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Abstract

Emerging architectures, such as next generation microprocessors, graphics processing

units, and Intel MIC cards, are being used with increased popularity in high

performance computing. Each of these architectures has advantages over previous

generations of architectures including performance, programmability, and power

efficiency. With the ever-increasing performance of these architectures, scientific

computing applications are able to attack larger, more complicated problems.

However, since applications perform differently on each of the architectures, it is

difficult to determine the best tool for the job. This dissertation makes the following

contributions to computer engineering and computational science. First, this

work implements the computational chemistry variational path integral application,

QSATS, on various architectures, ranging from microprocessors to GPUs to Intel

MICs. Second, this work explores the use of analytical performance modeling to

predict the runtime and scalability of the application on the architectures. This

allows for a comparison of the architectures when determining which to use for a set

of program input parameters. The models presented in this dissertation are accurate

within 6%. This work combines novel approaches to this algorithm and exploration

of the various architectural features to develop the application to perform at its peak.

In addition, this expands the understanding of computational science applications

and their implementation on emerging architectures while providing insight into the

performance, scalability, and programmer productivity.
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Chapter 1

Introduction

1.1 Motivation

The National Science Foundation describes computational science as a field of study

that is “well recognized by the scientific community as a critical enabling discipline

underpinning modern research and development in all fields of science, engineering,

and medicine.” [1] In addition, the NSF has shown major interest in developing new

hardware and cyberinfrastructure to help scientists perform computational work.

The increasing amount of computational resources fuels the growth of potential

research possibilities in computational science. The development of computational

resources and the benefits they bring spur an increased interest in the type of questions

that can be answered with computational sciences. These resources enable research

to examine areas of science that were previously too difficult or even impossible to

explore experimentally. From microprocessors to graphics processing units (GPUs)

to Intel Many Integrated Cores (MIC), it is important to decide which architecture

is best for the application for high performance.

Historically, high performance computing systems use tightly connected micro-

processors through ultra high speed networks (e.g. Jaguar [2] at Oak Ridge National

Laboratory). However, within the past decade, heterogeneous computing has become
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an ever-growing trend in computing. From cell processor workstations and clusters

[3, 4] to massively parallel co-processors [5] to GPU enabled supercomputers [6, 7, 8],

it is safe to say that heterogeneous computing is more than just a trend. It is a

revolution in the computing research field. This is due to the potential for extremely

high performance (more than 20 petaflops with the upcoming Titan supercomputer

at Oak Ridge National Laboratory [7]) and excellent performance to watt ratios.

1.2 Problem

This dissertation explores the use of emerging architectures such as graphics

processing units (GPUs) and supercomputers for accelerating computational science

applications that use Quantum Monte Carlo methods. Using the power of analytical

performance models, this work explores the viability of different architectures for use

on this type of problem as well as the scalability of this problem on large computing

systems.

In particular, the Quantum Monte Carlo method [9] leads to computational and

memory intensive applications depending on various input parameters. However,

these applications can be better managed with more advanced computational

resources; in fact, it becomes a necessity to exploit these resources. Without these

emerging architectures, performing simulations beyond simple toy problems becomes

impossible. This is due to the larger number of atoms used, replicas needed, iterations

needed, and other physical characteristics of the problem increasing the total amount

of work needed to be performed. This work develops analytical performance models to

describe the runtime and scalability of an implementation of a variant of a Quantum

Monte Carlo application, Variational Path Integral Monte Carlo [10, 11].

2



QSATS

Intel MIC Microprocessor GPU

Figure 1.1: Architectures that are explored in this dissertation

1.3 Approach

This dissertation uses the Quantum Monte Carlo simulation method, Variational

Path Integral Monte Carlo (named QSATS: Quantum Simulations of Atomic Solids),

as a tool to explore the use of the emerging architectures shown in figure 1.1 for

computational chemistry applications. This application is based on [12] in that it

provides a new MPI implementation to produce a new optimized code. In order to

perform this task, this work analyzed and profiled the code to determine bottlenecks

and various ways to improve the program. Profiling the code highlighted a number of

hot spots in the code that needed to be altered to optimize communications and

computations thus increasing performance and scalability of the application. In

addition to the MPI implementation, this work also produced a GPU implementation

that exploits the highly parallel architecture with fast floating point arithmetic units

to produce a code that has significantly higher performance than the microprocessor

implementation. The last implementation is for the currently unreleased Intel MIC

(many integrated core) using various parallelization techniques (e.g. MPI, threads,

vector units).

In addition to the actual implementations, this work also develops analytical

performance models that are used to explore different architectures and predict

3



runtime and scalability of the program. This allows for predicting the performance

on future architectures that include different processing and networking possibilities.

This also allows for the ability to compare architectures and tradeoffs for using each.

1.4 Contribution

This dissertation has the following contributions to the computer engineering and

computational science fields:

• This work develops a highly scalable MPI implementation of a Quantum Monte

Carlo method, Variational Path Integral Monte Carlo (VPI), that scales to

hundreds of cores with greater than 90% efficiency.

• This work develops a high-performance graphics processing unit implementation

of VPI, providing a significant improvement over other architectures and

previous implementations.

• A packaged code that is ready for release and easy deployment by other users

is developed for this VPI implementation.

• This work is the first to develop performance models for VPI in regards to

scalability and runtime on supercomputers and graphics processing units.

1.5 Outline

The rest of this dissertation is as follows:

Chapter 2 provides an overview of the VPI method. It also supplies a survey of work

implementing applications onto emerging architectures in the computational science

realm. Finally, it provides a survey of performance modeling techniques and research.

Chapter 3 describes the microprocessor and Intel MIC implementations.

4



Chapter 4 details the graphics processing unit implementation and the optimization

steps that this work has taken to produce a near optimal design.

Chapter 5 presents an analysis and comparison of the microprocessor, Intel MIC,

and GPU implementations.

Chapter 6 presents the performance models developed for the implementations. This

chapter will describe in depth how these models were obtained and their significance

to this work.

Chapter 7 concludes this dissertation describing remarks about this work and future

work.
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Chapter 2

Background and Related Work

This chapter gives an overview of a type of simulation that is commonly used

in computational chemistry: Quantum Monte Carlo. The Quantum Monte Carlo

simulation method is used extensively in this work as a tool to explore the use of

various emerging architectures in the realm of computational sciences. This chapter

will also delve into the emerging architectures themselves and their programming and

development environments. Also, it will survey related previous work in the areas of

computational sciences, computer architectures, and performance modeling.

2.1 Monte Carlo Simulations

In order to find statistical solutions for problems that were intractable to solve

analytically or experimentally, Metropolis and Ulam [13] created the Monte Carlo

method in 1949. These methods typically generate a Markov chain of configurations

(or states) of a physical system, and estimate observable properties by averaging

the value of the property over the configurations visited along the Markov chain.

As the length of the Markov chain approaches infinity, the estimate will converge

to an actual value thus giving a solution to the problem at hand. The transitions

from one configuration to the next are calculated with random numbers, causing the

need to have high-quality random number generators such as the ones in [14, 15].
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There are a number of different types of Monte Carlo methods, but all of them follow

this general description. Monte Carlo methods are considered to be one of the 13

“dwarfs” of parallel computing [16, 17] thus showing their importance in the high

performance computing realm. Monte Carlo methods are inherently parallel in a

number of ways. For instance, when attempting to solve a Monte Carlo problem,

it is best to perform many simulations (sometimes called walkers) with independent

random number streams. Each of these simulations is independent from the others,

thus they are embarrassingly parallel.

2.2 Variational Path Integral Monte Carlo Method

In systems that are composed of small, light atoms, such as helium and neon, quantum

mechanical effects are more pronounced due to the atoms’ low masses. Sets of atoms

form a crystal structure whose quantum-mechanical movements and behaviors are

very difficult to predict. The quantum mechanical properties of a many-atom system

can, in principle, be determined by solving the Schrödinger equation. The wave

function, Ψ, is used in this equation to describe the quantum state of the particles.

The wave function is used to give the probability distribution of the location of the

particles by equation 2.1

P (x) = Ψ2 (2.1)

where x represents the instantaneous configuration of the many-atom system. This

wave function is a function of a large number of variables (3A where A is the number

of atoms) making it very difficult to solve the Schrödinger equation analytically for

Ψ. This leads to the need for statistical analysis such as the variational path integral

(VPI) method.

The VPI method (also known as path integral ground state, PIGS, Monte Carlo

method [11]) is a quantum Monte Carlo simulation method that allows for the

computation of the evolution of replicas (individual “copies” of the structure that
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have different configurations of atoms) in a polymer chain that move around in a 3A

dimensional space [11, 10, 12]. The VPI method projects the system’s ground state

wave function out of a suitably chosen trial wave function [12]. The VPI method is an

alternative method from the diffusion quantum Monte Carlo (DQMC) method. VPI

is preferable because DQMC suffers from complications with fluctuating numbers of

walkers and walkers with different levels of importance [18]. VPI uses traditional

Metropolis [13, 19] Monte Carlo methods. However, unlike typical Monte Carlo

applications, VPI does not use walkers but instead uses a large number of replicas.

This is to avoid the complications that are present in the DQMC method [18].

The QSATS VPI implementation follows algorithm 2.1. The physical system’s

configuration is defined by a set of 3-vectors, one for each atom, that specify the

displacement of that atom from its crystal lattice site. These vectors are called

displacement vectors below. The VPI system’s configuration consists of a set of A

displacement vectors for each of R different replicas of the physical system. For each

iteration, we loop through all the odd replicas then even replicas. It does not matter

whether we do evens or odds first so long as we keep alternating them. These are

done due to the independence of the two sets of replicas where the odd-numbered

replicas are independent of each other but dependent on the even-numbered replicas

and vice-versa. For each replica, we have a series of steps.

First, we calculate the displacements for the new, proposed step. For all replicas

except the two “end” replicas, this is done by first averaging the j − 1 and the j + 1

replicas as shown in equation 2.2 where sk;j is the displacement vector for the kth

atom in the jth replica. This equation does not hold for the end replicas (replicas

with j = 1 and j = R). In this case, we set the new displacement vector to (j ± 1)th

for the first and last replicas respectively. Once we have these average displacements,

we then add a Gaussian displacement to each component of the vector to randomize

the step. The Gaussian displacement is related to a finite-time approximation to the

quantum mechanical kinetic energy operator for free particles and follows with the

central limit theorem. We use the Box-Muller transformation [20] to generate these
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Algorithm 2.1 QSATS algorithm

Store the initial configuration, C
I := number of iterations
R := set of replicas
A := number of atoms
for i ∈ I do

for j ∈ odd R then j ∈ even R do
for k ∈ A do

Compute the displacement for the new state
Calculate the potential energy, dv, for moving to the new state
if dv < 0 or e−dv > URN then

Accept move
else

Reject move
end if

end for
end for

end for

Gaussian random numbers.

s∗k;j =
1

2
∗ (sk;j−1 + sk;j+1); 1 < j < R (2.2)

s∗k;1 = sk;2 (2.3)

s∗k;R = sk;R−1 (2.4)

Second, we calculate the potential energy arising from the interactions between

the k-th atom and all of the atoms that are nearby. (The number of nearby atoms is

specified by the experiment and model in question, i.e., 56 in the case of this work.)

This calculation is performed twice, once for the old position of the k-th atom, and

once for the new position of the k-th atom. For the potential energy function, QSATS

uses the HFDB-He potential [21] as shown in equation 2.5. The parameters for this

calculation are given in table 2.1.
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Table 2.1: Parameters for the HFDB-He calculations in equation 2.5.

Parameter Value
A 1.8443101e5
α 10.43329537
β -2.27965105
D 1.4826
c6 1.36745214
c8 0.42123807
c10 0.17473318
rm 5.59926
ε 10.948

VHFDB = ε

A ∗ e−αx+βx2 −
( c6

x6
+
c8

x8
+
c10

x10

)
∗


e
−(D

x
−1)

2

, if x < D

1, if x ≥ D



(2.5)

where

x =
r

rm
(2.6)

Once the potential energies associated with the old and new positions are

calculated, we subtract the two to get the difference in potential energies, dv.

Third, we have to decide to accept or reject this move. If the dv is less than or

equal to zero, we will accept the move. If dv is greater than zero, we will generate a

uniform random number. If this random number is less than the exponential of −dv,

we accept the move. More precisely, the move is accepted with a probability of

exp(
−∆t∆V

~
) (2.7)
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Otherwise, the algorithm rejects the move and the atom stays in the same place

until the next iteration. This whole process is repeated until the specified number of

iterations is complete.

Throughout the simulation, the QSATS program takes snapshots of some of the

replicas in order to calculate the crystal’s ground state energy later with another

program.

From a science perspective, being able to execute VPI on a large crystal structure is

important for a few reasons. The VPI simulations tell us the total ground state (zero-

temperature) energy of the crystal as a function of its density. This information can

be used to derive the zero-temperature equation of state for the crystal, which tells us

the pressure needed to compress the crystal to a particular density. Both the ground

state energy and the equation of state can be compared to experimental results. This

will show that the simulations are correct and coincide with the experimental results.

If the simulations are deemed worthy enough to be equivalent, they can be used to

explore experiments that cannot physically be performed, such as ones that involve

extremely high pressures.

For this work, the algorithm only focuses on two-body interactions. However,

using three-body interactions is an interesting extension to this code, as it would

provide a more detailed and accurate description of the actual interactions among the

atoms. In addition, this work only focuses on simulating the 4He atom structures.

However, the VPI method is also applicable to other types of crystals such as solid

para-H2 and solid Ne.

A number of papers have been published on the use of VPI such as [22, 23];

however, none of these look at accelerating the process with emerging architectures.

Hinde [12] previously wrote QSATS using Fortran and MPI to work across many

compute nodes. Mudhasani [24] and Kakani [25] developed the VPI simulation for the

GPU; however, this dissertation provides a different, higher performance approach,

which will be explained later.
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2.3 Survey of Architectures

This subsection gives an overview of the different types of architectures available

for exploration for scientific applications. There are a number of benefits to each

architecture as well as downfalls. Each will be described here.

2.3.1 Microprocessors

Traditionally, microprocessors have been the “go-to” architecture for any application,

whether it is everyday applications or high performance computing. Due to its history,

the microprocessor has a long line of support when it comes to languages, compilers,

and users. Microprocessors not only give a high level of support for users, but

they also have the potential to provide architectures for high performance computing

applications. With vector units such as SSE and AVX that allow for 128 and 256 bit

wide units, it is possible to achieve a 4x [26] or 8x [27] speedup in single precision

over non-vectorized codes. All of this speedup comes with a minimal power gain

[27]. For multicore, single node codes, applications that exploit the shared memory

model typically use threads such as pthreads [28] or OpenMP [29]. It is even possible

to use portable languages such as OpenCL [30] that can work many different types

of microprocessors and GPUs. Libraries such as MPI [31] are available to provide

communication capabilities between processes across many nodes. MPI is the most

common and accepted way to perform high performance computing on clusters and

large supercomputers.

Microprocessors have been a major contender for computational science applica-

tions. Chemistry applications such as GAMESS [32] and NWChem [33] have been

parallelized using threaded and MPI techniques. Biology applications such as BLAST

[34], HMMER [35], and NAMD [36] have been parallelized to thousands of cores.

These are just a few examples, but they give a glimpse into the way computational

science can take advantage of highly parallel microprocessor systems.
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2.3.2 GPUs

Developers traditionally used graphics processing units (GPUs) for 3D graphics

rendering for video games. As video gamers began to demand better graphics and

high resolutions, GPU developers had to fight to meet demand. This led to the

development of many architectural design improvements such as high core counts

at lower clock frequencies. These highly parallel devices were soon adopted by

developers outside of the gaming industry as they saw the potential to accelerate other

applications, specifically scientific computing [37]. Currently, these GPUs support

IEEE-compliant single- and double-precision arithmetic, making them acceptable for

a variety of computational science codes. The main GPU companies at the time

of writing are NVIDIA and AMD/ATI, both of which have their advantages in

terms of performance and programmability. NVIDIA developed their proprietary

programming language, Compute Unified Device Architecture (CUDA) [38] as an

extension to C/C++ that allows for threaded programming on a large set of NVIDIA

GPUs. AMD/ATI also had their own language called Brook+ [39]; however, they

later decided to put full effort into assisting Khronos in developing an open language

to work across many different devices called OpenCL [30].

These languages are centered around a Single Program, Multiple Data (SPMD)

programming model. In particular, CUDA has a model that consists of a computation

grid that has a set of blocks (maximum of 65535 at the time of writing), each

containing a set of threads (maximum of 512 or 1024 depending on the device)[38].

These blocks get assigned to the stream multiprocessors where each thread works in

a Single Instruction, Multiple Thread (SIMT) fashion where multiple threads execute

the same instruction at the same time. The traditional CUDA model requires explicit

data transfers from the host to the device using the runtime library. However, with

newer architectures, CUDA allows for a unified address space so that data does not

need to be explicitly copied to the device[38].
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Developers have ported a large number of applications to the GPU ranging from

computational biology [40, 41, 42, 43], chemistry [33, 44, 45], and mathematics [46, 47,

48] to even everyday applications such as Matlab and Mathematica [49]. In addition,

researchers have built large machines that depend on GPUs to run these types of

applications [6, 50].

2.3.3 Intel MIC

In the near future, Intel will release their many integrated core (MIC) architecture,

a new form of general-purpose processor. Built off the 22nm manufacturing process,

the MIC will scale to more than 50 cores [5]. This next generation of co-processors is

able to achieve more than one teraflop of performance while computing a DGEMM

(double precision general matrix multiplication) as demonstrated at Supercomputing

2011 in Seattle, WA[51]. Intel also announced that the MIC architecture will have a

512 bit wide vector unit that will help exploit parallelism even more [52]. The lack

of information in this section is due to the nondisclosure agreement that surrounds

my interaction with the product. All information is freely available by doing a simple

search online [53, 52].

There have been a few applications that have been developed for the Intel

MIC such as a protein folding application, molecular dynamics, SGEMM, and LU

factorization [54]. Also, at the Supercomputing 2011 Oak Ridge National Lab

booth, other MIC applications were presented such as NWChem, Enzo, and some

computational fluid dynamics codes.

2.4 Performance Modeling

Researchers use performance modeling for a number of reasons. One reason is to

determine how to best map the application to a set of resources. Hu and Gordon [55]

describe three different modeling techniques: measurement, simulation, and analytical
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modeling. Measurement is the obtaining of the performance on the machine in

question by doing many measurements. The machine must be present in order to

perform this type of modeling; however, it can be simple to do. Hu and Gordon also

note that this cannot be used for performance prediction or applied to other systems.

Due to background noise and other possible hindrances, the output parameters must

be chosen carefully and gathered using statistical methods in order to draw meaningful

conclusions [56]. Measurements can be expensive and have large workloads.

Simulation, on the other hand, allows one to have a computerized model of

the desired system that mimics the behavior and functionality. Because it is a

computerized model, it does not depend on the system to be available for testing thus

simulations methods are capable of simulating any system possible, giving generality

and flexibility [56]. However, for large complex designs, simulating an application may

not be reasonable as simulations can take a long time to complete. Simulations are

common when designing an FPGA circuit. Making simulation models more difficult is

the need for validation that the simulation is correct. The simulation only includes the

factors and effects that are included in the simulator. As with measurement modeling,

there also needs to be a set of representative tests that show the full behavior of the

model.

Finally, analytical models allow for a mathematical model to describe the

performance of the application without simulations or access to the desired machine.

The power of analytical models comes at the price of being difficult to develop or

solve when trying to incorporate a large amount of detail. Smith [57] details a few

advantages to analytical models:

• Insight into the inner workings of the system

• Accurate results even for basic models

• Better predictive value from results

• Ability to use differentiation to optimize various aspects of the application
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There have been many examples that have used performance models to describe

their application performance. Peterson [58] used performance modeling for im-

plementations of synchronous-iterative algorithms, a type of fork-join algorithm,

which includes application and background load imbalance. Smith and Peterson

[59] extended this work to use this model to determine a way to best distribute

a parallel application to a set of resources using FPGAs in a near optimal way.

Hong and Kim [60] use analytical models to describe the deep inner workings of a

GPU all the way down to the register level. This work shed light on the underlying

architecture of the GPU so that developers can better understand how to tune their

codes; however, this does not account for newer GPU architectures that contain

global memory caching. Sim et al. [61] does consider the cache parameters and

discuss their tools to extract various parameters of a CUDA program. However,

at the time of writing, their static analysis and instruction analyzer tools are not

available to the public so this modeling technique is not used in this dissertation.

Volkov and Demmel [46] performed measurement based modeling to tune a high

performance DGEMM for GPUs. Gothandaraman [62] used performance models to

describe her implementations of her Quantum Monte Carlo application on FPGAs,

microprocessors, and GPUs. Ipek et al. [63] explored the use of neural networks

on a set of input program and platform input parameters to develop a model that

described the performance of their application. Baghsorkhi et al. [64] discussed the

development of memory hierarchy models using stochastic Monte Carlo techniques.

2.5 Architectures for Monte Carlo

Due to a wide variety of methods and applications, Monte Carlo (MC) methods

have been implemented in numerous ways on various architectures. Researchers have

extensively implemented MC methods onto microprocessor machines, clusters, and

supercomputers. Abdikamalov et al. [65] explores modeling neutrino transport in

core-collapse supernova in an astrophysics MC application on a computer cluster using
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thousands of cores using OpenMP and MPI. Moral et al. [66] uses microprocessors

to perform MC simulations for approximate Bayesian computations. Jenkins and

Peterson [41] use tens of microprocessors using MPI to implement Gillespie’s

algorithm, a Monte Carlo method to simulate the time evolution of chemically reacting

species [67]. CASINO is a Quantum Monte Carlo simulation software package that

uses MPI to obtain parallelism on parallel machines [68]. Most related to this

dissertation, Hinde [12] used tens of processors to implement the Variational Path

Integral Quantum MC method to simulate the atom interactions in a helium crystal

structure.

Monte Carlo methods are not restricted to microprocessor implementations.

Many researchers have explored the use of graphics processing units due to their

highly parallel capabilities and the embarrassingly parallel nature of Monte Carlo

methods. Li and Petzold [69] and Jenkins and Peterson [41, 70, 71] implemented

Gillespie’s method on CUDA-enabled GPUs achieving significant speedups. Heymann

and Siebenmorgen [72] use GPUs to perform MC simulations of dust radiative

transfer applied to active galactic nuclei in a computational astrophysics application.

Anderson et al. [73] provide a GPU implementation of QMcBeaver to perform

Quantum Monte Carlo implementations. Gothandaraman [62] uses FPGAs and

CUDA-enabled NVIDIA GPUs for Quantum MC simulations. Related to this

dissertation, Mudhasani [24] and Kakani [25] developed the VPI simulation for the

GPU with moderate performance gains. This dissertation uses a different, high

performance approach that will be discussed later.

Implementations of Monte Carlo applications are also available for reconfigurable

computing architectures (not explored in this dissertation). Reconfigurable architec-

tures (such as field programmable gate arrays [FPGAs]) have been used for radiative

heat transfer [74], pricing derivatives of interest rate models [75], mixed precision

studies of MC methods [76], and Quantum MC simulations [45, 62].

This list is by no means exhaustive but is representative of the different

architectures that have been used for MC simulations.
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2.5.1 Random Number Generation for MC

Since Monte Carlo simulations require a large number of random numbers, statis-

tically high quality random number generators are needed to produce uncorrelated

results. There are many random number generators available that provide for high

quality numbers. The most notable software package that supplies a variety of random

number generators is SPRNG [15]. Random number generators that are provided by

the package include a Multiplicative Lagged Fibonacci Generator, Combined Multiple

Recursive Generator, Modified Lagged Fibonacci Generator, and 48-bit and 64-bit

Linear Congruential Generator. Each of these have varying periods and statistics that

are good for different applications making it ideal for MC methods. Previous research

provides FPGA and GPU implementations (called HASPRNG [77] and GASPRNG

[78]) that are helpful for developing MC applications on accelerators. There are

a couple of random number generation algorithms developed for the GPU such as

GASPRNG [78] and CURAND [79]. For this work, a custom Combined Multiple

Recursive Generator [14] is used due to its customizability and ease of use.

18



Chapter 3

Microprocessors and Intel MIC

This chapter provides an overview of the microprocessor and Intel MIC implementa-

tions of the Variational Path Integral Quantum Monte Carlo method, including the

serial, threaded, and MPI implementations for both architectures. This work uses

this algorithm to simulate the movement and interaction of helium atoms in a crystal

structure as described in section 2.2.

3.1 Basic Algorithm overview

This implementation follows the algorithm listed in 2.1 for the QSATS VPI

implementation. Essentially, there are 6 main steps:

• Initialization (1)

• For each iteration, replica, and atom

– Calculate a Gaussian random displacement (2)

– Calculate potential energy for moving to new state (3)

– Accept or reject the move (4)

• Occasionally, take a snapshot of the current state (5)

• Finalization (6)
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Figure 3.1: General flowchart of the VPI method

These steps can be visualized in figure 3.1 and each step will be referred to throughout

this chapter by the color, name, and step number of the box.

As mentioned in 2.2, this implementation seeks to expand and optimize the

previous QSATS implementation developed by Hinde [12]. First, a serialized CPU

implementation is written to test various algorithmic and memory optimizations.

Second, threaded versions using OpenMP and Pthreads is written to compare the

performance on a shared memory system. Third, this work developed several MPI

implementations to compare the scalability on various systems. For each of these

implementations, this work also provides vectorized SSE and AVX codes developed

using intrinsics.

Throughout the rest of this dissertation, any references to the implementations

will use the term QSATS since this work is a new version of the original. For any
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notation not described here, refer to the Nomenclature section on page xiv at the

beginning of this dissertation.

3.2 Code Overview

This section provides an overview of the code. For more discussions about the

background of the algorithm, refer to section 2.2.

3.2.1 Step 1: Initialization

The initialization step (the blue box in figure 3.1) first reads in the crystal lattice

structure file. This file consists of a total of A+2 lines. The first line specifies the

number of atoms in the simulation box, A. This number is here to ensure that the

rest of the file is not malformed. The second line gives the lengths of the edges, in

Bohr radius units, a0, of the simulation box in the x, y, and z directions. QSATS uses

this number to scale the coordinates of the lattice sites and the edges of the box to

create the crystal in the correct atomic density given at run time. The remaining N

lines are the (x, y, z) coordinates of the lattice site positions.

Next, QSATS allocates the the storage space for the displacement vector (variable:

path), random number generator vector (variable: rstatv), and the potential energy

look-up table (variable: v). The double precision path variable is used to hold

the displacements of each atom in each replica from their “ideal” position (i.e., a

displacement of 0 means the atom is in its desired position) and is allocated to 3*A*R

double precision elements (3 for x,y,z coordinates and R to hold the displacements

for each replica). At this step, if a save file is specified to continue a previous run, it

is read and stored into this variable. Otherwise, path variables are initialized to their

ideal position, 0.

The rstatv variable holds the random number generator (RNG) state values for

all of the replicas so it is allocated as 8*R. Each replica has 8 RNG state variables: 6
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for the uniform RNG and 2 for the Gaussian RNG. We have to first seed the RNG by

inputting values into each of the 6 uniform RNG state variables. For the first replica,

all 6 values are set to 12345. For the remaining replicas, the seeds need to be chosen

in such a way to avoid overlapping random number streams. To do this, QSATS uses

the “jump-ahead” matrices given in [80]. The other two values in the state vector

are used for the Gaussian RNG. Since the Box-Muller transformation generates two

Gaussian random numbers at a time, one is returned from the function while one is

stored in one of the extra spaces in the state vector. The last free spot in the state

vector is a flag stating whether to use the stored number or not.

Next, the v vector has 20,000*2 elements allocated. This vector holds a look-up

table for the potential energy function in equation 2.5 for a given distance2 value.

There are a total of 20,000 bins, each containing two values that are used for the

linear interpolation of the function. The first value of which is the y-intercept and

the second is the slope. Figure 3.2 shows the interpolated table overlaid with the

actual computed function. The lookup tables are discussed in more detail in section

3.2.3.

Finally, QSATS generates a list of interacting atoms and their separation vectors

for each atom. The list is sorted in order of their ideal separation distances in

ascending order. The reason for this will be described later as part of the optimizations

in section 3.3.1.

Once the initialization phase is complete, the simulation can begin. This includes

the red, yellow, green, and purple boxes (steps 2-5) in figure 3.1.

3.2.2 Step 2: Gaussian Displacements

The first step in the simulation is to calculate the displacement that each atom will

potentially move (the red box in figure 3.1). For each atom, a, in the replica, r,
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Figure 3.2: Actual potential energy function versus interpolated values

QSATS will calculate the average displacement of the neighboring replicas. That is,

new path(r, a{x,y,z}) =
1

2
∗
(
path(r − 1, a{x,y,z}) + path(r + 1, a{x,y,z})

)
(3.1)

For the edge cases where r=0 or r=R-1, the displacement of the atom in the

neighboring replica is used (i.e., path(1, a{x,y,z}) and path(R-2, a{x,y,z}), respectively).

Next, QSATS adds the Gaussian displacement to each component of averaged

move vector to randomize the step. The Gaussian displacement is related to a

finite-time approximation to the quantum mechanical kinetic energy operator for

free particles and follows with the central limit theorem. To generate the Gaussian

random numbers, QSATS uses the Box-Muller transformation [20].
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Calculating the average and Gaussian displacements is an O(2 ∗ 3 ∗ A) = O(A)

operation. It is possible to do both steps in one pass, however, the compiler is able

to better auto-vectorize the average and Gaussian generation calculations when the

loops are separated thus increasing performance. The 3 factor comes from having to

perform each operation three times, one for each of the vector components in the x,

y, and z directions.

3.2.3 Step 3: Potential Energy Calculations

Calculating the difference in potential energy to move the atom is the most time

consuming part of the entire program. The potential energy that QSATS is calculating

is the difference in potential energy, dv, of the old, vold, and new, vnew, location, as

shown in equation 3.2.

dv = vold − vnew (3.2)

To calculate each of the potential energies, QSATS first calculates the difference

between the two locations and all of the atom’s closest neighbors. The number

of neighbors, P, is a configurable option in the program that is dependent on the

experiment at hand. In the case of this dissertation, this number is 56. Equation

3.3 shows the calculation of these squared distance, d2
{old|new}, values, where r is the

current replica, a{old|new},{x,y,z} is the current atom’s old/new x, y, z displacement,

and ai,{x,y,z} is the ith neighbor’s displacement.

d2
{old|new},i = (a{old|new},x − ai,x)2

+ (a{old|new},y − ai,y)2

+ (a{old|new},z − ai,z)2

i ∈ Neighbors

(3.3)
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Once all the squared distances are calculated, QSATS uses them to compute the

potential energy by doing a table look-up on each one as shown in equations 3.4 and

3.5 and summing them together as in equation 3.6. The bin width is set to .05.

lookup(d2) = v[bin ∗ 2] + v[bin ∗ 2 + 1] ∗ d2 (3.4)

bin =
d2

bin width
(3.5)

vold|new =
P∑
i=1

lookup(d2
{old|new}i) (3.6)

The difference of potential energies, dv, is now calculated using 3.2. This is

where sorting the neighbors in idealized distance order comes into play. Because the

calculated squared distances will be roughly sorted in increasing order, accesses to

the potential energy table will be within a similar range thus increasing cache reuse.

Calculating the difference in potential energy isO(2P ) = O(P ). The 2P represents

two passes over the data: one to calculate the squared distances and one to calculate

the potential energies. This is to facilitate optimizations that will be discussed later.

3.2.4 Step 4: Accept or Reject a Move

Now that the difference in potential energy of the old and new positions is calculated,

it is time to decide whether to accept or reject the move. This is done based on the

graph shown in figure 3.3.

The first check QSATS does is to see if the new location is an “uphill” move. This

means if dv is less than or equal to zero, we will accept the move. If dv is greater

than zero, we sample a uniform random number. If the exponential of -dv is greater

than the uniform random number, then we again accept the move. In other words,

the move is accepted with a probability of

exp(
−∆t∆V

~
) (3.7)
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Otherwise, the move is rejected and the atom remains in the the same location.

Sections 3.2.3 through 3.2.4 are repeated A times and sections 3.2.2 through 3.2.4

are repeated R*I times. That is, each atom in each replica attempts to move for the

entirety of the simulation (i.e., I iterations).

3.2.5 Step 5: Snapshotting

Every SI iterations, QSATS will take a snapshot of the states of every 11th replica

and write all the atom coordinates to a file. These snapshots are used later by an

auxiliary program to analyze the crystal’s ground state energy.

3.2.6 Step 6: Finalization

Lastly, QSATS will write a file that saves the last displacement state and RNG state

information of all of the replicas in the simulation. This gives the user the ability to

continue a run from the current state instead of starting from the idealized positions.

26



Once the save file is written, all allocated memory is freed including the displacement,

RNG states, and potential energy lookup table.

3.3 Microprocessor Implementation

3.3.1 Serial

Before attacking the parallel implementations, the first step is to implement the

algorithm serially to ensure correctness of the algorithm and explore different core

level optimizations. The original QSATS code was written in Fortran, so it was

converted to C for ease of implementing SSE and AVX versions (discussed in section

3.3.2).

The serial implementation goes as follows. For each of the odd numbered replicas,

potential new atom locations are calculated. All of the odd replicas are independent of

each other, but rely on the even replicas to aid in the calculation of the displacement.

This repeats over all the even replicas. As with the odd replicas, the even replicas

are also independent of each other but are dependent on the odd replicas. If it is the

SthI iteration, a snapshot is written to a file. This is repeated for I iterations serially

making this an O(I ∗ R ∗ (2 ∗ A + A ∗ 2 ∗ P )) = O(I ∗ R ∗ A ∗ (1 + P )) algorithm.

Before moving on to parallelizing the program, the serial version must be optimized.

Figure 3.4 shows the breakdown of function contributions to the overall runtime

of the unoptimized C code for a variety of parameters as obtained from gprof. From

here, we can see that the most expensive portions of the code come from looking up

the potential energy and calculating the squared distances. These are prime areas for

performance improvements since the majority of the runtime is consumed in these

portions.
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Optimization: Potential Energy Lookup

From the profiling, it is obvious that the most time consuming portion of the code is

looking up the potential energy. For each squared distance, there are a total of seven

double precision operations and 2 memory accesses, as shown in equations 3.8 and

3.9.

lookuporiginal(d2) = v[bin ∗ 2] + v[bin ∗ 2 + 1] ∗ (d2− d2min− .05 ∗ bin) (3.8)

bin = (d2− d2min) ∗ 20 (3.9)

The potential energy lookup table, v, is set up using the code snippet in 3.5a.

We can simplify the table lookup calculations using the changes in the code snippet
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/* Hartree to kelvin conversion factor */ 
const double hart = 315774.65; 
d2min  = 9.0; 
bin    = .05; 
binvrs = 1.0/bin; 
 
for(uint32_t i=0; i<NVBINS; i++) 
  { 
    double d2 = (i) * (bin) + (d2min); 
    v[ i * 2 ] = hfdbhe(d2); 
  } 
 
for(uint32_t i=0; i<NVBINS-1; i++) 
  { 
    v[i * 2 + 1] = (v[(i + 1) * 2] - v[i * 2]) / (bin); 
  } 
 
 
 
 
 
 

(a) Original lookup table

/* Hartree to kelvin conversion factor */ 
const double hart = 315774.65; 
d2min  = 0.0; 
bin    = .05; 
binvrs = 1.0/bin; 
 
for(uint32_t i=0; i<NVBINS; i++) 
  { 
    double d2 = (i) * (bin) + (d2min); 
    v[ i * 2 ] = hfdbhe(d2); 
  } 
 
for(uint32_t i=0; i<NVBINS-1; i++) 
  { 
    v[i * 2 + 1] = (v[(i + 1) * 2] - v[i * 2]) / (bin); 
  } 
 
for(uint32_t i=0; i<NVBINS; i++) 
  { 
    double d2 = d2min + (double)(i)*bin; 
    v[ i * 2 ] -= (v[ i*2 + 1] * d2); 
  } 

(b) Improved lookup table

Figure 3.5: Code snippets of the potential energy lookup table initialization

in figure 3.5b. With this reordering, the table can be accessed using equation 3.4,

reducing the overall number of floating point operations to 3 per lookup (more than

50%).

Optimization: Neighbor Localization

One optimization is to maintain an array of vector distances of the ideal crystal sorted

in order of increasing distance. This allows for better caching for the potential energy

lookup table because if the atoms stay within the relative same area, they should

have similar distances with their neighbors. Since the R2 values are calculated in a

roughly sorted order, access to the lookup table should be within the same proximity

of memory locations, thus allowing for potentially better performance by decreasing

the number of L1 cache misses.
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Optimization: Potential Energy Lookup Reduction

Profiling the code indicates that the potential energy lookups and squared distance

calculations are the most time consuming portions of the code: requiring approxi-

mately 70% of the runtime. It is logical to examine that code section to see how the

performance can be improved. First, the most computationally expensive portion

of this step is the calculation of the squared distances in equation 3.3. All of

these distances need to be calculated for further steps such as the potential energy

calculations. The neighboring atoms are not guaranteed to be in consecutive memory

(e.g., atom 1 may interact with atoms 1, 3, 4, 12, . . . and not 1, 2, 3, 4, . . . ) so the

loop is not vectorizable by the compiler nor is it advantageous to do vectorization by

hand due to the large number of serial loads from memory. This is evidence of the

inability for complete vectorization.

At first glance, it appears that we are already optimizing the lookup the best way

possible despite having sparse lookups. The lookup table is 20000∗2∗8/1024 ≈ 312KB

meaning most can fit into a 256KB L2 cache. However, the squared distances mostly

within a limited range (e.g., not many lookups are within a distance of 120 a2
0 for the

density of interest) so the most commonly used distances are stored in L1 so we are

getting decent cache behaviors. As alluded to previously, if the density is increased or

decreased, the squared distances vary more, causing caching performance to be worse.

We are also providing similar lookups to the table by keeping the atoms in sorted

order by their ideal position distances so we that we can increase cache efficiency

as much as possible. In addition, the lookups cannot be vectorized either due to the

lack of guarantee that consecutively computed squared distances result in consecutive

memory lookups.

However, can the number of lookups be reduced? If the number of lookups can be

reduced, we can save clock cycles since the table is larger than L1 and L2 caches on

some systems. Looking at the behavior of the system, we can see that for each atom,

there is a subset of interacting atoms that are, in the ideal case, the closest to the
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Figure 3.6: Diagram of the inner and outer regions of neighbors

atom at hand, PI . Likewise, there is a subset that are farther away from the atom at

hand, PO = P - PI . This is shown in figure 3.6.

The PI closest atoms have the highest contribution to the potential energy of the

interacting pairs while PO has the lowest. The potential energy can be split up into

the sum of the potential energies as shown in equation 3.10

dv =
P∑
i=1

(v(d2
old,i)− v(d2

new,i))

=

PI∑
i=1

(v(d2
old,i)− v(d2

new,i))

+
P∑

i=PI+1

(v(d2
old,i)− v(d2

new,i))

= dvPI
+ dvPO

(3.10)
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Typically, a move is accepted as described section 3.2.4 and shown in equation

3.11 where URN is a uniform random number. Plugging 3.10 into 3.11 and moving

terms around, the acceptance can be put in terms of dvPO
as shown in 3.12.

URN < e(dv∗∆τ) (3.11)

ln(URN)− dvPI
∗∆τ < dvPO

∗∆τ (3.12)

Since the closest neighbor in the set of PO outer neighbors, d2
0 = min(d2 ∈ PO),

will have an energy of v(d2
0) = ε (as seen in figure 3.6), all of the remaining neighbors,

if in the monotonically increasing section of the potential energy curve, must be within

the range shown in equation 3.13

ε <= v(ri) < 0 ∀i ∈ P0 (3.13)

Each difference in potential energy for the new and old positions for the outer

neighbors will be within this range. This means the summation of these energies is

also within this range. That is,

dvPO
=
∑
i∈PO

dvPO,i
<= PO ∗ ε (3.14)

Now that we have this upper bound, how can we use this to reduce the

computation time? If the closest outer interacting pair has a potential energy that is

within the monotonically increasing portion of the potential energy curve, it is possible

to decide if the remaining outer interacting pairs could have enough contribution to

sway the acceptance or rejection decision. This can be done using equation 3.15 as

visualized in figure 3.7a. The purple, red, and blue regions are ones that can be

decided without having to calculate all of the energies based on the upper bound

on the contribution from these energies. The green region indicates that the outer

interacting pairs could have enough contribution to affect the acceptance or rejection
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decision.

accept if: ln(URN)− dvNO
∗∆τ < NI ∗∆τ ∗ |ε|

reject if: ln(URN) + dvNO
∗∆τ > NI ∗∆τ ∗ |ε|

else, calculate rest of energies and accept/reject normally

(3.15)

How does this affect performance? This is dependent on the density of the crystal,

the number of inner pairs, and the ∆τ time step that are used. If the crystal’s density

is high, meaning the atoms are closer together, there will be less moves that can be

predetermined using this method due to the PO neighbors having more potential

energy contribution. If the density is smaller, meaning the atoms are farther apart,

more moves can be predetermined. In a test case with a density of ρ =0.004614 and

∆τ=500.0, roughly 97%-98% of the moves can be predetermined resulting in a 15%

decrease in overall runtime. While this seems small, this is still a significant speedup

when considering that the runtime of a full run is on the order of hours or days

for big crystals and large numbers of replicas. This will be discussed in section 5.1.1.

Figure 3.7b shows the accepted and rejected points that were both predetermined and

calculated normally for a subset of a run on 1440 atoms with ρ =0.004614, P =56,

and PI =18.

3.3.2 Parallel - Vectorization

The computations done by QSATS on a single replica cannot easily be vectorized

beyond what the compiler already takes care of because of sparse accesses to memory

throughout the program. However, it is possible to vectorize across replicas, that

is, execute multiple replica movements simultaneously. This is possible because all

of the odd replicas are independent from each other and all the even replicas are

independent. In this way, we can pack replica information into memory for easy

recovery to reduce the amount of loads from memory. Refer to figure 3.8 to see how

the memory is packed for an SSE vector. For SSE, two replicas are packed together
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Figure 3.8: Memory packing for SSE vectorization

since SSE vectors can hold 128 bits (i.e., 2 doubles). For AVX, four replicas are

packed together since AVX vectors can hold 256 bits (i.e., 4 doubles).

The information for two replicas are interleaved and packed together so that any

operation on, for example, the x coordinate of atom 0 in replica 0 will also be on the

same atom in replica 2. This allows for random number generation (both uniform

and Gaussian), squared distance calculation, and accept reject determinations to

be performed in parallel. As mentioned in section 3.3.1, the neighbor information

lookup cannot be vectorized due to the fact that atoms in different replicas might be

looking at interaction neighbors that are consecutive in memory so this information

must be serialized. Once this information is loaded from memory, the rest of the

calculations can be vectorized. Also, since the replicas most likely have different
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squared distance values, it is not possible to vectorize potential energy table lookups.

However, once these are serialized and stored into vectors, the difference in potential

energy calculations can be performed using vectors.

3.3.3 Parallel - Threads

As mentioned in the previous section, it is possible to parallelize QSATS across even

and odd replicas. This is an ideal situation for threaded implementations as there

is little synchronization. The only synchronization that is needed is when switching

from odd to even or even to odd numbered replicas. The cost of this synchronization

is minimal because each thread is working on the same amount of data as the others.

Therefore, each thread should complete their work at approximately the same time.

Each thread works on R/T replicas thus performing R ∗ A/T iterations.

There are two libraries that can be used for the the threaded implementations:

pthreads and OpenMP. First, pthreads were used to implement the threaded version.

In the initialization stage, QSATS forks off T threads and sticks them into a thread

pool to wait for work to be issued to them. The main thread sends a signal to the

threads informing them to wake up and start on their replicas. Each thread starts

to work on the (thread id)th replica in the set. For example, thread 2 starts trying

to move the atoms in replica 3 if the master thread tells the threads to work on the

odd replicas and 2 if it is working on the even replicas. Once all of the threads finish

moving all the atoms in their set of replicas, they signal to the master thread and go

to sleep to wait for more work. At this stage, the master thread waits until it gets a

signal from all the threads (synchronization). This process is repeated I times until

the simulation is complete. In the case of snapshots, the worker threads continue to

sleep while the master thread writes the snapshot file in order to prevent overwriting

data needed for the snapshot.

The OpenMP implementation follows along with the same scheme. There is a

pool of threads that waits until work is available. These threads are signaled to start
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working through the use of a “parallel for”. Once all the threads are completed with

their work, they synchronize and wait for more work. The benefit of using OpenMP

is that there are minimal code changes to achieve the same result.

To extend this threaded implementation one step further, an OpenCL [81]

implementation has also been developed. Using OpenCL allows the exploration of

code on multiple different architectures such as GPUs and microprocessors. This

implementation is described in the GPU chapter so the reader is referred to chapter

4 for in depth details. However, as an overview, the OpenCL implementation for the

CPU has a single kernel that performs the QSATS method where each thread executes

the algorithm on a single replica. After each kernel call, the threads are synchronized

before moving onto the next set of replicas. The benefit of using OpenCL is that

the kernel can be compiled with automatic vectorization support without having to

change any code. Because microprocessors do not have the texture units that GPUs

have, the kernel is slightly altered from the GPU version to use global memory and

software linear interpolation. Other than removing texture accesses, the kernel is the

same as the GPU kernel code.

3.3.4 Parallel - MPI

At this point, it is time to explore multi-node/process implementations. To do

this, this work uses the Message Passing Interface (MPI) [31] to perform inter-node

communications. As a first pass, this work uses the parallelization scheme used in [12].

In the original QSATS Fortran code, parallelization is achieved by using a master-

worker model where a central process delegates work to a set of “worker” processes.

This approach is a flexible parallel programming paradigm in that it is applicable to

a wide range of applications and provides acceptable load balancing. In the QSATS

application, parallelization is performed using the following approach.

Note: For all of the following implementations, vectorized versions are available

using the approach described in section 3.3.2.
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Master-Independent Workers

Out of all the N MPI processes that are forked at the start of the program, there

is one master. The master takes care of all the initialization, I/O, and distribution

of work. While the master is doing the initialization described in section 3.2.1, the

workers are allocating enough space for a single work packet. For this implementation,

a work packet consist of a single replica’s RNG state information and two replicas’

displacement information (i.e., one for the replica at hand and one for the average

of the neighboring replicas as described in equations 2.2-2.4). That is a total of

(8 + 2 ∗ 3 ∗A) ∗ V doubles that are allocated to hold the incoming work packet from

the master. Once the workers are initialized, they each send a small message to the

master indicating they are ready for work. Once the master is initialized, it will start

distributing the work among the workers. Upon receiving a “ready” message, the

master will copy the next replica atom displacements in the replica work queue to a

new buffer and calculate the averages as discussed in section 3.2.2. The master will

then send the replica information and RNG state information to the worker and wait

for another “ready” message. The master starts with the odd replicas, synchronizes

after all the odd replicas are completed, and repeats with the even replicas. When a

snapshot is taken, the master ensures that all the workers have returned the work that

they are working on. Once all the workers are idle, the master writes the snapshot

to file then starts distributing work again. This process continues until all of the

iterations are complete.

While this is an easy to implement parallelization scheme, there are some

downfalls. First, there is significant amount of data shuffling and communications.

For each iteration, there are a total of 4 ∗ R communications (two for replica

displacement and two for RNG state to and from the master). On the assignment

of work, the package size for the replica displacement and RNG state information

are 48 ∗ A bytes and 64 bytes, respectively. For the return of work results, they are

24 ∗A bytes and 64 bytes, respectively. While these messages are relatively small for
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small problem sizes, as discussed in the later sections, the performance for real science

problems (e.g., large crystal sizes or large numbers of replicas) would be limited by

the large number and size of communications. For a single iteration, the amount of

communications is 4 ∗ I ∗R for a total of I ∗ (72 ∗A+ 128) transferred bytes. Second,

the master will get bogged down with work as the number of workers increases. The

master will struggle to keep up with the incoming results from the workers, causing

the workers to have longer idle times. Finally, all of the workers must wait for the

master to write the 24∗A∗R/11 byte snapshot to file. This is time where the workers

could be doing work, yet they have to sit idle until the writing is complete.

Master-Dependent Workers

The high number of communications leads to the next implementation. To address

the problem of too many communications, the master now assigns a large chunk of

work to each worker, Rw = R/W replicas per worker, at the initialization stage. Each

worker will attempt to move all the atoms in all of the replicas that were assigned

to it. When all the work is complete, the workers will exchange “end” replicas with

each other as shown in figure 3.9. For instance, when the third worker is done with

all of its work, it will send its first replica to the second worker and last replica to

the fourth worker. This communication is needed so that the neighboring workers

can calculate the average of replicas as described previously. In order to make the

programming easier, the workers do the following. First, they all work on the odd

replicas. When they have completed all of the odd replicas, they send their first

replica to the left (i.e., rank − 1). Then they all attempt to move the atoms in the

even replicas. At the completion of the even replicas, they send their last replica to

the right (i.e., rank+1). This ensures that all replicas are doing the same instructions

and sending in the same direction to avoid deadlock. Each of the replica exchanges

are 24 ∗ V ∗A byte packages. For each iteration, there are two exchanges per worker

(except for ranks 1 and W ) meaning there are total of W −2 communications each of

size 24 ∗ V ∗ A bytes. Since QSATS has a particular order in which communications
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Figure 3.9: Exchange of work among workers

are performed, this puts a requirement on the number of replicas that can be used.

There must be enough replicas to evenly split across all of the workers and each

worker must have an even number of replicas. This ensures that each worker does

the same about of work as the others (load balancing) and that the first replica for

each worker is an odd number replica and the last is an even number. Also, in order

to collect statistics from the snapshots about the end replicas (replicas 0 and R-1),

the number of replicas + 1 must be divisible by 11. That is,

R mod W = 0

R mod 2 ∗ V = 0

(R + 1) mod 11 = 0

(3.16)
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The master sits idle until there is a snapshot, at which point the master will

aggregate all the snapshot information from all of the workers. Once the workers

complete the snapshots, they continue doing work while the master asynchronously

writes the snapshot information to a file.

This approach takes care of the many small package communications between

the workers in the master; however, it still has a limitation. This limitation is

that as the number of workers grow, so does the communication overhead from the

master perspective for the snapshots as it has to collect from all of the workers. So,

this implementation only temporarily hides the communication bottleneck by only

performing many large data transfers occasionally. As the frequency of snapshots

increases, the more of an impact it will have on the runtime. With a relatively small

number of workers and a large snapshot frequency, this implementation will have no

problems. However, the fewer snapshots we have, the less information we can gather

about the simulation. Also, the fewer workers we have, the longer the program will

take to run.

Multiple Master-Dependent Workers

How can we address the problem of the master being swamped with snapshot

information? As mentioned, an undesirable solution would be to reduce the amount

of snapshots that are taken and the number of workers that are used while still using

the single master approach. However, it is possible to reduce both the number of

snapshots and the number of workers that send snapshot information to a master by

using multiple masters, as shown in figure 3.10. Each worker is assigned a master and

each master has a subset of the workers. Each master collects snapshot information

only from its workers subset and writes to its personal file. For instance, assume

there are a total of 960 total processes, 4 of which are masters. In this example

each master has Wg = (N −M)/M = (960 − 4)/4 = 239 workers. Workers [1-239]

belong to master 1, [240-478] to master 2, etc. Each subset of workers communicates

with the neighbor workers (i.e., rank±1) and their corresponding master. Having the
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Figure 3.10: Multiple master MPI approach

communications split in such a way allows for the number of communications to be

reduced from N − 1 to only a fraction of Wg for each master.

To help ease the programming and orchestration of the sends and receives,

the main communicator, MPI COMM WORLD, is split into three different types

of communicators: workers, masters, and groups. All of the workers share a

communicator so that their ranks range from [0,W ). This is helpful for exchanging

the end replicas so that each worker can simply use rank ± 1 instead of trying to

accommodate skipping over the master ranks. Likewise, the masters have their

own group such that their their ranks range from [0,M). Since the masters are

independent of each other, this communicator has no real use, instead it is just a side

effect of creating the workers communicator. Finally, there is the communicator that

describes either group. Each group has N/M processes where rank 0 relative to the

communicator is the master of the group. To perform the snap shot, all of the workers

send the snapshot information to rank 0 relative to their group communicator. As
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mentioned, this was solely to ease the orchestration of the communications among

processes.

Another advantage of having multiple masters on large systems such as supercom-

puters is that the program is able to take advantage of parallel I/O file systems such

as Lustre [82]. As shown later in this dissertation, in order to get peak I/O speeds

from parallel file systems, it is necessary to have multiple processes read/write files on

the file systems. This means that a snapshot can effectively be written to file much

faster if multiple processes are writing rather than a single process (can also be seen

[83]). Not only does this new multiple master implementation increase the I/O read

and write speeds, it also reduces the amount of I/O each master has to do. In the

single master case, each snapshot is 24 ∗ A ∗ R/11 bytes; however, the multi-master

approach splits this evenly amount all the masters. Each master only has to write

24 ∗ A ∗R/11/M bytes for each snapshot.

3.4 Intel MIC Implementation

Intel is currently developing a new architecture called Many Integrated Cores (MIC)

[52]. The goal of this architecture is to have many simple CPU cores stamped onto

a single die that can provide high performance with little code porting. Intel prides

itself on the MIC’s ability to run existing codes by only recompiling the source with

new flags to its icc compiler. This means rapid development of programs onto its new

architecture without having to learn a new language or re-code existing programs.

Saying this, the microprocessor serial, threaded, and MPI implementations were

all “ported” to the Intel MIC to test Intel’s claim of performance without rewriting

code. As promised, the code was able to be compiled and run successfully; however,

it is still possible to provide improvements by modifying some of the code.

One of the main architectural features of the Intel MIC is the 512-bit wide vector

units. Using a similar approach to the SSE and AVX vectorization, a MIC vectorized

implementation was written to squeeze a little more performance out of the code.
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Due to some generic programming and the use of C macros, this implementation was

quickly vectorized and running since the intrinsics (while not the same) are similar

to the SSE and AVX.
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Chapter 4

Graphics Processing Units

Computer video game developers have pushed the limit of graphics processing units

(GPUs) to a point where billions of calculations per second are needed in order to

accurately render realistic graphics of modern games. Computational scientists have

been able to exploit the massive amount of cores and memory bandwidth to obtain

high performance in their scientific applications, opening a new world of possible

problems that can be explored. Supercomputer vendors are rapidly adopting the use

of GPU accelerators to obtain high performance rates and performance per watt ratios

[7, 8, 6]. While there are a number of vendor and programming options, NVIDIA

is by far the leader in high performance computing due in part to the successful

adoption of their compute unified device architecture (CUDA)[38]. However, OpenCL

is a competitor to CUDA that allows for the programming of many architectures,

including GPUs, using a similar syntax. This chapter provides an overview of the

graphics processing unit implementation using CUDA and OpenCL on NVIDIA and

ATI GPUs.

4.1 NVIDIA GPU Architectures

This section provides a number of details about the GPU architectures used in this

work.

45



4.1.1 Tesla

NVIDIA’s breakthrough CUDA architecture, Tesla, was first introduced with the

GeForce 8800 GPU [84]. The Tesla architecture unifies the vertex and fragment pro-

cessors that were present in traditional GPUs. Containing an array of multithreaded

streaming multiprocessors (SMs), each consisting of eight streaming processor (SP)

cores and two special function units, the Tesla architecture paved the way for general

purpose computation on graphics programming units (GPGPU). There are various

types of memory (i.e., global, registers, shared, texture, and constant) that each have

their advantages and disadvantages. Global memory is the main memory that has

read and write abilities and up to 4GB storage space; however, access is slow at

400-800 clock cycles. The memory clock rate is 800MHz and has a 512-bit interface

[85]. Registers are the fastest memory units available in the GPU at just a couple of

cycles per access but are limited to 16k 32-bit registers. The shared memory allows

for storage of 16KB per SM and can be used to store common data that has a high

reuse rate. For memory that is read-only and has a regular access pattern, 64KB of

cacheable constant memory is available. For read-only memory with irregular access

patterns, texture memory allows caching and hardware linear interpolation in 1-D,

2-D, and 3-D data. Each of the SMs have access to these memories. Three SMs are

clustered into a texture processing cluster (TPC) that each share a memory controller.

All of the threads of a blocks are assigned to an SM and run concurrently. Each SP

core within an SM has a scalar multiply-add unit with 8 such units per SM in all.

Each special function units contains four floating-point multipliers. Each SM is able

to manage 768 concurrent threads in hardware, allowing for the high parallelism of

this architecture. On the Tesla c1060, there are 30 SMs, each with eight SPs and

one double-precision core. This amounts to 240 single precision cores or 30 double-

precision cores. All of the above information comes from [84].
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4.1.2 Fermi

The next generation of GPU architectures is the 3 billion transistor Fermi. This

architecture features up to 512 CUDA cores where each executes a floating point or

integer instruction per clock for a thread. 32 cores are grouped into SMs for up to

a total of 16 SMs per GPU. Each core contains a pipelined integer ALU and FPU.

Each SM contains 16 load/store units and four special function units. The Fermi

architecture contains two caches: L1 and L2. The L1 cache is shared with the shared

memory space (totaled at 64KB) and is configurable to 16KB or 48KB. The L1 cache

is a hardware managed cache, meaning less programmer interaction to use this high

speed memory. The L2 cache is 768KB of memory that is shared across all SMs, but

the L2 cache can only reduce over-fetch in the case of scattered memory accesses, for

example. Like the Tesla architecture, there are also constant (64KB) and texture (up

to 8KB) memories. The texture memory has the ability to perform hardware linear

interpolation as well. Each SM has their own texture cache, unlike the Tesla where

three SMs shared a single texture cache. The Fermi architecture doubles the number

of registers from 16k to 32k. The memory clock rate has been increased from 800MHz

on the Tesla architecture to 1848MHz [86]. Each SM contains a dual warp scheduler

that is able to select two warps and issue one instruction from each simultaneously

to a group of 16 cores, 16 load/store units, or for special function units. For the

GeForce GTX 480 consumer card, there are 15 SMs for a total of 480 cores, but it

has crippled double precision units making double precision an eighth the speed of

single-precision instead of the expected half as noticed with other consumer cards [46].

Professional grade GPUs such as the Tesla M2070/2075 and M2090 bring this ratio

back to the expected half. In particular, the M2090 provides 512 cores, 6GB of global

memory, and 1.33 TFLOPS of single precision peak performance. The Keeneland

GPU cluster [6] contains 360 Tesla M2090 GPUs. Unless otherwise stated, all the

Fermi information comes from [38, 87, 88].
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4.2 GPU Programming Synopsis

Modern GPUs are able to be programmed in a number of ways. NVIDIA GPUs

are often programmed using their custom CUDA language [38]. However, it is also

possible to program them with a framework that is designed for programming parallel

architectures called OpenCL [30]. This framework provides the ability to run code on

various architectures without the need for reprogramming. This section details the

various aspects of CUDA and OpenCL.

4.2.1 CUDA

To draw developers to program on their devices, NVIDIA developed the compute

unified device architecture (CUDA). CUDA is an extension to the C/C++ languages,

giving the user direct access to device memory management, thread level parallelism,

and a large number of cores for general purpose applications [89]. CUDA can be

used on a large number of NVIDIA GPUs ranging from average desktop and laptop

models, such as their NVS line, to gaming devices, such as the GeForce line, to

high performance computing using the Tesla line [90]. In comparison to traditional

microprocessors, these GPUs have more transistors devoted to data processing and

high memory bandwidth allowing for many instructions to be executed at the same

time (see figure 4.1). Single instruction, multiple data (SIMD) applications thrive

on this parallelism as there is little to no data sharing, allowing computations to

dominate. Essentially, there are three abstractions that CUDA provides: a hierarchy

of threads, shared memories, and barrier synchronization. These abstractions allow

the programmer to break their problem into a set of chunks that are independent from

each other (block level) where each chunk has a set of threads that work together.

Of course, this is only one programming approach possible with CUDA. It is possible

to also split all work into completely independent threads. This is the approach that

this dissertation takes and will be discussed in more detail in section 4.3.
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Figure 4.1: CPU Architecture versus the GPU [38]

4.2.2 OpenCL

OpenCL is a framework that was developed to ease the programming efforts to write

code on various heterogeneous architectures ranging from microprocessors to GPUs.

OpenCL also reduces the work it takes to program devices across vendors such as ATI

and NVIDIA GPUs. This is accomplished by a standard specification developed by

the Khronos Group that is accepted by various vendors. Using a kernel C99 syntax

that is similar to CUDA kernels, OpenCL provides programmers with the ability to

develop parallel computing applications using data-based or task-based parallelism

[30].

4.3 VPI Implementation

The key to implementing any GPU-enabled application is determining what portions

of the algorithm can benefit the most from hardware acceleration. In the case of

VPI, there is no one portion/function that would map well onto the GPU due to data

dependencies. Therefore, instead of accelerating one portion of the program, this

work accelerates the entire QSATS program by exploiting parallelism across replicas,
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similar to the MPI and threaded microprocessor implementations. That is, perform

all the odd replicas in parallel, synchronize, and repeat with the even replicas. This

allows for memory to stay on the GPU throughout the entirety of the program while

only needing to copy data to the host in order to periodically take snapshots.

In the remainder of this section, a number of implementations are discussed

ranging from a näıve implementation with poor memory access patterns to highly

optimized implementations that take advantage of many architectural features in

CUDA. Also, this section describes the optimized OpenCL implementation.

4.3.1 CUDA

Näıve Implementation

As a first pass, the initial step was to get an implementation that produces the

same results as the “gold standard” microprocessor implementation. To do this, the

microprocessor implementation is essentially just copied into the CUDA kernel code.

While this is the easiest implementation, it is not the smartest as it does not take

into account any of the programming optimization techniques described in [38]. Most

importantly, this includes no coalescing, which murders performance. The purpose

of this step is to merely ensure correctness, not to produce optimized code.

Out of necessity, this code also ports the uniform and Gaussian random number

generators onto the GPU. It is possible to use GASPRNG [78] or CURAND [79];

however, to obtain the same results as the microprocessor implementation, it is needed

to use the same random number generator to ensure exact results.

Coalesced Implementation

The next step was to coalesce memory accesses to/from global memory. This is one

of the main ways that GPUs obtain performance by ensuring all accesses to global

memory are coalesced in order to fill the data path. This involved rearranging data in

such a way as to ensure that data accesses are consecutive in memory and are always
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Figure 4.2: GPU data layout allowing for coalesced accesses

128 byte aligned. In order to access memory that is consecutive in memory, it was

necessary to flip the ordering of the data from the easy to index layout of replicas by

atoms to a mixed data layout as shown in figure 4.2. This layout allows for all of the

threads of a warp (32 threads) to access sequential elements in memory that are 128

byte aligned. It is similar to the vectorized layout described in 3.3.2 where the width

is 2048 bits wide to hold 32 doubles, enough data for an entire warp’s access.

Due to the rearranging of the data to produce coalesced memory accesses,

this implementation allows for 16 double precision fetches from memory to occur

simultaneously. Before, each access to global memory had to be serialized as it was

unable fill the complete 128 byte wide data path. However, the data path can now

be fully utilized as for each warp, only two accesses have to be serialized, one for each

half warp. This is essential for high performance due to the high latency incurred

when accessing global memory.

According to the NVIDIA Visual Profiler, this implementation achieves a 98%

coalescing rate for reads and writes. The 2% that is not coalesced is due to some of

the conditionals in the uniform random number generator that ensure only positive

values are generated.
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Hardware Texture Linear Interpolation

Related to the coalescing above, programs with random, nonlinear access patterns

perform poorly when accessing global memory. Unfortunately, this implementation

uses a lookup table to calculate the potential energy as the calculation of the exact

function is far too expensive to be performed in a reasonable amount of time on any of

the architectures explored in this work. Originally, the lookup table is 20000 ∗ 2 ∗ 8 =

320KB in size and each thread could not guarantee linear accesses to the table since

atom positions are calculated from Gaussian random numbers. Besides this, it is

not very cacheable as the atom information for all the replicas will dominate the

caches. This type of access pattern, however, is ideal for texture memory [38]. Texture

memory also has its own separate cache from the global memory so the other memory

accesses will not interfere with the lookup table.

As mentioned in section 3.2.1, the lookup table for the microprocessor implemen-

tation used the squared distance for the lookup; however, this results in the large table

size of 320KB. This table can be reduced to 1, 536 elements by storing the potential

energy of the log of a squared distance. This comes at the cost of calculating the

logarithm which is an expensive operation. Reducing the table in this way presents

a tradeoff: use the large table that can push valuable data out of cache or reduce the

table size and perform a logarithm. In the case of the microprocessor implementation,

the cost of the logarithm is significant enough to not warrant the use of the smaller

table. However, on the GPU, the smaller table allows for greater caching in the

texture units where it will not affect other caching data.

Another argument for using the smaller table on the GPU is that the GPU provides

hardware units to perform a linear interpolation. This has great advantages in that

the calculations can be accelerated and the random memory accesses get the benefit

of fast accesses through the texture cache. The texture memory is set up to have a

clamping address mode, linear filter mode, and element type read mode (as opposed
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to using normalized floats). Once the squared distance has been put onto the log

scale, only one function needs to be called, tex1D.

According to [38], the hardware texture linear interpolation units perform the

interpolation as shown in equation 4.1.

tex(x) = (1− α)T [i] + αT [i+ 1] (4.1)

α = frac(xB) (4.2)

i = bxBc (4.3)

xB = x− 0.5 (4.4)

The table has to be rearranged in order to fit into the equation. First, the function

is split into n tex pts evenly spaced segments across a representative range of the log

of squared distance values, [log2(d2
min), log2(d2

max)] = [xmin, xmax]. The lookup table

is capped with a minimum x value in order to help reduce the memory footprint of

the table while still accurately describing the potential energy function. Since

lim
x→0

V (x) =∞, (4.5)

an xmin value can be chosen such that the resulting energy is very positive in regards

to the rest of the function such that an interpolation with any smaller distance will

also have a very positive energy. Likewise, it is not necessary to cover very large

distances either as

lim
x→∞

V (x) = 0. (4.6)

Therefore, it is possible to select an upper bound on the x values such that for any

larger distances the function can be estimated to be approximately a near zero value.

The texture memory is set up in such away to clamp any supplied addresses that fall

outside of this range.
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To fill the table, equations 4.7-4.9 are used where the hfdbhe function 4.9

represents the HFDB-He function [21].

xx =
xmax − xmin
n tex pts− 1

∗ n+ xmin (4.7)

d2 = 2xx (4.8)

T [n] = hfdbhe(d2) i ∈ [0..n tex pts) (4.9)

The minus 1 in n tex pts-1 is so that the last texture point where n = n tex pts is

actually located at the xmax. The 2xx is used so that when calculating the lookup

index on the GPU, the fast log2(d2) function is used.

For each of the calculated squared distance, the index to lookup in the table is

calculated by equation 4.10.

x =
(
log(d2)− xmin

)
∗ n tex pts− 1

xmax− xmin
+ 0.5 (4.10)

This equation is essentially inverting equations 4.7 and 4.8 with an additional

0.5 added to the result to compensate for the subtraction of 0.5 in equation 4.4.

Equation 4.10 is used as the lookup table index for equation 4.1 to perform the linear

interpolation in hardware.

It is necessary to pick values of xmin, xmax, and n tex pts to reduce the amount of

error when interpolating the potential energy function. xmin is picked to be something

small enough to accentuate the positiveness of the potential energy function at such

small distances. For this value, it was determined that log2(d2
min) = xmin = 1

is sufficient enough to represent the high potential energy at small distances as

V(xmin)=.3964. Likewise log2(d2
max) = xmax = 10 is chosen as it has a potential

energy of V(xmax)=-1.373e-9. Any distance greater than this will only get closer to

zero and have less contribution. n tex pts=1,536 is chosen in order to fill the entire

texture cache of the Tesla c1060, 6KB, with single precision lookup values. To recap,

the parameters used for the hardware interpolation are shown in 4.1.
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Table 4.1: Hardware interpolation parameters

Parameter Name Parameter Value
Number of texture points n tex pts 1,536
Minimum x value in table xmin 1
Maximum x value in table xmax 10

Due to hardware limitations, the hardware linear interpolation only supports

single precision so the lookups lose precision with this optimization. Figure 4.3

shows that using the single precision, log scaled, interpolated table does not exactly

reproduce the values of the function at the texture points; however, the differences are

minuscule as can be seen at the zoomed inset graph. Since the table is now stored in

single precision, it only occupies 4 ∗ 1, 536 = 6KB of space, which completely fits into

texture cache. Performance-wise, the cost of performing the logarithm is negligible

in relation to the rest of the code due to the program being memory bound on the

GPU.

Due to this reduction in precision and the use of the hardware units to perform

the interpolation, the values of the simulation are no longer equivalent to the

microprocessor code. To test the statistical equivalence, a run is performed using

the microprocessor and GPU implementations for 10,000 iterations of 46,080 replicas

taking snapshots every 100 cycles. The ELOC tool described in [12] is used to

calculate the sum of the potential energy and local energy for the configurations.

Doing this shows that even with the loss of potential energy precision and reduced

lookup table size, the GPU still produces results that are statistically equivalent to

the “gold standard” microprocessor code as they share the same mean and the same

standard deviation. This can be visualized in figure 4.4.

Since using the texture hardware interpolation is not a very commonly used

optimization technique used in HPC or computational sciences, example code is given

in [91] that sets up, calculates a set of energies, and prints out the table [91]. This

serves as an example code to demonstrate how to use these units.
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Figure 4.4: Statistical correctness for GPU implementation

Other code features

In order to draw relevant information from the simulations, QSATS must take

snapshots of the crystal displacements for a set of the replicas. This involves copying
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data from the device to the host at user specified intervals. To facilitate this, host

memory for the displacement information is allocated using pinned memory and the

cudaMallocHost function. Pinned memory allows for greater copy bandwidth from

the device to the host. This is important as the amount of data that is copied is

O(3∗A∗R) = O(A∗R) elements for each snapshot. For instance, for a simulation of

65,536 replicas and 1,440 atoms, there is a total of 65, 536 ∗ 1, 440 ∗ 3 ∗ 8 = 2.26GB of

data that must be copied from the GPU for each snapshot interval. Paged memory

only allows for transfer with a bandwidth of approximately 1.7GB/s while pinned

memory bandwidth is 5.5GB/s, a 3.2x difference [92]. Writing the snapshot files is

performed asynchronously with the kernels in order to obtain as little computational

delay as possible.

4.3.2 OpenCL

Since the kernel programming is very similar to the CUDA kernel syntax, only the

final optimized version was written in OpenCL. This includes coalesced memory access

optimization and texture memory interpolation. It is straightforward to convert

CUDA kernel code to OpenCL as it is essentially a string replace. However, this

isn’t true for the hardware texture linear interpolation. Instead of textures, OpenCL

calls these units images. OpenCL v1.1 (the version shipped from NVIDIA) does not

support 1D images so the texture lookup table needed to be mapped to a 2D image.

This had its own complexity as there were very few examples on how to use these

units. The following is how the OpenCL hardware image interpolation units are set

up.

The lookup table is first initialized on the host as described in section 4.3.1 and

copied to the device. Then device image memory is allocated to have an image format

of CL A, CL FLOAT as discussed in the specification [81] with a width of n tex pts

elements and height of 1 element. CL A specifies the number of channels and the

channel layout in memory. CL FLOAT specifies that the image will hold floats as
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opposed to integers. Next, the code calls a kernel that fills up the image with the

values using the write imagef function which takes an int2 specifying the coordinates

of the point and a float4 which holds the data to be stored. The coordinates to store

the data has 0 for the y coordinate and the index number for the x coordinate. For

the data that is stored, since the channel was chosen to be CL A, only the w element

is set to the value of the table while the x,y,z elements are set to 0. This kernel has

n tex pts threads where each stores a single value in the image.

In order to read from the image, the index is first calculated from the squared

distance value as described in section 4.3.1. This is stored into the x coordinate of

a float2 and -1 into the y coordinate. The sampler is set to accept non-normalized

numbers, clamping to the edge of the image, and a linear filter mode. The coordinate

and sampler variables are fed to the image read function read imagef which returns

a float4. At this point, the potential energy value is stored in the w element and is

returned to the QSATS program for processing.

Again, since there are very few examples, example code that illustrates how to

use the texture units for hardware interpolation in OpenCL is available at [91].

This implementation gives the ability to run the code on NVIDIA and ATI GPUs,

as well as AMD and Intel processors. This will be explored in the next chapter.

4.3.3 Multi-GPU Support

Modern supercomputers are increasingly adopting the use of GPUs to accelerate user

applications while reducing the total power consumption. For this dissertation, the

GPU implementation was created to take advantage of multiple GPUs through the

use of MPI. This is accomplished by assigning each MPI process with a single GPU.

Each GPU works independently from the others by performing a simulation with

different random number generator seeds. Each MPI process will read/write its own

save file and snapshot file. Exploiting parallelism in this way gives more statistical

data on the end replicas which is helpful in some experiments. Since the GPUs
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are independent from each other and each will have the same amount of work, it is

presumed the speedup should be ideally linear with the number of GPUs used.
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Chapter 5

Discussion of Results

This chapter provides a discussion of results from the the VPI implementations

described in sections 3 and 4. Runs were performed on a variety of architectures

ranging from multiprocessors, Intel MIC cards, and graphics processing units.

For the runs in this chapter, four different processors were used. Table 5.1 lists the

processors used in this chapter to obtain results. Likewise, table 5.2 lists the GPUs

used to explore the GPU implementation.

Unless otherwise stated, all code was compiled with the -O3 optimization flag and

the corresponding architecture-specific flags.

Error bars on some of the graphs indicate the standard deviation of the runtimes

of ten runs. Runtime is measured using the gettimeofday C function. To compare

implementations, two metrics are used: speedup and efficiency. Speedup is calculated

as the base time divided by the optimized time where the larger the speedup factor,

the better. Efficiency is how well the program scales as the number of cores used are

Table 5.1: Processors and compilers tested

Processor Referenced as Compiler
Intel Core i7 920 Nehalem gcc v4.4.5

Intel E5-2680 Sandy Bridge icc v12.1.4
AMD Opteron Istanbul Istanbul icc v12.1.2

AMD Opteron 6272 Interlagos Interlagos gcc v4.6.1
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Table 5.2: GPUs tested

GPU CUDA/OpenCL
NVIDIA Tesla C1060 CUDA 4.1/OpenCL 1.1

NVIDIA GeForce GTX 480 CUDA 4.1/OpenCL 1.1
NVIDIA Tesla M2090 CUDA 4.1/OpenCL 1.1

ATI Radeon 7970 OpenCL 1.2

increased, where a value of one is ideal. Both of these metrics are shown in equations

5.1 and 5.2.

Speedup =
Tbase
Topt

(5.1)

Efficiency =
Speedup

Cores
(5.2)

Many parameter variations are necessary to satisfy replica configuration require-

ments mentioned in chapters 3 and 4, performance is described as the rate that

replicas, atoms, and iterations can be executed per second:

Performance =
R ∗ A ∗ I
time

(5.3)

5.1 Microprocessor Results

5.1.1 Serial Optimizations

In order to test the microprocessor implementation, the effect of the optimizations

described in section 3.3.1 is shown. The first step in the microprocessor code was to

translate the original Fortran code to C. While this is not necessarily an optimization,

it does provide a significant speedup without changing the algorithm. The main

algorithmic optimization is the reduction of potential energy calculations from the

lookup table as described in section 3.3.1. Since the Fortran code is written only

with MPI support (i.e., no serial implementation), the code was run with two MPI

processes: one parent and one child. To be fair, the MPI C code without these

optimizations is compared to show the improvements over the Fortran code using one
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Figure 5.1: Serial optimizations

master and one worker as well just to show the impact of using the MPI version.

Figure 5.1 shows the results of these optimizations running on the Intel Sandy

Bridge processor for 10 iterations, 180 atoms, and 4400 replicas. It can be seen

that simply changing from Fortran to C provides a decent performance decrease. The

C implementation is 1.19x faster than the Fortran version without any optimizations.

Nothing special is happening here besides flattening two dimensional Fortran arrays

to one dimensional C arrays. This provides for better caching performance and better

compiler optimizations. Using the new potential energy lookup table results in a 1.12x

over the unoptimized C implementation and a 1.39x over the Fortran implementation

by reducing the number of double precision floating point operations. Maintaining a

list of the nearest neighbor vectors provides a 1.27x improvement over the unoptimized

C code and 1.59x over the Fortran code by decreasing the number of L1 misses by

50% as reported by PAPI [93]. Decreasing the number of potential energy lookups

provides for a 1.43x performance increase over the unoptimized C implementation

and 1.79x over the Fortran implementation. The contribution of each function for

each of the optimizations is given in figure 5.1b.

From this point forward, any speedups are given relative to the optimized

C implementation with the reduced table lookups as this is the fastest serial

implementation.
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Table 5.3: Parameters used for correctness tests

Parameter Value
Atoms 180

Replicas 46,080
∆τ 500
ρ 0.00461421

Mass 7,294.3
α 0.15
B 5.4
P 56
PI 18

Iwarmup 10,000
I 100,000
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Figure 5.2: Check for microprocessor C statistical correctness

Since there are some algorithmic changes in the code such as when random

numbers are generated, the output of the C code is different than the Fortran code.

Therefore, it is necessary to check the statistical correctness. Figure 5.2 shows a

histogram of the sum of the potential energy and local energy for each of the snapshots

of the first and last replica using the parameters in table 5.3. From the figure, it can

be seen that the results are statistically equivalent to the Fortran code as they share

the same mean and the same standard deviation.
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Figure 5.3: Vectorization runtime results

5.1.2 Vectorization

The next optimization that needs to be tested is the parallelization of the QSATS

algorithm using SSE and AVX vectorization units. In order to test this, both of the

vectorization implementations are run on various architectures to obtain runtimes.

All of the processors tested have SSE capabilities; however, only two have AVX units:

Intel E5-2680 and AMD Interlagos. Figure 5.3 shows the runtimes of the vectorization

implementations on the processors listed in table 5.1.

The speedup factors can be seen in table 5.4. From the figure and table, it

can be seen that using the vector units to accelerate the QSATS algorithm is a

beneficial optimization for most processors. Speedups are not in line with the number

of doubles the vector can hold (i.e., 2x speedup using SSE and 4x with AVX) due

to the serialization of table lookups and neighbor information references because
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Table 5.4: Speedups for the vectorized microprocessor implementation

Parameters Sandy Bridge Interlagos Istanbul Nehalem
SSE AVX SSE AVX SSE SSE

R=5,000, A=180 1.61 2.40 0.88 1.04 1.34 1.31
R=48,000, A=180 1.61 2.39 0.86 1.05 1.36 1.29
R=5,000, A=1,440 1.60 2.39 0.89 0.99 1.36 1.30
R=48,000, A=1,440 1.67 2.51 0.84 1.01 1.36 1.31

it is not guaranteed that every memory accesses are not to consecutive memory

locations. Despite this serialization, all of the processors show an improvement with

the exeception of the AMD Interlagos processor where the SSE implementation is

actually slower than the serial and the AVX is approximately the same speed as

the serial. Two Interlagos processor cores share a single vector unit potentially

causing this slow down. Another possibility could be that the gcc compiler is not

able to optimize the intrinsics well enough to obtain as much performance as the

other processors.

In regards to programmability, converting this code to use the vectorization units

was difficult for the SSE implementation; however, supporting the other types of

vectorization was fairly straightforward especially if coded in a flexible manner. For

this code, #define macro wrappers over the common functions are used so the code

can be easily ported to a different set of intrinsics. For instance, the addition of

two double precision vectors is performed by calling the mm add pd(x,y) function

in SSE and mm256 add pd(x,y) in AVX. Each of these can be called by a simple

macro call to add(x,y) where this macro is set appropriately at compile time based

off flags that are supplied. Using this approach for all of the functions used in the

QSATS programs allows for the implementation to share much of the same code. It

also comes with the added benefit of increasing code readability.
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5.1.3 Threads

As mentioned in section 3.3.3, a number of threaded versions have been implemented:

pthreads, OpenMP, and OpenCL. Implementation details for each of these are

provided in section 3.3.3. Figure 5.4-5.7 give the runtimes of the OpenMP and

pthreads implementations on some of the processors listed in table 5.1.

From the plots in the figures, it can be seen that the threaded implementation

does not provide a high efficiency due to a large amount of data that each thread must

handle. Each thread’s data interferes with the other threads’ data movement. For the

Sandy Bridge machine, the efficiency drops to 60% when using half of the available

cores (8) and 30% when using all of the cores (16). For the Interlagos processors, the

efficiency drops to 60% when using half of the cores (16) and 45% when using all of

the cores (32). For the Nehalem processors, the efficiency was around 90% when using

half of the cores (4) and 70% when using all cores (8). For the Istanbul processors,

the efficiency drops significantly to 20% when using only 2 cores, indicating poor

scalability when using the threaded implementation.

When comparing OpenMP and pthreads, there does not appear to be much

performance difference. The pthreads implementation is negligibly faster in most

cases with the exception of using all cores. This is due to having a “master” thread

that is in a spin-lock waiting for the “worker” threads to complete, thus consuming

compute cycles and resources. When using enough worker threads to occupy all

available cores, the master thread is scheduled to run on top of a core that a worker

thread is using causing the core to have to context switch between the two threads

slowing down the entire simulation. It would be possible to make the master thread

double as a worker thread; however, this would involve more coding for correctly

handling the orchestration of the threads. The OpenMP implementation does not

have this pitfall as the library handles this already.

Although threading is not an effective parallelization technique for this applica-

tion, vectorized threaded implementations were developed. Since the serial vectorized
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Figure 5.4: Threaded results for the Sandy Bridge processor
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Figure 5.5: Threaded results for the Interlagos processor
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Figure 5.6: Threaded results for the Nehalem processor
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Figure 5.7: Threaded results for the Istanbul processor
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Figure 5.8: OpenMP with vectorization speedups for the Sandy Bridge processor

versions were already created, extending the threaded implementations to use the

vector units was a straightforward addition. Figures 5.8-5.11 gives the speedups

of some sample runs using the vectorized implementation using 1440 atoms and

OpenMP.

From these plots, we can see that vectorization speeds up the threaded imple-

mentation dramatically as the number of threads increase for both Intel processors.

However, due to the reasons specified before, the AMD Interlagos gets poor

performance and the speedup of using the vector units varies significantly as the

number of threads increases, not to mention the speedups are no better than around

1. Using SSE vectorization with the Istanbul processor provides a pretty consistent

speedup of around 1.35x. To see what effect vectorization has on the efficiency of

the threaded implementation relative to a single vectorized thread run, the plots in

figures 5.12-5.15 shows the efficiency with a varying number of replicas and atoms

on the Sandy Bridge, Interlagos, and Nehalem processors. From these plots

it can be seen that adding vectorization increases the efficiency by increasing the
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Figure 5.9: OpenMP with vectorization speedups for the Interlagos processor
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Figure 5.11: OpenMP with vectorization speedups for the Istanbul processor

number of operations that can be performed simultaneously and reducing the total

number of instructions. For instance, with the Intel Sandy Bridge processor, the

efficiency doubled from the non-vectorized implementation when using all available

cores. However, even with this increase, obtaining 60% efficiency is not acceptable so

another approach must be used.

In terms of programmability, the OpenMP implementation was trivial to write

as it mainly involved adding the following pragma: #define parallel for on the odd

and even for loops. At this point, the number of threads can be set by calling a

function and the library will take care of the rest. Once a thread has been created,

it is added to a pool of threads that OpenMP manages so that the application isn’t

creating and destroying threads through the runtime of the program. However, the

pthreads implementation was much more involved as a thread pool implementation

had to be developed. Within this thread pool, code is available to send a “wake up”

signal to the worker threads and to send an “I’m finished” message to the master

thread to allow for synchronization. In terms of programming time, the OpenMP
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Figure 5.12: Threaded vectorized results for the Sandy Bridge processors
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Figure 5.13: Threaded vectorized results for the Interlagos processors
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Figure 5.14: Threaded vectorized results for the Nehalem processors
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Figure 5.15: Threaded vectorized results for the Istanbul processors
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Figure 5.16: OpenCL comparison to OpenMP threaded multiprocessor code

implementation took less than half an hour to write and verify whereas the pthreads

took a couple of days in order to develop and test the thread pool code.

In comparison to the OpenCL implementation, though, the OpenMP implemen-

tations perform better. Figure 5.16 compares the OpenCL implementation on two

processors each using OpenCL version 1.2. These runs used 46,080 replicas, 180

atoms and 100 iterations. The OpenMP code used 16 threads. The OpenCL used a

work-group size of one since a work-group is assigned to a core. One interesting thing

to note here is that the AMD OpenCL implementation performed much better than

the Intel implementation; however, the OpenMP code is faster on the Intel processor.

This could be due to differences in OpenCL vendor implementation.

In terms of programmability, OpenCL was very straightforward as the GPU

implementation was written first. However, to code the OpenCL implementation for

the multiprocessor from scratch would be very time consuming unless the programmer
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Figure 5.17: Efficiency of the single master - independent worker code

is familiar with the OpenCL API or uses a library that simplifies the process such as

clUtil [94]. Once the code is written to initialize OpenCL and all the things associated

with it, writing the kernel is very straightforward for a programmer who is familiar

with CUDA as it is mostly just keyword changes.

5.1.4 MPI

Master-Independent Workers

As described in section 3.3.4, the original MPI implementation used a typical master-

worker model to distribute work. While this is a very straightforward implementation

and does take care of load balancing, it is not a very scalable approach. Figure 5.17

shows the efficiency of this implementation using 103202 replicas, 10 iterations, and

180 atoms running on the Istanbul processors in Kraken [95]. This implementation is
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not able to scale beyond a small number of cores. The lack of scalability is attributed

to the master’s inability to successfully manage the requests from all of the children,

causing the children to stay idle for long periods of time. Because of the extreme lack

of scalability, this implementation is not suitable for large crystal simulations with

many replicas.

Single Master-Dependent Workers

Next, the single master, dependent workers implementation seeks to increase the

scalability beyond a few nodes. This is accomplished by pre-allocating work at the

beginning of the simulation and allowing the workers to communicate with each other.

Occasionally, the master will aggregate snapshot information from all of the children

and writing it to a file while the children continue with their work. Figure 5.18 shows

the runtime for a variety of parameters and numbers of cores.

Using a single master and dependent workers increased the scalability substan-

tially. In comparison to the previous implementation, this approach reduces the total

amount of communication significantly and reduces the load on the master since it

is no longer a central process for the entirety of the simulation. From the plot, the

efficiency starts to drop off at 960 cores as the time it takes to do a snapshot is the

limiting factor. This is due to the master having to serialize snapshot communications

from the workers thus increasing the time a child must wait before continuing with

the simulation.

Multiple Masters-Dependent Workers

A third implementation adds the ability to have a variable number of masters where

each master aggregates replica configurations from only a subset of the workers. For

snapshotting or saving configurations, each master writes to its own file; therefore,

there is no communication among the masters. With multiple masters writing to their

own file, this implementation is able to fully take advantage of the parallel file systems
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(e.g., Lustre) on large machines. Section 3.3.4 gives a more in-depth explanation of

this approach. Figure 5.19 shows the runtime for a variety of parameters and numbers

of cores.

When comparing the multiple master approach to the single master, efficiency is

significantly improved. This implementation achieves a 95% efficiency using 960 cores

and 15 masters compared to 85% when using a single master. Efficiency stays around

90% for 3,840 cores. Efficiency drops to 85% using 7,668 cores and 71% using 15,300

cores. This drop is attributed to some issues with Kraken lowering the bandwidth

between nodes significantly. To rule out algorithmic problems, a couple of jobs were

run using 960 cores, 15 masters, and the same parameters as the run where 95%

efficiency was obtained. Originally, the bandwidth from the workers to the master

was around 1.5GB/s; however, the extra runs had a bandwidth ranging from 6MB/s

to 30MB/s. By outputting the time it takes for one worker to send its packages to
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Figure 5.19: Results of the multiple masters implementation

the master, I was able to verify that bandwidths for the two larger runs fell within

this range. Despite the results being skewed, this implementation still achieves an

acceptable scalability to 7,668 cores.

5.2 Intel MIC

Because this work with the Intel MIC is under a non-disclosure agreement, specific

details, absolute numbers, or direct comparisons to other architectures are not given.

However, the plots in figures 5.20 and 5.21 show the efficiency of using more cores on

the Intel MIC for various numbers of replicas. Also, plots are given for the MPI and

threaded implementations with and without vectorization.

The MPI implementation obtains a higher efficiency as the number of cores

increases than the threaded implementation. However, the threaded implementation
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Figure 5.20: Intel MIC threaded results
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is faster than the MPI implementation (not shown). Also, the non-vectorized

implementation obtain a higher efficiency than vectorized implementations, but the

vectorized implementations have a lower runtime. The lack of efficiency can be

attributed to the large amounts of memory that have to be shuffled from main memory

to the cores. Also, the memory accesses of one core significantly affect the memory

accesses of another core. Other architectural features affect the performance as well.

5.3 GPU

As discussed in chapter 4, CUDA and OpenCL implementations were developed to

run on graphics processing units. Before discussing any of the results, it is first

necessary to determine the optimal number of threads per block. While groups of

32 threads (warps) are created, managed, scheduled, and executed by the streaming

multiprocessor, it is logical to assume that setting 32 threads per block would be a

satisfactory configuration. However, this is not always the case so it is necessary to

explore what configuration works best for this implementation. Figure 5.22 shows a

series of runs on the GeForce GTX 480 GPU varying the number of threads per block

by multiples of 32. Although 64, 128, and 256 threads produce similar runtimes, 64 is

chosen to allow for more active thread blocks per multiprocessor. For the remainder

of this dissertation, it will be understood that the number of threads per block used

is 64.

Chapter 4 lists a number of optimizations that were developed on the GPU to

enhance the performance. Figure 5.23 shows the runtime (5.23a) and speedup (5.23b)

of each optimization over the naive implementation for CUDA and OpenCL on each

device using 46080 replicas and 180 atoms. From the figure, it can be seen that

swapping the row and column data gave an average of 2.5x improvement for the C1060

and ATI 7970 cards and almost a 3x improvement in the Fermi cards. The greater

performance increase in the Fermi cards is due to the global memory L1 cache. The

CUDA implementations outperformed all of the OpenCL implementations. For the
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NVIDIA GPUs, the greatest optimization was reducing the table size by transforming

it on the log scale and accessing it through texture memory. Doing this allowed for

the table to be cached in all of the GPUs and freed up the L1 cache in the Fermi

GPUs. Using the texture interpolation provided a 1.11x speedup of straight accesses

to the texture memory. Swapping the dimensions was the greatest optimization for

the OpenCL ATI card, while the other improvements had little or no effect. NVIDIA

GPUs received a performance increase from all of the optimizations. However, the

optimizations had a smaller effect on the OpenCL implementation that the CUDA

implementation. This is surprising as both the CUDA and OpenCL implementations

essentially use the same kernel (only with syntax differences). However, a decrease in

performance when using OpenCL coincides with the observations of other researchers

[96, 97]. One interesting observation which can be seen in figure 5.23a is even though

the optimizations had little effect on the performance on the ATI GPU, its runtime
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with the first optimization is close to the OpenCL implementation on the GeForce

GTX 480 with all of the optimizations. Therefore, it took less work to obtain an

“optimized” kernel on the ATI GPU than on the NVIDIA GPUs.

Figures 5.24-5.27 give plots of the runtime on the GPUs listed in table 5.2 with

varying workloads. All of these runs are for 100 iterations. For the NVIDIA

GPUs, there is a “stair step” function that indicates the saturation of the SMs with

the workloads. In the case of the Tesla M2090, for example, for every multiple

of the number of active blocks per SM, there is a step indicating the amount of

extra work needed to handle the extra block on a new SM. For every multiple of

#SMs ∗ ActiveBlocks = 128, there is a large step up that indicates all of the SMs

were fully saturated prior to the step and the extra work needed to compute the

additional blocks that are scheduled to the now oversaturated SM. A similar trend

for the ATI 7970 could not be determined due to limitations in the drivers hindering

large simulation parameters.

Before discussing the performance comparison between the GPU and multipro-

cessor, it is necessary to check the correctness of each of the implementations. Due

to varying specifications on the accuracy of various function and operations (e.g.,

basic arithmetic operations and transcendental functions), each device and OpenCL

implementation can produce different results depending on the specified accuracies.

In some applications, these error differences may not make much of a difference since

the error is so small. However, in QSATS, these errors easily build on each other as

the movement of one atom affects the movements of its neighboring atoms and the

atoms in the neighboring replicas. Thus, if one atom’s movement is accepted on one

device but rejected on another, a completely different trajectory is taken, but should

still be statistically similar. Therefore, it is necessary to check for this statistical

correctness. While correctness was shown in figure 4.4, it only does so for the CUDA

implementation on the GeForce GTX 480. Figure 5.28 shows the correctness of

the CUDA and OpenCL implementations on the devices listed in table 5.2. These

results are obtained by first performing a warmup run of 10,000 iterations with the
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Figure 5.24: Tesla C1060 runtimes with varying numbers of replicas
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Figure 5.25: GeForce GTX 480 runtimes with varying numbers of replicas
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Figure 5.26: Tesla M2090 runtimes with varying numbers of replicas
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Figure 5.27: ATI Radeon 7970 runtimes with varying numbers of replicas

92



parameters listed in table 5.3. Then, a run of 100,000 iterations was performed taking

snapshots every 100 cycles resulting in 1,000 snapshots. The plots show a histogram

of the sum of potential energy and local energy for the snapshots obtained from the

ELOC program [12].

Using the original Fortran code as the gold standard, it can be seen that all of the

GPU implementations follow the same statistical distribution of energies. Differences

in the GPU and multiprocessor runs are due to differences in optimization techniques

and accuracy of mathematical operations.

Next, the GPU and multiprocessor performances are compared. The GPU

implementation is compared to two nodes of the Kraken supercomputer each

containing 12 cores of the AMD Opteron Istanbul processors using SSE for a total

of 24 cores. This processor was chosen because it is the direct competitor to the

GPU when determining what architecture should be used for a production run.

Since each device has a limitation on the number of replicas accepted due to load

balancing reasons, the multiprocessor and GPU codes use different numbers of

replicas. Figure 5.29 shows the rates of the CUDA NVIDIA implementations and

the ATI OpenCL implementation over the multiprocessor for various GPUs. The

OpenCL implementations for the NVIDIA GPU were left out since the CUDA was

shown to provide higher performance. The rates given are for 1,000 iterations, 180

atom runs. The Istanbul run used 45,816 replicas, the Sandy Bridge used 46,080, and

the GPU implementations used 46,080.

From this figure, it can be seen that the Fermi card, Tesla M2090, obtains the

highest performance at 1.61x faster than 24 cores of the Istanbul processors in Kraken

and 2.08x faster than 16 cores of the Sandy Bridge processors. What this means is

a single GPU can obtain the same performance as approximately 3 nodes (i.e., 36

cores) of Kraken. Also, if we were to project the Sandy Bridge processor to 24 cores

to compare directly to the Istanbul, it would be 1.15x faster resulting in the GPU

only being 1.3x faster than the Sandy Bridge. This is substantial as using the GPU

there is a reduction in compute hours needed and a reduction in power consumption.
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Figure 5.28: Check for GPU statistical correctness
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Figure 5.29: Performance rates of the CPU and GPU implementations

For a single Tesla M2090, the power consumption is 255 Watts [98]. For a single

Istanbul multiprocessor, the power consumption is 75W [99]. Therefore, in order to

power 3 nodes of 2 processors each, the total power consumption from the processors

alone is 75∗3∗2 = 450W . Because of these reasons, the GPU is the best architecture

available for this application.

QSATS also has the capability of performing multiple independent simulations

concurrently by using multiple GPUs. As figure 5.30 shows, using multiple GPUs

roughly gives the linear speedup that we expect due to the independence among the

GPUs. The CUDA code was run on the Tesla C1060 and Tesla M2090 as it was

shown earlier to produce the highest performance. OpenCL was used for the ATI

7970. Each run used 180 atoms and 100 iterations and each GPU executed 46,080

replicas for these runs.
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Figure 5.30: Results of the multi GPU implementation
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Figure 5.31: Multiple GPU runs on Keeneland

QSATS is also capable of scaling on the GPUs beyond a single node. As shown

in figure 5.31, using 24 GPUs provides a near perfect efficiency of approximately

99% running using 16,384 replicas per GPU, 1440 atoms, 1,000 iterations, and

100 snapshots. This is due to all the devices performing completely independent

simulations with no need to exchange information.

5.4 Architecture Comparisons

In comparing these architectures, there are many pros and cons for each. From

a cursory glance, it would appear that the NVIDIA Tesla M2090 is the dominant

platform. However, when comparing performance per watt or performance per dollar,

a different conclusion could be reached. Table 5.5 gives the power consumption and

current price as found on Amazon.com for each device. In comparing architecture

performance, the NVIDIA Fermi GPUs provide greater performance than the ATI

7970 as can be seen in figure 5.29. In particular, the Tesla M2090 has the highest

performance. From a power consumption perspective, the ATI 7970 has a slight
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Table 5.5: Power consumption and current price for each compute device

Device Power Current Cost
Istanbul 75 [99] $540

Sandy Bridge 75 [100] $1727
Tesla c1060 200 [85] $1500
Tesla M2090 255 [98] $2400

GeForce GTX 480 250 [101] $200
ATI 7970 225 [102] $455
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Figure 5.32: Architecture performance per watt and dollar

advantage over the Fermi cards when looking at the ratio of performance per watt

shown in figure 5.32a. Saying this, the performance per watt of the Tesla M2090

is only 2% less than that of the 7970 so the difference is negligible. In terms of

performance per price (dollar) as shown in figure 5.32b, the GeForce dominates as

the price is only $200 and the performance is on par with the Tesla M2090. However,

if using the release price ($500), the GeForce GTX 480 performance per price is 4%

less than the 7970.

Weighing all these metrics, it would appear that the GeForce GTX 480 is the

architecture to use for this application. However, it only has 1.5GB of global memory

so the crystal size and number of replicas that can be used is extremely limited. Also,

it is only a consumer card and will not be adopted in any high performance clusters or

supercomputers. Finally, for compute intensive applications, the GeForce GTX 480 is

not a good choice if double precision is needed as the performance for double precision

98



operations is very poor, similiarly with other consumer cards as recognized in [46].

All of these cons make the GeForce GTX 480 unworthy of general high performance

computing.

While the ATI 7970 has better double precision support, with performance similar

to the Fermi cards, and has a relatively low price point, it too is not a prime choice

for general high performance computing. Since AMD/ATI intend for the card to be

used for consumer graphics use, they have not eased the development of general code

for the device besides enabling OpenCL support. In particular, the 7970 does not

allow for the allocation of a buffer larger than 512MB while the card itself has 3GB

of memory. With the algorithm as it stands, the size of the simulation possible is

severely limited. For a crystal structure of 7920 atoms, for instance, the maximum

number of replicas that can be simulated is 512MB/(7920∗3∗8) ≈ 2, 824. In addition,

ATI GPUs are not readily available in high performance computing systems as only

two machines in the Top 500 list have ATI Radeon GPUs while 53 machines have

NVIDIA [103].

The Tesla c1060 is an old, outdated GPU that has long been replaced with

newer cards such as the M2090. Lack of availability in HPC systems and lack of

performance in comparison to other devices makes this architecture undesirable for

many computational science applications.

The Istanbul multiprocessor is also an old processor; however, it is in two of the

top 30 machines [103], one of which is the University of Tennessee machine, Kraken.

While not one of the highest rating architectures explored in this work, it is still

an important one to consider. The advantage of this architecture is the availability

(112,800 cores in Kraken), programming familiarity as it can be programmed with a

tradition language such as C or Fortran, and the ability to develop high performance,

highly scalable applications.

The Intel Sandy Bridge processor used in this work, Xeon E5-2680, is one of the

newest and most powerful processors tested here. In comparison to the Istanbul, it

provides a higher performance courtesy of the high clock rate and AVX vector units.
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This processor is so powerful, the Stampede supercomputer [104] will house thousands

of these to work alongside Intel MIC cards. However, this performance comes at a

rather high price at nearly 3x the cost of the Istanbul processor.

In regards to programmability of GPU languages, CUDA is superior to OpenCL

for numerous reasons. There are development tools for the CUDA language such as

debuggers and profilers. This makes debugging, tuning, and optimizing code much

easier as these tools can be used natively on the device. In order to debug OpenCL

code, one must first target the code to the processor and use a traditional debugger

such as gdb. However, this comes at the penalty of significantly slower runtimes and

lack of truly emulating the GPU architecture. One benefit of the OpenCL language

is the ability to write the code once then target it to any other architecture such as

NVIDIA GPUs ATI GPUs, multiprocessors, and even FPGAs. CUDA, on the other

hand, can only run on NVIDIA GPUs. Despite this disadvantage, the availability

of support tools, in my experience, make CUDA a better option than OpenCL by

reducing development and debugging time.

As it stands right now, the Intel MIC is definitely an interesting upcoming

architecture. For this application, the scalability as the number of cores increases is

lacking and is therefore not a viable architecture when using the Intel cards. Due to

other architectural constraints, it is not beneficial to use this architecture on problem

sizes other than toy problems, especially in regards to snapshotting. Some or all

of these issues might be fixed with the release of newer cards providing a higher

performance for this code. Programmability for the Intel MIC is very convenient as it

can be programmed in a traditional language such as C or Fortran and using familiar

libraries such as OpenMP and MPI. Using intrinsics, it is possible to use the 512 bit

vector units to accelerate computationally expensive code. Since QSATS becomes a

memory bound problem when using multiple threads, the effect of vectorization is

minimal since a large number of memory accesses must be serialized.

From this chapter, it can be seen that most of the architectures here provide

a high performance platform for this application. The multi-node microprocessor
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implementation provides high performance for a relative small number of replicas

(i.e., tens of thousands) for a single simulation. The GPU implementation provides

high throughput for multiple simulations executing extremely large number of replicas

(i.e., hundreds of thousands). After viewing all of these results, it is logical to ask,

“Is there a way to predict these results?”.
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Chapter 6

Performance Modeling

Performance modeling is an important aspect of developing high performance

applications. Models give the ability to analyze various architectural features

of different platforms to determine what characteristics are best suited for an

application. Models also have the capability to predict certain aspects of the

application such as runtime. This gives the engineer the ability to determine which

architectures to invest time and money.

This chapter will discuss the performance models for the microprocessor, Intel

MIC, and GPU. For the microprocessor and Intel MIC architectures, the models

express the runtime in terms of clock cycles for arithmetic operations (addition,

multiplication, transcendentals, etc) and memory accesses. In addition, models are

presented that predict the scalability of the microprocessor MPI implementation on

the Kraken supercomputer. The GPU model proves to be more difficult as low level

architectural details are not readily accessible; however, a model is presented that

accurately predicts the runtime on multiple types of GPUs.

6.1 Microprocessor Performance Model

The microprocessor implementation has two different models: single core implemen-

tation and multi-process implementation. The single core model is used to obtain a

102



parameter needed in the multi-process scalability model. This section goes into details

about both of these model and presents the accuracy relative to actual runtimes

presented in the previous section.

6.1.1 Single Core Model

This section will give the details of the single microprocessor core model that will

describe the runtime. First, the original näıve model that lays the ground work for

this portion of the dissertation is discussed. Then, this dissertation dives deeper into

the performance model to include various architectural details that can be used to

explain the performance differences of different microprocessor architectures.

Original Model

Originally, this work hypothesizes that the model for each architecture will be

dependent on the number of replicas, iterations, and atoms. These three factors

along with a base runtime combine to create a rate, α, that describes how fast an

architecture can perform the QSATS method per atom per replica per iteration. This

rate can then be used to extrapolate a runtime given any amount of replicas, atoms,

and iterations as shown in 6.1.

RAIα (6.1)

In order to obtain α, a small preliminary run was needed to get the base runtime to

plug into equation 6.2.

α =

(
t

RAI

)
0

(6.2)

This proved to be an accurate model with an error of 6.42% in the worst case.

However, such a model does not provide any insight into the architecture nor can

it be used to compare or predict for hardware that is not physically available.
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Table 6.1: QSATS specific parameters for the performance model

Name Description
R Number of replicas
A Number of atoms
I Number of iterations
P Number of interacting pairs
SI Number of iterations between snapshots

Improved Model

Because the original model did not provide any valuable insight into architecture, it

was necessary to develop a model that did. QSATS can be broken down into the

following steps:

• Initialization

• For each iteration, replica, and atom

– Calculate a Gaussian random displacement

– Calculate potential energy for moving to new state

– Accept or reject the move

• Occasionally, take a snapshot of the current state

• Finalization

Each of these steps have a different complexity that contribute to the runtime of the

program. This is shown in figure 6.1. It can be seen that the total complexity of this

application is O(R + RAI(2 + P )). The QSATS method has the parameters shown

in table 6.1 that dictate the performance of the program.

In order to develop a model, it is necessary to first start at a high level description

of the runtime. Equation 6.3 gives a general description of the QSATS runtime split

into various time-consuming portions of the application.

tserial = tinit +
I∑
i=1

R∑
r=1

[tdisp + tpoten] +

I/SI∑
s=1

tsnap + tfinal (6.3)
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O(I*R)

O(A)

Initialization

Calculate Gaussian 
Displacement

Calculate Potential Energy 
of Moving to New State

Occasionally, Write 
Snapshot to File

Accept or 
Reject

Finalization

O(R)

2*3*A = O(A)

2*P = O(P)

O(1)

O(1)

O(1)

Figure 6.1: Complexity of the QSATS steps

where the times are described in table 6.2. The initialization time, tinit, can be defined

as the sum of the time it takes to allocate all arrays, set the displacement vector to

zero, and set the initial RNG states for all replicas. If a save file is specified, the

additional time it takes to read the file is added to this. While negligible for the serial

case, this is an important factor for the scalability of the program when attempting

to scale beyond hundreds of cores.

The displacement time, tdisp is defined as the sum of time taken to calculate the

average of atom positions in the neighboring replicas for all atoms plus the time taken

to generate three Gaussian random numbers for all the atoms. In other words,

tdisp = A ∗ (3 ∗ tavg + 3 ∗ tgauss) (6.4)
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Table 6.2: Break down of times in the QSATS program

Symbol Description
tserial Total serial simulation time
tinit Initialization time
tdisp Displacement time
tpoten Potential energy time
tsnap Snapshot time
tfinal Finalization time

This is a O(A) operation as both the averages and the Gaussians must be calculated

for all atoms.

The potential energy calculation time, tpoten, is split into two time consuming

parts as shown in equation 6.5: squared distance calculations and potential energy

look-up time.

tpoten = 2 ∗ P ∗ (tsqdist + tlookup) (6.5)

The factor of 2 accounts for the square distance calculation and potential energy

look-up for both of the old and new atom positions. This timing does not account for

the predetermination of acceptance or rejection of an atom move described in section

3.3.1. To incorporate this into the timing, the lookup time is split into two parts as

shown in equation 6.6: the look-up time for the inner PI and outer PO pairs.

tpoten = 2 ∗ P ∗ tsqdist + 2 ∗ tlookup(PI + β ∗ PO) (6.6)

In this equation, the β factor is the percentage of times that the look-up has to be

calculated due to the a squared distance being outside of the monotonically increasing

section of the potential energy curve. For the parameters relevant to this work, β in

equation is set to .03, as the potential energy for the outer pairs only needs to be

calculated 3% of the time.

The time it takes to write a single snapshot, tsnap, is a factor of the size of the

packet being written and the I/O speed, D, in bytes per second, of the system as
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shown in equation 6.7.

tsnap =
3 ∗ A ∗R ∗ 8

11 ∗D
(6.7)

The divisor, 11, is because QSATS only writes the 11th replica when performing

snapshots in order to get replicas that are far enough apart so that they have minimal

influence on each other. The 8 multiplier is to calculate the number of bytes since

there are 8 bytes in a double precision number.

The finalization time, tfinal, is dominated by the time it takes to write the state

of all the replicas to a file on disk. Similar to the snapshot time, equation 6.8 gives

the finalization time, which is simply the time it takes to write a file to disk.

tfinal =
8 ∗R ∗ (3 ∗ A+ 8)

D
(6.8)

The additional 8 is to store the RNG state so a continuation run can start from the

state in the stream that it left off.

Equations 6.4 through 6.8 are fed into equation 6.3 to deliver a model that is

dependent on the time needed for each step in the process. As it stands, the model

does not provide any insight on the underlying architecture.

The next step is to incorporate various aspects of the microprocessor architecture.

For the microprocessor implementation, the algorithm is compute bound for every

section described above except for the potential energy look-up. This allows us to

count clock cycles for the different floating point operations in the algorithm (e.g.,

multiplication, sine, cosine). In the following, each portion of the code is described

as the composition of cycle counts that can take the place of times given above in the

model equations. All operation counts are determined by looking at the C code only.

Assembly code was used to determine what instructions the fundamental operations

(i.e., multiplication, addition, subtraction) mapped to. Table 6.3 gives the essential

parameters that are used in this model.
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Table 6.3: Operation cycles used in the microprocessor performance model

Parameter Description
cadd Addition cycles
csub Subtraction cycles
cmult Multiplication cycles
csqrt Square root cycles
clog Logarithm cycles
csin Sine cycles
ccos Cosine cycles

First, the uniform random number generator consists of a total of 17 floating point

operations to generate a single uniform random number in the range (0,1]. As such,

the cycle composition is shown in equation 6.9.

cuniform = 11 ∗ cmult + 6 ∗ cadd (6.9)

Next, the Gaussian random number generator consists of a significant number

of operations. In this work, the Box-Muller method is used to convert two uniform

random number generators to two Gaussian random numbers using the following

transformation.

Z0 =
√
−2 ∗ ln(U0) ∗ cos(2π ∗ U1)

Z1 =
√
−2 ∗ ln(U0) ∗ sin(2π ∗ U1)

(6.10)

where U{0,1} are uniform random numbers and Z{0,1} are the Gaussian random

numbers. As can be seen from this equation there are a total of 8 multiplications, two

square roots, one natural logarithm, two trigonometric functions, and two uniform

random numbers. The 8 multiplications can be reduced down to 4 by reusing values

and using hard coded constants (2∗π). Likewise, the two square roots can be reduced

to one by using the computed value twice. However, since Box-Muller generates

two random numbers at a time, the second random number is stored into memory;

therefore, the cost of this is only encountered half of the times the Gaussian RNG
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is called. Equation 6.11 gives the average number of cycles needed to generate the

Gaussian random numbers for all of the atoms in a replica.

cgaussian =
3 ∗ A

2
∗ (2 ∗ cuniform + csqrt + 4 ∗ cmult + clog + csin + ccos) (6.11)

Third, calculating the average of the “neighboring” replicas is pretty straight

forward. Since it is simply calculated as the average of two numbers, the number of

cycles to compute all of atoms is shown in equation 6.12.

caverage = 3 ∗ A ∗ (cadd + cmult) (6.12)

Fourth, the squared distances are calculated between the current atom location

and all of its P interacting neighbors. This has to also be done with the new proposed

positions that are calculated by adding the Gaussian displacements. Calculating

this involves three additions to connect the atoms to their stencil coordinates, 3

subtractions between the old coordinates and the neighbor coordinates, 3 subtractions

between the new coordinates and the neighbor coordinates, 6 multiplications to square

the calculated differences, and 4 additions to sum the squares (2 for each of the old

and new positions).

ccalcd2 = P ∗ (7 ∗ cadd + 6 ∗ csub + 6 ∗ cmult) (6.13)

It should be mentioned that calculating the squared distances is heavily pipelined

so that the program achieves the highest throughput possible with this portion of

the code. To represent this in the model, the cost of the addition, subtraction, and

multiplication are all set to 1 since we get a throughput of one calculation per cycle

turning equation 6.13 into equation 6.14

ccalcd2 = 19 ∗ P (6.14)
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Fifth, the difference in potential energy between the old and new positions is

calculated. This step takes the cost of two potential energy table look-ups which

can be described as the average memory look-up time (AMAT), a multiplication,

an addition, and a subtraction. While the AMAT is not something that can be

analytically determined, it is still possible to feed a set of look-up addresses to a

cache simulator such as Dinero IV [105]. Using a cache simulator to calculate the

AMAT provides insight into the underlying architecture that can be used to predict

runtime, eliminating the using of ambiguous “fudge factors” used in section 6.1.1.

We can still obtain the AMAT without having physical access to the machine so it is

possible to experiment with different cache layouts. The number of cycles to calculate

the difference in potential energy for a set of two squared distances (one for the old

and new positions) is given in equation 6.15.

cdv = 2 ∗ AMATlookup + cmult + cadd + csub (6.15)

where AMAT is defined as

AMAT = HitRate ∗HitT ime+MissRate ∗MissT ime (6.16)

To model the optimization where the outer neighbor potential energy look-ups are

skipped, equation 6.15 split into two equations. For the inner neighbors, this equation

is multiplied by the number of inner neighbors, PI , since the program will calculate

the potential energy at least this many times. For the outer neighbors, this equation

is multiplied by the number of outer neighbors, PO, and a percentage value, β that

describes the percentage of the time the energy contribution from the outer neighbors

is influential to the outcome of the atom’s movement. These can be shown in equations

6.17 and 6.18.

cinnerdv = PI ∗ cdv (6.17)

couterdv = β ∗ PO ∗ cdv (6.18)
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Next, the cost to determine whether to accept or reject a move after calculating

the potential energy of the inner neighbors is modeled. A single table look-up, three

multiplications, a log, and two subtracts make up the majority of the calculations

in determining this decision. Equation 6.19 gives the number of cycles needed to

determine whether a move is accepted or rejected.

cpredetermine = AMATlookup + 3 ∗ cmult + clog + 2 ∗ csub (6.19)

All of these cycle equations can be summed together to make the CPU cycle model

given equation 6.20.

cserial = I ∗R ∗ (caverage + cgaussian+

A ∗ (cuniform + P ∗ ccalcd2 + cinnerdv + couterdv + cpredetermine)) (6.20)

To calculate the time needed to execute the program, it is possible to simply divide

equation 6.20 by the clock frequency of the processor as shown in equation 6.21.

tserial =
cserial

Frequency
(6.21)

This model is powerful enough to model the various differences across architectures

by simply using the latencies for the different operations. This next question is: how

are the latencies determined? For the basic arithmetic and square root operations,

these are listed in the documentation about the processor families [106, 107]. As for

the transcendental functions, it’s slightly more complicated as these do not map

directly to a single assembly instruction. Instead, these are function calls that

call the standard C math library. Upon inspection of the C code, the sine and

cosine have multiple paths to calculate the appropriate value based on the input

number. This provides accuracy and speed for different inputs. However, there is a

significant amount of optimization that occurs during the compilation stage. Also,

different versions of compilers produced different codes most probably due to different
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optimization techniques employed by the compilers and different versions of the C

math library. For the same reasons, it is also difficult to derive latency counts for

the logarithm operation. To handle this, a simple code is used that generates a large

amount of random numbers that were in the same range that QSATS would use

the functions. The code will then loop through all of the numbers performing the

operation on each. Using PAPI [93], the total number of cycles taken to execute the

operation on all of the numbers in the array is available. Dividing this total number

of cycles by the number of operations performed gives an average count of cycles per

operation. Using these numbers and the cycles obtained from the documentation, it

is now possible to use the model to predict runtimes.

This model will also work for the SSE and AVX implementations. Since the

table look-ups are not guaranteed to be stored in consecutive memory locations, the

look-ups must also be serialized; therefore, these cycles cannot be divided by these

factors either. Modifications to this model are necessary to account for architectural

differences and compiler optimizations that are available for each processor. These

modifications are discussed in the following section.

Model Performance

The first step to verifying the single core model is to obtain the latency clock counts

for all of the operations. Basic arithmetic operation latency can be freely found in the

documentation for each processor. The transcendental operations are estimated as

described previously. Also, the AMAT for performing the potential energy look-up is

calculated by using the Dinero cache simulator. Table 6.4 gives the parameters used

for the models on various architectures that have been tested.

Each of these parameters can be plugged directly into equation 6.21 to obtain the

runtime of the program on the given architecture.

For each processor and compiler pair, the model needs to be altered to reflect

architectural and optimization differences. For the Intel E5-2680 Romley processor,

the Intel compiler version 12.1.4 is used to compile the code. For the “non-vectorized”
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Table 6.4: Parameters to the single core microprocessor model

Operation Core i7 920 Intel E5-2680 AMD Opteron
Istanbul

AMD
Opteron 6272

Clock 2.67 GHz 3.5 GHz 2.6 GHz 2.4 GHz
cadd 4 4 5 6
csub 4 4 5 6
cmult 6 6 5 6
ccos 124 50 133 138
csin 124 55 134 126
clog 150 84 79 81
csqrt 34 16 27 38
AMATlookup 4.03 4.03 3.05 4.96

version of this code, the loops to calculate the difference in potential energy are

automatically vectorized using the AVX units by the compiler. To reflect this,

equations 6.17 and 6.18 are divided by 4, the number of doubles that can be held

in an AVX vector. For the SSE implementations on this processor compiler pair, all

operations in equation 6.20, including equation 6.14 and excluding AMATlookup, are

divided by the number of double precision elements stored in a vector, V=2. The

Intel compiler is able to better overlap computations and memory accesses in the

AVX implementation so all of the operations including AMATlookup are divided by

V=4. This is to account for multiple replicas being executed simultaneously.

Using the GNU gcc compiler version 4.6.1 on the AMD Opteron 6272, the model

can be used as is for the non-vectorized implementation. The GCC compiler is not

able to effectively optimize the SSE and AVX intrinsics. This could be due to the

adoption of nontraditional AVX vectorized units: fusing two 128-bit units to create

a single 256-bit wide vector unit [108]. Two cores share a single 256-bit unit, but

each of the cores can execute 128-bit instructions simultaneously. To model the

SSE implementation, nothing needs to be changed in the model as the resulting

code executes with similar performance as the nonvectorized implementation. For

the AVX implementation, the multiplication, addition, subtraction and square root

operations are divided by two to account for the fused 128-bit vector units and the
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low stream rates from cache to registers [108]. In addition, the memory subsystem has

an extremely high L2 load to use latency (approximately 20 cycles) when compared

to other the processors indicating a low memory throughput penalizing achievable

performance. Since there are no vectorized instructions for the transcendental

operations, these operations are performed serially and cannot be divided by these

factors.

For the Intel Core i7-920 and gcc version 4.4.5, the model does not need to

be altered to represent the nonvectorized code. For the SSE implementation, the

multiplication, addition, subtraction, and square root operations are divided by V=2

to account for the combined replica processing. Again, since there are no vectorized

instructions for the transcendental operations, these operations are performed serially

and cannot be divided by this factor.

Using the Intel compiler version 12.1.2 on the AMD Opteron Hex-Core Istanbul

processor, the model can be used as is for the nonvectorized implementation. For

the SSE implementation, all of the operations are divided by V=2, including the

transcendental functions as the compiler provides vectorized implementations through

the SVML library.

All details about the compiler optimizations mentioned above were obtained by

examining the resulting assembly code by hand. To test the claims made here, various

compiler flags were enabled/disabled and the resulting assembly codes were compared.

Figures 6.2-6.5 shows the actual and predicted runtimes of various parameter runs

on different microprocessor architectures. Overlaid onto each of these plots is the error

of the predicted runtime with the error values listed on the right y-axis. Due to the

long runtimes of this serial implementation, only a few runs are completed in order

to show the model accuracy on various architectures and problem sizes.

It can be seen from these graphs that for the non-vectorized implementations,

the performance model is accurate to within at most a little below 5% error (on

the Intel Romley E5-2680 figure 6.3) and the average error is less than 2%. As for

the vectorized implementations, the model is accurate for Intel processors with at
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Figure 6.2: Serial, single core model accuracy for the Intel Core i7 920

most 8% error and the average error is less than 4%. For the AMD Opteron hex-

core Istanbul processors 6.4, the vectorized implementation is accurate within 1%.

However, the model is accurate within less than 16% for the vectorized version of the

code on the AMD Opteron 6272 (figure 6.5). This is due to the inability for gcc to

produce highly optimized vectorization code for the AMD Interlagos architecture and

the new configurations of the architecture mentioned above. With the exception of

the vectorized AMD Opteron 6272, the model error is acceptable when attempting to

predict the runtime of the program across the different microprocessor architectures.

6.1.2 Parallel

At this point, it is logical to ask, “Running serial jobs is not very feasible for real

problems, so how is this applicable to executing the program on multiple cores?”

Before answering this, we should review how the MPI implementation works. There

have been a few MPI implementations developed to test the scalability of the

algorithm to thousands of cores. First, a traditional master-worker implementation
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Figure 6.3: Serial, single core model accuracy for the Intel E5-2680

was developed where there is a central master that distributes work to all of the

workers as needed. The master would iterate through the odd and even replicas,

calculate the average neighboring replica information for each atom, package it with

the corresponding RNG state information, and send the package to a worker that is

requesting work. In the meantime, the master waits for more results from the worker

indicating their desire for more work. Upon receipt of replica information from the

master, each worker will attempt to move each atom in the replica according to

the algorithm described in algorithm 2.1. Once complete, the results are sent back

to the master and the worker will wait for more work from the master. A more

in depth description of this implementation is given in section 3.3.4. The number

and size of communications in this implementation are a major bottleneck in this

implementation. No model for this is given because of the sheer lack of scalability of

this method on small clusters.

To combat this limitation, the next implementation assigns work to each worker

at the beginning of the program such that each worker has the same number of
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Figure 6.4: Serial, single core model accuracy for the AMD Opteron Istanbul

replicas. At the end of each odd or even replica processing, each worker will send

the last/first replica in its workload to the neighboring workers. This is necessary for

the displacement vector calculation for each atom as described in 3.2.2. This reduces

the number of communications tremendously while reducing the bottleneck of a single

master constantly handling all requests from each worker. However, the master is still

a bottleneck for taking the snapshots as each worker must send its replica information

to the master. Since the workers cannot send its replica information asynchronously

to the master and continue to do work without risk of overwriting data, each worker

must wait until its send is complete. At large numbers of workers (more than 480

as seen in testing), this becomes a major problem, dramatically reducing efficiency.

Also, it is not possible to take advantage of the parallel filesystem by having a single

master. More details on this implementation are supplied in section 3.3.4.

Finally, a third implementation avoids this issue by having multiple masters. Each

worker has their local master that they will send snapshot information to. Each

master will write their own snapshot and save files in order to take advantage of the
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Figure 6.5: Serial, single core model accuracy for the AMD Opteron 6272

parallel filesystem (e.g., Lustre) if available. This allows for each worker to send their

snapshot information in an efficient, timely fashion, giving more time to do more

computational work. More details are available in section 3.3.4.

In its most general form, the runtime of the MPI implementation can be written

as the sum of initialization/finalization time, worker time, snapshot time, and

communication time (equation 6.22).

tMPI = tinit + I ∗ tworker + S ∗ tsnapshot + tfinal (6.22)

All of the MPI models use this equation in some form, as will be discussed below.

Coming back to the question, “How does the serial model help if all the important

scientific work requires a parallel implementation?” As described in section 3.3.4 and

above, each MPI worker process, with the exception of the masters, runs a serial

version of the QSATS algorithm on a subset of replicas. Therefore, we are able to use

this timing model to predict the runtime of each worker process. Equation 6.23 gives
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Table 6.5: Parameters for the MPI models

Symbol Description
Bwrite Filesystem write bandwidth
Bread Filesystem read bandwidth
Bsend Interprocess communication bandwidth
L Interprocess communication latency

the time it takes for each for each worker to complete its work in a single iteration.

tworker =
Rw

Frequency
∗ (caverage + cgaussian+

A ∗ (cuniform + P ∗ ccalcd2 + cinnerdv + couterdv + cpredetermine)) (6.23)

These models are dependent on all of the factors described for the serial model

plus the parameters listed in table 6.5

The models developed in this section are described in terms of the scalability/ef-

ficiency of the different implementations. In this dissertation, efficiency is calculated

as the speed up of using the parallel implementation over the serial divided by the

number of processors used:

Efficiency =
tserial

Procs ∗ tparallel
(6.24)

Since modern supercomputers such as Kraken [95] and Jaguar [2] charge by the

compute hours used, the cost function in equation 6.25 is used to determine how the

run will be “billed” given a specific set of parameters:

Cost = N ∗ tMPI (6.25)

Single Master-Dependent Workers

A model for the single master, dependent worker implementation was created to show

the lack of scalability of this method.
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First, initialization can mostly be neglected for large problems and small numbers

of workers. However, the initialization is a contributing factor to the lack of scalability

thus is included in this model. At the start of the program, the master must read the

save file if it is a continuation of a previous run. This can be modeled as the product

of the size of the file and Bwrite, as shown in equation 6.26.

tread save =
R ∗ (A ∗ 3 + 8) ∗ 8

Bread

(6.26)

If this is not a continuation run, the displacement vector is set to zero and the RNG

state information is initialized as described in section 3.2.1. In this case, reading the

save file is not necessary making this time zero.

Once the save file has been read in, the master distributes the work to each of the

workers. The master must send two packets to each worker: Rw replica displacement

information and Rw RNG state information arrays. Equation 6.27 models the work

distribution time.

tdistribute work =

(
(3 ∗ A+ 8) ∗Rw ∗ 8

Bsend

+ 2 ∗ L
)
∗W (6.27)

The sum of these two times (shown in equation 6.28) makes up the total initialization

time.

tinit = tread save + tdistribute work (6.28)

Next, the work performed by the workers must be modeled in order to get an

accurate time. Luckily, this is already developed for the most part. Equation 6.23

gives the approximation of the runtime time for each worker where Rw = R
W

. This

was already shown to be an accurate model for the serial implementation in section

6.1.1 so there will not be any further explanation here. The next item that needs

to be modeled is the exchange of replica information that each child performs with

the neighboring workers. For each iteration, each child sends 2 ∗ 3 ∗ A ∗ V ∗ 8 =

48 ∗ A ∗ V bytes of information. Sending the replica information to the neighbors
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is asynchronously overlapped with receiving the data. Therefore, the time taken to

do the exchanges exchanges is simply the time it takes for a single child to do the

exchange as shown in equation 6.29.

texchange =
48 ∗ A ∗ V
Bsend

+ L (6.29)

Third, the time taken to send a single snapshot from the worker to master is given

in equation 6.30.

tsinglesnap =
3 ∗ A ∗Rw ∗ 8

11 ∗Bsend

+ L (6.30)

However, despite the children sending all their snapshots simultaneously, the master

can only receive a single snapshot at a time. Therefore, the snapshots are received

serially, essentially synchronizing all of the children. Because of this, the real cost of

the snapshot communications is given in 6.31.

tcommsnap = W ∗ (tsinglesnap) (6.31)

Once the master has all of the snapshots from the workers, all of the workers can

continue with the next iteration. While the children are continuing their work, the

master can simultaneously write the snapshot file to disk. Equation 6.32 gives the

time taken to write a single snapshot.

twritesnap =
3 ∗ A ∗R ∗ 8

11 ∗Bwrite

(6.32)

Since there is an overlap of work with the master and workers, the simulation

runtime excluding the initialization and finalization is maximum of the time it takes

to write the snapshot and the time to perform SI iterations, given in equation 6.33.

tsimulation time = max {twritesnap, SI ∗ (tworker + texchange)}+ tcommsnap (6.33)
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Finally, the time it takes to finalize the program is another major contributing

factor to the scalability of this implementation. Finalizing QSATS involves the time

taken for the master to gather the final configurations from all of the children. The

master gathers all of these configurations then writes them to disk. Equation 6.36

describes the time to finalize the program and write the save file.

tgather results =

(
(3 ∗ A+ 8) ∗Rw ∗ 8

Bsend

+ 2 ∗ L
)
∗W (6.34)

twrite save =
R ∗ (A ∗ 3 + 8) ∗ 8

Bwrite

(6.35)

tfinal = tgather results + twrite save (6.36)

Adding these together, the total runtime of this MPI implementation is given by

the sum of the previous times, as shown in equation 6.37.

tsingle master = tinit + S ∗ tsimulation time + tfinal (6.37)

= tread save + tdistribute work

+ S ∗ (max {twritesnap, SI ∗ (tworker + texchange)}+ tcommsnap)

+ tgather results + twrite save (6.38)

In order to test this model, various numbers of runs were performed on the

Kraken supercomputer. Due to time allocation limitations, extensive tests for this

implementation are not possible as it would require a large amount of hours. Table

6.6 lists the Kraken parameters used in the model. All of the parameters used in the

tworker are in table 6.4 under the AMD Istanbul column. I/O performance numbers

are obtained from running the IOZone Benchmark [109] on Kraken. These are by no

means completely accurate as these numbers can vary depending on the load of the

system at the time; however, they are suitable estimates. As for the communication

bandwidth and latency, these are obtained from the Innovative Computing Lab

HPC Challenge website that lists the results of various benchmarks on clusters and
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Table 6.6: Parameters for the Kraken supercomputer

Parameter Value
Bwrite 225.576 MB/s [109]

Bmaxwrite 11.00 GB/s [83]
Bread 731.423MB/s [109]
Bsend 1.6 GB/s [110]
L 9µs [110]

Table 6.7: Model results of the single master implementation

Single Master
N R A I S Runtime Predicted Error Efficiency
24 25576 180 1000 10 209.08 191.88 -8.22% 95.4%
48 20868 448 1000 10 211.65 191.57 -9.49% 97.0%
120 80444 448 1000 10 321.52 295.66 -8.04% 97.0%
480 53648 1440 1000 10 179.71 168.17 -6.42% 91.4%
960 111244 1440 1000 10 199.92 188.92 -5.50% 84.3%
120 80444 448 100 100 37.66 40.43 7.36% 71.6%

supercomputers around the world [110]. Table 6.7 gives a list of runtimes using various

parameters that test the scalability and the accuracy of the model.

As can be seen, the model is accurate within less than 10%. Inaccuracies in the

serial model (described in the previous section) and lack of current bandwidth, latency

and I/O speed values contribute to the inaccuracy of the model. For instance, if there

is another job running that is extremely I/O intensive, the Lustre filesystem could

be overloaded with requests thus reducing the amount of available bandwidth. This

table is also shown in figure 6.6.

As mentioned in the previous chapter, this implementation has the downfall of

scaling poorly due to the large amount of communications the master has to handle

as the number of children increase. Using this model, it is possible to see what the

scalability, runtime, and cost of using various parameters indicating this limitation

and hinting what should be addressed when developing a new implementation. The

plots in figure 6.7 show the predicted runtime, efficiency, and cost for running the
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Figure 6.6: Model results of the single master implementation

QSATS program on the Kraken supercomputer for 7920 atoms, 1 million iterations,

50,000 replicas, and 10,000 snapshots.

A note: these graphs are zoomed in to show the shape of the plots; otherwise with

small number of processors and high numbers of replicas, the plot for the time would

dominate. This is why for smaller number of processors it seems the plot is “cut off”.

An interesting fact shown in figure 6.7a is that there is a point where adding

more processors to deal with the same sized problem has no benefit. In fact, looking

at the corresponding cost function in figure 6.7c, we can see that simply adding

more processors to the problem only wastes allocation hours. Figure 6.7b shows

that this increase in cost is due to a major decrease in efficiency so that we are not

effectively utilizing the resources. From these plots, it can be seen that the single

master implementation should be able to scale with more than 80% efficiency up to
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(a) Single master-dependent workers runtime
model

(b) Single master-dependent workers effi-
ciency model

(c) Single master-dependent workers cost
model

Figure 6.7: Single master-dependent workers models

about 10,000 processors at which point the performance drops dramatically. However,

even 80% efficiency is not satisfactory as there is a 20% waste of compute resources,

thus the need for a more advanced implementation.

Multiple Masters - Dependent Workers

As a reminder, the number of processors, N , is split into M work groups where each

group has a single master and Wg = N/M − 1 workers.

First, initialization can mostly be neglected for large problems and small numbers

of workers. However, the initialization can be a contributing factor to the scalability

performance thus is included in this model. At the start of the program, each master

must read its save file if it is a continuation of a previous run. This can be modeled
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as shown in equation 6.39.

tread save =
R ∗ (A ∗ 3 + 8) ∗ 8

M ∗Bread

(6.39)

If this is not a continuation run, the displacement vector is set to zero and the RNG

state information is initialized as described in section 3.2.1. In this case, reading the

save file is not necessary making this time zero.

Once the save file has been read in, each master distributes the work to each of the

workers. The master must send two packets to each worker: Rw replica displacement

information and Rw RNG state information arrays. Equation 6.40 models the work

distribution time.

tdistribute work =

(
(3 ∗ A+ 8) ∗Rw ∗ 8

Bsend

+ 2 ∗ L
)
∗Wg (6.40)

The sum of these two times makes up the total initialization time:

tinit = tread save + tdistribute work (6.41)

Next, the work performed by the workers must be modeled in order to get an

accurate time. Luckily, this is already developed for the most part. Equation 6.23

gives the approximation of the runtime time for each worker where Rw = R
W

. This

was already shown to be an accurate model for the serial implementation in section

6.1.1 so there will not be any further explanation here. The next item that needs to

be modeled is the exchange of replica information that each child performs with the

neighboring workers, which is the same as in the single master case given in equation

6.29.

Third, the time taken to send a single snapshot from the worker to master is

given in equation 6.30. As with the single master case, each master can only receive

a single snapshot at a time. Therefore, the snapshots are received serially, essentially

synchronizing all of the children. Because of this, the real cost of the snapshot
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communications is given in 6.42.

tcommsnap = Wg ∗ (tsinglesnap) (6.42)

Once each master has all of the snapshots from its workers, all of the workers can

continue with the next iteration. While the children are continuing their work, the

master can simultaneously write the snapshot file to disk. Also, each master writes

their file individually to the filesystem simultaneously with the other masters. This

allows for maximum throughput to the parallel filesystem. Equation 6.43 gives the

time taken to write a single snapshot.

twritesnap =
3 ∗ A ∗R ∗ 8

11 ∗M ∗Bwrite

(6.43)

Since there is an overlap of work with the master and workers, the simulation

runtime excluding the initialization and finalization is maximum of the time it takes

to write the snapshot and the time to perform SI iterations, given in equation 6.44.

tsimulation time = max {twritesnap, SI ∗ (tworker + texchange)}+ tcommsnap (6.44)

Finally, the time it takes to finalize the program is another major contributing

factor to the scalability of this implementation. Finalizing QSATS involves each

worker sending the final configurations for its replicas to the master. The master

gathers all of these configurations then writes them to disk. Equation 6.47 shows the

time to finalize the program and write the save file.

tgather results =

(
(3 ∗ A+ 8) ∗Rw ∗ 8

Bsend

+ 2 ∗ L
)
∗Wg (6.45)

twrite save =
R ∗ (A ∗ 3 + 8) ∗ 8

M ∗Bwrite

(6.46)

tfinal = tgather results + twrite save (6.47)
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Table 6.8: Accuracy of the multi-master MPI model

N M R A I S Actual Pred. Error Eff.
960 15 109968 1440 1k 10 134.68 130.22 -3.31% 95.4%
1920 12 122112 1440 10k 100 729.06 711.65 -2.93% 92.2%
3840 15 153000 1440 10k 100 473.25 459.38 -2.93% 89.4%
7668 142 210728 1440 100k 1000 3372.74 3110.80 -7.77% 85.6%
15.3k 300 120000 3584 100k 1000 2863.92 2639.93 -7.82% 71.6%

Adding these together, the total runtime of this MPI implementation is given by

the sum of the previous times, as shown in equation 6.48.

tmultiple master = tinit + S ∗ tsimulation time + tfinal (6.48)

= tread save + tdistribute work

+ S ∗ (max {twritesnap, SI ∗ (tworker + texchange)}+ tcommsnap)

+ tgather results + twrite save (6.49)

As before, in order to test this model, various numbers of runs were performed

on the Kraken supercomputer. Due to time allocation limitations, extensive testing

for this implementation is not possible as it would require a large amount of hours.

Table 6.6 lists the Kraken parameters used in the model. All of the parameters used

in the tworker are in table 6.4 under the AMD Istanbul column.

Table 6.8 gives a list of runtimes using various parameters that test the scalability

and the accuracy of the model. Figure 6.8 visualizes this information in terms of

performance as shown in equation 5.3.

What can be drawn from this information is that the model is accurate within

less than 8%. However, it must be noted that for the 7,668 and 15,300 core runs

the bandwidth from the workers to the masters was significantly reduced due to

the 30MB/s and 6MB/s, respectively, described in section 5.1.4. Using the ideal

bandwidth of 1.6GB/s as in the first three parameter sets results in a model error

around 30%. This bandwidth was verified by outputting the total snapshot time
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Figure 6.8: Accuracy of the multi-master scalability model

for all of the snapshots. The computation time is accurate within less than 5% for

each of these runs. The reason why the first three runs are able to modeled with

the ideal bandwidth is because these runs were performed at a completely different

time, approximately 1 month prior to seeing the bandwidth issues. As mentioned

in section 5.1.4, the bandwidth issue was confirmed to have nothing to do with the

algorithm by rerunning some of the other parameter sets to observe the variances in

bandwidth. One possible explanation for this degradation in bandwidth could be that

other applications running on the machine are bandwidth heavy causing contention

on the network thereby reducing bandwidth.

Figure 6.9 shows the runtime, efficiency, and cost for running the QSATS program

on the Kraken supercomputer for 7920 atoms, 1 million iterations, 50,000 replicas, and

10,000 snapshots, assuming the ideal bandwidth (table 6.6) and not the troublesome

bandwidth described above.
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(a) Multi master-dependent workers runtime
model

(b) Multi master-dependent workers effi-
ciency model

(c) Multi master-dependent workers cost
model

Figure 6.9: Multi master-dependent workers models

Figure 6.9 is different than the last plots as it shows the runtime, efficiency, and

cost in terms of number of processors and masters. This exemplifies the effect of using

multiple masters on the program and provides insight on an optimal configuration

of masters. In order to choose the optimal number of masters to use with a given

problem, equations 6.50 to 6.53 shows a method of determining the number of masters

that minimizes the runtime.

Mmin = Solve[t′multiple master(M) == 0&&M > 0,M ] (6.50)

DivP = t′multiple master(PrevDivisor[N,Mmin]) (6.51)

DivN = t′multiple master(NextDivisor[N,Mmin]) (6.52)

M̃min = (DivP < DivN?DivP : DivN) (6.53)
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First, the minimum of the time function is found by taking the derivative with respect

to M, setting the result to zero, and solving for M to find Mmin. Mmin is the point at

which the runtime is minimized; however, the number of masters must be an integer.

Also, for effective load balancing, it is required that N is divisible by the number of

masters. Therefore, it is necessary to find what divisor of the N results in a near

minimum runtime. To do this, the first divisors of N less than and greater than

Mmin are chosen, input into the model, and compared. The one resulting in the lower

runtime is the near-optimal number of masters that should be used. The PrevDivisor

and NextDivisor functions are used to find the previous and next divisor of N from

Mmin. Using this method, we can predict the optimial number of master to use that

will result in the highest performance.

It is possible to predict the runtime and scalability of the microprocessor

implementation using the models developed in this section. By simply counting

operations and looking up the corresponding documented latencies, we can obtain

predicted runtimes that are accurate within less than 10%.

6.2 Graphics Processing Units

Unlike the microprocessor implementation, the GPU implementation is 100% memory

bound as determined by using the NVIDIA Visual Profiler. Because of this, the model

can safely ignore any computations as they are completely hidden by memory accesses.

Using this knowledge, this section creates a performance model that includes various

memory aspects of the Tesla and Fermi architectures of NVIDIA GPUs. Therefore,

it is necessary to determine the cost of accessing the various forms of memory. The

global memory latency is supplied by NVIDIA to be in the range of 400-800 clock

cycles [38]. The texture memory is not explicitly given by NVIDIA; however, Wong

et al. [111] have developed benchmarking tools that were intended for the Tesla

architecture. According to the benchmarks, texture memory accesses have a latency

of 230 clock cycles on the Tesla architecture and 219 on the Fermi architecture.
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To develop a performance model, this work first attacked the model for the Tesla

c1060 (values subscripted with T) then adapted that model to describe the Fermi

architecture (values subscripted with F).

6.2.1 NVIDIA Tesla c1060

The first step to developing the GPU performance model is to count the number

of memory accesses in the CUDA kernel. The uniform random number generator

contains 18 global memory accesses on average. Due to some conditionals in the

code to avoid negative and zero values, there are occasionally more than 18 memory

accesses; however, this is rare so the extras accesses can safely be ignored.

UniformT = 18 ∗ global (6.54)

To generate a Gaussian random number there is the cost of generating two uniform

random numbers plus three more accesses to store/read from the state vector if a

number has already been generated and stored. Saying this it is also only necessary

to generate two uniform random numbers every other time the function is called;

therefore, the cost of generating a Gaussian random number is only the cost of one

uniform number plus 3 global accesses.

GaussianT = UniformT + 3 ∗ global (6.55)

Next, the cost of reading the current atom position and calculating the new

position is determined. The current atom position is read from global memory and

stored into registers. To calculate the projected atom position, two global memory

accesses for each component is required to calculate the average of the neighboring

replicas. Once the average is calculated, the Gaussian displacements are added to the

average accounting for three Gaussian random number generations.
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OldNewT = 3 ∗ global + 2 ∗ 3 ∗ global + 3 ∗GaussianT

= 9 ∗ global + 3 ∗GaussianT (6.56)

To calculate the potential energy, a total of 2∗P table look-ups are read from the

texture memory. One of the reasons why this is purely memory bound is due to the

use of the hardware linear interpolation so the calculations associated with this step

is safely ignored. To determine the indexes into the potential energy look-up table,

there are a total of 4 ∗ P global memory accesses to calculate the square distance

between the positions and all of the neighbors. However, since this is a pretty tight

loop, these global memory accesses are highly pipelined so the cost of each of these

accesses are counted with a cost of 1.

PotentialT = 4 ∗ P + 2 ∗ P ∗ texture (6.57)

The rest of the kernel consists of generating a uniform random number to

determined whether to accept or reject the move, three global memory accesses to

store the new position, and two global memory accesses to account for the decision

of accept or reject.

AccRejT = UniformT + 5 ∗ global (6.58)

Summing equations 6.56-6.58 together accounts for all of the memory accesses

within a single thread for the movement of a single atom. Multiplying this sum by

the number of atoms, A, will give the total number of cycles it takes to move all of

the atoms in a replica per thread per iteration.

ThreadCyclesT = OldNewT + PotentialT + AccRejT (6.59)
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However, we cannot simply multiply this by the number of replicas to account for

an entire simulation as this would be neglecting architectural features from which this

program greatly benefits such as memory coalescing. One architectural feature that

affects the runtime is the assignment of thread blocks to streaming multiprocessors

(SMs). Once the SMs have been assigned blocks, the block scheduler begins to give

more blocks to each of the SMs. Each SM computes at the same time. Therefore, to

have an efficient execution, it is imperative to use enough blocks to fill all of the SMs

equally. Otherwise, if some SMs, have more blocks than the others, the runtime of

the kernel is dependent on the execution of the SM with the most blocks. This results

in a “stair-step” function that has steps as wide as the number of SMs. Because of

this, it is best to adapt this model to describe the runtime of the algorithm at the

block level rather than thread level. To do this, we multiply equation 6.59 by the

number of threads per block, 64, and a ceiling function of the number of SMs used.

However, one of the benefits of this implementation is the ability to take advantage

of coalesced memory accesses. We can divide the number of threads per block by

the number of doubles that can fill the data bus from global memory to the SM to

give the number of coalesced reads for a single access to memory. To get the time in

seconds to perform a single iteration, we can just divide this by the clock rate of the

GPU.

KernelTimeT =
64

DatapathWidth
8

∗ ThreadCyclesT
Clock

∗ Ceiling(
Blocks

SM
) (6.60)

In the case of the Tesla c1060, there are a total of 30 SMs each with 8 streaming

processors each for a total of 240 cores. This model already accounts for the total

number of cores so there are no extra factors involved with the equation in 6.60.

To account for snapshotting, the model adds the time it takes to transfer all

of the replica configurations from the device to the host. Since there is a risk of

data overwrite/corruption, this transfer cannot be done asynchronously. However,
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once the data is on the host, the host process can write the data to disk while the

GPU continues with more simulations. This is accomplished by having a thread

waiting for the transfer to complete, at which point it will write the 11th replica

to disk while the GPU continues with the simulation. To model the snapshotting

process, the time required to transfer the replica information is simply the size of the

packet transferred divided by the transfer bandwidth using pinned memory (obtained

from the bandwidthTest program in the SDK). Since writing the snapshot to file is

performed simultaneously with GPU execution, the runtime is dependent on the

slower of the two; therefore, the maximum runtime of the two is used to model the

overall time. This is shown in equation 6.63.

FromDevice =
2 ∗ A ∗R
Bpinned

(6.61)

WriteSnapshot =
2 ∗ A ∗R
11 ∗Bwrite

(6.62)

GPUTimeT = S ∗max {SI ∗KernelTimeT ,WriteSnapshot}

+ FromDevice (6.63)

Initialization costs are ignored in this model for various reasons. The initialization

times seems to varying across platforms, GPU models, installations, and which GPU

in a node is used. For instance, on one of the machines used for testing, there are

two Tesla c1060 cards available. The initialization cost for the cost for device 0 was

sometimes larger than using device 1 and sometimes the other way around. There

was no real consistency with the runtime to determine an accurate model However, as

the length of the simulation increases, the cost for initialization is almost completely

hidden and can be safely ignored.

Using the parameters in table 6.9, the model in equation 6.63 can be used to

predict the runtime of the program on the Tesla c1060 cards.
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Table 6.9: Tesla c1060 model parameters

Parameter Description Value
global Global memory latency 400 [38]
texture Texture memory latency 230 [111]

SM Number of SMs 30 [92]
Bpinned Device to host pinned memory bandwidth 5.1 GB/s [92]
Clock Core clock frequency 1.3 GHz [92]
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Figure 6.10: Model accuracy for the TeslaC1060 GPU - 180 Atoms

The figures in 6.10-6.12 show the model performance of varying the amount of

work the GPU has to perform in terms of blocks (x-axis). Each figure uses a different

sized crystal lattice.

It can be seen in these plots that the model accurately represents the runtime of

the program to less than 3% error when the number of blocks is large. The large

errors with fewer blocks is simply due to the small runtime making the relative error

much larger. Using this model it is possible to tweak the various parameters such as

the global and texture memory latencies, clock rate, and number of SMs to predict

the performance impact that new architectural features would have on the runtime

of this application.
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Figure 6.11: Model accuracy for the TeslaC1060 GPU - 448 Atoms
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Figure 6.12: Model accuracy for the TeslaC1060 GPU - 1440 Atoms
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6.2.2 Fermi Architecture

As mentioned in the previous chapters, the Fermi architecture provides many new

features that enhance the performance of codes running on GPU devices. One of

which is the number of compute cores and SMs. There are an increased number of

cores from the Tesla architectures (2x more in the GeForce GTX 480 and 2.133x more

in the Tesla M2090). Another new feature is the presence of a configurable 16KB or

48KB L1 hardware managed cache for global memory accesses per SM. Third, the

Tesla architecture grouped sets of 3 SMs into a texture processing cluster (TPC)

where each cluster shares a single texture unit. The Fermi architecture has made the

improvement to give each SM access to its own private texture unit. These three

new features have a dramatic effect on the performance of applications, especially for

memory bound applications such as QSATS. To account for these new features, the

Tesla model needed to be tweaked.

To account for caching, it was necessary to dive back into the code to determine

what portions of the code exhibit good caching behaviors. Since accesses to cached

memory are much faster than accessing global memory, this model counts cached

accesses as free (i.e., zero latency). First, the uniform random number generator

memory accesses can be reduced dramatically. Recall, the random number generator

uses six states. Each time the uniform random number generator is called, these six

states must be read from global memory multiple times. However, in the case of

the Fermi architecture, the states are read from global once (i.e., six global memory

accesses) and cached so that all subsequent accesses have a much lower access penalty.

UniformF = 6 ∗ global (6.64)

Likewise for the Gaussian random number generator, there are three extra state

accesses but only two of them are full penalty global memory accesses. In addition,

since the uniform random number generator is called twice in a single call to the

Gaussian generator, the first call is “full” cost as shown in equation 6.64 while the
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second call is fully cached making it free. Therefore on average, the URNG penalty

is incurred .5 times per Gaussian call.

GaussianF =
1

2
∗ UniformF + 2 ∗ global (6.65)

Since the SMs are no longer grouped into TPCs, there is less contention for the

use of the texture units. This enables the potential energy texture look-ups to be

highly pipelined with less interference from other SMs, changing equation 6.57 to

PotentialF = 4 ∗ P + P ∗ texture (6.66)

To account for the increased number of cores, this model has a dividing factor, γ,

that represents the factor of number of cores the Fermi GPU in comparison to the

Tesla c1060 (2x more in the GeForce GTX 480 and 2.133x more in the Tesla M2090).

All of these improvements make up the kernel model shown in equation 6.70.

OldNewF = 3 ∗ global + 2 ∗ 3 ∗ global + 3 ∗GaussianF

= 9 ∗ global + 3 ∗GaussianF (6.67)

AccRejF = UniformF + 5 ∗ global (6.68)

ThreadCyclesF = OldNewF + PotentialF + AccRejF (6.69)

KernelTimeF =
64

DatapathWidth
8

∗ ThreadCyclesF
γ ∗ Clock

∗ Ceiling(
Blocks

SM
) (6.70)
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Table 6.10: Fermi model parameters

Parameter Description GTX480 M2090
global Global latency 400 [38]
texture Texture latency 219 [111]

SM Number of SMs 15 16 [92]
Bpinned Device to host pinned bandwidth 5.1 GB/s 6.5GB/s [92]
Clock Core clock frequency 1.4 GHz 1.3 GHz [92]
γ Factor of cores over c1060 2 2.133

The same approach is taken with the Fermi architecture as with the Tesla to

account for the cost of snapshotting, as shown in equation 6.71.

GPUTimeF = S ∗max {SI ∗KernelTimeF ,WriteSnapshot}

+ FromDevice (6.71)

Using the parameters in table 6.10, the model in equation 6.71 can be used to

predict the runtime of the program on the following Fermi cards: GeForce GTX 480

and Tesla M2090.

The figures in 6.13- 6.18 show the model performance of varying the amount of

work the GPU has to perform in terms of blocks (x-axis). Each figure uses a different

sized crystal lattice.

From these plots, it can be seen that the model is accurate within less than 5-10%

with large problem sizes. The larger errors with the smaller problem sizes is a result

of the small runtime making the relative errors larger. Problems this small are not

scientifically important so there is no need to run jobs of this size. Therefore, the

important portion of the model is for larger problem sizes. As with the previous GPU

model, it is possible to tweak various parameters in the model to accurately see what

the effect new features in future GPU models have on runtime. Also, when planning

a full run on these devices, it is possible to use this model to determine how much

time allocation is needed to complete the run.
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Figure 6.13: Model accuracy for the GeForce GTX 480 GPU - 180 Atoms

It can seen that for this memory bound application, simply counting memory

accesses and summing their latencies can provide for accurate performance modeling.

To examine optimizations performed by the compiler such as loop unrolling, it is

necessary to look through some of the PTX code; however, most of the accesses

can be counted directly from the CUDA code. In order to account for architectural

differences across generations, it is required to alter the model. Using these guidelines,

it is possible to develop models for memory bound, computational science GPU

applications.
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Figure 6.14: Model accuracy for the GeForce GTX 480 GPU - 448 Atoms
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Figure 6.15: Model accuracy for the GeForce GTX 480 GPU - 1440 Atoms
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Figure 6.16: Model accuracy for the Tesla M2090 GPU - 180 Atoms
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Figure 6.17: Model accuracy for the Tesla M2090 GPU - 448 Atoms
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Chapter 7

Future Work and Conclusions

Within the last decade, there has been a massive growth of high performance archi-

tectures providing developers the tools to tackle some of science’s biggest problems.

Emerging architectures such as multicore processors, graphics processing units, and

the Intel MIC assist developers and scientists in answering scientific questions that

were previously thought to be impossible. This dissertation investigates the use

of multiprocessors (intra- and internode), multiple graphics processing units, and

the Intel MIC to determine their practicability in regards to the computational

chemistry Quantum Monte Carlo method, Variational Path Integral (VPI). This

chapter summarizes contributions, results, and pinpoint areas of future research.

7.1 Future Work

Although this dissertation provides a large portion of work on the QSATS program,

there is still plenty to explore in the future. In terms of science, three-body

interactions can be added to the code to explore their effect on the movement of

atoms in a crystal in comparison to the two-body explored in this work. The basic

framework for the GPU and MPI implementations is already laid out and should be a

straightforward addition to the code. Doing the three-body interactions increases the
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memory transaction requirements and the number of calculations. The performance

models can be altered to account for these once the algorithm has been planned out.

From a computer engineering perspective, the Intel MIC architecture can be

explored more with this application once a final product is available. This involves

tweaking some of the code to account for any minor architecture changes from the

alpha boards used in this work.

Another possible improvement to the code as a whole is to discretize the crystal

movement space and eliminate the need for floating point arithmetic by using integers,

as discussed in [112]. This optimization could have major impacts on performance

as using integers is significantly less computationally expensive. Also, using 32-bit

integers (if able to obtain necessary accuracy) would reduce the memory footprint

and increase the amount of cacheable data.

Finally, if someone is brave enough to do so, QSATS could be implemented

onto FPGAs to accelerate this application. Use of integers instead of floating-point

numbers would lend itself nicely to an FPGA implementation. This would allow for

an extremely low powered, potentially high performance implementation to be used

on reconfigurable high performance computing systems such as Maxwell [113].

7.2 Conclusions

High performance computing architectures are ever growing and adapting to the

computational demands of scientific applications. Traditional multiprocessors are

progressively improving architectural features (e.g., larger, faster caches and wider

vector units) to provide support to computational algorithms while still providing

the convenience of familiar programming capabilities. Linking these multiprocessors

together with fast interconnects give the ability to scale applications to hundreds

of thousands of cores. The Intel MIC architecture provides the developer with an

architecture with many general purpose cores containing wide vector units. While

not released yet, it promises to deliver high performance with little to no code change.
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Graphics processing units (GPUs) are another architecture that has exploded into the

high performance computing realm within recent years. With hundreds of cores, these

devices give developers the ability to exploit high parallelism in many applications.

GPUs are rapidly being adopted into supercomputer across the world due their high

performance per watt/cost ratios.

This dissertation develops a multiprocessor, multinode implementation using C,

vector units, OpenMP, pthreads, and MPI. This work starts by optimizing the serial

C implementation as it is the backbone of all of the other implementations. This

involved memory layout and algorithmic optimizations that led to an implementation

that was 1.76x faster than the original Fortran implementation. Next, exploiting

the use of vector units and C intrinsics, QSATS is able to extract an additional

1.35x using SSE and the Intel icc compilers on the Kraken supercomputer and 2.51x

using AVX and the Intel icc compiler on the Intel Sandy Bridge architecture. The

threaded implementations using pthreads and OpenMP do not provide the type of

performance increase that is desired to fully utilize all resources. The efficiency of

these implementations quickly dropped as the number of cores were increased. This

is due to the large amount of data transfers needed for each thread interfering with

that of another thread. However, the MPI implementation provides an efficient and

highly scalable approach to parallelizing the QSATS program. Scaling to thousands of

cores with approximately 80-90% efficiency, it is possible to use this implementation

to tackle real science questions such as ones that involve thousands of atoms and

hundreds of thousands of replicas.

The Intel MIC architecture is definitely an up and coming platform that holds

a lot of promise. While not currently appropriate for this application, it is still an

architecture that should be considered when developing new applications. The lack of

performance in this application can be attributed to the early stages of the prototype

board that was used in this work. It is possible that a final, full release board will

be more polished with more advanced features than the current board. Therefore, it

would be advantageous to explore this device more in the future.
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GPUs hold the most promise as using a single NVIDIA Tesla M2090 equates

to the same performance as three nodes of Kraken. GPUs are readily available

in many supercomputers and consumer machines. This architecture is relatively

straightforward to program due to the development of specialized parallel languages

such as CUDA and OpenCL. Optimizing and debugging code for the GPU is much

easier using CUDA than OpenCL since NVIDIA provides numerous tools to aid in this

process for CUDA. In this work, the CUDA implementation provides approximately

a 3.3x speedup over 12 cores of the AMD Opteron Istanbul. This translates a higher

performance per watt and performance per cost since significantly more work can

be accomplished with this architecture with less resources. For the QSATS program,

GPUs are the best architecture for the job if looking to simulate hundreds of thousands

of replicas

In addition to these implementations, I have also developed performance models

for the multiprocessor, multinode scalability, and GPU architectures. These models

provide insight into each of the devices, showing bottlenecks in the implementations

allowing for performance enhancements. With these models, there is no guessing

as to what portions of the code comprise the total runtime of the program. The

scalability model is able to predict within less than 10% the resources needed to

execute a VPI simulation so that we can minimize cost, which in this case is compute

hours. With the GPU model, we can predict the overall runtime of the kernel code

within less than 5% for large problem sizes. These models also provide insight into

architectural features that both benefit (e.g. pipelines) and hinder performance (e.g.

texture processing clusters in the Telsa GPU architecture). Developing the models

as shown in this work contributes to the performance modeling field by providing

an approach to create application specific models. That is, this work shows that it

is possible to develop performance models by mostly reading the source code and

counting arithmetic instructions or memory operations.

From these results, emerging architectures such as multicore, many core, and

GPUs are the wave of the future for supercomputing technologies. This is
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apparent in the growing adoption of GPUs (11% of the Top 500 in June 2012).

The implementations and performance models in this dissertation will provide an

approach to explore new and upcoming architectural features as they relate to the

computational science realm.
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