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Abstract 

Understanding the effects climate change will have on the structure and function of global 

ecosystems is a pressing ecological and social issue. Global change driven changes in 

atmospheric warming and precipitation régimes have begun to alter the distribution of plants and 

animals in, as well as the function of, ecosystems. Using two large-scale climate change 

manipulations, I assessed the effect of changing precipitation and temperature regimes on soil 

microbial community structure and function. Soil microbial communities regulate decomposition 

and nutrient cycling rates in ecosystems, thus understanding their response to climatic changes 

will enable scientists to better predict carbon feedbacks to the atmosphere as well as functional 

shifts within ecosystems. My first two chapters took advantage of a large-scale precipitation 

manipulation in a semi-arid woodland. My first chapter aimed to understand how changing 

precipitation amounts altered the structure and abundance of soil bacteria and fungi; while my 

second chapter measured how changing precipitation altered soil nitrogen cycling. Overall, I 

found that soil microbial community composition and function were responsive to changes in 

precipitation, but these responses were contingent upon seasonal variability in precipitation and 

the aboveground plant community. My final experiment examined how changing temperature 

altered soil microbial community structure and function in two temperate forests. Using a large 

scale warming experiment at two locations, I examined how changes in temperature altered 

microbial composition, abundance, potential enzyme activity, and decomposition. I found that 

the effects of warming were contingent upon location; microbial community composition 

responded to alterations in soil temperature and soil moisture at the warmer site, but not at the 

cooler site. Unexpectedly, the change in microbial community composition did not result in 

changes in the rate of decomposition. I conclude that the soil is relatively buffered from 



 v 

atmospheric warming thus changes in microbial community structure and function may take 

longer than a few years to develop. Taken together, my research demonstrates that understanding 

the effects of climate change on microbial community structure and function is complex and 

contingent upon the background abiotic and biotic variability within an ecosystem. 
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Introduction. 

Understanding how climate change will alter the structure of ecosystems and their function is a 

pressing issue in ecological research. Currently, climate change is altering the distributions of 

organisms globally, which will have large consequences for the functioning of ecosystems 

(Matthes 2008, Parmesan and Yohe 2003). Much work has been done to understand how 

aboveground communities respond to climate change, but less is known about the response of 

belowground microorganisms. Since microorganisms regulate nutrient transformations in the soil, 

understanding their response enables researchers to address climatic driven changes in their 

structure and function. My dissertation research aimed to understand how two different climate 

change factors, precipitation change and atmospheric warming, altered belowground community 

structure and function.  

Soil and litter microbial communities are responsible for the majority of decomposition 

and nutrient mineralization in terrestrial ecosystems (Bardgett 2005) and their abundance, 

community structure, and activity is often directly influenced by abiotic factors such as 

temperature and precipitation (Angel et al. 2010, Castro et al. 2010, Collins et al. 2008, Rinnan et 

al. 2007, Schadt et al. 2003, Schimel et al. 2007, Williams and Rice 2007, Zogg et al. 1997). 

Additionally, factors such as plant community composition may have large effects on 

belowground community structure and function (Buyer et al. 2002). As plant distributions shift 

in response to climate change, it is important to assess both the direct effect of climate change on 

belowground communities and the indirect effect mediated by changes in the plant community. 

The work presented here took advantage of two large-scale experimental manipulations 

in an effort to understand how different climate change factors altered microbial community 

structure and ecosystem function. In chapters 1 and 2, I examined how changes in precipitation, 
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season, and plant species interactively and independently altered soil microbial community 

structure and function in a piñon-juniper woodland. In chapter 3, I examined how warming 

altered soil microbial structure and function in two different locations in temperate forests to 

understand how background climatic variability influenced the microbial response to 

experimental warming.  

 

The effect of precipitation change on microbial structure and nitrogen cycling 

Over the past century, human activities have caused unprecedented changes in the physical and 

chemical structure of the world. These changes include a 37% increase in atmospheric [CO2] and 

a 0.7 °C increase in mean annual temperature (Solomon 2007). Furthermore, climate models 

predict that the frequency and severity of drought and other extreme weather events will increase 

globally (Easterling et al. 2000). Increased drought will be especially important in the 

southwestern US (Gregory et al. 1997, Pan et al. 1998, Hanson and Weltzin 2000, Rosenberg et 

al. 2003, Cook et al. 2004) where piñon-juniper (PJ) woodlands, the third largest vegetation type 

in the Continental US, cover >36 million acres (Mueller et al. 2005, Shaw et al. 2005). In the last 

decade, consistent with climate model projections, areas encompassing PJ woodlands have 

experienced some of the most extreme years of drought to date (Breshears et al. 2005). These 

droughts have important consequences for PJ woodlands, including changes in plant community 

composition (Mueller et al. 2005), changes in the associated soil bacterial and fungal 

(collectively microbial) communities (Swaty et al. 2004), and changes in ecosystem processes 

such as carbon and nutrient cycling (Padien and Lajtha 1992, Hanson and Weltzin 2000).  

Changes in precipitation may directly alter soil microbial communities that are 

responsible for decomposition and nutrient cycling via changes in soil water availability. Soil 
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bacterial and fungal communities exhibit a variety of responses to changes in precipitation. 

These responses tend to be ecosystem specific and come in the form of altered diversity, function, 

and abundance. The response of the microbial community may be related to nutrient availability, 

stress induced by abiotic factors or herbivory, or even the duration of the extreme weather event 

(either drought or increased precipitation) (Stark and Firestone 1995, Williams and Ehleringer 

2000, Kuske et al. 2003, Kerkhoff et al. 2004, Sowerby et al. 2005, Williams 2007, Williams and 

Rice 2007). Because soil microbial community structure and function is highly responsive to 

fluxes in precipitation (Schimel et al. 2007), individual members or the communities collectively, 

may serve as potential facilitators or inhibitors of vegetational shifts in piñon-juniper woodlands.  

Changes in precipitation regime and soil communities may result in large and sustained 

vegetational shifts in PJ woodlands (Kerkhoff et al. 2004, Breshears et al. 2005, Mueller et al. 

2005) where increased mortality of large piñon (Pinus edulis) may result in piñon–juniper 

woodlands becoming dominated by juniper (Juniperus monosperma) (McHugh and Gehring 

2006). As piñon die, the population of their associated symbionts (e.g., ectomycorrhizas) will 

also decline (Swaty et al. 2004, Haskins and Gehring 2005, Mueller et al. 2005). Reductions in 

these symbiotic fungi may inhibit piñon from re-colonizing an area thus leading to the 

persistence of observed vegetation shifts (Mueller et al. 2005). Because piñon and juniper utilize 

different mycorrhizal symbionts that can be important for water acquisition (piñon associate with 

ectomycorrhizae whereas juniper associate with arbuscular mycorrhizae), changes in mycorrhizal 

abundance and distribution may be an important factor in the response of these trees to 

precipitation changes. Changes in precipitation may indirectly affect decomposition and nutrient 

cycling through changes in the soil bacterial and fungal communities responsible for these 
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processes, or through feedbacks from these communities that will alter the plant community 

composition thus changing litter inputs and quality.   

Understanding the direct and indirect effects of precipitation change on plant and soil 

communities and the feedbacks that occur is imperative to understanding how these changes alter 

both ecosystem structure and function in this dominant woodland. By elucidating the links 

between above and belowground communities, better predictions may be made as to how 

ecosystems will respond to climatic change to understand what factors are important in 

facilitating the ecosystem response to climatic change.  

To assess drought-associated changes in PJ woodlands, I took advantage of an ongoing 

precipitation manipulation at the Sevilleta Long-Term Ecological Research (LTER) site in 

central New Mexico (34 degrees 23.16' N, 106 degrees 31.51' W). In 2007, 12 plots (each 1600 

m
2
) were established in a PJ woodland to determine the hydraulic mechanisms of piñon and 

juniper survival and mortality during drought in the southwestern US (McDowell et al. 2008). 

The treatments are as follows: decreased precipitation (50% reduction), increased precipitation 

(20% increase), a precipitation removal and reapplication control (cover control), and an 

unmanipulated control (ambient control) (Figure 1). The vegetation in this area consists of 

extensive stands of piñon and juniper that have sustained little mortality during the recent 

droughts in New Mexico. I used this experiment to ask two main questions: 1. How do 

precipitation change, season, and the plant community alter microbial composition and 

abundance and 2. How do precipitation change, season, and the plant community alter litter 

biomass, nitrogen cycling, and microbial function (Figure 2)? Overall, I found that microbial 

communities in this ecosystem are subjected to large variations in rainfall seasonally, which 

possibly minimized the effect of our precipitation treatments. I also found that the structure and 
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abundance of the microbial community varied beneath piñon and juniper crowns. Similarly, I 

found that season, precipitation treatment, and the plant community influenced nitrogen cycling 

in this ecosystem. Surprisingly, this change was not because of changes in biomass production or 

microbial function, but instead was due to alterations in plant uptake of nitrogen. I conclude that 

understanding the effect of climate change on microbial community structure and function is 

contingent upon the underlying variability in rainfall and composition of the associated plant 

community. 

 

Figure 1. Precipitation manipulation at the Sevilleta LTER site in central New Mexico showing 

precipitation treatments, - water (water reduction) and + water (water addition), and controls. 
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Figure 2. Precipitation change can alter plant community composition, soil community 

composition, and nitrogen cycling directly (shown with black arrows) via changes in water 

availability. Precipitation change can indirectly (shown with gray arrows) alter soil microbial 

structure and function through changes in plant community composition. The cloud represents 

the abiotic factor of interest, while the rectangles represent biological communities. The circle 

represents the ecosystem process of interest, nitrogen cycling. 

 

The effect of warming on microbial structure, function, and decomposition 

Over the past century, increasing atmospheric CO2 has resulted in a temperature increase of 0.7 

C since 1850. Climate models predict that global temperatures will continue to increase by 

another 1.1 C ~ 6.4 C at the end of this century (Solomon 2007). These changes in the global 

temperature may have significant impacts on ecosystem function and on the microbial 

communities that regulate these processes (Rustad et al. 2001).   
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Microbial communities are key players in decomposition and nutrient cycling, so changes 

to these communities in terms of community composition, abundance, or function may have 

large effects on ecosystem processes. Previous studies have shown that warming may have 

significant impacts on ecosystem processes (Rustad et al. 2001), but few have actually examined 

how warming alters the microbial communities responsible for these processes (Rinnan 2006).  

Therefore, for the final chapter of my dissertation, I explored how experimental warming altered 

soil microbial community composition and activity, and an ecosystem process, decomposition, 

using a pre-existing warming experiment at a northern location in Massachusetts and a southern 

location in North Carolina (Figure 3). In 2009, 12 chambered, experimental plots (chamber 

volume is 21.7 m
3
) were established in hardwood forests at each of these sites. Nine of the open 

top chambered plots were heated, while three were unheated chamber controls. Plots were 

warmed using heated air in a regression design at 0.5 C half steps from 1.5 C to 5.5 C above 

ambient. The warming treatments began in January of 2010.  

My study took a bottom up approach in an effort to link the composition of the soil 

community with ecosystem function (Figure 4, Zak et al. 2006). I assessed bacterial and fungal 

community composition and abundance, potential microbial extracellular enzyme activity, and 

rates of decomposition in warming chambers at both locations. This stepwise analysis of the 

microbial community allowed me to assess warming impacts on these communities at the 

broadest level, leading to potential changes in activity, which may result in larger changes in 

ecosystem function. Additionally, I assessed these parameters at two different latitudes in order 

to understand how background climatic variability altered the response of the microbial 

community to atmospheric warming.  
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Overall, I found that changes in soil temperature and soil moisture at our warmest site 

had significant impacts on microbial community structure and function, but I did not see large 

changes at our cooler site. I conclude that global warming may have more drastic effects in 

warmer locations where small increases in temperature will result in more extreme temperature 

regimes for microbial communities.  

 

 
Figure 3. Twelve chambered, experimental plots (chamber volume is 21.7 m

3
) were established 

in hardwood forests at a southern location and a northern location. A chambered plot at the 

southern location is pictured above. Plots were warmed using heated air in a regression design at 

0.5 C half steps from 1.5 C to 5.5 C above ambient. 
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Figure 4. Warming may have significant impacts on microbial community structure and function. 

I took a step-wise, bottom-up approach to link microbial community structure and function. 

Starting at the smallest level of organization, I assessed microbial community composition and 

abundance. I next moved a step up and assessed potential changes in microbial function by 

quantifying potential microbial extracellular enzymatic activity. Finally, I moved a step up and 

assessed the actual function of decomposition. This design enabled me to examine the effects of 

warming at each step, thus even if warming was not currently altering ecosystem function, I 

could make predictions about the potential effect of warming on microbial structure and function 

as warming impacts compounded over time. 
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Soil microbial community response to precipitation change in a semi-

arid ecosystem  
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Abstract 

Microbial communities regulate many belowground carbon cycling processes, thus the impact of 

climate change on the structure and function of soil communities could in turn impact the release 

or storage of carbon in soils. Here we used a large-scale precipitation manipulation (+18%, -50%, 

or ambient) in a piñon-juniper woodland (Pinus edulis-Juniperus monosperma) to investigate 

how changes in precipitation amounts altered soil microbial communities as well as what role 

seasonal variation in rainfall and plant composition played in the microbial community response. 

Seasonal variability in precipitation had a larger role in determining the composition of soil 

communities than the direct effect of the experimental precipitation treatments. Bacterial and 

fungal communities in the dry, relatively moisture limited pre-monsoon season were 

compositionally distinct relative to communities in the monsoon season, when soil moisture 

levels and periodicity varied more widely across treatments. Fungal abundance in the drought 

plots during the dry pre-monsoon season was particularly low, and was 4.7  greater upon soil 

wet up in the monsoon season suggesting that soil fungi were water limited in the driest plots 

which may result in a decrease in fungal degradation of carbon substrates. Additionally, we 

found both bacterial and fungal communities beneath piñon pine versus juniper were distinct; 

suggesting that microbial function beneath these trees is different. We conclude that predicting 

the response of microbial communities to climate change is highly dependent on seasonal 

dynamics, underlying environmental variability, and the composition of the associated 

aboveground community.     
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Introduction 

Soil and litter microbial communities are responsible for the majority of decomposition and 

nutrient mineralization in terrestrial ecosystems (Bardgett 2005) and their abundance, 

community structure, and activity is often directly influenced by abiotic factors such as 

temperature and precipitation (Schimel et al. 2007, Williams and Rice 2007, Collins et al. 2008, 

Angel et al. 2010). Because global climate change may have significant impacts on the global 

hydrologic cycle (Matthes 2008) understanding how changes in precipitation shape soil 

communities and their function is important if we are to predict carbon feedbacks to the 

atmosphere (Knapp et al. 2008). Changes in precipitation regimes can alter soil communities by 

causing shifts in community composition through the local extinction of certain operational 

taxonomic units (OTUs) (Fierer et al. 2003, Clark et al. 2009) or by shifting the abundance of 

bacteria and fungi in one group over those in another group (Nazih et al. 2001, Uhlirova et al. 

2005, Clark et al. 2009, Gray et al. 2011). Soil microbial communities may be more resilient to 

environmental change relative to their aboveground plant counterparts, and changes to soil 

communities may only occur when abiotic variables are outside the range normally experienced 

by the communities (Cruz-Martinez et al. 2009).  

 In addition to the direct effect of precipitation change on soil microbial community 

abundance and diversity, soil communities are influenced by changes in plant community 

abundance and composition (Zak et al. 2003, Clark et al. 2009). Plant inputs via exudates or litter 

are food for soil communities, which then use those inputs to mineralize nutrients (Hobbie 1992, 

Chapman et al. 2006, de Graaff et al. 2010). These associations can be tightly coupled. In many 

studies, distinct microbial communities develop beneath individual plant species and function 

differently when placed beneath a new plant species (Buyer et al. 2002, Zak et al. 2003, Kardol 
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et al. 2010, Mitchell et al. 2010). These associations can be particularly important when 

considering the response of symbiotic relationships like mycorrhizae to projected changes in 

plant distributions (Haskins and Gehring 2004, Bellgard and Williams 2011). It is important to 

consider how climate change might alter both plant distributions and the distributions of the 

associated soil community. 

 Seasonal and temporal shifts in rainfall, especially in ecosystems where organisms may 

be at their physiological tolerance limit, can have a large impact on the diversity, abundance, and 

responsiveness of soil microbial communities (Schadt et al. 2003, Lipson and Schmidt 2004, 

Hullar et al. 2006, Waldrop and Firestone 2006). Seasonal variation in rainfall may ameliorate 

the direct effects of climate change on soil communities because a wide range of physiological 

tolerances may already exist within the community (Cruz-Martinez et al. 2009, Hawkes et al. 

2011). Alternatively climate change may increase the severity of this variation resulting in new 

dynamics within the microbial community such as changes in species richness or composition 

(Waldrop and Firestone 2006, Hawkes et al. 2011). Therefore, measuring the responses of soil 

communities across seasons and years enables researchers to better predict microbial responses 

to climate change. 

 Semi-arid piñon-juniper woodlands provide a model test case to understand and possibly 

predict how both seasonal dynamics and how the dominant plant community may influence the 

response of soil communities to climate change. Piñon-juniper woodlands are defined by a long 

dry season followed by monsoonal rains that can saturate the soil system (Greenland et al. 2003), 

thus soil communities in these woodlands likely have a large range of physiological tolerances to 

high and low moisture regimes (Schwinning and Sala 2004). In addition, piñon-juniper 

woodlands in the southwestern US have experienced multiple years of severe drought since 2000, 
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which is leading to a significant shift in the plant community (Mueller et al. 2005). Junipers, that 

are more drought resistant, are able to persist, while piñon pine populations are declining 

(Breshears et al. 2009).  Given climate models predict that the frequency and severity of drought 

will continue to increase in the southwestern US (Gregory et al. 1997, Pan et al. 1998, Hanson 

and Weltzin 2000, Rosenberg et al. 2003, Cook et al. 2004) where these woodlands cover >17 

million hectares (39), understanding how climate change may directly or indirectly alter soil 

communities and the processes they regulate is important.  

Large-scale manipulation of climate variables can inform scientists how ecosystems, 

and their associated communities, will respond in the future (Luo et al. 2011). We took 

advantage of a large-scale precipitation manipulation in a piñon-juniper woodland to investigate 

how precipitation, increases and decreases, alter soil community composition and abundance 

beneath piñon and juniper trees across seasons. We predicted that: (1) soil microbial community 

composition and abundance would vary with moisture availability due to changes in precipitation 

both seasonally and across experimental precipitation treatments, (2) that soils beneath piñon and 

juniper would harbor distinct microbial communities, and (3) that relative to juniper, soil 

communities beneath piñon would be more responsive to increases and decreases in precipitation 

because previous work at our site shows that piñon is more stressed than juniper by drought 

(Pangle et al. 2012, Plaut et al. 2012).  

 

Methods 

Site and experimental description 

To assess how precipitation change, including both increases and decreases, tree species, and 

season altered the soil microbial community; we examined microbial community composition, 
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abundance, and biomass beneath piñon and juniper at a precipitation manipulation experiment in 

Central New Mexico (see Pangle et al. 2012 for extensive experimental design details). The 

experiment is located in a piñon-juniper woodland at the Sevilleta National Wildlife Refuge in 

central New Mexico (1900 m elevation), where the Sevilleta LTER program is located (32º 20’ 

N, 106º50’ W). Climate records from the Sevilleta LTER meteorological station (Cerro Montoso 

#42; http://sev.lternet.edu/) indicate the mean annual temperature around our study site is 13 °C 

and the mean annual precipitation is 368 mm. The largest amount of precipitation comes during 

the monsoon season (July, August, September). Monsoon precipitation accounts for over half of 

the total annual precipitation; but high evapotranspiration rates prevent monsoon rain events 

from recharging soil moisture to depth (Greenland et al. 2003).  

We established 12 experimental plots (each 1600 m
2
) in mid-summer 2007. These plots 

consist of a decreased precipitation treatment (~50% reduction), an increased precipitation 

treatment (~18% addition), a precipitation removal control treatment (cover control), and an 

ambient control treatment (n = 3). Precipitation was reduced using a throughfall displacement 

design (Sala 2000). Troughs were constructed of clear UV-coated acrylic sheets and installed in 

each drought plot at a height of approximately 1 m. The cover controls were constructed by 

inverting the troughs. To increase precipitation, sprinklers were installed in each precipitation 

addition plot, where 57 mm of precipitation was added in three separate 19 mm rain events in 

2008. The ambient control treatments were unmanipulated plots located within the experimental 

plot matrix. These plots serve as the control for the water addition treatment and as an 

unmanipulated control for the precipitation exclosure plots. Volumetric water content (VWC) is 

monitored at -5 cm depth using EC-20 ECH2O probes (Decagon, Pullman, WA; 42). 
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Soil sampling and DNA extraction 

We collected soil samples in the pre-monsoon and during the monsoon season because we 

expected that seasonal variability in rainfall might alter soil microbial community characteristics. 

Combined with drought, the dry pre-monsoon season may represent a threshold for changes in 

microbial community structure not evident during the rainy monsoon season. In order to 

understand how our precipitation treatments altered microbial biomass, we also measured 

microbial biomass nitrogen during the 2009 pre-monsoon season.  We collected soil cores (10 

cm depth, 5 cm diameter) in June (pre-monsoon) and August (monsoon) of 2008 from three 

randomly chosen locations beneath piñon (Pinus edulis) and juniper (Juniperus monosperma) 

crowns in each treatment plot. We combined and homogenized the soil by cover type within each 

treatment and flash froze a soil subsample from each in liquid nitrogen for subsequent molecular 

analyses. Subsamples were placed on dry ice, and stored at -80 C in the laboratory until the 

DNA was extracted. The remainder of the soil was homogenized, sieved to 2 mm, and used to 

assess gravimetric water content. 

We extracted DNA from 1 g of soil in each of our samples using the UltraClean Soil 

DNA Isolation kit (MoBio Laboratories, Carlsbad, CA). DNA concentration and purity were 

evaluated spectrophotometrically using a Synergy HT microplate reader (Biotek Instruments, 

Winooski, VT). OD260/OD280 ratios were used to assess DNA quality. Ratios ranged from 

approximately 1-2. Ratios below 1.8 indicated the presence of proteins such as humic acids in 

the soil, which may inhibit PCR reactions therefore sample DNA was diluted 1:10 in sterile 

water before PCR reactions.  
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Microbial community composition 

Bacterial and fungal community fingerprints were obtained using terminal-restriction fragment 

length polymorphism (TRFLP) following a modified protocol outlined by Singh and Thomas 

2006. Due to decreases in fluorescence when multiplexed (data not shown), we opted to perform 

the analyses for the bacterial and fungal communities in separate reactions. Polymerase chain 

reaction (PCR) was performed to amplify the 16S rRNA gene from bacteria using primers 63f 

(Marchesi et al. 1998):  5'- AGGCCTAACACATGCAAGTC -3' and 1087r (Hauben et al. 1997): 

5' (VIC)- TCGTTGCGGGACTTACCCC -3'. PCR was performed to amplify the ribosomal ITS 

region from fungi using primers ITS1f (Gardes and Bruns 1993): 5' (6-FAM) – 

CTTGGTCATTTAGAGGAAGTAA -3' and ITS4r (Singh et al. 2006):  5’ – 

TCCTCCGCTTATTGATATGC -3’. PCR mixtures contained 5 l 10x KCL reaction buffer, 2 

l 50 mM MgCl2, 5 l 10 mM dNTPs (Bioline, Tauton, MA), 1 l 20 mg/ml BSA (Roche, 

location), 0.5 l (2.5 Units) Taq DNA polymerase (Bioline, Tauton, MA), either 1 l of each 

bacterial primer or 2 l of each fungal primer (Labeled primers - Invitrogen, by Life 

Technologies, Grand Island, NY, unlabeled primers – Integrated DNA Technologies, Coralville, 

IA) and 2 l of sample DNA diluted 1:10 with sterile water. All PCR reactions were performed 

on 96-well Tgradient thermocycler (Biometra, Goettingen, Germany). Amplification of DNA 

consisted of an initial step of 95 C for 5 min, followed by 30 cycles of denaturation at 95 C for 

30 s, annealing at 55 C for 30 s, and elongation at 72 C for 1 min. The last cycle was followed 

by extension at 72 C for 10 minutes. At completion, PCR product quality was assessed with 1% 

agarose gel electrophoresis. 

 PCR products were cleaned using the QIAquick PCR purification kit (Qiagen, Valencia, 

CA). After cleanup, PCR products were quantified using a Synergy HT microplate reader 
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(Biotek, Winooski, Vermont, USA). All PCR products were digested individually with MspI. 

Reactions contained 14 l PCR product, 2 l 10X buffer B, 2 l MSP1 (Fisher Scientific, USA), 

and 2 l 10 mg/ml acetylated BSA (Promega, Madison, WI). Reactions were brought up to a 

final volume of 20 l with sterile water. Samples were incubated at 37 C for 3 hours followed 

by a deactivation step at 95 C for 10 min. After digestion, a cocktail was made containing 0.5 l 

LIZ labeled GeneScan 1200 internal size standard (Applied Biosystems, Grand Island, NY), 12.5 

l Hi-Di formamide (Applied Biosystems, Grand Island, NY), and 1 l of digested product. 

Samples were centrifuged then incubated at 94 C for 4 min followed by incubation at 4 C for 5 

min. Fragments were analyzed on an ABI Prism 3100 genetic analyzer (Applied Biosystems, 

Grand Island, NY).  

TRFLP profiles were produced using the GeneMapper software (Applied Biosystems, 

Grand Island, NY). Only terminal restriction fragments (TRFs) at positions beyond 55 bp were 

considered in order to avoid TRFs caused by primer-dimers. The relative abundance of a TRF in 

a TRFLP profile was calculated by dividing the peak height of the TRF by the total peak height 

of all TRFs in the profile (Singh et al. 2006). Community analyses of fragments were conducted 

using Primer 6 (Primer-E Ltd, United Kingdom). All data were square root transformed before 

subsequent analyses. A 3-way interactive PERMANOVA was conducted to assess differences in 

the total microbial, bacterial, and fungal community by tree type, treatment, and season. When 

significant effects were found, subsequent pair wise comparisons were assessed.  Community 

data were used for ordination by nonmetric multidimensional scaling. Additionally, total 

microbial, bacterial, and fungal richness were calculated using Primer 6.  
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Microbial abundance 

To assess bacterial and fungal gene copy number (a proxy for abundance; (Strickland and Rousk 

2010)), we ran quantitative polymerase chain reaction (qPCR) on each individual sample of 

DNA in conjunction with primers Eub 338 (ACT CCT ACG GGA GGC AGC AG) and Eub 518 

(ATT ACC GCG GCT GCT GG) for bacterial 16S ribosomal DNA and nuSSU1196F (GGA 

AAC TCA CCA GGT CCA GA) and nuSSU1536R (ATT GCA ATG CYC TAT CCC CA) for 

fungal 18S ribosomal DNA (Castro et al. 2010).  

 PCR mixtures for both 16S rRNA and 18S rRNA gene amplification contained 15 l of 

SYBR green master mix (Invitrogen, Life Technologies, Grand Island, NY), 5 mol of each 

primer (Eurofins mwg operon, Huntsville, AL), and 1 l of sample DNA diluted 1:10 with sterile 

water. All reactions were brought up to a final volume of 30 l with sterile water. Amplification 

protocol for 16S rRNA gene consisted of an initial denaturing cycle of 95 C for three minutes. 

This cycle was followed by 39 cycles of 95 C for 15 s, 53 C for 15 s, and 72 C for 1 minute. 

Amplification of 18S rRNA gene consisted of an initial denaturing cycle of 95 C for three 

minutes. This cycle was followed by 39 cycles of 95 C for 15 s, 53 C for 15 s, and 70 C for  

30 s. Abundance was quantified by comparing unknown samples to serial dilutions of 16S and 

18S rDNA from Escherichia coli and Saccharomyces cerevisiae respectively in each PCR run. 

For both bacterial and fungal assays, the R
2
 value for the linear regression of threshold (Ct) value 

and standard abundance was greater than 0.95 indicating that the assays were quantitative across 

the range of DNA concentrations tested. After completion, for both ribosomal genes, a melting 

curve analysis was conducted to ensure purity of the amplification product. All products showed 

the same overlapping melting peak indicating the specificity of the primers (Rajeevan et al. 
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2001). PCR amplification was performed on a 96-well Chromo4 thermocycler (Bio-Rad 

Laboratories, Hercules, CA).  

 

Microbial biomass nitrogen 

In June of 2009, we randomly collected soil cores (15 cm depth, 5 cm diameter) beneath three 

juniper and three piñon crowns in each of the treatments. Samples were sieved to 2 mm, assessed 

for GWC, and microbial biomass nitrogen. To assess microbial biomass nitrogen, we used the 

fumigation-extraction method (Haubensak et al. 2002). Approximately 15 g of soil was extracted 

with 75 mL of 0.5 M K2SO4 on a shaker for 1 hour. It was then filtered through Whatman 

number 1 filter paper previously leached with DI water. Another subsample was fumigated in a 

vacuum desiccator with CHCl3 for 5 days. After fumigation, the sample was extracted and 

filtered as above. A 20-milliliter aliquot of each extract was digested using a micro-Kjeldahal 

digestion. Samples were analyzed for total nitrogen using a SmartChem chemistry discrete 

analyzer (Westco Scientific Instruments, Inc., Brookfield, CT). Microbial biomass nitrogen was 

determined by subtracting the initial sample nitrogen from the fumigated sample nitrogen. A KEN 

correction factor of 0.2 was used to estimate biomass nitrogen from chloroform labile nitrogen 

(Davidson et al. 1989). 

 

Data analysis 

Prior to analysis, data were tested for normality and log transformed to meet analysis of variance 

(ANOVA) assumptions when needed. We used a 3-way ANOVA with a split-plot design with 

the main effects of season, precipitation, plant species, and the interactive effects of season  

precipitation, season  plant species, precipitation  plant species, and season  precipitation  
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plant species on gravimetric water content (GWC), volumetric water content (VWC), fungal 

abundance, bacterial abundance, fungal:bacterial ratio,  microbial richness, fungal richness, and 

bacterial richness. We used a 2-way ANOVA with a split-plot design with the main effects of 

precipitation and plant species, and the interactive effect of precipitation  plants species on 

microbial biomass N. A student’s t test was used to differentiate between treatments means when 

2 levels were present (i.e. tree differences or seasonal differences), and a Tukey HSD test was 

used to differentiate between treatment means when more than 2 levels were present (i.e. 

precipitation treatment differences). All data were analyzed using JMP 8 (Cary Institute, Cary, 

NC).  

To understand how changing soil moisture, regardless of treatment or season, altered 

microbial richness, abundance, and biomass we ran linear regressions between these factors and 

the average monthly volumetric water content in the month soil samples were taken. This 

allowed us to assess the effect of a continuous measurement of water availability on microbial 

richness and abundance. 

 

Results 

Soil moisture. As expected, soil gravimetric water content (GWC) fluctuated seasonally with 

higher levels of GWC during the monsoon season (Table 1; F = 128.10, p < 0.01). GWC was 

approximately 5.5  higher in August (during the monsoon season) compared to June (pre-

monsoon). Similarly, volumetric water content (VWC) in the water reduction treatments during 

the monsoon season was significantly different from all other plots during both seasons. (Table 

1; F = 3.89, p = 0.02). Relative to all treatment plots in the pre-monsoon season, VWC was 

increased in the water reduction plots during the monsoon season, but it was significantly 
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decreased relative to all plots during the monsoon season. Overall, VWC was 1.6  less in the 

water reduction plots relative to all other plots across both seasons (Table 1; F = 2.53, p = 0.13). 

VWC was also 10  greater during the monsoon relative to the pre-monsoon (Table 1; F = 

268.49, p < 0.01; 42).  

 

Microbial community composition. Bacterial and fungal community composition responded 

significantly to the precipitation treatments, season, and the aboveground plant community.  

Specifically, fungal community composition in the water reduction plots was distinct from 

control plots during the dry pre-monsoon season but not during the wet monsoon season (Table 

1; pseudo F = 1.22, p = 0.10). On average across both seasons, fungal community composition in 

the water reduction plots was significantly different from the cover control plots (t = 1.25, p = 

0.04) and marginally different from control plots (t = 1.23, p = 0.06). Total microbial community 

composition in the water addition plots was also distinct from the cover control plots (t = 1.29, p 

= 0.04). We were unable to detect any effect of our precipitation treatments on bacterial 

community composition (Table 1; pseudo F = 1.11, p = 0.35).  

Season also played a large role in structuring soil microbial communities in this semi-arid 

woodland. Microbial communities in the dry pre-monsoon season were compositionally different 

than in the wet monsoon season (Figure 5A; pseudo F = 15.89, p < 0.01). This pattern held for 

both fungal and bacterial communities, where fungal composition (Figure 5B; pseudo F = 4.52, p 

< 0.01) and bacterial composition (Figure 5C; pseudo F = 30.39, p < 0.01) were different in the 

pre-monsoon and monsoon season. 

Overall, there were significant differences in microbial community composition between 

the two tree species. Specifically, soil microbial community composition beneath juniper was 
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distinct from composition beneath piñon crowns (Figure 6A; pseudo F = 3.11, p < 0.01). There 

were significantly distinct communities of both fungi (Figure 6B; pseudo F = 2.40, p < 0.01) and 

bacteria (Figure 6C; pseudo F = 3.53, p < 0.01) beneath piñon and juniper trees. 

 

Microbial Richness. Microbial richness, in particular fungal richness, responded significantly to 

both changes in water availability and the aboveground plant community. There were 7.6  more 

fungal OTUs beneath piñon in the control and cover control plots in the pre-monsoon season 

relative to juniper in the drought and control plots in the same season (Table 1; F = 3.86, p = 

0.03). In general, fungal richness increased during the monsoon season relative to the pre-

monsoon season across all treatments except the control plots (Figure 7B; F = 3.80, p = 0.03). 

Consistent with this result, fungal richness was 2.2  greater beneath piñon in the pre-monsoon 

season relative to juniper, and fungal richness was 1.2  greater beneath piñon in the monsoon 

season relative to juniper in the pre-monsoon season (Figure 7B; F = 11.31, p < 0.01).  

In general, bacterial richness increased with increasing volumetric water content 

regardless of treatment or season, but the relationship was relatively noisy (Table 2; F = 5.39, p = 

0.03, r
2
 = 0.12). Bacterial richness was 2.4  greater in the water addition plots relative to cover 

control plots in the pre-monsoon season, but there were no differences evident during the 

monsoon season (Figure 7C; F = 3.80, p = 0.03). Additionally, bacterial richness was 1.5  

greater in the cover control plots relative to the water addition plots across both seasons (Table 1; 

F = 4.20, p = 0.04).  

Microbial richness varied between piñon and juniper crowns. Soils associated with piñon 

had greater total microbial richness relative to juniper in the pre-monsoon season (Figure 8A; 

4.79, p = 0.04). Across all plots, piñon had higher microbial richness relative to juniper (Figure 
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8A; F = 5.49, p = 0.03). On average, piñon had 37 OTUs while juniper had 29. Similarly, tree 

type strongly influenced fungal richness (Figure 8B; F = 12.34, p < 0.01). There were 1.5  more 

fungal OTUs beneath piñon crowns than beneath juniper crowns. We did not detect a significant 

effect of tree type on bacterial richness (Table 1; F = 0.02, p = 0.89). 

 

Microbial abundance. Consistent with our composition results, we found that season, treatment, 

and tree type had strong interactive effects on the ratio of fungi and bacteria in the soil. The 

fungal:bacterial ratio was significantly greater beneath piñon in the cover control plots during the 

monsoon season relative to piñon in the + water plots and juniper in all treatment plots in the pre-

monsoon season (Table 1; F = 3.05, p = 0.05). The fungal:bacterial ratio was also higher beneath 

piñon in the cover control plots relative to all other treatment plots (Figure 9A; F = 3.48, p 0.03). 

We did not find a significant main effect of our precipitation treatments on the fungal:bacterial 

ratio (Figure 10A; F = 0.66, p = 0.60), but we did find that across all treatments and seasons, the 

fungal:bacterial ratio increased with increasing volumetric water content (Table 2; F = 7.23, p = 

0.01, r
2
 = 0.14).  

There were significant effects of precipitation treatment, season, and tree type on fungal 

and bacterial abundance. Fungal abundance was 4.7  greater during the monsoon season in the 

water removal plots relative to the pre-monsoon season in these same plots (Figure 10B; F = 4.36, 

p = 0.01). There was a marginal increase in bacterial abundance beneath piñon in the water 

addition plots relative to all other plots (Figure 9C; F = 5.04, p = 0.01). Surprisingly, across all 

treatments and seasons, bacterial abundance decreased with increasing volumetric water content 

(Table 2; F = 5.41, p = 0.03, r
2
 = 0.11).  
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Across all the factors measured, there were significant main effects of season, 

precipitation treatment, and tree type on microbial abundance. The fungal:bacterial ratio was 

2.02 beneath piñon and 1.23 beneath juniper across all treatments (Figure 9A; F = 7.10, p = 0.01). 

In addition, fungal abundance was 2  greater beneath piñon relative to juniper (Figure 9B; F = 

10.21, p < 0.01). Season also had an effect on microbial abundance. The fungal:bacterial ratio 

increased from 0.82 in the pre-monsoon season to 2.4 during the monsoon season (Figure 10A; F 

= 18.61, p < 0.01). Contrary to this, fungal abundance did not vary significantly by season, 

although there was a trend for increased fungal abundance during the monsoon season (Figure 

10B; F = 2.71, p = 0.11). Additionally, bacterial abundance was greater in the pre-monsoon 

season relative to the monsoon season (Figure 10C; F = 5.59, p = 0.03). 

 

Microbial biomass nitrogen. Overall, there was a trend for higher microbial biomass in the water 

addition plots relative to all other treatment plots (Figure 11; F = 3.18, p = 0.06). Consistent with 

our expectations, microbial biomass in the water reduction plots was lowest, and there were 

intermediate levels of microbial biomass in the control plots. Across all plots, we found that 

microbial biomass N increased with increasing volumetric water content (Table 2; F = 4.14, p = 

0.05, r
2
 = 0.16), but we did not find an effect of tree type on microbial biomass nitrogen (Table 

1; F = 0.23, p = 0.64). 
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Table 1. Season, precipitation change, and plant species had significant effects on microbial composition, richness, and abundance. F 

and p values (in parentheses) show the independent and interactive effect of these variables on soil gravimetric water content GWC, 

soil volumetric water content (VWC), fungal abundance, bacterial abundance, fungal:bacterial ratio, microbial community 

composition, fungal community composition, bacterial community composition, total microbial richness, fungal richness, and 

bacterial richness.  

Response variable Full model Precip. Plant species Season 
Precip. × 

plant 

Precip. × 

season 

Plant × 

season 

Precip. × 

plant × 

season 

Soil moisture (GWC) 6.25 (<0.01) 1.59 (0.27) 0.35 (0.56) 128.10 (<0.01) 0.28 (0.84) 1.33 (0.29) 0.44 (0.51) 0.23 (0.87) 

Soil moisture 

(VWC*) 
16.05 (< 0.01) 2.53 (0.13) 2.66 (0.12) 268.49 (< 0.01) 1.34 (0.29) 3.89 (0.02) 0.66 (0.43) 2.34 (0.10) 

Microbial community 

composition 
NA 1.34 (0.04) 3.11 (<0.01) 15.89 (<0.01) 1.04 (0.39) 1.23 (0.11) 1.11 (0.33) 0.68 (0.97) 

Fungal community 

composition 
NA 1.41 (0.01) 2.40 (<0.01) 4.52 (<0.01) 1.12 (0.22) 1.32 (0.03) 1.45 (0.06) 1.13 (0.20) 

Bacterial community 

composition 
NA 1.11 (0.35) 3.53 (<0.01) 30.39 (<0.01) 1.03 (0.43) 1.38 (0.14) 0.89 (0.52) 0.63 (0.89) 

Microbial richness 1.57 (0.16) 1.41 (0.31) 5.49 (0.03) 0.57 (0.46) 0.76 (0.53) 2.60 (0.08) 4.79 (0.04) 2.06 (0.14) 

Fungal richness 2.41 (0.03) 1.40 (0.31) 12.34 (<0.01) 0.65 (0.43) 1.67 (0.21) 3.80 (0.03) 11.31 (<0.01) 3.86 (0.03) 

Bacterial richness 1.81 (0.10) 4.20 (0.04) 0.02 (0.89) 4.16 (0.06) 1.37 (0.28) 3.80 (0.03) 0.83 (0.37) 0.22 (0.88) 

Fungal abundance 1.61 (0.13) 0.63 (0.61) 10.21 (<0.01) 2.71 (0.11) 1.21 (0.33) 4.36 (0.01) 0.01 (0.92) 0.37 (0.78) 

Bacterial abundance 2.14 (0.04) 0.31 (0.82) 0.06 (0.80) 5.59 (0.03) 5.04 (0.01) 1.92 (0.15) 1.12 (0.30) 2.65 (0.07) 

Fungal:bacterial 

ratio 
2.46 (0.02) 0.56 (0.66) 7.10 (0.01) 18.61 (<0.01) 3.48 (0.03) 0.56 (0.65) 0.32 (0.57) 3.05 (0.05) 

Microbial biomass 

nitrogen 
1.27 (0.34) 3.18 (0.06) 0.23 (0.64) NA 0.41 (0.75) NA NA NA 

*Published in Pangle et al., 2012 
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Table 2. Volumetric water content had a significant impact on microbial richness and abundance. 

F and p value show the effect of volumetric water content on microbial richness, abundance, and 

microbial biomass nitrogen.  

 

Response Variable F P 

Microbial richness 0.07 0.79 

Fungal richness 0.001 0.98 

Bacterial richness 5.39 0.03 

Fungal:bacterial ratio 7.23 0.01 

Fungal abundance 0.14 0.71 

Bacterial abundance 5.41 0.03 

Microbial biomass nitrogen 4.14 0.05 

 



 
 

 33 

 

Figure 5. Microbial communities were compositionally distinct in the pre-monsoon and 

monsoon season. Non-metric multi-dimensional scaling demonstrates: A. total microbial 

(bacterial and fungal), B. fungal, and C. bacterial community composition in the pre-monsoon 

(black circles) and in the monsoon (white circles) of 2008. Each point represents a specific 

community either in the pre-monsoon or monsoon season. Points that are close together are more 

similar to one another than points that are far apart.  
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Figure 6. Microbial communities beneath piñon and juniper crowns were compositionally 

distinct from one another. Non-metric multi-dimensional scaling demonstrates A. total microbial 

(bacterial and fungal), B. fungal, and C. bacterial community composition beneath juniper (black 

triangles) and piñon (white triangles) in 2008. Each point represents a specific community 

beneath piñon or juniper crowns. Points that are close together are more similar to one another 

than points that are far apart.  
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Figure 7. Seasonal variability in rainfall and our precipitation treatments interacted to alter: A. 

total microbial richness, B. fungal richness, and C. bacterial richness. Different letters denote the 

significant interactive differences.  
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Figure 8. Season and tree type interacted to alter: A. total microbial richness, B. fungal richness, 

and C. bacterial richness. Different letters denote significant interactive differences. 



 
 

 37 

 

Figure 9. Precipitation treatment and tree type interacted to alter: A. fungal:bacterial ratio, B. 

fungal abundance, and C. bacterial abundance. Different letters denote significant interactive 

differences. 
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Figure 10. Season and precipitation treatment interacted to alter A. fungal:bacterial ratio, B. 

fungal abundance, and C. bacterial abundance. Different letters denote significant interactive 

differences. 
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Figure 11. Precipitation treatment altered microbial biomass in the pre-monsoon season of 2009. 

 

Discussion  

Precipitation change due to global climate change can alter the composition and abundance of 

belowground microbial communities directly by changing soil water availability or indirectly by 

altering plant community composition, production, and allocation (Breshears et al. 2009, Clark et 

al. 2009, Castro et al. 2010, Gray et al. 2011). Consistent with this, we found that seasonal 

fluctuations in rainfall, precipitation treatments, and tree type interactively and independently 

altered microbial community composition, richness, and abundance. Long-term changes in 

microbial communities due to changes in precipitation or the plant community may have large 

implications for the future trajectory of this ecosystem with climate change and the functioning 

of this ecosystem. 



 
 

 40 

Seasonal variation in rainfall may result in a microbial community seasonally acclimated 

to fluctuations in precipitation thus resulting in a diminished response to the precipitation 

manipulation (Fierer et al. 2003, Steenwerth et al. 2005, Evans and Wallenstein 2012). 

Consistent with this, we found that soil microbial community structure and abundance were more 

responsive to fluctuations in seasonal rainfall than to our relatively constant precipitation 

treatments. Throughout the year, the microbial community at this site is subjected to excessive 

drought followed by rapid changes in rainfall during the monsoon season (Greenland et al. 2003). 

This variability greatly exceeds that provided by our precipitation manipulation. For example, 

during the monsoon season of 2008, we added 57 mm of precipitation in the water addition plots. 

This addition is 3  less than the precipitation received from June to the end of August in 2008 

(Pangle et al. 2012). Other studies have demonstrated that when microbial communities are 

acclimated to multiple dry-wet episodes, their response (measured by microbial respiration or 

changes in community composition) is diminished with each repeated event, and the magnitude 

of this response is dependent upon precipitation history and the associated aboveground 

community (Fierer et al. 2003, Steenwerth et al. 2005). Unexpectedly, our results showed 

increased microbial richness in the cover control plots during the pre-monsoon season only. This 

result may be driven by changes in microclimate or the accumulation of water between cover 

control troughs in these plots. During the pre-monsoon season, when water is limiting and very 

little water was added to the water addition plots, the design of the cover controls might result in 

plots that have variable soil moisture levels. Soil beneath the troughs will have very low levels of 

soil water, while the soil in between the troughs will accumulate extra water during rare rain 

events due to runoff from the troughs themselves. This heterogeneous distribution of soil water 
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may result in increases in gram-positive bacteria and soil fungi between the troughs (Vangestel et 

al. 1993, Schimel et al. 2007). 

Biotic mechanisms, like competition, predation, and niche differentiation, may be 

relatively more important for the structure and abundance of soil microbial communities in semi-

arid ecosystems when water is not limiting. Unexpectedly, soil fungal and bacterial abundance 

did not always increase with increasing water availability. Contrary to other studies, we found a 

significant decline in bacterial abundance in association with increasing water availability (Bell 

et al. 2008, Sheik et al. 2011). This shift in bacterial abundance may be driven by competitive 

interactions between soil fungi and soil bacteria, or predator-prey dynamics between soil 

microorganisms and soil protozoa or arthropods. As soil fungi increase with increasing water 

availability, they may exclude soil bacteria thus reducing their abundance (Mille-Lindblom et al. 

2006). Alternatively, increases in soil protozoa or arthropods preying on bacteria may increase 

when water is no longer limiting resulting in a reduction in soil bacteria. Although we did not 

measure protozoa or arthropod abundance, other studies have shown that these organisms do 

indeed increase during periods of increased water availability (Clarholm 1981, Classen et al. 

2006, Kardol et al. 2011) and may decrease bacterial abundance. 

Given piñon are dying more quickly than juniper with drought events in this ecosystem 

(Plaut et al. 2012), differences in the microbial communities found in soils beneath their crowns 

could scale to alter the function of this ecosystem over time (Mueller et al. 2005, Breshears et al. 

2009). Distinct fungal communities beneath piñon and juniper crowns with varying richness and 

abundance may be primarily attributed to their differences in mycorrhizal association; piñon 

associate with ecto-mycorrhizal (EM) fungi, while juniper associate with arbuscular mycorrhizal 

(AM) fungi (Haskins and Gehring 2004), although we did not test for this. As piñon die in this 
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ecosystem due to drought, their associated fungal symbiont may also decline, decreasing the 

ability of piñon to re-establish in this ecosystem and aiding in the transition to a juniper 

dominated ecosystem. Further, differences between both bacterial and fungal communities 

beneath piñon and juniper crowns may indicate a difference in the function of these two 

communities (Cregger et al, in review). As piñon die with drought, a distinct microbial 

community may be lost from this ecosystem resulting in a functional shift. 

 When taken together, our results indicate that the response of microbial communities to 

climate change is complex and highly dependent upon the underlying seasonal variability and 

associated plant community. These changes have important effects on how we design microbial 

community assessments in such systems, as a one-time snap shot look at the microbial 

community to predict their response to climate change will not reflect the overall structure of 

these systems and their dynamic nature. Seasonal and temporal variation as well as plant 

community compositional changes will play a large role in the response of these communities 

and should be incorporated into future climate change experimental manipulations especially 

with advances in molecular techniques that allow higher throughput of community samples.  
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Chapter 2. 

The response of soil nitrogen cycling, litter biomass, and microbial 

community function to precipitation change 
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Abstract 

Atmospheric and climatic change is altering ecosystem structure and function, especially in the 

semi-arid southwestern United States where trees are near their physiological water stress 

threshold. Climate driven shifts in plant community composition may lead to alterations in soil 

processes and atmospheric feedbacks. In the southwestern U.S., prolonged drought is causing 

differential mortality of piñon pine in piñon-juniper woodlands resulting in an ecosystem that is 

juniper dominated. Using a large-scale precipitation manipulation, with increases and decreases, 

we assessed how changes in precipitation altered litter biomass accumulation, soil nitrogen 

cycling, and microbial functional capacity for nitrification beneath piñon and juniper trees in a 

piñon-juniper woodland from 2007-2011. We hypothesized that there would be an effect of 

precipitation on biomass accumulation, nitrogen cycling, and microbial functional capacity that 

would vary by associations with plant species. Because piñon are thought to be less drought 

resistant than juniper, we predicted that processes and communities beneath piñon would be 

more responsive to changes in precipitation than beneath juniper. Surprisingly, we found no 

difference in litter biomass inputs among our treatments or beneath piñon and juniper. Over the 

four years measured, there was twice as much available nitrate in drought plots relative to water 

addition plots, and a decrease in soil potential mineralization in drought plots relative to the 

water addition plots. However, there were no large differences between the precipitation 

treatments and the unmanipulated control plots. Piñon and juniper also differ beneath their 

crowns; we found higher levels of available soil nitrate beneath piñon relative to juniper across 

the four years measured and increased soil potential nitrification rates. These shifts in soil 

nitrogen cycling do not appear to be from changes in the abundance of microbes involved in 

nitrification, but instead may be driven by decreases in plant uptake of nitrogen. We speculate 
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that the loss of piñon from this ecosystem may have dramatic long-term effects on nitrogen 

cycling.  

 

Introduction 

Climate models predict that the frequency and severity of drought will increase globally over the 

next century (Seager et al. 2007, Allison 2009). Increased droughts are expected to have a large 

impact on ecosystems in the southwestern United States (Gregory et al. 1997, Pan et al. 1998, 

Hanson and Weltzin 2000, Rosenberg et al. 2003, Cook et al. 2004), a region dominated by 

piñon-juniper (PJ) woodlands, which cover >17 million hectares (Mueller et al. 2005, Shaw et al. 

2005). The southwestern United States has experienced extreme drought events in recent years, 

which have resulted in high mortality rates for piñon pines (Pinus edulis), reaching 100% in 

some areas (Breshears et al. 2005, Shaw et al. 2005). These drought-associated mortality events 

in piñon-juniper woodlands led to a shift in plant community composition resulting in the mixed 

piñon-juniper woodlands becoming increasingly dominated by the more drought-resistant juniper 

(Juniperus monosperma; Mueller et al. 2005, Gitlin et al. 2006, Sthultz et al. 2009). Changes in 

precipitation amounts and distribution, as well as associated shifts in plant community 

composition may lead to significant shifts in plant productivity and nutrient cycling in this 

ecosystem (Padien and Lajtha 1992). Further, alterations in nutrient cycling may feedback to 

interact with decreased water availability on plant re-establishment in this ecosystem following 

mortality events. 

Precipitation directly alters nitrogen cycling in a number of ways via its impact on soil 

water availability. For example, shifts in the distribution of rainfall might lead to large leaching 

and runoff events (Nearing et al. 2005), which could lead to increased nutrient loss and 
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decreased nutrient retention. Recent research demonstrated that nitrate might be more readily 

leached down the soil profile in arid ecosystems than previously thought. For example, 

Walvoord et al. (2003) found that nitrogen may accumulate at depth beneath the reaches of plant 

roots during occasional deep wetting events resulting in accumulation of nitrate over thousands 

of years. In addition, increases in precipitation can increase the frequency of runoff events. This 

additional runoff water can absorb nutrients and redistribute them among tree types and from the 

intercrown space to intercrown vegetated areas (Wilcox 1994, Reid et al. 1999). Due to 

microtopography and other surface features, areas beneath tree crowns tend to not collect runoff 

water or sediment. Most runoff water flows away from the tree canopies and into the intercanopy 

vegetated areas leading to nutrient loss beneath tree crowns during periods of intense rainfall.  

Increases and decreases in precipitation can alter nitrogen cycling by influencing plant 

nutrient uptake as well as plant productivity. In ecosystems that are limited by soil moisture, 

when precipitation and soil water availability increase, plant nutrient uptake from the soil and 

overall plant productivity resulting in a decrease in soil nutrient availability (Stark and Firestone 

1995, Austin 2002, Knapp et al. 2008). However, during periods of extreme drought, nitrogen 

may accumulate in the active soil zone due to decreased plant transpiration and slower rates of 

microbial activity and turnover as well as decreased water and nutrient uptake (Stark and 

Firestone 1995, Weltzin et al. 2003). Additionally, piñon and juniper vary in their hydraulic 

mechanisms in response to drought; piñon are isohydric while juniper are anisohydric. This 

physiological difference in hydraulic mechanism may influence transpiration (Breshears et al. 

2009) and nutrient uptake resulting in increases in available nitrogen beneath piñon but not 

juniper crowns due to the inability of piñon to uptake water during severe drought. 
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Changes in precipitation can also induce shifts in the structure of plant communities (Zak 

et al. 2003, Breshears et al. 2005, Mueller et al. 2005, Allen 2010, Kardol et al. 2010) that may 

alter ecosystem nutrient cycling (Hobbie 1992, Mitchell et al. 2010, Knapp et al. 2008). Changes 

in plant composition may have a larger impact on nutrient cycling in areas of low species 

diversity where shifts in a single species may cause significant shifts in input quantity or quality 

(Schlesinger et al. 1996, Murphy et al. 1998, Rodriguez et al. 2011). In many arid and semi-arid 

ecosystems such as piñon-juniper woodlands, plants form islands of fertility that result in a 

patchy distribution of vegetation and a heterogeneous distribution of soil water and nutrients on 

the landscape (Austin et al. 2004). If large-scale mortality of a species occurs in these 

ecosystems the distribution of nutrients on the landscape could be altered. For example, during 

periods of drought, water stressed piñon and juniper drop their needles, which increases litter 

biomass accumulation beneath their crowns (Chapman 2003). This accumulation of litter 

biomass may result in increased available nitrogen at a time when plants are unable to take up 

this limiting resource (Classen et al. 2007a, Austin and Vitousek 1998).  

Nitrogen cycling is highly dependent on the microbial community actively decomposing 

organic matter (Schlesinger et al. 1996). In dry areas where nutrient cycling processes and the 

microbes that regulate them are often water limited (Sala et al. 1988), soil microbial communities 

respond to rain pulses by increasing their activity and rapidly immobilizing nutrients (Schimel et 

al. 2007, Xiang et al. 2008). When droughts occur, soil microbial communities may mineralize 

nitrogen, although depending on the severity of the drought this may not translate into increases 

in plant uptake, resulting in increases in nitrogen availability (Kreuzwieser and Gessler 2010). 

Previous work in piñon-juniper woodlands found that water availability may regulate 

decomposition processes and soil microbial activity to a greater extent than changes in 
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temperature or litter quality (Classen et al. 2006, Classen et al. 2007a, Classen et al. 2007b, 

Murphy et al. 1998) suggesting that even small changes in precipitation may have a 

disproportionate impact on nutrient cycling in these ecosystems over time.  

 To better understand how precipitation change will alter litter inputs, nutrient cycling, 

and microbial function in a semi-arid woodland, we measured litterfall biomass, soil nitrogen 

availability, soil nitrogen mineralization, and the functional capacity of the microbial community 

involved in nitrification in a large-scale precipitation manipulation located at the Sevilleta Long 

Term Ecological Research Site (LTER) in New Mexico, USA from 2007-2011. Plots at this site 

have precipitation added (+ 20%), precipitation removed (- 50%), as well as an unmanipulated 

area and a removal control site, which assesses the impacts of the removal troughs. Because 

moisture tends to regulate decomposition and nutrient cycling in these ecosystems and piñon 

experience needle loss and death during drought, we hypothesized that: (1) nitrogen availability 

and net-nitrogen mineralization would be higher in drought treatments relative to ambient and 

water addition treatments; (2) the effects of drought on nitrogen cycling would vary in areas that 

vary by plant species. We expected increases in both nitrogen availability and nitrogen 

mineralization beneath piñon areas relative to juniper areas in the drought plots due to increases 

in piñon mortality and piñon needle litterfall, leading to an increase in microbial nitrification 

(indicated by the abundance of the amoA gene). We also predicted that piñon areas, relative to 

juniper areas, would be more responsive to the water addition plots because pinyon overall are 

thought to be more water stressed in this ecosystem. 
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Methods 

Site Description: To assess how precipitation change altered nitrogen cycling, precipitation was 

manipulated at the Sevilleta National Wildlife Refuge long-term ecological research (LTER) site 

in central New Mexico (32° 20’ N, 106° 50’ W) (Greenland 2003). The precipitation 

manipulation was implemented across natural PJ woodlands (25 hectares) at 1911 m elevation 

in the Los Piños Mountains. Climate records (20-yr) from the Sevilleta LTER meteorological 

station (Cerro Montoso #42; http://sev.lternet.edu/) reported a mean annual air temperature of 

13 °C and mean annual precipitation of 368 mm. On average, the greatest period of precipitation 

at the site occurs during the monsoon months of July, August, and September. The monsoon 

precipitation accounts for over half of all annual precipitation inputs; but high evapotranspiration 

rates in piñon-juniper woodlands prevent summer moisture from recharging soil moisture to 

depth (Greenland 2003). The study area is dominated by extensive stands of intermixed piñon 

(Pinus edulis) and juniper (Juniperus monosperma). 

In 2007, we established 3 experimental plots (1600 m
2
) in each of the decreased 

precipitation treatment (~50% reduction), the precipitation-removal control treatment (cover 

control), the increased precipitation treatment (~20%), and an unamended plot (12 plots total). 

Precipitation was reduced in the decreased precipitation treatment using a throughfall 

displacement design (Pangle et al. 2012, Sala 2000). Troughs were constructed of clear UV-

coated acrylic sheets and installed in each drought plot at a height of approximately 1 m. The 

cover control treatments were constructed by inverting the troughs and were instituted to control 

for possible unintended impacts of the troughs. The elevated precipitation treatments were 

created using water sprinklers. The sprinklers were tested in October of 2007 and 2 mm 

supplemental water was added. In 2008, 57 mm of precipitation was added to each of the 
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treatment plots, 69.5 mm was added in 2009, 112 mm was added in 2010, and 107 mm was 

added in 2011 (Appendix 2). The ambient treatment plots were unmanipulated but located within 

the experimental plot matrix. These plots serve as unamended reference plots for the study. 

 

Litter biomass collection: To assess whether our precipitation treatments altered litter biomass 

inputs of both piñon and juniper, we measured litterfall biomass beneath piñon and juniper in 

each of our experimental plots. Rectangular litter traps (32.5 cm × 41.5 cm) were randomly 

installed beneath the crowns of three piñon and the crowns of three juniper in each treatment on 

June 21, 2007 (six traps per plot). Litterfall was collected from individual traps yearly from 2007 

to 2008, and again from January of 2009 to January of 2010. Collected litter was air-dried, sorted 

to remove non-needle and leaf debris, dried to a constant mass in a drying oven, and weighed. 

Litter data were averaged for each individual piñon and each individual juniper within each plot 

across each year in order to estimate litterfall biomass. Litterfall data are reported as g dry mass 

m
-2

 year
-1

. 

 

Soil collection: To explore how changes in precipitation were altering the nitrogen cycle and soil 

microbial communities, in June of 2008 we randomly collected three soil cores (5 cm diameter, 0 

- 10 cm depth) beneath five piñon and five juniper crowns within each treatment plot using a 

hammer core. A subsample from each individual tree was immediately flash frozen in liquid 

nitrogen for subsequent molecular analyses. The remaining collected soil was bulked within 

plant species for each plot (so each plot had a bulked piñon sample and a bulked juniper sample), 

and homogenized. The soil was kept cool until it was returned to the laboratory, sieved to 2 mm, 

and analyzed as described below.  
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Nitrogen cycling: Changes in precipitation can differentially alter components of the nitrogen 

cycle, thus we measured changes in nitrogen availability, potential nitrogen mineralization, and 

net-nitrogen mineralization beneath piñon and juniper in each of our treatments. During the 

growing season of 2008, 2009 and 2011 we assessed nitrogen availability (nitrate and 

ammonium) using plant root simulator (PRS) probes (Western Ag Innovations, Inc, Saskatoon, 

Saskatchewan, Canada). PRS probes were employed due to their ability to measure plant 

available nitrogen over time, their ease of use, and their cost effectiveness (Qian an Schoenau, 

2002). Because season might play a role, the first and last year of availability data assessed 

ammonium and nitrate availability across the peak of the growing season, while in 2009 we 

quantified seasonal changes (pre-monsoon, monsoon, and post-monsoon). We placed probes 

randomly beneath the crowns of five piñon and five juniper in each of the treatment plots (n = 3). 

Each tree had eight PRS probes located randomly (0-10 cm depth) beneath the drip line of the 

tree. Four probes assessed ammonium (NH4
+
) and four assessed nitrate (NO3

-
) availability. In 

2008, the PRS probes were deployed on June 23rd and collected after 6-weeks of incubation. In 

July of 2011, PRS probes were again deployed and incubated for seven weeks in the field. Upon 

collection, PRS probes were washed with DI water and returned to Western Ag Innovations, Inc 

where they were analyzed for NH4
+
 using a reaction of ammonia, sodium salicylate, sodium 

nitroprusside and sodium hypochlorite in a buffered alkaline medium at pH 12.3-13 to produce a 

measurable green color, and NO3
-
 using a colorimetric reaction with a copper cadmium column 

reactor.   

 In 2009, we deployed PRS probes again for six-week incubations, but this time we 

assessed changes in availability pre- (June 5 – July 22), during (July 22 – September 15), and 

post- (September 15 - October 27) monsoon season. Probes in 2009 were placed and analyzed as 
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described above. The 4 replicate probes per tree and ammonium and nitrate values for each 

replicate tree were averaged across each plot prior to statistical analysis. Because nutrient supply 

rates are not linear over time, all data are shown as available NH4
+

 or NO3
-
 in µg per membrane 

area over the incubation period. 

 

Potential net nitrogen mineralization: Changes in precipitation can alter nitrogen cycling by 

changing inputs to the soil or by changing the microclimate (e.g., water available) for the 

microbial community. To tease this apart we measured potential net nitrogen mineralization, 

which removes the influence of environmental temperature and precipitation by incubating the 

soils under ideal temperature and moisture in the laboratory. To assess potential ammonification 

and nitrification rates, a 60-day laboratory incubation was established. Bulked field soils taken 

beneath piñon pine and juniper across all treatments were brought up to field capacity and 

subsamples (~20 g) were incubated in mason jars over 60 days (Robertson 1999). Each jar 

contained two subsamples (one removed after 30 days, one removed after 60 days) and each jar 

contained a standard amount of deionized water to maintain humidity. Samples were removed 

and jars were flushed with air every seven days over the course of the incubation to reduce CO2 

buildup from microbial activity. Subsamples were extracted with 2 M KCl immediately and then 

after 30 and 60 days of incubation. Ammonium and nitrate concentrations were analyzed using a 

Lachat flow ion analyzer (Lachat Instruments, Loveland, CO). The difference in inorganic 

nitrogen pools in the incubated soil minus initial soil pools were used to estimate rates of 

potential nitrogen transformations over the incubation period (Robertson et al. 1999). Data are 

shown on an oven-dry mass basis. 
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Net nitrogen mineralization: We were also interested in exploring how shifts in precipitation 

altered net rates of nitrogen mineralization. Because net nitrification cores are incubated in situ, 

net rates of mineralization incorporate environmental variability into measures of the nitrogen 

cycle (Roberston et al. 1999, Stark 2000). Measuring net and potential rates of nitrogen 

mineralization enabled us to explore potential mechanisms for shifts in the nitrogen cycle. Net 

mineralization and net nitrification rates were measured in an in situ field soil incubation using 

the resin-core method over the growing season (May – October) in 2009. Paired soil cores (0 - 15 

cm) were randomly taken beneath the crowns of piñon and juniper. One core of each pair was 

returned to the laboratory for gravimetric water content and inorganic nitrogen analyses. The 

other core was incubated in a PVC pipe with an ion exchange resin bag placed at the bottom to 

collect inorganic N leached from the core (Binkley 1989, Robertson et al. 1999, Stark 2000). 

Atmospheric nitrogen inputs to these ecosystems are very low (Klopatek 1987, Classen et al. 

unpublished data), thus we did not put resin on the top of the cores. Additionally, because we 

were interested in how changes in precipitation might influence net N mineralization, we chose 

the open resin core technique and not the closed core technique (Adams and Attiwill 1986). 

Upon removal from the field, soils were homogenized and sieved to 2 mm. Collected soils and 

resins were extracted with 2 M KCl and analyzed for NH4
+
 and NO3

- 
on a Lachat Flow ion 

analyzer (Lachat Instruments, Loveland, CO). The difference in inorganic nitrogen pools in the 

incubated soil core and inorganic nitrogen collected on the resin bag minus initial soil pools were 

used to estimate rates of soil net nitrogen transformations over the incubation period (Binkley 

1989). These data are shown on an oven-dry mass basis. 
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Ammonia oxidation (amoA) gene abundance: Changes in microbial community function could 

result in shifts in the nitrogen cycle. To assess how microbial community function may be 

responding to our treatments we measured the relative abundance of the ammonia oxidation gene 

(amoA). AmoA is a key gene involved in ammonia oxidation and codes for key enzymes in 

nitrification. Although changes in DNA abundance do not necessarily result in a change in 

function, it does allow us to assess how the abundance of the bacteria capable of this function 

respond to fluctuations in precipitation as well as the plant species present. To assay this 

community, we extracted DNA from approximately 0.75 g of field soil following the standard 

protocol using the UltraClean Soil DNA Isolation kit (MoBio Laboratories, Carlsbad, CA) 

collected beneath one piñon and one juniper across all experimental plots (n = 3) in the pre-

monsoon season of 2008. DNA concentration and purity were evaluated using a microplate 

reader (Biotek Instruments, Winooski, VT). To assess the bacterial community capable of 

ammonia oxidation, we ran quantitative polymerase chain reaction (qPCR) using primers for 

ammonia monooxygenase (forward primer - GGGGTTTCTACTGGTGGT, reverse primer – 

CCCCTCKGSAAAGCCTTCTTC) (Rotthauwe et al., 1997). PCR mixtures contained 12.5 l of 

SYBR green master mix (Invitrogen, Life Technologies, location), 0.4 mol of each primer 

(Eurofins mwg operon, Huntsville, AL), and 1 l of sample DNA diluted 1:10 in sterile water. 

All reactions were brought up to a final volume of 25 l with sterile water. Amplification 

protocol consisted of an initial denaturing cycle of 95 °C for fifteen minutes. This cycle was 

followed by 45 cycles of 94 °C for 30 s, 54 °C for 45 s, and 72 °C for 30 s (Wallenstein and 

Vilgalys 2005). After completion, a melting curve analysis was conducted to ensure purity of the 

amplification product. PCR amplification was performed on a 96-well Chromo4 thermocycler 

(Bio-Rad Laboratories, Hercules, CA). 
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Statistical analysis: To test for seasonal effects on nitrogen availability, we used a repeated 

measures analysis of variance (ANOVA) with the main effects of season, precipitation, tree type, 

and the interactive effects of season  precipitation, season  tree type, and season  

precipitation  tree type on ammonium and nitrate availability (Gotelli and Ellison 2004). We 

then used a series of 2-way ANOVAs to test for the main effects of tree type, precipitation, and 

their interactive effects on ammonium and nitrate availability, litter biomass and amoA 

abundance for each season separately. When no interactive effect was found, a 1-way ANOVA 

was used to examine the main effect of precipitation treatment or tree type (Underwood 1997). 

All data were analyzed using JMP 8 (Cary Institute, Cary, NC). A student’s t test was used to 

differentiate between treatment means. When data were not distributed normally, log and square 

root transformations were used prior to running all ANOVA analyses (Quinn and Keough 2002). 

Additionally, a Brown-Forsythe’s test was employed to test for homogeneity of variance (Brown 

and Forsythe 1974). Variances were found to be equal across significant response variables. 

Prior to analysis, samples were averaged per tree type within each precipitation treatment 

(i.e., piñon/juniper in each treatment plot) in order to avoid pseudo replication. In the 1-way 

ANOVA addressing the main effect of precipitation, we averaged the data across tree type in 

each treatment (n = 3) to avoid inflating our sample size. Additionally, in the 1-way ANOVA 

addressing the main effect of tree type, we used tree as the independent replicate per plot (n = 

12) because this was the unit of interest for these analyses. 
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Results 

Contrary to our hypothesis, across all analyses there were minimal significant interactions 

between our precipitation treatments and tree type (piñon or juniper) (Table 3). Thus, we 

analyzed the effects of our precipitation treatments and the effect of plant species on our 

response variables independently (Underwood 1997).  

 

Litter biomass: Contrary to our predictions, there was no increase in litter biomass accumulation 

in the drought plots relative to all other plots in 2008 or 2010 or a difference between pinyon vs. 

juniper (Table 4). 

 

Nitrogen cycling: Across four years of measurement, we found increases in nitrogen availability 

associated with drought and increases in nitrogen cycling beneath the crowns of piñon relative to 

juniper. While there were minimal differences in soil nitrogen availability across our treatments, 

we found greater nitrate availability in the drought plots relative to the water addition plots in 

2008, 2009, and 2011 (Figure 12: 2008, F = 1.9, p = 0.20; monsoon 2009, F = 5.1, p = 0.03; 

2011, F = 2.7, p = 0.11). Further, in 2011 ammonium availability was 6  greater beneath juniper 

in the drought plots relative to both trees across all other plots (Table 4; F = 5.9, p = 0.01). 

Ammonium availability was also significantly increased in the drought plots relative to all other 

plots in 2011 (Table 4; F = 3.9, p = 0.06). Interestingly, during the monsoon season of 2009, 

nitrate availability was 1.8  greater in the drought soils compared to water addition soils (Figure 

12; F = 5.1, p = 0.03). There were strong seasonal fluctuations in nitrogen availability. Soil 

ammonium availability was highest during the monsoon season, and lowest following the 

monsoon in 2009 (Figure 13; F = 2.4, p < 0.01). Soil nitrate availability showed the opposite 
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trend. Nitrate availability in soil was 25% lower during the monsoon season relative to the pre- 

and post-monsoon seasons (Figure 13; F = 1.1, p < 0.01).  

We found minimal effect of our precipitation treatments on net nitrogen mineralization. 

In general, ammonium was immobilized and nitrate was released in soils across all treatments. 

However, there were changes in potential nitrogen mineralization. Potential mineralization in the 

water addition and control plots was very low (almost zero) after 30 days of laboratory 

incubation (Figure 14; F = 13.1, p < 0.01), but increased in the water addition and control plots 

after 60 days of incubation, resulting in the release of ammonium for plant uptake (Figure 14; F 

= 6.4, p = 0.02). We saw no effect of precipitation on potential nitrification or net 

ammonification and nitrification (Table 3). Rates for potential nitrogen mineralization were, as 

expected, higher than those for net nitrogen mineralization. 

 Across all years measured, we found increased available nitrogen and increased rates of 

potential nitrification in soils beneath piñon relative to juniper. Specifically, ammonium 

availability was 2  higher in soils beneath piñon relative to soils beneath juniper in the 2009 

pre-monsoon season (Table 5; F = 6.7, p = 0.02). Nitrate availability was approximately 35 % 

higher in soils beneath piñon crowns than juniper crowns in the 2009 monsoon and post-

monsoon seasons (Figure 15; Monsoon:  F = 4.3, p = 0.05; Table 5; Post-monsoon:  F = 5.4, p = 

0.03). Again in 2011, we found a trend for increased nitrate availability beneath piñon relative to 

juniper (Figure 15; F = 2.6, p = 0.12).  

Across both plant species, ammonium was immobilized in soils and nitrate was released 

(Figure 16). There were no differences in net-nitrogen mineralization or net-nitrification rates in 

soils incubated in the field; however, piñon had 1.9  higher potential nitrification rates than did 

juniper after 30 days of incubation in the laboratory (Figure 16; F = 11.7, p < 0.01). Potential 
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nitrification after 60 days of laboratory incubation remained higher beneath piñon relative to 

juniper, but this trend was not statistically significant (Table 5; F = 3.7, p = 0.07). 

 

AmoA abundance: Surprisingly, we found no difference among our treatments in amoA 

abundance, despite its importance in nitrification. In the pre-monsoon season of 2008, we found 

on average of 2,792 gene copies ng
-1

 DNA of amoA across all treatments (Table 4). This 

abundance is within the range of previously published results across managed and forested 

ecosystems (Wallenstein and Vilgalys 2005, Adair and Schwartz 2008, Hayden et al. 2010). 

 Although we found significant differences in nitrogen cycling between piñon and juniper 

soils, these changes were not driven by changes in the functional gene involved in nitrification. 

There were on average 2,891 (± 1278 std error) gene copies ng
-1

 DNA of amoA beneath juniper 

and 2,692 (± 750 std error) gene copies ng
-1

 DNA beneath piñon. We did not find a significant 

effect of plant species on amoA abundance (Table 5; F = 0.02, p = 0.90). 



Table 3. F statistics and p values (in parentheses) for the interactive effect of precipitation  

plant species and the main effects of precipitation and plant species on litter biomass, nitrogen 

availability, potential nitrogen mineralization, net-nitrogen mineralization, and amoA abundance. 

Results with a p value < 0.05 are in bold. 

Response variable Date Precipitation Plant Species 

Precipitation 

 Plant 

Species 

Litter biomass  2007-2008 0.21 (0.89) 0.49 (0.49) 0.56 (0.65) 

Litter biomass 2009-2010 0.72 (0.57) 0.13 (0.72) 0.24 (0.87) 

Ammonium availability 2008 1.58 (0.27) 0.07 (0.80) 0.09 (0.96) 

Nitrate availability 2008 1.94 (0.20) 2.50 (0.13) 0.39 (0.76) 

Ammonium availability  Pre-monsoon 2009 0.10 (0.96) 6.73 (0.02) 0.13 (0.94) 

Nitrate availability  Pre-monsoon 2009 2.43 (0.14) 2.03 (0.17) 0.09 (0.97) 

Ammonium availability  Monsoon 2009 1.79 (0.23) 1.20 (0.29) 0.43 (0.73) 

Nitrate availability  Monsoon 2009 5.12 (0.03) 4.34 (0.05) 0.57 (0.65) 

Ammonium availability  Post-monsoon 2009 0.07 (0.97) 0.50 (0.49) 0.22 (0.88) 

Nitrate availability  Post-monsoon 2009 3.01 (0.09) 5.38 (0.03) 0.92 (0.45) 

Ammonium availability 2011 3.86 (0.06) 1.13 (0.30) 5.94 (0.01) 

Nitrate availability 2011 2.74 (0.11) 2.57 (0.12) 0.30 (0.83) 

Potential mineralization 2008, 30 days 13.05 (<0.01) 0.55 (0.47) 1.20 (0.34) 

Potential nitrification 2008, 30 days 1.69 (0.25) 11.73 (<0.01) 2.01 (0.15) 

Potential mineralization 2008, 60 days 6.39 (0.02) 0.18 (0.68) 0.73 (0.55) 

Potential nitrification 2008, 60 days 0.85 (0.50) 3.70 (0.07) 2.99 (0.06) 

Net mineralization 2009 0.89 (0.49) 2.85 (0.11) 2.20 (0.13) 

Net nitrification  2009 0.27 (0.84) 0.12 (0.73) 0.56 (0.65) 

AmoA abundance 2008 1.53 (0.28) 0.02 (0.90) 0.44 (0.73) 
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Table 4. Mean (± 1 standard error) for litter biomass, nitrogen availability, potential nitrogen 

mineralization, net-nitrogen mineralization, and amoA abundance by precipitation treatment. 

 

Response variable Date - water 
Cover 

control 
+ water Control 

Litter biomass 

g dry mass m
-2

 year
-1

 
2007-2008 

379.3 

(93.9) 

459.6 

(33.6) 

413.9 

(56.5) 

417.8 

(85.3) 

Litter biomass 

g dry mass m
-2

 year
-1

 
2009-2010 

292.1 

(14.1) 

252.6 

(42.4) 

219.1 

(15.1) 

308.8 

(87.3) 

Ammonium availability 

µg 10 cm
-2

 6 week
-1

 
2008 

6.1 

(2.1) 

3.9 

(1.4) 

2.1 

(1.3) 

2.4 

(0.4) 

Nitrate availability 

µg 10 cm
-2

 6 week
-1

 
2008 

153.3 

(24.6) 

122.4 

(31.3) 

80.2 

(13.5) 

108.9 

(11.4) 

Ammonium availability 

µg 10 cm
-2

 6 week
-1

 
Pre-monsoon 2009 

1.5 

(0.4) 

1.9 

(0.7) 

1.5 

(0.6) 

1.5 

(0.7) 

Nitrate availability 

µg 10 cm
-2

 6 week
-1

 
Pre-monsoon 2009 

78.5 

(6.2) 

44.8 

(2.7) 

54.2 

(16.9) 

69.1 

(6.4) 

Ammonium availability 

µg 10 cm
-2

 6 week
-1

 
Monsoon 2009 

4.3 

(1.7) 

2.1 

(0.4) 

1.9 

(0.4) 

1.7 

(0.1) 

Nitrate availability 

µg 10 cm
-2

 6 week
-1

 
Monsoon 2009 

62.1 

(12.0) 

27.8 

(4.4) 

34.9 

(7.4) 

59.2 

(3.5) 

Ammonium availability 

µg 10 cm
-2

 6 week
-1

 
Post-monsoon 2009 

0.5 

(0.1) 

0.5 

(0.1) 

0.6 

(0.4) 

0.6 

(0.1) 

Nitrate availability 

µg 10 cm
-2

 6 week
-1

 
Post-monsoon 2009 

92.0 

(21.0) 

43.9 

(6.6) 

56.37 

(9.8) 

47.6 

(7.7) 

Ammonium availability 

µg 10 cm
-2

 7 week
-1

 
2011 

3.2 

(1.3) 

0.2 

(0.1) 

0.2 

(0.2) 

0.6 

(0.6) 

Nitrate availability 

µg 10 cm
-2

 7 week
-1

 
2011 

234.8 

(19.6) 

172.3 

(42.9) 

122.3 

(11.1) 

199.2 

(19.3) 

Potential mineralization 

mg m
-2

 
2008, 30 days 

-873.8 

(185.1) 

-1436.5 

(152.8) 

-17.27 

(215.1) 

-116.8 

(183.7) 

Potential nitrification 

mg m
-2

 
2008, 30 days 

3373.2 

(614.6) 

2869.2 

(326.6) 

2322.0 

(216.0) 

3597.8 

(482.3) 

Potential mineralization 

mg m
-2

 
2008, 60 days 

-777.6 

(328.0) 

-1149.6 

(357.9) 

414.5 

(212.5) 

198.5 

(274.1) 

Potential nitrification 

mg m
-2

 
2008, 60 days 

7070.0 

(756.2) 

7047.6 

(858.2) 

6270.3 

(592.6) 

8106.0 

(1006.1) 

Net mineralization 

mg m
-2

 
2009 

-13.5 

(112.4) 

-220.18 

(176.4) 

-157.7 

(63.2) 

-19.1 

(54.5) 

Net nitrification 

mg m
-2

 
2009 

2567.7 

(73.9) 

3246.0 

(408.3) 

3022.1 

(745.8) 

2748.6 

(769.0) 

AmoA abundance 

copy # ng
-1

 DNA 
2008 

1097.0 

(142.1) 

2284.0 

(950.6) 

2190.5 

(1233.0) 

5595.6 

(3065.1) 
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Table 5. Mean (± 1 standard error) for litter biomass, nitrogen availability, potential nitrogen 

mineralization, net-nitrogen mineralization, and amoA abundance by tree type. 

Response variable Date Juniper Piñon 

Litter biomass (g dry mass m
-2

 year
-1

) 2007-2008 
398.6 

(42.0) 

436.7  

(34.9) 

Litter biomass (g dry mass m
-2

 year
-1

) 2009-2010 
272.1 

(24.8) 

264.2 

(29.3) 

Ammonium availability (µg 10 cm
-2

 6 week
-1

) 2008 
3.7 

(1.0) 

3.6 

(0.6) 

Nitrate availability (µg 10 cm
-2

 6 week
-1

) 2008 
101.7 

(11.8) 

130.7 

(14.0) 

Ammonium availability (µg 10 cm
-2

 6 week
-1

) Pre-monsoon 

2009 

1.1 

(0.3) 

2.1 

(0.3) 

Nitrate availability (µg 10 cm
-2

 6 week
-1

) Pre-monsoon 

2009 

54.7 

(7.9) 

68.7 

(5.9) 

Ammonium availability (µg 10 cm
-2

 6 week
-1

) Monsoon 2009 
3.0 

(0.9) 

2.0 

(0.3) 

Nitrate availability (µg 10 cm
-2

 6 week
-1

) Monsoon 2009 
37.5 

(5.4) 

54.6 

(6.2) 

Ammonium availability (µg 10 cm
-2

 6 week
-1

)  Post-monsoon 

2009 

0.6 

(0.1) 

0.6 

(0.1) 

Nitrate availability (µg 10 cm
-2

 6 week
-1

) Post-monsoon 

2009 

47.1 

(6.4) 

72.8 

(11.1) 

Ammonium availability (µg 10 cm
-2

 7 week
-1

) 2011 
1.6 

(1.0) 

0.5 

(0.3) 

Nitrate availability (µg 10 cm
-2

 7 week
-1

) 2011 
150.8 

(14.2) 

213.5 

(24.8) 

Potential mineralization (mg m
-2

) 2008, 30 days 
-443.2 

(322.0) 

-779.0 

(318.5) 

Potential nitrification (mg m
-2

) 2008, 30 days 
2065.8 

(296.2) 

4015.3 

(485.9) 

Potential mineralization (mg m
-2

) 2008, 60 days 
-224.0 

(322.1) 

-433.1 

(381.7) 

Potential nitrification (mg m
-2

) 2008, 60 days 
6321.5 

(590.4) 

7925.4 

(588.1) 

Net mineralization (mg m
-2

) 2009 
-227.6 

(103.6) 

17.8 

(56.1) 

Net nitrification (mg m
-2

) 2009 
2816.0 

(306.6) 

2976.2 

(343.1) 

AmoA abundance (copy # ng
-1

 DNA) 2008 
2891.2 

(1278.4) 

2692.3 

(750.0) 
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Table 6. Mean volumetric water content beneath juniper and piñon crowns across treatments in 

June, July, and August of 2009 (published in Pangle et al. 2012). 

 

Treatment Tree type 
June 

2009 

July 

2009 

August 

2009 

- water 

Juniper 

0.027 0.074 0.052 

Cover control 0.043 0.093 0.067 

+ water 0.050 0.081 0.047 

Control 0.047 0.075 0.047 

- water 

Piñon 

0.018 0.055 0.030 

Cover control 0.035 0.089 0.065 

+ water 0.061 0.100 0.063 

Control 0.032 0.079 0.048 

 

 



 
 

 71 

 

 

Figure 12. Mean ammonium and nitrate availability (±1 standard error) in 2008, monsoon season 2009, and 2011 across treatments, - 

water (water reduction) and + water (water addition), cover control (removal control), and control (unamended plot). Different letters 

denote significant differences among treatments. 
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Figure 13. Mean ammonium and nitrate availability (±1 standard error) in the pre-monsoon, 

monsoon, and post-monsoon season of 2009. 
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Figure 14. Mean potential mineralization and nitrification 30 and 60 days after incubation (±1 

standard error) across treatments, - water (water reduction) and + water (water addition), cover 

control (removal control), and control (unamended plot). Different letters denote significant 

differences among treatments.  
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Figure 15. Mean ammonium and nitrate availability (±1 standard error) in 2008, monsoon season 2009, and 2011 beneath juniper and 

piñon. Different letters denote significant differences between piñon and juniper.  
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Figure 16. Mean potential mineralization and nitrification 30 and 60 days after incubation (±1 

standard error) beneath piñon and juniper trees. Different letters denote significant differences 

between piñon and juniper.  

 

Discussion 

Combined impacts of season, precipitation, and plant species on soil nitrogen cycling 

Piñon-juniper woodlands are a model ecosystem for examining the role of precipitation and 

species composition on nutrient cycling because they are simple (they have two co-dominant 

species), they are regionally dominant (Shaw et al. 2005), and representative of semi-arid 

ecosystems worldwide (Breshears 2005). Using a large-scale precipitation manipulation in a 
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piñon-juniper woodland in New Mexico, we found both precipitation and plant species can 

influence the nitrogen cycle. Across four years, nitrate availability increased while potential 

mineralization decreased in response to changes in precipitation amounts. In addition, there was 

1.4  more available nitrate beneath piñon relative to juniper and 1.9  increased rate of potential 

nitrification in soils beneath piñon relative to juniper. Contrary to our predictions, we found 

minimal interactive effects between our precipitation treatments and plant species.  

 Consistent with other studies, we expected an increase in litter quantity due to early 

needle abscission beneath piñon in drought plots due to increased tree stress and mortality 

(Chapman et al. 2003, Breshears et al. 2005, Brando et al. 2008, Ozolincius et al. 2009). Initial 

increases in litter accumulation due to tree stress are common in response to drought followed by 

a plateau of this effect as droughts persist (Brando et al. 2008). Although we saw more litter 

biomass accumulation in the beginning of our experiment, there were no significant differences 

based on treatment. Contrary to our predictions, factors that were not measured, such as 

decreased leaching and decreased plant uptake of nitrogen may play a larger role in the 

accumulation of nitrate during drought conditions than changes in litter abundance or microbial 

potential. Our seasonal data on nitrate availability demonstrate that nitrate is lost from the 

ecosystem during the monsoon season when leaching is more prevalent and plant uptake 

increases (Figure 13). Consistent with our results, a review by Austin et al. (2004) demonstrates 

that nitrogen may be lost in arid ecosystems during periods of increased water availability due to 

increases in denitrification, leaching, or plant uptake.    
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Precipitation impacts on soil nitrogen cycling 

Similar to other studies in arid and semi-arid ecosystems, we found almost 2 × more available 

nitrate over four years in the drought plots compared to water addition plots (Figure 12; Yahdjian 

et al. 2006). Water removal and addition plots could represent the physiological thresholds for 

soil communities and trees in this semi-arid ecosystem. We would expect these processes and 

communities to diverge further from the unamended plots as the impacts of stress (removal of 

water) or release of stress (addition of water) compound over time. Occasionally we saw 

differences between the cover control and the unamended plots, indicating that our experimental 

design is not perfect. There can be unintended impacts of our removal experiment, however it is 

a common design and regarded as the best designs available (Hanson et al. 2001, Limousin et al. 

2008). Due to the shape of the cover controls, water may collect in between the troughs resulting 

in greater water availability in between individual troughs. We sampled away from the troughs in 

both of these treatments in order to reduce the impact of the experimental infrastructure on the 

processes we were measuring.  Given this caveat, it is also possible that a threshold of minimum 

or maximum precipitation is necessary for soil microbial communities before changes in nitrogen 

cycling occur (Table 6; Stark and Firestone 1995). For example, using a laboratory incubation 

Fisher and Whitford (1995) showed minimal changes in nitrogen mineralization in response to 

experimentally altered soil moisture contents until -1 MPa water potential was achieved, where 

microbial activity was halted and nitrogen mineralization was no longer detected. Our results 

suggest this threshold has been crossed and microbial activity has slowed in the water removal 

and control plots, resulting in no measurable change in mineralization but increased availability 

due to other mechanisms like decreased plant uptake or decreased soil runoff and leaching of 

nitrate.  
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Increased nitrogen availability is common during drought conditions and may occur due 

to abiotic factors like leaching and biotic factors like plant and microbial responses. Decreased 

photosynthesis and transpiration during drought has been well documented (Boyer 1982, Flexas 

and Medrano 2002, Chaves et al. 2003, Griffin et al. 2004), as has increased nitrogen uptake in 

association with irrigation (Nilsson and Wiklund 1994) and decreased mycorrhizal uptake of 

nitrogen when water is limiting (Gessler et al. 2005). Decreased water uptake by plants, as well 

as reduced leaching during drought periods, will both allow accumulation of soil nitrogen (Stark 

and Firestone 1995, Austin et al. 2004). Consistent with other studies, transpiration of piñon and 

juniper is significantly lower in drought plots and higher in irrigation plots, relative to the 

controls in our experiment (Pangle et al. 2012; Plaut et al. 2012), which may result in our 

observed increases in nitrogen availability in drought treatments. In addition, nitrogen may also 

increase in the soil due to reduced microbial uptake, reduced microbial turnover, or differences 

in microbial communities (Wardle 1992, Augustine and McNaughton 2004, Sheik et al. 2011). 

Changes in microbial uptake are evident in potential mineralization. Consistent with other 

studies, upon soil rewetting at the start of the lab incubation, the microbial communities from the 

drought plots increased immobilization of ammonium (Figure 14; Schimel et al. 1989). This 

increase in immobilization may be due to increases in microbial biomass production and activity 

that is commonly seen upon rewetting dry soils (Landesman and Dighton 2011). Surprisingly, 

this increase in microbial immobilization of ammonium did not result in increases in nitrification 

(Schimel et al. 1989, Fierer and Schimel 2002). Additionally, we did not find differences in the 

abundance of the nitrifying community across our treatments. This may be due to the time (pre-

monsoon) at which we measured amoA abundance when water was extremely limiting.  

Alternatively, nitrifying archaea may play a larger role than bacteria in this ecosystem. Adair and 
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Schwartz (2008) found that ammonia-oxidizing archaea had increased abundance relative to 

ammonia-oxidizing bacteria across a range of arid ecosystems including piñon-juniper 

woodlands.  Additionally, they found that ammonia-oxidizing bacterial abundance increased 

with increasing precipitation in these same ecosystems (Adair and Schwartz 2008).   

 

Species influence on soil nitrogen cycling 

Overall, we found significantly more nitrate and potential nitrification beneath piñon areas 

relative to juniper areas across all treatments (Figures 15 and 16). Research examining baseline 

levels of carbon and nitrogen stocks beneath piñon and juniper in the field show increased total 

nitrogen beneath juniper relative to piñon (Shukla et al. 2006) leading us to conclude that other 

factors are responsible for the increase in nitrogen beneath piñon. Stress, induced by drought or 

herbivory, can cause piñon to drop their needles before resorbing their nutrients resulting in 

increased litter quality and quantity, and subsequent acceleration of decomposition during these 

periods (Chapman et al. 2003, Classen et al. 2007a). Because piñon experience elevated 

mortality during drought (Mueller et al. 2005, McDowell et al. 2008) we predicted an increase in 

litter beneath piñon driving changes in nitrogen cycling beneath their crowns. Contrary to this, 

we did not find significant differences in litterfall biomass between these two plant species. Thus, 

we infer mechanisms other than changes in litter quantity are driving the increases in nitrogen 

cycling, such as increased litter quality or decreased uptake of nitrogen by drought stressed piñon. 

Our results suggest that plant uptake of nitrogen, not litter inputs or shifts in the microbial 

community may be the driving force for changes we observed in the nitrogen cycle. Previous 

research showed that juniper continue to uptake water during extreme drought when other plants 

have closed their stomata (West et al. 2008), therefore this trait may result in increased nitrogen 
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uptake and decreased nitrogen beneath juniper crowns. In our drought plots, juniper indeed 

maintained higher transpiration rates than piñon (Pangle et al. 2012, Plaut et al. 2012). As juniper 

continued transpiring it can be inferred that they also continue to uptake nitrogen in the water. 

Alternatively, since piñon have decreased transpiration the nitrogen in the soil solution beneath 

them may remain inaccessible for plant use. Since no other vegetation inhabits the crown area, 

nitrate can accumulate beneath piñon in the soil over time. To further understand nitrogen 

dynamics in this ecosystem, we should examine the different water use patterns by the two 

dominant trees in relation to their belowground differences in litter inputs and soil microbial 

communities.  

 

Conclusion 

Changes in precipitation and plant communities can directly and indirectly alter ecosystem 

function (Kardol et al. 2010). However, in longer-lived ecosystems that develop more slowly, 

such as semi-arid piñon-juniper woodlands, these shifts could take longer than five years to 

develop. While our study showed that the nitrogen cycle was responding to our precipitation 

treatments and that nitrogen cycling differed between the two dominant plant species (piñon or 

juniper), we were surprised that there was no interaction between tree species and our 

precipitation treatments. However, because piñon had higher levels of available nitrogen relative 

to juniper, the presence of piñon pine may maintain higher nitrogen availability in this ecosystem. 

Piñon are dying at a faster rate than juniper due to their differential response to drought (Mueller 

et al. 2005), and the loss of piñon from this ecosystem may result in a landscape-level shift in 

woodland nitrogen cycling.  
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Chapter 3. 

Microbial communities respond to experimental warming, but not 

consistently between sites 
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Abstract 

Soil microbial community activity is responsible for nutrient transformations in ecosystems and 

is often regulated by temperature. Thus, the direct impact of global warming on soil temperature 

may increase microbial activity particularly in temperature-limited ecosystems. Here we use a 

large-scale warming experiment established at the northern and southern boundaries of US 

eastern deciduous forests, to examine how climatic warming alters microbial community 

structure and function. Surprisingly, soil bacterial and fungal community structure and function 

responded to warming at the southern, but not the northern site. Additionally, changes in 

microbial community structure and function at the southern site did not ‘scale-up’ to alter 

cellulose decomposition rates, an indication of an ecosystem-level response. Our data highlight 

that geography can play an important role in a communities’, as well as ecosystems’, response to 

global warming. 
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Introduction 

Because soil microbial communities respond strongly to temperature and generally have short 

generation times, global warming may quickly influence their structure and function in 

ecosystems. Indeed, numerous studies have demonstrated that temperature manipulations can 

lead to shifts in microbial community structure and functions, but the effects are often 

idiosyncratic and vary among ecosystems (Frey et al. 2008, Schindlbacher et al. 2011, Zogg et al. 

1997). Moreover, most studies to date have employed only two levels of experimental warming - 

warmed and ambient – and do so at only a single site (Rustad et al. 2001, Wolkovich et al. 2012). 

This approach, while valuable, requires a step-change in warming which does not reflect the way 

warming is happening, or will happen, globally. Such variation and idiosyncratic responses 

among studies, the focus on single sites, and the step-function approach to warming all make it 

challenging to predict future responses of microbial communities to ongoing climatic warming.  

 One potential solution is to conduct warming experiments where treatments are applied in 

a continuous fashion (Cottingham et al. 2005) and replicated across the geographic range of 

species. Such designs allow for making predictions about nonlinear responses to temperature and 

to assess geographic variation in responses of common taxa (Diamond et al. 2012, Pelini et al. 

2011).  Microbial responses to warming may not be evident until temperatures exceed a 

threshold that hinders microbial composition, abundance, and/or activity. Additionally, recent 

work has demonstrated that the effects of temperature are not the same everywhere. That is, 

species that operate near their critical thermal maximum at low latitudes are more likely to be 

threatened by climatic warming than are species that operate farther from their critical thermal 

maximum (Diamond et al. 2012, Tewksbury et al. 2008). Thus, it is likely that warming will 

have more pronounced effects on species and ecosystems at low latitudes than at high latitudes.  
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 Here, we report on the responses of soil microbial communities to experimental warming 

at a northern (Harvard Forest; Massachusetts; ≈42° N lat.) and a southern site (Duke Forest; 

North Carolina, ≈36° N lat.) in temperate deciduous forests in the eastern US. At both sites, 

warming has been manipulated using open-top chambers in a regression design that boosts air 

temperatures from 1.5 to 5.5 C above ambient since January 2010. The range of temperatures 

chosen encompasses future warming scenarios (Solomon 2007) and enables us to observe non-

linearities in soil community response to warming at the southern and northern range of an 

ecosystem. Given the broad range of temperatures across two sites, we predicted that warming 

would shift soil microbial community structure and increase function, with higher temperatures 

having a larger impact at the southern site than at the northern site.  

 

Methods 

Our sites and the experiment were previously described (Pelini et al. 2011). Two hardwood sites 

were selected in the southern and northern range of mixed hardwood forests in the eastern USA. 

The southern site is an 80-year-old oak-hickory stand in Duke Forest (35 52’ 0” N, 79 59’ 45” 

W) where mean annual temperature is 15.5 C and mean annual precipitation is 1140 mm. The 

northern site is a 70-year-old oak-maple stand in Harvard Forest (42 31’ 48” N, 72 11’ 24” W) 

where mean annual temperature is 7.1 C and mean annual precipitation is 1066 mm. In 2009, 12 

open topped warming chambers (octagonal 5 m diameter  1.2 m high) were established at each 

site; warming treatments began in January of 2010 (Pelini et al. 2011). Chambers at each site 

manipulate air temperature incrementally from ambient to 5.5 C above ambient in half degree 

steps beginning at 1.5 C using hydronic heating and forced air. Air temperature, soil 

temperature (CR1000; Campbell Scientific, Inc.), and soil moisture (Model CS616 TDR probes, 
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Campbell Scientific, Inc.) were measured continuously in each chamber in both the organic and 

mineral layer using automated data loggers. 

 Soils were collected from each chamber in 2011. In an effort to maintain seasonal 

consistency between sites, we sampled soils in mid-April in NC and in mid-May in MA when 

average temperatures were similar (18 C in NC and 14 C in MA). Five soil cores (2-cm 

diameter, 5-cm depth) were collected from each chamber and homogenized in the field; 15 g 

were immediately removed from the sample, stored on dry ice in the field, and kept frozen at -80 

C until analyzed. The remaining soil was sieved and assayed for potential extracellular 

enzymatic activity and soil gravimetric water content within 48 hours of collection.  

To assess microbial community structure, we extracted DNA from collected soil (1g) 

using the UltraClean Soil DNA Isolation kit (MoBio Laboratories, Carlsbad, CA). To assess 

bacterial and fungal gene copy number (a proxy for abundance), we ran quantitative polymerase 

chain reaction (qPCR) on each individual sample in conjunction with primers Eub 338 and Eub 

518 for 16S ribosomal DNA and nuSSU1196F and nuSSU1536R for 18S ribosomal DNA 

(Castro et al., 2010). PCR mixtures for both 16S rRNA and 18S rRNA gene amplification 

contained 15l of SYBR green master mix (Invitrogen, Life Technologies, Grand Island, NY), 

5mol of each primer (Eurofins mwg operon, Huntsville, AL), and 1l of sample DNA diluted 

1:10 in sterile water. Reactions were brought up to 30 l with sterile water. Amplification 

protocol for the 16S rRNA gene consisted of an initial denaturing cycle of 95 C for three 

minutes. This cycle was followed by 39 cycles of 95 C for 15 s, 53 C for 15 s, and 72 C for 1 

minute. Amplification of the 18S rRNA gene consisted of an initial denaturing cycle of 95 C for 

three minutes. This cycle was followed by 39 cycles of 95 C for 15 s, 53 C for 15 s, and 70 C 

for 30 s. Abundance was quantified by comparing unknown samples to serial dilutions of 16S 
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and 18S rDNA from Escherichia coli and Saccharomyces cerevisiae respectively in each PCR 

run. After completion, for both ribosomal genes, a melting curve analysis was conducted to 

ensure purity of the amplification product. PCR amplification was performed on a 96-well 

Chromo4 thermocycler (Bio-Rad Laboratories, Hercules, CA).  

To assess microbial community composition, we measured bacterial and fungal 

community fingerprints using terminal-restriction fragment length polymorphism (TRFLP; 

(Singh et al. 2006). Due to decreases in multiplexed fluorescence, we performed bacterial and 

fungal TRFLPs in separate reactions. PCR was performed to amplify the 16S rRNA gene from 

bacteria using primers 63f (Marchesi et al. 1998) and 1087r (Hauben et al. 1997) and the fungal 

ITS region using primers ITS1f (Gardes and Bruns, 1993) and ITS4r (Singh et al. 2006). PCR 

mixtures contained 5 l 10× KCL reaction buffer, 2 l 50 mM MgCl2, 5l 10 mM dNTPs 

(Bioline, Tauton, MA), 1 l 20 mg/ml BSA (Roche, location), 0.5 l (2.5 Units) Taq DNA 

polymerase (Bioline, Tauton, MA), either 1l of each bacterial primer or 2 l of each fungal 

primer (Labeled primers - Invitrogen, Life Technologies, Grand Island, NY, unlabeled primers – 

Integrated DNA Technologies, Coralville, IA), and 1 l sample DNA diluted 1:10 in sterile 

water. All PCR reactions were performed using a 96-well Tgradient thermocycler (Biometra, 

Germany). DNA was amplified with an initial step of 95 C for 5 min, followed by 30 cycles at 

95 C for 30 s, 55 C for 30 s, and 72 C for 1 min. This was followed by extension at 72 C for 

10 minutes. PCR product quality was assessed with 1% agarose gel electrophoresis. PCR 

products were cleaned using the QIAquick PCR purification kit (Qiagen, Valencia, CA), 

quantified using a Synergy HT microplate reader (Biotek, Winooski, Vermont, USA), and 

digested with MspI. After digestion, a cocktail was made containing 0.5l LIZ labeled 

GeneScan 1200 internal size standard (Applied Biosystems, Grand Island, NY), 12.5l Hi-Di 
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formamide (Applied Biosystems, Grand Island, NY), and 1l of digested product which was 

centrifuged, then incubated at 94 C for 4 min followed by incubation at 4 C for 5 min. 

Fragments were analyzed on an ABI Prism 3100 genetic analyzer (Applied Biosystems, Grand 

Island, NY).  

TRFLP profiles were obtained using the GeneMapper software (Applied Biosystems, 

NY) with a cutoff of 55 bp. The relative abundance of a TRF in a TRFLP profile was calculated 

by dividing the peak height of the TRF by the total peak height of all TRFs in the profile (Singh 

et al. 2006). Community analyses of fragments were conducted using Primer 6 with site as a 

factor and soil temperature and soil moisture as covariates (Primer-E Ltd, United Kingdom). 

Since soil temperature and soil moisture varied significantly between the southern and northern 

site (soil temperature, F = 187.8, p < 0.01; soil moisture, F = 17.6, p < 0.01), we followed up the 

community analyses by separating the data by site and using a distance based linear model 

(DISTLM) to assess the effect of soil temperature and soil moisture on total microbial, fungal, 

and bacterial community composition at each site (Anderson 2005, Langlois et al. 2006). 

Additionally, bacterial, fungal and total microbial richness for all chambers at both sites were 

calculated by summing the unique number of TRFs in each sample. 

We assayed microbial activity by measuring potential extracellular enzyme activity using 

methylumbelliferone (MUB) linked substrates and 3,4 Dihydroxyphenylalanine (L-DOPA). Soils 

were assayed for nine ecologically relevant enzymes in order to assess the functional diversity of 

the soil community: sulfatase (hydrolysis of sulfate esters), nitrogen acetylglucosaminidase 

(nagase; mineralization of nitrogen from chitin), xylosidase (hemicellulose degradation), 

phosphatase (hydrolysis of phosphomonoesters and phosphodiesters releasing phosphate), -

glucosidase (degradation of storage carbohydrates), -glucosidase (degradation of cellulose and 

http://en.wikipedia.org/wiki/Sulfate
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other -1,4 glucans), cellobiohydrolase (cellulose degradation), phenol oxidase (lignin 

degradation), and peroxidase (lignin degradation). Soils were prepared by adding 125 mL of 0.5 

M sodium acetate buffer (buffer, pH 5) to approximately 1 g of soil and homogenized for 2 

minutes by immersion blending. Sulfatase, nagase, xylosidase, phosphatase, -glucosidase, -

glucosidase, and cellobiohydrolase were measured using MUB linked substrates. We prepared 

96 well plates with blanks, experimental controls, and samples, which were replicated 8 times 

each. All plates were incubated at room temperature in the dark. The nagase and phosphatase 

reactions were incubated for 0.5 h, while sulfatase, xylosidase, -glucosidase, -glucosidase, 

and cellobiohydrolase were incubated for 2 h. Fluorescence was read at an excitation of 365 nm 

and an emission of 450 nm (Biotek, Winooski, Vermont, US). Phenol oxidase and peroxidase 

activity were measured using L-DOPA. Assays were replicated 16 times and reactions were 

incubated in the dark for 24 hours. Absorbance was read at 460 nm on a Synergy HT microplate 

reader (Biotek, Winooski, Vermont, US). Potential enzymatic activity is presented as nmol h
-1

g
-1 

(Saiya-Cork et al. 2002, Sinsabaugh 1994).  

Decomposition of a standard cellulose substrate was measured in each chamber to 

determine how warming might alter carbon degradation, a microbially mediated process. Twelve 

mesh decomposition bags (10 cm × 10 cm; 3mm mesh on top and 1.3mm mesh on bottom) 

containing 10 g of Whatman # 1 filter paper were deployed in each of the chambers and 

collected after 3, 6, 9, and 12 months. All data are shown on an ash-free oven dry mass basis. K-

constants were calculated for each chamber at each site following Olson (1963).  

Because microbial communities directly experience changes in soil temperature and soil 

moisture as a result of changing air temperature we used an analysis of covariance (ANCOVA) 

to examine the effect of site, soil temperature (average soil temperature in the organic layer on 



 
 

 100 

the day samples were taken), and soil moisture (average daily volumetric water content (VWC) 

on the day samples were taken), and the interactions of these factors on microbial community 

composition, abundance, potential extracellular enzymatic activity, and rates of decomposition. 

When three way interactions between site, soil temperature, and soil moisture were detected, we 

followed up these analyses by separating our data by site and running linear regressions using 

soil temperature and soil moisture as factors. We also assessed the effect of minimum and 

maximum temperature and moisture and the variance of these factors over a year on microbial 

structure and function, but found no significant effects, so those results are not presented. 

 

Results 

Bacterial, but not fungal, abundance was altered by our treatments. There was a significant 3-

way interactive effect of site, soil temperature, and soil moisture on bacterial abundance (F1 = 

18.17, p < 0.01), such that bacterial abundance was greatest when soil moisture was high and soil 

temperatures were very high or very low at the southern site (Figure 17A, F1 = 16.11, p < 0.01). 

However, there was no effect of soil temperature or soil moisture on bacterial abundance at the 

northern site (Figure 17B, F1 = 0.86, p = 0.50). There was also a 2-way interactive effect of soil 

temperature and soil moisture on bacterial abundance (F1 = 11.75, p < 0.01) and a 2-way 

interactive effect of site and soil moisture on bacterial abundance (F1 = 10.24, p = 0.01). There 

was a main effect of site on bacterial abundance (gene copy numbers) such that bacterial 

abundance was 1.6  higher at the southern site relative to the northern site (F1 = 9.22, p = 0.01). 

Interestingly, there was a significant 2-way interactive effect of soil temperature and soil 

moisture on the fungal:bacterial ratio, which was greatest at high levels of soil moisture and low 

soil temperatures at both sites (F1 = 5.04, p = 0.04).  
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Similarly, we found significant effects of our treatment on bacterial richness, but not 

fungal richness (F1 = 1.65, p = 0.19) or total microbial richness (F1 = 1.40, p = 027). There was a 

significant 2-way interactive effect of soil temperature and soil moisture on bacterial richness (F1 

= 6.10, p = 0.03). Bacterial richness was greatest at low soil temperatures and intermediate soil 

moistures at both sites. Additionally, there was a significant 2-way interactive effect of site and 

soil temperature on bacterial richness (F1 = 4.31, p = 0.05). At the southern site, bacterial 

richness was lowest at high soil temperatures and low soil moisture levels (F1 = 21.39, p <0.01), 

but we were unable to detect an effect of soil temperature and soil moisture on bacterial richness 

at the northern site (F1 = 2.09, p = 0.19). 

There was a significant main effect of soil temperature on total microbial community 

composition (F1 = 16.61, p < 0.01), fungal community composition (F1 = 4.21, p < 0.01), and 

bacterial community composition (F1 = 42.71, p < 0.01). Additionally, total microbial 

community composition (F1 = 1.70, p = 0.02) and bacterial community composition (F1 = 3.50, p 

< 0.01) differed significantly between the two sites. When sites were analyzed separately, we 

were unable to detect any effect of soil temperature or soil moisture on total microbial, fungal, or 

bacterial community composition demonstrating the largest effect of soil temperature on 

microbial community composition was driven by large differences in soil temperature at the two 

sites (Table 8). 

Site, soil temperature, and soil moisture significantly impacted potential microbial 

activity. There was a 3-way interactive effect of site, soil temperature, and soil moisture on 

xylosidase (Figure 18A and B, F1 = 10.22, p = 0.01) and nagase activity (Figure 18C and D, F1 = 

5.42, p = 0.03). At the southern site, xylosidase activity was highest at intermediate temperatures 

and low levels of soil moisture (Figure 18A, F1 = 29.57,p < 0.01), but there was no effect of soil 
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temperature and soil moisture on xylosidase activity at the northern site (Figure 18B, F1 = 0.13, p 

= 0.72). Contrary to this, at the northern site, nagase activity was highest at intermediate levels of 

soil moisture and high soil temperatures (Figure 18D, F1 = 5.25, p = 0.05), but there was no 

effect of soil temperature and soil moisture on nagase activity at the southern site (Figure 18C, F1 

= 1.19, p = 0.31). There was also a significant 2-way interactive effect of site and soil 

temperature on -glucosidase activity (F1 = 5.10, p = 0.04). When divided by site, we were 

unable to detect an effect of soil temperature on -glucosidase activity at either site (Table 7). 

Interestingly, this change in potential activity did not scale up to cause changes cellulose 

decomposition across sites or among treatments (Table 8). 
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Table 7. Microbial community structure and function differed significantly between the northern and southern sites. F and p statistics 

(in parentheses) show the main effects of site, soil temperature, and soil moisture and the interactive effects of site  soil temperature, 

site  soil moisture, soil temperature  soil moisture, and site  soil temperature  soil moisture on all variables measured. P values 

less than 0.05 are shown in bold. The PERMANOVA community analyses use site as a factor and soil temperature and soil moisture 

as covariates thus there are no F and p values for the full model. 

 

 
Full model Site 

Soil 

temperature 

Soil 

moisture 
Site  

temperature 

Site  

Moisture 

Temperature  

moisture 

Site  

temperature  

moisture 

Microbial community  

composition 
na 1.70 (0.02) 16.61 (<0.01) 0.88 (0.62) 0.82 (0.70) 0.86 (0.65) 1.14 (0.30) 0.89 (0.61) 

Fungal community  

composition 
na 0.86 (0.66) 4.21 (<0.01) 0.89 (0.61) 1.06 (0.39) 0.97 (0.51) 1.27 (0.19) 0.93 (0.56) 

Bacterial community  

Composition 
na 3.50 (<0.01) 42.71 (<0.01) 0.87 (0.57) 0.49 (0.89) 0.64 (0.79) 0.79 (0.66) 0.77 (0.67) 

Total richness 1.40 (0.27) 7.32 (0.02) 8.31 (0.01) 3.26 (0.09) 0.95 (0.35) 0.15 (0.70) 0.06 (0.81) 4.35 (0.05) 

Fungal richness 1.65 (0.19) 4.37 (0.05) 6.52 (0.02) 3.54 (0.08) 2.45 (0.14) 0.55 (0.47) 0.54 (0.47) 3.91 (0.07) 

Bacterial richness 4.65 (0.01) 2.75 (0.12) 0.73 (0.41) 0.001 (0.97) 4.31 (0.05) 3.42 (0.08) 6.10 (0.03) 0.01 (0.93) 

Fungal:bacterial 2.74 (0.05) 0.05 (0.83) 0.69 (0.42) 2.10 (0.17) 1.76 (0.20) 3.67 (0.07) 5.04 (0.04) 1.82 (0.20) 

Fungal  abundance 4.73 (<0.01) 2.68 (0.12) 0.36 (0.55) 0.16 (0.70) 1.33 (0.26) 1.24 (0.28) 2.16 (0.16) 0.19 (0.67) 

Bacterial abundance 3.78 (0.01) 9.22 (0.01) 9.66 (0.01) 17.34 (<0.01) 3.45 (0.08) 10.24 (0.01) 11.75 (<0.01) 18.17 (<0.01) 

Xylosidase 3.47 (0.02) 4.39 (0.05) 4.52 (0.05) 9.03 (0.01) 13.50 (<0.01) 
13.92 

(<0.01) 
13.94 (<0.01) 10.22 (0.01) 

Sulfatase 2.84 (0.04) 3.62 (0.08) 0.80 (0.39) 2.33 (0.15) 0.47 (0.50) 0.002 (0.96) 0.43 (0.52) 0.82 (0.38) 

Cellobiohydrolase 0.84 (0.57) 0.87 (0.37) 1.44 (0.25) 0.50 (0.49) 2.68 (0.12) 0.60 (0.45) 1.05 (0.32) 1.05 (0.32) 

ß-glucosidase 5.04 (<0.01) 0.19 (0.67) 0.71 (0.41) 0.59 (0.46) 5.10 (0.04) 3.29 (0.09) 3.93 (0.06) 1.33 (0.27) 

-glucosidase 2.11 (0.10) 4.11 (0.06) 2.20 (0.16) 2.17 (0.16) 0.50 (0.49) 2.48 (0.13) 1.30 (0.27) 1.99 (0.18) 

Nagase 4.72 (<0.01) 7.67 (0.01) 3.22 (0.09) 5.55 (0.03) 0.69 (0.42) 1.07 (0.32) 0.51 (0.49) 5.42 (0.03) 

Phosphatase 1.24 (0.34) 0.70 (0.42) 1.55 (0.23) 0.03 (0.86) 3.33 (0.09) 4.02 (0.06) 3.79 (0.07) 0.15 (0.70) 

Phenol oxidase 3.43 (0.02) 0.74 (0.40) 1.95 (0.18) 1.07 (0.32) 1.27 (0.28) 1.78 (0.20) 0.89 (0.36) 0.31 (0.59) 

Peroxidase 2.23 (0.09) 0.56 (0.46) 1.45 (0.25) 0.001 (0.98) 1.45 (0.25) 0.001 (0.98) 0.001 (0.98) 0.001 (0.98) 

Decomposition  

(k constant) 
4.06 (0.01) 2.58 (0.13) 0.26 (0.62) 0.06 (0.81) 0.03 (0.86) 0.005 (0.95) 0.001 (0.98) 0.03 (0.86) 
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Table 8. Soil temperature and soil moisture independently and interactively altered microbial community structure and function. F and 

p statistics (in parentheses) are given showing the main effects of soil temperature and soil moisture and the interactive effect of soil 

temperature  moisture within each site. P values less than 0.05 are shown in bold. A distance based linear model (DISTLM) was used 

to assess community composition thus F and p values were not obtained for the full model or the interaction term. 

 Southern site Northern site 

Full model 
Soil 

temperature 

Soil  

moisture 

Soil temp × 

soil moist 
Full model 

Soil 

temperature 

Soil  

moisture 

Soil temp × 

soil moist 

Microbial community composition na 0.82 (0.74) 0.92 (0.55) na na 0.77 (0.79) 1.10 (0.33) na 

Fungal community composition na 0.90 (0.63) 0.99 (0.46) na na 0.62 (0.88) 1.28 (0.20) na 

Bacterial community composition na 0.75 (0.74) 0.89 (0.56) na na 1.01 (0.41) 0.64 (0.83) na 

Total richness 2.56 (0.13) 5.26 (0.05) 0.17 (0.69) 2.62 (0.14) 0.88 (0.49) 0.72 (0.42) 0.91 (0.37) 1.84 (0.21) 

Fungal richness 3.01 (0.09) 5.59 (0.05) 0.10 (0.76) 3.77 (0.09) 0.27 (0.84) 0.05 (0.84) 0.06 (0.82) 0.79 (0.40) 

Bacterial richness 10.10 (<0.01) 0.86 (0.38) 15.48 (<0.01) 21.39 (<0.01) 1.24 (0.36) 1.38 (0.27) 1.55 (0.25) 2.09 (0.19) 

Fungal:bacterial 1.64 (0.26) 0.03 (0.87) 0.38 (0.55) 4.86 (0.06) 0.58 (0.66) 0.02 (0.90) 1.12 (0.32) 0.56 (0.48) 

Fungal abundance 0.38 (0.77) 0.02 (0.90) 0.86 (0.38) 0.56 (0.48) 0.79 (0.52) 0.37 (0.56) 0.72 (0.42) 1.86 (0.21) 

Bacterial abundance 5.40 (0.03) 0.002 (0.97) 0.64 (0.45) 16.11 (<0.01) 0.86 (0.50) 1.86 (0.21) 0.17 (0.69) 0.97 (0.35) 

Xylosidase 10.39 (<0.01) 1.98 (0.20) 0.61 (0.46) 29.57 (<0.01) 0.68 (0.59) 1.79 (0.22) 0.13 (0.73) 0.13 (0.72) 

Sulfatase 0.52 (0.68) 0.32 (0.59) 0.08 (0.79) 1.28 (0.29) 2.57 (0.13) 0.003 (0.96) 7.42 (0.03) 0.03 (0.86) 

Cellobiohydrolase 1.49 (0.29) 1.57 (0.25) 1.78 (0.22) 1.47 (0.26) 0.16 (0.92) 0.40 (0.55) 0.03 (0.87) 0.0000 (0.99) 

ß-glucosidase 1.56 (0.27) 0.70 (0.43) 1.62 (0.24) 3.12 (0.12) 0.88 (0.49) 1.89 (0.21) 0.34 (0.58) 0.63 (0.45) 

-glucosidase 0.72 (0.57) 0.50 (0.50) 1.43 (0.27) 0.05 (0.83) 1.37 (0.32) 0.32 (0.59) 0.82 (0.39) 2.87 (0.13) 

Nagase 0.50 (0.70) 0.01 (0.94) 0.63 (0.45) 1.19 (0.31) 2.06 (0.18) 0.62 (0.45) 0.48 (0.51) 5.25 (0.05) 

Phosphatase 0.97 (0.45) 0.22 (0.65) 0.52 (0.49) 1.38 (0.27) 1.46 (0.30) 3.13 (0.12) 0.11 (0.75) 2.64 (0.14) 

Phenol oxidase 3.50 (0.07) 7.63 (0.02) 1.76 (0.22) 2.14 (0.18) 1.53 (0.28) 1.98 (0.20) 1.87 (0.21) 0.69 (0.43) 

Peroxidase na na na na 1.85 (0.22) 4.91 (0.06) 0.0004 (0.98) 0.001 (0.97) 

Decomposition (k constant) 0.01 (0.10) 0.02 (0.90) 0.004 (0.95) 0.01 (0.92) 2.10 (0.18) 4.67 (0.06) 1.01 (0.34) 0.12 (0.73) 
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Figure 17. Site, soil temperature, and soil moisture interactively altered bacterial abundance (F = 18.17, p < 0.01). 1A. At the southern 

site, abundance was greatest at low soil moistures and high soil temperatures. 1B. There was no effect of soil temperature and soil 

moisture at the northern site. 
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Figure 18. Site, soil temperature, and soil moisture interactively altered potential xylosidase 

activity (F = 10.22, p = 0.01) and nagase activity (F = 5.42, p = 0.03). 2A. At the southern site, 

xylosidase activity was lowest at high soil temperatures and low soil moistures. 2B. At the 

northern site, there was no effect of soil temperature and soil moisture on xylosidase activity. 2C. 

At the southern site, there was no effect of soil temperature and soil moisture on nagase activity. 

2D. At the northern site, nagase activity was greatest at high soil temperatures and soil moistures.  
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Discussion 

Taken together, our results demonstrate that increases in temperature brought about by 

global warming may have effects that vary by location and depend on underlying levels 

of soil moisture. Overall, we found that soil temperature and soil moisture altered 

bacterial richness, abundance, and potential microbial activity at the southern site, but not 

the northern site. More drastic effects at the southern site may evident because 

communities are being pushed beyond their thermal tolerances. Surprisingly, the change 

in microbial community structure and potential function did not scale up to alter an 

ecosystem function - decomposition.  

Soil bacteria are highly responsive to changing soil temperature and soil moisture 

(Pietikainen et al. 2005, Rinnan et al. 2007, Zogg et al. 1997). Consistent with this, we 

found this portion of the community to be most responsive to the treatments after 16 

months of warming at the warmer, southern site. Optimal soil temperatures for bacterial 

growth tend to be between 25 and 30 C (Pietikainen et al. 2005). At the northern site, 

organic soil temperatures ranged from -6 to 26 °C, while at the southern site soil 

temperatures ranged from -5 to 37 °C throughout the year. At the warmer, southern site, 

soil temperatures exceed the optimum temperature for bacterial growth. This increase in 

temperature altered bacterial richness and abundance. This indicates that further changes 

in the bacterial community may be evident as soil temperature increases over time 

(Rinnan et al. 2007). 

 Although we detected significant changes in the microbial community at the 

southern site, we were able to detect only small changes in potential function and no 

change in the rate of decomposition. This suggests that changes in these communities 
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have resulted in functionally redundant new communities. The species lost or gained do 

not currently have an impact on the functioning of this ecosystem. Other studies have 

demonstrated that changes in ecosystem functioning in response to warming may take 

longer than just one year before they become evident (Bell and Henry 2011, Rinnan et al. 

2007). We have started to see changes in potential extracellular enzymatic activity, thus 

we expect that increases in temperature will begin to alter ecosystem function, as 

temperatures increase within the community over time. 
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Conclusions and future directions. 

My dissertation work has demonstrated that understanding the effect of climate change 

on microbial community structure and ecosystem function is complex and contingent 

upon the underlying abiotic variability experienced in an ecosystem and biotic 

interactions between the belowground and aboveground communities. Overall, I found 

that seasonal variability and the aboveground plant community played a large role in the 

response of soil microbes to precipitation change in a semi-arid woodland. Additionally, I 

found that increasing temperature altered microbial structure and function in a temperate 

forest, but this effect was not consistent across two locations. Although I have begun 

addressing key questions related to the effects of climate change on ecosystems, my work 

has left many questions unanswered.  

1. My work addressed the short-term effects of precipitation change and atmospheric 

warming on microbial community structure and function. To truly understand the 

effects of this chronic disturbance, long-term, detailed measurements are 

warranted. Specifically, I recommend using pyrosequencing to understand species 

level shifts in these communities, using functional gene assays to understand 

potential changes in function, and measuring carbon and nitrogen cycling in depth 

in association with climatic changes. 

2. My work demonstrated that microbial communities respond to seasonal variation 

in rainfall. This leads me to conclude that snapshot studies during one season may 

not provide enough information to understand the response of microbial 

communities to climate change. Therefore, more studies should be conducted 
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assessing the seasonal response and year-to-year fluctuations of the microbial 

community to climate change factors. 

3. My work showed that microbial community structure and function varied beneath 

two plant species. Understanding this link is important in predicting the response 

of microbial communities to climate change. Therefore, I suggest this area needs 

addressing in future climate change studies. Additionally, this research area could 

be extended to examine genotypic differences in plants and how these differences 

alter belowground community structure and function. 

4. Finally, my research showed that the response of the microbial community to 

climate change is not consistent across ecosystems. Thus, more studies should be 

done in a variety of ecosystems before broad generalizations and patterns are 

inferred.    

Although my dissertation research was focused to understand how climatic change 

altered microbial community structure and function in ecosystems, for my future research, 

I am broadly interested in understanding how different factors shape archaeal, bacterial, 

and fungal communities within ecosystems, and how disturbance, both acute and chronic, 

alters these communities.  Specifically, I am interested in understanding how microbial 

community composition influences ecosystem function, and what role microbial diversity 

plays in ecosystem functioning.  Although I have previously studied large ecosystems 

such as forests or desert woodlands, I’m also interested in evaluating these dynamics 

within smaller ecosystems like the human body. For my post-doctoral research, I am 

joining the host-microbe group at the Institute for Genomic Biology at the University of 

Illinois where I will use metagenomic techniques to evaluate microbial communities 
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within the human body and identify variation in microbial community composition, both 

bacterial, and fungal. I am interested in understanding how microbial communities affect 

the functioning of the human body, and what role they play in acute and chronic infection 

and disease.  I am interested in examining how factors such as obesity, dietary 

preferences, lifestyle choices, and heredity influence the microbiome and if there are 

factors associated with an abnormal microbiome, which leads to disease states.  



 
 

 116 

APPENDICES.



 
 

 117 

Appendix 1. . Microbial richness, abundance and biomass, mean ( standard error), across all treatments and beneath piñon and 

juniper crowns in the pre-monsoon and monsoon season of 2008 and pre-monsoon season of 2009. 

Response variable 
 

- water 
Cover 

control 
+ water Control - water 

Cover 

control 
+ water Control 

  Juniper Piñon 

Microbial richness 

Pre-

monsoon 

15.0 (6.0) 42.7 (4.1) 25.0 (1.0) 15.5 (3.5) 42.0 (23.1) 56.0 (3.0) 31.7 (15.7) 46.3 (15.3) 

Fungal richness 5.0 (3.0) 25.0 (4.2) 18.0 (3.2) 5.0 (3.0) 36.3 (23.3) 39.5 (3.5) 25.0 (12.5) 35.0 (12.7) 

Bacterial richness 10.0 (3.0) 17.7 (1.7) 7.0 (2.5) 10.5 (0.5) 5.7 (1.2) 16.5 (0.5) 6.7 (3.2) 11.3 (2.7) 

Fungal:bacterial 0.25 (0.05) 0.45 (0.09) 0.69 (0.19) 0.44 (0.05) 0.82 (0.30) 0.94 (0.16) 1.26 (0.54) 1.73 (0.46) 

Fungal abundance 
2.2 x 10

7 

(6.7 x 10
6
) 

4.2 x 10
7 

(6.7 x 10
6
) 

5.0 x 10
7 

(8.2 x 10
6
) 

4.2 x 10
7 

(9.3 x 10
6
) 

3.6 x 10
7 

(2.0 x 10
7
) 

6.7 x 10
7 

(1.7 x 10
7
) 

1.1 x 10
8 

(3.2 x 10
7
) 

1.8 x 10
8 

(4.1 x 10
7
) 

Bacterial abundance 
8.7 x 10

7 

(7.3 x 10
6
) 

9.6 x 10
7 

(1.6
 
x 10

7
) 

7.8 x 10
7 

(1.7
 
x 10

7
) 

9.2 x 10
7 

(9.7 x 10
6
) 

5.9 x 10
7 

(2.6 x 10
7
) 

8.1 x 10
7 

(2.8 x 10
7
) 

9.5 x 10
7 

(2.1 x 10
7
) 

1.1 x 10
8 

(1.2 x 10
7
) 

Microbial richness 

Monsoon 

32.0 (3.0) 30.7 (3.8) 23.0 (5.5) 45.0 (12.0) 27.3 (1.2) 28.7 (1.5) 32.3 (7.0) 36.0 (9.0) 

Fungal richness 16.5 (1.5) 18.3 (4.1) 12.3 (4.1) 33.0 (12.0) 16.0 (1.5) 16.3 (1.2) 17.7 (2.9) 21.0 (5.0) 

Bacterial richness 15.5 (1.5) 12.3 (0.9) 10.7 (1.5) 12.0 (0.0) 11.3 (1.3) 12.3 (2.4) 14.7 (4.2) 15.0 (4.6) 

Fungal:bacterial 1.50 (0.67) 0.97 (0.52) 3.80 (2.03) 1.75 (0.98) 1.98 (0.12) 5.97 (2.33) 0.77 (0.10) 2.73 (1.02) 

Fungal abundance 
1.3 x 10

8 

(3.5 x 10
7
) 

6.3 x 10
7 

(2.6 x 10
7
) 

3.6 x 10
7 

(8.7 x 10
6
) 

7.1 x 10
7 

(5.5 x 10
7
) 

1.4 x 10
8 

(2.1 x 10
7
) 

7.6 x 10
7 

(2.7 x 10
7
) 

1.5 x 10
8 

(2.6 x 10
7
) 

1.5 x 10
8 

(7.7 x 10
7
) 

Bacterial abundance 
1.0 x 10

8 

(2.0 x 10
7
) 

1.3 x 10
8 

(6.3 x 10
7
) 

1.5 x 10
7 

(5.1 x 10
6
) 

6.8 x 10
7 

(4.2 x 10
7
) 

7.2 x 10
7 

(7.6 x 10
6
) 

1.5 x 10
7 

(3.7 x 10
6
) 

2.0 x 10
8 

(2.0 x 10
7
) 

4.9 x 10
7 

(2.2 x 10
7
) 

Microbial biomass N 2009 199.2 (80.0) 282.0 (59.4) 425.6 (82.3) 367.6 (87.1) 290.5 (64.0) 332.6 (70.8) 
459.8 

(127.0) 

295.1 

(48.1) 
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Appendix 2. Timing and amount of rainfall events across years at the Sevilleta 

precipitation manipulation. 

Year Date Amount water added (mm) 

2008 June 24 19  
2008 July 15 19 

2008 August 26 19 

2009 April 24 12.5 

2009 May 19 19 

2009 June 30 19 

2009 October 28 19 

2010 May 5 19 

2010 June 2 19 

2010 June 29 19 

2010 August 3 19 

2010 August 31 19 

2010 October 5 17 

2011 April 19 14 

2011 May 17 19 

2011 June 21 19 

2011 July 19 17 

2011 August 23 19 

2011 October 4 19 
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Appendix 3. Warming altered microbial community structure and function at the southern site. Raw data values for all response 

variables are listed below.  

 Southern site 

Chamber temperature 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

Soil temperature (ºC) 14.1 14.6 14.4 14.9 15.7 14.4 15.6 15.4 15.7 16.1 

Soil moisture  0.29 0.27 0.26 0.32 0.19 0.17 0.26 0.27 0.23 0.29 

Total richness (Total OTUs) 89 89 96 90 154 77 95 89 81 115 

Fungal richness (Fungal OTUs) 34 31 42 31 106 23 38 34 27 55 

Bacterial richness (Bacterial OTUs) 55 58 54 59 48 54 57 55 54 60 

Fungal:bacterial 2.5 3.2 3.5 6.3 0.2 5.8 1.7 9.0 3.8 1.9 

Fungal abundance (copy number g
-1

 soil) 1.89 x 10
8 

2.81 x 10
8 

1.95 x 10
8 

2.75 x 10
8 

9.92 x 10
7 

1.86 x 10
8 

2.25 x 10
8 

3.12 x 10
8 

1.80 x 10
8 

1.05 x 10
8 

Bacterial abundance (copy number g
-1

 soil) 1.90 x 10
8 

8.78 x 10
7 

5.52 x 10
7 

4.40 x 10
7 

5.53 x 10
8 

3.21 x 10
7 

1.31 x 10
8 

3.47 x 10
7 

4.72 x 10
7 

5.70 x 10
7 

Xylosidase (nmol h
-1

 g soil 
-1

) 88.1 189.3 133.8 66.6 16.4 204.2 75.8 183.3 58.3 112.6 

Sulfatase (nmol h
-1

 g soil 
-1

) 9.6 9.2 14.3 9.2 10.9 11.0 9.8 3.6 0 16.6 

Cellobiohydrolase (nmol h
-1

 g soil 
-1

) 52.9 124.8 202.9 24.0 5.4 47.5 21.2 194.0 24.2 32.0 

ß-glucosidase (nmol h
-1

 g soil 
-1

) 93.8 165.4 175.5 77.3 23.7 141.0 104.8 405.5 55.4 80.2 

-glucosidase (nmol h
-1

 g soil 
-1

) 11.0 34.0 24.3 5.2 5.2 4.5 14.4 24.2 3.2 6.7 

Nagase (nmol h
-1

 g soil 
-1

) 141.5 134.4 97.3 125.7 291.3 200.8 315.3 140.9 53.1 75.2 

Phosphatase (nmol h
-1

 g soil 
-1

) 671.4 1376.5 1871.7 806.4 1185.9 1372.1 1335.5 1665.2 544.8 900.7 

Phenol oxidase (nmol h
-1

 g soil 
-1

) 877.8 1343.4 409.6 987.0 738.7 779.9 891.8 2548.2 1834.8 2535.6 

Peroxidase (nmol h
-1

 g soil 
-1

) 0 0 0 0 0 0 0 0 0 0 

Decomposition (k constant) 0.27 0.12 0.36 0.23 0.17 0.35 0.37 0.55 0.13 0.18 
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Appendix 4. Warming had minimal effect on microbial community structure and function at the northern site. Raw data values for all 

response variables at the northern site are listed below. 

 Northern site 

Chamber temperature 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

Soil temperature (ºC) 9.5 9.5 10.2 10.5 11.1 10.9 10.3 10.4 11.6 11.1 

Soil moisture  0.18 0.18 0.14 0.24 0.24 0.14 0.18 0.24 0.17 0.16 

Total richness (Total OTUs) 92 91 131 120 106 105 107 72 92 77 

Fungal richness (Fungal OTUs) 23 29 53 37 34 34 45 22 17 16 

Bacterial richness (Bacterial OTUs) 69 62 78 83 72 71 62 50 75 61 

Fungal:bacterial 8.4 13.2 22.3 4.4 5.6 5.1 5.2 9.6 14.0 3.2 

Fungal abundance (copy number g
-1

 soil) 6.25 x 10
8 

1.25 x 10
9
 1.57 x 10

9 
5.89 x 10

8 
7.71 x 10

8 
4.44 x 10

8 
3.65 x 10

8 
4.33 x 10

8 
1.02 x 10

9 
2.84 x 10

8 

Bacterial abundance (copy number g
-1

 soil) 7.25 x 10
7 

9.47 x 10
7 

7.05 x 10
7 

1.35 x 10
8 

1.38 x 10
8 

8.72 x 10
7 

7.04 x 10
7 

4.50 x 10
7 

7.24 x 10
7 

8.95 x 10
7 

Xylosidase (nmol h
-1

 g soil 
-1

) 57.7 41.5 121.9 181.6 123.2 190.1 112.1 77.3 44.5 63.9 

Sulfatase (nmol h
-1

 g soil 
-1

) 1.1 11.6 6.2 0 0 22.8 0 0.4 0 9.3 

Cellobiohydrolase (nmol h
-1

 g soil 
-1

) 44.1 47.7 129.5 96.9 83.0 77.9 84.5 20.1 30.9 24.1 

ß-glucosidase (nmol h
-1

 g soil 
-1

) 253.3 311.9 635.5 396.4 625.4 338.8 403.0 323.5 416.0 143.6 

-glucosidase (nmol h
-1

 g soil 
-1

) 3.2 22.2 2.1 4.9 0 29.4 3.7 0 1.8 2.4 

Nagase (nmol h
-1

 g soil 
-1

) 396.2 1025.4 698.6 492.7 1646.0 151.7 633.7 422.5 775.4 155.1 

Phosphatase (nmol h
-1

 g soil 
-1

) 842.1 291.3 889.3 527.6 1299.2 1196.0 966.7 1702.2 1542.3 352.4 

Phenol oxidase (nmol h
-1

 g soil 
-1

) 195.9 0 0 2768.0 3098.9 0 1248.2 0 0 1073.1 

Peroxidase (nmol h
-1

 g soil 
-1

) 620.4 0 0 0 0 0 0 0 0 0 

Decomposition (k constant) 0.09 0.06 0.14 0.06 0.06 0.04 0.05 0.05 0.09 0.03 
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Melissa Cregger was born in Indiana where she grew up as the daughter of a union steel 

worker and a stay-at-home mom. She was the first in her family to receive a college 

degree in 2003 when she received her Bachelor of Science degree in Biology at the 

University of Southern Indiana. In 2004, she accepted a job as a research assistant at Yale 
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moved on to accept a position in research and development at HistoRx, where she 

continued examining protein expression in cancer. In August of 2007, Melissa began a 

Ph.D. program in the Department of Ecology and Evolutionary Biology at the University 
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