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Abstract 
 

Biofilms are a mode of growth where aggregated cells adhere to a foreign surface and grow as a 

complex community. Biofilms have found wide utility in commercial industries, however 

infections caused by biofilms in clinical settings are a major cause of concern. Understanding 

molecular details of biofilm formation could help in exploitation or elimination efforts. 

We utilize Saccharomyces cerevisiae as a model system to study biofilm formation. S. 

cerevisiae strain belonging to genetic background Σ [sigma] 1278b is capable of forming 

biofilms, on low density (0.3%) agar media. When grown at 25°[degree] C for 5 days, it 

develops into an elaborate floral shaped biofilm. The biofilm can be structurally differentiated 

into a central wrinkly part called hub, and a peripheral smooth part called rim. A flocculin family 

surface protein Flo11p, known to be essential for the phenotypes of adhesion and invasive 

growth, is also important for biofilm formation. We identified that certain vacuolar protein 

sorting (VPS) proteins don’t affect Flo11p expression and yet were defective in biofilm 

formation. Thus showing that the phenotypes requiring Flo11p (invasive growth and adhesion) 

are genetically separable from the phenotype of biofilm formation.  

We propose a model showing the existence of a putative biofilm pathway involving 

endosomal Multivesicular body (MVB) pathway, which affects biofilm formation without 

causing any defects in Flo11p expression or localization. We further identified that the cell wall 

integrity (CWI) pathway is partially involved in the biofilm pathway, and supposedly affects 

biofilm formation by causing defects in cell wall structure. 

Although there is no detectable difference in Flo11p expression levels between the rim and 

hub cells within the biofilm, they are very distinct in appearance and also manifest differences in 

adhesion. What molecular markers contribute to these differences, however is not yet known. 

Using RNA-Seq, a high throughput sequencing method, differential expression levels of genes 

between the rim and hub was obtained. Analysis of the genes revealed the presence of a 

carbohydrate, named chitosan, in the hub. Further tests showed that though chitosan is not 

essential for biofilm formation, it plays a protective role against cell wall stressing agents in 

biofilms. 
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Chapter 1  

Introduction to biofilms 
 



 2 

1.1 Background 

Unicellular microorganisms are known to collaborate and form multi-cellular communities, 

called biofilms, in natural settings. Biofilms are the preferred mode of growth for many microbes 

as they allow colonization of surfaces that otherwise will not support their growth, opportunity to 

develop multi-species synergistic interactions [1] and horizontal gene transfer within a 

community [2]. Biofilms have been found in varied environments, for example in locations with 

high temperature or acidity [3, 4], on river beds [5], on plant surfaces [6], and there are also 

reports describing approximately 3 billion years old fossil records interpreted as biofilms in 

South Africa [7]. Such successful inhabitation and ubiquitous existence of biofilms is a testament 

to their success.  

Biofilms have been used to our advantage, e.g. for example in bioremediation [8], waste-

water treatment and wine production. They however, can also be a source of nuisance. Biofilms 

formed by pathogenic microbes are a significant source of nosocomial (hospital acquired) 

infections, where they infect immunocompromised patients (i.e. elderly people, premature 

babies, HIV positive patients, and cancer chemotherapy and leukemia patients), often by 

colonizing implanted medical devices, and then spreading to other tissues through bloodstream 

infections [9]. Efficient elimination of biofilm-based infections necessitates in-depth knowledge 

of the mechanisms governing biofilm formation and architecture. 

1.2 Characteristics of a biofilm 

A biofilm can be described as a complex community of cells aggregated on a surface that often 

produces extracellular products for its protection. A proposed model for stages of biofilm 

formation is as follows (Figure 1.1) – (a) Adherence: this is the initial step where floating 

planktonic cells adhere to a foreign surface; (b) Initiation: once adhered to a surface, the cells 

start to actively divide and form aggregates; (c) Proliferation: at this stage the cells begin 

phenotypic switching and production of extracellular matrix (ECM); (d) Maturation: at this stage 

the biofilm is fully formed and is actively producing ECM and dispersing cell aggregates to 

repeat the cycle [10-12]. 
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Figure 1.1: Stages of biofilm formation 
 

ECM, also known as extracellular polysaccharide substance (EPS), is a slimy extracellular 

matrix mainly composed of polysaccharide, that is essential for both structural support and 

protection of the biofilm [12]. Its composition is as diverse as its residents, and is known to 

mainly consist of carbohydrates, adhesin proteins and in some cases other components like 

extracellular DNA, secreted enzymes etc. [13]. A mature biofilm has aggregates of cells called 

microcolonies, and also consists of structures called water channels interspersed between the 

microcolonies. These channels represent a primitive circulatory system, distributing nutrients and 

oxygen throughout the biofilm structure [12]. Another common feature contributing to the 

architectural complexity of a biofilm is that of differentiation within a biofilm by varying cell 

types. For example, in Bacillus subtilis biofilms, spore forming, motile and matrix producing 

cells localize to distinct regions within the biofilm [14]. Similarly, biofilms formed by fungi, like 

those belonging to major pathogenic group Candida spp. exhibit what is called a ‘phenotypic 

switch’ [15-17]. Phenotypic switch involves a reversible change in phenotypic forms or cell 

types (e.g. yeast to hyphae), and has a significant role in response to environmental stimuli and 

virulence [18, 19]. Mixed species biofilms are also observed in nature, however it is beyond the 

scope of this study and therefore will not be discussed in this dissertation report. 
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1.3 Fungal biofilms 

Many pathogenic fungal species including Candida [20], Aspergillus [21], and Cryptococcus 

[22], produce biofilms and cause significant clinical and economic problems. Fungal biofilm 

infections are a major cause of mortality and morbidity in hospitals [23-27]. Candida spp. 

infections, termed candidiasis, are the fourth leading cause of hospital-acquired bloodstream 

infections in the United States [28, 29]. Among Candida spp., C. albicans is the most common 

source of infections. In fact, the mortality rate associated with systemic and superficial infections 

by C. albicans is about 40% [30, 31]. Candida spp. infections are generally associated with 

indwelling medical devices like catheters, heart valves, artificial joints etc. This association is 

thought to be related to the formation of biofilms by Candida on these devices. Biofilm-based 

infections are tenacious, and often the only way to resolve it is by removal of the implant 

followed by long-term antifungal treatment. If the biofilm is not completely eliminated, it 

continues to disseminate cells causing persistent infections [32, 33].  

The already difficult problem of biofilm elimination is made worse by the drug resistance 

associated with biofilms [33-42]. Clinical resistance is defined as ‘persistence or progression of 

an infection despite appropriate antimicrobial therapy’ [43]. Numerous factors are considered to 

be responsible for fungal biofilms drug resistance, including alteration of growth rate, presence 

of ECM, expression of resistance genes, etc. [44, 45]. C. albicans biofilm drug resistance will be 

used as an example to elaborate the case in point.  

In C. albicans, antifungal resistance is directly correlated to biofilm growth and maturity 

[46]. In fact, growth in a biofilm leads to differential upregulation of genes that contribute to 

drug resistance. For example, β-glucan present in the ECM of C. albicans biofilms was shown to 

possess drug-sequestering properties that enhance resistance of biofilms to some antifungals [47, 

48]. Additionally, upregulation of genes encoding multidrug efflux pumps (e.g. Candida drug 

resistance, CDR) and multidrug resistance (MDR) genes, is also a major resistance mechanism 

[49, 50]. 

The increasing frequency of biofilm infections in clinical settings and the difficulty faced in 

treating them effectively, creates a palpable need to get detailed understanding of biofilm 

formation in fungi, to aid in identification of new drug targets. One approach is to study a close 

relative like Saccharomyces cerevisiae that is genetically more tractable. 
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1.3.1 Saccharomyces cerevisiae as a model system to study biofilm formation 

S. cerevisiae, commonly known as baker’s yeast, belongs to the phylum Ascomycota. It was the 

first eukaryote to be completely sequenced, annotated and made publicly available [51, 52]. It is 

not a pathogenic fungus per se, but is a relative of the fungal pathogen Candida spp [53-55]. Its 

utility as a model system is bolstered by the wealth of genetic and phenotypic data available on 

it. In addition to being a model for other fungi, it is also a model for higher eukaryotes, including 

humans, making it an ideal surrogate system to study some aspects of biology for its pathogenic 

relatives or humans [56-58]. 

S. cerevisiae belonging to strain background Σ1278 are capable of forming biofilms that we 

term mats, on semi-solid agar (0.3%) media [59, 60]. When grown at 25°C for 5 days, strains of 

the Σ1278 background develop an elaborate pattern that resembles a floral or wheel shape. The 

mat can be structurally differentiated into a central hub and peripheral rim (Figure 1.2). The hub 

has a characteristic wrinkled appearance, while the rim in contrast appears smooth. Spoke-like 

structures resembling water channels, a hallmark feature of biofilms, radiate from the central hub 

towards the edge of the growing mat. Cells of both rim and the hub are in yeast form, although 

pseudohyphal forms are also observed near the water channels. 

1.3.2 Extracellular matrix (ECM) 

A hallmark characteristic of a biofilm is the presence of ECM, a carbohydrate rich matrix that 

envelops in the mature biofilm. Though its composition can vary considerably depending on the 

 
Figure 1.2: Structure of a mat formed by S. cerevisiae 
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composite species, it is known to have a significant impact on the architecture, virulence and 

drug resistance of a biofilm [13]. Common components found in ECM include water, 

exopolysaccharides, lipids, extracellular DNA and proteins [61-66]. 

ECM functions [67] include:  

(a) Protection: decreased permeability of ECM is believed to exclude drugs and other 

harmful molecules from reaching the biofilm cells [68]. Additionally its ability to retain 

water also protects biofilms from desiccation [66]. 

(b) Nutrient reservoir: ECM retains and distributes nutrients, oxygen and waste products via 

conduits, in the form of water channels, throughout the biofilm structure [12]. 

(c) Genetic information exchange: ECM aggregates the biofilm cells together facilitating 

horizontal gene transfer in many bacterial biofilms. Horizontal gene transfer is a major 

factor for transfer of drug resistance genes within a biofilm community [2, 67]. 

Although ECM formed by biofilms of pathogenic fungi are the subject of many studies, 

there are also reports suggesting presence of ECM in its non-pathogenic, biofilm-forming 

relative S. cerevisiae [69-71]. Working on a simpler model system like S. cerevisiae could help 

to understand the basic molecular mechanisms of ECM assembly and its composition. 

Considering the importance of ECM in biofilm reinforcement, a deeper understanding of ECM 

could help in designing new drugs that can efficiently dismantle or eliminate the biofilm. 

1.3.3 Fungal cell wall 

Some of the drug discovery effort against Candida is targeted towards the fungal cell wall. This 

is because it is the primary defense of the cell and also harbors many essential virulence factors. 

Additionally, many components of the fungal cell wall are absent in mammalian cells, thus 

discerning details of the fungal cell wall architecture and/or synthesis could aid in identifying 

attractive drug targets that promise no or minimal host damage. 

The cell wall is the outermost layer and an essential organelle of the cell. The interior of the 

cell (cytoplasm) is separated from the cell wall by a semi-permeable lipid bilayer called the 

plasma membrane. The plasma membrane structure is a highly selective barrier, interspersed 

with proteins, which efficiently control the ingress and egress of molecules across it. 

The cell wall composes about 10-25% of the cell mass depending on the growth conditions. 

Its major functions [72] include: 
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(a) Protection: Cell wall is the primary protective barrier of the cell against environmental 

stresses e.g. temperature variations, mechanical forces, pH change etc.  

(b) Maintaining osmotic balance: The cells are under constant mechanical and turgor pressure 

since the internal osmolarity of the cell is higher than the outside. Without a cell wall barrier, 

water coming into the cell to achieve osmolytic balance would rupture the plasma membrane. 

The cell wall thus protects the cell from osmotic shock. 

(c) Maintaining cell shape: Fungi can exist in hyphal, pseudohyphal or yeast forms depending on 

the conditions. Each shape is important and is also shown to be crucial for response to stimulus 

and virulence [73]. The cell wall is a strong yet elastic structure that creates and maintains the 

cell shape during morphogenesis. 

Though numerous models have been proposed describing the organization of the fungal cell 

wall, the exact details of its structure are still not completely clear. This is because most methods 

currently used to analyze the cell wall and its composition involve harsh treatments that destroy 

it or fix it (i.e. alkaline hydrolysis, freeze drying, embedding), and it has not been possible to find 

methods that give higher resolution in living cells. Additionally, there are differences in the cell 

wall compositions between species, and results from one cannot necessarily be extrapolated to 

the other.  

With those limitations in mind, a commonly accepted general model of the S. cerevisiae cell 

wall is shown in Figure 1.3. The cell wall is a multi-layered structure, where the innermost layers 

are composed of polysaccharides, namely chitin and β-glucans. Chitin is a polysaccharide of N-

acetylglucosamine (NAG). The β-glucans form a complex three-dimensional network in the core 

of the cell wall. This network consists mainly of linear β-1,3-glucan and branched β-1,6-glucan 

which in turn is linked to β-1,3-glucan via β-1,4-glucan. The β-glucan polysaccharide is 

considered to be the central load bearing layer of the wall. It also acts as a matrix that supports 

attachment of various glycoprotein adhesins [72]. 

The outer edge of the wall is a framework made of cell wall glycoproteins. One class of 

glycoproteins is modified by addition of a glycosylphosphatidylinositol anchor (GPI) to the 

extreme C-terminus, and these are referred to as GPI-anchored proteins. These proteins are 

targeted to the plasma membrane by the secretory pathway. They either remain attached to the 

outer leaflet of the plasma membrane by their GPI-anchor or are released by cleavage of the GPI- 

anchor, and are then covalently re-attached to β-1,6-glucan or chitin in the cell wall by their GPI- 
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Figure 1.3: Model depicting cell wall architecture 
 

remnant [74]. The other class is Pir (Proteins with internal repeats) proteins, and they are 

covalently linked directly to β-1,3-glucan chains [75]. 

The cell wall can thus be described as being composed mainly of a complex network of 

polysaccharides acting as scaffolds for proteins. Since the cell wall is a dynamic structure whose 

composition is constantly altered depending on age, environmental condition or life stage, the 

cell expends substantial metabolic energy in its maintenance. In fact, a genomic scale screen 

carried out by de Groot et al showed that over 1200 genes (~23% of the genes in the genome) 

were directly or indirectly involved in cell wall formation and its regulation [76]. Cell wall 

integrity (CWI) [77], Multivesicular body (MVB) [78] and RIM101 [79] pathways are three 

pathways that affect the cell wall and are described below. 

1.3.3.1 Cell wall integrity (CWI) pathway 

Although cell wall maintenance and response to stress involves ‘cross talk’ between many 

pathways [80], the cell wall integrity (CWI) pathway [77, 81] is the principal signaling cascade 

responsible for the maintenance of the cell wall . The purpose of the CWI pathway is to detect 

and respond to cell wall requirements, for example, a stimulus to divide or environmental cell 

wall damage. Any defect in CWI signaling leads to increased sensitivity to cell wall stress such 
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as high temperature (37°C) and chemical stressors e.g. SDS, caffeine, Congo Red etc. The main 

steps of the CWI cascade are shown in Figure 1.4, and are described below. 

Wsc1p, Wsc2p Wsc3p and Mid2p are the four transmembrane protein sensors that detect 

and transmit the signal to downstream components [77, 82-84]. All sensors are single pass 

proteins that share some structural domain features as follows – (a) a small C-terminal 

cytoplasmic domain; (b) a periplasmic central serine/threonine rich domain that is highly O-

mannosylated; and (c) an external N-terminal domain. Among the aforementioned sensors, 

Wsc1p and Mid2p are the major sensors since a wsc1Δ mid2Δ double mutant requires osmotic 

support at all growth temperatures [84]. The activated sensors recruit a Guanine Exchange Factor 

(GEF) to the plasma membrane via phosphatidylinositol (PI)-4,5-bisphosphate (PIP2) signaling 

[85]. 

The cytoplasmic domain of Wsc1p and Mid2p interact with the N-terminal domain of the 

GEF named Rom2p [86]. Rom2p is a regulator of Ras-homologous (Rho) family GTPase named 

Rho1p. Rho1p is a member of the 5 Rho family (Rho1p − Rho5p) in yeast, and its deletion is 

lethal for the cell. It is called the ‘master regulator of the CWI signaling’, since it is the hub of 

the cell wall sensory network, receiving inputs from sensors and in turn regulating a variety of 

outputs like cell wall biogenesis, actin organization and polarized secretion [77, 81]. Rom2p 

interacts with the GDP bound Rho1 through its Dbl homology (DH) domain, and activates it by 

catalyzing the nucleotide exchange activity [87]. 

There are multiple direct targets of Rho1p activation namely protein kinase C-1 (Pkc1), 

glucan synthase (GS), formin proteins (affecting actin cytoskeleton), secretory pathway 

component Sec3p and Suppressor of Kre null 7 (Skn7p) transcription factor. Pkc1p is another 

essential protein whose disruption leads to multiple cell wall defects [88]. Upon activation by 

Rho1p [89], Pkc1p in turn activates the mitogen activated protein kinase (MAPK) cascade 

composed of MAPKKK (Bck1p), MAPKK (Mkk1/2), and MAPK (Mpk1/Slt2p). Loss of MAPK 

cascade components leads to growth defects at high temperature (37°C). The MAPK cascade 

ultimately leads to activation of the transcription factor Rlm1p, which regulates expression of 

about 25 genes involved in cell wall biogenesis or encoding cell wall proteins 
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Figure 1.4: Model depicting CWI pathway with the hypo-osmotic stress sensing pathway 
Sln1 branch. 
 

The Skn7p transcription factor is related to the bacterial two-component signal transduction 

pathways [90]. It is the target of both the CWI pathway (via Rho1p) and the osmoregulatory 

HOG pathway (via Sln1p). Upon activation, Skn7p regulates the expression of a score of cell 

wall genes that are required for cell wall maintenance.  

1.3.3.2 Multivesicular body pathway (MVB) 

The plasma membrane is embedded with numerous proteins that play important roles in multiple 

functions that affect the cell wall like membrane and small molecule transport, signal 

transduction, cell-cell interactions or cell-environment interactions. These include cell wall 

receptors like Wsc1p, and this protein is constantly endocytosed and recycled back to the plasma  
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membrane.  Other types of receptors are degraded even as the cell wall is modified as a 

consequence of their activation, and the jobs of recycling or degradation are entrusted to the 

endosomal system [91].  

The cell membrane proteins internalized to the endosome for degradation ultimately are 

delivered to the lumen of the vacuole. However, before being delivered to the vacuole the protein 

cargo first gets ubiquitinated and then internalized by the endosome into membrane 

invaginations called vesicles. The endosome structure with multiple such vesicles is called the 

multivesicular body (MVB), and the pathway from internalization of protein cargo to final fusion 

of the late endosome with the vacuole is called the MVB pathway [91].  

Crucial components of the MVB pathway are endosomal sorting complex required for 

transport (ESCRT) complexes composed of a subset of vacuolar protein sorting (vps) proteins 

that are subclassified as class E vps proteins. Class E vps proteins are characterized based on 

their respective mutant phenotypes which are defined by the formation of an aberrant 

“prevacuolar” compartment within the endosome referred to as the Class E compartment [92]. 

All of the Class E vps mutants perturb the ubiquitin-dependent sorting of proteins by the MVB 

pathway [93, 94].  

The steps of the MVB cascade (Figure 1.5) involve (a) Identification of the ubiquitinylated 

cargo by Vps27p and Hse1p; (b) Deformation of the endosomal membrane by the ESCRT-I 

complex (Vps37p, Vps28p, Vps23p) to allow subsequent steps of cargo intake; (c) Formation of 

invaginations by the ESCRT-II complex (Vps22p, Vps25p, Vps32p) leading to cargo protein 

engulfment and finally (d) Abscission by the ESCRT-III complex (Vps2p-Vps24p, Vps20p-

Snf7p) to form intra-luminal vesicles containing the cargo. The complex is disassembled by the 

ATPase Vps4p. Fusion of the limiting membrane of the endosome with the vacuole ultimately 

leads to degradation of the intra-luminal vesicles and cargo. [95-97]. 

1.3.3.3 RIM101 pathway 

MVB pathway components are also involved in a pH sensing signaling cascade named RIM101 

pathway. 
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Figure 1.5: MVB pathway model 
 

The steps of the pathway are as follows (Figure 1.6): pH change is sensed by plasma membrane 

receptors Rim21p and Dfg16p [99, 100]. Upon receptor activation, the β-arrestin-like protein 

Rim8p gets ubiquitinated, recruits the receptor to the endosome and interacts with the endosomal 

sorting complex required for transport I (ESCRT-I) complex protein Vps23p [101]. The ESCRT-

I complex recruits the ESCRT-II complex and ESCRT-III Vps20p-Snf7p heterodimer 

sequentially [102]. Snf7 then interacts with Rim20p, a scaffolding protein that in turn interacts 

with a protease Rim13p, which cleaves the inhibitory C-terminal domain of Rim101p [103, 104]. 

Activated Rim101p then translocates to the nucleus and regulates alkaline pH response genes 

[105]. 

1.3.4 Fungal adhesins 

As described in section 1.2, a key step for establishing a biofilm is the property of adhesion. 

Adherence to foreign surfaces like host tissues or indwelling medical devices (e.g. catheter,  
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Figure 1.6: Model depicting Rim101 pathway 
 

implants, etc.), allow fungi to establish biofilms and flourish on these otherwise inhospitable 

surfaces [106, 107]. The ability of the cells to adhere to each other is also crucial for mediation 

of cell-cell interactions. Cell aggregates formed by cell-to-cell adhesion, termed as flocculation, 

is advantageous in wine production where it allows convenient separation of the floating 

biofilms from its fermentation product [98].  

In yeast, specialized proteins collectively referred to as adhesins or flocculins, confer this 

property of adhesion. Different fungal species possess different families of adhesin genes, like 

FLO (flocculation) in Saccharomyces cerevisiae, agglutinin-like sequence (ALS) in Candida 

albicans and epithelial adhesion (EPA) genes in Candida glabrata. Although these proteins are 

present on the cell wall, reports have emerged showing secreted adhesin proteins having a role in 

signal transduction as well [108, 109].  

Cell wall associated adhesins are associated with the plasma membrane by a 

glycophosphatidylinositol (GPI) anchor sequence. They share common architectures that can be 

divided into three domains,  
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(i) Amino (N) terminal domain: this region possesses carbohydrate, protein, plastic, 

and/or calcium ion binding properties and protrudes from the cell surface. 

(ii) Central stalk: this domain is rich in serine and threonine residues. It is of variable 

length and riddled with tandem repeats making it vulnerable to errors during 

replication, resulting in recombination based additions or deletions. These 

rearrangements are of significant functional relevance since they encourage adaptive 

evolution in adhesins. For example, Fidalgo et al [110] showed that rearrangements in 

this central tandem repeat region yielded more hydrophobic variants of Flo11p, which 

gave the yeast biofilms the ability to float and gain access to oxygen. 

(iii) Carboxy (C) terminal domain: this region is covalently attached to the GPI anchor 

and is generally conserved within the gene families of adhesins e.g. FLO family 

members.  

1.3.4.1 ALS adhesin family 

Candida albicans is an opportunistic pathogen that is part of the natural flora, but turn 

pathogenic when the host’s resistance is low, like in case of immune-compromised patients. The 

primary step for causing disease is its adhesion and invasion of mucosal or prosthetic surfaces. 

Once established, it can disseminate through bloodstream and invade other organs. C. albicans 

encodes adhesin proteins including Eap1p, Hwp1p and a family of proteins belonging to the ALS 

family. Adhesins belonging to agglutinin-like sequence (ALS) gene family, that encodes the cell 

surface adhesin proteins Als1p – Als7p and Als9p, are particularly important. Their role is not 

just limited to adhesion, but they are also considered to be important for host colonization, 

virulence, and biofilm formation [111, 112]. They are differentially expressed based on growth 

stage and environmental cues (growth media or host niches), and thus are considered to be an 

essential part of C. albicans host-site-specific response [113]. Among the ALS adhesin proteins 

Als1p and Als3p appear to be major players in virulence, since als1Δ/als1Δ and als3Δ/als3Δ 

exhibit reduced virulence in different infection models [114-116], while deletion of some other 

ALS proteins caused no major disruptions [117-119]. This suggests that the adhesin proteins can 

be multi-functional and have diverse effects on survival of pathogenic fungi within the host.  
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1.3.4.2 FLO adhesin family 

In the S. cerevisiae genome, there are five genes encoding adhesins – FLO1, FLO5, FLO9, 

FLO10 and FLO11. The FLO gene family is named so because some of its members (FLO1, 

FLO5, FLO9, FLO10 and FLO11) encode proteins that are responsible for a phenotype called 

flocculation. Flocculation is a reversible, asexual, Ca2+ dependent and lectin-mediated adhesive 

phenotype, in which cells grown in liquid medium aggregate to form clumps or ‘flocs’. 

Flocculation is a complex phenomenon where the type of FLO gene expressed, the ability and 

timing of flocculation and properties of the formed floc can vary considerably depending on the 

genetic background of the strain being used, environmental conditions and media conditions 

(Figure 1.7). Depending on the aforementioned conditions, the formed flocs separate from the 

bulk medium and either rise and float to the surface of the liquid or sediment to the bottom of the 

container [120]. This phenotype is of considerable importance in the brewing industry since it 

provides a cheap and effective way to separate the yeast cells form the final brewed product [98]. 

In the laboratory strain ∑1278b however, only FLO11 gene is expressed, while the rest of 

the adhesin encoding genes of the FLO gene family are transcriptionally silenced [121]. The 

FLO11 promoter is almost 3kb in length and is one of the largest in the S. cerevisiae genome 

[122]. This is because, Flo11p expression is regulated by many pathways and factors including 

but not limited to the filamentous growth mitogen activated protein kinase (fMAPK), protein 

kinase A (PKA) cascades and RIM101 pathways [123-125]. Additionally, there is a population 

level heterogeneity in Flo11p expression due to epigenetic silencing, resulting in a mixture of 

cells with some expressing and some silenced for Flo11p [126].  

Flo11p expression activation, as a response to nitrogen starvation stimulus, results in 

activation of pseudohyphal mode of growth. Pseudohypae are long branched chains of elongated  

cells resulting from unipolar budding. These pseudohyphae adhere to and penetrate into agar  
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Figure 1.7: Factors affecting flocculation.  
The factors can be divided into three categories according to their mode of action. It is to be noted that some factors can affect 
more than one mechanism. Figure from Verstrepen K. J. et al [98] 
 

medium to forage for nutrients, resulting in a phenotype known as invasive growth [127]. 

Neutral-alkaline pH sensing RIM101 pathway (Figure 1.6) is essential for invasive growth since 

it regulates FLO11 expression [128, 129].  

1.4 Characterization of biofilm formation in S. cerevisiae 

Mat formation in S. cerevisiae is driven by multiple environmental cues like pH and glucose 

level [60]. The cells forming the hub adhere strongly to each other and the agar surface, while 

the smooth rim can be separated easily from the hub using a simple assay we refer to as overlay 

adhesion assay (refer to Methods and materials in Chapter 2). Mat formation, adherence and 

invasive growth are Flo11p dependent phenotypes [59, 60]. However, there is no difference in 

Flo11p expression between the rim and hub cells [60]. Hence, details about factors responsible 

for the difference between rim and hub remain unknown. In chapter 2, we report the existence of 

a Flo11p-independent pathway that affects mat formation. Ours and other published reports 

provide evidence to suggest that mat or biofilm formation is a complex phenotype, requiring a 

myriad of factors in addition to adhesins [130, 131]. In chapter 3, we will provide evidence 

showing that a subset of the cell wall integrity pathway is part of this Flo11p-indepenent 

mechanism for a mat formation. Finally, in chapter 4 we will show that a factor that makes the 
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rim and hub cells distinct in a mat is the presence of a carbohydrate, named chitosan, in the hub, 

and this plays a role in resistance to cell wall stresses and antimicrobials. 
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2.1 Background 

Microbes exhibit “multicellular” behaviors such as swarming and the formation of colonies, 

fruiting bodies, and biofilms [1-5]. All of these behaviors depend on cells interacting with one 

another and the local environment. The baker’s yeast Saccharomyces cerevisiae is able to grow 

in a number of different multicellular forms including pseudohyphae, floating biofilms on sherry 

wine, and biofilms on the surface of low density agar plates (referred to herein as mats) [6-8].  

All of these growth forms are dependent on the presence of a glycosylphosphatidylinositol 

(GPI)-anchored cell surface adhesion protein called Flo11p, which is similar to fungal adhesins 

found in a number of different yeasts, including several pathogens [9, 10]. 

This chapter is focused on the Flo11p-dependent multicellular phenotypes of invasive 

growth and mat formation.  During invasive growth, yeast grow as chains of cells that invade 

into the relatively dry surface of 2% agar plates made with yeast extract-peptone-dextrose (YPD) 

medium [7].  During mat formation, yeast grows as biofilms that spread over the wet surface of 

0.3% agar YPD plates.  As the mats mature, they generate two morphologically distinct regions. 

The central region of the mat is called the hub and consists of aggregates of cells that adhere to 

both the agar surface and one another and form channels and wrinkles that are hallmarks of 

biofilms.  The outer region of the mat is called the rim, and it is smooth in appearance, and 

consists of a dividing, spreading population of cells that are not particularly adherent to one 

another or the agar surface [7, 11]. 

The regulation of Flo11p and its impact on the yeast multicellular behaviors such as invasive 

growth (which occurs in haploid yeast cells) and pseudohyphal growth (a related phenotype that 

occurs in diploid yeast cells) have been the subjects of numerous studies, many of which have 

been reviewed previously [9, 12].  Several of these mutations that perturb FLO11 expression and 

affect invasive growth also disrupt mat formation, such as mutations in glucose sensing pathways 

and transcription factors that regulate inositol biosynthesis [11, 13]. 

In contrast, there are examples in the literature of mutations that cause defects in invasive 

growth but not mat formation, and vice versa.  The ste12∆ mutation only has a very minor effect 

on mat formation, but quite a strong effect on invasive growth [7].  Conversely, a number of 

Hsp70-encoding genes such as SSA1 and SSA2 have strong defects in mat formation, but not 

invasive growth.  These Hsp70 mutants also do not appear to affect Flo11 protein expression 

[14]. 
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This chapter examines whether the Rim101p signal transduction cascade, which is known to 

control invasive growth and FLO11 expression [15, 16], also regulates mat formation. The 

Rim101p signaling pathway is required for cells to respond to neutral or basic pH [17, 18], and is 

necessary for invasive growth.  A model for the Rim101p pathway (Figure 2.1) is as follows: two 

plasma membrane receptors called Rim21p and Dfg16p [19] detect extracellular signals, such as 

neutral pH, and are recruited to the endosome by the ß-Arrestin-like protein Rim8p [20-23]. This 

event recruits several of the ESCRT (Endosomal Sorting Complex Required for Transport) 

complexes (I, II, and III), which are also required for proper protein sorting in the endosome. 

Snf7p of the ESCRT-III complex recruits the Rim13p protease via the Rim20p scaffolding 

protein, and Rim13p cleaves off the Rim101p C-terminal inhibitory domain to activate it. 

The ESCRT complex subunits involved in Rim101p processing [20, 21] are part of a subset 

of vacuolar protein sorting (vps) components called Class E vps proteins. The original vps 

mutants were grouped into 6 classes (A through F) based on distinct vacuolar morphology 

defects [24]. About 13 vps mutants belong to Class E, and are characterized by the formation of 

an aberrant “prevacuolar” compartment within the endosome referred to as the Class E 

compartment [24]. All of the Class E vps mutants perturb the ubiquitin-dependent sorting of 

proteins through the endosome to the vacuole by a pathway referred to as the multivesicular 

body (MVB) pathway [25, 26]. However, only the ESCRT proteins affect Rim101p signaling 

[20, 21]. 

 
Figure 2.1 : Model for Rim101 pathway 
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Figure 2.2 Model for Multivesicular body (MVB) pathway 
 

The steps of the MVB cascade involve (a) Identification of the ubiquitinylated cargo by Vps27p 

and Hse1p; (b) Deformation of the endosomal membrane by the ESCRT-I complex (Vps37p, 

Vps28p, Vps23p) to allow subsequent steps of cargo intake; (c) Formation of invaginations by 

the ESCRT-II complex (Vps22p, Vps25p, Vps32p) leading to cargo protein engulfment and 

finally (d) Abscission by the ESCRT-III complex (Vps2p-Vps24p, Vps20p-Snf7p) to form intra-

luminal vesicles containing the cargo. The complex is disassembled by the ATPase Vps4p. 

Fusion of the limiting membrane of the endosome with the vacuole ultimately leads to 

degradation of the intra-luminal vesicles and cargo  (the MVB pathway is illustrated in Figure 

2.2) [21, 27, 28]. 

This study reveals that several MVB mutants that are not part of ESCRT-I, II, or III affect 

mat formation, but not invasive growth, and can be used to genetically separate these 

phenotypes. The results presented in this chapter indicate the existence of two overlapping 

pathways that pass through the MVB and affect mat formation by FLO11-dependent and 

independent mechanisms. The first pathway is the Rim101p pathway, and it affects invasive 

growth and mat formation by controlling FLO11 expression. The second pathway, henceforth 

called the biofilm pathway, requires the entire complement of class E vps components necessary 

for a properly functioning MVB and affects mat formation in a FLO11-independent manner. 
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2.2 Methods and materials 

2.2.1 Strains, media, and growth conditions 

All strains used in this study belong to yeast strain background ∑1278 (Appendix Table A-1) [7]. 

The strains found in appendix Table A-3 are from a whole genome deletion collection 

created in the ∑1278b background, by Owen Ryan and colleagues in the laboratory of Charles 

Boone, at the University of Toronto.  A full characterization of the library and the phenotypes of 

all mutants regarding mat formation, invasive growth, and pseudohyphal growth will be 

published separately (Ryan et al, submitted).  Mutants were generated by PCR-based gene 

disruption methods [11, 29]. Primers are listed in appendix Table A-2.  The RIM101-531 

dominant active allele was also generated by PCR-based disruption of the C-terminal 95 codons 

of the RIM101 gene (see Appendix Table A-2 for primers). Transformations were performed by 

the standard lithium acetate transformation method [30]. The yeast strain L6906 [31] carries a 

hemagglutinin (HA)-tagged form of FLO11, with the HA tag between amino acids 30 and 31 

(FLO11-HA30), and this was used for the immunofluorescence analyses. Primers PC675 and 

PC676 (see Appendix Table A-2) were used to insert an additional HA tag-encoding DNA 

sequence between codons encoding amino acids 1015 and 1016 of Flo11p (FLO11-HA30,1015) 

[32] by the method of Schneider et al [33]. All strains were maintained on standard yeast extract-

peptone-dextrose (YPD) media [30] and 250µg/ml G418 was used for selection of transformants, 

with the exception of the RIM101-531 truncation, which was selected on minimal media lacking 

histidine [30]. Strains grown on low agar plates (YPD with 0.3% agar) [7] for 5 days at 25°C 

were used for overlay adhesion assays, immunofluorescence, and Western blotting. 

2.2.2 Invasive growth assay and overlay adhesion assay 

The invasive growth assay was performed as described previously [13]. The overlay adhesion 

assay was performed as described [11]. 

2.2.3 Real time reverse transcriptase polymerase chain reaction (rtRT-PCR) 

Five days old mats were used to perform this assay. The cells from growing mats were collected 

from the surface of low agar YPD plates using a clean dry spatula and washed with ice-cold 

water. Total RNA was extracted as previously described [34]. Contaminating DNA was removed 

with the TurboDNA-free kit (Ambion) according the manufacturer’s protocol. rtRT-PCR was 
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performed on an Bio-Rad iCycler real time PCR machine using the Verso SYBR green two step 

kit with random primers for the reverse transcription step according the manufacture’s protocol. 

rtRT-PCR primers for FLO11 and ACT1 (reference gene) are listed in appendix Table A-2. 

2.2.4 Immunofluorescence of Flo11-HA30 on the cell surface of cells from the rim and hub 

The assay was performed as described in [11], where cells were taken from the rim of the 

growing mats. 

2.2.5 Cell Fractionation 

Fractionation of cells carrying Flo11-HA30,1015 was carried out as follows. Mats were grown on 

low agar YPD plates for 5 days at 25°C. Overlay adhesion assays were performed on the wild-

type mats to separate rim and hub cells.  Rim cells were washed into a microfuge tube off the 

plastic wrap with 1 ml of 50 mM Tris-HCl (pH 7.4) buffer. The adherent cells forming the 

central hub or the cells composing the entire mat from defective mutants were scraped from the 

agar using a clean dry spatula paying attention to bring a minimum carryover of agar during this 

process. The hub (wt) or mutant cells were then suspended in 1ml of 50mM TrisHCL (pH 7.4). 

Microfuge tubes containing cells from all of these separate samples were then taped onto a roller 

barrel and washed for 20 mins at 23°C. 20µl of sample was removed in a separate tube to be 

used for normalization calculations for loading SDS-PAGE gels (see normalization section 

below). The remaining cells from each sample were then pelleted and the supernatant was 

removed to a separate tube.  This supernatant represents proteins shed from the cell wall (S), and 

proteins in this fraction were precipitated as described below (see protein precipitation section). 

The cell pellet was resuspended in 0.8 ml of 50mM TrisHCl (pH 7.4) and ruptured using glass 

beads in the presence of protease inhibitors (Protease Inhibitor Cocktail SE, EMD Chemicals 

Inc) by vortexing for 1 min and cooling on ice for 1min, and repeating this two-step cycle five 

times. The liquid above the glass bead layer was removed to a separate tube and centrifuged at 

~13,000xg to pellet the cell wall and membranes.  The supernatant (SF, representing the 

cytosolic or soluble fraction) was stored at -20°C. The membrane/cell wall pellet was 

resuspended in 100 µl of 50mM Tris-HCL (pH 7.4) + 2% Sodium dodecyl sulfate (SDS) and 

boiled for 5 min followed by centrifugation for 10mins. The supernatant containing membrane 

bound and non-covalently attached cell wall proteins was removed to a fresh tube to create the 

membrane/non-covalent fraction (M). The remaining cell wall pellet was boiled again for 10 
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mins in 100µl 50mM Tris-HCl (pH 7.4) + 2% SDS followed by centrifugation. This second 

membrane supernatant was then combined with the first (membrane fraction) to obtain the total 

membrane/non-covalent fraction (M). The final cell wall pellet was then resuspended in 100 µl 

of 50mM TrisHCl (pH 7.4) containing 2 units of ß-1,3-glucanase (Quantazyme, MP 

Biomedicals) and 0.3µl of β-mercaptoethanol and incubated for 2hrs at 30°C followed by 

centrifugation for 10min at 13,000 rpm. The supernatant from the Quantazyme treatment 

represents the fraction of proteins that are covalently attached to the cell wall (C).  Proteins from 

both the membrane/non-covalent (M) and covalent fractions (C) were precipitated by adding 3 

volumes of cold acetone and incubating at 4˚C overnight.  The samples were then centrifuged 

and dried in a speedvac after which samples were resuspended in loading buffer.  The fractions 

were analyzed by SDS-PAGE (4% stacking gel, 5% resolving gel) followed by Western blotting 

with an anti-HA antibody. 

2.2.6 Normalization of fractionation samples for loading 

10µl of cells from the washed mat samples were diluted into 490µl of de-flocculation buffer 

(50mM EDTA) and sonicated with a Misonix Microson XL2000 ultrasonic homogenizer 

sonicator for 5 pulses (~5 sec each) set on 4. The cells were then enumerated with a 

hemocytometer. 

2.2.7 Precipitation of extracellular proteins from the mat 

This method was adapted from Bensadoun A. et al [35].  Proteins from the extracellularly shed 

fraction (S) above were precipitated from the Tris-HCl buffer by first adding 1/100th volume of 

2% Sodium deoxycholate (DOC) and incubating for 30 mins at 4°C. 1/10th volume of 100% 

Trichloroacetic acid (TCA) was then added for overnight precipitation at 4°C. 

2.3 Results 

2.3.1 Mutations in class E VPS mutants that block Rim101p processing disrupt invasive 
growth 
The class E VPS genes that encode members of the ESCRT I, II, or III complexes were 

hypothesized to regulate haploid invasive growth because they affect Rim101p processing which 

is required for invasive growth and FLO11 expression in S. cerevisiae [15, 16, 21].  These will 

henceforth be referred to as Class E-1 mutants.  Their orthologs have also been shown to affect 
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filamentous growth in C. albicans by affecting Rim101p processing [21, 22].  In contrast, non-

ESCRT-I, II, III class E VPS mutants, such as vps27∆ or vps4∆, (henceforth referred to as Class 

E-2 mutants) do not affect Rim101p processing in S. cerevisiae or C. albicans [36], and were 

expected to not affect invasive growth in S. cerevisiae. 

In the ∑1278b background of S. cerevisiae, Class E-1 mutants representing three ESCRT 

complexes, vps28∆ (ESCRT-I), vp25∆ (ESCRT-II), and vps20∆ (ESCRT-III), show a strong 

defect in invasive growth (Figure 2.3 A) while Class E-2 mutants such as vps27∆ and vps4∆ do 

not disrupt invasive growth. 

Class E-1 mutants exhibit stronger invasive growth defects than the rim101∆ mutant itself or 

mutations in upstream Rim101p processing components such as rim13∆ or rim9∆.  While there 

is a thin layer of cells left behind in the rim101∆, rim13∆, and rim9∆ Rim101p pathway mutants, 

there are practically no cells left behind for the Class E-1 mutants (Figures 2.3 A&B). 

2.3.2 Both Class E-1 and E-2 mutants perturb mat formation 

Based on the invasive growth assays in Figure 2.3 it was predicted that the mutations that are 

known to perturb invasive growth (Class E-1 mutants) would perturb mat formation.  In 

particular, it was hypothesized that the Class E-1 mutants would form defective biofilms that 

differ from the wild-type in three respects.  (i) They would fail to form the wrinkles and channels 

that are hallmarks of the hub in the wild-type (Figure 2.3 C).  (ii) They would not cover or spread 

over as large of a surface area of the agar plates as the wild-type.  (iii) They would not adhere to 

the agar surface when tested for adhesion.  In contrast, the mutations that did not perturb invasive 

growth (Class E-2 mutants, Figure 2.3 A) were predicted to have little to no effect on mat 

formation. However, when this was tested, it was discovered that both Class E-1 and Class E-2 

mutants exhibit strong defects in mat formation that are similar to those of the Rim101p pathway 

mutants (Figure 2.3 C&D). Similar results have been found by Ryan et al in the laboratory of 

Charlie Boone at the University of Toronto while screening the ∑1278b whole genome deletion 

collection that they have generated (private communication).  Biofilms formed by the rim9∆ and 

rim13∆ mutants resemble those of the rim101∆ mutant, while the vps4∆ mutant’s biofilm 

resembles that of the vps27∆ strain (data not shown). 

The Class E-1 and Class E-2 mutants spread poorly compared to wild-type, and they did not 

generate noticeable patterns on low agar.  In addition, they all exhibited defects in adhesion to 

agar based on the overlay adhesion assay [11].  This assay is performed by laying a piece of 
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commercial plastic wrap on the agar over the growing cells and then removing it by lifting up on 

both sides.  Cells that adhere to the agar surface stay behind, as seen for the wrinkled center 

(hub) of the wild-type mat (Figure 2.3 C).  Cells that are not agar-adherent are removed as seen 

for the outer edge of the wild-type (rim).  The entire cell population of the Rim101p pathway and 

Class E-1 mutants were removed by the plastic wrap (Figure 2.3D and data not shown), which is 

similar to what is seen for flo11∆ mutants [11].   The vps27∆ and vps4∆ mutants adhered slightly 

better to the agar surface than the other mutants (only vps27∆ is shown in Figure 2.3C), however 

the cells from these mutants that remained on the agar plate were poorly adherent compared to 

the hub cells from the wild-type. 

2.3.3 FLO11 expression is diminished in Class E-1 mutants but not the Class E-2 mutants 

One reason for the difference between the Class E-1 and Class E-2 mutants might be that the 

Class E-2 mutants exhibit diminished FLO11 gene expression by affecting some alternative 

pathway during mat formation, but not during invasive growth.  In order to test this, both groups 

of mutants were compared for FLO11 expression levels during mat formation by real time 

reverse transcriptase polymerase chain reaction (rtRT-PCR). These analyses revealed that the 

vps28∆, vps25∆, and vps20∆ mutants all expressed little FLO11 compared to the wild-type 

(Figure 2.4).  In contrast, vps27∆ and vps4∆ mutants expressed either higher or similar levels of 

FLO11 compared to wild-type (Figure 2.4). 

2.3.4 Two pathways act through the endosome to affect mat formation 

A hypothesis to explain the differing phenotypes between the Class E-1 and Class E-2 mutants is 

that there are two distinct, but overlapping, pathways that affect mat formation and act through 

the endosome.  One pathway is the Rim101p signal transduction cascade [18], which requires 

specific ESCRT-I, II, III components [21, 22], and is required for FLO11 expression ([15], 

Figure 2.4,), and therefore affects both invasive growth and mat formation (Figure 2.3). The 

other pathway depends on a functional MVB pathway in general, but has little to no effect on 

FLO11 expression and only affects mat formation, but not invasive growth (Figures 2.3 and 2.4). 
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Figure 2.3 Class E-1 and E2 vps mutants have distinct effects on invasive growth and the 
mat formation. 
Class E vps mutants that affect the Rim101p signaling pathway (class E-1) cause defects in mat formation and invasive growth, 
but class E vps mutants that do not affect the Rim101p pathway (class E-2) disrupt mat formation but not invasive growth. (A) 
The class E vps mutants vps27Δ, vps28Δ (ESCRT-I), vps25Δ (ESCRT-II), vps20Δ (ESCRT-III), and vps4Δ were subjected to 
the invasive growth assay (WT, wild type); (B) members of the Rim101p signaling pathway, rim101Δ, rim9Δ, and rim8Δ, were 
subjected to the invasive growth assay; (C and D) representative members of the class E-1 and E-2 vps mutants (C) and the 
Rim101p signal transduction pathway (D) were subjected to the overlay adhesion assay. 
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Figure 2.4: Effect of Class E-1 and E-2 vps mutants on FLO11 expression.  
FLO11 expression is greatly diminished in class E-1 mutants known to affect Rim101p processing, but class E-2 mutants like 
vps27Δ and vps4Δ mutants do not show a decrease in FLO11 expression. Fold change in FLO11 expression was measured by 
rtRT-PCR, and ACT1 was used as a reference gene. WT, wild type; 27, vps27Δ; 28, vps28; 25, vps25Δ; 20, vps20Δ; 4, vps4Δ. *, 
P < 0.05 compared to wild type. 
 

The above hypothesis suggests that the whole MVB pathway is required for mat formation, but it 

was possible that there was a unique role for Vps27p and Vps4p.  This was tested by examining 

the invasive growth and mat formation phenotypes of a collection of vps mutants in the ∑1278b  

background. Analysis of 9 additional class E vps mutants (did4∆, snf8∆, vps23∆, vps24∆, bro1∆, 

snf7∆, vps36∆, vps37∆, and mos10∆) reveals that they all have defects in mat formation, 

although the defects in the vps37∆ and mos10∆ mutants are less pronounced (Appendix Table A-

3).  Consistent with the above results, there is a correlation between ESCRT mutants known to 

perturb Rim101p signaling (Class E-1 mutants) and defects in both invasive growth and mat 

formation. The vps37∆ mutant is an exception to this, as it is defective for mat formation but not 

invasive growth.  However, the vps37∆ mutant gave mixed results regarding its role in Rim101p 

processing [21, 37]. The vps37∆ mutant not withstanding, these results suggest that MVB 

trafficking is important for proper mat formation. 

An alternative interpretation is that disruption of vacuolar function may be the root cause of 

the defect in mat formation. However, an additional 25 vps mutants were tested that do not 

belong to class E. Of these non-class E vps mutants, 11 have no defect in mat formation, and 8 

cause only a partial defect leaving the mutants with less well-defined pattern formation, but a 

clear rim and hub by the overlay adhesion assay.  Thus, 19 out of 25 non-class E vps mutants 

exhibit only a partial defect or no defect in mat formation (Appendix Table A-3).  Only two 

genes represented among these 19 mutants, VPS21 and VPS62, have strong homologs in S. 

cerevisiae, therefore for most of the 19 mutants, the lack of a strong defect in mat formation 
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cannot be accounted for by redundant gene functions.  In addition, a pep4∆ mutant, which 

disrupts vacuolar protease activity [38, 39], is also wild-type for mat formation (data not shown). 

Thus, there is a second pathway required for mat formation, which will be tentatively called 

the biofilm pathway, which is dependent on the MVB pathway and is hypothesized to act 

independently of the Rim101p pathway. If the biofilm pathway is really independent of 

Rim101p, then restoration of Rim101p transcription factor activity via a dominant allele of 

RIM101 should bypass upstream defects in the Rim101p pathway, but not the biofilm pathway. 

The RIM101-531 dominant allele encodes a truncated form of Rim101p missing the inhibitory 

C-terminal tail following amino acid 531. This truncated protein is active even when upstream 

components of the signal transduction pathway are disrupted, including both Class E- 1 (i.e. 

vps28∆, vps25∆, and vps20∆) and non-MVB (i.e. rim13∆) components [16]. 

Addition of the RIM101-531 dominant active allele should have different predictable 

phenotypes in the non-MVB, Class E-1, and Class E-2 mutants.  If RIM101-531 is expressed in a 

rim13∆ strain (non-MVB), then this should restore FLO11 expression, invasive growth, and mat 

formation since the rim13∆ mutant should only block Rim101p processing but not MVB 

trafficking.  In contrast, the RIM101-531 allele in the vps25∆ mutant (Class E-1) should suppress 

defects in FLO11 expression and invasive growth, but not mat formation, since the RIM101-531 

allele will not restore MVB sorting.  Finally, the RIM101-531 allele should have no impact on 

the vps27∆ mutant (Class E-2). The RIM101-531 allele was introduced into the vps27∆, vps25∆, 

and rim13∆ mutants by deleting the C-terminal 95 codons on the chromosome by homologous 

recombination (see materials and methods).  The resulting double mutants were examined for 

invasive growth, FLO11 expression, and mat formation.  The rim13∆ RIM101-531 double 

mutant was fully restored for invasive growth compared to the rim13∆ single mutant as was the 

vps25∆ RIM101-531 mutant.  The vps27∆ RIM101-531 double mutant appears no different than 

the vps27∆ mutant (Figure 2.5A).  Consistent with these results, FLO11 gene expression in 

growing mats measured by rtRT-PCR is restored in the vps25∆ RIM101-531 and rim13∆ 

RIM101-531 double mutants and is not significantly different between vps27∆ and vps27∆ 

RIM101-531 strains (Figure 2.5B). 

These mutants also behave as predicted in the mat formation assay. The rim13∆ RIM101-

531 double mutant, although slightly reduced compared to the wild-type, is restored for mat  
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Figure 2.5: Effect of RIM101 suppressor mutant on invasive growth phenotype and FLO11 
expression of Class E-1 and Class E-2 vps mutants.  
The RIM101-531 allele suppresses invasive growth and FLO11 expression defects in the vps25Δ and rim13Δ mutants. (A) 
Strains carrying the RIM101-531 allele were subjected to the invasive growth assay. Mutants with a capital R are double mutants 
carrying the named mutation and the RIM101-531 allele. (B) Fold change in FLO11 expression was measured by rtRT-PCR, and 
ACT1 was used as a reference gene. WT, wild type; 25, vps25Δ; 25R, vps25Δ RIM101-531; 27, vps27Δ; 27R, vps27Δ RIM101-
531; 13, rim13Δ; 13R, rim13Δ RIM101-531. *, P < 0.05 compared to wild type. 
 

formation compared to the rim13∆ parent strain. It exhibits increased spreading on low agar with 

formation of patterns such as a clear hub, and it adheres similarly to wild-type in the overlay 

adhesion assay yielding a distinct hub and rim (Figure 2.6, plastic not shown).  The vps27∆ 

mutant is unaffected by the introduction of RIM101-531 allele.  In contrast, the vps25∆ RIM101-

531 double mutant resembles a vps27∆ single mutant in the overlay adhesion assay (Figure 2.6). 

These results suggest that there exists a requirement for the MVB pathway in biofilms that is 

independent of Rim101 pathway. 

2.3.5 Expression of Flo11p is diminished in Class E-1 mutants, but is similar to wild-type in 
Class E-2 mutants 
The above experiments support the hypothesis that there is a biofilm signaling pathway that 

depends on functional MVB trafficking and is necessary for mat formation, but is independent of 

Rim101p signaling and FLO11 expression.  However, since the MVB pathway affects protein 

trafficking within the cell, it seemed possible that the mat formation defects were due to poor 

expression or mislocalization of Flo11p.  In order to test this, the percentage of cells expressing  
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Figure 2.6: Effect of RIM101 suppressor mutant on overlay adhesion assay and mat 
formation phenotype of Class E-1 and Class E-2 vps mutants.  
The RIM101-531 allele suppresses the mat formation defect in the rim13Δ mutant but not the vps25Δ or vps27Δ mutant. Pre, 
before the overlay adhesion assay; Post, agar after the overlay adhesion assay. 
 
Flo11p on the cell surfaces within the mats of different strains were compared.  Flo11p is 

expressed in a variegated manner in the ∑1278b strain such that only ~40-50% of the wild-type 

cells express the protein on the surface as assessed by immunofluorescence [11, 40].  Each of 

these strains carries on its chromosome an allele of FLO11 encoding a protein with a 

hemagglutinin (HA) epitope tag located between amino acids 30 and 31 (FLO11-HA30). Cells 

were collected from growing mats in the wild-type, vps25∆, vps27∆, and rim13∆ strains plus 

their respective RIM101-531 double mutants and subjected to staining with anti-HA antibody to 

assess the percentages of cells expressing Flo11-HA30 on their cell surfaces.  Consistent with 

FLO11 gene expression results (Figure 2.5 B), the vps25∆ strain expressed little Flo11-HA30, 

while the vps25∆ RIM101-531 strain expressed wild-type levels of the protein (Figure 2.7).  In 

contrast, the vps27∆ and vps27∆ RIM101-531 strains were similar to wild-type.  The rim13∆ 

mutant, like the vps25∆ strain, expressed much less Flo11-HA30 than wild-type, but the rim13∆ 

RIM101-531 double mutant was restored for Flo11-HA30 expression. 
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2.3.6 Flo11p shedding and cell wall localization is not altered in the Class E- 2 mutants 

Although Flo11-HA30 was clearly expressed on the cell surface of Class E-2 mutants, it was 

recently reported that Flo11p is shed outside the cell wall, and that this extracellular form is 

important for mat formation [32].  A separate report by another group indicated that Flo11p is 

not covalently attached to the cell wall, as are other canonical adhesins [41, 42], but is found in 

the membranes of yeast cells or is non-covalently associated with the cell wall [43].  Thus, it 

seemed possible that although no differences were seen in Flo11-HA30 expression between wild-

type and vps27∆ strains based on immunofluorescence, the subcellular localization of Flo11-

HA30 at the surface or outside the cells might be different.  For example, perhaps the mutants 

shed all or most of their Flo11-HA30 or its association with the wall or membrane is altered. 

In order to address the above concerns, cells were isolated from the growing mats and 

subjected to subcellular fractionation.  Cells were collected from wild-type, vps25∆ (Class E-1), 

 
Figure 2.7: Immunofluorescence assay results of RIM101 suppressor mutant.  
The RIM101-531 allele restores Flo11-HA30 expression in the vps25Δ and rim13Δ mutants. (A) Cells were subjected to 
secondary immunofluorescence with an anti-HA monoclonal primary antibody directed toward the HA tag in strains carrying 
Flo11-HA30. (B) Quantification of the percentage of cells expressing Flo11-HA30 from each strain. Wild type (WT); vps25Δ; 
vps25Δ RIM101-531 (25R); vps27Δ; vps27Δ RIM101-531 (27R); rim13Δ; rim13Δ RIM101-531 (13R). *, P < 0.05 compared to 
wild type. 
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vps27∆ (Class E-2), or rim13∆ (non-MVB) mutants. The overlay adhesion assay was used to 

purify separate populations of rim cells from the wild-type, and the hubs were scraped from the 

agar with a spatula.  Whole mats from mat-defective vps mutants were collected by scraping 

from the agar surface. The cells were then fractionated (see Methods for more details) to obtain 

shed (S), membrane-associated (M) and covalently attached cell wall (C) fractions. Protein 

fractions were then analyzed by SDS-PAGE and Western blotting against Flo11-HA.  Loading 

was normalized to the number of cells represented in each population from which proteins were 

extracted (see Methods for more details). 

When this procedure was performed on the strains carrying Flo11-HA30, it was found that 

the expected high molecular weight Flo11p band (>260 kDa) seen in [32] was seen only in the 

membrane fraction, and showed substantial degradation, even in the presence of protease 

inhibitors (data not shown). This version of Flo11-HA was tagged between amino acids 30 and 

31 (Flo11-HA30).  Unlike it, the Flo11-HA used by Karunanithi, et al [32] was tagged at amino 

acid residue 1015 (Flo11-HA1015). Therefore, another HA tag was added to FLO11-HA30 in the 

strain at residue 1015 to create doubly HA tagged Flo11-HA30,1015 strains, and the fractionation 

was repeated.  In this case, a band was seen corresponding to Flo11p that ran at >260 kDa in the 

shed (S), membrane/non-covalent cell wall (M), and covalently attached (C) cell wall fractions 

(Figure 2.8, Flo11p band). These data indicate that Flo11p is both shed outside the cell wall and 

covalently attached to the cell wall, and is also found in the M fraction containing both 

membrane and non-covalently cell wall associated forms of the protein. 

A very small molecular weight band is also present, and is found primarily in the M fraction 

(Figure 2.8, N-HA).   Further analysis revealed this band to be ~17 kDa (Appendix Figure A-4, 

N-HA), although faint amounts of an ~37 kDa band were seen as well.  It is suspected that the 

~17 kDa N-HA band seen in the Western blots corresponds to the N-terminal 33 kDa myc-

tagged band of Flo11p reported by Karunanithi et al [32], but may differ in size due to strain-

associated differences in protease sites in Flo11p (see discussion). 

It has been previously reported that the percentage of cells expressing Flo11-HA30 in the rim 

and hub is identical based on immunofluorescence data [11].  Consistent with these previous 

results, the Western blot analysis reveals no obvious or reproducible differences in the overall 

amounts or distribution of Flo11-HA30,1015 in the S, M, or C fractions of the rim or hub of the 

wild-type (Figure 2.8, rim and hub). This is despite the fact that there is a profound difference in  
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Figure 2.8: Western blot on fractionated rim and hub of wild type and representative 
Rim101 pathway, Class E-1 and E2 vps mutants.  
Flo11p is both shed from the cell wall and covalently attached to it and is expressed and localized similarly in wild-type and 
vps27Δ strains. Western blotting was performed on fractionated samples from wild-type (i, ii and iii), vps27Δ (i), vps25Δ (ii), 
and rim13Δ (iii) strains carrying Flo11-HA30,1015. A high-molecular-mass Flo11p-HA30,1015 band (>260 kDa) was observed 
in wild-type and vps27Δ strains in all fractions, including shed (S), membrane bound/noncovalently cell wall associated (M), and 
covalently attached to cell wall (C) fractions. The vps25Δ and rim13Δ mutants show the absence of Flo11p-HA30,1015 in S and 
C fractions and considerably decreased signals in the M fraction. A small N-terminal fragment (17 kDa) referred to as N-HA was 
consistently observed in the M fraction. 
 
the manner in which these cell populations adhere to agar in the overlay adhesion assay (Figure 

2.3 C). 

Finally, when Flo11-HA30, 1015 expression and distribution is compared between the wild-

type and mutant strains, there is a clear decrease in Flo11-HA30, 1015 expression in all of 

thefractions in the vps25∆ and rim13∆ mutants, while there is no reproducible difference 

between wild-type and vps27∆ strains (Figure 2.8). Thus, these results are once again consistent 

with those from the rtRT-PCR and immunofluorescence experiments (Figures 2.5 and 2.7).  

Therefore, based on three different measures of FLO11 gene or Flo11p protein expression (Figs 

2.4, 2.5, 2.7 and 2.8) it appears that vps27∆ does not differ from wild-type in Flo11p expression, 

distribution, or shedding.  Its failure to form a mat is likely attributable to some unidentified 

effector protein or molecule. 

2.4 Discussion 

FLO11 is clearly necessary for mat formation; however, it is not sufficient for this phenotype.  

Martineau et al [14] reported a similar finding in which they described several mutants in hsp70 

homologues that exhibit defects in mat formation but not in Flo11p expression or invasive 

growth, although it was not known how these hsp70 homologs cause this defect.  This chapter 
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reports that Class E-2 mutants cause defects in mat formation in a manner that is independent of 

Flo11p expression or localization.  Thus, Class E-2 mutants, along with the hsp70 mutants 

reported previously, reveal that the phenotypes of invasive growth and mat formation can be 

clearly separated at the genetic level.  

The differences in the expression of FLO11 between the Class E-1 and Class E-2 mutants 

can be ascribed to the differing roles of these two types of mutants in processing of the Rim101p 

transcription factor. Class E-1 mutants, such as vps28∆ (ESCRT-I), vps25∆ (ESCRT-II), and 

vps20∆ (ESCRT-III), are necessary for Rim101p processing [21], which is in turn necessary for 

FLO11 expression (Figures 2.5 and 2.7, and reference [15]). In contrast, the Class E-2 mutants, 

such as vps27∆, do not affect Rim101p processing [21] and therefore do not cause diminished 

FLO11 expression. 

These data indicate that MVB sorting, the common process affected by both Class E-1 and 

E-2 mutants, is required for mat formation, but not invasive growth.  This hypothesis is further 

strengthened by the fact that addition of a RIM101-531 dominant active allele to the vps25∆ 

mutant could rescue this Class E-1 mutant’s FLO11 expression and invasive growth phenotypes, 

but not its mat formation defect (Figures 2.5 and 2.6).  In fact, the vps25∆ RIM101-531 double 

mutant strongly resembled the vps27∆ mutant in the overlay adhesion assay with its very slightly 

adhesive cells (Figure 2.6).  Thus, even a constitutively active RIM101-531 allele cannot rescue 

mat formation as long as MVB sorting is compromised.  As a control, it was found that the 

rim13∆ mutant, which is defective for Rim101p processing, but not MVB function, was rescued 

for mat formation, invasive growth, and FLO11 expression by the RIM101-531 dominant active 

allele.  Finally, the data supports a model suggesting that class E vps mutants cause mat 

formation defects by affecting MVB sorting rather than vacuolar function, as numerous non-

class E vps mutants have little or no defect in mat formation (Appendix Table A-3). 

Taken altogether, we present a model suggesting that there are two pathways passing 

through the endosome that affect mat formation (Figure 2.9).  One pathway, the Rim101p 

pathway, affects FLO11 expression, invasive growth, and mat formation, while the biofilm 

pathway, which is dependent on proper MVB sorting, is required for mat formation, but not 

FLO11 expression or invasive growth. 

It is suspected that the MVB mutations (Class E-1 or Class E-2) cause mislocalization of a 

component of the biofilm signaling pathway that is necessary for proper mat formation (Figure  
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Figure 2.9: Model of pathways affecting mat formation. Two pathways affect mat 
formation through MVB.  
One pathway is the well-characterized Rim101p pathway, which uses components of the ESCRT-I, -II, and -III complexes to 
transduce the signal to activate Rim101p and FLO11 expression, which are necessary for both invasive growth and mat 
formation. The second pathway is the putative biofilm pathway, which is hypothesized to have a component that must be 
properly sorted by the MVB in order to function. The biofilm pathway is not necessary for FLO11 expression or invasive growth 
but is necessary for mat formation, presumably by altering the cell wall in some unknown way. 
 
2.9). It is further suspected that this pathway ultimately affects the cell wall in some unknown 

manner that strongly impacts mat formation in a Flo11p independent manner, but also has only a 

very modest effect on invasive growth.  The future plan is to identify and characterize the 

components of the biofilm signaling pathway. 

Based on the rtRT-PCR data (Figures 2.4 and 2.5 A) one might get the impression that the 

Class E-2 mutants such as vps27∆ and vps4∆ actually overexpress FLO11, and thus the biofilm 

pathway represses FLO11. However, when Flo11-HA is examined in these mutants (Figures 2.7 

and 2.8), this does not appear to be the case.  It is suspected that the higher expression of FLO11 

mRNA in the Class E-2 mutants may be misleading due to the size of wild-type mats compared 

to mutant mats and the fact that there are more glucose starved cells within wild-type mats that 

are no longer growing, thus giving a large hub population with diminished FLO11 expression 

[11]. 
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2.4.1 What is the functional form of Flo11p at the cell surface and shed extracellularly? 

Karunanithi et al [32] recently showed that Flo11-HA1015 was proteolytically cleaved during its 

synthesis in a Kex2p-dependent manner and that this led to the release of a 33 kDa fragment that 

included the N-terminus of the protein [32]. 

Surprisingly, it was found that the N-terminus of Flo11-HA30 is localized at the cell surface 

based on immunofluorescence analysis (Figure 2.7).  Thus, the form of Flo11p found in the cell 

wall of yeast is present with an intact N-terminus.  However, this form of the protein was 

difficult to detect by Western blots, even with the addition of protease inhibitors, and was seen 

almost exclusively in the membrane fraction. 

It is suspected that release of proteases from the vacuole during cell fractionation may result 

in degradation of this N-terminal tag in the covalent fraction, and perhaps some of the non-

covalent fraction too, since a small N-terminal fragment accumulates in the membrane 

fractionation (Appendix Figure A-4).  Since the shed (S) fraction was collected from intact cells, 

and it could not be detected by Western blotting the Flo11-HA30 form (data not shown), the N-

terminus may be cleaved during shedding [32]. 

The 17 kDa fragment released from Flo11-HA30,1015  was primarily in the M fraction which 

contains cellular membranes and non-covalently attached cell wall proteins, although very faint 

amounts of it can be seen in the shed (S) fraction in some blots (Figure 2.10).  No evidence was 

seen for it in the covalently attached cell wall fraction (C). This is consistent with the findings of 

Karunanithi et al [32], who found the 33 kDa fragment to be enriched in the cell pellet, which 

would contain mostly the membrane and non-covalently attached cell wall proteins. 

2.4.2 Mats are biofilms 

As a final point, the discovery by Karunanithi et al [32] of mucins such as Flo11p being shed 

extracellularly by Saccharomyces and the follow up discovery that Flo11p is shed extracellularly 

in the mat in both the rim and hub (Figure 2.8) suggest that Flo11p could itself be defined as part 

of an extracellular matrix (ECM).  Flo11p greatly resembles the mucin proteins of mammals that 

make gel-like mucus layers.  Thus, we believe that S. cerevisiae mats can rightly be described as 

biofilms that contain an ECM. 
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A subset of components of the cell wall integrity 

pathway are essential for biofilm formation in 
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3.1 Introduction 

Biofilms are the preferred modes of growth for the majority of microorganisms in nature. A 

biofilm is a community of cells that aggregate and colonize a foreign surface [1]. The major 

advantage of forming a biofilm is protection from the constant barrage of stresses that organisms 

are constantly exposed to in the environment [1]. Biofilms by pathogenic fungi like Candida 

albicans are a nuisance in clinical settings where they colonize invasive medical implants or 

establish infection in immunosuppressed patients [2, 3]. Saccharomyces cerevisiae is an 

attractive candidate to study genes important for biofilm formation since it is capable of forming 

an elaborate multicellular biofilm (hereafter referred to as a mat) on semisolid agar (0.3%). It 

grows into a wheel-like structure that can be structurally differentiated into a central wrinkled 

hub consisting of water channels, some of which resemble spokes of the wheel, all surrounded 

by a growing smooth rim [4]. 

The ability to form biofilms in fungi is largely dependent on various GPI-anchored adhesin 

proteins of the flocculin (FLO) family that are localized to the cell wall. However, reports have 

emerged recently showing the existence of cell wall factors independent of the FLO family that 

are important for biofilm formation [5, 6]. Flo11p is the only FLO protein expressed in mats 

formed by the S. cerevisiae ∑1278b background strain L6906 [7], and mat formation is 

dependent on Flo11p. However, mat formation is regulated by vacuolar protein sorting (vps) 

genes in both a Flo11p-dependent and –independent manner. The Flo11p-independent branch of 

the pathway (biofilm pathway) requires an intact and fully functional MultiVesicular Body 

(MVB) pathway traversing the endosome. Based on our results with the MVB pathway mutants, 

we previously hypothesized that MVB pathway mutants affect biofilm formation by 

mislocalizing an important component of the biofilm pathway leading to perturbation of the cell 

wall and ultimately to defects in biofilm formation.  

There are a number of pathways that affect the cell wall, and one that has components 

affected by the MVB pathway is the cell wall integrity pathway (CWI). The CWI pathway 

consists of several signaling modules that include a family of single transmembrane domain 

sensors (Wsc1p is the main sensor for the wall), a Rho-type GTPase and its regulators (i.e. 

Rho1p and Rom2p), a protein kinase C homolog (Pkc1p), and a MAP kinase (MAPK) cascade 

(Bck1p-Mkk1/2p-Slt2p) [8].  Activation of the CWI pathway has pleiotropic effects on cell wall 

repair and biogenesis. The main function of the CWI pathway is maintenance of the highly 
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dynamic cell wall structure, by sensing signals (i.e. damage due to physical or environmental 

agents, hormones, signal to divide, etc), and relaying them downstream, leading to activation of 

appropriate genes leading to remodeling of the cell wall. For example, in addition to Pkc1p and 

the CWI-MAPK cascade, Rho1p regulates the Fks1p β-1,3-glucan synthase and the Skn7p 

transcription factor. In this chapter, data will be presented revealing that components of the CWI 

pathway, including the Wsc1p receptor, but excluding the CWI-MAPK cascade, disrupt mat 

formation, and therefore may comprise part or the entire biofilm pathway.   

3.2 Methods and materials 

3.2.1 Strains, media, and growth conditions 

All strains used in this study belong to the yeast strain background ∑1278 [4] (Table A-5). The 

wsc1Δ and skn7Δ mutants were created by transforming in the KanMX6 disruption cassette 

amplified by PCR [9] from the genomes of the wsc1∆ and skn7∆ mutants pulled out from the 

respective mutants in a whole-genome deletion collection created in the Σ1278 background by 

Owen Ryan and colleagues in the laboratory of Charles Boone at the University of Toronto 

(Ryan et al, Science. in press). The GFP-His3Mx6 cassette from pFA6a-GFP-His3MX6 was 

subcloned just 5’ to the stop codon of the WSC1 gene using XbaI and HindIII restriction sites. 

Primers for PCR reactions are listed in Table A-6. Transformations were performed by the 

standard lithium acetate transformation method [10]. All strains were maintained on standard 

yeast extract-peptone-dextrose (YPD) media [10] containing  250µg/ml G418 or on minimal 

media lacking histidine [10]. Strains grown on low agar plates (YPD with 0.3% agar) [4] for 5 

days at 25°C were used for overlay adhesion assays and immunofluorescence staining. 

3.2.2 Overlay adhesion assay 

The overlay adhesion assay was performed as described [11]. 

3.2.3 Immunofluorescence of Flo11-HA30 on the cell surface of cells from the rim and hub 

The assay was performed as described in [11].  
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3.2.4 Western blotting 

Precipitation of extracellular Flo11p from the mat, fractionation of cells, and western blotting 

was carried out as described in [6].  

3.2.5 Site directed mutagenesis 

The mutagenesis was performed using a primer-mediated PCR based method described in [12, 

13], using primers listed in Table 2.  

3.3 Results 

3.3.1 Wsc1p affects mat formation in a Flo11p-independent manner: 

Wsc1p is a sensor protein of the CWI pathway. It functions with other sensors (Mid2p, Wsc2p 

and Wsc3p) to sense cell wall damage or repair stimulus and activate the pathway. Any defect in 

Wsc1p signaling leads to increased sensitivity to cell wall perturbing factors like high 

temperature, calcofluor white, and caffeine [14-16]. As shown in Figure 3.1A, Wsc1p is also 

important for mat formation since wsc1∆ failed to form the typical patterned biofilm observed in 

the wild-type. However, it displays no defect in the Flo11p-dependent invasive growth 

phenotype (Figure 3.1B), its phenotypes being similar to the vps27∆ mutant [6]. 

In order to ascertain if the wsc1∆ mat formation defect is due to a defect in Flo11p 

localization, the percentage of cells expressing Flo11p on the cell wall were counted by 

immunofluorescence assay. The strain carries a HA epitope tag inserted between residue 30 and 

31 of Flo11p (Flo11-HA30) that can be stained using anti-HA antibody [6]. As can be seen in 

Figure 3.2A, there was no statistically significant difference between WT and wsc1∆ in the 

number of cells expressing Flo11-HA30 on the cell surface. 

In addition to being expressed on the cell wall surface, Flo11p was recently also reported to 

be shed outside the cell [6, 17]. To verify that wsc1∆ did not lead to any defects in Flo11p 

shedding, wsc1∆ containing Flo11p tagged with an additional HA epitope tag at residue 1015 

(Flo11-HA30,1015) was used. The mat cells were subjected to subcellular fractionation to separate 

populations of Flo11p that was shed extracellularly (S), covalently attached to the wall (C), and 

found in the membrane (M) and these were analyzed by SDS-PAGE and Western blotting using 

an anti-HA antibody (Fig 2B). Consistent with the immunofluoresence data, there appeared to be 

no reproducible difference in Flo11-HA30,1015 levels between wild type and wsc1∆. 
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Figure 3.1: Wsc1p affects mat formation in a Flo11p-independent manner. 
(a) Overlay adhesion assay performed on wild type (WT) and wsc1Δ. (b) Invasive wash assay performed on WT, wsc1Δ, vps25Δ 
(Flo11p-dependent) and vps27Δ (Flo11p-independent).  
 

  

 
Figure 3.2: wsc1Δ shows no defect in Flo11-HA expression, localization and shedding 
(A)Cells subjected to secondary immunofluorescence with anti-HA monoclonal primary against Flo11-HA30 and plot of the 
percentage of cells expressing Flo11-HA30 from each strain. (B)Western blot of shed (S), membrane bound (M) and covalently 
attached (C) fractions of the cell wall using anti-HA monoclonal antibody. 
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Figure 3.3: Model depicting CWI pathway with the hypo-osmotic stress sensing pathway 
Sln1 branch. 

3.3.2 Cell wall integrity MAPK cascade is not essential for biofilm formation 

Since Wsc1p is an important sensor of the CWI pathway, Figure 3.3, we wanted to determine 

what downstream components of the pathway are required for mat formation. Deletion mutants 

of different components were analyzed for their effects on biofilm formation. Loss of other 

sensors of the Wsc family (i.e. Wsc2p, Wsc3p) and Mid2p fail to cause any defect in biofilm 

formation, suggesting that Wsc1p is the major sensor of the CWI pathway for mat formation 

(data not shown). No mutants were generated for PKC1 and RHO1 since these genes are 

essential [18]. Deletion mutants were generated for all non-redundant components of the CWI-

MAPK cascade including mpk1∆, bck1∆, and the downstream transcription factor rlm1∆ (Fig 

3.3). None of these mutations led to a defect in mat formation (Fig 3.4). 



 57 

 
Figure 3.4: CWI pathway components downstream of PKC1 including MAPK cascade and 
its effectors are not necessary for mat formation. 
Mat formation phenotypes of wild type (WT), wsc1Δ, MAPK cascade genes (bck1Δ, mpk1Δ) and downstream transcription factor 
rlm1Δ. 

3.3.3 Wsc1p-Rom2p interaction is essential for mat formation 

The fact that the CWI-MAPK cascade is not involved in mat formation raised the question of 

which other canonical proteins are acting downstream of Wsc1p to affect mat formation. For 

example, the interaction between the sensor Wsc1p and the Rho1p guanylate exchange factor 

(GEF) Rom2p is the primary step activating the pathway.  Therefore, we tested to see if a rom2Δ 

mutant is compromised for mat formation, and it is, in fact, defective (Figure 3.5). Therefore, we 

analyzed how known Wsc1p-Rom2p interactions affect mat formation. 

Vay et al [19] used mutational analysis on the cytoplasmic tail of Wsc1p to identify the 

residues important for Wsc1p-Rom2p interactions. They identified residues Y303, S319-320, 

S322-323, L369, V371, N373, D375 to be crucial. If mutations that block this interaction also 

block mat formation, this will confirm that the Wsc1p-Rom2p interaction is important for mat 

formation.  As Rom2p is a well-known activator of Rho1p [20], this will strongly implicate 

Rho1p, and establish a role for the primary upstream interaction of the CWI pathway (Figure 

3.3).  

The fusion gene of WSC1 regulated by the WSC1 promoter was subcloned into a vector such 

that it encoded Wsc1p with a green-fluorescent protein (GFP) tag on the C-terminal cytoplasmic 

tail. Transformation of the wsc1∆ mutant with WSC1-GFP (wsc1∆::WSC1-GFP) led to rescue of 

mat formation (Figure 3.6A) and temperature sensitivity phenotypes (Figure 3.6 B), thus 

confirming it was fully functional .  
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Figure 3.5: rom2Δ  is defective in mat formation 
Overlay adhesion assay performed on wild type (WT) and rom2Δ. 
 

 

 
 
Figure 3.6: WSC1-GFP construct rescues (a) mat formation defect and (b) temperature 
sensitivity phenotypes of wsc1Δ. 
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The aforementioned amino acids that mediate Rom2p-Wsc1p interactions were mutated to 

alanine. Constructs were generated that carried a single point mutation - Y303A; combination 

double point mutations - S319A S320A and L369A V371A; combination triple point mutations 

Y303A L369A V371A and a complete truncation of the cytoplasmic tail (deletion of residue 301 

- 378). No transformants could be obtained for point mutations in the terminal region of the 

cytoplasmic tail (N373, D375) either by themselves or in combination with any other point 

mutations, and the reason for this is unknown.  

None of the point mutants fully complement the mat formation or temperature sensitive 

growth defects (Figure 3.7), however, the Y303A and S219A S220A mutants did complement 

both phenotypes better than the L369A, V371A or Y303A, L369A, V371A mutants.  Thus, both 

mutant phenotypes appear to increase as the location of the mutations edges closer to the extreme 

C-terminus. In contrast to observations of Vay et al [19], we didn’t observe any growth defect at 

30°C in any of our mutants. This could be due to the fact that they carried out the mutations and 

complementation study in a wsc1∆ mid2∆ double mutant that exhibits severe lysis defect at all 

growth temperatures in absence of osmotic support. 

 

 

 
Figure 3.7: Wsc1p-Rom2p interaction is essential for mat formation. 
Overlay adhesion assay performed on mats formed by WSC1-GFP point mutants, along with corresponding temperature 
sensitivity phenotype of every mutant.  
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3.3.4 Role of Skn7 in mat formation 

The fact that the Wsc1p-Rom2p interaction is needed for mat formation but the CWI-MAPK is 

not, suggests that the biofilm pathway might be mediated via Rho1p through another 

downstream effector. One option is the Skn7p transcription factor, that acts downstream of 

Rho1p and parallel to the Pkc1p branch of the CWI pathway [18, 21] (Figure 3.3). Since the 

Pkc1p downstream effectors (ie. CWI-MAPK cascade) are non-essential for mat formation, we 

tested the skn7∆ mutant. This mutant is defective in mat formation (Figure 3.8A), but based on 

Flo11-HA30,1015 immunofluorescence (Figure 3.8B) and western blotting (Figure 3.8C), shows no 

defect in invasive growth or Flo11p localization, expression and shedding. Thus, like the wsc1∆ 

mutant, the skn7Δ mutant is defective in mat formation in a Flo11p-independent manner. 

In addition to functioning downstream of the GTP-binding Rho1p in the CWI pathway, 

Skn7 has other distinct roles within the cell including oxidative stress response regulation and 

also acts downstream of the Sln1p histidine kinase as a response regulator [22, 23].  A conserved 

aspartic acid residue at position 427 in the receiver domain of Skn7p is known to be essential for 

its function in the Sln1p dependent pathway [22-25]. Mutating the aspartic acid to glutamic acid  

(D427E) generated a hyperactive form of Skn7p, while a mutation to aspargine (D427N) 

diminished its activity [23]. Plasmids containing Skn7p point mutants pCLM699 (Skn7D427N) 

and pCLM700 (Skn7D427E) were kindly provided by Dr. Jan S. Fassler [23].  If 

phosphorylation of the Skn7p conserved aspartic acid residue on the receiver domain plays a role 

in mat formation, then the hyperactive version of Skn7p (D427E) should rescue the mat 

formation defect of skn7∆, while the inactive version (D427N) should fail to do so. 

Complementing the skn7∆ mutation with both the active and inactive mutant forms of Skn7p led 

to rescue of the mat formation defect of skn7∆ (Figure 3.9). This suggests that Skn7p is not 

acting downstream of Sln1p to control mat formation but rather is acting downstream of Rho1p.  

Thus, its activities in mat formation must be mediated by a D427 independent mechanism [21, 

26]. 
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Figure 3.8: Skn7p affects mat formation in a Flo11p-independent manner. 
(A) Overlay adhesion assay performed on wild type (WT) and skn7Δ. (B) Secondary immunofluorescence assay performed with 
anti-HA monoclonal primary against Flo11-HA30 and plot of the percentage of cells expressing Flo11-HA30 from each strain. 
(C) Western blot of shed (S), membrane bound (M) and covalently attached (C) fractions of the cell wall using anti-HA 
monoclonal antibody. 

 

 

Figure 3.9: Sln1p-Skn7p branch is not essential for biofilm formation 
Mat formation and overlay adhesion assay phenotype of Skn7D427 point mutants.  
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3.4 Discussion 

In this chapter, we show that components of CWI pathway are required for mat formation in a 

manner that is independent of Flo11p and the canonical CWI-MAPK cascade.  The involvement 

of the CWI pathway begins with Wsc1p, which is a sensory protein of the CWI pathway, whose 

activation has diverse effects on the cell wall. [27-29],  

Our data clearly shows that Wsc1p-Rom2p interaction is essential for mat formation. This 

was shown by the fact that the rom2∆ and wsc1∆ mutants share the same phenotypes, and was 

confirmed by site directed mutagenesis studies showing that mutating the Wsc1p cytoplasmic tail 

residues, necessary for interaction with Rom2p, leads to defects in mat formation.  

The observation that the CWI-MAPK cascade is not involved suggested that Wsc1p-Rom2p 

are acting through another pathway, and this unknown pathway likely branches out from the 

GTPase Rho1p, which is regulated by Rom2p. Rho1p is an essential GTPase at the center of a 

regulatory network having effectors that control cell wall biogenesis through polarization of actin 

cytoskeleton, activation of the transcription factor Skn7p and β-glucan synthesis.  

Of these possibilities, mutant analysis implicates Skn7p.  A skn7Δ mutant, like wsc1Δ, is 

defective in mat formation, and does so in a Flo11p-independent manner.  The other possibilities 

were ruled out as follows.  A bni1∆ mutant, which represents the Bni1p protein that acts 

downstream of Pkc1p independently of the CWI-MAPK cascade to affect the actin cytoskeleton 

is defective for mat formation, but also has defects in invasive growth, implicating Flo11p 

expression (data not shown).  Neither of the fks1∆ and fks2∆ mutants had any defects in mat 

formation, and a double mutant is unviable.  However, a gas1∆ mutant, which also affect β-1,3-

glucan synthesis in the cell wall, is defective for mat formation, but in a Flo11p-dependent 

manner that affects invasive growth as well (data not shown).  Thus, the phenotypes of the skn7∆ 

mutant suggest Skn7p is playing a role downstream of Wsc1p in mat formation.  

However, Skn7p is regulated by both CWI pathway and high osmolarity glycerol (HOG) 

signaling pathways. The genes activated by Skn7p as a consequence of its activation through 

HOG pathway via its Sln1-Skn7 branch, are not identical to those activated as a result of cell 

wall stress through CWI pathway [22, 23].  This is because Skn7p is a modular transcription 

factor that can affect different sets of genes through different domains depending on which 

pathway activates it [21, 26].  
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The Sln1p histidine kinase activates Skn7p by phosphorylating the D427 residue, resulting 

in upregulation of certain target genes including OCH1, which encodes a Golgi complex 

glycosyltransferase [30]. To determine if Skn7p causes a defect in mat formation downstream of 

Sln1p, hyperactive (D427E) or inactive (D427N) point mutants of SKN7, that either overrespond 

or underrespond to Sln1p branch of the HOG pathway, respectively, were transformed into 

skn7Δ. Since both point mutants rescued the mat formation phenotype, it was shown that Skn7p 

does not act downstream of Sln1p to affect mat formation. 

We recently showed that one Flo11p-indepenent mat formation pathway, referred to as 

biofilm pathway, involves the class E vacuolar protein sorting (vps) components of the MVB 

pathway. The proposed model of the biofilm pathway suggested that it would involve a cell wall 

sensory protein whose mislocalization in class E vps mutants results in defective mat formation. 

It is possible that Wsc1p is this protein, and components of the CWI pathway, including 

Wsc1p, Rom2p, Rho1p, and Skn7p could be part of the Flo11p-independent biofilm pathway.  

Wsc1p localization depends on its recycling through a properly functioning endosomal MVB 

pathway, and a vps27∆ mutant, which disrupts MVB sorting, traps Wsc1p in an aberrant 

endosome known as the Class E compartment [29].  The wsc1∆ and skn7∆ mutants share very 

similar phenotypes with vps27∆ by affecting mat formation, but not invasive growth or Flo11p 

expression and localization.  Thus, Wsc1p may be at the head of a biofilm pathway, but this has 

yet to be solidly supported. 

3.4.1 Biofilm and CWI pathway have differential effects on mat formation in different 
∑1278b strains 

We have found that the CWI pathway affects mat formation in a manner that is independent of 

the CWI-MAPK cascade, and may be affected by endosomal sorting mutations.  However, 

recently, Birkaya et al [31] found that in another ∑1278b strain, PC538, that the CWI-MAPK 

cascade affected mat formation, invasive growth, and FLO11 expression, which is very different 

from our findings. In addition to the differences in the way the CWI-MAPK cascade affects mat 

formation, the PC538 strain also differs from TRY181 in expressing FLO10 [31], having much 

more wrinkled mats, and being less affected by mutations in VPS27 and other vps mutants (data 

not shown). 

 These phenotypic inconsistencies between the strains may be due to undefined genetic 

differences in the PC538 and TRY181 (derived from L6906).  One possible difference that could 
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be contributing is that PC538 carries a ste4∆ mutation, which could affect other signaling 

pathways.  However, there may be other differences as well.  Unraveling the differences between 

these strains will be valuable in understanding how mat formation is regulated in yeast. 
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Chapter 4  

Chitosan synthesis in Saccharomyces cerevisiae 

biofilms protects cells from environmental stress. 
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4.1 Introduction 

Unicellular microorganisms frequently form biofilms. This multicellular mode of growth allows 

individual microbes to collaborate and form communities on foreign surfaces. Biofilms offer 

numerous advantages to the microbes within them including metabolic synergism and protection 

from stress, antimicrobials, toxins, and the ability to inhabit surfaces that otherwise will not 

support growth. The resistance exhibited by biofilms results from numerous factors including 

alteration of growth rates among cells in the community, presence of extracellular matrix (ECM), 

and increased expression of drug resistance pumps [1, 2].  Biofilm structure typically is 

characterized by extracellular matrix (ECM) secretion and structural differentiation of the cells 

[3-5].  

 Saccharomyces cerevisiae (Σ1278) is capable of forming a biofilm, which we term a mat, 

on semi-solid agar (0.3%) media [6, 7]. The wild type mat is structurally differentiated into a 

central hub and peripheral rim (Figure 4.1a and b). Spoke-like structures resembling water 

channels are also observed radiating from the central hub towards the mat edge. The cell mass 

forming the hub has a characteristic wrinkled appearance and on closer inspection appears to be 

composed of a network of intertwined water channels.  The cells forming the wall of these 

channels remain firmly attached to the agar surface when the mat is subjected to the overlay 

adhesion assay (Figure 4.1c). In this assay, the mat is overlain with plastic wrap, which is then 

removed.  Cells that adhere to the agar (i.e. the hub) stay firmly attached to the agar. In contrast, 

the periphery of the mat, called the rim, is smooth in appearance, and easily removed from the 

agar surface by the plastic wrap during the overlay adhesion assay (Figure 4.1c) [6-8]. Cells of 

both rim and the hub are in yeast form, although pseudohyphal forms are observed in and near 

the spokes.  

Mat formation requires an adhesion protein called Flo11p [6, 7], that also affects other 

multicellular phenotypes. Surprisingly, in the mat there is no difference in Flo11p expression 

between the rim and hub cells [7]. This suggests that there are other molecules in the cell wall 

that differentiate between the rim and the hub. Reports have shown that there are genes and 

pathways that affect mat formation independently of Flo11p [8, 9]. These include the Ssa1-4 
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Figure 4.1: Structure of S. cerevisiae mat 
(a) Floral pattern shape of the mat showing radiating spokes connecting the central hub to the smooth outer rim. (b) Close-up of 
the mat showing details of hub and rim. (c) Overlay adhesion assay performed on wild type mat. 
 

Hsp70 proteins, multivesicular body (MVB) proteins, and components of the cell wall integrity 

(CWI) pathway (Sarode, et al, submitted).  However, the cell wall target(s) of these pathways 

that are responsible for the difference between rim and hub remain unknown. 

We utilized high-throughput sequencing of mRNA (RNA-Seq) to identify differences in 

transcriptional profiles between rim and hub cells within a mat.  The goal was to identify genetic 

signatures that are specific to each population.  In this report, we present data showing that a 

major difference between rim and hub cells is the presence of the carbohydrate chitosan in the 

hub.  This is the first reported example of chitosan being expressed in vegetative cells of baker’s 

yeast. We further show that the likely function of the chitosan in the hub cells is defense against 

environmental stresses. 

4.2 Methods and materials 

4.2.1 Strains, media, and growth conditions 

All strains used in this study belong to the yeast strain background ∑1278 [6] (Appendix Table 

A-7). The cda1Δ mutant was created by transforming in the KanMX6 disruption cassette, 
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amplified by PCR from the genome of the cda1∆ mutant pulled out of whole-genome deletion 

collection. The knockout library was created in the Σ1278 background, by Owen Ryan and 

colleagues in the laboratory of Charles Boone, at the University of Toronto (Ryan O. et al, 

Science 2012, in press). The cda2∆ mutation was generated by replacing CDA2 with the 

His3Mx6 cassette amplified from plasmid pFA6a-GFP-His3MX6 using PCR [7, 10]. Primers are 

listed in appendix Table A-8. Transformations were performed by the standard lithium acetate 

transformation method [11]. All strains were maintained on standard yeast extract-peptone-

dextrose (YPD) media [11] containing  250µg/ml G418 in case of cda1Δ or on minimal media 

lacking histidine in case of cda2Δ and cda1Δ cda2Δ [11]. Strains grown on low agar plates (YPD 

with 0.3% agar) [6] for 5 days at 25°C were used for overlay adhesion assays and staining. 

4.2.2 Overlay adhesion assay 

The overlay adhesion assay was performed as described [7]. 

4.2.3 Illumina Library Preparation 

The rim cells were separated from hub, from five-day-old mats growing on the surface of low-

density agar plates, by performing overlay adhesion assay (Materials and methods). The hub 

cells were removed using a clean dry spatula. The cells were then washed with ice-cold water 

and total RNA was extracted as described in Kohrer K. et al [12]. Contaminating DNA was 

removed using the TurboDNA-free kit (Ambion) according the manufacturer’s protocol and 

cleaned with the RNeasy kit (Qiagen) according to the manufacturer’s instructions. cDNA 

libraries were constructed from mRNA within each sample and sequenced at the Vanderbilt 

University Genome Technology Core following Illumina specifications on an Illumina HiSeq 

2000, as previously described [13, 14]. 

4.2.4 Eosin Y staining 

Staining was performed as described in Baker et al [15]. Briefly, for staining of cells in liquid 

culture, cells grown overnight in 5ml YPD were diluted to optical density of O.D600 0.1, and then 

allowed to grow for 24hrs, 48hrs, 72hrs respectively. For staining cells from mats, cells were 

removed separately from hub and rim as described in [7], and washed with 1ml McIlvaine’s 

buffer (MIB) [0.2 M Na2HPO4, 0.1 M Citric acid pH 5.8]. The cells were pelleted and 

resuspended in 500µl MIB. 30µl eosin Y (5mg/ml stock) was added to stain the cells and 
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incubated in dark for 10 min at room temperature. The excess dye was washed off with 1ml MIB 

buffer, the cells were pelleted and resuspended in 500µl MIB and examined under the 

fluorescein isothiocyanate (FITC) filter. 

4.2.5 Calcofluor white staining 

Cells were removed from rim and hub of mats as described in [7], washed and resuspended in 

500µl sterile distilled water. Cell were then stained using 100µl (2 mg/ml) calcofluor white, 

washed and resuspended in 250µl sterile distilled water and examined under the 4’,6-diamidino-

2-phenylindole (DAPI) filter. 

4.2.6 Cell wall stress assays 

Rim cells were separated from the hub by overlay adhesion assay from five day old mats, using 

disinfected (100% ethanol) plastic wrap strips. Hub cells were removed using disinfected (100% 

ethanol) spatulas. The separated cells were suspended in 1ml sterile distilled water. 0.5 O.D600 

cells were removed to final volume of 500µl in sterile distilled water and serially diluted 10-fold. 

10µl of each dilution (5µl in case of SDS containing plates) were then spotted onto YPD plates 

containing designated concentrations of cell wall stressing agents. All plates were incubated at 

30°C for 48hrs. 

4.2.7 Gene Ontology (GO) analysis 

The normalized reads per Kilobase per million (RPKM) values were transformed to log2 and the 

genes were then clustered using Cluster 3.0 [16]. The clustered genes were sorted according to 

their log2 RPKM values where values ≤ -1 and ≥ 1 were identified as downregulated and 

upregulated genes, respectively. It is to be noted, that for the analysis, the RPKM values for the 

wild-type rim and vps control strains were compared to those of wild-type hub. Hence, a 

normalized RPKM value of ≤ -1 in the column rRPKM(WTR/WTH) suggests that the particular 

gene was downregulated in the rim compared to the hub, whereas a normalized RPKM value of 

≥ 1 in the same column suggests that the particular gene was upregulated in the rim compared to 

the hub. The list of gene ORF IDs were used as input for AmiGO GO Slimmer tool [17], and the 

number of genes in Biological process (GO:008150) category was plotted. The rRPKM values 

were used to as input for Microsoft’s Fisher’s exact test calculator (Available at: 

http://research.microsoft.com/en-us/um/redmond/projects/mscompbio/), to obtain P-values. 
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Bonferoni’s correction calculations [18] were performed to determine if the obtained Fisher’s p-

values were statistically significant.  

4.3 Results 

4.3.1 RNA-Seq reveals sporulation genes are upregulated in the hub compared to the rim 

RNA-Seq [19-23] was used to identify gene expression signatures that differ between the 

transcriptomes of rim and hub cells. Extracted RNA from wild-type rim and hub, along with two 

additional control strains defective in the mat formation (vps25Δ and vps27Δ [8]), were 

sequenced. The strains vps25Δ and vps27Δ lack vacuolar protein sorting components that are 

involved in the multivesicular body (MVB) sorting pathway [24-27]. These mutants were 

selected as controls because they both fail to form the typical pattern observed in the hub of 

wild-type mats through Flo11p-dependent (vps25Δ) and –independent (vps27Δ) mechanisms [8] 

(Appendix Figure A-9).  In fact, the entire defective mat of each mutant resembles the rim. 

The 50 bp read sets from each of the four samples were independently mapped to the 

Saccharomyces cerevisiae Sigma 1278 reference transcriptome, of which an average of 64% of 

reads were successfully mapped (vps25Δ: 66% (31,931,737 of 48,020,535); vps27Δ: 66% 

(33,039,913 of 49,729,266); wild type hub: 54% (16,961,043 of 31,409,990); wild type rim: 69% 

(20,459,737 of 29,796,180)). In all samples, 91% of mapped reads uniquely mapped to a single 

transcript. The nucleotide content of mapped reads represented an average 148x coverage of the 

S. cerevisiae Sigma 1278 reference transcriptome (vps25Δ: 185x; vps27Δ: 192x; wild type hub: 

98x; wild type rim: 119x).  

The genes were clustered using Cluster 3.0 [16] to identify genes that were differentially 

expressed by ≥2-fold in the hub compared to the rim and controls. Clustering revealed a total of 

178 downregulated and 173 upregulated genes in the hub (Table A-10 and Table A-11). The 

Biological Process (BP) Gene Ontology [28] terms were assigned to the clustered genes using 

the AmiGO GO Slimmer tool [17], and BP categories with clusters of ≥5 genes (upregulated or 

downregulated) were selected for further analysis. Figure 4.2 shows the number of upregulated 

and downregulated genes in the hub, from the selected BP categories. Among the genes 

upregulated in the hub, 7 were classified under sporulation (GO:0043934) out of which 6 genes 

(Appendix Table A-12) had statistically significant Fisher’s test p-values. This was a perplexing 

result, considering the fact that our strain is haploid, and hence incapable of sporulation. Among 
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these sporulation genes was CDA2 (p-value 5.01e-11), which is considered to be sporulation 

specific gene involved in spore wall biogenesis [29]. 

CDA2 encodes a chitin deacetylase enzyme, Cda2p, which along with its homolog Cda1p, is 

involved in biosynthesis of chitosan (Figure 4.3a) [29]. Chitosan is a glucosamine polysaccharide 

(Figure 4.3c) that is made by removing the acetyl groups from chitin, a linear polysaccharide of 

β-1,4-linked N-acetyl glucosamine (poly-GlcNAc) residues (Figure 4.3b). Chitin is an essential 

component of the cell wall in all fungi, and plays an important role in maintaining cell wall 

integrity [30-32]. In S. cerevisiae, its deacetylated derivative chitosan (poly-GlcN, Figure 4.3c) 

was thought to be found exclusively in the ascospore wall and inter-spore bridges [33, 34] 

formed during sporulation in diploids. However, chitosan has been observed in cell walls of a 

few other fungi like Cryptococcus neoformans, Aspergillus spp., and Rhizopus spp., and has been 

shown to be essential for cell wall integrity and/or virulence in these particular fungi [15, 35, 36]. 

 

 

 
Figure 4.2: Distribution of hub genes in GO categories. 
Biological processes of upregulated and downregulated genes in hub compared to expression level in rim. 
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Figure 4.3: Chitosan biosynthesis and structure. 
(a) Biosynthesis of chitosan in yeast involves deacetylation of chitin catalyzed by the enzymes CDA1 and CDA2. Structures of 
polysaccharides (b) chitin and (c) chitosan. The acetyl group in chitin and the resultant deacetylated group are highlighted. 
 

4.3.2 Chitosan is enriched in cells within the hub  

These results suggest the possibility that a chitin deacetylase is expressed in the vegetative cells 

forming the biofilm and is enriched in the hub.  If this is the case, then there should be a resulting 

enrichment of chitosan in the walls of cells in the hub.  The cationic dye eosin Y binds chitosan 

and is used to stain chitosan in C. neoformans cells and S. cerevisiae spores [15, 37-39]. 

Therefore, we used eosin Y staining to determine if chitosan is present in the cell walls of yeast 

growing as mats.  

Hub cells exhibited strong green fluorescence upon staining with eosin Y (Figure 4.4). In 

contrast, eosin Y showed much lower staining of rim cells. This was quantified by counting the 

number of cells that stained with eosin Y, and plotting that as a percentage of the total cells in the 

field of view (Figure 4.4b).  It is to be noted that we observed only a few cells in the rim sample 

showing partial staining (restricted to the bud neck region) and some that stained like hub cells. 

We believe that these are either hub cells within the water channel that were carried over during 

overlay adhesion assay or are rim cells that are transforming into hub form of growth. 
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Figure 4.4: Enrichment of Chitosan in hub versus rim cells. 
(a) Eosin Y staining of wild type rim and hub cells. In contrast to strong fluorescence of hub cells, the rim cells showed partial or 
complete loss by eosin Y staining (b) Plot of percentage of cells stained by eosin Y from rim and hub. *** = p-value < 0.0001. 
 

Since mats were incubated for growth for 5 days, we wanted to verify if cell wall chitosan 

synthesis is a feature of cells within mats exclusively, or a function of long term growth. We 

stained vegetative cells grown in liquid culture and cells inoculated on low density agar, every 

24hrs for 5 days (Figure 4.5a). We failed to observe any clear eosin Y staining signal in cells 

grown in both liquid culture and developing mats, for about 72hrs. After about 4 days, the 

number of dead cells increased in the culture, making it difficult to observe the staining, since 

dead cells absorb eosin Y and fluoresce very brightly. In contrast, the cells from the mat 

exhibited strong chitosan staining at 72hrs. It is to be noted that it is around 72hrs that the 

characteristic wrinkles and water channels begin to form in the hub [6]. 

Inoculating low agar plates with cells belonging to the lab strain background S288C, which 

is incapable of forming mats, failed to stain with eosin Y (Figure 4.5b). This suggests that 

chitosan synthesis is unique to cells capable of mat formation (i.e. mat specific). 
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Figure 4.5: Chitosan presence is mat specific 
Eosin Y staining of (a) ∑1278b background cells in liquid culture and mats grown for up to 4 days and (b) cells from S288C 
background that are defective for mat formation grown in mat inducing conditions. 
 

4.3.3 Chitosan is not essential for mat formation 

Both Cda1p and Cda2p regulate the biosynthesis of chitosan from chitin in S. cerevisiae. 

Therefore, cda1Δ, cda2Δ and cda1Δcda2Δ mutants were generated and tested for both mat 

formation and eosin Y staining. As seen in Figure 4.6, both single gene mutants (cda1Δ and 

cda2Δ) as well as the double mutant (cda1Δcda2Δ) displayed no defect in mat formation, 

suggesting that chitosan is not essential for this phenotype. However, there was a complete loss 

of staining by eosin Y in all mutants (Figure 4.7). In contrast, none of the mutants showed any 

defect in calcofluor white staining, indicating that chitin levels in the cells are not affected 

(Figure 4.8). 
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Figure 4.6: Chitosan is not essential for mat formation 
5 days old mats of cda1Δ, cda2Δ single and cda1Δ cda2Δ double mutants on low density agar media show no defects for mat 
formation based on structure of phenotype in the overlay adhesion assay. 

4.3.4 CDA mutants show increased sensitivity to cell wall stress  

Many plant pathogenic fungi convert surface exposed cell wall chitin to chitosan to evade chitin-

based immune responses of their host plants [40]. Additionally, studies in Cryptococcus spp. 

have suggested that chitosan is important for virulence and cell wall integrity [15, 35]. To 

determine if chitosan plays a protective role in mats, we further examined whether mutants 

defective in chitosan synthesis lack the ability to cope with certain cell wall stress conditions, 

and if the hub was less sensitive than the rim. 

Sensitivity of WT, cda1Δ, cda2Δ and cda1Δcda2Δ mutants to SDS (0.08%), caffeine 

(3mg/ml), Calcofluor white (400µg/ml), and hydrogen peroxide (15mM) was determined by 

extracting cells from the rim or hub of the mat, and then spot diluting them onto regular YPD 

plates or YPD plates containing the corresponding testing agent (Figure 4.9).  This result 

revealed that the rim cells were more sensitive to aforementioned cell wall perturbing agents than 

hub cells, and the loss of CDA1, CDA2, or both caused increased sensitivity throughout the mat. 

Biofilm cells are more resistant to anti-infectives than their planktonic counterparts [41].  

For example, Candida albicans biofilms produce extracellular β-1,3-glucan that protects them  
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Figure 4.7: Loss of chitosan staining in cda1Δ , cda2Δ  and cda1Δ  cda2Δ  mutant strains 
(a) Loss of Eosin Y staining by both rim and hub of cda1Δ, cda2Δ and cda1Δ cda2Δ mutants. (b) Plot of percentage of cells 

stained by eosin Y in wild type and mutants. *** = p-value < 0.0001. 

 

against fluconazole [42].  Therefore, we tested to see if chitosan would protect S. cerevisiae 

biofilm cells against the effects of fluconazole.  This was indeed the case, as the wild-type hub 

was more resistant than the rim to fluconazole (20µg/ml), and the cda1∆, cda2∆, and cda1∆ 

cda2∆ mutants were all more sensitive than wild-type to this drug. 

4.4 Discussion 

Chitin is found in cell walls of fungi, shells of crustaceans and cuticles of insects, and is the 

second most abundant polysaccharide found in nature. Its applications in industry, however, have 

been limited, mainly due to its low solubility. In contrast, its deacetylated derivative chitosan, is 

gaining importance in both research and industry due to its desirable physicochemical properties 

like solubility in dilute acids, ability to bind to anionic compounds and its anti-microbial 

properties [43-46]. It is emerging as a versatile biopolymer with applications in cosmetics, 

wastewater treatment, digestive supplements, biomedical implant materials, and DNA-delivery  
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Figure 4.8: Chitin deacetylase mutations do not affect chitin staining  
Calcofluor white staining of rim and hub from wild type, cda1Δ, cda2Δ and cda1Δ cda2Δ is similar. There is accumulation of 
calcofluor white in the bud necks of cells, while the higher magnification panel shows accumulation of chitin in bud scars. The 
white scale bar represents 20µm. 
 
systems [47-51]. The major source of chitosan for industry has been as a downstream product of 

chitin extracted from shells of crustaceans. This is a laborious process that relies heavily on 

seafood that is a seasonal source. As a result, fungi (e.g. Aspergillus spp and Mucor spp) are 

being studied as cheaper and sustainable alternatives for chitosan extraction [43, 44, 52-55].  

In the case of S. cerevisiae, chitosan research has been restricted to sporulation studies. The 

current upsurge of interest in chitosan extraction and its ever-expanding list of applications can 

be aided by the ease of genetic manipulation of S. cerevisiae. Using the deep sequencing method 

of RNA-Seq, we obtained a snapshot of the transcriptomic signature differences between the rim 

and hub cells of mats. Preliminary analysis revealed that certain sporulation-specific genes were 

upregulated in the hub compared to the rim. Although only 6 out of the 7 sporulation genes 

expression level changes were statistically significant, it was an interesting trend, given that 

haploids cannot sporulate.  However, the presence of the chitin deacetylase gene (CDA2) 

suggested the possibility that biofilm hub cells synthesized chitosan. We supported our novel 

observation with strong genetic and eosin Y staining data to show the presence of chitosan in mat 

cells. It is to be noted that though eosin Y is widely used to stain chitosan, additional 

biochemical and analytical tests will need to be performed to confirm the presence of chitosan. 
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Figure 4.9: Abundance of chitosan correlates with resistance to antifungals and cell wall 
stress 
Rim and hub cells from wild-type and mutant strains were resuspended and subjected to 10-fold spot dilution assays on YPD 
plates containing fluconazole or several different cell wall perturbing agents. All plates were incubated at 30°C for 48hrs. 
 

Disruption of the CDA1 or CDA2 gene, as well as both, causes loss of eosin Y staining, 

indicating these genes are required for chitosan synthesis (Figure 4.7). The loss of staining with 

each mutant alone may occur because the genes have an additive effect, and the level of chitosan 

synthesized in each single mutant is below the level of detection by Eosin Y. Loss of the chitin 

deacetylase enzymes did not affect accumulation of chitin in the bud neck and bud scars, as 

shown by calcofluor white staining (Figure 4.8), which indicates that eosin Y was not aberrantly 

staining chitin. 

Although chitosan is found predominantly in the hub, it is not essential for mat formation, 

since single and double knockout mutants for CDA1 and CDA2 form wild-type mats (Figure 

4.6). However, chitosan is essential as a protective barrier for the cells against natural stress 

conditions (Figure 4.9). The cda1Δ, cda2Δ single and double mutants exhibit a higher sensitivity 

to cell wall stressing agents. Additionally, the wild type hub is more resistant to these stressing 

agents than the rim, which correlates with the RNA-Seq (Appendix Table A-10) and eosin Y 
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staining data (Figure 4.4) showing higher levels of CDA gene expression and chitosan in hub 

forming cells of a mat. 

The function of the spore wall, in both fungi and bacteria, is to assure the microbe’s 

persistence through the hostile environment, until the return of favorable conditions. The S. 

cerevisiae spore wall is the protective barrier that makes the spores resilient and resistant to 

environmental insults including high temperature, osmotic shock, acids etc. [29, 56-58], and is 

composed of chitosan and another polymer named di-tyrosine [59, 60]. 

Biofilms are notoriously resistant to elimination methods [1, 2]. The presence of chitosan in 

the hub (Figure 4.3), taken together with the resistance it confers to cell wall perturbing agents 

(Figure 4.9), and the knowledge of its role in spore wall protection leads us to propose that 

chitosan is an important factor contributing to resistance in biofilms.  In the biofilm, chitosan 

probably forms a barrier that protects the cells against the effects of the commonly used 

antifungal fluconazole (Figure 4.9).  

In S. cerevisiae, chitosan possibly has a protective function as a barrier that shields cells 

from a number of environmental insults. Reduced levels of chitosan in the rim and the chitin 

deacetylase mutants, accompanied by their increased vulnerability to cell wall damaging agents, 

supports our hypothesis. This is the first report showing structural and genetic difference 

between rim and hub in a mat. Further research on the role of chitosan and other sporulation 

genes in a mat, could shed light on previously unexplored roles of these gene products in 

protection of biofilm forming cells. 
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Conclusions and future directions 



 88 

5.1 Conclusions  

Many microorganisms prefer to grow as biofilms in nature. A biofilm is a surface attached, 

community-based growth that provides advantages like protection from different stresses, 

opportunity for genetic exchange and regular dissemination to new colonizable locations [1]. 

Most human clinical infections involve microbial biofilms, making it essential to grasp the 

molecular details of biofilm formation in order to combat it effectively.  

This dissertation details the approaches used to gain insight into detailed molecular 

mechanisms involved in fungal biofilm formation using Saccharomyces cerevisiae as a model 

system. It is well documented that S. cerevisiae and Candida spp. are more closely related 

compared to other fungal pathogens (Figure 5.1). Both C. glabrata and C. albicans form biofilms 

and are also the major source of nosocomial infections [2, 3], making S. cerevisiae a favorable 

genetic model system to study them. Additionally, S. cerevisiae is a well-characterized genetic 

tool with a vast literature and genetic resource. Reynolds et al [4] introduced S. cerevisiae as a 

model system for fungal biofilm research. Although S. cerevisiae and Candida spp. possess 

homologs for many genes, there are also reports of rewiring of homologous genes for new 

functions [5].  

 

 

 
Figure 5.1: Phylogenetic tree showing relationship between selected fungal pathogens with Saccharomyces cerevisiae.  
The tree was generated using NCBI taxonomy database [6, 7]. 
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S. cerevisiae biofilms are also widely used in the brewing and wine industry, where their 

ability to ferment and flocculate is utilized [8]. Great efforts are dedicated into improving the 

fermentation process for e.g. improvement in fermentative flavor of the product, waste or 

harmful by-product elimination, increase in yield etc. [9, 10]. Genetic manipulation for strain 

improvement is the major approach used [11, 12], over isolation of new natural isolates, to 

achieve these goals. In recent years, S. cerevisiae biofilms are also gaining importance in the 

field of alternative clean fuel development for bioethanol production [13]. 

Hence, understanding S. cerevisiae biofilm formation is important not only due to its 

importance as a widely used genetic model system for clinical research, but also for its 

applications in food industry and alternative fuel research. 

In this final part of the dissertation, the major findings will be summarized, including how 

these results contribute to current knowledge of fungal biofilms. Additionally, an outline for 

future experiments will be provided that will help explore new questions.  

5.2 Vacuolar protein sorting genes regulate biofilm formation in S. cerevisiae by Flo11p-
dependent and –independent mechanisms. 
S. cerevisiae generates complex biofilms called mats on low-density (0.3%) agar plates. The 

mats can be morphologically divided into two regions: (i) hub, the interior region characterized 

by the presence of wrinkles and channels, and (ii) rim, the smooth periphery. Formation of mats 

depends on the adhesin Flo11p, which is also required for invasive growth, a phenotype in which 

the S. cerevisiae yeasts grow as chains of cells that dig into standard-density (2%) agar plates. In 

addition, it was also shown that mature Flo11p is covalently associated with the cell wall and 

shed into the extracellular matrix of the growing mat. Although both invasive growth and mat 

formation depend on Flo11p, mutations that perturb the multivesicular body (MVB) protein 

sorting pathway inhibit mat formation in a FLO11-independent manner. These mutants, 

represented by vps27Δ, disrupt mat formation but do not affect invasive growth, FLO11 gene or 

protein product expression, or Flo11p localization. In contrast, an overlapping subset of MVB 

mutants (represented by ESCRT [endosomal sorting complex required for transport] complex 

genes such as VPS25) interrupt the Rim101p signal transduction cascade, which is required for 

FLO11 expression, and thus block both invasive growth and mat formation.  
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5.2.2 Significance 

Adhesion is the primary step of biofilm development. Specialized proteins, named adhesins, 

confer the property of adhesion to cells, and are thus important for biofilm formation. Besides 

their roles in biofilm adhesion, adhesins have also been shown to be essential for virulence in 

case of pathogenic fungi. As a result, the majority of research traditionally has been focused on 

studying adhesins and their role in biofilm formation.  

In case of S. cerevisiae belonging to genetic background Σ1278b, Flo11p is the only adhesin 

protein expressed by the cells [14]. Essentially, it was shown that although Flo11p is important 

and required for adhesion and invasive growth, it is required but not sufficient for biofilm 

formation. Identification of a Flo11p-independent mechanism of biofilm formation directed 

attention towards cellular components other than adhesins, which are necessary for biofilm 

development. The proposed model suggested that mislocalization of an essential cell wall protein 

cargo in MVB pathway mutants also led to a defect in biofilm formation. Since the cell wall and 

its components are ideal targets for drug design, identification of new essential cell wall 

candidates could boost development of new drugs.  

5.3 A subset of components of the cell wall integrity pathway are essential for biofilm 
formation in S. cerevisiae 
Flo11p is the only FLO protein expressed in mats formed by the S. cerevisiae ∑1278b 

background strain L6906 [14], and is required for mat formation, invasive growth and adhesion. 

However, mat formation is regulated by vacuolar protein sorting (vps) genes in both a Flo11p-

dependent and –independent manner (Chapter 2). The Flo11p-independent branch of the 

pathway (biofilm pathway) requires an intact and fully functional MultiVesicular Body (MVB) 

pathway traversing the endosome. Based on the results with the MVB pathway mutants, it was 

hypothesized that MVB pathway mutants affect biofilm formation by mislocalizing an important 

component of the biofilm pathway that leads to perturbation of the cell wall, ultimately leading 

to defect in biofilm formation. Among the pathways affecting the cell wall, the one that has 

known components affected by the MVB pathway is the cell wall integrity pathway (CWI) [15]. 

The main function of the CWI pathway is maintenance of the highly dynamic cell wall structure, 

by sensing signals (i.e. damage due to physical or environmental agents, hormones, signal to 

divide, etc), and relaying them downstream, leading to activation of appropriate genes and 
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consecutive remodeling of the cell wall (e.g. Fks1p, β-1,3-glucan synthase) and Skn7p 

(transcription factor). Genetic data revealed that components of the CWI pathway, including the 

Wsc1p receptor, but excluding the CWI-MAPK cascade, disrupt mat formation, and therefore 

may comprise part or the entire biofilm pathway (Chapter 3). 

5.3.1. Significance 

The cell wall and its components are absolutely crucial for cell survival. The cell wall is the 

interface through which the environmental cues are integrated into the cell to tender the 

appropriate response. Hence, it was not entirely surprising to find that components of the CWI 

pathway were essential for biofilm formation, which involves active cell-cell and cell-

environment interaction. What was intriguing was that there was disparity in the role of 

individual components of the CWI pathway in mat formation. For example, although both Mid2p 

and Wsc1p are considered the major sensors for the CWI pathway, only Wsc1p caused a defect 

in mat formation. This suggests that there is a clear division of function between these sensors 

with no redundancy of function, even though they belong to the same pathway. Also, the MAPK 

cascade was found to be completely expendable for mat formation. Thus the pathway can be 

imagined as consisting of individual modules that could be shared with other pathways or not 

used, depending on the conditions.  

5.4 Chitosan synthesis in S. cerevisiae biofilms protects cells from environmental stress 

Although Flo11p is required for mat formation, it is similarly distributed on both rim and hub 

cells.  Thus, the modifications in hub cells that distinguish them from rim cells are unknown. In 

order to elucidate this, high throughput mRNA sequencing (RNA-Seq) was used, and this led to 

the discovery that the glucosamine polymer chitosan is specifically generated in the hub of the 

matured mat. Additionally, chitosan biosynthesis was shown to be a characteristic property of 

cells capable of forming a mat on low-density agar medium and was conspicuously absent in 

cells grown in liquid culture and in cells incapable of generating a mat, belonging to S288C 

genetic background. Chitosan did not modify the adhesive properties of the hub cells, however it 

was shown protect the hub cells from environmental stresses such as antimicrobials.  
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5.4.1 Significance 

Presence of chitosan in S. cerevisiae spore wall and interspore bridges is well documented. 

However, its presence in vegetative cells is a novel discovery. Additionally, identification of 

presence of chitosan as a differentiating factor between hub and rim cells that also correlates 

with the difference in sensitivity to cell wall stress agents, introduces chitosan as an important 

and overlooked defense mechanism in biofilm cells. Roles for chitosan in biofilm protection 

brings to attention a rather unexplored mode of defense that could be exploited for drug 

targeting. For example, the chitin specific dye calcofluor white is well known for its use as an 

antifungal and diagnostic agent [16, 17]; chitosan could provide an additional target for drug 

design and fungal diagnosis.  

5.5 Future directions 

5.5.1 Role of shed Flo11p in biofilm formation 

Flo11p, also known as mucin-like protein (Muc1p), was reported as being shed outside the cell 

[18]. It appears that there are two forms of Flo11p, one is retained within the cell wall, while the 

other is cleaved and shed outside the cell. The membrane attached form is well characterized for 

its role in adhesion and invasive growth, however the function of the shed form remains to be 

determined. Karunanidhi et al [19] suggested that shed Flo11p could coat the cell surface and 

function as ‘lubrication’ of cells to glide onto agar surface. Additional studies could shed more 

light on its function in mats, the shed Flo11p could be speculated to have many possible 

functions like  

(a) Part of ECM: ECM is a versatile component of a biofilm that contains variety of 

constituents like polysaccharides, DNA, proteins etc. Flo11p could function as part of a 

yet uncharacterized ECM in mats. Screening for mutants defective only in Flo11p 

shedding, and studying their effect on the mat phenotype could help determine whether 

shed Flo11p has any role in biofilm formation. 

(b) Signaling molecule:  Other mucin proteins like Msb2p, have been shown to exist as both 

integral membrane bound form and a secreted form in S. cerevisiae. The secreted Msb2 

was reported to function in MAPK signaling [20, 21]. It will be interesting to determine 

whether Flo11p is also a signaling mucin, that either functions in some form of a 

feedback mechanism or in transmission of signal between cells of a biofilm. 
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(c) Interact with other proteins: Co-immunoprecipitation followed by mass spectrometer 

studies on shed Flo11p could help identify if the shed Flo11p binds to other proteins, if 

any. Since Flo11p has also been shown to have homotypic binding properties [22], it is 

also plausible that it binds to other membrane associated or shed flocculins or proteins. 

5.5.2 Role of cell wall integrity pathway in biofilm formation  

The cell wall integrity pathway is not a simple linear pathway but rather an interconnected 

network in which all players have not been identified as yet [5, 23]. For example, the role of 

Skn7p as a transcription factor in cell wall pathways is well documented, however the entire 

breadth of genes regulated by Skn7p in the context of biofilm formation is still not known. 

Identification of targets of Skn7p could shed light on additional factors that could be essential for 

cell wall biogenesis and in turn biofilm formation. RNA-Seq analysis to identify genes affected 

by skn7Δ will provide a list of genes that are directly and indirectly affected.  

Screening and cataloging of genes in the whole genome knockout library for genes that 

cause defects in the biofilm formation, will be an extremely informative, although laborious, 

project. In fact, a preliminary screen for all cell wall related genes showing defects in mat 

formation was undertaken, but unfortunately wasn’t followed through to the end. Following up 

on that work could help identify and categorize genes affecting the cell wall, and probably build 

a framework to unravel the cross talk circuitry involving CWI and other pathways affecting cell 

wall and biofilm formation. 

5.5.3 RNA-Seq as a tool to paint the ‘big-picture’ 

Using RNA-Seq, dubbed as a revolutionary tool for transcriptomics [24], was a fruitful 

endeavour. The expression data to identify differences between transcriptomes of hub and rim 

cells, and between wild-type and vps mutants (vps25Δ and vps27Δ) using RNA-Seq included an 

immense list of genes. Screening the genes to identify other interesting trends is another 

worthwhile undertaking that could be productive in terms of identifying previously unknown 

genes or unexpected modulation in expression levels of known genes and their effect on biofilm 

formation. 
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5.5.4 Chitosan analysis 

Detection of chitosan in the mat cells unlocked an entirely new area for exploration. Chitosan 

research in S. cerevisiae is limited mainly to sporulation studies. Whether chitosan production in 

the cell wall of vegetative cells follows the same pathways as in sporulation, or whether there are 

any differences is an interesting question that can be addressed by screening the whole genome 

knockout library to identify genes that affect chitosan biosynthesis. 

Chitosan is a versatile carbohydrate with commercial importance too. There are reports of 

using chitosan as a biomaterial for implant design [25], antibacterial agent [26] and dietary 

supplement [27]. Shellfish is the major source of chitosan for industries [28]. Considering that 

shellfish is also a very common cause of allergy in many individuals [29], alternative sources for 

chitosan (at least in case of implants and dietary supplement) is essential. Fungi are easy to grow 

in large numbers and manipulate genetically [30-35], and are being studied as an alternative 

source for chitosan. Introduction of S. cerevisiae into this list of fungal chitosan sources can be a 

boon to chitosan research, and its vast genetic and literature resources could be utilized to screen 

for different strains and/or mutants with higher chitosan content in their cell wall.  

Whole genome knockout library screening is currently underway to identify possible 

transcription factors affecting chitosan production in S. cerevisiae. If genes affecting chitosan 

production are identified, they could be manipulated to generate mutants producing higher levels 

of chitosan. Additionally, extraction methods from fungi are already reported [30], but they are 

crude at best and the extract retains high levels of chitin (unpublished results). S. cerevisiae is a 

cheaper option to modify and improve the extraction protocol for future scaled-up industrial 

uses. 
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Table A-1: Strains used in chapter 2 
 

Strain Genotype Reference 

L6906 MATa ura3-52 his3::hisG  FLO11::HA30, 1015 [14] 

TRY181 MATa ura3-52 his3::hisG  FLO11::HA30, 1015 This study 

CPY74 MATa ura3-52 his3::hisG  FLO11::HA30 vps4 :: kanMX6 This study 

CPY15 MATa ura3-52 his3::hisG  FLO11:: HA30 vps25 :: kanMX6 This study 

NY70 MATa ura3-52 his3::hisG  FLO11:: HA30, 1015 vps25 :: kanMX6 This study 

CPY160 MATa ura3-52 his3::hisG  FLO11:: HA30 vps28 :: kanMX6 This study 

CPY24 MATa ura3-52 his3::hisG  FLO11:: HA30 vps27 :: kanMX6 This study 

NY64 MATa ura3-52 his3::hisG  FLO11:: HA30, 1015 vps27 :: kanMX6 This study 

CPY105 MATa ura3-52 his3::hisG  FLO11:: HA30  rim13 :: kanMX6 This study 

NY62 MATa ura3-52 his3::hisG  FLO11::HA30, 1015 rim13 :: kanMX6 This study 

CPY115 MATa ura3-52 his3::hisG  FLO11::HA30 rim101 :: kanMX6 This study 

NY78 MATa ura3-52 his3::hisG  FLO11::HA30, 1015 rim101 :: kanMX6 This study 

TRY120 MATa ura3-52 his3::hisG  FLO11::HA30 vps27 :: kanMX6 RIM101-531 This study 

NY60 MATa ura3-52 his3::hisG  FLO11::HA30, 1015 vps27 :: kanMX6 RIM101-531 This study 

TRY118 MATa ura3-52 his3::hisG  FLO11::HA30 vps25 :: kanMX6 RIM101-531 This study 

NY58 MATa ura3-52 his3::hisG  FLO11::HA30, 1015 vps25 :: kanMX6 RIM101-531 This study 

TRY124 MATa ura3-52 his3::hisG  FLO11::HA30, 1015 rim13 :: RIM101-531 This study 

NY82 MATa ura3-52 his3::hisG  FLO11::HA30, 1015 rim13 :: kanMX6 RIM101-531 This study 

CPY154 MATa ura3-52 his3::hisG  FLO11:: HA30 vps20 :: kanMX6 This study 

CPY96 MATa ura3-52 his3::hisG  FLO11:: HA30 rim9 :: kanMX6 This study 

CPY112 MATa ura3-52 his3::hisG  FLO11:: HA30 rim101 :: kanMX6 This study 
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Table A-2: Primers used in chapter 2 
 

Primer Purpose Sequence 

TRO369 
Reverse primer used in conjunction 

with listed primers to confirm 
disruptions 

GCACGTCAAGACTGTCAAGG 

TRO394 Disrupt Vps4 CCAACTTCTACGCCAAGTATCCTA 
TRO395 Disrupt Vps4 CAATCCTGAAAGTGAAGAATCCA 
TRO396 Confirmvps4Δ TAAGAGCAGTAAACCCGTTAGTGAC 
TRO156 Disrupt Vps25 CAAATGATTACACCCCATGAA 
TRO157 Disrupt Vps25 AAGGTTCAAGACTGGACCATG 
TRO162 Confirmvps25Δ TTTTAGATATTTGCGTTAGCTAAGG 
TRO379 Disrupt Vps28 CGGATCCTTCTAAATTGAGAAGAG 
TRO380 Disrupt Vps28 TGGATCAAAGATGATAGTCGCAG 
TRO381 Confirmvps28Δ TCCTTGCCGCCAATAATT 
TRO266 Disrupt Vps27 CCGATTTTTTGGTAATATGTCAA 
TRO267 Disrupt Vps27 AGCCAGGTGGTCAAAAAACA 
TRO268 Confirmvps27Δ ACAAAAGCAAACTGTTCGGAG 
TRO503 Disrupt Rim13 AGTATCTTTGAACCGCGCAG 
TRO504 Disrupt Rim13 GGATGGTCGTTCATTATTTTTGAG 
TRO505 Confirmrim13Δ CGTTACCTCCCACAAAACTTTTG 
TRO482 Disrupt Rim101 GTCCAGCTCGGAGTTTCTAAA 
TRO483 Disrupt Rim101 CGGGATCAACCGATCAAGATA 
TRO484 Confirmrim101Δ ACTTTTCTCTGCCCAGTGACA 

TRO516 GenerateRIM101-531dominant allele CAATGGCAGGTGGAACTTCATTGAAGCCTAACTGG
GAATTTAGCCTGAACTGAGGCGCGCCACTTCTAAA 

TRO517 GenerateRIM101-531dominant allele TCTTCAATCGCCAGCTTACTCATGATAATATCATTA
GTACAGCTTTTTTGGAATTCGAGCTCGTTTAAAC 

TRO518 ConfirmRIM101-531 CCGCCTCTACAATCAAAGATACC 

PC675 Insert HA tag between residues 1015 
and 1016 

GGATGCTCTCCAAAGACCCATTACAACTACTGTTCC
ATGTTCAACCAGGGAACAAAAGCTGG 

PC676 Insert HA tag between residues 1015 
and 1016 

GGTAGGTGAAGTGGTTGTTGATTCCGAGGCGGTTTC
GCTTGGACTCTGTAGGGCGAATTGG 

TRO621 Real-time PCR primers forFLO11 CACTTTTGAAGTTTATGCCACACAAG 
TRO622 Real-time PCR primer for FLO11 CTTGCATATTGAGCGGCACTAC 
TRO632 Real-time PCR primer for ACT1 CTCCACCACTGCTGAAAGAGAA 
TRO636 Real-time PCR primer for ACT1 CCAAAGCGACGTAACATAGCTTT 
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Table A-3: Mat and invasive growth phenotypes of vps mutants 
 

Mutant Mat Invasive growth Class 
vps1Δ − +  

vps2Δ/did4Δ − + E 
vps3Δ − +  
vps4Δ − + E 
vps8Δ + +  

vps13Δ + +  
vps15Δ − +  
vps17Δ + +  
vps20Δ − − E 
vps21Δ + ±  

vps22Δ/snf8Δ − − E 
vps23Δ − − E 
vps24Δ − + E 
vps25Δ − − E 

vps26Δ/pep4Δ ± +  
vps27Δ − + E 
vps28Δ − + E 
vps30Δ + +  

vps31Δ/bro1Δ − + E 
vps32Δ/snf7Δ − − E 

vps34Δ − −  
vps35Δ ± +  
vps36Δ − − E 
vps37Δ ± + E 
vps38Δ − +  

vps39Δ/vam6Δ + +  
vps41Δ − +  

vps43Δ/vam7Δ ± +  
vps44Δ/nhx1Δ − +  
vps46Δ/did2Δ + +  

vps51Δ + +  
vps52Δ ± +  
vps53Δ ± +  
vps64Δ + ±  
vps66Δ ± +  
vps68Δ + +  
vps54Δ ± +  

vps60Δ/mos10Δ − ± E 
vps62Δ + +  
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Figure A-4: Western blot gel of Flo11-HA30,1015, shows the presence of a cleaved N-terminal 
HA-tagged band ( ~17 kDa). 
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Table A-5: Yeast strains used in chapter 3 
 

Strain Genotype Reference or 
source 

TRY181 MATa ura3-52 his3::hisG FLO11::HA30,1015 [36] 

NY68 MATa ura3-52 his3::hisG FLO11::HA30,1015 wsc1::kanMX6 This study 

NY78 MATa ura3-52 his3::hisG FLO11::HA30,1015 skn7::kanMX6 This study 

NY270 MATa ura3-52 his3::hisG FLO11::HA30,1015 rom2::kanMX6 This study 

NY87 MATa ura3-52 his3::hisG FLO11::HA30,1015 wsc1::WSC1-GFP-HIS3MX6 This study 

NY236 MATa ura3-52 his3::hisG FLO11::HA30,1015 wsc1Δ::WSC1-GFP-HIS3MX6 This study 

NY245 MATa ura3-52 his3::hisG FLO11::HA30,1015 wsc1Δ::WSC1-Y303A-GFP-
HIS3MX6 

This study 

NY249 MATa ura3-52 his3::hisG FLO11::HA30,1015 wsc1Δ::WSC1-L369A-V371A-
GFP-HIS3MX6 

This study 

NY251 MATa ura3-52 his3::hisG FLO11::HA30,1015 wsc1Δ::WSC1-S19A-S20A-GFP-
HIS3MX6 

This study 

NY254 MATa ura3-52 his3::hisG FLO11::HA30,1015 wsc1Δ::WSC1-Y303A-L369A-
V371AGFP-HIS3MX6 

This study 
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Table A-6: Primers used in chapter 3 
 

Name Purpose Sequence 

TRO693 Disrupt WSC1 TTTTCGAAGCGAAAGCGAGA 

TRO694 Disrupt  WSC1 TTAATGTTCCTCGTTACTTCCAG 

NSkn7F Disrupt  SKN7 CAAGATTGAAAGTGCTTCCAGG 

NSkn7R Disrupt  SKN7 CGCATACTAAATTACTGTGTCTGT 

TRO783 
Insert GFP-HIS3MX6 

from pFA6a-GFP-
His3MX6 

CAGGAGGGAAAAACAACGTTTTAACAGTGGTCAATCCAGACGA
AGCTGAT 

TRO784 
Insert GFP-HIS3MX6 

from pFA6a-GFP-
His3MX6 

AGACTTGCTTGGCAATAGTTTAAGAATATAATAATTTTTTTTGG
GTTTCTTCA 

TRO369 Reverse primer to 
confirm all disruptions GCACGTCAAGACTGTCAAGG 

NSO75 Create Y303A mutation 
in WSC1 GGAAGCCCAAGAGGCGATA 

NSO76 Create Y303A mutation 
in WSC1 CTCTTGGGCTTCCTTTTCCAT 

NSO79 Create S19A-S20A 
mutation in WSC1 CGCCGCTGCATTTTCATCTA 

NSO80 Create S19A-S20A 
mutation in WSC1 GAAAATGCAGCGGCGTATAGTT 

NSO85 Create S22A-S23A 
mutation in WSC1 CATTTGCAGCTAATCACGGGCCCT 

NSO86 Create S22A-S23A 
mutation in WSC1 GTGATTAGCTGCAAATGAAGAGGCGT 

NSO88 Create L369A-V371A 
mutation in WSC1 CAACGTTGCAACAGCGGTCAATCCA 

NSO89 Create L369A-V371A 
mutation in WSC1 GATTGACCGCTGTTGCAACGTTGTTT 

NSO90 Create N373A-D375A 
mutation in WSC1 GTCGCTCCAGCCGAAGCTGAT 

NSO91 Create N373A-D375A 
mutation in WSC1 CTTCGGCTGGAGCGACCGCT 

NSO77 
Create WSC1 

cytoplasmic tail 
truncation mutant 

CAGGATGGAACGGATCCCCGGGT 

NSO78 
Create WSC1 

cytoplasmic tail 
truncation mutant 

CGGGGATCCGTTCCATCCTGTCTT 
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Table A-7: Yeast strains used in chapter 4 
 

Strain Genotype Reference or source 

TRY181 MATa ura3-52 his3::hisG FLO11::HA30,1015 [36] 

NY259 MATa ura3-52 his3::hisG FLO11::HA30,1015 cda1::kanMX6 This study 

NY263 MATa ura3-52 his3::hisG FLO11::HA30,1015 cda2::his3MX6 This study 

NY267 MATa ura3-52 his3::hisG FLO11::HA30,1015 cda1::kanMX6 cda2::his3MX6 This study 
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Table A-8: Primers used in chapter 4 
 

Name Purpose Sequence 

NSO99 Disrupt CDA1 CTAAGAGAGAGCAGGAAGTTGAAGA 

NSO100 Disrupt CDA1 GCCAATTGTTATTTGCACTGA 

NSO103 Confirm cda1Δ CATGGCTATTGACAAGATAATCAGG 

NSO101 Disrupt CDA2 
AAACAAACTGCAAAAGAGTTGTTATTATTT 
CTACGGATCGGCAATTGAAACAGCTGAAGC 
TTCGTACGC 

NSO102 Disrupt CDA2 
TTTTCTTCAATTCCCTGAAAATTAGGACAA 
GAATTCTTTTATGTAATCAAGCATAGGCCA 
CTAGTGGATCTG 

NSO104 Confirm cda2Δ ATTGCAACGGCCTAAAGGAA 

TRO369 Reverse primer to confirm all disruptions GCACGTCAAGACTGTCAAGG 
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Figure A-9: Mat formation phenotype and overlay adhesion assay performed on vps25Δ  
and vps27Δ , which were used as control strains for RNA-Seq analysis. 
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Table A-10 : Genes upregulated in the wild type biofilm hub compared to the rim 
 

 

ORF 
Gene 

Ratio of 

RPKM of 

wild type 

(Hub/Rim) 

Fisher's  

p-value 
Significance Function 

YMR175W SIP18 10617.65 2.087E-318 significant 

Phospholipid-binding protein; 

expression is induced by osmotic 

stress 

YEL009C GCN4 2745.60 1.973E-319 significant 

Basic leucine zipper (bZIP) 

transcriptional activator of amino 

acid biosynthetic genes in 

response to amino acid 

starvation; expression is tightly 

regulated at both the 

transcriptional and translational 

levels 

YMR230W RPS10B 920.85 2.060E-320 significant 

Protein component of the small 

(40S) ribosomal subunit; nearly 

identical to Rps10Ap and has 

similarity to rat ribosomal protein 

S10 

YHR193C EGD2 630.76 2.506E-320 significant 

Alpha subunit of the heteromeric 

nascent polypeptide-associated 

complex (NAC) involved in 

protein sorting and translocation, 

associated with cytoplasmic 

ribosomes 

YER044C ERG28 621.09 2.498E-320 significant 

Endoplasmic reticulum 

membrane protein, may facilitate 

protein-protein interactions 

between the Erg26p 

dehydrogenase and the Erg27p 

3-ketoreductase and/or tether 

these enzymes to the ER, also 

interacts with Erg6p 

YNL067W RPL9B 596.06 2.622E-320 significant 

Protein component of the large 

(60S) ribosomal subunit, nearly 

identical to Rpl9Ap and has 

similarity to E. coli L6 and rat L9 

ribosomal proteins 
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Table A-10 (Continued) 

YCR097W HMRA1 531.16 1.468E-320 significant 

Silenced copy of a1 at HMR; 

homeobox corepressor that 

interacts with Alpha2p to repress 

haploid-specific gene 

transcription in diploid cells 

YKL145W RPT1 310.57 3.521E-320 significant 

One of six ATPases of the 19S 

regulatory particle of the 26S 

proteasome involved in the 

degradation of ubiquitinated 

substrates; required for optimal 

CDC20 transcription; interacts 

with Rpn12p and Ubr1p; mutant 

has aneuploidy tolerance 

YMR251W-A HOR7 282.03 5.756E-320 significant 

Protein of unknown function; 

overexpression suppresses Ca2+ 

sensitivity of mutants lacking 

inositol phosphorylceramide 

mannosyltransferases Csg1p and 

Csh1p; transcription is induced 

under hyperosmotic stress and 

repressed by alpha factor 

YER148W SPT15 272.28 1.534E-320 significant 

TATA-binding protein, general 

transcription factor that interacts 

with other factors to form the 

preinitiation complex at 

promoters, essential for viability 

YER159C BUR6 270.74 8.576E-321 significant 

Subunit of a heterodimeric NC2 

transcription regulator complex 

with Ncb2p; complex binds to 

TBP and can repress 

transcription by preventing 

preinitiation complex assembly or 

stimulate activated transcription; 

homologous to human NC2alpha 

YAL034C FUN19 237.52 2.372E-320 significant 

Non-essential protein of unknown 

function; expression induced in 

response to heat stress 

YGR161C RTS3 233.02 1.993E-320 significant 
Putative component of the protein 

phosphatase type 2A complex 

YOL052C-A DDR2 220.61 1.167E-319 significant 

Multistress response protein, 

expression is activated by a 

variety of xenobiotic agents and 

environmental or physiological 

stresses 
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Table A-10 (Continued) 

YPR160W GPH1 212.39 4.730E-320 significant 

Non-essential glycogen 

phosphorylase required for the 

mobilization of glycogen, activity 

is regulated by cyclic AMP-

mediated phosphorylation, 

expression is regulated by stress-

response elements and by the 

HOG MAP kinase pathway 

YBR196C PGI1 189.36 1.770E-319 significant 

Glycolytic enzyme 

phosphoglucose isomerase, 

catalyzes the interconversion of 

glucose-6-phosphate and 

fructose-6-phosphate; required 

for cell cycle progression and 

completion of the gluconeogenic 

events of sporulation 

YFR032C-A RPL29 188.48 8.972E-321 significant 

Protein component of the large 

(60S) ribosomal subunit, has 

similarity to rat L29 ribosomal 

protein; not essential for 

translation, but required for 

proper joining of the large and 

small ribosomal subunits and for 

normal translation rate 

YDR525W-A SNA2 160.38 6.748E-321 significant 

Protein of unknown function, has 

similarity to Pmp3p, which is 

involved in cation transport; 

green fluorescent protein (GFP)-

fusion protein localizes to the 

cytoplasm in a punctate pattern 

YPR010C-A NA 156.13 5.080E-320 significant 

Putative protein of unknown 

function; conserved among 

Saccharomyces sensu stricto 

species 

YBL071C NA 153.06 1.56E-232 significant 

Dubious open reading frame, 

predicted protein contains a 

peroxisomal targeting signal 

YHR052W-A NA 142.83 1.790E-319 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data; 

partially overlaps CUP1-1 
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Table A-10 (Continued) 

 

YER091C MET6 113.47 2.143E-320 significant 

Cobalamin-independent 

methionine synthase, involved in 

methionine biosynthesis and 

regeneration; requires a minimum 

of two glutamates on the 

methyltetrahydrofolate substrate, 

similar to bacterial metE 

homologs 

YCL048W-A NA 111.84 1.028E-320 significant 
Putative protein of unknown 

function 

YML100W TSL1 107.82 2.933E-320 significant 

Large subunit of trehalose 6-

phosphate synthase 

(Tps1p)/phosphatase (Tps2p) 

complex, which converts uridine-

5'-diphosphoglucose and glucose 

6-phosphate to trehalose, similar 

to Tps3p and may share function; 

mutant has aneuploidy tolerance 

YBR121C GRS1 86.01 1.408E-320 significant 

Cytoplasmic and mitochondrial 

glycyl-tRNA synthase that ligates 

glycine to the cognate anticodon 

bearing tRNA; transcription 

termination factor that may 

interact with the 3'-end of pre-

mRNA to promote 3'-end 

formation 

YHL015W RPS20 80.41 3.148E-320 significant 

Protein component of the small 

(40S) ribosomal subunit; 

overproduction suppresses 

mutations affecting RNA 

polymerase III-dependent 

transcription; has similarity to E. 

coli S10 and rat S20 ribosomal 

proteins 

YDR119W-A NA 79.20 4.081E-320 significant 

Putative protein of unknown 

function; may interact with 

respiratory chain complexes III 

(ubiquinol-cytochrome c 

reductase) or IV (cytochrome c 

oxidase) 
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Table A-10 (Continued) 

 

YGR146C ECL1 77.53 1.476E-320 significant 

Protein of unknown function, 

affects chronological lifespan; 

induced by iron homeostasis 

transcription factor Aft2p; 

multicopy suppressor of 

temperature sensitive hsf1 

mutant; induced by treatment 

with 8-methoxypsoralen and UVA 

irradiation 

YDR098C GRX3 76.22 5.869E-321 significant 

Hydroperoxide and superoxide-

radical responsive glutathione-

dependent oxidoreductase; 

monothiol glutaredoxin subfamily 

member along with Grx4p and 

Grx5p; protects cells from 

oxidative damage 

YPR158W CUR1 73.78 4.19E-290 significant 
prions; similar in sequence to 

Btn2p 

YCR024C-B NA 62.48 4.836E-320 significant 

Putative protein of unknown 

function; identified by expression 

profiling and mass spectrometry 

YFR031C-A RPL2A 61.61 3.703E-320 significant 

Protein component of the large 

(60S) ribosomal subunit, identical 

to Rpl2Bp and has similarity to E. 

coli L2 and rat L8 ribosomal 

proteins 

YHR069C RRP4 60.10 5.192E-321 significant 

Exosome non-catalytic core 

component; involved in 3'-5' RNA 

processing and degradation in 

both the nucleus and the 

cytoplasm; predicted to contain 

RNA binding domains; has 

similarity to human hRrp4p 

(EXOSC2) 

YOR316C COT1 58.54 1.150E-320 significant 

Vacuolar transporter that 

mediates zinc transport into the 

vacuole; overexpression confers 

resistance to cobalt and rhodium 
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Table A-10 (Continued) 

 

YGL006W PMC1 56.24 1.636E-320 significant 

Vacuolar Ca2+ ATPase involved 

in depleting cytosol of Ca2+ ions; 

prevents growth inhibition by 

activation of calcineurin in the 

presence of elevated 

concentrations of calcium; similar 

to mammalian PMCA1a 

YHR180W NA 54.41 3.01E-138 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 

YNR034W-A NA 52.73 1.145E-319 significant 

Putative protein of unknown 

function; expression is regulated 

by Msn2p/Msn4p 

YFR036W CDC26 52.04 8.12E-97 significant 

Subunit of the Anaphase-

Promoting Complex/Cyclosome 

(APC/C), which is a ubiquitin-

protein ligase required for 

degradation of anaphase 

inhibitors, including mitotic 

cyclins, during the 

metaphase/anaphase transition 

YMR315W NA 49.94 1.794E-320 significant 

Protein with NADP(H) 

oxidoreductase activity; 

transcription is regulated by 

Stb5p in response to NADPH 

depletion induced by diamide; 

promoter contains a putative 

Stb5p binding site 

YNL097C PHO23 48.08 5.162E-321 significant 

Probable component of the Rpd3 

histone deacetylase complex, 

involved in transcriptional 

regulation of PHO5; C-terminus 

has similarity to human candidate 

tumor suppressor p33(ING1) and 

its isoform ING3 

YLR287C-A RPS30A 47.13 3.169E-320 significant 

Protein component of the small 

(40S) ribosomal subunit; nearly 

identical to Rps30Bp and has 

similarity to rat S30 ribosomal 

protein 
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Table A-10 (Continued) 

 

YPL249C-A RPL36B 47.11 3.177E-320 significant 

Protein component of the large 

(60S) ribosomal subunit, nearly 

identical to Rpl36Ap and has 

similarity to rat L36 ribosomal 

protein; binds to 5.8 S rRNA 

YDR524C-B NA 45.20 3.372E-320 significant 
Putative protein of unknown 

function 

YDR524C AGE1 45.04 5.276E-321 significant 

ADP-ribosylation factor (ARF) 

GTPase activating protein (GAP) 

effector, involved in the secretory 

and endocytic pathways; contains 

C2C2H2 cysteine/histidine motif 

YER084W NA 43.35 2.37E-223 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 

YLR410W VIP1 43.10 1.224E-320 significant 

Inositol hexakisphosphate (IP6) 

and inositol heptakisphosphate 

(IP7) kinase; IP7 production is 

important for phosphate 

signaling; involved in cortical 

actin cytoskeleton function, and 

invasive pseudohyphal growth 

analogous to S. pombe asp1 

YHR213W-B NA 43.09 4.41E-54 significant 

Putative protein of unknown 

function; identified by gene-

trapping, microarray-based 

expression analysis, and 

genome-wide homology 

searching 

YDL159W STE7 42.80 5.370E-321 significant 

Signal transducing MAP kinase 

kinase involved in pheromone 

response, where it 

phosphorylates Fus3p, and in the 

pseudohyphal/invasive growth 

pathway, through 

phosphorylation of Kss1p; 

phosphorylated by Ste11p, 

degraded by ubiquitin pathway 
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Table A-10 (Continued) 

 

YIL020C HIS6 41.07 3.11E-174 significant 

Phosphoribosyl-5-amino-1-

phosphoribosyl-4-

imidazolecarboxiamide 

isomerase, catalyzes the fourth 

step in histidine biosynthesis; 

mutations cause histidine 

auxotrophy and sensitivity to Cu, 

Co, and Ni salts 

YNL162W RPL42A 40.85 1.615E-320 significant 

Protein component of the large 

(60S) ribosomal subunit, identical 

to Rpl42Bp and has similarity to 

rat L44 ribosomal protein 

YPR108W RPN7 39.13 1.614E-320 significant 

Essential, non-ATPase regulatory 

subunit of the 26S proteasome, 

similar to another S. cerevisiae 

regulatory subunit, Rpn5p, as 

well as to mammalian 

proteasome subunits 

YPL152W RRD2 38.43 3.44E-232 significant 

Activator of the phosphotyrosyl 

phosphatase activity of 

PP2A,peptidyl-prolyl cis/trans-

isomerase; regulates G1 phase 

progression, the osmoresponse, 

microtubule dynamics; subunit of 

the Tap42p-Pph21p-Rrd2p 

complex 

YOR142W LSC1 37.65 1.465E-320 significant 

Alpha subunit of succinyl-CoA 

ligase, which is a mitochondrial 

enzyme of the TCA cycle that 

catalyzes the nucleotide-

dependent conversion of 

succinyl-CoA to succinate; 

phosphorylated 

YOR008C SLG1 36.84 1.040E-320 significant 

Sensor-transducer of the stress-

activated PKC1-MPK1 kinase 

pathway involved in maintenance 

of cell wall integrity; involved in 

organization of the actin 

cytoskeleton; secretory pathway 

Wsc1p is required for the arrest 

of secretion response 
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Table A-10 (Continued) 

 

YHR086W NAM8 35.08 0.00E+00 significant 

RNA binding protein, component 

of the U1 snRNP protein; mutants 

are defective in meiotic 

recombination and in formation of 

viable spores, involved in the 

formation of DSBs through 

meiosis-specific splicing of MER2 

pre-mRNA 

YMR030W RSF1 32.31 1.140E-320 significant 

Protein required for respiratory 

growth; localized to both the 

nucleus and mitochondrion; may 

interact with transcription factors 

to mediate the transition to 

respiratory growth and activate 

transcription of nuclear and 

mitochondrial genes 

YDR316W OMS1 32.20 2.67E-239 significant 

Protein integral to the 

mitochondrial membrane; has a 

conserved methyltransferase 

motif; multicopy suppressor of 

respiratory defects caused by 

OXA1 mutations 

YBL068W PRS4 31.32 4.61E-168 significant 

5-phospho-ribosyl-1(alpha)-

pyrophosphate synthetase, 

synthesizes PRPP, which is 

required for nucleotide, histidine, 

and tryptophan biosynthesis; one 

of five related enzymes, which 

are active as heteromultimeric 

complexes 

YDR034C-A NA 30.22 1.69E-07 significant 

Putative protein of unknown 

function; contained within the 

solo Ty1 LTR element 

YDRWdelta7 

YDL114W-A NA 30.19 1.66E-03  

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data; 

identified based on homology to 

hemiascomycetous yeasts 

 

 



 117 

Table A-10 (Continued) 

 

YKL096W-A CWP2 29.92 1.590E-319 significant 

Covalently linked cell wall 

mannoprotein, major constituent 

of the cell wall; plays a role in 

stabilizing the cell wall; involved 

in low pH resistance; precursor is 

GPI-anchored 

YBL039C URA7 29.64 7.85E-290 significant 

Major CTP synthase isozyme 

(see also URA8), catalyzes the 

ATP-dependent transfer of the 

amide nitrogen from glutamine to 

UTP, forming CTP, the final step 

in de novo biosynthesis of 

pyrimidines; involved in 

phospholipid biosynthesis 

YML054C CYB2 28.42 3.913E-320 significant 

Cytochrome b2 (L-lactate 

cytochrome-c oxidoreductase), 

component of the mitochondrial 

intermembrane space, required 

for lactate utilization; expression 

is repressed by glucose and 

anaerobic conditions 

YFR009W GCN20 27.72 5.128E-321 significant 

Positive regulator of the Gcn2p 

kinase activity, forms a complex 

with Gcn1p; proposed to 

stimulate Gcn2p activation by an 

uncharged tRNA 

YJL127C-B NA 27.24 1.64E-10 significant 

Putative protein of unknown 

function; identified based on 

homology to the filamentous 

fungus, <i>Ashbya gossypii</i> 

YMR158W MRPS8 26.11 2.98E-225 significant 
Mitochondrial ribosomal protein 

of the small subunit 

YDR363W-A SEM1 24.30 3.05E-256 significant 

Component of the lid subcomplex 

of the regulatory subunit of the 

26S proteasome; involved in 

mRNA export mediated by the 

TREX-2 complex (Sac3p-Thp1p); 

ortholog of human DSS1 
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Table A-10 (Continued) 

 

YDR169C STB3 24.07 6.492E-321 significant 

Ribosomal RNA processing 

element (RRPE)-binding protein 

involved in the glucose-induced 

transition from quiescence to 

growth; restricted to nucleus in 

quiescent cells, released into 

cytoplasm after glucose repletion; 

binds Sin3p 

YLR154C-G NA 22.60 1.960E-320 significant 

Putative protein of unknown 

function identified by fungal 

homology comparisons and RT-

PCR; this ORF is contained 

within RDN25-2 and RDN37-2 

YHR073W OSH3 21.96 5.414E-321 significant 

Member of an oxysterol-binding 

protein family with seven 

members in S. cerevisiae; family 

members have overlapping, 

redundant functions in sterol 

metabolism and collectively 

perform a function essential for 

viability 

YIL046W MET30 21.36 3.026E-320 significant 

F-box protein containing five 

copies of the WD40 motif, 

controls cell cycle function, sulfur 

metabolism, and methionine 

biosynthesis as part of the 

ubiquitin ligase complex; interacts 

with and regulates Met4p, 

localizes within the nucleus 

YNL024C-A KSH1 21.30 1.00E-93 significant 

Essential protein suggested to 

function early in the secretory 

pathway; inviability is suppressed 

by overexpression of Golgi 

protein Tvp23p; ortholog of 

human Kish 

YOR192C-C NA 21.09 2.86E-21 significant 

Putative protein of unknown 

function; identified by expression 

profiling and mass spectrometry 
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Table A-10 (Continued) 

 

YOR072W-A NA 18.76 7.92E-21 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data; 

partially overlaps the 

uncharacterized ORF YOR072W; 

originally identified by fungal 

homology and RT-PCR 

YHR139C SPS100 18.31 7.183E-320 significant 

Protein required for spore wall 

maturation; expressed during 

sporulation; may be a component 

of the spore wall; expression also 

induced in cells treated with the 

mycotoxin patulin 

YPR036W-A NA 18.17 8.064E-320 significant 

Protein of unknown function; 

transcription is regulated by 

Pdr1p 

YHR001W-A QCR10 17.77 3.662E-320 significant 

Subunit of the ubiqunol-

cytochrome c oxidoreductase 

complex which includes Cobp, 

Rip1p, Cyt1p, Cor1p, Qcr2p, 

Qcr6p, Qcr7p, Qcr8p, Qcr9p, and 

Qcr10p and comprises part of the 

mitochondrial respiratory chain 

YLR256W HAP1 17.68 8.354E-321 significant 

Zinc finger transcription factor 

involved in the complex 

regulation of gene expression in 

response to levels of heme and 

oxygen; the S288C sequence 

differs from other strain 

backgrounds due to a Ty1 

insertion in the carboxy terminus 

YJL062W-A COA3 17.36 1.49E-18 significant 

Mitochondrial inner membrane 

protein that participates in 

regulation of COX1 translation, 

Cox1p stabilization, and 

cytochrome oxidase assembly 

YDR261C-D NA 17.35 1.819E-319 significant 

Retrotransposon TYA Gag and 

TYB Pol genes; in YDRCTY1-3 

TYB is mutant and probably non-

functional 
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Table A-10 (Continued) 

 

YDR261C EXG2 16.92 1.19E-144 significant 

Exo-1,3-beta-glucanase, involved 

in cell wall beta-glucan assembly; 

may be anchored to the plasma 

membrane via a 

glycosylphosphatidylinositol (GPI) 

anchor 

YLL006W MMM1 16.39 5.51E-116 significant 

ER integral membrane protein, 

component of the ERMES 

complex that links the ER to 

mitochondria and may promote 

inter-organellar calcium and 

phospholipid exchange as well as 

coordinating mitochondrial DNA 

replication and growth 

YNL130C CPT1 16.09 9.377E-321  

Cholinephosphotransferase, 

required for phosphatidylcholine 

biosynthesis and for inositol-

dependent regulation of EPT1 

transcription 

YCR028C-A RIM1 14.23 3.020E-313 significant 

Single-stranded DNA-binding 

protein essential for mitochondrial 

genome maintenance; involved in 

mitochondrial DNA replication 

YBR191W RPL21A 14.22 2.737E-320 significant 

Protein component of the large 

(60S) ribosomal subunit, nearly 

identical to Rpl21Bp and has 

similarity to rat L21 ribosomal 

protein 

YIR021W MRS1 13.89 1.14E-188 significant 

Protein required for the splicing of 

two mitochondrial group I introns 

(BI3 in COB and AI5beta in 

COX1); forms a splicing complex, 

containing four subunits of Mrs1p 

and two subunits of the BI3-

encoded maturase, that binds to 

the BI3 RNA 

YIL102C-A NA 13.09 3.05E-24 significant 

Putative protein of unknown 

function, identified based on 

comparisons of the genome 

sequences of six Saccharomyces 

species 
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Table A-10 (Continued) 

 

YOL019W NA 12.78 4.86E-118 significant 

Protein of unknown function; 

green fluorescent protein (GFP)-

fusion protein localizes to the cell 

periphery and vacuole 

YGR240C PFK1 12.37 6.524E-320 significant 

Alpha subunit of heterooctameric 

phosphofructokinase involved in 

glycolysis, indispensable for 

anaerobic growth, activated by 

fructose-2,6-bisphosphate and 

AMP, mutation inhibits glucose 

induction of cell cycle-related 

genes 

YOR161C PNS1 11.40 8.443E-321 significant 

Protein of unknown function; has 

similarity to Torpedo californica 

tCTL1p, which is postulated to be 

a choline transporter, neither null 

mutation nor overexpression 

affects choline transport 

YDL247W-A NA 11.12 5.52E-40 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data; 

identified by sequence 

comparison with 

hemiascomycetous yeast species 

YGL041C-B NA 10.62 7.98E-08 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YER172C BRR2 10.50 5.691E-321 significant 

RNA-dependent ATPase RNA 

helicase (DEIH box); required for 

disruption of U4/U6 base-pairing 

in native snRNPs to activate the 

spliceosome for catalysis; 

homologous to human U5-200kD 

YOR376W-A NA 10.09 6.12E-07 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 
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Table A-10 (Continued) 

 

YKL165C MCD4 10.02 6.739E-321 significant 

Protein involved in 

glycosylphosphatidylinositol (GPI) 

anchor synthesis; 

multimembrane-spanning protein 

that localizes to the endoplasmic 

reticulum; highly conserved 

among eukaryotes 

YML101C CUE4 9.80 1.78E-108 significant 

Protein of unknown function; has 

a CUE domain that binds 

ubiquitin, which may facilitate 

intramolecular monoubiquitination 

YPL257W NA 8.47 5.27E-20 significant 

Putative protein of unknown 

function; homozygous diploid 

deletion strain exhibits low 

budding index; physically 

interacts with Hsp82p; YPL257W 

is not an essential gene 

YAL019W FUN30 8.46 2.01E-152 significant 

Conserved member of the Snf2p 

family with ATP-dependent 

chromatin remodeling activity; 

has a role in silencing; potential 

Cdc28p substrate; authentic, 

non-tagged protein is detected in 

purified mitochondria in high-

throughput studies 

YMR013C SEC59 8.36 3.38E-72 significant 

Dolichol kinase, catalyzes the 

terminal step in dolichyl 

monophosphate (Dol-P) 

biosynthesis; required for viability 

and for normal rates of lipid 

intermediate synthesis and 

protein N-glycosylation 

YPR169W JIP5 8.33 8.779E-321 significant 

Essential protein required for 

biogenesis of the large ribosomal 

subunit; interacts with proteins 

involved in RNA processing, 

ribosome biogenesis, 

ubiquitination and demethylation; 

similar to WDR55, a human WD 

repeat protein 
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Table A-10 (Continued) 

 

YCL001W RER1 8.17 2.99E-257 significant 

Protein involved in retention of 

membrane proteins, including 

Sec12p, in the ER; localized to 

Golgi; functions as a retrieval 

receptor in returning membrane 

proteins to the ER 

YHR007C ERG11 7.92 5.045E-320 significant 

Lanosterol 14-alpha-

demethylase, catalyzes the C-14 

demethylation of lanosterol to 

form 4,4''-dimethyl cholesta-

8,14,24-triene-3-beta-ol in the 

ergosterol biosynthesis pathway; 

member of the cytochrome P450 

family 

YKL033W-A NA 7.66 1.77E-17 significant 

Putative protein of unknown 

function; similar to 

uncharacterized proteins from 

other fungi 

YLR361C-A NA 7.54 4.90E-02  
Putative protein of unknown 

function 

YER093C-A AIM11 7.44 3.89E-16 significant 

Protein of unknown function; null 

mutant is viable but shows 

increased loss of mitochondrial 

genome and synthetic interaction 

with prohibitin (phb1); contains an 

intron 

YCL005W-A VMA9 7.43 2.37E-23 significant 

Vacuolar H+ ATPase subunit e of 

the V-ATPase V0 subcomplex; 

essential for vacuolar 

acidification; interacts with the V-

ATPase assembly factor Vma21p 

in the ER; involved in V0 

biogenesis 

YGL188C NA 7.38 9.49E-51 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 
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Table A-10 (Continued) 

 

YIL082W-A NA 7.14 3.90E-187 significant 

Retrotransposon TYA Gag and 

TYB Pol genes; 

transcribed/translated as one 

unit; polyprotein is processed to 

make a nucleocapsid-like protein 

(Gag), reverse transcriptase 

(RT), protease (PR), and 

integrase (IN); similar to retroviral 

genes 

YLR262C-A TMA7 7.11 1.66E-43 significant 

Protein of unknown that 

associates with ribosomes; null 

mutant exhibits translation 

defects, altered polyribosome 

profiles, and resistance to the 

translation inhibitor anisomcyin 

YHR072W-A NOP10 6.91 4.69E-142 significant 

Constituent of small nucleolar 

ribonucleoprotein particles 

containing H/ACA-type snoRNAs, 

which are required for 

pseudouridylation and processing 

of pre-18S rRNA 

YER133W GLC7 6.88 2.037E-320 significant 

Type 1 serine/threonine protein 

phosphatase catalytic subunit, 

involved in many processes (eg: 

glycogen metabolism, 

sporulation, mitosis); 

accumulates at mating 

projections by interaction with 

Afr1p; interacts with many 

regulatory subunits 

YHR079C IRE1 6.81 8.23E-107 significant 

Serine-threonine kinase and 

endoribonuclease; 

transmembrane protein that 

mediates the unfolded protein 

response (UPR) by regulating 

Hac1p synthesis through HAC1 

mRNA splicing; Kar2p binds 

inactive Ire1p and releases from 

it upon ER stress 
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Table A-10 (Continued) 

 

YIL047C SYG1 6.40 6.393E-320 significant 

Plasma membrane protein of 

unknown function; truncation and 

overexpression suppresses 

lethality of G-alpha protein 

deficiency 

YEL076C NA 6.32 2.58E-15 significant 
Putative protein of unknown 

function 

YBL008W HIR1 5.80 6.13E-139 significant 

Subunit of the HIR complex, a 

nucleosome assembly complex 

involved in regulation of histone 

gene transcription; contributes to 

nucleosome formation, 

heterochromatic gene silencing, 

and formation of functional 

kinetochores 

YBR058C-A TSC3 5.72 3.08E-72 significant 

Protein that stimulates the activity 

of serine palmitoyltransferase 

(Lcb1p, Lcb2p) several-fold; 

involved in sphingolipid 

biosynthesis 

YOR011W AUS1 5.68 1.11E-285 significant 

Transporter of the ATP-binding 

cassette family, involved in 

uptake of sterols and anaerobic 

growth 

YHR039C-A VMA10 5.32 7.05E-16 significant 

Subunit G of the eight-subunit V1 

peripheral membrane domain of 

the vacuolar H+-ATPase (V-

ATPase), an electrogenic proton 

pump found throughout the 

endomembrane system; involved 

in vacuolar acidification 

YGL256W ADH4 5.30 2.812E-320 significant 

Alcohol dehydrogenase 

isoenzyme type IV, dimeric 

enzyme demonstrated to be zinc-

dependent despite sequence 

similarity to iron-activated alcohol 

dehydrogenases; transcription is 

induced in response to zinc 

deficiency 
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Table A-10 (Continued) 

 

YHR199C AIM46 5.30 2.361E-320 significant 

Putative protein of unknown 

function; the authentic, non-

tagged protein is detected in 

highly purified mitochondria in 

high-throughput studies; null 

mutant displays elevated 

frequency of mitochondrial 

genome loss 

YML045W NA 5.26 3.38E-133 significant 

Retrotransposon TYA Gag and 

TYB Pol genes; 

transcribed/translated as one 

unit; polyprotein is processed to 

make a nucleocapsid-like protein 

(Gag), reverse transcriptase 

(RT), protease (PR), and 

integrase (IN); similar to retroviral 

genes 

YHR126C ANS1 5.08 7.68E-10 significant 

Putative protein of unknown 

function; transcription dependent 

upon Azf1p 

YHR143W-A RPC10 5.06 5.91E-02  

RNA polymerase subunit ABC10-

alpha, found in RNA polymerase 

complexes I, II, and III 

YFL012W NA 5.00 5.07E-07 significant 

Putative protein of unknown 

function; transcribed during 

sporulation; null mutant exhibits 

increased resistance to 

rapamycin 

YBR182C SMP1 4.96 1.33E-34 significant 

Putative transcription factor 

involved in regulating the 

response to osmotic stress; 

member of the MADS-box family 

of transcription factors 

YIL156W UBP7 4.87 7.25E-197 significant 
Ubiquitin-specific protease that 

cleaves ubiquitin-protein fusions 

YLR437C DIF1 4.86 9.49E-49 significant 

Protein that regulates the nuclear 

localization of ribonucleotide 

reductase Rnr2p and Rnr4p 

subunits; phosphorylated by 

Dun1p in response to DNA 

damage and degraded; N-

terminal half has similarity to S. 

pombe Spd1 protein 
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Table A-10 (Continued) 

 

YHR005C-A TIM10 4.76 3.31E-11 significant 

Essential protein of the 

mitochondrial intermembrane 

space, forms a complex with 

Tim9p (TIM10 complex) that 

delivers hydrophobic proteins to 

the TIM22 complex for insertion 

into the inner membrane 

YMR001C CDC5 4.66 2.79E-149 significant 

Polo-like kinase with multiple 

functions in mitosis and 

cytokinesis through substrate 

phosphorylation, also functions in 

adaptation to DNA damage 

during meiosis; has similarity to 

Xenopus Plx1 and S. pombe 

Plo1p; possible Cdc28p substrate 

YER039C HVG1 4.59 8.320E-321 significant 
Protein of unknown function, has 

homology to Vrg4p 

YDR320C-A DAD4 4.58 7.93E-92 significant 

Essential subunit of the Dam1 

complex (aka DASH complex), 

couples kinetochores to the force 

produced by MT 

depolymerization thereby aiding 

in chromosome segregation; is 

transferred to the kinetochore 

prior to mitosis 

YER074W RPS24A 4.57 3.203E-320 significant 

Protein component of the small 

(40S) ribosomal subunit; identical 

to Rps24Bp and has similarity to 

rat S24 ribosomal protein 

YDR246W TRS23 4.55 9.426E-321 significant 

One of 10 subunits of the 

transport protein particle 

(TRAPP) complex of the cis-Golgi 

which mediates vesicle docking 

and fusion; involved in 

endoplasmic reticulum (ER) to 

Golgi membrane traffic; human 

homolog is TRAPPC4 

YJR112W-A NA 4.54 2.05E-65 significant 

Putative protein of unknown 

function; identified based on 

homology to <i>Ashbya 

gossypii</i> 
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Table A-10 (Continued) 

 

YDR182W CDC1 4.49 6.333E-321 significant 

Putative lipid phosphatase of the 

endoplasmic reticulum; shows 

Mn2+ dependence and may 

affect Ca2+ signaling; mutants 

display actin and general growth 

defects and pleiotropic defects in 

cell cycle progression and 

organelle distribution 

YNL103W MET4 4.48 9.313E-321 significant 

Leucine-zipper transcriptional 

activator, responsible for the 

regulation of the sulfur amino 

acid pathway, requires different 

combinations of the auxiliary 

factors Cbf1p, Met28p, Met31p 

and Met32p 

YMR294W-A NA 4.47 3.20E-07 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, substantially overlaps 

YMR295C; deletion causes 

sensitivity to unfolded protein 

response-inducing agents 

YLR308W CDA2 4.46 5.01E-11 significant 

Chitin deacetylase, together with 

Cda1p involved in the 

biosynthesis ascospore wall 

component, chitosan; required for 

proper rigidity of the ascospore 

wall 

YPL130W SPO19 4.40 8.54E-11 significant 

Meiosis-specific prospore protein; 

required to produce bending 

force necessary for proper 

assembly of the prospore 

membrane during sporulation; 

identified as a weak high-copy 

suppressor of the spo1-1 ts 

mutation 

YPL119C-A NA 4.40 1.42E-70 significant 

Putative protein of unknown 

function; identified by expression 

profiling and mass spectrometry 
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Table A-10 (Continued) 

 

YBR200W BEM1 4.38 8.497E-321 significant 

Protein containing SH3-domains, 

involved in establishing cell 

polarity and morphogenesis; 

functions as a scaffold protein for 

complexes that include Cdc24p, 

Ste5p, Ste20p, and Rsr1p 

YNL042W BOP3 4.35 1.95E-151 significant 

Protein of unknown function, 

potential Cdc28p substrate; 

overproduction confers 

resistance to methylmercury 

YOL159C NA 4.22 6.57E-159 significant 

Soluble protein of unknown 

function; deletion mutants are 

viable and have elevated levels 

of Ty1 retrotransposition and Ty1 

cDNA 

YOR381W FRE3 4.12 3.18E-134 significant 

Ferric reductase, reduces 

siderophore-bound iron prior to 

uptake by transporters; 

expression induced by low iron 

levels 

YDR149C NA 4.10 1.16E-61 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data; overlaps the 

verified gene NUM1; null 

mutation blocks anaerobic growth 

YHR053C CUP1-1 3.94 2.329E-319 significant 

Metallothionein, binds copper and 

mediates resistance to high 

concentrations of copper and 

cadmium; locus is variably 

amplified in different strains, with 

two copies, CUP1-1 and CUP1-2, 

in the genomic sequence 

reference strain S288C 

YHR055C CUP1-2 3.94 2.329E-319 significant 

Metallothionein, binds copper and 

mediates resistance to high 

concentrations of copper and 

cadmium; locus is variably 

amplified in different strains, with 

two copies, CUP1-1 and CUP1-2, 

in the genomic sequence 

reference strain S288C 



 130 

Table A-10 (Continued) 

 

YLR053C NA 3.86 2.27E-173 significant 
Putative protein of unknown 

function 

YGR169C-A NA 3.36 2.84E-09 significant 
Putative protein of unknown 

function 

YMR323W ERR3 3.25 6.73E-20 significant 
Protein of unknown function, has 

similarity to enolases 

YPL281C ERR2 3.25 6.73E-20 significant 
Protein of unknown function, has 

similarity to enolases 

YLR390W-A CCW14 3.22 2.700E-320 significant 

Covalently linked cell wall 

glycoprotein, present in the inner 

layer of the cell wall 

YML009C MRPL39 3.20 3.49E-26 significant 
Mitochondrial ribosomal protein 

of the large subunit 

YKL068W-A NA 3.19 1.06E-123 significant 

Putative protein of unknown 

function; identified by homology 

to <i>Ashbya gossypii</i> 

YNL277W MET2 3.17 7.410E-322 significant 

L-homoserine-O-

acetyltransferase, catalyzes the 

conversion of homoserine to O-

acetyl homoserine which is the 

first step of the methionine 

biosynthetic pathway 

YLR154W-F NA 3.13 1.25E-50 significant 

Dubious open reading frame 

unlikely to encode a protein; 

encoded within the the 35S rRNA 

gene on the opposite strand 

YCR010C ADY2 3.10 1.51E-206 significant 

Acetate transporter required for 

normal sporulation; 

phosphorylated in mitochondria 

YBR221W-A NA 3.02 2.57E-01  

Putative protein of unknown 

function; identified by expression 

profiling and mass spectrometry 

YER180C ISC10 2.96 2.15E-140 significant 

Protein required for sporulation, 

transcript is induced 7.5 hours 

after induction of meiosis, 

expected to play significant role 

in the formation of reproductive 

cells 
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Table A-10 (Continued) 

 

YHR136C SPL2 2.91 4.86E-29 significant 

Protein with similarity to cyclin-

dependent kinase inhibitors; 

downregulates low-affinity 

phosphate transport during 

phosphate limitation; 

overproduction suppresses a plc1 

null mutation; GFP-fusion protein 

localizes to the cytoplasm 

YOR393W ERR1 2.87 8.889E-320 significant 
Protein of unknown function, has 

similarity to enolases 

YIL057C RGI2 2.77 8.347E-320 significant 

Protein of unknown function 

involved in energy metabolism 

under respiratory conditions; 

expression induced under carbon 

limitation and repressed under 

high glucose 

YGL088W NA 2.77 9.00E-19 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data; 

partially overlaps snR10, a 

snoRNA required for preRNA 

processing 

YFR032C-B NA 2.75 3.58E-01  

Putative protein of unknown 

function; identified by gene-

trapping, microarray-based 

expression analysis, and 

genome-wide homology 

searching 

YPL038W MET31 2.62 1.26E-53 significant 

Zinc-finger DNA-binding protein, 

involved in transcriptional 

regulation of the methionine 

biosynthetic genes, similar to 

Met32p 

YGR236C SPG1 2.58 1.322E-319 significant 

Protein required for survival at 

high temperature during 

stationary phase; not required for 

growth on nonfermentable carbon 

sources; the authentic, non-

tagged protein is detected in 

highly purified mitochondria in 

high-throughput studies 
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Table A-10 (Continued) 

 

YBR233W-A DAD3 2.58 1.77E-22 significant 

Essential subunit of the Dam1 

complex (aka DASH complex), 

couples kinetochores to the force 

produced by MT 

depolymerization thereby aiding 

in chromosome segregation; is 

transferred to the kinetochore 

prior to mitosis 

YFR010W UBP6 2.55 2.167E-320 significant 

Ubiquitin-specific protease 

situated in the base subcomplex 

of the 26S proteasome, releases 

free ubiquitin from branched 

polyubiquitin chains; works in 

opposition to Hul5p polyubiquitin 

elongation activity; mutant has 

aneuploidy tolerance 

YFR023W PES4 2.53 1.37E-15 significant 

Poly(A) binding protein, 

suppressor of DNA polymerase 

epsilon mutation, similar to Mip6p 

YIR020C NA 2.51 8.10E-01  

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YPL092W SSU1 2.47 1.077E-319 significant 

Plasma membrane sulfite pump 

involved in sulfite metabolism and 

required for efficient sulfite efflux; 

major facilitator superfamily 

protein 

YER145C FTR1 2.44 3.10E-242 significant 

High affinity iron permease 

involved in the transport of iron 

across the plasma membrane; 

forms complex with Fet3p; 

expression is regulated by iron 

YAL026C-A NA 2.35 1.73E-86 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data; 

partially overlaps the 

uncharacterized ORF YAL027W 

and the verified gene DRS2 
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Table A-10 (Continued) 

 

YPR001W CIT3 2.35 3.39E-185 significant 

Dual specificity mitochondrial 

citrate and methylcitrate 

synthase; catalyzes the 

condensation of acetyl-CoA and 

oxaloacetate to form citrate and 

that of propionyl-CoA and 

oxaloacetate to form 2-

methylcitrate 

YPL187W 
MF(ALPH

A)1 
2.34 3.49E-32 significant 

Mating pheromone alpha-factor, 

made by alpha cells; interacts 

with mating type a cells to induce 

cell cycle arrest and other 

responses leading to mating; also 

encoded by MF(ALPHA)2, 

although MF(ALPHA)1 produces 

most alpha-factor 

YOR073W SGO1 2.24 2.68E-54 significant 

Component of the spindle 

checkpoint, involved in sensing 

lack of tension on mitotic 

chromosomes; protects 

centromeric Rec8p at meiosis I; 

required for accurate 

chromosomal segregation at 

meiosis II and for mitotic 

chromosome stability 

YOL154W ZPS1 2.18 4.55E-65 significant 

Putative GPI-anchored protein; 

transcription is induced under 

low-zinc conditions, as mediated 

by the Zap1p transcription factor, 

and at alkaline pH 

YOR364W NA 2.03 1.03E-07 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data; 

partially overlaps the 

uncharacterized ORF YOR365C 

YMR175W SIP18 10617.65 2.087E-318 significant 

Phospholipid-binding protein; 

expression is induced by osmotic 

stress 
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Table A-10 (Continued) 

 

YEL009C GCN4 2745.60 1.973E-319 significant 

Basic leucine zipper (bZIP) 

transcriptional activator of amino 

acid biosynthetic genes in 

response to amino acid 

starvation; expression is tightly 

regulated at both the 

transcriptional and translational 

levels 
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Table A-11 : Genes downregulated in the wild type biofilm hub compared to the rim 
 

ORF Gene 

Ratiof of 

RPKM of 

wild type 

(Hub/Rim) 

Fisher’s 

p-value 
Significance Function 

YMR011W HXT2 0.52 5.88E-65 significant 

High-affinity glucose transporter 

of the major facilitator 

superfamily, expression is 

induced by low levels of glucose 

and repressed by high levels of 

glucose 

YML043C RRN11 0.52 4.93E-16 significant 

Component of the core factor 

(CF) rDNA transcription factor 

complex; CF is required for 

transcription of 35S rRNA genes 

by RNA polymerase I and is 

composed of Rrn6p, Rrn7p, and 

Rrn11p 

YNL231C PDR16 0.50 7.08E-192 significant 

Phosphatidylinositol transfer 

protein (PITP) controlled by the 

multiple drug resistance 

regulator Pdr1p, localizes to lipid 

particles and microsomes, 

controls levels of various lipids, 

may regulate lipid synthesis, 

homologous to Pdr17p 

YMR318C ADH6 0.50 8.85E-55 significant 

NADPH-dependent medium 

chain alcohol dehydrogenase 

with broad substrate specificity; 

member of the cinnamyl family 

of alcohol dehydrogenases; may 

be involved in fusel alcohol 

synthesis or in aldehyde 

tolerance 

YMR290W-A NA 0.49 0.0360389 
 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data; overlaps 5’ end 

of essential HAS1 gene which 

encodes an ATP-dependent 

RNA helicase 
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Table A-11 (Continued) 

 

YOL136C PFK27 0.47 3.27E-36 significant 

6-phosphofructo-2-kinase, 

catalyzes synthesis of fructose-

2,6-bisphosphate; inhibited by 

phosphoenolpyruvate and sn-

glycerol 3-phosphate, 

expression induced by glucose 

and sucrose, transcriptional 

regulation involves protein 

kinase A 

YLR413W NA 0.47 1.14E-136 significant 

Putative protein of unknown 

function; YLR413W is not an 

essential gene 

YJL052C-A NA 0.47 0.631527 
 

Putative protein of unknown 

function, identified based on 

comparison to related yeast 

species 

YML007C-A NA 0.47 0.0152419 
 

Putative protein of unknown 

function; green fluorescent 

protein (GFP)-fusion protein 

localizes to mitochondria 

YHR092C HXT4 0.46 3.34E-130 significant 

High-affinity glucose transporter 

of the major facilitator 

superfamily, expression is 

induced by low levels of glucose 

and repressed by high levels of 

glucose 

YBL043W ECM13 0.46 3.28E-296 significant 

Non-essential protein of 

unknown function; induced by 

treatment with 8-

methoxypsoralen and UVA 

irradiation 

YNL140C NA 0.45 0.0527496 
 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps the 

verified gene THO2/YNL139C 

YIR020C-B NA 0.45 0.555705 
 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps verified 

ORF MRS1 
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Table A-11 (Continued) 

 

YBR085W AAC3 0.43 0.00029421 
 

Mitochondrial inner membrane 

ADP/ATP translocator, 

exchanges cytosolic ADP for 

mitochondrially synthesized 

ATP; expressed under 

anaerobic conditions; similar to 

Pet9p and Aac1p; has roles in 

maintenance of viability and in 

respiration 

YBR190W NA 0.43 0.110157 
 

Dubious open reading frame 

unlikely to encode a protein, 

based on experimental and 

comparative sequence data; 

partially overlaps the verified 

ribosomal protein gene 

RPL21A/YBR191W 

YPL272C NA 0.43 6.06E-83 significant 

Putative protein of unknown 

function; gene expression 

induced in response to 

ketoconazole; YPL272C is not 

an essential gene 

YLL025W PAU17 0.43 1.88E-83 significant 

Protein of unknown function, 

member of the seripauperin 

multigene family encoded 

mainly in subtelomeric regions; 

YLL025W is not an essential 

gene 

YGR152C RSR1 0.43 8.79E-27 significant 

GTP-binding protein of the ras 

superfamily required for bud site 

selection, morphological 

changes in response to mating 

pheromone, and efficient cell 

fusion; localized to the plasma 

membrane; significantly similar 

to mammalian Rap GTPases 

YLR180W SAM1 0.41 5.40E-71 significant 

S-adenosylmethionine 

synthetase, catalyzes transfer of 

the adenosyl group of ATP to 

the sulfur atom of methionine; 

one of two differentially 

regulated isozymes (Sam1p and 

Sam2p) 
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Table A-11 (Continued) 

 

YIL011W TIR3 0.40 2.51E-83 significant 

Cell wall mannoprotein of the 

Srp1p/Tip1p family of serine-

alanine-rich proteins; expressed 

under anaerobic conditions and 

required for anaerobic growth 

YOR381W-A NA 0.38 5.73E-106 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YCR020C PET18 0.37 0.650283 
 

Protein of unknown function, 

has weak similarity to proteins 

involved in thiamin metabolism; 

expression is induced in the 

absence of thiamin 

YNL042W-B NA 0.36 3.11E-130 significant 
Putative protein of unknown 

function 

YDR509W NA 0.35 0.0111517 
 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YBR196C-A NA 0.35 0.379892 
 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YOL159C-A NA 0.35 8.21E-93 significant 

Putative protein of unknown 

function; identified by sequence 

comparison with 

hemiascomycetous yeast 

species 

YNL277W-A NA 0.34 3.95E-283 significant 
Putative protein of unknown 

function 

YOR309C NA 0.32 1.46E-25 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps the 

verified gene NOP58 
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Table A-11 (Continued) 

 

YDR316W-B NA 0.32 3.66E-08 significant 

Retrotransposon TYA Gag and 

TYB Pol genes; 

transcribed/translated as one 

unit; polyprotein is processed to 

make a nucleocapsid-like 

protein (Gag), reverse 

transcriptase (RT), protease 

(PR), and integrase (IN); similar 

to retroviral genes 

YER011W TIR1 0.31 4.10E-320 significant 

Cell wall mannoprotein of the 

Srp1p/Tip1p family of serine-

alanine-rich proteins; expression 

is downregulated at acidic pH 

and induced by cold shock and 

anaerobiosis; abundance is 

increased in cells cultured 

without shaking 

YOR277C NA 0.27 1.75E-05 
 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; almost completely 

overlaps the verified gene 

CAF20 

YPL257W-A NA 0.25 1.49E-152 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YPL257W-B NA 0.25 5.14E-29 significant 

Retrotransposon TYA Gag and 

TYB Pol genes; 

transcribed/translated as one 

unit; polyprotein is processed to 

make a nucleocapsid-like 

protein (Gag), reverse 

transcriptase (RT), protease 

(PR), and integrase (IN); similar 

to retroviral genes 
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YKL138C-A HSK3 0.24 1.22E-320 significant 

Essential subunit of the Dam1 

complex (aka DASH complex), 

couples kinetochores to the 

force produced by MT 

depolymerization thereby aiding 

in chromosome segregation; is 

transferred to the kinetochore 

prior to mitosis 

YFR010W-A NA 0.24 3.159E-320 significant 

Dubious ORF unlikely to encode 

a protein, based on available 

experimental and comparative 

sequence data; completely 

overlaps the uncharacterized 

gene YFR011C; identified by 

expression profiling and mass 

spectrometry 

YBR233W PBP2 0.23 0.0389844 
 

RNA binding protein with 

similarity to mammalian 

heterogeneous nuclear RNP K 

protein, involved in the 

regulation of telomere position 

effect and telomere length 

YKL068W NUP100 0.22 2.21E-70 significant 

Subunit of the nuclear pore 

complex (NPC) that is localized 

to both sides of the pore; 

contains a repetitive GLFG motif 

that interacts with mRNA export 

factor Mex67p and with 

karyopherin Kap95p; 

homologous to Nup116p 

YJL127W-A NA 0.22 0.0023989 
 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 

YOR218C NA 0.22 2.97E-05 
 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; open reading frame 

overlaps the verified gene 

RFC1/YOR217W 
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Table A-11 (Continued) 

 

YCL001W-B NA 0.22 1.44E-270 significant 

Putative protein of unknown 

function; YCL001W-B gene has 

similarity to DOM34 and is 

present in a region duplicated 

between chromosomes XIV and 

III 

YML009C-A NA 0.21 1.17E-67 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YPL038W-A NA 0.21 1.93E-79 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YHR199C-A NBL1 0.21 2.069E-320 significant 

Subunit of the conserved 

chromosomal passenger 

complex (CPC; Ipl1p-Sli15p-

Bir1p-Nbl1p), which regulates 

mitotic chromosome 

segregation; not required for the 

kinase activity of the complex; 

mediates the interaction of 

Sli15p and Bir1p 

YJR112W NNF1 0.20 4.59E-67 significant 

Essential component of the 

MIND kinetochore complex 

(Mtw1p Including Nnf1p-Nsl1p-

Dsn1p) which joins kinetochore 

subunits contacting DNA to 

those contacting microtubules; 

required for accurate 

chromosome segregation 

YIL156W-A NA 0.20 2.42E-220 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YGL188C-A NA 0.20 8.48E-53 significant 
Putative protein of unknown 

function 
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Table A-11 (Continued) 

 

YMR294W JNM1 0.20 4.41E-13 significant 

Component of the yeast 

dynactin complex, consisting of 

Nip100p, Jnm1p, and Arp1p; 

required for proper nuclear 

migration and spindle 

partitioning during mitotic 

anaphase B 

YER145C-A NA 0.20 1.170E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; overlaps the verified ORF 

LSM5/YER146W 

YER189W NA 0.19 7.05E-10 significant 
Putative protein of unknown 

function 

YPR158W-B NA 0.18 9.11E-33 significant 

Retrotransposon TYA Gag and 

TYB Pol genes; 

transcribed/translated as one 

unit; polyprotein is processed to 

make a nucleocapsid-like 

protein (Gag), reverse 

transcriptase (RT), protease 

(PR), and integrase (IN); similar 

to retroviral genes 

YFL012W-A NA 0.18 4.13E-09 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; overlaps the verified gene 

IES1/YFL013C 

YDR320C SWA2 0.18 9.09E-50 significant 

Auxilin-like protein involved in 

vesicular transport; clathrin-

binding protein required for 

uncoating of clathrin-coated 

vesicles 

YHR143W DSE2 0.17 1 
 

Daughter cell-specific secreted 

protein with similarity to 

glucanases, degrades cell wall 

from the daughter side causing 

daughter to separate from 

mother; expression is repressed 

by cAMP 
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YNL057W NA 0.17 3.95E-07 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 

YER074W-A YOS1 0.17 4.968E-320 significant 

Integral membrane protein 

required for ER to Golgi 

transport; localized to the Golgi, 

the ER, and COPII vesicles; 

interacts with Yip1p and Yif1p 

YBR058C UBP14 0.17 3.83E-59 significant 

Ubiquitin-specific protease that 

specifically disassembles 

unanchored ubiquitin chains; 

involved in fructose-1,6-

bisphosphatase (Fbp1p) 

degradation; similar to human 

isopeptidase T 

YLR390W ECM19 0.17 4.340E-320 significant 

Putative protein of unknown 

function; the authentic, non-

tagged protein is detected in 

highly purified mitochondria in 

high-throughput studies 

YLR361C DCR2 0.16 0.0650825 
 

Phosphoesterase involved in 

downregulation of the unfolded 

protein response, at least in part 

via dephosphorylation of Ire1p; 

dosage-dependent positive 

regulator of the G1/S phase 

transition through control of the 

timing of START 

YGR169C PUS6 0.15 8.73E-05 
 

tRNA:pseudouridine synthase, 

catalyzes the conversion of 

uridine to pseudouridine at 

position 31 in cytoplasmic and 

mitochondrial tRNAs; mutation 

of Asp168 to Ala abolishes 

enzyme activity; not essential for 

viability 

YNL103W-A NA 0.14 1.268E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps the 

verified gene MET4/YNL104C 
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YDL247W MPH2 0.14 1.12E-60 significant 

Alpha-glucoside permease, 

transports maltose, maltotriose, 

alpha-methylglucoside, and 

turanose; identical to Mph3p; 

encoded in a subtelomeric 

position in a region likely to have 

undergone duplication 

YDR182W-A NA 0.14 9.525E-321 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YHR007C-A NA 0.13 5.609E-320 significant 

Putative protein of unknown 

function; identified by 

expression profiling and mass 

spectrometry 

YML045W-A NA 0.13 1.22E-192 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YHR072W ERG7 0.13 3.35E-104 significant 

Lanosterol synthase, an 

essential enzyme that catalyzes 

the cyclization of squalene 2,3-

epoxide, a step in ergosterol 

biosynthesis 

YEL076C-A NA 0.13 2.18E-26 significant 
Putative protein of unknown 

function 

YHR039C MSC7 0.12 4.43E-38 significant 

Protein of unknown function, 

green fluorescent protein (GFP)-

fusion protein localizes to the 

endoplasmic reticulum; msc7 

mutants are defective in 

directing meiotic recombination 

events to homologous 

chromatids 

YDL114W NA 0.10 0.0903137 
 

Putative protein of unknown 

function with similarity to acyl-

carrier-protein reductases; 

YDL114W is not an essential 

gene 
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YGR240C-A NA 0.10 8.463E-320 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YIL102C NA 0.10 3.01E-19 significant 
Putative protein of unknown 

function 

YIL082W NA 0.10 2.47E-237 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YPR158W-A NA 0.10 7.35E-115 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YOR376W NA 0.10 1.82E-05 
 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; YOR376W is not an 

essential gene. 

YHR005C GPA1 0.09 2.40E-75 significant 

GTP-binding alpha subunit of 

the heterotrimeric G protein that 

couples to pheromone 

receptors; negatively regulates 

the mating pathway by 

sequestering G(beta)gamma 

and by triggering an adaptive 

response; activates Vps34p at 

the endosome 

YLR437C-A NA 0.09 1.45E-55 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps the 

verified ORF CAR2/YLR438W 
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Table A-11 (Continued) 

 

YMR158W-B NA 0.09 7.40E-223 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; overlaps the verified gene 

ATG16/YMR159C 

YLR262C YPT6 0.09 8.44E-139 significant 

Rab family GTPase, Ras-like 

GTP binding protein involved in 

the secretory pathway, required 

for fusion of endosome-derived 

vesicles with the late Golgi, 

maturation of the vacuolar 

carboxypeptidase Y; has 

similarity to the human GTPase, 

Rab6 

YER093C TSC11 0.09 0.977882 
 

Subunit of TORC2 (Tor2p-

Lst8p-Avo1-Avo2-Tsc11p-

Bit61p), a membrane-associated 

complex that regulates actin 

cytoskeletal dynamics during 

polarized growth and cell wall 

integrity; involved in sphingolipid 

metabolism; contains a 

RasGEFN domain 

YER172C-A NA 0.09 7.613E-321 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YCL005W LDB16 0.09 1.88E-66 significant 

Protein of unknown function; null 

mutants have decreased net 

negative cell surface charge; 

GFP-fusion protein expression 

is induced in response to the 

DNA-damaging agent MMS; 

native protein is detected in 

purified mitochondria 

YAL019W-A NA 0.09 1.62E-200 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 
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YMR013C-A NA 0.08 1.19E-96 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; completely overlaps the 

verified ORF SEC59/YML013C 

YBL008W-A NA 0.08 4.01E-158 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YHR139C-A NA 0.08 1.153E-319 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YER133W-A NA 0.08 3.470E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps 

uncharacterized gene 

YER134C. 

YIL046W-A NA 0.08 1.787E-320 significant 

Putative protein of unknown 

function; identified by 

expression profiling and mass 

spectrometry 

YOR072W-B NA 0.08 2.83E-19 significant 

Putative protein of unknown 

function; identified by 

expression profiling and mass 

spectrometry 

YOR161C-C NA 0.07 1.308E-320 significant 

Identified by gene-trapping, 

microarray-based expression 

analysis, and genome-wide 

homology searching 

YHR213W NA 0.07 2.48E-12 significant 

Possible pseudogene; has 

similarity to Flo1p, which is a 

lectin-like protein involved in 

flocculation 

YLR154C RNH203 0.07 8.98E-257 significant 

Ribonuclease H2 subunit, 

required for RNase H2 activity; 

related to human AGS3 that 

causes Aicardi-Goutieres 

syndrome 
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Table A-11 (Continued) 

 

YKL033W TTI1 0.07 3.87E-93 significant 

Putative protein of unknown 

function; subunit of the ASTRA 

complex which is part of the 

chromatin remodeling 

machinery; similar to S. pombe 

Tti1p; detected in highly purified 

mitochondria in high-throughput 

studies 

YCR028C FEN2 0.06 2.381E-320 significant 

Plasma membrane H+-

pantothenate symporter; confers 

sensitivity to the antifungal 

agent fenpropimorph 

YHR001W OSH7 0.05 1.34E-281 significant 

Member of an oxysterol-binding 

protein family with seven 

members in S. cerevisiae; family 

members have overlapping, 

redundant functions in sterol 

metabolism and collectively 

perform a function essential for 

viability 

YPR036W VMA13 0.05 7.061E-320 significant 

Subunit H of the eight-subunit 

V1 peripheral membrane 

domain of the vacuolar H+-

ATPase (V-ATPase), an 

electrogenic proton pump found 

throughout the endomembrane 

system; serves as an activator 

or a structural stabilizer of the V-

ATPase 

YOR192C THI72 0.05 2.12E-16 significant 

Transporter of thiamine or 

related compound; shares 

sequence similarity with Thi7p 

YDL159W-A NA 0.05 1.29E-243 significant 

Putative protein of unknown 

function; identified by sequence 

comparison with 

hemiascomycetous yeast 

species 

YMR001C-A NA 0.05 9.05E-235 significant 
Putative protein of unknown 

function 

YLL006W-A NA 0.05 1.81E-142 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 
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YML101C-A NA 0.04 2.19E-157 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YGL041C NA 0.04 1.73E-16 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YLR410W-A NA 0.04 9.861E-321 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YOL019W-A NA 0.04 6.29E-197 significant 

Identified by gene-trapping, 

microarray-based expression 

analysis, and genome-wide 

homology searching 

YML054C-A NA 0.04 5.787E-320 significant 
Putative protein of unknown 

function 

YDR316W-A NA 0.04 1.517E-320 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YJL062W LAS21 0.04 5.72E-58 significant 

Integral plasma membrane 

protein involved in the synthesis 

of the 

glycosylphosphatidylinositol 

(GPI) core structure; mutations 

affect cell wall integrity 
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Table A-11 (Continued) 

 

YNL024C NA 0.04 2.90E-81 significant 

Putative protein of unknown 

function with seven beta-strand 

methyltransferase motif; green 

fluorescent protein (GFP)-fusion 

protein localizes to the 

cytoplasm; YNL024C is not an 

essential gene 

YBR191W-A NA 0.04 4.178E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 

YLR256W-A NA 0.04 1.436E-320 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YDR363W ESC2 0.04 8.36E-297 significant 

Sumo-like domain protein; 

prevents accumulation of toxic 

intermediates during replication-

associated recombinational 

repair; roles in silencing, 

lifespan, chromatid cohesion 

and the intra-S-phase DNA 

damage checkpoint; RENi family 

member 

YNL130C-A DGR1 0.04 1.169E-320 significant 

Protein of unknown function; 

dgr1 null mutant is resistant to 

2-deoxy-D-glucose 

YHR086W-A NA 0.04 6.842E-321 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YIR021W-A NA 0.03 1.93E-284 significant 

Putative protein of unknown 

function; identified by 

expression profiling and mass 

spectrometry 
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YPR169W-A NA 0.03 1.269E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps two other 

dubious ORFs: YPR170C and 

YPR170W-B 

YOR316C-A NA 0.03 1.294E-320 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YPR108W-A NA 0.03 2.837E-320 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YJL127C SPT10 0.03 5.36E-16 significant 

Putative histone acetylase with 

a role in transcriptional 

silencing, sequence-specific 

activator of histone genes, binds 

specifically and cooperatively to 

pairs of UAS elements in core 

histone promoters, functions at 

or near the TATA box 

YHR073W-A NA 0.03 9.950E-321 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps verified 

ORF YHR073W; identified by 

expression profiling and mass 

spectrometry 

YMR030W-A NA 0.03 8.379E-321 significant 
Putative protein of unknown 

function 

YBL068W-A NA 0.03 5.58E-185 significant 

Dubious open reading frame 

unlikely to encode a protein; 

identified by fungal homology 

and RT-PCR 

YKL165C-A NA 0.03 1.029E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 
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YNR034W SOL1 0.03 1.116E-319 significant 

Protein with a possible role in 

tRNA export; shows similarity to 

6-phosphogluconolactonase 

non-catalytic domains but does 

not exhibit this enzymatic 

activity; homologous to Sol2p, 

Sol3p, and Sol4p 

YIL020C-A NA 0.03 5.55E-154 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YBL039C-A NA 0.02 7.326E-321 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; completely overlaps the 

verified ORF URA7; identified by 

expression profiling and mass 

spectrometry 

YPL152W-A NA 0.02 1.26E-237 significant 

Identified by gene-trapping, 

microarray-based expression 

analysis, and genome-wide 

homology searching 

YNL162W-A NA 0.02 2.095E-320 significant 
Putative protein of unknown 

function; identified by homology 

YFR009W-A NA 0.02 9.654E-321 significant 

Dubious ORF unlikely to encode 

a protein, based on available 

experimental and comparative 

sequence data; completely 

overlaps the verified gene 

YFR009W; identified by 

expression profiling and mass 

spectrometry 

YDR169C-A NA 0.02 8.641E-321 significant 

Putative protein of unknown 

function; identified by fungal 

homology and RT-PCR 

YLR287C NA 0.02 3.544E-320 significant 

Putative protein of unknown 

function; green fluorescent 

protein (GFP)-fusion protein 

localizes to the cytoplasm; 

YLR287C is not an essential 

gene 
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Table A-11 (Continued) 

 

YIL025C NA 0.02 0.256556 
 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YHR052W CIC1 0.02 6.180E-320 significant 

Essential protein that interacts 

with proteasome components 

and has a potential role in 

proteasome substrate 

specificity; also copurifies with 

66S pre-ribosomal particles 

YFR036W-A NA 0.02 2.50E-101 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps the 

verified gene RSC8 

YER084W-A NA 0.02 2.60E-124 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YHR180W-A NA 0.02 4.61E-141 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; partially overlaps dubious 

ORF YHR180C-B and long 

terminal repeat YHRCsigma3 

YHR069C-A NA 0.02 6.590E-321 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YDR119W VBA4 0.02 3.190E-320 significant 

Protein of unknown function with 

proposed role as a basic amino 

acid permease based on 

phylogeny; GFP-fusion protein 

localizes to vacuolar membrane; 

physical interaction with Atg27p 

suggests a possible role in 

autophagy; non-essential gene 
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YHL015W-A NA 0.02 5.678E-320 significant 
Putative protein of unknown 

function 

YPL249C GYP5 0.01 3.868E-320 significant 

GTPase-activating protein 

(GAP) for yeast Rab family 

members, involved in ER to 

Golgi trafficking; exhibits GAP 

activity toward Ypt1p that is 

stimulated by Gyl1p, also acts 

on Sec4p; interacts with Gyl1p, 

Rvs161p and Rvs167p 

YBL071C-B NA 0.01 5.55E-119 significant 

Putative protein of unknown 

function; identified by gene-

trapping, microarray-based 

expression analysis, and 

genome-wide homology 

searching 

YOR142W-A NA 0.01 2.772E-320 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YKL096W CWP1 0.01 2.349E-319 significant 

Cell wall mannoprotein that 

localizes specifically to birth 

scars of daughter cells, linked to 

a beta-1,3- and beta-1,6-glucan 

heteropolymer through a 

phosphodiester bond; required 

for propionic acid resistance 

YNL097C-B NA 0.01 7.361E-321 significant 
Putative protein of unknown 

function 

YDR034C-C NA 0.01 4.240E-320 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YGR146C-A NA 0.01 1.330E-320 significant 
Putative protein of unknown 

function 
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YMR315W-A NA 0.01 2.594E-320 significant 
Putative protein of unknown 

function 

YGL006W-A NA 0.01 3.071E-320 significant 
Putative protein of unknown 

function; identified by SAGE 

YCL048W SPS22 0.01 1.076E-320 significant 

Protein of unknown function, 

redundant with Sps2p for the 

organization of the beta-glucan 

layer of the spore wall 

YDR098C-A NA 0.01 9.574E-321 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YCR024C SLM5 0.01 1.894E-320 significant 
Mitochondrial asparaginyl-tRNA 

synthetase 

YFR031C SMC2 0.01 5.116E-320 significant 

Subunit of the 155ondensing 

complex; essential SMC 

chromosomal ATPase family 

member that forms a complex 

with Smc4p to form the active 

ATPase; Smc2p/Smc4p 

complex binds DNA; required for 

clustering of tRNA genes at the 

nucleolus 

YDR525W API2 0.01 7.618E-321 significant 

Dubious open reading frame, 

unlikely to encode a protein; not 

conserved in closely related 

Saccharomyces species; 26% of 

ORF overlaps the dubious ORF 

YDR524C-A; insertion mutation 

in a cdc34-2 mutant background 

causes altered bud morphology 

YOR008C-A NA 0.01 1.517E-320 significant 

Putative protein of unknown 

function, includes a potential 

transmembrane domain; 

deletion results in slightly 

lengthened telomeres 
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Table A-11 (Continued) 

 

YBR196C-B NA 0.01 1.728E-319 significant 

Putative protein of unknown 

function; identified by 

expression profiling and mass 

spectrometry 

YML100W-A NA 0.01 6.821E-320 significant 

Putative protein of unknown 

function; identified by gene-

trapping, microarray-based 

expression analysis, and 

genome-wide homology 

searching 

YBR121C-A NA 0.01 3.025E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; completely contianed 

within the verified gene GRS1; 

identified by expression profiling 

and mass spectrometry 

YER148W-A NA 0.01 1.092E-320 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YER091C-A NA 0.01 3.697E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 

YPR010C RPA135 0.01 4.459E-320 significant 
RNA polymerase I second 

largest subunit A135 

YAL034C-B NA 0.00 2.576E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence data 

YOL052C SPE2 0.00 1.078E-319 significant 

S-adenosylmethionine 

decarboxylase, required for the 

biosynthesis of spermidine and 

spermine; cells lacking Spe2p 

require spermine or spermidine 

for growth in the presence of 

oxygen but not when grown 

anaerobically 
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Table A-11 (Continued) 

 

YGR161C-C NA 0.00 2.789E-320 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YMR251W GTO3 0.00 7.541E-320 significant 

Omega class glutathione 

transferase; putative cytosolic 

localization 

YER159C-A NA 0.00 1.279E-320 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; 

translated as TYA or TYA-TYB 

polyprotein; Gag is a 

nucleocapsid protein that is the 

structural constituent of virus-

like particles (VLPs); similar to 

retroviral Gag 

YCR097W-A NA 0.00 1.309E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; identified by homology to a 

hemiascomycetous yeast 

protein 

YPR160W-A NA 0.00 1.202E-319 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data; identified by 

expression profiling and mass 

spectrometry 

YNL067W-B NA 0.00 3.172E-320 significant 
Putative protein of unknown 

function 

YKL145W-A NA 0.00 6.507E-320 significant 

Dubious open reading frame, 

unlikely to encode a protein; 

completely overlaps the verified 

essential gene RPT1; identified 

by expression profiling and 

mass spectrometry 
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Table A-11 (Continued) 

 

YDR261C-C NA 0.00 2.957E-319 significant 

Retrotransposon TYA Gag gene 

co-transcribed with TYB Pol; in 

YDRCTY1-3 TYB is mutant and 

probably non-functional 

YER044C-A MEI4 0.00 3.288E-320 significant 

Meiosis-specific protein involved 

in double-strand break formation 

during meiotic recombination; 

required for chromosome 

synapsis and production of 

viable spores 

YMR230W-A NA 0.00 2.408E-320 significant 
Putative protein of unknown 

function 

YHR193C-A NA 0.00 4.482E-320 significant 

Dubious open reading frame 

unlikely to encode a protein, 

based on available experimental 

and comparative sequence 

data; completely overlaps 

verified ORF MDM31 

YFR032C RRT5 0.00 1.578E-320 significant 

Putative protein of unknown 

function; non-essential gene 

identified in a screen for mutants 

with increased levels of rDNA 

transcription; expressed at high 

levels during sporulation 

YMR175W-A NA 0.00 1.125E-318 significant 
Putative protein of unknown 

function 

YEL009C-A NA 0.00 2.640E-319 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein, based on available 

experimental and comparative 

sequence data 

YDR524C-A NA 0.00 4.991E-320 significant 

Dubious open reading frame 

unlikely to encode a functional 

protein; identified by gene-

trapping, microarray-based 

expression analysis, and 

genome-wide homology 

searching 
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Table A-12: Genes classified under GO category of sporulation, with significant Fisher’s 
test p-value 
 

SGD ID ORF  RPKMA p-valueB 

YLR308W* CDA2 4.463236496 5.01E-11 

YDR403W* DIT1 1.673611999 6.07E-12 

YER180C* ISC10 2.961430546 2.15E-140 

YER133W* GLC7 6.87583955 2.03E-320 

YPL130W* SPO19 4.402923538 8.54E-11 

YHR139C* SPS100 18.3065963 7.18E-320 

YOR338W NA 1.065042244 0.112179 
A Ratio of Normalized RPKM values of wild type hub and rim 
B Fishers test P-value 

* p-value Statistically significant 
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