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There is a theory which states that if ever anybody discovers exactly what the Universe

is for and why it is here, it will instantly disappear and be replaced by something even

more bizarre and inexplicable. There is another theory which states that this has

already happened.

Douglas Adams - The Hitchhiker’s Guide to the Galaxy
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Abstract

This work focuses on the development and implementation of microscopic models

as well as their numerical and analytical study to elucidate the properties of the

iron pnictides. There are many first principle and phenomenological studies of

these materials, but there is a need for unbiased numerical calculations following

an approach similar to the one used in the study of the Hubbard and t-J models for

the cuprates.

First a two orbital model for the pnictides, focusing on two hybridized Fe-d orbitals

(dxz and dyz) is formulated, including hoppings between nearest and next nearest

neighbors as well as on site Coulomb interactions. This model is studied numerically

on a tilted 8-site cluster. The magnetic tendencies and the pairing operators allowed

by lattice and orbital symmetries are calculated including a study of which of these

operators are favored in the model.

Next, Heisenberg terms, deduced from a strong coupling expansion, are added to

enhance magnetic order found experimentally as well as to increase carrier attraction.

Superconducting pairing symmetries are studied in both the hole and electron doped

cases. In both cases, many pairing symmetries compete (A1g, B2g, B1g) in the physical

parameter regime suggesting that small changes in parameters may render any of

these three channels stable. In the hole doped case, ground states with pseudocrystal

momentum k=(⇡,⇡) in the unfolded Brillouin zone are found. In the two Fe-atom unit

cell, this indicates that the ground state involves anti-bonding, rather than bonding,
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combinations of the orbitals. The lowest state with k=(0,0) has only a slightly higher

energy and may become the favored state in some regions of parameter space.

To investigate the role that degeneracy, hybridization and nesting play in the

origin of magnetic order in the pnictides we introduce a phenomenological two

orbital model composed of non-hybridized bands. Using a variety of techniques,

in the weak coupling regime it is shown that only the model with hybridized bands

develops magnetic order while the other does not have local magnetization. However,

both models display similar insulating magnetic order in the strong coupling limit.

These results indicate that nesting is a necessary but not su�cient condition for

the development of ordered states with local magnetization in multi-orbital Hubbard

systems; the additional requirement is that the nested portions of the bands have the

same orbital flavor. This condition can be achieved via strong hybridization of the

orbitals in the weak coupling limit or via Fermi surface reconstruction induced by

Coulomb interactions in the strong coupling regime.

Finally, a three orbital model is developed which, in addition to the Fe 3-dxz and

dyz orbitals, takes into account the Fe 3-dxy orbital, which is found to have weight

in a small region around the Fermi surface in bandstructure calculations. Mean

field calculations are performed guided by the results of the two orbital model. The

proceeds of this work include the discovery of four distinct magnetic phases in the

model as well as the tabulation of a variety of pairing operators and their single

particle spectral functions to be compared with experimental observations. Good

agreement is found between both models for the magnetic tendencies and pairing

symmetries.
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Chapter 1

Introduction

Since the discovery in 2008 of superconducting transition temperatures in LaFeAsO1�xFx

up to Tc=26 K, there has been much research performed in this new family of

superconductors [Kamihara et al. (2008); Chen et al. (2008a,b); Wen et al. (2008);

Chen et al. (2008c); Ren et al. (2008c,b,a)]. The record critical temperature in

these materials, 55 K in SmO1�xFxFeAs, [Ren et al. (2008b)] is second only to

those observed in the cuprates [Dagotto (1994)]. While crystalline structures of the

members of this family di↵er, one common theme is the presence of iron along with a

pnictogen (P, As, Sb) or a chalcogen (S, Se, Te). This work will focus mainly on the

pnictogen family and of these the “1111” subgroup, which derives its name from the

material’s chemistry. Shown in Fig. 1.1 is the structure of LaOFeAs: red solid balls

represent Fe atoms, yellow ones As atoms, blue balls O/F atoms and La by green

balls. The Fe-As layers form conduction layers while the La-O/F layers are thought

of as charge reservoirs. In the Fe-As layers, the iron atoms form a square lattice with

As atoms alternating above and below the iron planes. Generally, the crystalline

structure of these compounds is tetragonal at room temperature but orthorhombic

at low temperature [Zhao et al. (2008)].

1



Figure 1.1: The crystalline structure of LaOFeAs as described in text [Graser et al.
(2009)].

As in the cuprates, there is considerable evidence that the electron-phonon

mechanism is too weak to give rise to the high Tc observed in iron-based super-

conductors [Boeri et al. (2008); Higashitaniguchi et al. (2008); Christianson et al.

(2008)]. Experiments show that the pnictides share several properties with the high-

Tc cuprates, such as the order of magnitude of the critical temperature, [Kamihara

et al. (2008)] the existence of magnetic order in some of the parent compounds, [Dong

et al. (2008); de la Cruz et al. (2008); Chen et al. (2008d); Krellner et al. (2008);

Goldman et al. (2008)] and a possible exotic pairing mechanism [Boeri et al. (2008)].

However, there are di↵erences in several aspects as well: the parent compound is a

(bad) metal instead of a Mott insulator, [Dong et al. (2008); de la Cruz et al. (2008);

Chen et al. (2008d); Krellner et al. (2008); Goldman et al. (2008)] which suggests that

the regime of a large Hubbard coupling U, widely used in the context of the cuprates,

may not be appropriate for a theoretical description of the pnictides. Although Fe-

based and Cu-based superconductors have similar layered structure, the mechanisms

of electron conduction are very di↵erent. In many of the cuprates, electrons move from

2



Cu to Cu via O atoms located in between nearest neighbor Cu atoms. Thus, nearest

neighbor hoppings have much higher amplitudes than diagonal next nearest neighbor

hoppings. In the pnictides, electrons move from Fe to Fe atom via As atoms which

lie above or below the midpoint between diagonal next nearest neighbor Fe atoms. In

this picture electrons move about the same distance to go between nearest neighbor

and diagonal next nearest neighbor Fe sites making the hopping amplitudes of these

two movements similar in magnitude. Also, several orbitals, as opposed to only one,

have to be considered in order to reproduce the Fermi surface, which consists of hole

and electron pockets [Lebegue (2007); Xu et al. (2008); Cao et al. (2008); Hai-Jun

et al. (2009)]. Several band-structure calculations have shown that the Fermi surface

of these and related compounds is made out of two small hole pockets centered at

the � point, and small electron pockets at the X and Y points, in the notation

corresponding to a square lattice of Fe atoms [Lebegue (2007); Singh and Du (2008);

Xu et al. (2008); Cao et al. (2008); Hai-Jun et al. (2009)]. These calculations have also

shown that the 3d levels of Fe play the dominant role in establishing the properties of

these materials near the Fermi level. In addition, while clear experimental evidence

and theoretical calculations indicate that the pairing state in the cuprates is nodal and

has d-wave symmetry, [Dagotto (1994)] the properties of the pairing operator in the

pnictides have not yet been well established. Experimentally, several angle resolved

photo-emission (ARPES) studies [Kondo et al. (2008); Ding et al. (2008); Nakayama

et al. (2009); Wray et al. (2008); Kim et al. (2010)] show constant nodeless gaps on all

Fermi surfaces (FSs), but evidence for the existence of nodal gaps has been reported in

many transport measurements as well [Shan et al. (2008); Gang et al. (2008); Ahilan

et al. (2008); Nakai et al. (2008); Grafe et al. (2008); Wang et al. (2009b); Matano

et al. (2008); Mukuda et al. (2008); Millo et al. (2008); Wang et al. (2009a); Dong

et al. (2010)]. Even though the symmetry of the pairing operator is still in debate, a

variety of experimental results suggest that the Cooper pairs are spin singlets [Grafe

et al. (2008); Matano et al. (2008); Kawabata et al. (2008)].
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Figure 1.2: Temperature versus composition of 1111-type electron-doped
polycrystalline CeFeAs1�xFx [Zhao et al. (2008)] and 122-type electron doped single
crystalline Ba(Fe1�xCox)2As2 [Nandi et al. (2010)].

The undoped parent compound has long-range spin order in the ground state

of most of the compounds [Dong et al. (2008)]. This colinear magnetic state

has Fe spins along one of the Fe-Fe crystal axes ferromagnetically ordered, and is

antiferromagnetically ordered in the perpendicular direction. According to neutron

scattering experiments, in LaOFeAs the transition to this magnetic state occurs at

134 K, and the magnetic moment is 0.36 µB, which is smaller than anticipated [de la

Cruz et al. (2008)]. For NdOFeAs, the Neel temperature is 141 K [Chen et al. (2008d)]

and the magnetic moment is even smaller 0.25 µB. On the other hand, in resistivity,

specific heat, and magnetic susceptibility measurements, the antiferromagnetic Neel

temperature of SrFe2As2 was reported to be as high as 205 K, with a more robust

Fe magnetic moment of value 1.7 µB [Krellner et al. (2008)]. Also, CaFe2As2 was

investigated using neutron di↵raction, and a Neel temperature 173 K with a moment

0.8 µB was reported [Goldman et al. (2008)]. Thus, although originally it was believed

that the undoped materials had a very weak magnetic state, most recent results

suggest that the colinear spin order may be very robust at least in some materials.
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Experimentally, the phase diagrams (see Fig. 1.2) with hole or electron doping

show competition between magnetism and superconductivity. For some materials,

as in CeFeAsO, [Zhao et al. (2008)] the magnetic ordered phase is completely

suppressed by superconductivity with F doping. For others such as SmFeAsO, [Nandi

et al. (2010)] the magnetism is partly suppressed by superconductivity, resulting in

coexistence of magnetism and superconductivity, which is a very interesting feature of

iron-based superconductors, as well as cuprates [Dagotto (1994)]. It is believed that

optimal superconductivity happens when the long-range SDW order is suppressed

by doping or pressure, but dynamic short-range antiferromagnetic spin correlations

survive [Johnston (2010)].

1.1 Overview

The research presented in this work focuses on the development and implementation

of microscopic models as well as their numerical and analytical study to elucidate

the properties of the pnictides. There are many first principle and phenomenological

studies of these materials, but there is a need for unbiased numerical calculations

following an approach similar to the ones used in the study of the Hubbard and t-J

models for the cuprates [Dagotto (1994)]. The big di↵erence between the study of

these materials and the study of the cuprates, is the multi-orbital nature of the former

compared to the single orbital character in the latter. The addition of more orbitals

increases the complexity of the problem greatly. Because of this, there is a need to

develop models which capture the basic physics of the pnictides with the smallest

amount of degrees of freedom.

First, a two orbital model [Moreo et al. (2009b)] for the iron pnictides will be

discussed in Chapter 2. This model focuses on two of the five Fe-3d orbitals, the

Fe dxz and dyz. These orbitals are the most robust at the FS [Boeri et al. (2008)]

and neglects the Fe dxy orbital, which is found to have weight in a small part of the

electron pockets, [Graser et al. (2009); Hai-Jun et al. (2009); Vildosola et al. (2008)]
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see Fig 2.1. Its strength lies on its simplicity and the fact that it can be studied

numerically. Numerical calculations on a tilted 8-site lattice will be performed. The

magnetic properties as well as the pairing operators allowed by lattice and orbital

symmetries will be studied.

In order to increase the strength of colinear magnetic order in the two orbital model

and to enhance tightly bound-states upon doping, Heisenberg interactions will be

introduced in Chapter 3. Both electron doping (Section 3.3) and hole doping (Section

3.4) cases will be considered. The e↵ect of the Heisenberg terms on the magnetic order

as well as favored superconducting pairing symmetries will be investigated.

In Chapter 4, to investigate the role of orbital hybridization and Fermi surface

nesting in the origin of magnetic order in the pnictides, a phenomenological two

orbital model consisting of two non-hybridized s-like orbitals will be compared to the

two orbital model composed of hybridized Fe d-orbitals. The magnetic properties of

both models will be discussed using Lanczos, mean field, and RPA methods.

In order to evaluate the merits and shortcomings of the two-orbital model, a three

orbital mode was developed, see Chapter 5, taking into account the Fe dxy orbital.

The introduction of the third orbital makes numerical calculations unviable since

the size of the Hilbert space becomes too large to perform Lanczos calculations on

reasonably sized lattices. Instead, mean field calculations were performed guided by

the numerical results in the two orbital model. The proceeds of this work include

an investigation of the magnetic properties as well as the calculation of the spectral

functions for a variety of superconducting pairing operators to be compared with

experimental observations.

Before the presentation of these investigations a brief overview of the models and

methods described in the main text is presented. The Hubbard model for multi-

orbital systems will be introduced in Section 1.2, followed by a discussion on exact

diagonalization, seen in Section 1.3.
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1.2 Multi-orbital Hubbard Model

In systems where electron correlations in the d orbitals are important, the competition

between localized and itinerant behavior is a di�cult problem. One of the main

consequences of electron correlation is the formation of localized magnetic moments,

as described in the Heisenberg model. However, since the d electrons frequently

contribute to the transport properties, these moments cannot be entirely localized.

One of the first models proposed to deal with this challenge was put forth by Hubbard

[Hubbard (1963)], who considered on-site Coulomb repulsion for electrons in a single

band. A simple derivation of this model follows. The field operator for an electron

with a given spin � can be written as [Oles (1983)]

 �(~x) =
X

i

 i(~x)di,� (1.1)

where di,� is the annihilation operator for an electron at site i of a crystal lattice with

spin � and  i(~x) are the wave functions at site i in the lattice. The Hamiltonian, in

second-quantization formalism, is:

H =
X

�

Z
d3x †

�(~x)(�
~2
2m

r2 + V1(~x)) �(~x)

+
1

2

X

�,�0

Z
d3xd3x0 †

�(~x) 
†
�0(~x0)V2(~x� ~x0) †

�0(~x0) †
�(~x) (1.2)

where V1(~x) is the e↵ective potential composed of the ionic potentials of single atoms

and V2(~x�~x0) is the electron-electron interaction potential. The first term in Eqn. 1.2

describes an electron moving through an external potential V1(~x), with parameters

given by [Oles (1983)]

ti,j =
X

�

Z
d3x †

i (~x)[�
~2
2m

r2 + V1(~x)] j(~x). (1.3)
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The second term contains electron-electron interactions. Since the d wave functions

are well localized [Hubbard (1963)], inter-site interactions are much weaker than on-

site ones and thus only on-site interactions will be considered. Also, due to the

symmetry of the d functions, matrix elements must contain even powers of each wave

function  i. Taking all of this into consideration the Hamiltonian in Eqn. 1.2 may

be written as:

H =
X

i,j

[ti,jd
†
i,�dj,� + h.c.] +

X

i

Ui,"ni,"ni,# (1.4)

where ni,� = d†i,�di,� is the number operator, and the interaction parameter, U , can

be expressed as:

U =

Z
d3xd3x0| i(~x)|2V2(~x� ~x0)| i(~x

0)|2. (1.5)

This is the single band Hubbard model.

As was discussed in the Introduction, the pnictides require more than one orbital

to reproduce the Fermi surface. Taking this additional degree of freedom into account,

the field operators,  �(~x) defined in Eqn. 1.1, become:

 �(~x) =
X

i

X

↵

 i,↵(~x)di,↵,� (1.6)

where di,↵,� is the annihilation operator for an electron with spin �, at site i, in orbital

↵, and  i,↵(~x) are the wave functions at site i and orbital ↵. An equation identical

to Eqn. 1.2 can be obtained in terms of  �(~x) defined in Eqn. 1.6. However, now the

movement of electrons through the lattice is more complex with orbital dependent

hoppings given by:

t↵,�i,j =
X

�

Z
d3x †

i,↵(~x)[�
~2
2m

r2 + V1(~x)] j,�(~x). (1.7)
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where t↵,�i,j now allows electrons to “hop” between lattice sites i and j, and atomic

orbitals ↵ and �. Using the Hubbard argument once again (only considering on-site

interactions), but allowing both intra- and inter-orbital interactions, the multi-orbital

analog of Eqn. 1.4 becomes [Oles (1983)]:

H =
X

i,j,↵,�

[t↵,�i,j d
†
i,↵,�di,�,� + h.c.] +

X

i,↵

U↵,↵ni,↵,"ni,↵,#

+
X

i,↵,�,�

U↵,�ni,↵,�ni,�,�� +
X

i,↵,�,�

(U↵,� � J↵,�)ni,↵,�ni,�,�

�
X

i,↵,�,�

J↵,�d
†
i,↵,�di,↵,��d

†
i,�,��di,�,� +

1

2

X

i,↵,�,�

J↵,�d
†
i,↵,�d

†
i,↵,��di,�,��di,�,� (1.8)

where the summations over ↵, � run only once over each pair of orbital indices.

Neglecting crystal-field e↵ects, all of the d orbitals are equivalent, so the inter-orbital

parameters U↵,� and J↵,� become independent of the orbital indices ↵, � so that the

interaction parameters can be expressed as:

U↵,↵ =U =

Z
d3xd3x0| i,↵(~x)|2V2(~x� ~x0)| i,↵(~x

0)|2,

U↵,� =U 0 =

Z
d3xd3x0| i,↵(~x)|2V2(~x� ~x0)| i,�(~x

0)|2,

J↵,� =J =

Z
d3xd3x0 ⇤

i,↵(~x) 
⇤
i,�(~x

0)V2(~x� ~x0) i,↵(~x
0) i,�(~x). (1.9)

This imposes a new condition on the model parameters

U = U 0 + 2J (1.10)

so that our model Hamiltonian can be rearranged as

H =
X

i,j,↵,�,�

[t↵�ij d
†
i,↵,�dj,�,� + h.c.] + U

X

i,↵

ni,↵,"ni,↵,# + (U 0 � 1

2
J)

X

i,↵,�

ni,↵ni,�

� 2J
X

i,↵,�

Si,↵ · Si,� + J
X

i,↵,�

d†i,↵,"d
†
i,↵,#di,�,#di,�," (1.11)
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where the spin density in orbital ↵ at site i is denoted by Si,↵ = d†i,↵,a�̄a,bdi,↵,b, �̄a,b are

the Pauli matrices, ni,↵ is the electronic density in orbital ↵ at site i. The first term

represents the tight-binding movement of electrons in the lattice. The values of t↵�ij

depend on the geometry of the lattice and, thus, their values are material dependent.

Sections 2.2 and 5.1 of this thesis are devoted to the calculation of the tight-binding

parameters for the pnictides. The second (third) term represents on-site intraorbital

(interorbital) repulsion between electrons. The fourth term is the Hund’s rule spin

coupling that favors the ferromagnetic alignment of spins in di↵erent orbitals at the

same lattice site. Finally, the last term corresponds to “pair-hopping” and its coupling

is equal to J by symmetry.

1.3 Exact Diagonalization - Lanczos Method

In the study of models of strongly correlated electrons, solutions involving mean field

and variational approximations are self-consistent, but it is hard to see if they actually

describe the properties of the actual ground state (rather than an excited state). To

find the ground state of Hubbard-like models, unbiased methods are important and

are useful to guide other calculations. One of these methods, exact diagonalization,

allows one to obtain the ground state of the Hamiltonian on a finite lattice while

keeping all basis states. In order to find the ground state eigenvector in the very

large Hubbard Hilbert space, a Lanczos algorithm will be employed (see Sections 2.4,

3.3, 3.4, 4.3.2, 4.3.3).

The basic idea of the Lanczos algorithm is to take a large sparse Hamiltonian

matrix and iteratively reconstruct the basis such that the Hamiltonian has a

tridiagonal form. Once in tridiagonal form, standard linear algebra libraries can be

used to diagonalize the Hamiltonian matrix quickly. To begin, a random vector in the

Hilbert space of our Hamiltonian |�0i is chosen [Dagotto (1994)]. To determine the

next basis vector, the Hamiltonian Ĥ is applied to |�0i and subtract the projection
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over |�0i:

|�1i = Ĥ|�0i �
h�0|Ĥ|�0i
h�0|�0i

|�0i (1.12)

which is orthogonal to |�0i. Next, a second basis vector can be generated which is

orthogonal to |�0i and |�1i

|�2i = Ĥ|�1i �
h�1|Ĥ|�1i
h�1|�1i

|�1i �
h�0|Ĥ|�1i
h�0|�0i

|�0i (1.13)

After several iterations the basis vectors can be generalized as:

|�n+1i = Ĥ|�ni � an|�ni � b2n|�n�1i (1.14)

where n=0, 1, 2 ..., and the nonzero coe�cients are

an =
h�n|Ĥ|�ni
h�n|�ni

, bn =
h�n�1|Ĥ|�ni
h�n�1|�n�1i

(1.15)

Also note that b0=0 and |��1i = 0. In this new basis the Hamiltonian becomes

tridiagonal

H =

���������������

a0 b1 0 0 ...

b1 a1 b2 0 ...

0 b2 a2 b3 ...

0 0 b3 a3 ...
...

...
...

...

���������������

.

Standard library subroutines can now diagonalize this matrix easily. In order to

diagonalize the full system the number of iterations equal to the size of the Hilbert

space would be required. This would take a lot of CPU time. However, if only the

ground state of the system is desired only a small number of iterations are required.

Even though the ground state properties of the system being studied can be found

with relatively few iterations, the size of the Hilbert space poses problems. The model

Hamiltonians used in this work are studied on finite clusters, with N sites. For single
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orbital models, the size of the Hilbert space grows as 4N , since there are four possible

electron configurations per site (empty, singly occupied by an electron with spin up or

with spin down, or doubly occupied). For models with ↵ orbitals, the Hilbert space

grows as 4↵N because now there are four possible states per site and per orbital. Due

to an exponential growth of the Hilbert space with the lattice size memory limitations

impose severe restrictions on the size of clusters which can be studied. For example,

consider a cluster with N=8 sites with three orbitals (it has the same number of

degrees of freedom as a single orbital model in a 24 site cluster). In this case the

Hilbert space would include ⇡ 2.814 ⇥ 1014 states which is far beyond the limits of

contemporary computers. In this work the Lanczos algorithm will only be used on an

N=8 site cluster with two orbitals with periodic boundary conditions (see the eight

site cluster in Fig. 1.3. This is the largest lattice size which can be accommodated on

present day computers for our calculations.⇤ Even though the Hilbert space for these

finite clusters becomes very large, the problem can be alleviated by using symmetries

of the Hamiltonian to reduce the matrix to block form. One such symmetry is the

number of particles in the problem, another is the total spin projection Sz
total. If

translational invariance exits, the total momentum K is conserved and is a good

quantum number. For some lattices rotations and and reflections with respect to the

lattice axes are also good quantum numbers.

While lattices containing NxN sites can be solved with Lanczos algorithms other

“tilted” square clusters are used that completely cover the two dimensional square

lattice [Oitmaa and Betts (1978)]. These special clusters have a “magic number” of

sites with N= 4, 8, 10, 16, 18, 20, 26, 32, ... The general rule is N=n2+m2, where

the positive integers n, m are positive integers that are both even or odd. See Fig.

1.3 for examples.

⇤
The largest lattice size which has been studied for single orbital models is the 20 site lattice

[Tohyama et al. (2005)], which required a supercomputer and large amounts of CPU time.
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Figure 1.3: Shapes of some lattice clusters described in the text, each of which can
be circumscribed by a square.
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1.3.1 Dynamical Properties

One attractive feature of the Lanczos method is that it allows the calculation of

dynamical properties of model Hamiltonians. In general this means the ability to

calculate quantities such as

I(!) = � 1

⇡
Im[h 0|Ô† 1

! � E0 + i✏� Ĥ
Ô| 0i] (1.16)

where Ô is an operator, | 0i is the ground state of the Hamiltonian Ĥ whose ground-

state energy is E (found via the Lanczos method), ! is the frequency and ✏ is a small

real number introduced in the calculation to shift the poles of the Green’s function

into the complex plane. When using a complete basis, the projection
P

n | nih n| = 1

and the following identity
1

x+ i✏
= P

1

x
� i⇡�(x) (1.17)

which is valid when ✏ ! 0, where x is real and P denotes the principle part, our

spectral function is reduced to

I(!) =
X

n

|h n|Ô| 0i|2�(! � (En � E0)) (1.18)

The delta functions in the above equation are in practice approximated by Lorentzians

�(x) ! 1

⇡

✏

x2 + ✏2
(1.19)

Instead of starting iterations in the Lanczos method with a random vector, it is useful

to use the ground state vector  0 found before to define the initial vector

|�0i =
Ô| 0iq

h 0|Ô†Ô| 0i
(1.20)
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Following [Fulde (1991)], consider the identity:

(z � Ĥ)(z � Ĥ)�1 = I (1.21)

where z = ! + E0 + i✏ and I is the identity matrix. Using the initial vector defined

in Eqn. 1.20 along with the Lanczos basis generation procedure defined in Eqn. 1.14,

the above identity can be defined in the basis |�ni as:

X

n

(z � Ĥ)mn(z � Ĥ)�1
np = �mp (1.22)

For the special case, n=p=0,

(z � Ĥ)m0x0(z � Ĥ)�1
00 = �m0 (1.23)

where x0 = (z � Ĥ)�1
00 = h�0| 1

(z�Ĥ)
|�oi is the quantity of interest. Using Cramer’s

rule Eqn. 1.23 can be solved for x0:

x0 =
detB0

det(z � Ĥ)
(1.24)

where the above matrices can be expressed in the basis |�ni as:

z � Ĥ =

���������������

z � a0 �b1 0 0 ...

�b1 z � a1 �b2 0 ...

0 �b2 z � a2 �b3 ...

0 0 �b3 z � a3 ...
...

...
...

...

���������������

.
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and

B0 =

���������������

1 �b1 0 0 ...

0 z � a1 �b2 0 ...

0 �b2 z � a2 �b3 ...

0 0 �b3 z � a3 ...
...

...
...

...

���������������

.

where the coe�cients an, bn were defined in Eqn 1.15. The determinants of these

matrices can be expanded as

det(z � Ĥ) = (z � a0)detD1 � b21detD2 (1.25)

detB0 = detD1 (1.26)

where Dn is obtained from 1.3.1 by removing the first n rows and columns. Using

Eqns. 1.24 and 1.26, it is clear that

x0 =
detB0

det(z � Ĥ)
=

1

z � a0 � b21
detD2
detD1

. (1.27)

The expansion can be continued to find the ratio of the determinants D1 and D2

detD2

detD1

=
1

z � a1 � b22
detD3
detD2

. (1.28)

If this procedure is repeated until a full continued fraction is constructed and recalling

Eqn. 1.16, final expression for the dynamical response function can be written as:

I(!) = � 1

⇡
Im

��������

h 0|Ô†Ô| 0i
z � a0 � b21

z�a1�
b

2
2

z�a2�...

��������
(1.29)

These functions will be useful in Sections 3.3.3 and 3.4.5.
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Chapter 2

The Two Orbital Model

2.1 Introduction

In order to study the properties of LaO1�xFxFeAs and related compounds, it is

necessary to construct the simplest model which contains the minimum number of

degrees of freedom that preserves the essential physics of the problem. Since most of

the materials in this family have Fe - X planes (X=As,P...) this work will focus on

these layers. Band structure calculations [Boeri et al. (2008)] have shown that Fe 3d

orbitals carry the greatest weight at the Fermi surface. Of these Fe 3d orbitals, the dxz

and dyz carry the most weight in the hole and electron pockets, Fig 2.1. Considering

these two orbitals is a good staring point for a minimal model for these materials.

In this Chapter the development of a tight-binding two orbital model via the

Slater-Koster method [Slater and Koster (1954)] will be shown in Section 2.2. Next,

in Section 2.3, on-site Coulomb interactions will be added followed by an investigation

of the magnetic tendencies as well as superconducting pairing properties at half filling

and with two electrons added will be presented in Section 2.4.
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Figure 2.1: Bandstructure of LaOFeAs with the partial characters of the Fe-
d bands shown by bold circles. The arrows indicate the splitting induced by the
elongation/shrinking of the Fe-As tetrahedra [Boeri et al. (2008)].
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Table 2.1: Coordinates of atoms in Figure 2.2(a).

Ion x y z
As0 0 0 -c
Fe1 k -k 0
Fe2 k k 0
Fe3 -k k 0
Fe4 -k -k 0
As1 l 0 c
As2 0 l c
As3 -l 0 c
As4 0 -l c

2.2 LaO1�xFxFeAs Lattice Properties

In order to construct the tight-binding part of the Hamiltonian, it is necessary to

calculate orbital overlaps. A cluster of 4 Fe atoms and 5 As atoms as in Figure 2.2

(a) will be considered. The coordinates of the atoms are shown in Table 2.1 where k,

l and c are distances between atoms and are obtained from the material’s structure.

In Figure 2.2 (b) the nearest-neighbor (NN) Fe-Fe distance is l = 2.854 Å, [Singh

and Du (2008)] the distance between Fe and As atoms is s = 2.327 Å [Singh and Du

(2008)]. The next nearest-neighbor (NNN) Fe-Fe distance d =
p
2l = 4.037 Å, see

Figure 2.2 (c). Finally the distance of the As atoms from the Fe plane is c =
p
s2 � r2

=
p

s2 � l2/2 = 1.158 Å. The director cosines l, m and n for each of the Fe atoms

with respect to the center As atom located at (0,0,-c) are given in Table 2.2.

To calculate the orbital overlaps according to the lattice and orbital geometries,

the procedure developed by Slater-Koster [Slater and Koster (1954)] will be followed.

In Table 2.2 the relevant expressions corresponding to the overlap between dxz and

dyz orbitals in the Fe with the px, py, pz orbitals in the As according to the geometry

of the Fe-As plans are given. These orbital overlap integrals will yield the hopping

amplitudes used in the tight-binding Hamiltonian.
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Figure 2.2: (a) The Fe-As cluster used in our calculations of the hoppings. Green
circles are the Fe atoms. The red circle at the center is an As atom at a distance c
below the plane, while the shaded red circles are the As atoms that are a distance c
above the plane. (b) Distances s and l for NN Fe-Fe atoms. (c) The distance d along
the diagonal of the Fe-Fe plaquettes. (d) The distance c for As atoms [Moreo et al.
(2009b)].
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Table 2.2: Director cosines of the Fe atoms with respect to As0 (see Fig. 2.2 (a)).

Ion l m n
Fe1 k/s -k/s c/s
Fe2 k/s k/s c/s
Fe3 -k/s k/s c/s
Fe4 -k/s -k/s c/s

2.2.1 Overlap Integrals between Fe d
xz

and d
yz

orbitals and

As p
x

and p
y

orbitals

Using the energy integrals from Table 2.3 with the director cosines from Table 2.2

the hopping amplitudes can be determined:

|tx,yz| = |ty,xz| = a =
p
3
k2c

s3
(pd�)� 2

k2c

s3
(pd⇡) (2.1)

|tx,yz| = |ty,xz| = b =
p
3
k2c

s3
(pd�) +

c

s
(1� 2

k2

s2
)(pd⇡) (2.2)

where pd� (pd⇡) are nearest neighbor overlap integrals for � (⇡) bonds. After inputing

the values of k, s and c (given above) the magnitude of these hopping parameters are:

a = 0.324(pd�)� 0.374(pd⇡) (2.3)

b = 0.324(pd�) + 0.123(pd⇡) (2.4)

Figure 2.3 shows the sign of the hopping amplitudes between Fe and As atoms.

Next e↵ective Fe-Fe hopping amplitudes will be calculated for both nearest and next

nearest neighbor Fe atoms. First consider nearest neighbor dxz orbitals. In the ŷ

direction, consider two possible paths between the dxz orbitals in the Fe atoms and

the As py orbitals : (1) dxzFe1 � pyAs0 � dxzFe2 and dxzFe1 � pyAs1 � dxzFe2. As

seen in Figure 2.3 (a) each path contributes �a2. Now in the x̂ direction consider

two more paths between dxz and px orbitals: (3) dxzFe1 � pxAs0 � dxzFe2 and (4)

dxzFe1� pxAs1� dxzFe2. Figure 2.3 (b) shows that each path contributes b2. Putting

all of this together, up to second order in perturbation theory [Fulde (1991)], the
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Table 2.3: Slater-Koster energy integrals written in terms of director cosines and
the orbital overlaps (pd�, pd⇡, dd�, dd⇡). Non-existing integrals can be found by
cyclical permutation of the coordinates and the director cosines [Slater and Koster
(1954)].

Orbitals Energy Integral
x/xz

p
3l2n(pd�) + n(1� 2l2)(pd⇡)

x/yz
p
3lmn(pd�)� 2lmn(d⇡)

y/xz
p
3lmn(pd�)� 2lmn(pd⇡)

y/yz
p
3m2n(pd�) + n(1� 2m2)(pd⇡)

z/xz
p
3n2l(pd�) + l(1� 2n2)(pd⇡)

z/yz
p
3n2m(pd�) +m(1� 2n2)(pd⇡)

xz/xz 3l2n2(dd�) + (12 + n2 � 4l2n2)(dd⇡)
+ln(m2 + l2n2)(dd�)

yz/yz 3lm2n2(dd�) + (m2 + n2 � 4m2n2)(dd⇡)
+(l2 +m2n2)(dd�)

xz/yz 3lmn2(dd�) + lm(1� 4n2)[(dd⇡)� (dd�)]

e↵ective nearest neighbor hopping amplitude between Fe dxz-dxz orbital via px, py

orbitals is :

txz�xz
x̂,ŷ = (�2a2 + 2b2)/� = 2(b2 � a2)/� (2.5)

where � = 1.25 eV [Goldman et al. (2008)] is the di↵erence between the on-site

energies of the d and p orbitals. The same procedure described above to can be used

to calculate the nearest neighbor Fe dyz-dyz via As px, py orbitals:

tyz�yz
x̂,ŷ = (�2a2 + 2b2)/� = 2(b2 � a2)/� = txz�xz

x̂,ŷ (2.6)

Notice that nearest neighbor interorbital hoppings between Fe dxz � dyz via As px, py

orbitals is not possible.
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Figure 2.3: (a) Hoppings between dyz(dxz) orbitals in Fe and px(py) orbitals in As
for the cluster considered in Figure 2.2 (a). (b) Hoppings between dxz(dyz) orbitals
in Fe and px(py) orbitals.
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To find the diagonal hopping td along the x̂±ŷ directions, the next nearest neighbor

(NNN) hopping, consider paths from Fe1 to Fe3 and Fe2 to Fe4. In the first case the

hopping path is dxzFe1 � pxAs0 � dxzFe3 which, again referring to Figure 2.3 (b),

contributes b2 to txzd while the second path dxzFe1 � pyAs0 � dxzFe3, referring to

Figure 2.3 (a), contributes a2. It can be shown that the NNN intraorbital hopping

between Fe dyz orbitals gives the same result. Thus the form of our diagonal hopping

is:

txz�xz
x̂±ŷ = tyz�yz

x̂±ŷ = (a2 + b2)/� (2.7)

In contrast to the NN Fe hoppings, the NNN Fe hoppings does have an interorbital

component. In the x̂+ ŷ direction, from Fe2 to Fe4, the contribution to the hopping

is 2ab while in the x̂� ŷ direction, from Fe1 to Fe3, the contribution is �2ab [Moreo

et al. (2012)]. Thus in di↵erent directions the inter-orbital hopping changes signs:

txz�yz
x̂+ŷ = 2ab/� (2.8)

txz�yz
x̂�ŷ = �2ab/� (2.9)

2.2.2 Overlap between Fe d
xz

, d
yz

and As p
z

Again using the energy integrals from Table 2.3, a new hopping is obtained:

|tz,xz| = |tz,yz| = g =
p
3
kc2

s3
(pd�) +

k

s
(1� 2

c2

s2
)(pd⇡) (2.10)

Using the values of k,s, and c calculated above

g = 0.263(pd�) + 0.31(pd⇡) (2.11)

The signs for these hopping amplitudes can be seen in Figure 2.4 (a) and (b).

Following the same procedure as in the last section, it can be shown that
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Figure 2.4: (a) Hoppings between dxz orbitals in Fe and pz orbitals in As for the
cluster considered in Figure 2.2 (a). (b) Hoppings between dyz orbitals in Fe and pz

orbitals in As [Moreo et al. (2009b)].
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txz�xz
x̂ = tyz�yz

ŷ = �2g2/�0 (2.12)

txz�xz
ŷ = tyz�yz

x̂ = 2g2/�0 (2.13)

txz�xz
x̂±ŷ = tyz�yz

x̂±ŷ = �2g2/�0 (2.14)

where �0 is the di↵erence between the Fe d and As pz orbitals and has a magnitude

of �0 = 5 eV [Goldman et al. (2008)].

Because the Fe-As cluster is invariant under translations in the x̂ or ŷ directions

followed by a reflection on the x-y plane, it is possible to map the original unit

cell, containing two As atoms and two Fe atoms (see Figure 2.5 (a)), to a unit cell

containing only one Fe atom (see Figure 2.5 (b)). In this transformation, the lattice

will be rotated by ⇡/4 so the x0 and y0 axes are parallel to the vectors connecting

nearest neighbor Fe atoms. One result of this transformation is that the Brillouin

zone of the transformed unit cell is increased by a factor of two, Figure 2.5 (e). The

transformed square Fe lattice has D4h point group symmetry. Consideration of the

symmetry operations in D4h will be useful later on.

2.2.3 Direct Fe-Fe Hopping

Since the Fe-Fe distance, l = 2.854 Å, is of the same order as the Fe-As distance,

s = 2.327 Å, not only hopping from Fe-Fe d orbitals via As p orbitals must be

considered, but direct Fe-Fe d orbital overlaps will be discussed as well. Using the

energy integrals from Table 2.3 (Exz,xz, Eyz,yz, Exz,yz) and noting that Fe atoms lie

in a square array on the same plane (for NN : n=0, l=±1 with m=0 or l=0 with

m=±1) the NN hopping amplitudes are:

txz,xzx̂ = tyz,yzŷ = �(dd⇡) (2.15)

txz,xzŷ = tyz,yzx̂ = (dd�) (2.16)

26
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x’d

As
Fe
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X
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(d) (e)

l
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X’

Fe
y’

(c) k’y
k’y Y’

kx

MY

X

ky

Figure 2.5: (a) Schematic representation of the Fe-As plane. Blue circles are the
Fe atoms. The red filled circle is an As atom at a distance c below the plane, while
the red open circles are As atoms at a distance c above the plane. (b) Unit cell for
the e↵ective Fe-only square lattice. The Fe-Fe lattice has been rotated by 45�. (c)
Schematic first Brillouin Zone (FBZ) for the Fe-As plane. The point X is at (2⇡/d, 0),
with d =

p
2l. (d) FBZ for the Fe-As lattice after a 45� rotation. (e) FBZ for the

rotated Fe-Fe shown in (b). X 0 = (2⇡/l, 0) and it is equivalent to the M point for the
Fe-As plane in (c). The electron and hole Fermi surfaces obtained by band-structure
calculations are schematically indicated. Panels c-e will be useful for the discussion
related to the nodal structure of the superconducting state in Section 2.4 [Moreo et al.
(2009b)].
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For NNN Fe-Fe hoppings :

txz,xzx̂±ŷ = tyz,yzx̂±ŷ = �(dd⇡0 + dd�0)/2 (2.17)

txz,yzx̂+ŷ = �(dd⇡0 � dd�0)/2 (2.18)

txz,yzx̂�ŷ = (dd⇡0 � dd�0)/2 (2.19)

where dd⇡0, dd�0 denote NNN overlap integrals.

2.2.4 Two Orbital Tight-Binding Hamiltonian

Collecting the terms calculated in the previous section, the kinetic energy part of the

e↵ective Hamiltonian consisting of only Fe dxz and dyz orbitals is given by:

Hxz,yz
TB = �t1

X

i,�

(d†i,x,�di+ŷ,x,� + d†i,y,�di+x̂,y,� + h.c.)

� t2
X

i,�

(d†i,x,�di+x̂,x,� + d†i,y,�di+ŷ,y,� + h.c.)

� t3
X

i,µ̂,⌫̂,�

(d†i,x,�di+µ̂+⌫̂,x,� + d†i,y,�di+µ̂+⌫̂,y,� + h.c.)

+ t4
X

i,�

(d†i,x,�di+x̂+ŷ,y,� + d†i,y,�di+x̂+ŷ,x,� + h.c.)

� t4
X

i,�

(d†i,x,�di+x̂�ŷ,y,� + d†i,y,�di+x̂�ŷ,x,� + h.c.)

� µ
X

i

(nx
i + ny

i ) (2.20)

where d†i,↵,� creates an electron with z-axis spin projection � in orbital ↵ at the site

i of the Fe lattice. The chemical potential is denoted by µ and n↵
i =

P
� d

†
i,↵,�di,↵,�

is the number operator and µ̂ = x̂ or ŷ. The hopping parameters in terms of the
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hopping amplitudes found previously are:

t1 = �2[(b2 � a2)/�+ g2/�0]� dd�

t2 = �2[(b2 � a2)/�� g2/�0]� dd⇡

t3 = �[(a2 + b2)/�+ g2/�0]� (dd⇡0 + dd�0)/2

t4 = �(2ab/�� g2/�0)� (dd⇡0 � dd�0)/2 (2.21)

While the overlap integrals can be estimated using tabulated values on the orbital

overlaps and distances between the atoms in the pnictides, the focus in this section

will be on hopping parameters fitted to band-structure calculations (see Figure 2.6

(a),(b)) [Raghu et al. (2008)].

The tight-binding Hamiltonian in Eqn. (2.20) can be represented in momentum

space via the Fourier transform

d†k,↵,� =
1p
N

X

j

e�ik·jd†j,↵,� (2.22)

where k=(kx, ky) with kx = 2⇡n
x

N for nx=0,...,.N � 1 is the wave vector and N is the

number of sites on the lattice.

Hxz,yz
TB =

X

k
x

,k
y

,�

(�2t1cosky � 2t2coskx � 4t3coskxcosky)d
†
k,xz,�dk,xz,�

+
X

k
x

,k
y

,�

(�2t1coskx � 2t2cosky � 4t3coskxcosky)d
†
k,yz,�dk,yz,�

+
X

k
x

,k
y

,�

(�4t4sinkxsinky)d
†
k,xz,�dk,yz,� � µ

X

k,µ̂

(nx
k + ny

k), (2.23)

where, for the fitted parameters ti of [Raghu et al. (2008)], µ = 1.54 eV for the

undoped case (with each orbital half filled). The band structure/Fermi surface are

shown in Figure 2.6 in the extended Brillouin zone. In the reduced Brillouin zone,

the hole pockets depicted at k=(⇡, ⇡) are folded to make a second hole pocket at
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Figure 2.6: :
t1 = �1.0, t2 = 1.3,t3 = t4 = �0.85 (all in eV units).](a) Energy vs. momentum for
the non-interacting tight-binding Hamiltonian Eqn. (20) using hopping amplitudes
obtained from fits of band-structure calculations [Raghu et al. (2008)]: t1 = �1.0,

t2 = 1.3,t3 = t4 = �0.85 (all in eV units). Results are plotted along the path
(0,0)-(⇡,0)-(⇡,⇡)-(0,0). (b) Fermi surface for the half-filled system [Moreo et al.

(2009b)].
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k=(0,0). Furthermore, while energy bands are composed of hybridized Fe-d orbitals

in most parts of the BZ, along directions of high symmetry, � ! X (� ! Y ) the

energy bands are made of pure orbitals, see Figure 2.7.

2.3 Interactions

In order to create the full two-orbital model for the pnictides, Coulomb interactions

must be added to the tight-binding Hamiltonian. These Coulomb terms are,

introduced in section 1.2 but put in terms of the Fe dxz and dyz orbitals is::

Hint = U
X

i,↵

ni,↵,"ni,↵,# + (U 0 � J/2)
X

i

ni,xni,y

� 2J
X

i

Si,x · Si,y + J
X

i

(d†i,x,"d
†
i,x,#di,y,#di,y," + h.c.), (2.24)

where ↵ = xz, yz denotes the orbital, the spin density in orbital ↵ at site i is denoted

by Si,↵, ni,↵ is the electronic density in orbital ↵ at site i. The first (second) term

represents on-site intraorbital (interorbital) repulsion between electrons. The third

term is the Hund’s rule spin coupling that favors the ferromagnetic alignment of spins

in di↵erent orbitals at the same lattice site. Finally, the last indicates “pair-hopping”

and its coupling is equal to J by symmetry.

2.4 Exact Diagonalization Results

As discussed in Section 1.3, models of strongly correlated electrons only have

analytical solutions in a few special cases. For this reason, numerical numerical

methods are an important tool in the study of these systems. The advantage of

considering only two of the Fe-d orbitals is that the number of degrees of freedom in

the system is such that a Lanczos algorithm, introduced in 1.3, on a tilted
p
8⇥

p
8

lattice (seen in Figure 2.8) can be used (which is not the case when three or more
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Figure 2.7: Orbital contribution to the energy bands at the Fermi energy are denoted
by red (dxz) and green (dyz). For the basis used in this model, the �-X/Y directions
are highly symmetric. In these directions the energy bands are composed of only one
orbital in both the electron and hole pockets [Graser et al. (2009)].
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xz yzxz yzxz yz

xz yz xz yz

xz yz

xz yz

xz yz

Figure 2.8: The tilted
p
8 ⇥

p
8 cluster used in exact diagonalization calculations.

Black circles represent Fe atoms, red (blue) lines represent dxz (dyz) orbitals.

orbitals are taken into account) [Dagotto (1994); Daghofer et al. (2008); Moreo et al.

(2009b)]. On this lattice, magnetic and superconducting pairing properties are studied

and presented below.

At half-filling colinear or (0,⇡)/(⇡,0) antiferromagnetic order arises and is

enhanced by increasing on-site repulsion U at fixed J, or increasing J at fixed U see

(Figure 2.9). Increasing J leads to larger localized moments allowing for a stronger

overall collective spin ordering. This magnetic order is found experimentally, see Ref

[de la Cruz et al. (2008)]. As seen in Figure 2.10, after doping, the antiferromagnetic

order decreases, following the trend in the phase diagrams presented in Figure 1.2.

In Figure 2.11, the ground state symmetries for states with two extra electrons

above half filling are listed for di↵erent values of U v. J/U. The symmetries are found

by comparing the symmetry of the half filled ground state with the symmetry of the

ground state with two extra electrons. As can be seen from the figure, U promotes

singlet states and at very large values of U a negative binding energy is found. Since

the half filled state has 16 electrons in the 8-site lattice with orbitals, binding energy
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Figure 2.9: Spin structure factor S(k) for (a) results for several values of U and
J/U=1/8; (b) results for two values of J, with U=2.8 eV fixed [Moreo et al. (2009b)].
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Figure 2.10: Spin structure factor S(k) for half filling and half filling plus two
electrons for U=2.8 and J=0.1 (in eV units) [Moreo et al. (2009b)].
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Figure 2.11: Dominant pairing tendencies of the ground state for two more electrons
than half-filling. Red squares indicate B2g, blue circles A1g and purple Xs show triplet
pairing symmetry. The green triangles show the regions where binding energy is less
than zero.
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is defined as

EB = (E(18)� E(16))� 2(E(17)� E(16)), (2.25)

with E(N) being the ground state for N particles.

To find pairing operators that are allowed by lattice and orbital symmetries in the

two orbital model, the two orbital tight-binding Hamiltonian given in Eqn. (2.25)

will be rewritten in terms of the Pauli matrices ⌧i, along with the identity matrix ⌧0

[Wan and Wang (2009)]. Doing this HTB becomes :

HTB(k) =
X

k,�

 †
k,�⇠k k,� (2.26)

where  †
k,� = [d†xz(k), d

†
yz(k)] and

⇠k = ↵k⌧0 + �k⌧1 + ✏k⌧3 (2.27)

with

↵k = 2(t1 + t2)(coskx + cosky)� 4t3coskycoskx

�k = �4t4sinkxsinky

✏k = 2(t1 � t2)(coskx � cosky) (2.28)

(2.29)

As mentioned before, the Fe lattice has D4h point group symmetry, thus every

element in the equations above transform according to one of the irreducible

representations of this group.

Since the Hamiltonian must transform according to A1g (the Hamiltonian is

invariant under the symmetry operations of the group), the Pauli matrices in the

orbital basis chosen here transform as indicated in Table 2.4. In multi-orbital systems
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the general form of a spin-singlet pairing operator is given by [Moreo et al. (2009b)]

�†(k) = f(k)(�i)↵,�(d
†
k,↵,"d

†
�k,�,# � d†k,�,"d

†
�k,↵,#) (2.30)

where a sum over repeated indices is implied; the operators d†k,↵,� have been defined in

the previous sections, f(k) is the form factor that transforms according to one of the

irreducible representations of the crystal’s symmetry group, and �i is a spin matrix

defined in orbital space. Although f(k) may, in general, have a very complicated

form, a short pair-coherence length requires the two electrons that form the pair

to be very close to each other. Consequently, this work will focus on nearest and

diagonal next-nearest neighbors, and form factors that are allowed in a lattice with

D4h symmetry. The momentum-dependent expression, as well as the irreducible

representation according to which each form factor transforms, are given in Table 2.6.

In multi-orbital systems the symmetry of the superconducting pairing operator (OP)

depends not only on the symmetry of the spacial form factor but on the symmetry

of the orbital component as well [Moreo et al. (2009a)]. This means that while a

given form factor may transform as A1g, if combined with an orbital matrix with B2g

symmetry, the entire OP will transform according to B2g symmetry. The product

table in Table 2.5 shows the total symmetry of the product of all possible pairs of the

irreducible representations of the D4h point group. Table 2.7 gives the total symmetry

of all form factors combined with the orbital matrices.

In addition to comparing the symmetry of the half filled ground state with the

ground state with two extra electrons, overlaps (h N+2|�†| Ni) with the pairing

operators listed above acting on the half filled ground state (�†| Ni) with the state

with two more electrons were explored (h N+2|). From this analysis, two dominant

spin-singlet pairing operators were found. The first, is favored for low to intermediate

values of U. The interaction binds pairs in NN sites in di↵erent orbitals and has B2g

symmetry. The second is found to be favored at large values of U. It pairs electrons in

NN sites in the same orbital and has A1g symmetry. Also there is a region in parameter
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Table 2.4: Symmetry properties of the terms/matrices in the tight-binding
Hamiltonian.

Term/Matrix IR
↵k A1g

�k B2g

✏k B1g

⌧0 A1g

⌧1 B2g

⌧3 B1g

Table 2.5: D4h multiplication table.

IR A1g A2g B1g B2g Eg

A1g A1g A2g B1g B2g Eg

A2g A2g A1g B2g B1g Eg

B1g B1g B2g A1g A2g Eg

B2g B2g B1g A2g A1g Eg

Eg Eg Eg Eg Eg A1g+A2g+ B1g+ B2g

space where the pairing operator is a triplet. Since a variety of experimental data

suggest that the Cooper pairs are spin singlets [Grafe et al. (2008); Matano et al.

(2008); Kawabata et al. (2008)], the triplet region will not be discussed.

See Figure 2.11 for the locations of these symmetries. From this analysis the form

of the B2g pairing operator can be obtained:

�†
B2g

=
1

2Nsites

X

i,↵,µ

(d†i,�↵,"d
†
i+µ̂,↵,# � d†i,↵,#d

†
i+µ̂,�↵,") (2.31)

where i=1,...,Nsites denotes the lattice site, µ̂ = x̂, ŷ is the unit vector connecting NN

sites, and ↵ = xz, yz indicates the dxz and dyz orbitals, respectively.

The A1g pairing operator is given by:

�†
A1g

=
1

2Nsites

X

i,↵,µ

(d†i,↵,"d
†
i+µ̂,↵,# � d†i,↵,#d

†
i+µ̂,↵,") (2.32)

The Fourier transformed form factors of both of these operators can be found in

Table 2.7 as 2 (5) for the A1g (B2g) pairing operator. The numerical results of the
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Table 2.6: Form factors f(k) for pairs up to distance (1,1) classified according to
their symmetry under D4h operations.

Distance f(k) IR
NN coskx+cosky A1g

NN coskx-cosky B1g

NNN coskxcosky A1g

NNN sinkxsinky B2g

Table 2.7: Pairing operators up to distance (1,1) allowed by lattice and orbital
symmetries.

No. Distance IR f(k)�i
1 NN B2g (coskx+cosky)⌧1
2 NN A1g (coskx+cosky)⌧0
3 NN A2g (coskx-cosky)⌧1
4 NN B1g (coskx-cosky)⌧0
5 NN B1g (coskx+cosky)⌧3
6 NN A1g (coskx-cosky)⌧3
7 NNN A1g (coskxcosky)⌧0
8 NNN B2g (sinkxsinky)⌧0
9 NNN B2g (coskxcosky)⌧1
10 NNN A1g (sinkxsinky)⌧1
11 NNN B1g (coskxcosky)⌧3
12 NNN A2g (sinkxsinky)⌧3

two orbital model reproduce the magnetic order observed experimentally and capture

the A1g pairing state that is argued in several theoretical approaches [Mazin et al.

(2008); Kuroki et al. (2008)] but a nodal B2g state also appears which should be

considered to interpret experiments where evidence of nodes is found [Shan et al.

(2008); Gang et al. (2008); Ahilan et al. (2008); Nakai et al. (2008); Grafe et al.

(2008); Wang et al. (2009b); Matano et al. (2008); Mukuda et al. (2008); Millo et al.

(2008); Wang et al. (2009a); Dong et al. (2010)].

2.5 Conclusions

A minimal model, consisting of the Fe dxz and dyz orbitals, capable of reproducing the

basic physics of the pnictides was developed using the Slater-Koster approach. This
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model was investigated via exact diagonalization on a tilted
p
8 ⇥

p
8 cluster. The

magnetic properties of the undoped parent compound found in neutron scattering

experiments are reproduced. Also, upon electron doping the magnetic order is

suppressed. Spin-singlet pairing states that respect orbital and lattice symmetry

were formulated. Pairing states transforming according to the A1g and B2g

irreducible representations of the D4h point group were found to be favored in exact

diagonalization calculations.
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Chapter 3

Two Orbital t-U-J Model

3.1 Introduction

The goal of this Chapter is to study the most favorable pairing channels of a two-

orbital Hubbard model using small-cluster exact diagonalization techniques (namely,

the Lanczos algorithm) for electron and hole doping, and to contrast the results of

the two cases since the model is not particle-hole symmetric [Nicholson et al. (2011a,

2012); Daghofer et al. (2008); Moreo et al. (2009b)]. To reduce the severe constraints

imposed by the small size of the clusters that can be diagonalized in present day

computers, a modification to the Hubbard model for the pnictides will be here applied.

For this purpose, Heisenberg “J” terms will be added to the original Hubbard model

to enhance spin order and pairing tendencies, but without projecting out doubly

occupied sites and charge fluctuations. These terms help to establish tightly bound-

states upon doping that can be studied with Lanczos methods on the small clusters

currently accessible with state-of-the-art computers.

The organization of this chapter is as follows: the model and the method are

reviewed in Section 3.2, the main results for electron and hole doping are presented

in Sections 3.3 and 3.4.
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3.2 Model and Method

The model studied here is based on the well-known and widely used two-orbital

Hubbard model introduced in Section 2.2.4 [Daghofer et al. (2008); Moreo et al.

(2009b); Raghu et al. (2008)] that employs the dxz (x) and dyz (y) Fe orbitals. These

orbitals provide the largest contribution to the pnictides’ band structure at the FS,

see Fig. 2.1 of Section 2.1. The reduction in the actual number of active orbitals

in the pnictides is necessary in order to perform Lanczos studies. Calculations with

more orbitals for the same cluster size studied here are simply not possible at present.

The parameters of the electronic hopping terms of the model were previously

chosen to provide a close agreement with the band structure calculations obtained

with density-functional theory [Raghu et al. (2008)]. In addition to the hopping terms,

the model also includes the on-site Coulomb interaction consisting of intra- and inter-

orbital Coulomb repulsions with couplings U and U 0, the Hund’s rule coupling JH,

and the pair-hopping term with strength J 0 in Eqn. 2.24.

Naively, it may seem that selecting a stronger on-site Hubbard interaction would

stabilize a stronger antiferromagnetic state. However, this procedure also induces

an insulator, and actually the strength of the e↵ective coupling between the Fe-spins

decreases as 1/U with increasing U . To avoid this problem, in early studies of the one-

band t-U -J model [Daul et al. (2000)] Heisenberg terms have been added and shown

to enhance pairing tendencies. Since our aim is to investigate the symmetries of the

Cooper pairs, the additional magnetic interactions must have the same symmetries as

the original Hamiltonian. To make sure that the symmetries are properly handled, the

additional Heisenberg interaction is given by the operatorial form that corresponds

to the super-exchange terms derived from the strong-coupling (large-U) limit. In the

case of the one-band Hubbard model, this is a Heisenberg term with spin S = 1/2.

In the case of a multi-orbital model away from half-filling, the corresponding super-

exchange contains an orbital degree of freedom in addition to the spin and it is of a

Kugel-Khomskii type [Kugel and Khomskii (1982); Krüger et al. (2009)].
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In the present case of a half-filled two-orbital model, the low-energy Hilbert space

for the strong-coupling limit, with both U and JH large, is given by doubly occupied

sites with singly occupied orbitals. Due to the Hund’s coupling, the two electrons

per site form a triplet state, with an energy E0 = U 0 � JH = U � 3JH, compared to

E1 = U 0 + JH = U � J 0 = E0 + 2JH and E2 = U + JH = E0 + 4JH for inter- and

intra-orbital singlet states. The low-energy Hilbert space is, thus, given by a spin

S = 1 at each site. The interaction between these spins can be obtained by second-

order perturbation theory in an analogous manner as the well-known derivation of the

Heisenberg model from the one-orbital Hubbard model. The calculation for the two

orbitals is the most easily carried out when the hopping term preserves orbital flavor,

because the first hopping process, which creates a virtual excitation with energy

U + JH, then has to involve the same orbital as the second, which goes back to the

low-energy Hilbert subspace. By this procedure it can be shown that the result is the

isotropic Heisenberg interaction for S = 1 with a coupling

Je↵ =
2

3

t2a + t2b
U + JH

, (3.1)

where ta and tb are the hopping parameters corresponding to the two orbitals. With

the notation ta/b = t1/2 [Raghu et al. (2008)], the nearest-neighbor (NN) coupling JNN

can be derived. For a next-nearest–neighbor (NNN) coupling, which is natural since

in the original Hubbard model the hoppings involve both NN and NNN Fe atoms,

it is convenient to transform to a rotated orbital basis (|xzi ± |yzi)/
p
2, where the

hoppings are diagonal in orbital space and given by t3 ± t4, leading to

JNNN =
4

3

t23 + t24
U + JH

= 2
t23 + t24
t21 + t22

JNN . (3.2)

To avoid the proliferation of parameters, the ratio JNNN/JNN is kept fixed to 0.93,

which is the value that results from the two orbital model’s hoppings t1 = �1, t2 = 1.3,

t3 = t4 = �0.85 as can be seen in Section 2.2.4 [Raghu et al. (2008)].
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The extended two-orbital Hubbard Hamiltonian is exactly investigated using the

Lanczos algorithm [Dagotto (1994); Parlett (1980) ] on a tilted
p
8 ⇥

p
8 cluster,

as done in the previous Chapter (see Section 2.4) [Dagotto (1994); Daghofer et al.

(2008); Moreo et al. (2009b)]. In spite of the small size of the cluster, this still

requires substantial computational resources. More specifically, even exploiting the

Hamiltonian symmetries the calculation of the undoped-limit ground state of the

eight-sites cluster still requires a basis with ⇠ 2-20 M states (slightly more demanding

than a 16-site cluster one-band Hubbard model), depending on the subspace explored.

Runs applying the Lanczos technique had to be performed for all the allowed momenta

k of the cluster, and for all the quantum numbers under rotations and reflections (i.e.

all the irreducible representations A1g, A2g, B1g, B2g, and Eg of the D4h symmetry

group [Moreo et al. (2009b)]), and also for all the z-axis total spin projections. In

addition, the computation of binding energies for the case of hole doping requires

calculations for a number of electrons N equal to 14, 15, and 16, varying U , JH, and

JNN using a fine grid. For these reasons, the overall e↵ort amounted to ⇠ 8, 000

diagonalizations of the cluster, supplemented also by calculations of dynamical

properties, using a Penguin 128GB Altus 3600 computer.

3.3 Electron Doped

3.3.1 Binding stabilization

As discussed in the Introduction, here the spin background with wavevectors

(⇡, 0)-(0, ⇡) will be magnified via the addition of extra Heisenberg terms with the

expectation that carrier attraction will become stronger, leading to EB < 0 pairing.

As can be seen in Fig. 3.1(a), the desired goal is reached since increasing JNN

eventually leads to EB becoming negative for all the studied (U, JH) couplings. The

spin-triplet region virtually disappears (Fig. 3.2(b)) and it is mainly replaced by the

B2g state which itself becomes confined to U < 4 |t1| (squares) due to the expansion
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of the A1g region. The symmetries shown in Fig. 3.2(b) were obtained with the

smallest super-exchange values (JNN, JNNN) that produce binding of two electrons at

each (U, JH) point. In Fig. 3.1(a), where the binding energy vs. JNN/U is shown at

several U ’s and at a fixed (realistic) JH/U=0.2. Increasing JNN eventually induces

binding for all U ’s. The value of JNN/U for which binding occurs decreases as U

increases.

Figure 3.3 shows the spin structure for half filling calculated along the dot-dashed

(red) line of of Figure 3.1. The magnetic order with wavevectors (0, ⇡)-(⇡, 0) clearly

dominates at all couplings investigated, ranging from a region without binding, to B2g

binding, and ending in A1g binding. Moreover, as expected, increasing the magnitude

of JNN/U enhances the strength of the (0, ⇡)-(⇡, 0) peak. In the figure, the ratio

JNN/JNNN is fixed to 0.93.

Studying EB and the relative symmetry between the N=16 and 18 GS’s, phase

diagrams in the (U, JNN/U) plane were constructed. In Fig. 3.1(b), typical results

for JH/U=0.2 are shown. The bound state has A1g symmetry in most of the binding

region, but a B2g symmetric state also prevails at small U values (⇠ 2 |t1|). Both

symmetries appear inside the proper magnetic/metallic region of the undoped limit,

according to mean-field calculations [Yu et al. (2009); Luo et al. (2010)] extended to

incorporate JNN. While the results in Figs. 3.1(a,b) keep a fix ratio of JNN/JNNN =

0.93, varying JNN/JNNN in the range [0.5,1.5] gives qualitatively the same behavior,

as can be seen in Fig. 3.4. The only interesting change observed by this procedure is

that in- creasing (decreasing) JNN/JNNN favors more the pairing B2g (A1g).

3.3.2 Overlaps

Consider now the pairing operators that produce the electronic bound states. The

overlap

h (N = 18)|�†
k,i| (N = 16)i (3.3)
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Figure 3.1: (a) EB/|t1| vs. JNN/U for di↵erent values of U/|t1| and JH/U=0.2. (b)
Phase diagram showing “Binding” and “No Binding” regions and the symmetry of
the two-electron bound state varying U/|t1| and JNN/U , for JH/U=0.2. The shaded
area is where the antiferromagnetic/metallic state is stabilized in the mean-field
approximation for the undoped limit. The dot-dashed line is for Fig. 3.5 [Nicholson
et al. (2011a)].
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Open triangles indicate binding. (b) Results for the lowest value of (JNN, JNNN)
where binding appears [Nicholson et al. (2011a)].
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Figure 3.3: Spin structure factor S(k) evaluated using the Lanczos method on an
8-site cluster, at the values of U and JH/U indicated, parametric with JNN/U as
shown in the inset, and with the ratio JNN/JNNN fixed to 0.93. The addition of the
superexchange terms clearly enhances the (0, ⇡) (degenerate with (⇡, 0)) magnetic
order. The number of electrons used is 16 [Nicholson et al. (2011a)].
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Figure 3.4: Binding energy EB vs. JNN/U, along the dot-dashed (red) line of Fig.
3.1, parametric with JNN /JNNN . A negative (positive) EB indicates the formation
(the absence) of electronic pairs. The results suggest that there is no qualitative
change in varying JNN/JNNN in the range from 0.5 to 1.5. The only quantitative
modification is that A1g is more favored decreasing JNN /JNNN , while increasing
this ratio favors more the B2g symmetry [Nicholson et al. (2011a)].
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was calculated, where | (N)i is the GS in the subspace of N electrons and

�†
k,i =

X

↵�

f(k)(�i)↵�d
†
k,↵,"d

†
k,�,#, (3.4)

with d†k,↵,� creating an electron with spin z-axis projection �, at orbital ↵ = x, y,

and with momentum k. The structure factor f(k) arises from the spatial location of

the electrons forming the pair [Moreo et al. (2009b)], and �i are the Pauli matrices

(i = 1, 2, 3) or the 2 ⇥ 2 identity matrix �0 (i = 0) (note that �1 and �2 imply an

interorbital pairing). Overlaps for all the symmetries in [Moreo et al. (2009b)], and

with NN and NNN locations for the electronic pairs, were evaluated.

For all operators respecting the relative symmetry between the doped and undoped

states, finite overlaps were found, although of di↵erent values. As a trend, as the

binding grows, pairing involving NNN operators prevail over the NN ones. For

example, in the A1g region in Fig. 3.1(b) there are four pairing operators with finite

overlap (shown in Fig. 3.5(a) for U=3|t1| and JH/U=0.2) characterized by f(k)�i

equal to: (i) (cos kx + cos ky)�0 (full circles); (ii) (cos kx cos ky)�0 (full squares); (iii)

(sin kx sin ky)�1 (full diamonds); and (iv) (cos kx � cos ky)�3 (full triangles). Close to

the boundary with the B2g phase where the binding is weak (EB⇡-0.05 |t1|), operators

(i) and (ii) present the largest, and almost equal, overlaps. With increasing binding

the (i) overlap decreases while (ii) becomes stronger. The overlaps for operators (iii)

and (iv) are clearly smaller.

Note that (ii) is the simplest expression of a nodeless s± pairing operator [Mazin

et al. (2008); Kuroki et al. (2008)]. Our results indicate that this type of pairing

dominates only when the binding energy is large, which occurs at very large U or

JNN. At intermediate values of couplings, a symmetric linear combination of (i) and

(ii) with almost equal weights is optimal, and it leads to a “quasi-nodal” s± pairing

state (Fig. 3.5(b)). From this perspective, the most “natural” A1g pairing operator

arises from a linear combination of (i) and (ii), as opposed to just (ii) as in s±

scenarios. The gaps in Fig. 3.5(b) were calculated from mean-field approximations as
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Figure 3.5: (a) Overlap h (N=18)|�†
k,i| (N=16)i vs. JNN/U for the indicated

pairing operators, at U=3 |t1| and JH/U=0.2. (b) Superconducting gap at the FS:
internal hole pocket (continuous line), external hole pocket (dashed line). The dot-
dashed and double dot-dashed lines are for the two electron pockets which intersect at
the Brillouin zone boundary ( �=⇡/4) of the folded zone. The A1g+ symmetric linear
combination of A1g operators (i) and (ii) is used, with equal weight. The angle � is
measured from the positive x-axis to the positive y-axis. (c) Same as (b) but for the
B2g+ symmetric combination of the B2g operators (v) and (vi). (d) Dynamic pairing
susceptibility for the pairing operators indicated (see text), at U=3 |t1|, JH/U=0.2,
and JNN/U=0.095. The vertical line indicates E(18)�E(16) [Nicholson et al. (2011a)].

in [Moreo et al. (2009b)] and [Daghofer et al. (2010)], and choosing a pairing strength

V0 such that the gap order-of-magnitude in meV’s agrees with experiments. Note that

the linear combination A1g+ for the hole pockets closely reproduces (full and dashed

lines) the ARPES results in the superconducting state, with both gaps only weakly

k-dependent, and with the interior (exterior) pocket gap ⇠ 12 (6) meV. The electron

pockets, on the other hand, present strongly k-dependent gaps, and a quasi-node is
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found along the x- (y-) axes for the pocket at X (Y ). In the folded zone, this implies

that the quasi node is on the outer pocket, in agreement with angle-resolved specific

heat measurements [Zeng et al. (2010)].

Note that the presence of a dxy “patch” on the electron pockets has been discussed

before by many groups as possibly responsible for gap nodes (or minima) on the

electron pockets. The present results show that such a minimum (or nodes) can arise

without such an xy-patch, which is important to assess the impact of the various

orbitals. The one-particle spectral function A(k,!) was also calculated, see Fig. 3.6.

The left panels of Fig. 3.6 are for typical values of U and JH/U in the regions of

interest varying JNN/U as indicated. The upper left panel is in the region of no

binding, the middle left has B2g binding, while the lower left panel has A1g binding,

when doped with two electrons. The quasiparticle-peak weights Z do not change

much with respect to the noninteracting limit U=0. The right panels of Fig. 3.6

show the behavior of A(k,!) now at fixed JNN/U and JH/U, varying U all the way to

a regime where the system is insulating with a large gap. In spite of this gap opening

and formation of the lower and upper Hubbard bands, the quasiparticle weights Z

remain robust for the 8-site cluster here used. In fact, the weight reduction is not

larger than 50 % at the largest U=20 (|t1| units) investigated. Features on the scale

of the magnetic or superconducting gaps cannot be resolved within the few momenta

available, but the higher energy features at intermediate couplings are similar to non-

interacting bands [Yu et al. (2009); Luo et al. (2010)], in agreement with ARPES

experiments and with local density plus dynamical mean-field theory calculations

[Aichhorn et al. (2009); Hansmann et al. (2010)].

As mentioned before, in physically relevant portions of the phase diagram [Yu et al.

(2009); Luo et al. (2010)] the pairing symmetry B2g competes with A1g. Three B2g

pairing operators with finite overlaps were found in this region: (v) (cos kx+cos ky)�1,

(vi) (cos kx cos ky)�1, and (vii) (sin kx sin ky)�0. From Fig. 3.5(a) the interorbital

operators (v) and (vi) have a much larger GS overlap than the intraorbital operator

(vii). The mean-field calculation of the gaps for the symmetric combination of the
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Figure 3.6: Spectral function A(k,!) obtained with the Lanczos method on an 8-site
cluster and with 16 electrons. Results shown are obtained varying couplings JNN/U
on the left panels and U on the right panels, as indicated. The momenta from the
bottom to the top are (0, 0), (0, ⇡), (⇡, ⇡), (⇡/2, ⇡/2), and (⇡/2, ⇡/2). The results
in the noninteracting limit U=JH=JNN=JNNN=0 are indicated as dashed lines in all
the panels for easy comparison. The quasiparticle weights remain robust in a wide
range of couplings as compared with the noninteracting limit, at least for the small
cluster here studied [Nicholson et al. (2011a)].
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prevailing B2g pairing operators, i.e. (v)+(vi), is in Fig. 3.5(c). All the gaps have

nodes along the x and y axes, also in good agreement with [Zeng et al. (2010)]. A

strong k dependence is observed for all FS pockets, and the electron-pocket gaps are

small (⇠ 1 meV).

3.3.3 Dynamical Pair Susceptibilities

To complete our analysis the dynamical pair susceptibilities, defined by

P (!) =

Z 1

�1
dtei!th�k,i(t)�

†
k,i(0)i, (3.5)

were also studied in the state with N=16 for the pairing operators �k,i. A procedure

used in the context of the cuprates will be followed [Dagotto et al. (1990)]. Results

for U=3 |t1|, JH/U=0.2, and several values of JNN/U were obtained along the dot-

dashed line (red) of Fig. 3.1(b). The overlaps calculation already indicated that for

N=18 there are several low-lying energy states with di↵erent symmetries near the

GS. The dynamical pair susceptibilities show that most of these low lying states

have a large overlap with �†
k,i| N=16(0)i for �†

k,i with the appropriate symmetry.

This is qualitatively di↵erent to the cuprates’ t-J model, where the overlap of the

doped GS with �†
k,i| (0)i was large for � with d-wave symmetry but negligible for

s-wave symmetry [Dagotto et al. (1990)]. In that s-wave case the spectral weight

in P (!) accumulates at high energies, while P (!) for the d-wave pairing operator

showed a well defined sharp peak at the GS energy of the doped state [Dagotto et al.

(1990)]. This is not the case for the two-orbital model. For example, in Fig. 3.5(d)

at JNN/U=0.095, where the doped GS has symmetry B2g, a sharp peak occurs in

P (!) for the B2g pairing operator (v), but a similar behavior is found in P (!) for

the A1g pairing operator (i) (the low-lying peak originates in a low-lying excited

state with A1g symmetry). In addition, the susceptibility for a pairing operator

(viii) (cos kx + cos ky)�3, NN version of the B1g operator (ix) (cos kx cos ky)�3, is also

competitive (Fig. 3.5(d)).
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3.3.4 Conclusions

The e↵ects of NN and NNN Heisenberg terms on the symmetry and the binding

energy of two electrons added to the undoped state of the two-orbital Hubbard model

were studied using Lanczos techniques on small clusters. Quasi-nodal A1g bound

states are stabilized for physical values of JH/U , in the intermediate/large U region,

in agreement with RPA results [Graser et al. (2009)]. Our results also indicate that

a competing B2g state may become stable in physically relevant regimes of U/|t1|. In

addition, the pairing susceptibility presents low-lying excitations with B2g, A1g, and

B1g symmetries. Thus, pairing correlations with any of these symmetries could be

stabilized by small modifications in the model parameters, in agreement with Refs.

[Graser et al. (2009); Daghofer et al. (2008); Moreo et al. (2009b); Si and Abrahams

(2008); Seo et al. (2008)]. This suggests that a similar sensitivity to small details may

occur among di↵erent compounds of the pnictide family.

3.4 Hole Doped

An important characteristic of the widely studied Hubbard models for the pnic-

tides/chalcogenides is that they are not particle-hole symmetric. On the experimental

side, superconductivity has been found both upon electron and hole doping, but it

seems that hole-doped materials belonging to the 122 family are more suitable for the

use of surface-sensitive techniques which have revealed mostly nodeless gaps, while

electron-doped materials belonging to the 1111 family are more easily studied with

bulk techniques where indications of nodal superconductivity states have been found

[Kondo et al. (2008); Ding et al. (2008); Grafe et al. (2008); Dong et al. (2010)].

Then, it is natural to wonder whether a potential source of the di↵erences in the

experimental results regarding the pairing symmetries may arise from the nature of

the dopants.
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As described in Chapter 2.2, due to the symmetry of the Fe-As planes [Raghu

et al. (2008); Lee and Wen (2008)], it is possible to describe the pnictides using Fe-

only e↵ective models where the As atoms merely provide a bridge for the electronic

hopping between the irons. Under this approximation only one Fe atom is left per

unit cell to describe these materials. As a result of these considerations, the number

of orbitals to be considered is reduced by half, which is a computational advantage,

and the size of the Brillouin zone (BZ) is doubled. For this reason, the momentum

in the unfolded zone is dubbed “pseudocrystal” momentum [Lee and Wen (2008)].

In order to relate the model results to experiments addressing the BZ corresponding

to two Fe atoms, it is necessary to “fold” the extended BZ in such a way that the

pseudocrystal momentum k = (⇡, ⇡) is folded onto momentum (0, 0). The physical

di↵erence between states with k = (0, 0) and (⇡, ⇡) is that the first indicates a bonding

and the second an anti-bonding combination of the d-orbitals in the two Fe atoms

in the two-atoms unit cell. In the presentation of our results below, k will stand for

pseudocrystal momentum.

3.4.1 Phase diagram

The relative symmetry between the undoped (N = 16) ground state (GS) and the

N = 14 GS has been studied with the Lanczos technique varying U/|t1| and JH/U .

The undoped GS was found to have momentum k = (0, 0) and it transforms according

to the A1g representation of the D4h group, for all the values of JH and U studied

here, in agreement with previous results [Moreo et al. (2009b)]. However, a surprising

result found in the present study of the hole-doped extended two-orbital model is the

presence of many competing low-energy states not only with di↵erent symmetries

as in the electron doped case [Nicholson et al. (2011a)], but also with di↵erent

pseudocrystal momenta k. In other words, low lying states with both k = (0, 0)

and (⇡, ⇡) were found in our Lanczos investigation. This is compatible with previous
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mean-field approximation results that also reported low-energy spin-singlet pair states

with momentum (⇡, ⇡) [Gao et al. (2010)].

The competition among low-lying states with di↵erent symmetries and with

di↵erent values of k is presented in Fig. 3.7 for the case JH/U = 0.20, without

the extra “J” terms. Numerically, it was found that the ground state for 14 electrons

has crystal momentum (⇡, ⇡). For small values of U this state is a triplet with A2g

symmetry (open circles in the figure). With increasing U , a transition (via a level

crossing) occurs at U ⇠ 6|t1| to a spin-singlet ground state with B2g symmetry (open

squares in the figure). However, it can be observed that there are states with k = (0, 0)

that have very similar energies. For example, for this pseudocrystal momentum, and

in the weak coupling regime, a spin-singlet state with B1g symmetry (represented

with filled triangles in the figure) is the closest in energy to the ground state, while

for U � 3|t1| a spin-singlet state with A1g symmetry prevails (represented with filled

diamonds in the figure).

Similar results were found for all the values of U and JH studied, i.e., the N = 14

ground state has total momentum k = (⇡, ⇡) but there are k = (0, 0) states close

in energy with a di↵erent symmetry. For this reason, the phase diagrams obtained

by varying JH/U and U/|t1| for both values of the pseudocrystal momentum will be

presented.

The relative symmetry between the ground state with two electrons less than

half filling with total pseudocrystal momentum k = (0, 0) and the undoped ground

state is shown in Fig. 3.8(a), varying JH/U and U/|t1|. A region with symmetry

B1g, indicated by the triangles, is found for small U/|t1| (roughly U/|t1|  3) and

moderate to large values of JH/U . For larger values of U/|t1|, the symmetry changes

to A1g. A similar transition from B1g to A1g (extended s-wave) has been found using

the RPA technique for an electron-doped five-orbital model at JH = 0 [Graser et al.

(2009)]. The binding energy EB, defined as EB = E(14) + E(16) � 2E(15), where

E(N) is the GS energy for N electrons, was also calculated. It was found that without

the addition of Heisenberg terms there are no regions with binding.
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Figure 3.7: Di↵erence between the energy of the lowest excited state with the
symmetry and momentum indicated and the ground state. Full (open) symbols denote
k = (0, 0) (k = (⇡, ⇡)). The results are obtained using the Lanczos algorithm for
the two-orbital model in an eight-site cluster with 14 electrons (two holes doping),
varying the Hubbard repulsion U , and at a fixed JH/U = 0.20. The inset shows a
larger energy range in which the lowest lying state with each symmetry is displayed.
The results shown in this figure are without the extra JNN and JNNN terms [Nicholson
et al. (2012)].
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Figure 3.8: Relative symmetry between the N=16 (undoped) and N=14 (with k =
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Results for the lowest value of (JNN, JNNN) where binding appears with a fixed ratio
JNN/JNNN = 0.93 [Nicholson et al. (2012)].
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For the other case of a pseudocrystal momentum k = (⇡, ⇡), the analogous

numerical results are shown in Fig. 3.9(a). It was found that an A2g spin-triplet

ground state, indicated by circles in the figure, dominates for large values of JH/U

and small U/|t1|. For the electron-doped model, an A2g spin-triplet with momentum

(0, 0) was similarly observed at large JH and small U [Daghofer et al. (2008); Moreo

et al. (2009b)]. For smaller JH/U and larger U/|t1|, a spin-singlet ground state with

B2g symmetry is the ground state. For this pseudocrystal momentum, the binding

energy was calculated as well: binding was obtained for JH/U = 0.35 where a spin-

triplet ground state with symmetry A2g prevails (see open triangles in the figure).
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Figure 3.9: Relative symmetry between the N=16 (undoped) and N=14 (with
k = (⇡, ⇡)) ground states varying U and JH/U . Circles denote spin-triplet states and
squares B2g-symmetric singlets. (a) Results for couplings JNN = JNNN = 0. Open
triangles indicate binding. (b) Results for the lowest value of (JNN, JNNN) where
binding appears with a fixed ratio JNN/JNNN = 0.93 [Nicholson et al. (2012)].
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3.4.2 Binding stabilization

To stabilize hole binding in the two-orbital model, this section proceed in a similar

manner as in the electron doped case described in Section 3.3 by adding extra

Heisenberg terms, namely a NN coupling JNN and a NNN coupling JNNN as discussed

in Section 3.2. As in the electron doped case, and as already explained, JNN will be

varied while JNN/JNNN will be kept fixed at the value 0.93 [Nicholson et al. (2011a)].

The results for pseudocrystal momentum k = (0, 0) are presented in Fig. 3.8(b),

showing the symmetry of the hole-doped ground state for the lowest value of JNN

where binding of holes is achieved. The phase diagram remains largely unchanged

by the addition of the Heisenberg terms except for the B1g region that has expanded

slightly towards larger values of U . On the other hand, for states with momentum

k = (⇡, ⇡) the spin-triplet region virtually disappears (Fig. 3.9(b)), except for those

triplet states that already had EB < 0 at JNN = 0, leaving behind a much larger B2g

region in parameter space.

In Fig. 3.10(a), the binding energy EB vs. JNN/U for states with momentum

k = (0, 0) is shown for several values of U and at a fixed (realistic) JH/U = 0.2.

Increasing JNN eventually induces binding for all U ’s. The value of JNN/U where

binding occurs decreases as U increases. Figure 3.11(a) shows the same information

but for the states with momentum k = (⇡, ⇡), where a similar qualitative behavior is

observed.

A study of the binding energy EB and the relative symmetry between the N=16

and 14 GS’s allows us to construct phase diagrams in the (U, JNN/U) plane. In

Fig. 3.10(b), typical results for the case JH/U = 0.2 are shown for the states with

total momentum k = (0, 0). The bound state has A1g symmetry in most of the

binding region, but a state with B1g symmetry prevails at smaller U values (⇠ 3|t1|).

In Fig. 3.11(b) the same information is displayed but for states with total momentum

k = (⇡, ⇡). In this case, the entire binding region, except for JH/U > 0.3, has B2g

symmetry. All of the above symmetries appear inside the proper magnetic/metallic
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region of the undoped limit (indicated with shading in the figures) that were obtained

in previous mean-field calculations [Yu et al. (2009); Luo et al. (2010)] extended to

incorporate JNN [Nicholson et al. (2011a)].

3.4.3 Magnetism

Since the two-orbital Hubbard model for the pnictides is not particle-hole symmetric,

it is interesting to study how the nature of the doping, namely electrons vs. holes,

a↵ects the intensity of the magnetic order. In the actual materials, experimental

results have shown that the in-plane resistivity of electron and hole-doped FeAs-

based pnictides displays a larger anisotropy in the electron-doped case [Ying et al.

(2011)]. Thus, it has been conjectured that the xz/yz magnetism is stronger in

the electron-doped case, while in the hole-doped case it is weaker with a growing

contribution of the xy orbital, disregarded in the two-orbital model, that forms the

hole pocket around M [Ying et al. (2011)]. A similar conclusion was reached via

the FLEX approximation for the case of electron and hole doping of a five-orbital

Hubbard model [Ikeda et al. (2010)].

The results for the two-orbital model studied here are shown in Fig. 3.12 where

the magnetic structure factor S(k) is shown in the undoped (crosses), electron doped

(circles), and hole-doped (diamonds) regimes, at fixed couplings U = 3, JH/U = 0.2,

and JNN/U = 0.2, namely in the mean-field calculated “physical region” indicated in

Fig. 3.11. While doping reduces the strength of the peak at k = (⇡, 0), it is interesting

to notice that the intensity is slightly more reduced in the hole-doped case. These

results lend qualitative support to the notion that the magnetism in the xz and yz

orbitals is stronger in the electron-doped case, and it becomes reduced when holes

are introduced.
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3.4.4 Overlap Integrals

In this subsection, the functional forms of the hole pairing operators that produce

the hole bound states will be analyzed. With this goal, the overlap defined by

h (N=14)(k
0)|�k0�k,i| (N=16)(k = (0, 0))i (3.6)

was calculated using the Lanczos algorithm along the paths indicated by the dotted

lines in the phase diagrams shown in panels (b) of Figs. 3.10 and 3.11. Notice that

for | 14(k0)i the pseudocrystal momentum k0 will take the values (0, 0) and (⇡, ⇡)

and, thus, a pairing operator with the appropriate k0 � k has to be used to ensure a

non-zero overlap. The ground state | (N)i in the subspace of N electrons was used,

and the operator in Eqn. (3) was defined as

�k,i =
X

↵�

f(k)(�i)↵�dk,↵,"dk,�,#, (3.7)

where dk,↵,� destroys an electron with spin z-axis projection �, at orbital ↵ = x, y,

and with momentum k. The structure factor f(k) arises from the spatial location of

the fermions forming the pair, [Moreo et al. (2009b)] and �i are the Pauli matrices

(i = 1, 2, 3) or the 2 ⇥ 2 identity matrix �0 (i = 0). Note that �1 and �2 imply an

inter-orbital pairing. Overlaps for all the symmetries in Ref. [Moreo et al. (2009b)],

and with NN and NNN locations for the electronic pairs, were numerically evaluated.

In Fig. 3.13(a), the overlaps for pairing operators with pseudocrystal momentum

k = (0, 0) are presented for values of U and JH along the dotted path in Fig. 3.10(b).

In the A1g region in Fig. 3.13(a), the same four pairing operators that have a finite

overlap in the electron doped case [Nicholson et al. (2011a)] also have one here.

However, the relative strength of the overlaps di↵er. For consistency, the same

labeling for the operators will be used as in Ref. [Nicholson et al. (2011a)]. The A1g

operator with the largest overlap is the operator (ii), i.e. the s± operator characterized

by f(k)�i = (cos kx cos ky)�0, as in the electron doped case; [Nicholson et al. (2011a)]
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it is indicated by hollow diamonds in Fig. 3.13(a). However, in the hole-doped system

the overlap for the pairing operator (iv) characterized by (cos kx � cos ky)�3 (hollow

circles) follows in strength; this operator had the weakest overlap in the electron doped

case [Nicholson et al. (2011a)]. The pairing operator (i) with (cos kx+cos ky)�0 (hollow

squares) has an overlap almost as strong as in the electron-doped case. Finally, the

overlap corresponding to the operator (iii)(sin kx sin ky)�1 (hollow triangles) is even

more suppressed upon hole doping than upon electron doping.

In the region where the pairs have B1g symmetry there are three pairing operators

with large overlaps : (viii) (cos kx+cos ky)�3 (solid circles); (ix) (cos kx cos ky)�3 (solid

diamonds); and (x) (cos kx� cos ky)�0 (solid squares). At small values of JNN/U , (ix)

has the largest overlap amplitude followed by (x) and (viii). However, as JNN/U

increases (viii) overtakes (ix).

For the case of pairing operators with pseudocrystal momentum k = (⇡, ⇡), there

is one contribution that clearly dominates, see Fig. 3.13(b): (vi0) (cos kx cos ky)�1

which corresponds to a NNN pair with B2g symmetry. The prime in the label is

used to remind the reader that the operator has a di↵erent pseudocrystal momentum

from the B2g state with the same label discussed in the electron-doped case [Nicholson

et al. (2011a)]. The only other nonzero pairing overlap occurs for (vii0) (sin kx sin ky)�0

and has a much smaller amplitude than (vi0). Interestingly, the nearest-neighbor B2g

operator (v) characterized by (cos kx+cos ky)�1 that had the strongest overlap in the

electron doped case [Nicholson et al. (2011a)] has zero overlap in the case studied

in this manuscript. All the gaps for the pairing operators with B2g symmetry have

nodes along the x and y axes.

3.4.5 Dynamical Pair Susceptibilities

To complete our analysis, the dynamical pair susceptibilities defined as

P (!) =

Z 1

�1
dtei!th�†

k,i(t)�k,i(0)i, (3.8)
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were also studied in the state with N = 16 for the pairing operators �k,i introduced in

Sec. 3.4.4. Notice that the calculated spectral decomposition involves excited states

with N = 14. The procedure described in Ref. [Dagotto et al. (1990)] in the context

of the cuprates will be followed. As discussed above, for N = 14 there are several low-

energy states near the ground state that have di↵erent symmetries. The dynamical

pair susceptibilities show that most of these low-lying states have a large overlap

with �k,i| N=16(0)i for �k,i with the appropriate symmetry. In Fig. 3.14, results

for U = 3|t1|, JH/U = 0.2, and JNN/U = 0.10 are presented. Large overlaps with

low-lying N = 14 states are observed for operators (ii) and (iv) with A1g symmetry

and (viii) and (x) with B1g symmetry, as well as for operator (vi0) with B2g symmetry

and pseudocrystal momentum k = (⇡, ⇡).

It is interesting to compare the results obtained for the dynamical pair suscep-

tibility upon hole doping with those obtained for electron doping [Nicholson et al.

(2011a)]. In both cases, large susceptibilities for the low-lying states with A1g, B1g,

and B2g symmetries are found. This is remarkably di↵erent from the case of models

for the cuprates where an analogous low-lying overlap analysis showed that dx2�y2-

wave symmetry clearly dominates over all others [Dagotto et al. (1990)].

Returning to pnictides, a similarity between the electron and hole-doped cases

is that the B1g pairing operator that has the highest susceptibility, state (viii), is

di↵erent from the B1g pairing state for the cuprates. It corresponds to Cooper pairs

mainly located on NNN sites, as opposed to the dominant NN contribution in the

cuprates, and in the orbital basis used here the B1g symmetry is realized by the orbital

degree of freedom. In addition, the susceptibilities indicate that while NN pairs are

favored in the electron doped case, NNN have larger susceptibilities upon hole doping

for A1g and B2g symmetries.
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3.4.6 Conclusions

The properties of a recently introduced two-orbital extended Hubbard model for the

pnictides have been studied upon hole doping with the help of the Lanczos method.

The results were contrasted with the electron-doped case discussed in Section 3.3. Due

to the lack of particle-hole symmetry in the Hamiltonian, the results, as expected, are

quantitatively di↵erent in both cases. However, an additional surprising characteristic

of the hole-doped ground state is that it has pseudocrystal momentum (⇡, ⇡). In the

reduced Brillouin zone representation corresponding to the physical two Fe-atoms

per unit cell description of the pnictides, having a nonzero pseudocrystal momentum

means that the ground state is characterized by anti-bonding rather than bonding

combinations of the orbitals of the two Fe atoms in the unit cell. In terms of the

pairing operators that are favored, it means that the pairs would arise from hole

carriers located at the hole pockets at � and at M in the unfolded Brillouin zone.

Interestingly, the five-orbital model for the pnictides [Kemper et al. (2010)] shows

that upon hole doping a hole pocket, absent in the electron-doped case, develops

around M and the role of this pocket plays an important role in the properties of

the hole-doped materials [Kemper et al. (2010); Ikeda et al. (2010)]. Our results may

indicate that a simple toy model, such as the two-orbital model, could be used to

study the role that a hole-pocket at M plays when multi-orbital Hubbard models are

hole-doped.

In spite of this di↵erence in the pseudocrystal momentum quantum number,

there are several commonalities between the hole- and electron-doped two-orbital

Hubbard models. The most important feature is that there are several low-lying

states with di↵erent symmetries close to the undoped ground state. For this reason,

the symmetry of the doped states is strongly dependent on the actual values of the

interaction parameters. Spin-singlet states that transform according to the irreducible

representations A1g, B1g, and B2g were obtained both for hole and for electron

doping. The richness of the phase diagrams unveiled here, and in the cited previous

67



investigations, suggests that the symmetry of the pairing state in the pnictides is

likely to depend on the material as well as on the type of doped carriers (electrons or

holes) and on the density of dopants.
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Figure 3.10: Results for states with total momentum k = (0, 0). (a) EB/|t1| vs.
JNN/U for di↵erent values of U/|t1|, at JH/U = 0.2 and JNN/JNNN = 0.93. (b) Phase
diagram showing “Binding” and “No Binding” regions and the symmetry of the two-
hole bound state varying U/|t1| and JNN/U , at a fixed JH/U = 0.2 [Nicholson et al.
(2012)]. The shaded area indicates the so-called “physical region” obtained from
standard mean-field calculations that were compared with neutrons, transport, and
photoemission experimental results [Luo et al. (2010)]. The doted line is for Fig. 3.13
(a).
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Figure 3.11: Results for states with total momentum k = (⇡, ⇡). (a) EB/|t1| vs.
JNN/U for di↵erent values of U/|t1|, at JH/U = 0.2 and JNN/JNNN = 0.93. (b) Phase
diagram showing “Binding” and “No Binding” regions and the symmetry of the two-
hole bound state varying U/|t1| and JNN/U , at a fixed JH/U = 0.2 [Nicholson et al.
(2012)]. The shaded region indicates the “physical region” according to standard
mean-field calculations [Luo et al. (2010)]. The doted line is for Fig. 3.13(b).
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Figure 3.13: Overlap h (N = 14)|�k,i| (N = 16)i vs. JNN/U for the indicated
pairing operators, at U = 3 |t1| and JH/U = 0.2, for (a) states with total momentum
k = (0, 0) along the dotted path in Fig. 3.10(b), and (b) states with total momentum
k = (⇡, ⇡) along the dotted path in Fig. 3.11(b) [Nicholson et al. (2012)].
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et al. (2012)].
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Chapter 4

Two Orbital S-Model

4.1 Introduction

Among the several aspects of the study of the iron-based superconductors that are still

controversial and unsettled, the following two questions have attracted considerable

attention: (i) Does the magnetic order observed in the parent compounds [de la

Cruz et al. (2008)] arise from the nesting properties of the non-interacting (or high

temperature) Fermi surface [Mazin et al. (2008); Kuroki et al. (2008)] or should a

better description be based on the super-exchange Heisenberg interactions between

localized magnetic moments [Si and Abrahams (2008)]? (ii) What is the pairing

mechanism, to what extent is the pairing symmetry determined by nesting and, what

is the actual symmetry and momentum dependence of the pairing operator? In

particular, what is the role that the orbital degrees of freedom play in this context?

The origin of the magnetic state is being vigorously debated. One proposal, based

on fermiology, is the excitonic mechanism in which electron-hole pairs are formed

by one electron and one hole from di↵erent FS’s nested with nesting vector Q. In

this context most studies disregard the orbital structure of the bands [Mazin et al.

(2008); Chubukov et al. (2008); Cvetkovic and Tesanovic (2009); Brydon and Timm

(2009)] while others stress the role played by their orbital composition [Raghu et al.
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(2008); Daghofer et al. (2008); Graser et al. (2009); Moreo et al. (2009b); Kemper

et al. (2010); Yu et al. (2009); Luo et al. (2010); Daghofer et al. (2010)]. Another

approach focuses on the order of the localized moments that develop in the presence

of strong Coulomb interactions [Si and Abrahams (2008); Yildirim (2008); Uhrig et al.

(2009); Krüger et al. (2009)] and relies on ab initio results [Nakamura et al. (2008);

Anisimov et al. (2009)] that suggest that the pnictides are moderately, rather than

weakly, correlated, conclusion supported by photoemission measurements indicating

mass enhancements due to electron correlations as large as 2-3 [Luo et al. (2010)].

The pairing mechanism in the pnictides is also controversial. Most of the pairing

operators that have been proposed in the literature either ignore the multi-orbital

characteristics of the problem or consider Cooper pairs that are made out of electrons

located at the same orbital. A majority of these previous studies have been performed

in the weak coupling limit. The original proposal of the s± pairing state dealt with

the overall symmetry of the pairing operator but without distinguishing among the

spatial vs. orbital contributions to its particular form [Mazin et al. (2008); Kuroki

et al. (2008)]. Other authors [Zhang et al. (2009)] have considered a spin-fluctuation-

induced pairing interaction and also assumed that Cooper pairs are predominantly

made of electrons in the same orbital. A Random-Phase Approximation (RPA)

analysis [Graser et al. (2009)] concluded that the pairing is, again, intraorbital,

both for the A1g (s-wave) and B1g (d-wave) symmetries. Among the authors that

have used the conceptually di↵erent strong coupling approach, some have studied

e↵ective single orbital models [Si and Abrahams (2008)] while others incorporated

two orbitals [Goswami, Pallab et al. (2010)], but still only considering intra-orbital

pairing operators. The same model was also studied under a mean-field approximation

[Seo et al. (2008)] with the assumption that exchange takes place between spins on

the same orbitals and, again, only intraorbital pairs were proposed.

Among the early first studies of multi-band superconductors, [Suhl et al. (1959)]

considered two tight-binding bands, hypothetically identified with s and d orbitals,

and the e↵ect of weak electron-phonon interactions. Under these assumptions, it was
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reasonable to expect that the Cooper pairs would be formed by electrons belonging

to the same band. However, the actual orbital composition of the pairs was not

addressed. The interacting portion of the Hamiltonian was written in the band

representation and this model was proposed by analogy with models used in the

BCS theory, assuming that emission and absorption of a phonon could occur in four

ways. These four processes corresponded to pair scattering within each of the two

FS’s and pair hopping from one FS to the other. This last process would occur if the

exchanged phonon has enough momentum to allow the Cooper pair to jump from a

FS to the other, and it can occur even if the orbitals do not hybridize to form the

bands [Hotta (2010)]. In this case, the expected pairing operator is the traditional

on-site s-wave state of the BCS theory, with a momentum independent gap. In

principle, independent gaps may arise on the di↵erent FS’s [Suhl et al. (1959)] unless

the orbitals are hybridized by the symmetries of the Hamiltonian, in which case the

gaps will have to be related to each other and obey the symmetries of the system.

[Moreo et al. (2009b)].

The previous discussion applies to superconductors driven by the electron-phonon

interaction. However, it is believed that the most relevant interactions in the pnictides

are the Coulomb repulsion and Hund magnetic exchange. These interactions are more

easily expressed in real space and in the orbital representation. In fact, the e↵ective

form of the Coulomb interaction in the band representation is more complicated than

the expression provided by [Suhl et al. (1959)] for the electron-phonon interaction.

In particular, it has been shown [Chubukov et al. (2008) ] that a pair hopping term,

such as the one introduced by Suhl et al. occurs only if the orbitals get hybridized

to form the bands. If the orbitals are not hybridized this type of term is not present

in the e↵ective interaction Hamiltonian. In addition, when the bands are made of

hybridized orbitals, as it is the case for the iron pnictides, [Boeri et al. (2008)] the

actual orbital structure of the pairs needs to be considered since due to the Coulomb

repulsion on-site pairing is not expected to occur, and the overall symmetry properties
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of the pairing operators may be a function of their spatial and orbital components,

see Eqn. 2.30.

To understand the role that the orbitals play in the case of electrons with

strongly hybridized bands that are interacting via the Coulomb repulsion, as believed

to occur in the case of the pnictides in the context of the magnetic scenario for

superconductivity, in this chapter Lanczos numerical, Hartree mean-field, and RPA

studies of two di↵erent two-orbital models will be presented and discussed, both

displaying identical Fermi surfaces. One of them is the well-known and widely used

two-orbital model for the pnictides, introduced in Section 2.2.4, based on the two

strongly hybridized degenerate dxz and dyz orbitals of iron, while the second is a two-

band “toy- model” (dubbed the s-model) whose bands arise from two non-hybridized,

non-degenerate, s-like orbitals that is introduced here for the first time. The latter

model has a FS qualitatively similar to that of the pnictides. In both cases a hole

(electron) FS is located at the �/M (X/Y ) points of the Brillouin zone (BZ). The

hole and electron FS’s are connected by nesting vectors (⇡, 0) and (0, ⇡). The role

that the nesting and the orbitals play in the magnetic and pairing properties of these

models will be here investigated and discussed, both in the weak and strong coupling

regimes.

Besides its conceptual relevance, the results presented here should also be framed

in the context of recent bulk-sensitive laser angle-resolved photoemission (ARPES)

experiments [Shimojima et al. (2010)] on BaFe2(As0.65P0.35)2 and Ba0.6K0.4Fe2As2.

The main conclusion of Ref. [Shimojima et al. (2010)] is the existence of orbital

independent superconducting gaps that are not expected from spin fluctuations

and nesting mechanisms, but are claimed to be better explained by magnetism-

induced interorbital pairing and/or orbital fluctuations. This is argued based on

the observation that the 3z2� r2 orbital that forms one of the hole pockets at the BZ

center, but that does not have a nested partner with the same orbital at the electron

pockets, nevertheless appears to develop a superconducting gap. Another interesting

experimental result that challenges the role of nesting in the physics of the pnictides
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is a careful measurement of the de Haas-van Alphen (dHvA) e↵ect in BaFe2P2, the

end member of the series BaFe2(As1�xPx)2, indicating that this non-magnetic and

non-superconducting compound displays the best nesting of all the compounds in the

series [Arnold et al. (2011)]

This chapter is organized as follows. In Section 4.2 the models are introduced.

The magnetic properties are presented in Section 4.3 while the pairing properties are

the subject of Section 4.4. Section 4.5 is devoted to the conclusions.

4.2 Models

4.2.1 d-model

The reference model that will be considered here is the widely-used two-orbital model,

introduced in Section 2.2.4, based on the dxz (x) and dyz (y) Fe orbitals of the pnictides

An important characteristic of the two degenerate d-orbitals in this model is that

around the hole pockets a spinor describing the mixture of orbitals rotates twice

on encircling these FS’s. The inversion and time reversal symmetry of the twice

degenerate d bands ensures that at each k point it is possible to choose real spinor

wavefunctions that are confined to a plane. The spinor has vorticity ±2 around

the hole pockets while there is no vorticity around the electron pockets [Ran et al.

(2009)]. As pointed out in [Ran et al. (2009)], this topological characterization of the

hole and electron pockets is also a characteristic of all the more realistic models for

the pnictides that include additional orbitals.

4.2.2 s-model

Let us introduce now a two-orbital model with two non-degenerate non-hybridized

s-like bands, called s1 and s2, with dispersion relations given by:

⇠s1(k) = 2t1(cos kx + cos ky) + 4t2 cos kx cos ky � µ, (4.1)

78



and

⇠s2(k) = 2t3(cos kx + cos ky) + 4t4 cos kx cos ky � µ+�, (4.2)

where µ is the chemical potential and � is the energy di↵erence between the two

bands. The dispersions can also be written in the basis (s1, s2), i.e., (1, 2), using the

⌧i matrices as in Eqn. 2.26:

⇠S(k) =[(t1 + t3)(cos kx + cos ky) + 2(t2 + t4) cos kx cos ky � µ+
�

2
]⌧0

+ [(t1 � t3)(cos kx + cos ky) + 2(t2 � t4) cos kx cos ky �
�

2
]⌧3. (4.3)

It is clear that here both ⌧0 and ⌧3 transform like A1g and for this reason this

model will be called the s-model. In Fig. 4.1, the band dispersion (panel (a)) and the

FS (panel (b), red circles) are shown for the parameter values t1 = �0.05, t2 = 0.7,

t3 = �0.1, t4 = 0.3, � = 2.8 and µ = 1.95. The FS of the d-model is also shown

(continuous black line) for comparison. They are obviously very similar, and precisely

the goal of this e↵ort is to investigate what kind of magnetic and pairing properties

emerge from these two models that have nearly equal Fermi surfaces.

The hole pockets at the � and M points nest into the electron pockets at X and

Y , with nesting vectors (0, ⇡) and (⇡, 0). The system is half-filled but the individual

bands/orbitals are not. Note that this is the case with the orbitals in the multi-orbital

systems proposed for the pnictides, where nesting occurs between electron and hole

pockets at the FS but none of the orbitals is exactly half-filled [Graser et al. (2009);

Kuroki et al. (2008)].

4.2.3 Coulomb Interaction

The Coulomb interaction term in both Hamiltonians is the usual one, first introduced

in Section 2.3, with an on-site intraorbital (interorbital) Coulomb repulsion U (U 0),
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Figure 4.1: (a) Band dispersion and (b) Fermi surface of the half-filled two-orbital
s-model given by Eqn. (4.3) (red circles). The continuous line is the FS for the
two-orbital d-model [Nicholson et al. (2011b)].
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and a Hund coupling J satisfying the relation U 0=U � 2J for simplicity, and a pair-

hopping term with coupling J 0=J [Oles (1983)]. The full interaction term is given

by

Hint = U
X

i,a

ni,a,"ni,a,# +
(U 0 � J/2)

2

X

i,a

ni,ani,�a

�J
X

i,a

Si,a · Si,�a +
J

2

X

i,a

(d†i,a,"d
†
i,a,#di,�a,#di,�a," + h.c.),

(4.4)

where d†i,a,� creates an electron with spin � at site i and orbital a = x, y or 1, 2. Si,a

(ni,a) is the spin (electronic density) of the orbital a at site i.

4.3 Magnetic Properties

For a single-orbital model, the magnetic structure factor is easily defined as

S(k) =
X

r

eik.r!(r), (4.5)

with

!(r) =
1

N

X

i

m(i)m(i+ r), (4.6)

where N is the number of sites of the lattice and

m(i) = ni," � ni,# = d†i,"di," � d†i,#di,#, (4.7)

where m(i) denotes the net magnetization at site i.

In a multi-orbital system the net magnetization at site i is obtained in terms of

the magnetization of each orbital a, and it is given by

m(i) =
X

a

ni,a," � ni,a,# =
X

a

(d†i,a,"di,a," � d†i,a,#di,a,#). (4.8)
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While Eqn. 4.8 characterizes the magnetization that is measured in experiments

such as neutron scattering, it is natural to define generalized magnetic momentsmab(i)

[Ran et al. (2009)] given by

mab(i) = d†i,a,"di,b," � d†i,a,#di,b,#. (4.9)

With this definition, a generalized form of the magnetic correlation functions will

depend on 4 orbital indices:

!abcd(r) =
1

N

X

i

mab(i)mcd(i+ r). (4.10)

Thus, it is possible to define orbital dependent magnetic structure factors given by:

Sabcd(k) =
X

r

eik.r!abcd(r). (4.11)

These orbital-dependent operators may arise from processes as those depicted in panel

(a) of Fig. 4.2, where having di↵erent orbitals at the two vertices is possible if the

orbitals strongly hybridize to form a band [Kemper et al. (2010)].

The total orbital magnetic structure factor can then be defined as:

STO(k) =
X

a,b,c,d

Sabcd(k). (4.12)

Note that there are M4 orbital dependent components of the generalized magnetic

structure factor, where M is the number of active orbitals in the system. The

magnetization that is measured in neutron scattering experiments is given by Eqn. 4.8,

which in terms of the components of the tensor mab becomes

m(i) =
X

a

ni,a," � ni,a,# =
X

a

maa(i) = tr[mab(i)]. (4.13)
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Figure 4.2: (a) Electronic process that gives rise to the orbital components of the
structure factor. (b) Same as (a) but in the band representation [Nicholson et al.
(2011b)].

Since m(i) is a trace its value is independent of the basis chosen to define the orbitals

and it allows to calculate the experimentally measured local magnetization.

Notice that m(i) is the operator that has to be considered in order to construct the

so-called homogeneous or diagonal structure factor defined in terms of the diagonal

(intra-orbital) magnetic moments maa(i) and given by [Graser et al. (2009); Moreo

et al. (2009b)]

SMO(k) =
1

N

X

a,b,r,i

eik.rmaa(i)mbb(i+ r) =
X

a,b

Saabb(k). (4.14)

SMO is the physical magnetic structure factor that has to be calculated in the

context of multi-orbital systems to compare with neutron scattering results [Daghofer

et al. (2008); Moreo et al. (2009b)]. Several authors have pointed out the

existence of the generalized components of the magnetic susceptibility both in the

orbital representation [Graser et al. (2009); Brydon et al. (2011)] and in the band
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representation [Brydon and Timm (2009)]. It has also been pointed out that an

orbital-transverse density-wave (OTDW) ordered state characterized by the non-

homogeneous components of the magnetization tensor may develop in multi-orbital

systems [Yao, Zi-Jian et al. (2011)], an issue that will be further explored and

discussed in the present work.

4.3.1 Non-interacting case

In order to understand the relationship between STO, SMO, and the properties of the

FS of the system, it is illuminating to consider the non-interacting case which can be

easily studied in momentum space. Via a Fourier transform of d†i,a,� and di,a,�, Sabcd

in Eqn. 4.11 can be written as

Sabcd(k) =
X

p,q,�,�0

(�1)�+�0
d†q,a,�dq+k,b,�d

†
p,c,�0dp�k,d,�0 . (4.15)

In momentum space it is natural to use the band representation in which

Sabcd(k) =
X

p,q,�,�0,µ,µ0,⌫,⌫0

(�1)�+�0
< µ|a >q< b|µ0 >q+k< ⌫|c >p< d|⌫ 0 >p�k

d†q,µ,�dq+k,µ0,�d
†
p,⌫,�0dp�k,⌫0,�0 , (4.16)

where d†p,⌫,� creates an electron with momentum p and z-spin component � at band

⌫, while < ⌫|a >p is the matrix element for the transformation from orbital to band

representation.

In the band representation, the electronic processes that contribute to the

magnetic correlations are shown in panel (b) of Fig. 4.2. Since the electronic band

cannot change as the electron created at the right vertex is destroyed at the left

vertex, in the band representation the band-dependent components of the structure
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factor are given by

Sµ⌫⌫µ(k) =
X

p,q,�

d†q,µ,�dq+k,⌫,�d
†
p,⌫,�dp�k,µ,�, (4.17)

where the Greek indices label the bands. A total structure factor can be defined in

terms of Sµ⌫⌫µ as

STB(k) =
X

µ,⌫

Sµ⌫⌫µ(k). (4.18)

Also the homogeneous or diagonal magnetic structure factor SMB, analogous of SMO,

can be defined as

SMB(k) =
X

µ

Sµµµµ(k), (4.19)

since in the band representation Sµµ⌫⌫ = 0, if µ 6= ⌫. Note that the band

representation is the natural starting point in approaches based on fermiology [Mazin

et al. (2008); Chubukov et al. (2008)].

In the noninteracting case being considered in this section, it is easy to show that

Sµ⌫⌫µ(k) = 2
X

q

fµ(q)[1� f⌫(q+ k)], (4.20)

where fµ(q) is the Fermi function for the band µ. The components of the structure

factor in the orbital representation are given by

Sabcd(k) = 2
X

q,µ,⌫

< µ|a >q< b|⌫ >q+k< ⌫|c >q+k< d|µ >q fµ(q)[1� f⌫(q+ k)].

(4.21)

From the expressions in Eqns. 4.20 and 4.21 it can be shown that STO = STB and

SMO = SMB only if the orbitals do not hybridize to form the bands, i.e., the matrix

elements are the elements of the identity matrix. In case of a nonzero hybridization,

then the structure factors in the band and orbital representations are di↵erent.
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4.3.2 d-model

Numerical Lanczos calculations for the homogeneous (or diagonal) magnetic structure

factor SMO have been shown in section 2.4 for the two-orbital d-model indicating a

tendency towards magnetic colinear order for the undoped case, characterized by

peaks at k = (⇡, 0) and (0, ⇡) in SMO. This tendency is already apparent even in

the non-interacting case as illustrated in panel (a) of Fig. 4.3 where SMO calculated

in a 16 ⇥ 16 cluster is shown with open circles, along the directions (0, 0) � (⇡, 0) �

(⇡, ⇡)� (0, 0) in the unfolded BZ. The broad peak at k = (⇡, 0) is clear and it can be

compared with the curve denoted by the star symbols in panel (b) of the same figure

where results for the
p
8⇥

p
8 cluster that can be studied numerically exactly (with the

Lanczos algorithm and for any value of the Hubbard couplings) are presented. This

same behavior is also apparent in the total orbital structure factor STO(k) indicated

by the diamonds in Fig. 4.3(a).

On the other hand, a calculation of the magnetic structure factor using the band

representation, i.e. SMB(k) indicated by the squares in panel (a) of Fig. 4.3, shows a

rather di↵erent behavior: instead of a clear peak at (⇡, 0) there is a featureless plateau

around (⇡, 0) that extends to (⇡/2, ⇡/2). This example demonstrates the importance

of the matrix elements in Eqn. 4.21 which di↵erentiate between SMO and SMB. In the

non-interacting case, both functions can be expressed in terms of the Fermi functions

as in Eqns. 4.20 and 4.21 allowing us to conclude that the peak at (⇡, 0) arises from

the matrix elements rather than from purely nesting e↵ects of the Fermi surfaces.

Ignoring the matrix elements, it is interesting to note that a feature at (⇡, 0) can also

develop if all the components of the structure factor in the band representation are

considered and STB(k) is calculated, as shown by the curve indicated with triangles

in Fig. 4.3(a).

The contribution of the band- and orbital-resolved components of the structure

factor in the non-interacting case are presented in panel (a) of Fig. 4.4. The

components of the structure factor that contribute to SMO are Saabb with a (b) taking
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Figure 4.3: (a) Magnetic structure factors, total and homogeneous as indicated,
for the non-interacting two-orbital d-model on a 16 ⇥ 16 lattice. (b) Homogeneous
orbital magnetic structure factor SMO(k) for the interacting case with J/U = 0.25
and at the indicated values of U . The results were obtained numerically using an
8-sites cluster and the Lanczos method. (c) Total orbital magnetic structure factor
STO(k) for the interacting case, for the same parameters and technique as used in (b)
[Nicholson et al. (2011b)].

87



(0,0) (π,0) (π,π) (0,0)

k

0

1

2

3

4

S
1111

(k)

S
2222

(k)

S
1221

(k)

S
2112

(k)

(0,0) (π,0) (π,π) (0,0)

k

0

1

2

3

4

S
(k

)

S
xxxx

(k)

S
yyyy

(k)

S
aabb

(k)=S
abab

(k)

S
abba

(k)

S
abbb

(k)

(a) (b)d-model s-model
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[Nicholson et al. (2011b)].
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the values x (y) and y (x) indicated by the diamonds in the figure, and Saaaa (indicated

by the circles and squares). It is clear from the figure that the peak at (⇡, 0) in SMO

at the non-interacting level is mostly due to the Saabb that arise from the nesting

of the two bands that contain the same orbital flavors due to hybridization, while

the components of the form Saaaa show features also at (⇡, ⇡) since this wave vector

also nests the hole (electron) FS’s at � and M (X and Y ). It can be seen that the

non-homogeneous components of the form Sabab (diamonds) behave as Saabb in the

non-interacting case and contribute to form the peak at (⇡, 0) in the total structure

factor STO [triangles in Fig. 4.3(a)]. For completeness in Fig. 4.4(a) orbital resolved

structure factors of the form Sabba (up triangles) and Sabbb (down triangles) are also

shown; Sabba increase the value of STO at (⇡, 0) while Sabbb provide a small negative

contribution to STO along the diagonal direction of the BZ. Similar results were

obtained for all the correlations in which three of the four indices are the same.

In non-interacting single-orbital systems, as studied for the cuprates, the spin and

charge susceptibilities have the same form for all values of non-zero momenta, and

any features in these functions arise from the nesting properties of the Fermi surface.

Naively, the same is expected in the case of multi-orbital models but, as it will be

discussed below, the hybridization of the orbitals plays a crucial role. In the d-model,

the peaks in SMO appear to be associated with the nesting of the hole- and electron-

like Fermi surfaces. In the weak coupling picture, it is expected that magnetic order

with Q equal to the nesting moments stabilizes when repulsive Coulomb interactions

are added. Our Lanczos calculations for SMO and STO, in panels (b) and (c) of

Fig. 4.3, show that this is indeed the case.

The Lanczos calculated orbital magnetic structure factor SMO(k), using a
p
8⇥

p
8

sites cluster, is shown in Fig. 4.3(b) for di↵erent values of U and at J/U = 0.25. This

structure factor has a peak at k = (⇡, 0) (and (0, ⇡) as well, not shown) that becomes

sharper as U increases, indicating a tendency towards robust magnetic order. Mean-

field calculations based on these results, but extended to much larger systems, indicate
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that actual magnetic order develops at a finite value of U [Moreo et al. (2009b); Yu

et al. (2009); Luo et al. (2010)].

The Lanczos-evaluated behavior of the SMO(k) peak at k = (⇡, 0), as a function

of U , is shown in Fig. 4.5(a), for two di↵erent values of J/U (0.05 and 0.25). The

tendency towards a robust magnetic state with increasing U and J/U is again clear.

As previously stated, SMO is the magnetic structure factor calculated in the

literature for comparison with experiments, but for completeness and for the sake of

comparison with the s-model results, in panel (c) of Fig. 4.3, the Lanczos calculated

values for the total generalized magnetic moment STO for the d-model as a function of

U , for the case J/U = 0.25 are presented. It is clear that for the d-model STO mimics

the behavior of SMO. An important question to ask is what are the components of

the orbital-resolved magnetic structure factor that drive the development of a peak at

Q = (⇡, 0) (and (0, ⇡)) when the Coulomb interactions are active. In Fig. 4.6 partial

sums over selected components of the structure factor are shown with summations

performed over repeated indices. In panel (a) of Fig. 4.6 it can be clearly observed

that Saabb, whose sum over a and b are indicated by the plus signs and the continuous

lines in di↵erent shades for the di↵erent values of the interaction, are the components

that drive that magnetic behavior. In fact, these are the homogeneous components

that contribute to the physical magnetic structure factor SMO. It is interesting to note

that while
P

a,b Saabb is equal to
P

a,b Sabab in the non-interacting system (panel (a) of

Fig. 4.4) the partial sum of the non-homogeneous component
P

a,b Sabab [x symbols

and dotted lines in Fig. 4.6(a)] does not increase with U at Q while the partial sum
P

a,b Saabb clearly does.

4.3.3 s-model

Let us now carry out a similar analysis but for the two-orbital s-model defined by

Eqn. 4.3. Since in this model each band is defined by a single orbital, then it is

clear that SMO = SMB and STO = STB.Note that studies based on fermiology
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numerically (Lanczos). (a) Results for the two-orbital d-model, as a function of the
Coulomb repulsion U and for the values of J/U indicated. (b) Same as (a) but for
the s-model [Nicholson et al. (2011b)].
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assume that if hole and electron FS’s are nested via a momentum vector Q, then

spin density wave order will arise from a logarithmic instability that develops in the

spin response at Q and is stabilized by the Coulomb interaction [Mazin et al. (2008);

Chubukov et al. (2008)]. In this scenario the spin-density wave originates from the

formation of particle-hole pairs, excitons, belonging to the electron and hole FS’s

(excitonic mechanism) [Chubukov et al. (2008)]. Our goal is to investigate whether

this mechanism is valid for the s-model.

The magnetic structure factor SMO in the non-interacting limit, denoted by the

squares in panel (a) of Fig. 4.7, does not show the features expected from the nesting

of the two Fermi surfaces at momentum Q. The structure factor is actually rather

flat on all the BZ, vanishing at k = (0, 0) and (⇡, ⇡). These results are not what it

would have been expected from the nesting properties.

Note that the results for SMO in the non-interacting s-model [squares in Fig. 4.7(a)]

are actually identical to the results for the homogeneous structure factor in the d-

model in the band representation SMB [indicated by squares in Fig. 4.3(a)], since

both systems do have the same FS. However, note how di↵erent are the results for

the d-model in the orbital representation [indicated by circles in Fig. 4.3(a)]. This

is due to the e↵ect of the matrix elements that result from the hybridization of the

orbitals, which play a crucial role in the magnetic properties of the system. This

e↵ect can be more clearly appreciated when the interactions are added. The behavior

of the peak in SMO(k) at k = (⇡, 0) was calculated with the Lanczos method applied

to the s-model, by varying U and at di↵erent values of J/U using an N = 8 sites

tilted cluster. In Fig. 4.5(b) it can be observed that for values of J < 0.1U the peak

in SMO eventually vanishes. On the other hand, for J � 0.1U a rapid increase in the

peak’s magnitude suddenly occurs at a value of U that decreases as J/U increases.

The increase of the peak at (⇡, 0) with increasing U is contrasted with the behavior

of the feature at (⇡/2, ⇡/2) displayed in Fig. 4.7(b). Examination of the numerical

(Lanczos) ground state indicates that at this point the Hubbard interaction is strong

enough to hybridize the two bands and develop magnetic colinear order.
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Figure 4.7: (a) Magnetic structure factors (total and homogeneous) as indicated
for the non-interacting two-orbital s-model using a 16⇥ 16 lattice. (b) Homogeneous
orbital/band magnetic structure factor SMO(k) for the interacting case with J/U =
0.25, at the indicated values of U . The results were obtained numerically via the
Lanczos method using an 8-sites cluster. (c) Total orbital/band magnetic structure
factor STO(k) for the interacting case with the same parameters as in (b).
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Figure 4.8: Mean-field calculated orbital/band resolved magnetic order parameters
for the s-model, as a function of U and for the indicated values of J/U . (a) Total
homogeneous magnetic order parameter m = m11 +m22; (b) m11; (c) m22; (d) m12 =
m21.
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Figure 4.9: Intensity of the mean-field calculated spectral functions A(k,!) as a
function of !�µ and k for the s-model: (a) in the colinear magnetic phase for U = 5
and J/U = 0.25; (b) in the phase with orbital-transverse spin order for U = 2.5 and
J/U=0.25 [Nicholson et al. (2011b)].

Based on the numerical results discussed above, a Hartree-Fock mean-field

calculation was performed, following technical aspects already widely discussed in

previous literature [Yu et al. (2009); Luo et al. (2010)]. By this procedure, it is clear

that the total (homogeneous) magnetization m shown in panel (a) of Fig. 4.8 mimics

the behavior of SMO(⇡, 0). Here, the transition to the magnetically ordered state is

very rapid, resembling a first-order transition. The MF magnetic order develops only

if J � 0.1U which is in agreement with the Lanczos results shown in Fig. 4.5(b).

The mean-field results also indicate that a full gap characterizes the magnetic state

which is then an insulator as it can be seen from the MF calculated spectral functions

A(k,!) displayed on panel (a) of Fig. 4.9. It is clear that the hybridization of the

original bands/orbitals due to the Coulomb interaction is very strong and the band

structure has been totally reconstructed. This behavior can be understood in the real-

space representation. In order to develop magnetic colinear order in the half-filled

system, it is necessary to have a net magnetic moment on each site. In the d-model,
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each orbital is half filled and thus contains a spin-1/2 that can easily be polarized

by the interaction. In the s-model, on the other hand, the orbitals correspond to the

bands, and one orbital is thus almost filled while the other is almost empty. Then,

there are far fewer magnetic moments that can be polarized.

Thus, in the s-model the peak at Q in the magnetic structure factor does not

develop from the nesting of the FS but from the Coulomb interaction, and it occurs

fairly suddenly and at a robust value of U � 4 for the hopping parameters used here.

Thus, while nesting appears to be a needed condition for the development of the peak

in the magnetic structure factor, it is not a su�cient condition. The hybridization

of the orbitals needs to be present such that the matrix elements allow the peak to

emerge at su�ciently strong coupling. In fact, it is necessary that the bands that

are connected by the nesting vector Q share the same orbital flavor. If this occurs

via hybridization, magnetic order can develop at relatively weak coupling, but if this

is not the case, the Coulomb interaction would induce magnetic order only in the

strong coupling regime, as has been verified by studying the s-model. In this case,

the magnetic transition is also a metal-insulator transition, as observed at least within

the mean-field approximation. The d-orbital model, on the other hand, is known to

display an intermediate metallic magnetic phase [Yu et al. (2009); Luo et al. (2010)].

Thus, the present results indicate that the s and d models develop similar magnetic

behavior only in the strong coupling regime while in weak coupling, despite the nearly

identical Fermi surfaces, both models have quite di↵erent ground states.

Orbital-transverse spin order

While the analysis of the results for the s-model presented above indicates that,

despite the nesting of the electron and hole FS’s, no magnetic order, as defined by

the homogeneous operator, develops in weak coupling, it is instructive to analyze

the behavior of the non-homogeneous components and the total magnetic structure

factor STO. The non-interacting values of STO on a 16 ⇥ 16 lattice are indicated by

the triangles in panel (a) of Fig. 4.7. There is a feature at (⇡, 0) arising from the
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contribution of the inter-band components of the form Sabba ⌘ Sµ⌫⌫µ, shown by the

triangles and diamonds in panel (b) of Fig. 4.4. These are the components of Sabcd that

contribute to the development of the maximum at Q = (⇡, 0) (and (0, ⇡)) because

the nesting at Q is between FS’s defined by di↵erent bands. However, this type of

terms are not part of the definition of the homogeneous structure factor SMB. On the

other hand, the components of the form Saaaa indicated with circles and squares in

Fig. 4.4(b), have a very flat shape in all the BZ and do not produce a sharp feature.

Any other combination of orbital indices does not contribute to STO as shown in

Eqn. 4.20.

The e↵ect of the Coulomb interactions on the feature at (⇡, 0) in STO has been

obtained with Lanczos calculations and it can be seen in panel (c) of Fig. 4.7. The

peak slowly increases as U raises from 0 to 4. Notice that for the same range of values

of U the peak in SMO shown in panel (b) of the figure does not change. The obvious

question is whether this behavior indicates a novel kind of order in multi-orbital

systems. The answer is provided via our MF approach that allows us to evaluate the

components of the magnetization mab. The homogeneous magnetization m displayed

in panel (a) of Fig. 4.8 is obtained as the sum of the intraorbital magnetizations m11

and m22 shown in panels (b) and (c) of the figure. Interestingly, the non-diagonal

components m12 = m21 develop finite values while the diagonal components are zero

for values of J/U > 0.1 as shown in panel (d) of the figure. At the MF level the

real space configuration associated to this finite order parameter can be studied. In

the real space configuration the orbital spins are disordered, which is expected by the

lack of features in SMO(k), but there are ordered generalized spins Gab(i) defined as

Gab(i) = d†i,a,↵~�↵,�di,b,�, (4.22)

where ~� are the Pauli matrices and the orbital indices a 6= b. In Fig. 4.10 two

configurations of G12(i) that provide the MF ground state associated with the peak

in STO at (⇡, 0) (and (0, ⇡)) when m12 is finite are shown. Panel (a) shows a flux
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configuration that generates peaks at (⇡, 0) and (0, ⇡) in STO and panel (b) shows a

colinear configuration that produces a peak at (0, ⇡). The peak at (⇡, 0) is generated

by a companion configuration rotated by ⇡/2. Flux and colinear configurations

have energies very close to each other and the actual ground state depends on the

parameters [Eremin and Chubukov (2010)].

The new phase hinted at by the Lanczos calculations and stabilized in the MF

calculations is insulating. The MF calculated spectral functions are shown in panel

(b) of Fig. 4.9. A full gap has developed at the FS indicating that this order, if

realized, would be observed with ARPES measurements. On the other hand, neutron

scattering experiments would not detect it. This can be seen by performing a rotation

in orbital space given by [Yao, Zi-Jian et al. (2011)]

d†i,±,� =
1p
2
(d†i,1,� ± d†i,2,�). (4.23)

In this new basis the schematic representations of the spins are shown in Fig. 4.11.

It is clear that while the homogeneous spins in the orbitals + (black dots) and -

(white dots) are ordered, the net spin at each site is 0 and thus, neutron scattering

experiments will not detect the order because there is no finite local magnetization.

These phases appear to be a realization of the orbital-transverse density-wave

(OTDW) order proposed in [Yao, Zi-Jian et al. (2011).

Summarizing, a careful analysis of the small-cluster ground states obtained via

Lanczos techniques, and with mean-field approximations in larger clusters, highlights

the important role that the orbital composition plays in the development of magnetic

order.

For the s-model, it is illuminating to consider the behavior of the total magnetic

structure factor STO, see panel (c) of Fig. 4.7, calculated numerically as the

interactions are increased. There is a weak increase of STO at Q before the sudden

jump at U = 4. The behavior of the resolved components displayed in panel (b)
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(b)(a)

Figure 4.10: Schematic representation of the real space mean-field calculated ground
states for the s-model when m12 is non-zero. (a) Flux phase; (b) Colinear phase. The
dots indicate the sites and the arrows represent the MF value of the generalized spin
G12(i) defined in the text [Nicholson et al. (2011b)].

(b)(a)

Figure 4.11: Schematic representation of the real space mean-field calculated ground
states for the s-model when m12 is non-zero: (a) Flux phase; (b) Magnetic colinear
phase. The black and white dots represent the orbitals + and - at each site and
the continuous and dashed arrows represent the MF value of the spin at each orbital
[Nicholson et al. (2011b)].
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of Fig. 4.6 shows that for 0  U  4 the partial sum over a and b of the non-

homogeneous components Sabab (x symbols and dotted line) and Sabba (star symbols

and dashed lines) increases in value at (⇡, 0) indicating the stabilization of the orbital-

transverse spin phase. For U > 4 a sudden increase of the sum of the homogeneous

components Saabb (plus symbols and continuous line) develops, the non-homogeneous

components start to decrease and homogeneous magnetic order is established.

4.3.4 Weak Coupling: RPA Analysis

Additional insight into the weak coupling behavior of the d- and s-models can be

obtained via the diagrammatic RPA method. Using this technique, the magnetic

susceptibility �abcd(k, i!) was calculated, [Graser et al. (2009); Kemper et al. (2010)]

and the static structure factor was obtained by integrating the results over !

[Kariyado and Ogata (2009)]. In panel (a) of Fig. 4.12, the RPA-calculated diagonal

or homogeneous structure factor for the d-model is presented. The non-interacting

result (in agreement with the results indicated by the circles in panel (a) of Fig. 4.3)

are denoted by the dashed line, while results at U = 2.64, the coupling strength

where divergent behavior is about to occur for the case J/U=0.25, are indicated by

the continuous line. In these results the peak at (⇡, 0) is very prominent both with

and without the Hubbard interaction on.

The same calculation performed for the s-model, presented in panel (b) of

Fig. 4.12, gives rather di↵erent results. The flat behavior in the noninteracting case

(dashed line), in agreement with the curve indicated by squares in Fig. 4.7(a), is

replaced within RPA by a curve (continuous line) that develops weak features at

incommensurate values of the momentum. Note that there were no precursors of

these features in the non-interacting limit. Eventually the peak the closest to the �

point along the diagonal direction of the BZ, indicated with an arrow in the figure,

was found to diverge when U becomes larger than 2.67 for J/U = 0.25. This appears

to be an illustration of a case in which RPA calculations indicate magnetic behavior
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that is unrelated to nesting properties. The RPA results show that an excitonic weak-

coupling picture in which magnetic order characterized by the nesting momentum Q

is expected to occur can be misleading if the orbital composition of the bands is

not incorporated into the discussion. In the excitonic picture, the expectation is

that the Coulomb interaction will allow the formation of electron-hole pairs with

the electron (hole) in the electron (hole) Fermi surface. Since SMO incorporates

intraorbital electron-hole pairs, an RPA response requires that the nesting vector

connects parts of the electron and hole bands that contain the same orbital flavor.

This is the case in the d-model where even in the weak coupling regime the (⇡, 0)

magnetic-colinear state with two electrons with parallel spins at every site of the

lattice has the largest weight in the ground state according to our Lanczos numerical

studies. Since both orbitals are degenerate, the energetic penalization for populating

both orbitals is U 0 and there is a gain given by J if both spins are parallel. As

discussed before, in the s-model, on the other hand, the orbitals are non-degenerate

and, thus, in addition to U 0 there is an energy � of penalization when two electrons

are located in di↵erent orbitals at the same site. This energy can be larger than

the gain obtained from J by having parallel spins or than the U penalization that

arises from introducing both electrons in the same orbital. Then, a magnetic colinear

state can only develop when U is comparable to the splitting �. This regime, which

develops in strong coupling according to our Lanczos and MF calculations, is not

captured by the weak-coupling RPA method. However, it will be shown that RPA is

e↵ective at finding the orbital-transverse spin state presented in the previous section

if the generalized structure factor STO is calculated.

The values of STO obtained with RPA are presented in panels (c) and (d) of

Fig. 4.12 for the d and s models, respectively. Both develop a peak at the nesting

wavevector. The generalized structure factor takes into account electron-hole pairs

formed by an electron and a hole in di↵erent bands that are allowed to have di↵erent

orbital flavors. This is the reason why a peak develops now in both cases. While in

the case of the d-model the behavior of STO mimics SMO and the divergence in both
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Figure 4.12: RPA calculated magnetic structure factors for J/U = 0.25, at the
values of U indicated (full line). The non-interacting results are indicated with dashed
lines. (a) Homogeneous magnetic structure factor in the d-model. (b) Same as (a),
but for the s-model. The arrow indicates the peak that grows the most as the critical
U is reached. (c) Generalized magnetic structure factor for the d-model. (d) Same as
(c), but for the s-model [Nicholson et al. (2011b)].

103



occurs at the same value of U (slightly above 2.64 for J/U = 0.25) indicating that

the colinear-magnetic order is the cause, in the s-model the peak in STO develops

at a lower value of U (U = 1.72 for J/U = 0.25) and it results from the ordering

revealed by the inhomogeneous components S1221 and S2112 of the structure factor,

i.e., orbital-transverse spin order as discussed in the previous section. In this new

light, the divergence in SMO should be disregarded since it occurs for a much larger

value of U than the divergence in STO. These results show that if all the elements

of the susceptibility tensor are considered, RPA calculations are able to determine

the development of new ordered phases that can develop in multi-orbital systems.

Conversely, in multi-orbital systems in which orbital-transverse order develop, RPA

calculations using only the homogeneous susceptibility may lead to unphysical results.

4.3.5 Strong Coupling Regime

In the regime where the coupling U is su�ciently strong such that even in the s-model

it is energetically favorable to locate two electrons with parallel spins at the same site

(and in di↵erent orbitals), both the s- and d-models can be mapped into e↵ective

t � J � J 0 models and an insulating state with magnetic colinear order can occur.

In this case the Hubbard repulsion has e↵ectively hybridized both bands causing

large distortions and actually opening a full gap [see Fig. 4.9(a)]. In this strong

coupling regime both models appear to have similar properties, but an insulating

magnetic behavior does not reproduce the experimental behavior observed in several

of the undoped iron pnictides (such as the 1111 and 122 families). However, this

regime could be applied to the chalcogenides: if U is su�ciently strong the magnetic

behavior that develops in the strong coupling limit is more related to the hopping

parameters and super-exchange than to the weak-coupling nesting properties of the

Fermi surface. While the values of the hopping parameters in the Hamiltonian are

crucial to achieve nesting in weak coupling [Brydon et al. (2011)], systems in which

nesting is not perfect can develop colinear-like magnetic order if they map into a
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t�J �J 0 [Si and Abrahams (2008)] model in the strong coupling limit such as in the

case of the three-orbital model for the pnictides [Daghofer et al. (2010)].

The results in this section indicate that in the case of the pnictides, even if the five

d orbitals are considered, the xz and yz orbitals are the most likely to produce the

strongest contribution to the metallic colinear magnetic order at weak or intermediate

values of the Hubbard interaction because they are the major constituents of the FS’s

with better nesting and because they are degenerate and, thus, there is no energy �

that needs to be overcome by the interaction. This is apparent already in the three-

orbital model for the pnictides, where a mean-field calculation shows that magnetic

order develops at a finite value of U (see panel (b) of Fig. 4.13) [Daghofer et al.

(2010)]. In Fig. 4.13(a) it can be observed that the orbital with the best nesting

associated with Q = (⇡, 0) is the yz one, indicated by the continuous line. A mean-

field calculation of the orbital resolved magnetizationmaa for a=xz, yz, and xy, shows

that myz,yz grows very rapidly at the lowest value of U . The magnetizations for the

other orbitals develop as U hybridizes and distorts the original bands. Thus, in the

intermediate U regime when magnetism develops, the xz and yz orbitals are the ones

that would develop the stronger magnetization (albeit for di↵erent values of Q) giving

rise to a magnetic metallic phase. Thus, nesting seems to drive the magnetization

of the xz/yz orbitals while the additional orbital hybridizations that develop due to

the reconstruction of the FS then drives the smaller magnetization in the remaining

orbitals.

4.4 Pairing Symmetries

Regarding the symmetry of the pairing operators corresponding to the models

analyzed here, previous numerical calculations have indicated a competition between

A1g, B2g, and Eg states in the d-model, see Chapters 2, and 3 or [Moreo et al. (2009b);

Nicholson et al. (2011a)], as shown in panel (a) of Fig. 4.14. The Eg states correspond
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Figure 4.13: (a) Fermi surface with its orbital composition for the case of a
three-orbital model for the pnictides. (b) Mean-field calculated orbital-resolved
magnetization for the same three-orbital model. The figure was taken from [Daghofer
et al. (2010)] for illustration.
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to a p-wave spin-triplet state that becomes destabilized upon the addition of binding-

enhancing Heisenberg terms [Nicholson et al. (2011a)]. The favored pairing operators

with the symmetry A1g are all trivial in their orbital composition, i.e. they are intra-

orbital with the form D†�0D where D† = (d†k,x,", d
†
�k,y,#) in the (x, y) basis, and they

remain intraorbital in the (X, Y ) basis. However, the B2g pairing operators have a

non-trivial orbital composition given by D†�1D in the basis (x, y), indicating that the

pairs are made of electrons in the two di↵erent orbitals. In the (X, Y ) basis the B2g

pairing operator becomes D0†�3D0 with D0† = (d†k,X,", d
†
�k,Y,#). Thus, in the (X, Y )

representation the B2g pairs are intraorbital but there is an important sign di↵erence

between the pairs in the di↵erent orbitals which makes the orbital contribution

intraorbital but non trivial. It is interesting to observe that the intraorbital B1g

state found with RPA calculations in the five-orbital model for the pnictides [Graser

et al. (2009)] would become interorbital in the (X, Y ) basis.

The results for the s-model regarding pairing properties are di↵erent from those

in the d-model. Using the Lanczos method the relative symmetry was calculated

between the undoped (number of electrons Ne = 16) and electron-doped (Ne = 18)

states, as an indicator of the possible pairing symmetry in the bulk limit. The results

are presented in panel (b) of Fig. 4.14, varying U and J/U . For small values of U

and J/U the doped ground state has symmetry A1g in agreement with the d-model,

although in a di↵erent regime of couplings. Increasing U and J/U , the s-model

ground state switches to the Eg symmetry, i.e. p-wave. This p-symmetry arises from

the spatial location of the electrons since the orbital contribution is trivial. In the

small cluster studied here the spin-triplet state with k = (0, 0) is almost degenerate

with a spin-singlet state with k = (⇡, ⇡). The possibility of having a spin-singlet p-

wave state with wavevector k = (⇡, ⇡) has been previously discussed long ago in the

context of the single-orbital Hubbard model [Scalettar et al. (1991)]. In the present

case, k is a pseudo-momentum and in the folded representation k = (⇡, ⇡) actually

maps into (0, 0) so that the actual Cooper pair, if stabilized, has zero center-of-mass

momentum, but the components of the pair belong to bonding and anti-bonding
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Figure 4.14: (a) Relative symmetry between the undoped and the electron-doped
ground states for the case of the d-orbital model, varying J/U and U . The results were
obtained numerically via the Lanczos method using a small cluster with N = 8 sites
(and following steps already discussed in the previous Chapters 2 and 3) [Daghofer
et al. (2008); Nicholson et al. (2011a)]. The circles indicate states with Eg symmetry,
squares correspond to B2g, and diamonds represent A1g symmetric states. (b) Same
as (a) but for the s-model with the triangles denoting B1g symmetry. In the region
above the continuous line the two added electrons form a bound state. The dashed
line indicates the boundary for the stability of the magnetically ordered insulating
(MOI) region in the undoped state [Nicholson et al. (2011b)].
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bands that could become hybridized for the large values of the interactions needed to

stabilized these states. As indicated in the figure, it was also found that the p-states

show binding in the small system studied here. In addition a small region of bound

states with B1g symmetry is found at even larger couplings. While in the d-model our

numerical results indicate that the orbital degree of freedom plays a crucial role in the

symmetry of the pairing states, this is not the case in the s-model. This result seems

to indicate that interorbital Cooper pairs are likely to be present in multi-orbital

systems with strongly hybridized bands as is the case in the pnictides.

Understanding more deeply why the s-model develops its particular pairing

properties is at this point unnecessary since the model simply provides an illustration

of a system with a similar FS as the d-model, and the goal of this work was to

show that the orbital composition of the bands plays a crucial role in determining

the symmetry of the doped states. The examples that have been discussed here

clearly show that models with the same Fermi surface and the same interactions can

have very di↵erent pairing properties depending on the degree of hybridization of the

orbitals. It also seems, according to the present results, that the relevance of the

orbital degree of freedom in determining the pairing symmetry is influenced by the

degree of hybridization among those orbitals.

4.5 Conclusions

Summarizing, numerical and analytical calculations have been performed in order to

compare the properties of two band models with identical FS’s and interactions, but

di↵ering in the degree of hybridization of the orbitals to form the bands. Despite

the nesting properties of the FS’s it was discovered that both models have similar

magnetic (insulating) ground states in the strong coupling limit, but they are very

di↵erent in weak and intermediate coupling. The s-model o↵ers an example in which,

despite the nesting of the FS and the presence of Coulomb interactions, magnetism

does not develop in weak coupling. However, it was discovered that instead, as a
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result of the nesting in weak coupling, the Coulomb interaction stabilizes an orbital-

transverse spin ordered state with no local magnetization. This state is insulating and

is characterized by a gap that could be observed in ARPES experiments. However, due

to the lack of local magnetization, neutron scattering experiments would not detect

the development of “generalized spin order”. In fact, standard RPA calculations in

the s-model lead to incorrect results such as incommensurate magnetic order in the

physical homogeneous channel. However, when the non-homogeneous components of

the susceptibility are taken into account, RPA reveals the existence of the orbital-

transverse spin phase for values of U lower than the ones needed to observe the

unphysical magnetic state.

It is clear that the physical (homogeneous) magnetic structure factor depends

strongly on the orbital flavor of the bands and for this quantity to develop a peak in

weak coupling it is necessary that the portions of the FS connected by nesting have

the same orbital flavor.

The possibility of “hidden” magnetic ordering in the pnictides has been proposed

by several authors [Rodriguez and Rezayi (2009); Cricchio et al. (2010); Bascones

et al. (2010)] as an explanation for the unexpectedly low value of the magnetization

in several of these materials. The hidden order proposed by these authors was

“diagonal”, as the configurations presented in Fig. 4.11 after transforming our non-

diagonal results into a rotated orbital basis. However, in multi-orbital systems with

more than two orbitals, it may be necessary to consider the non-diagonal order as

well. In theoretical and analytical calculations these non-diagonal hidden orders are

revealed by considering all the components, homogeneous and inhomogeneous, of the

magnetic susceptibility. On the experimental side, ARPES can detect gaps that are

opened due to the “hidden” magnetic order but the traditionally used techniques to

detect homogeneous magnetic order, such as neutron scattering, will fail due to the

lack of a local magnetization.

Indications of quenching of the orbital degree of freedom in systems with non-

hybridized orbitals were also found. The orbitals do not appear to play a role in
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determining the symmetry of the pairing states. This degree of freedom, though, is

crucial in systems with hybridized orbitals. In the case of the pnictides in particular,

this thesis shows the ground states with d symmetry found in the literature in models

for the pnictides, such as the B1g, can be made interorbital by changing the basis in

which the degenerate xz and yz orbitals are defined.

The results provided by this work may explain why the end member of the series

BaFe2(As1�xPx)2 is non-superconducting despite displaying the best nesting of all

the compounds in the series [Arnold et al. (2011)]. If superconductivity necessitates

magnetic fluctuations they may not be su�ciently strong in this compound if there

is no good matching between the flavor of the orbitals in the nested bands.

Finally, our results confirm the perception expressed in the analysis of recent

photoemission experiments [Shimojima et al. (2010)] that the weak coupling nesting

mechanism would not be applicable if indeed a hole-pocket band dominated by the

orbital 3z2 � r2 (with no nesting partner in the electron-pocket band) does develop a

robust superconducting gap. Confirming and then understanding the results of those

recent photoemission experiments is indeed very important for the clarification of

several intriguing issues in the challenging physics of the pnictides.
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Chapter 5

Three Orbital Model

Even though numerical calculations on the two orbital model, as seen in Chapters

2, 3, and 4, indicate that the magnetic metallic regime, observed experimentally in

undoped compounds [Dong et al. (2008); de la Cruz et al. (2008); Chen et al. (2008d);

Krellner et al. (2008); Goldman et al. (2008)] is stabilized for intermediate values of

Coulomb repulsion U several authors have claimed that using two orbitals may miss

important features of the real system [Lebegue (2007); Xu et al. (2008); Cao et al.

(2008); Zhang et al. (2009); Lee and Wen (2008)]. It has been argued that a minimal

model for the pnictides should contain at least three orbitals for two main reasons (i)

A relatively small portion of the electron-pocket FS of LaOFeAs is determined by a

band of mostly dxy character and (ii) the bands that produce the two hole pockets

should be degenerate at the center of the Brillouin zone (BZ), which is not the case

when only two orbitals are considered. The important question is how much these

shortcomings of the two orbital model impact the most relevant properties of the

pnictides. The aim of this paper is to construct a three-orbital model that addresses

these concerns and compare its properties with the two-orbital case. This is important

because in other areas of condensed matter physics, such as the manganites, a simple

single-orbital model is often su�cient to capture qualitatively the phenomenon of

colossal magnetoresistance [Dagotto et al. (2001)], while clearly a two-orbital model
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is still necessary to properly describe additional properties such as the magnetic and

orbital order observed in these materials.

This Chapter is organized as follows. In Section 5.1 the three orbital model is

introduced in both real space and momentum space representations, followed by a

mean field studies of the model’s magnetic properties in Section 5.2 and preferred

pairing symmetries in Section 5.3.

5.1 The Model

Following the methods described for the two orbital model, in Section 2.2, a tight

binding Hamiltonian can be derived in real space [Daghofer et al. (2010)]:

Hxz,yz,xy
TB = Hxz,yz

TB

+ t5
X

i,µ̂,�

(d†i,xy,�di+µ̂,xy,� + h.c)� t6
X

i,µ̂,⌫̂,�

(d†i,xy,�di+µ̂+⌫̂,xy,� + h.c)

� t7
X

i,�

(�1)|i|(d†i,xz,�di+x̂,xy,� + h.c)� t7
X

i,�

(�1)|i|(d†i,xy,�di+x̂,xz,� + h.c)

� t7
X

i,�

(�1)|i|(d†i,yz,�di+ŷ,xy,� + h.c)� t7
X

i,�

(�1)|i|(d†i,xy,�di+ŷ,yz,� + h.c)

� t8
X

i,�

(�1)|i|(d†i,xz,�di+x̂+ŷ,xy,� + h.c) + t8
X

i,�

(�1)|i|(d†i,xy,�di+x̂+ŷ,xz,� + h.c)

� t8
X

i,�

(�1)|i|(d†i,xz,�di+x̂�ŷ,xy,� + h.c) + t8
X

i,�

(�1)|i|(d†i,xy,�di+x̂�ŷ,xz,� + h.c)

� t8
X

i,�

(�1)|i|(d†i,yz,�di+x̂+ŷ,xy,� + h.c) + t8
X

i,�

(�1)|i|(d†i,xy,�di+x̂+ŷ,yz,� + h.c)

� t8
X

i,�

(�1)|i|(d†i,yz,�di+x̂�ŷ,xy,� + h.c) + t8
X

i,�

(�1)|i|(d†i,xy,�di+x̂�ŷ,yz,� + h.c)

+�xy

X

i

ni,xy (5.1)

where Hxz,yz
TB is given by Eqn. (2.20) and �xy is the energy di↵erence between Fe
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Table 5.1: Hopping parameters used in the three orbital model [Daghofer et al.
(2010)].

t1 0.02
t2 0.06
t3 0.03
t4 -0.01
t5 0.2
t6 0.3
t7 -0.2
t8 -t7/2
�xy 0.4

dxz, dyz and dxy orbitals. The second line of Eqn. (5.1) gives NN intraorbital dxy-dxy

hoppings with amplitude t5, while the third line gives NNN hoppings with amplitude

t6. The fourth through the seventh lines give NN interorbital dxy-dxz/dyz with hopping

amplitude t7. The last lines give NNN interorbital hoppings with hopping amplitude

t8. Note that the factors (�1)|i| arise from the alternating As above/below the Fe-As

plane which adds a phase to the overlaps between the Fe dxy and As p orbitals. The

hopping parameters ti are determined, as in the two orbital model, by fitting the band

dispersion to band structure calculations (Table 5.1).

The tight binding Hamiltonian in Eqn. (5.1) can be transformed to momentum

space via the same Fourier transform shown in Eqn. 2.22. Again, it is important to

remember that since the tight binding Hamiltonian was constructed in a unit cell with

only one Fe atom per unit cell, the Fourier transformed Hamiltonian is defined in the

extended or unfolded BZ (see Section 2.2). The real space tight binding Hamiltonian

is invariant under translation in the x̂ or ŷ directions followed by a reflection about

the x-y plane. When the eigenstates of the Hamiltonian are labeled in terms of the

eigenvalues of these symmetry operations, then the momentum-space Hamiltonian can

be expressed in terms of a pseudo-crystal momentum, k, that expands the unfolded

BZ that corresponds to a single Fe atom per unit cell in real space. Folding the

extended BZ gives the reduced BZ that corresponds to two Fe atoms per unit cell
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Figure 5.1: (a) Band structure and (b) Fermi surface of the tight-binding (i.e. non-
interacting) three-orbital model, with parameters from Tab. 5.1 and in the unfolded
BZ. The diagonal thin solid line in (b) indicates the boundary of the folded BZ. In
panels (c-e), the orbital contributions to the two hole and one of the electron pockets
are given. The winding angle ✓ is measured with respect to the ky-axis. The second
electron pocket is analogous to the one shown simply replacing xz by yz. In all
panels, the dashed lines refer to the xz orbital, the solid to yz, and the dotted to xy
[Daghofer et al. (2010)].
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and thus the number of bands is doubled to six since now there are three orbitals for

each of the two Fe ions per unit cell.

In momentum space, the tight binding Hamiltonian becomes:

HTB(k) =
X

k,�,µ,⌫

(T µ,⌫(k)� µ)d†k,µ,�dk,⌫,� (5.2)

with

T 11 = 2t2coskx + 2t1cosky + 4t3coskxcosky (5.3)

T 22 = 2t1coskx + 2t2cosky + 4t3coskxcosky (5.4)

T 33 = 2t5(coskx + cosky) + 4t6coskxcosky +�xy (5.5)

T 12 = T 21 = 4t4sinkxsinky (5.6)

T 13 = T̄ 31 = 2it7sinkx + 4it8sinkxcosky (5.7)

T 23 = T̄ 32 = 2it7sinky + 4it8sinkycoskx (5.8)

where the bar on the top of a matrix element denotes the complex conjugate and �xy

is the splitting of the dxy orbital from the dxz/dyz orbitals. One important issue that

needs to be addressed is the electronic filling in the three orbital model. In the two

orbital model half filling is considered to be the correct electronic density, since the

x2 � y2 and 3z2 � r2 orbitals are assumed to be fully occupied with four of the six

Fe valence electrons and the xy orbital is assumed to be empty, leaving two electrons

for the xz and yz orbitals. Applying the crystal field splitting rationale to the three

orbital model with xz, yz, and xy orbitals this argument leads to a filling of one third

(two electrons in three orbitals) [Krüger et al. (2009)]. However, for such a filling

the shape of the FS given by LDA cannot be reproduced. In fact, band-structure

calculations suggest that the three orbital system should be more than half-filled and

actually have a filling of roughly two thirds (four electrons in three orbitals) [Boeri

et al. (2008); Haule et al. (2008)]. Our analysis shows that a FS with approximately a
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similar size for the hole and electron pockets can be obtained both at fillings around

one and two thirds, but the two almost degenerate hole pockets around � demand

a filling larger than half filling. Thus, the focus of our e↵ort will be on two thirds

filling, which can be obtained by using the chemical potential µ = 0.212. Since the

Hamiltonian for a one-iron unit cell has been considered, then k runs within the

corresponding extended BZ �⇡  kx, ky  ⇡.

The Coulombic interacting portion of the Hamiltonian, first introduced in Section

2.3, is given by:

Hint =U
X

i,↵

ni,↵,"ni,↵,# + (U 0 � J/2)
X

i,↵<�

ni,↵ni,�

� 2J
X

i,↵<�

Si,↵ · Si,� + J
X

i,↵<�

(d†i,↵,"d
†
i,↵,#di,�,#di,�," + h.c.), (5.9)

where ↵, � = xz, yz, xy denote the orbital, Si,↵ (ni,↵) is the spin (electronic density) in

orbital ↵ at site i, and the relation U 0 = U � 2J between these Kanamori parameters

has been used (for a discussion in the manganite context see [Dagotto et al. (2001)]

and references therein).

5.2 Magnetic Properties of the Undoped State

Amean field study was performed on this model to explore the ground-state properties

of the three orbital model. In this study three possible orbital-order patterns will be

considered: (i) Ferro-orbital (FO) order which corresponds to the orbitals xz and yz

having di↵erent electronic densities, (ii) alternating orbital (AO) order, and (iii) stripe

orbital (SO) order. Combined with the magnetic spin order, these orbital orders lead

to a large variety of possible combinations of polarized or alternating spin and orbital

order. Here phases that can be expressed using (at most) two ordering vectors have

been considered, i.e., q1 for magnetic order and q2 for orbital order. The expectation
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values for the mean-field proposed states can be expressed as [Daghofer et al. (2010)]:

hnr,xy,�i = nxy +
�

2
eiq1.rmxy (5.10)

hnr,↵,�i = n+
�

2
eiq1.rm+

↵

2
eiq2.rp+

�↵

2
ei(q1+q2.)rq , (5.11)

where the first equation with the mean-field parameters nxy,mxy describes the xy

orbital and the second equation with parameters n,m, p, and q applies to the xz/yz

subsystem, with ↵ = ±1 indicating the xz/yz orbitals. These expectation values

were applied to the same interacting Hamiltonian which was used in the two orbital

model, Eqn. (2.24).

Around J/U=1
4
the realistic AF order is found with ordering momentum q1=(⇡,0)

for all values of U>Uc1 , where Uc1 ⇡0.6. Figure 5.2 (a) shows how the staggered

magnetization with ordering momentum (⇡,0) increases with Coulomb repulsion U.

As previously found for two and four orbital models [Yu et al. (2009)]. intermediate

U leads to an anti-ferromagnetic metal. The system remains non-magnetic for small

U up to Uc1 . For U>Uc1 , the spin (⇡,0) ordered magnetic moment starts to grow, see

Fig. 5.2 (a), but the band structure remains metallic.

The Fermi surface for U=0.7, where the Coulomb repulsion is just barely strong

enough to induce (⇡,0) antiferromagnetism, is shown in Figs. 5.3 (a) and (b). More

specifically, Fig. 5.3 (a) shows the Fermi surface in the extended BZ for spin stripes

running along the y direction, i.e. for the ordering vector (⇡,0). While the electron

pocket at (0,⇡) is hardly a↵ected, the pocket at (⇡,0) has almost disappeared. Of the

two hole pockets, the inner one has also disappeared for momenta (0,ky), because a

gap has developed at the chemical potential µ. For momenta (kx,0), in contrast, the

gap in the outer pocket lies below µ, and the band consequently forms a very small

electron pocket. This result is in qualitative agreement with the unconventional

electronic reconstruction observed with ARPES in (Ba,Sr)Fe2As2 [Yi et al. (2009)].

Figure 5.3 (b) shows the superposition of the Fermi surfaces obtained for the two

equivalent ordering vectors (⇡,0) and (0,⇡) in the reduced BZ corresponding to the
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two-Fe unit cell. If U is increased to U=0.9, the gap in the outer hold pocket along

(kx,0) increases and pushes the outer band above the chemical potential; the small

electron pockets seen for U=0.7 in Fig. 5.3 (a) consequently disappear, and only one

hole pocket remains around �, see Fig. 5.3 (c). The (0,⇡) electron pocket remains

una↵ected, but at (⇡,0), a hole-like shadow pocket with very low spectral weight has

replaced the original electron pocket. The band that formed the vanished electron

pocket at U=0 has been deformed strongly enough to create a small holelike pocket

at ⇡=(⇡/2,0). As it can be seen in Fig. 5.3 (d), this hole pocket touches the (⇡,0)

electron pocket once the results for ordering vectors (⇡,0) and (0,⇡) are combined.

As U continues to increase within the magnetic metallic phase no further qualitative

changes are observed as can be seen in Figs. 5.3 (e) and (f).

The average electronic occupation numbers for the three orbitals, shown in Fig.

5.2 (b), are not significantly a↵ected by the onset of antiferromagnetism. The small

di↵erence in the electronic population observed is driven by the di↵erent orbital

magnetizations [see Fig. 5.2 (a)] and is due to the orbital anisotropy relative to

the direction of the magnetic (⇡,0) colinear order. Note that the di↵erence between

mxz and myz in Fig. 5.2 (a) is larger than the di↵erence between nxz and nyz in Fig.

5.2 (b) indicating that q is more important than p.

When a second critical coupling Uc2 ⇡1.23 is reached, the system develops orbital

order with an ordering momentum (⇡,⇡), di↵erent from the magnetic ordering vector

(⇡,0). The system remains a metal through this second transition as well. If U

is further increased, a metal-insulator transition finally occurs at a third critical

Uc3 ⇡1.43. At this point the orbital order changes: as can be concluded from the

orbital densities shown in Fig. 5.2 (b), the system develops ferro-orbital order. The

spin (⇡,0) persists.

Summarizing, our mean field calculations indicate the existence of four distinct

phases that are stabilized with growing Coulomb repulsion U: (i) a disordered,

paramagnetic phase for U<Uc1 , (ii) a metallic phase with (⇡,0) or (0,⇡) magnetic order

for Uc1 <U<Uc2 , (iii) a metallic magnetic phase for Uc2 <U<Uc3 with alternating
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Table 5.2: Symmetry properties of the terms in the three orbital tight-binding
Hamiltonian.

Term IR
✏k A1g

�k B1g

�k B2g

(↵(1)
k ,↵(2)

k ) Eg

hk A1g

orbital order with ordering vector (⇡,⇡) and (iv) a ferro-orbitally ordered insulator

with spin (⇡,0) magnetic order for U>Uc2 , where the yz [xz] orbital has larger

electronic occupation for magnetic ordering vector (⇡,0) [(0,⇡)].

5.3 Pairing Operators in the Three Orbital Model

As with the two orbital model, spin-singlet pairing operators that are allowed by

lattice and orbital symmetries in the three orbital model will be constructed and

tabulated in this section. Since now there are three orbitals the 3x3 Gell-mann

matrices will be used, �i, a generalization of the Pauli matrices (see Appendix A for a

full list) as well as �0 the 3x3 identity matrix. In this representation our tight binding

Hamiltonian becomes:

HTB(k) =
X

k,�

 †
k,�⇠k k,� (5.12)

where  †
k,� = [d†xz(k), d

†
yz(k), d

†
xy(k)] and

⇠k = ✏k�0 + �k�3 + �k�1 + ↵(1)
k �5 + ↵(2)

k �7 + hk�8 (5.13)
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Figure 5.2: (a) Orbital magnetization and (b) occupation number as a function
of the Coulomb repulsion strength U , obtained with a mean-field approximation.
The colors indicate the di↵erent phases (for increasing U): uncorrelated metal,
itinerant (⇡, 0) antiferromagnet without orbital order, itinerant (⇡, 0) antiferromagnet
with alternating orbital order [small white window, spin-orbital order], and a ferro-
orbitally-ordered (⇡, 0) antiferromagnetic insulator [spin-orbital order]. Hopping
parameters are from Tab. 5.1, and J = U/4. For the phase with alternating orbital
order, the thin lines show (a) m± q and (b) 2n± p [Daghofer et al. (2010)].
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Figure 5.3: Fermi surface in the orbital-disordered spin-antiferromagnetic metallic
phase with (a,b) U = 0.7, (c,d) U = 0.9, and (e,f) U = 1.1. (a,c,e) show the unfolded
BZ containing one Fe, for the antiferromagnetic ordering vector q = (⇡, 0). (b,d,f)
depict the superposition of the FSs for q = (⇡, 0) and q = (0, ⇡) in the (rotated)
folded BZ corresponding to two Fe atoms. The ratio J = U/4 was used [Daghofer
et al. (2010)].
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with

✏k =
T 11 + T 22

2
p
3

� T 33

p
3

=
2

3
(t1 + t2 + t5)(cos kx + cos ky)

+
4

3
(2t3 + t6) cos kx cos ky � µ+

�xy

3
(5.14)

�k =
T 11 � T 22

2

= �(t1 � t2)(cos kx � cos ky) (5.15)

�k = T 12 = 4t4 sin kx sin ky (5.16)

↵(1)
k =

T 13

i

= �2t7 sin kx � 4t8 sin kx cos ky (5.17)

↵(2)
k =

T 23

i

= �2t7 sin ky � 4t8 sin ky cos kx (5.18)

hk =
T 11 + T 22

2
p
3

� T 33

p
3

=
1p
3
(t1 + t2 � 2t5)(cos kx + cos ky)

+
4p
3
(t3 � t6) cos kx cos ky �

�xyp
3

(5.19)

Again each element in Eqns (5.14)-(5.19) transforms according to one irreducible

representation of the D4h point group. The classification is given in Table 5.2.

Since the Hamiltonian has to transform according to A1g, the Gell-mann matrices

in the orbital basis here transform as indicated in Table 5.3. The spin-singlet pairing

operator in the three orbital model is similar to the two orbital operator:

�† = f(k)(�i)↵,�(d
†
k,↵,"d

†
�k,↵,# � d†k,�,"d

†
�k,↵,#) (5.20)

where a sum over repeated indices is implied; the operators d†k,↵,� have been defined

in the previous sections and f(k) is the form factor that transforms according to one

of the irreducible representations of the crystal’s symmetry group. Although f(k)
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Table 5.3: Symmetry properties of the Gell-mann matrices in the tight-binding
Hamiltonian.

Matrix IR
�0 A1g

�1 B2g

�2 A2g

�3 B1g

(�4,�6) Eg

(�5,�7) Eg

�8 A1g

may, in general, have a very complicated form, a short pair-coherence length requires

the two electrons that form the pair to be very close to each other. Consequently, for

simplicity this work will focus on nearest and diagonal next-nearest neighbors, and

form factors that are allowed in a lattice with D4h symmetry.

5.3.1 Intraorbital Pairing

The previous section shows that the symmetry of the pairing operator will be

exclusively determined by the symmetry of f(k) only if �i transforms as A1g. Table

5.3 indicates that this is the case for pairing operators which contain �0 and �8.

These two matrices are diagonal, which means that such pairing operators define

intraorbital pairings. For intraorbital pairing, with a symmetry fully determined by

the spatial form factor, the basis functions are given by I: f(k)�0 or II: f(k)�8. In I,

the superconducting order parameter (OP) will be the same for all three orbitals while

II allows the OP for the dxz and dyz orbitals to be di↵erent from the dxy orbital. Thus

the addition of another orbital may lead to the possibility of di↵erent superconducting

gaps.

For all other OPs, the symmetry is given by the product of the symmetry of the

form factor with its orbital component given in Table 5.4. For example, for �i = �3

the pairing is still intraorbital, but since �3 transforms as B1g the symmetry of the OP
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Table 5.4: Properties of pairing operators allowed by lattice and orbital symmetries.
f indicates the symmetry of f(k).

No. IR Basis Gap
I f f(k)�0 Full or Nodal
II f f(k)�8 Full or Nodal
III fB1g f(k)�3 Nodal
IV fB2g f(k)�1 Nodal
Va A1g sinkx�4+sinky�6 Nodal
Vb A1g sinkxcosky�4+coskxsinky�6 Nodal
Vc B1g sinkx�4�sinky�6 Nodal
Vd B1g sinkxcosky�4-coskxsinky�6 Nodal
Ve A2g sinkx�6+sinky�4 Nodal
Vf A2g coskxsinky�4+sinkxcosky�6 Nodal
Vg B2g sinkx�6�sinky�4 Nodal
Vh B2g coskxsinky�4-sinkxcosky�6 Nodal

will only be B1g if and only if f(k) transforms as A1g. The OP with A1g symmetry

found in numerical calculations in the two orbital model is intraorbital.

5.3.2 Interorbital Pairing

The remaining six Gell-mann matrices lead to interorbital pairing. Motivated

by the two orbital model results, suggesting a spin-singlet pairing operator with

f(k)=cos kx+cos ky for intermediate values of the Coulomb repulsion U, see basis

IV given in Table 5.4. This operator mixes dxz and dyz orbitals via �1 but with no dxy

orbital weight. However, the addition of the xy orbital leads to the possibility of new

interorbital pairing operators, i.e., pairing between electrons in the dxz, dyz orbitals

with the dxy orbital.
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5.3.3 Band Representation

To obtain the gap structure for the pairing operators in Table 5.4 the Bogliubov-de

Gennes (BdG) Hamiltonian is constructed and is given by [Daghofer et al. (2010)]:

HBdG =
X

k

 †
kH

MF
k  k (5.21)

with the definitions:

 †
k = (d†k,xz,"d

†
k,yz,"d

†
k,xy,"d�k,xz,#d�k,yz,#d�k,xy,#) (5.22)

and

HMF
k =

0

@ HTB(k) P (k)

P †(k) �HTB(k)

1

A (5.23)

where

P (k)↵,� = V f(k)(�i)↵,� (5.24)

Pairing amplitude V is the magnitude of the OP given by the product of the

pairing attraction V0 and a mean-field parameter � that should be obtained from

minimization of the total energy.

Up to this point, this work has used the orbital representation, since it is both

easy to work with in obtaining the form of the Hamiltonian and the pairing operators

allowed by the symmetry of the lattice and orbitals. However, experimentally

observed superconducting gaps occur at the FS formed by the bands that result from

the hybridization between orbitals. For this reason, it is convenient to express Eqn.

(5.23) in the band representation. HTB(k) can be expressed in the band representation

via the transformation Hband(k) = U †(k)HTB(k)U(k), where U(k) is the unitary

change of basis matrix and U †(k) is the transpose conjugate of U(k). Since U is

unitary, for each value of k,
P

i(Ui,j)⇤Uk,i = �j,k. Then H 0
MF = G†HMFG, where G
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is the 6⇥6 unitary matrix composed of two 3⇥3 blocks given by U . Then

H 0MF
k =

0

@ HBand(k) PB(k)

P †
B(k) �HBand(k)

1

A (5.25)

with

PB(k) = U�1(k)P (k)U(k) (5.26)

Consider the s± pairing operator, which corresponds to pairing operator I with

f(k)=coskxcosky in Table 5.4. In the orbital representation:

P (k)↵,� = V (coskxcosky)�↵,� (5.27)

which is purely intraorbital with equal weight on each orbital. In the band

representation our pairing matrix becomes:

PB(k)↵,� = U�1(k)V (coskxcosky)�↵,�U(k)

= V (coskxcosky)�↵,�U
�1(k)U(k)

= V (coskxcosky)�↵,� (5.28)

Thus the s± OP is purely intra-band. Thinking about this further, it is clear that

a pairing operator with only intra-band terms is a very special case. For a purely

intra-band pairing interaction, the OP must have only intraorbital terms which treats

each orbital equally. In Fig. 5.4 the spectral functions A(k,!) are presented along

high symmetry directions in the reduced Brillouin zone for V=0, i.e., without pairing,

and with pairing for V=0.2. As the pairing interaction is turned on, a gap opens at

the FS and the shadow Bogoliubov bands appear. As has been numerically verified,

no nodes occur anywhere in the BZ. Note that the gap is momentum dependent

because f(k)=coskxcosky. This pairing operator is in agreement with ARPES [Kondo
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et al. (2008); Ding et al. (2008); Nakayama et al. (2009); Wray et al. (2008); Kim

et al. (2010)].

However, symmetry only requires the dxz and dyz orbital to have the same OP,

while the dxy can have a di↵erent one. There does not seem to be any reason to

assume that electrons in the many bands that determine the FS should be a↵ected

by the same pairing interaction. In fact, in MgB2 the electron-phonon interaction

that provides the pairing is stronger in the � bands than in the ⇡ bands, giving two

di↵erent gaps. Combining pairing operators I and II with f(k)=coskxcosky so that the

orbital part of the basis is given by A�0+B�8, where A and B are constants, produces

a pairing operator which has one weight for the dxz/dyz orbitals but another for the

dxy orbital, which will be referred to as sIB. In the band representation this operator

is inter-band, but still has A1g symmetry. The spectral functions for the sIB pairing

operator are shown in Fig 5.5. For a robust range of values of A and B, a nodeless gap

opens on all FSs for any finite value of V. The major di↵erent with the results for the

s± state is that the inter-band pairing present in sIB open gaps between the bands

far away from the FS. Also larger gaps are opened at (0,⇡) and (⇡,0). The bottom

panel on Fig 5.5 (b) shows the ratio R between the gap sizes of s± and sIB pairing

operators for V=0.05. The only appreciable di↵erence can be seen on the electron

pockets, since these are the only bands which cross the FS with dxy orbital weight.

The points with R=2 are points where the electron pockets are formed entirely by

dxy orbitals, in other points the bands are composed of hybridizations between dxy

with dxz/dyz.

Finally, another inter-band OP which will be considered is the numerically favored

B2g operator found in the two orbital model and its three orbital extension Bext
2g . The

B2g pairing operator is created by combining IV with f(k)=coskx+cosky. Since this

operator is interorbital, in the band representation it has both intra-band and inter-

band components. This operator creates a full gap around the hole pockets, since

these pockets are composed of dxz/dyz orbitals, and nodal gaps around the electron

pockets, since this operator has no dxy component, see Fig 5.6. The next pairing
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Figure 5.4: The intensity of the points represents the values of the spectral function
A(k,!) for the three orbital model with pairing interaction (a) V=0; (b) V=0.2 for
the s± pairing operator given in the text [Daghofer et al. (2010)].
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operator, the Bext
2g , is created by combining the B2g operator with Vg, i.e. next

nearest-neighbor interorbital pairing. In this pairing between all three orbitals is

allowed. This pairing operator lifts the nodes in the hole pockets but nodes on the

electron pockets remain, see Fig 5.6. This is because one of the electron pockets is

formed by a non-hybridized orbital dxy along this direction, and the relevant pairing

interaction is zero along the �-X/Y directions in momentum space.

5.4 Conclusions

In this Chapter, a simple three-orbital Hamiltonian has been constructed involving

the 3d orbitals xz, yz, and xy. These orbitals have the largest weight at the FS of the

pnictide LaOFeAs, according to LDA calculations. It was shown that it is possible

to qualitatively reproduce the shape of the LDA-FS by fixing the electron filling to 4

electrons per Fe. Moreover, two features that have been criticized in the two-orbital

model have now been corrected: both hole pockets now arise from bands degenerate

at the �-point, and there is no pocket around M in the extended BZ. In addition,

the xy character of a small piece of the electron pockets is now properly reproduced.

Numerical calculations using a small 2 ⇥ 2 lattice show a tendency to the

development of magnetic (⇡, 0)-(0, ⇡) colinear order when Coulombic interactions

are added, result consistent with experimental observations. A mean-field analysis

confirms this tendency for physically relevant values of J/U . As in the case of the

two-orbital model, an antiferromagnetic metallic phase occurs only at intermediate

values of the Coulomb repulsion. At large U , the ground state is magnetic, but

it is an insulator that is also orbitally ordered. Additionally, a metallic, magnetic

and orbitally ordered phase is encountered just before the metal-insulator transition.

In the most interesting regime with a spin-(⇡, 0) antiferromagnetic metal without

pronounced orbital order, the bands are similar to the uncorrelated ones, but their

bandwidth is reduced with increasing U . The Fermi surface is also very similar to the

uncorrelated one but, depending on U , this work finds small additional electron-like

130



Figure 5.5: (a) The intensity of the points represents the values of the spectral
function A(k,!) for the three orbital model with pairing interaction V=0.2 for the
sIB pairing operator. (b) Ratio R between the gaps for the pairing sIB and pairing
s± for V=0.05 in the unfolded BZ [Daghofer et al. (2010)].
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Figure 5.6: Location of nodes for the B2g and Bext
2g pairing operators. Red lines

denote node lines for the form factor f(k)=cos kx+cos ky, while blue lines show where
nodes develop due to the purely dxy nature of the orbitals. The nodes exist for the
two orbital B2g operator since the orbital character of the electron pocket along the �-
X/Y directions is purely dxy which is not a↵ected by this attraction. In the extension
of the B2g operator into three orbitals, the form factors pairing the dxy orbital with
the dxz/dyz orbitals is zero along the direction mentioned above.
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pockets near the original hole pockets around � (small U) or hole-like pockets between

the electron- and hole-pockets (at slightly larger U).

The possible pairing operators that are allowed by the symmetry of the lattice and

the orbitals have been constructed for pairs made of electrons separated by a distance

up to one diagonal lattice spacing. If on-site pairing is disregarded due to the large

Coulomb repulsion, it was found that the only purely intra-band pairing operator

that has a full gap on the FS is #I with f(k) = cos kx cos ky which corresponds to

the s± pairing operator with a momentum dependent OP that has opposite signs

on the hole and electron FSs. This operator arises from a purely intra-band pairing

attraction equal for each of the three bands. Note that the pairing operator #I is

the only one that leads to purely intra-band pairing interactions. Since this pairing

operator is proportional to the identity matrix �0 both in the orbital and the band

representations, the ratio |�i/�j| between the gaps in two di↵erent FSs can di↵er

only by the ratios |f(ki)/f(kj)|; then, any experimental indication of a di↵erent

kind of ratio would indicate some degree of inter-band pairing [Moreo et al. (2009a)].

Thus, order parameter ratios predicted by several authors [Parker et al. (2008); Bang

and Choi (2008); Seo et al. (2008); Parish et al. (2008); Dolgov et al. (2009)] with

calculations based on purely intra-band pairing (they allow inter-band hopping of

intra-band pairs) are not allowed by the symmetry of the lattice and the orbitals.

In this regard, our calculations seem to indicate that unrelated gaps in di↵erent FSs

can occur only in systems in which at least one orbital (or a group of orbitals) is not

strongly hybridized with the remaining ones.

Results show that all the other pairing operators, except for #I, lead to inter-band

pairing attraction in the band representation. In addition, all the pairing operators

with inter-band pairing studied here have nodal band structures at small V with the

exception of pairing operator sIB. In this case, the gap on the electron pockets is

expected to have a stronger variation at di↵erent points in the BZ that the gap at the

hole pockets. Thus, a strong indication that s± is the appropriate pairing symmetry
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would be provided by experiments in the pnictides showing a nodeless gap in all FSs,

relatively independent of momentum, and with similar values on all FSs.

Summarizing, the addition of a third orbital corrects the shortcomings pointed out

in the two-orbital model: the two hole pockets now arise from bands degenerate at the

� point while the electron pockets contain a small piece with xy character. However,

the dependence of the magnetic phases with U for the undoped case appears to be

similar for three and two orbitals except for a magnetic, orbital ordered, metallic

phase that appears in the three-orbital case. In both models it is found that the

only pairing operator allowed by symmetry with next or diagonal nearest-neighbor

interactions which is purely intra-band and produces a nodeless gap is the s± state.

In addition, the only change observed in the interorbital B2g pairing state, favored

by numerical simulations in the two-orbital model, is that, at the mean-field level,

the addition of the xy orbital renders the gap on the hole pockets nodeless for much

smaller values of the pairing attraction.
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Chapter 6

Conclusions

In this manuscript, the properties of the iron pnictides have been investigated using

a variety of multi-orbital models. The first, as seen in Chapter 2, is a two orbital

model, where only the Fe 3-dxz and 3-dyz orbitals were considered. In Section 2.2,

a tight binding Hamiltonian was constructed via the Slater-Koster method and was

fitted to band-structure calculations. On-site Coulomb interactions were included.

The ground state of the model was found via exact diagonalization on a tilted 8-site

cluster. Section 2.4 showed that, as a result of this e↵ort, magnetic properties of the

undoped parent compound are properly reproduced by this model. Also, following the

behavior of the phase diagram in Fig. 1.2, simulated electron doping reduced colinear

magnetic order. Ground state symmetries were obtained for a variety of values of the

Hubbard repulsion U and Hund J. It was found that there exists triplet regions (low

U large J), along with spin-singlet regions with A1g(large U large J) and B2g (low U

low J) symmetry. Many spin singlet pairing operators, which obey lattice and orbital

symmetry, were studied and it was found that two of these dominate. One is NN

with interorbital pairing having B2g symmetry, the other has A1g symmetry and is in

agreement with current theoretical expectations.

Chapter 3 introduced Heisenberg terms, in addition to the on-site Coulomb

interactions, into the two orbital model in order to enhance colinear magnetic order
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found experimentally, as well as to increase carrier attraction in order to produce

tighter pairs that can be accommodated in a small cluster. Both the electron

(Section 3.3) and hole doped (Section 3.4) cases were studied to find preferred pairing

symmetries. The electron doped investigation found that, upon the introduction of

Heisenberg spin interactions, quasi-nodal A1g bound states were stabilized for physical

values of JH/U in the intermediate/large U region. A competing B2g state was also

found and could be stable in physically relevant regimes of U/|t1|. In the hole doped

case, a ground state that has pseudocrystal momentum (⇡,⇡) was found, which

corresponds to anti-bonding rather than bonding combinations of the Fe dxz/dyz

orbitals in the two-Fe atom unit cell. This means that pairing operators that are

favored would arise from hole carriers located at the hole pockets at � and at M in

the unfolded Brillouin zone. Several low-lying states with di↵erent pairing symmetries

(including A1g, B1g and B2g) were found. For this reason, as in the electron doped

model, the symmetry of the pairing operator appears to be strongly dependent on

the values of the interaction parameters.

In order to investigate the role of nesting and orbital hybridization in the origin

of magnetic order in the pnictides a phenomenological model with di↵erent orbital

character but with similar nesting properties was developed to compare with the

two orbital model composed of Fe d-orbitals, see Chapter 4. This phenomenological

model, which consisted of non-hybridized s-like orbitals, does not exhibit the (0,⇡)-

(⇡,0) magnetic order in the weak coupling limit as found in the d-model, seen in

Section 4.3.3. In this parameter regime a transverse spin ordered state with no

local magnetization was found, see Section 4.3.3. This state is insulating and is

characterized by a gap that could be observed in ARPES experiments. However, the

ordered magnetic state cannot be detected with neutron scattering. In the strong

coupling limit, both models favored a magnetic (insulating) ground state.

Finally, a three orbital model was developed, in Chapter 5, to take into account the

Fe 3-dxy orbital which is present at the Fermi energy as part of the electron pockets.

Because the size of the Hilbert space was too large for numerical calculations, mean
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field techniques were used instead. In Section 5.2, the magnetic tendencies were

investigated leading to the discovery of four distinct phases in the model. For low

U, a disordered paramagnetic phase was found, followed by a metallic phase with

(⇡,0)-(0,⇡) magnetic order. Increasing U leads to a metallic magnetic phase with

alternating orbital order and finally a ferro-orbitally ordered insulator with spin (⇡,0)

magnetic order was found for large U. Furthermore, many pairing operators were

found that obey lattice and orbital symmetries, see Section 5.3. The gap structure of

these operators were investigated in detail. Most of these operators did not open full

gaps at the Fermi energy, meaning that nodes remained. One notable exception is the

s± pairing state, which is purely intra-band. An operator with the same symmetry

of the s± was constructed which has some inter-band components. A full gap was

opened as well. Next, the B2g pairing operator from the two orbital study was studied

in detail along with an extension into three orbitals. In both of these states, nodes

remain on the Fermi surface.

Experiments indicate that all five 3-d orbitals of the Fe ions should be included in

realistic models for the pnictides, but the need for unbiased tools, such as numerical

calculations to guide the approximate approaches to deal with these complex systems,

must also be considered. The results presented in this thesis have been very useful in

order to develop mean-field ansatz for models with two, three, four and five orbitals.

These studies have been able not only to consider more Fe 3-d orbitals, but also more

lattice sites. For example, two critical values of U were unveiled by these techniques

indicating that a magnetic metallic state occurs only at intermediate values of U [Yu

et al. (2009)]. Also a charge-striped state was found in a Hartree-Fock study of the

doped two orbital model [Luo et al. (2011)]. In a mean-field study of three and five

orbital models, see [Luo et al. (2010)], a physical parameter region was obtained by

comparing model spin structure factor and band structure to neutron scattering and

angle-resolved photoemission experiments. In addition, a cluster-perturbation study

on three and four orbital models calculated the spectral density and found evidence

of a proposed nematic phase in the pnictides [Daghofer et al. (2012)].
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This thesis addresses the study of superconducting pairing tendencies as well as

the magnetic properties of the iron based superconductors. These materials bring an

important new challenge with respect to previous studies for the cuprates: for the

pnictides and the chalcogenides a mutli-orbital approach is needed, considerably in-

creasing the e↵ort of computational studies. The study of multi-orbital Hamiltonians

in this context, such as the Hubbard model, defines a grand challenge to theorists

since there are few many-body tools available to gather reliable information about

these complex systems. The fascinating area of research defined by pnictides and

chalcogenides surely will receive the attention of both theorists and experimentalists

for a long time, since developing a working theory for high critical temperature

superconductors is among the most important conceptual topics of research in

condensed matter physics at present.
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Appendix A

Appendix

A.1 The Gell-mann Matrices

The �i matrices used in the text are presented here:
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,
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