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 ABSTRACT 
 

     In this study, the perennial problem of scale is addressed with an updated set of 

modeling tools that include global climate, atmospheric chemistry simulation, mesoscale 

weather, and air quality simulations. The evaluation of coupled model performance 

across geographic scales and the assessment of local scale climate change impacts under 

a fossil fuel intensive climate change scenario Representative Concentration Pathway 

(RCP 8.5) was achieved by linking the global climate model Community Earth System 

Model (CESM), with the regional climate model Weather Research and Forecasting 

(WRF) Model. This study is the first evaluation of dynamical downscaling using WRF on 

a 4km by 4km high resolution scale in the eastern US driven by the CESM. First, the 

global and regional climate model results were evaluated, and an inconsistency in skin 

temperature during the downscaling process was corrected by modifying the land/sea 

mask. In comparison with observations, WRF shows statistically significant improvement 

over CESM in reproducing extreme weather events, with improvement for heat wave 

frequency estimation as high as 98%. The RCP 8.5 was used to study a possible future 

mid-century climate extreme in 2057-2059. Both heat waves and extreme precipitation in 

2057-2059 are more severe than present climate in the Eastern US. The Northeastern US 

shows large increases in both heat wave intensity (3.05 ºC higher) and annual extreme 

precipitation (107.3 mm more per year). The implementation of a global atmospheric 

chemistry model (CAM-Chem) in the Community Atmosphere Model (CAM) enables 

the connection between the global chemistry model (CAM-Chem) and the regional 

chemistry model Community Multi-scale Air Quality modeling system (CMAQ). The 

statistical evaluation demonstrates confidence in the regional chemistry downscaling 

methodology. In U.S., the mean concentrations of Maximum Daily 8-hr ozone is 3.1 to 

9.5 ppbv higher during the heat wave periods than non-heat wave periods in RCP 8.5, 

stressing the importance of control strategies during the heat wave periods. 
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CHAPTER I 
 

1 DISSERTATION OVERVIEW 

1.1 Introduction 

 
Since the Industrial Revolution and especially after the 1800s, global and regional 

climate patterns have significantly changed, largely a result of increasing anthropogenic 

greenhouse gas emissions. As climate change continues to unfold in response to 

increasing greenhouse gases emissions, its effects on sensitive ecosystems and 

interactions with other disturbances will become more pronounced. Compared with 

average climate change, extreme weather events exert more impact on ecosystems and 

could cause both property damage and loss of life in a short time period [Parmesan and 

Martens, 2008; Parmesan et al., 2000]. Extreme weather events have already 

significantly influenced North America. Lott and Ross [2006] report in nearly every year 

since 1980, extreme events have caused more than 1 billion dollars in damage in the US; 

in 2005 the annual loss due to extreme events totaled 100 billion dollars. As one of the 

primary extreme events, heat waves cause severe and harmful impacts on human health 

and can kill a large number of people in a short period of time. For instance, several 

hundred people died in a 1995 Chicago heat wave while more than ten thousand heat-

related deaths occurred in a 2003 European heat wave [Robine et al., 2008; Whitman et 

al., 1997]. Several research studies, including the Intergovernmental Panel on Climate 

Change (IPCC) Fourth Assessment Report (AR4) [IPCC, 2007], have found that 

temperature and heat wave duration and frequency are more likely to increase in the 

future as a result of global warming [Ganguly et al., 2009; IPCC, 2007; Meehl and 

Tebaldi, 2004; Schar et al., 2004; Tebaldi et al., 2006; Weisheimer and Palmer, 2005]. 

All these simulations were based upon IPCC Special Report on Emissions Scenarios 

(SRES) [Nakicenovic and Swart, 2000]. The newly designed scenarios, denoted by 

‘representative concentration pathways’ (RCPs, [Moss et al., 2010]; 

http://www.pbl.nl/en/publications/2011/special-issue-rcps-climatic-change), use a parallel 

approach to combine technology, economy, demography and policy to develop  
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            Figure 1.1 CO2 concentration pathways for the RCP scenarios*  

           *Source: http://stratus.astr.ucl.ac.be/textbook/pdf/Chapter_6.pdf 

 

plausible CO2 concentration pathways, shown in Figure 1.1 [Moss et al., 2010; Riahi et 

al., 2007]. Studies of these scenarios are the central focus of Coupled Model 

Intercomparison Project Phase 5 (CMIP5) [Taylor et al., 2009; Taylor et al., 2012], and 

are also the core topic of this research. 

During the last few years, global climate models (GCMs) have been further 

developed and continuously improved. One of the global climate models, Community 

Earth System Model (CESM), is a state-of-the-art coupled global circulation model, and 

has now become a true Earth system model through the inclusion of land and ocean 

biogeochemistry. The effects of CO2 and nitrogen (N) on plant fertilization and growth 

are now part of the standard earth system model (CESM1.0, CLM4.0) [Thornton et al., 

2009]. In addition, realistic atmospheric chemistry mechanisms were implemented to 

include chemical reactions involving gases and aerosols that contribute to radiative 

forcing as well as to air quality parameters such as tropospheric ozone and the sulfur and 

nitrogen cycles [Lamarque et al., 2010].  

Due to limited computational resources, global climate simulations usually use a 

spatial resolution of a hundred to a few hundred kilometers. Under this spatial scale, it is 

possible to analyze climate change at a global scale or large regional scale. However, it 

has become increasingly important to utilize high resolution scale, especially in public 
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health-related climate studies. There are two primary methods: statistical downscaling 

and dynamical downscaling. Statistical downscaling demands less computational power 

but may not accurately reproduce physical relationships between global and regional 

outputs. Dynamical downscaling methodology is based on fundamental physical theories, 

so the global and regional models are more transferable. In order to take advantage of 

better physical relationships and detailed regional topography, the dynamical 

downscaling technique was used to downscale global climate model outputs and provide 

the initial and boundary conditions for the regional climate model. This methodology is 

computationally demanding and requires considerable implementation effort. Thus, a 

linkage technique which couples global and regional climate models (RCMs) together is 

necessary. The earliest study to examine differences between GCMs and RCMs is 

described by Dickinson et al. [1989] and used a horizontal resolution of 60 km. As a 

result, a series of studies on regional climate downscaling were performed with 

resolutions around 50-60km [Giorgi, 1990; Giorgi et al., 1994; Hostetler et al., 1994; 

Leung et al., 1996; McGregor and Walsh, 1994; Podzun et al., 1995]. More recently, 

finer spatial resolution has been used in studies, with solutions of 30km or less [Bell et 

al., 2004; Caldwell et al., 2009; Snyder et al., 2002]. In this study, to downscale even 

finer resolution to a 4 km by 4 km resolution in the eastern US was explored, which may 

prove extremely valuable for local detailed analysis. 

The impact of climate on air quality has achieved wide attention, however, most 

studies focused on the Intergovernmental Panel on Climate Change (IPCC) Special 

Report on Emissions Scenarios (SRES) A1 and A2 scenarios [Nakicenovic and Swart, 

2000]. Bell et al [2007] found by keeping emissions fixed at the present conditions, under 

A2 climate scenario, an increase of summer daily 1-h maximum ozone was projected 

from an average of 4.8 pppb, up to 9.6 ppbv, by the 2050s. They also found the mean 

number of days exceeding the daily maximum 8-h ozone standard increased by 68%. 

Nolte et al. [2008] found that by the 2050s, an overall increase of 2 to 5 ppbv in 

maximum daily 8-h ozone in Texas and parts of the eastern U.S. under A1B scenario was 

to be expected while maintaining emissions at current level.  
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Compared to SRES scenarios, these new RCP scenarios employ different emissions 

pathways [Lamarque et al., 2011b], and details are discussed in the Section 6.5.2. Using 

global chemistry models, the tropospheric ozone is projected to decrease in RCP 2.6, 

RCP 4.5 and RCP 6.0 [Lamarque et al., 2011b],  and increase in RCP 8.5 by the end of 

21st century [Kawase et al., 2011; Lamarque et al., 2011b]. The regional scale studies on 

the RCP scenarios are very limited, thus, to investigate more detailed local impact from 

climate on air quality in these new RCP scenarios, in this study, dynamical downscaling 

was applied using a regional chemistry model, and a high resolution, 12 km by 12 km, 

continental U.S. domain, designed for the regional simulations.  

 

1.2 Research Goals  

 
The goals of this study are: (1) to determine how and to what extent heat waves will 

occur under changing climate and will lead to air quality perturbations in global scales; 

(2) to downscale global climate to regional climate for investigating local detailed 

extreme weather events at present and future climate conditions; (3) to downscale global 

chemistry modeling to regional scale in order to evaluate the impact of climate change , 

particularly extreme weather events, on regional air quality.  

 

1.3 Applications of the Study 

 
 1. The three hourly global climate outputs (RCP 4.5 and RCP 8.5) have been published 

in the Earth System Grid (ESG, http://esg2-gw.ccs.ornl.gov/), and are available for use by 

the research community. 

 2. Regional downscaling and analysis of extreme events can provide important 

information for policy makers to take action in protecting ecosystems. 

 3. This is the first time regional downscaling has been used in such a high resolution 

domain (4 km by 4 km, eastern US), and the outputs can be widely used by other groups 

interested in regional-scale climate and chemistry.  
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      a. The high resolution climate data can be used to generate local predictions of Lyme 

disease and lung cancer, currently the subject of work at Harvard University, Emory 

Universities and University of Michigan. 

      b. The high resolution climate output from WRF-CMAQ can be used as input to the 

biogeochemical model (i.e, PnET-BGC Model) and the hydrologic model, (i.e., Variable 

Infiltration Capacity Model), to investigate hydrology and water quality response to 

changes in climate in US. The data can be used to help analyze the effects of heat waves 

and drought and may also help evaluate ecosystems which are susceptible to extreme 

climate events.    

c. The regional downscaling outputs are easily applied to national park studies. It can 

be used to quantify the potential impact of climate change, such as ozone and nitrogen 

depositions, on the national parks, such as the Appalachian Highlands Network, including 

the Great Smoky Mountains National Park, the Blue Ridge Parkway, Big South Fork 

Wild and Scenic River and Obed Wild and Scenic River.   

d. The data can be used for impact assessment in terms of different regional 

vulnerabilities. The climate change studies can also provide a basis for policy makers 

when taking actions on climate mitigation and adaptation.  

e. The downscaling methodology developed in this study is applicable to other global 

climate and chemistry models. 
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CHAPTER II 
2 METHODOLOGY 

2.1 Overview of the Methodology 

 
This study requires climate and chemistry simulations at both global and regional 

scales, shown in Figure 2.1. For global simulations, the study includes present climate 

and chemistry simulations, and future climate and chemistry simulations under different 

projected emissions scenarios. With regards to regional downscaling simulations, due to 

limited computational resources, a four year period (2001-2004) was selected as base 

case (present) and 3 year period was selected as future case (2057-2059) in both the 

regional climate and chemistry studies.  

 

2.2 Climate/Air Quality Model Description 

2.2.1 Global Climate Model Description 
 

CESM version 1.0 (http://www.cesm.ucar.edu/models/cesm1.0/) was used for global 

climate simulations. CESM, composed of atmosphere, ocean, land surface, sea-ice, and a 

coupler, is a state-of-the-art global climate model. The atmospheric component, 

Community Atmosphere Model (CAM 4.0), uses the finite-volume (FV) dynamical core 

[Neale et al., 2010]; the land component, Community Land Model (CLM 4.0), 

incorporates fertilization effects on plant growth by CO2 and nitrogen (N) [Thornton et 

al., 2009]. Improvements  in CAM 4.0 over the CAM 3.0 to the physical 

parameterization of tropical deep convection, planetary boundary layers and aerosols 

have led to better simulation of regional temperatures and precipitation [Gent et al., 

2010] as well as improved performance over seasonal and inter-annual times scales. A 

horizontal resolution of 0.9 by 1.25 degree was used for the global climate simulations. 

The model has 26 vertical layers and the top layer has a pressure of 2.917 mb, which is 

about 40 km high and well into the stratosphere. 
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Figure 2.1 Downscaling linkage from global model (CESM and CAM-Chem) to 

regional climate and chemistry model (WRF and CMAQ) 

2.2.2 Global Chemistry Model: CAM-Chem 
 

The atmospheric chemistry has been fully integrated in CESM, referred to as CAM-

Chem and discussed by Lamarque et al. [2012]. CAM-Chem was integrated within a 

fully coupled Earth System model CESM. In addition to the atmospheric component, 

CESM includes the land and ocean components, and these components enable the 

chemistry module to take consideration of biogeochemical processes among the 

atmosphere, land and ocean [Lamarque et al. 2012]. The heat waves (and thermal 

properties of the solution) are resulted from the standard model configuration where the 

radiation ozone interaction is prescribed as specified by CMIP5. The major consideration 

is to keep climate the same as the pure RCP climate scenarios. If chemistry was coupled 

to the radiation, the climate from CAM-Chem will be different from the RCP scenarios, 

which deviates from the purpose of this study. Using prescribed aerosols can keep true 

RCP scenarios and achieve validated climate. CAM-Chem has been widely used and 

evaluated on its representation in the atmosphere [Aghedo et al., 2011; Lamarque and 

Solomon, 2010; Lamarque et al., 2011a; Lamarque et al., 2011b; Lamarque et al., 2012]. 

The same resolution as CAM4, CAM-Chem was run on a 0.9 by 1.25 degree (latitude by 

longitude) spatial resolution with 26 vertical layers.  

2.2.3 Regional Climate Model WRF Description 
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                                      Figure 2.2 WRF system flow chart* 

*(based on http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm) 
 

The Advanced Research Weather Research and Forecasting (WRF) Model version 

3.2.1 [Skamarock and Klemp, 2008], is a state-of-the-science regional meteorological 

model. The model contains 34 vertical layers, ranging from the surface to 50 mb (about 

20 km). The numerical equations are fully compressible and non-hydrostatic [Wong et 

al., 2012].  

WRF System contains three main components, shown in Figure 2.2, including WRF 

Preprocessing System (WPS), Objective Analysis (OBSGRID), and WRF simulations. 

WRF simulations include the initial and boundary simulations (real.exe) and WRF 

physical simulations (wrf.exe). 

 
2.2.3.1 The WRF Preprocessing System (WPS) 

          

The WRF Preprocessing System (WPS) is composed of three programs (Geogrid, 

Ungrib and Metgrid,), which are used to prepare inputs for initial and boundary 

conditions. The descriptions of these three programs are based on the following website 

(http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm).    

Geogrid is used to define the simulation domains while interpolating static 

geographical data to the model grids. The static geographic data includes grid based 

latitude, longitudes, terrain height, etc.    

The purpose of Ungrib is to extract meteorological fields from global reanalysis 

GRIB-formatted data. It is mainly used to reformat the reanalysis data to the format that 

Metgrid accepts.  
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After running Geogrid and Ungrib, Metgrid is used to horizontally interpolates all the 

meteorological fields from Ungrib to the specific model simulation domains defined by 

the program of Geogrid.   

2.2.3.2  Objective Analysis (OBSGRID)  
 

Objective analysis attempts to improve meteorological analyses by incorporating 

observational information to the modeling domains 

(http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap7.htm). The 

observational information may include real observations from National Centers for 

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 

reanalysis data or global climate data for climate downscaling. 

2.2.3.3 WRF initial/boundary conditions and WRF simulations 
 

As shown in Figure 2.2, the program real.exe is used to prepare initial and boundary 

conditions for WRF simulations based upon OBSGRID outputs, while wrf.exe is used for 

WRF simulations. While WRF simulations involve many different physics options, 

optimized physics options were used in this study for U.S. climate simulations. The main 

physical options are: Single-Moment 6-class microphysical scheme (WSM6) [Hong and 

Lim, 2006]; the new Kain-Fritsch convective parameterization [Kain, 2004]; Rapid 

Radiative Transfer Model for GCMs (RRTMG) [Iacono et al., 2008; Morcrette et al., 

2008]; the Mellor-Yamada-Janjic planetary boundary layer (PBL) scheme [Janjić, 1990; 

Mellor and Yamada, 1982]; and the Noah land surface model [Chen and Dudhia, 2001].  

2.2.4 Regional Chemistry model Community Multi-scale Air Quality (CMAQ) 
 
    The United States Environmental Protection Agency (USEPA) has employed 

tremendous resources for developing the regional air quality modeling system CMAQ 

[Byun and Ching, 1999; Byun and Schere, 2006]. It was first released in July 1998 and 

has been updated several times. The newest version, CMAQ 5.0 [Wong et al., 2012] is a 

fully integrated regional atmospheric chemistry model. 
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                                            Figure 2.3 CMAQ System diagram 

       The CMAQ regional air quality modeling system, shown in Figure 2.3, includes six 

main components: Meteorology-Chemistry Interface Processor (MCIP), emissions 

generation model Sparse Matrix Operator Kernel Emissions (SMOKE), initial condition 

processor (ICON), boundary condition processor (BCON), photolysis rates processor 

(JPROC), and Chemical Transport Model (CTM). The six components were described as 

follows (based on http://ie.unc.edu/cempd/products/cmaq/op_guidance_4.6/html/ and USERS 

GUIDE at http://www.cmascenter.org/help/documentation.cfm?MODEL=cmaq&VERSION=5.0). 

2.2.4.1 Meteorology-Chemistry Interface Processor (MCIP) 
 

As previously described, WRF is used to prepare meteorological fields for regional 

chemical model CMAQ; however, CMAQ cannot directly accept WRF outputs. MCIP, 

an interface which converts WRF outputs format to CMAQ input format, also extracts 

necessary information for CMAQ. In this process, only the variables used in CMAQ are 

extracted from WRF, which saves data storage and is efficient in data Input/Output (I/O).  

2.2.4.2 Sparse Matrix Operator Kernel Emissions (SMOKE)  
 

SMOKE (http://www.smoke-model.org/index.cfm) is used to process both 

anthropogenic emissions from the National Emissions Inventory (NEI) and biogenic 

emissions. Typically, emission inventories from different emission sources are on an 

annual or daily basis. However, emission data on an hourly basis are required by air 

quality models. SMOKE is the interface which converts annual or daily emission 

inventory to hourly emissions on each modeling grid.  

2.2.4.3 Initial and Boundary Conditions Processor (ICON and BCON) 
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ICON and BCON were used to provide initial and boundary conditions, respectively, 

for air quality simulations. ICON generates chemical species concentrations at the first 

time step of a simulation period, while BCON provides chemical species at the lateral 

boundaries for the entire simulation period. By default, the ICON and BCON will 

generate time-independent background profiles for chemical species. However, the time-

independent boundary conditions do not represent diurnal trends, and it may not be 

acceptable in some real applications.  In order to more accurately represent real 

conditions, downscaling of boundary conditions from a global model on a 3-hour basis is 

used; more discussion of this downscaling follows. 

2.2.4.4  Photolysis Rates Processor (JPROC) 
 

Photolysis Rates Processor (JPROC) is used to calculate the photolysis rates 

reference table, and then further interpolated to modeling grids during a certain modeling 

periods.  

2.2.4.5 Chemical Transport Model (CTM) 
 

Chemical Transport Model (CTM), the core component of CMAQ, integrates the 

output from the preprocessors described above (ICON, BCON, JPROC, MCIP and 

SMOKE), to simulate the atmospheric chemistry and physics processes. The modeled 

outputs are typically hourly gridded concentrations with different species on multiple 

vertical layers. The 3-D gridded data outputs typically contain O3, NO, NO2, PM2.5 

species and depositions. 

2.3 Dynamical Downscaling from Global to Regional Scales Climate 

and Chemistry 

Dynamical Downscaling is a technique used to link between global and regional 

models. In the downscaling process, the global model provides the initial and boundary 

conditions for the regional model. Initial conditions are needed only for the first time step 

while the boundary conditions have to be 3 to 6 hourly (3-hour in this study)  in order to 

represent diurnal patterns.  
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2.3.1 Climate Downscaling from CESM to WRF 
 

The dynamical downscale from CESM to WRF includes the downscaling from 

CESM to WRF Preprocessor System (WPS) and from CESM to Objective Analysis 

(OBSGRID). In retrospective studies, NCEP/NCAR Reanalysis data is used to provide 

meteorological fields and drive regional model WRF. In climate studies, global climate 

model outputs are needed to drive WRF. In WPS, one of the three programs is Ungrib, 

shown in Figure 2.2. Since the format from global model output is different from NCEP 

data, a program with similar functions to Ungrib needs to be implemented. Since variable 

names in CESM and WPS are different, variable matching from CESM to WPS when 

downscaling is a necessary first step. Table 2.1 lists all the required variables for 

downscaling from CESM to WRF. Note that for soil moisture and soil temperature, and 

there are 15 layers in CESM while WPS requires only 4 layers in its Noah Land Surface 

Model (Noah LSM). Linear interpolation from CESM to WPS was conducted for the soil 

moisture and soil temperature, but the lack of exact layer matching may lead to some 

discrepancies. 

                         Table 2.1 Variable matching from CESM to WRF* 

CESM 1.0 WRF Variable Description 
PS PSFC 2d Surface Pressure 
PSL PMSL 2d Mean Sea Level Pressure 
LANDFRAC LANDSEA 2d Land Fraction 
TS SKINTEMP 2d Skin Temperature 
TREFHT TT 2d 2m Temperature 
U (First layer) UU 2d 10m Zonal Wind U 
V (First layer) VV 2d 10m Zonal Wind V 
RELHUM RH 2d 2m Relative Humidity 
T TT 3d Temperature  
RELHUM RH 3d Relative Humidity 
U UU 3d Zonal Wind U 
V VV 3d Zonal Wind V 
Z3 GHT 3d Geopotential Height 
H2OSOI SM000010/SM010040/SM040100/SM100200 Soil Moisture 
TSOI ST000010/ ST010040/ST040100/ST100200 Soil Temperature 

* The descriptions of variables are from the CESM and WPS outputs 
 

2.3.1.1 Integrity Comparison between CESM and WPS Outputs 
 



13 
 

     The outputs from CESM and WPS should show similar patterns.  All variables were 

checked for congruency, but only wind vector distributions are shown in Figure 2.4. 

Similar patterns have been observed through the wind vector comparison between CESM 

and WPS in three simulation domains (36 km—D1, 12 km—D2 and 4 km—D3). Other 

variables show similar patterns between CESM and WPS, but there are some exceptions 

in skin temperature, as discussed below. 

 

 
Figure 2.4 Wind vectors comparison: The left figure comes from CESM while the 

right figure comes from Metgrid (WPS) 
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Figure 2.5 Skin temperature comparisons: (a) CESM; (b) WPS output without changing 

land use type; (c) WPS output after modifying the land/sea mask 
 

Figure 2.5 (a) and (b) shows the spatial distribution between CESM and WPS outputs 

for the D3 (4 km by 4 km domain), and the other two domains show similar patterns. 

Significant differences show up near Great Lakes region. While the same methodology is 

applied for other variables (such as temperature and wind vector), it does not work well 

for skin temperature (surface temperature). As is reported by Gao et al. [2012], in the 

atmospheric component, CAM, the land use type for the land and lake is the same. When 

downscaled, land use becomes important for interpolating skin temperature in regional 

models. When Metgrid horizontally interpolates skin temperature from CESM, for typical 

variables, the nearest 16 grids are used in distance-weighted interpolation. For skin 

temperature, however, it is based upon the land/sea mask in land use, so interpolation of 

skin temperature uses the nearest sea surface temperature. In the Great Lakes region, the 

land use type is land, so interpolation occurs using the nearest sea surface temperature to 

the right side, thus leading to somewhat unexpected interpolation. To resolve this 

problem, the land use type in the Great Lakes region was modified to the same as the 

ocean land use type. After the modification, the new spatial pattern of WPS outputs is 

shown in Figure 2.5 (c), which is consistent with CESM (Figure 2.5 (a)).   

2.3.1.2 Vertical Interpolation 
     The vertical coordinate of CAM, is a hybrid sigma-pressure system [Neale et al., 

2010]. In the system, higher vertical levels are assigned pure pressure; lower vertical 

levels are assigned hybrid sigma-pressure and the lowest levels, pure sigma, as is shown 
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Figure 2.6 Hybrid vertical structure of CAM 4.0 (Source: [Neale et al., 2010]) 

in Figure 2.6. The vertical layers are typically divided into two categories, full model 

levels and half model levels. Most of the variables such as zonal wind U, zonal wind V, 

temperature T, specific humidity q and relative humidity RH are defined at the full model 

levels while surface geopotential is defined at half levels (surface level). 

The relationship between pressure and hybrid coordinate in each grid can be expressed 

in Equation 2.1, and more details are discussed in Neale et al. [2010]. Furthermore, in 

higher layers (top 7 layers), Bv is 0, which makes the vertical coordinate pure pressure. 

The lowest layer has Av of 0, making it pure sigma. Other layers have hybrid pressure-

sigma coordinate. 

 
p(r,c,v) = AvP0+ BvPs(r,c)                                                            Equation 2.1  

Where p represents the pressure for a certain grid point at a given vertical layer. The 

index notation of r, c and v represent a specific row, column and vertical layer. The 

coefficients Av and Bv are hybrid coefficients at layer midpoints or interfaces. P0 denotes 

constant reference pressure, with the value of 100,000 Pa. Ps(r,c) denotes surface 

pressure at a certain grid point.      
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The CESM output is in hybrid-pressure coordinate, while Metgrid requires data in 

pure pressure levels. Thus, interpolation from hybrid-pressure coordinate to pressure 

coordinate becomes necessary. There are a few conditions that need to be considered. 

(a) If the WPS pressure level is between the pressure in layer 0z and 1z  

( 26,1 10 ≤≤ zz ) in CAM4, then linear interpolation is used.  
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0zp ,
0zf and 1zp , 1zf : the pressure and certain variable values at layer 0z and 1z  in CAM4 

zp , zf : the pressure and certain variable values at layer z  in WPS 

 

(b) If the pressure level in WPS is lower than the top layer pressure in CAM4, the variables value 

is simply equal to the top layer values in CAM4. 

 

(c) If the pressure level in WPS is higher than the pressure in the bottom layer of CAM4, there are 

two conditions. For variables other than geopotential height and temperature, the variable values 

in WPS are set to equal the bottom layer values in CAM4. For geopotential height and 

temperature, Trenberth et al. [1993] found the following interpolation methods more appropriate 

than assigning the bottom layer values, and these equations were applied to the dynamical 

downscaling. 
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Φ : geopotential 

sΦ : surface geopotential in CESM 

dR : gas constant dry air, 287.04 J Kg-1 K-1, 

g
RL d

r ×=α , unitless, where rL : constant lapse rate, 0.0065 K/m; dR : gas constant dry air, 

287.04 J Kg-1 K-1, g : acceleration due to gravity, 9.80616 m/s2 
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p : Pressure in WPS 

sp : Surface pressure in CAM4 

*T : Surface temperature, equals to )1(
BOT

BOTs
BOT P

PPT −
×+α   where BOTT : Temperature in the 

bottom layer of CAM4 

 
2.3.1.3 Interpolation of Soil Moisture 

 
The land component CLM4, contains 15 soil layers, with layer depths of 0.71, 2.79, 

6.23, 11.89, 21.22, 36.61, 61.98, 103.80, 172.76, 286.46, 473.92, 782.98, 1292.53, 

2132.65, 3517.76 cm (based on CLM4 outputs). In contrast, the soil layer heights in WPS 

are 10, 40, 100, 200 cm. To estimate the soil temperature of each layer in WPS, the mid-

layer temperature is used. For example, the first layer (0 to 10 cm) is represented by the 

temperature at a depth of 5 cm. Linear interpolation was applied to derive temperatures 

for WPS, as shown in Equation 2.2. For soil moisture, the unit is mm3 water per mm3 

soil. The interpolation is shown in the Equation 2.5 and Equation 2.6. 
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0h and 1h are the low and high height of a certain layer in WPS 

 

2.3.2 Chemistry Downscaling from CAM-Chem to CMAQ 
 

The main purpose of the dynamical downscaling from CAM-Chem to CMAQ is to 

provide initial and boundary conditions for CMAQ. Initial conditions are needed only for 

the start of the simulation while boundary conditions require dynamical downscaling 

from CAM-Chem. Similar to the downscaling from CESM to WRF, the first step in 
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chemistry downscaling is to match variables in CAM-Chem and CMAQ. Table 2.2 lists 

the variable matching from CAM-Chem to CMAQ, which is based upon the previous 

work [Emmons et al., 2010; Yarwood et al., 2005]. The other steps were discussed below. 

              Table 2.2 Mapping table between CAM-Chem and CMAQ* 

 
CAM-Chem species Species Name CMAQ CB05 species 

The unit for gas: mol/mol  ppmv 

O3 Ozone O3 

NO Nitric oxide NO 

NO2 Nitrogen dioxide NO2 

NO3 Nitrate radical NO3 

HNO3 Nitric Acid HNO3 

HO2NO2 peroxynitric acid PNA 

N2O5 Dinitrogen pentoxide N2O5 

OH Hydroxyl radical OH 

HO2 Hydroperoxyl radical HO2 

H2O2 Hydrogen Peroxide H2O2 

CO Carbon monoxide CO 

CH3OOH Methyl hydroperoxide MEPX 

CH2O Formaldehyde FORM 

C2H4 Ethene ETH 

CH3CHO Acetaldehyde ALD2 

C2O3 Acetylperoxy radical C2O3 

PAN Peroxyacetyl nitrate PAN 

CH3COCHO Methylglyoxal and other aromatic products MGLY 

ROOH Higher organic peroxide ROOH 

ONIT Organic nitrate NTR 

ISOP Isoprene ISOP 

PAR Paraffin carbon bond (C-C) PAR 

OLE Terminal olefin carbon bond (R-C=C) OLE 

TOLUENE Toluene and other monoalkyl aromatics TOL 

SO2 Sulfur dioxide SO2 

C10H16 Terpene TERP 

NH3 Ammonia NH3 

CH4 Methane CH4 

XO2 NO to NO2 conversion from alkylperoxy 

(RO2) radical 

XO2 
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XO2N NO to organic nitrate conversion from 

alkylperoxy (RO2) radical 

XO2N 

ROR Secondary alkoxy radical ROR 

CL2 Chlorine gas CL2 

HOCL Hypochlorous acid HOCL 

HCL Hydrogen chloride HCL 

Unit for particle (kg/kg)  CMAQ AE6 species 

SO4 Sulfate ASO4J 

NH4NO3 Ammonium nitrate ANH4J+ANO3J 

CB1+CB2 black carbon, hydrophobic+ hydrophillic AECJ 

OC1+OC2 organic carbon, hydrophobic+hydrophillic APOCJ 

SSLT1+SSLT2 sea salt, 0.1–0.5 μm, 0.5–1.5 μm ANAJ/ACLJ 

SSLT3+SSLT4 sea salt, 1.5–5 μm,5–10 μm ANAK/ACLK 

* The sources of the table are from Emmons et al. [2010] and Yarwood et al. [2005]. 
 

2.3.2.1 Vertical Interpolation Algorithm  
 

Since CAM-Chem output units are mass-based and similar to that of soil moisture, 

the interpolation methods between soil moisture and CAM-Chem outputs are similar, and 

it is listed below: 

 

ii

nn

ni
kk

kk

ki

i hh
hh

hhnfhhkf
hh

hhkf

hf
−

−
−×

++−×++
−

−×

=
+

−

−
+

−

−−

1

1

1
1

1

11 )()(...)()1()()(

)(    Equation 2.7 

ih  denotes the top height of a layer in CMAQ, while 1−ih denotes the bottom height of a 
layer in CMAQ; 
 

kh denotes the starting layer in CESM with the height higher than the bottom height of the 
layer i  in CMAQ, 1−kh denotes the bottom height of the layer k in CESM, 2,...,1 −+ nkh  
denotes the layers of CESM within the layer i  in CMAQ and , 1−nh  denotes the layer of 
CESM with the height higher than the top height of the layer i  in CMAQ. 
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CHAPTER III 
 

3 OPTIMIZATION OF COMPUTATIONAL EFFICIENCY  

3.1 Overview of the Methodology 

This study requires a large amount of service units (CPU hours) and storage. Since 

large simulations are involved, optimization of computational resources becomes 

extremely important. In the following descriptions, the term "processor" will be used to 

represent "core" on Kraken, and Kraken has 12 cores per node. 

3.2 Optimization of Global and Regional Simulations 

 
In order to select the optimal processor arrangement, a series of sensitivity tests have 

been conducted.  

From the computational tests, the most efficient run for CESM uses 864 processors. 

For WRF, the most efficient and acceptable processor number selections for 36 km, 12 

km and 4 km WRF simulation domains are 24, 84 and 120, respectively. For CMAQ 

runs, the most efficient and acceptable processor numbers are 48 for 12 km domain.                    

Figure 3.1 visually summarizes the CESM/WRF-CMAQ run requirements. The total 

service units are also calculated for all the simulations shown in Table 3.1. The total 

service units used in this study were 5.0 million.  

 

 
                   Figure 3.1 Flow chart of CESM downscaling to WRF/CMAQ 
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                   Table 3.1 Service Units required for all the simulations 

 Processor Numbers Service Units (Hours) 
CESM 864 1,600,928 
WPS 12 10,424 
OBSGRID 12 24,528 
36km WRF 24 47,654 
12km WRF 84 457,856 
4km WRF 120 1,815,072 
MCIP 12 17,554 
12km CMAQ 48 930,636 
Total  4,904,652 

 
A large amount of outputs has been generated from the simulations. The size for both 

base case and future case CESM/WRF-CMAQ outputs is about 300 Terabytes. All the 

data have been archived in the High Performance Storage System (HPSS), in Kraken and 

Jaguar, respectively, for further analysis and studies. 
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CHAPTER IV 
 
4 THE INCREASES IN HEAT WAVE AND SEASONAL EXTREME 

TEMPERATURES IN THE 21ST CENTURY CLIMATE  

4.1 Declaration 

This chapter is slightly revised based on a manuscript, to be submitted to a journal 

for publication. 

4.2 Abstract  

This study examines past and projected extreme temperature events across the planet. 

A fully coupled earth system model is evaluated but the methodology can be used for a 

variety of models to assess their ability to simulate extremes in a changing climate. 

Simulation statistics compare favorably with NCEP observation results during 1948-2005 

for 22 regions of the earth including five regions in North America. The Community 

Earth System Model (CESM 1.0) with the protocols defined in the Coupled Model 

Intercomparision Project (CMIP5) is used to evaluate the past (1850-2005) and projected 

forcing of the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5 (2005-

2100) climate scenarios. The global bias for heat wave intensity (-0.1 ºC ± 0.1 ºC), heat 

wave duration (0.1 days ± 0.2 days) and frequency (0.1 event/year ± 0.1 event/year) 

validates the use of climate models to simulate regional temperature extremes. More 

significant heat wave intensity, duration and frequency were found in the projections than 

earlier SRES A1FI findings with the previous models. It was found that the heat wave 

intensity increases significantly across high latitude land areas in the northern hemisphere 

by the end of 21st century in RCP 8.5. This increase reaches 6.8 ºC ± 1.0 ºC in Alaska, 

5.8 ºC ± 0.8 ºC in Greenland, 5.3 ºC ± 1.3 ºC in Northern Europe and 6.9 ºC ± 0.5 ºC in 

North Asia. By the end of the century, the mean duration days across 22 regions range 

from 1.5 to 3.7 times as high as the period from 1948 to 2005. Large increases in the 

number of heat wave events occur near tropical areas and in the southern hemisphere, 

resulting from much narrower seasonal variations of daily maximum temperature in these 

regions compared to northern regions. In addition to summer heat waves, the seasonal 
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extreme temperature duration (SETD) is also analyzed. In RCP 8.5 for the Northern 

Hemisphere, the largest SETD percentage increase occurs in the winter season, indicating 

significant temperature increase in winter time. 

4.3 Introduction  

Heat waves are responsible for adverse impacts on human health and have the 

potential to harm a large number of people in a short period of time. For instance, over 

seven hundred people died as a result of the week-long 1995 Chicago heat wave, and 

more than ten thousand heat-related deaths occurred in the 2003 European heat wave 

[Robine et al., 2008; Whitman et al., 1997]. The conditions responsible for these impacts 

include daily maximum temperatures, duration of high temperatures and high night-time 

minimum temperatures over the period.   

Three key parameters characterize heat waves: heat wave intensity, heat wave 

duration and heat wave frequency. Heat wave intensity is associated with the severity of 

the heat wave and is defined as the highest three night minimum temperatures [Karl and 

Knight, 1997]. To investigate heat wave duration and frequency, a heat wave is usually 

defined as the longest continuous period during which: 1) the maximum daily 

temperature reached a threshold value of T1 for at least 3 continuous days, and 2) the 

mean daily maximum temperature remained above T1 while the daily maximum 

temperature reached a secondary threshold, T2 each day [Huth et al., 2000; Meehl and 

Tebaldi, 2004, Gao et al., 2012]. In this study, following Huth et al. (2000) and Meehl 

and Tebaldi (2004), T1 and T2 are assumed to have either the fixed values of 30º C and 

25 ºC, or are set to local 97.5th and 81st percentiles for temperature over a given period 

[Huth et al., 2000; Meehl and Tebaldi, 2004]. These specific thresholds were selected in 

order to compare with previous studies. With the thresholds as percentage values of T1 

and T2, heat waves are relative to a local climatology, while with fixed temperature 

values, heat waves are not. Using T1 and T2 as fixed values would not be appropriate for 

the study of the characteristics of heat wave events globally [Huth et al., 2000], so the 

97.5th and 81st percentile of present-day climate (1961-1990) were used as the thresholds 

(T1 and T2) for both present and future heat wave evaluation. Each grid point was 
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calculated separately to retrieve the two thresholds (T1 and T2).  After finding all heat 

waves in a year, the heat wave duration was calculated as the total heat wave days 

divided by the number of heat waves, and the heat wave frequency was calculated as the 

number of heat waves per year. Heat waves most often occur in the summer, but changes 

also occur during other seasons. Hansen et al. [2012] have reported dramatic changes in 

global seasonal mean temperature patterns. Thus, the heat wave analysis was 

complemented with the examination of Seasonal Extreme Temperature Duration (SETD) 

on a regional basis. 

Several research studies, including the IPCC AR4 [IPCC, 2007], have indicated a 

high probability that heat wave duration and frequency will increase in the future as a 

result of increasing levels of carbon dioxide and other heat-trapping gases and particles in 

the atmosphere [Ganguly et al., 2009; Meehl and Tebaldi, 2004; Schar et al., 2004; 

Tebaldi et al., 2006; Weisheimer and Palmer, 2005]. The AR4 simulations, based upon 

IPCC Special Report on Emissions Scenarios (SRES) [Nakicenovic and Swart, 2000], are 

now superseded by newly designed scenarios for the Fifth Assessment Report (AR5), 

called ‘representative concentration pathway’ scenarios∗ (RCPs [Moss et al., 2010]). 

These new scenarios use a parallel approach to combine technology, economy, 

demography and policy for a plausible time-series of atmospheric emissions and resulting 

concentration in these gases and particles from 2005 to 2100 [Moss et al., 2010; Riahi et 

al., 2007]. Studies of these scenarios, in addition to past climate (1850-2005) validations, 

are the central focus of the Coupled Model Intercomparison Project Phase 5 (CMIP5 

[Taylor et al., 2009; Taylor et al., 2012]). While not all CMIP5 model outputs are 

available, as one of the major contributors, the Community Climate System Model 

version 4 (CCSM4) was selected in this study, and the methodologies in this study can be 

easily applied to all other CMIP5 models in future. 

 As a preliminary evaluation of the model's ability to reproduce the climate extremes 

of temperature, the observational record is compared with simulation results over the 

                                                 
 
 
∗http://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=about 
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period from 1948 to 2005. Following the model evaluation, possible futures are explored 

by analyzing the characteristics of heat waves under all four new RCP scenarios (RCP 

2.6, RCP 4.5, RCP 6.0 and RC P8.5). Regional analysis of extremes is targeted by 

dividing the globe into 22 regions. The last objective is to assess the coherence of 

probability functions of extreme heat waves from an ensemble of simulations.  

4.4 Model Descriptions and Experiment Design  

The Community Earth System Model (CESM1.0, 

http://www.cesm.ucar.edu/models/cesm1.0/) is made available for climate research by the 

National Center for Atmospheric Research under sponsorship from the National Science 

Foundation and the U.S. Department of Energy. One of the subset configurations of this 

model was referred to as the Community Climate System model (CCSM4). For the 

CMIP5 [Taylor et al., 2009; Taylor et al., 2012], a series of global climate simulation 

experiments were designed with the CCSM4 [Meehl et al., 2011]. CCSM4 is composed 

of four major components, including atmosphere, ocean, land surface and sea-ice. The 

atmospheric component, Community Atmosphere Model version 4 (CAM4.0), uses the 

finite-volume (FV) dynamical core [Neale et al., 2010] with a horizontal resolution of 0.9 

by 1.25 degree (latitude/longitude) and with 26 vertical layers. The previous version had 

a horizontal resolution of about 2 degrees; however, by using 0.9 by 1.25 degree 

resolution, significant errors in Sea Surface Temperature (SST) were reduced in the 

major upwelling regions and mid-latitudes in the southern hemisphere [Gent et al., 2011]. 

The reduced error is due to more properly locating of stronger upwelling favorable winds 

[Gent et al., 2010] as a result of the better representation of topography. In CAM4, 

substantial improvement of El Niño–Southern Oscillation (ENSO) was achieved by 

including sub-grid scale convective momentum transport and a dilution approximation 

for the calculation of convective available potential energy (CAPE) in the deep 

convection [Neale et al., 2008, Gao et al., 2012]. The Community Land Model used in 

Parallel climate model (PCM) was the one-dimensional Land Surface Model (LSM) 

[Bonan, 1996], while the Community Land Model (CLM3) [Dickinson et al., 2006; 

Lawrence et al., 2007] and CLM4 [Oleson, 2010] were used in CCSM3 and CCSM4, 
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respectively. Compared to LSM, high surface temperature bias in semi-arid regions and 

2-m air temperature bias have been reduced in CLM3 [Oleson, 2010]. In comparison to 

CLM3, the most significant improvement in CLM4 is the inclusion of a carbon-nitrogen 

(CN) cycle model, in which carbon, nitrogen and vegetation phenology is prognostic 

[Thornton et al., 2007; Thornton et al., 2009]. Lawrence et al. [Lawrence et al., 2011] 

statistically evaluated global surface air temperature for both CCSM3 and CCSM4, and 

found a slight improvement in CCSM4, with smaller cold bias and 20% reduction in root-

mean-square error. The ocean component is updated to the Parallel Ocean Program 

version 2 (POP2) [Smith, 2010], with substantial improvement over POP version 1.4 

[Dukowicz and Smith, 1994; Smith and Gent, 2004; Smith et al., 1992; Smith et al., 1995] 

in CCSM3 and PCM in the parameterization of sub-grid scale [Danabasoglu et al., 2011] 

and in the thermocline structure and SST [Bitz et al., 2011] through increasing vertical 

resolution from 40 in CCSM3 (and 32 in PCM) to 60 vertical levels in CCSM4. The sea 

ice component is based on the Los Alamos National Laboratory Sea Ice Model, version 4 

(CICE4) [Hunke and Lipscomb, 2008], that includes a new radiative transfer scheme 

[Holland et al., 2011]. The simulations from 1850 to 2005 are referred to as historical 

simulations, while the RCP scenarios cover 2005 to 2100. In the historical simulations, 

time varying CO2 and other greenhouse gases are prescribed. The atmospheric aerosol 

burden, aerosol deposition rate onto snow and nitrogen deposition rates were time 

dependent, and they were obtained from a separate historical global atmospheric 

chemistry model CAM-Chem simulations [Lamarque et al., 2010]. Five ensemble 

members of RCP scenarios are available from 2005 to 2100 on monthly and daily 

resolution scales in the Earth System Grid (ESG), a Gateway to scientific data including 

CMIP5 simulation outputs. For the historical simulations, five ensemble members are 

also available on a monthly scale, while three members are available on a daily scale.  

4.5 Intensity, duration and frequency of regional heat waves  

4.5.1 Evaluation and intensification of heat wave intensity 
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Figure 4.1 Time series of global annual mean surface air temperature anomalies (°C) 

from 1850 to 2100 (relative to 1900-1919). The solid lines indicate ensemble average 

while the shaded areas indicate ± one standard deviation. Note that for the observational 

data, the shaded areas indicate 95% confidence interval due to the data availability. 

A time series of global annual mean surface air temperature anomalies (relative to 

1900-1919) from 1850 to 2100 is shown in Figure 4.1. The observational temperature 

anomalies are from HadCRUT3 [Brohan et al., 2006]. During the historical simulations, 

the trend from CCSM4 is consistent with observational data even though after 1975, the 

model simulations show more dramatic increasing temperature trends. From 1850 to 

1975, the temperature warming in CCSM4 is 0.13 ºC ± 0.04 ºC, while the observed 

warming is 0.15 ºC ± 0.01 ºC, with an overall bias (CCSM4 - HadCRUT3) of -0.02 ºC ± 

0.03ºC. From 1975 to 2005, the CCSM4 show larger warming trends (1.04 ºC ± 0.04 ºC) 

than observed warming (0.58 ºC ± 0.05 ºC), with an overall positive bias of 0.46 ºC ± 

0.04 ºC, which is likely related to the absence of the sulfate aerosol indirect effect [Meehl 

et al., 2011].  

 

Relative to 1900-1919, the global mean temperature increase is 0.47 ºC ± 0.04 ºC 

during the 20th century (from 1900 to 2005) and is 2.12 ºC ± 0.01 ºC, 2.58 ºC ± 0.01 ºC, 

2.69 ºC ± 0.05 ºC, 3.52 ºC ± 0.04 ºC for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 
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(referred to as four RCP) scenarios, respectively, during the 21st century (2005-2100). By 

the end of the century, the increase reaches 2.31 ºC ± 0.12 ºC, 3.30 ºC ± 0.11 ºC, 4.00 ºC 

± 0.14 ºC and 6.03 ºC ± 0.07 ºC in the four RCP scenarios. Even if the warming bias 

(0.46 ºC) is excluded, the global mean increase still ranges from 1.73 to 5.64 ºC by the 

end of 21st century. 

Heat waves are regional/local phenomenon, so the global land area (except for 

Antarctica) was divided into 22 regions defined by Giorgi and Francisco [Giorgi and 

Francisco, 2000], shown in Figure 4.2.  

Spatial distributions of ensemble mean heat wave intensity anomalies were shown in 

Figure 4.3. Similar patterns, with values from 0 to 1, in Figure 4.3 (a) and (b) 

demonstrates relatively reasonable performance in CCSM4 compared with NCEP. The 

evaluation period of 1948-2005 is close to the base period (1961-1990), which leads to 

small heat wave intensity anomalies across the whole world. Looking at the four RCP 

scenarios from 2.6 to 8.5 (Figure 4.3 c, e, g and i), during 2005 to 2100, an increasing 

trend shows up for the increase of heat wave intensity, and particularly, this increase is 

more dramatic in the northern hemisphere than the southern hemisphere. Comparing the 

mean increase of 2005-2100 with the increase in 2100 in every scenario (each row from 

second row in Figure 4.3), much more intense increases were found in 2100, with 

scattered increases around 3 ºC in RCP 2.6 (Figure 4.3 d), and large areas more than 5 ºC 

 
                     Figure 4.2 22 Regions used in the heat waves studies 
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Figure 4.3 Ensemble mean heat wave intensity anomalies (relative to 1961-1990): a: 

ensemble mean heat wave intensity anomalies (relative to 1961-1990) from CCSM4 

during 1948-2005, b: the same as a, but from NCEP; c, e, g and i (left column): ensemble 

mean heat wave intensity anomalies (relative to 1961-1990) for RCP 2.6, RCP 4.5, RCP 

6.0 and RCP 8.5, respectively, during 2005-2100 from CCSM4; d, f, h and j (right 

column): ensemble mean heat wave intensity anomalies (relative to 1961-1990) for RCP 

2.6, RCP 4.5, RCP 6.0 and RCP 8.5, respectively, in the year of 2100 from CCSM4. 

(Figure 4.3 f, h and j) for the other three scenarios. Especially, in RCP 8.5, more than half 

of the world is projected to increase 7 ºC or even more.  

The heat wave intensity anomalies (relative to 1961-1990) for the 22 global land 

regions were shown in Figure 4.4. The regions with the same color are considered to be 
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within the same continents, including North America (solid red), South America (solid 

blue), Europe (solid purple), Africa (dashed red), Asia (dashed blue) and Australia 

(dashed purple). Compared with NCEP, the mean bias during 1948-2005 in CCSM4 

ranges from -0.27 ºC ± 0.06 ºC to 0.29 ºC ± 0.01 ºC in all the regions, showing a 

relatively small bias. In the four RCP scenarios, the mean heat wave intensity increase 

from 2005 to 2100 (relative to 1961-1990) ranges 0.94 ºC ± 0.01 ºC to 1.97 ºC ± 0.05 ºC 

(RCP 2.6), 1.27 ºC ± 0.01 ºC to 2.46 ºC ± 0.04 ºC (RCP 4.5), from 1.37 ºC ± 0.02 ºC to 

2.55 ºC ± 0.07 ºC (RCP 6.0) and from 1.95 ºC ± 0.02 ºC to 3.77 ºC ± 0.08 ºC (RCP 8.5). 

The lowest increase occurs in the Southeast Asia (SEA) region, while the largest increase 

occurs in Mediterranean Basin (MED). 

The global heat wave intensity was investigated previously by Ganguly et al. [2009] 

using Community Climate System Model version 3 (CCSM3) for the SRES A1FI 

scenario; they found that by the end of 21st century, the severity of heat waves does not 

increase much at higher latitudes and, in western North America, it does not increase as 

much as Central and Eastern America. However, using the new CCSM4 results, the 

higher latitude land areas show significant heat wave intensity increase (Figure 4.3 and 

Figure 4.4) by the end of 21st century, especially in RCP 8.5, this increase reaches 6.80 

ºC ± 0.97 ºC, 5.75 ºC ± 0.83 ºC, 5.29 ºC ± 1.29 ºC, 6.85 ºC ± 0.47 ºC in ALA (Alaska), 

GRL (Greenland), NEU (Northern Europe) and NAS (North Asia), respectively. In 

addition, the heat wave intensity, in WNA (Western North America) shows larger 

increases than CNA (Central North America) and ENA (Eastern North America) in 

almost all the four RCP scenarios (except RCP 4.5) by the end of 21st century. The 

intensification is especially noticeable in the RCP 8.5 scenario with an increase in WNA 

of 7.01 ºC ± 0.58 ºC, while CNA and ENA experience increases of 5.11 ºC ± 0.65 ºC and 

4.57 ºC ± 0.27 ºC, respectively.  
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Figure 4.4 Ensemble heat wave intensity anomalies (relative to 1961-1990) ± one 

standard deviation. In each plot, there are two columns of numbers: On the left, the 

numbers from bottom to top indicate heat wave intensity ensemble mean anomalies 

(relative to 1961-1990) ± one standard deviation for CCSM4 (1948-2005), NCEP (1948-

2005), RCP 2.6 (2005-2100), RCP 4.5 (2005-2100), RCP 6.0 (2005-2100) and RCP 

8.5(2005-2100), respectively (except no standard deviation for NCEP); On the right, the 

numbers from bottom to top have similar meaning as the top four number in the left 

column, but for the year of 2100 (the end of 21st century) in the four RCP scenarios.  

4.6 Heat wave duration and frequency (number of heat wave events) 

As is shown in Table1, Meehl and Tebaldi [2004], using the Parallel Climate Model 

(PCM), found that, during the period of 1961-1990, ensemble mean heat wave duration 

ranges from 5.39 to 8.85 days in Chicago under a “business-as-usual” scenario (similar to 
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SRES A1B), compared to 6.29 days from NCEP. The same model results show values 

ranging from 8.33 to 13.69 days for Paris, compared with 8.40 days from NCEP. For the 

same period, the ensemble mean durations ranged from 5.99 to 11.99 days in Chicago 

and 5.51 and 10.54 days in Paris in CCSM4, both of which encompass the NCEP values 

and are similar to the ranges from the PCM scenario. At the end of the century (2080-

2099), the A1B from PCM result in ensemble mean duration values from 8.47 days to 

9.24 days in Chicago, and 11.39 days to 17.04 days in Paris. The CO2 concentrations in 

SRES A1B is close to RCP 6.0 by the end of 21st century [Meehl et al., 2011], however, 

the duration in PCM scenario is much lower than RCP 6.0 (20.96 days ± 1.35 days) for 

Chicago, but the upper bound of PCM scenario (17.04 days) is close to RCP 6.0 (18.69 

days ± 1.04 days) for Paris. Possibly, the higher duration in Chicago in RCP 6.0 results 

from a slightly different parameterization than A1B as well as the higher resolution in 

CCSM4 (0.9° by 1.25° in latitude/longitude) than PCM (2.8° in latitude/longitude) 

[Meehl et al., 2011].  

Heat wave ensemble annual mean events in Chicago and Paris for PCM and RCP 

scenarios are also shown in Table 4.1. Compared to NCEP, both PCM and CCSM4 

encompass the NCEP value. At the end of the 21st century (2080-2099) years, the 

number of annual heat wave events for Chicago in PCM (1.65-2.44) is close to the RCP 

6.0 (2.45±0.15) in CCSM4, while it is slightly lower in PCM than RCP 6.0.  

 Table 4.1 Heat wave duration and frequency (number of events per year) 

 1961-1990 2080-2099 

NCEP PCM∗ CCSM4 PCM∗ 
CCSM4∗∗ 

RCP2.6 RCP 4.5 RCP 6.0 RCP 8.5 

Duration 
Chicago 6.29 5.39-8.85 5.99- 11.99 8.47-9.24 12.75±1.61 16.69±1.23 20.96±1.35 35.18±1.22 

Paris 8.40 8.33-13.69 5.51-10.54 11.39- 17.04 13.10±2.13 15.50±2.64 18.69±1.04 29.73±2.52 

Events Chicago 1.38 1.09-2.14 0.75-1.11 1.65-2.44 2.12±0.22 2.42±0.17 2.45±0.15 2.3±0.13 

 Paris 1.10 1.18-2.17 0.87-1.13 1.70-2.38 2.08±0.18 2.82±0.25 0.98±0.26 3.09±0.29 

∗All the values for PCM is from Meehl and Tebaldi [2004]. 
∗∗All the values for RCP scenarios in CCSM4 are mean ± one standard deviation 



33 
 

As is shown in Table 4.2 (also Figure 4.5 and Figure 4.6), during 1948-2005, the 

ensemble mean heat wave durations for CCSM4 (bottom left number on the left column 

in each figure) range from 5.07 days ± 0.2 days to 9.72 days ± 0.45 days with a mean of 

7.80 days ± 0.19 days among the 22 regions. The mean duration days in CCSM are close 

to NCEP, with a mean bias of -0.10 days ± 0.19 days among the 22 regions. During the 

21st century (2005-2100), a significant increase in heat wave duration is projected to 

occur in the majority of the regions, with the lower bound occurring in NAU (North 

Australia) and upper bound occurring in MED (Mediterranean Basin). Overall, compared 

to the period of 1948-2005, the mean duration increase in 2005-2100 is 45%, 69%, 75% 

and 126%, respectively, and the increase reaches 45%, 103%, 140% and 275% by the end 

of 21st century, respectively for the four RCP scenarios. Thus, by the end of the century, 

the mean regional duration days ranges from 1.45 to 3.74 times as high as the mean 

duration days from 1948 to 2005.  

                       Table 4.2 Heat wave durations in 22 regions 

Regions 
CCSM4 

(1948-2005) 

NCEP 

(1948-2005) 

RCP2.6 

(2005-2100) 

RCP4.5 

(2005-2100) 

RCP6.0 

(2005-2100) 

RCP8.5 

(2005-2100) 

ALA 9.07±0.51 8.85 12.46±0.36 13.39±0.41 13.70±0.26 17.37±0.65 
GRL 9.72±0.45 9.78 13.20±0.25 15.69±0.53 16.30±0.41 20.83±0.33 
WNA 8.35±0.21 7.81 13.52±0.39 16.37±0.27 16.78±0.40 21.98±0.37 
CNA 8.92±0.34 7.15 14.23±0.13 16.73±0.65 17.70±0.69 23.93±0.57 
ENA 7.41±0.14 6.65 12.05±0.39 14.78±0.29 15.07±0.28 20.69±0.24 
CAM 7.64±0.42 7.77 12.41±0.22 14.73±0.26 15.33±0.29 21.40±0.14 
AMZ 8.39±0.11 8.41 13.16±0.13 14.91±0.16 15.15±0.19 18.81±0.32 
SSA 6.22±0.10 5.83 7.45±0.05 8.01±0.08 8.26±0.10 9.96±0.10 
NEU 8.78±0.25 8.17 12.88±0.30 15.03±0.72 15.34±0.58 19.39±0.57 
MED 8.86±0.16 8.16 16.25±0.27 19.77±0.45 20.07±0.68 27.89±0.32 
SAH 7.49±0.07 8.42 12.03±0.19 14.59±0.14 14.93±0.18 18.72±0.32 
WAF 7.21±0.06 8.41 10.03±0.10 11.23±0.15 11.63±0.08 14.52±0.14 
EAF 7.95±0.03 8.45 11.38±0.05 12.70±0.13 13.15±0.08 15.54±0.04 
SAF 6.93±0.10 6.34 9.56±0.14 10.64±0.20 10.88±0.16 13.01±0.07 
NAS 8.04±0.05 8.52 10.97±0.16 12.63±0.18 12.94±0.10 16.95±0.45 
CAS 8.08±0.08 8.93 12.77±0.58 16.10±0.26 16.37±0.29 22.87±0.22 
TIB 7.01±0.08 8.25 9.72±0.11 11.77±0.24 12.23±0.22 16.43±0.31 
EAS 7.73±0.26 8.86 10.77±0.20 12.16±0.16 12.78±0.17 15.61±0.16 
SAS 9.00±0.18 9.98 12.74±0.24 14.79±0.23 15.61±0.21 19.79±0.36 
SEA 7.22±0.34 8.05 9.21±0.08 11.13±0.08 11.96±0.12 17.83±0.28 
NAU 5.07±0.20 4.87 6.02±0.12 6.38±0.04 6.65±0.22 8.23±0.15 
SAU 6.53±0.12 6.13 8.48±0.11 9.28±0.08 9.57±0.10 11.13±0.13 
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Figure 4.5 Ensemble mean heat wave durations: a: ensemble mean heat wave 

durations from CCSM4 during 1948-2005, b: the same as a, but from NCEP; c, e, g and i 

(left column): ensemble mean heat wave duration for RCP 2.6, RCP 4.5, RCP 6.0 and 

RCP 8.5, respectively, during 2005-2100 from CCSM4; d, f, h and j (right column): 

ensemble mean heat wave durations for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, 

respectively, in the year of 2100 from CCSM4. 
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Figure 4.6 Ensemble mean heat wave durations ± one standard deviation. Similar as 

Fig. 2, in each plot, there are two columns of numbers: On the left, the numbers from 

bottom to top indicate heat wave duration ensemble mean ± one standard deviation for 

CCSM4 (1948-2005), NCEP (1948-2005), RCP 2.6 (2005-2100), RCP 4.5 (2005-2100), 

RCP 6.0 (2005-2100) and RCP 8.5(2005-2100), respectively (except no standard 

deviation for NCEP); On the right, the numbers from bottom to top have similar meaning 

as the top four number in the left column, but for the year of 2100 (the end of 21st 

century) in the four RCP scenarios.  

 

Ensemble mean number of annual heat wave events (heat wave frequency) is shown 

in Figure 4.7 (with regional mean heat wave frequency shown in Figure 4.8). Figure 4.7 

(a) and (b) shows similar spatial distributions of annual mean heat wave events between 

CCSM4 and NCEP, about one event each year for most of areas. More specifically, the 
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annual mean heat wave events (Figure 4.8) in the 22 regions in CCSM4 and NCEP are 

1.03 ± 0.04 and 1.02, respectively, so NCEP falls within the range of CCSM4. For the 

four RCP scenarios during 2005-2100 (Figure 4.7 c, e, g and i), there are subtle 

differences for the number of annual heat wave events except RCP 2.6 shows much fewer 

events in the tropical areas. By the end of 21st century (Figure 4.7 (d, f, h and j), more 

than eight events per year occurs in large areas in the southern hemisphere especially in 

RCP 8.5. Overall, from Figure 4.7 (c)-(j), the large event increases occur near tropical 

areas and in the southern hemisphere, mainly from 60ºS-30ºN. The possible reasons were 

explored as below.  
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Figure 4.7 The same as Figure 4.5, but for the number of ensemble mean annual heat 

wave events.  
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Figure 4.8 The same as Figure 4.6, but for the number of ensemble mean annual heat 

wave events. 

 
The probability and cumulative probability distribution of daily maximum 

temperature from 1961-1990 and 2080-2099 are shown in Figure 4.9. From Figure 4.9, 

the seasonal variations of daily maximum temperature in regions between 30ºN-90ºN 

(referred to as North Region, marked as _N, and with a range of 255 K to 300 K) are 

much larger than regions between 60ºS-30ºN (referred to as South Region, marked as _S, 

and with a range of 298 K to 310 K). The regions (60ºS-30ºN) are surrounded by ocean, 

and high specific ocean heat capacity leads to small diurnal ocean temperature variations, 

also heating the surrounding land areas. This impact is especially noticeable in SEA 

(Southeast Asia, Figure 4.8), a region widely surrounded by ocean, where the largest 

number of annual heat wave events occurs.  
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Figure 4.9 Daily maximum temperature probability (left) and cumulative probability 

(right). a. Probability distributions for ensemble mean daily maximum temperature for 

base period (1961-1990) and four RCP scenarios (2080-2099) in two regions (30ºN-90ºN, 

marked as _N and  60ºS-30ºN, marked as _S); b. Same as a but for cumulative 

distributions.   

4.7 Probability distribution of duration and frequency of heat waves 

In addition to observing the absolute value of the change in heat wave duration and 

frequency, the distribution change was also investigated, shown in Figure 4.10. In the 

present climate (Figure 4.10a), the largest percentile value, 38%, occurs at a duration of 9 

days. The right-shift of the probability curves pushes the peak percentage of duration 

days to larger numbers of 11, 21, 23 and 31 days in the four RCP scenarios, with 

corresponding peak percentage of 19%, 14%, 13% and 12%, respectively. Looking at the 

cumulative probability curves in Figure 4.10b, the cumulative distribution for average 

heat wave duration shows obvious separation. This shift indicates that at same percentile, 

the four RCP scenarios (in 2080-2099) predict much higher average heat wave duration 

days than present climate (1961-1990). In 1961-1990, an average heat wave duration 

days of 12 or less accounts for 95%, while in the four RCP scenarios, the 95 percentile 

push the average duration days to 19 days or more.  

Similar to heat wave duration, the heat wave frequency also shows a shift towards 

higher number of events. For present climate (Figure 4.10c), the largest percentile value, 

49%, occurs at a number of events value of 1.13, while the peak percentage shifts to 1.88 
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to 2.38 among the four RCP scenarios. The cumulative probability plot (Figure 4.10d) 

shows significant shifting toward higher values for the number of events. For present 

climate conditions, 95% of heat wave event values are totaling 1.10 or less, while this 

number jumps to 3.38 to 7.88 for the RCP scenarios.  

 

 

Figure 4.10 Probability and cumulative probability distributions of average heat wave 

duration and annual frequency for present climate (1961-1990), future climate (2080-

2090) in RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5. a and b show the probability and  

cumulative probability for average heat wave duration, while c and d show similar 

parameters but for heat wave frequency. 
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4.8 Seasonal extreme temperature duration (SETD)  

Based on the two thresholds definition, heat waves most often occur in the summer, 

so extreme temperatures in other seasons are frequently ignored. To correct this 

deficiency, the duration of extreme temperature in each season was used to determine the 

Seasonal Extreme Temperature Duration (SETD). The same criteria and percentage 

thresholds as used for heat wave duration [Meehl and Tebaldi, 2004] can be applied to 

each season. SETD is the summation of all the extreme temperature periods in the season. 

Figure 4.11 and Figure 4.12 shows the 22 regional ensemble mean SETD of the 

present climate (1961-1990) and future climate (2080-2099) for four RCP scenarios. In 

present climate, the SETD in DEC-JAN-FEB is significantly smaller than the other three 

seasons, especially in the North Region, the SETD in winter only accounts for a small 

percentage. However, in future climate, under RCP 8.5, the SETD in DEC-JAN-FEB 

increases dramatically, especially in the South Region (Figure 4.12), the increase in 

DEC-JAN-FEB SETD makes the four seasons show similar percentage. Based on Figure 

4.11 and Figure 4.12, in the present climate, the SETD (among 22 regions) is from 0.59 

days to 1.99 days in the four seasons, while in 2080-2099, it reaches 3.27 to 9.81 days, 

8.18 days to 20.34 days, 11.72 days to 27.11 days and 24.69 days to 46.26 days, 

respectively, for the four RCP scenarios. In future climate scenarios, among the four 

seasons, the largest SETD percentage increase occurs in DEC-JAN-FEB (5.06 times to 

39.98 times higher than present climate) in RCP 8.5, indicating a large temperature 

distribution change and temperature increase in winter time in the North Region and 

summer time in the South Region; the next largest increase occurs in JUN-JUL-AUG 

(4.79 times to 23.43 times), followed by SEP-OCT-NOV (4.47 times to 20.52 times) and 

MAR-APR-MAY (3.46 times to 13.96 times). In addition to the SETD increases, the 

SETD percentage among seasons also changes in future climate. The SETD percentage 

decreases in MAR-APR-MAY in both the North Region (-8% to -15%) and the South 

Region (-5% to -11%), but increases in DEC-JAN-FEB and JUN-JUL-AUG in both 

regions (1% to 8% in DEC-JAN-FEB and 1% to 13% in JUN-JUL-AUG), indicating a 

significant temperature increase in summer and winter in both North and South Region.  
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Figure 4.11 Seasonal extreme temperature duration (SETD) at present climate (1961-

1990) and future climate (2080-2099) in RCP 4.5 and 8.5 (unit: days). The regions with 

the same color are considered to be within the same continents, including North America 

(solid red), South America (solid blue), Europe (solid gray), Africa (dashed red), Asia 

(dashed blue) and Australia (dashed gray). Four three-month segments are used to 

separate seasons. The pie charts show the area of each segment representing the relative 

size of the duration days in each season, while the number along each segment is not the 

fraction, but the true duration days for a certain season. The fraction can be simply 

derived by dividing the total duration number of the four seasons. The inner pie charts 

represent the period for present climate (1961-1990), while the outer ones represent 

2080-2099 in RCP4.5 and 8.5. 
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Figure 4.12 The same as Figure 4.11, but for RCP 2.6 and 6.0.  
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CHAPTER V 
 
5 PROJECTED CHANGES OF EXTREME WEATHER EVENTS IN 

THE EASTERN UNITED STATES BASED ON A HIGH-
RESOLUTION CLIMATE MODELING SYSTEM 

5.1 Declaration 

This chapter is a slightly revised version of the following paper: 

Gao, Y., J. S. Fu, J. B. Drake, Y. Liu and J.-F. Lamarque (2012). Projected changes 

of extreme weather events in the Eastern United States based on a high-resolution climate 

modeling system. Environ. Res. Lett., 7, 044025. 

5.2 Abstract  

This study is the first evaluation of dynamical downscaling using the Weather 

Research and Forecasting (WRF) Model on a 4km by 4km high resolution scale in the 

eastern US driven by the new Community Earth System Model version 1.0 (CESM v1.0). 

First the global and regional climate model results were evaluated, and corrected an 

inconsistency in skin temperature during the downscaling process by modifying the 

land/sea mask. In comparison with observations, WRF shows statistically significant 

improvement over CESM in reproducing extreme weather events, with improvement for 

heat wave frequency estimation as high as 98%. The fossil fuel intensive scenario 

Representative Concentration Pathway (RCP) 8.5 was used to study a possible future 

mid-century climate extreme in 2057-2059. Both heat waves and extreme precipitation in 

2057-2059 are more severe than present climate in the Eastern US. The Northeastern US 

shows large increases in both heat wave intensity (3.05 ºC higher) and annual extreme 

precipitation (107.3 mm more per year).  

5.3 Introduction  

 
Global climate models (GCMs) are designed to simulate large scale global climate at 

a spatial resolution of several hundred kilometers [IPCC, 2007]. However, finer spatial 

resolution has become increasingly important when studying the impact of climate 
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change at the local level [Caldwell et al., 2009]. There are two primary methods for 

studying climate change in more spatial detail: statistical downscaling and dynamical 

downscaling. Statistical downscaling establishes the empirical relationships between 

large-scale climate and local climate based upon statistical methods [Fowler et al., 2007]. 

It demands less computational power and requires less effort to implement, but it is 

limited by assuming stationary relationship between present observations and the present 

model climate in a changed future climate [Diaz-Nieto and Wilby, 2005]. Dynamical 

downscaling uses GCMs output to provide the initial and boundary conditions for the 

regional climate models (RCMs) projecting globally consistent high resolution local 

climate conditions [Caldwell et al., 2009]. It is computationally demanding and requires 

considerable implementation effort, but a major advantage is the dependence on physical 

process rather than statistical correlations and there is no assumption of stationarity 

[Fowler et al., 2007]. Thus, in order to capture extreme conditions and provide more 

regional detail, the dynamical downscale technique is used in this study. 

Dynamical downscaling has been studied since the early 1990s [Dickinson et al., 

1989; Giorgi, 1990; Giorgi et al., 1994; Leung et al., 1996; Podzun et al., 1995] - using 

RCMs with spatial resolutions of 50-60 km. More recently, finer spatial resolution has 

been applied. Bell et al. [Bell et al., 2004] conducted dynamical downscaling on a 40 km 

by 40 km resolution, and found 75% of RCMs perform similarly or more favorably than 

GCMs over 16 stations in California region. Salathe et al. [Salathé et al., 2008] evaluated 

daily maximum, minimum temperature and precipitation over 55 stations in the 

Northwestern US at 15 km resolution, and found a cold bias in downscaled RCM results, 

which is likely inherited from the GCM. Other high resolution downscaling studies were 

also conducted for California [Caldwell et al., 2009; Pan et al., 2011; Qian et al., 2010]. 

As these studies have a major focus in the western US, the high resolution dynamical 

downscaling was previously ignored in the Eastern US. Since the small domain size in 

previous studies limits the number of observational data (only 16 in Bell et al. [2004] and 

55 in Salathe et al. [2008]), it would be more meaningful and representative to evaluate a 

larger domain with more observational sites (more than 1000), thus the design of a larger 

eastern US domain in this study. In addition, most previous downscaling studies use 
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National Center for Atmospheric Research (NCAR) GCM Parallel Climate Model (PCM) 

or Community Climate System Model version 3 (CCSM3). The PCM has been 

superseded by the CESM, which includes an updated atmosphere component, the 

Community Atmosphere Component version 4 (CAM4) [Neale et al., 2010]. To provide 

downscaling analysis with the new GCM model is the purpose of this study. At the end, 

the discussions of the newest Coupled Model Intercomparison Project Phase 5 (CMIP5) 

([Taylor et al., 2009; Taylor et al., 2012] ‘representative concentration pathways∗ (RCPs 

[Moss et al., 2010]) scenarios in this study could potentially contribute to the upcoming 

Fifth Assessment Report (AR5) of the United Nations Intergovernmental Panel on 

Climate Change (IPCC). Thus, the eastern US domain is targeted in this study with a high 

resolution (4 km by 4 km) to provide an understanding of the dynamics of climate change 

on a highly resolved regional basis. 

A higher resolution is necessary for climate studies of extreme weather events 

[Caldwell et al., 2009]. Extreme weather events have already significantly influenced 

North America. According to Lott and Ross [2006] nearly every year since 1980, extreme 

weather events have caused more than 1 billion dollars in damage in the US. Prior to 

2005, four or fewer events occurred yearly; while 5 events were experienced in 2005, an 

extreme peak was reached with 14 events occurring in 2011∗∗. In 2005 the annual loss 

due to extreme weather events totaled 100 billion dollars, mainly due to Hurricane 

Katrina. A more commonly occurring extreme event, heat waves, can inflict substantial 

harm on sensitive populations including the elderly and people with pre-existing health 

conditions. For instance, several hundred people died in 1995 during the Chicago heat 

wave and more than 30,000 deaths were attributed to the 2003 European heat wave 

[Robine et al., 2008; Whitman et al., 1997]. In 2010, about 55,000 premature deaths were 

attributed to the Russian heat wave ("2010 Disasters in Numbers" CRED∗∗∗). In 

addition, more intense heat waves [Ganguly et al., 2009; Meehl and Tebaldi, 2004] and 

                                                 
 
 
∗http://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=about 
∗∗ http://www.ncdc.noaa.gov/billions/ 
∗∗∗ http://cred.be/sites/default/files/PressConference2010.pdf 
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precipitation [Meehl et al., 2011]  are likely to occur in a warmer climate. Thus, two 

kinds of extreme events, heat waves and extreme precipitation, were examined in this 

study under present and future climate conditions.  

5.4 Model Description and Configuration  

 
In this study, CESM version 1.0 was used for global climate simulations. CESM 1.0, 

the state-of-the-art global climate model developed by the NCAR, is composed of four 

major components including atmosphere, ocean, land surface and sea-ice. The 

atmospheric component CAM4, described earlier, uses the finite-volume (FV) dynamical 

core [Neale et al., 2010] with a horizontal latitude/longitude grid of 0.9 by 1.25 degree 

and 26 vertical layers.  The land component is the Community Land Model (CLM4) 

[Oleson, 2010], which incorporates the effects of CO2 and Nitrogen on plant fertilization 

and growth [Thornton et al., 2009]. The ocean component is the Parallel Ocean Program 

version 2 (POP2) [Smith, 2010], with dramatic improvement in the thermocline structure 

and SST [Bitz et al., 2011] over POP version 1.4 [Smith et al., 1992; Smith et al., 1995] 

used in CCSM3 and PCM. The sea ice component uses the code from the Los Alamos 

National Laboratory Sea Ice Model, version 4 (CICE4) [Hunke and Lipscomb, 2008], on 

which substantial improvement has been achieved over new radiative transfer scheme 

and aerosols [Holland et al., 2011]. 

The latest version of regional climate model WRF 3.2.1 [Skamarock and Klemp, 

2008] was used in the regional climate simulations. The most widely used physics in US 

simulation domain was selected in this study, including: the new Kain-Fritsch convective 

parameterization [Kain, 2004; Lam et al., 2011; Qian et al., 2010; Wong et al., 2012], the 

Single-Moment 6-class microphysical scheme (WSM6)  [Hong and Lim, 2006; Pan et 

al., 2011; Qian et al., 2010; Wong et al., 2012], the Mellor-Yamada-Janjic planetary 

boundary layer (PBL) scheme [Janjić, 1990; Lam et al., 2011; Mellor and Yamada, 

1982], and the Noah land surface model [Chen and Dudhia, 2001; Lam et al., 2011; Qian 

et al., 2010]. For the shortwave and longwave radiation scheme, the Rapid Radiative 

Transfer Model (RRTM), widely used in US WRF simulations [Lam et al., 2011; Lo et 
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al., 2008], can reproduce highly accurate line-by-line results, while improved efficiency 

was provided by the new scheme RRTM for GCMs (RRTMG) [Iacono et al., 2008; 

Morcrette et al., 2008]. Thus, RRTMG was used in this study. Since there are no cumulus 

parameterization schemes suitable for the 4 km by 4 km scales at present [Deng and 

Stauffer, 2006], no convective parameterization scheme was used for the 4 km by 4 km 

domain. 

Three domains were designed for WRF simulations, as is shown in Figure 5.1. The 

outer domain with a resolution of 36 km by 36 km is centered at 97º W, 40º N. The 

second domain is 12 km by 12 km and covers most of North America. The inner domain 

with a high resolution of 4 km by 4 km, shown in Figure 5.1, can be divided to three sub-

regions based on the definition of the U.S. Global Change Research Program (USGCRP): 

Northeast (red color), Eastern Midwest (blue color) and Southeast (green color) regions.∗. 

The colored points in each state represent the observational data point over quality 

controlled National Climatic Data Center (NCDC) US COOP network station 

observations (referred to as NCDC)∗∗, which will be used for model evaluations in the 

next section. This dataset is selected to evaluate extreme events; daily maximum 

temperature, daily minimum temperature and daily precipitation are required for the 

evaluations. The observational data has been well documented by Meehl et al. [2009]. 

This domain size is significant and computationally intensive, but the high computational 

effort for these regions is justified since the regions contain large populations which may 

be affected by climate change. The main purpose of this study is high resolution 

downscaling; the regional climate analysis will mainly focus on the downscaled 4 km by 

4 km Eastern US.  

 

                                                 
 
 
∗ http://globalchange.gov/publications/reports/scientific-assessments/us-impacts/regional-climate-change-
impacts 
∗∗ http://dss.ucar.edu (dataset number ds510.6) 



49 
 

 
Figure 5.1 WRF simulation domains: D1 (36 km by 36 km resolution), D2 (12 km by 

12 km) and D3 (4 km by 4 km). The points represent NCDC US COOP network station 

observation points in three regions: Northeast (red color), Eastern Midwest (blue color) 

and Southeast (green color).  

For the CMIP5, present climate simulations and four future climate RCP (RCP 2.6, 

RCP 4.5, RCP 6.0 and RCP 8.5) scenarios were designed. The present climate 

simulations with CESM are from 1850 to 2005 and the RCP scenarios are from 2005 to 

2100. The analysis of global climate simulations were well documented by Meehl et al. 

[2011]. Considering the limited computational resources in this regional high resolution 

downscaling study, a four year period (2001-2004) was selected to represent present 

climate and one RCP scenario (RCP 8.5, [Riahi et al., 2007]) was used to illustrate future 

climate conditions from 2057-2059. Among the four RCP scenarios, RCP 8.5 projects the 

most intensive fossil fuel emissions, which is comparable [Meehl et al., 2011] to the 

Special Report on Emissions Scenarios (SRES) A1FI [Nakicenovic and Swart, 2000] 

scenario.  

 

5.5 The representative of present and future climate 

A four year (2001-2004) was selected as present climate and a three year period 

(2057-2059) as future climate. The selections of the climate periods take into 

consideration of computational resources and the representative in a 20 year period. 
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Three members of historical climate simulations (1850-2004) and five members of 

future climate simulations (RCP 8.5, 2005-2100) were used to justify the representative 

of the period (2001-2004/2057-2059) used in the regional climate downscaling.  

Figure 5.2 shows the ensemble heat wave intensity ± one standard deviation (ºC) for 

present climate and future climate (RCP 8.5). Among the 23 states in the eastern United 

States, the mean heat wave intensity during 1985-2004 is 0.49 ºC ± 0.26 ºC to 0.88 ºC ± 

0.07 ºC higher than 1850-2005, indicating a slightly warming trend in recent climate. The 

heat wave intensity during the 20-year period (1985-2004) and 4-year period (2001-2004) 

ranges from  20.81 ºC ± 0.29 ºC to 26.20 ºC ± 0.33 ºC and from 21.04 ºC ± 0.51 ºC to 

26.59 ºC ± 1.37 ºC, respectively. The 4-year period shows slightly higher severity in 

comparison to the 20-year period, but the small differences between these two periods 

indicate the 4-year period can be used as present climate.  

In future, the temperature is projected to increase in RCP 8.5 during 2005 to 2100. 

The mid-21st century is selected to determine the changes of heat wave, primarily 

considering the consistency among the three periods: 2005-2100, 2040-2059 and 2057-

2059. During these three periods, the mean heat wave intensity ranges from 23.03 ºC ± 

0.04 ºC to 28.82 ºC ± 0.11 ºC, from 22.88 ºC ± 0.12 ºC to 28.73 ºC ± 0.20 ºC and from 

23.22 ºC ± 0.43 ºC to 28.54 ºC ± 0.57 ºC, respectively. Thus, under the limitation of 

computational resources, the period of 2001-2004 and 2057-2059 were selected as the 

present climate and future climate for the exploration of heat wave intensity. 

In addition to heat wave intensity, similar comparisons were made for heat wave 

duration, heat wave frequency, annual total extreme precipitation, daily mean extreme 

precipitation and annual extreme precipitation days, listed in the Figure S2 to S6 in the 

APPENDIX. The period of 2001-2004 is comparable to 1985-2004 and 1850-2004, with 

slightly higher values in most of the case. Similarly, the period of 2057-2059 is also 

slightly higher in extreme events in comparison to 2040-2050. Since both of these two 

periods show slightly higher patterns in comparison to a 20-year period, the 

comparison/subtraction between present and future climate would reflect the change 

patterns from a 20-year period.   
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Figure 5.2 Ensemble heat wave intensity ± one standard deviation (ºC) for present 

climate and future climate (RCP 8.5). The X axis for present climate is scaled at the 

bottom while the future climate (RCP 8.5) is scaled at the top. In each plot, there are three 

rows of numbers (marked at the top-left plot): At the bottom, the numbers from left to 

right indicate heat wave intensity ensemble mean ± one standard deviation during 1850-

2005, 1985-2004 and 2001-2004; In the middle, the numbers indicate the RCP 8.5 

scenario for the period of 2005-2100, 2040-2059 and 2057-2059; At the top, the numbers 

indicate the differences between RCP 8.5 and present climate during the three periods 

listed above.  

5.6 Dynamical Downscaling Methodology  

 
At each three-hour interval, CESM outputs were dynamically used to establish 

boundaries for the outer WRF domain simulations. A number of variables, including both 

surface and three dimensional variables, are required for dynamical downscaling. Most of 
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the variables are extracted in the CAM4 outputs, while soil moisture and soil temperature 

are taken from the CLM4 history outputs. 

Surface variables are horizontally interpolated from CESM (CAM4 and CLM4, 0.9 

by 1.25 degree spatial resolution in latitude/longitude) to WRF simulation domains. In 

this step, the WRF Preprocessing System (WPS) is used to interpolate CESM output into 

WRF domains. Physics are not involved in this process, and theoretically, the outputs 

from CESM and WPS should show similar spatial patterns or integrity. The modification 

of skin temperature has been discussed in the Section 2.3.1.1. 

 

5.7 State-level extreme events evaluations of dynamical downscaling 

Before investigating the extreme events such as heat waves and extreme precipitation 

in a future climate, how well WRF predicts the extreme events (by comparing to 

observations) and how much improvement can be gained from the high resolution 

downscaling was first evaluated. 

5.7.1 Evaluations of heat wave intensity, duration and frequency  
 

Three key parameters of heat waves at an annual basis were used: intensity, duration 

and frequency. Heat wave intensity (ºC) is defined as the highest three continuous 

nighttime minima [Karl and Knight, 1997]. Heat wave duration (number of days during a 

heat wave) and frequency (number of heat wave events per year) are based upon two 

thresholds, T1 and T2, of daily maximum temperature. A heat wave was defined as the 

longest continuous period satisfying three criteria: a) the maximum daily temperature 

remained T1 or higher for at least three continuous days, b) the mean daily maximum 

temperature is higher or equal to T1, and c) in each day, the daily maximum temperature 

is no lower than T2 [Huth et al., 2000; Meehl and Tebaldi, 2004]. T1 and T2 are taken as 

the 97.5th and 81st percentiles [Huth et al., 2000] of daily maximum temperature at 

present climate (2001-2004) based on previous studies. Considering model dependency 

of these percentiles, the thresholds were applied to CESM, WRF and NCDC 

observational data, respectively. In other words, the same percentile thresholds (97.5th 
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and 81st) in these three datasets correspond to different temperatures. For future heat 

waves in CESM and WRF simulations, the same temperature thresholds as present 

climate were retained in order to characterize the changes between the present and future 

climate.  

The heat wave parameters were first evaluated for each year, and then the four year 

(2001-2004) mean was calculated and used in the following analysis. The heat wave 

intensity, duration and frequency were calculated from CESM outputs, WRF outputs and 

NCDC data. The evaluations were based on the NCDC observations covering 23 states in 

the Eastern US and all the 1098 observational sites (Figure 5.1) were used for point-point 

comparisons. Heat waves at each point in the NCDC network and the corresponding grid 

in CESM/WRF were determined separately. State means were then calculated are 

compared in Table 5.1. The 23 states can be divided into three regions (shown in Figure 

5.1): Northeast, Eastern Midwest and Southeast. The regional mean evaluations are 

bolded in Table 5.1.  

Following each of the regional means is the evaluation for the states belonging to the 

region. A t-test (α=0.05) was performed to determine the statistical significance of the 

improvement in WRF over CESM. From Table 5.1, there are 16 and 14 states showing 

statistically significant improvement for heat wave intensity and duration, respectively. 

However, only 6 states show statistical improvement for heat wave events, mainly due to 

the small number of heat wave events. Among the states with statistically significant 

improvement in WRF over CESM, the greatest improvements include: heat wave 

intensity in Florida (97%), heat wave duration in Maryland (91%) and heat wave 

frequency in Kentucky (98%). For those states that CESM achieves lower bias than WRF 

(marked with underline), the performance differences between CESM and WRF are not 

statistically significant. Thus, by taking advantage of high resolution topography and land 

use information, dynamical downscaling statistically improves, or at least performs 

similarly to, CESM for the heat wave predictions over the Eastern US.  
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              Table 5.1 Evaluations of heat wave intensity, duration and frequency 

 Heat wave intensity 
 (ºC) 

Heat wave duration  
(days/event) 

Heat wave frequency 
(events/year) 

Regions/States NCDC CESM-
NCDC 

WRF-
NCDC 

%1 NCDC CESM-
NCDC 

WRF-
NCDC 

%1 NCDC CESM-
NCDC 

WRF-
NCDC 

%1 

Northeast Region 20.82 1.55 1.17 25 5.62 1.27 -0.41 68 1.44 -0.76 -0.29 62 

New Hampshire         19.22 2.21 1.91 14 5.42 -0.09 -1.01 91 1.53 -1.05 -0.35 67∗ 
Vermont               19.23 1.30 1.49 13 6.20 1.36 -0.83 39 1.41 -0.91 -0.44 52 
Massachusetts         21.70 2.33 0.99 58∗ 5.28 0.70 -0.46 34∗ 1.26 -0.34 -0.27 21 
Connecticut           21.28 1.44 0.99 31 5.55 -1.10 -1.07 3 1.41 -0.66 -0.27 59 
New York              20.16 1.12 0.78 30∗ 5.97 -0.73 -0.59 19∗ 1.49 -0.91 -0.57 37∗ 
Pennsylvania          19.93 1.65 1.01 39∗ 5.92 1.53 -1.13 26∗ 1.5 -0.71 -0.17 76∗ 
New Jersey            22.17 1.75 1.48 15 5.47 0.73 -0.15 79 1.45 -0.93 -0.22 76∗ 
Maryland              23.24 1.01 1.50 33 6.27 4.34 -0.40 91∗ 1.36 -0.53 -0.14 74 
West Virginia         20.43 1.18 0.38 68∗ 4.50 4.66 1.96 58∗ 1.54 -0.78 -0.15 81∗ 
Eastern Midwest 
Region 

21.31 2.51 1.15 54 5.00 3.98 1.24 69 1.42 -0.23 -0.20 13 

Wisconsin             20.86 2.21 1.04 53∗ 5.13 2.97 1.18 60∗ 1.31 -0.26 -0.39 33 
Michigan              20.18 2.47 1.93 22∗ 4.92 3.00 1.14 62∗ 1.4 -0.08 -0.07 13 
Illinois              22.46 3.36 1.23 63∗ 4.97 5.30 1.25 76∗ 1.43 -0.24 -0.15 38 
Indiana               21.94 2.53 0.89 65∗ 5.00 5.95 1.29 78∗ 1.51 -0.48 -0.21 56 
Ohio                  21.12 1.98 0.68 66∗ 4.98 2.70 1.36 50∗ 1.44 -0.09 -0.18 50 
Southeast Region 22.58 1.47 0.83 43 6.51 3.67 1.98 46 1.34 -0.34 -0.24 28 
Kentucky              22.28 1.82 0.57 69∗ 6.56 6.15 1.93 69∗ 1.26 -0.45 -0.01 98∗ 
Virginia              20.98 2.17 1.28 41∗ 6.20 3.50 2.13 39∗ 1.33 -0.39 -0.19 51 
Tennessee             22.08 1.62 0.93 43∗ 6.59 5.97 3.16 47∗ 1.26 -0.26 -0.21 19 
North Carolina        21.61 1.69 1.09 36∗ 6.82 1.90 0.93 51∗ 1.36 -0.2 -0.22 9 
Mississippi           23.18 1.66 0.79 52∗ 5.86 4.46 3.55 20 1.4 -0.33 -0.39 15 
Alabama               22.78 1.04 1.10 5 5.06 3.53 2.34 34 1.47 -0.59 -0.49 17 
Georgia               22.10 1.11 1.06 5 7.63 2.76 0.81 71 1.12 -0.09 -0.1 10 
South Carolina        23.04 1.03 0.71 31∗ 7.78 3.76 1.43 62 1.18 -0.35 -0.08 77 
Florida               25.15 1.13 -0.03 97∗ 6.05 1.04 1.58 34 1.64 -0.37 -0.48 23 
1Numbers without underline: indicating bias percentage improvement in WRF over 
CESM in comparison to NCDC data, with formula of (|CESM-NCDC|-|WRF-
NCDC|)/|CESM-NCDC|. 
Numbers with underline: indicating bias in CESM is smaller than WRF in comparison to 
NCDC, with formula of (|WRF-NCDC|-|CESM-NCDC|)/|WRF-NCDC|. 
∗Statistical significance of t-test (α=0.05). 

5.7.2 Evaluations of precipitation and extreme precipitation 
 

A rainy day is defined as a day when the daily precipitation totals at least 1 mm 

[Salinger and Griffiths, 2001].  In the current analysis, extreme precipitation is defined as 

the 95th percentile of all the rainy days [Diffenbaugh et al., 2006; Salinger and Griffiths, 

2001]. The 95th percentile threshold is calculated as the mean of each year's 95th 

percentile precipitation from 2001 to 2004 [Bell et al., 2004; Diffenbaugh et al., 2006]. 

The determination of 95th percentile threshold is location dependent, so no fixed value is 

used in this definition. The following indices were used for the evaluations: 

• Total extreme precipitation (mm/year): Annual total of extreme daily precipitation 

amounts  
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• Annual extreme events (days/year): Total annual extreme precipitation days  

• Daily extreme precipitation (mm/day): Total amount of annual extreme 

precipitation divided by total annual extreme precipitation days. 

The probability distributions of precipitation on rainy days are shown in Figure 5.3 

for each of the 23 states in the Eastern US. In addition, the probability distributions of 

daily precipitation 40 mm or more is magnified and plotted in the middle of each plot. 

The value of 40 is significant because in the majority of the states, daily precipitation 

values of 40 mm or more account for less than 5% of rainy days, which is considered 

extreme precipitation.  Annual extreme precipitation totals were also evaluated and listed 

in the upper portion of each plot.  

WRF-simulated precipitation probability distributions are in closer agreement with 

NCDC observations than CESM (Figure 5.3). The CESM tends to yield larger 

percentages of rainy days with daily precipitation from 1-5 mm, but lower percentages 

with daily precipitation of 10 mm or more. The probability distributions of extreme 

precipitation in WRF agree more closely with NCDC data, while CESM data 

substantially underestimate the frequency of extreme precipitation. In the Northeast, six 

states (Massachusetts, New York, Pennsylvania, New Jersey, Maryland and West 

Virginia) have improvement over 70% in both total extreme precipitation and extreme 

precipitation days in WRF over CESM. Three states in the Eastern Midwest (Wisconsin, 

Illinois and Indiana) and five states in the Southeast (Kentucky, Virginia, North Carolina, 

Georgia and South Carolina) have similarly high improvement in WRF over CESM. 

However, a few exceptions exist. For instance, WRF over predicts extreme precipitation 

in New Hampshire and Connecticut, and the amount by which precipitation is over 

predicted is larger than the under predicted amount in CESM. In parts of the Southeast, 

such as in Florida, both CESM and WRF under predict the extreme precipitation, but 

WRF tends to capture more extreme events. This phenomenon indicates that dynamical 

downscaling with WRF has the capability of predicting extreme precipitation better than  
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Figure 5.3 Probability distributions of precipitation from NCDC, CESM and WRF 

outputs. The probability distributions of daily precipitation 40 mm or more (extreme 

precipitation) is zoomed in and plotted in the middle of each plot. Total annual extreme 

precipitation amounts and days were listed in the upper portion of each plot. The numbers 

on the left represent total annual extreme precipitation, with NCDC in black, bias in 

CESM (CESM-NCDC) in blue, bias in WRF (WRF-NCDC) in red and the bias reduction 

in WRF over CESM ((|CESM-NCDC|-|WRF-NCDC|)/(|CESM-NCDC|)*100%, in green); 

The numbers on the right are similar to the left but apply to the annual extreme 

precipitation days. 



57 
 

CESM. However, more than 20 hurricane events∗ occurred during 2001-2004, which 

is possibly not captured well by either CESM or WRF, resulting in less extreme 

precipitation events in both models compared to NCDC. Overall, 32-33% improvement 

was achieved in WRF downscaled outputs.  

5.8 Increasing trends of state-level extreme events by the end of 2050s 

5.8.1 Increasing trends of heat wave intensity, duration and frequency 
 

The spatial distributions of heat wave intensity, duration and frequency at present 

(2001-2004) and future climate (RCP 8.5, 2057-2059) are shown in Figure 5.4 and the 

Region/State means are shown in Table 5.2.  

Figure 5.4(a) shows, at present, the heat wave intensity is higher in the Southeast 

(mostly higher than 23 ºC) than the Northeast and the Eastern Midwest. A few hot spots, 

indicating higher heat wave intensity, are located in the megacities, such as Chicago and 

Detroit in the Eastern Midwest, Washington D.C., Philadelphia and New York City in the 

Northeast, Memphis and Atlanta in the Southeast.  By the end of 2050s (2057-2059), the 

severity of heat waves increases in most of the areas in the Eastern US (Figure 5.4(b) and 

(c)). Again, the Southeast still shows highest intensity; however, the highest increase 

occurs in the Northeast (Figure 5.4(c)), reaching 3 to 5 ºC, pushing the Northeast to the 

current conditions in the Southeast. In the Northeast, six states (New Hampshire, 

Vermont, New York, Pennsylvania, New Jersey and Maryland) have an increase of 

higher than 3 ºC, with the highest increase occurring in the state of New York.  

Figure 5.4(d) shows, at present, the heat wave duration is similar in the Northeast and 

Eastern Midwest, about 4 days/event, while in Southeast it could reach more than 7 

days/event. By the end of 2050s, the heat wave duration decreases in the center areas 

(Tennessee, Mississippi and Alabama) of Southeast, while the Northeast and Eastern 

Midwest show an increase of 2 days per event on average (Figure 5.4(e) and (f)).  There  

                                                 
 
 
∗ http://en.wikipedia.org/wiki/List_of_Florida_hurricanes_%282000%E2%80%93present%29#2001 
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Figure 5.4 The spatial distributions of heat wave intensity, duration and frequency at 

present (2001-2004) and future climate (RCP 8.5, 2057-2059): (a) four year average of 

heat wave intensity at present climate (2001-2004), (b) three year average of heat wave 

intensity at future climate under RCP 8.5, (c) the differences of heat wave intensity 

between RCP 8.5 and present climate (RCP 8.5 – present climate), (d) , (e) and (f) are 

similar as (a), (b) and (c), but applies to heat wave duration, (g), (h) and (i) are similar as 

(a), (b) and (c) as well, but applies to heat wave frequency.  
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is about 1 event per year at present from Figure 5.4(g), while 5 or more events could 

occur in the Northeast, Eastern Midwest and Florida by the end of the 2050s under the 

RCP 8.5 scenario (Figure 5.4(h) and (i)). Combining the heat wave durations, the total 

heat wave days in the Northeast and Eastern Midwest would be higher than Southeast.  

 

                           Table 5.2 Heat wave intensity, duration and frequency 

 Heat wave intensity
 (ºC) 

Heat wave duration (days/event) Heat wave frequency 
(events/year) 

Regions/States Present RCP 8.5 RCP 8.5 
- Present 

Present RCP 8.5 RCP 8.5 
- Present 

Present RCP8.5 RCP 8.5 
- Present 

Northeast Region 21.81 24.85 3.05 3.61 5.53 1.92 1.24 7.03 5.79 
New Hampshire         21.16 24.23 3.07 3.22 5.35 2.13 1.29 7.41 6.12 
Vermont               20.84 24.02 3.18 3.37 5.35 1.98 1.15 7.94 6.79 
Massachusetts         22.21 25.05 2.84 3.60 5.47 1.87 1.02 7.13 6.11 
Connecticut           22.45 25.43 2.98 3.68 5.71 2.03 1.24 6.53 5.29 
New York              20.84 24.08 3.24 3.78 5.32 1.54 0.96 7.65 6.69 
Pennsylvania          20.97 24.16 3.19 3.85 5.48 1.63 1.33 7.26 5.93 
New Jersey            23.44 26.55 3.11 3.59 5.49 1.90 1.36 6.26 4.90 
Maryland              23.26 26.33 3.07 3.91 5.67 1.76 1.34 5.89 4.55 
West Virginia         21.08 23.82 2.74 3.53 5.96 2.43 1.45 7.16 5.71 
Eastern Midwest 
Region 

22.26 25.05 2.78 3.86 5.65 1.78 1.23 5.57 4.34 

Wisconsin             21.63 24.61 2.98 3.64 5.63 1.99 0.97 5.23 4.26 
Michigan              21.70 24.62 2.92 3.96 5.00 1.04 1.20 5.78 4.58 
Illinois              23.48 25.74 2.26 3.97 5.94 1.97 1.32 4.50 3.18 
Indiana               22.72 25.28 2.56 3.87 5.87 2.00 1.37 5.66 4.29 
Ohio                  21.79 24.99 3.20 3.88 5.80 1.92 1.30 6.70 5.40 
Southeast Region 23.53 25.99 2.46 4.55 5.78 1.23 1.25 5.02 3.77 
Kentucky              22.80 25.54 2.74 4.22 6.28 2.06 1.41 4.48 3.07 
Virginia              22.50 25.43 2.93 3.70 6.00 2.30 1.38 5.38 4.00 
Tennessee             23.00 25.69 2.69 5.47 5.46 -0.01 1.16 3.88 2.72 
North Carolina        23.27 26.06 2.79 3.82 6.45 2.63 1.35 4.71 3.36 
Mississippi           23.99 26.21 2.22 4.70 4.41 -0.29 1.35 2.93 1.58 
Alabama               23.80 26.34 2.54 4.96 4.57 -0.39 1.12 4.33 3.21 
Georgia               23.74 25.92 2.18 4.98 5.66 0.68 1.02 6.19 5.17 
South Carolina        23.98 26.32 2.34 4.41 6.08 1.67 1.33 5.46 4.13 
Florida               24.67 26.38 1.71 4.66 7.11 2.45 1.09 7.81 6.72 

 

5.8.2 Increases in the state-level extreme precipitation 
 

At present (Figure 5.5(a) and Table 5.3), the total extreme precipitation in the 

Northeast and Southeast is larger than the Eastern Midwest. The highest annual extreme 

precipitation, 371.0 mm, occurs in Connecticut. By the end of 2050s, while scattered 

decreases in extreme precipitation exist, most areas show increasing patterns, as seen in 

Figure 5.5(b) and (c). As shown in Figure 5.5(c), the largest increase (dark green) takes 

place mainly in the coastal states, including New Hampshire, New Jersey, North 

Carolina, South Carolina, Georgia and Alabama, with an increase of around 150 mm/year 
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(Table 5.3). From Table 5.3, almost half of the states have a total extreme precipitation 

increase of more than 35%, including five states in the Northeast (New Hampshire, 

Vermont, Massachusetts, New Jersey and Maryland), two in the Eastern Midwest 

(Illinois and Indiana) and four in the Southeast (North Carolina, Alabama, Georgia and 

South Carolina). However, some inland regions show decreasing extreme precipitation 

(Figure 5.5(c), including part of New York, Pennsylvania, Ohio and West Virginia, 

Illinois, and Tennessee. Wisconsin is the only state with overall decreasing mean extreme 

precipitation by the end of 2050s (18.3 mm less per year from Table 5.3).   

Daily extreme precipitation ranges from 40 to 60 mm/day at present (Figure 5.5(d)). 

By the end of 2050s (Figure 5.5(e) and (f)), smaller increases occur in the Northeast and 

Eastern Midwest, while larger increases occur in the Southeast. As shown in Figure 

5.5(c) and (f)), the Southeast has the largest increase in both daily extreme precipitation 

and annual extreme precipitation days, while the Eastern Midwest shows less increase. At 

present, about 4 to 6 days have extreme precipitation (Figure 5.5(g)), while 8 to 12 days 

could occur in large areas of the Northeast and Southeast by the end of 2050s (Figure 

5.5(h)), indicating the extreme precipitation days could increase to twice as many as 

present conditions (Figure 5.5(i)).  
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Figure 5.5 The spatial distributions of total extreme precipitation, daily extreme 

precipitation and annual extreme events at present (2001-2004) and future climate (RCP 

8.5, 2057-2059) 
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Table 5.3 Total extreme precipitation, daily extreme precipitation and annual extreme 

events   

 Total extreme precipitation 
(mm/year) 

Daily extreme precipitation 
(mm/day) 

Annual extreme events  
(days/year) 

Regions/States Present RCP8.5 RCP 
8.5 -
Present 

Present RCP8.5 RCP 
8.5 -
Present 

Present RCP8.5 RCP 
8.5 -
Present 

Northeast 
Region 

308.7 416.1 107.3 51.1 52.6 1.5 6.1 7.9 1.8 

New Hampshire      324.4 537.6 213.3 49.7 55.7 6.0 6.5 9.6 3.1 
Vermont               286.2 415.7 129.5 43.1 46.7 3.6 6.5 8.8 2.2 
Massachusetts         328.5 454.3 125.8 54.5 56.7 2.1 6.1 8.1 2.1 
Connecticut           371.0 444.3 73.3 61.4 60.7 -0.8 6.2 7.4 1.3 
New York              292.5 332.5 40.0 45.7 44.9 -0.8 6.4 7.4 1.0 
Pennsylvania          290.8 359.8 69.0 47.9 49.6 1.6 6.1 7.3 1.2 
New Jersey            307.7 458.4 150.7 57.8 56.9 -0.9 5.4 8.1 2.8 
Maryland              272.9 402.3 129.3 52.9 54.3 1.4 5.2 7.5 2.3 
West Virginia         304.8 339.5 34.8 46.7 48.3 1.5 6.6 7.2 0.6 
Eastern Midwest 
Region 

235.2 293.8 58.7 50.6 52.0 1.5 4.7 5.6 0.9 

Wisconsin             182.9 164.7 -18.3 44.5 43.5 -1.0 4.0 3.8 -0.2 
Michigan              217.8 254.0 36.1 42.1 44.2 2.2 5.2 5.8 0.6 
Illinois              208.0 322.9 114.9 55.6 60.0 4.4 3.7 5.3 1.6 
Indiana               277.8 386.8 109.1 58.5 60.1 1.7 4.8 6.5 1.7 
Ohio                  289.3 340.8 51.5 52.1 52.3 0.2 5.6 6.6 1.1 
Southeast 
Region 

294.6 405.0 110.4 56.8 60.6 3.9 5.2 6.7 1.5 

Kentucky              287.6 329.8 42.3 55.6 57.3 1.7 5.2 5.8 0.5 
Virginia              262.0 388.2 126.3 50.2 54.5 4.4 5.2 7.1 1.9 
Tennessee             293.2 365.7 72.5 57.8 59.4 1.6 5.1 6.2 1.1 
North Carolina        338.1 477.7 139.6 59.3 64.6 5.3 5.7 7.4 1.7 
Mississippi           226.0 286.8 60.8 57.4 60.4 3.0 4.0 4.8 0.8 
Alabama               288.7 458.1 169.4 58.5 65.5 7.0 5.0 7.1 2.1 
Georgia               330.4 490.7 160.4 59.3 63.6 4.3 5.6 7.8 2.2 
South Carolina        323.1 482.4 159.4 57.9 62.9 5.0 5.6 7.7 2.1 
Florida               302.1 365.4 63.3 55.0 57.7 2.7 5.6 6.4 0.8 
 

In addition to the extreme precipitation days, the percentage change of annual 

extreme precipitation to annual total precipitation was also compared and listed in Table 

5.4. At present, the extreme precipitation accounts for 25% (West Virginia) to 30% 

(Wisconsin) of annual total precipitation; by the end of 2050s, these percentage ranges 

from 27% in West Virginia to 39% in Illinois, with a mean increase of 7% across the 

Eastern US. The three largest increases (more than 10%) occur in New Hampshire (13%), 

Alabama (12%) and Illinois (11%). At present, Wisconsin has the largest percentage in 

extreme precipitation (30%). However, it is the only state that is projected to have a slight 

decrease in extreme precipitation percentage (about 1%), while all other states show 

increasing trends in extreme precipitation percentage (3% to 13%).  
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Table 5.4 Percentage change of annual extreme precipitation to annual total 

precipitation 

 95% precip/total precip 95% precip/total precip 95% precip/total precip 
 Present RCP8.5 RCP 8.5 -Present
Northeast Region 26% 33% 7% 
New Hampshire         26% 39% 13% 
Vermont               25% 35% 10% 
Massachusetts         26% 35% 8% 
Connecticut           26% 32% 6% 
New York              26% 30% 4% 
Pennsylvania          25% 29% 4% 
New Jersey            26% 35% 9% 
Maryland              27% 34% 7% 
West Virginia         25% 27% 3% 
Midwest Region 27% 33% 5% 
Wisconsin             30% 29% 0% 
Michigan              27% 31% 4% 
Illinois              28% 39% 11% 
Indiana               27% 34% 7% 
Ohio                  26% 29% 4% 
Southeast Region 26% 34% 8% 
Kentucky              26% 31% 5% 
Virginia              26% 34% 8% 
Tennessee             27% 32% 6% 
North Carolina        26% 33% 7% 
Mississippi           27% 36% 9% 
Alabama               26% 38% 12% 
Georgia               27% 35% 8% 
South Carolina        26% 33% 8% 
Florida               28% 34% 6% 

 

5.9 Increasing trends of city-level extreme weather events 

5.9.1 Increasing trends of heat wave intensity, duration and frequency 
 

In addition to the state-level heat wave studies, city-level heat waves were also 

explored. Among the top 50 cities by population in US, 20 cities are located in the eastern 
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US∗, and the locations for each city are shown in Figure 5.6. Among the 20 cities, most of 

them have areas greater or equal to 400 km2. To reduce single grid bias in WRF and also 

match CESM grids, 25 (5 x 5) WRF grid cells centered at the city and all the NCDC data 

in this region were used. The evaluations and future change of heat wave intensity, 

duration and frequency of the 20 cities are listed in Table 5.5.  Heat waves in each city 

were determined with NCDC, CESM and WRF data (both present and future climate for 

model simulations) using the same criteria as in the state level analysis. The underlined 

numbers indicate that WRF did not perform as well as CESM in comparison to NCDC. 

Overall, after downscaling, most of the cities show improvement in heat wave 

reproducing, and the mean improvement in the 20 cities is 21%, 71% and 57% for heat 

wave intensity, duration and frequency, respectively. In future (RCP 8.5, 2057-2059), 

widespread increase occurs in all of these major cities in the eastern US, from 1.81 ºC to 

3.71 ºC with a mean of 3.10 ºC for heat wave intensity, from 0.09 days/event to 4.25 

days/event with a mean of 1.85 days/event for heat wave duration, and from 1.70 

events/year to 7.55 events/year with a mean of 4.38 events/year for heat wave frequency.   

 
                            Figure 5.6 Top 20 cities by population in Eastern US 

                                                 
 
 
∗ http://en.wikipedia.org/wiki/List_of_United_States_cities_by_population 
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Table 5.5 Heat wave intensity, duration and frequency in top 20 cities by population 

in Eastern US 

 Heat wave intensity 
 (ºC) 

Heat wave duration  
(days/event) 

Heat wave frequency 
(events/year) 

City NCD
C 

CES
M 

WRF
1 

WRF
2 

NCD
C 

CES
M 

WRF
1 

WRF
2 

NCD
C 

CES
M 

WRF
1 

WRF
2 

New York 24.75 23.25 24.92 3.58 3.00 4.00 3.62 1.82 1.38 0.56 1.35 4.07 
Chicago 24.80 25.05 26.20 3.34 3.67 4.25 3.60 1.37 1.25 1.5 1.15 5.05 
Philadelphia 23.17 22.22 24.31 3.69 3.00 9.00 3.18 2.42 1.50 0.25 1.64 4.63 
Jacksonville 24.91 26.75 25.02 1.81 3.88 6.75 4.57 1.60 1.50 1.00 1.08 5.28 
Indianapolis 23.50 24.54 23.04 3.03 4.71 4.00 4.04 1.84 1.88 0.81 1.18 4.35 
Columbus 21.75 23.54 21.94 3.63 4.74 3.67 3.61 2.55 1.46 1.50 1.36 5.03 
Charlotte 22.81 24.00 22.96 2.62 5.00 5.83 3.75 4.25 1.25 1.00 1.29 3.30 
Detroit 21.67 23.30 24.25 3.67 5.25 4.00 3.67 1.39 1.50 1.00 1.41 4.70 
Memphis 25.37 25.75 25.07 2.18 6.67 9.50 5.52 0.09 1.50 1.25 1.14 1.70 
Baltimore 23.85 23.17 23.99 3.65 4.67 4.33 3.46 1.95 1.13 0.88 1.44 5.09 
Boston 22.29 24.87 23.06 3.41 3.00 6.35 3.55 1.27 1.22 1.16 1.16 5.22 
Washington, 
D.C. 23.96 23.86 24.33 3.55 4.67 4.33 4.11 1.43 1.25 1.00 1.29 4.70 

Nashville 22.54 24.32 23.46 3.21 6.75 6.50 5.26 0.19 1.15 1.20 1.14 2.46 
Louisville 22.14 24.08 23.63 2.98 4.00 5.00 3.75 2.73 1.00 0.67 1.66 3.13 
Milwaukee 21.51 22.01 23.18 3.51 4.30 6.00 3.76 0.95 1.47 1.08 1.10 4.70 
Virginia Beach 24.53 26.83 24.85 2.10 3.00 5.67 3.08 1.80 1.00 1.00 0.44 5.14 
Atlanta 22.22 22.80 23.83 3.08 5.25 5.50 4.66 0.72 1.00 1.25 1.19 3.69 
Raleigh 22.93 24.43 23.54 2.89 3.00 4.95 3.25 3.27 1.75 1.92 1.53 2.46 
Miami 27.41 27.53 26.05 2.40 3.00 3.00 3.91 3.72 1.75 1.00 0.85 7.55 
Cleveland 22.59 21.60 23.04 3.71 3.50 6.25 3.83 1.73 1.17 1.25 1.20 5.25 
 

1The numbers in this column indicate present period (2001-2004) from WRF simulations. 
Values without (with) underline indicate absolute bias in WRF is smaller (larger) than 
CESM in comparison to NCDC data. 
2The numbers in this column indicate the heat wave increase of future climate period 
(2057-2059) in RCP 8.5 in comparison to present climate (2001-2004). 
 

5.9.2 Wide increases in the city-level extreme precipitation 
 

The evaluations and future change of extreme precipitation of the 20 cities are listed 

in Table 5.6.  After downscaling, WRF simulated total annual extreme precipitation in 11 

cities shows lower biases than CESM when compared to NCDC data. However, the daily 

extreme precipitation and annual total precipitation days show much higher improvement 

in WRF. In particular, the annual total precipitation days in WRF (mean bias = -0.1 

days/year) perform much better than CESM (mean bias = 2.6 days/year) in all the 20 

cities. By the end of the 2050s, the annual total extreme precipitation in most of the cities 

are projected to increase, and four of them have increases over 200.0 mm/year, with the 
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highest increase in Philadelphia (315.1 mm), followed by Baltimore(227.3 mm), Virginia 

Beach (210.7 mm) and Boston (207.4 mm). The annual total precipitation in Philadelphia 

and Baltimore is primarily due to the increase of frequency of extreme precipitation. In 

Boston, it is due to the increase of both annual extreme precipitation days and daily mean 

extreme precipitation. In Virginia Beach, the increase mainly comes from the daily 

extreme precipitation. Among the 20 cities, 8 cities (Philadelphia, Indianapolis, 

Columbus, Charlotte, Baltimore, Boston Washington, D.C., Milwaukee) are projected to 

have at least 2 days increase per year in extreme precipitation in future climate, and three 

cities (New York, Chicago and Detroit) have at least 1 day increase. On the contrary, a 

few states in the Southeast, including Jacksonville, Miami and Nashville, are projected to 

have less annual extreme precipitation, which could be related to the secondary organic 

aerosol (SOA), and more studies are needed to evaluate the causes.  

 

Table 5.6 Total extreme precipitation, daily extreme precipitation and annual extreme 

events in top 20 cities by population in Eastern US 

 Total extreme precipitation 
(mm/year) 

Daily extreme precipitation 
(mm/day) 

Annual extreme events  
(days/year) 

City NCD
C 

CES
M 

WRF
1 

WRF
2 

NCD
C 

CES
M 

WRF
1 

WRF
2 

NCD
C 

CES
M 

WRF
1 

WRF
2 

New York 319.6 283.1 309.1 82.5 56.5 35.8 59.0 6.2 5.8 8.0 5.3 1.0 
Chicago 240.0 186.4 224.0 121.7 46.1 27.7 51.7 9.9 5.3 6.8 4.5 1.3 
Philadelphia 320.1 250.6 300.2 315.1 50.5 32.7 56.3 -0.5 6.3 7.5 5.3 5.8 
Jacksonville 304.9 297.0 438.5 -36.2 57.1 31.2 65.2 2.5 5.7 9.5 6.6 -0.5 
Indianapolis 281.2 227.8 319.3 168.8 52.5 32.3 64.4 0.1 5.3 7.1 5.1 2.8 
Columbus 232.3 241.0 259.8 130.1 43.0 32.3 47.7 2.8 5.4 7.4 5.4 2.3 
Charlotte 284.1 245.9 271.7 115.3 54.9 31.3 49.7 1.7 5.2 7.9 5.4 2.1 
Detroit 184.6 186.5 263.8 65.5 32.4 25.1 46.0 -0.6 5.8 7.5 5.9 1.3 
Memphis 333.8 254.5 239.5 2.4 74.0 30.7 62.7 -6.3 4.3 8.3 3.9 0.2 
Baltimore 292.9 275.5 297.2 227.3 47.5 34.3 58.5 1.5 6.0 8.0 5.1 4.1 
Boston 297.7 256.5 302.7 207.4 54.0 37.4 50.3 9.3 5.6 7.0 6.1 2.5 
Washington, 
D.C. 279.1 275.3 257.7 170.1 47.9 32.4 49.8 1.4 5.8 8.5 5.1 3.2 
Nashville 348.1 252.2 299.6 -10.0 60.0 31.8 64.2 -2.5 5.8 7.9 4.8 0.1 
Louisville 253.1 262.6 267.3 75.6 54.6 34.7 52.0 2.3 4.5 7.7 5.2 0.8 
Milwaukee 212.6 171.4 222.4 120.7 42.7 25.5 44.4 4.1 4.9 6.6 5.0 2.1 
Virginia Beach 290.8 239.9 316.7 210.7 49.8 29.3 63.1 29.7 5.8 8.3 4.8 0.5 
Atlanta 342.8 280.9 370.3 22.8 63.0 29.6 66.5 0.8 5.4 9.5 5.7 0.2 
Raleigh 253.3 244.4 316.8 58.4 53.7 30.0 61.1 5.1 4.8 8.4 5.3 0.5 
Miami 245.9 282.8 197.1 -17.9 57.1 25.0 39.8 9.7 4.5 11.4 4.9 -1.2 
Cleveland 225.4 199.2 286.9 37.4 35.8 27.5 48.4 -0.1 6.3 7.3 5.9 0.9 
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1The numbers in this column indicate present period (2001-2004) from WRF simulations. 
Values without (with) underline indicate absolute bias in WRF is smaller (larger) than 
CESM in comparison to NCDC data. 
2The numbers in this column indicate the precipitation increase of future climate period 
(2057-2059) in RCP 8.5 in comparison to present climate (2001-2004). 

5.10 Statistical justification in downscaled climate outputs  

Considering the computational limitations, only one member global climate output was 

downscaled. To achieve the statistical benefits, the standard deviation from ensemble CESM 

outputs was applied to the downscaled WRF outputs. The ensemble CESM standard deviations 

have been shown Figure A1 to A6 in the APPENDIX. The single member downscaled results 

were listed in Table 5.2 and Table 5.3. Combining the data in these two tables and the standard 

deviation in Figure A1-A6, the heat wave intensity was listed in Table 5.7 and heat wave 

duration, heave wave frequency, annual total extreme precipitation, daily mean extreme 

precipitation and annual extreme precipitation days ± one standard deviation were listed in Table 

A1 to Table A5 in the APPENDIX.  

                       Table 5.7 Heat wave intensity ± one standard deviation 

 Heat wave intensity (ºC)

Regions/States Present RCP 8.5 RCP 8.5 - Present 

Northeast Region 21.81±0.31 24.85±0.34 3.05±0.39 

New Hampshire         21.16±0.36 24.23±0.29 3.07±0.28 

Vermont               20.84±0.51 24.02±0.43 3.18±0.41 

Massachusetts         22.21±0.06 25.05±0.36 2.84±0.19 

Connecticut           22.45±0.18 25.43±0.32 2.98±0.31 

New York              20.84±0.41 24.08±0.38 3.24±0.16 

Pennsylvania          20.97±0.03 24.16±0.25 3.19±0.29 

New Jersey            23.44±0.38 26.55±0.32 3.11±0.63 

Maryland              23.26±0.57 26.33±0.34 3.07±0.82 

West Virginia         21.08±0.29 23.82±0.32 2.74±0.55 

Midwest Region 22.26±0.88 25.05±0.51 2.78±0.59 

Wisconsin             21.63±0.79 24.61±0.59 2.98±0.65 

Michigan              21.70±0.36 24.62±0.50 2.92±0.16 

Illinois              23.48±1.37 25.74±0.57 2.26±0.97 

Indiana               22.72±1.30 25.28±0.49 2.56±0.86 
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Ohio                  21.79±0.57 24.99±0.38 3.20±0.30 

Southeast Region 23.53±0.35 25.99±0.25 2.46±0.42 

Kentucky              22.80±0.81 25.54±0.34 2.74±0.84 

Virginia              22.50±0.46 25.43±0.26 2.93±0.65 

Tennessee             23.00±0.67 25.69±0.36 2.69±0.72 

North Carolina        23.27±0.31 26.06±0.27 2.79±0.45 

Mississippi           23.99±0.38 26.21±0.24 2.22±0.16 

Alabama               23.80±0.09 26.34±0.10 2.54±0.05 

Georgia               23.74±0.16 25.92±0.16 2.18±0.18 

South Carolina        23.98±0.18 26.32±0.32 2.34±0.42 

Florida               24.67±0.13 26.38±0.22 1.71±0.32 
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CHAPTER VI 
 

6 THE IMPACT OF HEAT WAVES ON AIR QUALITY IN THE 
UNITED STATES 

6.1 Declaration 

This chapter is a slightly revised version of a manuscript, to be submitted to a journal 

for publication. 

6.2 Abstract  

The statistical evaluation in this study showed strong confidence that the statistical 

metrics in retrospective studies can be applied to climate studies as benchmarks. Among 

all the metrics, MFB/MFE are the most useful ones, and particular for ozone, they almost 

all fall within the benchmarks. In future decades, even with large reductions of NMVOCs 

and NOx, the increase of methane emissions and increased boundary concentrations 

could enhance the formation of ozone particularly with high temperature intensification. 

This has been observed in RCP 8.5, in which ozone increases in western US. More 

intense heat waves that were projected in future climates, especially, in RCP 8.5, a mean 

increase of 54% and 313% for duration and frequency. During heat wave periods, in RCP 

8.5, all regions show a higher percentage of MDA8 with levels over 75 ppb. More than 

15% MDA8 were projected during the heat wave period than non-heat wave period in 

three regions (West, Southwest and West North Central). The mean MDA8 increase 

during heat wave period in RCP 8.5 is 3.1 to 9.5 ppbv in US. The PM2.5 in the U.S. 

decreases 16% to 39% (for all 9 climate regions) in RCP 4.5 and 28% to 44% by the end 

of 2050s in RCP 8.5. 

 

6.3 Introduction 

The impact of climate change on air quality has been widely studied. Bell et al [2007] 

found under Intergovernmental Panel on Climate Change (IPCC) Special Report on 

Emissions Scenarios (SRES) A2 climate scenario, by keeping emissions as the present 
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condition, an average of 4.8 ppb, up to 9.6 ppbv, was projected to increase in summer 

daily 1-h maximum ozone by 2050s. They also found the mean number of days 

exceeding the maximum daily 8-h ozone (MDA8) standard increased by 68%. Nolte et al. 

[2008] found by 2050s, an overall of 2 to 5 ppbv increase of MDA8 in Texas and parts of 

the eastern U.S under A1B scenario while maintaining emissions at current level. Lam et 

al. [2011] found under A1B scenario, about 5 ppbv reduction was projected for MDA8 by 

2050s due to the combined effect of climate change and emission reductions. Under A1FI 

with increased anthropogenic emissions, Huang et al. [2008] found in 2050s, that mean 

ozone concentrations increase +4% to +9% in majority of the areas in US, by using 

global chemistry model (Model for OZone And Related Chemical Tracers, MOZART).  

To date, most studies focused on the IPCC SRES A1 and A2 scenarios [Nakicenovic 

and Swart, 2000]. However, for the upcoming Fifth Assessment Report (AR5) of the 

United Nations IPCC, the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

([Taylor et al., 2009; Taylor et al., 2012] ‘representative concentration pathways∗ (RCPs 

[Moss et al., 2010]) scenarios have been designed. Compared to SRES scenarios, these 

new RCP scenarios employ different emissions pathways [Lamarque et al., 2011b]. The 

impact of climate on air quality under these plausible scenarios is one of the major 

focuses in AR5. Using global chemistry models, by the end of 21st century, the 

tropospheric ozone is projected to decrease in RCP 2.6, RCP 4.5 and RCP 6.0 [Lamarque 

et al., 2011b],  and increase in RCP 8.5 [Kawase et al., 2011; Lamarque et al., 2011b]. 

The regional scale studies on the RCP scenarios are very limited, i.e., by using A Unified 

Regional Air-quality Modelling System (AURAMS) on a 45 km by 45 km resolution, 

Kelly et al. [2012] found under A2 climate and RCP 6 emissions, almost entire US show 

decrease of ozone concentrations. It is believed that higher spatial resolution is necessary 

to achieve better regional scale climate and air quality [Caldwell et al., 2009]. Thus, to 

address the issue, this study applies a dynamical downscaling technique from a global 

                                                 
 
 
∗http://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=about 
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chemistry model to a high spatial resolution domain (12 km by 12 km continental US 

domain) under the new RCP scenarios.  

In either global and regional climate studies, the evaluation of model results in were 

mainly on regional or monthly scales [Lam et al., 2011; Lamarque et al., 2010], and 

statistical evaluation was usually applied in the retrospective studies [USEPA, 2007]. By 

applying high resolution downscaling methodology in this study, one of the primary 

goals is to evaluate whether the evaluation method in the retrospective studies can be 

used in the climate quality studies. This could provide important benchmarks for future 

climate studies.  

In the retrospective studies, the ozone and particulate matter (PM) levels have been 

investigated during extreme weather conditions - heat wave events. Stedman [2004] 

estimated, during the first two weeks of August 2003 in England and Wales, that an extra 

21-38% (423 and 769 persons) excess deaths are associated with the elevated ambient 

ozone and PM10 concentrations. Vieno et al. [2010] found during 2003 heat waves, the 

first two weeks in August, an temperature increase of  5 ºC could increase up to 9 ppbv 

surface ozone at Writtle (70 km NE of London). In pure climate studies, more intense 

heat waves are likely to occur in the future climate [Ganguly et al., 2009; Gao et al., 

2012; Meehl and Tebaldi, 2004]. Unlike the retrospective studies, in climate studies, its 

impact on air quality is usually compared among different emission scenarios. The 

impacts in different climate conditions (such as heat wave/non-heat wave period) under 

the same scenario are ignored. Thus, by using a high resolution downscaling system and 

comprehensive chemical model, in this study, the ozone concentrations during heat 

waves and non-heat wave periods under the same scenario were evaluated. 

6.4 Model description and configuration 

Global climate CESM and chemistry model CAM-Chem has been described in 

Section 2.2.1 and 2.2.2. Regional climate model WRF 3.2.1 and regional chemistry 

model CMAQ has been discussed in Section 2.2.3.3 and 2.2.4.  
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Figure 6.1 12 km by 12 km simulation domain with nine climate regions in U.S.  

 

Figure 6.1 shows simulation domain with a spatial resolution of 12 km by 12 km, and 

it includes 9 climate regions based on National Climatic Data Center (NCDC)∗. The 9 

climate regions are the major focus in the following discussions. An outer domain of 36 

km by 36 km was designed to achieve smoother downscaling from CESM to WRF, but 

not used for analysis.  

For the CMIP5 [Taylor et al., 2009; Taylor et al., 2012], a total of four RCP scenarios 

(2005-2100),  including RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, have been designed in 

addition to present climate (1850-2005). Considering the limitations of computational 

resources, two scenarios, RCP 4.5 and RCP 8.5, were selected in this study. The primary 

purposes of this selection are to evaluate and compare the climate and air quality under 

low to medium emission scenario (RCP 4.5 [Smith and Wigley, 2006; Wise et al., 2009]) 

and fossil fuel intensive emission scenario (RCP 8.5 [Riahi et al., 2007]). CAM-Chem 

was conducted from 2001 to the end of the century continuously on a global scale. After 

the global chemistry simulations, a four-year period (2001-2004) was selected to 

represent present climate and three year period (2057-2059) was used to illustrate future 

climate conditions. The selection of the present climate considers the closest climate 

period before the start of RCP scenarios (2005), while future climate in 2050s possibly 

                                                 
 
 
∗ http://www.ncdc.noaa.gov/temp-and-precip/us-climate-regions.php 
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captures enough climate change signal and also avoid the large uncertainties in projecting 

emission too far in future [Nolte et al., 2008]. 

6.5 Dynamical downscaling 

Dynamical downscaling is a technique that uses the outputs from GCMs to provide 

the initial and boundary conditions for the regional climate/chemistry models. The 

downscaling process involves species mapping, horizontal and vertical interpolations. 

The first step for downscaling is to map the species in global chemistry model CAM-

Chem to the regional chemistry model CMAQ, listed in Table 2.2 [Emmons et al., 2010; 

Yarwood et al., 2005]. During this process, most species can be mapped directly between 

these two models except secondary organic aerosol (SOA). Bulk aerosol model was used 

in CAM-chem [Lamarque et al., 2012], thus only combined anthropogenic and biogenic 

SOA was generated. However, a more sophisticated aerosol scheme 6 (AE6) was in 

CMAQ 5.0, including 24 semi-volatile SOA and 7 nonvolatile SOA [Carlton et al., 

2010]. No universal ratios can be applied to anthropogenic and biogenic SOA in order to 

achieve all SOA species in CMAQ. As suggested by Carlton et al. [2010], default profile 

initial and boundary conditions were first used to drive CMAQ simulations, and the ratios 

among SOA species were achieved from the outputs. These grid dependent ratios were 

applied to total anthropogenic SOA and biogenic SOA from CAM-Chem so as to achieve 

the initial and boundary conditions for all SOA species.  

6.5.1 Initial and boundary conditions 
 

In the downscaling process, CAM-Chem was used to provide the initial and boundary 

conditions for CMAQ. Initial conditions are needed only for the first time step while the 

temporal resolution of boundary conditions is usually 3 hourly or 6 hourly in order to 

represent diurnal patterns. Three hourly boundary conditions were generated to achieve 

better diurnal representation.  

First of all, it is important to keep the downscaled initial and boundary conditions 

consistent with CAM-Chem. Figure 6.2 shows the boundary conditions for the 

continental US domain used in CMAQ and the corresponding grids in CAM-Chem. Due  
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Figure 6.2 Boundary comparisons between CAM-Chem and CMAQ for O3 

concentrations at on July 1st, 2001 

to the differences of spatial resolutions between CAM-Chem and CMAQ, the grids in 

CAM-Chem closest to CMAQ ones were used. Thus, unlike the domain used in CMAQ 

(Figure 6.2 (b)), the grids in CAM-Chem (Figure 6.2(a)) are not located in the same rows 

or columns. Comparing Figure 6.2(a) and (b), they are consistent with each other in all 

the four boundaries, i.e., the high ozone areas in the top and lower left boundaries 

(between 60-70 ppbv), and the boundaries located in the Pacific ocean and Atlantic ocean 

show similar patterns. Initial conditions have also been checked and similar patterns were 

found.  

Considering the vertical layer height differences between CAM-Chem and CMAQ, 

linear interpolations were applied to the layers in CAM-Chem. For a layer l  in CMAQ, 

find two layers in CAM-Chem, where the lower and higher heights of layer l are located. 

Assume the lower height is located in the layer m (CAM-Chem) with the height of 

mh and higher height is located in layer n (CAM-Chem) with the height of nh . The 

interpolations were as follows, where C represents concentrations:  
 

a) nm =  

ml CC =  
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6.5.2 Emission inventory 
  

Since the initial year of RCP scenarios is 2005, the year of 2005 National Emission 

Inventory∗ was processed by Sparse Matrix Operator Kernel Emissions (SMOKE) 2.7, 

and then used to scale the emissions from 2001-2004. The scaling ratios for 2001-2004 

were listed in Table 6.1, based on US EPA∗∗. In Table 6.1, emissions in 2005 are listed 

with the unit of Tg, the emissions of the other years are listed as a ratio of 2005. The 

projections of future emissions in RCP 4.5 and RCP 8.5 are based on the RCP 

database∗∗∗. However, the RCP emissions did not take into consideration of PM2.5 and 

PM10, which is required as emission input for CMAQ. Thus, the following assumption is 

used: the projection of PM2.5 follows the summation of organic carbon (OC), black 

carbon (BC) and SO4, while the projection of PM10 follows the summation of PM2.5, 

coarse mode dust and sea salt emissions. Biogenic emissions are highly affected by 

meteorological conditions such as temperature and radiation, thus Biogenic Emissions 

Inventory System (BEIS) Modeling 3.12 was used to generate hourly biogenic emissions 

for each year at present (2001-2004) and future (2057-2059) climate. 

From Table 6.1, most emissions show decreasing trends in both RCP 4.5 and RCP 8.5 

scenarios: i.e., CO reduce more than 70%, NMVOC and NOx reduce close to 70% and 

                                                 
 
 
∗ http://www.epa.gov/ttn/chief/net/2005inventory.html#inventorydata 
∗∗ http://www.epa.gov/ttn/chief/trends/index.html#tables 
∗∗∗ http://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=welcome 
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50% in RCP 8.5, 40% and 60% in RCP 4.5. On the contrary, the emissions of NH3 

increase in both scenarios, and methane emissions increase 60% in RCP 8.5. 

                          Table 6.1 Projection factor for anthropogenic emissions 

 Present climate 2005(Tg) RCP 4.5 RCP 8.5 

 2001 2002 2003 2004  2057 2058 2059 2057 2058 2059 

CO 1.142 1.194 1.129 1.065 93.030 0.272 0.268 0.264 0.246 0.243 0.240 

NOX 1.139 1.117 1.078 1.039 18.914 0.342 0.338 0.334 0.493 0.487 0.482 

PM10 1.121 1.008 1.006 1.003 21.149 0.552 0.552 0.551 0.542 0.540 0.538 

PM2.5 1.282 1.022 1.015 1.007 5.456 0.761 0.754 0.747 0.422 0.417 0.413 

SO2 1.092 1.012 1.008 1.004 14.594 0.169 0.166 0.163 0.148 0.137 0.126 

VOC 0.929 1.149 1.112 1.074 18.421 0.632 0.630 0.628 0.314 0.310 0.306 

NH3 0.904 1.012 1.008 1.004 4.085 1.254 1.253 1.252 1.536 1.544 1.551 

CH4 1.202 1.187 1.172 1.156 32.180 0.893 0.888 0.883 1.612 1.626 1.640 

BC 1.007 1.005 1.004 1.002 0.394 0.723 0.716 0.709 0.264 0.262 0.260 

OC 1.145 1.109 1.073 1.036 1.141 1.060 1.051 1.042 0.609 0.606 0.604 

 

6.6 Evaluation of model outputs 

Statistical evaluation by matching the observations and model outputs temporally and 

spatially are commonly used in the retrospective studies and benchmarks have been 

established for evaluation criteria [USEPA, 2007]. However, in climate studies, regional 

area or monthly mean are usually used to evaluate the model performance [Lam et al., 

2011; Lamarque et al., 2010]. This study aims to evaluate whether the statistical methods 

applied in the retrospective studies can be used in the climate studies. This hypothesis 

may not apply to global climate models considering the coarse spatial resolution; 

however, it is theoretically reasonable in regional climate/chemistry models considering 

improved meteorological conditions from downscaling, plus detailed and accurate 

regional high resolution emissions inventory. To test the evaluation, all the observations 
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from Air Quality System (AQS)∗ are used to evaluate the present climate period from 

2001-2004. By matching temporally (hourly for gas species and daily for PM2.5, PM10 

and PM2.5 sub-species) and spatially (grid match) with observations, statistical evaluation 

was shown in Table 6.2. The benchmarks in the retrospective study were also listed in the 

Table 6.2, and the comparison between the statistical metrics and benchmarks could 

provide important references for future climate studies. 

There are a total of three group of metrics: Mean Fractional Bias/Mean Fractional 

Error (MFB/MFE), Normalized Mean Bias/Normalized Mean Error (NMB/NME), and 

Mean Normalized Bias (MNB) and Mean Normalized Error (MNE). Based on US EPA 

[2007], the benchmarks of MFB/MFE are ±15/35 for ozone, ±30/50 for PM2.5, and 

±50/75 for PM2.5 species, and less stringent for less abundant PM2.5 species. Among all 

these metrics, the MFB and MFE is the least biased, and the MNB and MNE are the most 

biased and least useful metrics, particularly when observations are small. Thus, MNB and 

MNE are only calculated for O3 with 40 and 60 ppb cut off values. For all the 2086661 

sites at present climate condition, all statistical metrics for O3 with 40 ppbv cut off meets 

the criteria. For O3 with 60 ppbv cut off, the absolute errors are less than 30%, while 

biases for all three metrics (MFB/NMB/MNB) are slightly lower than -15%. For PM2.5, 

the metrics are slightly higher (10-25% higher) than the benchmarks, and this is 

considered to be acceptable for climate studies. For PM2.5 species such as elemental 

carbon (EC), organic matters (OMC), and sulfate (SO4), MFB/MFE and NMB/NME are 

quite close (within ±10%) to benchmark. No benchmark is available for PM10, and the 

performance shows it is close to PM2.5. No benchmarks are available for CO and NO2 

either, and the biases are all less than 50% and with most of the errors less than 85%. 

 Thus, it is reasonable to apply statistical evaluation for high resolution regional 

climate studies, and the performance, particularly for MFB/MFE, is comparable to the 

benchmarks used in the retrospective study. 

 

                                                 
 
 
∗ http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm 
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                                                      Table 6.2 Statistical evaluations 

 CO NO3 NO2 O3_401 O3_602 PM10 EC OMC SO4 PM2.5 

MFB -29±2 -16±3 -9±3 -5±1 -21±1 -56±2 -8±5 -41±4 -26±3 -35±2 

MFE 83±3 113±1 80±1 27±1 28±1 83±1 76±2 82±2 68±2 65±1 

NMB -41±2 28±6 -4±3 -1±1 -17±1 -50±2 0±8 -32±7 -35±3 -33±3 

NME 63±1 122±4 71±2 25±1 24±1 67±1 78±3 74±2 63±1 58±1 

MNB / / / 1±1 -16±1 -14±3 / / / -5±3 

MNE / / / 26±1 23±1 76±2 / / / 63±2 

No. 

points 

3051180 13531 3280637 2086661 487991 130421 16518 16518 16112 146483 

Bench 

mark 

 50/75  15/35 15/35  50/75 50/75 50/75 30/50 

1a cutoff value of 40 ppbv is set. 
2a cutoff value of 60 ppbv is set. 

6.7 Climate impact on air quality 

 
Figure 6.3 shows the cumulative distributions of Maximum daily 8-hr ozone (MDA8) 

for present climate (2001-2004) and future climate (RCP 4.5 and RCP 8.5, 2057-2059). 

Overall, compared with present climate, the cumulative distribution of RCP 4.5 shift to 

the left, indicating reduced ozone concentrations under the emission reduction scenario 

RCP 4.5, which is also the case for most of the SRES A1 and A2 scenarios ([Lam et al., 

2011; Nolte et al., 2008]). Comparing RCP 4.5 with RCP 8.5, the distribution shifting 

right in RCP 8.5 indicates higher ozone concentrations under this scenario. In RCP 8.5, 

the eastern areas of U.S. (Northeast, Southeast, Central and South) show ozone decrease 

in the high ozone concentration levels. However, the western areas (Northwest, West and 

North West Central) show increase in higher percentile ozone distributions. In addition, 

the percentage of exceeding 60 and 75 ppbv is also listed in Figure 6.3. The National 

Ambient Air Quality Standards (NAAQS) standard (2008) use 75 ppbv, and the reason 

for considering 60 ppbv is considering that the NAAQS might become more stringent in 

future. The negative numbers indicate ozone exceedance decrease in future compared 

with present. From Figure 6.3, all blue numbers (second row) are negative, indicating 

ozone concentration decreases in RCP 4.5. However, in RCP 8.5, the exceedance of 60 
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ppbv could increase by 5 to 10 % in the western United States. In both scenarios, VOCs 

and NOx has been reduced dramatically, more than 35% VOC and 75% NOx in RCP 4.5, 

70% VOC and 50% NOx in RCP 8.5 have been reduced. However, the major emission 

differences of these two scenarios are the methane emissions. In RCP 4.5, about 10% 

reduction by 2050s, while in RCP 8.5 the methane is increasing (60% by 2050s). Thus, 

the increase of methane emissions could be one of the major drivers in future climate. In 

addition, the increase of ozone in RCP 8.5 is more noticeable in the western U.S, which is 

likely to be contributed by the increased boundary concentrations. More sensitivity 

studies are needed to achieve quantitative analysis of the boundary effects. 

In addition, for each region, percentage change of areas of 3-year mean annual 4th 

MDA8 ozone exceeding 75 ppbv (NAAQS) was evaluated. In RCP 4.5, the largest 

decrease occurs in Southeast (63%), Central (75%) and South (48%), and In RCP 8.5, the 

largest decrease occur in the Central (31%). However, West North Central and Northwest 

show increase of 24% and 13%, respectively, in RCP 8.5.  

  
 

Figure 6.3 Cumulative distributions of MDA8 ozone. There are two columns of 

numbers: the numbers on the left show the percentage of MDA8 ozone exceeding 60 

ppbv at present (2001-2004), the percentage change in RCP 4.5 (2057-2059, blue) and 

RCP 8.5 (2057-2059, red) compared with present; the numbers on the right are similar as 

left but for MDA8 ozone exceeding 75 ppbv 
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The distributions of PM2.5 at present and future climate conditions were shown in 

Figure 6.4. As suggested in the NAAQS standard, a three-year average was used. At 

present, eastern US shows a regional mean of 5.2 to 8.0 ug/m3, with small areas near 

New York close to the NAAQS standard (15 µg/m3). The western US show 

concentrations less than 4 ug/m3, which is well below the NAAQS standard. In the future, 

all nine regions show mean concentrations less than 5 ug/m3, with 16% to 39% reduction 

in RCP 4.5 and 28% to 44% reduction in RCP 8.5. Among the 9 regions, the PM2.5 

concentrations are 4% to 12% lower in RCP 8.5 than RCP 4.5, primarily from 30% more 

reductions of PM2.5 in RCP 8.5 (Table 6.1). Unlike ozone, the changes of PM2.5 are more 

directly related to emissions. 

 

 

Figure 6.4 Three-year mean PM2.5 concentrations at present and future, the numbers 

along each figure represent mean concentrations in the 9 climate regions. The state 

boundary was labeled with different colors to distinguish different regions as shown in 

Figure 6.1.  
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6.8 More intense heat waves and its impact on air quality 

6.8.1 Heat wave duration and frequency (number of annual events) 
 

To date, the studies of climate impact on air quality have been focused on the 

comparison between different climate scenarios or different emissions scenarios [Kawase 

et al., 2011; Lam et al., 2011; Nolte et al., 2008]. However, in the same scenario, under 

different meteorological conditions, such as a heat wave period and non-heat wave period, 

ozone could increase. This is very important particularly for control strategies or policies. 

Thus, heat waves were first investigated and followed by the impact of heat waves on 

ozone formation. 

Two key parameters of heat waves were used on an annual basis: duration and 

frequency. The definitions of heat wave duration (number of days during a heat wave) 

and frequency (number of heat wave events per year) have been discussed in Section 

5.7.1. 

Figure 6.5 shows the heat wave duration and frequency at present and future climate. 

At present (Figure 6.5a,b), the heat wave duration ranges from 3.7 to 4.4 days per event, 

and the number of annual heat wave events are 1 to 1.5. In RCP 4.5 (Figure 6.5c,d), by 

the end of 2050s, most of the regions show increasing trends for heat wave duration 

except Central and Upper Midwest, showing little or a slight decrease. The mean increase 

of duration across the entire US is 23%, while the largest increase is 68% occurring in the 

Southwest. For the annual number of events, all the regions show increase patterns, with 

mean increase in US of 131%. The increase in Northeast and Northwest reach more than 

2 times compared with present climate. Much more intense heat waves were projected to 

occur in RCP 8.5 (Figure 6.5e,f), with mean increase of 54% and 313% for duration and 

frequency, more than 2 times higher than the increase in RCP 4.5 (23% and 131%). The 

duration increase ranges from 29% to 90% among the 9 regions; the increase of events is 

more significant, and the least increase is 173% in the West, while the highest increase 

reaches 564% in Northeast. 
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Figure 6.5 The heat wave duration and frequency. The state boundary was labeled 

with different colors to distinguish different regions as shown in Figure 6.1.  

6.8.2 Impact of heat waves on ozone 
 

In the same scenario, the emission differences among different days are expected to 

be minimal. Thus, the meteorological conditions could play the most important role. As is 

shown in Figure 6.6, in a majority of the regions, there are right shifts of distribution 

during the heat wave period compared to non-heat wave period, which pushes the higher 

MDA8 values accounting for a larger percentage. Except Southeast, in RCP 8.5, all other 
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regions show higher percentage of MDA8 ozone over 75 ppb, particularly, three regions 

(West, Southwest and West North Central) show differences of higher than 15%. For 

MDA8 ozone over 60 ppbv, 2/3 of the regions show higher than 15% during the heat 

wave period. The mean MDA8 differences in the regions except Southeast during heat 

wave days in RCP 8.5 are 3.1 to 9.5 ppbv. 

 
 

Figure 6.6 Distributions of MDA8 during the heat wave period and non-heat wave 

period for RCP 4.5 and RCP 8.5. There are two columns of numbers, and they represent 

the differences of mean MDA8 ozone, percentage greater than 75 ppbv and 60 ppbv 

between heat wave period and non-heat wave period for RCP 4.5 and RCP 8.5. 
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Chapter VII 
7 SUMMARY 

7.1 Summary of the study 

This study involves multiple scales of climate and chemistry modeling. First, the 

analysis of heat waves was based on an ensemble member of monthly/daily global 

climate data. Following the large scale analysis, this study tends to answer how much 

improvement can be achieved from a high resolution downscaling system. To answer this 

question, global climate simulations were conducted on a three hourly basis in order to 

provide high temporal boundary conditions. After that, dynamical downscaling was 

applied to the three hourly global model outputs, and provides initial and boundary 

conditions for regional climate model on a 4 km by 4 km high resolution scale. By 

comparing with observations, much improved skills were achieved in predicting heat 

waves and extreme precipitation through the implementation of high resolution 

downscaling. It demonstrates the necessity of high resolution regional modeling for 

evaluating local extreme weather events. However, due to the limitation of computational 

resources, only 3 years of future climate simulations were conducted. The inter-annual 

variability may change the conclusion when comparing future climate with present 

climate. Thus, multiple years (6-10 years) simulations are needed in future when the 

computational resources are available.  

In addition to climate, chemistry module has also been implemented. It enables this 

study to investigate the climate impact, particularly heat waves, on air quality, which 

could provide useful information for policy makers. The skill comparison between global 

climate model and regional climate model was comprehensive, while similar comparison 

between global and regional chemistry modeling was not included in the dissertation. In 

future, comprehensive evaluations will be conducted to investigate the improvement from 

high resolution chemistry downscaling studies.  
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7.2 Summary from paper I 

Ensemble regional heat waves with CCSM4 perform well compared with 

observations during the historical period (1948-2005), providing confidence for using the 

ensemble member outputs when performing heat wave studies.  

Heat waves show widespread increases in both intensity and duration/frequency. 

These increases are associated with both absolute value increases and probability 

distribution shifts, and occur not only in summer, but also in other seasons, especially 

winter, based on SETD in the new modeling results. In the RCP scenarios, both heat 

wave intensity and duration/frequency show larger increases compared to previous 

studies conducted by Ganguly et al. [2009] and Meehl and Tebaldi [Meehl and Tebaldi, 

2004]. These results stress the importance of adaptation and mitigation to future climate, 

and the necessity that all seasons be taken into consideration instead of focusing only on 

summer.  

The three hourly outputs have been published in the Earth System Grid (http://esg2-

gw.ccs.ornl.gov) and made publicly available for downscaling and for use in high 

resolution climate change studies that can be used to study the relationship between heat 

waves and public health on a county by county level. 

7.3 Summary from paper 2 

The regional climate dynamical downscaling technique has been successfully applied 

to CESM results for the RCP8.5 climate change scenario to generate high resolution 

climate outputs. When conducting dynamical downscaling, one should examine spatial 

patterns to determine whether consistency between models exists.  In this study, the 

inconsistency in skin temperature between CESM and WRF was corrected by modifying 

the land/sea mask from CESM. The downscaling using CCSM has been widely studied, 

but no one has reported inconsistency of skin temperature so far. From this study, it is 

recommended downscaling studies using either CCSM/CESM or other global climate 

models compare the spatial patterns between global climate models and WPS outputs 

before producing WRF simulations. 
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The extreme events evaluations of CESM and WRF in comparison to NCDC network 

prove that WRF is more capable than CESM in reproducing local extreme events. The 

percentage improvement could reach as high as 97% in Florida for heat wave intensity, 

91% in Maryland for heat wave duration, 98% in Kentucky for heat wave frequency, 

more than 95% in Wisconsin and Pennsylvania for both annual total extreme 

precipitation and annual extreme events. Thus, by taking advantage of high resolution 

topography and land use information, the dynamical downscaling dramatically improves 

the ability of reproducing heat wave and extreme precipitation over the Eastern US. Thus, 

the coarse resolution global climate model results may not be suitable for regional/local 

extreme climate studies.  

The RCP8.5 scenario was used as an example to study the future climate in 2057-

2059 compared to present climate in 2001-2004. By the end of 2050s, the heat waves 

become more severe in most regions of the Eastern US. The increases in the Northeast 

and Eastern Midwest are more than the Southeast, which reduces the severity of 

differences among the North and South regions. It is an indicator that Northeast and 

Eastern Midwest may suffer more resulting from a steeper increase in the severity of heat 

waves. The total annual extreme precipitation in both the Northeast and Southeast have a 

mean increase of 35% or more, suggesting a greater risk of flooding in future climate 

conditions. Considering both heat waves and extreme precipitation, the Northeast region 

shows the largest increases. Thus, it is important that the Northeast take actions to 

mitigate the impact from climate change in the next several decades.   

 

7.4 Summary from paper 3 

 
  The evaluation is important step before pursuing any future projections. The climate 

studies do not represent a particular year, and thus only regional and annual mean is 

evaluated for most of the case. However, the regional model does have detailed and 

accurate emission inventory, and the regional climate downscaling also improves the 

meteorological conditions by taking advantage of local high resolution topography. Thus, 

it is possible and important to test the statistical evaluations used in retrospective studies. 
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The tests in this study showed strong confidence that the statistical metrics can be applied 

to climate studies, and the benchmarks in the retrospective studies could be applied to the 

climate studies, or with slight relaxation. Among all the metrics, MFB/MFE are the most 

useful ones, and particular for ozone, among 2086661 sites, they almost all fall within the 

benchmarks. This study provides important references for future climate studies, and 

further evaluations are needed to confirm the findings.  

Unlike the studies comparing different emission scenarios, this study also 

investigated the impact of heat waves on the ozone formation under the same scenario. In 

both RCP 4.5 and RCP 8.5, most regions show significant right shifts of probability 

distribution for MDA8 ozone, indicating increased ozone concentrations during the heat 

wave period. The impact of heat waves on MDA8 ozone could be as large as 3.1 to 9.5 

ppbv. This finding addresses important issues regarding future air quality control, as 

emission controls may not be adequate if the standard becomes more stringent.   
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Chapter VIII 
8 FUTURE STUDIES 

 

From this study, about 300 T data has been produced. It includes both global 

climate/chemistry and regional climate/chemistry modeling results. Further analysis can 

be conducted, such as the impact of heat waves on public health and the impact of 

extreme precipitation on agriculture and infrastructure, etc. 

Currently, only 3 to 4 years of high resolution downscaling simulations were 

conducted. The downscaling tool can be used for longer simulations and other regions as 

well. In future, when the computational resources are available, decadal simulations can 

be produced. In addition, the high resolution downscaling can be applied to China or 

other regions, and evaluation of multiple regions will make a more interesting study. 

 The impact of climate on air quality is one of the major focuses in this study. In 

future, the feedback of aerosol to climate can be further explored. In addition, the 

chemistry downscaling is limited in U.S., and extending the region to China could be 

more important. Because the emissions in China may not reduce as high as that in U.S., 

and the long range transport could play an important role in U.S. air quality in future. 
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Figure A1. Ensemble heat wave duration ± one standard deviation (ºC) for present climate and 

future climate (RCP 8.5). The X axis for present climate is scaled at the bottom while the future 

climate (RCP 8.5) is scaled at the top. In each plot, there are three rows of numbers (marked at 

the top-left plot): At the bottom, the numbers from left to right indicate heat wave duration 

ensemble mean ± one standard deviation during 1850-2005, 1985-2004 and 2001-2004; In the 

middle, the numbers indicate the RCP 8.5 scenario for the period of 2005-2100, 2040-2059 and 

2057-2059; At the top, the numbers indicate the differences between RCP 8.5 and present climate 

during the three periods listed above.  
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Figure A2 The same as Figure A1 but for heat wave events 
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Figure A3 The same as Figure A1 but for annual total extreme precipitation 
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Figure A4 The same as Figure A1 but for daily mean extreme precipitation 
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Figure A5.  The same as Figure A1 but for annual total extreme precipitation days 
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Table A1 Heat wave duration ± one standard deviation 

 Heat wave duration (days/event) 

Regions/States Present RCP 8.5 RCP 8.5 - Present 

Northeast Region 3.61±1.45 5.53±4.84 1.92±5.10 

New Hampshire 3.22±1.66 5.35±4.09 2.13±3.26 

Vermont 3.37±1.55 5.35±2.62 1.98±2.20 

Massachusetts 3.60±1.18 5.47±15.03 1.87±17.67 

Connecticut 3.68±0.22 5.71±5.35 2.03±6.63 

New York 3.78±1.84 5.32±2.11 1.54±2.89 

Pennsylvania 3.85±2.40 5.48±1.13 1.63±3.61 

New Jersey 3.59±1.58 5.49±4.01 1.90±3.54 

Maryland 3.91±1.20 5.67±4.37 1.76±1.03 

West Virginia 3.53±2.29 5.96±5.41 2.43±4.09 

Midwest Region 3.86±4.87 5.65±5.74 1.78±6.21 

Wisconsin 3.64±4.67 5.63±6.43 1.99±5.69 

Michigan 3.96±3.40 5.00±4.13 1.04±3.82 

Illinois 3.97±7.51 5.94±7.04 1.97±11.90 

Indiana 3.87±6.41 5.87±5.79 2.00±7.70 

Ohio 3.88±2.34 5.80±5.31 1.92±1.92 

Southeast Region 4.55±2.59 5.78±4.49 1.23±3.91 

Kentucky 4.22±3.75 6.28±9.64 2.06±9.67 

Virginia 3.70±2.43 6.00±4.85 2.30±1.81 

Tennessee 5.47±5.02 5.46±8.51 -0.01±5.88 

North Carolina 3.82±2.68 6.45±1.57 2.63±1.19 

Mississippi 4.70±1.49 4.41±5.16 -0.29±5.21 

Alabama 4.96±2.43 4.57±4.84 -0.39±3.79 

Georgia 4.98±2.69 5.66±2.13 0.68±3.06 

South Carolina 4.41±1.76 6.08±1.11 1.67±1.22 

Florida 4.66±1.02 7.11±2.61 2.45±3.37 
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Table A2 Heat wave frequency ± one standard deviation 

 Heat wave frequency (events/year) 

Regions/States Present RCP 8.5 RCP 8.5 - Present 

Northeast Region 1.24±0.74 7.03±0.59 5.79±0.71 

New Hampshire 1.29±0.73 7.41±0.63 6.12±0.48 

Vermont 1.15±0.41 7.94±0.22 6.79±0.57 

Massachusetts 1.02±0.80 7.13±1.03 6.11±1.01 

Connecticut 1.24±0.76 6.53±0.90 5.29±1.30 

New York 0.96±0.91 7.65±0.56 6.69±0.79 

Pennsylvania 1.33±0.88 7.26±0.55 5.93±0.29 

New Jersey 1.36±0.88 6.26±0.78 4.90±0.67 

Maryland 1.34±0.56 5.89±0.07 4.55±0.56 

West Virginia 1.45±0.47 7.16±0.20 5.71±0.38 

Midwest Region 1.23±0.66 5.57±0.46 4.34±0.30 

Wisconsin 0.97±0.50 5.23±0.38 4.26±0.30 

Michigan 1.20±0.75 5.78±0.52 4.58±0.05 

Illinois 1.32±0.40 4.50±0.48 3.18±0.30 

Indiana 1.37±0.68 5.66±0.50 4.29±0.24 

Ohio 1.30±0.99 6.70±0.42 5.40±0.59 

Southeast Region 1.25±0.57 5.02±0.49 3.77±0.44 

Kentucky 1.41±0.71 4.48±0.51 3.07±0.42 

Virginia 1.38±0.53 5.38±0.22 4.00±0.45 

Tennessee 1.16±0.58 3.88±0.51 2.72±0.28 

North Carolina 1.35±0.65 4.71±0.53 3.36±0.81 

Mississippi 1.35±0.31 2.93±0.56 1.58±0.13 

Alabama 1.12±0.59 4.33±0.63 3.21±0.45 

Georgia 1.02±0.75 6.19±0.60 5.17±0.74 

South Carolina 1.33±0.72 5.46±0.62 4.13±0.19 

Florida 1.09±0.28 7.81±0.25 6.72±0.45 
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Table A3 Total annual extreme precipitation ± one standard deviation 

 Total annual extreme precipitation (mm/year) 

Regions/States Present RCP 8.5 RCP 8.5 - Present 

Northeast Region 308.7±66.9 416.1±49.3 107.3±72.5 

New Hampshire 324.4±104.9 537.6±53.4 213.3±78.7 

Vermont 286.2±92.5 415.7±31.1 129.5±99.2 

Massachusetts 328.5±44.1 454.3±67.0 125.8±132.8 

Connecticut 371.0±81.6 444.3±48.5 73.3 ±78.9 

New York 292.5±25.1 332.5±41.7 40.0 ±39.8 

Pennsylvania 290.8±58.7 359.8±44.7 69.0 ±64.4 

New Jersey 307.7±80.5 458.4±30.6 150.7±56.0 

Maryland 272.9±48.1 402.3±77.0 129.3±29.9 

West Virginia 304.8±21.0 339.5±46.0 34.8 ±12.4 

Midwest Region 235.2±40.9 293.8±19.7 58.7 ±38.8 

Wisconsin 182.9±32.1 164.7±19.3 -18.3±18.3 

Michigan 217.8±28.7 254.0±29.0 36.1 ±25.2 

Illinois 208.0±39.8 322.9±8.2 114.9±35.6 

Indiana 277.8±48.6 386.8±17.6 109.1±39.5 

Ohio 289.3±55.3 340.8±24.2 51.5 ±75.4 

Southeast Region 294.6±60.4 405.0±51.6 110.4±81.8 

Kentucky 287.6±34.1 329.8±58.4 42.3 ±91.3 

Virginia 262.0±33.6 388.2±43.4 126.3±19.4 

Tennessee 293.2±17.8 365.7±45.8 72.5 ±9.7 

North Carolina 338.1±88.2 477.7±46.7 139.6±85.8 

Mississippi 226.0±45.5 286.8±54.2 60.8 ±76.4 

Alabama 288.7±57.2 458.1±44.1 169.4±57.7 

Georgia 330.4±94.8 490.7±47.2 160.4±141.3 

South Carolina 323.1±117.5 482.4±63.6 159.4±130.7 

Florida 302.1±55.3 365.4±60.9 63.3 ±124.2 
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Table A4. Daily extreme precipitation ± one standard deviation 

 Daily extreme precipitation (mm/day) 

Regions/States Present RCP 8.5 RCP 8.5 - Present 

Northeast Region 51.1±2.2 52.6±1.1 1.5±2.2 

New Hampshire 49.7±3.6 55.7±1.3 6.0±3.7 

Vermont 43.1±2.6 46.7±0.8 3.6±2.4 

Massachusetts 54.5±1.5 56.7±1.1 2.1±2.3 

Connecticut 61.4±2.7 60.7±1.5 -0.8±1.7 

New York 45.7±2.8 44.9±1.3 -0.8±3.2 

Pennsylvania 47.9±1.3 49.6±0.3 1.6 ±1.3 

New Jersey 57.8±2.6 56.9±1.3 -0.9±1.9 

Maryland 52.9±0.3 54.3±1.1 1.4 ±0.9 

West Virginia 46.7±0.6 48.3±1.7 1.5±1.8 

Midwest Region 50.6±0.8 52.0±1.1 1.5±1.3 

Wisconsin 44.5±0.4 43.5±1.0 -1.0±1.0 

Michigan 42.1±0.2 44.2±0.8 2.2±0.2 

Illinois 55.6±1.7 60.0±0.6 4.4±2.2 

Indiana 58.5±0.2 60.1±1.3 1.7±1.4 

Ohio 52.1±1.5 52.3±2.0 0.2±1.5 

Southeast Region 56.8±1.0 60.6±1.0 3.9±0.9 

Kentucky 55.6±0.5 57.3±1.4 1.7±0.5 

Virginia 50.2±1.4 54.5±0.5 4.4±0.8 

Tennessee 57.8±1.8 59.4±1.2 1.6±2.5 

North Carolina 59.3±1.0 64.6±0.5 5.3±0.9 

Mississippi 57.4±0.9 60.4±0.6 3.0±0.4 

Alabama 58.5±0.2 65.5±1.1 7.0±0.4 

Georgia 59.3±0.9 63.6±1.3 4.3±1.3 

South Carolina 57.9±1.5 62.9±0.9 5.0±0.7 

Florida 55.0±0.4 57.7±1.2 2.7±0.9 
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Table A5 Annual extreme precipitation events ± one standard deviation 

 Annual extreme precipitation events (days/year) 

Regions/States Present RCP 8.5 RCP 8.5 - Present 

Northeast Region 6.1±1.6 7.9±1.3 1.8 ±1.6 

New Hampshire 6.5±2.2 9.6±1.3 3.1 ±1.5 

Vermont 6.5±2.2 8.8±0.9 2.2 ±2.4 

Massachusetts 6.1±1.3 8.1±1.5 2.1 ±3.3 

Connecticut 6.2±1.6 7.4±1.1 1.3 ±1.7 

New York 6.4±0.7 7.4±1.5 1.0 ±0.5 

Pennsylvania 6.1±1.7 7.3±1.5 1.2 ±1.9 

New Jersey 5.4±1.9 8.1±0.7 2.8 ±1.3 

Maryland 5.2±1.4 7.5±2.0 2.3 ±0.5 

West Virginia 6.6±0.7 7.2±1.5 0.6 ±0.2 

Midwest Region 4.7±1.3 5.6±0.6 0.9 ±1.4 

Wisconsin 4.0±1.3 3.8±0.4 -0.2±1.1 

Michigan 5.2±1.1 5.8±1.0 0.6 ±1.0 

Illinois 3.7±1.1 5.3±0.1 1.6 ±1.0 

Indiana 4.8±1.5 6.5±0.6 1.7 ±1.5 

Ohio 5.6±1.7 6.6±0.9 1.1 ±2.2 

Southeast Region 5.2±1.8 6.7±1.5 1.5 ±2.5 

Kentucky 5.2±1.1 5.8±1.6 0.5 ±2.7 

Virginia 5.2±0.9 7.1±1.2 1.9 ±0.6 

Tennessee 5.1±0.5 6.2±1.4 1.1 ±0.7 

North Carolina 5.7±2.5 7.4±1.5 1.7 ±2.7 

Mississippi 4.0±1.3 4.8±1.6 0.8 ±2.4 

Alabama 5.0±1.8 7.1±1.3 2.1 ±1.7 

Georgia 5.6±3.0 7.8±1.3 2.2 ±4.3 

South Carolina 5.6±3.2 7.7±1.8 2.1 ±3.9 

Florida 5.6±1.8 6.4±1.7 0.8 ±3.8 
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