

University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange

Doctoral Dissertations

Graduate School

12-2012

Characterization Of Genes And Pathways Controlling Biofilm Formation In Saccharomyces Cerevisiae

Neha Sarode nsarode@utk.edu

Recommended Citation

Sarode, Neha, "Characterization Of Genes And Pathways Controlling Biofilm Formation In Saccharomyces Cerevisiae." PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1560

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a dissertation written by Neha Sarode entitled "Characterization Of Genes And Pathways Controlling Biofilm Formation In Saccharomyces Cerevisiae." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences.

Todd B. Reynolds, Major Professor

We have read this dissertation and recommend its acceptance:

Jeffery Becker, Albrecht Von Arnim, Andreas Nebenfuhr

Accepted for the Council: <u>Carolyn R. Hodges</u>

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Neha Sarode entitled "Characterization of genes and pathways controlling biofilm formation in *Saccharomyces cerevisiae*". I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Science.

Todd Reynolds, Major Professor

We have read this dissertation and recommend its acceptance:

Dr. Todd B. Reynolds

Dr. Jeffery Becker

Dr. Albrecht Von Arnim

Dr. Andreas Nebenführ

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Characterization Of Genes and Pathways Controlling Biofilm Formation In Saccharomyces cerevisiae

A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville

> Neha Sarode December 2012

Dedication

This dissertation is dedicated to my family. A deep feeling of gratitude for my parents Mr. D. N. Sarode and Mrs. Vrushali Sarode, who gave me the opportunity of an education and freedom to pursue my dreams wherever they took me. I won't be where I am without them. To my sister Shweta Ghevde, brother-in-law Shailendra Ghevde and my dearest niece Pavitra for their unconditional love and support throughout these years.

I also dedicate this work to all my dear friends here in Knoxville, who are like second family and never let me miss my family back home.

Finally, I would also like to dedicate this work and give special thanks to my dear husband Dr. Ambrish Roy for being my unwavering rock for the past 8 years (and counting). You are my best friend and my toughest critic, and I am thankful for that.

Acknowledgement

First and foremost, I would like to thank my advisor Dr. Todd B. Reynolds. This thesis was an impossible dream without his immense patience and constant guidance. He taught me everything I know about biofilms, encouraged me when I was struggling and most important of all stood by me when I thought I was all alone and lost. He transformed me into a better scientist and a stronger person and I will be indebted to him all my life for his kindness.

I would also like to thank my committee members Dr. Jeffery Becker, Dr. Albrecht Von Arnim and Dr. Andreas Nebenführ for their critical review, suggestions and guidance during my work. Dr. Becker, is a strict mentor who didn't hesitate to discipline me when required but also encouraged and appreciated my work when I deserved it. Both Dr. Arnim and Dr. Nebenführ, showed interest in my work, encouraged me and never hesitated to point out my shortcomings from the viewpoint of someone who is not as well acquainted with the yeast model system.

I owe my deepest gratitude to all past and present members of Reynolds lab and Becker lab. My work would be incomplete without their help, suggestions and critique.

Finally I would like to give my heartfelt thanks to the faculty and staff of Genome Science and Technology (GST) and Microbiology department.

Abstract

Biofilms are a mode of growth where aggregated cells adhere to a foreign surface and grow as a complex community. Biofilms have found wide utility in commercial industries, however infections caused by biofilms in clinical settings are a major cause of concern. Understanding molecular details of biofilm formation could help in exploitation or elimination efforts.

We utilize *Saccharomyces cerevisiae* as a model system to study biofilm formation. *S. cerevisiae* strain belonging to genetic background Σ [sigma] 1278b is capable of forming biofilms, on low density (0.3%) agar media. When grown at 25°[degree] C for 5 days, it develops into an elaborate floral shaped biofilm. The biofilm can be structurally differentiated into a central wrinkly part called hub, and a peripheral smooth part called rim. A flocculin family surface protein Flo11p, known to be essential for the phenotypes of adhesion and invasive growth, is also important for biofilm formation. We identified that certain vacuolar protein sorting (VPS) proteins don't affect Flo11p expression and yet were defective in biofilm formation. Thus showing that the phenotypes requiring Flo11p (invasive growth and adhesion) are genetically separable from the phenotype of biofilm formation.

We propose a model showing the existence of a putative biofilm pathway involving endosomal Multivesicular body (MVB) pathway, which affects biofilm formation without causing any defects in Flo11p expression or localization. We further identified that the cell wall integrity (CWI) pathway is partially involved in the biofilm pathway, and supposedly affects biofilm formation by causing defects in cell wall structure.

Although there is no detectable difference in Flo11p expression levels between the rim and hub cells within the biofilm, they are very distinct in appearance and also manifest differences in adhesion. What molecular markers contribute to these differences, however is not yet known. Using RNA-Seq, a high throughput sequencing method, differential expression levels of genes between the rim and hub was obtained. Analysis of the genes revealed the presence of a carbohydrate, named chitosan, in the hub. Further tests showed that though chitosan is not essential for biofilm formation, it plays a protective role against cell wall stressing agents in biofilms.

Table of Contents

Title	Page
Dedication	ii
Acknowledgement	iii
Abstract	iv
Table of Contents	v
List of Figures	ix
Chapter 1	1
1.1 Background	2
1.2 Characteristics of a biofilm	2
1.3 Fungal biofilms	4
1.3.1 Saccharomyces cerevisiae as a model system to study biofilm formation	5
1.3.2 Extracellular matrix (ECM)	5
1.3.3 Fungal cell wall	6
1.3.3.1 Cell wall integrity (CWI) pathway	8
1.3.3.2 Multivesicular body pathway (MVB)	10
1.3.3.3 RIM101 pathway	11
1.3.4 Fungal adhesins	12
1.3.4.1 ALS adhesin family	14
1.3.4.2 FLO adhesin family	15
1.4 Characterization of biofilm formation in <i>S. cerevisiae</i>	
1.5 Bibliography for Chapter 1	18
Chapter 2	26
Disclosure	27
2.1 Background	28
2.2 Methods and materials	31

2.2.1 Strains, media, and growth conditions3	1
2.2.2 Invasive growth assay and overlay adhesion assay	1
2.2.3 Real time reverse transcriptase polymerase chain reaction (rtRT-PCR)	1
2.2.4 Immunofluorescence of FIo11-HA30 on the cell surface of cells from the rim and hub	(
	2
2.2.5 Cell Fractionation3	2
2.2.6 Normalization of fractionation samples for loading	3
2.2.7 Precipitation of extracellular proteins from the mat	3
2.3 Results	3
2.3.1 Mutations in class E VPS mutants that block Rim101p processing disrupt invasive	
growth3	3
2.3.2 Both Class E-1 and E-2 mutants perturb mat formation	4
2.3.3 FLO11 expression is diminished in Class E-1 mutants but not the Class E-2 mutants3	5
2.3.4 Two pathways act through the endosome to affect mat formation	5
2.3.5 Expression of Flo11p is diminished in Class E-1 mutants, but is similar to wild-type in	
Class E-2 mutants3	9
2.3.6 Flo11p shedding and cell wall localization is not altered in the Class E- 2 mutants4	.1
2.4 Discussion	3
2.4.1 What is the functional form of Flo11p at the cell surface and shed extracellularly?4	6
2.4.2 Mats are biofilms4	6
Bibliography for chapter 24	7
Chapter 35	0
Disclosure 5	1
3.1 Introduction	2
3.2 Methods and materials5	3
3.2.1 Strains, media, and growth conditions5	3
3.2.2 Overlay adhesion assay5	3
3.2.3 Immunofluorescence of Flo11-HA30 on the cell surface of cells from the rim and hub	
5	3

3.2.4 Western blotting	54
3.2.5 Site directed mutagenesis	54
3.3 Results	54
3.3.1 Wsc1p affects mat formation in a Flo11p-independent manner:	54
3.3.2 Cell wall integrity MAPK cascade is not essential for biofilm formation	56
3.3.3 Wsc1p-Rom2p interaction is essential for mat formation	57
3.3.4 Role of Skn7 in mat formation	60
3.4 Discussion	62
3.4.1 Biofilm and CWI pathway have differential effects on mat formation in different	:
∑1278b strains	63
3.5 Bibliography for chapter 3	65
Chapter 4	67
Disclosure	68
4.1 Introduction	69
4.2 Methods and materials	70
4.2.1 Strains, media, and growth conditions	70
4.2.2 Overlay adhesion assay	71
4.2.3 Illumina Library Preparation	71
4.2.4 Eosin Y staining	71
4.2.5 Calcofluor white staining	72
4.2.6 Cell wall stress assays	72
4.2.7 Gene Ontology (GO) analysis	72
4.3 Results	73
4.3.1 RNA-Seq reveals sporulation genes are upregulated in the hub compared to the	rim73
4.3.2 Chitosan is enriched in cells within the hub	75
4.3.3 Chitosan is not essential for mat formation	77
4.3.4 CDA mutants show increased sensitivity to cell wall stress	78
4.4 Discussion	79
4.5 Bibliography for chapter 4	83

Chapter 5	. 87
5.1 Conclusions	. 88
5.2 Vacuolar protein sorting genes regulate biofilm formation in S. cerevisiae by Flo11p-	
dependent andindependent mechanisms	. 89
5.2.2 Significance	90
5.3 A subset of components of the cell wall integrity pathway are essential for biofilm	
formation in <i>S. cerevisiae</i>	. 90
5.3.1. Significance	91
5.4 Chitosan synthesis in S. cerevisiae biofilms protects cells from environmental stress.	. 91
5.4.1 Significance	92
5.5 Future directions	. 92
5.5.1 Role of shed Flo11p in biofilm formation	92
5.5.2 Role of cell wall integrity pathway in biofilm formation	93
5.5.3 RNA-Seq as a tool to paint the 'big-picture'	93
5.5.4 Chitosan analysis	94
Bibliography for chapter 5	. 95
Appendices	. 98
Vita	160

List of Figures

Chapter 1	
Figure 1.1: Stages of biofilm formation	3
Figure 1.2: Structure of a mat formed by S. cerevisiae	5
Figure 1.3: Model depicting cell wall architecture	8
Figure 1.4: Model depicting CWI pathway with the hypo-osmotic stress sensing pathway Sln1	
branch	10
Figure 1.5: MVB pathway model	12
Figure 1.6: Model depicting Rim101 pathway	13
Figure 1.7: Factors affecting flocculation.	16
Figure 2.1 : Model for Rim101 pathway	29
Figure 2.2 Model for Multivesicular body (MVB) pathway	30
Figure 2.3 Class E-1 and E2 vps mutants have distinct effects on invasive growth and the mat	
formation	36
Figure 2.4: Effect of Class E-1 and E-2 vps mutants on FLO11 expression.	37
Figure 2.5: Effect of RIM101 suppressor mutant on invasive growth phenotype and FLO11	
expression of Class E-1 and Class E-2 vps mutants.	39
Figure 2.6: Effect of RIM101 suppressor mutant on overlay adhesion assay and mat formation	
phenotype of Class E-1 and Class E-2 vps mutants	40
Figure 2.7: Immunofluorescence assay results of RIM101 suppressor mutant	41
Figure 2.8: Western blot on fractionated rim and hub of wild type and representative Rim101	
pathway, Class E-1 and E2 vps mutants.	43
Figure 2.9: Model of pathways affecting mat formation. Two pathways affect mat formation	
through MVB	45
Figure 3.1: Wsc1p affects mat formation in a Flo11p-independent manner.	55
Figure 3.2: <i>wsc1</i> ∆ shows no defect in Flo11-HA expression, localization and shedding	55
Figure 3.3: Model depicting CWI pathway with the hypo-osmotic stress sensing pathway Sln1	
branch	56
Figure 3.4: CWI pathway components downstream of <i>PKC1</i> including MAPK cascade and its	
effectors are not necessary for mat formation	57

Figure 3.5: $rom2\Delta$ is defective in mat formation	58
Figure 3.6: WSC1-GFP construct rescues (a) mat formation defect and (b) temperature	
sensitivity phenotypes of wsc1⊿	58
Figure 3.7: Wsc1p-Rom2p interaction is essential for mat formation	59
Figure 3.8: Skn7p affects mat formation in a Flo11p-independent manner.	61
Figure 3.9: Sln1p-Skn7p branch is not essential for biofilm formation	61
Figure 4.1: Structure of <i>S. cerevisiae</i> mat	70
Figure 4.2: Distribution of hub genes in GO categories.	74
Figure 4.3: Chitosan biosynthesis and structure.	75
Figure 4.4: Enrichment of Chitosan in hub versus rim cells	76
Figure 4.5: Chitosan presence is mat specific	77
Figure 4.6: Chitosan is not essential for mat formation	78
Figure 4.7: Loss of chitosan staining in <i>cda1</i> Δ , <i>cda2</i> Δ and <i>cda1</i> Δ <i>cda2</i> Δ mutant strains	79
Figure 4.8: Chitin deacetylase mutations do not affect chitin staining	80
Figure 4.9: Abundance of chitosan correlates with resistance to antifungals and cell wall st	ress 81
Figure 5.1: Phylogenetic tree showing relationship between selected fungal pathogens with	1
Saccharomyces cerevisiae	88
Table A-1: Strains used in chapter 2	99
Table A-2: Primers used in chapter 2	100
Table A-3: Mat and invasive growth phenotypes of vps mutants	101
Figure A-4: Western blot gel of Flo11-HA ^{30,1015} , shows the presence of a cleaved N-termin	nal
HA-tagged band (~17 kDa).	102
Table A-5: Yeast strains used in chapter 3	103
Table A-6: Primers used in chapter 3	104
Table A-7: Yeast strains used in chapter 4	105
Table A-8: Primers used in chapter 4	106
Figure A-9: Mat formation phenotype and overlay adhesion assay performed on $vps25\Delta$ as	nd
vps27 <i>A</i> , which were used as control strains for RNA-Seq analysis.	107
Table A-10 : Genes upregulated in the wild type biofilm hub compared to the rim	108
Table A-11 : Genes downregulated in the wild type biofilm hub compared to the rim	135

Table A-12: Genes classified under GO category of spor	rulation, with significant Fisher's test p-
value	

Chapter 1

Introduction to biofilms

1.1 Background

Unicellular microorganisms are known to collaborate and form multi-cellular communities, called biofilms, in natural settings. Biofilms are the preferred mode of growth for many microbes as they allow colonization of surfaces that otherwise will not support their growth, opportunity to develop multi-species synergistic interactions [1] and horizontal gene transfer within a community [2]. Biofilms have been found in varied environments, for example in locations with high temperature or acidity [3, 4], on river beds [5], on plant surfaces [6], and there are also reports describing approximately 3 billion years old fossil records interpreted as biofilms in South Africa [7]. Such successful inhabitation and ubiquitous existence of biofilms is a testament to their success.

Biofilms have been used to our advantage, e.g. for example in bioremediation [8], wastewater treatment and wine production. They however, can also be a source of nuisance. Biofilms formed by pathogenic microbes are a significant source of nosocomial (hospital acquired) infections, where they infect immunocompromised patients (*i.e.* elderly people, premature babies, HIV positive patients, and cancer chemotherapy and leukemia patients), often by colonizing implanted medical devices, and then spreading to other tissues through bloodstream infections [9]. Efficient elimination of biofilm-based infections necessitates in-depth knowledge of the mechanisms governing biofilm formation and architecture.

1.2 Characteristics of a biofilm

A biofilm can be described as a complex community of cells aggregated on a surface that often produces extracellular products for its protection. A proposed model for stages of biofilm formation is as follows (Figure 1.1) – (a) <u>Adherence</u>: this is the initial step where floating planktonic cells adhere to a foreign surface; (b) <u>Initiation</u>: once adhered to a surface, the cells start to actively divide and form aggregates; (c) <u>Proliferation</u>: at this stage the cells begin phenotypic switching and production of extracellular matrix (ECM); (d) <u>Maturation</u>: at this stage the biofilm is fully formed and is actively producing ECM and dispersing cell aggregates to repeat the cycle [10-12].

Figure 1.1: Stages of biofilm formation

ECM, also known as extracellular polysaccharide substance (EPS), is a slimy extracellular matrix mainly composed of polysaccharide, that is essential for both structural support and protection of the biofilm [12]. Its composition is as diverse as its residents, and is known to mainly consist of carbohydrates, adhesin proteins and in some cases other components like extracellular DNA, secreted enzymes etc. [13]. A mature biofilm has aggregates of cells called microcolonies, and also consists of structures called water channels interspersed between the microcolonies. These channels represent a primitive circulatory system, distributing nutrients and oxygen throughout the biofilm structure [12]. Another common feature contributing to the architectural complexity of a biofilm is that of differentiation within a biofilm by varying cell types. For example, in *Bacillus subtilis* biofilms, spore forming, motile and matrix producing cells localize to distinct regions within the biofilm [14]. Similarly, biofilms formed by fungi, like those belonging to major pathogenic group Candida spp. exhibit what is called a 'phenotypic switch' [15-17]. Phenotypic switch involves a reversible change in phenotypic forms or cell types (e.g. yeast to hyphae), and has a significant role in response to environmental stimuli and virulence [18, 19]. Mixed species biofilms are also observed in nature, however it is beyond the scope of this study and therefore will not be discussed in this dissertation report.

1.3 Fungal biofilms

Many pathogenic fungal species including *Candida* [20], *Aspergillus* [21], and *Cryptococcus* [22], produce biofilms and cause significant clinical and economic problems. Fungal biofilm infections are a major cause of mortality and morbidity in hospitals [23-27]. *Candida* spp. infections, termed candidiasis, are the fourth leading cause of hospital-acquired bloodstream infections in the United States [28, 29]. Among *Candida* spp., *C. albicans* is the most common source of infections. In fact, the mortality rate associated with systemic and superficial infections by *C. albicans* is about 40% [30, 31]. *Candida* spp. infections are generally associated with indwelling medical devices like catheters, heart valves, artificial joints etc. This association is thought to be related to the formation of biofilms by *Candida* on these devices. Biofilm-based infections are tenacious, and often the only way to resolve it is by removal of the implant followed by long-term antifungal treatment. If the biofilm is not completely eliminated, it continues to disseminate cells causing persistent infections [32, 33].

The already difficult problem of biofilm elimination is made worse by the drug resistance associated with biofilms [33-42]. Clinical resistance is defined as 'persistence or progression of an infection despite appropriate antimicrobial therapy' [43]. Numerous factors are considered to be responsible for fungal biofilms drug resistance, including alteration of growth rate, presence of ECM, expression of resistance genes, etc. [44, 45]. *C. albicans* biofilm drug resistance will be used as an example to elaborate the case in point.

In *C. albicans*, antifungal resistance is directly correlated to biofilm growth and maturity [46]. In fact, growth in a biofilm leads to differential upregulation of genes that contribute to drug resistance. For example, β -glucan present in the ECM of *C. albicans* biofilms was shown to possess drug-sequestering properties that enhance resistance of biofilms to some antifungals [47, 48]. Additionally, upregulation of genes encoding multidrug efflux pumps (*e.g.* Candida drug resistance, *CDR*) and multidrug resistance (*MDR*) genes, is also a major resistance mechanism [49, 50].

The increasing frequency of biofilm infections in clinical settings and the difficulty faced in treating them effectively, creates a palpable need to get detailed understanding of biofilm formation in fungi, to aid in identification of new drug targets. One approach is to study a close relative like *Saccharomyces cerevisiae* that is genetically more tractable.

1.3.1 Saccharomyces cerevisiae as a model system to study biofilm formation

S. cerevisiae, commonly known as baker's yeast, belongs to the phylum Ascomycota. It was the first eukaryote to be completely sequenced, annotated and made publicly available [51, 52]. It is not a pathogenic fungus *per se*, but is a relative of the fungal pathogen *Candida spp* [53-55]. Its utility as a model system is bolstered by the wealth of genetic and phenotypic data available on it. In addition to being a model for other fungi, it is also a model for higher eukaryotes, including humans, making it an ideal surrogate system to study some aspects of biology for its pathogenic relatives or humans [56-58].

S. cerevisiae belonging to strain background $\Sigma 1278$ are capable of forming biofilms that we term mats, on semi-solid agar (0.3%) media [59, 60]. When grown at 25°C for 5 days, strains of the $\Sigma 1278$ background develop an elaborate pattern that resembles a floral or wheel shape. The mat can be structurally differentiated into a central hub and peripheral rim (Figure 1.2). The hub has a characteristic wrinkled appearance, while the rim in contrast appears smooth. Spoke-like structures resembling water channels, a hallmark feature of biofilms, radiate from the central hub towards the edge of the growing mat. Cells of both rim and the hub are in yeast form, although pseudohyphal forms are also observed near the water channels.

1.3.2 Extracellular matrix (ECM)

A hallmark characteristic of a biofilm is the presence of ECM, a carbohydrate rich matrix that envelops in the mature biofilm. Though its composition can vary considerably depending on the

Figure 1.2: Structure of a mat formed by S. cerevisiae

composite species, it is known to have a significant impact on the architecture, virulence and drug resistance of a biofilm [13]. Common components found in ECM include water, exopolysaccharides, lipids, extracellular DNA and proteins [61-66].

ECM functions [67] include:

- (a) Protection: decreased permeability of ECM is believed to exclude drugs and other harmful molecules from reaching the biofilm cells [68]. Additionally its ability to retain water also protects biofilms from desiccation [66].
- (b) Nutrient reservoir: ECM retains and distributes nutrients, oxygen and waste products via conduits, in the form of water channels, throughout the biofilm structure [12].
- (c) Genetic information exchange: ECM aggregates the biofilm cells together facilitating horizontal gene transfer in many bacterial biofilms. Horizontal gene transfer is a major factor for transfer of drug resistance genes within a biofilm community [2, 67].

Although ECM formed by biofilms of pathogenic fungi are the subject of many studies, there are also reports suggesting presence of ECM in its non-pathogenic, biofilm-forming relative *S. cerevisiae* [69-71]. Working on a simpler model system like *S. cerevisiae* could help to understand the basic molecular mechanisms of ECM assembly and its composition. Considering the importance of ECM in biofilm reinforcement, a deeper understanding of ECM could help in designing new drugs that can efficiently dismantle or eliminate the biofilm.

1.3.3 Fungal cell wall

Some of the drug discovery effort against *Candida* is targeted towards the fungal cell wall. This is because it is the primary defense of the cell and also harbors many essential virulence factors. Additionally, many components of the fungal cell wall are absent in mammalian cells, thus discerning details of the fungal cell wall architecture and/or synthesis could aid in identifying attractive drug targets that promise no or minimal host damage.

The cell wall is the outermost layer and an essential organelle of the cell. The interior of the cell (cytoplasm) is separated from the cell wall by a semi-permeable lipid bilayer called the plasma membrane. The plasma membrane structure is a highly selective barrier, interspersed with proteins, which efficiently control the ingress and egress of molecules across it.

The cell wall composes about 10-25% of the cell mass depending on the growth conditions. Its major functions [72] include: (a) <u>Protection</u>: Cell wall is the primary protective barrier of the cell against environmental stresses e.g. temperature variations, mechanical forces, pH change etc.

(b) <u>Maintaining osmotic balance</u>: The cells are under constant mechanical and turgor pressure since the internal osmolarity of the cell is higher than the outside. Without a cell wall barrier, water coming into the cell to achieve osmolytic balance would rupture the plasma membrane. The cell wall thus protects the cell from osmotic shock.

(c) <u>Maintaining cell shape</u>: Fungi can exist in hyphal, pseudohyphal or yeast forms depending on the conditions. Each shape is important and is also shown to be crucial for response to stimulus and virulence [73]. The cell wall is a strong yet elastic structure that creates and maintains the cell shape during morphogenesis.

Though numerous models have been proposed describing the organization of the fungal cell wall, the exact details of its structure are still not completely clear. This is because most methods currently used to analyze the cell wall and its composition involve harsh treatments that destroy it or fix it (i.e. alkaline hydrolysis, freeze drying, embedding), and it has not been possible to find methods that give higher resolution in living cells. Additionally, there are differences in the cell wall compositions between species, and results from one cannot necessarily be extrapolated to the other.

With those limitations in mind, a commonly accepted general model of the *S. cerevisiae* cell wall is shown in Figure 1.3. The cell wall is a multi-layered structure, where the innermost layers are composed of polysaccharides, namely chitin and β -glucans. Chitin is a polysaccharide of N-acetylglucosamine (NAG). The β -glucans form a complex three-dimensional network in the core of the cell wall. This network consists mainly of linear β -1,3-glucan and branched β -1,6-glucan which in turn is linked to β -1,3-glucan via β -1,4-glucan. The β -glucan polysaccharide is considered to be the central load bearing layer of the wall. It also acts as a matrix that supports attachment of various glycoprotein adhesins [72].

The outer edge of the wall is a framework made of cell wall glycoproteins. One class of glycoproteins is modified by addition of a glycosylphosphatidylinositol anchor (GPI) to the extreme C-terminus, and these are referred to as GPI-anchored proteins. These proteins are targeted to the plasma membrane by the secretory pathway. They either remain attached to the outer leaflet of the plasma membrane by their GPI-anchor or are released by cleavage of the GPI-anchor, and are then covalently re-attached to β -1,6-glucan or chitin in the cell wall by their GPI-

Figure 1.3: Model depicting cell wall architecture

remnant [74]. The other class is Pir (<u>P</u>roteins with <u>internal repeats</u>) proteins, and they are covalently linked directly to β -1,3-glucan chains [75].

The cell wall can thus be described as being composed mainly of a complex network of polysaccharides acting as scaffolds for proteins. Since the cell wall is a dynamic structure whose composition is constantly altered depending on age, environmental condition or life stage, the cell expends substantial metabolic energy in its maintenance. In fact, a genomic scale screen carried out by de Groot *et al* showed that over 1200 genes (~23% of the genes in the genome) were directly or indirectly involved in cell wall formation and its regulation [76]. Cell wall integrity (CWI) [77], Multivesicular body (MVB) [78] and RIM101 [79] pathways are three pathways that affect the cell wall and are described below.

1.3.3.1 Cell wall integrity (CWI) pathway

Although cell wall maintenance and response to stress involves 'cross talk' between many pathways [80], the cell wall integrity (CWI) pathway [77, 81] is the principal signaling cascade responsible for the maintenance of the cell wall. The purpose of the CWI pathway is to detect and respond to cell wall requirements, for example, a stimulus to divide or environmental cell wall damage. Any defect in CWI signaling leads to increased sensitivity to cell wall stress such

as high temperature (37°C) and chemical stressors e.g. SDS, caffeine, Congo Red etc. The main steps of the CWI cascade are shown in Figure 1.4, and are described below.

Wsc1p, Wsc2p Wsc3p and Mid2p are the four transmembrane protein sensors that detect and transmit the signal to downstream components [77, 82-84]. All sensors are single pass proteins that share some structural domain features as follows – (a) a small C-terminal cytoplasmic domain; (b) a periplasmic central serine/threonine rich domain that is highly Omannosylated; and (c) an external N-terminal domain. Among the aforementioned sensors, Wsc1p and Mid2p are the major sensors since a $wsc1\Delta mid2\Delta$ double mutant requires osmotic support at all growth temperatures [84]. The activated sensors recruit a Guanine Exchange Factor (GEF) to the plasma membrane via phosphatidylinositol (PI)-4,5-bisphosphate (PIP₂) signaling [85].

The cytoplasmic domain of Wsc1p and Mid2p interact with the N-terminal domain of the GEF named Rom2p [86]. Rom2p is a regulator of **R**as-**ho**mologous (Rho) family GTPase named Rho1p. Rho1p is a member of the 5 Rho family (Rho1p – Rho5p) in yeast, and its deletion is lethal for the cell. It is called the 'master regulator of the CWI signaling', since it is the hub of the cell wall sensory network, receiving inputs from sensors and in turn regulating a variety of outputs like cell wall biogenesis, actin organization and polarized secretion [77, 81]. Rom2p interacts with the GDP bound Rho1 through its Dbl homology (DH) domain, and activates it by catalyzing the nucleotide exchange activity [87].

There are multiple direct targets of Rho1p activation namely protein kinase C-1 (Pkc1), glucan synthase (GS), formin proteins (affecting actin cytoskeleton), secretory pathway component Sec3p and Suppressor of Kre null 7 (Skn7p) transcription factor. Pkc1p is another essential protein whose disruption leads to multiple cell wall defects [88]. Upon activation by Rho1p [89], Pkc1p in turn activates the mitogen activated protein kinase (MAPK) cascade composed of MAPKKK (Bck1p), MAPKK (Mkk1/2), and MAPK (Mpk1/Slt2p). Loss of MAPK cascade ultimately leads to activation of the transcription factor Rlm1p, which regulates expression of about 25 genes involved in cell wall biogenesis or encoding cell wall proteins

Figure 1.4: Model depicting CWI pathway with the hypo-osmotic stress sensing pathway Sln1 branch.

The Skn7p transcription factor is related to the bacterial two-component signal transduction pathways [90]. It is the target of both the CWI pathway (via Rho1p) and the osmoregulatory HOG pathway (via Sln1p). Upon activation, Skn7p regulates the expression of a score of cell wall genes that are required for cell wall maintenance.

1.3.3.2 Multivesicular body pathway (MVB)

The plasma membrane is embedded with numerous proteins that play important roles in multiple functions that affect the cell wall like membrane and small molecule transport, signal transduction, cell-cell interactions or cell-environment interactions. These include cell wall receptors like Wsc1p, and this protein is constantly endocytosed and recycled back to the plasma

membrane. Other types of receptors are degraded even as the cell wall is modified as a consequence of their activation, and the jobs of recycling or degradation are entrusted to the endosomal system [91].

The cell membrane proteins internalized to the endosome for degradation ultimately are delivered to the lumen of the vacuole. However, before being delivered to the vacuole the protein cargo first gets ubiquitinated and then internalized by the endosome into membrane invaginations called vesicles. The endosome structure with multiple such vesicles is called the multivesicular body (MVB), and the pathway from internalization of protein cargo to final fusion of the late endosome with the vacuole is called the MVB pathway [91].

Crucial components of the MVB pathway are endosomal sorting complex required for transport (ESCRT) complexes composed of a subset of vacuolar protein sorting (vps) proteins that are subclassified as class E vps proteins. Class E vps proteins are characterized based on their respective mutant phenotypes which are defined by the formation of an aberrant "prevacuolar" compartment within the endosome referred to as the Class E compartment [92]. All of the Class E vps mutants perturb the ubiquitin-dependent sorting of proteins by the MVB pathway [93, 94].

The steps of the MVB cascade (Figure 1.5) involve (a) Identification of the ubiquitinylated cargo by Vps27p and Hse1p; (b) Deformation of the endosomal membrane by the ESCRT-I complex (Vps37p, Vps28p, Vps23p) to allow subsequent steps of cargo intake; (c) Formation of invaginations by the ESCRT-II complex (Vps22p, Vps25p, Vps32p) leading to cargo protein engulfment and finally (d) Abscission by the ESCRT-III complex (Vps2p-Vps24p, Vps20p-Snf7p) to form intra-luminal vesicles containing the cargo. The complex is disassembled by the ATPase Vps4p. Fusion of the limiting membrane of the endosome with the vacuole ultimately leads to degradation of the intra-luminal vesicles and cargo. [95-97].

1.3.3.3 RIM101 pathway

MVB pathway components are also involved in a pH sensing signaling cascade named RIM101 pathway.

Figure 1.5: MVB pathway model

The steps of the pathway are as follows (Figure 1.6): pH change is sensed by plasma membrane receptors Rim21p and Dfg16p [99, 100]. Upon receptor activation, the β -arrestin-like protein Rim8p gets ubiquitinated, recruits the receptor to the endosome and interacts with the endosomal sorting complex required for transport I (ESCRT-I) complex protein Vps23p [101]. The ESCRT-I complex recruits the ESCRT-II complex and ESCRT-III Vps20p-Snf7p heterodimer sequentially [102]. Snf7 then interacts with Rim20p, a scaffolding protein that in turn interacts with a protease Rim13p, which cleaves the inhibitory C-terminal domain of Rim101p [103, 104]. Activated Rim101p then translocates to the nucleus and regulates alkaline pH response genes [105].

1.3.4 Fungal adhesins

As described in section 1.2, a key step for establishing a biofilm is the property of adhesion. Adherence to foreign surfaces like host tissues or indwelling medical devices (e.g. catheter,

pH Sensors

Figure 1.6: Model depicting Rim101 pathway

implants, etc.), allow fungi to establish biofilms and flourish on these otherwise inhospitable surfaces [106, 107]. The ability of the cells to adhere to each other is also crucial for mediation of cell-cell interactions. Cell aggregates formed by cell-to-cell adhesion, termed as flocculation, is advantageous in wine production where it allows convenient separation of the floating biofilms from its fermentation product [98].

In yeast, specialized proteins collectively referred to as adhesins or flocculins, confer this property of adhesion. Different fungal species possess different families of adhesin genes, like FLO (flocculation) in *Saccharomyces cerevisiae*, agglutinin-like sequence (ALS) in *Candida albicans* and epithelial adhesion (EPA) genes in *Candida glabrata*. Although these proteins are present on the cell wall, reports have emerged showing secreted adhesin proteins having a role in signal transduction as well [108, 109].

Cell wall associated adhesins are associated with the plasma membrane by a glycophosphatidylinositol (GPI) anchor sequence. They share common architectures that can be divided into three domains,

- (i) <u>Amino (N) terminal domain</u>: this region possesses carbohydrate, protein, plastic, and/or calcium ion binding properties and protrudes from the cell surface.
- (ii) <u>Central stalk</u>: this domain is rich in serine and threonine residues. It is of variable length and riddled with tandem repeats making it vulnerable to errors during replication, resulting in recombination based additions or deletions. These rearrangements are of significant functional relevance since they encourage adaptive evolution in adhesins. For example, Fidalgo *et al* [110] showed that rearrangements in this central tandem repeat region yielded more hydrophobic variants of Flo11p, which gave the yeast biofilms the ability to float and gain access to oxygen.
- (iii) <u>Carboxy (C) terminal domain</u>: this region is covalently attached to the GPI anchor and is generally conserved within the gene families of adhesins e.g. FLO family members.

1.3.4.1 ALS adhesin family

Candida albicans is an opportunistic pathogen that is part of the natural flora, but turn pathogenic when the host's resistance is low, like in case of immune-compromised patients. The primary step for causing disease is its adhesion and invasion of mucosal or prosthetic surfaces. Once established, it can disseminate through bloodstream and invade other organs. *C. albicans* encodes adhesin proteins including Eap1p, Hwp1p and a family of proteins belonging to the ALS family. Adhesins belonging to agglutinin-like sequence (*ALS*) gene family, that encodes the cell surface adhesin proteins Als1p – Als7p and Als9p, are particularly important. Their role is not just limited to adhesion, but they are also considered to be important for host colonization, virulence, and biofilm formation [111, 112]. They are differentially expressed based on growth stage and environmental cues (growth media or host niches), and thus are considered to be an essential part of *C. albicans* host-site-specific response [113]. Among the *ALS* adhesin proteins Als1p and Als3p appear to be major players in virulence, since *als1A/als1A* and *als3A/als3A* exhibit reduced virulence in different infection models [114-116], while deletion of some other *ALS* proteins caused no major disruptions [117-119]. This suggests that the adhesin proteins can be multi-functional and have diverse effects on survival of pathogenic fungi within the host.

1.3.4.2 FLO adhesin family

In the *S. cerevisiae* genome, there are five genes encoding adhesins – *FLO1, FLO5, FLO9, FLO10* and *FLO11*. The *FLO* gene family is named so because some of its members (*FLO1, FLO5, FLO9, FLO10* and *FLO11*) encode proteins that are responsible for a phenotype called flocculation. Flocculation is a reversible, asexual, Ca^{2+} dependent and lectin-mediated adhesive phenotype, in which cells grown in liquid medium aggregate to form clumps or 'flocs'. Flocculation is a complex phenomenon where the type of FLO gene expressed, the ability and timing of flocculation and properties of the formed floc can vary considerably depending on the genetic background of the strain being used, environmental conditions and media conditions (Figure 1.7). Depending on the aforementioned conditions, the formed flocs separate from the bulk medium and either rise and float to the surface of the liquid or sediment to the bottom of the container [120]. This phenotype is of considerable importance in the brewing industry since it provides a cheap and effective way to separate the yeast cells form the final brewed product [98].

In the laboratory strain $\sum 1278b$ however, only *FLO11* gene is expressed, while the rest of the adhesin encoding genes of the FLO gene family are transcriptionally silenced [121]. The FLO11 promoter is almost 3kb in length and is one of the largest in the *S. cerevisiae* genome [122]. This is because, Flo11p expression is regulated by many pathways and factors including but not limited to the filamentous growth mitogen activated protein kinase (fMAPK), protein kinase A (PKA) cascades and RIM101 pathways [123-125]. Additionally, there is a population level heterogeneity in Flo11p expression due to epigenetic silencing, resulting in a mixture of cells with some expressing and some silenced for Flo11p [126].

Flo11p expression activation, as a response to nitrogen starvation stimulus, results in activation of pseudohyphal mode of growth. Pseudohypae are long branched chains of elongated cells resulting from unipolar budding. These pseudohyphae adhere to and penetrate into agar

Figure 1.7: Factors affecting flocculation.

The factors can be divided into three categories according to their mode of action. It is to be noted that some factors can affect more than one mechanism. Figure from Verstrepen K. J. et al [98]

medium to forage for nutrients, resulting in a phenotype known as invasive growth [127]. Neutral-alkaline pH sensing RIM101 pathway (Figure 1.6) is essential for invasive growth since it regulates *FLO11* expression [128, 129].

1.4 Characterization of biofilm formation in S. cerevisiae

Mat formation in *S. cerevisiae* is driven by multiple environmental cues like pH and glucose level [60]. The cells forming the hub adhere strongly to each other and the agar surface, while the smooth rim can be separated easily from the hub using a simple assay we refer to as overlay adhesion assay (refer to Methods and materials in Chapter 2). Mat formation, adherence and invasive growth are Flo11p dependent phenotypes [59, 60]. However, there is no difference in Flo11p expression between the rim and hub cells [60]. Hence, details about factors responsible for the difference between rim and hub remain unknown. In chapter 2, we report the existence of a Flo11p-independent pathway that affects mat formation. Ours and other published reports provide evidence to suggest that mat or biofilm formation is a complex phenotype, requiring a myriad of factors in addition to adhesins [130, 131]. In chapter 3, we will provide evidence showing that a subset of the cell wall integrity pathway is part of this Flo11p-independent mechanism for a mat formation. Finally, in chapter 4 we will show that a factor that makes the

rim and hub cells distinct in a mat is the presence of a carbohydrate, named chitosan, in the hub, and this plays a role in resistance to cell wall stresses and antimicrobials.

1.5 Bibliography for Chapter 1

- 1. Elias, S. and E. Banin, *Multi-species biofilms: living with friendly neighbors.* FEMS microbiology reviews, 2012.
- 2. Molin, S. and T. Tolker-Nielsen, *Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure.* Current opinion in biotechnology, 2003. **14**(3): p. 255-61.
- 3. Aguilera, A., V. Souza-Egipsy, F. Gomez, and R. Amils, *Development and structure of eukaryotic biofilms in an extreme acidic environment, rio tinto (SW, Spain).* Microbial ecology, 2007. **53**(2): p. 294-305.
- 4. Reysenbach, A.L. and S.L. Cady, *Microbiology of ancient and modern hydrothermal systems.* Trends in microbiology, 2001. **9**(2): p. 79-86.
- 5. Hirotani, H. and M. Yoshino, *Microbial indicators in natural biofilms developed in the riverbed.* Water science and technology : a journal of the International Association on Water Pollution Research, 2010. **62**(5): p. 1149-53.
- 6. Danhorn, T. and C. Fuqua, *Biofilm formation by plant-associated bacteria*. Annual review of microbiology, 2007. **61**: p. 401-22.
- Westall, F., M.J. de Wit, J. Dann, S. van der Gaast, C.E.J. de Ronde, and D. Gerneke, Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Research, 2001. **106**(1,Äì2): p. 93-116.
- 8. Singh, R., D. Paul, and R.K. Jain, *Biofilms: implications in bioremediation.* Trends in microbiology, 2006. **14**(9): p. 389-97.
- 9. Lynch, A.S. and G.T. Robertson, *Bacterial and fungal biofilm infections*. Annual review of medicine, 2008. **59**: p. 415-28.
- 10. Fanning, S. and A.P. Mitchell, *Fungal biofilms.* PLoS pathogens, 2012. **8**(4): p. e1002585.
- 11. Stoodley, P., K. Sauer, D.G. Davies, and J.W. Costerton, *Biofilms as complex differentiated communities.* Annual review of microbiology, 2002. **56**: p. 187-209.
- 12. Davey, M.E. and A. O'Toole G, *Microbial biofilms: from ecology to molecular genetics.* Microbiology and molecular biology reviews : MMBR, 2000. **64**(4): p. 847-67.
- 13. Branda, S.S., S. Vik, L. Friedman, and R. Kolter, *Biofilms: the matrix revisited.* Trends in microbiology, 2005. **13**(1): p. 20-6.
- 14. Vlamakis, H., C. Aguilar, R. Losick, and R. Kolter, *Control of cell fate by the formation of an architecturally complex bacterial community.* Genes & development, 2008. **22**(7): p. 945-53.
- 15. Martinez, L.R., D.C. Ibom, A. Casadevall, and B.C. Fries, *Characterization of phenotypic switching in Cryptococcus neoformans biofilms*. Mycopathologia, 2008. **166**(4): p. 175-80.
- 16. Laffey, S.F. and G. Butler, *Phenotype switching affects biofilm formation by Candida parapsilosis.* Microbiology, 2005. **151**(Pt 4): p. 1073-81.
- 17. Fries, B.C., C.P. Taborda, E. Serfass, and A. Casadevall, *Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection.* The Journal of clinical investigation, 2001. **108**(11): p. 1639-48.
- 18. Scherr, G.H. and R.H. Weaver, *The dimorphism phenomenon in yeasts*. Bacteriological reviews, 1953. **17**(1): p. 51-92.
- 19. Gow, N.A., A.J. Brown, and F.C. Odds, *Fungal morphogenesis and host invasion*. Current opinion in microbiology, 2002. **5**(4): p. 366-71.

- 20. Douglas, L.J., *Candida biofilms and their role in infection.* Trends in microbiology, 2003. **11**(1): p. 30-6.
- 21. Muller, F.M., M. Seidler, and A. Beauvais, *Aspergillus fumigatus biofilms in the clinical setting.* Medical mycology : official publication of the International Society for Human and Animal Mycology, 2011. **49 Suppl 1**: p. S96-S100.
- 22. Walsh, T.J., R. Schlegel, M.M. Moody, J.W. Costerton, and M. Salcman, *Ventriculoatrial* shunt infection due to Cryptococcus neoformans: an ultrastructural and quantitative microbiological study. Neurosurgery, 1986. **18**(3): p. 373-5.
- 23. Lewis, R.E. and M.E. Klepser, *The changing face of nosocomial candidemia: epidemiology, resistance, and drug therapy.* American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists, 1999. **56**(6): p. 525-33; guiz 534-5.
- 24. Nguyen, M.H., J.E. Peacock, Jr., A.J. Morris, D.C. Tanner, M.L. Nguyen, D.R. Snydman, M.M. Wagener, M.G. Rinaldi, and V.L. Yu, *The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance.* The American journal of medicine, 1996. **100**(6): p. 617-23.
- 25. Negri, M., S. Silva, M. Henriques, and R. Oliveira, *Insights into Candida tropicalis nosocomial infections and virulence factors.* European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 2012. **31**(7): p. 1399-412.
- 26. Adiguzel, N., Z. Karakurt, G. Gungor, O. Yazicioglu Mocin, E. Acarturk, O. Sogukpinar, and R. Baran, *Mortality rates and risk factors associated with nosocomial Candida infection in a respiratory intensive care unit.* Tuberkuloz ve toraks, 2010. **58**(1): p. 35-43.
- 27. Galle, F., M.R. Catania, and G. Liguori, *Nosocomial candida infections: epidemiology of candidaemia.* Journal of preventive medicine and hygiene, 2006. **47**(3): p. 119-26.
- National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1990-May 1999, issued June 1999. American journal of infection control, 1999.
 27(6): p. 520-32.
- 29. Wisplinghoff, H., T. Bischoff, S.M. Tallent, H. Seifert, R.P. Wenzel, and M.B. Edmond, *Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study.* Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2004. **39**(3): p. 309-17.
- 30. Wey, S.B., M. Mori, M.A. Pfaller, R.F. Woolson, and R.P. Wenzel, *Hospital-acquired candidemia. The attributable mortality and excess length of stay.* Archives of internal medicine, 1988. **148**(12): p. 2642-5.
- Gudlaugsson, O., S. Gillespie, K. Lee, J. Vande Berg, J. Hu, S. Messer, L. Herwaldt, M. Pfaller, and D. Diekema, *Attributable mortality of nosocomial candidemia, revisited.* Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2003. **37**(9): p. 1172-7.
- 32. Ramage, G., E. Mowat, B. Jones, C. Williams, and J. Lopez-Ribot, *Our current understanding of fungal biofilms.* Critical reviews in microbiology, 2009. **35**(4): p. 340-55.
- 33. Jabra-Rizk, M.A., W.A. Falkler, and T.F. Meiller, *Fungal biofilms and drug resistance*. Emerging infectious diseases, 2004. **10**(1): p. 14-9.
- 34. Huang, M. and K.C. Kao, *Population dynamics and the evolution of antifungal drug resistance in Candida albicans.* FEMS microbiology letters, 2012.
- 35. Basma, R., G. Barada, N. Ojaimi, and R.A. Khalaf, *Susceptibility of Candida albicans to common and novel antifungal drugs, and relationship between the mating type locus and resistance, in Lebanese hospital isolates.* Mycoses, 2009. **52**(2): p. 141-8.
- 36. Bizerra, F.C., C.V. Nakamura, C. de Poersch, T.I. Estivalet Svidzinski, R.M. Borsato Quesada, S. Goldenberg, M.A. Krieger, and S.F. Yamada-Ogatta, *Characteristics of*

biofilm formation by Candida tropicalis and antifungal resistance. FEMS yeast research, 2008. **8**(3): p. 442-50.

- 37. d'Enfert, C., *Biofilms and their role in the resistance of pathogenic Candida to antifungal agents.* Current drug targets, 2006. **7**(4): p. 465-70.
- 38. Akins, R.A., *An update on antifungal targets and mechanisms of resistance in Candida albicans.* Medical mycology : official publication of the International Society for Human and Animal Mycology, 2005. **43**(4): p. 285-318.
- 39. Kuhn, D.M. and M.A. Ghannoum, *Candida biofilms: antifungal resistance and emerging therapeutic options.* Current opinion in investigational drugs, 2004. **5**(2): p. 186-97.
- 40. Ramage, G., B.L. Wickes, and J.L. Lopez-Ribot, *Biofilms of Candida albicans and their associated resistance to antifungal agents.* American clinical laboratory, 2001. **20**(7): p. 42-4.
- 41. Collin, B., C.J. Clancy, and M.H. Nguyen, *Antifungal resistance in non- albicans Candida species*. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 1999. **2**(1): p. 9-14.
- 42. Alexander, B.D. and J.R. Perfect, *Antifungal resistance trends towards the year 2000. Implications for therapy and new approaches.* Drugs, 1997. **54**(5): p. 657-78.
- 43. National Center for Infectious Diseases (U.S.), *Emerging infectious diseases*. 1995, National Center for Infectious Diseases, Centers for Disease Control and Prevention (CDC): Atlanta, GA. p. v.
- 44. Ramage, G., R. Rajendran, L. Sherry, and C. Williams, *Fungal biofilm resistance*. International journal of microbiology, 2012. **2012**: p. 528521.
- 45. Lewis, K., *Riddle of biofilm resistance.* Antimicrobial agents and chemotherapy, 2001. **45**(4): p. 999-1007.
- 46. Chandra, J., D.M. Kuhn, P.K. Mukherjee, L.L. Hoyer, T. McCormick, and M.A. Ghannoum, *Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance.* Journal of bacteriology, 2001. **183**(18): p. 5385-94.
- 47. Nett, J.E., H. Sanchez, M.T. Cain, and D.R. Andes, *Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan.* The Journal of infectious diseases, 2010. **202**(1): p. 171-5.
- 48. Nett, J.E., K. Crawford, K. Marchillo, and D.R. Andes, *Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene.* Antimicrobial agents and chemotherapy, 2010. **54**(8): p. 3505-8.
- 49. Ramage, G., S. Bachmann, T.F. Patterson, B.L. Wickes, and J.L. Lopez-Ribot, *Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms.* The Journal of antimicrobial chemotherapy, 2002. **49**(6): p. 973-80.
- 50. White, T.C., S. Holleman, F. Dy, L.F. Mirels, and D.A. Stevens, *Resistance mechanisms in clinical isolates of Candida albicans*. Antimicrobial agents and chemotherapy, 2002. **46**(6): p. 1704-13.
- 51. Goffeau, A., *Four years of post-genomic life with 6,000 yeast genes.* FEBS letters, 2000. **480**(1): p. 37-41.
- Goffeau, A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S.G. Oliver, *Life with 6000 genes.* Science, 1996. **274**(5287): p. 546, 563-7.
- 53. Bowman, B.H., J.W. Taylor, and T.J. White, *Molecular evolution of the fungi: human pathogens.* Molecular biology and evolution, 1992. **9**(5): p. 893-904.
- 54. Lott, T.J., R.J. Kuykendall, and E. Reiss, *Nucleotide sequence analysis of the 5.8S rDNA and adjacent ITS2 region of Candida albicans and related species.* Yeast, 1993. **9**(11): p. 1199-206.

- 55. Goldstein, A.L. and J.H. McCusker, *Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment.* Genetics, 2001. **159**(2): p. 499-513.
- 56. Wells, L. and J.L. Fridovich-Keil, *The yeast, Saccharomyces cerevisiae, as a model system for the study of human genetic disease.* SAAS bulletin, biochemistry and biotechnology, 1996. **9**: p. 83-8.
- 57. Karathia, H., E. Vilaprinyo, A. Sorribas, and R. Alves, *Saccharomyces cerevisiae as a model organism: a comparative study.* PLoS One, 2011. **6**(2): p. e16015.
- 58. Miller-Fleming, L., F. Giorgini, and T.F. Outeiro, Yeast as a model for studying human neurodegenerative disorders. Biotechnology journal, 2008. **3**(3): p. 325-38.
- 59. Reynolds, T.B. and G.R. Fink, *Bakers' yeast, a model for fungal biofilm formation.* Science, 2001. **291**(5505): p. 878-81.
- 60. Reynolds, T.B., A. Jansen, X. Peng, and G.R. Fink, *Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients.* Eukaryotic cell, 2008. **7**(1): p. 122-30.
- 61. Seper, A., V.H. Fengler, S. Roier, H. Wolinski, S.D. Kohlwein, A.L. Bishop, A. Camilli, J. Reidl, and S. Schild, *Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation.* Molecular microbiology, 2011. **82**(4): p. 1015-37.
- 62. Wingender, J., M. Strathmann, A. Rode, A. Leis, and H.C. Flemming, *Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa*. Methods in enzymology, 2001. **336**: p. 302-14.
- 63. Branda, S.S., F. Chu, D.B. Kearns, R. Losick, and R. Kolter, *A major protein component* of the Bacillus subtilis biofilm matrix. Molecular microbiology, 2006. **59**(4): p. 1229-38.
- 64. Vilain, S., J.M. Pretorius, J. Theron, and V.S. Brozel, *DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms.* Applied and environmental microbiology, 2009. **75**(9): p. 2861-8.
- 65. Conrad, A., M.K. Suutari, M.M. Keinanen, A. Cadoret, P. Faure, L. Mansuy-Huault, and J.C. Block, *Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs.* Lipids, 2003. **38**(10): p. 1093-105.
- 66. Roberson, E.B. and M.K. Firestone, *Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp.* Applied and environmental microbiology, 1992. **58**(4): p. 1284-91.
- 67. Flemming, H.C. and J. Wingender, *The biofilm matrix*. Nature reviews. Microbiology, 2010. **8**(9): p. 623-33.
- 68. Hoyle, B.D. and J.W. Costerton, *Bacterial resistance to antibiotics: the role of biofilms.* Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques, 1991. **37**: p. 91-105.
- 69. Beauvais, A., C. Loussert, M.C. Prevost, K. Verstrepen, and J.P. Latge, *Characterization of a biofilm-like extracellular matrix in FLO1-expressing Saccharomyces cerevisiae cells.* FEMS yeast research, 2009. **9**(3): p. 411-9.
- 70. St'ovicek, V., L. Vachova, M. Kuthan, and Z. Palkova, *General factors important for the formation of structured biofilm-like yeast colonies.* Fungal genetics and biology : FG & B, 2010. **47**(12): p. 1012-22.
- 71. Kuthan, M., F. Devaux, B. Janderova, I. Slaninova, C. Jacq, and Z. Palkova, *Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology.* Molecular microbiology, 2003. **47**(3): p. 745-54.
- 72. Klis, F.M., A. Boorsma, and P.W. De Groot, *Cell wall construction in Saccharomyces cerevisiae*. Yeast, 2006. **23**(3): p. 185-202.
- 73. Sudbery, P., N. Gow, and J. Berman, *The distinct morphogenic states of Candida albicans.* Trends in microbiology, 2004. **12**(7): p. 317-24.
- 74. Pittet, M. and A. Conzelmann, *Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae.* Biochimica et biophysica acta, 2007. **1771**(3): p. 405-20.

- 75. Ecker, M., R. Deutzmann, L. Lehle, V. Mrsa, and W. Tanner, *Pir proteins of Saccharomyces cerevisiae are attached to beta-1,3-glucan by a new protein-carbohydrate linkage.* The Journal of biological chemistry, 2006. **281**(17): p. 11523-9.
- 76. de Groot, P.W., C. Ruiz, C.R. Vazquez de Aldana, E. Duenas, V.J. Cid, F. Del Rey, J.M. Rodriquez-Pena, P. Perez, A. Andel, J. Caubin, J. Arroyo, J.C. Garcia, C. Gil, M. Molina, L.J. Garcia, C. Nombela, and F.M. Klis, *A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae*. Comparative and functional genomics, 2001. **2**(3): p. 124-42.
- 77. Levin, D.E., *Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway.* Genetics, 2011. **189**(4): p. 1145-75.
- 78. Bryant, N.J. and T.H. Stevens, *Vacuole biogenesis in Saccharomyces cerevisiae:* protein transport pathways to the yeast vacuole. Microbiology and molecular biology reviews : MMBR, 1998. **62**(1): p. 230-47.
- 79. Castrejon, F., A. Gomez, M. Sanz, A. Duran, and C. Roncero, *The RIM101 pathway* contributes to yeast cell wall assembly and its function becomes essential in the absence of mitogen-activated protein kinase *Slt2p*. Eukaryotic cell, 2006. **5**(3): p. 507-17.
- 80. Fuchs, B.B. and E. Mylonakis, *Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways.* Eukaryotic cell, 2009. **8**(11): p. 1616-25.
- 81. Levin, D.E., *Cell wall integrity signaling in Saccharomyces cerevisiae.* Microbiology and molecular biology reviews : MMBR, 2005. **69**(2): p. 262-91.
- 82. Jacoby, J.J., S.M. Nilius, and J.J. Heinisch, A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Molecular & general genetics : MGG, 1998. **258**(1-2): p. 148-55.
- 83. Verna, J., A. Lodder, K. Lee, A. Vagts, and R. Ballester, A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 1997. **94**(25): p. 13804-9.
- 84. Rajavel, M., B. Philip, B.M. Buehrer, B. Errede, and D.E. Levin, *Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae.* Molecular and cellular biology, 1999. **19**(6): p. 3969-76.
- 85. Audhya, A. and S.D. Emr, *Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade.* Developmental cell, 2002. **2**(5): p. 593-605.
- 86. Philip, B. and D.E. Levin, *Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1.* Molecular and cellular biology, 2001. **21**(1): p. 271-80.
- 87. Ozaki, K., K. Tanaka, H. Imamura, T. Hihara, T. Kameyama, H. Nonaka, H. Hirano, Y. Matsuura, and Y. Takai, *Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae.* The EMBO journal, 1996. **15**(9): p. 2196-207.
- 88. Levin, D.E., B. Bowers, C.Y. Chen, Y. Kamada, and M. Watanabe, *Dissecting the protein kinase C/MAP kinase signalling pathway of Saccharomyces cerevisiae.* Cellular & molecular biology research, 1994. **40**(3): p. 229-39.
- 89. Nonaka, H., K. Tanaka, H. Hirano, T. Fujiwara, H. Kohno, M. Umikawa, A. Mino, and Y. Takai, *A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae.* The EMBO journal, 1995. **14**(23): p. 5931-8.
- 90. Li, S., A. Ault, C.L. Malone, D. Raitt, S. Dean, L.H. Johnston, R.J. Deschenes, and J.S. Fassler, *The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p.* The EMBO journal, 1998. **17**(23): p. 6952-62.
- 91. Gruenberg, J. and F.R. Maxfield, *Membrane transport in the endocytic pathway.* Current opinion in cell biology, 1995. **7**(4): p. 552-63.
- 92. Raymond, C.K., I. Howald-Stevenson, C.A. Vater, and T.H. Stevens, *Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants.* Mol Biol Cell, 1992. **3**(12): p. 1389-402.
- 93. Piper, R.C., A.A. Cooper, H. Yang, and T.H. Stevens, VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol, 1995. **131**(3): p. 603-17.
- 94. Hurley, J.H. and S.D. Emr, *The ESCRT complexes: structure and mechanism of a membrane-trafficking network.* Annu Rev Biophys Biomol Struct, 2006. **35**: p. 277-98.
- 95. Raiborg, C., T.E. Rusten, and H. Stenmark, *Protein sorting into multivesicular endosomes.* Curr Opin Cell Biol, 2003. **15**(4): p. 446-55.
- 96. Raiborg, C. and H. Stenmark, *The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.* Nature, 2009. **458**(7237): p. 445-52.
- 97. Xu, W., F.J. Smith, Jr., R. Subaran, and A.P. Mitchell, *Multivesicular body-ESCRT* components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell, 2004. **15**(12): p. 5528-37.
- 98. Verstrepen, K.J., G. Derdelinckx, H. Verachtert, and F.R. Delvaux, Yeast flocculation: what brewers should know. Applied microbiology and biotechnology, 2003. **61**(3): p. 197-205.
- 99. Gomez-Raja, J. and D.A. Davis, *The beta-arrestin-like protein Rim8 is hyperphosphorylated and complexes with Rim21 and Rim101 to promote adaptation to neutral-alkaline pH.* Eukaryotic cell, 2012. **11**(5): p. 683-93.
- 100. Barwell, K.J., J.H. Boysen, W. Xu, and A.P. Mitchell, *Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans.* Eukaryotic cell, 2005. **4**(5): p. 890-9.
- 101. Herrador, A., S. Herranz, D. Lara, and O. Vincent, *Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein.* Molecular and cellular biology, 2010. **30**(4): p. 897-907.
- 102. Xu, W., F.J. Smith, Jr., R. Subaran, and A.P. Mitchell, *Multivesicular body-ESCRT* components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Molecular biology of the cell, 2004. **15**(12): p. 5528-37.
- 103. Kullas, A.L., M. Li, and D.A. Davis, *Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans.* Eukaryotic cell, 2004. **3**(6): p. 1609-18.
- 104. Li, M., S.J. Martin, V.M. Bruno, A.P. Mitchell, and D.A. Davis, *Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs.* Eukaryotic cell, 2004. **3**(3): p. 741-51.
- 105. Lamb, T.M., W. Xu, A. Diamond, and A.P. Mitchell, *Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway.* The Journal of biological chemistry, 2001. **276**(3): p. 1850-6.
- 106. Crump, J.A. and P.J. Collignon, *Intravascular catheter-associated infections*. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 2000. **19**(1): p. 1-8.
- 107. Widmer, A.F., *Intravascular catheter-associated infections.* Schweizerische medizinische Wochenschrift, 1997. **127**(11): p. 444-56.

- 108. Vadaie, N., H. Dionne, D.S. Akajagbor, S.R. Nickerson, D.J. Krysan, and P.J. Cullen, *Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast.* The Journal of cell biology, 2008. **181**(7): p. 1073-81.
- 109. Pitoniak, A., B. Birkaya, H.M. Dionne, N. Vadaie, and P.J. Cullen, *The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response.* Molecular biology of the cell, 2009. **20**(13): p. 3101-14.
- 110. Fidalgo, M., R.R. Barrales, J.I. Ibeas, and J. Jimenez, *Adaptive evolution by mutations in the FLO11 gene.* Proceedings of the National Academy of Sciences of the United States of America, 2006. **103**(30): p. 11228-33.
- 111. Hoyer, L.L., J. Clevenger, J.E. Hecht, E.J. Ehrhart, and F.M. Poulet, *Detection of Als proteins on the cell wall of Candida albicans in murine tissues.* Infection and immunity, 1999. **67**(8): p. 4251-5.
- 112. Hoyer, L.L., C.B. Green, S.H. Oh, and X. Zhao, *Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family--a sticky pursuit*. Medical mycology : official publication of the International Society for Human and Animal Mycology, 2008. 46(1): p. 1-15.
- 113. Cheng, G., K. Wozniak, M.A. Wallig, P.L. Fidel, Jr., S.R. Trupin, and L.L. Hoyer, *Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis.* Infection and immunity, 2005. **73**(3): p. 1656-63.
- 114. Kamai, Y., M. Kubota, T. Hosokawa, T. Fukuoka, and S.G. Filler, *Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis.* Infection and immunity, 2002. **70**(9): p. 5256-8.
- 115. Alberti-Segui, C., A.J. Morales, H. Xing, M.M. Kessler, D.A. Willins, K.G. Weinstock, G. Cottarel, K. Fechtel, and B. Rogers, *Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence*. Yeast, 2004. **21**(4): p. 285-302.
- 116. Zhao, X., S.H. Oh, G. Cheng, C.B. Green, J.A. Nuessen, K. Yeater, R.P. Leng, A.J. Brown, and L.L. Hoyer, *ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p.* Microbiology, 2004. **150**(Pt 7): p. 2415-28.
- Zhao, X., S.H. Oh, and L.L. Hoyer, Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology, 2007. 153(Pt 7): p. 2342-50.
- 118. Zhao, X., S.H. Oh, K.M. Yeater, and L.L. Hoyer, *Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family*. Microbiology, 2005. **151**(Pt 5): p. 1619-30.
- 119. Zhao, X., S.H. Oh, and L.L. Hoyer, *Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells.* Medical mycology : official publication of the International Society for Human and Animal Mycology, 2007. **45**(5): p. 429-34.
- 120. Soares, E.V., *Flocculation in Saccharomyces cerevisiae: a review.* Journal of applied microbiology, 2011. **110**(1): p. 1-18.
- 121. Halme, A., S. Bumgarner, C. Styles, and G.R. Fink, *Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast.* Cell, 2004. **116**(3): p. 405-15.
- 122. Rupp, S., E. Summers, H.J. Lo, H. Madhani, and G. Fink, *MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene.* EMBO J, 1999. **18**(5): p. 1257-69.

- 123. Vinod, P.K., N. Sengupta, P.J. Bhat, and K.V. Venkatesh, *Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11.* PLoS One, 2008. **3**(2): p. e1663.
- 124. Barrales, R.R., J. Jimenez, and J.I. Ibeas, *Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae.* Genetics, 2008. **178**(1): p. 145-56.
- 125. Sengupta, N., P.K. Vinod, and K.V. Venkatesh, *Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression.* Biophysical chemistry, 2007. **125**(1): p. 59-71.
- 126. Octavio, L.M., K. Gedeon, and N. Maheshri, *Epigenetic and conventional regulation is distributed among activators of FLO11 allowing tuning of population-level heterogeneity in its expression.* PLoS genetics, 2009. **5**(10): p. e1000673.
- 127. Lo, W.S. and A.M. Dranginis, *The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae.* Molecular biology of the cell, 1998. **9**(1): p. 161-71.
- 128. Penalva, M.A. and H.N. Arst, Jr., *Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts.* Annu Rev Microbiol, 2004. **58**: p. 425-51.
- 129. Davis, D., Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet, 2003. **44**(1): p. 1-7.
- 130. Martineau, C.N., J.M. Beckerich, and M. Kabani, *Flo11p-independent control of "mat" formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast.* Genetics, 2007. **177**(3): p. 1679-89.
- 131. Sarode, N., B. Miracle, X. Peng, O. Ryan, and T.B. Reynolds, *Vacuolar protein sorting* genes regulate mat formation in Saccharomyces cerevisiae by *Flo11p*-dependent and independent mechanisms. Eukaryotic Cell, 2011. **10**(11): p. 1516-26.

Chapter 2

Vacuolar protein sorting genes regulate mat formation in *Saccharomyces cerevisiae* by Flo11p-dependent and —independent mechanisms

Disclosure

Chapter 2 was published in its entirety as Sarode N., Miracle B., Peng X., Ryan O., Reynolds TB., *Eukaryotic cell* 10(11):1516-26. Sarode N. created majority of the constructs and performed the assays for screening of mutants for mat formation, immunofluorescence assays, cell fractionation and Western blotting. Miracle B. performed the RT-PCR assays and helped create Flo11-HA ^{30, 1015}. Peng X., created some *VPS* deletion mutants. Ryan O., created the whole genome deletion library and carried out the preliminary screen for mat formation phenotype on library deletion mutants.

2.1 Background

Microbes exhibit "multicellular" behaviors such as swarming and the formation of colonies, fruiting bodies, and biofilms [1-5]. All of these behaviors depend on cells interacting with one another and the local environment. The baker's yeast *Saccharomyces cerevisiae* is able to grow in a number of different multicellular forms including pseudohyphae, floating biofilms on sherry wine, and biofilms on the surface of low density agar plates (referred to herein as mats) [6-8]. All of these growth forms are dependent on the presence of a glycosylphosphatidylinositol (GPI)-anchored cell surface adhesion protein called Flo11p, which is similar to fungal adhesins found in a number of different yeasts, including several pathogens [9, 10].

This chapter is focused on the Flo11p-dependent multicellular phenotypes of invasive growth and mat formation. During invasive growth, yeast grow as chains of cells that invade into the relatively dry surface of 2% agar plates made with yeast extract-peptone-dextrose (YPD) medium [7]. During mat formation, yeast grows as biofilms that spread over the wet surface of 0.3% agar YPD plates. As the mats mature, they generate two morphologically distinct regions. The central region of the mat is called the hub and consists of aggregates of cells that adhere to both the agar surface and one another and form channels and wrinkles that are hallmarks of biofilms. The outer region of the mat is called the rim, and it is smooth in appearance, and consists of a dividing, spreading population of cells that are not particularly adherent to one another or the agar surface [7, 11].

The regulation of Flo11p and its impact on the yeast multicellular behaviors such as invasive growth (which occurs in haploid yeast cells) and pseudohyphal growth (a related phenotype that occurs in diploid yeast cells) have been the subjects of numerous studies, many of which have been reviewed previously [9, 12]. Several of these mutations that perturb *FLO11* expression and affect invasive growth also disrupt mat formation, such as mutations in glucose sensing pathways and transcription factors that regulate inositol biosynthesis [11, 13].

In contrast, there are examples in the literature of mutations that cause defects in invasive growth but not mat formation, and vice versa. The *ste12* Δ mutation only has a very minor effect on mat formation, but quite a strong effect on invasive growth [7]. Conversely, a number of Hsp70-encoding genes such as *SSA1* and *SSA2* have strong defects in mat formation, but not invasive growth. These Hsp70 mutants also do not appear to affect Flo11 protein expression [14].

This chapter examines whether the Rim101p signal transduction cascade, which is known to control invasive growth and *FLO11* expression [15, 16], also regulates mat formation. The Rim101p signaling pathway is required for cells to respond to neutral or basic pH [17, 18], and is necessary for invasive growth. A model for the Rim101p pathway (Figure 2.1) is as follows: two plasma membrane receptors called Rim21p and Dfg16p [19] detect extracellular signals, such as neutral pH, and are recruited to the endosome by the β-Arrestin-like protein Rim8p [20-23]. This event recruits several of the ESCRT (Endosomal Sorting Complex Required for Transport) complexes (I, II, and III), which are also required for proper protein sorting in the endosome. Snf7p of the ESCRT-III complex recruits the Rim13p protease via the Rim20p scaffolding protein, and Rim13p cleaves off the Rim101p C-terminal inhibitory domain to activate it.

The ESCRT complex subunits involved in Rim101p processing [20, 21] are part of a subset of vacuolar protein sorting (vps) components called Class E vps proteins. The original vps mutants were grouped into 6 classes (A through F) based on distinct vacuolar morphology defects [24]. About 13 vps mutants belong to Class E, and are characterized by the formation of an aberrant "prevacuolar" compartment within the endosome referred to as the Class E compartment [24]. All of the Class E vps mutants perturb the ubiquitin-dependent sorting of proteins through the endosome to the vacuole by a pathway referred to as the multivesicular body (MVB) pathway [25, 26]. However, only the ESCRT proteins affect Rim101p signaling [20, 21].

Figure 2.1 : Model for Rim101 pathway

Figure 2.2 Model for Multivesicular body (MVB) pathway

The steps of the MVB cascade involve (a) Identification of the ubiquitinylated cargo by Vps27p and Hse1p; (b) Deformation of the endosomal membrane by the ESCRT-I complex (Vps37p, Vps28p, Vps23p) to allow subsequent steps of cargo intake; (c) Formation of invaginations by the ESCRT-II complex (Vps22p, Vps25p, Vps32p) leading to cargo protein engulfment and finally (d) Abscission by the ESCRT-III complex (Vps2p-Vps24p, Vps20p-Snf7p) to form intraluminal vesicles containing the cargo. The complex is disassembled by the ATPase Vps4p. Fusion of the limiting membrane of the endosome with the vacuole ultimately leads to degradation of the intra-luminal vesicles and cargo (the MVB pathway is illustrated in Figure 2.2) [21, 27, 28].

This study reveals that several MVB mutants that are not part of ESCRT-I, II, or III affect mat formation, but not invasive growth, and can be used to genetically separate these phenotypes. The results presented in this chapter indicate the existence of two overlapping pathways that pass through the MVB and affect mat formation by *FLO11*-dependent and independent mechanisms. The first pathway is the Rim101p pathway, and it affects invasive growth and mat formation by controlling *FLO11* expression. The second pathway, henceforth called the biofilm pathway, requires the entire complement of class E vps components necessary for a properly functioning MVB and affects mat formation in a *FLO11*-independent manner.

2.2 Methods and materials

2.2.1 Strains, media, and growth conditions

All strains used in this study belong to yeast strain background $\sum 1278$ (Appendix Table A-1) [7].

The strains found in appendix Table A-3 are from a whole genome deletion collection created in the $\sum 1278b$ background, by Owen Ryan and colleagues in the laboratory of Charles Boone, at the University of Toronto. A full characterization of the library and the phenotypes of all mutants regarding mat formation, invasive growth, and pseudohyphal growth will be published separately (Ryan et al, submitted). Mutants were generated by PCR-based gene disruption methods [11, 29]. Primers are listed in appendix Table A-2. The RIM101-531 dominant active allele was also generated by PCR-based disruption of the C-terminal 95 codons of the *RIM101* gene (see Appendix Table A-2 for primers). Transformations were performed by the standard lithium acetate transformation method [30]. The yeast strain L6906 [31] carries a hemagglutinin (HA)-tagged form of FLO11, with the HA tag between amino acids 30 and 31 (FLO11-HA³⁰), and this was used for the immunofluorescence analyses. Primers PC675 and PC676 (see Appendix Table A-2) were used to insert an additional HA tag-encoding DNA sequence between codons encoding amino acids 1015 and 1016 of Flo11p (FLO11-HA^{30,1015}) [32] by the method of Schneider et al [33]. All strains were maintained on standard yeast extractpeptone-dextrose (YPD) media [30] and 250µg/ml G418 was used for selection of transformants, with the exception of the RIM101-531 truncation, which was selected on minimal media lacking histidine [30]. Strains grown on low agar plates (YPD with 0.3% agar) [7] for 5 days at 25°C were used for overlay adhesion assays, immunofluorescence, and Western blotting.

2.2.2 Invasive growth assay and overlay adhesion assay

The invasive growth assay was performed as described previously [13]. The overlay adhesion assay was performed as described [11].

2.2.3 Real time reverse transcriptase polymerase chain reaction (rtRT-PCR)

Five days old mats were used to perform this assay. The cells from growing mats were collected from the surface of low agar YPD plates using a clean dry spatula and washed with ice-cold water. Total RNA was extracted as previously described [34]. Contaminating DNA was removed with the TurboDNA-free kit (Ambion) according the manufacturer's protocol. rtRT-PCR was

performed on an Bio-Rad iCycler real time PCR machine using the Verso SYBR green two step kit with random primers for the reverse transcription step according the manufacture's protocol. rtRT-PCR primers for *FLO11* and *ACT1* (reference gene) are listed in appendix Table A-2.

2.2.4 Immunofluorescence of Flo11-HA30 on the cell surface of cells from the rim and hub

The assay was performed as described in [11], where cells were taken from the rim of the growing mats.

2.2.5 Cell Fractionation

Fractionation of cells carrying Flo11-HA^{30,1015} was carried out as follows. Mats were grown on low agar YPD plates for 5 days at 25°C. Overlay adhesion assays were performed on the wildtype mats to separate rim and hub cells. Rim cells were washed into a microfuge tube off the plastic wrap with 1 ml of 50 mM Tris-HCl (pH 7.4) buffer. The adherent cells forming the central hub or the cells composing the entire mat from defective mutants were scraped from the agar using a clean dry spatula paying attention to bring a minimum carryover of agar during this process. The hub (wt) or mutant cells were then suspended in 1ml of 50mM TrisHCL (pH 7.4). Microfuge tubes containing cells from all of these separate samples were then taped onto a roller barrel and washed for 20 mins at 23°C. 20µl of sample was removed in a separate tube to be used for normalization calculations for loading SDS-PAGE gels (see normalization section below). The remaining cells from each sample were then pelleted and the supernatant was removed to a separate tube. This supernatant represents proteins shed from the cell wall (S), and proteins in this fraction were precipitated as described below (see protein precipitation section). The cell pellet was resuspended in 0.8 ml of 50mM TrisHCl (pH 7.4) and ruptured using glass beads in the presence of protease inhibitors (Protease Inhibitor Cocktail SE, EMD Chemicals Inc) by vortexing for 1 min and cooling on ice for 1 min, and repeating this two-step cycle five times. The liquid above the glass bead layer was removed to a separate tube and centrifuged at \sim 13,000xg to pellet the cell wall and membranes. The supernatant (SF, representing the cytosolic or soluble fraction) was stored at -20°C. The membrane/cell wall pellet was resuspended in 100 µl of 50mM Tris-HCL (pH 7.4) + 2% Sodium dodecyl sulfate (SDS) and boiled for 5 min followed by centrifugation for 10mins. The supernatant containing membrane bound and non-covalently attached cell wall proteins was removed to a fresh tube to create the membrane/non-covalent fraction (M). The remaining cell wall pellet was boiled again for 10

mins in 100µl 50mM Tris-HCl (pH 7.4) + 2% SDS followed by centrifugation. This second membrane supernatant was then combined with the first (membrane fraction) to obtain the total membrane/non-covalent fraction (M). The final cell wall pellet was then resuspended in 100 µl of 50mM TrisHCl (pH 7.4) containing 2 units of β -1,3-glucanase (Quantazyme, MP Biomedicals) and 0.3µl of β -mercaptoethanol and incubated for 2hrs at 30°C followed by centrifugation for 10min at 13,000 rpm. The supernatant from the Quantazyme treatment represents the fraction of proteins that are covalently attached to the cell wall (C). Proteins from both the membrane/non-covalent (M) and covalent fractions (C) were precipitated by adding 3 volumes of cold acetone and incubating at 4°C overnight. The samples were then centrifuged and dried in a speedvac after which samples were resuspended in loading buffer. The fractions were analyzed by SDS-PAGE (4% stacking gel, 5% resolving gel) followed by Western blotting with an anti-HA antibody.

2.2.6 Normalization of fractionation samples for loading

 10μ l of cells from the washed mat samples were diluted into 490μ l of de-flocculation buffer (50mM EDTA) and sonicated with a Misonix Microson XL2000 ultrasonic homogenizer sonicator for 5 pulses (~5 sec each) set on 4. The cells were then enumerated with a hemocytometer.

2.2.7 Precipitation of extracellular proteins from the mat

This method was adapted from Bensadoun A. *et al* [35]. Proteins from the extracellularly shed fraction (S) above were precipitated from the Tris-HCl buffer by first adding 1/100th volume of 2% Sodium deoxycholate (DOC) and incubating for 30 mins at 4°C. 1/10th volume of 100% Trichloroacetic acid (TCA) was then added for overnight precipitation at 4°C.

2.3 Results

2.3.1 Mutations in class E VPS mutants that block Rim101p processing disrupt invasive growth

The class E VPS genes that encode members of the ESCRT I, II, or III complexes were hypothesized to regulate haploid invasive growth because they affect Rim101p processing which is required for invasive growth and *FLO11* expression in *S. cerevisiae* [15, 16, 21]. These will henceforth be referred to as Class E-1 mutants. Their orthologs have also been shown to affect

filamentous growth in *C. albicans* by affecting Rim101p processing [21, 22]. In contrast, non-ESCRT-I, II, III class E VPS mutants, such as $vps27\Delta$ or $vps4\Delta$, (henceforth referred to as Class E-2 mutants) do not affect Rim101p processing in *S. cerevisiae* or *C. albicans* [36], and were expected to not affect invasive growth in *S. cerevisiae*.

In the $\sum 1278b$ background of *S. cerevisiae*, Class E-1 mutants representing three ESCRT complexes, $vps28\Delta$ (ESCRT-I), $vp25\Delta$ (ESCRT-II), and $vps20\Delta$ (ESCRT-III), show a strong defect in invasive growth (Figure 2.3 A) while Class E-2 mutants such as $vps27\Delta$ and $vps4\Delta$ do not disrupt invasive growth.

Class E-1 mutants exhibit stronger invasive growth defects than the $rim101\Delta$ mutant itself or mutations in upstream Rim101p processing components such as $rim13\Delta$ or $rim9\Delta$. While there is a thin layer of cells left behind in the $rim101\Delta$, $rim13\Delta$, and $rim9\Delta$ Rim101p pathway mutants, there are practically no cells left behind for the Class E-1 mutants (Figures 2.3 A&B).

2.3.2 Both Class E-1 and E-2 mutants perturb mat formation

Based on the invasive growth assays in Figure 2.3 it was predicted that the mutations that are known to perturb invasive growth (Class E-1 mutants) would perturb mat formation. In particular, it was hypothesized that the Class E-1 mutants would form defective biofilms that differ from the wild-type in three respects. (i) They would fail to form the wrinkles and channels that are hallmarks of the hub in the wild-type (Figure 2.3 C). (ii) They would not cover or spread over as large of a surface area of the agar plates as the wild-type. (iii) They would not adhere to the agar surface when tested for adhesion. In contrast, the mutations that did not perturb invasive growth (Class E-2 mutants, Figure 2.3 A) were predicted to have little to no effect on mat formation. However, when this was tested, it was discovered that both Class E-1 and Class E-2 mutants exhibit strong defects in mat formation that are similar to those of the Rim101p pathway mutants (Figure 2.3 C&D). Similar results have been found by Ryan et al in the laboratory of Charlie Boone at the University of Toronto while screening the $\sum 1278b$ whole genome deletion collection that they have generated (private communication). Biofilms formed by the *rim9* Δ and $rim13\Delta$ mutants resemble those of the $rim101\Delta$ mutant, while the $vps4\Delta$ mutant's biofilm resembles that of the $vps27\Delta$ strain (data not shown).

The Class E-1 and Class E-2 mutants spread poorly compared to wild-type, and they did not generate noticeable patterns on low agar. In addition, they all exhibited defects in adhesion to agar based on the overlay adhesion assay [11]. This assay is performed by laying a piece of

commercial plastic wrap on the agar over the growing cells and then removing it by lifting up on both sides. Cells that adhere to the agar surface stay behind, as seen for the wrinkled center (hub) of the wild-type mat (Figure 2.3 C). Cells that are not agar-adherent are removed as seen for the outer edge of the wild-type (rim). The entire cell population of the Rim101p pathway and Class E-1 mutants were removed by the plastic wrap (Figure 2.3D and data not shown), which is similar to what is seen for *flo11* Δ mutants [11]. The *vps27* Δ and *vps4* Δ mutants adhered slightly better to the agar surface than the other mutants (only *vps27* Δ is shown in Figure 2.3C), however the cells from these mutants that remained on the agar plate were poorly adherent compared to the hub cells from the wild-type.

2.3.3 FLO11 expression is diminished in Class E-1 mutants but not the Class E-2 mutants

One reason for the difference between the Class E-1 and Class E-2 mutants might be that the Class E-2 mutants exhibit diminished *FLO11* gene expression by affecting some alternative pathway during mat formation, but not during invasive growth. In order to test this, both groups of mutants were compared for *FLO11* expression levels during mat formation by real time reverse transcriptase polymerase chain reaction (rtRT-PCR). These analyses revealed that the $vps28\Delta$, $vps25\Delta$, and $vps20\Delta$ mutants all expressed little *FLO11* compared to the wild-type (Figure 2.4). In contrast, $vps27\Delta$ and $vps4\Delta$ mutants expressed either higher or similar levels of *FLO11* compared to wild-type (Figure 2.4).

2.3.4 Two pathways act through the endosome to affect mat formation

A hypothesis to explain the differing phenotypes between the Class E-1 and Class E-2 mutants is that there are two distinct, but overlapping, pathways that affect mat formation and act through the endosome. One pathway is the Rim101p signal transduction cascade [18], which requires specific ESCRT-I, II, III components [21, 22], and is required for *FLO11* expression ([15], Figure 2.4,), and therefore affects both invasive growth and mat formation (Figure 2.3). The other pathway depends on a functional MVB pathway in general, but has little to no effect on *FLO11* expression and only affects mat formation, but not invasive growth (Figures 2.3 and 2.4).

Figure 2.3 Class E-1 and E2 vps mutants have distinct effects on invasive growth and the mat formation.

Class E vps mutants that affect the Rim101p signaling pathway (class E-1) cause defects in mat formation and invasive growth, but class E vps mutants that do not affect the Rim101p pathway (class E-2) disrupt mat formation but not invasive growth. (A) The class E vps mutants vps27 Δ , vps28 Δ (ESCRT-I), vps25 Δ (ESCRT-II), vps20 Δ (ESCRT-III), and vps4 Δ were subjected to the invasive growth assay (WT, wild type); (B) members of the Rim101p signaling pathway, rim101 Δ , rim9 Δ , and rim8 Δ , were subjected to the invasive growth assay; (C and D) representative members of the class E-1 and E-2 vps mutants (C) and the Rim101p signal transduction pathway (D) were subjected to the overlay adhesion assay.

Figure 2.4: Effect of Class E-1 and E-2 vps mutants on FLO11 expression.

FLO11 expression is greatly diminished in class E-1 mutants known to affect Rim101p processing, but class E-2 mutants like vps27 Δ and vps4 Δ mutants do not show a decrease in FLO11 expression. Fold change in FLO11 expression was measured by rtRT-PCR, and ACT1 was used as a reference gene. WT, wild type; 27, vps27 Δ ; 28, vps28; 25, vps25 Δ ; 20, vps20 Δ ; 4, vps4 Δ . *, P < 0.05 compared to wild type.

The above hypothesis suggests that the whole MVB pathway is required for mat formation, but it was possible that there was a unique role for Vps27p and Vps4p. This was tested by examining the invasive growth and mat formation phenotypes of a collection of vps mutants in the $\sum 1278b$ background. Analysis of 9 additional class E vps mutants (*did4* Δ , *snf8* Δ , *vps23* Δ , *vps24* Δ , *bro1* Δ , *snf7* Δ , *vps36* Δ , *vps37* Δ , and *mos10* Δ) reveals that they all have defects in mat formation, although the defects in the *vps37* Δ and *mos10* Δ mutants are less pronounced (Appendix Table A-3). Consistent with the above results, there is a correlation between ESCRT mutants known to perturb Rim101p signaling (Class E-1 mutants) and defects in both invasive growth and mat formation to this, as it is defective for mat formation but not invasive growth. However, the *vps37* Δ mutant gave mixed results regarding its role in Rim101p processing [21, 37]. The *vps37* Δ mutant not withstanding, these results suggest that MVB trafficking is important for proper mat formation.

An alternative interpretation is that disruption of vacuolar function may be the root cause of the defect in mat formation. However, an additional 25 vps mutants were tested that do not belong to class E. Of these non-class E vps mutants, 11 have no defect in mat formation, and 8 cause only a partial defect leaving the mutants with less well-defined pattern formation, but a clear rim and hub by the overlay adhesion assay. Thus, 19 out of 25 non-class E vps mutants exhibit only a partial defect or no defect in mat formation (Appendix Table A-3). Only two genes represented among these 19 mutants, *VPS21* and *VPS62*, have strong homologs in *S. cerevisiae*, therefore for most of the 19 mutants, the lack of a strong defect in mat formation

cannot be accounted for by redundant gene functions. In addition, a $pep4\Delta$ mutant, which disrupts vacuolar protease activity [38, 39], is also wild-type for mat formation (data not shown).

Thus, there is a second pathway required for mat formation, which will be tentatively called the biofilm pathway, which is dependent on the MVB pathway and is hypothesized to act independently of the Rim101p pathway. If the biofilm pathway is really independent of Rim101p, then restoration of Rim101p transcription factor activity via a dominant allele of *RIM101* should bypass upstream defects in the Rim101p pathway, but not the biofilm pathway. The *RIM101-531* dominant allele encodes a truncated form of Rim101p missing the inhibitory C-terminal tail following amino acid 531. This truncated protein is active even when upstream components of the signal transduction pathway are disrupted, including both Class E- 1 (*i.e.* $vps28\Delta$, $vps25\Delta$, and $vps20\Delta$) and non-MVB (*i.e.* $rim13\Delta$) components [16].

Addition of the *RIM101-531* dominant active allele should have different predictable phenotypes in the non-MVB, Class E-1, and Class E-2 mutants. If RIM101-531 is expressed in a $rim13\Delta$ strain (non-MVB), then this should restore FLO11 expression, invasive growth, and mat formation since the *rim13* Δ mutant should only block Rim101p processing but not MVB trafficking. In contrast, the *RIM101-531* allele in the $vps25\Delta$ mutant (Class E-1) should suppress defects in FLO11 expression and invasive growth, but not mat formation, since the RIM101-531 allele will not restore MVB sorting. Finally, the RIM101-531 allele should have no impact on the $vps27\Delta$ mutant (Class E-2). The *RIM101-531* allele was introduced into the $vps27\Delta$, $vps25\Delta$, and *rim13* Δ mutants by deleting the C-terminal 95 codons on the chromosome by homologous recombination (see materials and methods). The resulting double mutants were examined for invasive growth, FLO11 expression, and mat formation. The rim13A RIM101-531 double mutant was fully restored for invasive growth compared to the *rim13* Δ single mutant as was the vps25\[] RIM101-531 mutant. The vps27\[] RIM101-531 double mutant appears no different than the $vps27\Delta$ mutant (Figure 2.5A). Consistent with these results, FLO11 gene expression in growing mats measured by rtRT-PCR is restored in the vps25 Δ RIM101-531 and rim13 Δ *RIM101-531* double mutants and is not significantly different between $vps27\Delta$ and $vps27\Delta$ RIM101-531 strains (Figure 2.5B).

These mutants also behave as predicted in the mat formation assay. The *rim13* Δ *RIM101-531* double mutant, although slightly reduced compared to the wild-type, is restored for mat

Figure 2.5: Effect of RIM101 suppressor mutant on invasive growth phenotype and FLO11 expression of Class E-1 and Class E-2 vps mutants.

The RIM101-531 allele suppresses invasive growth and FLO11 expression defects in the vps25 Δ and rim13 Δ mutants. (A) Strains carrying the RIM101-531 allele were subjected to the invasive growth assay. Mutants with a capital R are double mutants carrying the named mutation and the RIM101-531 allele. (B) Fold change in FLO11 expression was measured by rtRT-PCR, and ACT1 was used as a reference gene. WT, wild type; 25, vps25 Δ ; 25R, vps25 Δ RIM101-531; 27, vps27 Δ ; 27R, vps27 Δ RIM101-531; 13, rim13 Δ ; 13R, rim13 Δ RIM101-531. *, P < 0.05 compared to wild type.

formation compared to the *rim13* Δ parent strain. It exhibits increased spreading on low agar with formation of patterns such as a clear hub, and it adheres similarly to wild-type in the overlay adhesion assay yielding a distinct hub and rim (Figure 2.6, plastic not shown). The *vps27* Δ mutant is unaffected by the introduction of *RIM101-531* allele. In contrast, the *vps25* Δ *RIM101-531* double mutant resembles a *vps27* Δ single mutant in the overlay adhesion assay (Figure 2.6). These results suggest that there exists a requirement for the MVB pathway in biofilms that is independent of Rim101 pathway.

2.3.5 Expression of Flo11p is diminished in Class E-1 mutants, but is similar to wild-type in Class E-2 mutants

The above experiments support the hypothesis that there is a biofilm signaling pathway that depends on functional MVB trafficking and is necessary for mat formation, but is independent of Rim101p signaling and *FLO11* expression. However, since the MVB pathway affects protein trafficking within the cell, it seemed possible that the mat formation defects were due to poor expression or mislocalization of Flo11p. In order to test this, the percentage of cells expressing

Figure 2.6: Effect of RIM101 suppressor mutant on overlay adhesion assay and mat formation phenotype of Class E-1 and Class E-2 vps mutants.

The RIM101-531 allele suppresses the mat formation defect in the rim13 Δ mutant but not the vps25 Δ or vps27 Δ mutant. Pre, before the overlay adhesion assay; Post, agar after the overlay adhesion assay.

Flo11p on the cell surfaces within the mats of different strains were compared. Flo11p is expressed in a variegated manner in the $\sum 1278b$ strain such that only ~40-50% of the wild-type cells express the protein on the surface as assessed by immunofluorescence [11, 40]. Each of these strains carries on its chromosome an allele of *FLO11* encoding a protein with a hemagglutinin (HA) epitope tag located between amino acids 30 and 31 (*FLO11-HA*³⁰). Cells were collected from growing mats in the wild-type, *vps25* Δ , *vps27* Δ , and *rim13* Δ strains plus their respective *RIM101-531* double mutants and subjected to staining with anti-HA antibody to assess the percentages of cells expressing Flo11-HA³⁰ on their cell surfaces. Consistent with *FLO11* gene expression results (Figure 2.5 B), the *vps25* Δ strain expressed little Flo11-HA³⁰, while the *vps25* Δ *RIM101-531* strain expressed wild-type levels of the protein (Figure 2.7). In contrast, the *vps27* Δ and *vps27* Δ *RIM101-531* strains were similar to wild-type, but the *rim13* Δ *RIM101-531* double mutant was restored for Flo11-HA³⁰ expression.

2.3.6 Flo11p shedding and cell wall localization is not altered in the Class E-2 mutants

Although Flo11-HA³⁰ was clearly expressed on the cell surface of Class E-2 mutants, it was recently reported that Flo11p is shed outside the cell wall, and that this extracellular form is important for mat formation [32]. A separate report by another group indicated that Flo11p is not covalently attached to the cell wall, as are other canonical adhesins [41, 42], but is found in the membranes of yeast cells or is non-covalently associated with the cell wall [43]. Thus, it seemed possible that although no differences were seen in Flo11-HA³⁰ expression between wild-type and *vps27*\Delta strains based on immunofluorescence, the subcellular localization of Flo11-HA³⁰ at the surface or outside the cells might be different. For example, perhaps the mutants shed all or most of their Flo11-HA³⁰ or its association with the wall or membrane is altered.

In order to address the above concerns, cells were isolated from the growing mats and subjected to subcellular fractionation. Cells were collected from wild-type, $vps25\Delta$ (Class E-1),

Figure 2.7: Immunofluorescence assay results of RIM101 suppressor mutant.

The RIM101-531 allele restores Flo11-HA30 expression in the vps25 Δ and rim13 Δ mutants. (A) Cells were subjected to secondary immunofluorescence with an anti-HA monoclonal primary antibody directed toward the HA tag in strains carrying Flo11-HA30. (B) Quantification of the percentage of cells expressing Flo11-HA30 from each strain. Wild type (WT); vps25 Δ ; vps25 Δ RIM101-531 (25R); vps27 Δ ; vps27 Δ RIM101-531 (27R); rim13 Δ ; rim13 Δ RIM101-531 (13R). *, P < 0.05 compared to wild type.

 $vps27\Delta$ (Class E-2), or $rim13\Delta$ (non-MVB) mutants. The overlay adhesion assay was used to purify separate populations of rim cells from the wild-type, and the hubs were scraped from the agar with a spatula. Whole mats from mat-defective vps mutants were collected by scraping from the agar surface. The cells were then fractionated (see Methods for more details) to obtain shed (S), membrane-associated (M) and covalently attached cell wall (C) fractions. Protein fractions were then analyzed by SDS-PAGE and Western blotting against Flo11-HA. Loading was normalized to the number of cells represented in each population from which proteins were extracted (see Methods for more details).

When this procedure was performed on the strains carrying Flo11-HA³⁰, it was found that the expected high molecular weight Flo11p band (>260 kDa) seen in [32] was seen only in the membrane fraction, and showed substantial degradation, even in the presence of protease inhibitors (data not shown). This version of Flo11-HA was tagged between amino acids 30 and 31 (Flo11-HA³⁰). Unlike it, the Flo11-HA used by Karunanithi, et al [32] was tagged at amino acid residue 1015 (Flo11-HA¹⁰¹⁵). Therefore, another HA tag was added to *FLO11-HA³⁰* in the strain at residue 1015 to create doubly HA tagged Flo11-HA^{30,1015} strains, and the fractionation was repeated. In this case, a band was seen corresponding to Flo11p that ran at >260 kDa in the shed (S), membrane/non-covalent cell wall (M), and covalently attached (C) cell wall fractions (Figure 2.8, Flo11p band). These data indicate that Flo11p is both shed outside the cell wall and covalently attached to the cell wall, and is also found in the M fraction containing both membrane and non-covalently cell wall associated forms of the protein.

A very small molecular weight band is also present, and is found primarily in the M fraction (Figure 2.8, N-HA). Further analysis revealed this band to be ~17 kDa (Appendix Figure A-4, N-HA), although faint amounts of an ~37 kDa band were seen as well. It is suspected that the ~17 kDa N-HA band seen in the Western blots corresponds to the N-terminal 33 kDa myc-tagged band of Flo11p reported by Karunanithi et al [32], but may differ in size due to strain-associated differences in protease sites in Flo11p (see discussion).

It has been previously reported that the percentage of cells expressing Flo11-HA³⁰ in the rim and hub is identical based on immunofluorescence data [11]. Consistent with these previous results, the Western blot analysis reveals no obvious or reproducible differences in the overall amounts or distribution of Flo11-HA^{30,1015} in the S, M, or C fractions of the rim or hub of the wild-type (Figure 2.8, rim and hub). This is despite the fact that there is a profound difference in

Figure 2.8: Western blot on fractionated rim and hub of wild type and representative Rim101 pathway, Class E-1 and E2 vps mutants.

Flo11p is both shed from the cell wall and covalently attached to it and is expressed and localized similarly in wild-type and vps27 Δ strains. Western blotting was performed on fractionated samples from wild-type (i, ii and iii), vps27 Δ (i), vps25 Δ (ii), and rim13 Δ (iii) strains carrying Flo11-HA30,1015. A high-molecular-mass Flo11p-HA30,1015 band (>260 kDa) was observed in wild-type and vps27 Δ strains in all fractions, including shed (S), membrane bound/noncovalently cell wall associated (M), and covalently attached to cell wall (C) fractions. The vps25 Δ and rim13 Δ mutants show the absence of Flo11p-HA30,1015 in S and C fractions and considerably decreased signals in the M fraction. A small N-terminal fragment (17 kDa) referred to as N-HA was consistently observed in the M fraction.

the manner in which these cell populations adhere to agar in the overlay adhesion assay (Figure 2.3 C).

Finally, when Flo11-HA^{30, 1015} expression and distribution is compared between the wildtype and mutant strains, there is a clear decrease in Flo11-HA^{30, 1015} expression in all of thefractions in the $vps25\Delta$ and $rim13\Delta$ mutants, while there is no reproducible difference between wild-type and $vps27\Delta$ strains (Figure 2.8). Thus, these results are once again consistent with those from the rtRT-PCR and immunofluorescence experiments (Figures 2.5 and 2.7). Therefore, based on three different measures of *FLO11* gene or Flo11p protein expression (Figs 2.4, 2.5, 2.7 and 2.8) it appears that $vps27\Delta$ does not differ from wild-type in Flo11p expression, distribution, or shedding. Its failure to form a mat is likely attributable to some unidentified effector protein or molecule.

2.4 Discussion

FLO11 is clearly necessary for mat formation; however, it is not sufficient for this phenotype. Martineau *et al* [14] reported a similar finding in which they described several mutants in hsp70 homologues that exhibit defects in mat formation but not in Flo11p expression or invasive growth, although it was not known how these hsp70 homologs cause this defect. This chapter reports that Class E-2 mutants cause defects in mat formation in a manner that is independent of Flo11p expression or localization. Thus, Class E-2 mutants, along with the hsp70 mutants reported previously, reveal that the phenotypes of invasive growth and mat formation can be clearly separated at the genetic level.

The differences in the expression of *FLO11* between the Class E-1 and Class E-2 mutants can be ascribed to the differing roles of these two types of mutants in processing of the Rim101p transcription factor. Class E-1 mutants, such as $vps28\Delta$ (ESCRT-I), $vps25\Delta$ (ESCRT-II), and $vps20\Delta$ (ESCRT-III), are necessary for Rim101p processing [21], which is in turn necessary for *FLO11* expression (Figures 2.5 and 2.7, and reference [15]). In contrast, the Class E-2 mutants, such as $vps27\Delta$, do not affect Rim101p processing [21] and therefore do not cause diminished *FLO11* expression.

These data indicate that MVB sorting, the common process affected by both Class E-1 and E-2 mutants, is required for mat formation, but not invasive growth. This hypothesis is further strengthened by the fact that addition of a *RIM101-531* dominant active allele to the *vps25* Δ mutant could rescue this Class E-1 mutant's *FLO11* expression and invasive growth phenotypes, but not its mat formation defect (Figures 2.5 and 2.6). In fact, the *vps25* Δ *RIM101-531* double mutant strongly resembled the *vps27* Δ mutant in the overlay adhesion assay with its very slightly adhesive cells (Figure 2.6). Thus, even a constitutively active *RIM101-531* allele cannot rescue mat formation as long as MVB sorting is compromised. As a control, it was found that the *rim13* Δ mutant, which is defective for Rim101p processing, but not MVB function, was rescued for mat formation, invasive growth, and *FLO11* expression by the *RIM101-531* dominant active allele. Finally, the data supports a model suggesting that class E vps mutants cause mat formation defects by affecting MVB sorting rather than vacuolar function, as numerous non-class E vps mutants have little or no defect in mat formation (Appendix Table A-3).

Taken altogether, we present a model suggesting that there are two pathways passing through the endosome that affect mat formation (Figure 2.9). One pathway, the Rim101p pathway, affects *FLO11* expression, invasive growth, and mat formation, while the biofilm pathway, which is dependent on proper MVB sorting, is required for mat formation, but not *FLO11* expression or invasive growth.

It is suspected that the MVB mutations (Class E-1 or Class E-2) cause mislocalization of a component of the biofilm signaling pathway that is necessary for proper mat formation (Figure

Figure 2.9: Model of pathways affecting mat formation. Two pathways affect mat formation through MVB.

One pathway is the well-characterized Rim101p pathway, which uses components of the ESCRT-I, -II, and -III complexes to transduce the signal to activate Rim101p and FLO11 expression, which are necessary for both invasive growth and mat formation. The second pathway is the putative biofilm pathway, which is hypothesized to have a component that must be properly sorted by the MVB in order to function. The biofilm pathway is not necessary for FLO11 expression or invasive growth but is necessary for mat formation, presumably by altering the cell wall in some unknown way.

2.9). It is further suspected that this pathway ultimately affects the cell wall in some unknown manner that strongly impacts mat formation in a Flo11p independent manner, but also has only a very modest effect on invasive growth. The future plan is to identify and characterize the components of the biofilm signaling pathway.

Based on the rtRT-PCR data (Figures 2.4 and 2.5 A) one might get the impression that the Class E-2 mutants such as $vps27\Delta$ and $vps4\Delta$ actually overexpress *FLO11*, and thus the biofilm pathway represses *FLO11*. However, when Flo11-HA is examined in these mutants (Figures 2.7 and 2.8), this does not appear to be the case. It is suspected that the higher expression of *FLO11* mRNA in the Class E-2 mutants may be misleading due to the size of wild-type mats compared to mutant mats and the fact that there are more glucose starved cells within wild-type mats that are no longer growing, thus giving a large hub population with diminished *FLO11* expression [11].

2.4.1 What is the functional form of Flo11p at the cell surface and shed extracellularly?

Karunanithi et al [32] recently showed that Flo11-HA¹⁰¹⁵ was proteolytically cleaved during its synthesis in a Kex2p-dependent manner and that this led to the release of a 33 kDa fragment that included the N-terminus of the protein [32].

Surprisingly, it was found that the N-terminus of Flo11-HA³⁰ is localized at the cell surface based on immunofluorescence analysis (Figure 2.7). Thus, the form of Flo11p found in the cell wall of yeast is present with an intact N-terminus. However, this form of the protein was difficult to detect by Western blots, even with the addition of protease inhibitors, and was seen almost exclusively in the membrane fraction.

It is suspected that release of proteases from the vacuole during cell fractionation may result in degradation of this N-terminal tag in the covalent fraction, and perhaps some of the non-covalent fraction too, since a small N-terminal fragment accumulates in the membrane fractionation (Appendix Figure A-4). Since the shed (S) fraction was collected from intact cells, and it could not be detected by Western blotting the Flo11-HA³⁰ form (data not shown), the N-terminus may be cleaved during shedding [32].

The 17 kDa fragment released from Flo11-HA^{30,1015} was primarily in the M fraction which contains cellular membranes and non-covalently attached cell wall proteins, although very faint amounts of it can be seen in the shed (S) fraction in some blots (Figure 2.10). No evidence was seen for it in the covalently attached cell wall fraction (C). This is consistent with the findings of Karunanithi et al [32], who found the 33 kDa fragment to be enriched in the cell pellet, which would contain mostly the membrane and non-covalently attached cell wall proteins.

2.4.2 Mats are biofilms

As a final point, the discovery by Karunanithi *et al* [32] of mucins such as Flo11p being shed extracellularly by *Saccharomyces* and the follow up discovery that Flo11p is shed extracellularly in the mat in both the rim and hub (Figure 2.8) suggest that Flo11p could itself be defined as part of an extracellular matrix (ECM). Flo11p greatly resembles the mucin proteins of mammals that make gel-like mucus layers. Thus, we believe that *S. cerevisiae* mats can rightly be described as biofilms that contain an ECM.

Bibliography for chapter 2

- 1. Stoodley, P., K. Sauer, D.G. Davies, and J.W. Costerton, *Biofilms as complex differentiated communities.* Annu Rev Microbiol, 2002. **56**: p. 187-209.
- 2. Allison, C. and C. Hughes, *Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour.* Sci Prog, 1991. **75**(298 Pt 3-4): p. 403-22.
- 3. Jelsbak, L. and L. Sogaard-Andersen, *Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus.* J Microbiol Methods, 2003. **55**(3): p. 829-39.
- 4. Shapiro, J.A., *The significances of bacterial colony patterns.* Bioessays, 1995. **17**(7): p. 597-607.
- 5. Shapiro, J.A., *Thinking about bacterial populations as multicellular organisms.* Annu Rev Microbiol, 1998. **52**: p. 81-104.
- 6. Gimeno, C.J., P.O. Ljungdahl, C.A. Styles, and G.R. Fink, *Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS.* Cell, 1992. **68**(6): p. 1077-90.
- 7. Reynolds, T.B. and G.R. Fink, *Bakers' yeast, a model for fungal biofilm formation.* Science, 2001. **291**(5505): p. 878-81.
- 8. Zara, S., A.T. Bakalinsky, G. Zara, G. Pirino, M.A. Demontis, and M. Budroni, *FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae.* Appl Environ Microbiol, 2005. **71**(6): p. 2934-9.
- 9. Verstrepen, K.J. and F.M. Klis, *Flocculation, adhesion and biofilm formation in yeasts.* Mol Microbiol, 2006. **60**(1): p. 5-15.
- 10. Verstrepen, K.J., T.B. Reynolds, and G.R. Fink, *Origins of variation in the fungal cell surface.* Nat Rev Microbiol, 2004. **2**(7): p. 533-40.
- 11. Reynolds, T.B., A. Jansen, X. Peng, and G.R. Fink, *Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients*. Eukaryot Cell, 2008. **7**(1): p. 122-30.
- 12. Gancedo, J.M., *Control of pseudohyphae formation in Saccharomyces cerevisiae*. FEMS Microbiol Rev, 2001. **25**(1): p. 107-23.
- 13. Reynolds, T.B., *The Opi1p Transcription Factor Affects Expression of FLO11, Mat Formation, and Invasive Growth in Saccharomyces cerevisiae.* Eukaryot Cell, 2006. **5**(8): p. 1266-75.
- 14. Martineau, C.N., J.M. Beckerich, and M. Kabani, *Flo11p-independent control of "mat" formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast.* Genetics, 2007. **177**(3): p. 1679-89.
- 15. Barrales, R.R., J. Jimenez, and J.I. Ibeas, *Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae.* Genetics, 2008. **178**(1): p. 145-56.
- 16. Li, W. and A.P. Mitchell, *Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth.* Genetics, 1997. **145**(1): p. 63-73.
- 17. Penalva, M.A. and H.N. Arst, Jr., *Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts.* Annu Rev Microbiol, 2004. **58**: p. 425-51.
- 18. Davis, D., Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet, 2003. **44**(1): p. 1-7.
- 19. Gomez-Raja, J. and D.A. Davis, *The beta-arrestin-like protein Rim8 is hyperphosphorylated and complexes with Rim21 and Rim101 to promote adaptation to neutral-alkaline pH.* Eukaryotic cell, 2012. **11**(5): p. 683-93.

- 20. Boysen, J.H. and A.P. Mitchell, *Control of Bro1-domain protein Rim20 localization by external pH, ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway.* Mol Biol Cell, 2006. **17**(3): p. 1344-53.
- 21. Xu, W., F.J. Smith, Jr., R. Subaran, and A.P. Mitchell, *Multivesicular body-ESCRT* components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell, 2004. **15**(12): p. 5528-37.
- 22. Kullas, A.L., M. Li, and D.A. Davis, *Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans.* Eukaryot Cell, 2004. **3**(6): p. 1609-18.
- 23. Herranz, S., J.M. Rodriguez, H.J. Bussink, J.C. Sanchez-Ferrero, H.N. Arst, Jr., M.A. Penalva, and O. Vincent, *Arrestin-related proteins mediate pH signaling in fungi.* Proc Natl Acad Sci U S A, 2005. **102**(34): p. 12141-6.
- 24. Raymond, C.K., I. Howald-Stevenson, C.A. Vater, and T.H. Stevens, *Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants.* Mol Biol Cell, 1992. **3**(12): p. 1389-402.
- 25. Piper, R.C., A.A. Cooper, H. Yang, and T.H. Stevens, VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol, 1995. **131**(3): p. 603-17.
- 26. Hurley, J.H. and S.D. Emr, *The ESCRT complexes: structure and mechanism of a membrane-trafficking network.* Annu Rev Biophys Biomol Struct, 2006. **35**: p. 277-98.
- 27. Raiborg, C., T.E. Rusten, and H. Stenmark, *Protein sorting into multivesicular endosomes.* Curr Opin Cell Biol, 2003. **15**(4): p. 446-55.
- 28. Raiborg, C. and H. Stenmark, *The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.* Nature, 2009. **458**(7237): p. 445-52.
- 29. Longtine, M.S., A. McKenzie, 3rd, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen, and J.R. Pringle, *Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae.* Yeast, 1998. **14**(10): p. 953-61.
- 30. Styles, C., How to set up a yeast laboratory. Methods Enzymol, 2002. 350: p. 42-71.
- Guo, B., C.A. Styles, Q. Feng, and G.R. Fink, A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A, 2000. 97(22): p. 12158-63.
- 32. Karunanithi, S., N. Vadaie, C.A. Chavel, B. Birkaya, J. Joshi, L. Grell, and P.J. Cullen, *Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation.* Curr Biol, 2010. **20**(15): p. 1389-95.
- 33. Schneider, B.L., W. Seufert, B. Steiner, Q.H. Yang, and A.B. Futcher, *Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae.* Yeast, 1995. **11**(13): p. 1265-74.
- 34. Kohrer, K. and H. Domdey, *Preparation of high molecular weight RNA.* Methods Enzymol, 1991. **194**: p. 398-405.
- 35. Bensadoun, A. and D. Weinstein, *Assay of proteins in the presence of interfering materials.* Anal Biochem, 1976. **70**(1): p. 241-50.
- 36. Wolf, J.M., D.J. Johnson, D. Chmielewski, and D.A. Davis, *The Candida albicans ESCRT pathway makes Rim101-dependent and -independent contributions to pathogenesis.* Eukaryot Cell, 2010. **9**(8): p. 1203-15.
- 37. Rothfels, K., J.C. Tanny, E. Molnar, H. Friesen, C. Commisso, and J. Segall, Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol, 2005. **25**(15): p. 6772-88.
- 38. Jones, E.W., *The synthesis and function of proteases in Saccharomyces: genetic approaches.* Annu Rev Genet, 1984. **18**: p. 233-70.

- 39. Ammerer, G., C.P. Hunter, J.H. Rothman, G.C. Saari, L.A. Valls, and T.H. Stevens, *PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors.* Mol Cell Biol, 1986. **6**(7): p. 2490-9.
- 40. Halme, A., S. Bumgarner, C. Styles, and G.R. Fink, *Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast.* Cell, 2004. **116**(3): p. 405-15.
- 41. Frieman, M.B., J.M. McCaffery, and B.P. Cormack, *Modular domain structure in the Candida glabrata adhesin Epa1p, a beta1,6 glucan-cross-linked cell wall protein.* Mol Microbiol, 2002. **46**(2): p. 479-92.
- 42. Lu, C.F., J. Kurjan, and P.N. Lipke, *A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin.* Mol Cell Biol, 1994. **14**(7): p. 4825-33.
- 43. Martineau, C.N., R. Melki, and M. Kabani, *Swa2p-dependent clathrin dynamics is critical for Flo11p processing and 'Mat' formation in the yeast Saccharomyces cerevisiae.* FEBS Lett, 2010. **584**(6): p. 1149-55.

Chapter 3

A subset of components of the cell wall integrity pathway are essential for biofilm formation in *Saccharomyces cerevisiae*

Disclosure

Chapter 3 is a manuscript under preparation. Sarode N. created all the constructs and performed all the assays in the chapter. *SKN7* plasmids with point mutations at D427, were kindly provided by Dr. Jan Fassler (The University of Iowa).

3.1 Introduction

Biofilms are the preferred modes of growth for the majority of microorganisms in nature. A biofilm is a community of cells that aggregate and colonize a foreign surface [1]. The major advantage of forming a biofilm is protection from the constant barrage of stresses that organisms are constantly exposed to in the environment [1]. Biofilms by pathogenic fungi like *Candida albicans* are a nuisance in clinical settings where they colonize invasive medical implants or establish infection in immunosuppressed patients [2, 3]. *Saccharomyces cerevisiae* is an attractive candidate to study genes important for biofilm formation since it is capable of forming an elaborate multicellular biofilm (hereafter referred to as a mat) on semisolid agar (0.3%). It grows into a wheel-like structure that can be structurally differentiated into a central wrinkled hub consisting of water channels, some of which resemble spokes of the wheel, all surrounded by a growing smooth rim [4].

The ability to form biofilms in fungi is largely dependent on various GPI-anchored adhesin proteins of the flocculin (FLO) family that are localized to the cell wall. However, reports have emerged recently showing the existence of cell wall factors independent of the FLO family that are important for biofilm formation [5, 6]. Flo11p is the only FLO protein expressed in mats formed by the *S. cerevisiae* $\sum 1278b$ background strain L6906 [7], and mat formation is dependent on Flo11p. However, mat formation is regulated by vacuolar protein sorting (vps) genes in both a Flo11p-dependent and –independent manner. The Flo11p-independent branch of the pathway (biofilm pathway) requires an intact and fully functional MultiVesicular Body (MVB) pathway traversing the endosome. Based on our results with the MVB pathway mutants, we previously hypothesized that MVB pathway mutants affect biofilm formation by mislocalizing an important component of the biofilm pathway leading to perturbation of the cell wall and ultimately to defects in biofilm formation.

There are a number of pathways that affect the cell wall, and one that has components affected by the MVB pathway is the cell wall integrity pathway (CWI). The CWI pathway consists of several signaling modules that include a family of single transmembrane domain sensors (Wsc1p is the main sensor for the wall), a Rho-type GTPase and its regulators (*i.e.* Rho1p and Rom2p), a protein kinase C homolog (Pkc1p), and a MAP kinase (MAPK) cascade (Bck1p-Mkk1/2p-Slt2p) [8]. Activation of the CWI pathway has pleiotropic effects on cell wall repair and biogenesis. The main function of the CWI pathway is maintenance of the highly

dynamic cell wall structure, by sensing signals (*i.e.* damage due to physical or environmental agents, hormones, signal to divide, etc), and relaying them downstream, leading to activation of appropriate genes leading to remodeling of the cell wall. For example, in addition to Pkc1p and the CWI-MAPK cascade, Rho1p regulates the Fks1p β -1,3-glucan synthase and the Skn7p transcription factor. In this chapter, data will be presented revealing that components of the CWI pathway, including the Wsc1p receptor, but excluding the CWI-MAPK cascade, disrupt mat formation, and therefore may comprise part or the entire biofilm pathway.

3.2 Methods and materials

3.2.1 Strains, media, and growth conditions

All strains used in this study belong to the yeast strain background $\sum 1278$ [4] (Table A-5). The *wsc1* Δ and *skn7* Δ mutants were created by transforming in the KanMX6 disruption cassette amplified by PCR [9] from the genomes of the *wsc1* Δ and *skn7* Δ mutants pulled out from the respective mutants in a whole-genome deletion collection created in the $\sum 1278$ background by Owen Ryan and colleagues in the laboratory of Charles Boone at the University of Toronto (*Ryan et al, Science.* in press). The GFP-His3Mx6 cassette from pFA6a-GFP-His3MX6 was subcloned just 5' to the stop codon of the *WSC1* gene using XbaI and HindIII restriction sites. Primers for PCR reactions are listed in Table A-6. Transformations were performed by the standard lithium acetate transformation method [10]. All strains were maintained on standard yeast extract-peptone-dextrose (YPD) media [10] containing 250µg/ml G418 or on minimal media lacking histidine [10]. Strains grown on low agar plates (YPD with 0.3% agar) [4] for 5 days at 25°C were used for overlay adhesion assays and immunofluorescence staining.

3.2.2 Overlay adhesion assay

The overlay adhesion assay was performed as described [11].

3.2.3 Immunofluorescence of Flo11-HA30 on the cell surface of cells from the rim and hub

The assay was performed as described in [11].

3.2.4 Western blotting

Precipitation of extracellular Flo11p from the mat, fractionation of cells, and western blotting was carried out as described in [6].

3.2.5 Site directed mutagenesis

The mutagenesis was performed using a primer-mediated PCR based method described in [12, 13], using primers listed in Table 2.

3.3 Results

3.3.1 Wsc1p affects mat formation in a Flo11p-independent manner:

Wsc1p is a sensor protein of the CWI pathway. It functions with other sensors (Mid2p, Wsc2p and Wsc3p) to sense cell wall damage or repair stimulus and activate the pathway. Any defect in Wsc1p signaling leads to increased sensitivity to cell wall perturbing factors like high temperature, calcofluor white, and caffeine [14-16]. As shown in Figure 3.1A, Wsc1p is also important for mat formation since $wsc1\Delta$ failed to form the typical patterned biofilm observed in the wild-type. However, it displays no defect in the Flo11p-dependent invasive growth phenotype (Figure 3.1B), its phenotypes being similar to the $vps27\Delta$ mutant [6].

In order to ascertain if the *wsc1* Δ mat formation defect is due to a defect in Flo11p localization, the percentage of cells expressing Flo11p on the cell wall were counted by immunofluorescence assay. The strain carries a HA epitope tag inserted between residue 30 and 31 of Flo11p (Flo11-HA³⁰) that can be stained using anti-HA antibody [6]. As can be seen in Figure 3.2A, there was no statistically significant difference between WT and *wsc1* Δ in the number of cells expressing Flo11-HA³⁰ on the cell surface.

In addition to being expressed on the cell wall surface, Flo11p was recently also reported to be shed outside the cell [6, 17]. To verify that $wsc1\Delta$ did not lead to any defects in Flo11p shedding, $wsc1\Delta$ containing Flo11p tagged with an additional HA epitope tag at residue 1015 (Flo11-HA^{30,1015}) was used. The mat cells were subjected to subcellular fractionation to separate populations of Flo11p that was shed extracellularly (S), covalently attached to the wall (C), and found in the membrane (M) and these were analyzed by SDS-PAGE and Western blotting using an anti-HA antibody (Fig 2B). Consistent with the immunofluoresence data, there appeared to be no reproducible difference in Flo11-HA^{30,1015} levels between wild type and $wsc1\Delta$.

Figure 3.1: Wsc1p affects mat formation in a Flo11p-independent manner.

(a) Overlay adhesion assay performed on wild type (WT) and $wsc1\Delta$. (b) Invasive wash assay performed on WT, $wsc1\Delta$, $vps25\Delta$ (Flo11p-dependent) and $vps27\Delta$ (Flo11p-independent).

Figure 3.2: wsc11 shows no defect in Flo11-HA expression, localization and shedding

(A)Cells subjected to secondary immunofluorescence with anti-HA monoclonal primary against Flo11-HA30 and plot of the percentage of cells expressing Flo11-HA30 from each strain. (B)Western blot of shed (S), membrane bound (M) and covalently attached (C) fractions of the cell wall using anti-HA monoclonal antibody.

Figure 3.3: Model depicting CWI pathway with the hypo-osmotic stress sensing pathway Sln1 branch.

3.3.2 Cell wall integrity MAPK cascade is not essential for biofilm formation

Since Wsc1p is an important sensor of the CWI pathway, Figure 3.3, we wanted to determine what downstream components of the pathway are required for mat formation. Deletion mutants of different components were analyzed for their effects on biofilm formation. Loss of other sensors of the Wsc family (*i.e.* Wsc2p, Wsc3p) and Mid2p fail to cause any defect in biofilm formation, suggesting that Wsc1p is the major sensor of the CWI pathway for mat formation (data not shown). No mutants were generated for *PKC1* and *RHO1* since these genes are essential [18]. Deletion mutants were generated for all non-redundant components of the CWI-MAPK cascade including $mpk1\Delta$, $bck1\Delta$, and the downstream transcription factor $rlm1\Delta$ (Fig 3.3). None of these mutations led to a defect in mat formation (Fig 3.4).

Figure 3.4: CWI pathway components downstream of *PKC1* including MAPK cascade and its effectors are not necessary for mat formation.

Mat formation phenotypes of wild type (WT), $wscl\Delta$, MAPK cascade genes (bck1 Δ , $mpkl\Delta$) and downstream transcription factor $rlml\Delta$.

3.3.3 Wsc1p-Rom2p interaction is essential for mat formation

The fact that the CWI-MAPK cascade is not involved in mat formation raised the question of which other canonical proteins are acting downstream of Wsc1p to affect mat formation. For example, the interaction between the sensor Wsc1p and the Rho1p guanylate exchange factor (GEF) Rom2p is the primary step activating the pathway. Therefore, we tested to see if a $rom2\Delta$ mutant is compromised for mat formation, and it is, in fact, defective (Figure 3.5). Therefore, we analyzed how known Wsc1p-Rom2p interactions affect mat formation.

Vay et al [19] used mutational analysis on the cytoplasmic tail of Wsc1p to identify the residues important for Wsc1p-Rom2p interactions. They identified residues Y303, S319-320, S322-323, L369, V371, N373, D375 to be crucial. If mutations that block this interaction also block mat formation, this will confirm that the Wsc1p-Rom2p interaction is important for mat formation. As Rom2p is a well-known activator of Rho1p [20], this will strongly implicate Rho1p, and establish a role for the primary upstream interaction of the CWI pathway (Figure 3.3).

The fusion gene of *WSC1* regulated by the *WSC1* promoter was subcloned into a vector such that it encoded Wsc1p with a green-fluorescent protein (GFP) tag on the C-terminal cytoplasmic tail. Transformation of the *wsc1* Δ mutant with *WSC1-GFP* (*wsc1* Δ ::*WSC1-GFP*) led to rescue of mat formation (Figure 3.6A) and temperature sensitivity phenotypes (Figure 3.6 B), thus confirming it was fully functional.

Figure 3.5: $rom2\Delta$ is defective in mat formation

Overlay adhesion assay performed on wild type (WT) and $rom 2\Delta$.

Figure 3.6: WSC1-GFP construct rescues (a) mat formation defect and (b) temperature sensitivity phenotypes of wsc1 Δ .
The aforementioned amino acids that mediate Rom2p-Wsc1p interactions were mutated to alanine. Constructs were generated that carried a single point mutation - Y303A; combination double point mutations - S319A S320A and L369A V371A; combination triple point mutations Y303A L369A V371A and a complete truncation of the cytoplasmic tail (deletion of residue 301 - 378). No transformants could be obtained for point mutations in the terminal region of the cytoplasmic tail (N373, D375) either by themselves or in combination with any other point mutations, and the reason for this is unknown.

None of the point mutants fully complement the mat formation or temperature sensitive growth defects (Figure 3.7), however, the Y303A and S219A S220A mutants did complement both phenotypes better than the L369A, V371A or Y303A, L369A, V371A mutants. Thus, both mutant phenotypes appear to increase as the location of the mutations edges closer to the extreme C-terminus. In contrast to observations of Vay et al [19], we didn't observe any growth defect at 30° C in any of our mutants. This could be due to the fact that they carried out the mutations and complementation study in a *wsc1*\Lambda *mid2*\Lambda double mutant that exhibits severe lysis defect at all growth temperatures in absence of osmotic support.

Figure 3.7: Wsc1p-Rom2p interaction is essential for mat formation.

Overlay adhesion assay performed on mats formed by *WSC1-GFP* point mutants, along with corresponding temperature sensitivity phenotype of every mutant.

3.3.4 Role of Skn7 in mat formation

The fact that the Wsc1p-Rom2p interaction is needed for mat formation but the CWI-MAPK is not, suggests that the biofilm pathway might be mediated via Rho1p through another downstream effector. One option is the Skn7p transcription factor, that acts downstream of Rho1p and parallel to the Pkc1p branch of the CWI pathway [18, 21] (Figure 3.3). Since the Pkc1p downstream effectors (*ie.* CWI-MAPK cascade) are non-essential for mat formation, we tested the *skn7*\Delta mutant. This mutant is defective in mat formation (Figure 3.8A), but based on Flo11-HA^{30,1015} immunofluorescence (Figure 3.8B) and western blotting (Figure 3.8C), shows no defect in invasive growth or Flo11p localization, expression and shedding. Thus, like the *wsc1*\Delta mutant, the *skn7*A mutant is defective in mat formation in a Flo11p-independent manner.

In addition to functioning downstream of the GTP-binding Rho1p in the CWI pathway, Skn7 has other distinct roles within the cell including oxidative stress response regulation and also acts downstream of the Sln1p histidine kinase as a response regulator [22, 23]. A conserved aspartic acid residue at position 427 in the receiver domain of Skn7p is known to be essential for its function in the Sln1p dependent pathway [22-25]. Mutating the aspartic acid to glutamic acid (D427E) generated a hyperactive form of Skn7p, while a mutation to aspargine (D427N) diminished its activity [23]. Plasmids containing Skn7p point mutants pCLM699 (Skn7D427N) and pCLM700 (Skn7D427E) were kindly provided by Dr. Jan S. Fassler [23]. If phosphorylation of the Skn7p conserved aspartic acid residue on the receiver domain plays a role in mat formation, then the hyperactive version of Skn7p (D427E) should rescue the mat formation defect of $skn7\Delta$, while the inactive version (D427N) should fail to do so. Complementing the *skn7* Δ mutation with both the active and inactive mutant forms of Skn7p led to rescue of the mat formation defect of $skn7\Delta$ (Figure 3.9). This suggests that Skn7p is not acting downstream of Sln1p to control mat formation but rather is acting downstream of Rho1p. Thus, its activities in mat formation must be mediated by a D427 independent mechanism [21, 26].

Figure 3.8: Skn7p affects mat formation in a Flo11p-independent manner.

(A) Overlay adhesion assay performed on wild type (WT) and $skn7\Delta$. (B) Secondary immunofluorescence assay performed with anti-HA monoclonal primary against Flo11-HA30 and plot of the percentage of cells expressing Flo11-HA30 from each strain. (C) Western blot of shed (S), membrane bound (M) and covalently attached (C) fractions of the cell wall using anti-HA monoclonal antibody.

Figure 3.9: Sln1p-Skn7p branch is not essential for biofilm formation Mat formation and overlay adhesion assay phenotype of Skn7D427 point mutants.

3.4 Discussion

In this chapter, we show that components of CWI pathway are required for mat formation in a manner that is independent of Flo11p and the canonical CWI-MAPK cascade. The involvement of the CWI pathway begins with Wsc1p, which is a sensory protein of the CWI pathway, whose activation has diverse effects on the cell wall. [27-29],

Our data clearly shows that Wsc1p-Rom2p interaction is essential for mat formation. This was shown by the fact that the $rom2\Delta$ and $wsc1\Delta$ mutants share the same phenotypes, and was confirmed by site directed mutagenesis studies showing that mutating the Wsc1p cytoplasmic tail residues, necessary for interaction with Rom2p, leads to defects in mat formation.

The observation that the CWI-MAPK cascade is not involved suggested that Wsc1p-Rom2p are acting through another pathway, and this unknown pathway likely branches out from the GTPase Rho1p, which is regulated by Rom2p. Rho1p is an essential GTPase at the center of a regulatory network having effectors that control cell wall biogenesis through polarization of actin cytoskeleton, activation of the transcription factor Skn7p and β -glucan synthesis.

Of these possibilities, mutant analysis implicates Skn7p. A *skn7* Δ mutant, like *wsc1* Δ , is defective in mat formation, and does so in a Flo11p-independent manner. The other possibilities were ruled out as follows. A *bni1* Δ mutant, which represents the Bni1p protein that acts downstream of Pkc1p independently of the CWI-MAPK cascade to affect the actin cytoskeleton is defective for mat formation, but also has defects in invasive growth, implicating Flo11p expression (data not shown). Neither of the *fks1* Δ and *fks2* Δ mutants had any defects in mat formation, and a double mutant is unviable. However, a *gas1* Δ mutant, which also affect β -1,3-glucan synthesis in the cell wall, is defective for mat formation, but in a Flo11p-dependent manner that affects invasive growth as well (data not shown). Thus, the phenotypes of the *skn7* Δ mutant suggest Skn7p is playing a role downstream of Wsc1p in mat formation.

However, Skn7p is regulated by both CWI pathway and high osmolarity glycerol (HOG) signaling pathways. The genes activated by Skn7p as a consequence of its activation through HOG pathway via its Sln1-Skn7 branch, are not identical to those activated as a result of cell wall stress through CWI pathway [22, 23]. This is because Skn7p is a modular transcription factor that can affect different sets of genes through different domains depending on which pathway activates it [21, 26].

The Sln1p histidine kinase activates Skn7p by phosphorylating the D427 residue, resulting in upregulation of certain target genes including *OCH1*, which encodes a Golgi complex glycosyltransferase [30]. To determine if Skn7p causes a defect in mat formation downstream of Sln1p, hyperactive (D427E) or inactive (D427N) point mutants of *SKN7*, that either overrespond or underrespond to Sln1p branch of the HOG pathway, respectively, were transformed into *skn7A*. Since both point mutants rescued the mat formation phenotype, it was shown that Skn7p does not act downstream of Sln1p to affect mat formation.

We recently showed that one Flo11p-indepenent mat formation pathway, referred to as biofilm pathway, involves the class E vacuolar protein sorting (vps) components of the MVB pathway. The proposed model of the biofilm pathway suggested that it would involve a cell wall sensory protein whose mislocalization in class E vps mutants results in defective mat formation.

It is possible that Wsc1p is this protein, and components of the CWI pathway, including Wsc1p, Rom2p, Rho1p, and Skn7p could be part of the Flo11p-independent biofilm pathway. Wsc1p localization depends on its recycling through a properly functioning endosomal MVB pathway, and a *vps27* Δ mutant, which disrupts MVB sorting, traps Wsc1p in an aberrant endosome known as the Class E compartment [29]. The *wsc1* Δ and *skn7* Δ mutants share very similar phenotypes with *vps27* Δ by affecting mat formation, but not invasive growth or Flo11p expression and localization. Thus, Wsc1p may be at the head of a biofilm pathway, but this has yet to be solidly supported.

3.4.1 Biofilm and CWI pathway have differential effects on mat formation in different \sum 1278b strains

We have found that the CWI pathway affects mat formation in a manner that is independent of the CWI-MAPK cascade, and may be affected by endosomal sorting mutations. However, recently, Birkaya et al [31] found that in another $\sum 1278b$ strain, PC538, that the CWI-MAPK cascade affected mat formation, invasive growth, and *FLO11* expression, which is very different from our findings. In addition to the differences in the way the CWI-MAPK cascade affects mat formation, the PC538 strain also differs from TRY181 in expressing *FLO10* [31], having much more wrinkled mats, and being less affected by mutations in *VPS27* and other vps mutants (data not shown).

These phenotypic inconsistencies between the strains may be due to undefined genetic differences in the PC538 and TRY181 (derived from L6906). One possible difference that could

be contributing is that PC538 carries a *ste4* Δ mutation, which could affect other signaling pathways. However, there may be other differences as well. Unraveling the differences between these strains will be valuable in understanding how mat formation is regulated in yeast.

3.5 Bibliography for chapter 3

- 1. Blankenship, J.R. and A.P. Mitchell, *How to build a biofilm: a fungal perspective.* Current opinion in microbiology, 2006. **9**(6): p. 588-94.
- 2. Arendrup, M.C., *Epidemiology of invasive candidiasis.* Current opinion in critical care, 2010. **16**(5): p. 445-52.
- 3. Pfaller, M.A. and D.J. Diekema, *Epidemiology of invasive candidiasis: a persistent public health problem.* Clinical microbiology reviews, 2007. **20**(1): p. 133-63.
- 4. Reynolds, T.B. and G.R. Fink, *Bakers' yeast, a model for fungal biofilm formation.* Science, 2001. **291**(5505): p. 878-81.
- 5. Martineau, C.N., J.M. Beckerich, and M. Kabani, *Flo11p-independent control of "mat" formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast.* Genetics, 2007. **177**(3): p. 1679-89.
- 6. Sarode, N., B. Miracle, X. Peng, O. Ryan, and T.B. Reynolds, *Vacuolar protein sorting* genes regulate mat formation in Saccharomyces cerevisiae by Flo11p-dependent and independent mechanisms. Eukaryotic Cell, 2011. **10**(11): p. 1516-26.
- 7. Halme, A., S. Bumgarner, C. Styles, and G.R. Fink, *Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast.* Cell, 2004. **116**(3): p. 405-15.
- 8. Gustin, M.C., J. Albertyn, M. Alexander, and K. Davenport, *MAP kinase pathways in the yeast Saccharomyces cerevisiae.* Microbiol Mol Biol Rev, 1998. **62**(4): p. 1264-300.
- 9. Longtine, M.S., A. McKenzie, 3rd, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen, and J.R. Pringle, *Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae.* Yeast, 1998. **14**(10): p. 953-61.
- 10. Styles, C., How to set up a yeast laboratory. Methods Enzymol, 2002. 350: p. 42-71.
- 11. Reynolds, T.B., A. Jansen, X. Peng, and G.R. Fink, *Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients*. Eukaryot Cell, 2008. **7**(1): p. 122-30.
- 12. Fisher, C.L. and G.K. Pei, *Modification of a PCR-based site-directed mutagenesis method.* Biotechniques, 1997. **23**(4): p. 570-1, 574.
- 13. Li, F. and J.I. Mullins, *Site-directed mutagenesis facilitated by DpnI selection on hemimethylated DNA.* Methods in molecular biology, 2002. **182**: p. 19-27.
- 14. Straede, A. and J.J. Heinisch, *Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1.* FEBS Lett, 2007. **581**(23): p. 4495-500.
- 15. Levin, D.E., *Cell wall integrity signaling in Saccharomyces cerevisiae.* Microbiol Mol Biol Rev, 2005. **69**(2): p. 262-91.
- 16. Verna, J., A. Lodder, K. Lee, A. Vagts, and R. Ballester, *A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae.* Proc Natl Acad Sci U S A, 1997. **94**(25): p. 13804-9.
- 17. Karunanithi, S., N. Vadaie, C.A. Chavel, B. Birkaya, J. Joshi, L. Grell, and P.J. Cullen, *Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation.* Curr Biol, 2010. **20**(15): p. 1389-95.
- 18. Levin, D.E., *Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway.* Genetics, 2011. **189**(4): p. 1145-75.
- 19. Vay, H.A., B. Philip, and D.E. Levin, *Mutational analysis of the cytoplasmic domain of the Wsc1 cell wall stress sensor.* Microbiology, 2004. **150**(Pt 10): p. 3281-8.
- 20. Ozaki, K., K. Tanaka, H. Imamura, T. Hihara, T. Kameyama, H. Nonaka, H. Hirano, Y. Matsuura, and Y. Takai, *Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs)*

for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. The EMBO journal, 1996. **15**(9): p. 2196-207.

- 21. Alberts, A.S., N. Bouquin, L.H. Johnston, and R. Treisman, *Analysis of RhoA-binding* proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. The Journal of biological chemistry, 1998. **273**(15): p. 8616-22.
- 22. Ketela, T., J.L. Brown, R.C. Stewart, and H. Bussey, Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway. Mol Gen Genet, 1998. **259**(4): p. 372-8.
- 23. Li, S., A. Ault, C.L. Malone, D. Raitt, S. Dean, L.H. Johnston, R.J. Deschenes, and J.S. Fassler, *The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p.* EMBO J, 1998. **17**(23): p. 6952-62.
- 24. Brown, J.L., H. Bussey, and R.C. Stewart, Yeast Skn7p functions in a eukaryotic twocomponent regulatory pathway. EMBO J, 1994. **13**(21): p. 5186-94.
- 25. Brown, J.L., S. North, and H. Bussey, *SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors.* J Bacteriol, 1993. **175**(21): p. 6908-15.
- 26. He, X.J., K.E. Mulford, and J.S. Fassler, *Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain.* Eukaryotic cell, 2009. **8**(5): p. 768-78.
- 27. Raymond, C.K., I. Howald-Stevenson, C.A. Vater, and T.H. Stevens, *Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants.* Mol Biol Cell, 1992. **3**(12): p. 1389-402.
- 28. Hurley, J.H., *ESCRT complexes and the biogenesis of multivesicular bodies*. Curr Opin Cell Biol, 2008. **20**(1): p. 4-11.
- 29. Piao, H.L., I.M. Machado, and G.S. Payne, *NPFXD-mediated endocytosis is required for polarity and function of a yeast cell wall stress sensor.* Mol Biol Cell, 2007. **18**(1): p. 57-65.
- 30. Li, S., S. Dean, Z. Li, J. Horecka, R.J. Deschenes, and J.S. Fassler, *The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p.* Molecular biology of the cell, 2002. **13**(2): p. 412-24.
- 31. Birkaya, B., A. Maddi, J. Joshi, S.J. Free, and P.J. Cullen, *Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth.* Eukaryotic cell, 2009. **8**(8): p. 1118-33.

Chapter 4

Chitosan synthesis in *Saccharomyces cerevisiae* biofilms protects cells from environmental stress.

Disclosure

Chapter 4 is a manuscript under preparation. Sarode N. created all the constructs and performed all the assays in the chapter. Gibbons J. from Dr. Antonis Rokas lab performed the RNA-Seq Illumina sequencing.

4.1 Introduction

Unicellular microorganisms frequently form biofilms. This multicellular mode of growth allows individual microbes to collaborate and form communities on foreign surfaces. Biofilms offer numerous advantages to the microbes within them including metabolic synergism and protection from stress, antimicrobials, toxins, and the ability to inhabit surfaces that otherwise will not support growth. The resistance exhibited by biofilms results from numerous factors including alteration of growth rates among cells in the community, presence of extracellular matrix (ECM), and increased expression of drug resistance pumps [1, 2]. Biofilm structure typically is characterized by extracellular matrix (ECM) secretion and structural differentiation of the cells [3-5].

Saccharomyces cerevisiae (Σ 1278) is capable of forming a biofilm, which we term a mat, on semi-solid agar (0.3%) media [6, 7]. The wild type mat is structurally differentiated into a central hub and peripheral rim (Figure 4.1a and b). Spoke-like structures resembling water channels are also observed radiating from the central hub towards the mat edge. The cell mass forming the hub has a characteristic wrinkled appearance and on closer inspection appears to be composed of a network of intertwined water channels. The cells forming the wall of these channels remain firmly attached to the agar surface when the mat is subjected to the overlay adhesion assay (Figure 4.1c). In this assay, the mat is overlain with plastic wrap, which is then removed. Cells that adhere to the agar (*i.e.* the hub) stay firmly attached to the agar. In contrast, the periphery of the mat, called the rim, is smooth in appearance, and easily removed from the agar surface by the plastic wrap during the overlay adhesion assay (Figure 4.1c) [6-8]. Cells of both rim and the hub are in yeast form, although pseudohyphal forms are observed in and near the spokes.

Mat formation requires an adhesion protein called Flo11p [6, 7], that also affects other multicellular phenotypes. Surprisingly, in the mat there is no difference in Flo11p expression between the rim and hub cells [7]. This suggests that there are other molecules in the cell wall that differentiate between the rim and the hub. Reports have shown that there are genes and pathways that affect mat formation independently of Flo11p [8, 9]. These include the Ssa1-4

Figure 4.1: Structure of *S. cerevisiae* **mat** (a) Floral pattern shape of the mat showing radiating spokes connecting the central hub to the smooth outer rim. (b) Close-up of the mat showing details of hub and rim. (c) Overlay adhesion assay performed on wild type mat.

Hsp70 proteins, multivesicular body (MVB) proteins, and components of the cell wall integrity (CWI) pathway (Sarode, et al, submitted). However, the cell wall target(s) of these pathways that are responsible for the difference between rim and hub remain unknown.

We utilized high-throughput sequencing of mRNA (RNA-Seq) to identify differences in transcriptional profiles between rim and hub cells within a mat. The goal was to identify genetic signatures that are specific to each population. In this report, we present data showing that a major difference between rim and hub cells is the presence of the carbohydrate chitosan in the hub. This is the first reported example of chitosan being expressed in vegetative cells of baker's yeast. We further show that the likely function of the chitosan in the hub cells is defense against environmental stresses.

4.2 Methods and materials

4.2.1 Strains, media, and growth conditions

All strains used in this study belong to the yeast strain background $\sum 1278$ [6] (Appendix Table A-7). The *cda1* Δ mutant was created by transforming in the KanMX6 disruption cassette,

amplified by PCR from the genome of the *cda1* Δ mutant pulled out of whole-genome deletion collection. The knockout library was created in the Σ 1278 background, by Owen Ryan and colleagues in the laboratory of Charles Boone, at the University of Toronto (Ryan O. *et al*, *Science* 2012, in press). The *cda2* Δ mutation was generated by replacing *CDA2* with the His3Mx6 cassette amplified from plasmid pFA6a-GFP-His3MX6 using PCR [7, 10]. Primers are listed in appendix Table A-8. Transformations were performed by the standard lithium acetate transformation method [11]. All strains were maintained on standard yeast extract-peptonedextrose (YPD) media [11] containing 250µg/ml G418 in case of *cda1* Δ or on minimal media lacking histidine in case of *cda2* Δ and *cda1* Δ *cda2* Δ [11]. Strains grown on low agar plates (YPD with 0.3% agar) [6] for 5 days at 25°C were used for overlay adhesion assays and staining.

4.2.2 Overlay adhesion assay

The overlay adhesion assay was performed as described [7].

4.2.3 Illumina Library Preparation

The rim cells were separated from hub, from five-day-old mats growing on the surface of lowdensity agar plates, by performing overlay adhesion assay (Materials and methods). The hub cells were removed using a clean dry spatula. The cells were then washed with ice-cold water and total RNA was extracted as described in Kohrer K. *et al* [12]. Contaminating DNA was removed using the TurboDNA-free kit (Ambion) according the manufacturer's protocol and cleaned with the RNeasy kit (Qiagen) according to the manufacturer's instructions. cDNA libraries were constructed from mRNA within each sample and sequenced at the Vanderbilt University Genome Technology Core following Illumina specifications on an Illumina HiSeq 2000, as previously described [13, 14].

4.2.4 Eosin Y staining

Staining was performed as described in Baker et al [15]. Briefly, for staining of cells in liquid culture, cells grown overnight in 5ml YPD were diluted to optical density of $O.D_{600}$ 0.1, and then allowed to grow for 24hrs, 48hrs, 72hrs respectively. For staining cells from mats, cells were removed separately from hub and rim as described in [7], and washed with 1ml McIlvaine's buffer (MIB) [0.2 M Na₂HPO₄, 0.1 M Citric acid pH 5.8]. The cells were pelleted and resuspended in 500µl MIB. 30µl eosin Y (5mg/ml stock) was added to stain the cells and

incubated in dark for 10 min at room temperature. The excess dye was washed off with 1ml MIB buffer, the cells were pelleted and resuspended in 500µl MIB and examined under the fluorescein isothiocyanate (FITC) filter.

4.2.5 Calcofluor white staining

Cells were removed from rim and hub of mats as described in [7], washed and resuspended in 500µl sterile distilled water. Cell were then stained using 100µl (2 mg/ml) calcofluor white, washed and resuspended in 250µl sterile distilled water and examined under the 4',6-diamidino-2-phenylindole (DAPI) filter.

4.2.6 Cell wall stress assays

Rim cells were separated from the hub by overlay adhesion assay from five day old mats, using disinfected (100% ethanol) plastic wrap strips. Hub cells were removed using disinfected (100% ethanol) spatulas. The separated cells were suspended in 1ml sterile distilled water. 0.5 $O.D_{600}$ cells were removed to final volume of 500µl in sterile distilled water and serially diluted 10-fold. 10µl of each dilution (5µl in case of SDS containing plates) were then spotted onto YPD plates containing designated concentrations of cell wall stressing agents. All plates were incubated at 30°C for 48hrs.

4.2.7 Gene Ontology (GO) analysis

The normalized reads per Kilobase per million (RPKM) values were transformed to \log_2 and the genes were then clustered using Cluster 3.0 [16]. The clustered genes were sorted according to their \log_2 RPKM values where values ≤ -1 and ≥ 1 were identified as downregulated and upregulated genes, respectively. It is to be noted, that for the analysis, the RPKM values for the wild-type rim and vps control strains were compared to those of wild-type hub. Hence, a normalized RPKM value of ≤ -1 in the column rRPKM(WTR/WTH) suggests that the particular gene was downregulated in the rim compared to the hub, whereas a normalized RPKM value of ≥ 1 in the same column suggests that the particular gene was upregulated in the rim compared to the hub. The list of gene ORF IDs were used as input for AmiGO GO Slimmer tool [17], and the number of genes in Biological process (GO:008150) category was plotted. The rRPKM values were used to as input for Microsoft's Fisher's exact test calculator (Available at: http://research.microsoft.com/en-us/um/redmond/projects/mscompbio/), to obtain P-values.

Bonferoni's correction calculations [18] were performed to determine if the obtained Fisher's p-values were statistically significant.

4.3 Results

4.3.1 RNA-Seq reveals sporulation genes are upregulated in the hub compared to the rim

RNA-Seq [19-23] was used to identify gene expression signatures that differ between the transcriptomes of rim and hub cells. Extracted RNA from wild-type rim and hub, along with two additional control strains defective in the mat formation ($vps25\Delta$ and $vps27\Delta$ [8]), were sequenced. The strains $vps25\Delta$ and $vps27\Delta$ lack vacuolar protein sorting components that are involved in the multivesicular body (MVB) sorting pathway [24-27]. These mutants were selected as controls because they both fail to form the typical pattern observed in the hub of wild-type mats through Flo11p-dependent ($vps25\Delta$) and -independent ($vps27\Delta$) mechanisms [8] (Appendix Figure A-9). In fact, the entire defective mat of each mutant resembles the rim.

The 50 bp read sets from each of the four samples were independently mapped to the *Saccharomyces cerevisiae* Sigma 1278 reference transcriptome, of which an average of 64% of reads were successfully mapped ($vps25\Delta$: 66% (31,931,737 of 48,020,535); $vps27\Delta$: 66% (33,039,913 of 49,729,266); wild type hub: 54% (16,961,043 of 31,409,990); wild type rim: 69% (20,459,737 of 29,796,180)). In all samples, 91% of mapped reads uniquely mapped to a single transcript. The nucleotide content of mapped reads represented an average 148x coverage of the *S. cerevisiae* Sigma 1278 reference transcriptome ($vps25\Delta$: 185x; $vps27\Delta$: 192x; wild type hub: 98x; wild type rim: 119x).

The genes were clustered using Cluster 3.0 [16] to identify genes that were differentially expressed by \geq 2-fold in the hub compared to the rim and controls. Clustering revealed a total of 178 downregulated and 173 upregulated genes in the hub (Table A-10 and Table A-11). The Biological Process (BP) Gene Ontology [28] terms were assigned to the clustered genes using the AmiGO GO Slimmer tool [17], and BP categories with clusters of \geq 5 genes (upregulated or downregulated) were selected for further analysis. Figure 4.2 shows the number of upregulated and downregulated genes in the hub, from the selected BP categories. Among the genes upregulated in the hub, 7 were classified under sporulation (GO:0043934) out of which 6 genes (Appendix Table A-12) had statistically significant Fisher's test p-values. This was a perplexing result, considering the fact that our strain is haploid, and hence incapable of sporulation. Among

these sporulation genes was CDA2 (p-value 5.01e⁻¹¹), which is considered to be sporulation specific gene involved in spore wall biogenesis [29].

CDA2 encodes a chitin deacetylase enzyme, Cda2p, which along with its homolog Cda1p, is involved in biosynthesis of chitosan (Figure 4.3a) [29]. Chitosan is a glucosamine polysaccharide (Figure 4.3c) that is made by removing the acetyl groups from chitin, a linear polysaccharide of β -1,4-linked N-acetyl glucosamine (poly-GlcNAc) residues (Figure 4.3b). Chitin is an essential component of the cell wall in all fungi, and plays an important role in maintaining cell wall integrity [30-32]. In *S. cerevisiae*, its deacetylated derivative chitosan (poly-GlcN, Figure 4.3c) was thought to be found exclusively in the ascospore wall and inter-spore bridges [33, 34] formed during sporulation in diploids. However, chitosan has been observed in cell walls of a few other fungi like *Cryptococcus neoformans*, *Aspergillus* spp., and *Rhizopus* spp., and has been shown to be essential for cell wall integrity and/or virulence in these particular fungi [15, 35, 36].

Figure 4.2: Distribution of hub genes in GO categories.

Biological processes of upregulated and downregulated genes in hub compared to expression level in rim.

Figure 4.3: Chitosan biosynthesis and structure. (a) Biosynthesis of chitosan in yeast involves deacetylation of chitin catalyzed by the enzymes *CDA1* and *CDA2*. Structures of polysaccharides (b) chitin and (c) chitosan. The acetyl group in chitin and the resultant deacetylated group are highlighted.

4.3.2 Chitosan is enriched in cells within the hub

These results suggest the possibility that a chitin deacetylase is expressed in the vegetative cells forming the biofilm and is enriched in the hub. If this is the case, then there should be a resulting enrichment of chitosan in the walls of cells in the hub. The cationic dye eosin Y binds chitosan and is used to stain chitosan in *C. neoformans* cells and *S. cerevisiae* spores [15, 37-39]. Therefore, we used eosin Y staining to determine if chitosan is present in the cell walls of yeast growing as mats.

Hub cells exhibited strong green fluorescence upon staining with eosin Y (Figure 4.4). In contrast, eosin Y showed much lower staining of rim cells. This was quantified by counting the number of cells that stained with eosin Y, and plotting that as a percentage of the total cells in the field of view (Figure 4.4b). It is to be noted that we observed only a few cells in the rim sample showing partial staining (restricted to the bud neck region) and some that stained like hub cells. We believe that these are either hub cells within the water channel that were carried over during overlay adhesion assay or are rim cells that are transforming into hub form of growth.

Figure 4.4: Enrichment of Chitosan in hub versus rim cells.

(a) Eosin Y staining of wild type rim and hub cells. In contrast to strong fluorescence of hub cells, the rim cells showed partial or complete loss by eosin Y staining (b) Plot of percentage of cells stained by eosin Y from rim and hub. *** = p-value < 0.0001.

Since mats were incubated for growth for 5 days, we wanted to verify if cell wall chitosan synthesis is a feature of cells within mats exclusively, or a function of long term growth. We stained vegetative cells grown in liquid culture and cells inoculated on low density agar, every 24hrs for 5 days (Figure 4.5a). We failed to observe any clear eosin Y staining signal in cells grown in both liquid culture and developing mats, for about 72hrs. After about 4 days, the number of dead cells increased in the culture, making it difficult to observe the staining, since dead cells absorb eosin Y and fluoresce very brightly. In contrast, the cells from the mat exhibited strong chitosan staining at 72hrs. It is to be noted that it is around 72hrs that the characteristic wrinkles and water channels begin to form in the hub [6].

Inoculating low agar plates with cells belonging to the lab strain background S288C, which is incapable of forming mats, failed to stain with eosin Y (Figure 4.5b). This suggests that chitosan synthesis is unique to cells capable of mat formation (i.e. mat specific).

Eosin Y staining of (a) $\sum 1278b$ background cells in liquid culture and mats grown for up to 4 days and (b) cells from S288C background that are defective for mat formation grown in mat inducing conditions.

4.3.3 Chitosan is not essential for mat formation

Both Cda1p and Cda2p regulate the biosynthesis of chitosan from chitin in *S. cerevisiae*. Therefore, $cda1\Delta$, $cda2\Delta$ and $cda1\Delta cda2\Delta$ mutants were generated and tested for both mat formation and eosin Y staining. As seen in Figure 4.6, both single gene mutants ($cda1\Delta$ and $cda2\Delta$) as well as the double mutant ($cda1\Delta cda2\Delta$) displayed no defect in mat formation, suggesting that chitosan is not essential for this phenotype. However, there was a complete loss of staining by eosin Y in all mutants (Figure 4.7). In contrast, none of the mutants showed any defect in calcofluor white staining, indicating that chitin levels in the cells are not affected (Figure 4.8).

Figure 4.6: Chitosan is not essential for mat formation

5 days old mats of $cda1\Delta$, $cda2\Delta$ single and $cda1\Delta$ $cda2\Delta$ double mutants on low density agar media show no defects for mat formation based on structure of phenotype in the overlay adhesion assay.

4.3.4 CDA mutants show increased sensitivity to cell wall stress

Many plant pathogenic fungi convert surface exposed cell wall chitin to chitosan to evade chitinbased immune responses of their host plants [40]. Additionally, studies in *Cryptococcus* spp. have suggested that chitosan is important for virulence and cell wall integrity [15, 35]. To determine if chitosan plays a protective role in mats, we further examined whether mutants defective in chitosan synthesis lack the ability to cope with certain cell wall stress conditions, and if the hub was less sensitive than the rim.

Sensitivity of WT, $cda1\Delta$, $cda2\Delta$ and $cda1\Delta cda2\Delta$ mutants to SDS (0.08%), caffeine (3mg/ml), Calcofluor white (400µg/ml), and hydrogen peroxide (15mM) was determined by extracting cells from the rim or hub of the mat, and then spot diluting them onto regular YPD plates or YPD plates containing the corresponding testing agent (Figure 4.9). This result revealed that the rim cells were more sensitive to aforementioned cell wall perturbing agents than hub cells, and the loss of *CDA1*, *CDA2*, or both caused increased sensitivity throughout the mat.

Biofilm cells are more resistant to anti-infectives than their planktonic counterparts [41]. For example, *Candida albicans* biofilms produce extracellular β -1,3-glucan that protects them

Figure 4.7: Loss of chitosan staining in $cda1\Delta$, $cda2\Delta$ and $cda1\Delta$ $cda2\Delta$ mutant strains (a) Loss of Eosin Y staining by both rim and hub of $cda1\Delta$, $cda2\Delta$ and $cda1\Delta$ $cda2\Delta$ mutants. (b) Plot of percentage of cells stained by eosin Y in wild type and mutants. *** = p-value < 0.0001.

against fluconazole [42]. Therefore, we tested to see if chitosan would protect *S. cerevisiae* biofilm cells against the effects of fluconazole. This was indeed the case, as the wild-type hub was more resistant than the rim to fluconazole ($20\mu g/ml$), and the *cda1* Δ , *cda2* Δ , and *cda1* Δ *cda2* Δ mutants were all more sensitive than wild-type to this drug.

4.4 Discussion

Chitin is found in cell walls of fungi, shells of crustaceans and cuticles of insects, and is the second most abundant polysaccharide found in nature. Its applications in industry, however, have been limited, mainly due to its low solubility. In contrast, its deacetylated derivative chitosan, is gaining importance in both research and industry due to its desirable physicochemical properties like solubility in dilute acids, ability to bind to anionic compounds and its anti-microbial properties [43-46]. It is emerging as a versatile biopolymer with applications in cosmetics, wastewater treatment, digestive supplements, biomedical implant materials, and DNA-delivery

Figure 4.8: Chitin deacetylase mutations do not affect chitin staining

Calcofluor white staining of rim and hub from wild type, $cda1\Delta$, $cda2\Delta$ and $cda1\Delta$ $cda2\Delta$ is similar. There is accumulation of calcofluor white in the bud necks of cells, while the higher magnification panel shows accumulation of chitin in bud scars. The white scale bar represents 20µm.

systems [47-51]. The major source of chitosan for industry has been as a downstream product of chitin extracted from shells of crustaceans. This is a laborious process that relies heavily on seafood that is a seasonal source. As a result, fungi (e.g. *Aspergillus spp* and *Mucor spp*) are being studied as cheaper and sustainable alternatives for chitosan extraction [43, 44, 52-55].

In the case of *S. cerevisiae*, chitosan research has been restricted to sporulation studies. The current upsurge of interest in chitosan extraction and its ever-expanding list of applications can be aided by the ease of genetic manipulation of *S. cerevisiae*. Using the deep sequencing method of RNA-Seq, we obtained a snapshot of the transcriptomic signature differences between the rim and hub cells of mats. Preliminary analysis revealed that certain sporulation-specific genes were upregulated in the hub compared to the rim. Although only 6 out of the 7 sporulation genes expression level changes were statistically significant, it was an interesting trend, given that haploids cannot sporulate. However, the presence of the chitin deacetylase gene (*CDA2*) suggested the possibility that biofilm hub cells synthesized chitosan. We supported our novel observation with strong genetic and eosin Y staining data to show the presence of chitosan in mat cells. It is to be noted that though eosin Y is widely used to stain chitosan, additional biochemical and analytical tests will need to be performed to confirm the presence of chitosan.

Figure 4.9: Abundance of chitosan correlates with resistance to antifungals and cell wall stress

Rim and hub cells from wild-type and mutant strains were resuspended and subjected to 10-fold spot dilution assays on YPD plates containing fluconazole or several different cell wall perturbing agents. All plates were incubated at 30°C for 48hrs.

Disruption of the *CDA*1 or *CDA*2 gene, as well as both, causes loss of eosin Y staining, indicating these genes are required for chitosan synthesis (Figure 4.7). The loss of staining with each mutant alone may occur because the genes have an additive effect, and the level of chitosan synthesized in each single mutant is below the level of detection by Eosin Y. Loss of the chitin deacetylase enzymes did not affect accumulation of chitin in the bud neck and bud scars, as shown by calcofluor white staining (Figure 4.8), which indicates that eosin Y was not aberrantly staining chitin.

Although chitosan is found predominantly in the hub, it is not essential for mat formation, since single and double knockout mutants for *CDA1* and *CDA2* form wild-type mats (Figure 4.6). However, chitosan is essential as a protective barrier for the cells against natural stress conditions (Figure 4.9). The *cda1* Δ , *cda2* Δ single and double mutants exhibit a higher sensitivity to cell wall stressing agents. Additionally, the wild type hub is more resistant to these stressing agents than the rim, which correlates with the RNA-Seq (Appendix Table A-10) and eosin Y

staining data (Figure 4.4) showing higher levels of *CDA* gene expression and chitosan in hub forming cells of a mat.

The function of the spore wall, in both fungi and bacteria, is to assure the microbe's persistence through the hostile environment, until the return of favorable conditions. The *S. cerevisiae* spore wall is the protective barrier that makes the spores resilient and resistant to environmental insults including high temperature, osmotic shock, acids etc. [29, 56-58], and is composed of chitosan and another polymer named di-tyrosine [59, 60].

Biofilms are notoriously resistant to elimination methods [1, 2]. The presence of chitosan in the hub (Figure 4.3), taken together with the resistance it confers to cell wall perturbing agents (Figure 4.9), and the knowledge of its role in spore wall protection leads us to propose that chitosan is an important factor contributing to resistance in biofilms. In the biofilm, chitosan probably forms a barrier that protects the cells against the effects of the commonly used antifungal fluconazole (Figure 4.9).

In *S. cerevisiae*, chitosan possibly has a protective function as a barrier that shields cells from a number of environmental insults. Reduced levels of chitosan in the rim and the chitin deacetylase mutants, accompanied by their increased vulnerability to cell wall damaging agents, supports our hypothesis. This is the first report showing structural and genetic difference between rim and hub in a mat. Further research on the role of chitosan and other sporulation genes in a mat, could shed light on previously unexplored roles of these gene products in protection of biofilm forming cells.

4.5 Bibliography for chapter 4

- 1. Ramage, G., R. Rajendran, L. Sherry, and C. Williams, *Fungal biofilm resistance*. International journal of microbiology, 2012. **2012**: p. 528521.
- Lewis, K., *Riddle of biofilm resistance*. Antimicrobial agents and chemotherapy, 2001. 45(4): p. 999-1007.
- 3. Vlamakis, H., C. Aguilar, R. Losick, and R. Kolter, *Control of cell fate by the formation of an architecturally complex bacterial community.* Genes & development, 2008. **22**(7): p. 945-53.
- 4. Brun, Y.V., G. Marczynski, and L. Shapiro, *The expression of asymmetry during Caulobacter cell differentiation.* Annual review of biochemistry, 1994. **63**: p. 419-50.
- 5. Daniels, K.J., T. Srikantha, S.R. Lockhart, C. Pujol, and D.R. Soll, *Opaque cells signal* white cells to form biofilms in Candida albicans. The EMBO journal, 2006. **25**(10): p. 2240-52.
- 6. Reynolds, T.B. and G.R. Fink, *Bakers' yeast, a model for fungal biofilm formation.* Science, 2001. **291**(5505): p. 878-81.
- 7. Reynolds, T.B., A. Jansen, X. Peng, and G.R. Fink, *Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients.* Eukaryot Cell, 2008. **7**(1): p. 122-30.
- 8. Sarode, N., B. Miracle, X. Peng, O. Ryan, and T.B. Reynolds, *Vacuolar protein sorting* genes regulate mat formation in Saccharomyces cerevisiae by Flo11p-dependent and independent mechanisms. Eukaryotic Cell, 2011. **10**(11): p. 1516-26.
- 9. Martineau, C.N., J.M. Beckerich, and M. Kabani, *Flo11p-independent control of "mat" formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast.* Genetics, 2007. **177**(3): p. 1679-89.
- Longtine, M.S., A. McKenzie, 3rd, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen, and J.R. Pringle, *Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae*. Yeast, 1998. 14(10): p. 953-61.
- 11. Styles, C., How to set up a yeast laboratory. Methods Enzymol, 2002. 350: p. 42-71.
- 12. Kohrer, K. and H. Domdey, *Preparation of high molecular weight RNA.* Methods in enzymology, 1991. **194**: p. 398-405.
- 13. Gibbons, J.G., L. Salichos, J.C. Slot, D.C. Rinker, K.L. McGary, J.G. King, M.A. Klich, D.L. Tabb, W.H. McDonald, and A. Rokas, *The Evolutionary Imprint of Domestication on Genome Variation and Function of the Filamentous Fungus Aspergillus oryzae.* Current Biology, (0).
- 14. Gibbons, J.G., A. Beauvais, R. Beau, K.L. McGary, J.P. Latge, and A. Rokas, *Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus.* Eukaryotic cell, 2012. **11**(1): p. 68-78.
- 15. Baker, L.G., C.A. Specht, M.J. Donlin, and J.K. Lodge, *Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans.* Eukaryotic cell, 2007. **6**(5): p. 855-67.
- 16. Eisen, M.B., P.T. Spellman, P.O. Brown, and D. Botstein, *Cluster analysis and display of genome-wide expression patterns*. Proceedings of the National Academy of Sciences of the United States of America, 1998. **95**(25): p. 14863-8.
- 17. Carbon, S., A. Ireland, C.J. Mungall, S. Shu, B. Marshall, and S. Lewis, *AmiGO: online access to ontology and annotation data.* Bioinformatics, 2009. **25**(2): p. 288-9.
- 18. Gao, L., Z. Fang, K. Zhang, D. Zhi, and X. Cui, *Length bias correction for RNA-seq data in gene set analyses.* Bioinformatics, 2011. **27**(5): p. 662-9.

- 19. Nagalakshmi, U., K. Waern, and M. Snyder, *RNA-Seq: a method for comprehensive transcriptome analysis.* Curr Protoc Mol Biol, 2010. **Chapter 4**: p. Unit 4 11 1-13.
- 20. Marguerat, S. and J. Bahler, *RNA-seq: from technology to biology.* Cell Mol Life Sci, 2010. **67**(4): p. 569-79.
- 21. Wilhelm, B.T., S. Marguerat, I. Goodhead, and J. Bahler, *Defining transcribed regions using RNA-seq.* Nat Protoc, 2010. **5**(2): p. 255-66.
- 22. Wilhelm, B.T. and J.R. Landry, *RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing.* Methods, 2009. **48**(3): p. 249-57.
- 23. Wang, Z., M. Gerstein, and M. Snyder, *RNA-Seq: a revolutionary tool for transcriptomics.* Nat Rev Genet, 2009. **10**(1): p. 57-63.
- 24. Raiborg, C. and H. Stenmark, *The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.* Nature, 2009. **458**(7237): p. 445-52.
- 25. Hurley, J.H., *ESCRT complexes and the biogenesis of multivesicular bodies.* Curr Opin Cell Biol, 2008. **20**(1): p. 4-11.
- 26. Raiborg, C., T.E. Rusten, and H. Stenmark, *Protein sorting into multivesicular endosomes*. Curr Opin Cell Biol, 2003. **15**(4): p. 446-55.
- 27. Piper, R.C., A.A. Cooper, H. Yang, and T.H. Stevens, VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol, 1995. **131**(3): p. 603-17.
- Ashburner, M., C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and G. Sherlock, *Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.* Nature genetics, 2000. 25(1): p. 25-9.
- 29. Christodoulidou, A., V. Bouriotis, and G. Thireos, *Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae.* The Journal of biological chemistry, 1996. **271**(49): p. 31420-5.
- 30. Klis, F.M., A. Boorsma, and P.W. De Groot, *Cell wall construction in Saccharomyces cerevisiae.* Yeast, 2006. **23**(3): p. 185-202.
- 31. Levin, D.E., *Cell wall integrity signaling in Saccharomyces cerevisiae.* Microbiol Mol Biol Rev, 2005. **69**(2): p. 262-91.
- 32. Cid, V.J., A. Duran, F. del Rey, M.P. Snyder, C. Nombela, and M. Sanchez, *Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae.* Microbiological reviews, 1995. **59**(3): p. 345-86.
- Coluccio, A., E. Bogengruber, M.N. Conrad, M.E. Dresser, P. Briza, and A.M. Neiman, Morphogenetic pathway of spore wall assembly in Saccharomyces cerevisiae. Eukaryotic cell, 2004. 3(6): p. 1464-75.
- 34. Coluccio, A. and A.M. Neiman, *Interspore bridges: a new feature of the Saccharomyces cerevisiae spore wall.* Microbiology, 2004. **150**(Pt 10): p. 3189-96.
- 35. Baker, L.G., C.A. Specht, and J.K. Lodge, *Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans*. Eukaryotic cell, 2011. **10**(9): p. 1264-8.
- 36. Banks, I.R., C.A. Specht, M.J. Donlin, K.J. Gerik, S.M. Levitz, and J.K. Lodge, *A chitin* synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryotic cell, 2005. **4**(11): p. 1902-12.
- Eddy, A.A. and A.D. Rudin, *The structure of the yeast cell wall. I. Identification of charged groups at the surface.* Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society, 1958. **148**(932): p. 419-32.

- 38. Bowen, W.R., H.A. Sabuni, and T.J. Ventham, *Studies of the cell-wall properties of Saccharomyces cerevisiae during fermentation.* Biotechnology and bioengineering, 1992. **40**(11): p. 1309-18.
- 39. Klis, F.M., M. de Jong, S. Brul, and P.W. de Groot, *Extraction of cell surface-associated proteins from living yeast cells.* Yeast, 2007. **24**(4): p. 253-8.
- 40. Gueddari, N.E.E., U. Rauchhaus, B.M. Moerschbacher, and H.B. Deising, Developmentally Regulated Conversion of Surface-Exposed Chitin to Chitosan in Cell Walls of Plant Pathogenic Fungi. New Phytologist, 2002. **156**(1): p. 103-112.
- 41. Mah, T.F. and G.A. O'Toole, *Mechanisms of biofilm resistance to antimicrobial agents.* Trends in microbiology, 2001. **9**(1): p. 34-9.
- 42. Nett, J.E., H. Sanchez, M.T. Cain, and D.R. Andes, *Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan.* The Journal of infectious diseases, 2010. **202**(1): p. 171-5.
- 43. Tajdini, F., M.A. Amini, N. Nafissi-Varcheh, and M.A. Faramarzi, *Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus.* International journal of biological macromolecules, 2010. **47**(2): p. 180-3.
- Wu, T., S. Zivanovic, F.A. Draughon, W.S. Conway, and C.E. Sams, *Physicochemical properties and bioactivity of fungal chitin and chitosan.* J Agric Food Chem, 2005.
 53(10): p. 3888-94.
- 45. Tayel, A.A., S. Moussa, K. Opwis, D. Knittel, E. Schollmeyer, and A. Nickisch-Hartfiel, *Inhibition of microbial pathogens by fungal chitosan.* International journal of biological macromolecules, 2010. **47**(1): p. 10-4.
- 46. Rabea, E.I., M.E.T. Badawy, C.V. Stevens, G. Smagghe, and W. Steurbaut, *Chitosan as Antimicrobial Agent:,Äâ Applications and Mode of Action.* Biomacromolecules, 2003. **4**(6): p. 1457-1465.
- 47. Bhatnagar, A. and M. Sillanpaa, *Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater--a short review.* Advances in colloid and interface science, 2009. **152**(1-2): p. 26-38.
- 48. Mourya, V.K. and N.N. Inamdar, *Chitosan-modifications and applications: Opportunities galore.* Reactive and Functional Polymers, 2008. **68**(6): p. 1013-1051.
- 49. No, H.K. and S.P. Meyers, *Application of chitosan for treatment of wastewaters*. Reviews of environmental contamination and toxicology, 2000. **163**: p. 1-27.
- 50. Gallaher, D.D., C.M. Gallaher, G.J. Mahrt, T.P. Carr, C.H. Hollingshead, R. Hesslink, and J. Wise, *A Glucomannan and Chitosan Fiber Supplement Decreases Plasma Cholesterol and Increases Cholesterol Excretion in Overweight Normocholesterolemic Humans.* Journal of the American College of Nutrition, 2002. **21**(5): p. 428-433.
- 51. Mao, H.Q., K. Roy, V.L. Troung-Le, K.A. Janes, K.Y. Lin, Y. Wang, J.T. August, and K.W. Leong, *Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency.* Journal of controlled release : official journal of the Controlled Release Society, 2001. **70**(3): p. 399-421.
- 52. Rane, K.D. and D.G. Hoover, *An evaluation of alkali and acid treatments for chitosan extraction from fungi.* Process Biochemistry, 1993. **28**(2): p. 115-118.
- 53. Peter, M.G., *Chitin and Chitosan in Fungi*, in *Biopolymers Online*. 2005, Wiley-VCH Verlag GmbH & Co. KGaA.
- 54. Hu, K.-J., K.-W. Yeung, K.-P. Ho, and J.-L. Hu, *RAPID EXTRACTION OF HIGH-QUALITY CHITOSAN FROM MYCELIA OF ABSIDIA GLAUCA.* Journal of Food Biochemistry, 1999. **23**(2): p. 187-196.
- 55. Chatterjee, S., M. Adhya, A.K. Guha, and B.P. Chatterjee, *Chitosan from Mucor rouxii: production and physico-chemical characterization.* Process Biochemistry, 2005. **40**(1): p. 395-400.

- 56. Coluccio, A.E., R.K. Rodriguez, M.J. Kernan, and A.M. Neiman, *The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila.* PLoS One, 2008. **3**(8): p. e2873.
- 57. Briza, P., M. Breitenbach, A. Ellinger, and J. Segall, *Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae.* Genes & development, 1990. **4**(10): p. 1775-89.
- 58. Pammer, M., P. Briza, A. Ellinger, T. Schuster, R. Stucka, H. Feldmann, and M. Breitenbach, *DIT101 (CSD2, CAL1), a cell cycle-regulated yeast gene required for synthesis of chitin in cell walls and chitosan in spore walls.* Yeast, 1992. **8**(12): p. 1089-99.
- 59. Briza, P., A. Ellinger, G. Winkler, and M. Breitenbach, *Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan.* The Journal of biological chemistry, 1988. **263**(23): p. 11569-74.
- 60. Briza, P., G. Winkler, H. Kalchhauser, and M. Breitenbach, *Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure.* The Journal of biological chemistry, 1986. **261**(9): p. 4288-94.

Chapter 5

Conclusions and future directions

5.1 Conclusions

Many microorganisms prefer to grow as biofilms in nature. A biofilm is a surface attached, community-based growth that provides advantages like protection from different stresses, opportunity for genetic exchange and regular dissemination to new colonizable locations [1]. Most human clinical infections involve microbial biofilms, making it essential to grasp the molecular details of biofilm formation in order to combat it effectively.

This dissertation details the approaches used to gain insight into detailed molecular mechanisms involved in fungal biofilm formation using *Saccharomyces cerevisiae* as a model system. It is well documented that *S. cerevisiae* and *Candida* spp. are more closely related compared to other fungal pathogens (Figure 5.1). Both *C. glabrata* and *C. albicans* form biofilms and are also the major source of nosocomial infections [2, 3], making *S. cerevisiae* a favorable genetic model system to study them. Additionally, *S. cerevisiae* is a well-characterized genetic tool with a vast literature and genetic resource. Reynolds *et al* [4] introduced *S. cerevisiae* as a model system for fungal biofilm research. Although *S. cerevisiae* and *Candida* spp. possess homologs for many genes, there are also reports of rewiring of homologous genes for new functions [5].

Figure 5.1: Phylogenetic tree showing relationship between selected fungal pathogens with *Saccharomyces cerevisiae*. The tree was generated using NCBI taxonomy database [6, 7].

S. cerevisiae biofilms are also widely used in the brewing and wine industry, where their ability to ferment and flocculate is utilized [8]. Great efforts are dedicated into improving the fermentation process for e.g. improvement in fermentative flavor of the product, waste or harmful by-product elimination, increase in yield etc. [9, 10]. Genetic manipulation for strain improvement is the major approach used [11, 12], over isolation of new natural isolates, to achieve these goals. In recent years, *S. cerevisiae* biofilms are also gaining importance in the field of alternative clean fuel development for bioethanol production [13].

Hence, understanding *S. cerevisiae* biofilm formation is important not only due to its importance as a widely used genetic model system for clinical research, but also for its applications in food industry and alternative fuel research.

In this final part of the dissertation, the major findings will be summarized, including how these results contribute to current knowledge of fungal biofilms. Additionally, an outline for future experiments will be provided that will help explore new questions.

5.2 Vacuolar protein sorting genes regulate biofilm formation in *S. cerevisiae* by Flo11p-dependent and –independent mechanisms.

S. cerevisiae generates complex biofilms called mats on low-density (0.3%) agar plates. The mats can be morphologically divided into two regions: (i) hub, the interior region characterized by the presence of wrinkles and channels, and (ii) rim, the smooth periphery. Formation of mats depends on the adhesin Flo11p, which is also required for invasive growth, a phenotype in which the *S. cerevisiae* yeasts grow as chains of cells that dig into standard-density (2%) agar plates. In addition, it was also shown that mature Flo11p is covalently associated with the cell wall and shed into the extracellular matrix of the growing mat. Although both invasive growth and mat formation depend on Flo11p, mutations that perturb the multivesicular body (MVB) protein sorting pathway inhibit mat formation in a *FLO11*-independent manner. These mutants, represented by $vps27\Delta$, disrupt mat formation but do not affect invasive growth, *FLO11* gene or protein product expression, or Flo11p localization. In contrast, an overlapping subset of MVB mutants (represented by ESCRT [endosomal sorting complex required for transport] complex genes such as *VPS25*) interrupt the Rim101p signal transduction cascade, which is required for *FLO11* expression, and thus block both invasive growth and mat formation.

5.2.2 Significance

Adhesion is the primary step of biofilm development. Specialized proteins, named adhesins, confer the property of adhesion to cells, and are thus important for biofilm formation. Besides their roles in biofilm adhesion, adhesins have also been shown to be essential for virulence in case of pathogenic fungi. As a result, the majority of research traditionally has been focused on studying adhesins and their role in biofilm formation.

In case of *S. cerevisiae* belonging to genetic background Σ 1278b, Flo11p is the only adhesin protein expressed by the cells [14]. Essentially, it was shown that although Flo11p is important and required for adhesion and invasive growth, it is required but <u>not</u> sufficient for biofilm formation. Identification of a Flo11p-independent mechanism of biofilm formation directed attention towards cellular components other than adhesins, which are necessary for biofilm development. The proposed model suggested that mislocalization of an essential cell wall protein cargo in MVB pathway mutants also led to a defect in biofilm formation. Since the cell wall and its components are ideal targets for drug design, identification of new essential cell wall candidates could boost development of new drugs.

5.3 A subset of components of the cell wall integrity pathway are essential for biofilm formation in *S. cerevisiae*

Flo11p is the only FLO protein expressed in mats formed by the *S. cerevisiae* $\sum 1278b$ background strain L6906 [14], and is required for mat formation, invasive growth and adhesion. However, mat formation is regulated by vacuolar protein sorting (vps) genes in both a Flo11p-dependent and –independent manner (Chapter 2). The Flo11p-independent branch of the pathway (biofilm pathway) requires an intact and fully functional MultiVesicular Body (MVB) pathway traversing the endosome. Based on the results with the MVB pathway mutants, it was hypothesized that MVB pathway mutants affect biofilm formation by mislocalizing an important component of the biofilm pathway that leads to perturbation of the cell wall, ultimately leading to defect in biofilm formation. Among the pathway is the cell wall integrity pathway (CWI) [15]. The main function of the CWI pathway is maintenance of the highly dynamic cell wall structure, by sensing signals (*i.e.* damage due to physical or environmental agents, hormones, signal to divide, etc), and relaying them downstream, leading to activation of appropriate genes and

consecutive remodeling of the cell wall (e.g. Fks1p, β -1,3-glucan synthase) and Skn7p (transcription factor). Genetic data revealed that components of the CWI pathway, including the Wsc1p receptor, but excluding the CWI-MAPK cascade, disrupt mat formation, and therefore may comprise part or the entire biofilm pathway (Chapter 3).

5.3.1. Significance

The cell wall and its components are absolutely crucial for cell survival. The cell wall is the interface through which the environmental cues are integrated into the cell to tender the appropriate response. Hence, it was not entirely surprising to find that components of the CWI pathway were essential for biofilm formation, which involves active cell-cell and cell-environment interaction. What was intriguing was that there was disparity in the role of individual components of the CWI pathway in mat formation. For example, although both Mid2p and Wsc1p are considered the major sensors for the CWI pathway, only Wsc1p caused a defect in mat formation. This suggests that there is a clear division of function between these sensors with no redundancy of function, even though they belong to the same pathway. Also, the MAPK cascade was found to be completely expendable for mat formation. Thus the pathway can be imagined as consisting of individual modules that could be shared with other pathways or not used, depending on the conditions.

5.4 Chitosan synthesis in S. cerevisiae biofilms protects cells from environmental stress

Although Flo11p is required for mat formation, it is similarly distributed on both rim and hub cells. Thus, the modifications in hub cells that distinguish them from rim cells are unknown. In order to elucidate this, high throughput mRNA sequencing (RNA-Seq) was used, and this led to the discovery that the glucosamine polymer chitosan is specifically generated in the hub of the matured mat. Additionally, chitosan biosynthesis was shown to be a characteristic property of cells capable of forming a mat on low-density agar medium and was conspicuously absent in cells grown in liquid culture and in cells incapable of generating a mat, belonging to S288C genetic background. Chitosan did not modify the adhesive properties of the hub cells, however it was shown protect the hub cells from environmental stresses such as antimicrobials.

5.4.1 Significance

Presence of chitosan in *S. cerevisiae* spore wall and interspore bridges is well documented. However, its presence in vegetative cells is a novel discovery. Additionally, identification of presence of chitosan as a differentiating factor between hub and rim cells that also correlates with the difference in sensitivity to cell wall stress agents, introduces chitosan as an important and overlooked defense mechanism in biofilm cells. Roles for chitosan in biofilm protection brings to attention a rather unexplored mode of defense that could be exploited for drug targeting. For example, the chitin specific dye calcofluor white is well known for its use as an antifungal and diagnostic agent [16, 17]; chitosan could provide an additional target for drug design and fungal diagnosis.

5.5 Future directions

5.5.1 Role of shed Flo11p in biofilm formation

Flo11p, also known as mucin-like protein (Muc1p), was reported as being shed outside the cell [18]. It appears that there are two forms of Flo11p, one is retained within the cell wall, while the other is cleaved and shed outside the cell. The membrane attached form is well characterized for its role in adhesion and invasive growth, however the function of the shed form remains to be determined. Karunanidhi *et al* [19] suggested that shed Flo11p could coat the cell surface and function as 'lubrication' of cells to glide onto agar surface. Additional studies could shed more light on its function in mats, the shed Flo11p could be speculated to have many possible functions like

- (a) Part of ECM: ECM is a versatile component of a biofilm that contains variety of constituents like polysaccharides, DNA, proteins etc. Flo11p could function as part of a yet uncharacterized ECM in mats. Screening for mutants defective only in Flo11p shedding, and studying their effect on the mat phenotype could help determine whether shed Flo11p has any role in biofilm formation.
- (b) Signaling molecule: Other mucin proteins like Msb2p, have been shown to exist as both integral membrane bound form and a secreted form in *S. cerevisiae*. The secreted Msb2 was reported to function in MAPK signaling [20, 21]. It will be interesting to determine whether Flo11p is also a signaling mucin, that either functions in some form of a feedback mechanism or in transmission of signal between cells of a biofilm.

(c) Interact with other proteins: Co-immunoprecipitation followed by mass spectrometer studies on shed Flo11p could help identify if the shed Flo11p binds to other proteins, if any. Since Flo11p has also been shown to have homotypic binding properties [22], it is also plausible that it binds to other membrane associated or shed flocculins or proteins.

5.5.2 Role of cell wall integrity pathway in biofilm formation

The cell wall integrity pathway is not a simple linear pathway but rather an interconnected network in which all players have not been identified as yet [5, 23]. For example, the role of Skn7p as a transcription factor in cell wall pathways is well documented, however the entire breadth of genes regulated by Skn7p in the context of biofilm formation is still not known. Identification of targets of Skn7p could shed light on additional factors that could be essential for cell wall biogenesis and in turn biofilm formation. RNA-Seq analysis to identify genes affected by $skn7\Delta$ will provide a list of genes that are directly and indirectly affected.

Screening and cataloging of genes in the whole genome knockout library for genes that cause defects in the biofilm formation, will be an extremely informative, although laborious, project. In fact, a preliminary screen for all cell wall related genes showing defects in mat formation was undertaken, but unfortunately wasn't followed through to the end. Following up on that work could help identify and categorize genes affecting the cell wall, and probably build a framework to unravel the cross talk circuitry involving CWI and other pathways affecting cell wall and biofilm formation.

5.5.3 RNA-Seq as a tool to paint the 'big-picture'

Using RNA-Seq, dubbed as a revolutionary tool for transcriptomics [24], was a fruitful endeavour. The expression data to identify differences between transcriptomes of hub and rim cells, and between wild-type and vps mutants ($vps25\Delta$ and $vps27\Delta$) using RNA-Seq included an immense list of genes. Screening the genes to identify other interesting trends is another worthwhile undertaking that could be productive in terms of identifying previously unknown genes or unexpected modulation in expression levels of known genes and their effect on biofilm formation.

5.5.4 Chitosan analysis

Detection of chitosan in the mat cells unlocked an entirely new area for exploration. Chitosan research in *S. cerevisiae* is limited mainly to sporulation studies. Whether chitosan production in the cell wall of vegetative cells follows the same pathways as in sporulation, or whether there are any differences is an interesting question that can be addressed by screening the whole genome knockout library to identify genes that affect chitosan biosynthesis.

Chitosan is a versatile carbohydrate with commercial importance too. There are reports of using chitosan as a biomaterial for implant design [25], antibacterial agent [26] and dietary supplement [27]. Shellfish is the major source of chitosan for industries [28]. Considering that shellfish is also a very common cause of allergy in many individuals [29], alternative sources for chitosan (at least in case of implants and dietary supplement) is essential. Fungi are easy to grow in large numbers and manipulate genetically [30-35], and are being studied as an alternative source for chitosan. Introduction of *S. cerevisiae* into this list of fungal chitosan sources can be a boon to chitosan research, and its vast genetic and literature resources could be utilized to screen for different strains and/or mutants with higher chitosan content in their cell wall.

Whole genome knockout library screening is currently underway to identify possible transcription factors affecting chitosan production in *S. cerevisiae*. If genes affecting chitosan production are identified, they could be manipulated to generate mutants producing higher levels of chitosan. Additionally, extraction methods from fungi are already reported [30], but they are crude at best and the extract retains high levels of chitin (unpublished results). *S. cerevisiae* is a cheaper option to modify and improve the extraction protocol for future scaled-up industrial uses.
Bibliography for chapter 5

- 1. Blankenship, J.R. and A.P. Mitchell, *How to build a biofilm: a fungal perspective.* Current opinion in microbiology, 2006. **9**(6): p. 588-94.
- 2. Arendrup, M.C., *Epidemiology of invasive candidiasis.* Current opinion in critical care, 2010. **16**(5): p. 445-52.
- 3. Pfaller, M.A. and D.J. Diekema, *Epidemiology of invasive candidiasis: a persistent public health problem.* Clinical microbiology reviews, 2007. **20**(1): p. 133-63.
- 4. Reynolds, T.B. and G.R. Fink, *Bakers' yeast, a model for fungal biofilm formation.* Science, 2001. **291**(5505): p. 878-81.
- 5. Blankenship, J.R., S. Fanning, J.J. Hamaker, and A.P. Mitchell, *An extensive circuitry for cell wall regulation in Candida albicans.* PLoS pathogens, 2010. **6**(2): p. e1000752.
- Sayers, E.W., T. Barrett, D.A. Benson, S.H. Bryant, K. Canese, V. Chetvernin, D.M. Church, M. DiCuccio, R. Edgar, S. Federhen, M. Feolo, L.Y. Geer, W. Helmberg, Y. Kapustin, D. Landsman, D.J. Lipman, T.L. Madden, D.R. Maglott, V. Miller, I. Mizrachi, J. Ostell, K.D. Pruitt, G.D. Schuler, E. Sequeira, S.T. Sherry, M. Shumway, K. Sirotkin, A. Souvorov, G. Starchenko, T.A. Tatusova, L. Wagner, E. Yaschenko, and J. Ye, *Database resources of the National Center for Biotechnology Information.* Nucleic acids research, 2009. **37**(Database issue): p. D5-15.
- 7. Benson, D.A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and E.W. Sayers, *GenBank*. Nucleic acids research, 2009. **37**(Database issue): p. D26-31.
- 8. Esteve-Zarzoso, B., P. Manzanares, D. Ramon, and A. Querol, *The role of non-Saccharomyces yeasts in industrial winemaking.* International microbiology : the official journal of the Spanish Society for Microbiology, 1998. **1**(2): p. 143-8.
- 9. Romano, P., M.G. Soli, G. Suzzi, L. Grazia, and C. Zambonelli, *Improvement of a Wine Saccharomyces cerevisiae Strain by a Breeding Program.* Applied and environmental microbiology, 1985. **50**(4): p. 1064-7.
- 10. Bizaj, E., A.G. Cordente, J.R. Bellon, P. Raspor, C.D. Curtin, and I.S. Pretorius, *A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production.* FEMS yeast research, 2012. **12**(4): p. 456-65.
- 11. Le Borgne, S., *Genetic engineering of industrial strains of Saccharomyces cerevisiae.* Methods in molecular biology, 2012. **824**: p. 451-65.
- 12. Schuller, D. and M. Casal, *The use of genetically modified Saccharomyces cerevisiae strains in the wine industry.* Applied microbiology and biotechnology, 2005. **68**(3): p. 292-304.
- Demirci, A., A.L. Pometto, 3rd, and K.L. Ho, *Ethanol production by Saccharomyces cerevisiae in biofilm reactors*. Journal of industrial microbiology & biotechnology, 1997. 19(4): p. 299-304.
- 14. Halme, A., S. Bumgarner, C. Styles, and G.R. Fink, *Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast.* Cell, 2004. **116**(3): p. 405-15.
- 15. Gustin, M.C., J. Albertyn, M. Alexander, and K. Davenport, *MAP kinase pathways in the yeast Saccharomyces cerevisiae*. Microbiol Mol Biol Rev, 1998. **62**(4): p. 1264-300.
- 16. Kingsbury, J.M., J. Heitman, and S.R. Pinnell, *Calcofluor White Combination Antifungal Treatments for Trichophyton rubrum and Candida albicans.* PLoS One, 2012. **7**(7): p. e39405.
- 17. Monheit, J.G., G. Brown, M.M. Kott, W.A. Schmidt, and D.G. Moore, *Calcofluor white detection of fungi in cytopathology*. American journal of clinical pathology, 1986. **85**(2): p. 222-5.

- 18. Karunanithi, S., N. Vadaie, C.A. Chavel, B. Birkaya, J. Joshi, L. Grell, and P.J. Cullen, *Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation.* Curr Biol, 2010. **20**(15): p. 1389-95.
- 19. Karunanithi, S., N. Vadaie, C.A. Chavel, B. Birkaya, J. Joshi, L. Grell, and P.J. Cullen, *Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation.* Current biology : CB, 2010. **20**(15): p. 1389-95.
- 20. Vadaie, N., H. Dionne, D.S. Akajagbor, S.R. Nickerson, D.J. Krysan, and P.J. Cullen, *Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast.* The Journal of cell biology, 2008. **181**(7): p. 1073-81.
- 21. Pitoniak, A., B. Birkaya, H.M. Dionne, N. Vadaie, and P.J. Cullen, *The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response.* Molecular biology of the cell, 2009. **20**(13): p. 3101-14.
- 22. Douglas, L.M., L. Li, Y. Yang, and A.M. Dranginis, *Expression and characterization of the flocculin Flo11/Muc1, a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesion.* Eukaryotic cell, 2007. **6**(12): p. 2214-21.
- 23. Krause, S.A., H. Xu, and J.V. Gray, *The synthetic genetic network around PKC1 identifies novel modulators and components of protein kinase C signaling in Saccharomyces cerevisiae.* Eukaryotic cell, 2008. **7**(11): p. 1880-7.
- 24. Wang, Z., M. Gerstein, and M. Snyder, *RNA-Seq: a revolutionary tool for transcriptomics.* Nat Rev Genet, 2009. **10**(1): p. 57-63.
- 25. Jayakumar, R., M. Prabaharan, S.V. Nair, and H. Tamura, *Novel chitin and chitosan nanofibers in biomedical applications.* Biotechnology advances, 2010. **28**(1): p. 142-50.
- 26. Raafat, D., K. von Bargen, A. Haas, and H.G. Sahl, *Insights into the mode of action of chitosan as an antibacterial compound.* Applied and environmental microbiology, 2008. **74**(12): p. 3764-73.
- 27. Gallaher, D.D., C.M. Gallaher, G.J. Mahrt, T.P. Carr, C.H. Hollingshead, R. Hesslink, Jr., and J. Wise, *A glucomannan and chitosan fiber supplement decreases plasma cholesterol and increases cholesterol excretion in overweight normocholesterolemic humans.* Journal of the American College of Nutrition, 2002. **21**(5): p. 428-33.
- 28. Hayes, M., B. Carney, J. Slater, and W. Bruck, *Mining marine shellfish wastes for bioactive molecules: chitin and chitosan--Part A: extraction methods.* Biotechnology journal, 2008. **3**(7): p. 871-7.
- 29. Wild, L. and S. Lehrer, *Fish and shellfish allergy.* Current Allergy and Asthma Reports, 2005. **5**(1): p. 74-79.
- 30. Rane, K.D. and D.G. Hoover, *An evaluation of alkali and acid treatments for chitosan extraction from fungi.* Process Biochemistry, 1993. **28**(2): p. 115-118.
- 31. Peter, M.G., *Chitin and Chitosan in Fungi*, in *Biopolymers Online*. 2005, Wiley-VCH Verlag GmbH & Co. KGaA.
- 32. Hu, K.-J., K.-W. Yeung, K.-P. Ho, and J.-L. Hu, *RAPID EXTRACTION OF HIGH-QUALITY CHITOSAN FROM MYCELIA OF ABSIDIA GLAUCA*. Journal of Food Biochemistry, 1999. **23**(2): p. 187-196.
- 33. Tajdini, F., M.A. Amini, N. Nafissi-Varcheh, and M.A. Faramarzi, *Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus.* International journal of biological macromolecules, 2010. **47**(2): p. 180-3.
- 34. Wu, T., S. Zivanovic, F.A. Draughon, W.S. Conway, and C.E. Sams, *Physicochemical* properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem, 2005. **53**(10): p. 3888-94.

- 35. Chatterjee, S., M. Adhya, A.K. Guha, and B.P. Chatterjee, *Chitosan from Mucor rouxii: production and physico-chemical characterization.* Process Biochemistry, 2005. **40**(1): p. 395-400.
- 36. Sarode, N., B. Miracle, X. Peng, O. Ryan, and T.B. Reynolds, *Vacuolar protein sorting* genes regulate mat formation in Saccharomyces cerevisiae by *Flo11p*-dependent and independent mechanisms. Eukaryotic Cell, 2011. **10**(11): p. 1516-26.

Appendices

Strain	Genotype	Reference
L6906	MAT a ura3-52 his3::hisG FLO11::HA ^{30, 1015}	[14]
TRY181	MAT a ura3-52 his3::hisG FLO11::HA ^{30, 1015}	This study
CPY74	MAT a ura3-52 his3::hisG FLO11::HA ³⁰ vps4 :: kanMX6	This study
CPY15	MAT a ura3-52 his3::hisG FLO11:: HA ³⁰ vps25 :: kanMX6	This study
NY70	MAT a ura3-52 his3::hisG FLO11:: HA ^{30, 1015} vps25 :: kanMX6	This study
CPY160	MAT a ura3-52 his3::hisG FLO11:: HA ³⁰ vps28 :: kanMX6	This study
CPY24	MAT a ura3-52 his3::hisG FLO11:: HA ³⁰ vps27 :: kanMX6	This study
NY64	MAT a ura3-52 his3::hisG FLO11:: HA ^{30, 1015} vps27 :: kanMX6	This study
CPY105	MAT a ura3-52 his3::hisG FLO11:: HA ³⁰ rim13 :: kanMX6	This study
NY62	MAT a ura3-52 his3::hisG FLO11::HA ^{30, 1015} rim13 :: kanMX6	This study
CPY115	MAT a ura3-52 his3::hisG FLO11::HA ³⁰ rim101 :: kanMX6	This study
NY78	MAT a ura3-52 his3::hisG FLO11::HA ^{30, 1015} rim101 :: kanMX6	This study
TRY120	MAT a ura3-52 his3::hisG FLO11::HA ³⁰ vps27 :: kanMX6 RIM101-531	This study
NY60	MATa ura3-52 his3::hisG FLO11::HA ^{30, 1015} vps27 :: kanMX6 RIM101-531	This study
TRY118	MAT a ura3-52 his3::hisG FLO11::HA ³⁰ vps25 :: kanMX6 RIM101-531	This study
NY58	MATa ura3-52 his3::hisG FLO11::HA ^{30, 1015} vps25 :: kanMX6 RIM101-531	This study
TRY124	MAT a ura3-52 his3::hisG FLO11::HA ^{30, 1015} rim13 :: RIM101-531	This study
NY82	MAT a ura3-52 his3::hisG FLO11::HA ^{30, 1015} rim13 :: kanMX6 RIM101-531	This study
CPY154	MAT a ura3-52 his3::hisG FLO11:: HA ³⁰ vps20 :: kanMX6	This study
CPY96	MATa ura3-52 his3::hisG FLO11:: HA ³⁰ rim9 :: kanMX6	This study
CPY112	MAT a ura3-52 his3::hisG FLO11:: HA ³⁰ rim101 :: kanMX6	This study

Table A-1: Strains used in chapter 2

Table A-2:	Primers	used	in	chapter	2
------------	---------	------	----	---------	---

Primer	Purpose	Sequence
TRO369	Reverse primer used in conjunction with listed primers to confirm disruptions	GCACGTCAAGACTGTCAAGG
TRO394	Disrupt Vps4	CCAACTTCTACGCCAAGTATCCTA
TRO395	Disrupt Vps4	CAATCCTGAAAGTGAAGAATCCA
TRO396	Confirmvps4∆	TAAGAGCAGTAAACCCGTTAGTGAC
TRO156	Disrupt Vps25	CAAATGATTACACCCCATGAA
TRO157	Disrupt Vps25	AAGGTTCAAGACTGGACCATG
TRO162	Confirmvps25∆	TTTTAGATATTTGCGTTAGCTAAGG
TRO379	Disrupt Vps28	CGGATCCTTCTAAATTGAGAAGAG
TRO380	Disrupt Vps28	TGGATCAAAGATGATAGTCGCAG
TRO381	Confirmvps28∆	TCCTTGCCGCCAATAATT
TRO266	Disrupt Vps27	CCGATTTTTTGGTAATATGTCAA
TRO267	Disrupt Vps27	AGCCAGGTGGTCAAAAAACA
TRO268	Confirmvps27∆	ACAAAAGCAAACTGTTCGGAG
TRO503	Disrupt Rim13	AGTATCTTTGAACCGCGCAG
TRO504	Disrupt Rim13	GGATGGTCGTTCATTATTTTTGAG
TRO505	Confirmrim13∆	CGTTACCTCCCACAAAACTTTTG
TRO482	Disrupt Rim101	GTCCAGCTCGGAGTTTCTAAA
TRO483	Disrupt Rim101	CGGGATCAACCGATCAAGATA
TRO484	Confirmrim101∆	ACTTTTCTCTGCCCAGTGACA
TRO516	GenerateRIM101-531dominant allele	CAATGGCAGGTGGAACTTCATTGAAGCCTAACTGG GAATTTAGCCTGAACTGAGGCGCGCCACTTCTAAA
TRO517	GenerateRIM101-531dominant allele	TCTTCAATCGCCAGCTTACTCATGATAATATCATTA GTACAGCTTTTTTGGAATTCGAGCTCGTTTAAAC
TRO518	ConfirmRIM101-531	CCGCCTCTACAATCAAAGATACC
PC675	Insert HA tag between residues 1015 and 1016	GGATGCTCTCCAAAGACCCATTACAACTACTGTTCC ATGTTCAACCAGGGAACAAAAGCTGG
PC676	Insert HA tag between residues 1015 and 1016	GGTAGGTGAAGTGGTTGTTGATTCCGAGGCGGTTTC GCTTGGACTCTGTAGGGCGAATTGG
TRO621	Real-time PCR primers forFLO11	CACTTTTGAAGTTTATGCCACACAAG
TRO622	Real-time PCR primer for FLO11	CTTGCATATTGAGCGGCACTAC
TRO632	Real-time PCR primer for ACT1	CTCCACCACTGCTGAAAGAGAA
TRO636	Real-time PCR primer for ACT1	CCAAAGCGACGTAACATAGCTTT

Mutant	Mat	Invasive growth	Class
vps1 Δ	_	+	
$vps2\Delta/did4\Delta$	—	+	Е
$vps3\Delta$	—	+	
$vps4\Delta$	—	+	Е
$vps8\Delta$	+	+	
$vps13\Delta$	+	+	
$vps15\Delta$	—	+	
$vps17\Delta$	+	+	
$vps20\Delta$	—	-	Е
$vps21\Delta$	+	±	
$vps22\Delta/snf8\Delta$	—	-	Е
$vps23\Delta$	—	-	Е
$vps24\Delta$	—	+	Е
$vps25\Delta$	—	-	Е
$vps26\Delta/pep4\Delta$	±	+	
$vps27\Delta$	—	+	Е
$vps28\Delta$	—	+	Е
$vps30\Delta$	+	+	
$vps31\Delta/bro1\Delta$	_	+	Е
$vps32\Delta/snf7\Delta$	_	-	Е
$vps34\Delta$	_	-	
$vps35\Delta$	±	+	
$vps36\Delta$	_	-	Е
$vps37\Delta$	±	+	Е
$vps38\Delta$	_	+	
$vps39\Delta/vam6\Delta$	+	+	
$vps41\Delta$	_	+	
$vps43\Delta/vam7\Delta$	±	+	
$vps44\Delta/nhx1\Delta$	_	+	
$vps46\Delta/did2\Delta$	+	+	
$vps51\Delta$	+	+	
$vps52\Delta$	±	+	
$vps53\Delta$	±	+	
$vps64\Delta$	+	±	
vps66∆	±	+	
$vps68\Delta$	+	+	
$vps54\Delta$	±	+	
$vps60\Delta/mos10\Delta$	-	±	Е
$vps62\Delta$	+	+	

Table A-3: Mat and invasive growth phenotypes of vps mutants

Figure A-4: Western blot gel of Flo11-HA^{30,1015}, shows the presence of a cleaved N-terminal HA-tagged band (~17 kDa).

Strain	Genotype	Reference or source
TRY181	<i>MAT</i> a <i>ura3-52 his3::hisG FLO11</i> ::HA ^{30,1015}	[36]
NY68	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} wsc1::kanMX6	This study
NY78	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} skn7::kanMX6	This study
NY270	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} rom2::kanMX6	This study
NY87	<i>MAT</i> a ura3-52 his3::hisG FLO11::HA ^{30,1015} wsc1::WSC1-GFP-HIS3MX6	This study
NY236	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} wsc14::WSC1-GFP-HIS3MX6	This study
NY245	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} wsc14::WSC1-Y303A-GFP- HIS3MX6	This study
NY249	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} wsc14::WSC1-L369A-V371A- GFP-HIS3MX6	This study
NY251	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} wsc14::WSC1-S19A-S20A-GFP- HIS3MX6	This study
NY254	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} wsc14::WSC1-Y303A-L369A- V371AGFP-HIS3MX6	This study

Table A-5: Yeast strains used in chapter 3

Table A-6:	Primers	used in	chapter	3
------------	---------	---------	---------	---

Name	Purpose	Sequence
TRO693	Disrupt WSC1	TTTTCGAAGCGAAAGCGAGA
TRO694	Disrupt WSC1	TTAATGTTCCTCGTTACTTCCAG
NSkn7F	Disrupt SKN7	CAAGATTGAAAGTGCTTCCAGG
NSkn7R	Disrupt SKN7	CGCATACTAAATTACTGTGTCTGT
TRO783	Insert GFP-HIS3MX6 from pFA6a-GFP- His3MX6	CAGGAGGGAAAAACAACGTTTTAACAGTGGTCAATCCAGACGA AGCTGAT
TRO784	Insert GFP-HIS3MX6 from pFA6a-GFP- His3MX6	AGACTTGCTTGGCAATAGTTTAAGAATATAATAATTTTTTTGG GTTTCTTCA
TRO369	Reverse primer to confirm all disruptions	GCACGTCAAGACTGTCAAGG
NSO75	Create Y303A mutation in WSC1	GGAAGCCCAAGAGGCGATA
NSO76	Create Y303A mutation in WSC1	CTCTTGGGCTTCCTTTTCCAT
NSO79	Create S19A-S20A mutation in WSC1	CGCCGCTGCATTTTCATCTA
NSO80	Create S19A-S20A mutation in WSC1	GAAAATGCAGCGGCGTATAGTT
NSO85	Create S22A-S23A mutation in WSC1	CATTTGCAGCTAATCACGGGCCCT
NSO86	Create S22A-S23A mutation in WSC1	GTGATTAGCTGCAAATGAAGAGGCGT
NSO88	Create L369A-V371A mutation in WSC1	CAACGTTGCAACAGCGGTCAATCCA
NSO89	Create L369A-V371A mutation in WSC1	GATTGACCGCTGTTGCAACGTTGTTT
NSO90	Create N373A-D375A mutation in WSC1	GTCGCTCCAGCCGAAGCTGAT
NSO91	Create N373A-D375A mutation in WSC1	CTTCGGCTGGAGCGACCGCT
NSO77	Create WSC1 cytoplasmic tail truncation mutant	CAGGATGGAACGGATCCCCGGGT
NSO78	Create WSC1 cytoplasmic tail truncation mutant	CGGGGATCCGTTCCATCCTGTCTT

Table A-7. Teast strains used in chapter +
--

Strain	Genotype	Reference or source
TRY181	<i>MAT</i> a <i>ura3-52 his3::hisG FLO11</i> ::HA ^{30,1015}	[36]
NY259	MATa ura3-52 his3::hisG FLO11::HA ^{30,1015} cda1::kanMX6	This study
NY263	<i>MAT</i> a <i>ura3-52 his3::hisG FLO11</i> ::HA ^{30,1015} <i>cda2</i> ::his3MX6	This study
NY267	<i>MAT</i> a <i>ura3-52 his3::hisG FLO11</i> ::HA ^{30,1015} <i>cda1</i> ::kanMX6 <i>cda2</i> ::his3MX6	This study

Name	Purpose	Sequence
NSO99	Disrupt CDA1	CTAAGAGAGAGCAGGAAGTTGAAGA
NSO100	Disrupt CDA1	GCCAATTGTTATTTGCACTGA
NSO103	Confirm cda1∆	CATGGCTATTGACAAGATAATCAGG
NSO101	Disrupt CDA2	AAACAAACTGCAAAAGAGTTGTTATTATTT CTACGGATCGGCAATTGAAACAGCTGAAGC TTCGTACGC
NSO102	Disrupt CDA2	TTTTCTTCAATTCCCTGAAAATTAGGACAA GAATTCTTTTATGTAATCAAGCATAGGCCA CTAGTGGATCTG
NSO104	Confirm cda2∆	ATTGCAACGGCCTAAAGGAA
TRO369	Reverse primer to confirm all disruptions	GCACGTCAAGACTGTCAAGG

Table A-8: Primers used in chapter 4

Figure A-9: Mat formation phenotype and overlay adhesion assay performed on $vps25\Delta$ and $vps27\Delta$, which were used as control strains for RNA-Seq analysis.

Table A-10 : Genes upregulated in the wild type biofilm hub compared to the rim

		Ratio of			
		RPKM of	Fisher's		
OPE	Gene	wild type	n-valuo	Significance	Function
		wild type	p-value		
		(Hub/Rim)			
					Phospholipid-binding protein;
YMR175W	SIP18	10617.65	2.087E-318	significant	expression is induced by osmotic
					stress
					Basic leucine zipper (bZIP)
					transcriptional activator of amino
					acid biosynthetic genes in
YEI 009C	GCN4	2745 60	1 973E-319	significant	response to amino acid
				olgimotalit	starvation; expression is tightly
					regulated at both the
					transcriptional and translational
					levels
					Protein component of the small
					(40S) ribosomal subunit; nearly
YMR230W	RPS10B	920.85	2.060E-320	significant	identical to Rps10Ap and has
					similarity to rat ribosomal protein
					S10
					Alpha subunit of the heteromeric
					nascent polypeptide-associated
YHR193C	EGD2	630.76	2.506E-320	significant	complex (NAC) involved in
					protein sorting and translocation,
					Endoplasmic reticulum
					nembrane protein, may facilitate
					between the Erg26n
YER044C	ERG28	621.09	2.498E-320	significant	dehydrogenase and the Erg27n
					3-ketoreductase and/or tether
					these enzymes to the ER also
					interacts with Erg6p
					Protein component of the large
					(60S) ribosomal subunit, nearly
YNL067W	RPL9B	596.06	2.622E-320	significant	identical to Rpl9Ap and has
				Ŭ	similarity to E. coli L6 and rat L9
					ribosomal proteins

					Silenced copy of a1 at HMR;				
YCR097W			1.468E-320		homeobox corepressor that				
	HMRA1	531.16		significant	interacts with Alpha2p to repress				
					haploid-specific gene				
					transcription in diploid cells				
					One of six ATPases of the 19S				
					regulatory particle of the 26S				
					proteasome involved in the				
VKI 145W	PDT1	310 57	3 521E-320	significant	degradation of ubiquitinated				
TRE 145W		510.57	5.5212-520	Signineant	substrates; required for optimal				
					CDC20 transcription; interacts				
					with Rpn12p and Ubr1p; mutant				
					has aneuploidy tolerance				
					Protein of unknown function;				
					overexpression suppresses Ca2+				
					sensitivity of mutants lacking				
		292.02	5 756E 220	significant	inositol phosphorylceramide				
TWIR25TW-A	HUR/	202.03	5.750E-520		mannosyltransferases Csg1p and				
					Csh1p; transcription is induced				
					under hyperosmotic stress and				
					repressed by alpha factor				
					TATA-binding protein, general				
					transcription factor that interacts				
YER148W	SPT15	272.28	1.534E-320	significant	with other factors to form the				
						preinitiation complex at			
					promoters, essential for viability				
					Subunit of a heterodimeric NC2				
					transcription regulator complex				
	BUR6	BUR6 270.74			with Ncb2p; complex binds to				
VED4500			270.74	8 576E-321	aignificant	TBP and can repress			
TER 159C			BUR6	BUR6	BUR6	270.74	8.5/0E-321	significant	transcription by preventing
									preinitiation complex assembly or
					stimulate activated transcription;				
					homologous to human NC2alpha				
					Non-essential protein of unknown				
YAL034C	FUN19	237.52	2.372E-320	significant	function; expression induced in				
					response to heat stress				
¥054040	DTOO	000.00	4 0005 000	a i ana i G ia a sa t	Putative component of the protein				
YGR161C	RIS3	233.02	1.993E-320	significant	phosphatase type 2A complex				
					Multistress response protein,				
					expression is activated by a				
YOL052C-A	DDR2 220.67	220.61	1.167E-319	significant	variety of xenobiotic agents and				
							environmental or physiological		
					stresses				
1		1	1						

					Non-essential glycogen
		010.00	4 7005 000		phosphorylase required for the
					mobilization of glycogen, activity
				aignificant	is regulated by cyclic AMP-
TPRIOUW	GPHI	212.39	4.730E-320	significant	mediated phosphorylation,
					expression is regulated by stress-
					response elements and by the
					HOG MAP kinase pathway
					Glycolytic enzyme
					phosphoglucose isomerase,
					catalyzes the interconversion of
	DOM	100.00	4 7705 040	ai an ifi a an t	glucose-6-phosphate and
IBR 196C	PGI	189.30	1.770E-319	significant	fructose-6-phosphate; required
					for cell cycle progression and
					completion of the gluconeogenic
					events of sporulation
					Protein component of the large
		9 188.48	8.972E-321	-::	(60S) ribosomal subunit, has
	RPL29				similarity to rat L29 ribosomal
					protein; not essential for
TFR032C-A				significant	translation, but required for
					proper joining of the large and
					small ribosomal subunits and for
					normal translation rate
				significant	Protein of unknown function, has
					similarity to Pmp3p, which is
	SNA2	160 38	6 748E-321		involved in cation transport;
TDR325W-A	SNA2	100.30	0.7402-321		green fluorescent protein (GFP)-
					fusion protein localizes to the
					cytoplasm in a punctate pattern
					Putative protein of unknown
	NA	156 13	5.080E-320	significant	function; conserved among
	114	150.15	5.000L-520	Signineant	Saccharomyces sensu stricto
					species
					Dubious open reading frame,
YBL071C	NA	153.06	1.56E-232	significant	predicted protein contains a
					peroxisomal targeting signal
					Dubious open reading frame
					unlikely to encode a protein,
YHR052W-A	NA	142.83	1.790E-319	significant	based on available experimental
					and comparative sequence data;
					partially overlaps CUP1-1

					Coholomin independent
					methionine synthase, involved in
					methionine biosynthesis and
VED0040	METO			-iifit	regeneration; requires a minimum
YERU9IC	ME 16	113.47	2.143E-320	significant	of two glutamates on the
					methyltetrahydrofolate substrate,
					similar to bacterial metE
					homologs
YCI 048W-A	NA	111 84	1 028E-320	significant	Putative protein of unknown
			1.0202 020	olghinount	function
					Large subunit of trehalose 6-
					phosphate synthase
					(Tps1p)/phosphatase (Tps2p)
YML100W	TSL1	107.82	2.933E-320	significant	complex, which converts uridine-
				oigninount	5'-diphosphoglucose and glucose
					6-phosphate to trehalose, similar
					to Tps3p and may share function;
					mutant has aneuploidy tolerance
	GRS1		1.408E-320	significant	Cytoplasmic and mitochondrial
		RS1 86.01			glycyl-tRNA synthase that ligates
					glycine to the cognate anticodon
YBR121C					bearing tRNA; transcription
					termination factor that may
					Interact with the 3 ⁻ -end of pre-
					formation
					(40S) ribosomal subunit
					mutations affecting RNA
YHL015W	RPS20	80.41	3.148E-320	significant	nolymerase III-dependent
					transcription: has similarity to E.
					coli S10 and rat S20 ribosomal
					proteins
					Putative protein of unknown
					function; may interact with
		NA 79.20			respiratory chain complexes III
YDR119W-A	NA		4.081E-320	significant	(ubiquinol-cytochrome c
					reductase) or IV (cytochrome c
					oxidase)
1	1		1	1	1

					Protein of unknown function,
					affects chronological lifespan;
					induced by iron homeostasis
					transcription factor Aft2p;
YGR146C	ECL1	77.53	1.476E-320	significant	multicopy suppressor of
					temperature sensitive hsf1
					mutant; induced by treatment
					with 8-methoxypsoralen and UVA
					irradiation
					Hydroperoxide and superoxide-
					radical responsive glutathione-
					dependent oxidoreductase;
YDR098C	GRX3	76.22	5.869E-321	significant	monothiol glutaredoxin subfamily
					member along with Grx4p and
					Grx5p; protects cells from
					oxidative damage
		72 70	4 10E 200	aignificant	prions; similar in sequence to
TERISOW	CURT	73.76	4.19E-290	signincan	Btn2p
		NA 62.48	4.836E-320		Putative protein of unknown
YCR024C-B	NA			significant	function; identified by expression
					profiling and mass spectrometry
					Protein component of the large
		PL2A 61.61	3.703E-320	significant	(60S) ribosomal subunit, identical
YFR031C-A	RPL2A				to Rpl2Bp and has similarity to E.
					coli L2 and rat L8 ribosomal
					proteins
					Exosome non-catalytic core
					component; involved in 3'-5' RNA
					processing and degradation in
	DDD/	60.10	5 102E-321	significant	both the nucleus and the
TIKOUSC	NNF 4	00.10	5.1922-521	signincan	cytoplasm; predicted to contain
					RNA binding domains; has
					similarity to human hRrp4p
					(EXOSC2)
					Vacuolar transporter that
YOR316C	COT1	58 54	1 150E-320	significant	mediates zinc transport into the
	0011	OTT 58.54	1.150E-320	Significant	vacuole; overexpression confers
					resistance to cobalt and rhodium
-				-	

					Vacuolar Ca2+ ATPase involved
		56.24			in depleting cytosol of Ca2+ ions;
					prevents growth inhibition by
YGL006W	PMC1		1.636E-320	significant	activation of calcineurin in the
					presence of elevated
					concentrations of calcium; similar
					to mammalian PMCA1a
					Dubious open reading frame
	NΔ	54 41	3.01E-138	significant	unlikely to encode a protein,
1111(10000	11/1	34.41	0.012-100	Signinoant	based on available experimental
					and comparative sequence data
					Putative protein of unknown
YNR034W-A	NA	52.73	1.145E-319	significant	function; expression is regulated
					by Msn2p/Msn4p
					Subunit of the Anaphase-
				significant	Promoting Complex/Cyclosome
		52.04	8.12E-97		(APC/C), which is a ubiquitin-
YER036W	CDC26				protein ligase required for
111100011	00020				degradation of anaphase
					inhibitors, including mitotic
					cyclins, during the
					metaphase/anaphase transition
			1.794E-320		Protein with NADP(H)
				significant	oxidoreductase activity;
					transcription is regulated by
YMR315W	NA	49.94			Stb5p in response to NADPH
					depletion induced by diamide;
					promoter contains a putative
					Stb5p binding site
					Probable component of the Rpd3
					histone deacetylase complex,
					involved in transcriptional
YNL097C	PHO23	48.08	5.162E-321	significant	regulation of PHO5; C-terminus
					has similarity to human candidate
					tumor suppressor p33(ING1) and
					its isoform ING3
					Protein component of the small
			3.169E-320		(40S) ribosomal subunit; nearly
YLR287C-A	RPS30A	47.13		significant	identical to Rps30Bp and has
					similarity to rat S30 ribosomal
					protein

					Protein component of the large
					(60S) ribosomal subunit, nearly
YPL249C-A	RPL36B	47.11	3.177E-320	significant	identical to RpI36Ap and has
				-	similarity to rat L36 ribosomal
					protein; binds to 5.8 S rRNA
					Putative protein of unknown
YDR524C-B	NA	45.20	3.372E-320	significant	function
					ADP-ribosylation factor (ARF)
					GTPase activating protein (GAP)
YDR524C	AGE1	45.04	5.276E-321	significant	effector, involved in the secretory
					and endocytic pathways; contains
					C2C2H2 cysteine/histidine motif
					Dubious open reading frame
	ΝΔ	13 35	2 27E 222	significant	unlikely to encode a protein,
TERU04VV	INA	43.35	2.37 E-223		based on available experimental
					and comparative sequence data
	VIP1	VIP1 43.10	1.224E-320		Inositol hexakisphosphate (IP6)
					and inositol heptakisphosphate
					(IP7) kinase; IP7 production is
				significant	important for phosphate
12141000				Significant	signaling; involved in cortical
					actin cytoskeleton function, and
					invasive pseudohyphal growth
					analogous to S. pombe asp1
					Putative protein of unknown
					function; identified by gene-
	NA	13.00	1 11E-51	significant	trapping, microarray-based
1111121300-0	114	43.09	4.412-34	signineant	expression analysis, and
					genome-wide homology
					searching
					Signal transducing MAP kinase
					kinase involved in pheromone
					response, where it
					phosphorylates Fus3p, and in the
YDL159W	STE7	42.80	5.370E-321	significant	pseudohyphal/invasive growth
					pathway, through
					phosphorylation of Kss1p;
					phosphorylated by Ste11p,
					degraded by ubiquitin pathway

YIL020C	HIS6	41.07	3.11E-174	significant	Phosphoribosyl-5-amino-1- phosphoribosyl-4- imidazolecarboxiamide isomerase, catalyzes the fourth step in histidine biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts
YNL162W	RPL42A	40.85	1.615E-320	significant	(60S) ribosomal subunit, identical to Rpl42Bp and has similarity to rat L44 ribosomal protein
YPR108W	RPN7	39.13	1.614E-320	significant	Essential, non-ATPase regulatory subunit of the 26S proteasome, similar to another S. cerevisiae regulatory subunit, Rpn5p, as well as to mammalian proteasome subunits
YPL152W	RRD2	38.43	3.44E-232	significant	Activator of the phosphotyrosyl phosphatase activity of PP2A,peptidyl-prolyl cis/trans- isomerase; regulates G1 phase progression, the osmoresponse, microtubule dynamics; subunit of the Tap42p-Pph21p-Rrd2p complex
YOR142W	LSC1	37.65	1.465E-320	significant	Alpha subunit of succinyl-CoA ligase, which is a mitochondrial enzyme of the TCA cycle that catalyzes the nucleotide- dependent conversion of succinyl-CoA to succinate; phosphorylated
YOR008C	SLG1	36.84	1.040E-320	significant	Sensor-transducer of the stress- activated PKC1-MPK1 kinase pathway involved in maintenance of cell wall integrity; involved in organization of the actin cytoskeleton; secretory pathway Wsc1p is required for the arrest of secretion response

					RNA binding protein, component
		05.00			of the U1 snRNP protein; mutants
					are defective in meiotic
	ΝΙΔΝΙΟ		0.005+00	aignificant	recombination and in formation of
THRUGOW	INAIVIO	35.06	0.00E+00	Significant	viable spores, involved in the
					formation of DSBs through
					meiosis-specific splicing of MER2
					pre-mRNA
					Protein required for respiratory
					growth; localized to both the
					nucleus and mitochondrion; may
	DSE1	32 31	1 140E-320	significant	interact with transcription factors
1101100000		52.51	1.1402-520	Signineant	to mediate the transition to
					respiratory growth and activate
					transcription of nuclear and
					mitochondrial genes
					Protein integral to the
	OMS1	32.20	2.67E-239	significant	mitochondrial membrane; has a
YDR316W					conserved methyltransferase
TERSTOW					motif; multicopy suppressor of
					respiratory defects caused by
					OXA1 mutations
					5-phospho-ribosyl-1(alpha)-
				significant	pyrophosphate synthetase,
					synthesizes PRPP, which is
YBI 068W	PRS4	31.32	4 61F-168		required for nucleotide, histidine,
TELOCOT	11104	01.02	4.012 100	Signinoant	and tryptophan biosynthesis; one
					of five related enzymes, which
					are active as heteromultimeric
					complexes
					Putative protein of unknown
	NA	30.22	1 69E-07	significant	function; contained within the
		00.22	1.002 07	Signinoant	solo Ty1 LTR element
					YDRWdelta7
					Dubious open reading frame
					unlikely to encode a protein,
YDL114W-A	NA	30 19	1.66F-03		based on available experimental
					and comparative sequence data;
					identified based on homology to
					hemiascomycetous yeasts

					Covalently linked cell wall
					mannoprotein, major constituent
XKI 096W/-4	CM/D2	29.92	1.590E-319	significant	of the cell wall; plays a role in
TRE0300-A	00012			Signineant	stabilizing the cell wall; involved
					in low pH resistance; precursor is
					GPI-anchored
					Major CTP synthase isozyme
					(see also URA8), catalyzes the
					ATP-dependent transfer of the
		20.64	7 955 200	aignificant	amide nitrogen from glutamine to
I BL039C	UKAI	29.04	7.05E-290	significant	UTP, forming CTP, the final step
					in de novo biosynthesis of
					pyrimidines; involved in
					phospholipid biosynthesis
					Cytochrome b2 (L-lactate
		28.42	3.913E-320	significant	cytochrome-c oxidoreductase),
	CYB2				component of the mitochondrial
YML054C					intermembrane space, required
					for lactate utilization; expression
					is repressed by glucose and
					anaerobic conditions
			5.128E-321	significant	Positive regulator of the Gcn2p
		N20 27.72			kinase activity, forms a complex
YFR009W	GCN20				with Gcn1p; proposed to
					stimulate Gcn2p activation by an
					uncharged tRNA
					Putative protein of unknown
V II 127C-B	ΝΔ	27.24	1.64E-10	significant	function; identified based on
1321270-0		27.24	1.042-10	Signineant	homology to the filamentous
					fungus, <i>Ashbya gossypii</i>
	MDDCQ	26.11	2.085.225	significant	Mitochondrial ribosomal protein
101113000	WIN SO	20.11	2.902-225	signineant	of the small subunit
					Component of the lid subcomplex
					of the regulatory subunit of the
	SEM1	SEM1 24.30	3.05E-256	significant	26S proteasome; involved in
I DI COUVEA				Significant	mRNA export mediated by the
					TREX-2 complex (Sac3p-Thp1p);
					ortholog of human DSS1

					Ribosomal RNA processing
					element (RRPE)-binding protein
					involved in the glucose-induced
	0702		0 4005 004	aine ifia ant	transition from quiescence to
IDR 169C	5183	24.07	0.492E-321	significant	growth; restricted to nucleus in
					quiescent cells, released into
					cytoplasm after glucose repletion;
					binds Sin3p
					Putative protein of unknown
					function identified by fungal
YLR154C-G	NA	22.60	1.960E-320	significant	homology comparisons and RT-
					PCR; this ORF is contained
			within RDN25-2 and RDN37-2		
					Member of an oxysterol-binding
				significant	protein family with seven
			5.414E-321		members in S. cerevisiae; family
	OSH3	21.96			members have overlapping,
1111(07500					redundant functions in sterol
					metabolism and collectively
					perform a function essential for
					viability
					F-box protein containing five
				significant	copies of the WD40 motif,
					controls cell cycle function, sulfur
YII 046W	MET30	21 36	3 0265 320		metabolism, and methionine
11201011		21.00	0.0202 020	orginitoarit	biosynthesis as part of the
					ubiquitin ligase complex; interacts
					with and regulates Met4p,
					localizes within the nucleus
					Essential protein suggested to
					function early in the secretory
YNI 024C-A	KSH1	21.30	1 00E-93	significant	pathway; inviability is suppressed
		21.00	1.002 00	orginitoarit	by overexpression of Golgi
					protein Tvp23p; ortholog of
					human Kish
					Putative protein of unknown
YOR192C-C	NA	NA 21.09	2.86E-21	significant	function; identified by expression
					profiling and mass spectrometry

r			I		
					Dubious open reading frame
					unlikely to encode a protein,
					based on available experimental
YOR072W-A	NA	18.76	7.92E-21	significant	and comparative sequence data;
					partially overlaps the
					uncharacterized ORF YOR0/2W;
					originally identified by fungal
					homology and RT-PCR
					Protein required for spore wall
					maturation; expressed during
YHR139C	SPS100	18.31	7.183E-320	significant	sporulation; may be a component
				_	of the spore wall; expression also
					induced in cells treated with the
					mycotoxin patulin
					Protein of unknown function;
YPR036W-A	NA	18.17	8.064E-320	significant	transcription is regulated by
					Pdr1p
	QCR10	CR10 17.77	3.662E-320		Subunit of the ubiqunol-
					cytochrome c oxidoreductase
					complex which includes Cobp,
YHR001W-A				significant	Rip1p, Cyt1p, Cor1p, Qcr2p,
					Qcr6p, Qcr7p, Qcr8p, Qcr9p, and
					Qcr10p and comprises part of the
					mitochondrial respiratory chain
					Zinc finger transcription factor
					involved in the complex
					regulation of gene expression in
YLR256W	HAP1	17.68	8.354E-321	significant	response to levels of heme and
			0.0012 021	oiginioant	oxygen; the S288C sequence
					differs from other strain
					backgrounds due to a Ty1
					insertion in the carboxy terminus
					Mitochondrial inner membrane
					protein that participates in
YJL062W-A	COA3	17.36	1.49E-18	significant	regulation of COX1 translation,
					Cox1p stabilization, and
					cytochrome oxidase assembly
					Retrotransposon TYA Gag and
YDR261C-D	NA	NA 17.35	1.819E-319	significant	TYB Pol genes; in YDRCTY1-3
					TYB is mutant and probably non-
					functional

YDR261C YLL006W	EXG2 MMM1	16.92	1.19E-144 5.51E-116	significant	Exo-1,3-beta-glucanase, involved in cell wall beta-glucan assembly; may be anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor ER integral membrane protein, component of the ERMES complex that links the ER to mitochondria and may promote inter-organellar calcium and
					coordinating mitochondrial DNA replication and growth
YNL130C	CPT1	16.09	9.377E-321		Cholinephosphotransferase, required for phosphatidylcholine biosynthesis and for inositol- dependent regulation of EPT1 transcription
YCR028C-A	RIM1	14.23	3.020E-313	significant	Single-stranded DNA-binding protein essential for mitochondrial genome maintenance; involved in mitochondrial DNA replication
YBR191W	RPL21A	14.22	2.737E-320	significant	Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl21Bp and has similarity to rat L21 ribosomal protein
YIR021W	MRS1	13.89	1.14E-188	significant	Protein required for the splicing of two mitochondrial group I introns (BI3 in COB and AI5beta in COX1); forms a splicing complex, containing four subunits of Mrs1p and two subunits of the BI3- encoded maturase, that binds to the BI3 RNA
YIL102C-A	NA	13.09	3.05E-24	significant	Putative protein of unknown function, identified based on comparisons of the genome sequences of six Saccharomyces species

					Protein of unknown function;
	NIA	10 70	4 965 119	aignificant	green fluorescent protein (GFP)-
TOLUTION	INA	12.70	4.00E-110	signincan	fusion protein localizes to the cell
					periphery and vacuole
					Alpha subunit of heterooctameric
					phosphofructokinase involved in
					glycolysis, indispensable for
VCD240C		10.07	6 5245 220	aignificant	anaerobic growth, activated by
IGR240C	PFKI	12.37	0.524E-320	significant	fructose-2,6-bisphosphate and
					AMP, mutation inhibits glucose
					induction of cell cycle-related
					genes
					Protein of unknown function; has
				significant	similarity to Torpedo californica
VOB161C		11.40	8.443E-321		tCTL1p, which is postulated to be
TORIOIC	FINGT				a choline transporter, neither null
					mutation nor overexpression
					affects choline transport
	NA	NA 11.12	5.52E-40		Dubious open reading frame
					unlikely to encode a protein,
				significant	based on available experimental
YDL247W-A					and comparative sequence data;
					identified by sequence
					comparison with
					hemiascomycetous yeast species
					Putative protein of unknown
YGL041C-B	NA	10.62	7.98E-08	significant	function; identified by fungal
					homology and RT-PCR
					RNA-dependent ATPase RNA
					helicase (DEIH box); required for
VEP172C	BDD2	10.50	5 601E-321	significant	disruption of U4/U6 base-pairing
TEICHZO	DIXIXZ	10.50	5.0512-521	signineant	in native snRNPs to activate the
					spliceosome for catalysis;
					homologous to human U5-200kD
					Putative protein of unknown
YOR376W-A	NA	10.09	6.12E-07	significant	function; identified by fungal
					homology and RT-PCR

					Protein involved in
YKL165C	MCD4	10.02	6.739E-321		glycosylphosphatidylinositol (GPI)
					anchor synthesis;
				significant	multimembrane-spanning protein
					that localizes to the endoplasmic
					reticulum; highly conserved
					among eukaryotes
					Protein of unknown function; has
YMI 101C	CUE4	9.80	1 78E-108	significant	a CUE domain that binds
TWILLTOTO	OULY	0.00	1.702 100	Signinoant	ubiquitin, which may facilitate
					intramolecular monoubiquitination
					Putative protein of unknown
					function; homozygous diploid
YPI 257W	ΝΔ	8 47	5.27E-20	significant	deletion strain exhibits low
11 2237 00	114	0.47	5.27E-20	Signineant	budding index; physically
					interacts with Hsp82p; YPL257W
					is not an essential gene
	FUN30	8.46	2.01E-152	significant	Conserved member of the Snf2p
					family with ATP-dependent
					chromatin remodeling activity;
					has a role in silencing; potential
TALOTOW					Cdc28p substrate; authentic,
					non-tagged protein is detected in
					purified mitochondria in high-
					throughput studies
					Dolichol kinase, catalyzes the
		8.36	3.38E-72	significant	terminal step in dolichyl
					monophosphate (Dol-P)
YMR013C	SEC59				biosynthesis; required for viability
					and for normal rates of lipid
					intermediate synthesis and
					protein N-glycosylation
					Essential protein required for
					biogenesis of the large ribosomal
					subunit; interacts with proteins
	IIP5	JIP5 8.33	8.779E-321	significant	involved in RNA processing,
111(1030)	511 5			significant	ribosome biogenesis,
					ubiquitination and demethylation;
					similar to WDR55, a human WD
					repeat protein

					Protein involved in retention of
YCL001W	RER1	8.17	2.99E-257	significant	membrane proteins, including
					Sec12p, in the ER; localized to
TOLOOTW	INEINI			Significant	Golgi; functions as a retrieval
					receptor in returning membrane
					proteins to the ER
					Lanosterol 14-alpha-
					demethylase, catalyzes the C-14
					demethylation of lanosterol to
VUD0070	50044	7.00		ai ana ifi a ana t	form 4,4"-dimethyl cholesta-
THRUU/C	ERGIT	7.92	5.045E-320	significant	8,14,24-triene-3-beta-ol in the
					ergosterol biosynthesis pathway;
					member of the cytochrome P450
					family
					Putative protein of unknown
	NIA	7.66		- i i f i t	function; similar to
TKLUSSVV-A	INA	7.00	1.//E-1/	significant	uncharacterized proteins from
					other fungi
	ΝΔ	7.54	4 005 02		Putative protein of unknown
TERSOTC-A		7.54	4.302-02		function
					Protein of unknown function; null
	AIM11	7.44	3.89E-16	significant	mutant is viable but shows
					increased loss of mitochondrial
TEROSSO-A					genome and synthetic interaction
					with prohibitin (phb1); contains an
					intron
					Vacuolar H+ ATPase subunit e of
					the V-ATPase V0 subcomplex;
					essential for vacuolar
YCL005W-A	VMA9	7.43	2.37E-23	significant	acidification; interacts with the V-
					ATPase assembly factor Vma21p
					in the ER; involved in V0
					biogenesis
					Dubious open reading frame
		VA 7.38	9.49E-51	significant	unlikely to encode a functional
YGL188C	NA				protein, based on available
					experimental and comparative
					sequence data

					Retrotransposon TYA Gag and
					TYB Pol genes;
					transcribed/translated as one
					unit; polyprotein is processed to
YIL082W-A	NA	7.14	3.90E-187	significant	make a nucleocapsid-like protein
					(Gag), reverse transcriptase
					(RT), protease (PR), and
					integrase (IN); similar to retroviral
					genes
					Protein of unknown that
					associates with ribosomes; null
	TMA7	7 11	1 665 42	aignificant	mutant exhibits translation
TLR202C-A		7.11	1.00E-43	Significant	defects, altered polyribosome
					profiles, and resistance to the
					translation inhibitor anisomcyin
					Constituent of small nucleolar
	NOP10	6.91	4.69E-142	significant	ribonucleoprotein particles
					containing H/ACA-type snoRNAs,
111R072W-A					which are required for
					pseudouridylation and processing
					of pre-18S rRNA
					Type 1 serine/threonine protein
	GLC7	ILC7 6.88	2.037E-320	significant	phosphatase catalytic subunit,
					involved in many processes (eg:
					glycogen metabolism,
YER133W					sporulation, mitosis);
					accumulates at mating
					projections by interaction with
					Afr1p; interacts with many
					regulatory subunits
					Serine-threonine kinase and
					endoribonuclease;
					transmembrane protein that
					mediates the unfolded protein
YHR079C	IRE1	IRE1 6.81	8.23E-107	significant	response (UPR) by regulating
					Hac1p synthesis through HAC1
					mRNA splicing; Kar2p binds
					inactive Ire1p and releases from
					it upon ER stress

					Plasma membrane protein of
YIL047C	SYG1	6.40	6.393E-320	significant	unknown function; truncation and
					overexpression suppresses
					lethality of G-alpha protein
					deficiency
	ΝΔ	6.32	2 595 15	significant	Putative protein of unknown
TELOTOC	NA INA	0.32	2.002-10	Signineant	function
					Subunit of the HIR complex, a
					nucleosome assembly complex
					involved in regulation of histone
		5 90	6 125 120	aignificant	gene transcription; contributes to
TBLUUOVV		5.60	0.13E-139	Significant	nucleosome formation,
					heterochromatic gene silencing,
					and formation of functional
					kinetochores
					Protein that stimulates the activity
	TSC3		3.08E-72	significant	of serine palmitoyltransferase
YBR058C-A		5.72			(Lcb1p, Lcb2p) several-fold;
					involved in sphingolipid
					biosynthesis
	41104	5.68	1.11E-285		Transporter of the ATP-binding
				significant	cassette family, involved in
TORUTTW	AUST				uptake of sterols and anaerobic
					growth
					Subunit G of the eight-subunit V1
	VMA10	5.32	7.05E-16	significant	peripheral membrane domain of
					the vacuolar H+-ATPase (V-
YHR039C-A					ATPase), an electrogenic proton
					pump found throughout the
					endomembrane system; involved
					in vacuolar acidification
					Alcohol dehydrogenase
					isoenzyme type IV, dimeric
					enzyme demonstrated to be zinc-
		ADH4 5.30	2.812E-320	aignificant	dependent despite sequence
IGL250VV	ADH4			significant	similarity to iron-activated alcohol
					dehydrogenases; transcription is
					induced in response to zinc
					deficiency

					Putative protein of unknown
VUD1000		5.30	0.0015.000		function; the authentic, non-
					tagged protein is detected in
				aignificant	highly purified mitochondria in
THRI99C	Allvi40		2.301E-320	Significant	high-throughput studies; null
					mutant displays elevated
					frequency of mitochondrial
					genome loss
					Retrotransposon TYA Gag and
					TYB Pol genes;
					transcribed/translated as one
					unit; polyprotein is processed to
YML045W	NA	5.26	3.38E-133	significant	make a nucleocapsid-like protein
					(Gag), reverse transcriptase
					(RT), protease (PR), and
					integrase (IN); similar to retroviral
					genes
					Putative protein of unknown
YHR126C	ANS1	5.08	7.68E-10	significant	function; transcription dependent
					upon Azf1p
					RNA polymerase subunit ABC10-
YHR143W-A	RPC10	5.06	5.91E-02		alpha, found in RNA polymerase
					complexes I, II, and III
					Putative protein of unknown
	NA	5.00	5.07E-07	significant	function; transcribed during
YFL012W					sporulation; null mutant exhibits
					increased resistance to
					rapamycin
					Putative transcription factor
	SMP1	SMP1 4.96	1.33E-34	significant	involved in regulating the
YBR182C					response to osmotic stress;
					member of the MADS-box family
					of transcription factors
YII 156W	LIBP7	4 87	7 25E-197	significant	Ubiquitin-specific protease that
11213000		4.07	1.200-101	Signineant	cleaves ubiquitin-protein fusions
					Protein that regulates the nuclear
					localization of ribonucleotide
					reductase Rnr2p and Rnr4p
YI R4370		4 86	9 49 - 49	significant	subunits; phosphorylated by
		4.86	9.49E-49	Significant	Dun1p in response to DNA
					damage and degraded; N-
					terminal half has similarity to S.
					pombe Spd1 protein

					Essential protein of the
					mitochondrial intermembrane
YHR005C-A		4.76	3.31E-11		space, forms a complex with
	TIM10			significant	Tim9p (TIM10 complex) that
					delivers hydrophobic proteins to
					the TIM22 complex for insertion
					into the inner membrane
					Polo-like kinase with multiple
					functions in mitosis and
					cytokinesis through substrate
	CDCE	4.66	2 70E 140	aignificant	phosphorylation, also functions in
TWIROUTC	CDC5	4.00	2.790-149	significant	adaptation to DNA damage
					during meiosis; has similarity to
					Xenopus Plx1 and S. pombe
					Plo1p; possible Cdc28p substrate
VED020C		4 50	0 220E 221	aignificant	Protein of unknown function, has
TER039C	RVGI	4.59	0.320E-321	signincant	homology to Vrg4p
					Essential subunit of the Dam1
	DAD4	4.58	7.93E-92	significant	complex (aka DASH complex),
					couples kinetochores to the force
					produced by MT
TDR320C-A					depolymerization thereby aiding
					in chromosome segregation; is
					transferred to the kinetochore
					prior to mitosis
					Protein component of the small
VER074W	RPS24A	PS24A 4.57	3.203E-320	significant	(40S) ribosomal subunit; identical
1 21(07 410					to Rps24Bp and has similarity to
					rat S24 ribosomal protein
					One of 10 subunits of the
					transport protein particle
					(TRAPP) complex of the cis-Golgi
	TRS23	4 55	9 426E-321	significant	which mediates vesicle docking
1 DI 1240W	11(020	4.00	0.4202-021	Significant	and fusion; involved in
					endoplasmic reticulum (ER) to
					Golgi membrane traffic; human
					homolog is TRAPPC4
			2.05E-65		Putative protein of unknown
Y.IR112W-A	NA	A 4.54		significant	function; identified based on
					homology to <i>Ashbya</i>

					Putativo lipid phoephataso of the
		4.49			
YDR182W					Mn2+ dopondoneo and may
					offect Co2+ signaling; mutanta
	CDC1		6.333E-321	significant	diaplay actin and gaparal growth
					display actin and general growth
					defects and pleiotropic defects in
					cell cycle progression and
					Leucine-zipper transcriptional
					activator, responsible for the
		1.10	0.0405.004		regulation of the sulfur amino
YNL103W	ME14	4.48	9.313E-321	significant	acid pathway, requires different
					combinations of the auxiliary
					factors Cbf1p, Met28p, Met31p
					and Met32p
	NA	4.47	3.20E-07	significant	Dubious open reading frame
					unlikely to encode a functional
YMR294W-A					protein, substantially overlaps
					YMR295C; deletion causes
					sensitivity to unfolded protein
					response-inducing agents
		4.46	5.01E-11	significant	Chitin deacetylase, together with
					Cda1p involved in the
YLR308W	CDA2				biosynthesis ascospore wall
					component, chitosan; required for
					proper rigidity of the ascospore
					wall
					Meiosis-specific prospore protein;
					required to produce bending
					force necessary for proper
YPL130W	SPO19	4.40	8.54E-11	significant	assembly of the prospore
					membrane during sporulation;
					identified as a weak high-copy
					suppressor of the spo1-1 ts
					mutation
			1.42E-70	significant	Putative protein of unknown
YPL119C-A	NA	NA 4.40			tunction; identified by expression

					Protein containing SH3-domains,
					involved in establishing cell
	BEM1	4.38	8.497E-321	significant	polarity and morphogenesis;
IBR20000				significant	functions as a scaffold protein for
					complexes that include Cdc24p,
					Ste5p, Ste20p, and Rsr1p
					Protein of unknown function,
	BOD3	1 35	1 055-151	significant	potential Cdc28p substrate;
111204200	BOF 3	4.55	1.952-151	Signinean	overproduction confers
					resistance to methylmercury
					Soluble protein of unknown
					function; deletion mutants are
YOL159C	NA	4.22	6.57E-159	significant	viable and have elevated levels
					of Ty1 retrotransposition and Ty1
					cDNA
					Ferric reductase, reduces
			3.18E-134		siderophore-bound iron prior to
YOR381W	FRE3	4.12		significant	uptake by transporters;
					expression induced by low iron
					levels
	NA	4.10	1.16E-61	significant	Dubious open reading frame
					unlikely to encode a functional
					protein, based on available
YDR149C					experimental and comparative
					sequence data; overlaps the
					verified gene NUM1; null
					mutation blocks anaerobic growth
					Metallothionein, binds copper and
		3.04		significant	mediates resistance to high
					concentrations of copper and
YHR053C	CUP1-1		2 329E-319		cadmium; locus is variably
	00111	0.01	2.0202 010	orginitoant	amplified in different strains, with
					two copies, CUP1-1 and CUP1-2,
					in the genomic sequence
					reference strain S288C
					Metallothionein, binds copper and
					mediates resistance to high
					concentrations of copper and
YHR055C	CUP1-2	3 94	2 329E-319	significant	cadmium; locus is variably
		0.01		o.g. mount	amplified in different strains, with
					two copies, CUP1-1 and CUP1-2,
					in the genomic sequence
					reference strain S288C

YI R053C	NA	3 86	2 27E-173	significant	Putative protein of unknown
		0.00		eiginiteeint	function
YGR169C-A	NA	3 36	2 84E-09	significant	Putative protein of unknown
		0.00		eiginiteant	function
YMR323W	FRR3	3.25	6 73E-20	significant	Protein of unknown function, has
1111102011	LINIO	0.20	0.702 20	Significant	similarity to enolases
YPI 281C	FRR2	3 25	6.73E-20	significant	Protein of unknown function, has
11 22010		0.20	0.752-20	Signineant	similarity to enolases
					Covalently linked cell wall
YLR390W-A	CCW14	3.22	2.700E-320	significant	glycoprotein, present in the inner
					layer of the cell wall
		2 20	2 405 26	aignificant	Mitochondrial ribosomal protein
TME009C	WIRF L39	5.20	5.492-20	Significant	of the large subunit
					Putative protein of unknown
YKL068W-A	NA	3.19	1.06E-123	significant	function; identified by homology
					to <i>Ashbya gossypii</i>
					L-homoserine-O-
	MET2	3.17	7.410E-322	significant	acetyltransferase, catalyzes the
					conversion of homoserine to O-
					acetyl homoserine which is the
					first step of the methionine
					biosynthetic pathway
					Dubious open reading frame
	NA	3.13	1.25E-50	significant	unlikely to encode a protein;
1 21(13400-1					encoded within the the 35S rRNA
					gene on the opposite strand
					Acetate transporter required for
YCR010C	ADY2	3.10	1.51E-206	significant	normal sporulation;
					phosphorylated in mitochondria
					Putative protein of unknown
YBR221W-A	NA	3.02	2.57E-01		function; identified by expression
					profiling and mass spectrometry
					Protein required for sporulation,
		ISC10 2.96	2.15E-140		transcript is induced 7.5 hours
VED190C	ISC10			aignifiaant	after induction of meiosis,
TERIBUC				Significant	expected to play significant role
					in the formation of reproductive
					cells
YHR136C	SPL2	2.91	4.86E-29	significant	Protein with similarity to cyclin- dependent kinase inhibitors; downregulates low-affinity phosphate transport during phosphate limitation; overproduction suppresses a plc1 null mutation; GFP-fusion protein localizes to the cytoplasm
-----------	-------	------	------------	-------------	---
YOR393W	ERR1	2.87	8.889E-320	significant	Protein of unknown function, has similarity to enolases
YIL057C	RGI2	2.77	8.347E-320	significant	Protein of unknown function involved in energy metabolism under respiratory conditions; expression induced under carbon limitation and repressed under high glucose
YGL088W	NA	2.77	9.00E-19	significant	Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps snR10, a snoRNA required for preRNA processing
YFR032C-B	NA	2.75	3.58E-01		Putative protein of unknown function; identified by gene- trapping, microarray-based expression analysis, and genome-wide homology searching
YPL038W	MET31	2.62	1.26E-53	significant	Zinc-finger DNA-binding protein, involved in transcriptional regulation of the methionine biosynthetic genes, similar to Met32p
YGR236C	SPG1	2.58	1.322E-319	significant	Protein required for survival at high temperature during stationary phase; not required for growth on nonfermentable carbon sources; the authentic, non- tagged protein is detected in highly purified mitochondria in high-throughput studies

					Econotic output tof the Darra
					Complex (aka DASH complex)
					couples kinetochores to the force
					produced by MT
YBR233W-A	DAD3	2.58	1.77E-22	significant	depolymerization thereby aiding
					in chromosome segregation: is
					transforred to the kinetechore
					obiquitin-specific protease
					of the 26C protocomposition
					of the 26S proteasome, releases
YFR010W	UBP6	2.55	2.167E-320	significant	
					polyubiquitin chains; works in
					elongation activity; mutant has
					aneuploidy tolerance
		PES4 2.53			Poly(A) binding protein,
YFR023W	PES4		1.37E-15	significant	suppressor of DNA polymerase
					epsilon mutation, similar to Mip6p
	NA		8.10E-01		Dubious open reading frame
		2.51			unlikely to encode a functional
YIR020C					protein, based on available
					experimental and comparative
					sequence data
					Plasma membrane sulfite pump
				significant	involved in sulfite metabolism and
YPL092W	SSU1	2.47	1.077E-319		required for efficient sulfite efflux;
					major facilitator superfamily
					protein
					High affinity iron permease
					involved in the transport of iron
YER145C	FTR1	2.44	3.10E-242	significant	across the plasma membrane;
					forms complex with Fet3p;
					expression is regulated by iron
					Dubious open reading frame
					unlikely to encode a protein,
					based on available experimental
YAL026C-A	NA	2.35	1.73E-86	significant	and comparative sequence data;
				-	partially overlaps the
					uncharacterized ORF YAL027W
					and the verified gene DRS2

YPR001W	CIT3	2.35	3.39E-185	significant	Dual specificity mitochondrial citrate and methylcitrate synthase; catalyzes the condensation of acetyl-CoA and oxaloacetate to form citrate and that of propionyl-CoA and oxaloacetate to form 2- methylcitrate
YPL187W	MF(ALPH A)1	2.34	3.49E-32	significant	Mating pheromone alpha-factor, made by alpha cells; interacts with mating type a cells to induce cell cycle arrest and other responses leading to mating; also encoded by MF(ALPHA)2, although MF(ALPHA)1 produces most alpha-factor
YOR073W	SGO1	2.24	2.68E-54	significant	Component of the spindle checkpoint, involved in sensing lack of tension on mitotic chromosomes; protects centromeric Rec8p at meiosis I; required for accurate chromosomal segregation at meiosis II and for mitotic chromosome stability
YOL154W	ZPS1	2.18	4.55E-65	significant	Putative GPI-anchored protein; transcription is induced under low-zinc conditions, as mediated by the Zap1p transcription factor, and at alkaline pH
YOR364W	NA	2.03	1.03E-07	significant	Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps the uncharacterized ORF YOR365C
YMR175W	SIP18	10617.65	2.087E-318	significant	Phospholipid-binding protein; expression is induced by osmotic stress

					Basic leucine zipper (bZIP)
					transcriptional activator of amino
					acid biosynthetic genes in
	GCN4	:N4 2745.60	1.973E-319	significant	response to amino acid
TEE003C					starvation; expression is tightly
					regulated at both the
					transcriptional and translational
					levels

Table A-11 : Genes downregulated in the wild type biofilm hub compared to the rim

		Ratiof of			
ORF	Gene	RPKM of	Fisher's		
		wild type	n_valuo	Significance	Function
			p-value		
		(Hub/Rim)			
					High-affinity glucose transporter
					of the major facilitator
	HXT2	0.52	5.88E-65	significant	superfamily, expression is
	11/12	0.52	5.00E-05	Significant	induced by low levels of glucose
					and repressed by high levels of
					glucose
					Component of the core factor
					(CF) rDNA transcription factor
					complex; CF is required for
YML043C	RRN11	0.52	4.93E-16	significant	transcription of 35S rRNA genes
					by RNA polymerase I and is
					composed of Rrn6p, Rrn7p, and
					Rrn11p
	PDR16	0.50	7.08E-192		Phosphatidylinositol transfer
					protein (PITP) controlled by the
					multiple drug resistance
YNI 231C				significant	regulator Pdr1p, localizes to lipid
TREESTO				Significant	particles and microsomes,
					controls levels of various lipids,
					may regulate lipid synthesis,
					homologous to Pdr17p
					NADPH-dependent medium
					chain alcohol dehydrogenase
					with broad substrate specificity;
YMR318C	ADH6	0.50	8 85E-55	significant	member of the cinnamyl family
	7.0110	0.00	0.002 00	orginitoant	of alcohol dehydrogenases; may
					be involved in fusel alcohol
					synthesis or in aldehyde
					tolerance
					Dubious open reading frame
					unlikely to encode a functional
					protein, based on available
YMR290W-A	NA	0 49	0 0360389		experimental and comparative
					sequence data; overlaps 5' end
					of essential HAS1 gene which
					encodes an ATP-dependent
					RNA helicase

YOL136C	PFK27	0.47	3.27E-36	significant	6-phosphofructo-2-kinase, catalyzes synthesis of fructose- 2,6-bisphosphate; inhibited by phosphoenolpyruvate and sn- glycerol 3-phosphate, expression induced by glucose and sucrose, transcriptional regulation involves protein kinase A
YLR413W	NA	0.47	1.14E-136	significant	Putative protein of unknown function; YLR413W is not an essential gene
YJL052C-A	NA	0.47	0.631527		Putative protein of unknown function, identified based on comparison to related yeast species
YML007C-A	NA	0.47	0.0152419		Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to mitochondria
YHR092C	HXT4	0.46	3.34E-130	significant	High-affinity glucose transporter of the major facilitator superfamily, expression is induced by low levels of glucose and repressed by high levels of glucose
YBL043W	ECM13	0.46	3.28E-296	significant	Non-essential protein of unknown function; induced by treatment with 8- methoxypsoralen and UVA irradiation
YNL140C	NA	0.45	0.0527496		Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps the verified gene THO2/YNL139C
YIR020C-B	NA	0.45	0.555705		Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps verified ORF MRS1

YBR085W	AAC3	0.43	0.00029421		Mitochondrial inner membrane ADP/ATP translocator, exchanges cytosolic ADP for mitochondrially synthesized ATP; expressed under anaerobic conditions; similar to Pet9p and Aac1p; has roles in maintenance of viability and in respiration
YBR190W	NA	0.43	0.110157		Dubious open reading frame unlikely to encode a protein, based on experimental and comparative sequence data; partially overlaps the verified ribosomal protein gene RPL21A/YBR191W
YPL272C	NA	0.43	6.06E-83	significant	Putative protein of unknown function; gene expression induced in response to ketoconazole; YPL272C is not an essential gene
YLL025W	PAU17	0.43	1.88E-83	significant	Protein of unknown function, member of the seripauperin multigene family encoded mainly in subtelomeric regions; YLL025W is not an essential gene
YGR152C	RSR1	0.43	8.79E-27	significant	GTP-binding protein of the ras superfamily required for bud site selection, morphological changes in response to mating pheromone, and efficient cell fusion; localized to the plasma membrane; significantly similar to mammalian Rap GTPases
YLR180W	SAM1	0.41	5.40E-71	significant	S-adenosylmethionine synthetase, catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine; one of two differentially regulated isozymes (Sam1p and Sam2p)

					Cell wall mannoprotein of the
					Srp1p/Tip1p family of serine-
YIL011W	TIR3	0.40	2.51E-83	significant	alanine-rich proteins; expressed
					under anaerobic conditions and
					required for anaerobic growth
					Putative protein of unknown
YOR381W-A	NA	0.38	5.73E-106	significant	function; identified by fungal
					homology and RT-PCR
					Protein of unknown function,
					has weak similarity to proteins
YCR020C	PET18	0.37	0.650283		involved in thiamin metabolism;
					expression is induced in the
					absence of thiamin
YNI 042W/-B	NΔ	0.36	3 11E-130	significant	Putative protein of unknown
111204200-0	11/2	0.00	0.112-100	Significant	function
					Dubious open reading frame
					unlikely to encode a functional
YDR509W	NA	0.35	0.0111517		protein, based on available
					experimental and comparative
					sequence data
					Putative protein of unknown
YBR196C-A	NA	0.35	0.379892		function; identified by fungal
					homology and RT-PCR
					Putative protein of unknown
					function; identified by sequence
YOL159C-A	NA	0.35	8.21E-93	significant	comparison with
					hemiascomycetous yeast
					species
	ΝΑ	0.34	3 05E-283	significant	Putative protein of unknown
TINEZTTWA	IN/A	0.34	3.95E-205	signineant	function
					Dubious open reading frame
					unlikely to encode a protein,
YOR309C	NA	0.32	1 46F-25	significant	based on available experimental
1010000		0.02	1.702-20	oiginioant	and comparative sequence
					data; partially overlaps the
					verified gene NOP58

					Retrotransposon TYA Gag and
					TYB Pol genes;
					transcribed/translated as one
			0.323.66E-08significant0.314.10E-320significant0.271.75E-05		unit; polyprotein is processed to
YDR316W-B	NA	IA 0.32 3.66E-08 significant R1 0.31 4.10E-320 significant IA 0.27 1.75E-05	make a nucleocapsid-like		
					protein (Gag), reverse
					transcriptase (RT), protease
					(PR), and integrase (IN); similar
					to retroviral genes
					Cell wall mannoprotein of the
					Srp1p/Tip1p family of serine-
					alanine-rich proteins; expression
		0.04	4.405.000	- i i fi t	is downregulated at acidic pH
YERUTTW	11R1	0.31	4.10E-320	significant	and induced by cold shock and
					anaerobiosis; abundance is
					increased in cells cultured
			without shaking		
					Dubious open reading frame
	NA	0.27	1.75E-05		unlikely to encode a protein,
					based on available experimental
YOR277C					and comparative sequence
					data; almost completely
					overlaps the verified gene
					CAF20
					Retrotransposon TYA Gag gene
					co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
	NA	0.25	1 /0E-152	significant	polyprotein; Gag is a
11 2237 W-A		0.25	1.432-132	Significant	nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
					Retrotransposon TYA Gag and
					TYB Pol genes;
					transcribed/translated as one
					unit; polyprotein is processed to
YPL257W-B	NA	0.25	5.14E-29	significant	make a nucleocapsid-like
					protein (Gag), reverse
					transcriptase (RT), protease
					(PR), and integrase (IN); similar
					to retroviral genes

YKL138C-A	HSK3	0.24	1.22E-320	significant	Essential subunit of the Dam1 complex (aka DASH complex), couples kinetochores to the force produced by MT depolymerization thereby aiding in chromosome segregation; is transferred to the kinetochore prior to mitosis
YFR010W-A	NA	0.24	3.159E-320	significant	Dubious ORF unlikely to encode a protein, based on available experimental and comparative sequence data; completely overlaps the uncharacterized gene YFR011C; identified by expression profiling and mass spectrometry
YBR233W	PBP2	0.23	0.0389844		RNA binding protein with similarity to mammalian heterogeneous nuclear RNP K protein, involved in the regulation of telomere position effect and telomere length
YKL068W	NUP100	0.22	2.21E-70	significant	Subunit of the nuclear pore complex (NPC) that is localized to both sides of the pore; contains a repetitive GLFG motif that interacts with mRNA export factor Mex67p and with karyopherin Kap95p; homologous to Nup116p
YJL127W-A	NA	0.22	0.0023989		Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data
YOR218C	NA	0.22	2.97E-05		Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; open reading frame overlaps the verified gene RFC1/YOR217W

					Putative protein of unknown
					function; YCL001W-B gene has
	NΔ	0.22	1 44E-270	70 significant 7 significant 9 significant 20 significant 7 significant 7 significant 7 significant 20 significant 7 significant 3 significant	similarity to DOM34 and is
I GEOGIW-B	11/2	0.22	1.446-270		present in a region duplicated
			1.44E-270significant1.44E-270significant1.17E-67significant1.93E-79significant2.069E-320significant4.59E-67significant2.42E-220significant8.48E-53significant		between chromosomes XIV and
					Ш
					Dubious open reading frame
					unlikely to encode a functional
YML009C-A	NA	0.21	1.17E-67	significant	protein, based on available
					experimental and comparative
					sequence data
					Putative protein of unknown
YPL038W-A	NA	0.21	1.93E-79	significant	function; identified by fungal
			1.44E-270significant1.17E-67significant1.93E-79significant2.069E-320significant4.59E-67significant2.42E-220significant	homology and RT-PCR	
					Subunit of the conserved
				2.069E-320 significant	chromosomal passenger
		0.21	2.069E-320		complex (CPC; lpl1p-Sli15p-
	NBL1				Bir1p-Nbl1p), which regulates
YHR199C-A					mitotic chromosome
					segregation; not required for the
					kinase activity of the complex;
					mediates the interaction of
					Sli15p and Bir1p
					Essential component of the
					MIND kinetochore complex
					(Mtw1p Including Nnf1p-Nsl1p-
		0.20	4 505 67	significant	Dsn1p) which joins kinetochore
13111200		0.20	4.592-07	Significant	subunits contacting DNA to
					those contacting microtubules;
					required for accurate
					chromosome segregation
					Dubious open reading frame
					unlikely to encode a functional
YIL156W-A	NA	0.20	2.42E-220	significant	protein, based on available
				-	experimental and comparative
					sequence data
	NA	0.20	8 485-53	significant	Putative protein of unknown
IGE1000-A	11/4	0.20	0.402-00	Significant	function

					Component of the yeast
					dynactin complex, consisting of
					Nip100p, Jnm1p, and Arp1p;
YMR294W	JNM1	0.20	4.41E-13	significant	required for proper nuclear
					migration and spindle
					partitioning during mitotic
					anaphase B
					Dubious open reading frame
					unlikely to encode a protein,
	NIA	0.20	1 1705 220	aignificant	based on available experimental
TER 1450-A	NA	0.20	1.170E-320	significant	and comparative sequence
					data; overlaps the verified ORF
		LSM5/YER146W			
	NIA	0.10	7.055 10	aignificant	Putative protein of unknown
TERIOSV	NA	0.19	7.05E-10	significant	function
					Retrotransposon TYA Gag and
				significant	TYB Pol genes;
			9.11E-33		transcribed/translated as one
	NA	0.18			unit; polyprotein is processed to
YPR158W-B					make a nucleocapsid-like
					protein (Gag), reverse
					transcriptase (RT), protease
					(PR), and integrase (IN); similar
					to retroviral genes
					Dubious open reading frame
					unlikely to encode a protein,
YEI 012W-A	NA	0.18	4 13E-09	significant	based on available experimental
11 201210 71		0.10	4.102.00	oigninount	and comparative sequence
					data; overlaps the verified gene
				significant	IES1/YFL013C
					Auxilin-like protein involved in
					vesicular transport; clathrin-
YDR320C	SWA2	0.18	9.09E-50	significant	binding protein required for
					uncoating of clathrin-coated
					vesicles
					Daughter cell-specific secreted
					protein with similarity to
					glucanases, degrades cell wall
YHR143W	DSE2	0.17	1		from the daughter side causing
					daughter to separate from
					mother; expression is repressed
					by cAMP

					Dubious open reading frame
	ΝΔ	0.17	3 055 07	significant	unlikely to encode a protein,
TNE057W	IN/A	0.17	3.95E-07	Significant	based on available experimental
					and comparative sequence data
					Integral membrane protein
					required for ER to Golgi
YER074W-A	YOS1	0.17	4.968E-320	significant	transport; localized to the Golgi,
					the ER, and COPII vesicles;
					interacts with Yip1p and Yif1p
					Ubiquitin-specific protease that
					specifically disassembles
					unanchored ubiquitin chains;
YBR058C	UBP14	0.17	3.83E-59	significant	involved in fructose-1,6-
					bisphosphatase (Fbp1p)
					degradation; similar to human
					isopeptidase T
					Putative protein of unknown
		0.17	4.340E-320	significant	function; the authentic, non-
YLR390W	ECM19				tagged protein is detected in
					highly purified mitochondria in
					high-throughput studies
					Phosphoesterase involved in
	DCR2	DCR2 0.16	0.0650825		downregulation of the unfolded
					protein response, at least in part
N// 5004.0					via dephosphorylation of Ire1p;
YLR361C					dosage-dependent positive
					regulator of the G1/S phase
					transition through control of the
					timing of START
					tRNA:pseudouridine synthase,
					catalyzes the conversion of
					uridine to pseudouridine at
VOD4000	DUCC	0.45	0 705 05		position 31 in cytoplasmic and
I GR 169C	P056	0.15	8.73E-05		mitochondrial tRNAs; mutation
					of Asp168 to Ala abolishes
					enzyme activity; not essential for
					viability
					Dubious open reading frame
					unlikely to encode a protein,
	NIA	0.44	1 0695 000	aignificant	based on available experimental
YNL103VV-A	NA	NA 0.14	1.268E-320	significant	and comparative sequence
					data; partially overlaps the
					verified gene MET4/YNL104C

1					A lash a salay a a l
					Alpha-glucoside permease,
					transports maltose, maltotriose,
					alpha-methylglucoside, and
YDL247W	MPH2	0.14	1.12E-60	significant	turanose; identical to Mph3p;
					encoded in a subtelomeric
					position in a region likely to have
					undergone duplication
					Putative protein of unknown
YDR182W-A	NA	0.14	9.525E-321	significant	function; identified by fungal
					homology and RT-PCR
					Putative protein of unknown
	NIA	0.12		aignificant	function; identified by
THRUU/C-A	INA	0.13	5.009E-320	significant	expression profiling and mass
					spectrometry
					Retrotransposon TYA Gag gene
					co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
			1.22E-192		polyprotein; Gag is a
YML045W-A	NA	0.13		significant	nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs): similar to
					retroviral Gag
					l anosterol synthase an
	ERG7	ERG7 0.13	3.35E-104	significant	essential enzyme that catalyzes
					the cyclization of squalene 2.3-
1111(07210					enovide a sten in ergosterol
					biosynthesis
YEL076C-A	NA	0.13	2.18E-26	significant	function
					Protein of unknown function,
					green fluorescent protein (GFP)-
					fusion protein localizes to the
YHR039C	MSC7	0.12	4.43E-38	significant	endoplasmic reticulum; msc7
				-	mutants are defective in
					directing meiotic recombination
					events to homologous
					chromatids
					Putative protein of unknown
					function with similarity to acyl-
YDL114W	NA	0.10	0.0903137		carrier-protein reductases;
					YDL114W is not an essential
					gene

					Putative protein of unknown
YGR240C-A	NA	0.10	8.463E-320	significant	function; identified by fungal
					homology and RT-PCR
XII 102C	NIA	0.10	2 01E 10	aignificant	Putative protein of unknown
FIL 102C	INA	0.10	3.01E-19	Significant	function
					Retrotransposon TYA Gag gene
					co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
	ΝΔ	0.10	2 475 237	significant	polyprotein; Gag is a
TILUOZVV	IN/A	0.10	2.47 2-237	significant	nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
					Retrotransposon TYA Gag gene
					co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
	NA	0.10	7 35E-115	significant	polyprotein; Gag is a
TI IN ISOW-A		0.10	7.33E-113		nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
		NA 0.10	1.82E-05		Dubious open reading frame
	NA				unlikely to encode a protein,
YOR376W					based on available experimental
					and comparative sequence
					data; YOR376W is not an
					essential gene.
					GTP-binding alpha subunit of
					the heterotrimeric G protein that
					couples to pheromone
					receptors; negatively regulates
YHR005C	GPA1	0.09	2.40E-75	significant	the mating pathway by
					sequestering G(beta)gamma
					and by triggering an adaptive
					response; activates Vps34p at
					the endosome
					Dubious open reading frame
					unlikely to encode a protein,
YLR437C-A	NA	0.09	1 45E-55	significant	based on available experimental
				- 0	and comparative sequence
					data; partially overlaps the
					verified ORF CAR2/YLR438W

					Dubious open reading frame	
		0.09			unlikely to encode a protein,	
	ΝΑ		7.40E-223	significant	based on available experimental	
TWIC 130W-D	INA.			Significant	and comparative sequence	
					data; overlaps the verified gene	
					ATG16/YMR159C	
					Rab family GTPase, Ras-like	
					GTP binding protein involved in	
					the secretory pathway, required	
					for fusion of endosome-derived	
YLR262C	YPT6	0.09	8.44E-139	significant	vesicles with the late Golgi,	
					maturation of the vacuolar	
					carboxypeptidase Y; has	
					similarity to the human GTPase,	
					Rab6	
					Subunit of TORC2 (Tor2p-	
	TSC11	0.09	0.977882		Lst8p-Avo1-Avo2-Tsc11p-	
					Bit61p), a membrane-associated	
					complex that regulates actin	
YER093C					cytoskeletal dynamics during	
					polarized growth and cell wall	
					integrity; involved in sphingolipid	
					metabolism; contains a	
					RasGEFN domain	
					Dubious open reading frame	
			7.613E-321	significant	unlikely to encode a functional	
YER172C-A	NA	A 0.09			protein, based on available	
					experimental and comparative	
					sequence data	
					Protein of unknown function; null	
					mutants have decreased net	
					negative cell surface charge;	
YCL005W	LDB16	0.09	1.88E-66	significant	GFP-fusion protein expression	
					is induced in response to the	
					DNA-damaging agent MMS;	
					native protein is detected in	
					purified mitochondria	
					Dubious open reading frame	
YAL019W-A	NA	0.09	1.62E-200	significant	unlikely to encode a protein,	
			1.02E-200		based on available experimental	
						and comparative sequence data

					Dubious open reading frame
		0.08	1 105 06	aignificant	unlikely to encode a protein,
	NIA				based on available experimental
TIMRUTSC-A	INA	0.08	1.19E-90	Significant	and comparative sequence
					data; completely overlaps the
					verified ORF SEC59/YML013C
					Putative protein of unknown
YBL008W-A	NA	0.08	4.01E-158	significant	function; identified by fungal
					homology and RT-PCR
					Dubious open reading frame
					unlikely to encode a functional
YHR139C-A	NA	0.08	1.153E-319	significant	protein, based on available
					experimental and comparative
					sequence data
					Dubious open reading frame
				significant	unlikely to encode a protein,
					based on available experimental
YER133W-A	NA	0.08	3.470E-320		and comparative sequence
					data; partially overlaps
					uncharacterized gene
					YER134C.
					Putative protein of unknown
	NIA	NA 0.08	1.787E-320	significant	function; identified by
TIL040VV-A	INA				expression profiling and mass
					spectrometry
					Putative protein of unknown
	NIA	0.08	2 83E-10	significant	function; identified by
101(07200-0		0.08	2.83E-19		expression profiling and mass
					spectrometry
					Identified by gene-trapping,
	ΝΑ	0.07	1 308E-320	significant	microarray-based expression
		0.07	1.500E-520	Significant	analysis, and genome-wide
					homology searching
					Possible pseudogene; has
	ΝΑ	0.07		significant	similarity to Flo1p, which is a
YHR213W	IN/A	0.07	2.400-12	Significant	lectin-like protein involved in
					flocculation
					Ribonuclease H2 subunit,
					required for RNase H2 activity;
YLR154C	RNH203	0.07	8.98E-257	significant	related to human AGS3 that
					causes Aicardi-Goutieres
					syndrome

YKL033W	TTI1	0.07	3.87E-93	significant	Putative protein of unknown function; subunit of the ASTRA complex which is part of the chromatin remodeling machinery; similar to S. pombe Tti1p; detected in highly purified mitochondria in high-throughput studies
YCR028C	FEN2	0.06	2.381E-320	significant	Plasma membrane H+- pantothenate symporter; confers sensitivity to the antifungal agent fenpropimorph
YHR001W	OSH7	0.05	1.34E-281	significant	Member of an oxysterol-binding protein family with seven members in S. cerevisiae; family members have overlapping, redundant functions in sterol metabolism and collectively perform a function essential for viability
YPR036W	VMA13	0.05	7.061E-320	significant	Subunit H of the eight-subunit V1 peripheral membrane domain of the vacuolar H+- ATPase (V-ATPase), an electrogenic proton pump found throughout the endomembrane system; serves as an activator or a structural stabilizer of the V- ATPase
YOR192C	THI72	0.05	2.12E-16	significant	Transporter of thiamine or related compound; shares sequence similarity with Thi7p
YDL159W-A	NA	0.05	1.29E-243	significant	Putative protein of unknown function; identified by sequence comparison with hemiascomycetous yeast species
YMR001C-A	NA	0.05	9.05E-235	significant	Putative protein of unknown function
YLL006W-A	NA	0.05	1.81E-142	significant	Putative protein of unknown function; identified by fungal homology and RT-PCR

					Dubious open reading frame
		0.04	2.19E-157	significant	unlikely to encode a functional
YML101C-A	NA				protein, based on available
					experimental and comparative
					sequence data
					Dubious open reading frame
					unlikely to encode a functional
YGL041C	NA	0.04	1.73E-16	significant	protein, based on available
					experimental and comparative
					sequence data
					Retrotransposon TYA Gag gene
					co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
	NIA	0.04	0 9615 221	aignificant	polyprotein; Gag is a
1LR41000-A	INA	0.04	9.001E-321	signincant	nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
					Identified by gene-trapping,
YOI 019W-A	NA	0.04	6.29E-197	significant	microarray-based expression
10E010W/K					analysis, and genome-wide
					homology searching
YMI 054C-A	NA	0.04	5 787E-320	significant	Putative protein of unknown
		0.01	0.1012 020	olgimount	function
					Retrotransposon TYA Gag gene
					co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
YDR316W-A	NA	0.04	1 517E-320	significant	polyprotein; Gag is a
				eiginiteant	nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
					Integral plasma membrane
					protein involved in the synthesis
Y.II.062W	LAS21	0.04	5 725 59	significant	of the
10200210	21021	0.04	0.722 00	oiginioant	glycosylphosphatidylinositol
					(GPI) core structure; mutations
					affect cell wall integrity

					Putative protein of unknown
		0.04			function with seven beta-strand
					methyltransferase motif; green
YNL024C	NA		2.90E-81	significant	fluorescent protein (GFP)-fusion
					protein localizes to the
					cytoplasm; YNL024C is not an
					essential gene
					Dubious open reading frame
YBR191W-A	NA	0.04	4 178E-320	significant	unlikely to encode a protein,
		0.04	4.1702 020	oigninount	based on available experimental
					and comparative sequence data
					Retrotransposon TYA Gag gene
					co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
YI R256W-A	NA	0.04	1.436E-320	significant	polyprotein; Gag is a
		0.04			nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
	ESC2	ESC2 0.04	8.36E-297		Sumo-like domain protein;
				significant	prevents accumulation of toxic
					intermediates during replication-
					associated recombinational
YDR363W					repair; roles in silencing,
					lifespan, chromatid cohesion
					and the intra-S-phase DNA
					damage checkpoint; RENi family
					member
					Protein of unknown function;
YNL130C-A	DGR1	0.04	1.169E-320	significant	dgr1 null mutant is resistant to
					2-deoxy-D-glucose
					Putative protein of unknown
YHR086W-A	NA	0.04	6.842E-321	significant	function; identified by fungal
					homology and RT-PCR
					Putative protein of unknown
YIR021W-A	NA	NA 0.03	1.93E-284	significant	function; identified by
	INA			Significant	expression profiling and mass
					spectrometry

YPR169W-A	NA	0.03	1.269E-320	significant	Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps two other dubious ORFs: YPR170C and YPR170W-B
YOR316C-A	NA	0.03	1.294E-320	significant	Putative protein of unknown function; identified by fungal homology and RT-PCR
YPR108W-A	NA	0.03	2.837E-320	significant	Putative protein of unknown function; identified by fungal homology and RT-PCR
YJL127C	SPT10	0.03	5.36E-16	significant	Putative histone acetylase with a role in transcriptional silencing, sequence-specific activator of histone genes, binds specifically and cooperatively to pairs of UAS elements in core histone promoters, functions at or near the TATA box
YHR073W-A	NA	0.03	9.950E-321	significant	Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps verified ORF YHR073W; identified by expression profiling and mass spectrometry
YMR030W-A	NA	0.03	8.379E-321	significant	Putative protein of unknown function
YBL068W-A	NA	0.03	5.58E-185	significant	Dubious open reading frame unlikely to encode a protein; identified by fungal homology and RT-PCR
YKL165C-A	NA	0.03	1.029E-320	significant	Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data

					Protein with a possible role in
		0.03	1.116E-319	significant	tRNA export; shows similarity to
					6-phosphogluconolactonase
YNR034W	SOL1				non-catalytic domains but does
					not exhibit this enzymatic
					activity; homologous to Sol2p,
					Sol3p, and Sol4p
					Dubious open reading frame
					unlikely to encode a functional
YIL020C-A	NA	0.03	5.55E-154	significant	protein, based on available
					experimental and comparative
					sequence data
					Dubious open reading frame
					unlikely to encode a protein,
					based on available experimental
	NIA	0.02	7 2265 224	aignificant	and comparative sequence
YBL039C-A	NA	0.02	7.320E-321	significant	data; completely overlaps the
					verified ORF URA7; identified by
					expression profiling and mass
					spectrometry
					Identified by gene-trapping,
	NIA	0.02	1.26E-237	significant	microarray-based expression
TPL152VV-A	NA				analysis, and genome-wide
					homology searching
	NIA	0.02	2.0055 220	aignificant	Putative protein of unknown
FINE TOZVV-A	INA	0.02	2.095E-320	Significant	function; identified by homology
					Dubious ORF unlikely to encode
					a protein, based on available
					experimental and comparative
	NA	0.02	9.654E-321	significant	sequence data; completely
111(00900-A		0.02	9.0042-021	Significant	overlaps the verified gene
					YFR009W; identified by
					expression profiling and mass
					spectrometry
					Putative protein of unknown
YDR169C-A	NA	0.02	8.641E-321	significant	function; identified by fungal
					homology and RT-PCR
					Putative protein of unknown
					function; green fluorescent
	NA	0.02	3 544E-320	significant	protein (GFP)-fusion protein
		0.02	0.0442-020	Signinicant	localizes to the cytoplasm;
					YLR287C is not an essential
					gene

YIL025C	NA	0.02	0.256556		Dubious open reading frame unlikely to encode a functional protein, based on available experimental and comparative sequence data Essential protein that interacts
YHR052W	CIC1	0.02	6.180E-320	significant	with proteasome components and has a potential role in proteasome substrate specificity; also copurifies with 66S pre-ribosomal particles
YFR036W-A	NA	0.02	2.50E-101	significant	Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps the verified gene RSC8
YER084W-A	NA	0.02	2.60E-124	significant	Dubious open reading frame unlikely to encode a functional protein, based on available experimental and comparative sequence data
YHR180W-A	NA	0.02	4.61E-141	significant	Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps dubious ORF YHR180C-B and long terminal repeat YHRCsigma3
YHR069C-A	NA	0.02	6.590E-321	significant	Dubious open reading frame unlikely to encode a functional protein, based on available experimental and comparative sequence data
YDR119W	VBA4	0.02	3.190E-320	significant	Protein of unknown function with proposed role as a basic amino acid permease based on phylogeny; GFP-fusion protein localizes to vacuolar membrane; physical interaction with Atg27p suggests a possible role in autophagy; non-essential gene

	NA	0.02	5.678E-320	significant	Putative protein of unknown
THEOTOWA		0.02	5.070L-520	signineant	function
					GTPase-activating protein
					(GAP) for yeast Rab family
					members, involved in ER to
	CVP5	0.01	3 868E-320	significant	Golgi trafficking; exhibits GAP
11 22430	0113	0.01	5.000E-520	Significant	activity toward Ypt1p that is
					stimulated by Gyl1p, also acts
					on Sec4p; interacts with Gyl1p,
					Rvs161p and Rvs167p
					Putative protein of unknown
					function; identified by gene-
	NA	0.01	5 55E-110	significant	trapping, microarray-based
TDEOT TO-D		0.01	0.00E-110	Significant	expression analysis, and
					genome-wide homology
					searching
					Retrotransposon TYA Gag gene
		0.01	2.772E-320	significant	co-transcribed with TYB Pol;
	NA				translated as TYA or TYA-TYB
					polyprotein; Gag is a
101(1420)-A					nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
					Cell wall mannoprotein that
			2.349E-319		localizes specifically to birth
					scars of daughter cells, linked to
YKL096W	CWP1	0.01		significant	a beta-1,3- and beta-1,6-glucan
					heteropolymer through a
					phosphodiester bond; required
					for propionic acid resistance
YNI 097C-B	NA	0.01	7.361E-321	significant	Putative protein of unknown
		0.01		olgillioalit	function
					Retrotransposon TYA Gag gene
					co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
YDR034C-C	NA	0.01	4 240E-320	significant	polyprotein; Gag is a
YDR034C-C		0.01	1.2 102 020	orginitoant	nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
YGR146C-A	NΔ	0.01	1 330E-320	significant	Putative protein of unknown
I GIT 140C-A	11/74	0.01	1.0000-020	Significant	function

YMR315W-A	NA	0.01	2.594E-320	significant	Putative protein of unknown
					function
YGL006W-A	NA	0.01	3.071E-320	significant	Putative protein of unknown
				•	function; identified by SAGE
			0.01 1.076E-320 significant		Protein of unknown function,
YCL048W	SPS22	0.01		320 significant	redundant with Sps2p for the
					organization of the beta-glucan
					layer of the spore wall
					Retrotransposon TYA Gag gene
		0.01	0.5745.221	E-321 significant	co-transcribed with TYB Pol;
					translated as TYA or TYA-TYB
	NA				polyprotein; Gag is a
		0.01	0.0742 021		nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
YCR024C	SI M5	0.01	1 894E-320	significant	Mitochondrial asparaginyl-tRNA
101(0240	OLINIS	0.01	1.004E-020	Significant	synthetase
			01 5.116E-320 significant		Subunit of the 155ondensing
	SMC2	0.01		significant	complex; essential SMC
YFR031C					chromosomal ATPase family
					member that forms a complex
					with Smc4p to form the active
					ATPase; Smc2p/Smc4p
					complex binds DNA; required for
					clustering of tRNA genes at the
					nucleolus
					Dubious open reading frame,
	API2	0.01	7.618E-321	significant	unlikely to encode a protein; not
					conserved in closely related
					Saccharomyces species; 26% of
101(32300					ORF overlaps the dubious ORF
					YDR524C-A; insertion mutation
					in a cdc34-2 mutant background
					causes altered bud morphology
		0.01	1.517E-320	significant	Putative protein of unknown
	NA				function, includes a potential
YOR008C-A					transmembrane domain;
					deletion results in slightly
					lengthened telomeres

						Putative protein of unknown
	YBR196C-B	NA	0.01	1.728E-319	significant significant significant significant significant significant significant significant significant	function; identified by
						expression profiling and mass
						spectrometry
						Putative protein of unknown
						function; identified by gene-
	YML100W-A	NA	0.01	6.821E-320	821E-320 significant	trapping, microarray-based
						expression analysis, and
						genome-wide homology
						searching
						Dubious open reading frame
						unlikely to encode a protein,
						based on available experimental
		NΔ	0.01	3 025E-320	320 significant 320 significant	and comparative sequence
	IBRIZIO-A		0.01	J.025L-520		data; completely contianed
						within the verified gene GRS1;
						identified by expression profiling
						and mass spectrometry
						Dubious open reading frame
		NA	0.01	1.092E-320	20 significant	unlikely to encode a functional
YER148W-A	YER148W-A					protein, based on available
						experimental and comparative
						sequence data
		NA	0.01	2 607E 220	oignificant	Dubious open reading frame
						unlikely to encode a protein,
	TERU91C-A	INA	0.01	3.097E-320	Significant	based on available experimental
						and comparative sequence data
			0.01	4 4505 220	aignificant	RNA polymerase I second
	TPROTOC	RPAISS	0.01	4.409E-320	significant	largest subunit A135
						Dubious open reading frame
		NIA	0.00	0.5705.000	-iifit	unlikely to encode a protein,
	TALU34C-B	INA	0.00	2.576E-320	significant	based on available experimental
						and comparative sequence data
						S-adenosylmethionine
						decarboxylase, required for the
					biosynthesis of spermidine and	
	201.0500	SPE2	2 0.00	1.078E-319	significant	spermine; cells lacking Spe2p
	TULU52C					require spermine or spermidine
						for growth in the presence of
						oxygen but not when grown
						anaerobically
		1	1	1	1	1

					Potrotransposon TVA Cog cons
	NA	0.00	2.789E-320		co-transcribed with TYB Pol:
					translated as TYA or TYA-TYB
					polyprotein; Gag is a
YGR161C-C				significant	nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
					Omega class glutathione
YMR251W	GTO3	0.00	7.541E-320	significant	transferase; putative cytosolic
					localization
					Retrotransposon TYA Gag gene
			4 0705 000	cicnificant	co-transcribed with TYB Pol;
		0.00			translated as TYA or TYA-TYB
	NA				polyprotein; Gag is a
TER159C-A	IN/A	0.00	1.2792-320	Significant	nucleocapsid protein that is the
					structural constituent of virus-
					like particles (VLPs); similar to
					retroviral Gag
	NA	0.00	1.309E-320	significant	Dubious open reading frame
					unlikely to encode a protein,
					based on available experimental
YCR097W-A					and comparative sequence
					data; identified by homology to a
					hemiascomycetous yeast
					protein
					Dubious open reading frame
	NA	0.00	1.202E-319	significant	unlikely to encode a functional
					protein, based on available
YPR160W-A					experimental and comparative
					sequence data; identified by
					expression profiling and mass
					spectrometry
YNL067W-B	NA	0.00	3.172E-320	significant	Putative protein of unknown
				-	function
		0.00	6.507E-320	significant	Dubious open reading frame,
	NA				unlikely to encode a protein;
YKL145W-A					completely overlaps the verified
					essential gene RPT1; identified
					by expression profiling and
					mass spectrometry

					Retrotransposon TYA Gag gene
	NIA	0.00	2.0575.210	9 significant 0 significant 0 significant 0 significant 0 significant 0 significant 0 significant	co-transcribed with TYB Pol; in
TDR201C-C	IN/A	0.00	2.9572-519	significant	YDRCTY1-3 TYB is mutant and
					probably non-functional
					Meiosis-specific protein involved
					in double-strand break formation
		0.00	2 2005 220	aignificant	during meiotic recombination;
TERU44C-A	IVIE14	0.00	3.200E-320	significant	required for chromosome
					synapsis and production of
					viable spores
	ΝΔ	0.00	2 408E 320	significant	Putative protein of unknown
TWIC230W-A	INA.	0.00	2.4002-320	significant	function
					Dubious open reading frame
		0.00 4.4825.220 ciani			unlikely to encode a protein,
	ΝΔ		significant	based on available experimental	
THR 1930-A	INA	0.00	4.402E-320	482E-320 significant	and comparative sequence
					data; completely overlaps
					verified ORF MDM31
	DDT5	0.00	1 5705 220	oionificont	Putative protein of unknown
					function; non-essential gene
VED032C					identified in a screen for mutants
11-R052C		0.00	1.576E-520	significant	with increased levels of rDNA
					transcription; expressed at high
					levels during sporulation
	NA	0.00	1 125E-318	significant	Putative protein of unknown
TWICT/SW-A		0.00	1.1232-310	Significant	function
					Dubious open reading frame
	NA	0.00	2.640E-319	significant	unlikely to encode a functional
YEL009C-A					protein, based on available
					experimental and comparative
					sequence data
	NA	0.00	4.991E-320	significant	Dubious open reading frame
					unlikely to encode a functional
					protein; identified by gene-
YDR524C-A					trapping, microarray-based
					expression analysis, and
					genome-wide homology
					searching

SGD ID	ORF	RPKM^A	p-value ^B
YLR308W*	CDA2	4.463236496	5.01E-11
YDR403W*	DIT1	1.673611999	6.07E-12
YER180C*	ISC10	2.961430546	2.15E-140
YER133W*	GLC7	6.87583955	2.03E-320
YPL130W*	SPO19	4.402923538	8.54E-11
YHR139C*	SPS100	18.3065963	7.18E-320
YOR338W	NA	1.065042244	0.112179

Table A-12: Genes classified under GO category of sporulation, with significant Fisher's test p-value

A Ratio of Normalized RPKM values of wild type hub and rim

^B Fishers test P-value

* p-value Statistically significant

Vita

Neha Sarode was born in Mumbai, India. She completed her bachelors in Microbiology from Abasaheb Garware College, Pune followed by Masters in Bioinformatics from University of Pune, Maharashtra. She was accepted to the Ph.D. program in Genome Science and Technology at the University of Tennessee, Knoxville. She will receive her Doctor of Philosophy degree in Life Science.