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ABSTRACT 

 

E-bikes in China are the single largest adoption of alternative fuel vehicles in history, 

with more than 100 million e-bikes purchased in the past decade and vehicle ownership 

about 2× larger for e-bikes as for conventional cars; e-cars sales, too, are rapidly growing. 

Electric vehicles (EVs) in China are being considered as a strategy to improve air quality, 

energy efficiency, and reduce health impacts due to transport emissions. Because EVs 

have different pollution sources, namely electric generating units (EGUs), quantitative 

analysis for health impacts requires understanding the exposure efficiency of related 

pollution sources. In this dissertation, EVs will be analyzed in the context of the impacts 

on the environment, the differences in exposure efficiency of pollutants, the impacts on 

health, and the distribution of those impacts among different sectors of the population. 

This study compares emissions (CO2, PM2.5, NOX, HC) and environmental health impacts 

(primary PM2.5) from the use of conventional vehicles (CVs) and EVs in 34 major cities 

in China. CO2 emissions (g km-1) vary and are an order of magnitude greater for e-cars 

(135–274) and CVs (150-180) than for e-bikes (14–27). PM2.5 emission factors generally 

are lower for CVs (gasoline or diesel) than comparable EVs. However, intake fraction is 

often greater for CVs than for EVs because combustion emissions are generally closer to 

population centers for CVs (tailpipe emissions) than for EVs (EGU emissions). For most 

cities, the net result is that primary PM2.5 environmental health impacts per passenger-km 

are greater for e-cars than for gasoline cars (3.6× on average), lower for e-cars than for 

diesel cars (2.5× on average) and equal between e-cars and diesel buses. In contrast, e-
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bikes yield lower environmental health impacts per passenger-km than the three CVs 

investigated: gasoline cars (2×), diesel cars (10×), and diesel buses (5×). In addition, 

adoption of EVs could cause environmental equity problems in China at this time, since a 

vast majority (>83%) of pollutant emissions inhaled and subsequent health effects due to 

urban EV use could be distributed to communities whose incomes are lower than the 

cities where EVs are promoted. The findings highlight the importance of considering 

exposures, and especially the proximity of emissions to people, when evaluating 

environmental health impacts and equity concerns for EVs. 
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CHAPTER I  

INTRODUCTION 

 

China’s rapid growth in income – annual gross domestic product (GDP) increases 

averaged 9-10% during 1978-2009 (NBS 2010) – has many impacts, including several 

with environmental health consequences. Outdoor air pollution is blamed for ~300,000 

premature deaths in China each year (Millman, Tang et al. 2008). For several pollutants, 

including fine particles (PM2.5), transportation is a significant and growing source of 

emissions (Cai and Xie 2007). Automobile ownership increased more than an order of 

magnitude in one decade, from 3 cars per 1,000 people in 1998 to at least 39 cars per 

1,000 people in 2009 (Fridley, Aden et al. 2008; NBS 2010). Encouraging motorized 

transportation is a national strategy for economic and social development in China (Jie 

2009; Zheng, Mehndiratta et al. 2012). 

 

This research focuses on electric vehicles (EVs: electric cars [e-cars] and electric two-

wheelers including electric bicycles and light electric scooters [e-bikes]) in China and is 

motivated in part by their unprecedented rise in popularity (Figure 1). While conventional 

vehicle (CV) ownership and electricity consumption in China are both increasing rapidly 

– annual growth rates during the past decade were ~25% and ~10%, respectively – e-bike 

ownership is skyrocketing: 86% annual growth during the past decade (doubling time: 

~13 months). Ten years ago, e-bikes were nearly unheard of, with vehicle ownership 

rates 26× lower for e-bikes than for CVs. Today, e-bikes outnumber CVs 2:1. E-bikes in 
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China are the single largest adoption of alternative fuel vehicles in history, with over 100 

million vehicles purchased in the past decade, more than all other countries combined 

(Weinert, Ma et al. 2007; Jamerson and Benjamin 2009). 

 

For EVs, combustion emissions occur where electricity is generated rather than where the 

vehicle is used (Sioshansi and Denholm 2009; Brinkman, Denholm et al. 2010; Huo, 

Zhang et al. 2010). In China, 85% of electricity production is from fossil fuels, of which 

~90% is from coal. Most electricity generating units (EGUs) in China lack advanced 

pollution controls. Compared to typical vehicle emissions, EGUs are often located further 

from population centers; therefore, the exposure and health impacts per mass emitted 

tend to be lower for EGUs than for CVs (Bennett, McKone et al. 2002; Evans, Wolff et 

al. 2002; Marshall, Teoh et al. 2005; Heath, Granvold et al. 2006). The net result for 

China is that it is unclear a priori whether EVs are an environmental health benefit or dis-

benefit relative to CVs. 

 

Prior research on environmental impacts of EVs in China (Cherry, Weinert et al. 2009; 

Huo, Zhang et al. 2010) and elsewhere (Funk and Rabl 1999; Lindly and Haskew 2002; 

Nansai, Tohno et al. 2002; Silva, Ross et al. 2009; Jansen, Brown et al. 2010) generally 

compares emission factors or greenhouse gas emissions (MacLean and Lave 2003; 

Samaras and Meisterling 2008; Stephan and Sullivan 2008; Wallington, Grahn et al. 

2010), not exposures, intakes, or health effects. My research works to address this 

important knowledge gap. I evaluate five vehicle types   (gasoline and diesel cars, diesel 

buses, e-bikes, e-cars) and consider how environmental impacts (emissions, intakes, 



 

 3

mortality risks) vary depending on the emission location. I also investigate the 

distribution of these impacts, focusing on equity changes when CVs are replaced by EVs. 

  

 

 

Figure 1.1. Motorization use and electricity generation in China normalized to 

population. During the past decade, e-bike ownership has grown from near-zero to 

~2× greater than CVs. 
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1.1 Motivation 

 

Sustainability is critical concerns for the development of each country worldwide, 

especially in China. China’s economic development has been coupled with rapid 

environmental degradation. With the rapid increase of EVs, more attention should be paid 

to whether they should be supported or regulated. EVs are unique compared to CVs, 

because pollutants from EVs are not distributed among population sources in the same 

way as pollutants from tailpipes of CVs. As such, a vehicle with identical emission 

factors of a particular pollutant could have different health impacts and environmental 

justice implications, depending on the location of the pollution source (EGU or tailpipe).   

 

1.2 Scope 

 

This research is meant to primarily estimate environmental, health, and equity impacts of 

EVs, relative to alternative modes and fuels. Obviously, environmental, health, and 

equity impacts are a subset of important indicators when developing policy on different 

vehicle types. Other issues, such as safety, mobility, contribution to congestion, and 

economic development are also worth considering, together with environmental and 

health impacts. Interested readers can refer to published literature on some of these topics 

(Cherry 2007; Cherry and Cervero 2007; Weinert 2007; Lin, He et al. 2008; Ni 2008; 

Cherry, Weinert et al. 2009; Cherry, Weinert et al. 2009). The scope of this research is 
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limited to the following topics, to begin to answer questions related to environmental 

impacts and ultimately health impacts related to EVs and CVs in China: 

1. Refine estimation of emissions from EVs and CVs; 

2. Estimate intake fraction of emissions from EVs and CVs; 

3. Extend intake fraction to health impacts due to primary PM2.5; 

4. Analyze distributional equity impacts due to use of EVs. 

 

1.3 Outline 

 

This dissertation consists of five chapters. Chapter I is an introduction to the research. 

Motivation and scope of this research are described. In Chapter II, the previous related 

key findings are summarized. In Chapter III, the methods employed for this research are 

provided. Assumptions and data for this research are described. The findings of this 

research are presented and discussed in Chapter IV. Finally, in Chapter V, the conclusion 

and recommendation are made. Some detailed calculation results such as tables and 

figures are included in appendix. 
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CHAPTER II  

LITERATURE REVIEW 

 

In this chapter, the previous research work concerning policy and emissions on electric 

vehicles (EVs) in China and the theories and methods related to my research framework 

are reviewed. This section focuses on broad EV deployment strategies, and then covers 

EV emissions, exposure and health impacts, and distributional equity effects.  

 

2.1 Overview of Electric Vehicle Development in China 

 

Electric vehicles, including e-bikes and e-cars, are considered to balance mobility and air 

pollution control in China, especially as the number of e-bikes in China has skyrocketed 

from the 1990s. However, the views and opinions from local governments in China on e-

bikes are mixed. Some think e-bikes present an alternative transportation mode for bus 

riders and bicyclists. With e-bikes, the travel time could be reduced and travel length 

could be extended relative to some modes. Proponents believe e-bikes can contribute to 

sustainable transportation. However, e-bikes are banned by some cities in China. The 

opinion of these governments is that e-bikes contribute to traffic conflicts, particularly in 

the big cities like Guangzhou and Shenzhen. This section reviews EV policy in China, 

focusing on concerns about EVs in China.  
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2.1.1 Electric bikes 

Weinert et al. (2007) presented the first work that described the early history of e-bikes in 

China. The earliest appearance of e-bikes can be traced back to the foundation of Electric 

Vehicle Institute of China Electro-technical Society in 1987. Four years later, e-bikes 

were included into the 9th Five-Year plan of China as one of 10 main technology projects. 

Five-Year plans are a series of economy plans developed by central government in China 

and are expected to be completed in five years. In 1993, Shanghai became the center of e-

bike development for all of China. In 1997, the first generation of commercial e-bikes 

was introduced into the market by Shanghai Cranes Electric Vehicle Company and in 

1999, national e-bike standards were published in China and the first e-bike licenses were 

granted in Shanghai, Tianjin, Jiangsu, Zhejiang, Guangdong, Xichang, Yunnan, Anhui, 

and Hebei. In 2000, “Road Transportation Safety Law” was drafted to allow e-bikes to 

use bike lanes if the speed is lower than 20 kilometer per hour. This law was enacted in 

2004.  

 

Based on this study, the rapid growth of e-bikes starting in 1990s could be explained by 

several factors. For instance, throughout the late 1990s, the technology of e-bikes 

gradually improved. At the same time, the price of e-bikes gradually reduced while the 

income of urban households increased. The Chinese government was willing to support 

e-bikes as new transportation option. However, the investigation about the impacts on 

traffic, energy use, and environment due to adoption of e-bikes should be considered and 

analyzed in the future.  
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In 2007, another study was published about travel behavior, mode shift, and user safety 

of e-bikes in Shijiazhuang, China (Weinert, Ma et al. 2007). In this research, the reasons 

that people adopted e-bikes include reduction of trip time, increase of trip length, ability 

of carrying cargo and people, and easy operation. Most e-bike users switched to e-bikes 

from bus or bicycle in Shijiazhuang. Also e-bikes were considered an option for people 

who received insufficient public transportation service. Some of e-bike users could be 

considered potential consumers of private cars. Based on the survey, most e-bike users 

thought e-bikes were safer than bicycles when crossing intersections. They also believed 

bicycle riders and pedestrians present the major conflicts to automobile traffic. 

Coincidently, the bicycle riders, themselves, considered other bicycle riders as major 

traffic conflicts as well. However, higher speed e-bikes were not acceptable by most 

female users. Cherry and Cervero (2007) conducted a survey in Shanghai and Kunming 

of China. They found that most of e-bike users who were surveyed would switch to ride 

bus if e-bikes were banned in both cities. Also, some local governments, such as Dalian, 

were trying to improve the public transportation system in order to reduce the use of e-

bikes or bicycles.  

 

Weinert et al. (2008) conducted a force-field analysis on the development of e-bikes in 

China. They analyzed driving and resisting force for e-bikes adoption. For example, the 

driving force for national level support for the adoption of e-bikes was energy efficiency. 

Local bans on e-bikes because of safety considerations were resisting forces. They found 

that the driving forces outweighed resisting forces for e-bike adoption in China. This may 

accelerate the adoption of e-bikes in China. 
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Due to lack research on environmental impacts of e-bikes in China, Cherry et al. (2009) 

quantified the environmental impacts of e-bikes, beginning with the production processes 

through usage life, compared with bicycle, bus, motorcycle, and car. The research 

findings show that lifecycle emissions from e-bikes are lower than cars and motorcycles, 

comparable to buses, and higher than bicycles. E-bikes emitted more Sulfur dioxide 

(SO2) compared with other modes, since electricity generation was mostly fossil-fuel 

based in China. Lead pollution due to the use and recycle of rechargeable batteries on 

board should also be considered.  

 

Yang (2010) analyzed e-bike launching strategy of Chinese governments and potential 

impacts. The author pointed out that from the failed launching practice in Taiwan, 

subsidies from the governments may not be sufficient to foster the market of e-bikes. It 

should be noticed that the perspectives from the Chinese local governments are mixed. 

They are not certain whether e-bikes should be encouraged or regulated. From 2001 to 

2009, there were eight cities with bans on e-bikes in China -- Wuhan, Fuzhou, Zhuhai, 

Guangzhou, Dongguan, Shenyang, Foshan, and Shenzhen. Changzhou and Changsha 

suspended issuing licenses for e-bikes. The author also concluded that bans on 

motorcycles are one of major contributors to rapid growth of e-bikes in China. 

 

Rose (2012) reviewed e-bike policy and research globally. He primarily looked at 

impacts of e-bikes on mobility, safety, and environment. He suggested that future 

research should quantify these unresolved issues. 
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2.1.2 Electric cars 

Huo et al. (2010) conducted research on environmental implication of e-cars in China 

under current (2008) and future (2030) pollution control strategies of power plants in 

China. This research attempts to highlight some environmental concerns due to e-car 

adoption. They found that e-cars may not reduce Carbon dioxide (CO2) emissions 

significantly under the current energy structure of China. However, potential greater 

reduction in the future could happen since the power plants are becoming less polluting. 

Compared with gasoline cars, SO2 emissions of e-cars could be three to ten times higher, 

and NOX (Nitrogen oxide) emissions of e-cars could be doubled. In 2030, e-cars may 

have the similar emission rate of NOX compared with gasoline vehicles due to the 

pollution control strategies of power plants in China; however, the emission rate of SO2 

may be still higher than gasoline cars.  

 

Another recent study modeled CO2 emissions from EVs in China (Doucette and 

McCulloch 2011). This research drew the same conclusion as other similar analysis such 

as Huo’s (2010). In China, since the emissions of power plants have higher CO2 intensity, 

EVs actually have similar or even higher CO2 emission rates than CVs. 

 

In addition, Doucette and McCulloch (2011) modeled CO2 emissions for adoption of 

Plug-in Hybrid Electric Vehicles (PHEVs). They found that PHEVs could emit less CO2 

than EVs and CVs, if power generation had higher CO2 intensity, such as in China. 
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Countries like China could not reach the goal of CO2 reduction by adopting EVs and 

PHEVs without de-carbonization of power generation. 

 

Yan and his colleagues (2010) analyzed rapid growth of energy demand and emissions 

from road transportation in China. They predicted that this rapid growth could continue in 

the next two to three decades and suggested that appropriate strategies should be planned 

to reduce the impacts on energy and environment due to this rapid growth. In the short 

and medium term, EVs may not necessarily reduce the fossil fuel use and greenhouse gas 

(GHG) emissions. However, in the long term, EVs might offer significant reduction in 

fossil fuel use and GHG emissions. They claimed that EVs are highly promising in 

contributing to oil security and urban air pollution reduction. EVs could facilitate in 

transition from fossil fuel to renewable energy smoothly and utilizing the power 

generated during the idle time.  

 

Ou and his colleagues (2010) analyzed life cycle GHG emissions of EVs in China. The 

life cycle included full fuel cycle, use-phase emissions, vehicle cycle, and battery 

manufacturing emissions. This research found that, without de-carbonization, the life 

cycle GHG emissions from EVs could be 3% to 36% lower than gasoline cars. If a de-

carbonization strategy such as carbon dioxide capture and storage (CCS) technology was 

employed, the life cycle GHG emissions from EVs could be 60% to 70% lower than 

gasoline cars. The authors concluded that Chinese governments should consider the 

deployment of de-carbonization technology such as CCS to reach the goal of GHG 

reduction. However, the deployment of de-carbonization technology such as CCS at this 
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time could be restricted by several technical uncertainties, such as potential CO2 leakage, 

higher fossil energy consumption, and cost of commercialization. 

 

Another study considered EVs as possible promising low-carbon vehicles in China in the 

future (Yao, Liu et al. 2011). However, in short term, advanced technologies in CVs 

could be a more realistic solution to energy saving and GHG reduction. The future of 

low-carbon vehicles such as EVs in China depends on three factors: improvements in 

technology, public awareness, and government guidance. They also presented detail 

analysis on CO2 emissions of EVs in different regions of China. Since energy structure 

varies in different regions of China, emission rates of EVs were different as well. For 

example, in the north part of China, 98% of electricity was generated by coal-based 

power plants. EVs could increase CO2 emissions by 7.3% compared with gasoline 

vehicles in this region. On the other hand, in the south part of China, approximately 35% 

electricity was from non-fossil-fuel power plants such as hydropower. CO2 emissions 

from EVs in these regions could be around 30% lower than gasoline vehicles. 

 

In 2009, Chinese government developed a GHG reduction goal by 2020 (State Council 

PRC 2009). In this strategic plan, the central government required that the percentage of 

GHG emissions normalized by GDP should be reduced by 40% to 45% of the 2005 level. 

However, Hao and his colleagues (2011) criticized whether the goal of GHG reduction 

could be reached in the road transportation sector. In that research, they quantified 

several scenarios for road transportation, and none of them could guarantee the reduction 

goal could be fulfilled by 2020. For instance, by considering adopting EVs in China, the 
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GHG emissions in road transportation sector could only be reduced by 0.5% in 2020, a 

slight change.  

 

Zhang et al. (2011) analyzed public awareness and acceptance of EVs in China. They 

conducted a survey in Nanjing and received 299 respondents from driving school. The 

survey results show that government policies and fuel price have great impact on the 

users who want to purchase EVs. Recently, high fuel prices in China have already pushed 

some private car drivers to select public transportation again. In addition, they listed main 

factors that may influence consumers’ purchases and acceptance of price of EVs 

including age, academic degree, annual income, number of vehicles, and the opinion of 

peers.  

 

Zheng et al. (2012) conducted a survey concerning demonstration program of EVs in 

China launched in 2009. The purpose of their research is to better understand the current 

policy, problems, and uncertainties in the process of EVs deployment in China. They 

found that the impact of this demonstration program was still unclear since many EV 

deployment details are not published yet by the cities. The authors also provided some 

recommendations to this demonstration effort, such as incentive options, enhanced 

monitoring and evaluation strategy, and intercity collaboration. 

 

Based on the review on previous research on the policy and research of EVs in China, I 

found that most of the existing research looks at GHG emission comparison, with a few 

studies focusing on conventional pollutants such as Particulate Matter (PM), SO2, NOX, 
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and Hydrocarbon (HC). None of the existing literature analyzes health impacts from the 

PM emission of EVs. There is no previous research that considers equity problems due to 

adoption of EVs in China. My work attempts to quantify these issues.  

 

2.2 Vehicle Emissions 

 

2.2.1 Emissions of Conventional Vehicles 

In this research, emissions of CVs are estimated based on previous research findings and 

emissions standards adopted in China. European Union motor vehicle emission standards 

are designed to limit tailpipe emissions of new vehicles sold in European Union. These 

standards (or equivalent) are also adopted by developing countries such as China (Fung, 

He et al. 2010). In 2000 and 2004, European Union I (Euro I) and II motor vehicle 

emission standards were adopted nationwide in China, respectively.  In 2005 and 2008, 

Beijing municipal government introduced Euro III and Euro IV vehicle emission 

standards, respectively. In 2007, Euro III vehicle emission standards were implemented 

nationwide (Hao, Hu et al. 2006). Currently, the vehicle fleets with different emission 

standards co-exist in China. In this research, I look at the emissions from new vehicles 

with Euro III and IV emission standards. In my sensitivity analysis, the acceptable limits 

of PM2.5 in the emission standards are treated as base case value. Oliver et al. (2009)  

estimated in-use vehicle emissions in Beijing, China. They tested emissions from 58 

light-duty passenger cars in 2007 and found that new vehicles were getting cleaner due to 
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the tightening emissions standards in China; however, the actual on-road emissions of 

vehicles were much higher than certified limits because of an aging fleet.  

 

He et al. (2010) analyzed characteristics of vehicle emissions in China by using portable 

emission measurement system. They inspected 40 gasoline vehicles, 92 diesel vehicles, 

and 20 rural vehicles in Beijing, Xi’an, and Shenzhen. These vehicles had different 

emission control technologies, including Euro 0, Euro I, Euro II, Euro III, and Euro IV. 

The on-road emissions factors for these vehicles were estimated and compared. Based on 

the on-road tests, emissions from some tested vehicles are larger than the thresholds 

dictated by emission standards. They suggested that the emissions from rural vehicles 

should be paid more attention due to poor emission control technologies.  

 

Additionally, in 2010, the International Council on Clean Transportation (ICCT) assessed 

the vehicle emission control program in China and impacts of various policy options in 

the short- and long-term (between 2010 and 2030) (Fung, He et al. 2010). In this 

assessment, the ICCT presented quantitative analysis of vehicle emissions based on the 

China Fleet Model (CFM). The health risks and costs due to exposure to these emissions 

were estimated as well. This is the most comprehensive study to investigate short- and 

long-term policy options for vehicle emissions control in China. 
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2.2.2 Emissions of Electric Vehicles 

A few studies and datasets are available to estimate emission factors from power plants 

and ultimately EVs. A global comprehensive dataset, Carbon Monitoring for Action 

(CARMA) (CARMA 2010) tracks yearly electricity generation and CO2 emissions. 

These data include all of China’s fossil, hydropower, and nuclear EGUs and presents 

electricity generation (MWh) and total emissions (tons) and emission factors (tons MWh-

1) in 2007. The National Aeronautics and Space Administration (NASA) Intercontinental 

Chemical Transport Experiment-Phase B (INTEX-B) (Center for Global and Regional 

Environmental Research 2010) dataset reports total emissions of conventional pollutants, 

including black carbon (BC), Carbon monoxide (CO), NOX, PM2.5, PM10, SO2, organic 

carbon aerosol (OC), and nonmethane volatile organic compounds (NMVOC) throughout 

China and is used in conjunction with the CARMA database to estimate emission 

intensity of electricity generation in grams per kilowatt hour (g kWh-1). 

 

CARMA database was built to provide timely and accurate information about carbon 

emissions from the power sector, which contribute 26% of global CO2 emissions. The 

CARMA database covers more than 50,000 power plants, 20,000 companies, and 

200,000 regions worldwide. To estimate CO2 emissions from power plants, regression 

methods were employed to create CARMA database. They found that power generated, 

fuel sources, and combustion technologies contributed significantly to the regression 

model. The CARMA database includes many aggregation tools, so the database can be 

used for local, regional, national and international comparisons (Wheeler and Ummel 

2008).  
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In 2006, NASA launched INTEX-B program. The INTEX-B is an integrated 

observational mission involving multiple partners. One of the objectives of INTEX-B 

was to evaluate transport of pollution from Asia to North America and measure regional 

air quality. The data are presented as total emissions (tons) in each 0.5×0.5 degree grid 

(Zhang, Streets et al. 2009).  

 

Zhu et al. (2005) reviewed the development of power industry and 16 power grids 

interconnections in China. They concluded that the power plants in China were primarily 

coal-based and the emissions from power sector, such as SO2, CO2, and NOX were the 

largest contributor to these pollutants emissions in China.  In addition, they estimated 

potential benefits of power grid interconnections in China. For instance, through regional 

power grid interconnection, the pollutants emissions could be separated from the 

locations where the power is used. This emissions spreading might reduce pollutants 

emissions and human exposure to these emissions. Moreover, the aggregation of power 

grid could help to avoid the construction of small EGUs, which are usually associated 

with higher pollutants emissions.  

 

Cherry et al. (2009) analyzed environmental impacts of e-bikes in China. CARMA and 

INTEX-B databases were utilized to calculate the regional electricity generation emission 

factors. In this research, energy use rate of standard e-bikes in China was estimated (1.8 

kWh (100-km)-1).  
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Cherry (2009) conducted market analysis and environmental impacts for electric two-

wheelers in India and Vietnam. In his study, the energy use rates of e-bikes are estimated. 

The e-bikes are classified into three classes: lower power, intermediate, and advanced. 

The energy use rate of lower power e-bikes, which the maximum speed is less than 30 

km h-1, is 1.8 kWh (100-km)-1. The lower power e-bikes are primarily used in China. The 

energy use rate of intermediate e-bikes, which the maximum speed is less than 45 km h-1, 

is 2.3 kWh (100-km)-1. The energy use rate of advanced e-bikes, which the maximum 

speed is less than 55 km h-1, is 3.1 kWh (100-km)-1. It is worthy of note that intermediate 

and advanced e-bikes are not widely manufactured in China, since the manufactures are 

inclined to develop slower and lighter e-bikes under the pressure of regulation.  

 

The energy use rates of e-cars are usually an order larger than e-bikes. For example, the 

energy use rate of a BYD e6 (a Chinese brand EV) is at least 18 kWh (100-km)-1 (Green 

Car Congress 2009). The energy use rate of Nissan Leaf is approximately 21 kWh (100-

km)-1 (Green Car Congress 2010). The energy use rates of EVs in France are about  25 

kWh (100-km)-1 (Wang 2011). 

 

2.2.3 Well-to-station Emissions 

Well-to-station emissions include fossil energy extraction, refining, storage, and 

transportation processes. Previous energy life cycle research findings for CVs and EVs in 

China are utilized to estimate average well-to-station emissions. Wei and his colleagues 
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(2006) conducted comparative study on life cycle assessment for alternative vehicle fuels 

in China. In this research, the authors estimated life cycle emissions of conventional 

pollutants, including CO2, CO, NOX, SOX, VOC, and PM, from gasoline vehicles and fuel 

cell vehicles. Di et al. (2007) estimated life cycle inventories for electricity generation in 

China. In this research, they linked one kWh of usable electricity in China in 2002 to the 

life cycle emissions of CO2, CO, NOX, SO2, NMVOC, CH4, PM and heavy metals from 

thermal power plants. Hu et al. (2008) conducted life cycle energy, environment, and 

economic assessment for biodiesel and conventional diesel fuels in China. In this 

research, the authors estimated proportions of pollutants (HC, CO, PM, CO2, NOX, SOX) 

at various stages during the life cycle of conventional diesel fuel. These stages include 

crude oil extraction and transportation, crude oil refining, conventional diesel fuel 

transportation, and conventional diesel fuel use.   

 

2.3 Intake Fraction 

 

Bennett et al. (2002) first formally defined intake fraction (iF). It is simply the proportion 

of a pollutant emitted that is inhaled by people (Bennett, McKone et al. 2002; Marshall, 

Riley et al. 2003; Marshall and Nazaroff 2004; Marshall, Teoh et al. 2005; Zhou, Levy et 

al. 2006). Actually, this concept appeared in research literature over 16 years before 

Bennett’s definition (Evans, Wolff et al. 2002; Greco, Wilson et al. 2007), and has been 

referred to by several other names. For instance, in 1986, Harrison et al. (1986) used 

exposure efficiency. The definition of exposure efficiency from Harrison is “the fraction 
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of total production which is likely to reach people, or the ratio of human intake to the 

amount emitted”. Smith (1988) referred to it as exposure factor and defined it as the 

fraction of total population exposure to total emissions. In another study, Smith (1993) 

referred to iF as exposure effectiveness. Jolliet and Crettaz (1997) used fate factor. Lai 

(2000) used inhalation transfer factor. Hertwich (2001) used potential intake. In general, 

iF and exposure efficiency are two major terms to define this concept (Evans, Wolff et al. 

2002; Greco, Wilson et al. 2007). Michael et al. (2002) reviewed the uses of exposure 

evaluation for science and policy. They proposed several factors to guide the approaches 

for exposure assessment.  

 

Stevens et al. (2007) calculated iF for the Mexico City Metropolitan Area using several 

different methods: a steady box model, a dynamic box model, a regression model, a 

particle composition model, and an atmospheric dispersion and chemistry model. They 

conclude that iFs calculated by multiple rapid-assessment models are meaningful, even 

with limited data. 

 

2.3.1 One-compartment Model 

The compartment model is one of the methods to estimate iF. A single compartment or a 

set of linked compartments could be used for compartment model (Evans, Wolff et al. 

2002). In my research, a single compartment is employed for this modeling approach, 

since prior research for urban areas in the US (Marshall, Teoh et al. 2005) and Mexico 



 

 21

(Stevens, de Foy et al. 2007) suggests that the one-compartment model yields similar 

results as more detailed models.  

 

The one-compartment model estimates concentrations based on a mass-balance, 

assuming that the air is well mixed over the city as a box. The square base of this box is 

city area A and the height of this box is H. The wind blows perpendicular to one side of 

the box at a constant velocity u and this wind moves clean air into the box and flushes 

pollution out. The volume of this box is AHu    per unit of time as wind moves 

through the box. In this box, the emission rate of the pollutant is assumed as E. Under 

these conditions, the concentration of pollutant C in this box is:  

 

AuH

E
C 

 
(2.1) 

 

Assuming B is breathing rate and P is population is this area, the intake of the pollutant I 

is: 

 

PBCI   (2.2) 

 

Intake fraction is defined as the proportion of a pollutant emitted that is inhaled by 

people. Thus the iF can be estimated by using equation 2.3: 
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(2.3) 

 

It is worth mentioning that one-compartment model is not exactly identical to box model. 

The box model assumes that the air pollutants are uniformly distributed in the box 

without considering advection and diffusion (Carella and Mudu 2009). 
 

 

Luo et al. (2010) estimated the iF of non-reactive emissions from mobile sources in Hong 

Kong by using box model. They found that when the ambient concentration of a pollutant 

was used to calculate urban iF, the influence of upwind transport of pollutants cannot be 

ignored. In this study, one-compartment model is used to estimate iFs for emissions from 

urban mobile source. Apte et al. (2012) estimated iF for distributed ground-level 

emissions in 3646 global cities, in which they defined an urban area with a population 

over 100,000 as a “city”. In this study, they provided the iF estimate for Beijing, China, 

as 73 ppm (parts per million). This estimation is similar to the result in this research.  

 

2.3.2 Regression Model 

Zhou et al. (2003) conducted a case study about estimating iF of power plant emissions in 

Beijing, China using a simplified regression approach. The CALPUFF model was 

utilized for this research. CALPUFF is an advanced modeling system for the simulation 

of air pollution dispersion. This study presented the approach to calculating iF of power 

plant emissions by using the CALPUFF model in China. The iF estimates from this study 
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were an order of magnitude larger than the US estimates. The iF of primary fine particles 

was on the order of 10-5. The iFs of  SO2, SO4, and NO3 are on the order of 10-6. 

 

Li and Hao (2003) developed a regression model for iF of primary and secondary PM 

from power plants in Hunan province, China. In total, 17 power plants and 24 stacks were 

analyzed. The CALPUFF model was used to simulate ambient concentration of 

pollutants. The population database was at the county level. They found that stack height 

of power plants and aggregate population contributed significantly to intake in the 

regression model.  

 

Zhou et al. (2006) evaluated the impacts of emission source location on iF at 29 power 

plants in China. Annual average iFs at each site were estimated. The CALPUFF model 

was used to simulate the emission concentration of pollutants. In the regression analysis, 

iFs are the dependent variables; meteorological data and population within different radii 

(100km, 500km, 1,000km, and over 1,000km) of the power plants are independent 

variables. They found that population variable can predict iF from criteria pollutants 

emitted from power plants. The R2 values were from 0.86 to 0.95 across pollutants. They 

concluded that the iF of power plant emissions in China can be estimated by simple 

regression model. This regression model is used in this study to estimate iFs of power 

plants.  

 

2.4 Health Impacts 
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Air pollution has harmful impacts on public health. Outdoor air pollution is blamed for  

approximately 300,000 premature deaths in China each year (Millman, Tang et al. 2008). 

Among air pollutants, particulate matter, especially particulate matter with aerodynamic 

diameter smaller than 2.5 μm (PM2.5), have the most damaging to public health (Zhang, 

Song et al. 2007). PM2.5, also called fine particle, is considered to be associated with 

higher risk of mortality, since fine particles can be breathed more deeply into the lungs 

and are more toxic than larger particles (Dockery, Pope et al. 1993). A series of studies 

concerning air pollution impacts on public health were conducted beginning in the 1990s 

in China (Bingheng, Haidong et al. 2011). The findings from these studies showed the 

harmful impacts on human health from air pollution, such as excess mortality risk. While 

there are many different types of pollution emitted from CVs, buses and EVs, this 

research focuses on primary PM2.5 because of its well-documented health effects. It is 

important to note however that omission of other pollutants does not minimize their 

impact (Health Effects Institute 2004). In this research, I only look at the mortality risk 

under long-term exposure of PM2.5. Since when we conduct analysis on annual mortality, 

the main impacts of air pollution, including acute effects, are associated with long-term 

exposure (Boldo, Medina et al. 2006). 

  

Pope et al. (2002) assessed the relationship between long-term exposure to PM2.5 and all-

cause, lung cancer, and cardiopulmonary mortality. In this study, the vital status and 

cause of death data were collected by the ACS. This dataset was part of the Cancer 

Prevention II study conducted by ACS, which included approximately 1.2 million adults 

in 1982. The findings of this research were that each 10 μg m-3
 increases in the 
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concentration of PM2.5 could be associated with 4%, 6%, and 8% increase in all-cause 

mortality, cardiopulmonary mortality, and lung cancer mortality respectively.  

 

Levy et al. (2009) evaluated efficiency-equality tradeoffs for controlling emissions from 

urban mobile sources. In this study, they concluded research findings about impacts of 

PM2.5 on public health. They found that each 10 μg m-3
 increase in the concentration of 

PM2.5 could be related to 10% increases in all-cause mortality. They also concluded the 

lower-bound and upper-bound of this increasing rate as 3% and 20% per 10 μg m-3
 

increase in the concentration of PM2.5. 

 

Xie and his colleagues (2011) conducted analysis about the human health impact of 

exposure to airborne particulate matter in Pearl River Delta, China. They estimated that, 

for long-term exposure (over 30 years), each 10 μg m-3
 increase in the concentration of 

PM2.5 resulted in an increase in all-cause annual mortality rate of 7.6%. Yang et al. 

conducted a study of PM2.5 related mortality in Guangzhou, China (Yang, Peng et al. 

2012). They found that each 10 μg m-3
 increase in the concentration of PM2.5 could be 

related to 0.9%, 1.22%, and 0.97% increases in all-cause mortality, cardiovascular 

mortality, and respiratory mortality respectively.  

 
 

2.5 Equity 
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Currently, sustainable development is one of crucial consideration on the international 

political agenda. The scholars suggest that it is the time for the governments at different 

levels to learn the principles and practical approaches used to evaluate sustainability, 

environmental justice, and equity (Agyeman, Bullard et al. 2002). Based on the report of 

Our Common Future, also known as the Brundtland Report, published by United Nations 

World Commission on Environment and Development (WCED) in 1987, sustainable 

development can be defined as “development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” (WCED 1987). 

Sustainable development consists of three components: economic development, social 

equity, and environmental protection. Sustainable development is the development that 

guarantees intergenerational equity through simultaneously addressing these three 

components  (WHO 2005).  

 

In this research, I mainly look at equity problems due to pollution exposure by adopting 

EVs in China since there are few studies on this topic. Equity is an ethical concept that 

qualifies fairness (Braveman and Gruskin 2003; Povlsen, Borup et al. 2011). As defined 

by Whitehead, equity is a “moral and ethical dimension and refer to differences which are 

unnecessary and avoidable, and are also considered unfair and unjust” (Whitehead 1992; 

Povlsen, Borup et al. 2011). Therefore, equity analysis should include three major 

determinants: whether the differences are unnecessary, avoidable, and remediable (Levy, 

Chemerynski et al. 2006).  
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In order to evaluate the policies in terms of equity, we have to measure equity. Currently, 

there are several metrics used to measure equity. For example, inequality metrics, social 

gradient, social welfare functions, cost-benefit analysis, and incidence analysis are 

primary methods. The concepts of these measure approaches are introduced in the 

following sections.  

 

(1) Inequality metrics 

Equality is generally described as “uniformity in rights or experiences despite differences 

in resources, capabilities and backgrounds” (Levy, Chemerynski et al. 2006). Inequality 

can be measure by several indicators, such as Gini index, Atkinson index, Theil index, 

and coefficient of variation (Levy, Wilson et al. 2007). Inequality metrics are primarily 

used to measure the degree of income inequality in a population. They are also employed 

in measuring the degree of health inequality (Levy, Chemerynski et al. 2006).  

 

(2) Social gradient 

The social gradient metric was first employed to evaluate the relationship between 

occupation and chronic disease in the 1974 (Reid, Hamilton et al. 1974). It has been 

widely used to measure whether a pollution source has disproportionate impacts on low 

socioeconomic position individuals. Pearce et al. (2006) examined whether there is a 

social gradient related to exposure to air pollution in Christchurch, New Zealand (Jamie, 

Simon et al. 2006). They demonstrated that different social groups were exposed to 
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different level of air pollution and lower socioeconomic communities were exposed to 

higher level of air pollution. They also found that the groups who produced a large 

portion of air pollution were different from the groups who suffer from high level of air 

pollution. 

 

(3) Social welfare function 

Social welfare function is defined as “a method for obtaining group preferences, given 

the preferences of the individual members of the group” (Goodman and Markowitz 

1952). Social welfare function is a framework to rank policies as function of individual 

utilities (Pattanaik 1968).  

 

(4) Cost-benefit analysis 

Cost-benefit analysis is used to compare costs and benefits of a project or policy. In 

general, cost-benefit analysis can be conducted by three steps. Firstly, we have to define 

the cost and benefit elements for the project or policy. Then, we have to convert the costs 

and benefits in monetary term. Finally, we have to compare the benefits with the costs to 

make adoption recommendation of the proposed project or policy (Bootman, Rowland et 

al. 1979). There are ways to apply this approach to subgroups, though cost-benefit 

analysis is criticized for lost resolution of impacts.  

 

(5) Incidence analysis 
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Incidence analysis is traditionally used to study tax burden of a policy change as 

individual income increases (Graetz 1975). It has also been employed to examine 

environmental policies recently.  

 

By using the metrics introduced above, many studies were conducted to measure equity 

problems concerning pollution exposure and health risk. For example, Levy et al. (2002) 

estimated the distribution of health benefits owing to emission control strategies at five 

power plants in the Washington, DC, area. They compared primary and secondary PM 

related mortality for the pre-control and post-control scenarios and found that half of the 

health benefits accrued among the 25% of the population with lower education level 

(below high school). Touche et al. (2005) also examined inequity involving the locations 

and emissions of power plants in Texas. They suggested that the power plants using more 

hazardous fossil fuel were likely to be constructed in the lower socioeconomic 

communities. 

 

Levy and his colleagues (2007) evaluated the efficiency and equity implications of power 

plant air pollution control strategies in the United States. They associated PM2.5 

concentration with mortality risk for each pollution control scenario. The spatial 

inequality of health risk was estimated by Atkinson index and other metrics. This 

research demonstrated an approach for quantifying equity implications of air pollution 

control strategies. Levy et al. (2009) evaluated efficiency-equality tradeoffs for mobile 

source control strategies in Boston, Massachusetts. They highlighted the impacts of PM2.5 

from urban mobile source and linked PM2.5 concentration to mortality risk. The Atkinson 



 

 30

index was primarily used to quantify changes in the distribution of mortality risk. 

Atkinson index uses inequality aversion parameter to evaluate inequality concerns. It is 

useful to find which results of allocations contributed most to the inequality. Levy’s study 

provided policy makers an approach to select the optimal air pollution strategies by 

considering efficiency-equality tradeoffs.  

 

Brajer et al. (2010) explored environmental equity in China. They associated China’s air 

pollution with urban income inequality problems. The urban income inequality was 

measured by indicators like Gini coefficient and Theil’s L and T indices from 1995 to 

2004. Then pollution-adjusted incomes were used to recalculate income inequality. They 

suggested that, in a developing country, improving welfare distribution can coexist with 

environmental protection.  

 

Schoolman and Ma (2012) quantified environmental inequality due to exposure to 

pollution in Jiangsu Province, China. Regression approaches were employed for this 

analysis. By analyzing the locations and emissions of pollution related facilities in 

Jiangsu, they found that the townships with higher proportion of rural migrants, who have 

no Hukou in Jiangsu, were likely to be exposed to high level of air and water pollution. 

They also examined other low socioeconomic status population such as the employers in 

“dirty and hard” industry in Jiangsu and found similar conclusions.  
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CHAPTER III 

METHODS 

 

My investigation follows a conventional risk assessment framework, but based on 

pollutant intake (mass inhaled) rather than concentration. Methods are summarized next, 

and key steps are in Figure 3.1. First, emissions and iFs are estimated to identify 

population intake. Then, by linking population intake to toxicity of the pollutants, 

potential health risk could be obtained. This research presents emissions for several 

pollutants, but focuses on health effects of primary PM2.5 because of the strong 

epidemiological evidence for that pollutant, because prior research suggests that PM2.5 

often dominates total air pollution health and economic impacts per mass emitted (Muller 

and Mendelsohn 2007), because primary PM2.5 is relatively non-reactive, thereby 

simplifying the requirements for fate and transport modeling, and because peer-reviewed 

literature provides the information needed for analyses here.  

 

 

 

 

 
 

Figure 3.1. Summary of intake-based health risk assessment employed here. 
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Secondary PM2.5, also with important health effects, is explored briefly in the Chapter V 

Discussion, but is not a focus of this research. My health risk assessment will only 

include combustion emissions, though the relative magnitude of fuel life cycle emissions 

is discussed in Chapter IV. My investigation considers five vehicle technologies and 34 

vehicle-use locations covering all of China’s urbanized provinces. This research 

estimates exposure from emissions generated at ~1,000 fossil EGU’s. My primary results 

employ point estimates for input parameters. Then Monte Carlo (MC) simulation is 

conducted to identify the sensitivity of the results to variability and uncertainty. In 

Chapter IV, I illustrate an example of the policy significance of the research by 

considering a deployment scenario for one city (Shanghai). I examined socioeconomic 

status differences in exposures and health impacts attributable to urban use of EVs.  

 

3.1 Emission 

 

In this study, I focus on station-to-wheel emissions and their health impacts. I also 

present fuel well-to-station emissions for reference. Well-to-station emissions are 

released in the processes of coal mining and processing for EVs and oil extraction and 

refining for CVs. Here, a station is a fueling station (CV) or an electric charging station 

(EV). Health impacts from well-to-station emissions are not estimated since location and 

population information are unavailable for those activities.  
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For CVs, combustion emission factors are taken from literature and emission standards 

(Xie, Song et al. 2006; Meszler 2007; Cherry, Weinert et al. 2009; Oliver, Gallagher et al. 

2009; Hao, Yu et al. 2010; He, Yao et al. 2010). For EVs, EGU emission factors are 

estimated based on electricity generation rates (CARMA 2010) and modeled total EGU 

emissions (Center for Global and Regional Environmental Research 2010). Power-sector 

EGU emission factors vary among regional electricity grids in China (Zhu, Zheng et al. 

2005), owing to differences in fuels (fossil versus renewable), fuel quality, combustion 

conditions, and emission controls. My EV emission factors include loss from in-plant use 

and transmission. Average well-to-station emissions are taken from literature for CVs and 

EVs (Wei, Shen et al. 2006; Di, Nie et al. 2007; Hu, Tan et al. 2008). 

 

3.1.1 Electricity Vehicle Emission Factor (Station-to-Wheel) 

To estimate EV emission factors, two metrics are identified. First, electricity generation 

and total emissions are used to estimate emission intensities of the power sector. These 

values are estimated by regional power sector, using the CARMA database (CARMA 

2010) to track yearly electricity generation and CO2 emissions. The NASA INTEX-B 

(Center for Global and Regional Environmental Research 2010) dataset reports total 

emissions of conventional pollutants, including BC, CO, NOX, PM2.5, PM10, SO2, and 

VOC throughout China and is used in conjunction with the CARMA database to estimate 

emission intensity of electricity generation in grams per kilowatt hour (g kWh-1). Second, 

the energy use of EVs (kWh km-1), including transmission and in-plant using loss rate, is 

coupled with average emission intensity from the power sector (g kWh-1). The product of 
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electricity generation emission intensity and electricity use from vehicles results in 

emission factors from EVs (g km-1). In the process of estimating EV emission factors, 

estimated energy requirements of EVs are obtained for several types of battery EVs such 

as existing Chinese e-bikes (average energy efficiency1.8 kWh (100-km)-1) and a 

compact e-car (average energy efficiency 18 kWh (100-km)-1) (Cherry, Weinert et al. 

2009; Green Car Congress 2009). These energy requirements are reported as the energy 

required from station-to-wheel, namely the recharger or motor efficiency losses are 

included in the energy use rate. Moreover, approximately 14% transmission and in-plant 

use loss in China is taken into account (Lawrence Berkeley National Laboratory 2004). 

The calculation steps are shown in Figure 3.2 (flow chart). The average emission factors 

of these pollutants are estimated for 15 relatively independent power grids in China as 

show in Figure 3.3 (Zhu, Zheng et al. 2005). For sake of this analysis, I assume that cities 

are served by EGUs in the grid in which they are located. Data are unavailable for Tibet 

power grid.   

 

To illustrate the case of Shanghai belonging to East China power grid; in 2007, the total 

amount of PM2.5 emitted and total electricity generated by EGUs in the East China power 

grid are 219,261 metric tons and 591,515,249 MWh, respectively. An emission rate of 

PM2.5 in the East China power grid can be obtained by dividing total amount of PM2.5 

emitted by total electricity generated in this grid. After unit conversion, the emission rate 

of PM2.5 in East China power gird is 0.37 g kWh-1. If 1.8 kWh (100-km)-1 was used as the 

energy use rate of e-bike and by considering 14% in-plant and transmission loss rate in 

China, the total energy use rate of e-bike is 2.1 kWh (100-km)-1. Multiplying this total 



 

 35

energy use rate of e-bike by the emission rate of PM2.5 in East China power grid, the 

PM2.5 emission factor of e-bike in Shanghai is 0.78 g (100-km)-1. 

 

 

  

 

 
 
 
 

 

 

Figure 3.2. Calculating emission factors of electric vehicle. “Loss” represents the 

transmission and in-plant use loss of electricity generated in China.  

 

Figure 3.3. Power grid networks in China (Zhu, Zheng et al. 2005). 
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3.2 Intake Fraction 

 

Intake fraction is defined as the proportion of a pollutant emitted that is inhaled by people 

(Bennett, McKone et al. 2002). By definition, iF can be estimated based on the formula 

below: 

 

EmissionsTotal

IntakeTotal
iF

_

_
  (3.1) 

 

The expectation is that a pollution source in a densely populated urban area has a higher 

proportion of the emitted pollutants inhaled by the population. On the contrary, pollution 

emitted from a remote source in a rural area will have a smaller portion of the pollution 

inhaled. A few previous investigations have addressed this subject. Marshall et al. (2005) 

used three methods to estimate iF for vehicle tailpipe emissions in US urban areas. The 

results presented in their work can be used to estimate intake of emissions of non-reactive 

or slowly reacting pollutants, particularly in urban air sheds. Zhou et al. (2006) presented 

an analysis on evaluating the influence of EGU location on population exposure in China. 

Their findings demonstrate that iF for EGUs in China can be calculated via applying 

regression models, with most iF explained by population surrounding EGUs. Cherry 

(2007) applied the relevant methods into two large cities in China – Kunming and 

Shanghai to compare iFs between urban source emissions (tailpipes) and remote 

emissions (EGUs).  
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3.2.1 One-compartment Model for Urban iF 

The one-compartment model can be carried out by two primary approaches: a steady-

state model and a dynamic model. For the steady-state model, it assumes that emissions 

keep constant over a given day in the compartment. The emissions entering and leaving 

the compartment are always equal in steady-state model. The steady-state model may 

cause upwards bias because of the assumptions that emissions equally enter and leave the 

compartment evenly during a 24-hour period, when there could be residual emission 

concentration from a previous time period. On the contrary, the temporal changes of air 

system are considered by the dynamic model. However, the dynamic model may cause 

downwards bias, because it assumes that emissions at upper layer of compartment will 

never re-enter the compartment as the mixing height of air system decreases (Stevens, de 

Foy et al. 2007).  

 

In this research, the dynamic one-compartment model to estimate iF of emissions in 

urban areas is employed. This model is expressed in equation 3.2.  

 

(3.2) 

 

Where, B is the population average breathing rate (m3 person-s-1) 14.5 based on 

metabolic activity studies (Layton 1993); P is the urban population for the designated 

city; H is the atmospheric mixing height (m); u is wind speed averaged over the mixing 

height (m s-1); A is urban land area (m2). A merit of the dynamic one-compartment model 

AuH

BP
iF tcompartmen 



 

 38

is fine-scale temporal resolution; a weakness is lack of information about within-urban 

spatial variability. Main input variables for the one-compartment model are urban 

population and land area, average breathing rate, atmospheric mixing height, and average 

wind speed over the mixing height. Population and land-area data for urban areas are 

from the Chinese Bureau of Statistics (NBS 2010). Meteorological data (wind speed, 

mixing height; years 2005-2007), are from NASA's Global Modeling and Assimilation 

Office (http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl). The meteorological 

dataset provides hourly estimates at 0.5°-0.667° spatial resolution; this one-compartment 

model simulates three years of air dispersion, using 0.1-minute time steps. To avoid 

discontinuities in modeled meteorological data, I linearly interpolated the hourly raw data 

to 0.1-minute increments. For example, the urban population in Shanghai is 11,969,400 

and the urban area is 2,649 km2. The harmonic mean product of mix height and wind 

speed is 772.12 m2s-1. I use 14.5 m3person-1s-1 as average population breathing rate in 

Shanghai. Plug these numbers back to the formula (3.2) and obtain urban iF in Shanghai: 

50.6 ppm (intake per million). Harmonic mean is used because it is less biased and closer 

to the true average of the population by discounting the large outliers. 

 

Emissions from outside of the urban area are not considered in one-compartment model 

(Stevens, de Foy et al. 2007). Therefore, the results calculated by one-compartment 

model in this research are intraurban iFs. Previous studies suggest that intraurban iFs 

estimated by one-compartment model are accurate within a factor of ~2 or better for 

primary pollutants (Marshall, Riley et al. 2003; Marshall, Teoh et al. 2005; Stevens, de 

Foy et al. 2007; Apte, Bombrun et al. 2012). The one-compartment model is a screening 
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approach, and typically more reliable for relative comparisons (e.g., as applied here, for 

multiple technologies and locations) rather than for absolute values. As a result, my 

findings should be considered suggestive rather than definitive.   

 

3.2.2 Regression Model for EGUs iF 

I estimate iF of EGU emissions based on previous multivariate regression analyses of 

many EGUs in China (Zhou, Levy et al. 2006). Under most circumstances, the closer the 

population lives to the EGU, the more exposure they have to emissions from that EGU, 

estimated by a simple regression model. The coefficients of regression model are listed in 

Table 3.1. 

 

The coefficients of regression model and population variables are applied to estimate iF 

from EGU emissions using the following relationships: 

 

 
(3.3) 

 

Here,  is the iF of pollutant k from EGU j. Pi is the population in each i radius from 

the EGU; is the parameter estimate for pollutant k on the pollution in each i radius of 

the EGU. The  parameters are given in Table 3.1.  

 

iFj
k   i
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i1

n
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The population living in the radii of 100km, 500km, 1,000km, and farther than 1,000km 

from ~1,000 fossil EGUs in China are estimated using ArcGIS, based on the EGUs 

location from the CARMA database and county-level Chinese population data from 2000 

census dataset (All China Marketing Research Co. Ltd. 2003). Intake fraction of 

pollutants from each EGUs is estimated and the capacity-weighted average iF of all 

EGUs in a grid is applied to develop an average iF parameter for each electricity grid. 

Zhou et al. (2006) only predicted the coefficient for iF of PM1 and PM3 based on their 

atmospheric dispersion modeling results. I interpolate the iF calculated from PM1 and 

PM3 relationships to estimate PM2.5 iF. To illustrate, take Shanghai Gaoqiao power plant 

as an example, the populations within three buffer zones of this EGU are collected. The 

calculations of iF for PM2.5 are presented in Table 3.2. First, iF in each radius is estimated 

for PM1 and PM3. By summing up iFs in different radii, total iF is obtained for Gaoqiao 

power plant in Shanghai. Intake fraction of PM2.5 is acquired by interpolation. For 

primary PM2.5 emitted from Gaoqiao power plant, ~80% and ~40% emissions are inhaled 

by the population within 1,000 km and 500 km respectively. After obtaining iFs for each 

EGU, I aggregate the EGUs for each power grid and the iF for each power grid are 

weighted by the energy generated by each EGU in specific power grid. 
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Table 3.1. Regression Coefficient for Electricity Generating Unit iF Estimation 

(Zhou, Levy et al. 2006). 

 R2 Pop. <=100 km 100km<Pop.<500km 500km<Pop.<1000km Pop.>=1000 km 

SO2 0.95 
9.5E-8** 

(3.9E-8) 

1.2E-8** 

(4.6E-9) 

2.5E-9 

(2.3E-9) 

1.4E-9** 

(7.0E-10) 

PM1 0.95 
1.3E-7* 

(8.2E-8) 

2.0E-8** 

(9.8E-9) 

9.8E-9** 

(4.8E-9) 

2.9E-9** 

(1.5E-9) 

PM3 0.89 
1.2E-7* 

(7.9E-8) 

1.3E-8** 

(9.4E-9) 

4.5E-9 

(4.6E-9) 

1.5E-9** 

(1.4E-9) 

PM7 0.88 
9.1E-8** 

(4.7E-8) 

7.1E-9* 

(5.7E-9) 

2.1E-9 

(2.8E-9) 

7.8E-10* 

(8.5E-10) 

PM13 0.87 
6.4E-8** 

(2.6E-8) 

3.6E-9 

(3.1E-9) 

5.6E-10 

(1.5E-9) 

4.5E-10 

(4.7E-10) 

SO4 0.93 
1.5E-8 

(4.2E-8) 

6.0E-9* 

(5.1E-9) 

5.9E-9** 

(2.5E-9) 

1.8E-9** 

(7.6E-10) 

NO3 0.86 
2.9E-8 

(5.0E-8) 

9.6E-9** 

(6.0E-9) 

2.0E-9 

(2.9E-9) 

1.3E-9** 

(9.1E-10) 

1. ** Parameter estimate significant at 0.05 level. 

2. * Parameter estimate significant at 0.10 level. 

3. Numbers in parenthesis are the standard error of parameter estimates. 

4. PMx= particulate matter with diameter precisely equal to x μm. 

5. Population variable in millions of people. 

6. No intercept term is used in the above regression models and R-square is not corrected for the 

mean. 
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Table 3.2.  Calculation of PM2.5 Intake Fraction for Shanghai Gaoqiao Power Plant. 
 

Item Variable <=100km 
100km to 

500 km 

500km to 

1000km 
>1000km Total 

1 

Population 

(in million) 

6.7 124.4 448.1 721.0  

2 

Coefficient 

(PM1) 

1.3E-7 2.0E-8 9.8E-9 2.9E-9  

3 

Coefficient 

(PM3) 

1.2E-7 1.3E-8 4.5E-9 1.5E-9  

1×2 

Intake Fraction 

(PM1) 

8.7E-7 2.5E-6 4.4E-6 2.1E-6 9.9E-6 

1×3 

Intake Fraction 

(PM3) 

8.0E-7 1.6E-6 2.0E-6 1.1E-6 5.5E-6 

Interpolate 

Intake Fraction 

(PM2.5) 

8.2E-7 1.8E-6 2.6E-6 1.4E-6 6.6E-6 

Proportion of total intake in 

East China grid (PM2.5)  
2.5E-9 5.4E-9 7.8E-9 4.2E-9 2.0E-8 
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3.3 Health Impacts Analysis 

 

While iF is an important indicator of health impacts, assuming each vehicle has similar 

emission rates, a full health analysis is required to extend iF results to robust policy 

development. There are two main factors that influence health impacts. First, emission 

rates are important as a baseline of comparison. Second, exposure to those emissions is 

important. For most environmental comparisons between transportation modes, 

comparing emission rates is acceptable, because the location of the pollution source is the 

same and thus the iF is also the same. However, EVs are unique because they have 

different emission source and iFs compared to CVs. 

 

While there are many different types of pollution emitted from CVs, buses, and EVs, this 

research focuses on primary PM2.5 because of its well-documented health effects. It is 

important to note however that omission of other pollutants does not minimize their 

impact (Health Effects Institute 2004). The mortality risks due to PM2.5 and chronic 

cancer risk owing to diesel particulate matter (DPM) present the largest concern 

associated with diesel vehicle emissions. Because most PM emissions from diesel 

engines are smaller than 1 μm in diameter, it is acceptable to consider all DPM as PM2.5 

(Marshall and Nazaroff 2002). In addition, in this research, I mainly look at the death risk 

under long-term exposure of PM2.5, since when we analyze annual mortality, the main 

impacts of air pollution, including acute effects, are associated with long-term exposure 

(Boldo, Medina et al. 2006). The value of the unit dose, or the total amount of PM2.5 
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inhaled for each case of all-cause mortality, is estimated from this ACS cohort (Pope, 

Burnett et al. 2002). Their research concludes that, with each 10 g m-3 increase in 

average PM2.5 ambient concentrations, the risk of all-cause mortality will increase 

approximately 4%. Chinese death rate is approximately 7 deaths (1,000 people)-1 year-1 in 

2009 (CIA 2009). Therefore, in China, a 4% increase in the death rate is 0.28 deaths 

(1,000 people)-1 year-1. Assuming that breathing rate is 14.5 m3 person-1 day-1 - namely 

5292.5 m3 person-1 year-1, exposure to 10 g m-3
 PM2.5 concentration elevation would 

lead to an inhalation intake rate of 52925 g person-1 year-1, or equivalently 5.3 deaths 

kg-1, or 188 g death-1. The mortality risk is calculated based on a one-year exposure 

period.  

 

3.4 Sensitivity Analysis 

 

The sensitivity analysis attempts to quantify the uncertainty in the outputs of the intake-

based health risk assessment by considering the uncertainty in the inputs in this 

assessment framework. The purpose of the sensitivity analysis is to test the robustness of 

the results and make conclusions more credible. MC simulation is employed to conduct 

this sensitivity analysis. The concept of MC simulation is to randomly generate sets of 

input variables, where the input variables are assigned specific probability distributions. 

Then the solution is estimated by running a large number simulations (Rüdisüli, 

Schildhauer et al. 2012). In this research, a transport mode shift scenario is designed. I 
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assume a large shift from CVs to EVs (perhaps through a major policy intervention). 

Specifically, I assume 1010
 vehicle kilometers traveled by CVs are substituted by EVs 

(e.g., 106 vehicles, each traveling 104 km y-1). The MC simulation is conducted to 

simulate PM2.5 intake-based health risk assessment for all 34 cities. A large number of 

runs of MC simulation are carried out by two approaches. In one approach, 10,000 MC 

simulations are carried out with the number of simulations per city proportional to its 

population. The purpose of this approach is to allocate more simulations to the cities with 

large population than the cities with small population. The other approach is 1,000 

simulations are run for each city and the average excess deaths are weighted by 

population in each city. My MC simulation consists of four steps: 

 

(1) Define the input variables 

In this step, the input variables are determined based on the flow chart shown in Figure 

3.2.  The input variables include energy efficiency of EVs, PM2.5 emission factors, iFs, 

load factors, and dose-response.  

 

(2) Generate input variables randomly from a probability distribution 

The distribution type and boundaries for each input variable depend on observations from 

peer reviewed literature and my professional judgment. The details are shown in Table 

3.3. In MC simulation, the input variables, such as energy efficiency of EVs, PM2.5 

emission factors of gasoline car and diesel bus, iFs of CVs, and dose response, are given 
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triangular distributions.  The triangular distribution is often used as a subjective judgment 

of uncertainty for a variable, which there is limited sample data. It is based on lower 

bound, upper bound, and modal value for this variable (Frey and Cullen 1995).  The input 

factors, such as PM2.5 emission factors of diesel car and iFs of EVs are assigned normal 

distributions based on previous research findings. The load factors of e-car and CVs are 

assigned uniform distributions. The uniform distribution is used as a subjective 

description of a variable for which we can only estimate the lower bound and upper 

bound for this variable (Frey and Cullen 1995).  

 

(3) Perform a deterministic computation on the inputs 

The intake-based health risk assessment could be described mathematically as shown in 

equation 3.4. For EVs, emission factors are generated by dividing power grid emission 

intensities listed in Table 3.3 by energy efficiencies of e-cars and e-bikes. By randomly 

generating sets of inputs, health risks (excess death) for each city can be calculated. 

 

Excess Death = (Emission Factor × iF × Dose Response) / Load Factor  (3.4) 

 

(4) Aggregate the results 

In this step, the results from MC simulation are aggregated to obtain the approximation of 

excess deaths after switching from CVs to EVs for each city. Standard deviations are also 

provided to look at how much variation exists from the mean value of excess deaths.   
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Table 3.3. Input Variables and Distributions for Monte Carlo Simulation. 

Variable Mode 
Base-case 

value 
Distribution used in Monte Carlo 

simulations 
Units 

Energy 

Efficiency1 

E-bike 1.8 Triangular (1.2, 2.1) kWh  

(100-km)-1 E-car 18 Triangular (11, 25) 

Station-to-wheel 

PM2.5  

Emission Factor2 

Gasoline Car 5 Triangular (1, 10) 

mg km-1 Diesel Car 50 Normal (50, 5.5) 

Diesel Bus 600 Triangular (200, 1000) 

Intake Fraction 

E-bike iF*3 Normal (iF*, 2.3)5 

ppm 

E-car iF* Normal (iF*, 2.3) 

Gasoline Car iF**4 Triangular (0.5iF**, 1.5iF**) 

Diesel Car iF** Triangular (0.5iF**, 1.5iF**) 

Diesel Bus iF** Triangular (0.5iF**, 1.5iF**) 

Load Factor7 

E-bike 1 (Constant)  

person 

vehicle-1 

E-car 1.5 Uniform (1.3, 1.7) 

Gasoline Car 1.5 Uniform (1.3, 1.7) 

Diesel Car 1.5 Uniform (1.3, 1.7) 

Diesel Bus 50 Uniform (25, 75)  

    Dose 
Response8 

     Mortality         4%          Triangular (1%, 20%)  
 

 

Notes: 

1. E-bike energy efficiency source: lower bound (Ni 2011) and upper bound (Cherry, Weinert et al. 2009); 

    E-car energy efficiency source: lower bound (Liu, Wu et al. 2011) and upper bound (Wang 2011).  

2. Gasoline car PM2.5 emission factor: lower bound (Fung, He et al. 2010) and upper bound (Oliver, 

Gallagher et al. 2009); diesel car PM2.5 emission factor (He, Yao et al. 2010); diesel bus PM2.5 emission 

factor: lower bound (Yan and Crookes 2010) and upper bound (Wang, Westerdahl et al. 2011). 

3. iF* is the point estimate for the EGU iF for EVs in a specific city. 

4. iF** is the point estimate for the tailpipe iF for a CV in a specific city. 

5. Normal (iF*, 2.3) indicates a normal (Gaussian) distribution, with mean = iF* and standard deviation =   

2.3 ppm. The value for the standard deviation (2.3 ppm) is the model residual standard deviation for 

EGU iF source (Zhou, Levy et al. 2006). 

6. The distribution of intake fraction of CVs is based on: (Zhou, Fu et al. 2010). 

7. Passenger car load factor source: lower bound (Heidelberg 2008) and upper bound (Lin, Mao et al. 

2006). Bus load factor source: (Yang, Yu et al. 2007). 

8. Dose response source (Pope, Burnett et al. 2002; Heidelberg 2008; Levy, Greco et al. 2009; Zhou, Fu et 

al. 2010; Xie, Liu et al. 2011).  Percentage increase in mortality rate per 10 g m-3
 increase in PM2.5.  

 



 

 48

3.5 Equity Analysis 

 

To explore the equality and equity concerns caused by EVs adoption, three quantitative 

analyses are conducted. I start by calculating the location of EGU’s relative to urban 

areas where EVs are located. For each power grid, I consider the per capita gross regional 

product (CGRP) as an indicator of average individual income in the county to evaluate if 

EGU’s are located in counties that have much lower CGRP than the cities that rely on the 

electricity produced.  

 

EGU location is important, but the incidence of emission impacts on health is more 

important. Assuming most EV’s will be adopted in urban areas first, it is important to 

understand the urban/rural equality of impacts. To extend this further, I consider the 

average income disparity between urban/rural counties as an indicator of fairness of 

impacts. To do this, I first calculate what the proportion of air pollution from EGUs that 

will be inhaled by rural versus urban population. In this step, I attempt to find out the 

population who will intake the primary PM2.5 emissions from EGUs in urban and rural 

areas. The intake calculations in section 3.2.2 are repeated, but distinguishing urban 

versus rural intakes using the population in China’s 660 classified cities (NBS 2010). The 

portion of emissions from EGUs inhaled by urban and rural population is estimated for 

each power grid in China.  

 

Urban and rural intake is a proxy for opportunities and income. Using county-level 

CGRP, one can directly evaluate the relationship between exposure and income. In the 
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third approach, exposure is compared to the exposure and income of the city where the 

EV is operated. A county could have “low/high exposure” meaning that the exposure 

(defined as total intake in the county) is lower/higher for that county than the city where 

the EV is operated. Similarly, the county could have “low/high income” meaning that the 

income (defined by CGRP) is lower/higher for that county than the city income. From 

this categorization, population exposure to primary PM2.5 emissions is classified into four 

groups to aid in equity analysis: low income and low exposure, low income and high 

exposure, high income and low exposure, and high income and high exposure. To do 

estimate low/high exposure/income, EGU iFs within different radii (100 km, 100-500 

km, 500-1,000 km, and >1,000 km) are estimated for each EGU by regression method 

introduced in session 3.2.2. The counties within these radii are identified for each EGU. I 

then assign EGU iFs in different radii of EGUs to those counties located in corresponding 

radius. From this approach, I can apply a total exposure value to each county in China 

(from EGU’s in a specific grid) that would result from the operation of an EV in a 

particular city. So, operating an EV and producing emissions from one city would result 

in emissions from several power plants in a grid that emit pollution across China and are 

ultimately inhaled by all counties. The exposure of emissions produced from the EV’s in 

that city can be allocated to each county based on their estimated iFs. Subsequently, case 

studies are conducted individually for each of 34 cities. In the case studies, I assume that 

1010
 vehicle kilometers traveled by CVs are substituted by e-cars in each city. Then 

primary PM2.5 emissions from the corresponding power grid can be calculated. 

Multiplying primary PM2.5 emissions by EGU iFs of counties, exposure to primary PM2.5 

emissions of counties can be estimated for this shift. This approach is useful to evaluate 
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inequality concerns that if CVs are replaced in urban area, what will happen to the 

distribution of pollutant exposure across China due to this shift. The basis of this analysis 

hinges on the reasonable assumption of the one-compartment iF model that almost all 

urban source emissions are inhaled in the air shed of the urban area (so all exposure is 

experienced by residents with the same CGRP as the city). The ultimate goal of this 

approach is to analyze the degree of exposure inequality taking into account the income 

and pollutant exposure factors. In this approach, 2000 CGRP data at county level (All 

China Marketing Research Co. Ltd. 2003)are used as to estimate average income. 

Though these data are old, they are the most recent publically available disaggregate 

census data. The 2010 census data are not released in this format yet.  

 

Several inequality/inequity metrics were introduced in section 2.5 and are common 

methods for evaluating distributional equity between alternatives. In this analysis, I focus 

on evaluating equity implications of EVs, but stop short of comparing them with the 

equity implications of CV emissions. This aggregate iF-based equity approach does not 

consider intra-urban distributional equity or the effects of exposure in 

microenvironments, where roadside emissions generally have higher impacts on the poor 

than the generally wealthier car-driving population (Han and Naeher 2006).   
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CHAPTER IV  

RESULTS  

4.1 Emission Factor 

 

Emission factors vary by vehicle, fuel, and region. This research focuses on station-to-

wheel emission factors, but also reports average well-to-station emissions in this section. 

In Table 4.1, the midpoint emission factors of EVs and CVs are provided. Figure 4.1 

compares emissions between vehicle types for four pollutants. Considering station-to-

wheel emission factors in Table 4.1, e-cars emit more NOX, SO2, PM, and CO2 

comparing with gasoline car, diesel car, motorcycle, and bus. The CO emissions of e-cars 

are lower than gasoline cars, diesel cars, motorcycles, and buses. The HC emissions of e-

cars are similar to gasoline cars, diesel cars, and buses. E-bike has smallest emissions in 

terms of CO, NOX, HC, and CO2. However, SO2 emissions of e-bike are larger than CVs. 

E-bike may emit more PM than gasoline cars, depending on the power grid the e-bike is 

recharged in. In addition, the HC emissions from motorcycle are significantly higher than 

all other vehicles.  
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Table 4.1. Midpoint Emission Factors of EVs and CVs (g person-km-1). 

 CO NOX HC SO2 PM2.5 PM10
6 CO2 

Euro III Diesel Car 

(17 km l-1) 

0.43 

(0.19) 

0.33 

(0.05) 

0.04 

(0.001) 

- 

(N/A) 

0.03 

 

- 

(0.004) 

104 

(22.6) 

Euro III Gasoline Car 

(12.8 km l-1) 

1.23 

(0.04) 

0.14 

(0.14) 

0.05 

(0.04) 

- 

(0.09) 

0.003 

 

- 

(0.008) 

121 

(54.1) 

Euro IV Gasoline Car 

(12.8 km l-1) 

0.27 

(0.04) 

0.04 

(0.14) 

0.02 

(0.04) 

- 

(0.09) 

0.003 

 

- 

(0.008) 

121 

(54.1) 

Electric Car (E-car) 

(18 kWh (100 km)-1) 

0.09 

(0.01) 

0.36 

(0.06) 

0.04 

(0.01) 

0.74 

(0.03) 

0.058 

 

0.10 

(0.015) 

125 

(3.7) 

Motorcycle 

(40 km l-1) 

1.25 

(0.12) 

0.15 

(0.03) 

12.55 

(0.001) 

- 

(N/A) 

0.1 

 

- 

(0.003) 

55 

(14.4) 

Electric Bike (E-Bike) 

(1.8 kWh (100 km)-1) 

0.014 

(0.001) 

0.05 

(0.01) 

0.005 

(0.001) 

0.11 

(0.01) 

0.009 

 

0.015 

(0.002) 

18.8 

(0.6) 

Bus 

(2.2 km l-1) 

0.16 

(0.04) 

0.27 

(0.01) 

0.02 

(0.0002) 

0.002 

(0.001) 

0.012 

 

- 

(0.001) 

25.5 

(5.2) 

1. Values without parenthesis are station-to-wheel emission factors. Values in parenthesis are average 
well-to-station emission factors. 

2. Midpoint Car (diesel, gasoline, e-cars) load factors assume 1.5 persons, bus load factor assumes 50 
people and motorcycle and e-bike load factors assume 1 person. The vehicle emission factor is 
averaged over all passengers to estimate emissions per person kilometer. 

3. Average station-to-wheel emission factors of various pollutants for EVs are weighted by electricity 
generation in each electricity network. 

4. Motorcycle emission factors reported in Meszler (Meszler 2007). 
5. Several studies measure bus emission factors with comparable fuel quality, engine technology and 

exhaust treatments as those in China. Emission factors of PM2.5 range from 0.2-1.0 g km-1with a 
mean of 0.6 g km-1 (Xie, Song et al. 2006; Cherry, Weinert et al. 2009; Hao, Yu et al. 2010) or 
0.012 g person-km-1. 

6. The well-to-station emission factors of PM10 include emissions of PM2.5 and PM10. 
7. In the process of estimating well-to-station emissions for coal-based electricity generation, I 

employ 0.404 as energy conversion factor, meaning generation of 1 kWh electricity will require 
0.404 kg standard coal (Xiaohua and Zhenming 1997). 
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Figure 4.1. Emission factors of EVs and CVs (g person-km-1) for four pollutants 

where each axis represents a unique pollutant. Large circle icons indicate CVs. 

Small non-circle icons indicate EVs (e-car: triangle-icon; e-bike: plus-icon), with 

emission factors that vary among the 15 electricity grids. Large non-circle icons 

indicate the arithmetic mean of the 15 values per EV. Lines from icons indicate well-

to-station emissions where diamond endpoints of lines indicate well-to-wheel 

emission factors. Missing lines indicate indistinguishable impacts. Assumed average 

passenger load factors are car: 1.5, bus: 50, motorcycle: 1, e-bike: 1. 
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4.1.1 EGU station-to-wheel emission rates 

There are 16 relatively independent power grids in China. In this research, 15 power grids 

(excluding Tibet) are considered, and it is assumed that cities in the same grid will share 

power from all EGUs proportional to the plant’s capacity. This is a necessary simplifying 

assumption due to the aggregate nature of the data. However, it is worth noting that this 

simplification may neglect the impacts of marginal emissions.  

 

The CARMA database (CARMA 2010) includes location information for most EGUs in 

China, including all known power generating sources. Several EGUs with unknown 

locations were added manually based on the nearest town. ArcGIS was used to distribute 

EGUs throughout China. The power generation and CO2 emissions in 2007, by power 

grid, are reported in Table 4.2. Regional conventional pollution emission are obtained by 

the similar method; using the NASA INTEX-B database (Center for Global and Regional 

Environmental Research 2010) to identify total emissions from the power sector in each 

power grid, divided by the total power generation. Table 4.3 shows the emission 

intensities of conventional pollutants in each power grid. From the results, it can be 

concluded that the power grids in north part of China, such as Northeast China power 

grid, North China power grid, and Shandong power grid, have higher emissions than the 

grids in south. This is because most of EGUs located in north part of China are coal 

based. In contrast, hydropower sources are common in southern China, such as Sichuan 

power grid, Guangxi power grid, and Yunnan power grid. For example, 99% electricity is 

generated by fossil fuel in Beijing; however, only 32% electricity is generated by fossil 

fuel in Sichuan (NBS 2010).  



 

 55

Table 4.2. Energy Generation and CO2 Emissions by Power Grid.  

Grid Energy (MWh) CO2 (metric ton) CO2 Intensity (g kWh-1) 

Northeast China 260,690,799 341,145,218 1,443 

North China 536,918,724 559,455,125 1,149 

Central China 512,959,690 389,966,507 838 

East China 591,515,249 512,954,657 956 

Northwest China 219,154,490 187,160,835 941 

Chongqing 33,692,300 35,199,506 1,152 

Fujian 97,726,863 77,526,067 874 

Guangdong 214,789,577 164,915,606 846 

Guangxi 83,336,750 57,596,237 762 

Guizhou 123,259,963 99,248,666 888 

Hainan 10,062,775 8,835,896 968 

Shandong 240,036,295 243,011,157 1,116 

Sichuan 140,090,421 90,332,875 711 

Xinjiang 21,294,688 17,472,092 904 

Yunnan 77,243,571 53,231,831 760 

1. Tibet grid is not considered. 
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Table 4.3. Emission Intensities of Conventional Pollutants by Power Grid (g kWh-1). 

Grid BC CO NOx PM10 PM2.5 SO2 VOC 

Northeast China 1.4E-02 1.3 5.3 1.7 1.0 6.4 0.5 

North China 1.1E-02 0.7 2.8 0.7 0.4 6.0 0.3 

Central China 1.6E-02 0.8 3.0 0.8 0.5 6.0 0.3 

East China 8.3E-03 0.8 2.8 0.7 0.4 4.7 0.3 

Northwest China 6.5E-03 0.7 2.6 0.9 0.5 6.1 0.3 

Chongqing 2.6E-02 0.9 3.7 1.0 0.6 11.8 0.4 

Fujian 4.0E-03 0.5 1.7 0.5 0.3 2.2 0.2 

Guangdong 3.3E-03 0.5 1.8 0.5 0.3 3.0 0.2 

Guangxi 2.6E-03 0.3 1.2 0.5 0.3 4.2 0.1 

Guizhou 6.5E-03 0.5 1.8 0.4 0.3 8.7 0.2 

Hainan 3.0E-04 0.4 1.6 0.3 0.1 3.4 0.2 

Shandong 1.6E-02 0.7 2.9 0.7 0.4 7.5 0.3 

Sichuan 1.6E-02 0.6 2.4 0.7 0.4 8.7 0.2 

Xinjiang 1.7E-02 1.1 5.1 1.1 0.6 6.0 0.4 

Yunnan 8.2E-03 0.6 2.3 0.5 0.3 5.7 0.2 

1. Tibet grid is not considered. 
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4.1.2 Emission Factors of Electric Vehicles 

Emission intensity for EGUs is the rate of total pollutants emitted divided by total energy 

generated in the same region. Intensity provides us with how many pollutants (grams) are 

emitted per unit of electricity generated (kWh). Intensity is the base to estimate emission 

factors for different EVs. With electricity consumption per 100 km for different EVs (as 

shown in Table 4.4 and EGU emission intensity, emission factors for EVs can be 

estimated. The emission factors of EVs in 34 cities are shown in Appendix Table A.1. 

One can see quickly that emission factors vary considerably by regional grid. For 

example, Beijing has much higher emission factors than Chengdu on almost all metrics. 

This is because Chengdu relies heavily on hydropower sources -- 67% electricity in the 

Sichuan power grid is generated by hydropower (NBS 2010). While Beijing relies almost 

exclusively on coal power sources and 99% electricity is generated by fossil fuel based 

EGUs (NBS 2010). Similarly, conventional pollutant emission rates vary by city, 

depending power source. Emission factors of EVs can be compared cautiously with 

emission factors of CVs (diesel or gasoline), but since health impacts are the final metric 

of interest, emission factors alone do not explain all of the costs or benefits of EVs 

relative to CVs. It should be noted that, as EV and CV technology matures, energy 

efficiency is expected to improve for both technologies. This would subsequently reduce 

the emission rates to some extent though it is unclear which technology would benefits 

more from possible technology improvements.  
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Table 4.4. EV Energy Use Rate (kWh (100-km)-1). 

 

Outlet Electricity  

(kWh (100-km)-1) 

Include 14% Transmission and In-Plant Loss in China 

(kWh (100-km)-1) 

E-bike 1.8 2.1 

E-car 18.0 20.9 

1. Data Sources (Cherry, Weinert et al. 2009; Green Car Congress 2009; Yo-Bykes 2009). 

 

4.1.3 Well-to-station Emissions 

Well-to-station emissions include fossil energy extraction, refining, storage, and 

transportation processes. I use previous energy life cycle analyses for CVs and EVs in 

China to estimate average well-to-station emissions (Table 4.1). Well-to-station 

emissions are lower for motorcycle, e-bike and diesel bus than for cars. Compared to a 

new (Euro IV) gasoline car, average e-car emissions are about 4× lower for CO, 2× lower 

for NOx, 4× lower for HC, 3× lower for SO2, 15× lower for CO2 and 2× greater for PM2.5 

and PM10. This finding reflects, in part, that oil production and refining can generate 

greater HC, CO2, NOx and SO2 per kilometer driven (but lower PM) than electricity 

generation. In general, well-to-station fuel emissions constitute a small portion (<20%) of 

total well-to-wheel emissions for EVs and diesel cars. However, well-to-station emissions 

can constitute a large portion of total well-to-wheel emissions for several gasoline car 

pollutants.  
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4.1.4 Discussion 

The order-of-magnitude variability in EGU emission factors by region (Figure 4.2 and 

Appendix Figure A.1) yields the same degree of variability in EV emission factors, and 

with the same spatial pattern (highest in the Northeast because of heavy reliance on coal). 

EV emission factors vary by city they are in (Appendix Table A.1); I estimate that an e-

car (180 Wh km-1) (Green Car Congress 2009) in Beijing emits 220 gCO2 km-1, 

equivalent to a gasoline car with a fuel economy of 9 l (100-km)-1 (or 26 mi gal-1
 [mpg]), 

whereas in Chengdu the same e-car would emit only 135 gCO2 km-1, equivalent to a 

gasoline car with a fuel economy of 5.6 l (100-km)-1 (or 42 mpg).  

 

Compared to a new (Euro IV) gasoline car, average e-car emission factors are about the 

same for CO2 and 19× greater for PM2.5. That finding reflects, in part, China’s heavy 

reliance on coal. E-bikes outperform cars, motorcycles, and buses on most emission 

metrics. That finding reflects, in part, the lighter weight and therefore lower energy 

requirements for e-bikes as for other passenger vehicles.  
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Figure 4.2. Average station-to-wheel emission factors for CO2 (left plot) and PM2.5 

(right plot) for China’s 15 electricity grids. 

 

4.2 Intake Fraction 

4.2.1 One-compartment Model for Urban Intake Fraction 

One-compartment iF model was based on previous research showing that air pollution 

over a city occupies a compartment bounded by the borders of the city and the 

atmospheric mixing height. This model is treated as an approximate method to estimate 

ambient concentrations in urban areas.  

 

For the 34 Chinese cities studied meteorological (mixing height and wind speed), urban 

population data and urban land area were collected. Applying the one-compartment 

equation (equation 3.2), iFs are shown in Appendix Table A.2. In general, iFs are 

determined by two major factors: population density and meteorological condition. For 

those cities with large population density, such as Beijing, Shanghai, and Shijiazhuang, 
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iFs can be much higher. For those coastal cities, such as Dalian, Qingdao, Suzhou, and 

Wuxi, the meteorological condition (stronger wind speed) could quickly disperse 

pollutants.  

 

4.2.2 Regression Model for EGU Intake Fraction 

Intake fractions of EGU emissions can be calculated based on regression method 

proposed by Zhou and Levy et al. (2006). The purpose of regression method is to 

estimate iF for EGUs in different locations using the coefficients that represent the 

influence of meteorological and population. The electricity generation units are classified 

into different regional power grid networks and the iF for each network is averaged. The 

intake fractions for each power grid are shown in Table 4.5. I interpolate the iF calculated 

from PM1 and PM3 relationships presented by Zhou and Levy et al. (2006) to estimate 

PM2.5 iF.  

 

4.2.3 Discussion  

Estimated iFs for PM2.5 (Figure 4.3 and Appendix Table A.3) are 6–117 per million for 

urban emissions (CVs) and 4–8 per million for EGU emissions (EVs). For PM2.5, urban 

iF values range from less than the EGU iF to more than an order of magnitude greater 

than the EGU iF, with a population-weighted mean difference of 5× (for unweighted 

median: 2.4×) greater iF for urban emissions than EGUs. For comparison, the mean 

urban-rural iF difference in the US is about an order of magnitude (Smith 1993; Ott, 
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Steinemann et al. 2006), which is consistent with the proportion of the population that is 

rural being greater in China than in the US. For PM2.5, spatial variability is greater for 

urban iFs (maximum:minimum ratio, 19:1) than for regionally-aggregated EGU iFs 

(maximum:minimum ratio, 2:1).  
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Table 4.5. Weighted Average iF by Regional Grid and Pollutant Intake Per Million 

Grid SO2 PM1 PM2.5 PM3 PM7 PM13 SO4 NO3 

Northeast China Grid 2.89 6.05 4.06 3.40 1.87 1.02 3.13 2.32 

North China Grid 4.00 8.68 5.89 4.96 2.72 1.38 4.16 3.07 

Central China Grid 5.49 11.89 8.22 7.00 3.92 1.98 5.29 3.95 

East China Grid 5.53 11.68 8.17 7.00 3.98 2.07 5.10 3.92 

Northwest China Grid 3.21 7.21 4.80 4.00 2.17 1.11 3.71 2.52 

Chongqing Grid 5.18 10.41 7.45 6.46 3.82 2.13 4.43 3.49 

Fujian Grid 5.85 11.78 8.32 7.17 4.09 2.16 4.93 4.21 

Guangdong Grid 5.07 10.50 7.42 6.39 3.72 2.02 4.59 3.48 

Guangxi Grid 4.03 8.59 5.85 4.94 2.72 1.40 4.07 3.11 

Guizhou Grid 4.25 9.06 6.19 5.23 2.87 1.46 4.24 3.26 

Hainan Grid 3.35 6.81 4.68 3.97 2.24 1.23 3.31 2.57 

Shandong Grid 5.36 10.88 7.64 6.56 3.71 1.95 4.67 3.92 

Sichuan Grid 4.42 8.83 6.24 5.38 3.13 1.74 3.91 3.14 

Xinjiang Grid 2.37 4.89 3.24 2.69 1.46 0.82 2.71 2.01 

Yunnan Grid 3.14 6.77 4.54 3.79 2.07 1.08 3.46 2.50 
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Figure 4.3. Intake fraction for primary PM2.5 in the 34 urban areas considered here.  

The area of each icon is proportional to population. The population-weighted 

average value is indicated with an asterisk. For reference, dashed lines show 

constant urban/EGU iF ratios. 
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4.3 Health Impact 

 

A mortality dose-response function based on the ACS cohort (Pope, Burnett et al. 2002) 

is employed for health impacts analysis. The published concentration-based toxicity 

(average 4% increase in mortality per 10 g m-3) is converted into an intake-based 

toxicity (5.3 deaths per kilogram inhaled), by assuming a population-average breathing 

rate (Layton 1993) of 14.5 m3 d-1 person-1 and Chinese baseline annual mortality of 7 

deaths per 1,000 persons (CIA 2009). My approach applies the ACS finding that PM2.5 

exhibits, at the population level, a linear no-threshold dose response. 

 

Table 4.6 and Appendix Table A.4 provide example calculation and results of health 

impacts from station-to-wheel primary PM2.5 emissions, based on parameter point 

estimates, for one city (Shanghai). In this example, emissions are greater for e-cars than 

gasoline cars, but the reverse holds for iF values; the net result for Shanghai is a lower 

PM2.5 environmental health impact for gasoline cars than e-cars. Here and below, 

comparisons employ a basis of 1010 km y-1 and employ units of ppm for iF. Furthermore, 

in this research, my assumption is that 1010
 kilometers are traveled by each type of 

vehicles alone, though these vehicles do co-exist in real fleets. However, it is easy to 

estimate the mortality risks for mixing fleets via weighting the results in Table 4.6. For 

example, in Shanghai, Cherry et al (2007) observed that approximately 10%, 40%, 50% 

of 1010 kilometers are traveled by e-cars, gasoline cars, and diesel buses respectively. 
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Under this scenario, PM2.5 mortality risks should be 22 excess deaths (10% × 26 + 40% × 

9 + 50% × 32).  

 

Table 4.6. Example Calculation: Health Effects of PM2.5 in Shanghai 1010 Vehicle km 

Traveled by Vehicle Type. 

 
Gasoline  

car 
Diesel car Bus E-car E-bike 

Emission factor (mg [person-km]-1) 3 30 12 58 9 

Kilometers traveled (km y-1) 1010 1010 1010 1010 1010 

Intake fraction (ppm) 51 51 51 8.2 8.2 

Unit dose (g death-1) 188 188 188 188 188 

Total excess deaths per year 9 90 32 26 3 

1. Car (diesel, gasoline, e-cars) load factors assume 1.5 persons, bus load factor assumes 50 people and 

motorcycle and e-bike load factors assume 1 person. The vehicle emission factor is averaged over all 

passengers to estimate emissions per person kilometer.  
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Results for all cities are in Figure 4.4. The bus/e-bike plot (Figure 4.4f) may provide a 

useful counterfactual for individuals who do not own a car; for all cities considered, e-

bikes yield lower impacts than buses. The car/e-car plots (Figure 4.4a, Figure 4.4b) may 

provide a useful counterfactual for car owners; for most but not all cities, impacts from e-

cars are lower than for diesel cars but higher than for gasoline cars.  

 

In general, based on Figure 4.4, e-cars typically perform better than diesel cars, worse 

than gasoline cars, and comparably to diesel buses; e-bikes perform much better than 

diesel cars and buses, but are comparable to or slightly better than gasoline cars. 

Available surveys indicate that a many e-bike users would switch to bus (50-65%) or car-

based modes (20-25%) if the e-bike became unavailable (Cherry and Cervero 2007). 

 

A useful aspect of Figure 4.4 is investigation of the variability among cities, and therefore 

of the robustness of the comparisons to spatial differences. In some cases (Figure 4.4e 

and Figure 4.4f), comparisons yield the same results for all cities. In other cases, 

variability among cities is large: in Figure 4.4c and Figure 4.4d, the cities are split 

roughly evenly (60/40) as to which vehicle-type has lower public health impacts. 

Importantly, Figure 4.4 compares total health impacts but without consideration for who 

is exposed. 
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Figure 4.4. PM2.5 excess deaths per 1010 passenger-km, for the 34 cities considered. 

Icon size is proportional to city population. In each plot, “R” is the population-

weighted average ratio between x- and y- axes, “P” is the proportion of the 

population (among the 34 cities) for which the mortality risk is lower for EVs than 

for CVs. For reference, dashed lines are 1:1 lines. The population-weighted average 

value is indicated with an asterisk. Passenger load factors are listed in the note of 

Table 4.6.   
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4.4 Sensitivity Analysis 

 

In the previous sections, analyses employed point estimates for input variables. Here I 

develop a MC simulation to explore variability and uncertainty in input variables (Table 

3.3) and their propagation through my analyses to a range of outcomes (Figure 4.5). As 

described in equation 3.4 a random number for each input variable is generated by a 

random number generator that have distributions drawn from Table 3.3.  

 

The results shown in Figure 4.5 are obtained by carrying out a total of 10,000 Monte 

Carlo simulations, with the number of simulations per city proportional to population. 

The shapes of the regions in Figure 4.5 are similar to Figure 4.4, though the range is 

larger. The proportion “P” (for which EVs have lower mortality risk than CVs) is similar 

(on average, higher) in the sensitivity analysis (Figure 4.5) than in Figure 4.4. From the 

results, it can be concluded that health impacts for e-bikes are always lower than for 

diesel cars and buses, and similar to the health impacts for gasoline cars. However, the 

health impacts for e-cars are likely to be much higher than for gasoline cars, lower than 

for diesel cars, and slight higher than for buses.  

 

A similar analysis (Figure 4.6) simulating the population-weighted average mortality 

risks. Firstly, 1,000 MC simulations are carried out for all 34 cities individually. Then, 

population-weighted average mortality risks for each run of the MC simulation are 



 

 70

calculated by formula 4.2. In 4.2, Deathj is the mortality risks of the jth run. pi is the 

population in each i city; di is the mortality risks estimate for i city in jth  run.  
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The simulation results (Figure 4.6) reveals similar results comparing to the asterisk in 

Figure 4.5 but with less variance because of averaging. In this analysis, health impacts for 

e-bikes are significantly lower than for gasoline cars, diesel cars, and buses. Health 

impacts for e-cars are always higher than for gasoline cars, lower than for diesel cars, and 

slightly higher than for buses. Appendix Table A.5 presents detail results of excess 

mortality per 1010 Person-km traveled by vehicle and city based on MC simulation. 

Numbers in parenthesis are the standard deviation of results. 

 

Based on simulation outcomes, in the short terms, gasoline cars are more competitive 

than e-cars as to the mitigation of mortality risks due to PM2.5. However, e-cars perform 

better than diesel cars and may have the similar impacts compared with diesel bus as far 

the mitigation of mortality risks due to PM2.5. E-bikes perform significantly better than all 

other vehicles in terms of mitigation of mortality risks due to PM2.5. In the long term, 

because of the improvements in technology and government guidance, e-cars may be 

considered as a realistic solution to mitigate the mortality risks due to PM2.5. 
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Figure 4.5. Monte Carlo simulation of PM2.5 excess deaths per 1010 passenger-km for all 34 cities considered. Logarithmic-

scale axes are applied in this plot. In each plot, “P” is the proportion of the simulation outcomes for which the mortality risk is 

lower for EVs that for CVs. The dashed lines on each plot are 1:1 lines. The population-weighted average value is indicated 

with an asterisk. 
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Figure 4.6. Monte Carlo simulation of weighted average of 34 city PM2.5 excess deaths per 1010 passenger-km. Logarithmic-

scale axes are applied in this plot. In each plot, “P” is the proportion of the simulation outcomes for which the mortality risk is 

lower for EVs that for CVs. The dashed lines on each plot are 1:1 lines.  
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4.5 Equity Analysis 

 

Electric Vehicles are a possible contributor to sustainable transportation development. 

One of the primary concerns for sustainability is social equity, focusing on the fairness of 

outcomes across populations, presently and in the future. Unfortunately, EVs may cause 

social equity concerns. I approach the equity question using three methods:  

(1) Power Plant Location 

(2) Urban/Rural Intake 

(3) Income/Exposure Disparity 

 

4.5.1 Power Plant Location 

One approach to evaluate equality of EGU location is to focus on the EGU location 

relative to where EV’s are likely used. The median CGRP at the county level is 4,401 

RMB [US$660] in 2000. I classify all counties below this median as “low income” and 

all counties above this as “high income”. This approach parallels other approaches to 

evaluate equity of power plant location in China (Schoolman and Ma 2012). In China, 

~30% of power plants are located in the low income counties (as shown in Figure 4.7). 

The residents in these regions will likely face added air quality health burdens if EV use 

increases in urban areas. Therefore, it is necessary to develop some metrics to 

characterize this problem. While this approach suggests inequity of impacts, it does not 

focus on the true impact of power plants -- emissions, exposure, and intake. The next two 
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methods focus how emissions and ultimately health effects are allocated to urban/rural 

and high/low income areas of China.  

 

 

Figure 4.7. Map of year 2000 county-level CGRP and distribution of electricity 

generating units (power plants) in China. The regions in red are high income 

regions, where CGRP is more than national median (4,401 RMB [US$660]). The 

regions with grey are low income regions, where CGRP is less than the national 

median. The green dots represent electricity generation units.  
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4.5.2 Urban versus Rural Intake Approach 

Since EVs are likely to be deployed primarily in urban areas first (Zheng, Mehndiratta et 

al. 2012), I investigate urban/rural intake, focusing on the percentage of total intake that 

is borne by rural populations. In order to identify the portion of primary PM2.5 emissions 

from EGUs inhaled by urban population, I repeat calculations for iFs for urban 

population only in China’s designated 660 cities. For example, in East China power grid 

where Shanghai is located, 47% of urban EV emissions are inhaled by non-urban 

populations. It is important to note that I consider all urban areas equally and EGUs in a 

power grid and emissions and intake are assigned to all cities in China relative to the 

proportion of intake they consume. I find that, on average, ~ half (52%) of urban EV 

emissions from urban use of EVs are inhaled by non-urban populations. In 2000, 65% of 

China’s population was living in non-urban areas. Figure 4.8 shows this parameter by 

electricity grid (range: 19-64%). An important context underlying this shift (i.e., that 

pollution from urban activities is exported to rural locations) is the large and growing 

income disparity between urban and rural populations: the rural-urban difference in 

average income per person increased from 2.8× in 2000 (2,253 RMB [US$338] rural 

versus 6,280 RMB [US$941] urban) to 3.1× in 2011 (6,977 RMB [US$1,046] rural 

versus 21,810 RMB [US$3,270] urban) (NBS 2012). Almost all inhaled emissions from 

CVs are inhaled in the city where the CV is operated. In general, urban use of EVs rather 

than CVs typically moves the emissions, exposures, and health impacts to more rural 

locations. 

 



 

 76

 

Figure 4.8. Portion of primary PM2.5 health impacts from electricity generating units 

experienced by rural versus urban populations. Icon area is proportional to PM2.5 

emission factor (g km-1) for an EV in that power grid. Numbers identify non-urban 

mortality impact proportions, i.e., of the total mortality impacts attributable to 

primary PM2.5 from electricity generation – here, owing to urban use of EVs.  
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4.5.3 Income/Exposure Disparity Analysis 

 

Urban/rural status is a proxy for income. In general, urban areas have higher incomes 

than rural areas. There are cases where low-income urban counties could have lower 

incomes than high-income rural counties. To address this, I take a direct income/exposure 

disparity approach, focusing on specific cities where e-cars are likely to operate and 

evaluating EV emissions, exposures, and health impacts on specific counties. I add one 

dimension by tabulating these exposures with incomes (approximated by CGRP). This 

direct comparison approach contrasts exposures and incomes directly with the exposures 

and incomes of the city where the EV is operated. Figure 4.9 presents exposure versus 

income distribution for over 2,300 counties in China after EVs are used in 12 

representative cities. Appendix Figure A.3 shows the same chart for all 34 cities in this 

analysis. In these figures, each county is represented by a dot and the city where the EV 

is operated is represented by the intersection of the red lines. Here we can see where the 

majority of exposure and health effects occur compared to the base exposure/income 

relationship of the city where the EVs are operated. From this figure, the cities with high 

income level, such as Beijing, Dalian, Shanghai, and Guangzhou, a large portion of 

primary PM2.5 emissions are inhaled by populations who have lower income compared to 

them. In contrast, lower-income cities have a substantially higher exposure in higher 

income counties.  
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Figure 4.9. Exposure to primary PM2.5 emissions due to EV shift. The red dash lines 

divide counties into four groups -- low income with low exposure (bottom left), low 

income with high exposure (top left), high income with low exposure (bottom right), 

and high income with high exposure (top right). The cross point (marked as 

asterisk) of dash lines represents city using e-cars.  
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Table 4.7 reports the detail proportion of exposures to primary PM2.5 emissions from EV 

use in four groups: low income with low exposure (bottom left of Figure 4.9 quadrant), 

low income with high exposure (top left), high income with low exposure (bottom right), 

and high income with high exposure (top right) compared with the income and exposure 

level of the city adopting EVs. For example, in Shanghai, if 1010 vehicle traveled 

kilometers travel by e-cars, residents in Shanghai will have 200 g of cumulative exposure 

(~1 death) to primary PM2.5 emissions from this switch. Moreover, over 94.3% (6,436 g 

or ~34 deaths) of primary PM2.5 emissions from this switch will be inhaled by 

populations who have lower income than residents in Shanghai; and ~3.3% of those 

emissions are inhaled by the poorest 10th of the China’s population (i.e. in counties whose 

CGRP is in the bottom 10th  percentile in China (<1,969 RMB [US$300])). Another 

example, under the same scenario (1010 vehicle traveled kilometers travel by e-cars in 

Chongqing), the residents in Chongqing will have 1008 g of cumulative exposure to 

primary PM2.5 emissions (~5 deaths) from this switch, which it accounts for 11% of total 

exposure (9167 g or ~49 deaths). The reason why the cumulative exposure to primary 

PM2.5 emissions of residents in Chongqing is larger than other cities might be that the 

residents in Chongqing are proximate to all EGUs in Chongqing power grid that these 

EGUs have second highest PM2.5 emission factor comparing with other power grids 

(except Northeast China power grid). In contrast, for instance, Shanghai is located in East 

China power grid, which there are over 200 EGUs in this power grid, but these EGUs are 

distributed in 4 provinces. Therefore, Shanghai should have relatively low PM2.5 

concentration compared to Chongqing. In addition, because Chongqing is the city with 

the largest population in China (NBS 2012), the exposure to emissions for residents in 
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Chongqing should be relatively higher than other cities. 

 

In these four groups, the counties with low income but high exposure to the emissions 

should be highlighted, since it is unfair to them if the benefits of EV use are realized in 

the cities while the environmental cost are borne by the poorer county residents who do 

not benefit from EV use. By averaging the results of 34 cities, if EVs are used in urban 

areas, emissions from EGUs will be dispersed to 79% (range: 37-94%) of counties in 

China with lower income and lower exposure level to primary PM2.5 than cities where 

EVs are used. 5% (range 0-28%) of counties in China suffering from the emissions due to 

this adoption are those have lower income but high exposure level compared with cities. 

The remaining 16% are higher income counties and most have lower pollution exposure 

compared with urban communities using EVs. It is also worth mentioning that, on 

average, 5% (range 3-12%) of emissions from EGUs are inhaled by the poorest 10th of 

the China’s population. These analyses contrast the case of CVs where almost all tailpipe 

emissions are inhaled in the city where the CV is used. The results confirm that adoption 

of EVs could result increase environmental equity challenges in China. It should also be 

noted that these analyses are not unique to EVs, but are common among all electricity 

demand from urban areas.   

 

It is important to note one key limitation of this equity analysis -- relying on 12-year old 

census data, which is the most recent data available in the needed format. For instance,  

in the past decade, the GDP capita in China rose from 7,858 RMB [US$1,180] in 2000 to 

35,083 RMB [US$5,300] in 2011, and the average annual income growth rates are 12% 
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and 11% in urban and rural area respectively (NBS 2012). Moreover, the urban-rural 

disparity in average income per capita increased from 2.8× in 2000 (2,253 RMB 

[US$338] rural versus 6,280 RMB [US$941] urban) to 3.1× in 2011 (6,977 RMB 

[US$1,046] rural versus 21,810 RMB [US$3,270] urban). These changes should cause 

the dots in Figure 4.9 shift towards the right side of the figure, and dots representing 

urban counties shift faster than those representing rural counties. At the same time, 

urbanization in China increased from 36% urban population to 50% urban population 

(NBS 2012). This urbanization may cause emission exposure increases in urban areas, 

but reduce the low income exposure rates. This change should cause the dots representing 

urban counties shift upward and the dots representing rural counties shift downward in 

Figure 4.9. Furthermore, unregistered migrants who work in urban area with rural hukou 

(thus counted as rural population) might cause disparity in equity analysis as well. On the 

one hand, the potential increases in population for adding migrants in could cause higher 

urban exposure rates. This change should cause the dots representing urban counties shift 

upward in Figure 4.9. On the other hand, the unregistered migrants may cause reduction 

in estimated CGRP, because unregistered migrants who contribute to urban GRP, but this 

GRP was divided by smaller urban populations (not including unregistered migrants). 

This change should cause the dots representing urban counties move towards left side in 

Figure 4.9.  
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Table 4.7. Proportion of Exposures in Four Groups due to Urban EV Use. 

 
HiLe HiHe LiLe LiHe 

Exposure 
in Low 
Income 

Exposure 
in Bottom 
10th %tile 

Shanghai 5.7% 0.0% 94.3% 0.0% 94.3% 3.3% 
Ningbo 2.2% 4.5% 82.4% 10.9% 93.3% 3.3% 

Hangzhou 4.5% 2.9% 90.9% 1.6% 92.5% 3.3% 
Wuxi 3.7% 4.3% 88.5% 3.5% 92.0% 3.3% 

Suzhou 1.8% 6.9% 76.2% 15.1% 91.3% 3.3% 
Guangzhou 6.0% 0.0% 82.7% 11.3% 94.0% 3.5% 

Qingdao 3.1% 0.0% 92.9% 4.0% 96.9% 2.9% 
Beijing 4.3% 0.0% 91.8% 3.1% 94.9% 4.7% 
Jinan 6.4% 0.0% 91.8% 1.9% 93.6% 2.9% 

Foshan 3.1% 9.9% 70.3% 16.7% 87.0% 3.5% 
Nanjing 10.8% 2.9% 86.3% 0.0% 86.3% 3.3% 
Dalian 6.1% 0.0% 90.4% 3.5% 93.9% 5.0% 
Zibo 9.4% 0.0% 90.6% 0.0% 90.6% 2.9% 

Tianjin 9.4% 0.0% 90.6% 0.0% 90.6% 4.7% 
Changzhou 7.5% 8.6% 78.8% 5.2% 84.0% 3.3% 
Kunming 7.2% 0.0% 92.8% 0.0% 92.8% 10.0% 

Harbin 11.0% 0.0% 87.5% 1.6% 89.0% 5.0% 
Shenyang 12.7% 0.0% 87.3% 0.0% 87.3% 5.0% 
Chengdu 6.5% 0.0% 90.0% 3.5% 93.5% 7.5% 
Wuhan 10.8% 0.0% 89.2% 0.0% 89.2% 4.5% 
Xi’an 9.9% 0.0% 90.1% 0.0% 90.1% 9.5% 

Tangshan 13.5% 2.1% 83.7% 0.7% 84.4% 4.7% 
Changsha 10.7% 4.3% 81.9% 3.0% 85.0% 4.5% 

Changchun 18.2% 2.7% 79.1% 0.0% 79.1% 5.0% 
Taiyuan 16.2% 2.7% 80.4% 0.7% 81.1% 4.7% 

Zhengzhou 14.9% 2.1% 83.1% 0.0% 83.1% 4.5% 
Shijiazhuang 20.2% 2.1% 77.8% 0.0% 77.8% 4.7% 

Lanzhou 11.2% 4.0% 79.6% 5.2% 84.8% 9.5% 
Guiyang 9.8% 6.3% 54.2% 28.2% 82.4% 12.1% 

Zaozhuang 33.3% 9.1% 57.1% 0.5% 57.6% 2.9% 
Xiangfan 19.2% 13.4% 49.4% 18.0% 67.4% 4.5% 

Putian 27.2% 28.4% 39.6% 4.7% 44.4% 3.3% 
Huai’an 28.4% 27.8% 37.2% 6.6% 43.8% 3.3% 

Chongqing 44.7% 0.0% 55.3% 0.0% 55.3% 7.1% 

Average 12.0% 4.3% 79.2% 4.4% 83.6% 4.9% 
1. LiLe: low income with low exposure; HiLe: high income with low exposure; LiHe: low income with high 

exposure; HiHe: high income with high exposure. 
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CHAPTER V  

CONCLUSIONS AND RECOMMENDATIONS 

 

Electric vehicles are often proposed as a “sustainable” approach for increasing urban 

mobility and economic development. An implicit assumption is that air quality and health 

impacts are lower for EVs than for CVs. This research aims to test that assumption for 

primary PM2.5.  

 

In several cases, my findings (Figure 4.4) exhibit strong spatial variability among 

locations. I find that using emission factors rather than intakes to compare vehicle-types 

is suboptimal for health comparisons: because electricity generation typically occurs 

farther from people than do tailpipe emissions, iF values are often lower for EVs than for 

CVs. For example, comparing PM2.5 averages per passenger-mile, emissions are 5× 

higher for an e-car than for a bus, but health impacts from primary PM2.5 are about equal 

between the two modes. Comparing averages for e-bikes and buses, based on PM2.5 

emissions the two modes are similar (30% higher for buses) but based on PM2.5 mortality 

rates, impacts are 7× greater for buses as for e-bikes. E-bikes perform well compared to 

CVs in terms of PM2.5 emissions and health impacts.  

 

An important aspect of any technology comparison is substitution: how the use of one 

technology impacts the use of other technologies. China’s rapidly evolving motorization 

trends challenge traditional mode-substitution models. Here I provide an illustrative 
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comparison based on available data; similar scenarios could be developed for other 

technologies or locations. In 2007, Shanghai had ~1,000,000 registered e-bikes, each 

averaging ~5,000 vehicle-km y-1 (Cherry and Cervero 2007). Calculations similar to 

those in Table 4.6 yield an estimate for air pollution excess mortality of 2 deaths y-1 from 

e-bike use. Surveys indicate that of e-bike users, about 70% are displaced bus riders, 20% 

are displaced bicycle riders and 10% are displaced gasoline car drivers (2007; Cherry, 

Weinert et al. 2009). For this simple illustration, I assume a 1:1 relationship between 

mode choice and trip distance, which is close to stated mode/trip distance responses for 

urban trip-making in Shanghai (i.e., each 100 vehicle-km by an e-bike displaces 70 

passenger-km by bus, 20 vehicle-km by bicycle, and 10 passenger-km by gasoline car), 

and I restrict consideration to sufficiently large shifts that added bus demand would be 

met with added bus capacity. If e-bikes did not exist (for example if they were banned, as 

many cities have proposed) and e-bike riders re-distributed to stated best alternative 

modes, the excess mortality would increase from 2 y-1 to 12 y-1, most of which is a result 

of the shift toward the bus. This example highlights that in some cases banning e-bikes 

could worsen air pollution and environmental health. 

 

Moreover, we cannot ignore environmental inequity caused from replacing CVs by EVs 

in China. If this shift takes place, most emissions and health impacts can be distributed to 

the communities outside the city where EVs are used. A vast portion (over 83% on 

average) of primary PM2.5 emissions from EGUs will be inhaled by communities that 

have lower income comparing with the city where EVs are used. The poorest 

communities, where the incomes are in the bottom 10th percentile in China will suffer 
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from 5% of total primary PM2.5 emissions from EV shift. These poorest communities 

may not afford or benefit from EVs in cities. Future policy should aim to remedy this 

inequity.  

 

This research has several important limitations. As such, results should be considered 

suggestive rather than conclusive. A simple one-compartment model is used for urban iF, 

which provides excellent temporal resolution while capturing important meteorological 

variables, but without incorporating within-urban variability in concentrations or 

accounting for reactive pollutants. My iF estimates reflect ambient concentrations only, 

and do not consider microenvironments (Han and Naeher 2006). Average EGU emission 

factors were employed here for EV charging; however, EV emissions can be sensitive to 

temporal (time-of-day; seasonal) charging patterns (Jansen, Brown et al. 2010; McCarthy 

and Yang 2010; Sioshansi, Fagiani et al. 2010). Apendix Figure A.4 presents three 

typical recharging profiles of e-bike batttery. Appendix Figure A.4a shows 6-hour 

recharging profile of e-bike battery after complete discharge. Appendix Figure A.4b is 

14-hour recharging profile of e-bike battery after ~30% discharge. It can be seen that  

there is somewahat significant parasitic load, about 70~80 Wh, over 12 hours of excess 

recharging. It is quite low thought, but actual recharging energy will be doubled. 

Appendix Figure A.4c describes one hour recharging profile of e-bike battery after very 

light discharge. From this panel of figures, it can be concluded that the enery required for 

recharging varies in recharging process. It could result in emission factors of EVs varies 

temporally. My approach implicitly assumes that PM2.5 emissions from electricity 

generation and from CVs tailpipe exhaust are equally toxic. I focus on one pollutant 
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(primary PM2.5) and one outcome (mortality), and therefore estimate a fraction of total 

health impacts. Prior analyses considering multiple pollutants and health outcomes 

indicate that results of the pairing I employed (PM2.5; mortality) generally dominates 

comparative analyses (Muller and Mendelsohn 2007; Health Effects Institute 2010). 

 

For the electricity sector in China, future changes in emissions are uncertain. Zhao et al. 

(2008) developed three emission control scenarios for coal power plants to predict future 

emissions changes: base (no improvement), normal (inefficient EGUs are 

decommissioned and replaced with efficient EGUs) and strict (aggressive emission 

abatement). Based on their scenarios, by 2020, total suspended particulate (TSP) 

emission intesity (g kWh-1) could be reduced by 42% (base), 68% (normal), and 75% 

(strict) relative to current conditions. SO2 and NOX emission rates would also decrease 

under these scenarios. EV emission factors would follow EGU emission trends, 

improving over time (accounting for temporal charging patterns (Jansen, Brown et al. 

2010; McCarthy and Yang 2010; Sioshansi, Fagiani et al. 2010)). On-road vehicle 

emissions usually degrade as a car ages, though new-vehicle emissions will likely 

improve following adoption of tighter new-vehicle emission standards and cleaner fuels. 

Transitioning to a new bus fleet may reduce emission factors dramatically. For instance 

PM emissions from a new (Euro III) buses will be 6× lower than on-road buses. 

Improved CV and EGU emission technology should reduce impacts per vehicle-km for 

both CVs and EVs; potential increases in total travel distance may also be important. 
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Traditionally, compartment model is only used to estimate iFs for non-reactive pollutants, 

such as primary PM2.5. Primary PM2.5 is emitted directly from the source like EGUs and 

internal combustion vehicles. The pollutants such as SO2, NOX, and organics are regarded 

as reactive pollutants, since secondary PM could be formed from them through 

photochemical processes. Therefore, it was generally considered not accurate to estimate 

iFs for reactive pollutants without considering secondary PM formation. A new study 

suggests that iFs for non-reactive pollutants may be reasonably applied to some reactive 

pollutants such as SO2, NOx, and organics, since the half-life for these reactive pollutants 

is longer than 10 hours  (Apte, Bombrun et al. 2012). However, those iFs still cannot be 

applied to pollutants formed from secondary processes. Based on this assumption, I 

conducted a preliminary analysis for the mortality risks of SO2 and NOX. Since SO2 

emissions are approximate to zero for gasoline cars and diesel cars (as shown in Table 

4.1), I only compare the mortality risks between EVs and diesel bus. In addition, I only 

consider Beijing as case study and the EGU iF of NOX (7.4 ppm) for Beijing is obtained 

from (Ho and Nielsen 2007). 1.4% and 1.5% are used as base values of dose response for 

SO2 and NOX emissions respectively (Chen, Hong et al. 2004). The results are shown in 

Appendix Figure A.5 and Figure A.6. From the results of SO2 analysis, diesel bus has 

better performance than EVs for all 34 cities. Since SO2 emissions from gasoline cars and 

diesel cars are pretty small, in the short term, CVs are more realistic solutions to mitigate 

the mortality risks due to SO2 emissions comparing with EVs. In the long term, as 

adoption and improvements of desulfurization technology, SO2 emissions from EGUs in 

China could be expected to reduce considerably and EVs might be comparable to CVs in 

terms of SO2 emissions.  In the case study of Beijing, e-bikes have better performance 



 

 88

than CVs considering NOX mortality risks. E-cars have lower mortality risks than diesel 

cars and diesel bus; but have similar mortality risks as gasoline cars.  

 

Results above investigate primary pollutants. As a sensitivity analysis, I also explored 

two types of secondary PM2.5: ammonium nitrate (from NOX emissions) and ammonium 

sulfate (from SO2 emissions). Formation rates depend on emissions from CVs or EVs, 

plus environmental conditions such as temperature and extant ambient concentrations. 

For both types of secondary PM2.5, I employ two approaches. First, I apply the Zhou et al. 

(2006) model to emissions from EVs and CVs. A main limitation of this approach is that 

it applies an EGU model to ground-level (vehicle) emissions. Second, I use recently 

published global-average iF values for archetypal urban, rural, and remote environments 

(Humbert, Marshall et al. 2011); a main limitation is the use of global-average, rather 

than China-specific, values. Results, though preliminary, suggest that for some locations 

and mode comparisons, secondary PM2.5 may be equally or more important than primary 

PM2.5 for estimating environmental health impacts. I conclude that, while this dissertation 

focuses on primary PM, robust exploration of secondary PM is warranted. 

 

China provides a useful case study because of the large number of EVs (in 2009, 100 

million EVs), and because of government policies aimed at increasing the number of 

EVs. Unique aspects of China include the large population and coal-heavy electricity 

generating system. My findings show that replacing gasoline cars with e-cars will result 

in increased CO2 from combustion emissions and all-cause mortality risk from primary 

PM2.5 in most cities. Health risks attributable to other pollutants are uncertain. 
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Lightweight EV’s such as e-bikes have clear environmental and health benefits because 

of their energy efficiency. Chinese policy makers should carefully proceed with 

deployment of plug-in vehicles and consider aggressive improvements in the power 

sector to realize anticipated gains in emissions and health.  
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Table A.1. Emission Factors of Electric Vehicles (g (100-km)-1). 

City Vehicle PM2.5 PM10 SO2 NOX VOC BC CO CO2 

Beijing 
E-bike 0.80 1.34 11.46 5.38 0.56 0.02 1.38 2183 

E-car 7.97 13.36 114.57 53.84 5.58 0.21 13.80 21828 

Changchun 
E-bike 1.93 3.19 12.16 10.02 1.00 0.03 2.47 2741 

E-car 19.29 31.90 121.62 100.21 10.01 0.26 24.73 27414 

Changsha 
E-bike 0.88 1.46 11.40 5.68 0.59 0.03 1.45 1593 

E-car 8.79 14.60 114.00 56.80 5.86 0.31 14.50 15926 

Changzhou 
E-bike 0.78 1.32 8.89 5.36 0.58 0.02 1.44 1817 

E-car 7.77 13.20 88.90 53.60 5.84 0.16 14.40 18167 

Chengdu 
E-bike 0.75 1.27 16.60 4.59 0.45 0.03 1.11 1351 

E-car 7.48 12.70 166.00 45.90 4.50 0.31 11.10 13508 

Chongqing 
E-bike 1.18 1.99 22.30 7.03 0.68 0.05 1.69 2189 

E-car 11.80 19.90 223.00 70.30 6.82 0.49 16.90 21886 

Dalian 
E-bike 1.93 3.19 12.16 10.02 1.00 0.03 2.47 2741 

E-car 19.29 31.90 121.62 100.21 10.01 0.26 24.73 27414 

Foshan 
E-bike 0.57 0.95 5.62 3.34 0.38 0.01 0.93 1608 

E-car 5.67 9.54 56.20 33.40 3.76 0.06 9.28 16085 

Guangzhou 
E-bike 0.57 0.95 5.62 3.34 0.38 0.01 0.93 1608 

E-car 5.67 9.54 56.20 33.40 3.76 0.06 9.28 16085 

Guiyang 
E-bike 0.50 0.85 16.50 3.37 0.36 0.01 0.88 1687 

E-car 5.01 8.47 165.00 33.70 3.56 0.12 8.80 16868 

Hangzhou 
E-bike 0.78 1.32 8.89 5.36 0.58 0.02 1.44 1817 

E-car 7.77 13.20 88.90 53.60 5.84 0.16 14.40 18167 

Harbin 
E-bike 1.93 3.19 12.16 10.02 1.00 0.03 2.47 2741 

E-car 19.29 31.90 121.62 100.21 10.01 0.26 24.73 27414 

Huai'an 
E-bike 0.78 1.32 8.89 5.36 0.58 0.02 1.44 1817 

E-car 7.77 13.20 88.90 53.60 5.84 0.16 14.40 18167 

Jinan 
E-bike 0.73 1.24 14.20 5.44 0.56 0.03 1.39 2121 

E-car 7.34 12.40 142.00 54.40 5.62 0.31 13.90 21209 

Kunming 
E-bike 0.58 1.03 10.80 4.45 0.47 0.02 1.17 1444 

E-car 5.80 10.30 108.00 44.50 4.74 0.16 11.70 14437 

Lanzhou 
E-bike 0.98 1.69 11.60 4.97 0.55 0.01 1.35 1789 

E-car 9.80 16.90 116.00 49.70 5.46 0.12 13.50 17891 

Nanjing 
E-bike 0.78 1.32 8.89 5.36 0.58 0.02 1.44 1817 

E-car 7.77 13.20 88.90 53.60 5.84 0.16 14.40 18167 
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Table A.1 (Cont.). Emission Factors of Electric Vehicles (g (100-km)-1). 

City Vehicle PM2.5 PM10 SO2 NOX VOC BC CO CO2 

Ningbo 
E-bike 0.78 1.32 8.89 5.36 0.58 0.02 1.44 1817 

E-car 7.77 13.20 88.90 53.60 5.84 0.16 14.40 18167 

Putian 
E-bike 0.62 1.03 4.24 3.15 0.38 0.01 0.94 1662 

E-car 6.15 10.30 42.40 31.50 3.79 0.08 9.36 16619 

Qingdao 
E-bike 0.73 1.24 14.20 5.44 0.56 0.03 1.39 2121 

E-car 7.34 12.40 142.00 54.40 5.62 0.31 13.90 21209 

Shanghai 
E-bike 0.78 1.32 8.89 5.36 0.58 0.02 1.44 1817 

E-car 7.77 13.20 88.90 53.60 5.84 0.16 14.40 18167 

Shenyang 
E-bike 1.93 3.19 12.16 10.02 1.00 0.03 2.47 2741 

E-car 19.29 31.90 121.62 100.21 10.01 0.26 24.73 27414 

Shijiazhuang 
E-bike 0.80 1.34 11.46 5.38 0.56 0.02 1.38 2183 

E-car 7.97 13.36 114.57 53.84 5.58 0.21 13.80 21828 

Suzhou 
E-bike 0.78 1.32 8.89 5.36 0.58 0.02 1.44 1817 

E-car 7.77 13.20 88.90 53.60 5.84 0.16 14.40 18167 

Taiyuan 
E-bike 0.80 1.34 11.46 5.38 0.56 0.02 1.38 2183 

E-car 7.97 13.36 114.57 53.84 5.58 0.21 13.80 21828 

Tangshan 
E-bike 0.80 1.34 11.46 5.38 0.56 0.02 1.38 2183 

E-car 7.97 13.36 114.57 53.84 5.58 0.21 13.80 21828 

Tianjin 
E-bike 0.80 1.34 11.46 5.38 0.56 0.02 1.38 2183 

E-car 7.97 13.36 114.57 53.84 5.58 0.21 13.80 21828 

Wuhan 
E-bike 0.88 1.46 11.40 5.68 0.59 0.03 1.45 1593 

E-car 8.79 14.60 114.00 56.80 5.86 0.31 14.50 15926 

Wuxi 
E-bike 0.78 1.32 8.89 5.36 0.58 0.02 1.44 1817 

E-car 7.77 13.20 88.90 53.60 5.84 0.16 14.40 18167 

Xi'an 
E-bike 0.98 1.69 11.60 4.97 0.55 0.01 1.35 1789 

E-car 9.80 16.90 116.00 49.70 5.46 0.12 13.50 17891 

Xiangfan 
E-bike 0.88 1.46 11.40 5.68 0.59 0.03 1.45 1593 

E-car 8.79 14.60 114.00 56.80 5.86 0.31 14.50 15926 

Zaozhuang 
E-bike 0.73 1.24 14.20 5.44 0.56 0.03 1.39 2121 

E-car 7.34 12.40 142.00 54.40 5.62 0.31 13.90 21209 

Zhengzhou 
E-bike 0.88 1.46 11.40 5.68 0.59 0.03 1.45 1593 

E-car 8.79 14.60 114.00 56.80 5.86 0.31 14.50 15926 

Zibo 
E-bike 0.73 1.24 14.20 5.44 0.56 0.03 1.39 2121 

E-car  7.34 12.40 142.00 54.40 5.62 0.31 13.90 21.209 
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Figure A.1. Average e-car station-to-wheel emission factors for CO2 and PM2.5 for 

China’s 15 electricity grids. In general, points in the lower left represent grids in the 

southwest and points on the upper right represent grids in the northeast. 
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Table A.2. Intake Fraction from Urban Tailpipe Emissions in 34 Cities.  
 

City 

Urban 

Population 

Urban 

Area (km2) 

Mix Height*Wind Speed 

(Harmonic Mean1) (m2 s-1) 

iF (intake per 

million) 

Beijing  9,290,000 1368.32 
575.63 73.2 

Changchun  3,289,600 4906.00 
608.87 12.9 

Changsha  2,305,600 556.33 
524.66 31.3 

Changzhou  1,800,300 1669.00 
612.82 12.1 

Chengdu  5,955,600 1418.00 
412.61 64.3 

Chongqing 8,769,700 82403.00 
449.70 11.4 

Dalian  3,368,300 2415.00 
908.29 12.7 

Foshan  3,610,800 77.00 
591.45 116.8 

Guangzhou  6,935,500 3843.43 
591.45 31.7 

Guiyang  1,791,200 2403.00 
706.47 8.7 

Hangzhou  3,237,500 3068.00 
576.25 17.0 

Harbin  4,769,200 7086.00 
635.36 15.0 

Huai’an  1,662,600 3218.00 
761.74 6.5 

Jinan  4,228,600 2119.00 
600.64 25.7 

Kunming  2,151,700 330.00 
905.78 21.9 

Lanzhou  1,985,300 1663.00 
532.18 15.4 

Nanjing  4,813,400 4844.00 
607.09 19.1 
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Table A.2 (Cont.). Intake Fraction from Urban Tailpipe Emissions in 34 Cities. 

City 

Urban 

Population 

Urban 

Area (km2) 

Mix Height*Wind Speed 

(Harmonic Mean1) (m2 s-1) 

iF (intake per 

million) 

Ningbo  1,942,100 1033.00 
678.18 15.0 

Putian 601,100 139.00 
776.67 11.0 

Qingdao  4,658,200 1159.00 
853.22 26.9 

Shanghai  11,969,400 2648.60 
772.12 50.6 

Shenyang  4,557,600 3495.00 
582.05 22.2 

Shijiazhuang  3,909,700 455.80 
591.48 52.0 

Suzhou  3,307,700 1650.00 
907.47 15.1 

Taiyuan  2,563,900 180.00 
643.24 49.9 

Tangshan  2,362,300 3874.00 
576.37 11.1 

Tianjin  5,803,400 4334.72 
577.87 25.6 

Wuhan  5,286,200 1557.00 
587.81 38.2 

Wuxi  3,344,500 1659.00 
863.53 16.0 

Xi’an  3,538,500 1066.00 
474.72 38.3 

Xiangfan  1,933,500 3563.00 
507.37 10.7 

Zaozhuang  1,212,900 3065.00 
584.68 6.3 

Zhengzhou  2,978,600 1010.30 
505.76 31.1 

Zibo  1,835,300 2961.00 
587.47 9.6 

 



 

 112

Table A.3. Average iF (ppm) Comparison – Urban vs. EGUs. 

 

City 

iF-Urban iF - EGUs  

 (including PM2.5) 
PM2.5 

(Interpolated) 
SO2 PM1 PM3 PM7 PM13 SO4 NO3 

Beijing 73.2 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Changchun 12.9 4.1 2.9 6.1 3.4 1.9 1.0 3.1 2.3 

Changsha 31.3 8.2 5.5 11.9 7.0 3.9 2.0 5.3 4.0 

Changzhou 12.1 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Chengdu 64.3 6.2 4.4 8.8 5.4 3.1 1.7 3.9 3.1 

Chongqing 11.4 7.4 5.2 10.4 6.5 3.8 2.1 4.4 3.5 

Dalian 12.7 4.1 2.9 6.1 3.4 1.9 1.0 3.1 2.3 

Foshan 116.8 7.4 5.1 10.5 6.4 3.7 2.0 4.6 3.5 

Guangzhou 31.7 7.4 5.1 10.5 6.4 3.7 2.0 4.6 3.5 

Guiyang 8.7 6.2 4.3 9.1 5.2 2.9 1.5 4.2 3.3 

Hangzhou 17.0 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Harbin 15.0 4.1 2.9 6.1 3.4 1.9 1.0 3.1 2.3 

Huai’an 6.5 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Jinan 25.7 7.6 5.4 10.9 6.6 3.7 2.0 4.7 3.9 

Kunming 21.9 4.5 3.1 6.8 3.8 2.1 1.1 3.5 2.5 

Lanzhou 15.4 4.8 3.2 7.2 4.0 2.2 1.1 3.7 2.5 

Nanjing 19.1 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 
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Table A.3 (Cont.). Average iF (ppm) Comparison – Urban vs. EGUs. 

City 

iF-Urban iF - EGUs         

 (including PM2.5) 
PM2.5 

(Interpolated) 
SO2 PM1 PM3 PM7 PM13 SO4 NO3 

Ningbo 15.0 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Putian 11.0 8.3 5.9 11.8 7.2 4.1 2.2 4.9 4.2 

Qingdao 26.9 7.6 5.4 10.9 6.6 3.7 2.0 4.7 3.9 

Shanghai 50.6 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Shenyang 22.2 4.1 2.9 6.1 3.4 1.9 1.0 3.1 2.3 

Shijiazhuang 52.0 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Suzhou 15.1 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Taiyuan 49.9 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Tangshan 11.1 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Tianjin 25.6 5.9 4.0 8.7 5.0 2.7 1.4 4.2 3.1 

Wuhan 38.2 8.2 5.5 11.9 7.0 3.9 2.0 5.3 4.0 

Wuxi 16.0 8.2 5.5 11.7 7.0 4.0 2.1 5.1 3.9 

Xi’an 38.3 4.8 3.2 7.2 4.0 2.2 1.1 3.7 2.5 

Xiangfan 10.7 8.2 5.5 11.9 7.0 3.9 2.0 5.3 4.0 

Zaozhuang 6.3 7.6 5.4 10.9 6.6 3.7 2.0 4.7 3.9 

Zhengzhou 31.1 8.2 5.5 11.9 7.0 3.9 2.0 5.3 4.0 

Zibo 9.6 7.6 5.4 10.9 6.6 3.7 2.0 4.7 3.9 
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Table A.4. Public Health Analysis of PM2.5 in Shanghai. 

 

Station-to-wheel 

Emission Factor  

(g person-km-1) 

Station-to-wheel 

Emission Factor 

Ratio (CV/EV) 

 

iF 

(ppm) 

 

iF 

Ratio 

Mortality Risk   

(per 1010 person-

km) 

Mortality 

Ratio 

Diesel Bus  

(50 Person) 

0.012 1.5 50.6 6.2 32.2 9.6 

E-bike 0.008  8.2  3.4  

Diesel Car 0.033 0.6 50.6 6.2 89.5 4.0 

Gasoline Car 

(Euro IV) 

0.003 0.06 50.6 6.2 9.0 0.4 

E-Car 0.058  8.2  25.2  

1. Car (diesel, gasoline, e-cars) load factors assume 1.5 persons, bus load factor assumes 50 people and 

motorcycle and e-bike load factors assume 1 person. The vehicle emission factor is averaged over all 

passengers to estimate emissions per person kilometer. 
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Table A.5. Excess Death per 1010 Person-km Traveled by Vehicle and City based on 

Monte Carlo Simulation. 

City E-bike E-Car Diesel Car Gasoline Car Bus 

Beijing 
2.1 

(3.2) 

15.2 

(25.7) 

61.5 

(104.7) 

6.4 

(12.2) 

16.4 

(41.2) 

Changchun 
3.6 

(8.6) 

24.9 

(51.7) 

21.7 

(4.76) 

2.3 

(5.9) 

6.0 

(23.4) 

Changsha 
3.4 

(6.0) 

23.7 

(41.0) 

54.1 

(117.3) 

5.7 

(14.1) 

14.8 

(53.1) 

Changzhou 
3.1 

(5.8) 

21.7 

(43.0) 

20.0 

(32.7) 

2.1 

(3.8) 

5.4 

(13.4) 

Chengdu 
2.3 

(4.4) 

16.0 

(31.3) 

54.2 

(86.7) 

5.6 

(10.0) 

14.4 

(29.0) 

Chongqing 
4.2 

(8.6) 

30.7 

(69.1) 

19.0 

(36) 

2.0 

(4.2) 

5.1 

(13.4) 

Dalian 
3.7 

(7.2) 

25.6 

(39.7) 

21.5 

(44.9) 

2.3 

(5.5) 

5.9 

(21.4) 

Foshan 
2.0 

(3.6) 

13.8 

(26.5) 

96.7 

(165.1) 

10.1 

(18.0) 

25.9 

(49.9) 

Guangzhou 
2.0 

(3.5) 

14.3 

(26.5) 

53.4 

(92.5) 

5.6 

(10.5) 

14.3 

(33.3) 

Guiyang 
1.4 

(2.7) 

10.2 

(21.0) 

14.7 

(28.2) 

1.5 

(3.2) 

4.0 

(10.4) 

Hangzhou 
3.0 

(5.3) 

21.7 

(43.8) 

29.6 

(61.0) 

3.1 

(7.0) 

8.1 

(25.3) 

Harbin 
3.7 

(7.0) 

25.2 

(46.2) 

25.3 

(39.7) 

2.7 

(4.7) 

6.9 

(15.9) 

Huai’an 
3.1 

(6.1) 

21.6 

(41.5) 

10.8 

(22.8) 

1.1 

(2.5) 

2.9 

(8.2) 

Jinan 
2.7 

(5.3) 

18.9 

(34.5) 

44.3 

(79.6) 

4.7 

(9.5) 

12.0 

(33.5) 

Kunming 
1.3 

(0.28) 

8.6 

(16.3) 

37.2 

(65.8) 

3.8 

(7.3) 

9.9 

(23.7) 
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Table A.5 (Cont.). Excess Death per 1010 Person-km Traveled by Vehicle and City 

based on Monte Carlo Simulation. 

City E-bike E-Car Diesel Car Gasoline Car Bus 

Lanzhou 
2.2 

(5.6) 

15.9 

(41.3) 

25.8 

(48.6) 

2.7 

(5.3) 

6.9 

(17.4) 

Nanjing 
3.1 

(5.6) 

21.2 

(37.8) 

32.2 

(60.2) 

3.4 

(7.3) 

8.9 

(27.6) 

Ningbo 
3.1 

(6.6) 

22.3 

(40.9) 

25.3 

(45.7) 

2.6 

(5.4) 

6.8 

(19.0) 

Putian 
2.4 

(4.9) 

17.0 

(31.3) 

19.4 

(37.4) 

2.0 

(4.4) 

5.3 

(15.8) 

Qingdao 
2.8 

(6.4) 

19.6 

(37.6) 

46.3 

(102.5) 

4.8 

(12.3) 

12.6 

(46.5) 

Shanghai 
3.0 

(5.9) 

21.9 

(46.8) 

46.3 

(113.4) 

4.8 

(13.5) 

12.4 

(50.5) 

Shenyang 
3.7 

(7.5) 

26.0 

(53.3) 

38.2 

(83.6) 

4.0 

(9.9) 

10.5 

(36.6) 

Shijiazhuang 
2.3 

(0.56) 

16.3 

(34.9) 

45.7 

(96.9) 

4.8 

(10.8) 

12.4 

(35.5) 

Suzhou 
3.0 

(4.7) 

21.3 

(37.0) 

25.7 

(54.9) 

2.7 

(6.7) 

7.0 

(25.3) 

Taiyuan 
2.2 

(3.5) 

15.6 

(29.9) 

43.4 

(73.6) 

4.5 

(8.1) 

11.6 

(23.5) 

Tangshan 
2.2 

(4.0) 

15.4 

(28.3) 

18.9 

(33.2) 

2.0 

(3.7) 

5.0 

(12.2) 

Tianjin 
2.2 

(4.2) 

16.0 

(3.17) 

43.9 

(85.8) 

4.6 

(9.8) 

11.9 

(33.0) 

Wuhan 
3.6 

(7.1) 

24.7 

(52.0) 

63.7 

(118.7) 

6.6 

(13.8) 

17.2 

(50.3) 

Wuxi 
3.0 

(5.2) 

20.8 

(32.1) 

27.3 

(54.2) 

2.9 

(6.6) 

7.5 

(25.1) 

Xi’an 
2.2 

(4.4) 

16.1 

(38.5) 

65.0 

(144.9) 

6.9 

(17.5) 

18.0 

(67.3) 
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Table A.5 (Cont.). Excess Death per 1010 Person-km Traveled by Vehicle and City 

based on Monte Carlo Simulation. 

City E-bike E-Car Diesel Car Gasoline Car Bus 

Xiangfan 
3.5 

(7.3) 

24.5 

(48.1) 

18.3 

(41.4) 

1.9 

(5.1) 

5.1 

(19.8) 

Zaozhuang 
2.6 

(4.5) 

18.1 

(29.9) 

10.3 

(19.3) 

1.1 

(2.2) 

2.8 

(8.0) 

Zhengzhou 
3.4 

(5.9) 

24.3 

(46.5) 

51.6 

(90.2) 

5.4 

(10.9) 

14.2 

(41.2) 

Zibo 
2.7 

(4.4) 

18.7 

(31.3) 

16.9 

(36.6) 

1.8 

(4.3) 

4.6 

(15.5) 

1.       Numbers in parenthesis are the standard deviation of results. 

2.       Emission factors used for gasoline and diesel cars are based on Euro III emission standards. 
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Figure A.2. E-car PM2.5 station-to-wheel emission factors and proportion of impacts 

of urban EV use to non-urban populations. In general, urban use of EVs rather 

than CVs moves emissions and health impacts to rural locations. The data exhibit a 

weak negative relationship between emission factors and proportion of health 

impacts born by rural populations, implying that grids with higher emission factors 

are more urbanized.  
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Figure A.3. Exposure to primary PM2.5 emissions from EV shift. The red dash lines 

divide counties into four groups - low income with low exposure (bottom left), low 

income with high exposure (top left), high income with low exposure (bottom right), 

and high income with high exposure (top right). The cross point (marked as 

asterisk) of dash lines represents city using e-cars. 
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Figure A.3 (Cont.). Exposure to primary PM2.5 emissions due to EV shift. The red 

dash lines divide counties into four groups -- low income with low exposure (bottom 

left), low income with high exposure (top left), high income with low exposure 

(bottom right), and high income with high exposure (top right). The cross point 

(marked as asterisk) of dash lines represents city using e-cars. 
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Figure A.3 (Cont.). Exposure to primary PM2.5 emissions due to EV shift. The red 

dash lines divide counties into four groups -- low income with low exposure (bottom 

left), low income with high exposure (top left), high income with low exposure 

(bottom right), and high income with high exposure (top right). The cross point 

(marked as asterisk) of dash lines represents city using e-cars. 
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(a) 

 

 
(b) 

 

 

(c) 

Figure A.4. Recharging profiles of e-bike battery. 
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Figure A.5. SO2 excess deaths per 1010 passenger-km, for the 34 cities considered. 
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Figure A.6. NOx excess deaths per 1010 passenger-km for Beijing. 
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