial communities in the human gut, where the 

number of organisms and dynamic nature of the symbiosis increases exponentially, as 

discussed below. 

 

Commensalism in the Human Gut Microbiome 

 

 The human gut contains a consortium of trillions of bacteria that carry out 

numerous functions essential for human health, including: nutrient absorption, 

carbohydrate assimilation, informing the developing immune system, stimulating 

angiogenesis, regulating host fat storage, and providing protection from invasion of 

pathogenic bacteria (58-61). With this intricate symbiotic association, it is amazing that 

the microbial communities inhabiting our body provide us with traits we have not had to 

evolve on our own (62), while at the same time being tolerated as “self”, avoiding 

targeting by the innate and adaptive immune systems. Indeed, the human host has 

adapted intricate molecular mechanisms to tolerate its resident microbes (63). While this 

mutualistic association is generally beneficial to both the human host and microbiota, 

careful maintenance of homeostasis must be maintained so that any disruption, or 

dysbiosis, does not occur and lead to disease states. While the microbial compositions in 

the adult gastrointestinal tract is highly diverse among different individuals (64, 65), 

aberrant microbial compositions have been reported to be associated with diseases such 

as inflammatory bowel disease, Crohn’s disease, obesity, and metabolic syndrome (62, 

66-68).  
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Homeostatic balance is kept intact structurally by the intestinal barrier, which is 

composed of the mucus layer and specialized epithelial cells: absorptive enterocytes, 

goblet cells, Paneth cells, M cells, and plasma cells (63). The thick mucus layer covers 

and protects intestinal epithelial cells and is composed of two layers. The outer mucus 

layer harbors commensal bacteria while the thicker, impenetrable inner layer offers 

protection by providing a physical barrier, as well as secreting antimicrobial compounds 

and secretory IgA (69). However, translocation of bacteria through the inner mucosal 

layer can occur, and oftentimes proves detrimental. Mucus is composed of mucins, which 

are glycoconjugates composed of a polypeptide core covered in O-linked carbohydrate 

side chains, and are secreted by goblet cells. The O-linked glycans provide an energy 

source for bacteria in the outer mucus layer (61). 

While 16S rRNA and metagenomic surveys have provided important insights into 

the microbial community compositions, and potentially important genes involved in gut 

commensalism, there is an important need to characterize the functionality of the 

microbial members as well as the host response required to maintain the mutualistic 

association. This can be addressed using a metaproteomics approach.  However, not 

surprisingly, only a few proteomic studies from the adult human gut microbiome have 

been reported to date (33, 70). This is likely due to the many challenges in acquiring 

metaproteomic data from adult fecal material including: a.) dealing with the complexity 

of fecal samples in terms of microbial community composition and raw material, b.) 

incompletely matched metagenomic information and c.) challenges in bioinformatics and 

data analysis. However deep proteomic measurements from complex human fecal 
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samples have been demonstrated (33), and options for data handling have been presented 

(70). 

 

Symbiosis Begins: Colonization in the newborn infant 

During the prenatal period, the human gut is sterile; colonization of microbial 

species begins just after birth. There is still much to be learned about the process of 

colonization, including how it works, what types of microbes are seen, how these patterns 

differ between and within individuals over time, what causes this variability, where the 

inoculating microbes come from, and how microbial colonization affects overall health of  

an individual (71). Several initial studies have begun to answer these questions, however 

there is still much to be unraveled. It has been shown that many factors influence initial 

colonization in the gut including: delivery mode (cesarean vs. vaginal delivery), the type 

of feeding (breast vs. bottle), the gestational age of the infant, as well as the geographic 

location where the infant is born (72, 73). This is complicated by the fact that there is a 

great deal of inter- and intra-individual diversity in the taxa of microbes that colonize the 

infant gut, and membership changes over time, primarily due to environmental factors 

such as dietary adjustments or antibiotic treatment.(7, 72, 74, 75). While colonization 

patterns vary initially between individuals, there appears to be some convergence around 

2.5-3 years of age to an adult-like profile (72, 75). Even though investigations of 

microbial colonization in the infant gut have achieved rapid advances within the last few 

years, due to 16S rRNA gene-based surveys determining broad taxonomic memberships 

and metagenomics analyses, evaluating genetic and metabolic potentials in the infant gut, 

there is a growing need to understand this process at lower taxonomic levels. Only one 
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study to date has characterized the infant gut at the species and strain level using whole 

genome reconstruction of dominant community members from metagenomic sequence 

data (7). Metaproteomic analyses are currently underway on these same samples 

(discussed in chapter 5). Surprisingly, only one other metaproteomics study from the 

infant GI tract has been published to date: using two-dimensional gel electrophoresis 

combined with MALDI-TOF mass spectrometry, the authors concluded insufficient 

sequence information was available to identify the proteins, and only reported one 

peptide with high sequence similarity to transaldolase from a Bifidobacterium (76). 

Perhaps most importantly, this study did not monitor any human proteins. This highlights 

the important need for metaproteomics investigations which can simultaneously measure 

human and microbial proteins in order to elucidate the functional signatures playing 

important roles in the symbiotic interactions developing in the infant gut. 

As previously mentioned, aberrant colonization or changes in microbial 

compositions disrupting homeostasis could be cause for development of certain diseases. 

It has been suggested that necrotizing enterocolitis (NEC), an inflammatory bowel 

disease, could be linked to improper colonization in the infant gut; however a single 

causative agent has not been identified as the pathogenic agent (77-79). Infants born 

prematurely have a higher susceptibility to developing NEC, possibly compounded by 

immature immune systems and under-developed epithelial barriers in these infants (80, 

81) . Therefore, many studies are underway to try to determine the cause of NEC with the 

hopes of developing therapeutic interventions. However, much still needs to be learned 

about the process of colonization in healthy preterm infants before accurate comparisons 

can be made with sick infants. There have been no studies published to date that have 
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comprehensively characterized the microbial and human functions simultaneously in 

order to obtain an overall picture of how the symbiotic associations work, and how they 

may potentially be disturbed, however current work is underway to address this 

(presented in chapter five of this dissertation). 

 

Transposable Elements: Parasites or Not?  

 

We will conclude this examination of symbiotic associations by narrowing in to 

look at mobile genetic elements, specifically transposable elements, which are 

(controversially) considered parasitic or “selfish” genetic elements (82). Transposable 

Elements (TEs) are mobile genetic elements that can move within and between genomes. 

They are broadly classified into two types: DNA transposons, which contain 

transposases, enzymes that catalyze the movement of DNA, and retrotransposons, which 

go through an RNA intermediate and thus encode a reverse transcriptase gene. For the 

purpose of this discussion, we will be focusing on DNA transposons.  

Transposable elements are considered by some as “selfish” or “parasitic”, with the 

sole purpose of enhancing their own transmission, causing a neutral or detrimental effect 

on the organism as a whole (82, 83). However, a counterview to that argument is the TEs 

play important regulatory roles in cells and their evolution. A ‘selfish genetic elements’ 

model has been proposed portraying an “ecological” view of the genome as whole with 

mutualistic, commensalistc, and selfish interactions (83). The model suggests that genetic 

conflict is created among components of a genome with different transmission patterns, 

whereby transmission of an element is increased, even if it is detrimental to an 

organism/genome, and transmission of other genetic elements are decreased: creating an 
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evolutionary “arms race”(83).  This genetic conflict is thought to promote evolutionary 

change, but has not been experimentally proven in any system (83).  

Transposable elements are present in nearly all microbial genomes and are 

particularly abundant in endosymbiontic bacteria which have recently transitioned to an 

obligate host associated lifestyle (2, 38). However, factors which cause transposable 

elements to increasingly proliferate throughout genomes are still undefined. Typically, it 

is thought that proliferation is tightly regulated in order to avoid loss of essential genes 

(84). While recent genomic studies have demonstrated that selfish genetic elements, such 

as transposable elements, help shape the structure and function of symbiont genomes (2), 

little is known about the activation of transposase proteins in this process. In fact, few 

investigations reporting transposase proteins have been done at the proteomic level (28, 

85, 86), and none of these were in symbiotic systems. In chapter four we will discuss 

abundant transposase protein expression in symbionts of the gutless worm Olavius 

algarvensis, which we think are contributing to transposable element expansion in the 

symbiont genomes. 

 

Objective / Scope of dissertation 

 The scope of this dissertation work aims to elucidate symbiotic interactions in 

three different microbial ecosystems via mass spectrometry-based 

proteomics/metaproteomics. We will begin with an in-depth description of the proteomic/ 

meataproteomic experimental design in chapter two. Chapter three will discuss the 

proteomic response of the lactic acid bacteria Streptococcus thermophilus upon infection 

with bacteriophage virus 2972, and its subsequent defense mechanism via acquired 
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immunity, the CRISPR/Cas response. Chapter four reveals novel metabolic pathways 

carried out by four microbial endosymbionts of the gutless marine worm, Olavius 

algarvensis discovered using metaproteomics. Chapter five reports the abundant 

transposase expression within these same endosymbionts, also determined by 

metaproteomics, revealing novel hypotheses pertaining to transposable element 

expansion in mutualistic endosymbiots. Chapters six and seven discuss a more complex 

ecosystem and symbiotic association: the infant gut microbiome, with the former 

evaluating the symbiotic association of host and microbial proteins contributing to 

colonization and establishment of homeostasis in one preterm infant, while the later 

chapter focuses on methodological application to multiple infants and commonalities of 

the human protein complements.  

 While the emerging field of systems biology has achieved rapid advances in 

characterizing genomes and proteomes of microbes, there is still a significant knowledge 

gap in the characterization of symbiotic associations at the global level where microbial 

functions are adapted in context of each member’s role in the symbiotic interaction. 

Importantly, very few proteomic studies have been carried, leaving important information 

yet undiscovered regarding metabolic functions and interactions. Alternatively, many 

studies have offered an incomplete/one-sided view characterizing microbial symbionts 

and not their host (in the case of the human gut microbiome). Through this dissertation 

work, we have unraveled functional aspects of dynamic symbiotic interactions, ranging in 

complexity and gained novel biological insights via a proteomics/metaproteomics 

approach.  
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CHAPTER TWO 

Experimental Design for Proteomic Elucidation of Microbial Symbiotic Interactions 

 

 

Shotgun Proteomics via nano-2D-LC-MS/MS: Experimental Overview 

 

The overall experimental design used throughout this dissertation work employs shotgun 

proteomics (18) via nanospray-2 dimensional liquid chromatography coupled with 

tandem mass spectrometry (nano-2D-LC-MS/MS) (Figure 2.1).  It begins with sample 

collection from either microbial isolates grown in the laboratory, or from more complex 

microbial community samples from the environment, such as human microbiome fecal 

samples.  Proteins are extracted, denatured, reduced, and enzymatically digested into 

peptides.  These complex mixtures of peptides are then separated across time using 

multidimensional liquid chromatography. The HPLC is coupled directly to the mass 

spectrometer in this gel-free approach, so that the peptides are ionized and electrosprayed 

into the mass spectrometer and their mass-to-charge (m/z) ratios measured generating a 

full mass spectrum. The most abundant peptide ions are selected for fragmentation, by 

collision-induced dissociation (CID) and the resulting fragment ions measured, 

generating tandem (MS/MS) spectra. Peptides are identified by computationally matching 

experimental MS/MS spectra to theoretical spectra generated from in silico tryptic 

digestion of the predicted protein sequences. Proteins are inferred by computationally 

matching peptides to their corresponding protein sequences and spectral counts used as a 

quantifiable measure of relative protein abundances. Thus, this technology provides the 

capability of not only identifying, but also quantifying thousands of proteins in one MS 

run. Specific details and considerations of each step are discussed below. 
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Figure 2.1: Experimental Design: Shotgun Proteomics via Nano-2D-LC-MS/MS. 

In general, samples are collected, proteins extracted, and enzymatically digested with 

trypsin. Peptides mixtures are separated by multidimensional liquid chromatography, 

electrosprayed into the mass spectrometer where full MS scans and tandem MS/MS scans 

are collected. Computational algorithms match the experimental spectra with theoretical 

spectra generated from a predicted protein database. 
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Sample Preparation for Mass Spectrometry Measurements 

Sample collection:  Shotgun proteomics is widely applicable to variety of sample types 

ranging from microbial isolates to environmental samples. In this dissertation, three 

different types of samples were analyzed: 1.) A bacterial isolate, Streptococcus 

thermophilus, infected with bacteriophage 2972 (chapter 3), 2.) Four proteobacterial 

symbionts found within the gutless worm Olavius algarvensis (chapters 4 and 5), and 3.) 

Fecal microbiome samples from preterm infants (chapters 6 & 7). Thus, each project 

required different methods for sample collection; specific details of which are discussed 

in the corresponding chapters. In general, around 1-10 mg of wet biomass from an 

environmental sample, or cell pellet is sufficient to obtain enough protein for shotgun 

proteomic measurements. However, when working with raw fecal material, around 250 

mg is needed due to the complex matrix (which contains fiber, fat, inorganic matter, etc.). 

 

Biosafety issues: Human fecal material is considered to be biohazardous and therefore, 

special precautions were taken during sample preparation. Specifically, personal 

protective gear such as gloves and lab coats were worn and protein extraction performed 

in a biosafety level 2 (BSL2) hood. In addition, all material was disposed of in the 

biohazard waste, which was subsequently autoclaved. Since fecal samples potentially 

contain human pathogens, all personnel working with fecal material completed 

bloodborne pathogen training. 

 

Cell lysis, protein denaturation and reduction: Once samples are collected for MS 

analysis, cells are lysed and proteins extracted. Typically, this is done using either 
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guanidine HCl, a chaotropic denaturant, or SDS detergent, with the aid of heat. 

Dithiothreitol (DTT) is also included in order to reduce disulfide bonds. Physical 

disruption such as bead beating or sonication is oftentimes used to aid in cell lysis 

especially for microbial isolates, which are more difficult to lyse (i.e. Gram positives), or 

environmental samples in complex matrices. Three types of sample prep methods were 

used in this study, all of which are widely accepted methods for metaproteomics: 1.) a 

small-scale microbial biomass experimental approach (87),  2.) a thermally assisted SDS-

TCA detergent based method (88, 89), and 3.) FASP: filter aided proteome preparation 

(90). The small-scale sample prep method has traditionally been used with success for 

microbial isolates (14, 26, 87) (chapters 3, 4, and 5). However, the more recently 

developed SDS-TCA method, provides improved protein purification from more complex 

matrices such as soils and feces (35). The inclusion of a protein precipitation step via 

trichloroacetic acid (TCA) in this method has been shown to help reduce humic acids and 

other interfering molecules in soils (35). Thus, this method has recently been successfully 

applied to soils, plants, and fecal material (25, 35) (Young et al. in preparation) (chapters 

6 and 7). Another sample prep method, FASP has been used with some success, 

especially for small sample amounts. However, this method was applied to fecal material 

in our study and resulted in minimal improvement in overall results (discussed in chapter 

7). Thus, sample preparation for MS analyses has required optimization for different 

sample types.  

 

Tryptic digestion: Following protein extraction (by any method), proteins are 

enzymatically digested into peptides using sequencing-grade trypsin (Promega, Madison, 
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WI), which cleaves at the N-terminus of lysine and arginine residues. When looking for a 

particular protein of interest, consideration of the protein size and number of basic 

residues must be taken, since proteins which contain too many or too few lysines and/or 

arginines will generate tryptic peptides which are too big or too small that are not 

compatible with MS. 

 Prior to digestion, proteins are quantified using the Bicinchronic assay (BCA), a 

colorimetric assay, which uses a protein standard curve to extrapolate the measured 

values and obtain protein concentrations (91)  optimal amount of protein is digested 

(between 1-3 mg). In addition, BCA assays are performed at the peptide level when using 

the SDS-TCA method (not feasible with small-scale sample prep method), and roughly 

equivalent amounts of peptides loaded onto the columns for MS measurements. Since the 

downstream analyses involves ESI-MS, which is not compatible with detergents, salts, 

etc., samples must be ‘cleaned up’ by desalting by C-18 solid-phase extraction (SepPak, 

Waters, Milford, MA) in the case of the small-scale sample prep method.  

 

Multidimensional protein identification technology for shogun proteomics 

(MudPit): 

  Mass spectrometry measurements throughout this dissertation work applied a 

multidimensional protein identification technology for shotgun proteomics (MudPit) (18), 

which combines multidimensional liquid chromatography with electrospray ionization (8) 

and tandem mass spectrometry. The initial HPLC separation serves to simplify complex 

mixtures of tens of thousands of peptides by eluting them off as a few (or few hundred) at 

one time. Reducing the sample complexity is important in order to sufficiently resolve the 
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chromatographic peaks. Indeed, peak capacity, the number of peaks able to be separated 

at a specific retention window at a certain resolution (92), can be a limiting factor when 

dealing with complex mixtures, therefore multidimensional chromatographic separations 

are crucial to improve the separation power and thus reduce sample complexity.  In our 

experimental design, a two-dimensional separation is applied using a biphasic column 

containing strong cation-exchange (SCX) and reversed-phase (C-18) resins, which elute 

peptides based on charge and hydrophobicity, respectively (18). 

 

 

Figure 2.2: Schematic diagram of a biphasic column used in MudPit experiments. 

A fused silica back column is loaded with reverse phase (C-18) and strong cation 

exchange (SCX) material, then attached via filter and union to a nanospray emitter tip 

containing reverse phase material. 

 

 

A fused silica back column (150 µm inner diameter) is loaded with C-18 (3-5 cm) 

and SCX (3-5 cm) resins via a pressure cell. Then peptides (50-150 g) are loaded, 

binding to the reverse phase material. The back column is directly coupled (via filter and 

union) to a nanospray emitter tip front column (15 ±1µm tip, 100 ID, from New 

Objective, Woburn, MA) containing 13-15 cm of reverse phase (C-18) material (Figure 

2.2). During the chromatographic separation, sequential plugs of peptides are pushed onto 

the front column during the salt pulses, which are then separated over an organic gradient 

over time.  

Specifically, in our experimental setup, peptides are eluted from the SCX resin in 

twelve steps consisting of increasing ammonium acetate salt pulses followed by reverse 

     
Fused 

Silica 
C-18 SCX 

Union Filter 
Nanospray emitter tip C-18 
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phase resolution over two hour organic gradients (28, 29, 33). Typically, the first step 

involves a gradient from low to high organic: 100% Solvent A (95% H2O, 5% 

acetonitrile (ACN), 0.1% formic acid (F.A.)) to 50% Solvent B (30% H2O, 70% ACN, 

0.1% F.A.), in order for peptides bound to the C-18 back column to move onto the SCX 

material. Then, in steps 2-12, using increasing ammonium acetate (500mM) salt pulses 

(typically 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%), peptides are 

sequentially eluted off of the SCX, bind to the C-18 front column, and are separated by 

the reverse phase gradient (increasing from 0-50% Solvent B over two hours). In 

addition, samples prepared using the SDS-TCA method require an off-line wash prior to 

starting the MS run. This entails fifteen minutes of Solvent A followed by five, two 

minute gradients of 100% Solvent A to 100% Solvent B, in order to wash any excess 

detergent or salt from the column, which could detrimentally affect the mass 

spectrometry runs. 

 In conjunction with sequential elution, peptides are analyzed by the mass 

spectrometer, which is comprised of three basic components: the ion source, where gas 

phase ions are produced, the mass analyzer which separates ions based on their mass to 

charge (m/z) ratios, and the detector, which measures the m/z values and abundances of 

the different ions. Throughout this work nanoelectrospray ionization (nano-ESI) was used 

as the ionization source. In electrospray ionization (ESI) (8) peptides in a liquid solution 

are pushed through a  capillary  and ejected through a fine-point needle (15 ± 1 µm), 

which is held at high electrical potential with respect to the inlet of the MS, thereby 

causing desolvation and ionization of peptides into the gas phase . This ‘soft’ ionization 

permits measurement of fragile and large polar molecules, such as those of biological 
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interest like peptides, proteins, and nucleotides, without fragmentation.  In nano-

electrospray ionization (93) a low solvent flow rate (300 nl/min) is used to provide the 

advantages of low sample consumption, and enhanced sensitivity, in addition to direct 

coupling on-line with the HPLC. 

  

 

Figure 2.3: Example of MudPit experimental output: From top right to bottom left: 

A.) Base peak chromatogram of peptides separated over time via HPLC with the x-axis= 

time, and the y-axis=intensity, each peak represents ions eluted off at one particular time 

B.) Full mass spectra (MS1) collected of m/z ratios of parent ions, C.) MS/MS spectra of 

fragment ions, D.) b- and y-type ions used for peptide identification. 

 

Once peptides are eluted, ionized, and transferred to the mass spectrometer, the m/z 

ratios of the peptide ions are measured in a full mass spectrum (MS1). (Most tryptic 

peptides carry a +2 charge). Since MS1s are still very complex, with hundreds of ion 
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masses measured, there is a need for further fragmentation. So, using a data dependent 

mode, the topmost abundant ions (10-20), are selected, undergo fragmentation, and their 

m/z ratios displayed in a tandem (MS/MS) spectra (Figure 2.3). The instrument oscillates 

between full scan and MS/MS scans, recording m/z ratios of parent and fragment ions. 

Fragmentation occurs through a process called collisional induced dissociation (CID) in 

which peptides ions within a narrow m/z window are isolated in the gas phase, collided 

with a target gas (helium) to break the peptide and create fragment ions. Fragment ions 

are named according to which end the charge is retained and numbered according to 

which amino acid position the break occur:  a-type, b-type, c-type: N-terminus, x-, y-, z-: 

C-terminus (Figure 2.4). CID typically causes breakage at the peptide amide bond and 

thus predominantly produces b- and y- ions (Figure 2.5). The patterns of fragment ions 

are used to identify the peptides based on the genomic information using computational 

algorithms (discussed below). 

            http://www.mbc.manchester.ac.uk/images/clip_image002_0001.jpg 

 

 

Figure 2.4: Schematic of peptide ion fragmentation patterns. Displayed is a 

representative peptide, with colored lines and numbers showing the bond where 

fragmentation occurs, and the letters indicating which end the charge is retained: a-, b-, 

and c-type ions on the N-terminus, and x-, y-, and z-type ions on the C-terminus. 

 

http://www.mbc.manchester.ac.uk/images/clip_image002_0001.jpg
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http://employees.csbsju.edu/hjakubowski/classes/ch331/protstructure/olcompseqconform.html 

 

Figure 2.5: Deriving an amino acid sequence from MS/MS spectra/fragment ions: 

Displayed is a representative MS/MS spectra with b- and y-type ions labeled. The mass 

differences between the sequential ions (i.e. y
6
 and y

7
) reveal the amino acid sequence. 

 

 

Mass Spectrometry Instrumentation 

 

Several different mass spectrometers were used for this dissertation work, with 

each chosen for a particular project based on various instrument capabilities and 

performance figures of merit (Table 2.1). Instruments employed included: a basic linear 

ion trap mass spectrometer, LTQ-XL (94) , and hybrid instruments (composed of more 

than one mass analyzer): LTQ-Orbitrap-XL (13), LTQ-Orbitrap Velos (95), LTQ-

Orbitrap Elite (96). The basic composition of the LTQ-XL linear ion trap consists of four 

parallel metal rods, in which a combination of dc and ac radio frequency (rf) voltages are 

applied. The combination of fixed and alternating electric fields electrostatically confines 

ions, acting as a mass filter and ion storage device. The ion storage capacity, fast scan 

times, affordability, and simplicity of construction of the LTQ-XL are optimal for protein 
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identification and label-free quantification of microbial isolates, providing sufficient 

dynamic range (the difference between the most and least abundant components of the 

samples which can be measured) for these relatively lower complexity samples (i.e. S. 

thermophilus measurements discussed in chapter 3) (Table 2.1).   

 

Table 2.1: Figures of Merit Comparisons Between Mass Spectrometers 
 LTQ-XL LTQ-Orbitrap LTQ-Oribitrap 

Velos 

LTQ-Orbitrap 

Elite 

Mass 

Accuracy 

0.1 Da 

 

< 3 ppm with 

external 

calibration 

< 1 ppm using 

internal 

calibration 

< 3 ppm with 

external 

calibration 

< 1 ppm using 

internal 

calibration 

<3ppm RMS 

with external 

calibration 

<1ppm RMS 

using internal 

calibration 

Resolution 0.05 FWHM 

1000-2000 

7,500- >100,000 

at m/z 400 

7,500 ->100,000 

at m/z 400 

15,000->240,000 

at m/z 400 

Mass Range m/z 15-200 

m/z 50-2,000 

m/z 200-4,000 

m/z 50-2,000 

m/z 200-4,000 

m/z 50-2,000, 

m/z 200-4,000 

m/z 50-2,000 

m/z 200-4,000 

Dynamic 

Range 

 > 4,000 within a 

single scan 

guaranteeing 

specified mass 

accuracy 

>5,000 within a 

single scan 

guaranteeing 

specified mass 

accuracy 

>5,000 within a 

single scan 

guaranteeing 

specified mass 

accuracy 

MS/MS 

Sensitivity 

25:1 signal-to-

noise ratio 

100:1 signal-to-

noise ratio 

100:1 signal-to-

noise ratio 

100:1 signal-to-

noise ratio 

 

 For more complex samples (microbial symbionts of gutless worms discussed in 

chapters 4 & 5), a hybrid mass spectrometer, the LTQ-Orbitrap (13), was used. The basic 

makeup of this instrument is similar to the LTQ-XL in containing a linear trapping 

quadrupole, where MS/MS scans are performed, with the addition of a second mass 

analyzer, the Orbitrap, where high resolution full scans are performed (Figure 2.7). The 

Orbitrap is designed to radially traps ions around a central spindle electrode, measuring 

m/z values from the ion oscillation frequencies which are subsequently Fourier 
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transformed (FT) to generate mass spectra. The higher mass resolving power of the 

Orbitrap allows this mass analyzer to distinguish/pull apart adjacent peaks (calculated by 

measuring the full width at half of the maximum peak height (FWHM)) (Table 2.1). In 

addition, the LTQ-Orbitrap can perform high mass accuracy measurements, ensuring a 

calculated mass matches a measured mass (Δmaccuracy=mtrue-mmeasured) within an error rate 

of parts per million (ppm = 10
6
 Δmaccuracy/ mmeasured) (Table 2.1). Since the purpose of the 

mass analyzer is to determine the mass-to-charge ratio of gas-phase ions, the ability of 

the instrument to accurately measure a particular m/z with little deviation from the known 

m/z is a crucial factor especially with complex samples. 

 
 

 

Figure 2.7: Schematic diagram of an LTQ-Orbitrap mass spectrometer. Ions are 

generated by the electrospray ionization source, transferred through and trapped in the 

LTQ-XL linear ion trap, axially ejected, collected in the C-trap, and then passed to the 

Orbitrap (http://www.thermoscientific.com/). 

 

 

The newer generation of hybrid instruments, the LTQ-Orbitrap-Velos (95) utilizes 

the ultra-high resolution and accurate mass of the LTQ-Orbitrap, but goes one step 

beyond, providing improved robustness (due to an improved API source with generation 

I, stacked “S-lens” ion optics technology and neutral beam blocker) and faster scanning 

times, so that more measurements are taken across a chromatographic peak, yielding 
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better quantification (Table 2.1). Another key improvement to this instrument is the dual 

LTQ trap design, which contains a higher pressure trap for CAD and a lower pressure 

trap for ion measurement. In addition, this newer-generation instrument has the ability to 

measure a greater dynamic range than the LTQ-Orbitrap (Table 2.1), allowing deeper 

coverage of lower abundant proteins from complex samples, such as fecal microbiome 

samples (discussed in chapters 6 and 7).  

In addition, the most recent advancement in mass analyzers to date, the Orbitrap 

Elite incorporates all of the features of the LTQ-Orbitrap-Velos but is equipped with a 

high-field mass analyzer with improved orbital trapping providing faster scan speed and 

higher resolution (Table 2.1). In addition, construction of this instrument provides 

increased sensitivity, while being more robust (due to generation II ion optics with neutral 

beam blocker). This instrument was recently purchased by our laboratory and was used in 

this dissertation work to analyze fecal microbiome samples (discussed in chapter 7). 

 

MS-Based Informatics 

 

Search algorithms: Once MS/MS spectra are collected, peptides are identified using 

specialized search algorithms (Sequest (97), Myrimatch (12), DBDigger (11)) which 

match the experimental spectra with theoretical spectra generated from a predicted 

protein database: a process called peptide spectral matching (PSM). The predicted protein 

database comes from in silico tryptic digestion of the translated genome sequences. Then,  

the Sequest algorithm (97) used throughout this dissertation work, queries the search 

database to find a linear combination of amino acid sequences that match the precursor 

m/z of the peptide within a certain mass tolerance (+/- 1-3u). From this list of ‘candidate’ 
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Figure 2.8: DTASelect Output. Depicted above is an example of a DTASelect .html 

output file displaying the protein id (red), sequence counts per protein, spectral counts per 

protein, % sequence coverage, length, molecular weight, pI, and protein 

description/annotation. In addition, for each peptide, the spectra files, Sequest scores, # 

spectral counts per peptide, and sequence are displayed. 

 

 

peptides, theoretical fragment ions are calculated and theoretical spectra generated from 

the m/z ratios. Sequest compares the two and gives a correlation/ probability score, Xcorr, 

based on how similar they are. In this work, standard Xcorr cutoffs of at least 1.8, 2.5, 

and 3.5, for charge states +1, +2, and +3, respectively were used (10). In addition, a 
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second Sequest score, deltCN, is used to indicate the difference between the first and 

second best PSM. Once peptides are identified, protein inference algorithms (DTASelect 

(6), ID Picker(15)) are used to filter quality PSM and organize peptides into their 

corresponding protein sequences. DTASelect (6) was used in this work, as part of our 

bioinformatics pipeline, to assemble proteins (Figure 2.8).  

 

Label free quantification and statistical analyses: In a label free quantification 

approach, spectral counts, the number of times a peptide fragment ion is measured, are 

used a unit of relative abundance in quantifying peptides and thus proteins (98, 99). 

Basically, by comparing the number of MS/MS spectra from two different proteins 

within a sample, the relative difference in quantification between the two is determined. 

Oftentimes, proteins are normalized relative to their protein length to account for the fact 

that larger proteins have the potential to contribute more peptides. Thus, normalized 

spectral abundance factors (NSAFs) (100) are used in which the spectral counts are 

divided by protein length, then normalized against sum of all spectra collected for a 

particular run. Statistical analyses are typically performed to validate differentially 

expressed proteins such as ANOVA or Poisson exact test. Each proteomic dataset is 

unique and requires careful consideration of the normalization and statistical analyses. 

Specific details for each dataset in this dissertation are discussed in the corresponding 

chapters. 

 

Database design and considerations: Since search algorithms match theoretical spectra 

with experimental spectra for peptide identification, a peptide-spectral match cannot be 
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made if the corresponding sequence is not in the database.  Therefore, careful 

consideration must be taken when designing a predicted protein database. This is more 

straightforward when working with sequenced isolates with high-quality genomes where 

the predicted protein sequences are wholly representative of what is in the sample. 

However, it becomes more complicated when working with low quality genomes, or 

complex metagenomes where lower abundance organisms have not been deeply 

sequenced. Indeed, if the genomes are not well annotated, contain modifications, or 

genes/organisms are missing, important information may be lost. Thus, when working 

with environmental samples, it is ideal to have matched metagenomes in which deep 

sequencing was done on the same samples.  However, since it is typically not feasible to 

sequence every sample, due to the cost and labor intensiveness, steps need to be taken in 

the database design and post-processing data analysis (discussed further below). This 

may involve including representative sequenced isolates in the search database, which is 

not ideal, but sometimes necessary. However, on the upside, due to the sensitivity of the 

technology, high-quality metagenomic information is available, proteins from two closely 

related strains can be distinguished from each other, allowing biological insights which 

cannot be achieved by any other technology. For example, resolution at the species and 

strain level allows assignment of functional roles, metabolic activities, and niche 

partitioning between community members.  

In addition, if modifications or variations such as single amino acid 

polymorphisms (SAPs) or post-translational modifications (PTMs) are present, spectral 

matches cannot be correctly assigned unless stipulations are made in the searching 

parameters. For example, IAA used in the SDS-TCA sample prep method causes 
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carbamidomethylation to Cysteine residues, so this modification (C+57) is incorporated 

into the search parameters. 

A relative measure of the confidence of the PSMs is calculated using false 

discovery rates (FDRs)(21). By searching against a decoy database, typically generated 

by reversing the amino acid sequences in the search database, the FDR is calculated by 

doubling the number of reverse hits and dividing by the total number of hits (either 

peptide, protein, or spectra) (% FDR= 2[nrev/(nrev + nreal)]). 

 

Challenges in Protein Identification and Quantification: Database clustering and 

spectral balancing:  Protein and peptide assignments become more challenging in 

complex communities with large numbers of peptides. If the sequences are not present, 

the search algorithms cannot find a correct match. Likewise, when a peptide is found in 

multiple proteins, it cannot be easily deciphered as to which protein(s) it comes from. 

This can be particularly problematic in organisms like humans and plants, which contain 

large paralogous gene families, splice variants, and multiple protein isoforms. And, 

quantification of proteins with shared peptides can be problematic in label-free shotgun 

proteomics that is determined by spectral counts of detected peptides. Therefore, 

bioinformatic clustering of functionally redundant proteins can be carried out by 

grouping together proteins with similar amino acid sequences. This approach has been 

utilized in previous plant proteomic studies (25), as well as an infant microbiome study, 

discussed in chapter 6, in which clustering of microbial proteins with 100% amino acid 

identity and human proteins with 90% amino acid identity was carried out. These newly 

formed clusters or ‘protein groups’ are comprised of the longest ‘seed’ sequence and 
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matching ‘hit’ sequences. In many cases, they are comprised of only a single protein. 

Spectral counts are assigned to each protein group and balanced between proteins 

containing shared peptides based on the number of unique peptides within that protein 

group. This method provides a more accurate quantification of the proteins while 

avoiding over-representation of redundant protein abundances, and possible mis-

interpretation of the data. 
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CHAPTER THREE 

 

Phage-Induced Expression of CRISPR-Associated Proteins is Revealed by Shotgun 

Proteomics in Streptococcus thermophilus 

 

Text and figures were taken from: Young JC, Dill BD, Pan C, Hettich RL, Banfield JF,  

Shah M, Fremaux C, Horvath P, Barrangou R, and VerBerkmoes NC (2012) Phage-

Induced Expression of CRISPR-Associated Proteins Is Revealed by Shotgun Proteomics 

in Streptococcus thermophilus. PLoS One 7: e38077.(26) 

 

 

Jacque Young’s contributions included: experimental design, performed all experiments 

and mass spectrometry runs, and wrote, edited and revised manuscript.  

 

Abstract 

 

The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic 

repeats along with their associated (Cas) proteins, protects bacteria and archaea from 

viral predation and invading nucleic acids. While the mechanism of action for this 

acquired immunity is currently under investigation, the response of Cas protein 

expression to phage infection has yet to be elucidated. In this study, we employed 

shotgun proteomics to measure the global proteome expression in a model system for 

studying the CRISPR/Cas response: infection of S. thermophilus DGCC7710 with phage 

2972. Host and viral proteins were simultaneously measured following inoculation at two 

different multiplicities of infection and across various time points using two-dimensional 

liquid chromatography tandem mass spectroscopy. Thirty-seven out of forty predicted 
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viral proteins were detected, including all proteins of the structural virome and viral 

effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were 

detected, facilitating the monitoring of host protein synthesis changes in response to virus 

infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus 

DGCC7710 genome were detected, including loci previously thought to be inactive. 

Many Cas proteins were found to be constitutively expressed, but several demonstrated 

increased abundance during peak infection, including the Cas9 proteins from the 

CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the 

CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic 

response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 

infection. 

 

Introduction 

 

 Bacteriophages (phages) are abundant and ubiquitous viruses in most natural 

environments and play an important role in the ecology of their bacterial hosts. In turn, 

bacteria have evolved various mechanisms to defend themselves against viral predation. 

One of these strategies involves the CRISPR/Cas system, in which acquired immunity is 

achieved against invading nucleic acids, providing resistance that can be passed on to 

future generations (101-104). Clustered regularly interspaced short palindromic repeats 

(CRISPRs) are loci found in approximately 46% and 87% of bacteria and archaea, 

respectively (105). These hypervariable regions consist of a leader sequence followed by 

an array of direct nucleotide repeats interspersed with non-repetitive DNA regions called 

spacer sequences. Immediately flanking the CRISPR loci are CRISPR-associated (cas) 
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genes (106-108). Host genomes that have acquired spacer sequences corresponding to 

phage sequences are rendered resistant to that particular phage and are thus termed 

bacteriophage insensitive mutants (BIMs) (101, 109). The mechanism of action of the 

CRISPR/Cas system is mediated by small interfering crRNA (CRISPR RNA) molecules 

(110-114) and occurs in two phases: immunization/adaptation, and immunity/interference 

(104). Several studies have established that the immunization process, which is based on 

novel spacer acquisition, and the immunity process, which is based on crRNA 

interference by seed sequence interactions with target DNA, rely on the Cas protein 

machinery, although the roles of the various Cas proteins are unknown but under 

investigation (110, 115, 116). The sequence and function variability across the Cas 

proteins of the three CRISPR/Cas types (II, II, and III) (117), along with the functional 

idiosyncrasies of the various core Cas proteins, have compounded the difficulty of Cas 

proteins characterization. 

 The link between CRISPR loci and phage-specific acquired immunity was first 

demonstrated in Streptococcus thermophilus, an economically important lactic acid 

bacterium used as a starter culture in the production of yogurt and various cheeses (101). 

In industrial batch cultures, S. thermophilus is subject to phage attack, resulting in a 

negative impact on the fermentation process, and thus vast economic and manufacturing 

losses. Therefore, many studies have monitored these phages in hopes of developing anti-

viral strategies. Numerous S. thermophilus phages have been characterized via 

comparative genomics and transcriptomics, including phage 2972, a virulent pac-type 

phage composed of an isometric capsid and long non-contractile tail (47, 118). The 

structural proteins of phage 2972 have been characterized, including the major capsid 
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protein (orf9), two major (orf15 and orf17) and three minor (orf18, orf19, and orf21) tail 

proteins, the portal protein (orf5), and the receptor binding protein (orf20) (47). However, 

the complete proteome of the virus has yet to be elucidated, rendering an incomplete 

characterization of the functional signature for phage 2972.  

 The CRISPR content of various microorganisms, including numerous strains of S. 

thermophilus, have been analyzed allowing characterization of novel spacer additions and 

strain typing based on spacer content and hypervariability. These features reflect 

biogeography and provide a historical perspective of exposure to foreign genetic 

elements (44, 119-121). S. thermophilus DGCC7710, the strain used in this study, 

contains four CRISPR loci within its genome (103). The CRISPR1 and CRISPR3 loci, 

both type II CRISPR/Cas systems (Nmeni subtype) (106, 117) are known to be active, 

with the ability to acquire novel spacers in response to phage challenge (103, 109, 121). 

CRISPR2 (Type III system, Mtube subtype) and CRISPR4 (Type I system, Ecoli 

subtype) loci contain three and twelve spacer sequences, respectively. However, new 

spacer additions have never been observed at CRISPR2 or CRISPR4 loci despite multiple 

viral challenges. 

  In this study, we employed shotgun proteomics via 2D-LC MS/MS to measure 

the global proteomes of S. thermophilus DGCC7710 cells upon infection with phage 

2972 at two different multiplicities of infection (MOI). Through this study we were able 

to simultaneously measure bacterial and phage proteins and gain insights into the phage 

proteins synthesized as well as the global response of the host upon phage infection. In 

addition, we monitored the Cas protein abundances from all four CRISPR loci in S. 

thermophilus DGCC7710 as a function of time post infection.  
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Materials and Methods 

 

Bacterial cultures and phage 2972 infection: Streptococcus thermophilus DGCC7710 

and phage 2972 were obtained from Danisco, USA Inc. (Madison, WI, USA). S. 

thermophilus DGCC7710 was cultivated in M17 medium (Difco, Lawrence, KS, USA) 

supplemented with 0.5% lactose (LM17) at 42°C. A mid-log phase culture (O.D.600=0.4) 

was spun down (10,000g for 10 minutes), resuspended in fresh LM17 medium containing 

10 mM CaCl2, then infected with phage 2972 at an M.O.I. of 0.1 or 1 and incubated at 

42°C.  

 

Cellular and viral enriched fraction preparation: At times 0, 0.5, 1, 2, 4, and 24 hours 

post-infection (hpi), 10 ml aliquots were taken and separated into cellular fractions or 

viral enriched fractions via PEG precipitation (for MOI=1 only). Cellular fractions were 

obtained by centrifugation at 10,000g for 10 min at 4°C and retaining the pellets. The 

supernatant was then PEG-precipitated (122). Briefly, DNase I and RNase were added at 

a final concentration of 1 µg/ml and incubated for 30 min at room temperature. 1 M NaCl 

was added to the supernatant incubated for 1 h on ice, then centrifuged at 10,000g for 10 

min at 4°C. Phage particles were precipitated by the addition of PEG8000 (Sigma 

Aldrich, St. Louis, MO) (10% w/v) for 1 h on ice, then centrifuged at 10,000g for 10 min 

at 4°C. The pellets were resuspended in SM buffer (122) and equal volume of chloroform 

(Sigma Aldrich, St. Louis, MO), then spun down and the aqueous phase recovered. 

 

Protein denaturation and digestion: For cell lysis and protein denaturation, cellular 

pellets were resuspended in 6 M guanidine HCl (Sigma Aldrich St. Louis, MO), 
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sonicated (Branson Sonifier; 10% amplitude, 10 seconds on/off cycles for 10 min total), 

and incubated at 60°C for 1 h. Protein concentrations were measured using the Pierce 

bicinchoninic acid assay (BCA) (Thermo Scientific, Rockford, IL) then disulfide bonds 

were reduced with 10 mM dithiothreitol. The protein solution was diluted to 1 M 

guanidine in 50 mM Tris (pH 7.6), 10 mM CaCl2, and proteins were enzymatically 

digested into peptides using sequencing-grade trypsin (Promega, Madison, WI). The 

peptide solutions were desalted by C18 solid-phase extraction (SepPak, Waters, Milford, 

MA), solvent exchanged into 0.1% formic acid, concentrated, and passed through a 

0.45µm filter (Millipore, Bedford, MA). Samples were frozen at -80°C until analyzed by 

2D-LC-MS/MS. 

 

Nano 2D-LC-MS/MS Analysis: Peptide mixtures were separated using on-line two-

dimensional liquid chromatography with a split phase column containing reverse phase 

(C18) and strong cation exchange (SCX) materials (9, 123, 124). Peptides were eluted 

from the SCX resin by increasing ammonium acetate salt pulses followed by reverse 

phase resolution over two hour organic gradients as described previously (28, 29, 33), 

ionized via nanospray (200 nl/min) (Proxeon, Cambridge MA), and analyzed using an 

LTQ XL linear ion trap mass spectrometer (Thermo Fisher Scientific, San Jose, CA). 

Technical duplicates were run for all samples with 22 hour runs for the cellular fractions 

and 8 hour runs for the PEG-precipitated fractions. The LTQ was run in data-dependent 

mode (top 5 most abundant peptides in full MS selected for MS/MS) with dynamic 

exclusion enabled (repeat count=1, 60 s exclusion duration). Two microscans were 

collected in centroid mode for both full and MS/MS scans.  



 

 41 

Database construction and analysis: A protein database was generated from the 

genome sequence of S. thermophilus strain DGCC7710 

(http://compbio.ornl.gov/CRISPRproteomics/) and phage 2972 (GenBank accession no. 

AY699705) (47), along with other common contaminants such as trypsin and keratins. 

MS/MS spectra from all LC-MS/MS runs were searched with the SEQUEST algorithm 

(16) using the database above, and filtered with DTASelect/Contrast (17) at the peptide 

level with standard filters [SEQUEST Xcorrs of at least 1.8 (+1), 2.5 (+2), 3.5 (+3), 

DeltCN>0.08]. Only proteins identified with two fully tryptic peptides were considered 

for further biological study. Representative runs were calculated to have false positive 

rates <0.3% at the peptide level using reversed database searching. COG (clusters of 

orthologous groups) assignments for each protein sequence were performed by running 

rpsblast against the COG database from NCBI, with an E-value threshold of 0.00001, and 

the top hit used for the assignment (42). All databases, peptide and protein results, 

MS/MS spectra, and supplementary tables are archived and made available as open 

access via (http://compbio.ornl.gov/CRISPRproteomics/) website. 

 

Statistical Analysis: Spectral counts, values that can be used to approximate relative 

protein abundances in LC-MS/MS analyses (98), were normalized to account for 

technical variability among runs by equalizing the total spectral counts of all runs in the 

time course. First, an average of the total spectral counts of all runs in the time course 

experiment was calculated. Then, the normalization factor for each run was calculated as 

the ratio of the average total spectral count and the run’s total spectral count. Finally, 

protein spectral counts per run were normalized by multiplying the raw spectral counts by 

http://compbio.ornl.gov/CRISPRproteomics/
http://compbio.ornl.gov/CRISPRproteomics/
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the run normalization factor. Normalized spectral counts of proteins were compared 

between two time points to identify proteins with statistically significant abundance 

changes. Because spectral counts follow a Poisson distribution (125, 126), spectral counts 

per protein were compared between two time points using the exact Poisson test. As 

proteins have two replicate spectral counts at every time point, p values were calculated 

by comparing the two closest replicate spectral counts from two time points to minimize 

type I errors. Proteins with a p value less than 0.05 were considered to have a significant 

abundance change. Pairwise comparisons were performed between each time point after 

infection and time zero in the three time courses (Supplemental Table 2). Comparisons 

were also performed between a time point early in infection and a time point during peak 

infection: 0.5 and 1 hpi for MOI=1, and 1 and 2 hpi for MOI=0.1. 

 

Results  

 

Overall results 

 

S. thermophilus DGCC7710 cultures were infected with phage 2972 at an MOI=1 

or MOI=0.1, and after 0, 0.5, 1, 2, and 24 hours post infection (hpi), cellular fractions 

were collected and analyzed via nano-2D-LC MS/MS. Uninfected controls were also 

analyzed in tandem. In addition, at the higher infection rate (MOI=1), fractions were 

enriched for phage 2972 via PEG precipitation of the corresponding cell supernatants 

collected at each time point. Two technical replicates were run per time point. High 

reproducibility was shown between the replicates. The overall protein, peptide, and 

spectral counts for each fraction and time point are summarized in Table 3.1.  
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Table 3.1: Number of proteins, peptides, and spectra identified by LC-MS/MS in 

cellular (MOI= 0.1 and 1) or PEG-enriched viral fractions (MOI=1) at each time 

point of infection 

Sample Fraction Time 

Point 

(hpi) 

Protein 

Identifications 

(Total/Viral) 

Peptide 

Identifications 

(Total/Viral) 

MS/MS 

Spectra 

(Total/Viral) 

Viral (MOI=1) 0 2/1 14/2 119/3 

Viral (MOI=1) 0.5 6/4 70/15 143/14 

Viral (MOI=1) 1 84/17 1170/266 3311/726 

Viral (MOI=1) 2 86/16 1217/299 3197/824 

Viral (MOI=1) 4 68/12 845/209 2104/544 

Viral (MOI=1) 24 61/14 611/269 1972/1299 

     

Cellular (MOI=1) 0 625/0 8151/0 27821/0 

Cellular (MOI=1) 0.5 540/18 6503/138 26438/335 

Cellular (MOI=1) 1 477/32 5046/567 12866/2341 

Cellular (MOI=1) 2 616/35 6662/565 14015/1969 

Cellular (MOI=1) 4 477/29 4314/366 12002/1789 

Cellular (MOI=1) 24 560/31 6599/453 15628/1005 

     

Cellular (MOI=0.1) 0 650/0 6679/0 27499/0 

Cellular (MOI=0.1) 0.5 693/7 6928/34 30023/61 

Cellular (MOI=0.1) 1 810/26 9618/198 35347/ 415 

Cellular (MOI=0.1) 2 611/28 5525/178 20147/ 521 

Cellular (MOI=0.1) 4 732/24 8217/170 28244/388 

Cellular (MOI=0.1) 24 780/27 10185/228 26908/446 

     

Cellular (Uninfected) 0 697/0 7892/0 25345/0 

Cellular (Uninfected) 0.5 670/0 7370/0 30168/0 

Cellular (Uninfected) 1 698/0 8132/0 30637/0 

Cellular (Uninfected) 2 717/0 7898/0 28582/0 

Cellular (Uninfected) 4 741/0 8940/0 30421/0 

Cellular (Uninfected) 24 706/0 8979/0 34137/0 

Numbers based on non-redundant identifications 

All numbers are averages of two technical replicate runs 

 

 

Viral Proteome Characterization 

The virulent pac-type phage 2972 contains 44 open reading frames. Due to two 

group I introns, the genome encodes 40 putative proteins (47). In our study, we detected 
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thirty-seven out of the forty predicted proteins, including all of those from the packaging, 

capsid morphogenesis, tail morphogenesis, and host lysis modules (Figure 3.1 and Table 

3.2). PEG precipitation was performed on the cultures infected at MOI=1 in order to 

enrich the viral structural proteins. However, sequence coverage of the phage structural 

proteins was, in most cases, better in the cellular fractions than in the virus-enriched 

fractions (Table 3.2). In addition, the non-structural proteins were highly detected in the 

whole cell fractions. Therefore, the remainder of the data analyses focused on the cellular 

fractions.  

The capsid and tail morphogenesis modules encompass all of the structural 

proteins, most of which are highly represented in our samples. Specifically, capsid 

morphogenesis proteins account for up to 2,871 normalized spectral counts in one run, 

and tail morphogenesis proteins account for 1,540 (Figure 3.1). In turn, individual 

structural proteins in these modules contribute a high number of total spectra, with up to 

2,680 normalized spectral counts for the major capsid protein (orf 9), 2,220 for the major 

tail protein (orf 15), and 2,804 for one head protein (orf 8) across all runs infected at 

MOI=1 (Figure 3.1). In addition, all of the proteins from the host lysis module were 

synthesized, including a protein of unknown function, the holin, and the lysin (orfs 24-

26). The phage proteins that were not detected in our study were genes of unknown 

function from the transcriptional regulation (orf 39 & orf 41) and lysogeny remnant 

modules (orf 30) (Table 3.2). 

The spectral count abundances of phage 2972 proteins at each time point correlate 

well with the phase abundance values during the period in which complete cell lysis 

occurred (Figure 3.1). Specifically, the highest number of spectra in the MOI=1 
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experiment were recorded after one hour and lysis of the cell cultures occurred after two 

hours. The less robust infection at MOI=0.1 yielded fewer phage proteins, however the 

highest number was detected at two hours post-infection, and complete lysis occurred 

after four hours. The peaks in phage protein abundance after 1 and 2 hours for MOI=1 

and MOI=0.1, respectively, followed by lysis, indicates these were peak infection times 

in our study (Figure 3.1).  

 

 
 

 

Figure 3.1: Phage 2972 spectral abundances. A.) Depiction of phage 2972, color coded 

according to functional modules. Each arrow represents an open reading frame and 

numbers on top are normalized spectral counts totaled across all MS runs at MOI=1. B.) 

Normalized spectral counts were added together at each time point of infection for 

MOI=1 (left panel) and MOI=0.1 (right panel). Optical density measurements (600 nm) 

(blue line) show cell lysis occurring immediately following the time points in which the 

highest numbers of phage spectra are detected at each MOI. Colors within each bar 

correspond to phage functional modules.
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Table 3.2: Sequence coverages of phage 2972 proteins from virus-enriched and cellular fractions across infection time points.  

Module Orf 
Description, Molecular 

Weight 

Virus Enriched Fraction MOI=1 Cellular Fraction  

MOI=1 

Cellular Fraction  

MOI=0.1 

   0 0.5 1 2 4 24 0 0.5 1 2 4 24 0 0.5 1 2 4 24 

* 1 unknown function,  

MW:16160 

       65% 80% 85% 69% 71%   66% 63% 40% 35% 

Packaging 

2 
terminase small subunit, 

MW:16777   19% 24% 25% 56%  31% 85% 71% 67% 81%   19% 38% 25% 11% 

 
3-4 

terminase large subunit, 

MW: 47066         16% 43% 20% 19%       

Capsid 

Morphogenesis 
5 

portal protein, 
MW:57498   50% 58% 50% 51%  33% 56% 58% 55% 53%   43% 25% 24% 25% 

 

6 

head protein, 

MW:34367   21% 14% 13% 12%  19% 54% 53% 47% 85%   30% 18% 17% 24% 

 
7 

scaffold protein, 
MW:21262  34% 94% 96% 77% 85%  54% 99% 99% 73% 52%  11% 59% 47% 51% 44% 

 

8 

head protein, 

MW:12720  41% 96% 96% 98% 

100

%  86% 88% 91% 100% 89%  50% 77% 66% 63% 55% 

 
9 

major capsid protein, 
MW:37491 10% 20% 81% 85% 82% 82%  59% 83% 84% 81% 82%  37% 62% 61% 65% 63% 

 

10 

unknown function, 

MW:5997         89%      53%    

 
11 

unknown function, 

MW:13021   31% 61%     50% 47% 54%     37%   

 

12 

unknown function, 

MW:11470   66% 73% 68% 70%   58% 64% 39% 58%   35% 30% 30% 45% 

Tail 

Morphogenesis 
13 

unknown function, 

MW:12495      49%   35% 35%         

 

14 

unknown function, 

MW:14637      19%    26% 24% 32%   32% 24% 24% 28% 

 
15 

major tail protein, 

MW:18525  26% 84% 90% 86% 86%  64% 88% 86% 88% 86%  53% 66% 60% 65% 64% 

 

16 

unknown function, 

MW:13138        39% 

100

% 98% 93% 84%  58% 50% 66% 48% 30% 

 
17 

major tail protein, 

MW:12613         43% 42% 23% 36%       

 

18 

minor tail protein, 

MW:153506   9% 12% 8% 17%   14% 20% 14% 14%   2% 8% 5% 10% 

 
19 

minor tail protein, 

MW:57710   18% 20% 6% 22%   18% 28% 15% 23%    17% 7% 15% 

 

20 

antireceptor, 

MW:177330   18% 22% 14% 16%  5% 22% 29% 25% 34%   2% 5% 7% 18% 

 
21 

minor tail protein, 

MW:74279   11% 10%  7%    5%  4%    6%  4% 
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Values are percent sequence coverages determined by dividing the number of amino acids detected in the mass spectrometry run by 

the total number of amino acids in a given protein. Numbers are averages between two technical replicates. Phage functional modules 

are labeled on the right (47). * Orf1 is part of the transcriptional regulation module. Intron regions are not included in the figure 

(orf27-29) and orf 3 and orf4 encode one protein due to a splicing event (47). 

  

 

22 

unknown function, 

MW:14539   73% 31%     82% 90% 77% 84%    20% 44%  

 
23 

unknown function, 
MW:5475   45%      47% 47% 47% 47%  47%     

Host Lysis 

24 

unknown function, 

MW:12328    33%     33% 38% 33% 38%     28% 23% 

 25 holin, MW:12004   31%      75% 74% 72% 59%    39%   

 26 lysin, MW:21754   49% 48% 38%    39% 49% 44% 35%   31% 20% 29% 42% 

Lysogeny 

Remnant 30 

unknown function, 

MW:5249                   

 
31 

cro-like repressor, 
MW:7850        92% 84% 56% 42%    54% 46%  46% 

 

32 

unknown function, 

MW:5039        85%       58%    

Replication 
33 

unknown function, 
MW:18072        53% 65% 64% 52% 60%   32% 32% 43% 52% 

 

34 

unknown function, 

MW:26164        28% 21% 47% 46% 66%   36% 22% 35% 44% 

 35 helicase, MW:50968          9%  6%    10%  9% 

 

36 
unknown function, 

MW:17290        82% 99% 99% 89% 82%  48% 88% 77% 88% 93% 

 
37 

replication protein, 

MW:30474         29% 15% 28% 33%   16%   16% 

 38 primase, MW:59060        9% 34% 40% 15% 36%   24% 11% 20% 30% 

*Transcriptional 

Regulation 
39 

unknown function, 

MW:12133                   

 

40 
unknown function, 

MW:9580          25%  37%   52%   25% 

 
41 

unknown function, 

MW:6311                   

 

42 
DNA binding protein, 

MW:19572        23% 41% 18%  52%   54% 54% 48% 57% 

 
43 

unknown function, 

MW:12132         37% 35%     26% 24% 26%  

 

44 
unknown function, 

MW:27652        47% 86% 83% 45% 72%   31% 52% 56% 41% 
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S. thermophilus DGCC7710 Proteome Characterization 

 In total, across all MS runs, 1,013 S. thermophilus DGCC7710 proteins were 

detected (Supplementary Table 1). As the genome encodes 2,079 open reading frames 

(http://compbio.ornl.gov/CRISPRproteomics/), this equates to proteomic identification of 

nearly half of the predicted proteins, the highest reported for any lactic acid bacterium to 

date (127). A global functional analysis was carried out by grouping host proteins 

detected at each time point by their COG (clusters of orthologous groups) categories 

(128) (Figure 3.2). Host proteins encompassed the range of cellular functions from 

energy production and conversion to defense mechanisms, with the greatest percentage of 

proteins in the translation, ribosomal structure and biogenesis, and carbohydrate transport 

and metabolism categories. The uninfected control cultures did not have any major 

changes in overall protein functional categories across the six time points measured. 

However, global changes in the host proteome were detected in phage 2972-infected 

cultures, including a decrease in protein abundances in the translation, ribosomal 

structure and biogenesis category around two hours post infection for the lower MOI =0.1 

(37% at time 0 to 24% at 2 hpi), and at one hour post infection for the higher MOI =1 

(33% at 0 hpi to 23% at 1 hpi). These time points correspond to peak infections of the 

cell populations at each MOI, as described earlier.  

In addition, at the higher MOI=1, protein abundances in the carbohydrate 

transport and metabolism category show a considerable reduction following peak 

infection (22% at 0 hpi vs. 11% at 1 hpi.) (Figure 3.2). Decreased abundances of several 

key enzymes involved in carbohydrate transport and metabolism were detected, including 

http://compbio.ornl.gov/CRISPRproteomics/
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pyruvate kinase, enolase, 6-phosphofructokinase, 3-phosphoglycerate kinase, and 

glucose-6-phosphate isomerase (Figure 3.3 and Supplemental Table 2). 

 

 

Figure 3.2:COG classification of S. thermophilus proteomes across infection time 

points. Proteins were grouped into functional categories by COG assignments. 

Percentages were calculated using normalized spectral counts averaged between two 

technical replicates.  

  

Ribosomal protein abundances decreased during peak infection (41 ribosomal 

proteins decreased at 1 hpi MOI=1, 30 decreased at MOI=0.1) (Figure 3.3 and 

Supplemental Table 2). In contrast, abundances of ABC-type transporter proteins (28 at 

MOI=1, 26 at MOI=0.1), the majority of which are annotated as amino acid transporters 

but others include oligopeptide, metal ion, and phosphate transporters, increased (Figure 

3.3 and Supplemental Table 2). The increased expression of ABC transporters is part of 
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the general stress response of these bacteria (129). Additionally, six subunits of the ATP 

synthase (α, β, δ, γ, ε,b) were detected and most increased in abundance in response to 

infection at both MOIs (Figure 3.3 and Supplemental Table 2). Interestingly, several 

restriction-modification protein subunits were also increased at peak infection times 

including two different methyltransferase subunits (HsdM) and two different 

endonuclease (HsdS) subunits (Figure 3.4). 

 

 

Figure 3.3: Volcano plot of protein abundance changes during peak infection at 

MOI=1. Normalized spectral counts were averaged between two technical replicates and 

the log2 ratios taken between time 0 (pre-infection) and 1 hour post infection (peak 

infection). P-values were calculated using the exact Poisson test as described in the 

Materials and Methods section. The      -log10 of the P-values are plotted on the y-axis. 

Red color indicates an increase in abundance, green a decrease in abundance, and grey, 

no change. Diamonds represent host proteins: 1.) glyceraldehyde -3-phosphate 

dehydrogenase, 2.) pyruvate kinase, 3.) 3-phosphoglycerate kinase, 4.) ribosomal protein 

S9, 5.) ribosomal protein S8, 6.) ATP synthase, β subunit, 7.) ABC transporter, ATPase, 

8.) RNA polymerase, β-subunit. Cas proteins are highlighted in yellow: 9.) Cas6e 

(CRISPR4), 10.) Cas7 (CRISPR4), 11.) Cas9 (CRISPR1), and 12.) Cas9 (CRISPR3). 

Phage proteins are depicted in circles: 13. and 14.) head proteins, 15.) scaffold protein, 

16.) tail protein, 17.) terminase small subunit, 18.) portal protein, 19.-23.) phage proteins 

of unknown function. 
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Figure 3.4: Restriction modification protein subunits increased at peak infection 

times. Bars indicate normalized spectral counts averaged between two technical 

replicates and lines are optical density measurements taken at each time point. Untreated 

cells MOI=0, green bars and lines, infected cells at MOI=0, maroon bars and lines, and 

infected cells at MOI=1, blue bars and lines. From top left to bottom right: Type I 

restriction-modification system methyltransferase subunit (ST89_075300), Restriction 

endonuclease S subunit (ST89_099800) Restriction-modification enzyme type I S 

subunit; specificity determinant HsdS (ST89_187033), Restriction-modification enzyme 

type I M subunit; type IC modification subunit HsdM (ST89_187066). 

 

Analysis of the CRISPR/Cas response to phage infection 

 The most significant host response to phage 2972 was the increased production of 

several CRISPR-associated (Cas) proteins. Cas proteins were detected by unique peptides 

from each of the four loci present in S. thermophilus DGCC7710 (Table 3.3). Some, 

predominantly from CRISPR2 and CRISPR4, were constitutively expressed throughout 
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the time course, even in the uninfected cells. Interestingly, a clear increase in abundances 

of several Cas proteins corresponded to peak infections at both MOIs (1 hpi at MOI=1, 2 

hpi at MOI=2) (Figure 3.5). The most marked increases were seen for the Cas9 proteins 

from locus CRISPR1 (ST89_070900), and locus CRISPR3 (ST89_147700), and Cas7 

from locus CRISPR4 (ST89_103850). 

 

 

Figure 3.5: Cas proteins changing in response to phage 2972 infection. Values are 

normalized spectral counts averaged between two technical replicates. Untreated cells 

MOI=0, green bars, infected cells MOI=0, maroon bars, and infected cells at MOI=1, 

blue bars. Lines of the same color represent optical density measurements for each group. 

From top left to bottom right: Cas9 (ST89_070900) from CRISPR1 locus, Cas9 

(ST89_097000) from CRISPR3 locus, Cas6e (ST89_103830) and Cas7 (ST89_103850) 

from CRISPR4 locus. 
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Table 3.3: Expression of Cas proteins from S. thermophilus DGCC710 across time.  

Values are averaged normalized spectral counts taken at each time point from cells infected at MOI=1, MOI=0.1, and uninfected cells 

(MOI=0). All Cas proteins were detected by unique peptides.

Protein Loci MOI=1 MOI=0.1 MOI=0 

  0 0.5 1 2 4 24 0 0.5 1 2 4 24 0 0.5 1 2 4 24 

Cas9 CRISPR1 15 6 89 80 9 8 16 12 18 48 33 16 18 21 17 22 21 17 

Cas1                    

Cas2                    

Cas4                    

Cas1 CRISPR2         1          

Cas2                    

Cas6                    

Cas10          2       1  1 

Csm2                 1  1 

Csm3  4 3  3  2 4  2 2 1 4 2 4 2 4 4 4 

Csm4         1 1 1  4 1    1  

Csm5          2  2 2  2 2 1 4 1 

Csm6                    

Cas9 CRISPR3 7 6 61 50  8 7 10 10 19 10 8 7 4 7 10 10 8 

Cas1                    

Cas2                    

Csn2                    

Cas3 CRISPR4    2    1 1 1  1  1  2   

Cse1          1  1     1   

Cse2  1   5  1 1 1 2 1  3   1 1  1 

Cas7  19 23 101 58 16 11 14 19 12 29 15 15 10 11 9 10 8 12 

Cas5     2   3 1 2 4 3 3 5 1 2 3 2 1 

Cas6e  6 6 23 18 6 7 2 2 2 2 1 8 1      

Cas1     7 2   1           

Cas2                    
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Discussion 

 

 The simultaneous measurement of phage and microbial host proteins over a time 

course of infection provides opportunity for novel insights into both phage protein 

production and the host anti-phage response. In this study, we detected nearly all the 

predicted phage proteins, validating the in silico protein predictions. In addition, 

expression of certain proteins within the cellular fraction and not in the viral enriched 

fraction suggests that the phage is utilizing the host machinery to produce these proteins, 

and they are likely not part of the phage structure. This is expected, given that most are 

encoded by the lysogeny, replication, and transcriptional regulation modules (Table 3.2). 

Many proteins identified in the cellular fractions were annotated as hypothetical or 

proteins of unknown function. Although we cannot define their specific functions, their 

synthesis indicates that they probably play some role in phage propagation.  

Transcriptomic data for phage 2972 have been reported previously (118). 

Transcription of early, middle, and late genes occurs by 27 minutes after infection.  

However, we focused our analyses around the time of the expected phage burst (40 

minutes after exposure) when viral proteins were at abundant levels to allow detection.   

Our inferred protein abundances correlate well with transcript abundance patterns, 

despite the lack of infection synchronicity and presence of cells that were phage resistant 

(101).  

 Since we were able to detect the vast majority of host proteins, we were able to 

characterize the overall host response upon infection with phage.  The overall decrease in 

the translation, ribosomal structure and biogenesis COG category and in ribosomal 

proteins in particular, at peak infections, reflects the dramatic impact that phage infection 
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has on host physiology, especially immediately before lysis. Some of the changes in host 

proteome may be the result of phage take-over of cellular processes for transcription and 

translation of phage material, notably phage DNA packaging and proteins important for 

particle assembly.  

 Of particular interest was the detection of Cas proteins throughout our time 

course. Many Cas proteins were constitutively produced, consistent with reports 

indicating that crRNA is constitutively transcribed in the host, and can represent the most 

abundant small RNA species in the cell (130). Co-constitutive expression of both guide 

crRNA and Cas proteins would provide the cell with readily accessible defense against 

invading elements. Given the speed at which viruses can take over the host machinery, 

and their short replication cycle, constitutive expression of the CRISPR/Cas immune 

system ensures that the host immune response will be readily available upon infection.  

 Given that spacer addition has not been detected in CRISPR4 in prior studies 

(103, 131), it is notable that most of the CRISPR4 Cas proteins were constitutively 

expressed in uninfected cells, and that some increased in abundance in response to phage 

exposure. However, it is not known specifically how each locus acts and how the four 

loci in DGCC7710 interact. The proteins encoded by the CRISPR4 locus are homologous 

to the Cas proteins of Escherichia coli K12, and consist of: Cas1 (endonuclease), Cas2, 

and Cas3 as well as CasABCDE which form a complex called Cascade (CRISPR 

associated complex for antiviral defense) (114). The Cascade complex is composed of six 

copies of CasC, two copies of Cas B, and one copy each of Cas A, D, and E (128) E. coli 

Cas proteins A, B, C, D, and E are homologous to S. thermophilus Cas proteins Cse1, 

Cse2, Cas7, Cas5, and Cas6e (ST89_103870, ST89_103860, ST89_103850, 
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ST89_103840, ST89_103830), respectively. Cas7 (homologous to CasC in E. coli, the 

protein present in the most copies in the Cascade complex) was the most abundant S. 

thermophilus protein and dramatically increased around the time of peak phage 2972 

infection. These data suggest that the CRISPR4 locus is functional (though not expanding 

its spacer inventory).  

  At peak phage infection, we detected dramatic increase in abundance of Cas9 

proteins of CRISPR1 and CRISPR3, the two loci with previously demonstrated CRISPR 

activity. The Cas9 protein from locus CRISPR1, which is the signature protein for Type 

II CRISPR/Cas systems, was previously shown to be important in CRISPR-based 

immunity since deletion of the cas9 gene (previously called cas5 or csn1) eliminated 

phage-specific resistance despite the presence of matching spacer sequences (101). Cas9 

was also recently shown to be necessary for the cleavage of invading plasmid and phage 

DNA (131). Observing an increase in Cas9 levels at the peak of infection is consistent 

with a prominent role of Cas9 in CRISPR-encoded immunity (130, 132). Cas9 proteins 

contain a HNH-like nuclease motif and are suspected to act on crRNA or foreign nucleic 

acids, indicating their involvement in the interference phase of the crRNA-mediated 

response. The increase in critical Cas protein abundance during peak infection indicates 

that although these proteins are constitutively produced, they can be induced following 

phage challenge as to increase the level of the primed CRISPR/Cas immune response. 

This allows the cells to readily acquire novel spacers in response to phage attack, and to 

mount a Cas9-dependent immune response against invading elements, notably during 

peak viral infection.  
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It is important to note that the absence of detection of the other Cas proteins does 

not necessarily mean a lack of expression. While there are no obvious attributes of the 

undetected proteins (too small, lacking sufficient tryptic peptides, or too few lysine’s and 

arginine’s) that would prohibit detection by our method, functionally, they may not need 

to be synthesized at high levels compared with other Cas proteins, and thus may fall 

below our level of detection. Notably, Cas1, which is found in nearly all genomes 

containing CRISPR, was not detected in our study. While it is thought that Cas1 plays an 

important role in the adaptation phase of the CRISPR response, it might only be 

synthesized by the minority of the cells in the population. In contrast, the Cas9 proteins 

are more highly detected and are likely expressed by the majority of the cells that take 

part in the interference phase. 

 Recently, transcription profiles of CRISPR systems in Thermus thermophilus 

HB8 upon infection with phage ФYS40 have been reported (133, 134). However, 

Thermus thermophilus is very distant from Streptococcus thermophilus, and their 

CRISPR systems are vastly different. Actually, both the CRISPR1 and CRISPR3 systems 

in our model organism are idiosyncratic type II CRISPR/Cas systems, while those 

induced by phage in the Thermus thermophilus system are type I and type III systems, 

which have different mechanisms of action.  There have also been other published works 

on CRISPR transcription in other systems including E. coli (114, 135, 136), Sulfolobus 

(137) and P. furiosus (112). While transcriptomic studies offer valuable information at 

the mRNA level, the proteomic approach used in this study is the first to quantify the 

final protein products, Cas proteins, over a time course of phage infection.  



 

 58 

 Interestingly, several type I restriction-modification (R-M) protein subunits were 

detected during our time course and some increased in abundance at peak infection (Fig 

3.4). Restriction modification systems are a type of anti-viral defense in which invading 

foreign DNA is cleaved at target sites while host DNA is protected. Type I R-M systems 

utilize a multifunctional enzyme made up of three subunits encoded by different hsd (host 

specificity determinant) genes. The HsdR (restriction) subunit functions as a restriction 

endonuclease cleaving foreign DNA while the HsdS (specificity) and HsdM 

(modification) subunits are sufficient for modification activity and can form an 

independent methyltransferase (MTase) that specifically recognizes non-palindromic 

DNA sequences and cleaves at a non-specific site distant from the recognition sequence. 

Two Type I R-M system methyltransferase subunits (ST89_075300 and ST89_187066) 

were identified throughout the time course and increased in abundance during peak 

infection (Figure 3.4). These two related proteins were distinguishable because they have 

low amino acid identity and generate unique tryptic peptides upon enzymatic digestion. 

Similarly, two different type 1 R-M S subunits were identified (ST89_099800 and 

ST89_187033) and increased in abundance during peak infection. Detection of two 

distinct M subunits and two distinct S subunits suggests operation of two type I R-M 

systems.  

 This study is, to our knowledge, the first to report protein abundance increases of 

restriction-modification proteins, in direct correlation with time points in which Cas 

protein abundances are increased. While restriction-modification genes and CRISPR/Cas 

genes are mutually encoded in lactic acid bacterial genomes (121, 138) it is not clear 

whether the two anti-viral systems are working simultaneously or if they share 
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components. The expression of proteins from these two systems simultaneously suggests 

that perhaps there is a correlation between Cas proteins and R/M systems in type II 

CRISPR/Cas systems.   

In conclusion, mass spectrometry-based proteomics studies provided insights into 

the protein profiles of phage 2972 and its host proteome response to viral infection. We 

showed that, in S. thermophilus, the CRISPR/Cas systems are constitutively expressed 

and can be induced by viral challenge.  
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CHAPTER FOUR 

Metaproteomics of a Gutless Marine Worm and its Symbiotic Microbial 

Community Reveal Unusual Pathways for Carbon and Energy Use  
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Abstract 

 

 Low nutrient and energy availability has led to the evolution of numerous 

strategies for overcoming these limitations, of which symbiotic associations represent a 

key mechanism. Particularly striking are the associations between chemosynthetic 

bacteria and marine animals that thrive in nutrient-poor environments such as the deep-

sea because the symbionts allow their hosts to grow on inorganic energy and carbon 

sources such as sulfide and CO2. Remarkably little is known about the physiological 

strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. 
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In this study, we used metaproteomics and metabolomics to investigate the intricate 

network of metabolic interactions in the chemosynthetic association between Olavius 

algarvensis, a gutless marine worm, and its bacterial symbionts. We propose novel 

pathways for coping with energy and nutrient limitation, some of which may be 

widespread in both free-living and symbiotic bacteria. These include (i) a pathway for 

symbiont assimilation of the host waste products acetate, propionate, succinate and 

malate, (ii) the potential use of carbon monoxide as an energy source, a substrate 

previously not known to play a role in marine invertebrate symbioses, (iii) the potential 

use of hydrogen as an energy source, (iv) the strong expression of high affinity uptake 

transporters, and (v) novel energy efficient steps in CO2 fixation and sulfate reduction. 

The high expression of proteins involved in pathways for energy and carbon uptake and 

conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its 

environment exerted a strong selective pressure in shaping these associations. 

 

Introduction 

 

 Growth in nutrient-limited environments presents numerous challenges to 

organisms. Symbiotic and syntrophic relationships have evolved as particularly 

successful strategies for coping with these challenges. Such nutritional symbioses are 

widespread in nature and have, for example, enabled plants to colonize nitrogen-poor 

soils, and animals to thrive on food sources that lack essential amino acids and vitamins 

(140). Chemosynthetic symbioses, discovered only 35 years ago at hydrothermal vents in 

the deep sea, revolutionized our understanding of nutritional associations, because these 

symbioses enable animals to live from inorganic energy and carbon sources such as 
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sulfide and CO2 (141, 142). The chemosynthetic symbionts use the energy obtained from 

oxidizing reduced inorganic compounds such as sulfide to fix CO2, ultimately providing 

their hosts with organic carbon compounds. Chemosynthetic symbioses are thus able to 

thrive in habitats where organic carbon sources are rare such as the deep sea, and the 

symbionts are often so efficient at feeding their hosts that many have reduced their 

digestive system (143).  

 The marine oligochaete Olavius algarvensis is a particularly extreme example for 

a nutritional symbiosis: these worms are dependent on their chemosynthetic symbionts 

for both their nutrition and their excretion, as they have completely reduced their mouth, 

gut and nephridial excretory organs (144). O. algarvensis lives in coarse-grained coastal 

sediments off the island of Elba, Italy, and migrates between the upper oxidized and the 

lower reduced sediment layers (145). It hosts a stable and specific microbial consortium 

consisting of five bacterial endosymbionts in its body wall – two aerobic or denitrifying 

gammaproteobacterial sulfur oxidizers (γ1- and γ3-symbiont), two anaerobic 

deltaproteobacterial sulfate reducers (δ1- and δ4-symbiont) and a spirochaete with an 

unknown metabolism (146, 147). The sulfate-reducing δ-symbionts provide the sulfur-

oxidizing γ-symbionts with reduced sulfur compounds as an internal energy source for 

autotrophic CO2 fixation via the Calvin-Benson cycle, thus explaining how O. 

algarvensis can thrive in its sulfide-poor environment (145) (148). However, as all living 

organisms, the symbiosis is dependent on external energy sources, but to date it has 

remained unclear what these are.  

 Like the vast majority of symbiotic microbes, the O. algarvensis symbionts have 

so far defied cultivation attempts, making cultivation-independent techniques essential 
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for their analysis. A metagenomic analysis of the O. algarvensis symbionts yielded first 

insights into their potential metabolism (148). However, the incomplete genome 

sequences hindered the reconstruction of complete metabolic pathways, leaving many 

questions unanswered (149). Furthermore, as in all genomic analyses, detailed insights 

into the physiology and metabolism of an organism are limited as these analyses can only 

predict the metabolic potential of an organism, but not its actual metabolism and 

physiology (150). This limitation is most apparent in a multi-member community in 

which the interactions between the different members and between these and their 

environment lead to a level of metabolic complexity that can greatly exceed the 

predictive ability of genomic reconstructions from single species. 

 While metagenomic analyses reveal the metabolic potential of a microbial 

community, metaproteomic and metabolomic analyses provide evidence for the 

metabolic and physiological processes that are actually used by the community. In this 

study, we used metaproteomics and metabolomics as well as enzyme assays and in situ 

analyses of potential energy sources to gain an in-depth understanding of the intricate 

interactions between O. algarvensis and its microbial symbiont community, and between 

these and their environment. Our goal was to identify the compounds that provide energy 

for the symbiosis, the functional roles of the different partners, and their interactions 

within the symbiosis. 

 

Materials and Methods 

Sample collection and symbiont enrichment 
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Worms were removed from the sediment via decantation and either frozen immediately 

or symbionts were enriched via isopycnic centrifugation using a HistoDenz
TM

 (Sigma
®
 

Saint Louis, Missouri, USA) based density gradient prior to freezing. Symbiont 

abundance and composition in density gradient fractions was analyzed with catalyzed 

reporter deposition-fluorescence in situ hybridization (CARD-FISH) using symbiont 

specific probes. Density gradient fractions in which specific symbionts were enriched 

were chosen for subsequent analyses. 

 

Protein identification and proteome analyses 

One dimensional polyacrylamide gel electrophoresis followed by liquid chromatography 

(1D-PAGE-LC) and two dimensional liquid chromatography (2D-LC) were used for 

protein and peptide separation as described previously (151, 152) with slight 

modifications. Mass spectra and tandem mass spectra were acquired with a hybrid linear 

ion trap-Orbitrap (Thermo Fischer Scientific) as described previously (151, 153). All 

MS/MS spectra were searched against two protein sequence databases composed of the 

symbiont metagenomes and the genomes of related organisms using the SEQUEST 

algorithm. For protein identification only peptides identified with high mass accuracy 

(maximum ± 10 ppm difference between calculated and observed mass) were considered 

and at least two different peptides were required to identify a protein. False discovery 

rates were estimated with searches against a target-decoy database as described 

previously (154, 155) and were determined to be between 0 - 3.27%. For relative 

quantitation of proteins, normalized spectral abundance factor (NSAF) values were 

calculated for each sample according to the method of Florens et al. (156). All identified 
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proteins and their relative abundance in different samples are shown in datasets S1 and 

S2. Protein databases, peptide and protein identifications as well as all MS/MS spectra 

are available at http://compbio.ornl.gov/olavius_algarvensis_symbiont_metaproteome/. 

All supplemental material can be downloaded from: 

http://www.pnas.org/content/109/19/E1173/suppl/DCSupplemental. 

 

Proteomics-based binning 

Proteins encoded on metagenome fragments that were not previously assigned to a 

specific symbiont were tentatively assigned (binned) to a specific symbiont if they were 

repeatedly detected in higher abundances in enrichments of only one specific symbiont. 

To validate this approach and to calculate a false assignment rate we also did proteomics 

binning with the proteins that had already been assigned to a specific symbiont in the 

metagenomic study (Table S3, SI Text). 

 

Enzyme tests 

Enzymatic activities were determined in cell extracts from either whole worms or 

enriched symbionts (SI Text, Table S5). Detailed methods for all enzyme activity assays 

are provided in the SI Text. 

 

Measurement of hydrogen and CO concentrations in the O. algarvensis habitat 

Seawater and pore water samples from 25 cm sediment depth were collected by research 

divers using a stainless steel needle and capped syringes. A total of 9 sites within an area 

of approx. 100 m
2
 at the O. algarvensis collection site were sampled. Hydrogen and CO 

http://compbio.ornl.gov/olavius_algarvensis_symbiont_metaproteome/
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concentrations were measured the same day using a RGA3 reduction gas analyzer (Trace 

Analytical Inc., Menlo Park, CA, USA). 

 

Metabolite identification and quantification in whole worms and pore water 

Whole worms were extracted using ice cold ethanol based solvent mixture and 

ultrasonication. Metabolites were measured with GC-MS, LC-MS and 
1
H-NMR as 

described previously (157). Detected metabolites are shown in table S2. Relative 

quantification of metabolites was performed on the basis of complete 

spectrum/chromatogram intensities (SI Text). Pore water was sampled at different 

sediment depths in the O. algarvensis habitat by scuba divers with RHIZON ® MOM 10 

cm soil water samplers (F. Meijboom, Wageningen, NL) and measured using GC-MS as 

described in Liebeke et al. (2011) (157). 

 

Results/Discussion 

 

High coverage of the symbiosis metaproteome and metabolome 

 We identified and quantified a total of 2,819 proteins and 97 metabolites in O. 

algarvensis and its symbiotic community (Datasets S1 and S2, Tables S1 and S2) using 

different methods for both the metaproteomic and the metabolomic analyses to overcome 

the intrinsic biases inherent in a single detection method (SI Text). For host proteins, 

sequences from related annelids enabled the cross-species identification of 530 O. 

algarvensis proteins, thus providing the first insight into the metabolism of a marine 

oligochaete, a group of annelid worms for which no genomic data is available. For 

symbiont proteins, the published O. algarvensis symbiont metagenome, which contains 
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only sequences assigned to specific symbionts through binning analyses (148), led to the 

identification of 1,586 proteins. The addition of unassigned sequences from the unbinned 

O. algarvensis symbiont metagenome allowed us to identify a total of 2,265 symbiont 

proteins, a 43% increase compared to the published metagenome alone. No proteins were 

found that could be unambiguously assigned to the spirochaete symbiont of O. 

algarvensis, due to the lack of metagenomic information for the spirochaete (148). 

  To further improve coverage of the metaproteome we developed a method using 

density gradient centrifugation for physical separation of the O. algarvensis symbionts 

from each other and host tissues (SI Text, Fig. S1). This greatly enhanced the number of 

identified symbiont proteins, particularly for those present in lower abundances (Fig. 1, 

Table S1). An additional advantage of symbiont enrichments was that we were able to 

assign proteins from the unbinned metagenomic sequences to a specific symbiont if they 

were detected in high abundances in enrichment fractions of the given symbiont (SI 

Text). This “proteomics-based binning” allowed us to assign 544 previously unassigned 

proteins to a specific symbiont, thus extending our understanding of the symbionts’ 

metabolism significantly (Dataset S3, Table S3). 

 

Energy sources for the symbiosis 

 One of the major unresolved questions in the O. algarvensis symbiosis is what the 

sources of energy from the environment are that fuel the association. Earlier studies 

found that reduced sulfur compounds are supplied internally as an energy source to the 

aerobic sulfur-oxidizing γ-symbionts by the anaerobic sulfate-reducing δ-symbionts. In 

return, the δ-symbionts are supplied with oxidized sulfur compounds as electron 
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Figure 4.1: Positive effect of symbiont enrichment using density gradient 

centrifugation. Enrichments considerably increased the number of identified proteins in 

a given symbiont compared to analyses of whole worms. Average protein numbers were 

calculated for 2D-LC-MS/MS experiments (Table S1). γ1-symbiont enrichments (n=2), 

δ1-symbiont enrichments (n=2) and whole worm samples (n=4). For assignment of 

proteins to a symbiont, both metagenomic and proteomic binning information was used. 

 

 

acceptors (145, 148). Our metaproteomic analyses confirmed this model of syntrophic 

sulfur cycling with the detection of abundantly expressed sulfur oxidation proteins in the 

γ-symbionts and sulfate reduction proteins in the δ-symbionts (Fig. 2, S2 and S3a, SI 

Text). However, for net growth and compensation of thermodynamic losses, external 

energy sources are required. Most chemosynthetic symbioses are fueled by an external 

supply of reduced sulfur compounds, but concentrations of reduced sulfur compounds are 
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extremely low in the habitat of O. algarvensis (145). This indicates that other energy 

sources play an important role in the symbiosis.  

 

Carbon monoxide may be used by three symbionts 

 Our metaproteomic analyses indicate that three of the O. algarvensis symbionts 

use carbon monoxide (CO) as an energy source. CO is not known to be used as an 

electron donor by chemosynthetic symbionts. Its toxicity for all aerobic forms of life 

precluded the assumption that this reductant could play an important role in animal 

symbioses. We detected both aerobic and anaerobic CO dehydrogenases in the O. 

algarvensis consortium, the aerobic type in the γ3-symbiont and the anaerobic type in the 

deltaproteobacterial symbionts (for reviews of aerobic and anaerobic CO oxidation see 

King and Weber (158) and Oelgeschläger and Rother (159)). The deltaproteobacterial 

symbionts express two versions of the anaerobic CO dehydrogenase, one that oxidizes 

free CO generating a proton gradient across the membrane, and one that is likely 

involved in the Wood-Ljungdahl pathway and oxidizes enzyme bound CO (SI Text).  

 To support the metaproteomic prediction that CO could be an energy source for 

the symbiosis we measured CO concentrations in the O. algarvensis habitat. CO 

concentrations in the sediment pore waters ranged from 17 to 46 nM (Fig. S4). These 

concentrations are sufficient to support marine CO oxidizers, which can use 

concentrations of 2-10 nM in surface sea water (160, 161) and about 100 nM at 

hydrothermal vents (158). Pore water CO concentrations were well above the 

concentrations in the seawater overlaying the sediment (8 to 16 nM) (Fig. S4), indicating 

the presence of a CO source in the sediment. CO can be produced through abiotic and  
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Figure 4.2: Overview of symbiotic metabolism based on metaproteomic and 

metabolomic analyses. (a) Live Olavius algarvensis specimen. (b) Cross section through 

O. algarvensis showing the symbionts just below the worm's cuticle with specific 
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fluorescence in situ hybridization probes (sulfur-oxidizing symbionts in green, sulfate-

reducing symbionts in red). (c) Metabolic reconstruction of symbiont and host pathways. 

The δ1- and δ4-symbionts are shown as a single cell, because most metabolic pathways 

were identified in the δ1-symbiont and only a small fraction of the same pathways were 

identified in the δ4-symbiont due to the low coverage of its metaproteome. 3-HPB, partial 

3-hydroxypropionate bi-cycle; CM, cell material; CODH, carbon monoxide 

dehydrogenase (aerobic or anaerobic type); NiRes, nitrate respiration; OxRes, oxygen 

respiration; PHA, polyhydroxyalkanoate granule; S0, elemental sulfur; Sred, reduced 

sulfur compounds; SulOx, sulfur oxidation; Unk. TEA, unknown terminal electron 

acceptor (56). 

 

 

biotic processes from plant roots (162) and from decaying seagrass-derived organic 

matter (163), which are abundant at the collection site of the worms.  

 The CO2/CO couple has a very negative redox potential E°’ of -520 mV (164) 

making CO an excellent electron donor, whose electrons can be transferred to a variety of 

terminal electron acceptors such as oxygen, nitrate, elemental sulfur and sulfate (158, 

159, 165). CO could therefore be used as an energy source by the O. algarvensis 

symbionts under all redox conditions as the worm shuttles between sediment layers. In 

the reduced sediment layers the δ-symbionts could use sulfate for the anaerobic oxidation 

of CO, thereby producing reduced sulfur compounds for the γ-symbionts, while in the 

oxic and suboxic sediment layers the γ3-symbiont could oxidize CO with nitrate as a 

terminal electron acceptor (SI Text on terminal electron acceptors).  

 

Hydrogen may be used by the sulfate-reducing symbionts 

 Our metaproteomic analyses revealed that hydrogen may play an important role 

as an energy source in the O. algarvensis symbiosis, based on the abundant expression of 

periplasmic uptake [NiFeSe] hydrogenases in both δ-symbionts (δ1: SP088, δ4: SP089). 
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These [NiFeSe] hydrogenases have high affinities for hydrogen (166), which is consistent 

with the low hydrogen concentrations reported for oligotrophic sediments (<10 nM) 

(167) and marine sediments in general (<60 nM) (168).We were therefore surprised to 

measure unusually high concentrations of hydrogen ranging from 438 to 2147 nM in the 

sediment pore waters at the O. algarvensis collection site (Fig. S5). These high 

concentrations could be a result of biological H2 production by anaerobic CO oxidizers, 

and are consistent with the elevated CO concentrations at the collection site. The 

hydrogen concentrations in the worms’ habitat are much higher than those needed by 

common hydrogen oxidizing microorganisms for growth (169), indicating that the δ-

symbionts could use the hydrogen present in the Elba sediment as an energy source. 

 The use of hydrogen as an energy source by chemoautotrophic sulfur-oxidizing 

symbionts was recently shown for deep-sea Bathymodiolus mussels from hydrothermal 

vents (170). Our study indicates that hydrogen could also play a role as an energy source 

in shallow-water chemosynthetic symbioses. As with carbon monoxide, the use of 

externally supplied hydrogen might be another adaptation of the O. algarvensis symbiosis 

to life in the sulfide-depleted sediments of Elba. 

 

Highly abundant uptake transporters for organic substrates in the δ-symbionts 

 The sulfate-reducing δ-symbionts expressed extremely high numbers and 

quantities of high affinity uptake transport related proteins, which enable them to take up 

organic substrates at very low concentrations (Datasets S2 and S4). In the δ1-symbiont, 

between 89 and 116 transport proteins were detected per sample, which corresponds to an 

average of 29% of all identified δ1-symbiont proteins. In terms of abundance the δ1-



 

 73 

symbiont transport proteins amounted to over 38% of the total δ1-symbiont protein 

(Table S4). Higher abundances of these types of transporters have to our knowledge only 

been found in the metaproteome of the α-proteobacterium Pelagibacter ubique (SAR11) 

from the Sargasso Sea during extremely low nutrient conditions (171) (Table S4).  

Most of the identified transport proteins in the δ1-symbionts were periplasmic binding 

proteins of high-affinity ABC or TRAP type transporters, which actively transport 

substrates against a large concentration gradient while using energy in the form of ATP 

or an ion gradient (172) (173). The vast majority of the detected δ1-symbiont transport 

proteins are used for the uptake of a variety of substrates such as amino acids, peptides, 

di- and tricarboxylates, sugars, polyamines and phosphonates, with amino acid and 

peptide transporters the most dominant ones (Dataset S4). The remarkable abundance of 

transport-related proteins in the δ-symbionts suggests that these symbionts use organic 

substrates not only as an energy source, but also as source for preformed building blocks, 

thus saving resources by not having to synthesized these de novo. 

 The organic substrates used by the δ -symbionts could be supplied internally from 

within the worms or externally from the environment. Our metabolomic analyses of 

whole worms revealed considerable amounts of dicarboxylates and some amino acids (in 

the low mM range), making an internal source of the organic substrates possible (Fig. S7, 

Table S2). However, the relatively high concentrations of these substrates contradict the 

expression of energy consuming high-affinity transporters by the δ-symbionts. In cultured 

bacteria (174-176) as well as in environmental communities (171, 177) ABC/TRAP 

transporters are induced at low substrate concentrations, while under nutrient-rich 

conditions, less energy-consuming transporters are used. Most likely the metabolites that 
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we measured in homogenized worms are not easily accessible to the δ-symbionts in situ 

as they are enclosed in host or symbiont cells. 

 To examine if organic substrates are supplied externally from the O. algarvensis 

environment, we analyzed sediment pore waters from the worm's collection site with GC-

MS for the presence of a large range of di- and tricarboxylates, amino acids and sugars. 

None of these metabolites were measurable, with detection limits at about 10 nM (Fig. 

S8). Such oligotrophic conditions are consistent with the high expression of ABC/TRAP 

transporters that have extremely high affinities for substrates at concentrations far below 

the detection limits of our method (178, 179). The worm's cuticle is permeable for small 

negatively charged compounds as well as substrates up to 70 kDa (144) and thus the δ-

symbionts would have access to both small organic compounds such as di- and 

tricarboxylates as well as larger organic substrates such as sugars and polyamines from 

the environment. The expression by the δ-symbionts of transporters for a very broad 

range of substrates would allow them to quickly respond to and take up many different 

substrates that could be either consistently present at low concentrations in their 

environment or fluctuate over time and space as the worm migrates through the sediment. 

 Regardless of whether the organic substrates come from the environment or 

internally from within the symbiosis, the high abundances of high-affinity uptake 

transporters in the δ-symbionts indicate that they experience nutrient limitation, forcing 

them to dedicate a major part of their resources to the acquisition of substrates. Despite 

their endosymbiotic location, the lifestyle of these bacteria thus appears to most closely 

resemble that of planktonic SAR11 bacteria from low-nutrient extremes in the Sargasso 

Sea (171). 
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Recycling and waste management 

 Given the extremely low concentrations of nutrients in the O. algarvensis habitat, 

the conservation of substrates and energy should be highly advantageous for the 

symbiosis. Our metaproteomic and metabolomic analyses revealed several pathways, 

some of which have not been previously described, that could enable the symbionts to 

recycle waste products of their hosts and conserve energy. 

 

Proposed pathways for the recycling of host fermentative waste in multiple symbionts 

Cross-species identification of host proteins enabled us for the first time to gain insight 

into the metabolism of O. algarvensis. Our analyses revealed that O. algarvensis 

expressed proteins for an anaerobic metabolism that produces large amounts of acetate, 

propionate, malate, and succinate as fermentative waste products, when living in deeper 

anoxic sediment layers (180, 181) (SI Text, Fig. S6, Dataset S2). Correspondingly, we 

detected considerable amounts (1 to 8 mM) of malate, succinate, and acetate in the worm 

metabolome (Fig. S7, Table S2). Aquatic invertebrates without symbionts must excrete 

these fermentative waste products to keep their internal pH stable, thereby losing large 

amounts of energy-rich organic compounds. In O. algarvensis, the ability of the sulfate 

reducing δ-symbionts to use their host's fermentative waste as substrates recycles and 

preserves considerable amounts of energy and organic carbon within the symbiotic 

system (SI Text). 

 Surprisingly, the dominant γ1-symbiont, previously assumed to only fix carbon 

autotrophically, may also function heterotrophically by assimilating acetate, propionate, 

succinate, and malate, thus also contributing to host waste recycling. We detected 
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abundantly expressed enzymes for an almost complete 3-hydroxypropionate bi-cycle (3-

HPB) in the γ1-symbiont (Dataset S2, Fig. 3 and S3b). The 3-HPB is used for autotrophic 

CO2 fixation in Chloroflexus aurantiacus, a filamentous anoxygenic phototroph (182), 

but parts of the 3-HPB pathway can also be used for the heterotrophic assimilation of 

acetate,  propionate, succinate and malate (183). 

 In retrospect, it is clear why the 3-HPB was not discovered in the metagenomic 

analyses of the O. algarvensis symbionts: many of its genes occurred on sequence 

fragments that could not be assigned to a specific symbiont and were therefore not 

included in the annotation analyses (148). Here, we used our 'proteomics-based binning' 

method described above to assign abundantly expressed 3-HPB enzymes encoded on 

unassigned metagenomic fragments to the γ1-symbiont (SI Text, Materials and Methods, 

Dataset S3). This enabled us to identify nearly all enzymes required for the complete 3-

HPB, with the exception of two diagnostic enzymes of the 3-HPB - malonyl-CoA 

reductase and propionyl-CoA synthase - that were missing in both the metagenome and 

the metaproteome (Fig. 4.3). 

 To better understand how the 3-HPB might function in the symbionts, we 

performed enzyme assays with extracts from whole worms and enriched γ1-symbionts. 

Activities of all 3-HPB enzymes were detected, except the two diagnostic enzymes that 

were also absent from the metaproteome (Table S5). We therefore propose a modified 

incomplete 3-HPB as shown in Fig. 4.3, which the γ1-symbiont could use to assimilate 

the host's fermentative waste products acetate, propionate, succinate, and malate. The 

abundant expression of the modified 3-HPB suggests that it plays an important role in the 

central carbon metabolism of the γ1-symbionts. The net fixation of CO2 is unlikely  
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Figure 4.3: Modified version of the 3-hydroxypropionate bi-cycle (3-HPB) in the γ1-

symbiont. Reactions not needed for the assimilation of propionate and acetate are shown 

in the grey box; reaction 1 can also play a role in fatty acid metabolism. [1] Acetyl-CoA 

carboxylase (2004223475), [2] malonyl-CoA reductase, [3] propionyl-CoA synthase, [4] 

propionyl-CoA carboxylase (2004223080), [5] methylmalonyl-CoA epimerase 

(RASTannot_91923), [6] methylmalonyl-CoA mutase (RASTannot_20798), [7] succinyl-

CoA:(S)-malate-CoA transferase (RASTannot_529, RASTannot_48547), [8] succinate 

dehydrogenase (2004223104, 2004223105), [9] fumarate hydratase (2004223692), 

[10a,b,c] (S)-malyl-CoA/β-methylmalyl-CoA/(S)-citramalyl-CoA (MMC) lyase 

(RASTannot_91504), [11] mesaconyl-C1-CoA hydratase (β-methylmalyl-CoA 

dehydratase) (2004222675), [12] mesaconyl-CoA C1-C4 CoA transferase 

(RASTannot_38616), [13] mesaconyl-C4-CoA hydratase ((S)-citramalyl-CoA 

dehydratase) ( (RASTannot_6738) 
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because of the absence of the two diagnostic enzymes and the low activities of the 

carboxylases involved in the 3-HPB (Table S5). The pathway could also be linked to the 

synthesis and/or mobilization of the storage compound polyhydroxyalkanoate (PHA). A 

putative PHA synthase (2004222379) and a phasin protein (PHA granule protein, 

6frame_RASTannot_14528) are highly expressed in the γ1-symbiont metaproteome, 

showing the importance of PHA synthesis for this symbiont. Under anaerobic conditions, 

PHA synthesis would not only produce a valuable storage compound, but also relieve the 

symbiont of superfluous reducing equivalents. 

 Intriguingly, one of the closest free-living relatives of the γ1-symbiont - 

Allochromatium vinosum - whose genome was recently sequenced, does not possess the 

genes needed for the 3-HPB or its modified version (http://genome.jgi-

psf.org/allvi/allvi.home.html). This suggests that the genes for this pathway were gained 

through lateral transfer. Certainly, there is a strong selective advantage for this pathway 

in the γ1-symbionts. The γ1-symbionts are present in almost all gutless oligochaete 

species and therefore assumed to be the ancient primary symbionts that first established a 

mutualistic relationship with the oligochaetes (144). The ability to recycle organic host 

waste would have been a considerable advantage during the early stages of the symbiosis 

before the establishment of associations with other bacteria such as the heterotrophic 

sulfate-reducing symbionts.  

 

Uptake and recycling of nitrogenous compounds 

 Since sources of nitrogen are extremely limited in the habitat of O. algarvensis 

(184), efficient strategies for dealing with nitrogen limitation represent a selective 
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advantage. Our metaproteomic and metabolomic analyses of the O. algarvensis 

association indicate two major strategies for dealing with nitrogen limitation: (i) the use 

of high affinity systems for the uptake of nitrogenous compounds from the environment 

and (ii) conservation of nitrogen within the symbiosis through recycling. 

 Environmental nitrogen is most likely assimilated by the symbionts using 

glutamine synthetases as well as high affinity uptake transporters. The γ1-, γ3- and the 

δ1-symbiont abundantly expressed glutamine synthetases (Dataset S2). This enzyme 

assimilates ammonia into glutamine with high affinity at very low ammonia 

concentrations and is only expressed in cultured organisms under low nitrogen conditions 

(185, 186). Uptake of organic compounds from the environment is presumably a further 

source of nitrogen, given the abundant expression of high affinity amino acid and peptide 

uptake transporters in the δ1-symbiont that enable these to acquire nitrogen-containing 

substrates at extremely low concentrations.  

 The second proposed strategy of the O. algarvensis association for dealing with 

low nitrogen availability is the internal recycling of nitrogenous host osmolytes and waste 

products by the symbionts. In many invertebrates, these compounds are removed through 

excretory organs called nephridia. Gutless oligochaetes are the only known annelid 

worms without nephridia and their reduction indicates that their symbionts have taken 

over the role of waste and osmolyte management. Our metabolomic analyses revealed 

high concentrations of two nitrogenous osmolyte and waste compounds in O. 

algarvensis, glycine betaine and urea (Table S2), with glycine betaine the most abundant 

metabolite detected in NMR measurements (~60 mM) (Fig. S7). Glycine betaine is a 

well-known osmolyte in all kingdoms of life (187) and most likely also serves this 
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function in O. algarvensis. The relatively high amounts of urea in O. algarvensis are 

unusual, as this nitrogenous waste compound and osmolyte is not commonly found in 

aquatic animals (187). The O. algarvensis symbionts abundantly expressed proteins for 

glycine betaine and urea uptake and for the pathways required to use them as carbon and 

nitrogen sources (Fig. 4.2, SI Text). 

 

Energy conservation with proton-translocating pyrophosphatases  

 We propose several novel pathways for energy conservation in the O. algarvensis 

symbiosis. Both the γ-symbionts and the δ1-symbiont expressed pyrophosphate-

dependent enzymes that could conserve energy in as yet undescribed modifications of 

classical metabolic pathways. Our analyses of published genomes indicate that these 

pathways may be common in sulfate reducers and chemoautotrophic bacteria. 

The key enzyme for the proposed energy conservation pathways is a membrane bound 

proton-translocating pyrophosphatase (H
+
-PPase), which was abundantly expressed in 

both the γ- and the δ1-symbionts (SI Text). H
+
-PPases are widespread in all three 

domains of life. Despite their pervasiveness, remarkably little is known about the 

metabolic pathways in which they are used (188). H
+
-PPases are proton pumps that use 

the hydrolysis of inorganic pyrophosphate (PPi) instead of ATP to generate a proton-

motive force through translocation of protons across biological membranes (Fig. 4.4). 

They can also work reversibly as proton-translocating pyrophosphate synthases (H
+
-PPi 

synthase) and produce PPi using a proton-motive force (188). 
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Figure 4.4: Suggested role of the proton-translocating pyrophosphatase (H+PPase) 

in the δ1-symbiont. Energy is conserved through the use of a membrane bound proton-

translocating pyrophosphatase instead of a cytosolic pyrophosphatase. Inorganic 

pyrophosphate (PPi) is produced by abundantly expressed enzymes, which catalyze the 

initial steps of sulfate reduction, propionate oxidation and acetate oxidation. Red numbers 

show the stoichiometry. 

 

 

H
+
-PPase energy conservation in sulfate reducers 

 Sulfate-reducing bacteria produce large amounts of PPi as a by-product of the first 

step of sulfate reduction (Fig. 4.4). This PPi has to be immediately removed to pull the 

reaction in the direction of sulfate reduction (189). For most sulfate reducers the 

mechanism of PPi removal is unknown. In some it occurs through a 'wasteful' hydrolysis 

of PPi by a soluble inorganic pyrophosphatase (190). In others the energy from PPi 

hydrolysis may be conserved with a H
+
-PPase (191), but to date this has not yet been 

proven. Our metaproteomic analyses provide support for the conclusion that the sulfate-

reducing δ1-symbiont uses the H
+
-PPase to conserve energy from PPi based on the 
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abundant expression of a H
+
-PPase and the absence of a soluble pyrophosphatase. The 

stoichiometry of the H
+
-PPase yields one ATP per hydrolysis of three PPi (192), which 

would provide the δ1-symbiont with a considerable energy gain of one additional ATP 

per three molecules of sulfate reduced.  

 Other sources of PPi besides sulfate reduction also appear to play an important 

role in the metabolism of the δ1-symbiont. In addition to expressing PPi-producing 

enzymes found in all organisms such as aminoacyl-tRNA synthetases, RNA and DNA 

polymerases, the δ1-symbiont abundantly expressed at least two other PPi-producing 

enzymes - the acetate-CoA ligase (2004210485) and the propionate-CoA ligase 

(2004210481). We therefore postulate, based on the abundant expression of numerous 

PPi-producing enzymes in the δ1-symbiont, that H
+
-PPase plays a key role in energy 

conservation in its metabolism (Fig. 4.4 and S3a). 

 To examine how widespread H
+
-PPases are in sulfate reducers, we analyzed the 

genomes of sulfate reducers available in the databases. These revealed H
+
-PPases in 

several sulfate reducers from two bacterial divisions, Desulfatibacillum alkenivorans AK-

01 and Desulfococcus oleovorans Hxd3 from the Deltaproteobacteria, and Candidatus 

Desulforudis audaxviator MP104C and Desulfotomaculum reducens MI-1 from the 

division Clostridia. This suggests that the use of H
+
-PPases for energy conservation may 

be widely distributed among phylogenetically diverse sulfate-reducing bacteria. 

 

Energy-efficient PPi-dependent pathways in sulfur oxidizers 

 We propose that the γ-symbionts use novel energy-saving modifications of the 

Calvin cycle, glycolysis and gluconeogenesis pathways. The key enzymes for the 
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proposed modifications are the H
+
-PPase and a closely coupled PPi-dependent 6-

phosphofructokinase (PPi-PFK). We show that these enzymes could save as much as 

30% energy over ATP-dependent pathways and that this energy saving pathway may be 

widespread in chemoautotrophic bacteria. 

 Metagenomic analyses of the O. algarvensis consortium showed that the γ1-

symbiont lacks two key enzymes of the classical Calvin cycle, fructose-1,6-

bisphosphatase and sedoheptulose-1,7-bisphosphatase (the γ3-symbiont lacks only the 

latter) (Fig. 4.5c). Interestingly, the chemoautotrophic symbionts of the hydrothermal 

vent tubeworm Riftia pachyptila and the vesicomyid clams Calyptogena magnifica and 

C. okutanii also lack the genes for these two enzymes, even though all of them fix CO2 

via the Calvin cycle (193-195). For the C. magnifica symbiont, Newton et al. (2008) 

(194) hypothesized that a PPi-PFK might replace fructose-1,6-bisphosphatase, but no 

enzyme was found that could replace sedoheptulose-1,7-bisphosphatase. It therefore 

remained unclear how the Calvin cycle could function in these chemoautotrophic 

symbionts. 

 We found that both γ-symbionts of O. algarvensis possess a gene for a PPi-PFK 

that is highly similar to that of the methane-oxidizer Methylococcus capsulatus (amino 

acid identities, γ1: 71%; γ3: 69%). The M. capuslatus PPi-PFK catalyzes three reactions: 

i) the reversible, phosphate dependent transformation of fructose-1,6-bisphosphate to 

fructose-6-phosphate and PPi, ii) the reversible, phosphate dependent transformation of 

sedoheptulose-1,7-bisphosphate to seduheptulose-7-phosphate and PPi, and iii) the PPi 

dependent phosphorylation of ribulose-5-phosphate to ribulose-1,5-bisphosphate. Thus, 

PPi-PFK can replace the enzymes involved in these three reactions: fructose-1,6-
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bisphosphatase, sedoheptulose-1,7-bisphosphatase and phosphoribulokinase (196) (SI 

Text, Fig. 4.5b and c). The PPi-PFK was abundantly expressed in the γ1-symbiont (the 

low coverage of the γ-3-symbiont proteome could explain why it was not detected in this 

symbiont). We propose that in the O. algarvensis γ-symbionts and possibly other 

chemoautotrophs (see below), the PPi-PFK has multiple functions in the Calvin Cycle, 

glycolysis and gluconeogenesis, and that this leads to considerable energy savings as 

described below (Fig. 4.5a and b).  

 In the classical Calvin cycle, the reactions catalyzed by fructose-1,6-

bisphosphatase and sedoheptulose-1,7-bisphosphatase produce phosphate ions that cannot 

be used for energy gain. In contrast, if PPi-PFK replaces these enzymes, energy-rich 

pyrophosphates are produced in both reactions. Interestingly, in the genomes of both γ-

symbionts, the genes for PPi-PFK are located in the immediate neighborhood of H
+
-

PPases, indicating a close metabolic relationship between these two enzymes and their 

co-transcription (Fig. 5d), as shown for M. capsulatus, in which these genes also co-occur 

(Fig. 5d) (196). We propose that the pyrophosphate produced by the PPi-PFK in the 

Calvin cycle is used to conserve energy via the proton-motive force generated by the H
+
-

PPase (Fig. 5b). This metabolic coupling between the PPi-PFK and H
+
-PPase would lead 

to energy savings of at least 9.25% (1 
2
/3 ATP less per 6 molecules of fixed CO2 in 

comparison to the 'classical' Calvin cycle in which 18 ATP are used for the fixation of six 

CO2). An even higher energy gain of 31.5% is possible if PPi-PFK also replaces ATP-

dependent phosphoribulokinase in the last step of the Calvin cycle: the conversion of 

ribulose-5-phosphate to ribulose-1,5-bisphosphate could be energized with PPi from the 
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two other Calvin cycle reactions and/or the H
+
-PPase working in PPi synthesis direction, 

so that a total of 5 
2
/3 ATP (31.5%) would be saved per 6 CO2 fixed. 

 In addition to their proposed role in the Calvin cycle, we hypothesize that the PPi-

PFK and H
+
-PPase also provide considerable energy savings in glycolysis and 

gluconeogenesis as well as through several additional enzymes (SI Text). We thus 

conclude that PPi-PFK and H
+
-PPase could play a key role in energy conservation in the 

γ1-symbiont, and most likely also in the γ3-symbiont. 

 

Widespread occurrence of co-localized H
+
-PPase/PPi-PFK genes in chemoautotrophic 

bacteria 

 To examine if other microorganisms could also use the PPi-PFK and H
+
-PPase for 

the pathways we propose above, we analyzed all bacterial [1354] and archaeal [58] 

genomes available in the NCBI genomic database on January 29
th

 2009 

(http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi). We discovered co-localized H
+
- 

PPase/PPi-PFK genes, indicating close metabolic coupling and co-transcription, in the 

chemoautotrophic sulfur-oxidizing symbionts of C. magnifica and C. okutanii as well as 

in 8 free-living bacterial species (Gamma- and Betaproteobacteria and Thermotogae), all 

of which possess ribulose-1,5-bisphosphate carboxylase/oxygenase genes for autotrophic 

CO2 fixation (Fig.4.5d). This broad distribution of co-localized H
+
-PPase/PPi-PFK genes 

in bacteria for which genomes are available suggests that H
+
-PPase/PPi-PFK dependent 

pathways for energy conservation are widespread in both symbiotic and free-living 

chemoautotrophic bacteria. 
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Fig. 4.5: Comparison of the “classical” Calvin cycle with a proposed more energy 

efficient version. (a) The text book version of the Calvin cycle. (b) More energy-efficient 

version of the Calvin cycle in the gamma1-symbionts through the use of a pyrophosphate 

(PPi)-dependent trifunctional 6-phosphofructokinase/sedoheptulose-1,7-

bisphosphatase/phosphoribulokinase (green arrows) and a proton-translocating 

pyrophosphatase/proton-translocating pyrophosphate synthase (H
+
-PPase/ H

+
-PPi 

synthase in red). The main differences between the cycles are highlighted in yellow. CM, 

cell membrane; DHAP, dihydroxyacetone phosphate; GAP, D-glyceraldehyde-3-
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phosphate; PPi, inorganic pyrophosphate; Sh-7-P, D-sedoheptulose-7-phosphate. (c) 

Overview of genes that are replaced by the trifunctional PPi-dependent enzyme in 

different organisms (d) Co-localized H
+
-PPase/PPi-PFK genes in the γ-symbionts and 

other symbiotic as well as free-living bacteria. 

 

The discovery of these pathways in chemoautotrophic bacteria is particularly interesting 

in light of evidence that H
+
-PPases may have an ancient origin (188). H

+
-PPase is the 

simplest known primary proton pump. It is the only known alternative to ATP synthases 

for the production of energy-rich phosphoanhydride bonds, and the only primary pump 

that is preserved in all three domains of life (188, 197). Given mounting evidence that the 

earliest forms of life were chemoautotrophic (198), the apparent pervasiveness of energy 

conserving H
+
-PPase pathways in chemoautotrophs adds further weight to the hypothesis 

that PPi preceded ATP as the central energy carrier in the early evolution of life (197, 

199, 200). 

 

Conclusions 

 

 Our metaproteomic and metabolomic analyses of the O. algarvensis symbiosis 

provide strong indirect evidence for a number of novel and unexpected metabolic 

pathways and strategies that were not identified in the metagenomic analysis of the 

symbiotic consortium (148). We gained further functional insights by using proteomics-

based binning. This method allowed us to include an additional 9 Mb of sequences in our 

analyses that could not be mined for genomic information by Woyke et al. (2006) (148), 

because their lengths were too short to enable a clear assignment to a specific symbiont. 

One of the key questions in the metagenomic analyses of complex symbiotic consortia 

including those of the human gut is why there is so much functional redundancy (201, 
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202). The selective advantage for O. algarvensis of harboring two sulfur-oxidizing γ-

symbionts with apparent functional redundancy was so far not clear. Our study shows 

that the only physiological traits shared by these two symbionts are their common use of 

reduced sulfur and carbon fixation via the Calvin cycle. Otherwise, they show very 

marked differences in their use of additional energy and carbon sources as well as 

electron acceptors. The γ3-symbionts most likely use carbon monoxide and the host-

derived osmolyte glycine betaine as additional energy and carbon sources, while the γ1-

symbionts may use fermentative waste products from their hosts as additional carbon 

sources. Furthermore, the γ1-symbionts appear to rely heavily on storage compounds 

such as sulfur and polyhydroxyalkanoates, while storage compounds do not appear to 

play a dominant role in the metabolism of the γ3-symbionts. Resource partitioning is also 

visible in the differences in electron acceptors used by the two symbionts. The γ1-

symbionts depend predominantly on oxygen for their respiration while the γ3-symbionts 

are not able to use this electron acceptor and instead use the energetically less favorable 

nitrate (SI Text). Our metaproteomic analyses thus indicate functional differences in the 

metabolism of these two symbionts despite their genetic similarities in key metabolic 

pathways for chemosynthesis. This appears to be a common theme in microbial 

communities, as several recent proteomic and metaproteomic studies have shown that 

ecological differences between microorganisms with similar genomes are due to major 

differences in their protein expression (203-205). 

 While resource partitioning provides the association versatility and the ability to 

harvest a wide spectrum of energy and carbon sources, in one key aspect all four 

symbionts appear to share a remarkably similar metabolic strategy. They all express 
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proteins involved in highly efficient pathways for the uptake, recycling, and conservation 

of energy and carbon sources. These include (i) multiple strategies for the recycling of 

host waste products, (ii) the possible use of additional inorganic energy sources besides 

reduced sulfur compounds, such as hydrogen and carbon monoxide, (iii) the extremely 

abundant expression of high-affinity uptake transporters that would allow the uptake of a 

wide range of substrates at very low concentrations and (iv) novel energy efficient steps 

in sulfate reduction and CO2 fixation. Given the oligotrophic, nutrient-poor nature of the 

worm's environment in which organic compounds were below detection limits and 

reduced sulfur compounds barely detectable, the selective pressure for metabolic 

pathways that maximize energy and carbon acquisition and conservation appears to have 

been very strong in the shaping of these symbioses. 
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CHAPTER FIVE 

 

Abundant Transposase Expression in Mutualistic Endosymbionts is Revealed by 

Metaproteomics 

 

 

Text is adapted from: *Kleiner M, *Young, JC., Shah, M, Verberkmoes, NC., and 

Dubilier, N. Metaproteomics Reveals Abundant Transposase Expression in Mutualistic 

Endosymbionts. Submitted to mBio in October, 2012.  (*these authors contributed 

equally to this work) (206). 

 

Jacque Young’s contributions included performing all nano-2D-LC-MS/MS runs, data 

analysis, manuscript writing and editing.  

 

 

Abstract 

 

Transposases, enzymes that catalyze the movement of mobile genetic elements, 

are the most abundant genes in nature. While many bacteria encode a wealth of 

transposases in their genomes, the current paradigm is that transposase gene expression is 

tightly regulated and generally low due to its severe mutagenic effects. In the current 

study, we detected the highest number of transposase proteins ever reported in bacteria, 

in symbionts of the gutless marine worm Olavius algarvensis using metaproteomics. At 

least 26 different transposases from 12 different families were detected and genomic and 

proteomic analyses suggest many of these are active. This high expression of 

transposases suggests the mechanisms for their tight regulation may have been disabled 

or destroyed. 
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Introduction 

The expansion of transposable elements (TE) within genomes of host-restricted 

symbionts and pathogens plays an important role in their emergence and evolution, and 

might be a key mechanism for adaptation to the host environment. However, little is 

known so far about the underlying causes and evolutionary mechanisms of this TE 

expansion. The current model of genome evolution in host-restricted bacteria explains TE 

expansion within the confines of the paradigm that transposase expression is always low. 

However, recent work by Plague et al. (207) failed to verify this model. Our data 

suggests that increased transposase expression, which has not previously been described, 

may play a role in TE expansion, and could be one explanation for the sometimes very 

rapid emergence and evolution of new obligate symbionts and pathogens from facultative 

ones. 

Transposases are enzymes that catalyze the movement of mobile genetic elements 

in and between genomes, and are the most abundant and ubiquitous genes in nature (208). 

Most often transposases are part of transposable elements, which only encode the 

transposase gene and some short flanking sequences necessary for transposition: these 

basic transposable elements are called insertion sequence (IS) elements. Classically, 

transposable elements are considered to be selfish genetic elements or parasitic DNA 

with no other purpose than reproducing themselves (38, 209, 210). However, in more 

recent years it has become clear that transposable elements are not always parasites, but 

can also have beneficial effects increasing host fitness (For reviews of the ongoing debate 

see (2, 38, 210)). Transposable elements (especially IS elements) are involved in gene 

deletions, gene duplications, genome rearrangements, and horizontal gene transfer (for 
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reviews see (211) and (212)), all of which can have beneficial effects on the host 

population by generating genomic diversity and thus enabling adaptation to 

environmental changes (213-215). However, transposable elements can also be 

detrimental if they disrupt important functional genes. Therefore, transposase expression 

and thus transpositional activity are usually very low (84), because the mutagenic effects 

of transposases would drive their hosts into extinction, thereby also eradicating their own 

existence (216). Accordingly, a large variety of mechanisms for the tight regulation of 

transposase expression exist both at the transcriptional and translational level (84).  

Transposable elements (TE) and thus transposase genes are particularly enriched 

in the genomes of some pathogen and mutualistic symbionts (just called ‘symbionts’ in 

the following) that have recently transitioned to an obligate host-associated lifestyle (2), 

and it has been shown that this TE expansion plays a crucial role in the emergence and 

early evolution of new pathogens (213, 217-219) and mutualistic symbionts (220, 221). 

Currently there is much uncertainty about the factors that lead to high TE loads in host-

restricted bacteria, however several hypotheses have been put forth (reviewed in (38)). 

The two main ones, which represent opposing views, are: (i) TE expansion is beneficial 

for symbionts and pathogens transitioning to an obligate lifestyle, for example, by 

providing enhanced genomic plasticity for faster adaptation to the host environment (213, 

214, 222). (ii) Temporary TE expansion in the genomes of host restricted bacteria is due 

to a reduced effectiveness of natural selection against deleterious transpositions (2). The 

relaxed natural selection according to this hypothesis is caused by genetic drift due to 

small population sizes and transmission bottlenecks and the fact that in the host  many 

genes become superfluous and thus can act as neutral integration sites for TEs. A recent 
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study that tested this hypothesis by subjecting Escherichia coli for 4000 generations to 

simulated conditions of relaxed natural selection raised doubts if relaxed natural selection 

alone can account for TE expansion (222) because no TE expansion occurred under the 

tested conditions. Based on their negative result Plague et al. (222) hypothesized that 

other factors including increased transposase activity might be necessary to allow for the 

massive TE expansion observed in host restricted bacteria. These two main hypotheses 

explain TE expansion in host-restricted bacteria within the confines of the paradigm that 

transposase expression and thus transpositional activity is always low. 

The symbionts of the gutless marine worm Olavius algarvensis possess high 

numbers of transposase genes in their genomes. O. algarvensis inhabits shallow water 

sediments in the Mediterranean and lacks both a digestive and an excretory system, 

relying instead for nutrition and waste recycling on a symbiotic community of two 

gammaproteobacterial sulfur oxidizers (γ1- and γ3-symbiont), two deltaproteobacterial 

sulfate reducers (δ1- and δ4-symbiont) and a spirochaete (148, 223). A previous 

metagenomic analysis of the O. algarvensis showed that the 1-symbiont has a 

remarkably high number of transposases in its genome at nearly 21% of all genes, 

followed by the 3-symbiont with 7.5% and the δ1-symbiont with 2.3% (148, 149). In the 

current study, we demonstrate that the 1- and δ1-symbionts express a surprisingly high 

number of these transposase proteins, and many of these are intact and possibly active. 

 

Materials and Methods 

 

 Worms collection, symbiont enrichment, and protein identification via two-

dimensional liquid chromatography followed by tandem mass spectrometry on a hybrid 
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linear ion trap-Orbitrap (Thermo Fischer Scientific) are described in detail in chapter four 

and Kleiner et al. (139). Protein databases, peptide and protein identifications, as well as 

all MS/MS spectra are available at 

http://compbio.ornl.gov/olavius_algarvensis_symbiont_metaproteome. 

 

Results and Discussion  

 

Transposase abundance in O. algarvensis symbionts  

 We detected the highest number of transposase proteins ever reported in bacteria 

in the γ1-symbiont and the δ1-symbiont of O. algarvensis. The two symbionts expressed 

at least 26 different transposase proteins (Table 5.1) with the majority originating from 

the γ1-symbiont (22 proteins). The remaining ones originated from the δ1-symbiont (2 

proteins) or were identified with unassigned metagenome fragments (2 proteins).  

Transposases comprised up to 1.95% of the total protein expressed by the γ1-symbiont 

(Table 5.2) and up to 0.084% of the total δ1-symbiont protein (Table 5.3). The abundance 

of transposases in the γ1-symbiont is comparable to some of its most abundant 

housekeeping genes such as the ATPase B subunit (1.15%), the malate dehydrogenase 

(0.38%) and the 6-phosphofructokinase (0.35%) (139). Within the context of natural 

microbial communities, highly abundant transposase protein expression has, so far, only 

been reported from a microbial biofilm found in acid mine drainage, however, relative 

abundances were less than half of the amounts observed in this study (28).  

Transposase genes are present in multiple, nearly identical, copies in the symbiont 

metagenomes (139, 224). We detected peptides belonging to transposase proteins 

encoded by 134 gene sequences in the metagenome (Table S3). Given that proteins 
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encoded by almost identical sequences with identical tryptic peptides cannot be 

distinguished from each other by mass spectrometry based proteomic analyses, we could 

not identify which of the 134 transposase genes were the expressed ones and if multiple 

copies of identical genes were expressed. Therefore, we assigned the transposases that 

were identified with similar sets of peptides to 12 different groups (Tables 5.1 and S4) 

and used this grouping to identify the minimal set of transposases that need to be 

expressed to explain all transposase related peptides. This non-redundant set consisted of 

the above-mentioned 26 transposases.  

 We classified the 26 non-redundant transposases into IS element families using 

BLASTp against the curated IS-finder database (225) (http://www-is.biotoul.fr/) and 

found that they belong to at least 10 different IS-element families in the γ1-symbionts and 

2 families in the δ1-symbiont (Table 5.1). This clearly shows that the expressed 

transposase genes originated from multiple unrelated IS elements. 

http://www-is.biotoul.fr/
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Table 5.1: Overview of all expressed transposases grouped according to shared peptide matches  

 

 

Accession 

number
6
 Symbiont 

Transposase 

group Transposases/Group 

Transposases/group 

required to explain all 

peptide matches 

Transposase 

classification Intact 

Premature 

translation 

abortion  

Length 

(amino 

acids) 

2004221906 γ1 1 38 4 IS630 No No 304 

2004222763 γ1 1   IS630 No No 169 

2004222856 γ1 1   IS630 Yes No 345 

2004222872 γ1 1   IS630 No No 268 

2004223397 γ1 2 19 3 IS110 Yes No 355 

2004222027 γ1 2   IS110 No No 263 

2004222937 γ1 2   IS110 No No 205 

Symbiont _37746 Unknown 3 7 1 Unclassified Unknown ? 163 

2004223511 γ1 4 1 1 Unclassified Yes ? 344 

Symbiont _28062 Unknown 5 1 1 IS1634 Yes No 440 

2004221868 γ1 6 37 7 IS481 Yes No 419 

2004221830 γ1 6   IS3 No Yes 241 

2004222310 γ1 6   IS481 Yes No 333 

2004222544 γ1 6   IS481 No No 238 

2004222874 γ1 6   IS481 No No 115 

2004223428 γ1 6   IS5 No No 192 

2004223468 γ1 6   IS481 No No 227 

2004207437 δ1 7 2 1 IS4 Yes No 454 

2004223208 γ1 8 1 1 IS1595 Yes No 282 

2004212411 δ1 9 3 1 IS21 Yes Yes 228 

2004222138 γ1 10 16 2 IS1 Yes Yes 245 

2004222867 γ1 10   IS1 Yes Yes 245 

2004222325 γ1 11 7 3 IS5 Yes No 345 

2004223125 γ1 11   IS630 No No 134 

2004223697 γ1 11   IS630 No No 165 

2004221963 γ1 12 3 1 Unclassified Yes ? 313 

SUM   135 26     
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Table 5.2: Organism normalized NSAF values (relative abundance) for the γ1-symbiont transposases 

Minimal number of γ1-symbiont transposase proteins needed to explain detected peptides. Normalized spectral abundance factor 

(NSAF) values indicate the relative abundance of the respective protein in relation to all identified γ1-symbiont proteins. 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbionts enriched with density gradient centrifugation Whole worms frozen directly 

Protein 

Accession # 

Delta1 

Run2 

Delta1 

Run3 

Gamma1 

Run1 

Gamma1 

Run2 

WholeWorm 

Run1 

WholeWorm 

Run2 

WholeWorm2 

Run3 

WholeWorm4 

Run4 

2004221830   0.00051 0.00070     

2004221868 0.00257 0.00152 0.00158 0.00136   0.00160  

2004221906   0.00125 0.00054 0.00191 0.00188   

2004222027   0.00087 0.00044     

2004222138   0.00035       

2004222310   0.00125 0.00165   0.00147  

2004222325   0.00074 0.00048     

2004222544   0.00306 0.00272   0.00220  

2004222763   0.00100      0.00168 

2004222856 0.00298 0.00444 0.00122 0.00048 0.00167 0.00166  0.00205 

2004222867   0.00051 0.00089     

2004222872   0.00116 0.00089     

2004222874   0.00109 0.00143     

2004222937 0.00339  0.00061 0.00108 0.00113   0.00342 

2004223125   0.00158 0.00244  0.00171   

2004223208   0.00029       

2004223397   0.00023       

2004223428   0.00064 0.00114  0.00182   

2004223468   0.00055       

2004223511    0.00032     

2004223697   0.00103 0.00298  0.00138   

2004221963       0.00111  0.00087 

Total NSAF 0.00894 0.00596 0.01953 0.01951 0.00470 0.00956 0.00527 0.00803 

Relative 

abundance (%) 0.89370 0.59645 1.95290 1.95103 0.47032 0.95633 0.52719 0.80319 
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Table 5.3: Organism normalized NSAF values for the δ1-symbiont transposases 

This table only contains the δ1-symbiont transposases that are needed to explain all δ1-

symbiont transposase related peptides according to the grouping in table S4 (non-

redundant set) . The NSAF values in this table give the relative abundance of the 

respective protein among all identified δ1-symbiont proteins 

 

 

 

Could abundant transposase expression be caused by stress?  

Previous studies have reported increased transposase expression in response to 

stressful conditions (85, 86). However, the relative abundances reported were much lower 

compared to those detected in our study. To exclude the possibility that transposase 

expression in the O. algarvensis symbionts was caused by stressful conditions during the 

one hour long symbiont enrichment procedure, we compared their proteomes with those 

of symbionts that were frozen in whole worms immediately following removal from the 

sediment. As was the case in enriched symbionts, high transposase expression was seen 

in the immediately frozen symbionts (Tables 5.2 and S3). Thus, we concluded that the 

observed transposase expression was not due to stressful sampling conditions, but 

actually reflects expression under environmental conditions.  

Symbionts enriched with density gradient centrifugation 

 

Whole worms frozen directly 

Protein 

Accession # 

Delta1 

Run2 

Delta1 

Run3 

Gamma1 

Run1 

Gamma1 

Run2 

Whole

Worm 

Run1 

Whole

Worm 

Run2 

Whole

Worm2 

Run3 

Whole

Worm4 

Run4 

2004212411 0.000564725 0.000506781       

2004207437 0.000282363 0.000265457       

Total NSAF 0.000847088 0.000772238       

Relative 

abundance 

(%) 0.084708781 0.077223804 
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We inferred that some of the expressed transposases are likely active, by 

excluding the two main reasons for potential inactivity: (i) transposase genes could be in 

the process of gene degradation and their expression thus would lead to incomplete and 

potentially inactive transposases and (ii) the expression of some transposase genes is 

regulated via programmed translational frameshifting, which can lead to the translation of 

a truncated, non-functional version of the transposase protein (84, 211, 226). 

Thus, to test whether the expressed transposase genes are intact or in a state of 

gene degradation, we compared their gene sizes and sequences to closely related 

transposases in the IS finder database and then compared their protein domain structures 

with those of similar transposases using the Pfam ‘domain organization’ feature 

(http://pfam.sanger.ac.uk/search). We found that around half of the expressed transposase 

genes are intact, whereas the other half are in various states of gene degradation (Table 

5.1). Second, we checked in the literature for which IS element families regulation via 

programmed translational frameshifting is known to occur  (84)  and found that 

premature translation abortion could only be shown for four out of the 26 IS families of 

the detected transposases  (Table 5.1). Thus it is likely that the majority of the expressed 

transposases are translated to full-length proteins. This is supported by our proteomic 

data for some of the transposases which we detected peptides from the beginning, middle, 

and end of the protein, indicating that they were translated from start to finish (Figure 

5.1) (http://compbio.ornl.gov/cgi-

bin/mspipeline/seqcvg/contrastprtns_xcorr_SeqCvg.cgi?contrastdir=mspipeline/dubilier/

Deep_Sea_Worms_Set2_Greifswald/analysis/Deep_Sea_Worms_Set2_Greifswald/contra

st/tryp_20090729_fr/final/p2_verbose_transposase). 
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Figure 5.1: Sequence coverage of a representative transposase detected from the γ1-

symbiont. Depth of coverage is shown below the amino acid sequence (white to black, 

by increased depth). Red lines indicate detected peptide 

 

Conclusions 

Our results show that the paradigm that transposase expression in bacteria must be 

kept to a minimum to prevent the host population from going extinct does not hold true in 

all cases. We present the first evidence at the protein level that transposases are 

abundantly expressed in beneficial symbionts with high TE numbers in their genomes. 

This high expression of transposases indicates that the mechanisms for their tight 

regulation have been disabled or destroyed, for example by mutations in proteins that are 

involved in transposase regulation (41, 48, 221). The fixation of such mutations could be 

enabled by the relaxed purifying selection suggested by Moran et al. (2004) for 
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symbionts and pathogens that recently transitioned to an obligate host-associated lifestyle 

(221).  

Currently, it is not possible to determine if abundant transposase protein 

expression is present in other symbionts and pathogens with high TE numbers, because 

no comparable proteomic datasets exist for these bacteria. Nevertheless, many recent 

studies have shown high transcription of transposase genes in symbionts and pathogens 

(227-232). However, the presence of these transcripts does not represent conclusive 

evidence for transposase expression, because it is possible that they are not translated to 

proteins due to the above mentioned regulatory mechanisms (84, 228, 229).  

Based on the abundance of transposase proteins in the O. algarvensis symbionts and 

abundant transposase transcription in other symbionts and pathogens, we speculate that 

high transposase expression may be the missing factor for explaining TE expansion in 

host-restricted bacteria. As discussed above, an experiment that simulated conditions of 

relaxed natural selection failed to cause TE expansion after 4000 generations in E. coli. 

If, as we speculate, high transposase protein expression is the major cause of TE 

expansion, it could be that the necessary mutations affecting transposase expression had 

simply not occurred yet in the Plague et al. (2011) experiment. Additional studies that 

investigate transposase expression in pathogens and symbionts are needed, because high 

transposase expression could be an important factor in the sometimes very rapid 

emergence and evolution of new obligate symbionts and pathogens from facultative ones. 

The thing that strikes us the most about the high transposase expression in the O. 

algarvensis symbionts is the question how the symbionts can function over evolutionary 

time periods, if, as suggested by the high transposase abundance, potentially deleterious 
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transpositions happen with high frequency. Currently we have no answer to this question, 

however, for other organisms that deal with frequent transpositions, genome 

rearrangements and disruptions, it has been suggested that polyploidy buffers against the 

detrimental effects of several factors that lead to these genome disruptions including 

transposable elements, introns, heat and ionizing radiation (233-236). Since polyploidy 

has been recently shown for several symbionts including sulfur-oxidizing symbionts of 

clams (237) it seems possible that it also plays a role in the O. algarvensis symbionts.  
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CHAPTER SIX 

Metaproteomics Reveals Time-Dependent Functional Shifts in Microbial and 

Human Proteins in the Premature Infant Gut 

 

 

Text was adapted from: Young JC, Pan C, Adams R, Brooks B, Banfield JF, Morowitz 

MJ, and Hettich RL. Metaproteomics Reveals Time-Dependent Functional Shifts in 

Microbial and Human Proteins in the Premature Infant Gut, submitted to Molecular 

Systems Biology, November 2012. 

 

 

Jacque Young’s contributions were: sample preparation, performed all MS runs, data 

analysis, and manuscript preparation. 

 

Abstract 

Microbial colonization of the human gastrointestinal tract plays an important role 

in the establishing overall health and homeostasis, however this process is incompletely 

understood. While prior studies have investigated the succession of gut microbiota in 

newborn infants at the genome level, the time-dependent functional signatures of 

microbial and human proteins have yet to be determined. In this study, we employed 

shotgun proteomics to simultaneously monitor microbial and human proteins from fecal 

samples obtained from a healthy preterm infant from days 7, 13, 15, 17, 18, 20, and 21 

after birth. Approximately 800-3,700 proteins were detected from each run, with the 

microbial protein abundances and community complexity increasing over time. Changes 

in microbial community compositions were consistent with metagenomic data from 
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matched samples comprising three distinct colonization phases. Despite microbial 

compositional changes, overall community functions were established relatively early in 

development and remained stable throughout the time course. Detected human proteins 

consisted of those responsible for homeostatic functions, including epithelial barrier 

function and antimicrobial activity. Many of these proteins were expressed at relatively 

constant levels throughout the time course; however some neutrophil-derived proteins 

were increased in abundance early in the study period suggesting activation of the innate 

immune system. Likewise, abundances of cytoskeletal and mucin proteins increased later 

in the time course, suggestive of subsequent adjustment to the increased microbial load. 

This study provides the first elucidation of human and microbial proteins in the infant gut 

during early development. 

 

Introduction 

Microbial communities in the gastrointestinal tract play important roles in human 

health by processing essential nutrients, protecting against pathogenic bacteria, 

promoting angiogenesis, and regulating host immune responses (58-61). Initially sterile, 

the infant gastrointestinal tract assembles a microbial community of over 1,000 different 

symbiotic species in the first 2.5 years of life. This symbiotic relationship requires a 

careful balance, and it is believed that disruption of the host-microbe relationship in the 

gut can lead to diseases such as inflammatory bowel disease and neonatal necrotizing 

enterocolitis (NEC). Initial temporal colonization patterns and species distributions vary 

between individual infants and may be influenced by environmental exposures, delivery 

mode, diet, and health (71, 75). In general, the gut microbial communities of newborn 
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infants are far less complex than those of older children and adults. This lack of 

complexity provides a powerful opportunity to study the microbiota at high resolution.   

 Recently, the microbial compositional patterns of a healthy preterm infant during 

the first month of life were characterized in a metagenomic study (7). Through 16S rRNA 

gene-based analysis, the dominant taxa were identified, and community compositional 

changes revealed three distinct colonization phases. Specifically, days five through nine 

of the infant’s life were dominated by Leuconostoc, Weisella, and Lactococcus species 

while days ten through fourteen, consisted primarily of Peudomonas and Staphylococcus. 

The third phase was primarily composed of members of the Enterobacteriaceae family 

including Citrobacter and Serratia species and occurred during days fifteen through 

twenty-one. This pattern is consistent with dietary adjustments at days nine and fifteen 

and was similar to premature infants from other studies (7, 238, 239). Metagenomic 

sequencing followed by reconstruction and intensive curation of population genomic 

datasets of the dominant microbial members from days 10, 16, 18, and 21 revealed three 

major strains from these later time points: a Serratia strain (UC1SER), an Enterococcus 

strain (UC1ENC), and two closely related Citrobacter strains (UC1CITi and UC1CITii). 

Also present were plasmids UC1CITp, UC1ENCp, and bacteriophage UC1ENCv. While 

metagenomic information provides a blueprint for possible gene products, we employed 

shotgun proteomics via nanospray-two dimensional liquid chromatography coupled with 

tandem mass spectrometry (nano-2D-LC-MS/MS) to elucidate functional signatures of 

translated gene products (i.e. proteins) from matched samples of the same preterm infant. 

The use of mass spectrometry-based proteomics allows characterization and 

quantification of thousands of proteins within a microbial community (28, 33, 240, 241). 
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While early attempts using metaproteomics for the characterization of the infant 

microbiome demonstrated feasibility, protein identifications were limited due to 

insufficient genome information (76). Since, the number of sequenced microbial isolates 

in the human gut has increased dramatically, and more importantly, the use of community 

genomic sequences from matched samples has allowed confident identification of 

proteins at the species and strain level (29). Additionally, the advancement of high 

performance shotgun mass spectrometry-based proteomics has enabled a measurement 

depth not previously possible (9).  While prior studies have focused on characterizing 

microbial genes and proteins, most current methodologies prohibit global analyses of 

microbial proteins in conjunction with human proteins. Thus far, there have been no 

studies to our knowledge that have investigated the composite relationships and interplay 

between gut microbial proteins simultaneously with human host proteins. In this study, 

we utilized shotgun proteomics to simultaneously monitor microbial and human proteins 

from a preterm infant during the first month of life. 

 

Materials and Methods 

Description of Preterm Infant: A female infant born at 28 weeks gestation due to 

premature rupture of membranes was delivered by cesarean section and given antibiotics 

for the first 7 days of life (7). Enteral feedings with breast milk were given on days 4-9, 

and then on days 9-13, feedings were withheld due to abdominal distension. After day 13, 

enteral feedings were readministered in the form of artificial infant formula.  The baby 

also received supplemental parenteral nutrition until day 28. The baby had no major 

anomalies or comorbidities and was discharged to home on day of life 64. Fecal material 
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was collected on days 5-21 as available, with institutional approval. Metagenomic and 

16S rRNA data was analyzed in a companion study from matched samples (7). Based 

upon sample availability, proteomic measurements were performed on fecal samples 

from days 7, 13, 15, 17, 18, 20, and 21 after birth. 

 

Protein Extraction and Enzymatic Digestion of Fecal Samples: Approximately 250µg 

fecal material was boiled for five minutes in 1 ml 100 mM Tris-Cl containing 4% w/v 

SDS and 10 mM DTT, then underwent bead beating for 30 minutes, in order to lyse cells, 

and denature and reduce proteins. The supernatant was collected, boiled again, spun 

down (14,000 g), and precipitated with 20% trichloroacetic acid at 80°C overnight. 

Protein pellets were washed in ice-cold acetone, re-solubilized in 8 M urea diluted in 

100mM Tris-HCl pH 8, and then sonicated using a Branson sonic disruptor in order to 

break up the pellet (5 minutes at 20%; 10 seconds on, 10 seconds off). Iodoacetamide 

(IAA) was added to block disulfide bond reformation. Proteins were quantified using 

Bicinchronic assay (BCA) and between 1-3 mg protein were diluted to 4 M urea in 100 

mM Tris-HCl pH 8, and enzymatically digested into peptides using sequencing grade 

trypsin (Promega) for four hours at room temperature. Peptides were diluted to 2 M urea, 

a second dose of trypsin added, and digestion continued overnight. An acidic salt solution 

(200mM NaCl, 0.1% formic acid), was used to clean up the peptides which were then 

spun through a 10kDa cutoff spin column filter (VWR). Peptides were quantified by 

BCA assay and stored at -80°C until further use. 
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Nano-2D-LC-MS/MS: A 150µg peptide mixture was loaded onto a split-phase fused 

silica column containing reverse phase (C18) and strong cation exchange (SCX) 

materials. Samples were washed offline with solvent A (95% HPLC grade water, 5% 

Acetonitrile, 0.1% formic acid) for 30 minutes to desalt the column, followed by five 

gradients from 100% solvent A to 100% solvent B (70% acetonitrile, 30% HPLC grade 

water, 0.1% formic acid).  Peptides were placed in line with a nanospray emitter (New 

Objective) packed with reverse phase material then separated on-line using high 

performance two-dimensional liquid chromatography (9, 123, 124). Peptides were eluted 

from the SCX resin by increasing ammonium acetate salt pulses followed by reverse 

phase resolution over two hour organic gradients as described previously (28, 29, 33), 

ionized via nanospray (200 nl/min) (Proxeon, Cambridge MA), and analyzed using an 

LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, San Jose, CA). 

Technical duplicates were run for all samples. The LTQ was run in data-dependent mode 

with the top 10 most abundant peptides in full MS selected for MS/MS, and dynamic 

exclusion enabled (repeat count=1, 60 s exclusion duration). Two microscans were 

collected in centroid mode for both full and MS/MS scans. 

 

Database Construction and Searching: A search database was generated from the 

predicted protein sequences of dominant members reconstructed from metagenomic 

sequences collected on days 10, 16, 18, and 21 from matched samples. These included a 

Serratia species UC1SER, two closely related Citrobacter strains, UC1i and UC1ii, an 

Enterococcus species UC1ENC, and associated virus and plasmids UC1ENCp, 

UC1ENCv, and UC1CITp. Since samples from early time points were not represented in 
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the metagenomic sequences, additional isolate sequences were included in the search 

database. Using 16S rRNA information, closely related species were chosen as 

representative organisms including: Arcobacter butzleri RM4018, Acinetobacter junii 

SH205, Bacteroides fragilis NCTC 9343, Bifidobacterium adolescentis ATCC 15703, 

Bifidobacterium longum infantis ATCC 15697, Campylobacter concisus 13826, 

Clostridium sporogenes ATCC 15579, Enterobacter cancerogenus ATCC 35316, 

Escherichia coli K12 DH10B, Eubacterium rectale ATCC 33656, Fusobacterium sp. 

1_1_41FAA, Klebsiella sp. 1_1_55, Lactococcus lactis subsp. lactis KF147, 

Lactobacillus reuteri 100-23, Leuconostoc mesenteroides cremoris ATCC 19254, 

Pseudomonas aeruginosa PAO1, Staphylococcus aureus 04-02981, Streptococcus sp. 

2_1_36FAA, Weissella paramesenteroides ATCC 33313. (acquired from JGI: 

http://www.hmpdacc-resources.org/cgi-bin/img_hmp/main.cgi ). In addition, human 

protein sequences (NCBI RefSeq_2011) and common contaminants (i.e. trypsin) were 

appended to the database (Table S2). All MS/MS spectra were searched against the 

concatenated database with the SEQUEST algorithm (97), and filtered with DTASelect 

version 1.9 (6) at the peptide level with standard filters [SEQUEST Xcorrs of at least 1.8 

(+1), 2.5 (+2) 3.5 (+3)] organizing identified peptides to their corresponding protein 

sequences (Table 1). Due to carbamidomethylation effects of IAA, a static cysteine 

modification (+57) was included in all searches. Only proteins identified with two fully 

tryptic peptides were considered for further biological study. Reversed protein sequences 

were appended to the database in order to calculate false discovery rates (21). 

 

http://www.hmpdacc-resources.org/cgi-bin/img_hmp/main.cgi
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Database clustering & spectral balancing: Protein sequences in the predicted protein 

database were clustered into protein groups based on sequence homology. Using the 

publically-available software, USEARCH v.5.0 (242), microbial proteins were clustered 

into a protein group if they shared 100% amino acid identity, and human proteins were 

clustered into a protein group if they contained  ≥90% amino acid similarity. These 

differing similarity thresholds were chosen based on the higher numbers of paralogous 

proteins present within the human genome, and were supported by plotting similarity 

thresholds ranging from 0.5-1 against the percent proteome reduction via clustering. 

Spectral counts were assigned, balanced, normalized, and adjusted according to methods 

previously described (25, 34, 243).   

 

Statistical Analyses: Hierarchical clustering of individual proteins based on trends in 

abundance changes, and principal component analysis (PCA) plots were performed using 

JMP Genomics software (JMP Version 7. SAS Institute Inc., Cary, NC, 1989-2007). 

Statistical analysis of human proteins and pathways was performed using Ingenuity. 

 

Results 

Overall proteome measurement: 

The fecal microbiome of a preterm infant was examined on days 7, 13, 15, 16, 17, 

18, 20, and 21 after birth via nano-2D-LC-MS/MS. Up to 67,471 spectra, 15,226 

peptides, and 3,732 proteins were detected per run (Table 6.1), providing deep proteomic 

coverage of these complex fecal samples. Technical duplicates were run for each sample 

with comparable reproducibility between replicates (Figure 6.1). 
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Table 6.1: Number of proteins, peptides, and MS/MS spectra identified across all 

time points. 

 

 

 

 

 

 

 

 

 

Protein, peptide, and spectra values are based are non-redundant identifications from 

Sequest using a p2 filter 

All numbers are averages of two technical replicate runs 

 

Microbial and human proteins were simultaneously measured throughout the time 

course, yielding an in-depth view of complex fecal samples. Since mass spectrometry 

based proteomics identifies proteins by their corresponding peptide sequences, 

consideration must be taken when designing a proteome reference database to accurately 

reflect the species composition in the sample. In turn, data analysis must take into 

consideration the high levels of protein redundancy within and between species to avoid 

inflating the total number of proteins identified or misinterpretation of the biological 

conclusions by over-representing proteins with the same function. We have designed a 

proteome reference database to most accurately reflect the sample composition by 

including reconstructed metagenomes from matched samples from days 16, 18, and 21, 

along with bacterial isolates selected based on 16S rRNA data from earlier time points, 

Sample 

Timepoint 

Protein 

Identifications 

Peptide 

Identifications 

MS/MS 

Spectra 

Day 7 804 4750 32986 

Day 13 1603 8581 64008 

Day15 2646 10918 63093 

Day 16 1373 4428 40752 

Day 17 3732 15226 65593 

Day 18 3410 13830 62142 

Day 20 3280 15178 67471 

Day 21 2936 12392 51635 
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Figure 6.1: Reproducibility Between Technical Replicates. Spectral counts from two 

technical replicates were plotted against each other, with replicate 1 on the x-axis and 

replicate 2 on the y-axis. A linear regression was performed, and the slope of the line (m), 

and R
2
 values calculated providing a statistical measure (a value between zero to one) 

indicating how well one term predicts another term. All values were >0.97, confirming 

the technical reproducibility across replicates. 
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and the human genome. We then applied a bioinformatic clustering algorithm to the 

database in order improve confidence in protein identification and quantification. 

Proteins were clustered into groups based on 100% amino acid similarity for 

microbial proteins and 90% for human proteins. Different similarity thresholds were 

chosen to reflect the higher level of redundancy in the human genome due to gene 

duplications, splice variants, and multiple protein isoforms. Microbial proteins were 

clustered using more stringent criteria in order to preserve species information and 

distinguish functional contributions of different community members. In total, 4,413 

microbial and 3,062 human protein groups were detected across the dataset. Protein 

groups range from singletons to groups that contain multiple protein isoforms.  

Both microbial and human proteins were measured simultaneously in each run, 

revealing an increased complexity of the microbial composition and a decrease in the 

ratio of total human/microbial proteins with time (Figure 6.2). At the earliest time points, 

when the initial microbial communities were being established, human proteins 

comprised ~96% of the total proteins identified on day 7, possibly reflecting the 

administration of antibiotics for the first week of life, and ~72% on day 13.  By day 15, 

the percent of human proteins decreased to ~30% due to an increase in the number of 

microbial proteins detected. The ratio of human to microbial proteins remained at this 

level for the remainder of the times measured, with the exception of day 20, when an 

unexplained rise in human proteins occurred (as detailed below). The number of total 

spectra collected on day 20 was comparable to adjacent days (Figure 6.3), so the variance 

was likely not due to a technical issue related to the mass spectrometry run. 
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Figure 6.2: Distribution of Human and Microbial Proteins.  Microbial (blue) and 

human (red) protein groups were averaged between two technical replicates, summed for 

each time point (x-axis), and plotted as a percent of the total proteins detected for each 

day (y-axis). 

 

 

 

Figure 6.3: Total unfiltered MS2 spectra collected for each run. 
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Figure 6.4: Variation among Human and Microbial Proteins Across Time. Principal 

coordinate analysis (PCA) was performed on A.) human, and B.) microbial proteins for 

all time points using JMP Genomics software (JMP Version 7. SAS Institute Inc., Cary, 

NC, 1989-2007). Adjusted spectral counts averaged between two technical replicates 

were input for each day. 

 

 Principal component analysis (PCA) was applied to the data to determine the 

amount of variance between time points. When looking only at the microbial proteins, 

three distinct clusters are apparent: days 15, 16, 17, 18, 20, and 21 cluster closely 

together, while day 7 and day 13 are individually distinct from these time points (Figure 

6.4). This is consistent with 16S rRNA data from matched samples that also indicate 

three distinct microbial colonization phases at these times (7). In contrast, clustering of 

human proteins does not appear to follow the same pattern. None of the days appeared to 

be closely associated with each other, and days 7 and 21 were the most distant from the 

other time points, and from each other.  

 

 

Microbial Protein Distribution and Functional Categorization:  

 In concordance with an increase in microbial load, the abundance of microbial 

proteins increased across time (Figure 6.5). When comparing the trends in microbial 

protein groups from different species across time, the contribution/distribution follows 

A. 
B. 
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patterns similar to that seen in 16S rRNA and metagenomic data.  At day 7, microbial 

proteins were very low in abundance whereas abundance levels increased by day 13, with 

this time point dominated by Pseudomonas and Staphylococcus proteins. However, by 

day 15 we began to see the emergence of Serratia (UC1SER) and Citrobacter (UC1CIT) 

proteins, which dominated the samples in days 16-21. This corresponds well with 

previous metagenomic data from matched samples showing distinct community 

memberships in colonization phase I (days 5-9), phase II (days 10-15), and phase III 

(days 16-21) (7). Proteomic data also suggests UC1SER and UC1CIT were the 

functionally dominant members of the community during the third colonization phase, as 

demonstrated by the highest contribution of microbial proteins from these species during 

these time points. 

 

Figure 6.5: Microbial proteins detected across time. Species distributions were 

calculated for each time point by summing adjusted NSAF values belonging to each 

species. Protein groups belonging to multiple species were negligible and thus removed 

from the analyses. 
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Microbial community functions were analyzed by grouping and quantifying 

proteins by clusters of orthologous groups (COG) categories (Figure 6.6). At day 7, while 

the overall microbial protein abundance was low, the majority of spectra came from an 

aspartokinase I-homoserine dehydrogenase protein belonging to the amino acid 

metabolism and transport COG category. This enzyme catalyzes a reaction in the 

aspartate pathway, and may aid in providing essential amino acids from dietary sources to 

the infant at this early stage of development. On day 13, the community appears to be 

spending most of its resources producing proteins involved in energy production and 

conversion, as well as translation. Compared to subsequent time points, the post-

translational modification, protein turnover, and chaperone category is significant, while 

the carbohydrate metabolism and transport category is minimal. Thus, as might be 

anticipated, this early community is focusing its resources on biomass growth, protein 

production, and protein folding at this establishment stage, and then switches to more 

complex metabolism at later times once the community is more established. By days 15-

21 the distribution of functions were relatively similar, except for a slight increase in 

proteins involved in energy production and conversion at day 20. In general, it appears 

the overall functions of the microbial community are established relatively early (by day 

13), persist, and remain relatively stable for the remainder of the time course. This is 

independent of taxonomic flux, suggesting functional redundancy among early gut 

colonizers. 
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Figure 6.6: Analysis of microbial proteins by COG category classifications. 
Microbial proteins were clustered based on 100% amino acid identity generating protein 

groups. Spectral counts were balanced between protein groups and normalized to 

generate adjusted normalized spectral abundance factors (NSAFs). NSAFs from all 

microbial protein groups were summed and grouped into their respective clusters of 

orthologous group (COG) categories. COG (clusters of orthologous groups) assignments 

for each protein sequence were performed by running rpsblast against the COG database 

from NCBI, with an E-value threshold of 0.00001, and the top hit used for the assignment 

(42). Day seven is removed from the analysis due to low abundance values of microbial 

proteins from that time point. 
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Human Proteins in the Preterm Infant Fecal Microbiome  

 

Global analysis of human proteins detected:  

Human proteins detected across all time points were mapped to canonical 

pathways using Ingenuity Pathway Analysis (IPA) software (Ingenuity® Systems, 

www.ingenuity.com). The topmost abundant categories based on the number of proteins 

per category were those related to basic cellular functions such as glycolysis, oxidative 

phosphorylation, and elongation factor 2 signaling (Figure 6.7). In addition, proteins were 

categorized by molecular function, cellular compartment, and biological function using 

Gene Ontology (GO) classifications. A wide variety of biological processes were 

represented in the dataset, highlighting the significant depth of the proteomic 

measurements. Other categories, such as inflammatory response, were not in the list since 

the numbers of proteins detected in this category were not in the top 20 overall. However, 

it is worthwhile to note that we did detect over 30 inflammatory proteins, and that some 

of them were among the most abundant proteins detected in our samples (S100A8, LTF, 

MPO) (Table 6.2). Also, not surprising was that the most represented GO categories for 

molecular function consisted of general functions such as protein, ATP, and nucleotide 

binding. And, the cellular compartment GO category shows that most detected proteins 

were from the cytoplasm.  

 

 

 

 

http://www.ingenuity.com/
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Figure 6.7: Top Canonical Pathways. The major canonical pathways for human 

proteins detected across the dataset were determined using Ingenuity Pathway Analysis 

(IPA) software (Ingenuity® Systems, www.ingenuity.com). The significance of the 

association was measured by calculating the ratio of number of detected proteins that 

map to the pathway divided by the total number of proteins from that pathway (orange 

boxes). The Fisher’s exact test was used to calculate a p-value determining the 

probability that the association between the proteins in the dataset and the canonical 

pathway is explained by chance alone (y-axis). 

 

 

Proteins Involved in Intestinal Barrier Function and Integrity:  

Throughout our dataset, we found numerous proteins involved in intestinal barrier 

formation and functions (Table 6.2). The intestinal barrier is composed of enterocytes, 

absorptive epithelial cells held together by tight junctions, which serve as a physical 
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barrier. Breakdown of this barrier or incomplete formation, as is oftentimes seen in 

premature infants, can contribute to bacterial translocation and disease states such as 

NEC (244). We detected numerous tight junction proteins including occluding (OCLN), 

claudins (CLDN18, CLDN23, CLDN3, CLDN7), and tight junction proteins 1, 2, and 3 

(TJP1, TJP2, TJP3, or zona occludens 1, 2 and 3,). In addition, proteins involved in the 

tight junction signaling pathway were expressed (Figure 6.8) 

The mucus layer is a major component of the intestinal barrier, which helps 

maintain homeostasis between the gut microbiota and their host by minimizing physical 

contact between the microbes and intestinal epithelial cells (63, 245-248). The mucus 

layer is comprised of mucins, glycoconjugates of a polypeptide core covered in O-linked 

carbohydrate side chains, secreted by specialized intestinal epithelial cells called goblet 

cells.  We detected numerous mucin proteins, including both secretory gel-forming 

mucins (MUC2, MUC5AC, MUC5B, and MUC6) and membrane-bound mucins (MUC1, 

MUC3B, and MUC4). O-linked glycans from mucins provide an energy source for 

bacteria in the outer mucus layer (61). Several enzymes in the o-glycan biosynthesis 

pathway were detected including those involved in synthesizing core 3 type glycans, the 

major type found associated with MUC2 (245). 

 Mucin 2 (MUC2) has been shown to bind the Fc fragment of the IgG binding 

protein (FCRPB/Fcgbp), a protein expressed by placental and colonic epithelial cells 

which plays a role in immune protection and inflammation, and was by far, the most 

dominant protein detected in our samples [16,17] (Table 6.2). Interestingly, the second 

most abundant protein we detected was the calcium-activated chloride-channel 1 

(CLCA1) protein, another protein involved in mucus secretion by goblet cells [18]. In 
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addition, all three trefoil factor family peptides TFF1, TFF2, and TFF3, a family of 

proteins which play an important role in maintenance and repair of the intestinal mucosa, 

were detected (249).  

 

Table 6.2: Topmost Abundant Human Fecal Proteins with Relevance to Host-

Microbe Interactions 

 
Protein Symbol Protein Name Function/ Relevance 

FCGBP  IgGFc-binding protein Mucin-binding protein expressed by placental 

and gut epithelial calls 

CLCA1 Calcium-activated Cl channel regulator   Involved in the regulation of mucus production 

and secretion by goblet cells 

DMBT1  Deleted in malignant brain tumors 1  Secreted glycoprotein known to bind broad 

range of bacterial and viruses; believed to confer 

mucosal protection; upregulated in IBD 

ANPEP  Aminopeptidase N   Brush border protease that can serve as receptor 

for bacterial toxins and viral particles; known to 

be upregulated during inflammation 

SERPINA3  Alpha-1-antichymotrypsin   Protease inhibitor known to be overexpressed 

during inflammation 

ALPI  Intestinal-type alkaline phosphatase   Modulates inflammation by dephosphorylating 

bacterial lipopolysaccharide; also a marker of 

postnatal maturation 

LTF  Lactotransferrin Abundant whey protein found in breast milk and 

other mucosal secretions; potent antimicrobial 

properties 

MUC2  Mucin-2   Dominant secreted mucin glycoprotein; MUC2 

knockout animals develop spontaneous colitis 

ITLN1  Intelectin   Soluble lectin that contributes to innate immune 

response by binding bacterial sugars 

OLFM4  Olfactomedin   Highly expressed by neutrophils and gut 

epithelial cells; upregulated in IBD 
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Figure 6.8: Tight Junction Signaling Pathway. Proteins in the tight junction signaling 

pathway as determined by Ingenuity Pathway Analysis (IPA) software. Proteins colored 

in pink are those detected by proteomics. 
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Table 6.3: Detected Proteins Involved in Epithelial Barrier Functions 

 
Symbol Protein Name 

MUC1 mucin 1, isoform 10, cell surface associated 

MUC1 mucin 1,isoform 11, cell surface associated 

MUC1 mucin 1- isoform 12, cell surface associated 

MUC1 mucin 1-isoform 20, cell surface associated 

MUC17 mucin 17, cell surface associated 

MUC2 mucin 2, oligomeric mucus/gel-forming 

MUC3A mucin 3A, cell surface associated 

MUC4 mucin 4, cell surface associated 

MUC5AC/MUC5B mucin 5AC, oligomeric mucus/gel-forming 

MUC5AC/MUC5B mucin 5AC, oligomeric mucus/gel-forming 

MUC6 mucin 6, oligomeric mucus/gel-forming 

MUC12 mucin 12, cell surface associated 

MUC13 mucin 13, cell surface associated 

GALNT1 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 1 (GalNAc-T1) 

B3GNT6 UDP-GlcNAc:betaGal beta-1,3-N-

acetylglucosaminyltransferase 6 

GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 

FCGBP Fc fragment of IgG binding protein 

CLCA1 chloride channel accessory 1 

CDH1 cadherin 1, type 1, E-cadherin (epithelial) 

CDH17 cadherin 17, LI cadherin (liver-intestine) 

CDH2 cadherin 2, type 1, N-cadherin (neuronal) 

CDHR2 cadherin-related family member 2 

CDHR5 cadherin-related family member 5 

EPCAM epithelial cell adhesion molecule 

TFF1 trefoil factor 1 

TFF2 trefoil factor 2 

TFF3 trefoil factor 3 (intestinal) 

CLDN18 claudin 18 

CLDN23 claudin 23 

CLDN3 claudin 3 

CLDN7 claudin 7 

OCLN occludin 

TJP1 tight junction protein 1 (zona occludens 1) 

TJP2 tight junction protein 2 (zona occludens 2) 

TJP3 tight junction protein 3 (zona occludens 3) 

IGA Immunoglobulin A 

DEFA5 defensin, alpha 5, Paneth cell-specific 

DEFB4A/DEFB4B defensin, beta 4A 

LYZ lysozyme 

LCN15 lipocalin 15 

LCN2 lipocalin 2 

CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 5  

ITGB1 integrin, beta 1  

ERLEC1 endoplasmic reticulum lectin 1 

ITLN1 intelectin 1 (galactofuranose binding) 

ITLN2 intelectin 2 
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 Secretory IgA is an important component of the epithelial barrier that specifically 

binds bacteria, limiting their association with the epithelial cell surface and restricting 

penetration across the gut epithelia (63, 250-252). We detected components of secretory 

Immunoglobulin A, including the two IgA heavy chain constant regions, (IgA1 and IgA2) 

which form a dimer held together by the J chain (15 kDa polypeptide), which was also 

detected. Secretory IgA contains a secretory component that is a portion of the polymeric 

immunoglobulin receptor (pIgR: 130kDa). The poly Ig-receptor is expressed by epithelial 

cells, binds to the IgA oligomers and allows transport across the mucosal epithelium. The 

majority of the pIgA receptor is proteolyzed, except the secretory component, which is 

secreted and diffuses along with dimeric IgA through the lumen. This protein was also 

detected throughout our samples.  

 Antimicrobial proteins are secreted by gut epithelial cells and kill bacteria through 

a variety of mechanisms (22, 23, 27). We detected several antimicrobial proteins 

including defensins (DEFA1, DEFA5), lysozyme (LYZ), lipocalin (LCN). Detection of 

these proteins suggests the premature infant gut, even at early stages of development, is 

adjusting to the introduction of microbial inhabitants, and to changing community 

compositions in order to carefully maintain homeostasis. 

 

Abundant human proteins detected in fecal samples:  

In addition to FCRPB and CLCA1, some of the most abundantly detected human 

proteins in our dataset have known relevance to host-microbe interactions (Table 6.2). In 

particular, antimicrobial and innate immune proteins including lactoferrin (LTF), 

intelectin (ITLN1), and olfactomedin (OLFM4) were among the most abundant proteins 
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detected. Lactoferrin (aka lactotransferrin), an iron-binding glycoprotein, is a key player 

in the innate immune system and is abundant and ubiquitous in human secretions such as 

breast milk. It has been shown to attenuate pathogenic bacteria, interfering with 

colonization (253) and biofilm formation (254) (255). Also, among the most abundant 

proteins were several that modulate or are upregulated by inflammation, like 

aminopeptidase N (ANPEP), alpha-1-antichymotrypsin (SERPINA3) and intestinal-type 

alkaline phosphatase (ALPI).    

  

Human proteins changing over time:   

 Overall, human proteins, summed across all samples, contributed mostly to 

generalized maintenance functions (Figure 6.7). However, when human proteins were 

clustered based on shared trends in spectral count abundance changes (Figure 6.9), time 

shifts were apparent. Several neutrophil derived proteins such as neutrophil elastase 

(ELANE), calprotectin (S100A8), and myeloperoxidase (MPO) were most abundant at 

day 7 (Figure 6.9, cluster #6) suggesting activation of the innate immune system occurs 

early in correspondence with the early establishment of the microbiome. Cytoskeletal 

proteins (KRT8, KRT13, KRT18, KRT19, and KRT20) and mucins (MUC2, MUC5B) 

were more predominant in later time points (days 20-21) (Figure 6.9, clusters #7 and 

#10), suggesting structural and epithelial barrier proteins are compensating for the 

increased microbial load. 

 As noted above, there was a dramatic increase in the numbers of human proteins 

identified on day 20. Since many of these proteins were keratins, components of skin 

cells and gut epithelial cells, there are two possible explanations: 1) human contamination 
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at any point in the sample handling, including preparation of samples for MS 

measurements, or 2) an increased sloughing event in the GI tract at this time. 134 human 

proteins were exclusively detected at this time point, and these contribute to a wide range 

of biological functions (Figure 6.10). Consequently, we consider that contamination 

during sample handling not the most likely explanation. The most highly expressed 

canonical pathways on this day were those of basic metabolic functions including:  EIF2 

signaling, pyruvate metabolism, glycolysis (Figure 8A). Additional proteins from the 

pathways for pyruvate metabolism, glycolysis, and granzyme A signaling were detected  

day 20 (Figure 6.10). And, in particular, several HLA class I histocompatibility antigen 

proteins were up-regulated at day 20. HLA class I molecules, along with β2-

microglobulin (also detected in our samples), make up the major histocompatibility class 

I complex (MHC I) which present antigens to CD8+ T cells, suggesting there may have 

been an activation of the adaptive immune response on this day. 

Discussion 

Initial microbial colonization of the gastrointestinal tract is a crucial process in 

development. The process educates the innate immune system and initiates the 

establishment of a delicate homeostasis between human host and resident microbes. In 

premature infants, the host-microbe relationship is probably impacted significantly by 

underdevelopment of the intestinal barrier, an immature innate immune system, antibiotic 

administration, and exposure to pathogenic organisms in the intensive care unit (248). 

While prior studies have investigated the succession of gut microbiota at the gene level, 

the functional signatures of microbial and human proteins early in life have yet to be 

determined. Thus, this study provides the first report of simultaneous measurement of  
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Figure 6.9: Human Proteins Changing Across Time. Proteins were clustered based on 

abundance changes across time. The mean of the normalized spectral counts across all 

time points for each protein was taken. The scale reflects the log transformed value above 

and below the median. 
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C. 

 

 

Figure 6.10: Top Canonical Pathways Expressed at Day 20:  
A.) The major canonical pathways were determined using Ingenuity Pathway Analysis 

(IPA) software (Ingenuity® Systems, www.ingenuity.com). The significance of the 

association was measured by calculating the ratio of number of detected proteins that 

map to the pathway divided by the total number of proteins from that pathway (, orange 

boxes). The Fisher’s exact test was used to calculate a p-value determining the 

probability that the association between the proteins in the dataset and the canonical 

pathway is explained by chance alone (y-axis). B.) Canonical pathways increased in 

abundance at day 20. C.) Granzyme A signaling pathway. 

 

 

 

http://www.ingenuity.com/
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microbial and human proteins in fecal samples from a newborn premature infant during 

the first month of life. Microbial proteins detected in our time course are consistent with 

metagenomic inference of three distinct colonization phases with vastly different species 

composition. Despite temporal changes in microbial community composition, the overall 

functions of the community stabilize relatively early and remain conserved thereafter. 

Predominant throughout our sampling were human proteins involved in intestinal 

barrier formation. The development of the intestinal barrier involves formation of a thick 

mucus layer, which covers and protects intestinal epithelial cells. In the colon, the outer 

mucus layer harbors commensal bacteria while the thicker, impenetrable inner layer 

offers protection by providing a physical barrier as well as containing antimicrobial 

compounds and secretory IgA (69, 256). The small intestine is composed of only one 

mucus layer, but still provides a physical barrier with a 50 µm area separating the 

bacteria from the epithelia (257).  The mucus layer is composed of mucins, 

glycoconjugates of a polypeptide core covered in O-linked carbohydrate side chains that 

are secreted by goblet cells. The O-linked glycans provide an energy source for bacteria 

in the outer mucus layer (61) (258). In our proteomic analyses, we detected numerous 

mucin proteins. Most of these were detected at relatively constant abundances throughout 

all the time points. However, some like the mucin 2 precursor, increased in abundance 

during the third colonization phase. Mucin 2 (MUC2) is the most abundant mucin in the 

intestine, has been directly linked to protecting the colonic epithelium from enteric 

pathogens , and is down regulated in patients with ulcerative colitis and Crohn’s disease 

(245, 259, 260). 
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Several neutrophil proteins were predominant at day 7, possibly highlighting the 

importance of the innate immune system at this early time in development. In contrast, 

later in the time course, many epithelial barrier proteins increased in abundance in 

conjunction with the increased microbial load. Overall, these data suggest an adaptation 

of the host in response to the changing microbiome, resulting in a dynamic interplay 

between the host and its resident microbes. 
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CHAPTER SEVEN 

 

Applying a Metaproteomics Approach Unravels Intra- and Inter-Individual 

Variation in the Preterm Infant Gut Microbiome 

 

 

  

While chapter six discusses an in-depth analysis of the fecal microbiome of one 

preterm infant (the UC1 baby) over a time course of early neonatal development, the goal 

of this chapter is to demonstrate the feasibility of the metaproteomics approach to 

investigate fecal microbiomes from multiple infants. Careful consideration was taken in 

the experimental design and methodology used in these studies to improve this method in 

order to “dig deeper” into the proteomes from fecal samples. This chapter discusses the 

progress of method development, including some experimental trials that did and did not 

improve the results. Importantly, we demonstrate the value of the current method, and 

what we have learned about the inter- and intra-individual variability in microbial and 

human proteins from multiple infant fecal microbiomes.  

 

Using Metaproteomics to Measure Fecal Microbiomes from Multiple Infants 

 

 In addition to infant #64 (the UC1 baby) described in chapter six, the fecal 

microbiomes of five other infants were measured using metaproteomics including: infant 

#74 (the Carrol baby), #6502, #7702, #Un091609, and Unlabeled#2. Three different 

samples from infant #74 (Carrol) were measured, which corresponded to days 15, 22, and 

23 after birth. The Carrol baby was a preterm infant, and the gestational ages and dates of 

sample collection from the remaining infants are unknown. The experimental design used 
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in this section was described in detail in chapter 6 (for the UC1 baby), and in chapter two 

of this dissertation. Briefly, samples were prepared using the SDS-TCA protocol and 

measured with shotgun proteomics via nano-2D-LC-MS/MS. An overview of the 

proteomic measurements is shown in Table 7.1. While the values of protein, peptide, and 

spectra vary between samples (reasons for which are discussed in detail below), these 

data demonstrate that this experimental design, including the chosen sample prep method 

and MS instrumental setup, is capable of efficiently and reproducibly providing deep 

proteomic measurements from multiple infants. 

 

Table 7.1: Overview of proteomic results from multiple infant fecal microbiomes 

Infant # Proteins Peptides Spectra 

#74 (Carrol) Day 15 2895 11546 89895 

#74 (Carrol) Day 22 2230 10489 89601 

#74(Carrol) Day 23 2300 9771 93990 

#6502 
710 3416 19664 

#7702 
827 3775 24110 

#Un091609 
2544 8351 31914 

 

 

Protein, peptide, and spectral values are all non-redundant. Searches were performed 

using the DBDigger algorithm (261), against the isolate database (Infant_Isolate_db_ 

010611) for infants #6502, #7702, #Un091609, and a metagenome database  

(carrol_metagenome_42312_HRefseq2011_IgA_contams) for infant #74 (Values for day 

15 are averages of two technical replicates, and day 23 averages from three technical 

replicates). Values for the UC1 baby (infant #64) are shown in chapter six. 

 

Microbial Species Distribution in the Carrol Baby Fecal Microbiome 

 

In addition to demonstrating the feasibility of our metaproteomic approach with 

multiple infants, preliminary analyses are currently underway to gain a more in-depth 

perspective of the inter-individual vs. intra-individual variabilities of these fecal 
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microbiomes. In addition to the UC1 baby (infant #64) described in chapter six, the fecal 

microbiome of a second preterm infant, #74, also referred to as the Carrol baby, was 

analyzed over multiple days after birth. In an initial companion study, fecal samples were 

collected from the infant over multiple days during the first month of life (days 15-24) 

and community genomic analysis was performed (262). Specifically, whole genomes 

were reconstructed from metagenomic sequences, including eight near-complete bacterial 

genomes and three phage genomes. New metagenomic methods, including improved 

binning and genome reconstruction, allowed highly efficient resolution of the community 

members at not only the species level, but also at the strain level (an improvement over 

binning methods used for the UC1 baby (7)). These genome sequences, along with the 

human genome and common contaminants, were used to generate the predicted protein 

database (carrol_metagenome_42312_HRefseq2011_IgA_contams) for metaproteomic 

analyses.  

 Interestingly, the microbial species composition was drastically different in the 

Carrol baby, compared to that of the UC1 baby previously described (see chapter 6). 

Specifically, dominant microbial members from the UC1 infant microbiome, as 

determined by 16S rRNA, metagenomics, were Citrobacter, Serratia, and Enterococcus 

species (7) (Young et al. in preparation). In contrast, the dominant members of the Carrol 

baby’s microbial community, as determined by metagenomics, were Enterococcus 

faecalis, Propionibacterium and nine species of Staphylococcus, including four different 

Staphylococcus epidermidis strains (Figure 7.1) (262).  

  Metaproteomic analyses were carried out on the same samples from the Carrol 

baby collected at the beginning and end of the time course, on days 15 and 23, 
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respectively. Proteins were detected from most microbial species in the community 

(Table 7.2). The highest number of microbial proteins detected from day 15 belonged to 

Enterococcus faecalis, Staphylococcus epidermidis strain 3, and Staphylococcus 

epidermidis strain 1, while on day 23 most proteins were detected from Peptoniphilus 

carrol, and Enterococcus faecalis (Table 7.2). Likewise, the highest abundance of 

proteins, as determined by spectral counts, belonged to E. faecalis at both time points. 

However, the abundance of Peptoniphilus carrol proteins increased significantly from 

day 15 to day 23 (Figure 7.2). 

 

 
 

 

Figure 7.1: Microbial species distribution from infant #74 as determined by 

metagenomic sequencing. Taken from Sharon et al., Genome Research, 2012 (262) 

 

 

 

 



 

 137 

 

 

Table 7.2 Microbial Proteins Detected per Species from Baby Carrol (Infant #74) 

 

 

Data searched against the metagenome database (carrol_metagenome_42312_ 

HRefseq201_IgA_contams) using the DBDigger algorithm. Values shown in the table are 

the number of proteins detected per each species. (Redundant values, no clustering, no 

normalization). 

 

 

 

 

 

 

 

 

 

Organism Day15 

Run1 

Day15 

Run2 

Day23 

Run1 

Day23 

Run2 

Anaerococcus  5 5 2 3 

Candida albicans 109 123 51 54 

Enterococcus faecalis plasmid  2 1 6 1 

Enterococcus faecalis  299 304 198 195 

Finegoldia magna  5 8 10 8 

Leuconostoc citreum4  8 11 14 8 

Propionibacterium acnes5 1 1 0 2 

Peptoniphilus carrol  35 40 168 186 

Propionibacterium carrol  164 187 112 136 

Staphylococcus aureus strain 23 0 1 1 0 

Staphylococcus aureus strain 11 109 120 77 87 

Staphylococcus epidermidis misc. 2 3 1 2 

Staphylococcus epidermidis strain 3 230 228 72 72 

Staphylococcus epidermidis strain 4 0 1 0 2 

Staphylococcus epidermidis phage 0 0 3 5 

Staphylococcus epidermidis strain 1 228 228 76 71 

Staphylococcus hominis  109 120 62 53 

Staphylococcus lugdunensis  69 84 47 48 

Streptococcus  6 8 3 8 

Total  1381 1473 903 941 
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A. 

 
B. 

 
 

 
 

Figure 7.2: Microbial Species Distribution from Baby Carrol (Infant #74) as 

Determined by Metaproteomics. A.)Total microbial spectra detected per species, B.) 

Percent distribution of microbial spectra per species. Data searched against the 

metagenome database (carrol_metagenome_42312_HRefseq2011_IgA_contams) using 

the DBDigger algorithm. (Redundant values, no clustering, no normalization). 
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Human proteins in the Carrol baby 

 

A key advantage of using a metaproteomics approach to study the human 

microbiome is the ability to simultaneously monitor microbial and human proteins. While 

the initial metagenomic study on baby Carrol (262) provided valuable information on the 

changing microbiota over the first month of the infant’s life, the addition of 

metaproteomic data provides direct in situ measurements of the functional signatures 

carried out by these microbes, as well as analysis of the human proteins which may be 

contributing/adapting to microbial colonization and fluctuations. Similar data was shown 

for infant #64 (UC1 baby) in chapter six, while the current chapter demonstrates that this 

method is successful at measuring microbial and human proteins from additional infants, 

despite the variation between and within these individuals (discussed in more detail 

below). Table 7.3 lists the topmost abundant human proteins measured from the Carrol 

baby from days 15 and 23 after birth. Lactoferrin (aka lactotransferrin) was the most 

abundant human protein detected, as determined by total spectral counts. Lactoferrin is an 

iron binding glycoprotein and a major component of innate immune system. It is a 

ubiquitous and abundant constituent of human external secretions, including breast milk 

(Legrand, 2008). Interestingly, this protein increased in abundance from the first time 

point measured (day 15 after birth) to the last time point measured (day 23 after birth). 

This was in contrast to the UC1 baby whose most abundant protein was the IgG Fc-

receptor binding protein (FCRBP) (Table 7.4 and chapter 6). The FCRBP protein was 

also abundant in the Carrol samples but decreased from day 15 to day 23 (Table 7.3), and 

only comprised a fraction of the spectra compared to the UC1 baby on comparable days 

of the baby’s lives (days 21 and 22 respectively) (Table 7.4). It is also striking that other 
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proteins such as IgA, and alpha-2 macroglobulin were more dominant in the Carrol baby, 

whereas some like mucin 2 and Ca-activated Cl channel regulator were more dominant in 

the UC1 baby.  

 

 

Table 7.3: Abundant Human Proteins from Baby Carrol (Infant #74) 

 
 

Values displayed are spectral counts (non-normalized, no clustering) listed in order of 

abundance, determined by total spectral counts per protein. Data were searched using 

DBDigger against the metagenome database. Technical MS duplicate runs are shown to 

display consistency between replicate runs.  

 

 

 

 

 

Day15 

Run2

Day15 

Run3

Day23 

Run1

Day23 

Run2

Abundance 

Trends
Description

6411 8345 26931 24658 lactotransferrin isoform 1 precursor 

12012 11085 8132 6585 IgGFc-binding protein precursor 

4082 3967 5187 4378 alpha-1-antitrypsin precursor 

4687 5167 2798 2193 polymeric immunoglobulin receptor precursor 

3689 4160 2235 2040 IgA C region 

1288 883 5220 5006 alpha-2-macroglobulin precursor 

2117 2123 2091 1318 chymotrypsin-like elastase family member 3A 

1932 2421 999 990 Ig M C region

1766 2057 1896 1578 calcium-activated chloride channel regulator 1  

2572 2930 554 805 alpha-1-antichymotrypsin precursor 

1220 1320 2559 1933 complement C3 precursor 

1450 1611 515 596 galectin-3-binding protein 

332 241 1856 2481 serum albumin preproprotein 

976 797 1045 1246 transthyretin precursor 

1011 907 706 849 chymotrypsin-C preproprotein 

797 859 751 657 aminopeptidase N precursor 

828 593 493 566 mucin-2 precursor 

716 939 387 382 deleted in malignant brain tumors 1 protein

711 657 496 420 neprilysin 

648 708 384 517 sucrase-isomaltase, intestinal 
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Table 7.4: Comparison of Abundant Human Proteins in the UC1 baby and the 

Carrol baby at Similar Time Points 

 

 
 

Values are non-normalized spectral counts listed in order of most abundant protein in the 

UC1 sample. Searches were performed using Myrimatch and IDPicker 2.0 (40, 263) 

against the metagenome database for the Carrol sample, and the metagenome + isolate 

database for the UC1 sample. 

 

UC1baby 

Day 21

Carrol baby 

Day 22

Comparative 

Abundances
Description

22755 5767 IgGFc-binding protein  

6788 1394 calcium-activated chloride channel regulator 1  

5132 3744 alpha-1-antitrypsin  

4856 854 deleted in malignant brain tumors 1   

3108 696 aminopeptidase N  

2968 749 intestinal-type alkaline phosphatase  

2702 738 mucin-2  

2651 10 lithostathine-1-alpha  

2541 629 neprilysin 

2230 409 meprin A subunit alpha  

2109 1764 chymotrypsin-like elastase family member 3A  

1664 1161 alpha-1-antichymotrypsin  

1352 362 intelectin-1  

1306 577 chymotrypsin-like elastase family member 3B 

1293 82 actin, cytoplasmic 2 

1288 25144 lactotransferrin isoform 1  

1160 1216 chymotrypsin-C preproprotein 

1160 373 xaa-Pro aminopeptidase 2  

1020 950 transthyretin  

766 786 sucrase-isomaltase, intestinal 

706 673 galectin-3-binding protein 

315 2327 alpha-2-macroglobulin  

138 246 tenascin  

107 924 complement C3  

93 2411 polymeric immunoglobulin receptor  

59 855 PREDICTED: complement C3-like, partial 
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Variability Among Ratios of Human and Microbial Proteins Across Multiple Infant 

Fecal Microbiome Samples 

During the course of method development for this study, fecal microbiomes from 

six different infants were measured, with two of the six infants monitored over multiple 

time points (UC1, and Carrol baby, as described above and in chapter six). Interestingly, 

among the total proteins detected, the numbers of proteins belonging to microbial species 

compared to the number of human proteins varied dramatically between different 

samples: including those from different infants, as well as ratios within the same baby at 

different times after birth (Figure 7.3). Specifically, among all the samples measured, the 

percent of detected human proteins ranged from 17%-98% of the total proteins detected 

per run (Figure 7.3). Within the UC1 infant, the ratio of human proteins ranged from 40-

98% across a series of times (Figure 7.3 and chapter six), and in the Carrol baby, the ratio 

of human proteins varied from 59-69% from the beginning to the end of the sample 

collection times. In addition, when taking into account abundance levels of total human 

proteins by comparing spectral counts summed for all the microbial proteins, there is also 

a wide range in the values. In particular, the abundance of human proteins is between 

20%-99% of the total spectra collected from that sample, with microbial spectra ranging 

from 1%-80% of the total spectra. And, again the abundance ratios changed within the 

same infants over multiple times (Figure 7.4). 

Samples from infants 6502 and 7702 contained higher numbers and abundances 

of human proteins (thus lower microbial, and overall protein identifications) (Table 7.1). 

We noticed that these two samples were very black and viscous with a tar-like 

consistency compared with other samples, which were more greenish or brownish in  
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Figure 7.3: Distribution of Microbial and Human Proteins: Samples from infants 

Un091609, 6502, and 7702 were searched against the isolate database (Infant_Isolate_db 

_ 010611) using the DBDigger algorithm. Samples from the UC1 baby were searched 

using the Sequest algorithm against the Isolate_UC1_HrefSeq2011_IgAM_20 database. 

Carrol baby samples were searched using the DBDigger algorithm against the database: 

carrol_metagenome_42312_HRefseq2011_IgA_contams. Proteins identified were based 

on redundant values (no protein clustering) 
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Figure 7.4: Distribution of Microbial and Human Spectra. Comparative abundances 

were calculated by adding all spectral counts from microbial proteins and human proteins 

and plotting the percent ratio of the two. For the UC1 baby, Sequest searches were 

performed against the database: Isolate_UC1_HrefSeq2011_IgAM_20. Data from the 

Carrol baby was searched using DBDigger searches against the database: 

carrol_metagenome_42312_HRefseq2011_IgA_contams. No protein clustering or 

normalization was performed on either dataset. 
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color and chunkier. We think that these two samples may have been collected within the 

first few days of the infant’s life and could possibly be meconium samples. Meconium 

contains substances ingested by the infant in utero such as epithelial cells, mucus, and 

bile, and importantly only contains very few microbes.  However, since we do not know 

(these samples were sent as test samples for method development, and the details of the 

infant or date of collection were not recorded), we cannot make definitive conclusions 

about this. However, if these samples were meconium, it would make sense that they 

would contain very few microbial proteins, but rather be dominated by human proteins. 

Initial Method Development: Building the Optimal Search Database  

 

As discussed in chapter two (materials and methods), designing a proper protein 

search database is crucial to yielding optimal PSMs and thus improving the overall 

results. During initial method development, matched metagenomic data was not available 

for the UC1 samples. Thus, a search database was generated from a published 

metagenomic sequences from an adult fecal microbiome (264) (Gill db). However, 

searches against this database resulted in very few protein, peptide, and spectra matches 

(Figure 7.5). Therefore, a second database (Isolate db) was generated in which 

information from 16S rRNA data from the same sample was used to choose twenty-one 

closely related bacterial isolate sequences (obtained from JGI) (; Infant_Isolate_db _ 

01061; species are listed in chapter six). Searching against this database improved the 

results significantly, due to the database more closely representing the species in the 

sample. Subsequently, once the metagenomic data became available, which consisted of 

whole-genome reconstruction of the four dominant members from that community (see 

chapter six or Morowitz et al), a third and final database (Isolate_UC1_HrefSeq2011_ 
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Figure 7.5: Choosing Optimal Database Design. A.) Sample 91609Un run on the the 

LTQ-Orbitrap XL and searched using DBDigger against the isolate database (Infant_ 

Isolate_db_010611) and unmatched metagenome database (Gill db) (265) B.) Carrol 

samples: Myrimatch searches against metagenome only database and metagenome with 

isolate sequences appended. Twenty-one isolate sequences previously identified in the 

human gastrointestinal tract were obtained from JGI (see materials and methods section 

of chapter 5 for details).  

B. 
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_IgAM_20) was constructed (results shown in chapter six) and used as the final search 

database. This highlights the importance of using metagenomic sequences from matched 

samples (with the inclusion of less dominant organisms). Likewise, for the Carrol 

samples, a metagenomic database was generated which contained more highly resolved 

microbial species and strains (compared to the UC1 metagenome). When these samples 

were searched against a database containing the metagenomes only, then results 

compared with searches against a database containing the metagenome plus twenty-one 

isolate sequences, the results were not improved upon addition of the isolate sequences 

(Figure 7.5B). Again, this highlights the importance of using high-quality matched 

genomes for generating predicted protein database. 

 

Improvement with Next-generation mass spectrometers 

 

Also during the course of method development for this project, we were fortunate 

to be able to purchase a next-generation, high-performance mass spectrometer: the LTQ-

Orbitrap Velos. The same sample, from infant #64 (UC1 baby) collected on day 21 after 

birth, was ran on two different instruments for comparison: the LTQ-Orbitrap XL and the 

LTQ-Orbitrap Velos. Not surprisingly, protein identifications and abundances improved 

dramatically with the use of the higher-end Velos instrument (Figure 7.6). (For details on 

the differences between the LTQ-Orbitrap XL and the LTQ-Orbitrap Velos, see materials 

and methods chapter two.)  
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Figure 7.6: Greater proteome Depth Achieved with Next-Generation Velos 

Instrument. Sample #6421(infant #64 on day 21 after birth) was run on both instruments 

and total human and microbial spectra are shown for comparison. Searched using 

DBDigger against the isolate database. 

 

 

 

 

Attempts to Deplete Abundant Human Proteins: Mass Exclusion List & Differential 

Centrifugation 

As described previously, some infant fecal samples contained a high abundance of 

human proteins, and initially there was some concern as to whether the human proteins 

would dominate the samples so much that we would not be able to sufficiently measure 

the microbial proteins at a deep enough level to extract useful biological information. In 

addition to the number of proteins, the abundance of human proteins is a concern since 

the mass spectrometer could be spending all of its time measuring spectra from an 

abundant human protein and may be missing a less dominant microbial protein buried 

underneath the peak. For example, in the UC1 baby, the most abundant human protein is 

the IgG Fc receptor binding protein (FCGBP), with 20,000 spectral counts collected in 
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one run. In contrast, the most abundant microbial protein only comprised around 500 

spectra in the same run. Therefore, several experimental trials were attempted to 

circumvent this problem. The first entailed applying a mass exclusion list such that 

peptide masses from the most dominant human proteins (FCGBP, Calcium activated 

chloride channel regulator, alpha-1 antitrypsin) were programmed into the mass 

spectrometer excluding them from being measured. Secondly, a differential 

centrifugation was applied during sample preparation in attempts to deplete the human 

proteins. A similar method was used for metaproteomics in adult fecal samples (33), 

however infant fecal are limited by the amount raw material available, so modifications 

must be made for these significantly lower sample amounts. Unfortunately, however, 

neither applying a mass exclusion list, nor differential centrifugation improved the overall 

results in terms of significantly reducing the percent of human proteins or spectra 

measured (and in turn did not increase the percent of microbial protein identifications or 

spectra) (Table 7.5). 

 

 

Table 7.5: Experimental Attempts at Depleting Abundant Human Proteins 
 SDS-TCA Prep Mass Exclusion List Differential Centrifugation 

Total microbial spectra 31599 23302 33240 

Total human spectra 38903 26901 41643 

Percent microbial spectra 45% 46% 44% 

Percent human spectra 55% 54% 56% 

    
Total microbial proteins 3025 2001 2287 

Total human proteins 1830 1089 1167 

Percent microbial proteins 62% 65% 66% 

Percent human proteins 38% 35% 34% 

Sample 6421(UC1 baby from day 21) run on the OrbiXL and searched with DBDigger 

against the isolate database (Infant_Isolate_db_010611). 
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Additional Attempts to Deplete Abundant Human Proteins in Fecal Samples 

Next, we tried to fractionate the sample by protein size using a 50kDa molecular 

weight cutoff (MWCO) filter, based on the idea that many of the abundant human 

proteins were very large, especially in comparison to the microbial proteins. For example, 

the molecular weight of the abundant human proteins FCGBP and CLCA2 are 572kDa 

and103kDa, respectively.  Thus, following extraction, the proteins were passed through 

the 50kDa MWCO filter and the top and bottom fractions measured on the LTQ-Orbitrap 

Elite. We were hoping that the smaller proteins would pass through the filter, enriching 

the microbial proteins in the bottom fraction. However, this was not the case, since most 

of the proteins were identified from the top fraction (Figure 7.7B) and proteins above and 

below 50kDa were detected at comparable levels in both the top and bottom fractions  

 

A.                                                                               B. 

 
 

 

Figure 7.7: Attempt to Deplete Abundant Human Proteins using a 50kDa MWCO 

filter. A.) Protein identifications from an unfractionated sample (all), the top fraction 

from the filter, and bottom fraction. B.) Venn diagram showing the number of proteins 

only identified in the top or bottom fractions as well as those which overlap in both 

fractions. 
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(Figure 7.7A). Results from this experiment were confounding since a significantly  

higher number of the proteins were detected in the top fraction. This led us to speculate 

that there may possibly be some small molecules interfering with MS signal that are 

passing through during filtration. 

 So, our next idea was to try a different type of sample preparation, filter aided 

sample preparation (FASP) (266), in which proteins are captured on a filter, washed with 

buffer allowing small molecules to pass through, then tryptically digested on the filter. 

However, when three different samples were prepared using this method then compared 

with the SDS-TCA method, the number of protein identifications was not improved, nor 

was the ratio of human:microbal proteins. Thus, we reaffirmed that the SDS-TCA method 

was the optimal choice for processing infant fecal microbiome samples. 

 

 

 

Table 7.6: Comparison of SDS-TCA and FASP Sample Prep Methods 

 

 
FILTERED 

SPECTRA PEPTIDES PROTEINS 

% HUMAN 

PROTEINS 

Unlabeled_SDSTCA 100703 11954 5133 11% 

Unlabeled_FASP 74651 9510 4892 13% 

UC1_Day21_SDSTCA 146388 11464 4031 43% 

UC1_Day21_FASP 115557 8334 3403 47% 

CARROL_Day23_SDSTCA 87314 5428 1416 58% 

CARROL_Day23_FASP 54240 5039 1343 61% 

 

Data searched using Myrimatch and ID Picker against the isolate database for Unlabeled 

sample, the metagenome database for the Carrol sample, and the UC1metagenome + 

isolates database. 
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 In conclusion, utilizing a mass spectrometry- based metaproteomic approach to 

measure fecal microbiomes from multiple preterm infants revealed significant variability 

between and within individuals. This was apparent in terms of microbial memberships as 

well as for the types and relative abundances of human proteins. While attempts were 

made to improve the methodology and deplete abundant human proteins, the existing 

method proved robust and applicable to multiple infants. 
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CHAPTER EIGHT 

Conclusions: Insights into microbial symbiotic interactions gained through 

metaproteomic investigations 

  

Throughout this dissertation work, we have demonstrated that a mass 

spectrometry-based metaproteomic approach provides a robust and broadly applicable 

platform for studying microbial symbiotic interactions. This was highlighted in several 

symbiotic systems ranging from the basic genetic level with parasitic transposable 

elements, to single phage-bacteria interactions. We expanded this to microbial co-

symbionts within an invertebrate host, then on to a more complex microbial 

commensalism in the human gut. From each of these studies, we were able to monitor the 

functional signatures of all members taking part in the symbioses. Acquiring deep 

proteomic measurements within each of these systems allowed extraction of valuable 

biological information on symbioses in general, as well as specific features from the 

various symbiotic relationships. 

Characterization of microbial symbiotic interactions in past work has consisted of 

looking at one or two genes/proteins at a time, and provided useful, yet limited, 

information. Currently, in the systems biology era, whole genomes can now be 

characterized and their functional signatures measured via genomics and proteomics, 

respectively. However, while characterizing functions of a cell under defined laboratory 

conditions is valuable, the level of complexity is compounded when characterizing 

multiple symbiotic members whose functions are dictated and changing according to 

their role within the symbiotic relationship. Oftentimes, multiple members may have the 
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encoded genetic potential for carrying out certain metabolic activities, but the symbiotic 

system has evolved such that only one member carries out this function, because it is 

unnecessary for multiple members to do so while another member will contribute a 

different needed function. This information cannot be obtained exclusively from the 

genomic level, but rather requires functional measurements, which can be obtained 

through proteomics. In addition, obtaining in situ measurements from symbiotic microbes 

in their natural environment is crucial to unraveling true biological/functional roles of 

each member. Thus, metaproteomics fits this niche well. However, due to instrument cost 

and the level of technical expertise required, only limited metaproteomic studies on 

symbiotic systems have been undertaken. Through this dissertation work, we have been 

able to push the field forward by utilizing a robust metaproteomic platform to gain 

biological insights into various symbiotic interactions.   

A primary contributing factor for this advancement has been the rapid 

developments in the field of mass spectrometry-based proteomics within recent years. In 

particular, within the time frame of this dissertation work, the innovation of new mass 

spectrometry instruments has progressed dramatically. In the beginning of this work, we 

started out measuring microbial samples and environmental samples on a basic linear 

trapping quadrupole (LTQ-XL). Then, we progressed to higher- end instruments such as 

the LTQ-Orbitrap, which was developed in 2005, to afford high mass accuracy 

measurements crucial to analyzing complex environmental samples. With the 

introduction of the next-generation instruments like the LTQ-Orbitrap-Velos in 2009, and 

the LTQ-Orbitrap Elite, just released in 2012, the increase in dynamic range and 

robustness allowed deeper proteome measurements, which would not have been possible 
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with earlier generation instruments, especially for complex community samples like those 

from the infant fecal microbiome (as demonstrated in previous chapters). Due to the 

available instrument capabilities in our laboratory, we have been able to generate 

valuable proteomic data necessary to categorize complex dynamic relationships between 

multiple members forming symbiotic associations. 

Adding to the advancement of this field, genome sequencing capabilities within 

the last five years has increased prolifically, such that the number of genomes sequenced 

has increased exponentially, allowing better search databases for proteomics. Also, 

bioinformatic algorithms for metagenomic assembly and proteome data analysis tools 

have contributed to driving the field forward. 

 

Information revealed about phage-bacteria symbiotic interactions:  

To investigate phage-bacterial symbiosis, we set out to characterize the global 

anti-viral proteomic response across an infection time course.  To this end, we obtained 

information about which Cas proteins are important in the CRISPR/Cas response, as well 

as the overall anti-viral proteomic response. Importantly, this was the first simultaneous 

measurement of phage and host proteins during infection. Many proteomic studies have 

characterized viral structural proteins (such as capsid and tail proteins) following virus 

purification or enrichment away from the host, but this only provides limited information 

about the virus-host symbiotic interaction.  

While we were able to move the field forward by measuring not only phage 

structural proteins, but also phage proteins produced within the bacterial cell upon 

infection, our system only consisted of infection of a bacterial isolate with a single phage. 
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In future studies, it would be valuable to study multiple bacteria and co-infecting phage, 

especially when studying the CRISPR/Cas system where both the host and phage are 

constantly evolving. There have been genomic studies looking at SNPs in the 

CRISPR/Cas system (266, 267), and it would be interesting to see how this translates to 

the proteomic level. Since we have proven that a proteomics approach is technically 

robust, using this platform to investigate phage co-infections is the next logical step. 

However, this would require next-generation instruments to obtain the dynamic range 

necessary for investigating these complex interactions.  

In addition, it would be interesting to see how viral and host proteomes are 

changing in environmental ecosystems. Again, this would require looking at both phage 

and host proteins during active infection cycles, in order to not only characterize the 

structural viral proteins, but also those produced within the bacterial cell. This raises the 

issue of adequately detecting those viral proteins, which are probably low in abundance, 

and contained in a complex matrix from the environment. While the field of viral 

metagenomics has rapidly progressed in recent years, obtaining viral metaproteomes has 

its own unique challenges. Viral metagenomic sequences are obtained from 

purifying/enriching virus like particles (VLPs) from environmental samples. However, 

measuring enriched VLPs by metaproteomics would only yield information about the 

phage structural proteins. One could compare these data with metaproteomic data 

collected from the whole microbial community, but detecting virus proteins from a 

community is difficult due to the dynamic range issue of dominant microbial proteins 

masking lower abundant viral proteins. Even though viral sequences make up a large 

portion of genomic data collected from environmental samples (oceans, AMD, etc.), their 
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proteins may be in lower abundance relative to the microbes, and there is no protein 

amplification method (like PCR for DNA) to help with this issue. Again, next-generation 

MS instruments would be necessary for these metaproteomics experiments and continued 

improvements to achieve deeper dynamic range are necessary (via sample preparation, 

instrumentation, etc.). 

In addition, for more successful metaproteomics measurements of viruses, there 

needs to be improvement in building virus reference genome databases. With the 

majority of viruses yet undiscovered, and most virus genes not matching any sequences 

in the NCBI nonredundant database, metaproteomics data is virtually impossible to 

acquire without some type of de novo protein sequencing. This is also compounded by 

the fact that viruses mutate very rapidly. In metaproteomics measurements, the accuracy 

of peptide mass and sequences information is so specific that a single amino acid change 

would prevent identification of that protein. Another disadvantage of metagenomic 

analyses of enriched VLPs from the environment is that by extracting the DNA, this 

technique neglects the RNA viruses. It could be valuable to use a proteomics approach to 

look for these RNA viruses; however one would need a complete RNA virus reference 

genome database to search against. Currently, developments of such databases are 

underway, but they still have a long way to go.  

 

 

Insights into symbioses in the human gut microbiome  

 Through-out this dissertation work, we have shown that metaproteomics can 

unravel insights into the commensalistic relationship between microbes and their human 

host. We used preterm infants as a model system, since among other factors the lower 
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microbial complexity (compared to adult fecal microbiomes) allowed reconstruction of 

high-quality microbial genomes. This, in combination with high-end MS instrumentation 

and bioinformatic analyses, allowed us to characterize not only the microbial proteins, 

but also human proteins in the preterm infant fecal microbiome. Thus, we were able to 

advance the knowledge base by obtaining insights into this symbiotic relationship 

between the human gut and its resident microbes. In addition, we demonstrated that this 

metaproteomics approach is applicable to multiple infants, and that a significant 

variability exists within and between different infants at the proteomic level. 

 Many questions remain, such as; what is a ‘normal’ or ‘healthy’ microbial 

colonization pattern in newborn infants, and given the drastic variability, how many 

infants will need to be measured to determine this? We have begun to answer the first 

question in this dissertation work; however, we will need to increase the number of 

infants studied in order to determine a baseline for healthy infants.  We plan to use this 

metaproteomics approach to simultaneously monitor the microbial and human functional 

signatures. In addition, experimental plans are underway to study preterm infants who 

have developed necrotizing enterocolitis (NEC). Comparing the fecal metaproteomes of 

these infants with those of healthy infants may aid in determining factors leading to 

disease onset or pathogenicity.  

 A major challenge remaining in obtaining metaproteomic measurements from 

fecal microbiome samples is the dominance of human proteins (discussed in chapters six 

and seven). Even though the current SDS-TCA method proved successful at measuring 

microbial proteins in conjunction with human proteins, experimental methods for 

“digging deeper” into the microbial proteomes and measuring those lower abundance 
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proteins, is necessary for future experiments. Continued efforts are underway to explore 

options for depleting human proteins/ enriching the microbial proteins from fecal 

samples, which may be the major bottleneck in obtaining functional information about 

the microbial community members. 

 Investigators involved in the Human Microbiome Project (HMP) are rapidly 

collecting metagenomic data from multiple body sites including the mouth, vagina, lung, 

and skin. However, even though most of the current HMP studies are gene based, and 

will identify microbial community members or potentially important genes, there will 

still be a gap in the knowledge about how these members are functioning, which could be 

highly variable from the encoded potential of the microbes. Metaproteomics can fill this 

void. In addition, a key component of this commensalism, which is missing from most 

studies, is how the resident microbes are affecting their host. As discussed in earlier 

chapters, the enormous diversity between and within individuals at the microbial species 

level complicates the ability to determine what a ‘normal’ or ‘healthy’ microbiome looks 

like and this makes comparing microbiomes from ‘sick’ individuals and determining 

causality difficult. Again, a missing key component may not be what the members are, 

but rather what they are doing, and most importantly, how the human host is responding 

to them. This highlights the increasing need for metaproteomic studies in adult samples 

from multiple body sites. 

 A key to improving metaproteomic analyses in the human microbiome (gut and 

other body sites) will be getting high-quality genomic information to compile search 

databases.  While high-throughput sequencing provides metagenomic data at a rapid 

pace, the complexity of the microbial communities in the gut (especially the adult gut), 
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and limited bioinformatics tools to bin and reconstruct whole genomes reconstruction 

from metagenomic data, limit the ability to achieve optimal resolution of microbial 

species and strains within a community.  Without binning and assembling genomes, only 

information at community level but not at species and strain level (such as niche 

partitioning, ecological divergence, etc.) can be obtained. While this is challenging in 

more complex samples such as the adult fecal microbiome, the stage has been set in 

starting with lower complexity communities like the infant gut, and is beginning to 

translate to larger communities where an increasing number of whole genomes are being 

reconstructed  (80+ genomes from an environmental sample: data unpublished from the 

Banfield lab). 

 

 

Outlook 

 The field of mass spectrometry-based proteomics/ metaproteomics has 

experienced rapid dramatic advances within recent years. However, we have just begun 

to scratch the surface of what can be done. With continued improvements in 

bioinformatic tools, sample preparation methods, and rapidly developing mass 

spectrometers (with improved performance, sensitivity, robustness, dynamic range, and 

throughput), added to this already robust platform, the level of measurements will allow 

thorough and insightful biological information to be gained. Thus, metaproteomics can 

and should continue to be utilized as a vital approach to looking at symbiotic interactions.  

I fully anticipate that within the next five to ten years, metaproteomics will allow 

complete characterization of the majority of the members within complex microbial 

consortia, uncovering ground breaking insights into microbial symbiotic associations. 
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