
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2012

Hard and Soft Error Resilience for One-sided
Dense Linear Algebra Algorithms
Peng Du
rick.peng.du@gmail.com

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Du, Peng, "Hard and Soft Error Resilience for One-sided Dense Linear Algebra Algorithms. " PhD diss., University of Tennessee, 2012.
https://trace.tennessee.edu/utk_graddiss/1445

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Peng Du entitled "Hard and Soft Error Resilience for
One-sided Dense Linear Algebra Algorithms." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Jack Dongarra, Major Professor

We have read this dissertation and recommend its acceptance:

Michael Berry, James Plank, Xiaobing Feng, Jack Dongarra

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2012

Hard and Soft Error Resilience for One-sided
Dense Linear Algebra Algorithms
Peng Du
rick.peng.du@gmail.com

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Du, Peng, "Hard and Soft Error Resilience for One-sided Dense Linear Algebra Algorithms. " PhD diss., University of Tennessee, 2012.
http://trace.tennessee.edu/utk_graddiss/1445

http://trace.tennessee.edu
http://trace.tennessee.edu
http://trace.tennessee.edu/utk_graddiss
http://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Peng Du entitled "Hard and Soft Error Resilience for
One-sided Dense Linear Algebra Algorithms." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Jack Dongarra, Major Professor

We have read this dissertation and recommend its acceptance:

Michael Berry, James Plank, Xiaobing Feng, Jack Dongarra

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Hard and Soft Error Resilience for

One-sided Dense Linear Algebra

Algorithms

A Thesis Presented for

The Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Peng Du

August 2012

c� by Peng Du, 2012

All Rights Reserved.

ii

This dissertation is dedicated to my dearest parents, Wenjian Du and Xinzhi Liu.

iii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Dr. Jack Dongarra, for

his guidance, motivation, and support during my graduate study at the Innovative

Computing Laboratory (ICL). Dr. Dongarra has provided me extensive support,

and valuable discussions throughout the process of this research. I am grateful to Dr.

Dongarra for the generous financial support for this research and ample opportunities

to share the research ideas in various conferences and workshops.

In addition, I would like to thank Dr. Michael Berry, Dr. James Plank, and Dr.

Xiaobing Feng for agreeing to serve on my graduate committee. I greatly appreciate

their time and invaluable advice to this dissertation.

I would also like to express my appreciation to Dr. Piotr Luszczek, Dr. Stanimire

Tomov, Dr. Julien Langou and, especially, to Dr. George Bosilca, and the whole

MPI équipe at ICL. This research could not have been accomplished without their

insightful suggestions, patience, encouragement, and belief. I want to thank Sam

Crawford for the help with the writing and review. And special thank also goes to

my friend Teng Ma for all the challenging and inspiring discussion. This friendship

help me sail through those tough times.

Last but not least, I am deeply indebted to my family and friends. I owe thanks to

my parents, Wenjian Du and Xinzhi Liu for their love, sacrifices, and encouragement

that are crucial to the completion of my studies. I am grateful to the friendship with

Erika Parsons and Matthew Parson, Zizhong Chen, Fengguang Song, Wesley Bland,

Rick Weber, and Yuanlei Zhang for the friendship and support over years.

iv

”Because it’s there” - George Mallory

v

Abstract

Dense matrix factorizations, such as LU, Cholesky and QR, are widely used by

scientific applications that require solving systems of linear equations, eigenvalues

and linear least squares problems. Such computations are normally carried out on

supercomputers, whose ever-growing scale induces a fast decline of the Mean Time To

Failure (MTTF). This dissertation develops fault tolerance algorithms for one-sided

dense matrix factorizations, which handles Both hard and soft errors.

For hard errors, we propose methods based on diskless checkpointing and

Algorithm Based Fault Tolerance (ABFT) to provide full matrix protection, including

the left and right factor that are normally seen in dense matrix factorizations.

A horizontal parallel diskless checkpointing scheme is devised to maintain the

checkpoint data with scalable performance and low space overhead, while the ABFT

checksum that is generated before the factorization constantly updates itself by

the factorization operations to protect the right factor. In addition, without an

available fault tolerant MPI supporting environment, we have also integrated the

Checkpoint-on-Failure(CoF) mechanism into one-sided dense linear operations such

as QR factorization to recover the running stack of the failed MPI process.

Soft error is more challenging because of the silent data corruption, which

leads to a large area of erroneous data due to error propagation. Full matrix

protection is developed where the left factor is protected by column-wise local diskless

checkpointing, and the right factor is protected by a combination of a floating point

weighted checksum scheme and soft error modeling technique. To allow practical use

vi

on large scale system, we have also developed a complexity reduction scheme such

that correct computing results can be recovered with low performance overhead.

Experiment results on large scale cluster system and multicore+GPGPU hybrid

system have confirmed that our hard and soft error fault tolerance algorithms exhibit

the expected error correcting capability, low space and performance overhead and

compatibility with double precision floating point operation.

vii

Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contribution . 3

1.2.1 Hard Error . 3

1.2.2 Soft Error . 4

1.3 Dissertation outline . 6

2 Background 7

2.1 Relate work . 7

2.1.1 The Memory System . 8

2.1.2 Compute Logic . 9

2.1.3 Roll-back Recovery with Disk-based Checkpointing and Mes-

sage Logging . 10

2.1.4 Diskless Checkpointing . 13

2.1.5 Algorithm Based Fault Tolerance 14

2.1.6 Other Methods For Soft Error 16

2.2 Fundamental Questions . 16

2.3 Error Model . 17

viii

3 Hard Error Resilience on Distributed Memory System 18

3.1 Introduction . 18

3.2 Algorithm Based Fault Tolerance Background 19

3.3 Full Factorizations of Matrix . 21

3.4 Protection of the Right Factor Matrix with ABFT 23

3.4.1 Checksum Relationship . 23

3.4.2 Checksum Invariant with Full Matrix Update 24

3.4.3 Checksum Invariant in Block Algorithms 25

3.4.4 Issues with Two-Dimensional Block-cyclic Distribution 27

3.4.5 Checksum Protection Against Failure 29

3.4.6 Delayed Recovery and Error Propagation 33

3.5 Protection of the Left Factor Matrix with Q-parallel Checkpoint . . . 36

3.5.1 Impracticability of ABFT for Left Factor Protection 36

3.5.2 Panel Checkpointing . 39

3.5.3 Postponed Left Pivoting . 40

3.5.4 Q-Parallel Checkpointing of Z 40

3.6 On-Demand Checkpointing using the Checkpoint-on-Failure Protocol 45

3.6.1 QR factorization on Distributed Memory System 46

3.6.2 Failure in PBLAS routines . 47

3.7 Evaluation . 50

3.7.1 Storage Overhead . 51

3.7.2 Overhead without Failures . 51

3.7.3 Recovery Cost . 53

3.7.4 Extension to Other factorization 54

3.7.5 Checkpointing-on-Failure for QR 55

3.8 Conclusion . 58

4 Soft Error Resilience on Distrbuted Memory System 61

4.1 Introduction . 61

ix

4.2 High Performance Linear System Solver 64

4.3 Soft Error Resilience Framework . 65

4.3.1 Error Pattern in the Block LU Algorithm 65

4.3.2 General Work Flow . 69

4.4 Detecting and Correcting Errors in L 70

4.4.1 Error Encoding for L: 1 Error Per Column 70

4.4.2 Local Checkpointing . 71

4.4.3 Error Encoding for L: Multiple Errors Per Column 73

4.5 Encoding for Multiple Errors in Ū and Ũ 77

4.5.1 Soft Errors Modeling . 77

4.5.2 Errors Detection . 79

4.6 Complexity Reduction . 82

4.6.1 Reduction for L . 83

4.6.2 Reduction for U . 86

4.7 Recovery Algorithm . 91

4.7.1 Correction for x . 92

4.7.2 Computation Complexity . 93

4.8 Performance Evaluation . 94

4.8.1 Performance Model for the Right Factor 94

4.8.2 Scalability . 95

4.8.3 Recovery Performance . 98

4.9 Conclusion . 102

5 Soft Error Resilience on Hybrid System with GPGPU 105

5.1 Introduction . 105

5.2 Related Work . 107

5.3 Hybrid QR . 107

5.4 Soft Error Modeling . 109

5.4.1 Error Model . 109

x

5.4.2 Checksum for R . 110

5.5 Recovery Algorithm . 113

5.5.1 Spike-Eliminating Technique 113

5.5.2 QR Update as the Recovery Algorithm 114

5.5.3 Givens Rotation Utilities for the GPU 116

5.6 Protection for Q . 122

5.6.1 Static Checkpointing for Q . 122

5.6.2 Timing of Checkpointing . 123

5.7 Performance Evaluation . 126

5.7.1 Overhead Analysis . 126

5.7.2 Checkpointing of Q . 127

5.7.3 Recovery . 127

5.7.4 Result on Keeneland . 129

5.8 Conclusion . 129

6 Conclusions and Future Work 131

6.1 Conclusion . 131

6.2 Future Work . 133

Bibliography 134

Vita 152

xi

List of Tables

5.1 Experiment configuration . 126

xii

List of Figures

3.2 Example of a 2D block-cyclic data distribution 27

3.3 Holes in a checksum protected matrix caused by a single failure and

the naive checksum duplication protection scheme (3x2 process grid) . 28

3.4 Reverse neighboring checksum storage, with two checksum duplicates

per Q-wide groups . 32

3.6 Separation of lower and upper areas protected by checksum (green)

and checkpoint (yellow) during the course of the factorization algorithm 35

3.8 PDLARFB . 48

3.9 Weak scalability of FT-LU: performance and overhead on Kraken,

compared to non fault tolerant LU 52

3.10 Weak scalability of FT-LU: run time overhead on Kraken when failures

strike at di↵erent steps . 53

3.11 Weak scalability of FT-QR: run time overhead on Kraken when failures

strike . 55

3.12 Performance on Dancer (16⇥ 8 grid) 56

3.13 Overhead over ScaLAPACK QR on Dancer (16⇥ 8 grid) 57

3.14 Time Breakdown of FT-QR on Dancer (16⇥ 8 grid) 58

3.15 Performance on Kraken (24⇥ 24 grid) 59

4.1 Two pivoting sweeps in LU factorization 66

4.2 Error propagation . 68

4.3 Example of error propagation in the U result of a 30⇥ 30 matrix . . . 69

xiii

4.4 Local checkpointing algorithm . 72

4.5 Storage overhead (t = 3) . 84

4.6 Error locating time (t = 3) . 85

4.7 Checksum layout example of a 5⇥ 5 blocks matrix 90

4.8 Weak scalability of global and local checkpointing for the left factor on

the Dancer cluster . 96

4.9 Weak scalability test of PDGEMM on the Dancer cluster 97

4.10 The checkpointing and recovery overhead on the Dancer cluster . . . 98

4.11 PDGESV performance with and without soft error resilience on the

Dancer cluster . 99

4.12 PDGESV performance with and without soft error resilience on the

Newton cluster . 100

4.13 PDGESV performance with and without soft error resilience on 6144

cores of Cray XT5. 101

4.14 PDGESV performance with and without soft error resilience on 24576

cores of Cray XT5. 102

4.15 Overhead comparison result on Kraken (16⇥ 16 grid) 103

4.16 Result on Kraken with 16,384 (128⇥ 128) cores 104

4.17 Weak scalability result on Kraken . 104

5.1 Di↵erent regions of A during factorization 111

5.2 Reduction from upper Hessenberg to upper triangular 118

5.3 Reduction from upper Hessenberg to upper triangular (block algorithm)118

5.4 Global memory accesses in the blocked DLASR kernel 121

5.5 Run time comparison of the blocked DLASR (optimized) kernel and

the original version . 122

5.6 MAGMA QR tracing . 123

5.7 Performance of FT-QR with/without checkpointing for Q 124

5.8 Performance of recovery for errors in Q 125

xiv

5.9 Performance of recovery for error in R 128

5.10 Performance on Keeneland . 130

xv

Chapter 1

Introduction

Today’s high performance computers have paced into Petaflops realm, through the

increase of system scale. The number of system components, such as CPU cores,

memory, networking, and storage grow considerably. One of the most powerful

Petaflops scale machines, Kraken [2], from National Institute for Computational

Sciences and University of Tennessee, harnessed as many as 112,800 cores to reach

its peak performance of 1.17 Petaflops to rank No.11 on the November 2011 Top500

list. With the increase of system scale and chip density, the reliability and availability

of such systems has declined. It has been shown that, under specific circumstances,

adding computing units might hamper applications completion time, as a larger node

count implies a higher probability of reliability issues. This directly translates into a

lower e�ciency of the machine, which equates to a lower scientific throughput [128]. It

is estimated that the MTTF of High Performance Computing (HPC) systems might

drop to about one hour in the near future [28]. Without a drastic change at the

algorithmic level, such a failure rate will certainly prevent capability applications

from progressing. It is utterly important that e↵ective fault tolerances technique is

developed such that application can have the resilience to the reality of supercomputer

systems with unavoidable failures.

1

Exploring techniques for creating a software ecosystem and programming envi-

ronment capable of delivering computation at extreme scale, that are both resilient

and e�cient, will eliminate a major obstacle to scientific productivity on tomorrow’s

HPC platforms. In this dissertation, we advocate that in extreme scale environments,

successful approaches to fault tolerance (e.g. those which exhibit acceptable recovery

times and memory requirements) must go beyond traditional systems-oriented

techniques and leverage intimate knowledge of dominant application algorithms,

in order to create a middleware that is far more adapted and responsive to the

application’s performance and error characteristics.

In this work, we focus on one-sided dense linear algebra algorithms. Many of such

algorithms, such as LU and QR factorization are at the center of computational

scientific applications from solving large system of linear equations to eigenvalue

problems. One famous example of such applications is the High Performance Linpack

(HPL) benchmark program [48] that is used to gauge the performance of world’s

fastest supercomputers by the Top500 [99]. On large scale systems, it is not unusual

that running the tuned HPL benchmark takes more than 24 hours [46], passing

the MTTF of these systems according to [28], and to make things worse, unlike

hard error which crashes part or the complete system and stops applications from

further execution, soft error, normally induced by imperfect material packaging and

radiation rays, could silently lead to incorrect result without leaving traces. Soft

errors also cannot be detected by the widely adopted checkpointing/restart fault

tolerance mechanism, which incurs excessive overhead in both storage, computing

performance, and energy consumption, and therefore alternative methods must be

sought. On the road to this path, we identify the error correcting capability, low

overhead, and floating point operation compatibility as the indispensable components

for practical fault tolerance algorithms, and these criteria guided the development of

this dissertation.

2

1.1 Problem Statement

The goal of the dissertation is to demonstrate that one-sided dense linear algebra

factorizations and solvers can be made fault tolerant to both hard error (fail-stop

failure) and soft error. By combining the Algorithm Based Fault Tolerance (ABFT)

scheme with strategic disk- and diskless checkpointing and encoding scheme that

is resilient to round-o↵ error from floating point operation, not only can data and

execution flow be recovered from failure, but also it can be achieved e�ciently in

both space and run time overhead.

1.2 Contribution

Several fault tolerance techniques are developed in this dissertation such that both

hard and soft error during one-sided dense linear algebra operation can be tolerated

and the computation can reach correct result. The specific contribution of this

research is summarized as follows:

1.2.1 Hard Error

• Scalable Parallel-Q Checkpointing: In a P ⇥Q process grid, by performing

the diskless checkpointing horizontally every Q iteration of the panel factoriza-

tion with the checkpoint data stored in the outdated ABFT checksum area,

and using snapshot of for the matrix data before the Q panel factorizations, the

left factor of matrix factorization (for example, LU and QR) can be protected.

Interrupted execution can be resumed by recovering data from both the ABFT

checksum, diskless checksum and data snapshot

• Checkpointing-on-Failure in QR factorization: In Checkpointing-on-

Failure (CoF) protocol, modification to MPI enables applications to regain con-

trol of MPI program after a failure occurs. We combine CoF with the Algorithm

3

Based Fault Tolerance (ABFT) and the parallel-Q checkpointing mechanism to

protect QR factorization from hard error. Disk-based CoF checkpointing is

only performed after failure strikes, allowing optimal checkpointing interval.

And failure propagation e↵ect in the trailing update is solved by delaying the

recovery to the end of the current update step. In addition, through a dry-run

procedure, the running stack of all processes in the grid are recovered to the

same state.

1.2.2 Soft Error

• Scalable Local Checkpointing for the Left Factor of Factorizations:

On distributed memory system, soft error in the left factor is protected by the

local checkpointing scheme. At the end of each panel factorization, processes

that own data in the panel perform diskless checkpointing locally, rather than an

MPI Reduce based global checkpointing. This makes the checkpointing scalable

to both large problem sizes and process grid size. Soft errors in each column

are mitigated separately.

• Floating Point Number Weighted Checksum Encoding: This encoding

scheme is used to fight soft errors in both the left and the right factor. Random

floating point numbers between 0 and 1 form the generator matrix G which is

used to generate the ABFT checksum at the beginning of the factorization. For

t soft errors in one column of the left factor, O(N t) complexity is required to

locate and correct errors, while O(N t+1) is needed for t soft errors in the right

factors. Since soft errors in the right factor propagate, recovery is performed

di↵erently for the solver and factorization. The use of this encoding prevents

large round-o↵ and cancellation errors from floating point operation.

• Complexity Reduction: Since the number of tolerable soft errors t might

cause large overhead than that of the matrix factorization, a complexity

reduction scheme is devised to reduce the complexity to a practical level. The

4

basic idea is breaking N in O(N t) into smaller segments, for example
p
N ,

and the checksum encoding is performed on each segment separately. With

a proof that checksum for each block also obeys the ABFT rule during the

factorization, soft error checking and correcting can be carried out within each

segment, therefore lowering the complexity.

• Detection and Recovery Algorithm for Multiple Soft Errors in Linear

System Solver on Distributed Memory System: Fault tolerant algorithm

for the soft errors in LU factorization based dense linear system solver Ax = b

is developed. In addition to the local checkpointing, floating point number

weighted checksum encoding and complexity reduction, we proposed a technique

to locate the columns of the initial soft errors in the right factor by casting

multiple soft errors into one single di↵erent initial matrix. From this matrix,

the same result of L and U can be reached but through a soft error free

LU factorization. This manipulation allows the development of the O(N t+1)

algorithm to locate the soft errors. The solution x of the linear system is

recovered by applying the ShermanMorrison formula.

• Detection and Recovery Algorithm for Soft Errors in Matrix Factor-

ization on Hybrid System with the GPGPU: Fault tolerant algorithm for

soft errors in QR factorization is developed for the hybrid system with both

multicore CPU and GPGPU. Based on the local diskless checkpointing method

for the left factor, vectors in the lower triangular matrix that are used to form

the orthogonal left factor Q are protected by the floating point number weighted

checksum performed by CPU in a time gap when CPU awaits GPU to finish the

trailing matrix update. This gap is identified through profiling the hybrid QR

factorization. The right factor R which has su↵ered large area of propagated

errors is recovered by a combination of QR update and an innovative e�cient

Givens Rotation for GPGPU.

5

1.3 Dissertation outline

The rest of the dissertation is organized as follows: Chapter 2 gives the background of

fault tolerance with a literature review, the fundamental questions this dissertation

is set out to address, and the error model being used in this writing. Chapter 3

introduces the full matrix protection for hard error, including the parallel-Q protection

for the left factor, ABFT for the right factor, and integration of CoF into QR with the

disk-based checkpointing. Chapter 4 has soft error resilience for dense linear solver

as the main topic. Local checkpointing, floating point weighted checksum encoding,

multiple soft errors and complexity reduction are discussed in details. Chapter 5

extends the work in Chapter 4 to hybrid platform with GPGPU. A scalable CPU

checkpointing and a QR update based recovery algorithm is described along with an

innovative high performance Givens rotation on GPGPU. Chapter 6 concludes the

dissertation and discussed future work.

6

Chapter 2

Background

In this work, from a software point of view we focus on tackling two most frequently

seen types of HPC system error: hard error which interrupts program execution,

and soft error in the form of bit flips in computing devices that silently causes

erroneous computing result. The outcome of this work will allow Dense Linear Algebra

(DLA) algorithms to run with high degree of resilience on large scale system and pay

negligible overhead. By eliminating the high-overhead periodic checkpointing, better

energy e�ciency and higher computing performance can be attained.

2.1 Relate work

Due to the high complexity of modern HPC system, there is no single technique

that can provide reliable fault tolerance to the entire system. Reliability is normally

provided on a level by level basis [22]. Numerous methods have been developed to deal

with di↵erent kind of error and failure at various levels of the architecture, ranging

from the lowest level circuit hardware to the user application software at the top. To

put our proposed methods into perspective, a systematic view of the related work is

given in this section. This view include the system memory and cache, computing

logics, software infrastructure and user application.

7

2.1.1 The Memory System

The memory system can be divided into main memory and cache memory. And

memory errors are characterized as hard or soft. Hard errors are mostly cased by

production process issues, such as defected silicon or DRAM packaging. Such errors,

once emerging, usually become permanent quickly. Soft errors could originate from

multiple possible sources, such as charged particles, radiation and also the production

process. With the improvement of quality control over the years, nowadays the main

cause of soft errors is electrical disturbance due to cosmic rays.

To combat errors, redundancy-based error checking and correcting code such as

parity [120] and ECC are common methods for memory system. Such methods

range from simple parity code to more complex Hamming [73] or Hsiao [78] codes

which provide single-bit-error-correction and double-bit-error-detection (SEC/DED)

capability. Parity checking has been replacing with ECC for main memory (DRAM)

except in situation where detection of the error is su�cient and correction is

not needed [129]. To deal with multiple-bit error, methods such as double-bit-

error-correcting and triple-bit-error-detecting (DEC-TED) codes [86], single-nibble-

error-correcting and double-nibble-error-detecting (SNC-DND) codes [30], and Reed

Solomon (RS) codes [113] have been proposed. SNC-DND and RS codes are symbol

based error codes, and both DEC-TED and SEC/DED are derived from BCH (Bose-

Chaudhuri-Hocquenghem) code [19, 77] which detects and corrects random bit errors.

Multiple-bit errors can also be treated with memory interleaving [17, 123] which

distributes physically adjacent memory cells into di↵erent memory logical words such

that groups of error are mapped to di↵erent word segments as single error, which

can be corrected by SEC/DED. The main problem of complex ECC with multiple-bit

error capability is the increased circuit, storage and computing overhead [126].

Nowadays most computer systems use commodity ECC DRAM for main memory.

An ECC DIMM provides SEC/DED for each DRAM rank such that low impact to

memory performance is maintained. Recently, it has been reported that memory

8

chip failures, possibly resulted from packaging and global circuit issues, may produce

significant downtime [118]. As a result, chipkill-correct level reliability has been

adopted[41, 85, 134, 144], where a DIMM is required to function even if an entire

chip fails.

Cache memory is protected with similar methods to those for the main memory.

Depending on cache levels and write-policy (write through or write-back), di↵erent

ECC codes can been used. For example, for write through and inclusive last level

cache, such as IBM Power 4 [130], ECC is only provided in the last level cache, the

L2 cache for instance. Error in L1 cache line is corrected by re-fetching the cache line

from L2 to overwrite the erroneous L1 cache line. For a detail survey and evaluation

of di↵erent ECC codes for cache memory, please refer to [114]

The general trend in memory error [119] is that error will become more frequent

as chip dimension and critical operating voltage keep shrinking and system scale

keep increasing. Currently the widely used methods such as SEC/DED need to

be modified to mitigate higher error rate, normally at the cost of higher overhead

in storage, time and energy. Even though many e↵orts have been devoted to reduce

such overhead [5, 80, 139, 143], this still does not guarantee perfect reliability because

error could also strike other parts of the system that are not as well protected.

2.1.2 Compute Logic

In addition to the memory system, processing units can also be a↵ected by errors

in the sequential elements (latches and flip-flops) and combinational logic. As

chip technology speeds into sub-65nm era, logic soft error will be a major concern

HPC systems [101, 102]. Error detection and correction methods for compute

logic can be summarized into two levels: circuit- and architecture-level. At circuit

level, latches based on multiple flip-flops and other special logic circuits with

verification functionalities are used and they normally su↵er from large area and

time overhead [91, 103, 111], or no complete error coverage. At architecture level,

9

space or execution redundancy is used to provide fault tolerance. Note that parity-

based method for memory systems are not suitable for arithmetic operations. The

most commonly used examples of compute logic error codes are product codes, linear

residue codes, and residue-class codes [96, 112] such as AN code, which checks the

result of operation such as N
1

� N
2

by testing the equality of A ⇥ N
1

� A ⇥ N
2

=

A⇥(N
1

�N
2

), where A is a constant and � is operator such as plus. Such verification

can be carried out with or without extra dedicated error checking circuit. Compromise

is made between operation delay, design intrusiveness and circuit area overhead.

Although residue code is not applicable to floating-point arithmetic directly, it has

been applied to various stages of the floating-point operations independently [87].

Code-based methods are cost-e↵ective, but custom design is required and they are

relatively inflexible to cover errors in a wide range of hardware structures. A more

viable option is through replicating the execution of some logic units and verifying the

result, for example in several IBM systems [98, 127]. Replication can be at various

level, from a single module to an entire core. In this work our focus is computing

intensive application, and while replication is e↵ective for control-intensive processors,

the replicated logic units for either re-computing or error verification, and the overall

e↵ect is close to fully replicating most of the processor, causing excessive overhead

especially for computing intensive applications.

2.1.3 Roll-back Recovery with Disk-based Checkpointing

and Message Logging

Although error detection and correct mechanisms have been developed and integrated

into hardware circuits, such design normally requires compromise between various

aspects such as fault tolerance capability, chip real estate, energy. Higher error rate

due to the increase of system scale and decrease of chip density requires more complex

ECC, and computing intensive application like dense linear algebra operations makes

replication based method only theoretically possible due to the energy expense

10

constrain. To complement such situation, fault tolerance method has been devised at

the software level. Such methods include checkpointing (disk and diskless), message

logging, compiler based technique, algorithm based fault tolerance (ABFT), to natural

fault tolerance. Similar to the coding based methods in hardware, redundancy is

also used in software fault tolerance methods such that lost data can be restored

and application execution can be resumed. The key concept for execution recovery

is consistent system states, which, for a distributed memory system using message

passing interface (MPI) libraries for communication, consist of the local states on

all nodes such as memory space, registers, etc., and “on-the-fly” messages. With a

consistent system state available, the application execution can recover from failure

by using the Checkpoint-and-Restart method, or C/R. A comprehensive survey of

C/R can be found in [54].

Message logging based rollback recovery works with the assumption of piecewise

deterministically [39] and performs recovery by replaying messages in the exact

original order for the failed process. This way a process can be rolled back to its state

right before failure even if no checkpoint is available. Message logging has flavors

such as pessimistic logging, optimistic logging and casual logging, depending on the

treatment to the existence of orphan process and recovery overhead [7]. In general,

message logging fits applications that perform constant interact with input and output

devices which cannot be rolled back using checkpointing at time of failure [56].

For automatic/transparent fault tolerance of MPI applications, message logging is

recommended because of the high overhead of coordinated checkpointing which puts

large stress on stable storage devices during checkpointing [24, 83]. However for dense

linear algebra application, disk-based checkpointing can be replaced with diskless

checkpointing, and user can relatively easily select the appropriate checkpoint location

such that overhead can be largely lowered.

What further attracts application developers is checkpointing-only fault tolerance.

When applicable, this requires much less development e↵ort in contrast to complex

11

message logging system. Checkpointing can be performed transparently by infras-

tructure systems, which reportedly still remains the most popular fault tolerance

mechanism on large scale system [1], or at application level explicitly.

In checkpointing, processes periodically saves their states to stable storage. These

saved states should provide su�cient information to recover program execution. Two

main categories of checkpointing are coordinated and uncoordinated checkpointing.

In uncoordinated protocol, processes take checkpoint independently, which may

prevent excessive overhead due to synchronization, but could lead to the domino

e↵ect [34] when consistent system state cannot be achieved, and all processes are

forced to roll back to the initial state of the computation, losing all checkpoint and

useful work performed till the failure occurs.

To avoid the disastrous result of domino e↵ect in recovery, methods such as

coordinated checkpointing [10] and communication-induced checkpointing [6], have

been developed such that valid consistent state is guaranteed to exist regardless

of the failure moment and location. In coordinated checkpointing, system-wide

checkpointing is taken at a certain interval after all processes are synchronized. Check-

pointing can be performed in system-level (for example, [64, 115]) or user/application

level [108, 137].

For systems that use disk as storage media, performance overhead mostly comes

from the I/O operations which save and load checkpoints data from “stable storage”,

other overhead including the time to restart the running environment, such as MPI,

as discussed in [21].

To reduce such overhead, several methods have been developed, such as in-

cremental checkpointing [67], forked (copy-on-write) checkpointing [84], memory

exclusion [108]. With the fast increasing of number of nodes/cores, stable storage

medium is still easily outnumbered and causing large overhead.

12

2.1.4 Diskless Checkpointing

To e↵ectively reduce the checkpointing overhead, Plank proposed diskless checkpoint-

ing where “stable disk” is replaced by memory as the checkpoint storage media [109,

110]. In diskless checkpointing, processor redundancy, memory redundancy and

failure coverage are traded o↵ so that no stable storage is necessary to recover

from failure. In applications, diskless checkpointing has been adopted to make

several matrix operations fault tolerant to single hard error [81] with low overhead.

Parity based checksum (XOR of bits in floating point numbers) is generated prior

to computation, and is updated if data has changed in the each iterations. This

checkpointing method is more suitable for applications that modify small amount of

memory between iterations, such as the left-looking LU factorization, which however

has lower performance than the right looking version that modifies large memory area

in each iteration. For these algorithms, checksum and reverse computation methods

are used to reduce memory usage.

The performance of di↵erent diskless checkpointing schemes are studied in [35,

125]. In [125], neighbour- and parity-based diskless checkpointing are implemented

and evaluated on their Xplorer Parsytec machine with 8 transputers (T805) with

various application benchmarks, such as NBODY, SOR and NQUEEN. Neighbour-

based method (also called “checkpoint mirroring”) stores checkpoints into its own

physical memory and that of its neighbours’, while parity-based method uses extra

a processor called “parity processor” that keeps the parity checkpoint (XOR) of all

local checkpoints taken by the each process. Their experiment results show that

neighbour-based checkpoint has much better performance than the parity scheme

at the cost of higher memory requirement. Similar result is report in [110] that

neighbour based scheme has lower overhead if local checkpoints are store on disk. It

is worth noting that since neighbour based method cannot tolerate total failures of the

system, it should be used together with other checkpointing scheme, for example as

shown in [135], where a two-level method is proposed in which diskless checkpointing

13

is used to tolerate the more probable single failures, while traditional disk based

checkpointing is adopted for the less probable multiple failures. The objective of such

design is to minimize the average fault tolerant overhead.

2.1.5 Algorithm Based Fault Tolerance

Algorithm Based Fault Tolerance (ABFT), which initially stemmed from the e↵ort

of mitigating silent error in systolic arrays [79], was introduced to further reduce

the overhead of fault tolerance on modern computing systems. ABFT maintains

consistency between the checksum and compute data by applying appropriate

mathematical operations to both parties. Typically, for linear algebra operations,

the input matrix is extended with supplementary columns and/or rows containing

checksums. This initial encoding happens only once; the matrix algorithms are

designed/modified to work on the encoded checksum along with matrix data, which

enables invariant the checksum’s relationship with the data during the course of the

algorithm. Should some data be damaged by failures, it is then possible to recover

the application by inverting the checksum operation to recreate missing data. The

overhead of ABFT is usually low, since no periodical global checkpoint or rollback-

recovery is involved during computation and the computation complexity of the

checksum operations scales similarly to the related matrix operation. ABFT and

diskless checkpointing have been combined to apply to basic matrix operations like

matrix-matrix multiplication [20, 31, 32, 33]. ABFT has also been implemented for

the High Performance Linpack (HPL) [40] and the Cholesky factorization [72] for

fail-stop failure. Both Cholesky and HPL have the same factorization structure,

where only half of the factorization result is required, and the update to the trailing

matrix is based on the fact that the left factor result is a triangular matrix. This

approach however does not necessarily apply to other factorizations, like QR where

the left factor matrix is full, neither when the application requires both left and right

factorization results. We have shown in [49], using the LU and QR factorization as

14

examples, a full matrix protection solution with low space and time overhead for hard

error.

Using ABFT to mitigate single soft errors in dense matrix factorization has been

explored in [89, 90]. Later, this was extended to multiple errors [9, 61, 107] by

adopting techniques from finite-field based error correcting code (ECC), such as Reed-

Solomon [113] and BCH [19, 77]. While mathematically these methods can detect

and correct single and multiple soft errors, they su↵er major limitation because of the

assumption that all computation is carried out with exact arithmetics, which cannot

be fulfilled by modern computers that use floating point number. For instance, in [61],

jn is used as weights for the weighted checksum generation, where j and n are integers.

Such calculation could easily cause problems like overflow, cancellation and large

round-o↵ error with large computing scale and matrices. Realizing this limitation, [62]

has proposed a solution that uses rational number, rather than integers, as weights

to reduce the dynamic range expansion problem pointed out by [25, 26, 90], and

a decoding technique that is an exact analogue of that of the BCH codes for two

errors. In [62], however, all calculations are still assumed to be performed using

“exact rational arithmetic”. In addition, no discussion is given on how to extend to

more than two errors, nor did it cover another limitation of this ABFT checksum

based method, the left factor. Similar to the hard error case, ABFT only maintains

relationship between the checksum and the right factor. For the concern of the

left factor, backward error assertions based methods [18, 60] has been introduced to

correct erroneous solution of linear system solver that is based on LU factorization.

In [18] it is shown that transient errors during factorization could slip through the

ABFT checksum verification, making ABFT-only method unreliable, and iterative

refinement is used to correct errors in solution x. This method is e↵ective for small

error, and is extended in [60] with a large error (LE) detection and correction scheme

which has O(n2) computational complexity and improved the error coverage. Errors

not correctable in this algorithm is signaled. In a series of work by Du et al.[50, 52, 53],

it has been shown that in the presence of round-o↵ error on large scale and hybrid

15

system with accelerators like the GPGPUs, soft errors in both the left and right

factors in DLA operations can be detected and corrected.

2.1.6 Other Methods For Soft Error

Recently, Fiala et al. has shown a method that uses TMR(triple modular

redundancy) [58], C/R, and explicit memory locking [59] to guard memory for soft

error mitigation. These methods do not su↵er from round-o↵ error but demand

considerable extra resources and are di�cult to extend to devices like cache and

systems with GPGPU, especially for computation intensive applications like DLA

operations. Also, an on-line soft error detection scheme has been devised to work on

matrix-matrix multiplication using both CPU-only system and hybrid systems with

GPGPU [42]. Experimental result on NVIDIA Tesla S1070 GPUs shows that the

online error correction overhead is much lower than that of TMR and traditional

ABFT. It is yet to show how this mechanism could be extended to more complex

matrix operations.

2.2 Fundamental Questions

Facing the complexity of HPC system error, we identify the following fundamental

questions that are to be addressed to fully understand and better design fault tolerant

algorithms. For clarity, we use System Error (SE) to refer to both hard and soft errors.

1. How does SE a↵ect DLA operations?

2. How to detect and locate the occurrence of SE?

3. How to recover from SE?

SE a↵ects computation in very di↵erent ways. Time and location are two of the

main focuses. A typical time issue has been discussed in [49] where the time of SE

leads to di↵erent recovery method. And an example of how location of SE a↵ect fault

16

tolerant algorithm design is demonstrated in [50] where soft error in the upper and

lower triangular requires di↵erent protection strategies. Another important location

issue is the bit flip location within floating point number. With the IEEE-754 format,

even a single bit flip could lead to large quantity change to the floating point number

and since most of the current ABFT algorithms uses SUM-based checkpointing, the

extent to which ABFT detection and recovery are still e↵ective will be quantified.

It is straightforward to see that the detection and locating of soft errors are more

di�cult than that for hard error, for which we assume that the failed process is

reported by the supporting Infrastructure of MPI in the form of MPI process ID. No

such assumption is to be made for soft error. To worsen the situation, since soft error

is hard to spot instantaneously when it strikes, it participates the DLA operation and

causes more damage than the initial bit flip error. The recovery of DLA operation

result needs to reconstruct the correct solution from such erroneous result and manage

a lower recovery cost than re-computing the solution from scratch.

2.3 Error Model

In this work, we use the following error model:

• Hard Error: Fail-stop failure causes one MPI process to stop executing and

responding to communication with other MPI processes. All content in the

failed MPI process’s memory is lost such as the running stack and matrix data.

• Soft Error: Soft error appears silently and permanently changes the value of

floating point number stored in the main memory. We use “soft error” and

“transient error” interchangeably in this text.

17

Chapter 3

Hard Error Resilience on

Distributed Memory System

3.1 Introduction

While many types of failures can strike a distributed system [65], the focus of this

chapter is on the most common representation: the fail-stop model. In this model,

a failure is defined as a process that completely and definitely stops responding,

triggering the loss of a critical part of the global application state. To be more

realistic, we assume a failure could occur at any moment and can a↵ect any parts

of the application’s data. We introduce a new generic hybrid approach based on

algorithm-based fault tolerance (ABFT) that can be applied to several ubiquitous

one-sided dense linear factorizations. Using one of these factorizations, namely LU

with partial pivoting, which is significantly more challenging due to pivoting, we

theoretically prove that this scheme successfully applies to the three well known one-

sided factorizations, Cholesky, LU and QR. To validate these claims, we implement

and evaluate this generic ABFT scheme with both the LU and QR factorizations. A

significant contribution of this chapter is to protect the part of the matrix below

18

the diagonal (referred to as “the left factor” in the rest of the text) during the

factorization, which was hitherto never achieved.

The rest of the chapter is organized as follows: Section 3.2 presents background

and prior work in the domain; Section 3.3 reviews the features of full factorizations.

Section 3.4 discusses the protection of the right factor using the ABFT method.

Section 3.5 reviews the idea of vertical checkpointing and proposes the new

checkpointing method to protect the left factor. Section 3.6 shows how Checkpoint-

on-Demand is integrated to provide the fault tolerance support from the MPI

infrastructure. Section 3.7 evaluates the performance and overhead of the proposed

algorithm using the example of LU and QR, and section 5.8 concludes the chapter.

3.2 Algorithm Based Fault Tolerance Background

The most well-known fault-tolerance technique for parallel applications, checkpoint-

restart (C/R), encompasses two categories, the system and application level. At the

system level, message passing middleware deals with faults automatically, without

intervention from the application developer or user ([23, 27]). At the application

level, the application state is dumped to a reliable storage when the application

code mandates it. Even though C/R bears the disadvantage of high overhead while

writing data to stable storage, it is widely used nowadays by high end systems [1]. To

reduce the overhead of C/R, diskless checkpointing [88, 110] has been introduced to

store checksum in memory rather than stable storage. While diskless checkpointing

has shown promising performance in some applications (for instance, FFT in [55]),

it exhibits large overheads for applications modifying substantial memory regions

between checkpoints [110], as is the case with factorizations.

In contrast, Algorithm Based Fault Tolerance (ABFT) is based on adapting the

algorithm so that the application dataset can be recovered at any moment, without

involving costly checkpoints. ABFT was first introduced to deal with silent error in

systolic arrays [79]. Unlike other methods that treat the recovery data and computing

19

data separately, ABFT approaches are based on the idea of maintaining consistency

of the recovery data, by applying appropriate mathematical operations on both the

original and recovery data. Typically, for linear algebra operations, the input matrix

is extended with supplementary columns and/or rows containing checksums. This

initial encoding happens only once; the matrix algorithms are designed to work on

the encoded checksum along with matrix data, similar mathematical operations are

applied to both the data and the checksum so that the checksum relationship is

kept invariant during the course of the algorithm. Should some data be damaged

by failures, it is then possible to recover the application by inverting the checksum

operation to recreate missing data. The overhead of ABFT is usually low, since no

periodical global checkpoint or rollback-recovery is involved during computation and

the computation complexity of the checksum operations scales similarly to the related

matrix operation. ABFT and diskless checkpointing have been combined to apply to

basic matrix operations like matrix-matrix multiplication [20, 31, 32, 33] and have

been implemented on algorithms similar to those of ScaLAPACK [15], which is widely

used for dense matrix operations on parallel distributed memory systems.

Recently, ABFT has been applied to the High Performance Linpack (HPL) [40]

and to the Cholesky factorization [72]. Both Cholesky and HPL have the same

factorization structure, where only half of the factorization result is required, and

the update to the trailing matrix is based on the fact that the left factor result

is a triangular matrix. This approach however does not necessarily apply to other

factorizations, like QR where the left factor matrix is full, nor when the application

requires both the left and right factorization results. Also, LU with partial pivoting,

when applied to the lower triangular L, potentially changes the checksum relation

and renders basic checkpointing approaches useless.

The generic ABFT framework for matrix factorizations we introduce in this

chapter can be applied not only to Cholesky and HPL, but also to LU and QR.

The right factor is protected by a traditional ABFT checksum, while the left

factor is protected by a novel vertical checkpointing scheme, making the resulting

20

approach an hybrid between ABFT and algorithm driven checkpointing. Indeed,

this checkpointing algorithm harnesses some of the properties of the factorization

algorithm to exchange limited amount of rollback with the ability to overlap the

checkpointing of several panel operations running in parallel. Other contributions of

this chapter include correctness proofs and overhead characterization for the ABFT

approach on the most popular 2D-block cyclic distribution (as opposed to the 1D

distributions used in previous works). These proofs consider the e↵ect of failures

during critical phases of the algorithm, and demonstrate that recovery is possible

without su↵ering from error propagation

3.3 Full Factorizations of Matrix

In this chapter, we consider the case of factorizations where the lower triangular part

of the factorization result matters, as is the case in QR and LU with pivoting. For

example, the left factorQ is required when usingQR to solve the least square problem,

and so is L when solving Akx = b with the “LU factorization outside the loop”

method [68]. In the remaining of this section, we recall the main algorithm of the most

complex case of one-sided factorization, block LU with pivoting. Additionally, we

highlight challenges specific to this type of algorithms, when compared to algorithms

studied in previous works.

Pivoting to
the Left

Panel
Factorization

Triangular
Solver

Pivoting to
the Right

Trailing
Update

Figure 3.1: Steps applied to the input matrix in an iteration of the LU factorization;
Green: Just finished; Red & Orange: being processed; Gray: Finished in previous
iterations

21

Figure 3.1 presents the diagram of the basic operations applied to the input matrix

to perform the factorization. The block LU factorization algorithm can be seen as

a recursive process. At each iteration, the panel factorization is applied on a block

column. This panel operation factorizes the upper square (selecting adequate pivots

and applying internal row swapping as necessary to ensure numerical stability), and

scales the lower polygon accordingly. The output of this panel is used to apply row

swapping to the result of previous iterations, on the left, and to the trailing matrix on

the right. The triangular solver is applied to the right of the factored block to scale

it accordingly, and then the trailing matrix is updated by applying a matrix-matrix

multiply update. Then the trailing matrix is used as the target for the next iteration

of the recursive algorithm, until the trailing matrix is empty. Technically, each of

these basic steps is usually performed by applying a parallel Basic Linear Algebra

Subroutine (PBLAS).

The structure of the other one-sided factorizations, Cholesky and QR, are similar

with minor di↵erences. In the case of Cholesky, the trailing matrix update involves

only the upper triangle, as the lower left factor is not critical. For QR, the

computation of pivots and the swapping are not necessary as the QR algorithm is

more stable. Moreover, there are a significant number of applications, like iterative

refinement and algorithms for eigenvalue problems, where the entire factorization

result, including the lower part, is needed. Therefore, a scalable and e�cient

protection scheme for the lower left triangular part of the factorization result is

required.

22

3.4 Protection of the Right Factor Matrix with

ABFT

In this section, we detail the ABFT approach that is used to protect the upper triangle

from failures, while considering the intricacies of typical block cyclic distributions and

failure detection delays.

3.4.1 Checksum Relationship

ABFT approaches are based upon the principle of keeping an invariant bijective

relationship between protective supplementary blocks and the original data through

the execution of the algorithm, by the application of numerical updates to the

checksum. In order to use ABFT for matrix factorization, an initial checksum is

generated before the actual computation starts. In future references we use G to

refer to the generator matrix, and A to the original input matrix. The checksum C

for A is produced by

C = GA or C = AG (3.1)

When G is all-1 vector, the checksum is simply the sum of all data items from a

certain row or column. Referred to as the checksum relationship, (3.1) can be used

at any step of the computation for checking data integrity (by detecting mismatching

checksum and data) and recovery (inverting the relation builds the di↵erence between

the original and the degraded dataset). With the type of failures we consider (Fail-

Stop), data cannot be corrupted, so we will use this relationship to implement

the recovery mechanism only. This relationship has been shown separately for

Cholesky [72], and HPL [40], both sharing the property of updating the trailing matrix

with a lower triangular matrix. However, in this chapter we consider the general case

of matrix factorization algorithms, including those where the full matrix is used for

trailing matrix updates (as is the case for QR and LU with partial pivoting). In this

23

context, the invariant property has not been demonstrated; we will now demonstrate

that it holds for full matrix based updates algorithms as well.

3.4.2 Checksum Invariant with Full Matrix Update

In [89], ZU is used to represent a matrix factorization (optionally with pairwise

pivoting for LU), where Z is the left matrix (lower triangular in the case of Cholesky

or full for LU and QR) and U is an upper triangular matrix. The factorization is

then regarded as the process of applying a series of matrices Z
i

to A from the left

until Z
i

Z
i�1

· · ·Z
0

A becomes upper triangular.

Theorem 3.4.1. Checksum relationship established before ZU factorization is main-

tained during and after factorization.

Proof. Suppose data matrix A 2 R n⇥n is to be factored as A = ZU , where Z and U 2

R n⇥n and U is an upper triangular matrix. A is checkpointed using generator matrix

G 2 R n⇥nc, where nc is the width of checksum. To factor A into upper triangular

form, a series of transformation matrices Z
i

is applied to A (with partial pivoting in

LU).

Case 1: No Pivoting

U = Z
n

Z
n�1

. . . Z
1

A

Now the same operation is applied to A
c

= [A, AG]

U
c

= Z
n

Z
n�1

. . . Z
1

[A, AG]

= [Z
n

Z
n�1

. . . Z
1

A, Z
n

Z
n�1

. . . Z
1

AG]

= [U, UG]

24

For any k n, using Uk to represent the result of U at step k,

Uk

c

= Z
k

Z
k�1

. . . Z
1

[A, AG]

= [Z
k

Z
k�1

. . . Z
1

A, Z
k

Z
k�1

. . . Z
1

AG]

=
⇥
Uk, UkG

⇤

Case 2: With partial pivoting:

Uk

c

= Z
k

P
k

Z
k�1

P
k�1

. . . Z
1

P
1

[A, AG]

= [Z
k

P
k

Z
k�1

P
k�1

. . . Z
1

P
1

A,

Z
k

P
k

Z
k�1

P
k�1

. . . Z
1

P
1

AG]

=
⇥
Uk, UkG

⇤

Therefore the checksum relationship holds for LU with partial pivoting, Cholesky

and QR factorizations.

3.4.3 Checksum Invariant in Block Algorithms

Theorem 3.4.1 shows the mathematical checksum relationship in matrix factoriza-

tions. However, in real-world, HPC factorizations are performed in block algorithms,

and execution is carried out in a recursive way. Linear algebra packages, like

ScaLAPACK, consist of several function components for each factorization. For

instance, LU has a panel factorization, a triangular solver and a matrix-matrix

multiplication. We need to ensure that the checksum relationship also holds for block

algorithms, both at the end of each iteration, and after the factorization is completed.

Theorem 3.4.2. For ZU factorization in block algorithm, checksum at the end of each

iteration only covers the upper triangular part of data that has already been factored

and are still being factored in the trailing matrix.

25

Proof. Input Matrix A is split into blocks of data of size nb⇥ nb (A
ij

, Z
ij

, U
ij

), and

the following stands:

2

4A11

A
12

A
13

A
21

A
22

A
23

3

5 =

2

4Z11

Z
12

Z
21

Z
22

3

5

2

4U11

U
12

U
13

0 U
22

U
23

3

5 , (3.2)

where A
13

= A
11

+ A
12

, and A
23

= A
21

+ A
22

.

Since A
13

= Z
11

U
13

+ Z
12

U
23

, and A
23

= Z
21

U
13

+ Z
22

U
23

, and using the relation

8
>>>>>><

>>>>>>:

A
11

= Z
11

U
11

A
12

= Z
11

U
12

+ Z
12

U
22

A
21

= Z
21

U
11

A
22

= Z
21

U
12

+ Z
22

U
22

in (3.2), we have the following system of equations:

8
<

:
Z

21

(U
11

+ U
12

� U
13

) = Z
22

(U
23

� U
22

)

Z
11

(U
11

+ U
12

� U
13

) = Z
12

(U
23

� U
22

)

This can be written as:

2

4Z11

Z
12

Z
21

Z
22

3

5

2

4U11

+ U
12

� U
13

�(U
23

� U
22

)

3

5 = 0

For LU, Cholesky and QR,

2

4Z11

Z
12

Z
21

Z
22

3

5 is always nonsingular, so

2

4U11

+ U
12

� U
13

U
23

� U
22

3

5 =

0, and

8
<

:
U
11

+ U
12

= U
13

U
23

= U
22

.

This shows that after ZU factorization, checksum blocks cover the upper

triangular matrix U only, even for the diagonal blocks. At the end of each iteration,

for example the first iteration in (3.2), Z
11

, U
11

, Z
21

and U
12

are completed, and U
13

26

is already U
11

+ U
12

. The trailing matrix A
22

is updated with

A
22

0 = A
22

� Z
21

U
12

= Z
22

U
22

.

and A
23

is updated to

A
23

0 = A
23

� Z
21

U
13

= A
21

+ A
22

� Z
21

(U
11

+ U
12

)

= Z
21

U
11

+ A
22

� Z
21

U
11

� Z
21

U
12

= A
22

� Z
21

U
12

= Z
22

U
22

Therefore, at the end of each iteration, data blocks that have already been and are

still being factored remain covered by checksum blocks.

!"" !"# !"$!"%

!#" !## !#$!#%

!$" !$# !$$!$%

!%" !%# !%$!%%

&

"

&

"

"& # &

!"" !"%

!$" !$%

!"#

!$#

!"$

!$$

!#" !#%

!%" !%%

!##

!%#

!#$

!%$

&

& "

"

#

'()*+(,-./0 1)2+(,-./0

Figure 3.2: Example of a 2D block-cyclic data distribution

3.4.4 Issues with Two-Dimensional Block-cyclic Distribution

It has been well established that data layout plays an important role in the

performance of parallel matrix operations on distributed memory systems [37, 82].

27

In 2D block-cyclic distributions, data is divided into equally sized blocks, and all

computing units are organized into a virtual two-dimension grid P by Q. Each data

block is distributed to computing units in round robin following the two dimensions

of the virtual grid. Figure 3.2 is an example of a P = 2, Q = 3 grid applied

to a global matrix of 4 ⇥ 4 blocks. The same color represents the same process

while numbering in A
ij

indicates the location in the global matrix. This layout

helps with load balancing and reduces data communication frequency, because in

each step of the algorithm, many computing units can be engaged in computations

concurrently, and communications pertaining to blocks positioned on the same unit

can be grouped. Thanks to these advantages, many prominent software libraries (like

ScaLAPACK [45]) assume a 2D block-cyclic distribution.

!" # "

"

!

"

" !

!

!

"

Figure 3.3: Holes in a checksum protected matrix caused by a single failure and the
naive checksum duplication protection scheme (3x2 process grid)

However, with a 2D block-cyclic data distribution, the failure of a single process,

usually a computing node which keeps several non-contiguous blocks of the matrix,

results in holes scattered across the whole matrix. Figure 3.3 is an example of a 5⇥ 5

blocks matrix (on the left) with a 2 ⇥ 3 process grid. Red blocks represent holes

caused by the failure of the single process (1, 0). In the general case, these holes can

impact both checksum and matrix data at the same time.

28

3.4.5 Checksum Protection Against Failure

Our algorithm works under the assumption that any process can fail and therefore

the data, including the checksum, can be lost. Rather than forcing checksum and

data on di↵erent processes and assuming only one would be lost, as in [40], we put

checksum and data together in the process grid and design the checksum protection

algorithm accordingly.

Minimum Checksum Amount for Block Cyclic Distributions

Theoretically, the sum-based checksum C
k

of a series of N blocks A
i

, 1 i N ,

where N is the total number of blocks in one row/column of the matrix, is computed

by:

C
k

=
NX

k=1

A
k

(3.3)

With the 2D block-cyclic distribution, a single failure punches multiple holes in

the global matrix. With more than one hole per row/column, C
k

in (3.3) is not

su�cient to recover all lost data. A slightly more sophisticated checksum scheme is

required.

Theorem 3.4.3. Using sum-based checkpointing, for N data items distributed in

block-cyclic onto Q processes, the size of the checksum to recover from the loss of one

process is dN
Q

e

Proof. With 2D block-cyclic, each process gets dN
Q

e items. At the failure of one

process, all data items in the group held by the process are lost. Take data item a
i

,

1 i dN
Q

e, from group k, 1 k Q. To be able to recover a
i

, any data item

in group k cannot be used, so at least one item from another group is required to

create the checksum, and this generates one additional checksum item. Therefore for

all items in group k, dN
Q

e checksum items are generated so that any item in group k

can be recovered.

29

Applying this theorem, we have the following checksum algorithm: Suppose Q

processes are in a process column or row, and let each process have K blocks of data

of size nb ⇥ nb. Without loss of generality, let K be the largest number of blocks

owned by any of the Q processes. From Theorem 3.4.3, the size of the checksum in

this row is K blocks.

Let C
i

be the ith checksum item, and Aj

i

, be the ith data item on process j,

1 i dN
Q

e, 1 j Q:

C
k

=
QX

k=1

Ak

k

(3.4)

Under (3.4), we have the following corollary:

Corollary 3.4.4. The ith block of checksum is calculated using the ith block of data

of each process having at least i blocks.

Checksum Duplicates

Since ABFT checksum is stored by regular processors, it has to be considered as

fragile as the matrix data. From Theorem 3.4.3 and using the same N and Q,

the total number of checksum blocks is K = dN
Q

e. These checksum blocks can be

appended to the bottom or to the right of the global data matrix accordingly, and since

checksum is stored on computing processes, these K checksum blocks are distributed

over min (K,Q) processes (see Figure 3.3). If a failure strikes any of these processes,

like (1, 0) in this example, some checksum is lost and cannot be recovered. Therefore,

checksum itself needs protection; in our work, duplication is used to protect checksum

from failure.

A straightforward way of performing duplication is to make a copy of the entire

checksum block, as illustrated by the two rightmost columns in Figure 3.3. While

simple to implement, this method su↵ers from two major defects. First, if the

checksum width K is a multiple of Q (or P for column checksum), the duplicate

30

of a checksum block is located on the same processors, defeating the purpose of

duplication. This can be solved at the cost of introducing an extra empty column

in the process grid to resolve the mapping conflict. More importantly, to maintain

the checksum invariant property, it is required to apply the trailing matrix update

on the checksum (and its duplicates) as well. From corollary 3.4.4, once all the ith

block columns on each process have finished the panel factorization (in Q step), the

ith checksum block column is no longer active in any further computation (except

pivoting) and should be excluded from the computing scope to reduce the ABFT

overhead. This is problematic, as splitting the PBLAS calls to avoid excluded columns

has a significant impact on the trailing matrix update e�ciency.

Reverse Neighboring Checksum Storage

With the observation of how checksum is maintained during factorization, we

propose the following reverse neighboring checksum duplication method that allows

for applying the update in a single PBLAS call without incurring extraneous

computation.

Algorithm 1 Checksum Management

On a P ⇥Q grid, matrix is M ⇥N , block size is NB ⇥NB
C

k

represents the kth checksum block column
A

k

represents the kth data block column
Before factorization:
Generate the initial checksum:

C
k

=
P

(k�1)⇥Q+Q

j=(k�1)⇥Q+1

A
j

, k = 1, · · · ,
l

N

NB⇥Q

m

For each of C
k

, make a copy of the whole block column and put right next to its
original block column
Checksum C

k

and its copy are put in the kth position starting from the far right
end
Begin factorization

Host algorithm starts with an initial scope of M rows and N +
l
N

Q

m
columns

For each Q panel factorizations, the scope decreases M rows and 2 ⇥ NB
columns
End factorization

31

! " # ! " # ! "

!

"

!

"

!

"

!

"

! " # ! "

Figure 3.4: Reverse neighboring checksum storage, with two checksum duplicates
per Q-wide groups

Figure 3.4 is an example of the reverse neighboring checksum method on a 2⇥ 3

grid. The data matrix has 8 ⇥ 8 blocks and therefore the size of checksum is 8 ⇥ 3

blocks with an extra 8 ⇥ 3 blocks copy. The arrows indicate where checksum blocks

are stored on the right of the data matrix, according to the reverse storage scheme.

For example, in the LU factorization, the first 3 block columns produce the checksum

in the last two block columns (hence making 2 duplicate copies of the checksum).

Because copies are stored in consecutive columns of the process grid, for any 2D

grid with Q > 1, the checksum duplicates are guaranteed to be stored on di↵erent

processors. The triangular solve (TRSM) and trailing matrix update (GEMM) are

applied to the whole checksum area until the first three columns are factored. In

following factorization steps, the two last block columns of checksum are excluded

from the TRSM and GEMM scope. Since TRSM and GEMM claim most of the

computation in the LU factorization, this shrinking scope greatly reduces the overhead

of the ABFT mechanism. One can note that only the upper part of the checksum

32

is useful, we will explain in the next section how this extra storage can be used to

protect the lower triangular part of the matrix.

3.4.6 Delayed Recovery and Error Propagation

In this chapter, we assume that a failure can strike at any moment during the life

span of factorization operations or even the recovery process. Theorem 3.4.2 proves

that at the moment where the failure happens, the checksum invariant property is

satisfied, meaning that the recovery can proceed successfully. However, in large scale

systems, which are asynchronous by nature, the time interval between the failure and

the moment when it is detected by other processes is unknown, leading to delayed

recoveries, with opportunities for error propagation.

The ZU factorization is composed of several sub-algorithms that are called on

di↵erent parts of the matrix. Matrix multiplication, which is used for trailing matrix

updates and claims more than 95% of the execution time, has been shown to be ABFT

compatible [20] , that is to compute the correct result even with delayed recovery. One

feature that has the potential to curb this compatibility is pivoting, in LU , especially

when a failure occurs between the panel factorization and the row swapping updates,

there is a potential for destruction of rows in otherwise una↵ected blocks.

Figure 3.5 shows an example of such a case. Suppose the current panel contributes

to the ith column of checksum. When panel factorization finishes, the ith column

becomes intermediate data which does not cover any column of matrix. If a failure

at this instant causes holes in the current panel area, then lost data can be recovered

right away. Pivoting for this panel factorization has only been applied within the light

green area. Panel factorization is repeated to continue on the rest of the factorization.

However, if failure causes holes in other columns that also contribute to the ith column

of checksum, these holes cannot be recovered until the end of the trailing matrix

update. To make it worse, after the panel factorization, pivoting starts to be applied

outside the panel area and can move rows in holes into healthy area or vice versa,

33

Figure 3.5: Ghost pivoting Issue
Gray: Result in previous steps
Light Green: Panel factorization result in current step
Deep Green: The checksum that protects the light green
Blue: TRSM zone Yellow: GEMM zone
Red: one of the columns a↵ected by pivoting

extending the recovery area to the whole column, as shown in red in Figure 3.5

including triangular solving area. To recover from this case, in addition to matrix

multiplication, the triangular solver is also required to be protected by ABFT.

Theorem 3.4.5. Failure in the right-hand sides of triangular solver can recover from

fail-stop failure using ABFT.

Proof. Suppose A is the upper or lower triangular matrix produced by LU factoriza-

tion (non-blocked in ScaLAPACK LU), B is the right-hand side, and the triangular

solver solves the equation Ax = B.

34

Supplement B with checksum generated by B
c

= B ⇤ G
r

to extended form B̂ =

[B, B
c

], where G
r

is the generator matrix. Solve the extended triangular equation:

Ax
c

= B
c

= [B, B
c

]

) x
c

= A�1 ⇥ [B, B
c

]

=
⇥
A�1B, A�1B

c

⇤

=
⇥
x, A�1BG

r

⇤

= [x, xG
r

]

Therefore data in the right-hand sides of the triangular solver is protected by ABFT.

With this theorem, if failure occurs during triangular solving, lost data can be

recovered when the triangular solver completes. Since matrix multiplication is also

ABFT compatible, the whole red region in Figure 3.5 can be recovered after the

entire trailing matrix update is done, leaving the opportunity for failure detection

and recovery to be delayed at a convenient moment in the algorithm.

Figure 3.6: Separation of lower and upper areas protected by checksum (green) and
checkpoint (yellow) during the course of the factorization algorithm

35

3.5 Protection of the Left Factor Matrix with Q-

parallel Checkpoint

It has been proven in Theorem 3.4.2 that the checksum only covers the upper

triangular part of the matrix until the current panel, and the trailing matrix is

subject to future updates. This is depicted in Figure 3.6, where the green checksum

on the right of the matrix protects exclusively the green part of the matrix. Another

mechanism must be added for the protection of the left factor (the yellow area).

3.5.1 Impracticability of ABFT for Left Factor Protection

The most straightforward idea, when considering the need of protecting the lower

triangle of the matrix, is to use an approach similar to the one described above, but

column-wise. Unfortunately, such an approach is di�cult, if not impossible in some

cases, as proved in the remaining of this Section.

Pivoting and Vertical Checksum Validity

In LU, partial pivoting prevents the left factor from being protected through ABFT.

The most immediate reason is as follow: The PBLAS kernel used to compute the panel

factorization (see Figure 3.1) performs simultaneously the search for the best pivot

in the column and the scaling of the column with that particular pivot. If applied

directly on the matrix and the checksum blocks, similarly to what the trailing update

approach does, checksum elements are at risk of being selected as pivots, which results

in exchanging checksum rows into the matrix. This di�culty could be circumvented

by introducing a new PBLAS kernel that does not search for pivots in the checksum.

Unfortunately, legitimate pivoting would still break the checksum invariant

property, due to row swapping. In LU, for matrix A,

36

A =

0

@ A
11

A
12

A
21

A
22

1

A =

0

@ L
11

0

L
21

L
22

1

A

0

@ U
11

U
12

0 U
22

1

A

=

0

@ L
11

U
11

L
11

U
12

L
21

U
11

L
21

U
12

+ L
22

U
22

1

A

Panel factorization is:

0

@ A
11

A
21

1

A =

0

@ L
11

U
11

L
21

U
11

1

A =

0

@ L
11

L
21

1

AU
11

To protect L
11

and L
21

, imagine that we maintain a separate checksum, stored at

the bottom of the matrix, as shown in the yellow bottom rectangle of Figure 3.6, that

we plan on updating by scaling it accordingly to the panel operation. In this vertical

checksum, each P tall group of blocks in the 2D block cyclic distribution is protected

by a particular checksum block. Suppose rows i
1

and i
2

reside on blocks k
i1 and k

j1

of two processes. It is not unusual that k
i1 6= k

j1 . By Corollary 3.4.4, block k
i1 and

k
j1 contribute to column-wise checksum block k

i1 and k
j1 respectively in the column

that local blocks k
i1 and k

j1 belong to. This relationship is expressed as

row i
1

7! checksum block k
i1

row j
1

7! checksum block k
j1

7! reads ’contributes to’. After the swapping, the relationship should be updated to

row i
1

7! checksum block k
j1

row j
1

7! checksum block k
i1

37

This requires a re-generation of checksum blocks k
i1 and k

j1 in order to maintain

the checkpoint validity. Considering there are nb potential pivoting operations per

panel, hence a maximum of nb+1 checksum blocks to discard, this operation has the

potential to be as expensive as computing a complete vertical checkpoint.

QR Factorization

Although QR has no pivoting, it still cannot benefit from ABFT to cover Q, as we

prove below.

Theorem 3.5.1. Q in Householder QR factorization cannot be protected by perform-

ing factorization along with the vertical checksum.

Proof. Append am⇥n nonsingular matrix A with checksum GA of size c⇥n along the

column direction to get matrix A
c

=

2

4 A

GA

3

5. G is c ⇥m generator matrix. Suppose

A has a QR factorization Q
0

R
0

.

Perform QR factorization to A
c

:

2

4 A

GA

3

5 = Q
c

R
c

=

2

4Qc11

Q
c12

Q
c21

Q
c22

3

5

2

4Rc11

?

3

5

Q
c11

ism⇥m and Q
c21

is c⇥m. R
c

ism⇥n and ? represents c⇥n zero matrix. R
c

6= 0

and is full rank. Because R
c

is upper triangular with nonzero diagonal elements and

therefore nonsingular.

Q
c

QT

c

=

2

4Qc11

Q
c12

Q
c21

Q
c22

3

5

2

4Q
T

c11

QT

c21

QT

c12

QT

c22

3

5 = I

Therefore

Q
c11

QT

c11

+Q
c12

QT

c12

= I. (3.5)

38

Since A = Q
c11

R
c11

and R
c11

is nonsingular, then Q
c11

6= 0 and nonsingular.

Assume Q
c12

= 0:

Q
c11

QT

c21

+ Q
c12

QT

c22

= 0, therefore Q
c11

QT

c21

= 0. We have shown that Q
c11

is nonsingular, so QT

c21

= 0 and this conflicts with GA = Q
c21

R
c11

6= 0, so the

assumption Q
c12

= 0 does not hold. From (3.5), Q
c11

QT

c11

6= I. This means even

though A = Q
c11

R
c11

, Q
c11

R
c11

is not a QR factorization of A.

3.5.2 Panel Checkpointing

Given that the ZU factorization cannot protect Z by applying ABFT in the same

way as for U , separate e↵orts are needed. For the rest of this chapter, we use the

term “checksum” to refer to the ABFT checksum, generated before the factorization,

that is maintained by the application of numerical updates during the course of

the algorithm, in contrast to “checkpointing” for the operation that creates a new

protection block during the course of the factorization. LU factorization with partial

pivoting being the most complex problem, it is used here for the discussion. The

method proposed in this section can be applied to the QR and Cholesky factorizations

with minimal e↵orts nonetheless.

In a ZU block factorization using 2D cyclic distribution, once a panel of Z is

generated, it is stored into the lower triangular region of the original matrix. For

example, in LU , vectors of L, except the diagonal ones, are stored in L. These lower

triangular parts from the panel factorization are final results, and are not subject to

further updates during the course of the algorithm, except for partial pivoting row

swapping in LU. Therefore only one vertical checkpointing “should be” necessary to

maintain each panel’s safety, as is discussed in [40]. We will show how this idea, while

mathematically trivial, needs to be refined to support partial pivoting. We will then

propose a novel checkpointing scheme, leveraging properties of the block algorithm to

checkpoint Z in parallel, that demonstrates a much lower overhead when compared

to this basic approach.

39

3.5.3 Postponed Left Pivoting

Although once a panel is factored, it is not changed until the end of the computation,

row swaps incurred by pivoting are still to be applied to the left factor as the

algorithm progresses in the trailing matrix, as illustrated in Figure 3.1. The second

step (pivoting to the left) swaps two rows to the left of the current panel. The same

reasoning as presented in section 3.5.1 holds, meaning that the application of pivoting

row swaps to the left factor has the potential to invalidate checkpoint blocks. Since

pivoting to the left is carried out in every step of LU, this causes significant checkpoint

maintenance overhead.

Unlike pivoting to the right, which happens during updates and inside the panel

operation, whose result are reused in following steps of the algorithm, pivoting to

the left can be postponed. The factored L is stored in the lower triangular part of

the matrix without further usage during the algorithm. As a consequence, we delay

the application of all left pivoting to the end of the computation, in order to avoid

expensive checkpoint management. We keep track of all pivoting that should have

been applied to the left factor, and when the algorithm has completed, all row swaps

are applied just in time before returning the end-result of the routine.

3.5.4 Q-Parallel Checkpointing of Z

The vertical checkpointing of the panel result requires a set of reduction operations

immediately after each panel factorization. Panel factorization is on the critical path

and has lower parallelism, compared to other routines of the factorization (such as

trailing matrix update). The panel factorization works only on a single block column

of the matrix, hence benefits from only a P degree of parallelism, in a P ⇥Q process

grid. Checkpointing worsens this situation, because it applies to the same block

column, and is bound to the same low level of exploitable parallelism. Furthermore,

the checkpointing cannot be overlapped with the computation of the trailing matrix

update: all processes who do not appear on the same column of the process grid are

40

waiting in the matrix-matrix multiply PBLAS, stalled because they require the panel

column to enter the call in order for the result of the panel to be broadcasted. If

the algorithm enters the checkpointing routine before going into the trailing update

routine, the entire update is delayed. If the algorithm enters the trailing update

before starting the checkpointing, the checksum is damaged in a way that prevents

recovering that panel, leaving it vulnerable to failures.

Our proposition is then twofold: we protect the content of the blocks before

the panel, which then enables starting immediately the trailing update without

jeopardizing the safety of the panel result. Then, we wait until su�cient checkpointing

is pending to benefit from the maximal parallelism allowed by the process grid.

Enabling Trailing Matrix Update Before Checkpointing

The major problem with enabling the trailing matrix update to proceed while the

checkpointing of the panel is not finished is that the ABFT protection of the update

modifies the checksum in a way that disables protection for the panel blocks. To

circumvent this limitation, in a P ⇥Q grid, processes are grouped by section of width

Q, that are called a panel scope. When the panel operation starts applying to a

new section, the processes of this panel scope make a local copy of the impending

column and the associated checksum, called a snapshot. This operation involves

no communication, and features the maximum P ⇥ Q parallelism. The memory

overhead is limited, as it requires only the space for at most two extra columns to be

available at all time, one for saving the state before the application of the panel to the

target column, and one for the checksum column associated to these Q columns. The

algorithm then proceeds as usual, without waiting for checkpoints before entering

the next Q trailing updates. Because of the availability of this extra protection

column, the original checksum can be modified to protect the trailing matrix without

threatening the recovery of the panel scope, which can rollback to that previous

dataset should a failure occur.

41

Q-Parallel Checkpointing

When a panel scope is completed, the P⇥Q group of processes undergo checkpointing

simultaneously. E↵ectively, P simultaneous checkpointing reductions are taking place

along the block rows, involving the Q processes of that row to generate a new

protection block. This scheme enables the maximum parallelism for the checkpoint

operation, hence decreasing its global impact on the failure free overhead. Another

strong benefit is that it scales with the process grid perfectly, whereas regular

checkpointing su↵ers from scaling with the square root of the number of processes (as

it involves only one dimension of the process grid).

Optimized Checkpoint Storage

According to Corollary 3.4.4, starting from the first block column on the left, every Q

block columns contribute to one block column of checksum, which means that once

the factorization is done for these Q block columns, the corresponding checksum block

column becomes useless (it does not protect the trailing matrix anymore, it has never

protected the left factor, see Theorem 3.4.2). Therefore, this checksum storage space

is available for storing the resultant checkpoint block generated to protect the panel

result. Following the same policy as the checksum storage, discussed in Section 3.4.5,

the checkpoint data is stored in reverse order from the right of the checksum (see

Figure 3.4). As this part of the checksum is excluded from the trailing matrix update,

the checkpoint blocks are not modified by the continued operation of the algorithm.

Recovery

The hybrid checkpointing approach requires a special recovery algorithm. Two cases

are considered. First, when failure strikes during the trailing update, immediately

after a panel scope checkpointing. For this case, the recovery is not attempted until

the current step of the trailing update is done. When the recovery time comes, the

checksum/checkpointing on the right of the matrix matches the matrix data as if the

42

initial ABFT checksum had just been performed. Therefore any lost data blocks can

be recovered by the simple reverse application of the ABFT checksum relationship.

The second case is when a failure occurs during the Q panel factorization, before

the checkpointing for this panel scope can successfully finish. In this situation, all

processes revert the panel scope columns to the snapshot copy. Holes in the snapshot

data are recreated by using the snapshot copy of the checksum, applying the usual

ABFT recovery. The algorithm is resumed in the panel scope, so that panel and

updates are applied again within the scope of the Q wide section; updates outside the

panel scope are discarded, until the pre-failure iteration has been reached. Outside the

panel scope, regular recovery mechanisms are deployed (ABFT checksum inversion for

the trailing matrix, checkpoint recovery for the left factor). When the re-factorization

of panels finishes, the entire matrix, including the checksum, is recovered back to the

correct state. The computation then resumes from the next panel factorization, after

the failing step.

Figure 3.7 shows an example of the recovery when the process (1,0) in a 2⇥3 grid

failed. It presents the di↵erence between the correct matrix dataset and the current

dataset during various steps of failure recovery as a “temperature map”, brighter

colors meaning large di↵erences and black insignificant di↵erences. The matrix size is

80⇥80 and NB = 10, therefore the checksum size is 80⇥60. Failure occurs after the

panel factorization starting at (41,41) is completed, within the Q = 3 panel scope.

First, using a fault tolerant MPI infrastructures, like FT-MPI [57], the failed process

(0,1) is replaced and reintegrates the process grid with a blank dataset, showing as

evenly distributed erroneous blocks (A). Then the recovery process starts by mending

the checksum using duplicates (B). The next step recovers the data which is outside

the current panel scope (31:80,31:60), using the corresponding checksum for the right

factor, and the checkpoints for the left factor (C). At this moment, all the erroneous

blocks are repaired, except those in the panel scope (41:80, 41:50). Snapshots are

applied to the three columns of the panel scope (31:80,31:60). Since these do not

match the state of the matrix before the failure, but a previous state, this area

43

!"#$%&' ()*+,-./'

!
"#
$%&
'

0' 1'

(' 2'

Figure 3.7: Recovery example
(matrix size 800⇥ 800, grid size 2⇥ 3, failure of process (0,1), failure step:41,
A: Failure occurs B: Checksum recovered
C: Data recovered using ABFT checksum and checkpointing output D: Three panels
restored using snapshots

appears as very di↵erent (D). Panel factorization is re-launched in the panel scope,

in the area (31:80,31:60), with the trailing update limited within this area. This

re-factorization continues until it finishes panel (41:80,41:50) and by that time the

whole matrix is recovered to the correct state (not presented, all black). The LU

factorization can then proceed normally.

44

3.6 On-Demand Checkpointing using the Checkpoint-

on-Failure Protocol

There are two critical requirements for a successful deployment of the fault tolerance

algorithm described in this chapter so far. One is a supporting MPI system that allows

returning the execution control to the application, and the other is the recovery of the

running stack of the failed process to coordinate with the survived processes to restart

the execution. The previous works by others and this chapter assume that a “high

quality implementation” of MPI exists. At the time of failure, this MPI return the

execution control to the application and provide failure information such as the rank

of the failed process. Unfortunately, the current MPI-2 standard [131] addresses this

as an optional features without providing significant help to deal with the required

type of behavior. For the current standard, process or communication failures are to

be handled as errors, and the behavior of the MPI application, after an error has been

returned, is left unspecified by the standard. Most of the implementations of the MPI

Standard have taken the path of considering process failures as unrecoverable errors,

and the processes of the application are most often killed by the runtime system when

a failure hits any of them, leaving no opportunity for the user to mitigate the impact

of failures. Some e↵orts have been undertaken to enable ABFT support in MPI. FT-

MPI [57] was an MPI-1 implementation which proposed to change the MPI semantic

to enable repairing communicators, thus re-enabling communications for applications

damaged by failures. This approach has proven successful and applications have

been implemented using FT-MPI. However, these modifications were not adopted by

the MPI standardization body, and the resulting lack of portability undermined user

adoption for this fault tolerant solution. In [71], the authors discuss alternative or

slightly modified interpretations of the MPI standard that enable some forms of fault

tolerance. One essential idea is that process failures happening in another MPI world,

connected only through an inter-communicator, should not prevent the continuation

45

of normal operations. The complexity of this approach, for both the implementation

and users, has prevented these ideas from having a practical impact.

In [16], a Checkpoint-on-Failure (CoF) Protocol is proposed to handle the issue

of MPI support and the recovery of running stack. The core idea is to only perform

checkpointing at the time of failure in an on-demand fashion. In the CoF approach,

the only requirement from the MPI implementation is that it does not forcibly kill

the living processes without returning control. No stronger support from the MPI

stack is required, and the state of the library is left undefined.

To demonstrate the e↵ectiveness of the CoF fault-tolerance mechanism, this

section integrates CoF with the QR factorization implementation described in the

earlier sections of this chapter. While details of the modification to MPI can be

found in [16], in this section we focus on the QR factorization, especially the situation

where failure occurs during lower level routines such as PDLARFB is addressed. Such

situation has been missed in most of the related work in the area for the complexity

it introduces.

3.6.1 QR factorization on Distributed Memory System

For an M ⇥N matrix A, QR factorization produces Q and R, such that A = QR and

Q is an M ⇥M orthogonal matrix and R is an M ⇥N upper triangular matrix. For

simplicity of expression, we use a square matrix M⇥M in this chapter, but the result

applies also to rectangular matrices. There are several methods for computing the QR

factorization, such as the Gram-Schmidt process, the Householder transformations,

and the Givens rotations. ScaLAPACK uses a block version of the QR factorization

by accumulating a few steps of the Householder matrix. This method is rich in level

3 BLAS operations and therefore can achieve high performance. Q is stored under

the lower diagonal of the input matrix in the form of a WY representation of the

Householder transformation products[14, 116].

46

ScaLAPACK implements the block QR factorization as follow. At step i , an

m⇥m submatrix A
i

is partitioned and factorized as

A
i

=
h
A

1

A
2

i
=

2

4A11

A
12

A
21

A
22

3

5 = Q⇥

2

4R11

R
12

0 R
22

3

5

Here A
11

is of size nb ⇥ nb, where nb is called the block size. A
21

is of size (m �

nb)⇥ nb. A
1

= [A
11

, A
12

]T constitutes the area for the panel QR factorization. Since

ScaLAPACK uses the Householder method, Q is expressed as a series of Householder

transformations in the form H
i

= I � ⌧
i

v
i

vT
i

, i = 1 · · ·nb. v
i

has 0 for the first i � 1

entries, 1 on the i � th entry and ⌧
i

= 2/vT
i

v
i

. In ScaLAPACK, v
i

is stored below

the diagonal of A and when Q is applied to the trailing matrix A
2

= [A
21

, A
22

]T , Q

is computed by Q = H
1

· · ·H
nb

= I � V TV T , where T is an upper triangular matrix

of size nb ⇥ nb and V has v
i

as its i � th column. With this expression, the trailing

matrix update becomes

Ã
2

=

2

4Ã12

Ã
22

3

5 = QTA
2

= (I � V T TV T)A
2

(3.6)

This finishes one iteration of the block QR factorization. This process is repeated

from Ã
22

until the whole matrix is factorized.

3.6.2 Failure in PBLAS routines

An important condition for the e↵ectiveness of ABFT is the completion of the current

iteration. When a failure interrupts the program execution during an iteration, the

checksum ends up in intermediate form and as a result cannot be used for recovery.

This problem worsens when a failure occurs during a lower level routine, like a PBLAS,

causing a partial trailing matrix update. In this case, updates have been applied to

parts of the dataset, possibly without having updated accordingly the corresponding

checksums. In the case of the QR algorithm, this problem is solved by saving the

47

0

1

0

1

0# 1# 2# 0#

(a) After the first step: AT
2 V

1" 2" 0"0,1,2"

0

1

0

1

1" 2" 0"

&"

(b) A2 � V W̃T

Figure 3.8: PDLARFB

local state when a failure is detected in PDLARFB rather than in PDGEQRF. The

recovery process in this case is described as follow.

As shown in (3.6), the trailing update of QR carries out operation QTA
2

= (I �

V T TV T)A
2

! Ã
2

. The right arrow means the updated trailing matrix replaces the

content of A
2

. The trailing matrix update of QR is similar to PDGEMM for LU

which has been shown to hold the checksum relationship only at the end. Therefore

the procedure to recover from a failure in PDLARFB is:

1. Survived processes mark the progress and dump critical data to disk

2. After re-spawning, all processes dry-run to the failure point

3. All except the replacement process load checkpoint from disk

4. All processes resume computing from the failure point to the end of PDLARFB

5. At the exit of PDLARFB, recover all lost data in checksum and the whole

matrix

6. Execution of PDGEQRF returns to normal

The ’dry-run’ step is to re-establish the calling stack of all processes to the failing

point. Therefore PBLAS and ScaLAPACK routines for computing, for example,

PDGEQR2, PDLARFT, etc. are skipped over during the dry run.

48

The recovery is demonstrated with an example of a 4⇥ 4 blocks matrix on a 2⇥ 3

grid where failure occurs during PDLARFB.

PDLARFB implements QTA
2

= (I � V T TV T)A
2

in three steps:

1. W V TA
2

2. W̃ T T ⇥W

3. Ã
2

 A
2

� V W̃

Suppose the failure occurs right after step 1 on process (1,0). In step 1, as shown in

figure 3.8(a), V is stored in the green trapezoid and A
2

is in the yellow blocks. V is

first broadcast row-wise to all columns, then GEMM is called on each process that

owns A
2

with the local V and A
2

. Finally, the result is produced with column-wise

block summation and the result is stored on the first row of processes that process

the first row of A
2

(blue blocks). O↵ered by the MPI CoF modification presented

in [16], the failure location is broadcasted to all surviving processes and matrix data

are dumped to the disk, including peripheral data like the TAU array and workspace.

Surviving processes also keep a record on whether they have finished the DGEMM in

step 1.

After critical data is saved to disk, the program exits and is re-spawn with a

replacement process in the failed process’s location. The re-launched program dry-

runs to the failure point in step 1 of PDLARFB. All previously surviving processes

load their checkpoint from disk while the replacement process stays with its blank

data. Then the program resumes execution of PDLARFB. Since failure is on process

(1,0), W survives the data loss.

Step 2 of PDLARFB is W ⇥ T where W is the blue blocks in figure 3.8(a) and T

is a nb⇥ nb upper triangular matrix. Since T resides on each process in the row that

owns W , the correctness of T can be always guaranteed, and therefore W̃ has no lost

block in it after calling DTRMM. W̃ is broadcasted column-wise for step 3.

Step 3 of PDLARFB is shown in figure 3.8(b). In Ã
2

 A
2

� V W̃ T , besides

W̃ T , V is also correct since V has been broadcast row-wise to all process in step 1,

49

therefore even if blocks of V are destroyed by the failure, the result on the replacement

process can be recovered from its neighbour processes in the same row. The result

of step 3, also that of PDLARFB, is a↵ected by the incorrect result in A
2

, expressed

in shadowed blocks in figure 3.8(b). These incorrect blocks remain in the result of

DGEMM in this step. They are fixed later in the recovery process in PDGEQRF

using both the ABFT and Q-parallel checksum.

For PDLARFB, both V and T can be guaranteed correct no matter when and

where failure occurs, the only variable factor is W . However if the failure does punch

holes in W , more shadow blocks appear in the result of PDLARFB, and they can

still be fixed by the recovery in PDGEQRF.

3.7 Evaluation

In this section, we evaluate the performance of the proposed fault tolerant algorithm.

For a fault tolerant algorithm, the most important consideration is the overhead

added to failure free execution rate, due to various fault tolerance mechanisms such

as checksum generation, checkpointing and extra flops. An e�cient and scalable

algorithm will incur a little overhead over the original algorithm while enabling

scalable reconstruction of lost dataset in case of failure.

We use the NSF Kraken supercomputer, hosted at the National Institute for

Computational Science (NICS, Oak Ridge, TN) as our testing platform. This machine

features 112,896 2.6GHz AMD Opteron cores, 12 cores per node, with the Seastar

interconnect. At the software level, to serve as a comparison base, we use the non

fault tolerant ScaLAPACK LU and QR in double precision with block size NB = 100.

The fault tolerance functions are implemented and inserted as drop-in replacements

for ScaLAPACK routines.

In this section, we first evaluate the storage overhead in the form of extra memory

usage, then show experimental result on Kraken to assess the computational overhead.

50

3.7.1 Storage Overhead

Checksum takes extra storage (memory), but on large scale systems, memory usage

is usually maximized for computing tasks. Therefore, it is preferable to have a small

ratio of checksum size over matrix size, in order to minimize the impact on the memory

available to the application itself. For the sake of simplicity, and because of the small

impact in term of memory usage, neither the pivoting vector nor the column shift are

considered in this evaluation.

Di↵erent protection algorithms require di↵erent amounts of memory. In the

following, we consider the duplication algorithm presented in Section 3.4.5 for

computing the upper memory bound. The storage of the checksum includes the

row-wise and column-wise checksums and a small portion at the bottom-right corner.

For an input matrix of size M ⇥ N on a P ⇥ Q process grid, the memory used

for checksum (including duplicates) is M ⇥ N

Q

⇥ 2. The ratio R
mem

of checksum

memory over the memory of the input matrix, equals to 2

Q

, becomes negligible with

the increase in the number of processes used for the computation.

3.7.2 Overhead without Failures

Figure 3.9 evaluates the completion time overhead and performance, using the LU

factorization routine PDGETRF. The performance of both the original and fault

tolerant version are presented, in Tflop/s (the two curves overlap due to the little

performance di↵erence). This experiment is carried out to test the weak scalability,

where both the matrix and grid dimension doubles. The result outlines that as

the problem size and grid size increases, the overhead drops quickly and eventually

becomes negligible. At the matrix size of 640, 000⇥ 640, 000, on 36, 864 (192⇥ 192)

cores, both versions achieved over 48Tflop/s, with an overhead of 0.016% for

the ABFT algorithm. As a side experiment, we implemented the naive vertical

checkpointing method discussed in section 3.5.2, and as expected the measured

overhead quickly exceeds 100%.

51

!"#$%&'&($)"#$%*!'*!($ +"#$%!)'!)($ *&"#$%)+')+($,!"#$%-&'-&($ &)"#$%*-!'*-!($
./012$34567589:;4$%/<73=>($ "?*)!,&**)$ "?@&+@&A!&-$!?!*"-&,A+!$ &?+&+-+"+"+$!"?@A,,!*"&$)+?+-+&-@,*$
B7:0./$12$34567589:;4$%/<73=>($ "?*-!-"-,A$ "?&,)!@+*)A$!?!+",&A)+*$ &?+-"!&-@-*$!"?@-*"!!)-$)+?-"&@"A@+$
/<73=>$7C45D49E$%F($!&?!","-A,,$ *"?,@A**---$,?"),@,*,)!$ "?,"+-&++",$ "?"+@-&&A!+$ "?"*@-A,+A*$

"$

@$

*"$

*@$

!"$

!@$

,"$

"$

*"$

!"$

,"$

)"$

@"$

&"$

!"
#$

%&'
()
*+
),
-&
./

0&

1)
*2
#*
3
,4

5)
&.!

"#
$6
%0
&

3,7*89&%8:)&.;*8-&%8:)0&

./012$34567589:;4$%/<73=>($ B7:0./$12$34567589:;4$%/<73=>($ /<73=>$7C45D49E$%F($

Figure 3.9: Weak scalability of FT-LU: performance and overhead on Kraken,
compared to non fault tolerant LU

FT overhead (Tflop/s) 0.051 0.066 0.070 0.021 0.018 0.008

FT overhead (%) 26.203 10.357 3.044 0.309 0.086 0.016

As the left factor is touched only once during the computation, the approach of

checkpointing the result of a panel synchronously can, a-priori, look sound when

compared to system based checkpoint, where the entire dataset is checkpointed

periodically. However, as the checkpointing of a particular panel su↵ers from its

inability to exploit the full parallelism of the platform, it is subject to a derivative of

Amdahl’s law, its parallel e�ciency is bound by P, while the overall computation

enjoys a P ⇥ Q parallel e�ciency: its importance is bound to grow when the

number of computing resources increases. As a consequence, in the experiments,

the time to compute the naive checkpoint dominates the computation time. On

the other hand, the hybrid checkpointing approach exchanges the risk of a Q-step

rollback with the opportunity to benefit from a P ⇥Q parallel e�ciency for the panel

checkpointing. Because of this improved parallel e�ciency, the hybrid checkpointing

52

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

%!(")*+*," '!(")$%+$%," -!(")%'+%'," $*!(")'-+'-,"

!"
#$
%&

'$
()
'*
+'

,-
$./

0$

1,2*34$536'$.7*3-$536'0$

./01234"56"7"8/6419":53;43"

./01234"<0=>06"7"8/6419"

?5"43353"

Figure 3.10: Weak scalability of FT-LU: run time overhead on Kraken when failures
strike at di↵erent steps

approach benefits from a competitive level of performance, that follows the same

trend as the original non fault tolerant algorithm.

3.7.3 Recovery Cost

In addition to the “curb” overhead of fault tolerance functions, the recovery from

failure adds extra overhead to the host algorithm. There are two cases for the recovery.

The first one is when failure occurs right after the reverse neighboring checkpointing of

Q panels. At this moment the matrix is well protected by the checksum and therefore

the lost data can be recovered directly from the checksum. We refer to this case as

“failure on Q panels border”. The second case is when the failure occurs during the

reverse neighboring checkpointing and therefore local snapshots have to be used along

53

with re-factorization to recover the lost data and restore the matrix state. This is

referred to as the ”failure within Q panels”.

Figure 3.10 shows the overhead from these two cases for the LU factorization,

along with the no-error overhead as a reference. In the “border” case, the failure

is simulated to strike when the 96th panel (which is a multiple of grid columns,

6, 12, · · · , 48) has just finished. In the “non-border” case, failure occurs during the

(Q+2)th panel factorization. For example, when Q = 12, the failure is injected when

the trailing update for the step with panel (1301,1301) finishes. From the result in

Figure 3.10, the recovery procedure in both cases adds a small overhead that also

decreases when scaled to large problem size and process grid. For largest setups, only

2-3 percent of the execution time is spent recovering from a failure.

3.7.4 Extension to Other factorization

The algorithm proposed in this chapter can be applied to a wide range of dense matrix

factorizations other than LU. As a demonstration we have extended the fault tolerance

functions to the ScaLAPACK QR factorization in double precision. Since QR uses a

block algorithm similar to LU (and also similar to Cholesky), the integration of fault

tolerance functions is mostly straightforward. Figure 3.11 shows the performance

of QR with and without recovery. The overhead drops as the problem and grid size

increase, although it remains higher than that of LU for the same problem size. This is

expected: as the QR algorithm has a higher complexity than LU (4
3

N3 v.s. 2

3

N3), the

ABFT approach incurs more extra computation when updating checksums. Similar

to the LU result, recovery adds an extra 2% overhead. At size 160,000 a failure incurs

about 5.7% overhead to be recovered. This overhead becomes lower, the larger the

problem or processor grid size considered.

54

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

%!(")*+*," '!(")$%+$%," -!(")%'+%'," $*!(")'-+'-,"

!"
#$
%&

'$
(
)'
*+
',
-$
./

0$

1,2*34$536'$.7*3-$536'0$

./"0123"45678549"

./"0123":7"54474"

Figure 3.11: Weak scalability of FT-QR: run time overhead on Kraken when failures
strike

3.7.5 Checkpointing-on-Failure for QR

The CoF QR algorithm checkpoints data from memory to disk on the living processes

at the time of failure. Therefore disk I/O access time is a critical component of the

performance overhead.

To evaluate the performance impact of disk access, the implementation of the

CoF algorithm based on the ScaLAPACK QR is tested on two cluster systems at

di↵erent scale. The first machine, “Dancer”, is a 16-node cluster at the University

of Tennessee, Knoxville. All nodes are equipped with two 2.27GHz quad-core Intel

E5520 CPUs, connected by 20GB/s Infiniband. Solid State Drive disks are used as

the checkpoint storage media. The second system is the Kraken supercomputer by

Cray Inc. at the Oak Ridge National Lab. Kraken has 9,408 compute nodes. Each

node has two Istanbul 2.6 GHz six-core AMD Opteron processors, 16 GB of memory,

55

0"

100"

200"

300"

400"

500"

600"

700"

800"

900"

Gfl
op

/s
'

Matrix'Size'

ScaLAPACK"QR"

FT8QR"(no"failure)"

FT8QR"(with"failure)"

Figure 3.12: Performance on Dancer (16⇥ 8 grid)

and a highly scalable cluster file system “Lustre”. All the nodes are Connected by

the Cray SeaStar2+ interconnect. In all experiments, the block size is set to 100.

Figure 3.12 presents the performance of this QR implementation on the Dancer

cluster with a 8⇥ 16 process grid. The FT-QR (no failure) presents the performance

of the On-Demand Checkpointing implementation, in a fault-free execution, while

the FT-QR (with failure) curves present the performance of the same implemenation,

when the failure is injected after the first step of PDLARFB that performs W

V TA
2

. The performance of the non-fault tolerant ScaLAPACK QR is also presented

to serve as a reference.

The di↵erence with the ScaLAPACK QR is caused by the parallel-Q checksum

and the ABFT algorithm. This overhead has been shown to scale down with larger

number of processes and matrices. In the case of a run with an error, the following

overheads adds up: the times to store the checkpoint to disk, re-launch an application,

re-establish the position of all processes by dry running in the application until the

56

0"

10"

20"

30"

40"

50"

60"

70"

Pe
rf
or
m
an

ce
*o
ve
rh
ea
d*
(%

)*

Matrix*size*

FT,QR"(no"failure)"

FT,QR"(with"failure)"

Figure 3.13: Overhead over ScaLAPACK QR on Dancer (16⇥ 8 grid)

failing point, loading checkpoint from disk and perform the ABFT recovery using the

checksum found in the checkpoint of the previously living processes.

On Dancer, the performance of QR with on-demand checkpointing and recovery

follows closely with the “no failure” performance. Figure 3.13 shows that as the

matrix size increases, the recovery overhead falls below 5% more than the “no failure”

overhead. By breaking down the run-time of each recovery elements, Figure 3.14

shows that checkpoint saving and loading only take a small percentage of the total

run-time. On a problem of this size, the additional overheads are dominated by the

time it takes to terminate the failing MPI application and relaunch a new one. Other

than the fast solid state drive disks, the fast checkpointing can also be attributed

to the disk cache provided by the OS. Since loading is performed immediately after

saving, high disk cache hits can largely speed up the process. After matrix size

44,000 the memory usage on each node came close to limit and since no swap space is

available on the Dancer cluster, disk cache support started to decrease and cause slight

57

0%#

2%#

4%#

6%#

8%#

10%#

12%#

14%#

16%#

18%#

20%#

Pe
rc
en

ta
ge
)o
f),

m
e)

Matrix)size)

Load#Checkpoint# Dump#Checkpoint# ABFT#Recovery#

Figure 3.14: Time Breakdown of FT-QR on Dancer (16⇥ 8 grid)

increase in disk access time, which however does not a↵ect the overhead percentage

from performing recovery.

Figure 3.15 presents the performance on Kraken with a larger grid and a di↵erent

filesystem to store the checkpoint images. A similar e↵ect of a small checkpointing

saving and loading time is observed. The performance of the “with failure” case shows

the same trend of closely following the “no failure” case performance. At size matrix

100,000 for instance, FT-QR successfully recovered from the failure and achieved 2.86

Tflop/s, which is 90% of the performance of the ScaLAPACK QR. This verified that

the On-Demand Checkpointing QR also performs well at larger scales.

3.8 Conclusion

In this chapter, by assuming a failure model in which fail-stop failures can occur

anytime on any process during a parallel execution, a general scheme of ABFT

58

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

Tfl
op

/s
'

Matrix'Size'

ScaLAPACK"QR"

FT4QR"(no"failure)"

FT4QR"(with"failure)"

Figure 3.15: Performance on Kraken (24⇥ 24 grid)

algorithms for protecting one-sided matrix factorizations is proposed. This scheme

can be applied to a wide range of dense matrix factorizations, including Cholesky,

LU and QR. A significant property of the proposed algorithms is that both the left

and right factorization results are protected. ABFT is used to protect the right factor

with checksum generated before, and carried along during the factorizations. A highly

scalable checkpointing method is proposed to protect the left factor. This method

cooperatively reutilizes the memory space originally designed to store the ABFT

checksum, and has minimal overhead by strategically coalescing checkpoints of many

iterations. In addition, a Checkpointing-on-Failure scheme is proposed to help the

recovery of the execution under the situation that no support is o�cially available

from the MPI standard. By integrating the minimal support in the MPI system, disk-

based checkpointing is only performed at the time of failure. Execution stack and

matrix data are later recovered from ABFT checksum and both disk- and diskless-

checkpoint. Large scale experimental results validate the design of the proposed fault

59

tolerance method by highlighting scalable performance and decreasing overhead for

both LU and QR.

60

Chapter 4

Soft Error Resilience on

Distrbuted Memory System

4.1 Introduction

Soft errors, normally in the form of bit flips, are events in microelectronic circuit

that result in transient error without permanently damaging the device. They

corrupt computed data, and produce erroneous results without leaving a trace.

High-end computer systems are especially susceptible to such errors due to the ever

increasing chip density and system scale. Between 2003 and 2004, the 2048-node

ASC Q supercomputer for scientific computing in Los Alamos National Laboratorys

experienced failure from extensive soft errors [100]. By comparing the error logs

with a radiation experiment conducted in a lab, the cause was later identified to

be the cosmic ray striking its parity-protected cache tag array. The Q computer is

more vulnerable to soft errors because it is located at about 7500 feet above the sea

level, and the neutrons from cosmic-rays are roughly 6.4 times stronger than the ones

occuring at sea level. A similar incident has also appeared in a commercial computing

system from Sun Microsystems that caused outages for many of its customers due to

61

cosmic ray soft errors [92]. These incidents signify that soft errors are a real issue

that both hardware and software developers must face.

Soft error rate (SER) in memory is usually quantified using FIT (failure in time)

per MB, 1 FIT is 1 failure per 109 operation hours per 10
6
bits. Google has reported

between 778 and 25,000 FIT from errors in the DRAMs of their server fleet, an order

of magnitude higher than previously expected [118]. As CMOS technology scales the

feature size down with more transistors per chip and lower critical charge [75, 138],

the threat of soft errors will continue to haunt the computing community.

The three main sources of soft errors are alpha particles, high energy neutrons, and

thermal neutron flux. Threatening alpha particles primarily originate from memory

chip packages. From alpha particles, two or three atoms of uranium or thorium in a

contaminated package can already flip a bit [29]. Even though newer technology and

material can to some extent mitigate the impact of alpha particles, recent studies have

shown that with the scaling in CMOS circuit, soft error rate (SER) increases when

the critical charge is lowered. For instance, SER at 0.3V is eight times higher than

SER at 1.0V [63]. High energy neutrons from cosmic rays are the dominant cosmic

ray products that cause soft errors [145]. Neutrons can penetrate most man-made

construction, for example, five feet of concrete [97]. According to [75], CMOS scaling

does not increase the SER from neutrons, the factor of the fast increase of system

capacity in the sense of more CPU cores and memories also validate concern for the

neutrons induced soft errors. Thermal neutrons are not as problematic as the other

two sources and are mostly related to high energy neutron flux and materials in the

neighboring environment [44].

In order to mitigate the impact of soft errors, modern HPC systems rely heavily on

ECC (error correcting code). Nowadays the most commonly used ECC is SECDED

(Single Error Correction, Double Error Detection). For multi-bit errors precipitated

by the progress of the integrated circuit technology [132], a more powerful form of

ECC has become too expensive due to the higher encoding and decoding overhead

and the resulting memory performance loss. Question has been raised on whether soft

62

error resilience can be achieved with less cost from the application side [70]. Among

HPC applications that could benefit from such fault tolerance capability, dense linear

algebra applications such as the HPL benchmark for the TOP500 competition [99]

and the AORSA fusion energy simulation program [11], are representative examples.

These applications normally involve solving a dense system of equations of the form

Ax = b on large scale HPC systems with matrix sizes of A as large as 500,000. Soft

errors that occur during such long running applications produce incorrect solution.

This lowers productivity by wasting valuable time and energy in error tracing with

little chance of locating the error.

Until now, most of the soft error resilience techniques for dense linear solvers are

limited to small scale computing installations, such as on systolic arrays, assuming

that the error correcting code does not seriously a↵ect system performance and the

encoding can be carried out with exact arithmetic [61, 89]. Unfortunately, none of

these assumptions hold true for today’s Pflop/s supercomputer systems. In [51], we

have demonstrated the first attempt to take on the challenge of recovering the solution

from a dense linear system solver of Ax = b with a single error occurrence in both L

and U of the LU factorization. This section develops a multiple soft errors resilience

mechanism which could potentially be a more performance friendly alternative to the

complex hardware ECC. The proposed algorithms consider the spatial and temporal

multiple errors. Spatial soft errors occur at di↵erent time, whereas temporal soft

errors manifest as simultaneous multiple bit flips in disparate locations. Experiments

on the Kraken supercomputer from Cray at the University of Tennessee verified

our design for both the error detection and correction capability as well as low

performance complexity. The proposed method may also be extended to other

one-sided factorizations for the recovery of linear system solution and factorization

matrices.

The rest of the section is organized as follows. Section 4.2 introduces an LU

based dense linear solver on distributed memory system. The impact of soft error

on the linear solver is then analyzed and the general work flow of the proposed soft

63

error resilience algorithm is shown in Section 4.3. Sections 4.4 and 4.5 develop the

protection method for both the left factor L and right factor U . Section 4.6 proposes a

block protection method to reduce the computational complexity of the non-blocking

protection algorithm for U . Finally, the recovery algorithm is discussed in Section 4.7

and the experimental results are shown in Section 4.8. Section 4.9 concludes the

section.

4.2 High Performance Linear System Solver

For dense matrix A, the LU factorization produces PA = LU (or P = ALU),

where P is a pivoting matrix, L and U are unit lower triangular matrix and upper

triangular matrix respectively. LU factorization is popular for solving systems of

linear equations. With L and U , the linear system Ax = b is solved by Ly = b and

then Ux = y. ScaLAPACK implements the right-looking version of LU with partial

pivoting based on a block algorithm and 2D block cyclic data distribution.

For an N ⇥N matrix (or submatrix) A. Split A into 2⇥ 2 blocks with block size

NB. A
11

has size NB⇥NB, A
12

is NB⇥(N�NB), A
21

is (N�NB)⇥NB, and A
22

is (N �NB)⇥ (N �NB), which is also known as the “trailing matrix”. Decompose

A as

2

4A11

A
12

A
21

A
22

3

5 =

2

4L11

0

L
21

L
22

3

5

2

4U11

U
12

0 L
22

3

5

and therefore

8
>>>>>><

>>>>>>:

2

4A11

A
21

3

5 =

2

4L11

L
21

3

5U
11

! PDGETF2

A
12

= L
11

U
12

! PDTRSM

L
22

U
22

= A
22

� L
21

U
12

! PDGEMM

(4.1)

64

PDGETF2, PDTRSM and PDGEMM are the names of the ScaLAPACK routines

that perform the corresponding operations on the left. This poses as one iteration

(step) of the factorization, and pivoting is applied on the left and right of the

current panel. The routines names in the ScaLAPACK LU are listed after “!”.

For description, we use Ū to represent the area of U
12

modified by PDTRSM, and Ũ

for A
22

in PDGEMM.

Block algorithms o↵er good granularity to benefit from high performance BLAS

routines, while 2D block-cyclic distribution ensures scalability with load balancing.

4.3 Soft Error Resilience Framework

Since soft errors occur at times and locations unknown to the host algorithm, di↵erent

methodologies are required to provide resilience to di↵erent part of the matrix. In

this section, the error propagation in LU factorization is discussed and a general work

flow of error detection and recovery is given. Details of each steps are explained in

later sections.

4.3.1 Error Pattern in the Block LU Algorithm

During the process of LU factorization, the left factor L and right factor U have

di↵erent “dynamics” with regard to the frequency of data change. For L, once a

panel is factorized, the resulted data stored under the diagonal comes to the final

form without undergoing any further changes. This o↵ers an opportunity to use the

traditional diskless checkpointing method to protect these data. ABFT cannot be

applied to the panel factorization since otherwise checksum rows for the panel could

be moved into data causing erroneous result. In LU, partial pivoting that swaps rows

of both L and U is normally utilized to provide better stability, but this pivoting

operation could break the static feature of the L data. For example, considering the

case of one soft error, two generator matrices e
2

and w
2

can be used in addition to

65

Pivoting to
the Left

Pivoting to
the Right

Figure 4.1: Two pivoting sweeps in LU factorization

e
1

and w
1

used for the right factor. e
i

and w
i

are all-1 matrix and random number

matrix, respectively. For original matrix A, two rows and columns of checksum are

appended as:

0

BBB@

A Ae
1

Aw
1

e
2

A . . .

w
2

A . . .

1

CCCA
(4.2)

The left pivoting is depicted in Figure 4.1. Suppose pivoting requests exchanging

row j and k. For e
2

A:

e
2

A = (1, 1, . . . , 1)⇥

0

BBBBBBBBBBBBBBB@

a
1·
...

a
j·
...

a
k·
...

a
m·

1

CCCCCCCCCCCCCCCA

= (1, 1, . . . , 1)⇥

0

BBBBBBBBBBBBBBB@

a
1·
...

a
k·
...

a
j·
...

a
m·

1

CCCCCCCCCCCCCCCA

66

This means e
2

A is immune to the left pivoting, but for w
2

A this conclusion does

not hold since data in w
2

are random numbers. Let w
2,i

be the ith element of w
2

:

w
2,1

a
1

+ w
2,2

a
2

+ ·+ w
2,j

a
j

+ · · ·+W
2,k

a
k

+ · · ·+ w
2,m

a
m

6= w
2,1

a
1

+ w
2,2

a
2

+ ·+ w
2,j

a
k

+ · · ·+W
2,k

a
j

+ · · ·+ w
2,m

a
m

and therefore each left pivoting invalidates all previous vertical checksums.

To deal with this situation, in this work the pivoting to the factorized L is delayed

to the end of factorization. Since soft errors could strike at any moment, checkpointing

frequency as high as once per panel factorization is necessary, but this also potentially

leads to high performance overhead and therefore should be used economically. For

example, even though the factorized Ū (result of PDTRSM) also stays static once

produced, it can be protected by ABFT checksum and therefore causes less overhead.

Ũ di↵ers from L and Ū in that it undergoes changes constantly from trailing

matrix update. If soft errors alter data within Ũ , and the erroneous data are carried

along with computation to update the Ũ , even a single-bit soft error could propagate

into large area of Ũ , let alone multiple errors at di↵erent time of the factorization.

Figure 4.2 is a demonstration of such a situation. Two LU factorizations of the

same data are run. One with errors and one without error. The matrix size is 200⇥200

with block size 20. The two final results are subtracted and colored by the size of the

absolute value of the residue. The brighter the color, the larger the residue. Using

MATLAB notation, two soft errors are injected at location (50, 120) and (35, 10) right

before the panel factorization for blocks (41 : 200, 41 : 60) starts. Error at (35, 10) is

in the finished L area and therefore does not propagate. Error at (50, 120) is in the

PDTRSM area. During PDTRSM, data in column 120 gets a↵ected and this column

of errors continues into the PDGEMM area (the trailing matrix for step 40) until

PDGETF2 starts on blocks (100 : 200, 100 : 121) when errors spread out to the whole

trailing matrix (120 : 200, 120 : 200). It is worth noting that errors on the diagonals

67

Figure 4.2: Error propagation

also cause the pivoting sequence to diverge from the correct sequence, and this a↵ect

the areas below row 120 of L.

From the example, it can be seen that large areas of the final L and U can be

contaminated by a single soft error, and the a↵ected area is a function of the soft error

location and timing. Available fault tolerance, like C/R and diskless checkpointing,

are not applicable because they require the location and time information of error, and

by the end of the factorization the error could have propagated into their checksum

and invalidated the redundancy for recovery.

Figure 4.3 shows an example of multiple-error propagation in a small matrix.

Gaussian elimination is applied to a 30⇥ 30 matrix. To simplify the illustration, no

pivoting nor block algorithm is used. Each step of the Gaussian elimination zeros out

elements below the diagonal in one column. The color scheme is the same as Figure

4.2. During the elimination, Two soft errors are injected at step 1 and 3 at location

(6,13) and (12, 18) using addition. Since both errors occur below the row 3, these

68

Figure 4.3: Example of error propagation in the U result of a 30⇥ 30 matrix

errors fall in the Ũ area of steps 1 to 3. The two white dots at (6,13) and (12, 18) are

the initial injection locations. Starting from step 4, the trailing matrix update which

is GEMM(matrix-matrix multiple) picks up the erroneous data for computation. As

the iteration continues, the errors grow downward into the trailing matrix (in yellow).

When it reaches the diagonal, the erroneous data starts to participate in the vertical

scaling of zeroing out values below diagonals, and immediately the errors take over

the entire trailing matrix shown in red dots. Both of the two errors follow the same

propagation pattern. In the red lower right section, propagated errors from both

initial errors merge. Since the propagation occurs silently, it is challenging to detect

and recover from such situation without any sign of error.

4.3.2 General Work Flow

We proposed a hybrid method of ABFT and diskless checkpointing to protect LU

based linear solver. This method can tolerant multiple occurrences of soft error in

the whole area of factorization result and restore the correct solution x to the linear

system of equations Ax = b. The general work flow of error detection and recovery

is in Algorithm 2.

Details of Algorithm 2 will be explained in details in the coming sections.

69

Algorithm 2 Fault Tolerant System Work Flow

Require: Ax = b; Generator matrix G; Check matrix H
Step 1: Checkpointing A by A

c

=
⇥
A A⇥G

⇤

Step 2: Perform LU factorization L
c

U
c

= P ⇥ A
c

in block algorithm of block size
nb with partial pivoting; Panel factorization result in each step is checkpointed
immediately once produced
Step 3: Detect error occurrence by � = kU

c

⇥Hk
if Found error(s) from � > 0 then
Step 3.1: Locate initial error(s) using �
Step 3.2: Detect and eliminate error(s) in L
Step 3.3: Calculate x̂ by x̂ = Û(\L̂\(P ⇥ b)), and
Step 3.4: Adjust x̂ to the correct solution x = x̂+�

else
Step 4: Reach the correct solution x = U\(L\(P ⇥ b))

end if

4.4 Detecting and Correcting Errors in L

As discussed above, diskless checkpointing is utilized to protect the left factor L from

soft errors. The objective, in addition to the error correction capabilities, is having

low performance overhead as the checkpointing is scaled to large computing scale.

4.4.1 Error Encoding for L: 1 Error Per Column

For any column of the computed left factor [a
1

, a
2

, · · · , a
k

]T , the vertical checkpointing

produces the following two sets of checksums:

8
<

:
a
1

+ a
2

+ · · ·+ a
k

= c
1

w
2,1

a
1

+ w
2,2

a
2

+ · · ·+ w
2,k

a
k

= c
2

(4.3)

Suppose a
j

is hit by soft error to ã
j

, the new checksum suite becomes

8
<

:
a
1

+ · · ·+ ã
j

+ · · ·+ a
k

= c̃
1

w
2,1

a
1

+ · · ·+ w
2,j

ã
j

+ · · ·+ w
2,k

a
k

= c̃
2

(4.4)

70

Subtract (4.4) from (4.3), we get

8
<

:
c̃
1

� c
1

= ã
j

� a
j

c̃
2

� c
2

= w
2,j

(ã
j

� a
j

)

and therefore w
2,j

= c̃2�c2
c̃1�c1

. j can be determined by looking up w
2,j

in w
2

, and the

erroneous data can be recovered from the first equation of (4.3).

The check matrix used for L is

H =

2

4 1, 1, · · · , 1 �1 0

w
2,1

, w
2,2

, · · · , w
2,m

0 �1

3

5

It is straightforward to see prove any two columns of H is independent given the

random numbers in the second row do not repeat. By coding theory [104] the minimal

distance of this error correcting code is 3, and therefore it can correct up to 1 error

per column. In practice, the first row of H could cause large rounding errors in the

recovery process due to floating pointing arithmetic. Another row of di↵erent random

numbers can solve the issue as long as no two column of H are linear dependent.

4.4.2 Local Checkpointing

Since the checkpointing for L is performed in each iteration for the left factor, the

scalability of such algorithm is the main concern. As already shown in Chapter 4,

global vertical checkpointing does not scale because the checkpointing operation is

implemented by the PDGEMM routine on the critical path of LU execution, which

only engages a small amount of processes in checkpointing, and the rest are stalled.

Since the left pivoting is delayed, the left factor, once computed, is not touched

any more. The communication incurred by the PDGEMM-based checkpointing can

be removed by a local checkpointing scheme.

Figure 4.4 illustrates the local checkpointing mechanism. Block size is nb⇥nb and

matrix has 5 ⇥ 5 blocks. The process grid is 2 ⇥ 3. Suppose np
i,j

, np
i,j

are the size

71

Figure 4.4: Local checkpointing algorithm

of data owned by process (i, j) (yellow and green for process (0,1) and (1,1)). Each

process has a local vertical checksum space in memory of size 2⇥ nq
i,j

.

Suppose LU factorization proceeds until the second column resulting in the left

factor in the area covered in red trapezoid. Right after the panel factorization, all

processes that have blocks in the current matrix column started to check if they own

any blocks belonging to the current left factor. In this example, process (0,0) has 2

blocks in the red rectangle, and (0,1) has one and half blocks in the red trapezoid.

Both of these two processes start to apply their local generator matrix of size 2 ⇥

nq
i,j

for the 2 blocks using DGEMM, and for process (0,1) the first DGEMM is

carried out in DTRMM because only the strict lower triangular part is needed. The

result is written in the corresponding local checksum location depicted in red lines in

Figure 4.4.

To recover from an error, the same checkpointing scheme as in section 4.4.1 is

used locally by each process. Every column of the involved processes is checked for

erroneous data and therefore the local checkpointing makes the left-factor protection

capable of recovering from one soft error per column of each process.

The advantage of this checkpointing is that it removes unnecessary global

communication during checkpointing and breaks the checkpointing operation into

dP e embarrassingly parallelism. Further more, on a cluster where more than one

72

core is available on each computing node, this checkpointing can be further hidden

by executing it in a separate thread so that the main thread can move on quickly to

later steps. The scalability of the local checkpointing is evaluated in Section 4.8.2.

4.4.3 Error Encoding for L: Multiple Errors Per Column

In this section, the encoding scheme in Section 4.4.1 is further extended to mitigate

multiple errors per column in L, implemented with the local checkpointing technique

in Section 4.4.2.

For any column of the factorized panel [l
1

, l
2

, · · · , l
k

]T in L, the objective of

checkpointing is to allow recovery from soft errors that occur to a certain number

of data items in a column.

For any column of the factorized panel in L, [l
1

, l
2

, · · · , l
k

]T , the following three

checksums c
1

to c
3

are produced:

8
>>><

>>>:

l
1

+ l
2

+ · · ·+ l
k

= c
1

w
1

l
1

+ w
2

l
2

+ · · ·+ w
k

l
k

= c
2

u
1

l
1

+ u
2

l
2

+ · · ·+ u
k

l
k

= c
3

(4.5)

Since all computation are carried out in floating point number with a fixed number

of digits for exponent and fraction, the selection of w
i

and u
i

should avoid causing

large contrast between operands during computing that encourages the accumulation

of round-o↵ errors. As an opposite example, in [61], the use of Vandermonde matrix

where w
i

= j and u
i

= j2 incur fast increase of checkpointing weight magnitude and

causes notable precision loss from round-o↵ errors. When this method is used with

large matrices, the resulted error locations are ambiguously in between integers.

To work with round-o↵ errors, we propose to choose w
i

and u
i

from random

numbers between 0 and 1. Suppose soft errors change l
i

and l
j

to l̂
i

and l̂
j

respectively,

i < j. During the error detection step (step 3.2) in Algorithm 2, re-generating the

73

checksum gives:

8
>>><

>>>:

l
1

+ · · ·+ l̂
i

+ · · ·+ l̂
j

+ · · ·+ l
k

= ĉ
1

w
1

l
1

+ · · ·+ w
i

l̂
i

+ · · ·+ w
j

l̂
j

+ · · ·+ w
k

l
k

= ĉ
2

u
1

l
1

+ · · ·+ u
i

l̂
i

+ · · ·+ u
j

l̂
j

+ · · ·+ u
k

l
k

= ĉ
3

(4.6)

Subtract (4.6) from (4.5), we have

8
>>><

>>>:

ĉ
1

� c
1

= l̂
i

� l
i

+ l̂
j

� l
j

ĉ
2

� c
2

= w
i

(l̂
i

� l
i

) + w
j

(l̂
j

� l
j

)

ĉ
3

� c
3

= u
i

(l̂
i

� l
i

) + u
j

(l̂
j

� l
j

)

(4.7)

This system of equations is defined as the “symptom equations”. The symptom

equations establish the relationship between soft errors and checksum, however it

cannot be solved “as is” since the six unknowns l̂
i

, l̂
j

, w
i

, w
j

and u
i

, u
j

outnumber

the available three equations.

To reduce the number of knowns, let u
i

= w2

i

, i = 1, · · · , k. Combine the first

and second equation in (4.7), we have:

l̂
j

� l
j

=
1

w
j

� w
i

((ĉ
2

� c
2

)� w
i

(ĉ
1

� c
1

)) (4.8)

And similarly combine the first and third equation:

l̂
j

� l
j

=
(ĉ

3

� c
3

)� w2

i

(ĉ
1

� c
1

)

w2

j

� w2

i

(4.9)

Eliminate l̂
j

� l
j

from (4.8) and (4.9) by connecting the right hand sides, (4.7) can

be eventually reduced to

(ĉ
3

� c
3

)� (w
i

+ w
j

)(ĉ
2

� c
2

) + w
i

w
j

(ĉ
1

� c
1

) = 0 (4.10)

74

This equation is, in this work, defined as the “check equation”. w
i

, w
j

can be

determined by iterating through all possibilities in w with O(n2) complexity because

i < j, and for each i, n� i pairs of w
i

w
j

are tested in (4.10).

This checkpointing method also applies to one-error recovery. Suppose an error

occurs to l
i

only, and (4.7) becomes

8
>>><

>>>:

c̃
1

� c
1

= l̃
i

� l
i

c̃
2

� c
2

= w
i

(l̃
i

� l
i

)

c̃
3

� c
3

= u
i

(l̃
i

� l
i

)

(4.11)

The same method in 4.4.1 can be used to determine l
i

from the first two equations of

(4.11).

Using (4.7), the error detection and recovery algorithm is summarized in

Algorithm 3. Note that this error protection for L applies for each column of L.

Algorithm 3 Error detection and recovery in L

Require: Ã, error column l and generator row w of length N , w
i

, w
j

2 w and
w

i

6= w
j

, i, j 2 {1 · · ·N}
Calculate č

i

= ĉ
i

� c
i

, i = 1, 2, 3
if č

i

== 0, i = 1, 2, 3 then
No error

else if č
2

/č
1

== č
3

/č
2

== w
i

then
One error in row i, column l of the output matrix
Recover by solving ĉ

1

� c
1

= l̂
i

� l
i

else
At least two errors in column l of the output matrix
Iterate all possible pairs w

i

, w
j

2 w
if (ĉ

3

� c
3

)� (w
i

+ w
j

)(ĉ
2

� c
2

) + w
i

w
j

(ĉ
1

� c
1

) = 0 then
Two errors are in rows i and j, column l of the output matrix
Recover by solving the overdetermined least square equations in (4.7) with w

i

and w
j

as known constants and x = l̂
i

� l
i

and y = l̂
j

� l
j

as unknowns
else
More than two errors occurs

end if
end if

75

The error detection and recovery algorithm can be extended to t errors with

complexity O(nt) to determine the locations of errors. For example, when t = 3,

symptom equation 4.7 becomes

8
>>>>>><

>>>>>>:

ĉ
1

� c
1

= l̂
i

� l
i

+ l̂
j

� l
j

+ l̂
k

� l
k

ĉ
2

� c
2

= w
i

(l̂
i

� l
i

) + w
j

(l̂
j

� l
j

) + w
k

(l̂
k

� l
k

)

ĉ
3

� c
3

= u
i

(l̂
i

� l
i

) + u
j

(l̂
j

� l
j

) + u
k

(l̂
k

� l
k

)

ĉ
4

� c
4

= h
i

(l̂
i

� l
i

) + h
j

(l̂
j

� l
j

) + h
k

(l̂
k

� l
k

)

(4.12)

Here i, j and k correspond to the three errors’ locations. Similar to the double-error

case, we use u
i

= w2

i

and h
i

= w3

i

, i = 1 · · · k. The symptom equations in (4.12) is

simplified to:

8
>>>>>><

>>>>>>:

C
1

= x+ y + z

C
2

= w
i

x+ w
j

y + w
k

z

C
3

= w2

i

x+ w2

j

y + w2

k

z

C
4

= w3

i

x+ w3

j

y + w3

k

z

(4.13)

where C
i

= ĉ
i

� c
i

, i = 1 · · · 4, and x = l̂
i

� l
i

, y = l̂
j

� l
j

, and z = l̂
k

� l
k

. The task

is to determine w
i

, w
j

and w
k

.

Represent x and y as functions of z using the first two equations from (4.13):

8
<

:
x = wjC1C2�(wj�wk)z

wj�wi

y = wiC1C2�(wi�wk)z

wi�wj

(4.14)

Replace x and y in the 3rd and 4th equations of (4.13) with (4.14) and reduce z,

the check equation is formed as:

C
4

(w
i

� w
j

) + w3

i

(w
j

C
1

� C
2

)� w3

j

(w
i

C
1

� C
2

)

(w
i

� w
j

)w3

k

� (w
i

� w
k

)w3

j

+ (w
j

� w
k

)w3

i

=
C

3

(w
i

� w
j

) + w2

i

(w
j

C
1

� C
2

)� w2

j

(w
i

C
1

� C
2

)

(w
i

� w
j

)w2

k

� (w
i

� w
k

)w2

j

+ (w
j

� w
k

)w2

i

(4.15)

76

By iterating through all possible pairs of w
i

, w
j

and w
k

using the check equation, the

three error locations can be determined and the error value can be found accordingly.

4.5 Encoding for Multiple Errors in ¯U and ˜U

Soft errors in Ū and Ũ di↵er from those in L because they participate in the

computation and therefore propagate to large areas. The case with two errors are

discussed in detail and is then shown how to extend to t > 2 errors. For soft errors

in matrix operation, Luk et al. has proposed to cast soft error to an initial erroneous

matrix to avoid considering the di�culty of detecting error timely [89]. Fitzpatrick,

et al. extended Luk’s modeling to two soft errors [61]. In their works, a soft error

is treated as a rank-one perturbation to the matrix. The e↵ect of the soft error is

cast back to a di↵erent initial matrix from which “conceptually” the LU factorization

produces the same erroneous result but without the soft error occurring during the

process. Based on this model and using a di↵erent encoding scheme (similar to the

one in Section 4.4.3), this section devise methods to detect and correct multiple soft

errors for LU with partial pivoting. The encoding scheme makes the soft error model

suitable for floating point number operations.

4.5.1 Soft Errors Modeling

LU factorization can be viewed as multiplying a set of triangularization matrices

from the left on the input matrix A to get the final triangular form. Let A
0

= A, and

A
t

= L
t�1

P
t�1

A
t�1

. P
t�1

is the partial pivoting matrix at step t � 1. At the end of

the factorization, PA
0

= LU , where U is an upper triangular matrix.

Suppose two soft errors occur in the Ū or Ũ area at locations (i
1

, j
1

) and (i
2

, j
2

)

in step s
1

and s
2

. In the most general case, s
1

6= s
2

, i
1

6= i
2

and j
1

6= j
2

. Without

loss of generality, let s
1

< s
2

.

77

At step s
2

, express the soft error as a perturbation to the matrix at location

(i
2

, j
2

):

Â
s2 = A

s2 � �e
i2e

T

j2

A
s2 is the state of the matrix at step s

2

right before the soft error occurs, and Â
s2 is

outcome of A
s2 modified by a soft error of magnitude � at location (i

2

, j
2

). e
i2 and

e
j2 are zero column vectors with 1s at rows i

2

and j
2

respectively.

The error at step s
2

is cast back as a perturbation to the matrix at step s
1

,

Â
s2 = A

s2 � �e
i2e

T

j2

= L
s2�1

P
s2�1

L
s2�2

P
s2�2

· · ·L
s1Ps1Âs1 � �e

i2e
T

j2

) (L
s2�1

P
s2�1

L
s2�2

P
s2�2

· · ·L
s1Ps1)

�1Â
s2

= Â
s1 � (L

s2�1

P
s2�1

L
s2�2

P
s2�2

· · ·L
s1Ps1)

�1�e
i2e

T

i2

Let

f = (L
s2�1

P
s2�1

L
s2�2

P
s2�2

· · ·L
s1Ps1)

�1�e
i2 ,

(L
s2�1

P
s2�1

L
s2�2

P
s2�2

· · ·L
s1Ps1)

�1Â
s2 = Â

s̄2

Therefore,

Â
s̄2 = Â

s1 � feT
j2

(4.16)

Continue casting (4.16) to the soft error at step s
1

:

Â
s̄2 = Â

s1 � feT
j2

= A
s1 � �e

i1e
T

j1
� feT

j2

= L
s1�1

P
s1�1

L
s1�2

P
s1�2

· · ·L
0

P
0

A
0

� �e
i1e

T

j1
� feT

j2

78

Let

d = (L
s1�1

P
s1�1

L
s1�2

P
s1�2

· · ·L
0

P
0

)�1�e
i1 ,

(L
s1�1

P
s1�1

L
s1�2

P
s1�2

· · ·L
0

P
0

)�1Â
s̄2 = Â

s̄1

And notice that

(L
s1�1

P
s1�1

L
s1�2

P
s1�2

· · ·L
0

P
0

)�1 ⇥

(L
s2�1

P
s2�1

L
s2�2

P
s2�2

· · ·L
s2Ps2)

�1

= (L
s2�1

P
s2�1

L
s2�2

P
s2�2

· · ·L
0

P
0

)�1

Let

g = (L
s1�1

P
s1�1

L
s1�2

P
s1�2

· · ·L
0

P
0

)�1 ⇥ f

= (L
s2�1

P
s2�1

L
s2�2

P
s2�2

· · ·L
0

P
0

)�1�e
i2

And we have

Â
s̄1 = A

0

� deT
j1
� geT

j2

Through this modeling process, the two soft errors are cast back to the input

matrix A
0

as perturbation to the columns of j
1

and j
2

. For more than 2 errors, the

same process can be repeated and the general model for t errors is

Â
0

= A
0

�
tX

j=1

d
jie

T

ji

4.5.2 Errors Detection

The soft error model can be used to determined the errors’ locations, as will be shown

in this section. While this model is for the case where soft errors occur only in matrix

79

A, in fact checksum and the right hand sides b of Ax = b are equally susceptible to

soft errors. For these errors, b can be protected by duplication and cross check, and

the protection method for L in section 4.4 can be directly applied to protect right

hand sides.

In [61], four columns of checksum are used to locate two soft errors. Instead,

we show that for N errors, N + 1 columns are enough for error detection and data

recovery.

For the input matrix A 2 R N⇥N , checksum is generated before the factorization

using generator matrix

G =

2

6664

eT

wT

(w2)T

3

7775
=

2

6664

1 · · · 1

w
1

· · · w
N

w2

1

· · · w2

N

3

7775
(4.17)

and A is encoded as

[A,A⇥GT] = [A,Ae,Aw,Aw2]

Note that the square operation is elementwise.

LU factorization is applied with the three additional checksum columns on the

right as

P [A, Ae, Aw, Aw2] = L[U, c, v, s] (4.18)

c, v, s 2 R N⇥1 are the checksum after factorization.

As shown in the error model, the LU factorization infected with errors is equal to

an error-free LU factorization to a di↵erent initial (erroneous) matrix Â
0

. Using A

to represent the original correct initial matrix and Â for the erroneous initial matrix,

(4.18) becomes:

P̂ [Â, Ae, Aw, Aw2] = L̂[Û , ĉ, v̂, ŝ]

80

And using relationship between ĉ and Ae:

ĉ = L̂�1P̂Ae = L̂�1P̂ (Â+ deT
j1
+ geT

j2
)e

= L̂�1(L̂Û + P̂ deT
j1
+ P̂ geT

j2
)e

= Ûe+ L̂�1P̂ d+ L̂�1P̂ g

Therefore

ĉ� Ûe = L̂�1P̂ d+ L̂�1P̂ g

By the same token,

v̂ � Ûw = w
j1L̂

�1P̂ d+ w
j2L̂

�1P̂ g

ŝ� Ûw2 = w2

j1
L̂�1P̂ d+ w2

j2
L̂�1P̂ g

Let x = L̂�1P̂ d 2 R N⇥1, and y = L̂�1P̂ g 2 R N⇥1, we have

8
>>><

>>>:

ĉ� Ûe = x+ y

v̂ � Ûw = w
j1x+ w

j2y

ŝ� Ûw2 = w2

j1
x+ w2

j2
y

This system of equations is the vector form of (4.7), and similarly can be reduced

to the check equation:

(ŝ� Ûw2)� (w
j1 + w

j2)(v̂ � Ûw) + (4.19)

w
j1wj2(ĉ� Ûe) = 0

w
j1 and w

j2 can be determined by iterating through all possible N ⇥ (N � 1)

combinations in w for a pair that makes (4.19) hold. As a result, the error columns

81

j
1

and j
2

are determined. Later, these error columns are used to recover the solution

of Ax = b.

For t soft errors, with the error model in (4.17), the check equation is:

8
>>>>>><

>>>>>>:

c
0

� Ûw0 = w0

j1
x
1

+ · · ·+ w0

jt
x
t

c
1

� Ûw1 = w1

j1
x
1

+ · · ·+ w1

jt
x
t

...

c
t�1

� Ûwt�1 = wt�1

j1
x
1

+ · · ·+ wt�1

jt
x
t

(4.20)

All powers in (4.20) are elementwise. This general case of check equation in vector

form for t errors exhibits the same structure as in the scalar form. For t = 3 it

has been shown that check equation (4.15) can be used to determine error locations

except the scalar residues C
i

is replaced with vector residues c
i

� Ûwi.

For two errors, the complexity of locating w
j1 and w

j2 is O(N3) because for each

pair of w
j1 and w

j2 a vector norm is calculated to test for zero vector in (4.19) which

takes O(N) operations. For t > 2, the complexity of determining the error columns

exceeds the complexity of LU factorization itself, making this method computationally

impractical for real use. The same problem exists for L protection too when t > 3.

The next section provides solution to this issue.

Since errors in Ū and Ũ propagate, the solution to (4.20) alone is insu�cient

for recovering the right factor U as only the columns of the initial errors can be

determined. However for system of linear equations, by using Sherman-Morrison-

Woodbury formula, the solution can be recovered.

4.6 Complexity Reduction

As the number of tolerable errors t increases, the complexity of locating the initial

error columns grows exponentially. To resolve this issue and provide multiple error

82

resilience capability with practical overhead, this section proposes the complexity

reduction methods for L and U .

4.6.1 Reduction for L

As shown in (4.15), to tolerate three errors in a column of L of length N , O(N3)

operations are required. Even though the search can be embarrassingly parallelized

since each search path is independent of others, the overall complexity is still high

when large t is desired.

In the complexity O(N t+1), N is the factor that determines the range of search. By

breaking the search range into smaller segments, thereby reducing N , the complexity

can be decreased to an a↵ordable level.

There exist many ways of segmenting N but since each segment requires storage

space for checksum, the segmenting method should minimize the overall storage

requirement. Use N
k

to represent the segment size. The k
th

root of the vector length

is chosen in this work as the segment size where k is integer and , k � 1.

Split N into equally sized segments of length N
k

= N
1
k . Apply the encoding

method in (4.5) to each of the N1� 1
k segments. For each vector to tolerate t errors,

t + 1 checksum items are required. Therefore for a vector of length N , the total

amount of space required to store checksums is

N1� 1
k ⇥ (t+ 1)⇥N

And the storage overhead over that for the data vector has the trend

lim
N!1

(N1� 1
k ⇥ (t+ 1)⇥N ⇥ 1

N2

) = lim
N!1

t+ 1
k
p
N

= 0

Based on the k
th

root segmenting method, the error detection and recovery are

performed following Algorithm 4 (Using t = 2 as an example). Since the expensive

error locating procedure is now carried out within a smaller range, the complexity

83

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100" 150" 200" 250" 300" 350" 400" 450" 500" 550" 600" 650" 700" 750" 800" 850" 900" 950"1000"

St
or
ag
e(
ov
er
he

ad
((c
he

ck
su
m
/d
at
a)
(

Vector(Size(

k=1"

k=2"

k=3"

Figure 4.5: Storage overhead (t = 3)

of error detection is largely reduced. The operation count for Algorithm 4 includes

N1� 1
K vector norms of length k

p
N , and iterating in k

p
N for the correct pair of w

i

and

w
j

. The total overhead of locating t errors in one segment is

O(N
1
k ⇥N1� 1

k) +O((N
1
k)t)

= O(N) +O(N
t
k) =

8
><

>:

O(N) if t k

O(N
t
k) if t > k

Algorithm 4 Error detection and recovery for one column l of L

Require: Vector l of length N ; Segment length nb = k
p
N .

for i = 1! N1� 1
k do

Using notation in (4.5),
In the i

th

segment with elements l
1

, · · · , l
nb

if k(l
1

+ l
2

+ · · ·+ l
nb

)� c
1

k > 0 then
Locate errors using (4.10)
Fix errors by solving the symptom equations in (4.7)

end if
end for

84

0.0001$

0.001$

0.01$

0.1$

1$

10$

100$

1000$

100$ 150$ 200$ 250$ 300$ 350$ 400$ 450$ 500$ 550$ 600$ 650$ 700$ 750$ 800$ 850$ 900$ 950$1000$

Er
ro
r$l
oc
a(

ng
$(
m
e$
(s
ec
)$

Vector$size$

k=1$
k=2$
k=3$

Figure 4.6: Error locating time (t = 3)

Note that the number of tolerable soft error t is for each segment. Therefore for large

total number of tolerable errors per vector, each segment can select a smaller t, hence

demanding less error locating overhead. For a fixed t, increasing k has the same e↵ect

by reducing the range of search, but comes at the cost of more extra storage according

to (4.21). To evaluate the e↵ect that di↵erent k plays on storage overhead and error

locating time, an simulation is performed for t = 3 in MATLAB. Figure 4.5 and 4.6

show the result. In the vector case, t = 3 is the smallest “forbidden case” since the

complexity to locate errors is O(N3), already the same as that of LU factorization. In

this simulation, three errors are injected to the farthest end of input vectors, making

it the worst case for error locating since all combinations of w
i

, w
j

and w
k

have to be

tried against (4.15) before a match can be found.

Compare the storage overhead and error locating time, when k = 3, checksum

uses the most (nearly 40%) extra storage while finds error in less than 0.001 seconds,

while k = 2 only requires slightly over 10% extra storage but still achieves over 104

speed up to locate errors at large sizes. When k > 3 the storage overhead becomes

85

una↵ordable with little improvement in error locating speed. Therefore k = 2 is a

fair choice compromising both storage overhead and error locating speed, and the

complexity when t = 3 and k = 2 is O(N
3
2) < O(N3).

4.6.2 Reduction for U

For Ū and Ũ , without any complexity management, locating t soft errors requires

O(N t+1) operations, one order higher than the original complexity for L protection.

To reduce the complexity to an a↵ordable level, the segmenting method in section

4.6.1 is extended to apply on blocked LU algorithm for Ū and Ũ protection.

Block Encoding of Matrix

In blocked LU algorithm, panel factorization itself is an LU factorization of a tall and

skinny panel, therefore the encoding technique in 4.5 can be used to protect a panel

or several panels too if the encoding is performed accordingly.

Theorem 4.6.1. Block Encoding protects the trailing matrix at the end of each

iteration of LU factorization

Proof. Given a matrix A of size N ⇥N and generator matrix G. Split A into equally

sized block N
k

⇥N
k

and let G have size N
k

⇥ (t+1), where t is the number of errors

tolerable by using G. Matrix A is encoded as:

2

6666664

A
11

A
12

· · · A
1n

A
11

G · · · A
1n

G

A
21

A
22

· · · A
2n

A
21

G · · · A
2n

G
...

...
. . .

...
...

. . .
...

A
n1

A
n2

· · · A
nn

A
n1

G · · · A
nn

G

3

7777775

Start by performing one iteration of LU factorization for the first panel of block of

size N ⇥ N
k

, generating U
11

and L
i,1

where 2 < i < n. Then perform triangular

86

solving and trailing matrix update making the encoded matrix into state:

2

6666664

L
11

\U
11

U
12

· · · U
1n

C
11

· · · C
1n

L
21

Ã
22

· · · Ã
2n

C
21

· · · C
2n

...
...

. . .
...

...
. . .

...

L
n1

Ã
n2

· · · Ã
nn

C
n1

· · · C
nn

3

7777775
(4.21)

Note that similar to ScaLAPACK storage format, the lower triangular blocks L
i,1

, 2 <

i < n are stored in the zeroed out area in the first panel.

According to (4.1), we have

8
>>>>>><

>>>>>>:

U
1j

= L�1

11

A
1j

C
1j

= L�1

11

A
1j

G

Ã
ij

= A
ij

� L
i1

⇥ U
1j

C
ij

= C
ij

� L
i1

⇥ C
1j

i = {2, · · · , n}

j = {1, · · · , n}

) C̃
ij

= A
ij

G� L
i1

L�1

11

A
ij

G

= (A
ij

� L
i1

U
1j

)G = Ã
ij

G

Similar method can be used in the rest of the iterations.

As an example, take a matrix A of 2 ⇥ 2 blocks encoded using the generator in

(4.17):

A
c

=

2

4A11

A
12

A
11

G A
12

G

A
21

A
22

A
21

G A
22

G

3

5

Carry out LU factorization to A
c

and we have:

A
c

=

2

4L11

0

L
21

L22

3

5

2

4U11

U
12

C
11

C
12

0 U
22

C
21

C
22

3

5

87

And C
1

to C
4

can be calculated as:

8
<

:
C

11

= U
11

G, C
12

= U
12

G

C
21

= ?, C
22

= U
22

G
(4.22)

This shows that after LU factorization, the added four checksum blocks o↵er

protection to the three data blocks U
11

, U
12

and U
22

independently. Since G in (4.17)

o↵ers t errors protection capability, the three data blocks in U each can tolerate up

to t soft errors.

In ScaLAPACK, matrix A is split into blocks of size NB ⇥ NB, therefore when

k = 2, the encoding block size N
k

is N ⇥
p
N rounded to multiple of NB.

Error detection is performed on each
p
N ⇥

p
N blocks. For U

11

, first

kU
11

⇥G(:, 1)� C
11

(:, 1)k is checked and if the norm is su�ciently large, the error

detection procedure in 4.5.2 is then activated for this
p
N ⇥

p
N block.

The complexity of performing blocked error detection and locating includes the

error check that is either full or upper triangular matrix-vector multiplication and the

error locating operation within the block. Suppose N
k

= N
1
k rounded to a multiple

of NB, and the generator matrix G has size N
k

⇥ t for t error resilience capability.

Since error checking is only carried out in the upper triangular blocks of A, there are

in total 1+2+ · · ·+N1� 1
k number of blocks. Therefore the error checking complexity

is

(1 + 2 + · · ·+N1� 1
k)⇥O((N

1
k)2)

=
N1� 1

k (N1� 1
k + 1)

2
⇥O(N

2
k)

And the error locating complexity is O(N
t
k ⇥N

1
k). For instance, when k = 2 and

t = 2, the total overhead of error detection and locating is

p
N(
p
N + 1)

2
⇥O(N) +O(N

3
2) = O(N2) < O(N3)

88

Therefore the overhead is a↵ordable for LU factorization.

The total amount of extra storage for storing checksum columns is

N ⇥N1� 1
k ⇥ (t+ 1)

And the storage overhead over that for the data vector has the trend

lim
N!1

(N ⇥N1� 1
k ⇥ (t+ 1)⇥ 1

N2

) = lim
N!1

t+ 1
k
p
N

= 0

Similar to the scalar case in 4.6.1, compromise has to be made between t and

k for number of error tolerated and storage overhead for checksum. Following the

evaluation in Figure 4.6 and 4.5, t = k = 2 is chosen for the experiments in this work.

Reduction of ABFT Extra Flops

The additional ABFT checksum columns to protect U participate in the trailing

matrix update (L
22

U
22

= A
22

�L
21

U
12

in (4.1)) of LU factorization, and since trailing

matrix update takes up a majority of the floating point operations (FLOPS) of LU,

extra FLOPS from the additional checksum columns could cause significant overhead

even if no errors occur at all. Block encoding in section 4.6.2 helps reduce the error

locating overhead, but in fact it also o↵ers an insight to lower the error-free overhead.

In (4.22), encoding is performed within blocks [A
11

, A
21

]T and [A
12

, A
22

]T

separately. For block A
11

, the checksum C
11

’s relationship with U
11

by C
11

= U
11

⇥G

is established when panel [A
11

, A
21

]T is factorized. After this point, C
11

are not

subject to any further change and C
21

remains zero even though further operations

(triangular solve with C
21

as right hand sides) are applied. The invariance of C
11

and

C
21

after the first panel factorization indicates that [C
11

, C
21

]T can be excluded from

any later operations.

89

matrix' checksum'

Figure 4.7: Checksum layout example of a 5⇥ 5 blocks matrix

Corollary 4.6.2. After each step of LU factorization, one panel of checksum columns

corresponding to the panel being factorized in this step can be excluded from further

operation.

Proof. In (4.21), U
12

does not participate in any further operation because the next

iteration starts from Ã
22

to the bottom-right corner of the encoded matrix.

* L
i1

= A
i1

⇥ U�1

11

, i = [2, · · · , n]

) C
i1

= A
i1

G� L
i1

C
11

= A
i1

G� L
i1

U
11

G

= L
i1

U
11

G� L
i1

U
11

G = Ø

Since C
21

is used as the right hand sides of the triangular solve in the next iteration,

which produces Ø as result too, after the trailing matrix update of the next iteration,

C
21

, · · · , C
n1

are all still Ø. Therefore the panel [C
11

, · · · , C
n1

] are not subject to

further change nor does it contribute to any factorization result, hence this panel can

90

be excluded. In the next iteration, the actively participating data is

2

6666664

L
11

\U
11

U
12

· · · U
1n

C
12

· · · C
1n

L
21

Ã
22

· · · Ã
2n

C
22

· · · C
2n

...
...

. . .
...

...
. . .

...

L
n1

Ã
n2

· · · Ã
nn

C
n2

· · · C
nn

3

7777775

By the same process, in each iteration the panel of checksum columns that corresponds

to the just factorized matrix can be left out of further operation.

In order to benefit from the complexity reduction of Corollary 4.6.2, the layout

of checksum columns is reversed horizontally. Figure 4.7 shows an example of such

design. The block size is the N
k

. Each N
k

⇥N
k

block has a N
k

⇥ t block of checksum.

The checksum blocks are labelled with the same color as the data they serve, for

example the green blocks on the right end protects the green data blocks on the left

end. This layout makes it easy to implement the complexity reduction in ScaLAPACK

PDGESV by simply reducing the scope of PDTRSM and PDGEMM. When panel

factorization finishes the green data blocks, the green checksum blocks are no longer

touched in coming iterations and therefore the extra FLOPS of updating the green

blocks are eliminated. The same process continues with each checksum panels till the

end of the factorization.

4.7 Recovery Algorithm

After soft errors are detected and located by their columns, the correct solution to

the system of equations Ax = b can be recovered. [61] suggested using Sherman-

Morrison-Woodbury formula for the case of two soft errors. In this section we first

review the recovery procedure and then analyze the computational complexity for

correcting t soft errors.

91

4.7.1 Correction for x

As shown in Algorithm 2, factorization result L̂ and Û are used to compute the

solution x̂ even if the factorization has been subject to soft errors. The solution x is

corrected later from x̂ when errors are detected.

From Ax = b, we have

x = A�1b = A�1(P̂�1P̂)b

= (P̂A)�1P̂ b

Both P̂ and b are known, so (P̂A)�1 is needed for x.

From (4.17), the erroneous initial matrix Â
s̄1 di↵ers from the real initial matrix

A
0

by column j
1

and j
2

, therefore

P̂A� P̂ Â = (P̂ a·j1 � L̂Û·j1)e
T

j1
+ (P̂ a·j2 � L̂Û·j2)e

T

j2

) P̂A = L̂Û + (P̂ a·j1 � L̂Û·j1)e
T

j1
+ (P̂ a·j2 � L̂Û·j2)e

T

j2

= L̂Û + L̂(L̂�1P̂ a·j1 � Û·j1)e
T

j1
+ L̂(L̂�1P̂ a·j2 � Û·j2)e

T

j2

Let t
j1 = L̂�1P̂ a·j1 � Û·j1 , and t

j2 = L̂�1P̂ a·j2 � Û·j2 ,

) P̂A = L̂Û(I + Û�1t
j1e

T

j1
+ Û�1t

j2e
T

j2
)

Let v
j1 = Û�1t

j1 and v
j2 = Û�1t

j2 ,

) P̂A = L̂Û(I + v
j1e

T

j1
+ v

j2e
T

j2
)

= L̂Û(I +
h
v
j1 v

j2

i h
e
j1 e

j2

i
T

)

Let U
x

=
h
v
j1 v

j2

i
, V

x

=
h
e
j1 e

j2

i
),

) (P̂A)�1 = (I + U
x

V T

x

)�1(L̂Û)�1 (4.23)

92

Apply the Sherman-Morrison-Woodbury formula [140, 141] to (4.23):

x = (P̂A)�1P̂ b

= (I � U
x

(I + V
x

U�1

x

V T

x

)(L̂Û)�1P̂ b

= (I � U
x

(I + V T

x

U
x

)�1V T

x

)x̂ (4.24)

Hence the correct solution x can be corrected from x̂.

4.7.2 Computation Complexity

At the center of computing the correct solution is

U
x

(I + V T

x

U
x

)�1V T

x

For t errors, V T

x

U
x

produces a t⇥ t matrix. t is normally selected as small integers

such as 2 or 3 for the protection from flips in 2⇥ or 3⇥ 64 bits, hence the inverse of

t⇥ t can be solved directly. For example, when t = 2

2

4a b

c d

3

5
�1

=
1

ad� bc

2

4 d �b

�c a

3

5

resulting in eight FLOPS. And since V
x

is filled with 0s except the two 1s at row j
1

and j
2

of column one and two respectively, four FLOPS are needed to generate V T

x

U
x

and I plus the result of V T

x

U
x

, each. Let Y = (I + V T

x

U
x

)�1, similarly due to the

sparsity of V
x

, Y ⇥ V T

x

also requires four FLOPS. Let Z = Y ⇥ V T

x

, compute Z ⇥ x̂

yields a 2⇥1 matrix costing six FLOPS, and at last 4⇥N FLOPS are paid to update

the solution on x̂. In summary, O(N) overhead is required to calculate (4.24).

Another part of operation overhead comes from computing U
x

, namely v
j1 · · · vjt .

Each of these vectors takes O(N2) to compute by PDTRSM with Û , and also O(N2)

to generate the t right hand side vectors from t
jk
= L̂�1P̂ a·jk � Û·jk , k 2 [1 · · · t] for

93

PDTRSM. Therefore, to tolerate up to t soft errors, with t being a constant, O(N2)

is the computation complexity for the recovery of x from x̂.

4.8 Performance Evaluation

This section evaluates the performance of our algorithm in scalability, checkpointing

overhead and performance. The scalability and overhead tests are carried out on

a small cluster at the University of Tennessee, Knoxville (UTK) named “Dancer”,

which is an 8-node based on two quad Intel 2.27GHz Xeon cores per node, with

an Infiniband 20G interconnect. For the performance experiment, we use another

cluster at UTK called ”Newton”, which has 72 Dell C6100 computing nodes connected

by QDR Infiniband for MPI application. Each node has two 6-core Intel Xeon

CPUs. We use OpenMPI on both clusters, and our algorithm implementation is

based on ScaLAPACK 1.8.0 from the Netlib using double precision, and on each

node GotoBLAS2-1.13 is used. Last, the experiments are run on a Cray XT5 named

“Kraken” in large scale. In all the experiments, block size NB for ScaLAPACK is set

to 100. The column of original matrix that is required for recovery is re-generated by

PDMATGEN of ScaLAPACK. We first evaluate the case of one soft error occurs in

the left and right factor, then this is extended to the multiple-error case.

4.8.1 Performance Model for the Right Factor

For the right factor, t + 1 columns of checksum are appended at the beginning of

the factorization to protect against t errors, therefore the overhead consists of this

one-time checkpointing and extra FLOPS of carrying out LU factorization with the

checksum.

According to [15], the execution time of LU driver (PDGESV) in ScaLAPACK is

T (N,P) = C
f

N3

P
t
f

+ C
v

N2

p
P
t
v

+ C
m

N

NB
t
m

(4.25)

94

Here N and NB are matrix size and block size (supposed square matrix with square

blocks), and P is the total number of processes. C
f

= 2

3

, C
v

= 3 + 1

4

log
2

P and

C
m

= NB(6 + log
2

P). Because in our implementation, checksum resides in-site with

computing processes, all three constants remain unchanged in (4.25).

When t = 1, the two extra columns of checksum cause

T
extra

= C
f

6N2 + 12N + 8

P
t
f

+ C
v

4N + 4p
P

t
v

+ C
m

1

NB
t
m

extra run time, which is O(N2) and is negligible to T (N,P) when problem size and

machine size scale up. In fact, this result also applies to the case of multiple errors.

Since the number of checksum columns is a function of the number of tolerable errors

t, which is independent of N , T
extra

is still O(N2).

The initial checkpointing for the right factor is dominated by a matrix-matrix

operation with matrices of size N ⇥N and N ⇥ (t+1) for t errors in Ũ and Ū . Using

a similar model in (4.25), this overhead is also O(N2).

4.8.2 Scalability

Since checkpointing is performed in each iteration for the left factor, the scalability

of this algorithm is the main concern. The operation counts of checkpointing a panel

of height N
i

using PDGEMM is 2⇥NB ⇥N
i

.

Figure 4.8 is the overhead experiment under weak scaling on the Dancer cluster.

The overhead is calculated by

T
ft pdgesv

� T
netlib pdgesv

T
netlib pdgesv

⇥ 100%

And T
ft pdgesv

is the run time of the soft resilient version of PDGESV, whereas

T
netlib pdgesv

is the run time of the Netlib PDGESV, which is what the fault tolerance

version is built upon, and serves as a performed baseline.

95

4

5

6

7

8

O
v
e
r
h
e
a
d
 o
v
e
r
 t
h
e
 N
e
t
li
b
 P
D
G
E
S
V
(
%
)

Global checkpointing

Local checkpointing

0

1

2

3

4

4000(2x2) 6000(3x3) 8000(4x4) 10000(5x5) 12000(6x6) 14000(7x7) 16000(8x8)

O
v
e
r
h
e
a
d
 o
v
e
r
 t
h
e
 N
e
t
li
b
 P
D
G
E
S
V
(
%
)

Matrix size (grid shape)

Figure 4.8: Weak scalability of global and local checkpointing for the left factor on
the Dancer cluster

The result shows that the overhead of vertical checkpointing increases as

computing scale and problem size scales up. Since vertical checkpointing is

implemented by PDGEMM with M = 2, K = N
i

and N = NB, the checkpointing

performance is limited by the performance of PDGEMM. Figure 4.9 is PDGEMM

performance under such shape comparing to the M = N = K case. The colors of

lines are coordinated with the color of vertical axis titles. Clearly PDGEMM does

not scale in this matrix shape. In fact, PDGEMM in PBLAS (part of ScaLAPACK)

is implemented based on the DIMMA [36] algorithm, which is an enhanced version

of SUMMA [136]. SUMMA is designed to work with outer product shape for high

parallelism along with sophisticated broadcasting scheme, therefore the inner product

shape used by the vertical checkpointing cannot benefit from such a design. In

contrast, the local checkpointing scales well because checkpointing is performed in

parallel by all involved processes and global collective operation is avoided. This

96

6

8

10

12

250

300

350

400

450

G
f
lo
p
/
s

G
f
lo
p
/
s

0

2

4

6

0

50

100

150

200

4000(2x2) 6000(3x3) 8000(4x4) 10000(5x5) 12000(6x6) 14000(7x7) 16000(8x8)

G
f
lo
p
/
s

G
f
lo
p
/
s

K=Matrix size (gird shape)

M=N=K

M=2, N=100

Figure 4.9: Weak scalability test of PDGEMM on the Dancer cluster

scalability ensures that the overhead caused by the left factor checkpointing will not

grow into a performance drag when moving to a larger scale.

With the local checkpointing, the overall overhead of the fault tolerant PDGESV

is shown in Figure 4.10, where 64 processes are arranged in a 8⇥ 8 grid. For the case

marked with “one error in L and U”, two data items are modified as error injection

at location (400,150) and (300,500) right before the panel factorization for blocks

(501:end,501:600) starts. The “one error” case includes the checkpointing overhead

and the time to recover from the two errors. Same setup applied to performance

experiments with alike marks.

This experiment shows that the overhead decreases with larger problems. At

32000, the overhead of the initial checkpointing for the right factor, local checkpoint-

ing for the left factor and the extra FLOPS from doing PDGESV with two extra

columns is below 1%.

97

4

5

6

7

8

9

O
v
e
r
h
e
a
d
 o
v
e
r
 t
h
e
 N
e
t
li
b
 P
D
G
E
S
V
 (
%
)

No error

One error in L and U

0

1

2

3

4

O
v
e
r
h
e
a
d
 o
v
e
r
 t
h
e
 N
e
t
li
b
 P
D
G
E
S
V
 (
%
)

Matrix size

Figure 4.10: The checkpointing and recovery overhead on the Dancer cluster

4.8.3 Recovery Performance

To test the recovery performance, experiments are carried out on the Dancer, Newton

and Kraken clusters.

Single Error

Figure 4.11 is the performance in Gflop/s of the same experiment in Figure 4.10.

PDGEMM performance is included as the achievable machine peak to show that

ScaLAPACK PDGESV runs at a reasonable speed. Figure 4.12 is the result on

Newton with 256 processes in a 16⇥ 16 grid. Both Gflop/s performance results show

that the soft error resilience functionality demands little overhead, and moving to a

larger grid does not cause overhead increase.

For LU, algorithm stability is an important issue and it is critical that the

recovered solution is numerically close to the original solution. Since in all our

experiments the recovered residue r = kAx�bk
kAkkbkM is in the same magnitude as that

of the original solution, this comparison is skipped.

98

0

50

100

150

200

250

300

350

400

450

500

G
f
lo
p
/
s

Matrix size

No error

One error in L and U

Netlib PDGESV

Netlib PDGEMM

Figure 4.11: PDGESV performance with and without soft error resilience on the
Dancer cluster

Figure 4.13 and 4.14 show experiments on a larger installation: the Kraken

supercomputer. For this two runs, 6144 and 24576 cores were used respectively.

The MPI processes were arranged in 32⇥ 32 and 64⇥ 64 grid, and each MPI process

resides on a six-core AMD 2.6 GHz Istanbul CPU running 6 threads for local BLAS

operation. Both results on Kraken show negligible overhead of error recovery.

Multiple Errors

Soft errors in the left factor are static and the detection and recovery in this area has

been evaluated in Section 4.8.3 showing the scalability and small performance impact

to the host algorithm. The algorithms for multiple soft errors in the right factor,

on the other hand, have higher complexity and are most e↵ectively a↵ected by the

proposed encoding and complexity reduction method. This section therefore focuses

on the evaluation to this part.

99

300

400

500

600

G
f
lo
p
/
s

0

100

200

300

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000

G
f
lo
p
/
s

Matrix size

No error

One error in L and U

Netlib PDGESV

Figure 4.12: PDGESV performance with and without soft error resilience on the
Newton cluster

The experiments in this section are carried on the Kraken supercomputer.

In the experiments, two soft errors are injected into randomly selected locations

(336, 361) and (347, 359) at the beginning of the randomly selected 2nd and 3rd panel

factorization, respectively. Data values are incremented with random magnitudes to

simulate the results of bit flips in the memory slots that hold these data. The block

size for encoding is
p
N .

Figure 4.15 shows the e↵ectiveness of the complexity reduction method for U with

a 16⇥ 16 process grid on Kraken, and t = 2. The overhead is calculated by

FLOPS
non�FT

� FLOPS
FT

FLOPS
non�FT

%

When N
k

= N , block encoding for soft errors in U is not in e↵ect. The whole matrix

is encoded with a generator matrix of size N ⇥ 3. In this case the overhead is close

to 100% (the blue line), which means the error detection and recovery combined take

as much time as solving the linear system of equation. This is consistent with the

100

0

2

4

6

8

10

12

8 9 10 11 12 13 14 15 16

T
f
lo
p
/
s

Matrix size x 10000

FT PDGESV (One error in L and U)

NETLIB PDGESV

Figure 4.13: PDGESV performance with and without soft error resilience on 6144
cores of Cray XT5.

theoretical complexity of O(N t+1) = O(N3). The red line, on the other hand, is the

result when N
k

=
p
N . The overhead drops quickly from a little less than 40% to 2%,

which verifies that block encoding largely reduces the error detection overhead. The

cost of this improvement is the extra space for storing checksum which is roughly 1%

of the input matrix for size 50,000.

Figure 4.16 shows the performance of di↵erent matrix sizes on Kraken using

16,384 cores in a 128 ⇥ 128 grid. As the matrix becomes larger, both the original

ScaLAPACK PDGESV and fault tolerant PDGESV with and without errors exhibit

close performance. At the largest size 1000,000, the non-error case adds roughly 1.1%

overhead, and with error correction the overhead increases to 1.3%.

Figure 4.17 is the weak scalability experiment result where both matrix size and

grid dimension are doubled. Throughout all the testing sizes from 64 to 16,384 cores,

FT-PDGESV declares around 1% overhead for both with and without errors cases.

101

0

5

10

15

20

25

30

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
f
lo
p
/
s

Matrix size (x10000)

FT PDGESV (One error in L and U)

Netlib PDGESV

Figure 4.14: PDGESV performance with and without soft error resilience on 24576
cores of Cray XT5.

From the result in experiments, it can be confirmed that the complexity of

recovering the solution to Ax = b from double soft errors in the right factor has

been e↵ectively managed by the complexity reduction method, and soft errors can

be precisely detected and located with the presence of round-o↵ error. The fault

tolerance functionalities can recover the solution of the dense linear system with

trivial performance impact.

4.9 Conclusion

Resilience to soft error will become a critical task when computer system paces into

the Petaflops age. This section proposes application-level fault tolerance algorithm

that could tolerate multiple soft errors during the execution of linear system solver on

large scale system. The core algorithm is based on diskless checkpointing where an

e�cient local checkpointing scheme is devised, and algorithm based fault tolerance

where the e↵ect of soft error in the right factor is casted to the beginning into

102

0"

20"

40"

60"

80"

100"

120"

5000" 10000" 15000" 20000" 25000" 30000" 35000" 40000" 45000" 50000"

O
ve
rh
ea
d(
%
)+

Matrix+Size+

Nk=N"
Nk=sqrt(N)"

Figure 4.15: Overhead comparison result on Kraken (16⇥ 16 grid)

a di↵erent input matrix. A checksum encoding scheme is proposed to work with

floating point operation, and a complexity reduction method is designed to make the

soft error detection and recovery algorithm practical with low performance overhead.

Experimental results on various clusters, including the Kraken supercomputer confirm

the soft error mitigation capability, scalability, the e↵ectiveness of the complexity

reduction scheme, and the negligible performance overhead. Multiple soft errors

in both the left and right factor can be detected and corrected, and the solution

to system of linear equations Ax = b can be recovered even if soft errors have

caused severe error propagation, leading to large area of errors in the right factor

U . The implementation is based on ScaLAPACK, but can be easily extended to

other platforms, and application users can benefit from such implementation directly

without getting involved into the details of error correction. Further research consist

of hardening the implementation for the case where soft errors strike during the

detection and recovery process, and correcting NaN caused by bit flips.

103

100# 200# 300# 400# 500# 600# 700# 800# 900# 1000#
ScaLAPACK#PDGESV# 4.14# 11.74# 18.24# 24.01# 29.59# 34.41# 38.93# 43.67# 47.58# 51.3#
FT;PDGESV(no#error)# 2.98# 9.38# 16.32# 22.81# 28.56# 33.92# 37.79# 42.31# 46.7# 50.72#
FT;PDGESV(2#errors#)# 2.71# 9.37# 16.22# 22.72# 28.48# 33.78# 37.45# 42.27# 46.22# 50.6#

0#

10#

20#

30#

40#

50#

60#

Tfl
op

/s
'

Matrix'Size'(x1000)'

ScaLAPACK#PDGESV#
FT;PDGESV(no#error)#
FT;PDGESV(2#errors#)#

Figure 4.16: Result on Kraken with 16,384 (128⇥ 128) cores

62500%(8x8)% 125000%%(16x16)% 250000%(32x32)% 500000%(64x64)% 1000000%(128x128)%
ScaLAPACK%PDGESV% 0.4187% 1.5925% 5.5959% 17.7025% 51.295%
FT>PDGESV(no%error)% 0.4155% 1.585% 5.5731% 17.5969% 50.7183%
FT>PDGESV(2%errors)% 0.4086% 1.5409% 5.4418% 17.0516% 50.5969%

0%

10%

20%

30%

40%

50%

60%

Tfl
op

/s
'

Matrix'size'(process'grid)'

ScaLAPACK%PDGESV%

FT>PDGESV(no%error)%

FT>PDGESV(2%errors)%

Figure 4.17: Weak scalability result on Kraken

104

Chapter 5

Soft Error Resilience on Hybrid

System with GPGPU

5.1 Introduction

Since the introduction of general-purpose computing on graphics processing units

(GPGPU), GPUs have quickly become the backbone of the modern high performance

computing systems. For instance, China’s Tianhe-1A that ranked number one on

the November 2010 TOP500 list [99] uses 7, 168 NVIDIA Tesla M2050 GPGPUs to

achieve 2.57 Pflop/s in the High-Performance LINPACK (HPL) benchmark. While

GPUs provide extremely high floating-point processing power, when combined with

a conventional multi-core CPU in a hybrid fashion, it has been shown to be capable

of further boosting the performance of scientific applications [4] by executing tasks

with less parallelism on CPUs, concurrently with tasks that have high parallelism on

the GPUs.

As the deployment of the GPGPUs grows rapidly, the issue of fault tolerance

that has been only a↵ecting CPU-based computing systems [65, 117] starts to

emerge on GPU-based platforms. Traditionally, fault tolerance had been ignored

in systems utilizing the GPUs because they were originally developed mainly for

105

graphics applications, such as 3D games which favor performance over reliability at

bit-wise accuracy. Therefore, transient errors can be tolerated in a vast majority of

rendering situations. As technology brings the GPUs into the scientific computing

arena, transient errors during computing are no longer acceptable, and, to worsen

the situation, in hybrid systems such errors could propagate between the CPUs and

the GPUs making the hybrid systems even more fragile. Unlike fail-stop failure

which brings down the whole system and halts the application execution, transient

errors occur silently causing a “silent data corruption” due to various sources, mostly

from cosmic radiation [76]. The errors leave no trace in system logs for system

administrators to react at the time of failure. The consequences of the transient

errors include incorrect application results, unpredictable code paths taken as a result

of errors, and propagation of the initial failure which, all together, make the task of

error detection and recovery so much more daunting.

In this chapter, we set out to provide fault tolerance and soft error resilience to

the algorithms featured in the Matrix Algebra on the GPU and Multicore Architect

(MAGMA) project [133]. In Chapter 4, methods to recover solution of linear system

Ax = b is discussed. Since only the solution x is required, no recovery is performed

to the factorization result. However there are cases where the factorization result,

both the left and right factor, are equally important, such as QR factorization. This

chapter proposed the methods to detect and recover soft errors in QR factorization,

and the implementation is based on the hybrid MAGMA code using both CPU and

GPGPU.

The rest of this chapter is organized as the follows: Section 5.2 gives a lists the

related work in the field of soft error protection on the GPGPU platforms. Section 5.3

introduces the target QR algorithm and its implementation in MAGMA. Section 5.4

models soft error in the QR algorithm, and Section 5.5 details the recovery algorithm

including the optimization of primitives for Givens rotations on the GPU. Section 5.6

proposes a multiple-error protection algorithm for the left factorQ through tracing the

MAGMA QR. Section 5.7 shows experimental results that evaluate various aspects of

106

our fault tolerant algorithm and, finally, Section 5.8 concludes the work and outlines

possible future directions.

5.2 Related Work

Soft error in the GPU has been exploited [74], and methods have been developed to

detect [122, 142] and recover from error [93, 94, 121]. Recently, soft error in matrix

multiplication on a GPU has also been studied [43].

Since the introduction of the ’Fermi’ architecture [105], Error Correcting Code

(ECC) has been integrated to protect from errors in the GPU global memory, however

this adds overhead to communication and reduces overall computing performance.

In the realm of fault tolerant QR factorization, Givens rotation based QR has

been studied in [95]. However, since Householder QR is widely used in most modern

math libraries, in our work we consider a right-looking Householder based QR for a

hybrid CPU/GPU system. Our method is based on the error model by Luk et al. in

[90]. We extended this model by adding protection to the left factor Q and provided

optimized recovery algorithm on the GPU.

5.3 Hybrid QR

In linear algebra, a QR factorization decomposes a matrix A into a product A =

QR, where Q is an orthogonal matrix and R is an upper triangular matrix. QR

factorization is often used to solve the linear least squares problem, and also in QR

algorithm which is at the center of a special version of eigenvalue algorithm.

Several methods exist for computing the QR factorization, such as the Gram-

Schmidt process, Householder transformations, and Givens rotations. In today’s

high performance math libraries, for instance, LAPACK [8], ScaLAPACK [37], and

MAGMA, a block version of the Householder transformations is adopted to achieve

107

high performance with the memory hierarchy in modern systems. For example, given

an input matrix A, a Householder matrix Q
1

is multiplied to A such that

Q
1

A =

2

6666664

r
11

r
12

· · · r
1n

0
... A0

0

3

7777775

This zeros out the elements under the diagonal in the first column. The next step

is carried out on the trailing matrix A0 with

Q
2

0 =

2

6666664

1 0 · · · 0

0
... Q

2

0

3

7777775

In practice, MAGMA uses a block version of the QR factorization by accumulating

a few steps of the Householder matrix. This version is rich in level 3 BLAS operations

and therefore achieves high performance. The result of Q is stored under the lower

diagonal of the input matrix in the form of WY representation of Householder

transformation products[14, 116].

Implementation-wise, the algorithm used by MAGMA is close to the LAPACK

QR, except the MAGMA QR is designed and optimized for heterogeneous architec-

tures, in particular, consisting of a CPU and a GPU. The way to accomplish this is

described as follows.

The hybrid QR that we consider has the input matrix and the result on the GPU

memory. The computational pattern is similar to the LAPACK’s QR – a sequence of

panel factorization followed by a corresponding trailing matrix update. The current

panel to be factored is sent to the CPU and factored using LAPACK. The result

is copied back to the GPU memory and used on the GPU for the trailing matrix

update. The update is split into two – first is an update for the columns that will

108

form the“next” panel, followed by the update for the rest of the trailing matrix.

This splitting, known as lookahead technique, is done so that the factorization of

the next panel can start before finishing the entire update for which the next panel

is part of. This allows overlapping the large update of the trailing matrix and

sending the panel to the CPU, its factorization and copy back to the GPU. As a

result, for large enough matrices, the overall performance of the algorithm is dictated

by the performance of the matrix-matrix multiplications on the GPU. Note that

communication is minimized (and overlapped with computation) as on each step the

algorithm communicates a panel of size O(NB ⇥N) and performs operations of size

O(NB ⇥ N2). For further detail on the implementation, one can see the sources

available through the MAGMA site.

5.4 Soft Error Modeling

MAGMA algorithms run with both the GPU and CPU, therefore soft errors on both

platforms are considered a source of contamination. Also since the result of panel

factorization and lookahead trailing panel commutes between the CPU and GPU

frequently, soft error could propagate between the GPU and CPU as well, depending

on when and where error occurs. To ease the error analysis and avoid dealing with

the timing of errors, we adopt the error modeling technique proposed in [90].

5.4.1 Error Model

Luk et al. derived their model for both LU and QR using the “ZU” notation where

Z represents the left factor and U represents the right factor that is upper triangular.

We return to the “QR” notation for clarity, and have in mind the right-looking

Householder QR algorithm as the implementation method.

Having the initial matrix,

A
0

= A,

109

Householder QR is carried out by introducing Householder transforms from the left

to get the final triangular form. Let

A
t

= Q
t�1

A
t�1

Q
t�1

is the Householder transform matrix at step t� 1. At step t� 1, error occurs at

random location (i, j) in matrix A as

Ã
t

= Q
t�1

A
t�1

� �e
i

eT
j

(5.1)

= Q
t�1

(Q
t�2

. . . Q
0

)A
0

� �e
i

eT
j

e
i

is a column vector with all 0 elements except 1 as the ith element. Since no error

warning is raised, the factorization continues from step t till the end. If the soft error

at step t is viewed as the result of perturbation to an erroneous initial matrix

Ã = A� deT
j

(5.2)

where d = �(Q
t�1

. . . Q
0

)�1e
i

, then the erroneous process of QR factorization equals

to an error-free QR factorization from a erroneous initial matrix Ã.

In essence, this model treats the e↵ect of soft error as if the factorization starts

from a matrix that is a perturbation to the initial matrix. This is the same idea used

in Chapter 4, where the original idea by Luk, et al. has been extended to multiple

soft errors. In this chapter, therefore, we focus on the recovery of left and right factor

of QR factorization.

5.4.2 Checksum for R

In MAGMA, the right-looking Householder QR algorithm follows LAPACK QR

storage, where the right factor R overwrites the upper triangular part of the input

110

A

R

Q

Figure 5.1: Di↵erent regions of A during factorization

matrix, including the diagonals, while the lower triangular part is replaced by Q in

the form of vectors that defines elementary reflectors.

During QR factorization, once a panel of Q is produced, its values do not change

till the end. Theorem 3.5.1 has shown that Q cannot be protected by appending rows

of checksum at the bottom of the input matrix and having QR factorization along

with the checksum rows.

The part of the matrix other thanQ is divided into two regions, the already formed

R and the trailing matrix A0, as shown in Figure 5.1. Each iteration of the trailing

update moves a few rows from A0 to R, and therefore both A0 and R undergo constant

changes during the factorization, and cannot be protected by static checkpointing as

for Q. For R, we adopt the ABFT technique from [3, 79], which was also used in

Luk’s work [89, 90] for soft error in systolic arrays.

To capture one error, for input matrix A 2 R m⇥n, two generator matrices are

used, e = (1, 1, . . . , 1) and a random matrix w. e, w 2 R m⇥1.

Before factorization, two columns of checksum (Ae Aw) are calculated and

appended on the right of the input matrix as A
c

= (A Ae Aw). Then QR factorization

is applied to A
c

:

(A Ae Aw) = Q(R c v)

111

c, v 2 R m⇥1 are checksum columns after factorization.

Due to soft error, A becomes the erroneous matrix Ã, and the checkpointed matrix

becomes

(Ã Ae Aw)

And the QR factorization becomes:

(Ã Ae Aw) = Q̃(R̃ c̃ ṽ) (5.3)

From (5.3)

c̃ = Q̃�1Ae = Q̃�1(Ã+ deT
j

)e

= Q̃�1(Q̃R̃ + deT
j

)e

= R̃e+ Q̃�1deT
j

e = R̃e+ Q̃�1d

By the same token,

ṽ = R̃w + w
j

Q̃�1d

Assume residual vectors r, s 2 R m⇥1

r̃ = c̃� R̃e = Q̃�1d (5.4)

and

s̃ = ṽ � R̃w = w
j

Q̃�1d (5.5)

Combining (5.4) and (5.5),

s̃ = w
j

r̃. (5.6)

r̃ can be used to check for error, and in case an error occurs, the column in which the

error initially strikes can be determined by (5.6).

112

5.5 Recovery Algorithm

With the knowledge of error column j, Luk et al. [90] recommended a spike-reducing

technique to recover the left and right factors of ZU factorization without giving the

actual algorithm. In this section we continue this work on a slightly di↵erent path

due to the storage format of MAGMA QR.

5.5.1 Spike-Eliminating Technique

Using the QR notation, the spike reducing technique in [90] starts with the di↵erence

of the true initial matrix A and the erroneous initial matrix Ã, obtained in Equation

5.2.

A� Ã = (a·j � Q̃R̃·j)e
T

j

A = Q̃R̃ + (a·j � Q̃R̃·j)e
T

j

A = Q̃R̃ + Q̃(Q̃Ta·j � R̃·j)e
T

j

A = Q̃(R̃ + peT
j

)

A = Q̃C̃, C = R̃ + peT
j

, p = Q̃Ta·j � R̃·j (5.7)

C in (5.7) is an upper triangular matrix with a spike in column j. Since QR

requires Q to be an orthogonal matrix, orthogonal transformations are needed to

remove non-zeros related to the spike.

There are a few choices of algorithm such as Householder transformation and

Givens rotation. Householder is more computing intensive and has higher parallelism

which is more suitable for the GPU, but it also requires higher amount of extra

memory because, while the first Householder transformation removes the spike in

column j, the triangular submatrix (j + 1 : end, j + 1 : end) becomes a full matrix,

and if j is small, this requires an extra bu↵er almost as large as the data matrix

A and since in MAGMA QR the lower triangular is used to store Q, data matrix

113

space cannot be borrowed. Given that the global memory on the GPU is normally

used to the limit for matrix data , Householder transformation does not qualify for

this high memory demand and we choose Givens rotation as the non-zero elimination

algorithm. In [90], Luk et al. also suggested a few methods including Givens rotation

to eliminate this spike with matrix factorization modifying method [66] in O(k2) steps.

Since Givens rotation is memory-bound, implementation on the GPU requires careful

design for the best performance. This will be covered in section 5.5.3.

5.5.2 QR Update as the Recovery Algorithm

From (5.2), it can be seen that the recovery algorithm is in essence a QR update

problem. Since QR update is also widely used in applications where repeated updating

is required [124], this work implements the QR update algorithm for the GPU and

applies it to the soft error recovery problem at hand.

The rank-1 update to QR factorization has been described in [69]. We show the

algorithm in the context of QR recovery.

Given the erroneous initial matrix and its QR factorization Ã = Q̃R̃, the objective

is to find the QR factorization of the true initial matrix A = QR.

Let u = a·j � Q̃R̃·j, and v = e
j

,

A = Ã+ uvT

= Q̃R̃ + uvT

= Q̃(R̃ + Q̃TuvT)

) A = Q̃(R̃ + wvT), w = Q̃Tu = Q̃Ta·j � R̃·j

114

First, a series of Givens rotations JT = JT

1

· · · JT

n�1

is used such that

JT ⇥ w = ± kwk
2

e
1

The sequence 1 · · ·n� 1 applied from left to w means the elimination is from bottom

up. It can be shown that H = JT ⇥R is an upper Hessenberg matrix, and therefore

JT ⇥ (R̃ + wvT) = H ± kwk
2

e
1

vT = Ĥ

is also upper Hessenberg.

To get R from Ĥ, another series of Givens rotations GT = GT

n�1

· · ·GT

1

is used

such that

GT ⇥ Ĥ = R

The sequence n� 1 · · · 1 means the elimination is from top down.

Combining J and G,

Q = Q̃JG = Q̃(J
n�1

· · · J
1

)(G
1

· · ·G
n�1

)

Algorithm 5 describes the above recovery procedure.

Algorithm 5 QR Recovery Algorithm based on QR-update

Require: Ã, Q̃, and R̃
Obtain a·j and R̃·j
Calculate w = Q̃Tu = Q̃Ta·j � R̃·j
Zero out w using Givens Rotations as k

1

= JT ⇥ w = ± kwk
2

e
1

Apply JT to R̃ as k
2

= JT R̃, and store the subdiagonals of k
2

into extra storage Y

Perform Ĥ = k
2

+ k
1

eT
j

Zero out subdiagonals of Ĥ by Givens rotations GT ⇥ Ĥ = R

Along with Algorithm 5, there are some implementation details worth noticing.

First, the column j of the original matrix A is required for recovery. For scientific

115

applications that expect soft error with high probability, a mechanism to recover some

part of the original matrix is required. Some applications can generate any column

of A easily, others need to store the whole matrix A. In our implementation, at

the beginning of QR factorization, matrix A on the GPU memory is asynchronously

copied to the CPU memory during the first panel factorization for this purpose.

Second, recovery can be performed using the GPU in place or the CPU with two

data transfers, one to load data from the GPU to the CPU and one to store result

back. This solution is easier in implementation since LAPACK is equipped with

Givens rotation utilities like DLARTG and DLASR, but it su↵ers from performance

impact of data transfer and much lower parallelism of the CPU compared to the

GPU. Therefore, we choose to perform the QR recovery on the GPU in place with

the matrix data. Since R can only overwrite the upper triangular of A, subdiagonals

of k
2

and Ĥ are kept in a separate 1D bu↵er Y .

5.5.3 Givens Rotation Utilities for the GPU

Givens rotation is at the center of the recovery procedure. Two operations involved

are DROTG and DLASR. While these operations are readily available for the CPU, on

the GPU they pose a significant challenge to be implemented with good performance

especially in a fused fashion. We’ll first discuss the two major challenges and then

our solution.

Memory Access Pattern

DROTG generates a plane rotation such that

2

4 c s

�s c

3

5

2

4f

g

3

5 =

2

4r

0

3

5

In this work we use an improved version of DROTG called DLARTG, which is more

numerically reliable [13].

116

DLASR applies a set of plane rotations to a matrix in a certain order, for example

one set of plane rotation is applied to a 2⇥N matrix,

2

4 c s

�s c

3

5

2

4x11

· · · x
1N

x
21

· · · x
2N

3

5 =

2

4y11 · · · y
1N

y
21

· · · y
2N

3

5 (5.8)

The FLOP count is 12N and the memory operation is 4N + 4, making it a memory-

bound operation. While each column of the right hand side
h
y
1j

, y
2j

i
T

can be

fully parallelized, without data reuse, on the GPU the performance of DLASR is still

limited by the memory bandwidth between the GPU global memory and the registers.

To make this situation worse, since MAGMA QR uses column-major storage, if each

thread calculated one column of the right hand side, the fetching of [x
i1

, · · · , x
iN

]

and [y
i1

, · · · , y
iN

], i = 1, 2 by each thread does not fit the condition of global memory

coalescing on the GPU, and each column has to be accessed one at a time.

Data Caching

In Algorithm 5, DLARTG and DROTG are fused together to firstly create the upper

Hessenberg matrixH, and then reduce it to upper triangular. This common operation

has two steps:

1. Generate a plane rotation

2

4 c s

�s c

3

5 using DLARTG for a vector

2

4x1

y
1

3

5

2. Apply

2

4 c s

�s c

3

5 to a 2⇥N matrix as in (5.8) (DLASR)

Both of these steps are carried out on the GPU. These two steps are consecutive.

Figure 5.2 is an example in the last step of Algorithm 5. The plus signs on the

subdiagonal are those elements to be zeroed out, and the red plus signs are the

values being eliminated in the current step. Green and red are the elements that

participate in the current step. This operation sweeps from top to bottom until an

upper triangular matrix is produced.

117

+
+

+
+

+
+

+
+

[

[

+

+
+

+
+

+
+

[

[

Figure 5.2: Reduction from upper Hessenberg to upper triangular

+
+

+
+

+

DLARTG+DLASR DLASR

Figure 5.3: Reduction from upper Hessenberg to upper triangular (block algorithm)

Take the first two steps for example, the second row of the matrix is updated by

the DLASR in the first step and then used as input for the second step. To reduce

global memory access that is far more expensive than that of registers and shared

memory on the GPU, this row should be cached for the next step rather than read

from global memory after being just written there. Naturally we use one thread to

handle each column of H, and given the size of H, more than one thread blocks is

needed for each step. In addition, one thread blocks (one thread per se) performs the

DLRTG before all the DLARTG thread blocks could start, hence a synchronization is

needed to hold DLASR threads while waiting for the one thread that does DLARTG

to finish. To achieve the aforementioned caching using registers, both DLARTG

118

and DLASR functionalities need to reside in one GPU kernel, otherwise the DLASR

kernel calls are separated from each other by DLARTG kernel calls, and caching

can only be done through shared memory, which is less e�cient. The dilemma here

is that CUDA o↵ers no lightweight mechanism to synchronize all thread blocks from

within threads. Available synchronization mechanisms include global synchronization

initiated by host, and synchronization of all threads within a thread block. The

atomic operation provides some possibilities but threads that participate in an atomic

operation through a variable in global memory are serialized, and therefore su↵ers a

large performance penalty.

Algorithm for fused DLARTG and DLASR operation

For dense linear algebra, blocked algorithms have been widely used to achieve high

performance on modern computer systems with complex cache hierarchy [47]. To

bridge the requirement of caching intermediate rows to reduce global memory access

and the di�culty of no lightweight synchronization from within threads, we devised

the following algorithm for the fused DLARTG and DLASR operation by having each

step work with a block of data rather than only 2 rows.

Two types of kernels are designed. The first kernel generates a set of plane

rotations and use these rotations to reduce an NB⇥NB upper Hessenberg submatrix

on the diagonal to upper triangular. NB is selected as the maximum number of

threads per thread block allowed by the GPU in use except for edge cases. In our

experiment, with a Tesla T20, aka ’Fermi’, NB = 1024.

The second kernel applies this set of plane rotations to all the data on the right of

the diagonal NB⇥NB. Global synchronization on the host is used between these two

kernels. This algorithm moves down along the diagonal with a step size of NB until

an upper triangular matrix is produced. Figure 5.3 is an example of this algorithm

with NB = 5. During each iteration, only one thread block is spawned for the first

type of kernel and as many thread blocks as needed are spawned for the second kernel.

119

Within the first kernel, steps proceed as in the unblocked version of fused

DLARTG and DLASR. Intermediate rows that are produced by step i�1 and will be

used in step i are cached in registers to avoid loading from global memory. Thread-

block level synchronization is used to separate DLARTG and DLASR functionalies.

Within the second kernel, steps proceed from the top down, one row each step.

Similarly, intermediate rows are cached in registers. The plane rotations are stored

in two vectors, respectively, in global memory to pass between the two kernels. In

the second kernel, the fetching of current plane rotation pair c and s that is on the

critical path of execution is moved to the beginning of kernel execution where NB

threads are used to fetch NB plane rotation pairs in a coalesced fashion.

E�cient Memory Access Scheme

Figure 5.4 is a modified memory access scheme to remedy the problem discussed in

section 5.5.3 for the type II kernel in section 5.5.3.

In the original kernel, all threads are lined up in a row, and during each step each

thread fetches two values in a column along with a Given rotation pair from global

memory. For double precision (8-byte word) memory access within half warp to be

coalesced, CUDA requires all 16 words to fall in the same 16-word segment [106] but

since each element in consecutive columns of this row are separated by the leading

dimension, the coalescing rule does not hold.

In order to benefit from the throughput advantage provided by coalescing, a level

of inner blocking is added to the kernel. Take Tesla T20 for example where the

maximum number of thread per thread block is 1024. Rather than striding one row

down at each step, a 4 ⇥ 64 block of data (yellow) are fetched together from global

memory to the corresponding 64⇥ 4 piece in a shared memory bu↵er of size 1024⇥ 4

using a 16 ⇥ 64 layout of the 1024 threads such that all 16 threads in each column

of the grid have consecutive thread IDs. Therefore the 4⇥ 64 = 256 elements in the

yellow zone are fetched by 64 coalesced accesses. These fetching loops continue from

left to right until the four rows are completely loaded. After the loading, thread layout

120

… … …

…
…

…

64

16

4

64

GPU Global memory

GPU shared memory

4

…

Figure 5.4: Global memory accesses in the blocked DLASR kernel

is re-arranged to 1024 ⇥ 1 in the inner blocking. Each thread loads two consecutive

elements in a row from the shared memory. The layout of the shared memory bu↵er

lowers the bank conflict to minimum. The inner blocking loop consumes the four

rows of data (four columns in shared memory) to apply the corresponding Givens

rotations, and once this four rows are finished, results are written back in the same

coalesced manner as loading.

The scheme described in this section can also be used for other similar kernels in

this work.

Improvement Experiment

Figure 5.5 is an experiment result of the run time for the reduction of H from

upper Hessenberg to upper triangular. The matrix size derives from actual recovery

experiment in section 5.7.3 where the impact of the new reduction algorithm on

recovery performance is shown in Figure 5.9. By using a more e�cient memory

access pattern and the blocked algorithm for fused DLARTG and DLASR operation,

5x speedup is achieved.

121

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4352 5376 6400 7424 8448 9472 10496 11520 12544 13568

R
u
n
 t
im

e
 (
s
e
c
)

Dimension of the upper Hessenberg matrix

optimized original

Figure 5.5: Run time comparison of the blocked DLASR (optimized) kernel and the
original version

5.6 Protection for Q

Theorem 3.5.1 has shown that Q cannot be protected by ABFT as R, and the spike-

eliminating algorithm 5 inherited from work by Luk et al. [90] function under the

assumption that no soft error strikes Q̃, which is the erroneous Q caused by soft error

in R or A0. In MAGMA QR, since Q occupies half of the matrix, it is as eligible to

be soft error victim as other section of the matrix and therefore has to be protected.

5.6.1 Static Checkpointing for Q

In order to provide soft error resilience to Q, we propose to use diskless checkpointing

algorithm because once a panel is factorized on the CPU, the result remains

unchanged until the end of factorization.

For any column of the factorized panel v
i

= [v
i1

, v
i2

, · · · , v
ik

]T , the objective of the

checkpointing scheme is to allow recovery from errors that occur to random items in

the column. It has been shown in Section 4.4 how soft errors in a column of L in

122

CPU

GPU

DGEQRF DLARFT Sending panel to GPU

Look-‐ahead DLARFB Trailing DLARFB

Figure 5.6: MAGMA QR tracing

LU can be protected with trivial overhead. Q can be protected by the same method,

including encoding, error detection and recovery, and dimension reduction, except

that the vector v
i

being encoded is not a column of Q but the vector that is used to

generate the Householder transformation of the form H
i

= I � ⌧
i

v
i

vT
i

[38].

5.6.2 Timing of Checkpointing

The checkponting for Q is performed once per iteration of the QR factorization.

Therefore the placement of this procedure requires careful consideration to avoid

large performance penalty.

As described in section 5.3, The GPU onsite version of MAGMA QR produces

Q using the CPU implementation DGEQRF and during step i, an M
i

⇥ NB block

of the trailing matrix is sent from the GPU to the CPU memory to be factorized by

DGEQRF. Then the triangular factor T of a real block reflector H is constructed by

DLARFT on the CPU and both the panel factorization and T are sent to the GPU to

update the trailing matrix using a GPU version DLARFB. This process is illustrated

by the trace of an actual MAGMA QR run on a 48-core CPU + NVIDIA T20 GPU

machine shown in Figure 5.6 generated by TAU (Tuning and Analysis Utilities) [12].

The size of this run is 17408⇥ 17408, and only the first few iterations are shown.

The best way to place the checkponting for Q such that performance overhead is

minimized is finding a time slot where CPU and GPU tasks are fully overlapped and

123

0

50

100

150

200

250

300

G
fl
o
p
/
s

Matrix size

MAGMA QR FT-‐QR without Q checkpointing FT-‐QR with Q checkpointing MKL QR

Figure 5.7: Performance of FT-QR with/without checkpointing for Q

CPU idles waiting for the GPU tasks to finish. Even though the DLARFB on the

GPU takes a long time to finish, through using lookahead it keeps the CPU busy most

of the time, leaving very little room for extra operation. By closely examining the

tracing, we notice that the yellow section that represents cublasSetMatrix(), which

sends panel factorization result from the CPU to the GPU, actually takes longer than

the actual communication, and the reason is that cublasSetMatrix() is a blocking call

on the GPU and it does not start the data transfer until all activities on the GPU

started previously are finished. From Figure 5.6, clearly cublasSetMatrix() is always

called on the CPU during the trailing matrix update (DLARFB) on the GPU and this

accordingly not only blocks both the data transferring to the GPU, but also put the

CPU in a busy wait and therefore cannot perform other tasks. This does not a↵ect

the performance of MAGMA QR since MAGMA QR uses 1-depth lookahead and

therefore the next trailing matrix update cannot start anyway without the previous

one finished.

124

0

50

100

150

200

250

300

8192 9216 10240 11264 12288 13312 14336 15360 16384 17408

G
f
lo
p
/
s

Matrix size

MAGMA QR

FT-‐QR (no error)

FT-‐QR (2 errors in a column)

Figure 5.8: Performance of recovery for errors in Q

To release the CPU from the busy wait, cublasSetMatrix() is replaced with

an asynchronous data transferring function cudaMemcpy2DAsync(). This function

initiates the data transferring and returns control immediately to the CPU. The time

gap between this initiation time and when the GPU DLARFB is finished is large

enough to hide the checkpointing Q from the critical path. As the trailing matrix

becomes smaller, there is a certain threshold of time when the GPU DLARFB finishes

before the initiation of cublasSetMatrix(), and this could expose the checkpointing

and cause performance impact, but this only accounts for a small portion of the

execution. For such a situation, the checkpointing could be moved to run on the

GPU between the time GPU DLARFB finishes and the initiation of cublasSetMatrix

on the CPU.

125

5.7 Performance Evaluation

In this section we evaluate the performance of the fault tolerant QR algorithm on two

hybrid systems. The configuration of the first experiment platform is in table 5.1:

MKL with 48 threads is used on the CPU and CUDA 4.0 is driving the GPU. All

computing is in double precision and based on MAGMA version 1.0. The maximal

matrix size is limited by the GPU global memory.

As discussed in section 5.5.2, the recovery algorithm requires a column of the

original matrix. While this column may be re-generated cheaply, in our experiment

we want to simulate the worst case where this convenience is not available, and

therefore the original matrix is duplicated for the recovery process. Since the GPU

memory is relatively small compared to that of the host, and is normally fully utilized

for computing, the copy of the original matrix is put on the host memory. To avoid

performance impact, the data transferring is performed asynchronously during the

first panel factorization. The panel data is copied first so that DGEQRF on the

CPU could start as soon as possible, and while the CPU is busy with the panel

factorization, the rest of data is copied through DMA to the host memory. All the

performance results shown in this section include this overhead.

5.7.1 Overhead Analysis

The overhead of fault tolerance comes from the following sources:

1. Duplicating the original matrix from the GPU to the CPU

2. Generating checksum on the GPU

3. Performing QR with two checksum columns on the GPU

Brand Frequency # cores Memory
CPU AMD Opteron 6180 SE 2.5 GHz 48 256 Gb
GPU NVIDIA C2050 1.1 GHz 14 2.7 Gb

Table 5.1: Experiment configuration

126

4. checkpointing Q on the CPU

5. Check for error in R and A0 on the GPU

6. Check for error in Q on the GPU

7. Recovery from error in Q on the CPU and GPU

8. Recovery from error in R and A0 on the GPU

Each item of the overhead sources, except the memory copy, requires O(n2) extra

FLOPS. And comparing to the 4

3

n3 FLOPS of QR factorization, the overhead fades

away when matrix size is large enough.

5.7.2 Checkpointing of Q

Figure 5.7 is an experiment to show the overhead caused by checkpointing Q. The red

line shows the performance without checkpointing Q and the performance between

the red line and blue line is the overhead caused by (1)-(3) and (5)-(6) in the overhead

source list. With the checkpointing Q switched on, the green line performance dips

by another 5% at large matrix sizes. The green line represents the case of our fault

tolerant QR runs without any error. To compare the performance with the CPU

implementation, the result of MKL QR running with 48 threads is also shown. It can

be seen that even with the overhead of fault tolerance, our FT-QR is still showing

2-3x speedup over the CPU implementation.

5.7.3 Recovery

Since our algorithm can deal with errors in the full matrix, the recovery performance

are divided into the left factor and the right factor.

127

0

50

100

150

200

250

300

8192 9216 10240 11264 12288 13312 14336 15360 16384 17408

G
f
lo
p
/
s

Matrix size

MAGMA QR

FT-‐QR (no error)

FT-‐QR (1 error, optimized)

FT-‐QR (1 error,plain)

Figure 5.9: Performance of recovery for error in R

The Right Factor

Figure 5.8 is the performance of recovery from errors in Q. Two errors are injected to

column 312 in rows 612 and 729 respectively. This experiment is simulating random

double errors in a column of Q and therefore the error locations are not informed to

the recovery algorithm. Performance result shows a small overhead from the no-error

case of the fault tolerant QR, and about 15% decrease from the original MAGMA

QR. This percentage will continue to drop as matrix sizes grows larger permitted by

GPU with larger global memory.

The Left Factor

Figure 5.9 is the performance of recovery from error initially in R or A0. For all

matrix sizes, error is injected to a random location (7681,7682) in A0 on the GPU

right before the 31st step of panel factorization. The purple line is the performance

of FT-QR with checkpointing Q and no error.

128

Two recovery performances are shown. The green line is the plain implementation

of Givens rotation utilities on the GPU. This implementation is limited by the GPU

global memory access speed without the help of coalescing and shared memory. The

red line is the optimized recovery performance where a blocked and fused DLARTG

and DLASR with better memory access mechanism is in place. At the largest problem

size available to this GPU, the optimization improves 5% of the recovery performance.

The recovery from one soft error in A0, using the optimized algorithm, reduces 15% of

the overall performance of QR. This percentage will also continue to drop with larger

matrix sizes.

5.7.4 Result on Keeneland

The NVIDIA C2050 has relative small on-chip global memory which limits the size of

matrix in the first experiment. The second testing platform is the Keeneland Initial

Delivery system which features a cluster of NVIDIA M2070 with 6GB memory, and

each host runs two Intel Westmere hex-core CPUs. Figure 5.10 is the performance of

both the original and soft error resilient MAGMA QR on a single node of Keeneland.

Error recovery experiments use the same setup as in the test on C2050, and as a

comparison, MKL QR performance is also shown running with 12 threads on a single

node. The extended matrix size range shows similar overhead to the result on C2050,

verifying that with the small overhead of fault resilience functionalities, the hybrid

QR still outperforms multi-threaded QR on the multicore CPUs by almost 100%, and

errors can be recovered with little performance impact.

5.8 Conclusion

In this chapter we developed a soft error resilient QR algorithm for hybrid architecture

where the CPU and GPU are utilized together. This work enables the high

129

0

50

100

150

200

250

300

G
fl
o
p
/
s

Matrix size

MAGMA QR FT-‐QR (No Error) FT-‐QR (2 errors in Q)
FT-‐QR (1 error in R) MKL

Figure 5.10: Performance on Keeneland

performance implementation of MAGMA QR to be tolerant to soft errors caused

by radiation-based interference.

In the ABFT algorithm by Luk et al., the FT-QR algorithm can tolerate up to

one soft error in data section R and A0. Since the recovery algorithm requires an

error-free left factor Q, which is not guaranteed by Luk’s algorithm, a stable and

scalable multiple-error checkpointing/recovery mechanism is devised and placed in

the computing environment based on the execution feature of MAGMA QR such

that the checkpointing is hidden away from the critical path and therefore prevents

severe performance impact. In addition, a more e�cient recovery algorithm based on

Givens rotation is designed. This fast Givens rotation utilities can also be used in

other applications to reduce an upper Hessenberg matrix to upper triangular on the

GPU.

130

Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this dissertation, fault tolerant algorithms for both hard and soft error are

developed for dense linear algebra operations on HPC systems, including large scale

cluster system and hybrid system with multicore CPU and the GPGPU. For both

kinds of error, we focus on full matrix protection and practical issue in real-world

computing systems, such as scalability, performance impact, recovery of execution

(program stack) without full fault tolerance MPI system support.

For hard errors, we developed the scalable parallel-Q checkpointing scheme, which

allows the left factor to be e�ciently protected with low performance impact and

storage requirement. For the right factor we adopted the ABFT checksum and by

using the Checkpointing-on-Failure technique, the dense matrix operations such as

LU and QR factorization can recover both the lost data and running stack on the

failed process. In the case where failure occurs during the trailing matrix update,

immediate recovery might not be plausible due to the inconsistency of matrix states

on all the processes. For such case we have shown by both proof and implementation

that a delayed recovery could resolve the problem because trailing update is composed

of operations that obey the rule of ABFT.

131

Soft error is more challenging to tolerate than hard error because transient errors

normally do not cause system to crash and therefore leave no trace of existence. The

e↵ect of this silent errors is that erroneous data are carried into further computation

and eventually causes large area of errors due to propagation. To combat soft error, we

developed full matrix protection technique such that multiple soft errors in both the

left and right factor can be detected, and both the factorization based linear system

solver and the factorization itself can successfully reach correct result by recovery. We

developed a floating point number encoding scheme that is used in both the scalable

local checkpointing for the left factor and the ABFT based method for the right factor.

This encoding scheme is resilient to the nature errors of floating point operation such

as round-o↵ and cancellation, and enables the determination of soft error locations.

Soft errors in the left factor are corrected in a column-by-column fashion, while soft

errors in the right factor are corrected by using the combination of soft error modeling

and recovery schemes such as QR update and Sherman-Morrison-Woodbury. One

particular practical issue is the computation complexity of such detection and recovery

scheme. To this need, a complexity reduction method is devised where encoding is

performed in segments such as
p
N . This drops the complexity to be lower than

that of the matrix factorization and solver and thus leads to negligible overhead on

real-world HPC systems.

Since more and more HPC systems nowadays are equipped with the GPGPU, and

the GPGPU has historically been under-protected of ECC scheme, we have applied

the proposed soft error resilience to hybrid systems with the GPGPU. Based on the

hybrid QR factorization from MAGMA, vectors in the lower triangular matrix that

are used to form the orthogonal left factor Q are protected by the floating point

number weighted checksum performed by CPU in a time gap when CPU awaits GPU

to finish the trailing matrix update, and the right factor R which normally su↵ers

large area of propagated errors is recovered by a combination of QR update and an

e�cient fast Givens Rotation for the GPGPU.

132

Experiments on large scale cluster and hybrid HPC system have confirmed that

the developed algorithms all meet the design criteria in terms of error correction and

performance/storage overhead. This altogether o↵ers very promising alternatives to

the currently widely used checkpointing/restart method with much less overhead and

energy consumption.

6.2 Future Work

This work uses the soft error model where the soft errors present in the form

of changing the value of floating point number, and in our implementation such

changing does not involve the extreme cases where bit flips in the IEEE 754 format

representation cause “horrendous” modification, for example to NaN . Considering

the practical possibility of such event happening, either an uncorrectable error

notification should be raise to applications or such errors could be corrected in an

online fashion because neither ABFT nor any of the checkpointing scheme in the field

of soft error fault tolerance is e↵ective by performing correction o↵-line. This will be

addressed as part of the future work.

With the quick development of the GPGPU in both performance and application,

more and more HPC cluster systems are being equipped with the GPGPU. With

this added complexity and large scale, fault tolerance will become a critical issue that

threatens productivity. To meet the goal of providing high reliability on such systems,

we are in development of fault tolerance algorithm that could support multiple hard

errors and soft errors in large scale distributed memory cluster system with the

GPGPU.

Another interesting area is the protection of dense linear algebra computation

on multicore nodes with tile algorithms. Our current implementation is based on

LAPACK and ScaLAPACK which use an “old-fashion” fork-join parallelism model.

However on multicore CPU system, tile algorithm such as in [4] produces better

performance. We will extended the fault tolerance coverage to such system.

133

Bibliography

134

Bibliography

[1] (2009). Fault tolerance for extreme-scale computing workshop report. 12, 19

[2] (2011). http://www.top500.org/. 1

[3] Abraham, J. (1986). Fault tolerance techniques for highly parallel signal

processing architectures. Highly parallel signal processing architectures, pages 49–

65. 111

[4] Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief,

H., Luszczek, P., and Tomov, S. (2009). Numerical linear algebra on emerging

architectures: The plasma and magma projects. In Journal of Physics: Conference

Series, volume 180, page 012037. IOP Publishing. 105, 133

[5] Alameldeen, A., Wagner, I., Chishti, Z., Wu, W., Wilkerson, C., and Lu, S. (2011).

Energy-e�cient cache design using variable-strength error-correcting codes. In

Proceeding of the 38th annual international symposium on Computer architecture,

pages 461–472. ACM. 9

[6] Alvisi, L., Elnozahy, E., Rao, S., Husain, S., and De Mel, A. (1999). An analysis

of communication induced checkpointing. In Fault-Tolerant Computing, 1999.

Digest of Papers. Twenty-Ninth Annual International Symposium on, pages 242–

249. IEEE. 12

135

[7] Alvisi, L. and Marzullo, K. (1995). Message logging: Pessimistic, optimistic,

and causal. In Distributed Computing Systems, 1995., Proceedings of the 15th

International Conference on, pages 229–236. IEEE. 11

[8] Anderson, E., Bai, Z., Bischof, C., Blackford, S. L., Demmel, J. W., Dongarra,

J. J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen,

D. C. (1999). LAPACK User’s Guide. Society for Industrial and Applied

Mathematics, Philadelphia, Third edition. 107

[9] Anfinson, C. and Luk, F. (1988). A linear algebraic model of algorithm-based

fault tolerance. Computers, IEEE Transactions on, 37(12):1599–1604. 15

[10] Babaoglu, O. and Marzullo, K. (1993). Consistent global states of distributed

systems: Fundamental concepts and mechanisms. Distributed Systems, 2. 12

[11] Barrett, R., Chan, T., D’Azevedo, E., Jaeger, E., Wong, K., and Wong, R.

(2010). Complex version of high performance computing linpack benchmark (hpl).

Concurrency and Computation: Practice and Experience, 22(5):573–587. 63

[12] Biersdor↵, A., Spear, W., and Mayanglambam, S. (2010). An experimental

approach to performance measurement of heterogeneous parallel applications using

cuda. 123

[13] Bindel, D., Demmel, J., Kahan, W., and Marques, O. (2002). On computing

givens rotations reliably and e�ciently. ACM Transactions on Mathematical

Software (TOMS), 28(2):206–238. 116

[14] Bischof, C. and Van Loan, C. (1985). The wy representation for products of

householder matrices. In Selected Papers from the Second Conference on Parallel

Processing for Scientific Computing, pages 2–13. Society for Industrial and Applied

Mathematics. 46, 108

136

[15] Blackford, L., Cleary, A., Choi, J., D’Azevedo, E., Demmel, J., Dhillon, I.,

Dongarra, J., Hammarling, S., Henry, G., Petitet, A., et al. (1997). ScaLAPACK

users’ guide. Society for Industrial Mathematics. 20, 94

[16] Bland, W., Du, P., Bouteiller, A., Herault, T., Bosilca, G., and Dongarra, J.

(2012). A checkpoint-on-failure protocol for algorithm-based recovery in standard

mpi. 18th Euro-Par. p. to appear. LNCS, Springer (August 2012). 46, 49

[17] Blaum, M., Bruck, J., and Vardy, A. (1998). Interleaving schemes for

multidimensional cluster errors. Information Theory, IEEE Transactions on,

44(2):730–743. 8

[18] Boley, D., Golub, G., Makar, S., Saxena, N., and McCluskey, E. (1995).

Floating point fault tolerance with backward error assertions. Computers, IEEE

Transactions on, 44(2):302–311. 15

[19] Bose, R. and Ray-Chaudhuri, D. (1960). On a class of error correcting binary

group codes*. Information and control, 3(1):68–79. 8, 15

[20] Bosilca, G., Delmas, R., Dongarra, J., and Langou, J. (2009). Algorithm-based

fault tolerance applied to high performance computing. Journal of Parallel and

Distributed Computing, 69(4):410–416. 14, 20, 33

[21] Bosilca, G., Herault, T., Rezmerita, A., and Dongarra, J. (2011). On scalability

for mpi runtime systems. In Cluster Computing (CLUSTER), 2011 IEEE

International Conference on, pages 187–195. IEEE. 12

[22] Bossen, D., Tendler, J., and Reick, K. (2002). Power4 system design for high

reliability. Micro, IEEE, 22(2):16–24. 7

[23] Bouteiller, A., Bosilca, G., and Dongarra, J. (2010). Redesigning the message

logging model for high performance. Concurrency and Computation: Practice and

Experience, 22(16):2196–2211. 19

137

[24] Bouteiller, A., Cappello, F., Herault, T., Krawezik, G., Lemarinier, P., and

Magniette, F. (2003). Mpich-v2: a fault tolerant mpi for volatile nodes based on

pessimistic sender based message logging. In Proceedings of the 2003 ACM/IEEE

conference on Supercomputing, page 25. ACM. 11

[25] Brent, R., Luk, F., and Anfinson, C. (1989). Choosing small weights for multiple

error detection. In Proceedings SPIE, volume 1058, pages 130–136. 15

[26] Brent, R., Luk, F., and Anfinson, C. (1990). Checksum schemes for fault tolerant

systolic computing. Mathematics in Signal Processing II (edited by JG McWhirter),

Clarendon Press, Oxford, pages 791–804. 15

[27] Burns, G., Daoud, R., and Vaigl, J. (1994). LAM: An open cluster environment

for MPI. In Proceedings of SC’94, volume 94, pages 379–386. 19

[28] Cappello, F. (2009). Fault tolerance in petascale/exascale systems: Current

knowledge, challenges and research opportunities. International Journal of High

Performance Computing Applications, 23(3):212. 1, 2

[29] Cataldo, A. (2001). Sram soft errors cause hard network problems. Electronic

Engineering Times, pages 1–2. 62

[30] Chen, C. and Hsiao, M. (1984). Error-correcting codes for semiconductor memory

applications: A state-of-the-art review. IBM Journal of Research and Development,

28(2):124–134. 8

[31] Chen, Z. and Dongarra, J. (2006a). Algorithm-based checkpoint-free fault

tolerance for parallel matrix computations on volatile resources. In IPDPS’06,

pages 10–pp. IEEE. 14, 20

[32] Chen, Z. and Dongarra, J. (2006b). Scalable techniques for fault tolerant high

performance computing. PhD thesis, University of Tennessee, Knoxville, TN. 14,

20

138

[33] Chen, Z. and Dongarra, J. (2008). Algorithm-based fault tolerance for fail-stop

failures. IEEE TPDS, 19(12):1628–1641. 14, 20

[34] Chiu, G. and Young, C. (1996). E�cient rollback-recovery technique

in distributed computing systems. Parallel and Distributed Systems, IEEE

Transactions on, 7(6):565–577. 12

[35] Chiueh, T. and Deng, P. (1996). Evaluation of checkpoint mechanisms for

massively parallel machines. In Fault Tolerant Computing, 1996., Proceedings of

Annual Symposium on, pages 370–379. IEEE. 13

[36] Choi, J. (1997). A new parallel matrix multiplication algorithm on distributed-

memory concurrent computers. In hpc-asia, page 224. Published by the IEEE

Computer Society. 96

[37] Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A.,

Stanley, K., Walker, D., and Whaley, R. (1996a). ScaLAPACK: a portable linear

algebra library for distributed memory computers–design issues and performance.

Computer Physics Communications, 97(1-2):1–15. 27, 107

[38] Choi, J., Dongarra, J. J., Ostrouchov, S., Petitet, A., Walker, D. W., andWhaley,

R. C. (1996b). The design and implementation of the ScaLAPACK LU, QR, and

Cholesky factorization routines. Scientific Programming, 5:173–184. 123

[39] Damani, O. and Garg, V. (1996). How to recover e�ciently and asynchronously

when optimism fails. In Distributed Computing Systems, 1996., Proceedings of the

16th International Conference on, pages 108–115. IEEE. 11

[40] Davies, T., Karlsson, C., Liu, H., Ding, C., and Chen, Z. (2011). High

performance linpack benchmark: a fault tolerant implementation without

checkpointing. In Proceedings of the 25th ACM International Conference on

Supercomputing (ICS 2011). ACM. 14, 20, 23, 29, 39

139

[41] Dell, T. (1997). A white paper on the benefits of chipkill-correct ecc for pc server

main memory. IBM Microelectronics Division, pages 1–23. 9

[42] Ding, C., Karlsson, C., Liu, H., Davies, T., and Chen, Z. (2011a). Matrix

multiplication on gpus with on-line fault tolerance. In Parallel and Distributed

Processing with Applications (ISPA), 2011 IEEE 9th International Symposium on,

pages 311–317. IEEE. 16

[43] Ding, C., Karlsson, C., Liu, H., Davies, T., and Chen, Z. (2011b). Matrix

multiplication on gpus with on-line fault tolerance. In Proceedings of the 9th IEEE

International Symposium on Parallel and Distributed Processing with Applications

(ISPA 2011)i. IEEE Computer Society Press. 107

[44] Dirk, J., Nelson, M., Ziegler, J., Thompson, A., and Zabel, T. (2003). Terrestrial

thermal neutrons. Nuclear Science, IEEE Transactions on, 50(6):2060–2064. 62

[45] Dongarra, J., Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.,

Dhillon, I., Hammarling, S., Henry, G., Petitet, A., et al. (1997). ScaLAPACK

user’s guide. Society for Industrial and Applied Mathematics, Philadelphia, PA. 28

[46] Dongarra, J. and Luszczek, P. (2010). Reducing the time to tune parallel dense

linear algebra routines with partial execution and performance modelling. niversity

of Tennessee Computer Science Technical Report, Tech. Rep. 2

[47] Dongarra, J. and Walker, D. (1993). The design of linear algebra libraries for

high performance computers. 119

[48] Dongarra, J. J., Luszczek, P., and Petitet, A. (2003). The LINPACK benchmark:

Past, present, and future. Concurrency and Computation: Practice and Experience,

15:1–18. 2

[49] Du, P., Bouteiller, A., Bosilca, G., Herault, T., and Dongarra, J. (2012a).

Algorithm-based fault tolerance for dense matrix factorizations. In Proceedings

140

of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel

Programming, pages 225–234. ACM. 14, 16

[50] Du, P., Luszczek, P., and Dongarra, J. (2011a). High performance dense linear

system solver with soft error resilience. In Cluster Computing (CLUSTER), 2011

IEEE International Conference on, pages 272–280. IEEE. 15, 17

[51] Du, P., Luszczek, P., and Dongarra, J. (2011b). High performance dense linear

system solver with soft error resilience. In Proceedings of the IEEE Cluster 2011.

IEEE Computer Society Press. 63

[52] Du, P., Luszczek, P., and Dongarra, J. (2012b). High performance dense linear

system solver with resilience to multiple soft error. In The International Conference

on Computational Science. 15

[53] Du, P., Luszczek, P., Tomov, S., and Dongarra, J. (2011c). Soft error resilient qr

factorization for hybrid system with gpgpu. In Proceedings of the second workshop

on Scalable algorithms for large-scale systems, pages 11–14. ACM. 15

[54] Elnozahy, E., Alvisi, L., Wang, Y., and Johnson, D. (2002). A survey of rollback-

recovery protocols in message-passing systems. ACM Computing Surveys (CSUR),

34(3):375–408. 11

[55] Elnozahy, E., Johnson, D., and Zwaenepoel, W. (1991). The performance of

consistent checkpointing. In Reliable Distributed Systems, 1992. Proceedings., 11th

Symposium on, pages 39–47. IEEE. 19

[56] Elnozahy, E. and Zwaenepoel, W. (1994). On the use and implementation of

message logging. In Fault-Tolerant Computing, 1994. FTCS-24. Digest of Papers.,

Twenty-Fourth International Symposium on, pages 298–307. IEEE. 11

[57] Fagg, G. and Dongarra, J. (2000). FT-MPI: Fault tolerant MPI, supporting

dynamic applications in a dynamic world. EuroPVM/MPI. 43, 45

141

[58] Fiala, D. (2011). Detection and correction of silent data corruption for large-scale

high-performance computing. In Parallel and Distributed Processing Workshops

and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages 2069–

2072. IEEE. 16

[59] Fiala, D., Ferreira, K., Mueller, F., and Engelmann, C. (2011). Poster: a tunable,

software-based dram error detection and correction library for hpc. In Proceedings

of the 2011 companion on High Performance Computing Networking, Storage and

Analysis Companion, pages 49–50. ACM. 16

[60] Fitzpatrick, P. (1997). Extending backward error assertions to tolerance of

large errors in floating point computations. Computers, IEEE Transactions on,

46(4):505–510. 15

[61] Fitzpatrick, P. and Murphy, C. (1992). Fault tolerant matrix triangularization

and solution of linear systems of equations. In Application Specific Array

Processors, 1992. Proceedings of the International Conference on, pages 469–480.

IEEE. 15, 63, 73, 77, 80, 91

[62] Fitzpatrick, P. and Murphy, C. (1993). Solution of linear systems of equations in

the presence of two transient hardware faults. In Computers and Digital Techniques,

IEE Proceedings-, volume 140, pages 247–254. IET. 15

[63] Fuketa, H., Hashimoto, M., Mitsuyama, Y., and Onoye, T. (2010). Alpha-

particle-induced soft errors and multiple cell upsets in 65-nm 10t subthreshold

sram. In Reliability Physics Symposium (IRPS), 2010 IEEE International, pages

213–217. IEEE. 62

[64] Gao, Q., Yu, W., Huang, W., and Panda, D. (2006). Application-transparent

checkpoint/restart for mpi programs over infiniband. In Parallel Processing, 2006.

ICPP 2006. International Conference on, pages 471–478. IEEE. 12

142

[65] Gibson, G. (2007). Failure tolerance in petascale computers. In Journal of

Physics: Conference Series, volume 78, page 012022. 18, 105

[66] Gill, P., Golub, G., Murray, W., and Saunders, M. (1974). Methods for modifying

matrix factorizations. Mathematics of Computation, 28(126):505–535. 114

[67] Gioiosa, R., Sancho, J., Jiang, S., and Petrini, F. (2005). Transparent,

incremental checkpointing at kernel level: a foundation for fault tolerance for

parallel computers. In Proceedings of the 2005 ACM/IEEE conference on

Supercomputing, page 9. IEEE Computer Society. 12

[68] Golub, G. and Van Loan, C. (1996a). Matrix computations. Johns Hopkins Univ

Pr. 21

[69] Golub, G. and Van Loan, C. (1996b). Matrix Computations. Johns Hopkins

University Press, Baltimore, MD, 3rd edition. 114

[70] Gonzalez, A., Mahlke, S., Mukherjee, S., Sendag, R., Chiou, D., and Yi, J.

(2007). Reliability: Fallacy or reality? Micro, IEEE, 27(6):36–45. 63

[71] Gropp, W. and Lusk, E. (2004). Fault tolerance in message passing interface

programs. Int. J. High Perform. Comput. Appl., 18:363–372. 45

[72] Hakkarinen, D. and Chen, Z. (2010). Algorithmic Cholesky factorization fault

recovery. In Parallel & Distributed Processing (IPDPS), 2010 IEEE International

Symposium on, pages 1–10. IEEE. 14, 20, 23

[73] Hamming, R. (1950). Error detecting and error correcting codes. Bell System

technical journal, 29(2):147–160. 8

[74] Haque, I. and Pande, V. (2010). Hard data on soft errors: A large-scale

assessment of real-world error rates in gpgpu. In Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,

pages 691–696. IEEE Computer Society. 107

143

[75] Hazucha, P. and Svensson, C. (2000). Impact of cmos technology scaling on

the atmospheric neutron soft error rate. Nuclear Science, IEEE Transactions on,

47(6):2586–2594. 62

[76] Heijmen, T. (2002). Radiation-induced soft errors in digital circuits-a literature

survey. 106

[77] Hocquenghem, A. (1959). Codes correcteurs derreurs. Chi↵res, 2(2):147–56. 8,

15

[78] Hsiao, M. (1970). A class of optimal minimum odd-weight-column sec-ded codes.

IBM Journal of Research and Development, 14(4):395–401. 8

[79] Huang, K. and Abraham, J. (1984). Algorithm-based fault tolerance for matrix

operations. Computers, IEEE Transactions on, 100(6):518–528. 14, 19, 111

[80] Kim, S. (2009). Reducing area overhead for error-protecting large l2/l3 caches.

Computers, IEEE Transactions on, 58(3):300–310. 9

[81] Kim, Y. and Dongarra, J. (1996). Fault tolerant matrix operations for parallel

and distributed systems. PhD thesis, Citeseer. 13

[82] Kumar, V., Grama, A., Gupta, A., and Karypis, G. (1994). Introduction

to parallel computing: design and analysis of algorithms, volume 400.

Benjamin/Cummings. 27

[83] Lemarinier, P., Bouteiller, A., Herault, T., Krawezik, G., and Cappello, F.

(2004). Improved message logging versus improved coordinated checkpointing for

fault tolerant mpi. In Cluster Computing, 2004 IEEE International Conference on,

pages 115–124. IEEE. 11

[84] Li, K., Naughton, J., and Plank, J. (1994). Low-latency, concurrent

checkpointing for parallel programs. Parallel and Distributed Systems, IEEE

Transactions on, 5(8):874–879. 12

144

[85] Li, S., Chen, K., Hsieh, M., Muralimanohar, N., Kersey, C., Brockman, J.,

Rodrigues, A., and Jouppi, N. (2011). System implications of memory reliability

in exascale computing. In High Performance Computing, Networking, Storage and

Analysis (SC), 2011 International Conference for, pages 1–12. IEEE. 9

[86] Lin, S. and Costello Jr, D. (1983). Error control coding: Fundamentals and

applications, 1983. Prentice-Hall, Inc. Englewood Cli↵s, 3:2–3. 8

[87] Lo, J. (1994). Reliable floating-point arithmetic algorithms for error-coded

operands. Computers, IEEE Transactions on, 43(4):400–412. 10

[88] Lu, C. (2005). Scalable diskless checkpointing for large parallel systems. PhD

thesis, Citeseer. 19

[89] Luk, F. and Park, H. (1988a). An analysis of algorithm-based fault tolerance

techniques* 1. Journal of Parallel and Distributed Computing, 5(2):172–184. 15,

24, 63, 77, 111

[90] Luk, F. and Park, H. (1988b). Fault-tolerant matrix triangularizations on systolic

arrays. Computers, IEEE Transactions on, 37(11):1434–1438. 15, 107, 109, 111,

113, 114, 122

[91] Lunardini, D., Narasimham, B., Ramachandran, V., Srinivasan, V., Schrimpf,

R., and Robinson, W. (2004). A performance comparison between hardened-by-

design and conventional-design standard cells. In 2004 Workshop on Radiation

E↵ects on Components and Systems, Radiation Hardening Techniques and New

Developments. 9

[92] Lyons, D. (2000). Sun screen. Available at http://www.forbes.com/forbes/

2000/1113/6613068a.html. 62

[93] Maruyama, N., Nukada, A., and Matsuoka, S. (2009). Software-based ecc

for gpus. In 2009 Symposium on Application Accelerators in High Performance

Computing (SAAHPC’09). 107

145

http://www.forbes.com/forbes/2000/1113/6613068a.html
http://www.forbes.com/forbes/2000/1113/6613068a.html

[94] Maruyama, N., Nukada, A., and Matsuoka, S. (2010). A high-performance fault-

tolerant software framework for memory on commodity gpus. In Parallel and

Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages

1–12. IEEE. 107

[95] Maslennikow, O., Kaniewski, J., and Wyrzykowski, R. (1998). Fault tolerant qr-

decomposition algorithm and its parallel implementation. In Euro-Par’98 Parallel

Processing, pages 1–1. Springer. 107

[96] Massey, J. and Garcia, O. (1972). Error-correcting codes in computer arithmetic.

10

[97] Mastipuram, R. and Wee, E. (2004). Soft errors impact on system reliability.

EDN, Sept, 30. 62

[98] Meaney, P., Swaney, S., Sanda, P., and Spainhower, L. (2005). Ibm z990 soft

error detection and recovery. Device and Materials Reliability, IEEE Transactions

on, 5(3):419–427. 10

[99] Meuer, H. W., Strohmaier, E., Dongarra, J. J., and Simon, H. D. (2010). TOP500

Supercomputer Sites, 36th edition. (The report can be downloaded from http:

//www.netlib.org/benchmark/top500.html). 2, 63, 105

[100] Michalak, S., Harris, K., Hengartner, N., Takala, B., and Wender, S. (2005).

Predicting the number of fatal soft errors in los alamos national laboratory’s asc q

supercomputer. Device and Materials Reliability, IEEE Transactions on, 5(3):329–

335. 61

[101] Mitra, S., Karnik, T., Seifert, N., and Zhang, M. (2005a). Logic soft errors

in sub-65nm technologies design and cad challenges. In Design Automation

Conference, 2005. Proceedings. 42nd, pages 2–4. IEEE. 9

146

http://www.netlib.org/benchmark/top500.html
http://www.netlib.org/benchmark/top500.html

[102] Mitra, S., Zhang, M., Mak, T., Seifert, N., Zia, V., and Kim, K. (2005b). Logic

soft errors: a major barrier to robust platform design. In Test Conference, 2005.

Proceedings. ITC 2005. IEEE International, pages 10–pp. IEEE. 9

[103] Mohanram, K. and Touba, N. (2003). Cost-e↵ective approach for reducing soft

error failure rate in logic circuits. In Test Conference, 2003. Proceedings. ITC 2003.

International, volume 1, pages 893–901. IEEE. 9

[104] Neubauer, A., Freudenberger, J., and Kühn, V. (2007). Coding theory:

algorithms, architectures, and applications. Wiley-Interscience. 71

[105] NVIDIA (2009). Nvidia’s next generation cuda compute architecture: Fermi

v1.1. Technical report, NVIDIA Corporation. 107

[106] Nvidia, C. (2011). Nvidia cuda c programming guide. NVIDIA Corporation.

120

[107] Park, H. (1992). On multiple error detection in matrix triangularizations using

checksum methods. Journal of Parallel and Distributed Computing, 14(1):90–97.

15

[108] Plank, J., Beck, M., Kingsley, G., and Li, K. (1994). Libckpt: Transparent

checkpointing under unix. University of Tennessee], Computer Science Department.

12

[109] Plank, J. and Li, K. (1994). Faster checkpointing with n+ 1 parity. In

Fault-Tolerant Computing, 1994. FTCS-24. Digest of Papers., Twenty-Fourth

International Symposium on, pages 288–297. IEEE. 13

[110] Plank, J., Li, K., and Puening, M. (1998). Diskless checkpointing. Parallel and

Distributed Systems, IEEE Transactions on, 9(10):972–986. 13, 19

[111] Rao, R., Blaauw, D., and Sylvester, D. (2006). Soft error reduction in

combinational logic using gate resizing and flipflop selection. In Computer-Aided

147

Design, 2006. ICCAD’06. IEEE/ACM International Conference on, pages 502–

509. IEEE. 9

[112] Rao, T. (1974). Error coding for arithmetic processors. Academic Press, Inc.

10

[113] Reed, I. and Solomon, G. (1960). Polynomial codes over certain finite fields.

Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304. 8, 15

[114] Rossi, D., Timoncini, N., Spica, M., and Metra, C. (2011). Error correcting code

analysis for cache memory high reliability and performance. In Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2011, pages 1–6. IEEE. 9

[115] Sankaran, S., Squyres, J., Barrett, B., Sahay, V., Lumsdaine, A., Duell, J.,

Hargrove, P., and Roman, E. (2005). The lam/mpi checkpoint/restart framework:

System-initiated checkpointing. International Journal of High Performance

Computing Applications, 19(4):479–493. 12

[116] Schreiber, R. and Van Loan, C. (1989). A storage-e�cient wy representation for

products of householder transformations. SIAM J. Sci. Stat. Comput., 10(1):53–57.

46, 108

[117] Schroeder, B. and Gibson, G. (2007). Understanding failures in petascale

computers. In Journal of Physics: Conference Series, volume 78, page 012022.

IOP Publishing. 105

[118] Schroeder, B., Pinheiro, E., and Weber, W. (2009). DRAM errors in the wild: a

large-scale field study. In Proceedings of the eleventh international joint conference

on Measurement and modeling of computer systems, pages 193–204. ACM. 9, 62

[119] Semiconductor, T. (2004). Soft errors in electronic memory-a white paper.

URL: http://www. tezzaron. com/about/papers/Papers. htm. 9

148

[120] Sharangpani, H. and Arora, H. (2000). Itanium processor microarchitecture.

Micro, IEEE, 20(5):24–43. 8

[121] Shea↵er, J., Luebke, D., and Skadron, K. (2007). A hardware redundancy

and recovery mechanism for reliable scientific computation on graphics processors.

In Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, pages 55–64. Eurographics Association. 107

[122] Shi, G., Enos, J., Showerman, M., and Kindratenko, V. (2009). On testing gpu

memory for hard and soft errors. In Proc. Symposium on Application Accelerators

in High-Performance Computing. 107

[123] Shi, Y., Zhang, X., Ni, Z., and Ansari, N. (2004). Interleaving for combating

bursts of errors. Circuits and Systems Magazine, IEEE, 4(1):29–42. 8

[124] Shro↵, G. and Bischof, C. (1992). Adaptive condition estimation for rank-one

updates of qr factorizations. SIAM journal on matrix analysis and applications,

13:1264. 114

[125] Silva, L. and Silva, J. (1998). An experimental study about diskless

checkpointing. In Euromicro Conference, 1998. Proceedings. 24th, volume 1, pages

395–402. IEEE. 13

[126] Slayman, C. (2005). Cache and memory error detection, correction, and

reduction techniques for terrestrial servers and workstations. Device and Materials

Reliability, IEEE Transactions on, 5(3):397–404. 8

[127] Slegel, T., Averill III, R., Check, M., Giamei, B., Krumm, B., Krygowski, C.,

Li, W., Liptay, J., MacDougall, J., McPherson, T., et al. (1999). Ibm’s s/390 g5

microprocessor design. Micro, IEEE, 19(2):12–23. 10

[128] Streitz, F., Glosli, J., Patel, M., Chan, B., Yates, R., Supinski, B., Sexton, J.,

and Gunnels, J. (2006). Simulating solidification in metals at high pressure: The

149

drive to petascale computing. In Journal of Physics: Conference Series, volume 46,

page 254. IOP Publishing. 1

[129] Team, I. (2008). Overview of the ibm blue gene/p project. IBM Journal of

Research and Development, 52(1/2):199–220. 8

[130] Tendler, J., Dodson, J., Fields, J., Le, H., and Sinharoy, B. (2002). Power4

system microarchitecture. IBM Journal of Research and Development, 46(1):5–25.

9

[131] The MPI Forum (2099). MPI: A Message-Passing Interface Standard, Version

2.2. Technical report. 45

[132] Tipton, A., Pellish, J., Reed, R., Schrimpf, R., Weller, R., Mendenhall, M.,

Sierawski, B., Sutton, A., Diestelhorst, R., Espinel, G., et al. (2006). Multiple-

bit upset in 130 nm cmos technology. Nuclear Science, IEEE Transactions on,

53(6):3259–3264. 62

[133] Tomov, S., Dongarra, J., and Baboulin, M. (2010). Towards dense linear algebra

for hybrid gpu accelerated manycore systems. Parallel Computing, 36(5-6):232–240.

106

[134] Udipi, A., Muralimanohar, N., Chatterjee, N., Balasubramonian, R., Davis,

A., and Jouppi, N. (2010). Rethinking dram design and organization for

energy-constrained multi-cores. In ACM SIGARCH Computer Architecture News,

volume 38, pages 175–186. ACM. 9

[135] Vaidya, N. (1998). A case for two-level recovery schemes. Computers, IEEE

Transactions on, 47(6):656–666. 13

[136] Van De Geijn, R. and Watts, J. (1997). SUMMA: Scalable universal matrix

multiplication algorithm. Concurrency Practice and Experience, 9(4):255–274. 96

150

[137] Walters, J. and Chaudhary, V. (2006). Application-level checkpointing

techniques for parallel programs. Distributed Computing and Internet Technology,

pages 221–234. 12

[138] White, M., Qin, J., and Bernstein, J. (2011). A study of scaling e↵ects on

dram reliability. In Reliability and Maintainability Symposium (RAMS), 2011

Proceedings-Annual, pages 1–6. IEEE. 62

[139] Wilkerson, C., Alameldeen, A., Chishti, Z., Wu, W., Somasekhar, D., and Lu,

S. (2010). Reducing cache power with low-cost, multi-bit error-correcting codes. In

ACM SIGARCH Computer Architecture News, volume 38, pages 83–93. ACM. 9

[140] Woodbury, M. (1949). The stability of out-input matrices. Chicago, IL. 93

[141] Woodbury, M. (1950). Inverting modified matrices. Memorandum report,

42:106. 93

[142] Yim, K. and Iyer, R. (2011). Hauberk: Lightweight silent data corruption error

detectors for gpgpu. In Proceedings of the 17th Humantech Thesis Prize (Also in

IPDPS 2011). 107

[143] Yoon, D. and Erez, M. (2009). Memory mapped ecc: low-cost error protection

for last level caches. In ACM SIGARCH Computer Architecture News, volume 37,

pages 116–127. ACM. 9

[144] Yoon, D. and Erez, M. (2010). Virtualized and flexible ecc for main memory.

ACM SIGARCH Computer Architecture News, 38(1):397–408. 9

[145] Ziegler, J. (1996). Terrestrial cosmic rays. IBM Journal of Research and

Development, 40(1):19–39. 62

151

Vita

Peng Du was born in Dalian, P. R. China. He received his high-school education from

the No.24 High School, Dalian, P.R.China from 1995 to 1998. He obtained a Bachelor

degree in Measuring and Control, and a master degree in Optical Engineering from

Beijing University of Aeronautics and Astronautics, Beijing, P.R.China in 2002 and

2005, respectively.

He came to the University of Tennessee, Knoxville, to pursue a doctoral degree

in August 2005. During his graduate studies, he worked as a graduate research

assistant in Innovative Computing Laboratory (ICL) under the guidance of Dr. Jack

Dongarra. He was involved in the following federally funded projects related to

high performance computing: LAPACK/ScaLAPACK, CLAPACK, Fault Tolerance

Linear Algebra (FT-LA) and MAGMA. His current research interests include high

performance computing, parallel and distributed computing. Peng Du is expected to

receive a Doctor of Philosophy degree in Computer Science in August 2012.

152

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2012

	Hard and Soft Error Resilience for One-sided Dense Linear Algebra Algorithms
	Peng Du
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Problem Statement
	1.2 Contribution
	1.2.1 Hard Error
	1.2.2 Soft Error

	1.3 Dissertation outline

	2 Background
	2.1 Relate work
	2.1.1 The Memory System
	2.1.2 Compute Logic
	2.1.3 Roll-back Recovery with Disk-based Checkpointing and Message Logging
	2.1.4 Diskless Checkpointing
	2.1.5 Algorithm Based Fault Tolerance
	2.1.6 Other Methods For Soft Error

	2.2 Fundamental Questions
	2.3 Error Model

	3 Hard Error Resilience on Distributed Memory System
	3.1 Introduction
	3.2 Algorithm Based Fault Tolerance Background
	3.3 Full Factorizations of Matrix
	3.4 Protection of the Right Factor Matrix with ABFT
	3.4.1 Checksum Relationship
	3.4.2 Checksum Invariant with Full Matrix Update
	3.4.3 Checksum Invariant in Block Algorithms
	3.4.4 Issues with Two-Dimensional Block-cyclic Distribution
	3.4.5 Checksum Protection Against Failure
	3.4.6 Delayed Recovery and Error Propagation

	3.5 Protection of the Left Factor Matrix with Q-parallel Checkpoint
	3.5.1 Impracticability of ABFT for Left Factor Protection
	3.5.2 Panel Checkpointing
	3.5.3 Postponed Left Pivoting
	3.5.4 Q-Parallel Checkpointing of Z

	3.6 On-Demand Checkpointing using the Checkpoint-on-Failure Protocol
	3.6.1 QR factorization on Distributed Memory System
	3.6.2 Failure in PBLAS routines

	3.7 Evaluation
	3.7.1 Storage Overhead
	3.7.2 Overhead without Failures
	3.7.3 Recovery Cost
	3.7.4 Extension to Other factorization
	3.7.5 Checkpointing-on-Failure for QR

	3.8 Conclusion

	4 Soft Error Resilience on Distrbuted Memory System
	4.1 Introduction
	4.2 High Performance Linear System Solver
	4.3 Soft Error Resilience Framework
	4.3.1 Error Pattern in the Block LU Algorithm
	4.3.2 General Work Flow

	4.4 Detecting and Correcting Errors in L
	4.4.1 Error Encoding for L: 1 Error Per Column
	4.4.2 Local Checkpointing
	4.4.3 Error Encoding for L: Multiple Errors Per Column

	4.5 Encoding for Multiple Errors in and
	4.5.1 Soft Errors Modeling
	4.5.2 Errors Detection

	4.6 Complexity Reduction
	4.6.1 Reduction for L
	4.6.2 Reduction for U

	4.7 Recovery Algorithm
	4.7.1 Correction for x
	4.7.2 Computation Complexity

	4.8 Performance Evaluation
	4.8.1 Performance Model for the Right Factor
	4.8.2 Scalability
	4.8.3 Recovery Performance

	4.9 Conclusion

	5 Soft Error Resilience on Hybrid System with GPGPU
	5.1 Introduction
	5.2 Related Work
	5.3 Hybrid QR
	5.4 Soft Error Modeling
	5.4.1 Error Model
	5.4.2 Checksum for R

	5.5 Recovery Algorithm
	5.5.1 Spike-Eliminating Technique
	5.5.2 QR Update as the Recovery Algorithm
	5.5.3 Givens Rotation Utilities for the GPU

	5.6 Protection for Q
	5.6.1 Static Checkpointing for Q
	5.6.2 Timing of Checkpointing

	5.7 Performance Evaluation
	5.7.1 Overhead Analysis
	5.7.2 Checkpointing of Q
	5.7.3 Recovery
	5.7.4 Result on Keeneland

	5.8 Conclusion

	6 Conclusions and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Vita

