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Abstract

This dissertation consists of three chapters that explore the effects of social utility on

non-market values and bargaining.

Chapter 1 considers the role of social networks in the valuation of public goods.

In the model individuals derive utility from both their own direct enjoyment of the

public good as well as from the enjoyment of those in their social network. We

find that the network increases an individual’s valuation for the public good when

members of her network have a higher weighted average valuation than she does.

The network increases aggregate valuation when it assigns higher importance, that

is, greater total weight, to individuals with higher private values for the public good.

The model provides a theoretical foundation for the idea of opinion leaders who have

disproportionate influence over their communities. The model can also guide future

empirical studies by enabling a more structural approach to non-market valuation in

a socially-connected group.

Chapter 2 shows that yes/no responses of dichotomous choice Contingent

Valuation (CV) surveys are not independent when social networks influence non-

market values. The empirical CV literature has yet to attempt estimation of

non-market values explicitly accommodating network effects. We investigate the

statistical properties of estimates of mean willingness to pay obtained through

standard approaches that ignore social networks. Monte Carlo experiments, with

different types of simulated and real world social networks, indicate that failure to

account for network effects leads to underestimation of non-market values.
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Chapter 3 reports results of an experiment designed to explore the trade-

offs between added surplus and lost bargaining power in long-term contracting.

Participants played a sequential bargaining game whereby the first mover (the

procurer) selects whether to be the recipient in a single-shot dictator game or a twice-

repeated ultimatum game. We find that, in general, participants prefer to retain the

bargaining power of the ultimatum games as opposed to engage in a dictator game

played over a bigger endowment. This result suggests that diminished bargaining

power can be a serious detriment to realizing long-term gains from trade.
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Chapter 1

Social Networks and Non-market

Valuation

1.1 Introduction

For the most part, the theoretical public good valuation literature considers decision-

makers in social isolation. There are two reasons why social structure might impact

valuation. One is that individuals may be altruistic and care about public goods

that benefit their friends even if they do not benefit themselves.1 For example, the

presence of a park might not generate any private utility for the indivudal, but if

the park gives her friends utility and she values those friends’ utility, she might have

positive willingness to pay for the park due to social utility.2 A second reason is that

people might use the public good in groups.3 For example, someone might like going

to a park, but not alone, so to get enjoyment from the park her friends must also

like the park. She gets utility from going to the park with friends, but might also get

1This is consistent with the finding of directed altruism by Leider et al. (2009). In their field
experiment subjects allocate 52% more to close friends than to strangers in dictator games.

2As private utility we mean the direct (or own) utility that one receives from consuming a public
good in social isolation, i.e. ignoring social effects. Social utility is the overall (or total) utility from
the public good, which includes one’s private utility and (possibly) the social utility from friends.

3For instance, Morey and Kritzberg (2010) provide evidence that the presence of a companion
changes the willingness to pay for biking trails.
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utility from going with friends’ friends, and so on. Whichever the channel, altruism

or joint use, the utility that one gets from the public good may be affected by friends’

utility. Furthermore, friends may behave in the same way and the utility of friends

of friends may affect friends’ utility. This leads to network effects.

The purpose of this paper is to construct a model of public good valuation that

can accommodate both of these network effects. As argued by Jackson (2009, pg.

491), “Many economic interactions are embedded in networks of relationships and

the structure of the network plays an important role in governing the outcome.” As a

result, network models have been developed to explain a wide range of economic

phenomena.4 Our primary result links aggregate willingness-to-pay to network

centrality. In particular, societies are willing to pay more in aggregate for a public

good when that public good provides more benefit to people more central to the

society. A straightforward implication is that public projects that pass the cost-

benefit test and ultimately receive funding tend to favor more central agents.

To capture network interactions we use the sociometric approach in which the

interaction patterns of agents are captured through the rows of a matrix (see DeGroot

(1974) and DeMarzo et al. (2003)). The matrix-based approach proves well-suited

for the problem of computing individuals’ valuations for a public good when their

valuations depend on those of others in their social network.5 We assume that each

individual has her own private value of the public good, and this private value is the

one that would pertain if the public good were consumed in social isolation. Each

individual’s social value of the public good may depend on how much others in her

social network enjoy it, though, and so the individual’s social value of the public

4Network models have been used to explain labor market outcomes (see Calvó-Armengol and
Jackson (2004, 2007)), risk sharing (see Fafchamps and Lund (2003) and Bramoullé and Kranton
(2007b)), and opinion formation (see DeGroot (1974), Friedkin and Johnsen (1990), DeMarzo et al.
(2003), and Neilson and Winter (2008)).

5As discussed by Wasserman and Faust (1994, chap. 3), the graph-theoretic approach, common in
the work of Jackson and others (e.g. Jackson and Watts (2002), Jackson (2005), Jackson and Rogers
(2007)), proves to be beneficial for modeling networks with multiple relations. The sociometric
notation is, however, a simple way to model directed networks in which links between agents have
different strength.
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good may differ from her private value. We show that all network effects, including

feedback effects, can be captured by a single weighting matrix so that each individual’s

social value is a weighted average of the population private values. In particular, each

individual’s centrality to the network is captured by the relevant column sum of the

resulting weighting matrix. We refer to this column sum as an agent’s importance.

The thought exercise pursued in the paper involves a comparison between the

valuations assigned to a public good when individuals are socially isolated and the

valuations assigned when society has a network structure, holding the original vector

of private valuations constant across the two settings. The paper concentrates on

when, and how, the network structure impacts the social value of the public good.

For individual valuation of a public good the requirement for a network effect is very

weak: the individual’s social value of the public good differs from her private value

if she cares about at least one agent with a different private value than her own.

In other words, the structure of the network almost always impacts an individual’s

valuation for a public good. The paper also identifies when the aggregate social value

of the public good depends on the network, and this occurs if agents in the population

are not uniformly important. If more important agents have higher private values of

the public good, the population’s aggregate social valuation is higher.

The paper provides an economic foundation to a widely-used idea in the other

social sciences, that of an opinion leader whose position in a community makes

him or her instrumental in affecting social change. This idea has been used,

among other places, in such diverse areas as agricultural development (Monge

et al. (2008)), corporate training programs (Lam and Schaubroeck (2000)), and

microfinance diffusion (Banerjee et al. (2011)). Opinion leadership is clearly tied

to the idea of network centrality (see Katz (1953) and Friedkin (1991)). However,

the model in this paper ties opinion leadership directly to an influence on others’

willingness to pay for a public good. The results show that this leadership is easily

identified with the agents whose columns have the largest sums in the social weighting

matrix.

3



The results have important implications for policy analysis. When the network

matters, sampling values from the population provides the right information for

performing a cost-benefit analysis for that population, but that same sample cannot

be used as the basis for cost-benefit analysis for a similar public project benefiting

a different population. In other words, even when two populations are very similar,

e.g. they have similar distributions of relevant socio-economic characteristics, benefit

transfer cannot be done without placing restrictions about the shape of the social

networks. Because of the network, one population might find it worthwhile to provide

the public good while the other does not.6

The paper adds to the economics literature linking social preferences and public

good provision. A group of papers concentrates on whether social values should be

considered in cost-benefit analyses of public projects.7 Flores (2002) and Bergstrom

(2006) demonstrate that there are cases where welfare-improving public good projects

would be rejected if cost-benefit analysis were based only on private values as opposed

to social values. Therefore, with social preferences, a public project may be Pareto-

enhancing even if the cost of the project exceeds the sum of all agents’ private values.

Our contribution to this literature involves the use of a social network structure

to explore the differences between the private and social welfare generated by public

good provision. In doing so, our framework is similar to that of Bergstrom (1999)

and Bramoullé (2001) in which a weighting matrix distinguishes private values from

social values. The paper differs from the prior literature in the manner in which

others’ utility impact own utility. Bergstrom (1999) looks at a system of benevolent

utility functions in which social connections automatically add to an individual’s

utility. Bramoullé (2001)’s treatment also involves adding friends’ social utility

to an individual’s utility, however, he allows for individuals to be envious toward

other agents and, in this case, other agents’ social utilities are subtracted from own

6This result is in line with experimental evidence that social preferences are stronger towards
socially connected agents. For instance, Leider et al. (2009) distinguish baseline altruism towards
strangers from directed altruism that favors friends.

7See Bergstrom (2006) for a review of theoretical work.
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utility. Our paper uses a different utility structure so that social connections neither

automatically add or automatically subtract welfare, thereby disentangling the effects

of social preferences and network structure.

The paper contrasts with the literature on local public goods in networks. In

these papers the public good has the same value to everyone, but individuals only

obtain access to the public good when they are connected directly to someone who

provides it. Bramoullé and Kranton (2007a) present the first model of such public

goods. They show that there always exists an equilibrium in which some agents free

ride, and that in some cases the most efficient equilibrium entails provision by the

central agent in the network. Their model concentrates on provision, which is made

interesting by the localness of the public good, while ours concentrates on valuation

for global public goods in the presence of networks.8

The joint-use interpretation of our model provides a theoretical foundation for

the empirical recreation-site choice literature. Using a choice experiment, Morey

and Kritzberg (2010) demonstrate that the presence of a companion can significantly

change the value of mountain bike trails. They take their large estimates of the

effect of a companion on the value of trails as evidence that real world site-choice

data may be influenced by social interactions. Commensurate with these findings,

other empirical papers find significant effects of party size on recreational values (see

Kaoru et al. (1995) and Massey et al. (2006)). Along the same lines, Timmins and

Murdock (2007) find evidence that some congestion can be desirable. Specifically, they

estimate the value of a large recreational fishing site in Wisconsin (Lake Winnebago)

accounting for congestion effects, and conclude that ignoring congestion leads to an

understatement of the lake’s value by more than 50%. Although these papers do not

account for social networks explicitly, they provide some empirical support for our

8More recent research stemming from Bramoullé and Kranton (2007a) develops different network
models of public goods. Newton (2010) analyzes the effect of coalitional behavior on local public
goods provision. O’Dea (2010) examines the relationship between local public good provision
and social network formation. Cho (2010) studies endogenous formation of networks for local
public goods in sequential bargaining games. Chih (2010) incorporates interactive costs and social
perception of free-rider behavior in a model of local public goods and network formation.
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results by showing that social interactions affect valuation. Our results also inform

this literature by suggesting that the strength of social ties to the companions, and

not just the number of companions, affect valuation.

The remainder of the paper is organized as follows. Section 1.2 presents the model.

Section 1.3 analyzes social network effects on an individual’s utility and willingness

to pay for public projects. Section 1.4 investigates social network effects on welfare

and aggregate non-market valuation. Section 1.5 concludes.

1.2 The Model

A population consists of n ≥ 2 agents indexed by i = 1, ..., n. Agents obtain utility

from the consumption of a private good x and a public good g. Utility is assumed to

be quasilinear. Agent i’s overall utility is

Vi(xi, g) = xi + vi(g), (1.1)

where vi(g) is agent i’s social utility from the public good.

The public good g is exogenously provided to the entire population, without

congestion, such that every agent can benefit from its consumption. There are two

channels through which the provision of g can affect i’s social utility vi(g). First, agent

i obtains private utility ui(g) from the consumption of g. This is the component of

social utility that is obtained from own consumption of g and is independent of social

effects. Second, agent i may care about the enjoyment of her friends and, as a result,

may obtain social utility.9

Friendships are represented by a social network. Formally, let agent j be a friend

of agent i if j is directly connected to i.10 The social network is represented by the

(possibly asymmetric) row stochastic matrix A, with dimensions n× n. An element

9As discussed in section 1.1, altruism or group consumption are two possible reasons for the
influence of friends on an individual’s social utility.

10In the network literature, connected agents are often referred to as neighbors.
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aij is positive if j is a friend of i, and zero otherwise.11 The diagonal of A is equal to

zero reflecting the fact that an agent is not a friend of herself.

Social utility received from friends is assumed to be a weighted average of friends’

public good utility v, with weights determined by the rows of A.12 Formally, agent

i’s social utility from the public good is defined as

vi(g) = (1− λi)ui(g) + λi
∑
j

aijvj(g), (1.2)

where λi ∈ [0, 1) is a parameter that reflects the extent to which social utility of

friends is relevant to agent i.

The term (1− λi) is the weight that agent i places on her own private enjoyment

ui(g). Hence, the parameter λi is intuitively denoted as i’s degree of social interaction

in the consumption of g. Agent i is said to be socially isolated if i’s social utility from

the public good is not influenced by the social utility of friends. Thus, when λi=0,

agent i’s social utility vi(g) is equal to i’s private utility ui(g). Social isolation shuts

down the social channel through which the provision of g affects i’s utility and the

model simplifies to a standard utility model without network effects.

Let v =
(
v1(g), ..., vn(g)

)′
denote the social utility profile of all agents. Using

matrix notation, v can be written as

v = (I−Λ)u + ΛAv, (1.3)

where I is the identity matrix, Λ is a diagonal matrix with λi in the i-th row, and

u =
(
u1(g), ..., un(g)

)′
is the population’s private utility profile. Bergstrom (1999)

and Bramoullé (2001) study systems of utility functions using a similar framework:

v = u + Av. In Bergstrom (1999)’s treatment agents are benevolent, thus, A is a

11A row stochastic matrix is a square matrix of nonnegative real numbers, with each row summing
to 1. Therefore, we implicitly assume that every agent has at least one friend.

12From i’s perspective, the intensity of the friendship between i and j is captured by aij . The
element aij captures j’s influence on i’s social utility. The same friendship may have different
intensity from j’s perspective such that aij may be different from aji.
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nonnegative matrix. In Bramoullé (2001)’s formulation entries of A are either positive

(if there is an altruistic social connection) or negative (if the social connection is

envious). Either way, adding a friend (or enemy) to an agent’s network automatically

increases (decreases) that agent’s utility. While this might be realistic, it prohibits

disentangling the impact of a change in size of a network from a change in its shape.

In equation (1.2) adding a friend for agent i requires reconfiguring the i-th row of

A, retaining the requirement that the row sum to one. Consequently adding a friend

does not automatically add to utility.13

The network component of (1.3) captures the social utility obtained by straight

links to friends’ social utility. The influence of friends’ social utility on own social

utility is determined by the matrix ΛA. Borrowing Bramoullé’s terminology we refer

to ΛA as the primary network. Rearranging (1.3) yields

v = (I−ΛA)−1(I−Λ)u. (1.4)

To simplify notation make W = (I −ΛA)−1(I −Λ). Again, borrowing Bramoullé’s

terminology, we refer to W as the induced network. Elements of W correspond to

circuitous links between agents emerging from links in the primary network. Links

in the induced network account for the impact of friends of i’s friends on i’s social

utility, plus the impact of friends of friends of i’s friends on i’s social utility, and so

on. Mathematically, this arises from the Neumann series approximation (I−ΛA)−1

=
(
I + (ΛA) + (ΛA)2 + (ΛA)3 + ...

)(
I − Λ

)
.14 More intuitively, consider the

three-person population with

Λ =


0.8 0 0

0 0.5 0

0 0 0.2

, and A =


0 0.5 0.5

1 0 0

1 0 0


Then

13A second difference in our model is that network effects influence only one type of good (public
good) but not the other type of good (private good).

14See Meyer (2000).
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W =


0.28 0.28 0.44

0.14 0.64 0.22

0.06 0.06 0.88

.

From the matrix A we see that agent 1 is friends with agents 2 and 3 (because a12

and a13 are both positive) but agents 2 and 3 are not friends with each other (because

a23 = a32 = 0). Nevertheless, because agent 2 cares about agent 1’s utility which in

turn depends on agent 3’s utility, in the end agent 2 places weight on agent 3’s utility

and w23 = 0.22 > 0. The same reasoning explains why w32 > 0 even though a32 = 0.

The rationale for w23 > w32 is that λ2 > λ3, so that agent 2 places more weight on

others’ well-being than agent 3 does.

It follows from (1.4) that agent i’s social utility can be expressed as a function of

the elements of the private utility profile u. The following expression represents the

social utility function of agent i and corresponds to the i-th row of system (1.4),

vi(g) =
∑
j

wijuj(g), (1.5)

where wij is an element of the square matrix W. Lemma 1.1 formally describes i’s

social utility function.

Lemma 1.1. Agent i’s social utility is a convex combination of the private utilities

of all agents, i.e. for all i and j, wij ∈ [0, 1] and
∑

j wij = 1.

Proof. All proofs are found in the Appendix.

Lemma 1.1 establishes that agent i’s social utility of the public good really is a

weighted average of the private utilities of the agents in the economy, that is, that the

weights in (1.5) are all nonnegative and sum to one. In addition, it implies that the

primary network ΛA contains all of the information needed to determine how much

weight agent i places on j’s private utility of g, accounting for all possible induced

interactions among all agents.

9



Agent i’s overall utility function is obtained by plugging (1.5) into (1.1):

Vi(xi, g) = xi +
∑
j

wijuj(g). (1.6)

We use equation (1.6) to define agent i’s willingness to pay for an increase in the

provision of the public good accommodating possible network effects. Normalizing

the price of the private good, the compensating welfare measure associated with a

discrete public project that yields an increase in g from g0 to g1 is defined by Ci that

solves

Vi(mi, g
0) = Vi(mi − Ci, g1) (1.7)

where mi represents agent i’s income. Two compensating measures are defined. The

first is agent i’s willingness to pay under network interaction. It is defined by Cnetwork
i

that solves

mi +
∑

j wijuj(g
0) = mi − Cnetwork

i +
∑

j wijuj(g
1)

or just,

Cnetwork
i = vi(g

1)− vi(g0). (1.8)

The second is the traditional compensating welfare measure that only accounts for

private willingness to pay, that is, the measure that pertains if agent i is socially

isolated (λi = 0). With social isolation, the social utility vi simplifies to ui (see

equation (1.2)), and therefore private willingness to pay is defined as follows

Cprivate
i = ui(g

1)− ui(g0). (1.9)

Combining equations (1.5), (1.8), and (1.9) yields a relationship between the vectors

Cnetwork and Cprivate:

Cnetwork = WCprivate. (1.10)
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The same induced network W determines both social utility and willingness to pay

under network interaction.

We can also use equation (1.6) to identify a single agent’s impact on society. The

amount w1juj measures j’s contribution to agent 1’s social utility, w2juj measures j’s

contribution to agent 2’s social utility, and so on. Agent j’s total contribution is then∑
iwijuj(g). This motivates the following definition.

Definition 1.1. Agent j’s importance is defined as δj =
∑

iwij.

Since W is a row normalized matrix, agent importance is the sum of the elements of

the j-th column of the induced network and can be intuitively thought as a measure

of the “popularity” of agent j. This measure of importance is closely related to

a number of measures of network centrality (see Friedkin (1991) and Opsahl et al.

(2010)). The next lemma further characterizes agent importance.

Lemma 1.2. Every agent in the network has positive importance, i.e. δi > 0 for all

i.

The maximum value of δj approaches n and the minimum approaches 0. Conse-

quently, every agent has at least a little importance to society and no single agent is

a dictator. Average agent importance is 1.

1.3 Networks and Individual Valuation

This section analyzes the relationship between agent i’s social and private utility. We

explore differences between the traditional utility model in social isolation and our

network model by studying how the shape of the social network affects non-market

values. We begin by defining network neutrality.

Definition 1.2. A network is neutral if, for the entire population, social utility is

equal to private utility, i.e. for every private utility profile (u1, ..., un) we have vi = ui

∀i.
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Under network neutrality, the social structure imposed by the system of interdepen-

dent utilities (1.4) is irrelevant. Stated differently, there are no network externalities

as agents’ overall utilities are not affected by network interactions. Identification of

situations that lead to network neutrality becomes important because doing so also

identifies situations where the network does matter, and Proposition 1.1 presents

conditions that lead to network neutrality.15

Proposition 1.1. (Network neutrality). Network neutrality holds if and only

if all agents are socially isolated (i.e. λi = 0 ∀i).

Mathematically, network neutrality holds if and only if the primary network ΛA

is a matrix of zeros. If this is the case, the induced network does not contain any

(direct or indirect) connections between agents. In fact, W is the identity matrix.16

Network effects are expected to be small if there are weak primary networks with

little social interaction in the consumption of the public good. For example, one

would be hard pressed to argue that λs are high when the public good in question

is a sewer system. Of course altruism is always a possible reason for the existence of

social preferences. However, it is probably safe to assume that a population’s average

λ for a park (possibly a jointly consumed public good) is higher than the average λ

for a sewer system (a public good that is consumed individually). It may be the case

that social networks are neutral if the public good is a sewer system. Importantly,

though, Proposition 1.1 implies that when some agents care about friends’ utility (so

that λi > 0 for some agents) the shape of the network matters for social utility.

15The network could also be irrelevant if all individuals have identical private tastes, that is, if
ui(g) = uj(g) ∀i, j. The irrelevance of the network then follows because every agent’s social utility
is a weighted average of the private utilities, which in turn are all equal. It is also possible, but
extremely unlikely, that for some particular value of g the vectors of social and private values end
up being identical. In real world applications, with large social networks, a combination of values in
ΛA such that vi = ui ∀i is essentially impossible.

16Proposition 1.1 indicates that if Λ is a matrix of zeros, then the induced network is equal to
the identity matrix (W = I). There is no mathematical condition that imposed on A would lead to
network neutrality. In fact, mathematically, if A = I then W = I, regardless of Λ. However, this is
ruled out by the model construction as the diagonal of A has zeros reflecting the fact that agent i
is not a friend of herself.

12



Proposition 1.1 implies that the network matters more when agents are more

socially connected (so that λs are high), and it also follows from the structure of the

model that, relative to a world of social isolation, network effects can significantly

change individuals’ well-being in environments in which agents have large disparities

in private utilities. On the flip side, network effects are expected to be small if the

population is homogeneous. For instance, consider a group of peasants of a small

village in a developing country. Assume they are a very homogeneous group that

obtains natural resources from a watershed. Despite the fact that there may be

strong social utility associated with the consumption of the watershed (i.e. λs are not

zero), one could imagine the private utilities from the watershed as being the same

for every peasant. In this case, any random peasant is a perfect representative agent

and the welfare generated by the watershed can be perfectly assessed by the welfare

of a single peasant. This is a case in which the social network is neutral for a specific

public good, but not in general.

The following corollary formalizes the obvious implication that when a network

has no impact on individuals’ social utility levels, that is, when network neutrality

holds, it also has no impact on individual willingness to pay. It does so by comparing

the network compensating measure Cnetwork
i to the private measure Cprivate

i .

Corollary 1.1. (Individual valuation neutrality). If network neutrality

holds, the willingness to pay measure Cnetwork
i is equal to the private measure Cprivate

i .

If the social network is not neutral, it may have a significant effect on non-market

values. A natural next step is to examine how the social network affects social utility.

We now study the setting in which agents have heterogeneous private utilities and are

not socially isolated. When network neutrality fails, the utility of g is determined by

the social utility v, and it is different from the private utility u. The next proposition

characterizes how the shape of the social network affects social utility and establishes

the conditions in which the network generates a positive externality such that the

social utility vi is greater than the private utility ui.
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Proposition 1.2. (Network effects on utility). In non-neutral networks

(i.e. wii 6= 1), the network benefits agent i, i.e. vi(g) > ui(g), if and only if

ui(g) <

∑
j 6=iwijuj(g)∑

j 6=iwij
. (1.11)

The left-hand side of expression (1.11) is individual i’s own private utility, and the

right-hand side is the weighted average of her network’s private utilities. If her

network values the public good more than she does, on average, her social utility

from the public good exceeds her private utility. Conversely, if she values it more

than her network does, on average, the impact of the network is to reduce her social

utility. So, for example, if i likes the beach more than any of her friends do, i receives

lower social utility from going to the beach than she would if she were socially isolated.

As a consequence of proposition 1.2, willingness to pay under network interaction

(Cnetwork
i ) is expected to be different from private willingness to pay in social isolation

(Cprivate
i ). Corollary 1.2 describes the circumstances in which the network generates

higher valuations than those generated under social isolation.

Corollary 1.2. (Network effects on individual valuation). In non-neutral

networks (i.e. wii 6= 1), Cnetwork
i ≥ Cprivate

i if and only if
(
ui(g

1) − ui(g
0)
)
≤∑

j 6=i wij [uj(g
1)−uj(g0)]∑

j 6=i wij
.

Corollary 1.2 demonstrates that for agents with small private willingness to pay

the network generates higher valuations than the ones in social isolation. In a social

network environment, low private valuation agents are willing to pay more for an

increment in g because they benefit from the gains of higher private valuation friends.

To see this, consider the following example. The induced network is given by

W =


0.5 0.1 0.4

0.2 0.6 0.2

0.3 0.3 0.4

,

and the three individuals in the society differ in how much they value the change in

the public good from g0 to g1. Let
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u(g1)− u(g0) =


10

5

2

,

so that agent 1 has the highest private utility gain from the policy change and agent

3 has the smallest. Restricting attention to agent 3, note that∑
j 6=i wij(uj(g

1)−uj(g0))∑
j 6=i wij

= 0.3(u1(g1)−u1(g0))+0.3(u2(g1)−u2(g0))
0.6 = 7.5

which is larger than agent 3’s private value of the change, (u3(g
1) − u3(g

0)) = 2.

According to the corollary, agent 3’s social value of the change should exceed her

private value, and this is indeed the case as can be observed when one computes the

social values

W(u(g1)− u(g0)) =


6.3

5.4

5.3

.

The example highlights the importance of recognizing networks to study non-

market values that are influenced by social interactions between agents. When

eliciting valuations from a population, subjects naturally report their true values,

which are their social values. Part of the variation in these values arises from

heterogeneous private values, which may be correlated with individual characteristics.

The variation in elicited values is also affected by the shape of the network, though,

and so studies that ignore the nature of the network may be misspecified.

1.4 Networks and Aggregate Valuation

This section investigates economic welfare generated by the provision of a public good.

It considers non-neutral networks in which at least one agent is not socially isolated

(∃λi s.t. λi > 0) and at least two agents have different private utility functions

(∃{ui, uj} s.t. ui 6= uj for i 6= j). The following definitions of welfare are discussed.
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Definition 1.3.

A. Social network welfare is defined as
∑

i vi

B. Social isolation welfare is defined as
∑

i ui

C. Welfare neutrality is defined by
∑

i vi =
∑

i ui

In non-neutral networks, vi is typically different from ui.
17 However, this may or

may not have welfare implications. In some cases, network neutrality fails but welfare

is unchanged such that the social network welfare is equal to the social isolation

welfare. Hence, the existence of social network effects on the provision of public goods

does not necessarily affect the population’s welfare but may nevertheless reorganize

the distribution of social utility. Agent importance (δ, defined in section 1.2) is a

fundamental concept for our network welfare analysis. The following proposition

characterizes welfare neutrality.

Proposition 1.3. (Welfare neutrality). If every agent in the network has

the same importance, then the social network welfare is equal to the social isolation

welfare.

It is important to acknowledge that the social network may have relevant

individual welfare implications even in the environments covered by Proposition

1.3. The proposition states that there are populations in which the aggregate

welfare generated by the provision of g is unaffected by the social structure. Under

welfare neutrality, the social network acts as a smoothing operator, re-distributing

utility among agents and decreasing well-being concentration. The following example

provides an illustration.

Consider two separate populations of size n = 3 with identical private utility

profies for the public good but different networks. In both cases the private utility

17Recall that according to definition 1.2, network neutrality implies that vi = ui ∀i. Throughout
this work, we refer to non-neutral networks as the counterpart of the neutral networks presented
in definition 1.2. Thus, we use the term “neutral networks” to refer to definition 1.2, and not to
welfare neutrality as in definition 1.3C.
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profile is u = (5, 10, 15)′, for social isolation welfare, or aggregate private utility, of

30. The two different social structures are given by the induced network matrices

W1 =


0.5 0.1 0.4

0.2 0.6 0.2

0.3 0.3 0.4

, and W2 =


0.5 0.3 0.2

0 0.6 0.4

0.5 0.1 0.4

.

Both populations are welfare neutral because in each of them every column sums to

one. For the private utility profile u given above, the resulting social utility profiles

are v1 = (9.5, 10.0, 10.5)′ and v2 = (8.5, 12.0, 9.5)′. Both of these have the same

social network welfare, or aggregate social utility, of 30. This demonstrates welfare

neutrality. Network neutrality does not hold, however, as can be seen by the fact that

in both populations agent 1’s social utility exceeds her private utility, and in both

cases agent 3’s private utility exceeds her social utility. Furthermore, even though

the presence of welfare neutral network effects does not change the average utility

of the group, it changes the distribution of utilities in a variety of ways. Network

W1 preserves the median utility level at 10, but network W2 reduces the median to

9.5. This second network also changes the ordering of who gains the most utility,

with agent 3 having the highest private utility level but agent 2 having the highest

social utility level. Finally, the second network obviously generates a larger standard

deviation of social utility than the first network, and both of these standard deviations

are smaller than in the private utility profile.

The following definitions are used to discuss the aggregate value of public projects.

Definition 1.4.

A. Aggregate network value is defined as Cnetwork =
∑

iC
network
i

B. Aggregate private value is defined as Cprivate =
∑

iC
private
i

C. Aggregate valuation neutrality is defined by Cnetwork = Cprivate

As a consequence of proposition 1.3, valuation of public projects is independent of

social structure when the population has a social network that is welfare neutral. The

next corollary formalizes this result.
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Corollary 1.3. (Aggregate valuation neutrality). If welfare neutrality holds,

then Cnetwork = Cprivate.

Corollary 1.3 provides sufficient conditions for aggregate valuation neutrality. It

implies that in networks in which agents have the same importance, i.e. δ1 = ... =

δn = 1, the aggregate value of a public good can be measured by either Cnetwork

or Cprivate. Aggregate valuation neutrality does not require individual valuation

neutrality. In fact, in non-neutral networks, Cnetwork
i is typically different from Cprivate

i

even when Cnetwork is equivalent to Cprivate. Therefore, standard non-market valuation

measures can be used if: i) welfare neutrality holds, and ii) the objective is to obtain

a measure of aggregate willingness to pay or mean willingness to pay and not median

willingness to pay. This can be highlighted with an example similar to the one above.

Let

W =


0.5 0.3 0.2

0 0.6 0.4

0.5 0.1 0.4

.

This is the same as induced network W2 in the previous example. Let u(g1)−u(g0) =

(4, 12, 16)′. Then v(g1) − v(g0) = (8.8, 13.6, 9.6)′. The aggregate network value and

the aggregate private value are equal at 32, but every agent’s valuation changes.

Importantly, the median social valuation of 9.6 is lower than the median private

valuation of 12, demonstrating that welfare neutral networks can change the quantiles

of the valuation distribution even though they do not change the mean valuation.

The preceding results highlight when a network does or does not impact welfare,

but they do not address how the network impacts aggregate welfare and aggregate

valuation. To this end, we define welfare-increasing social networks as follows.

Definition 1.5. A social network is welfare-increasing if
∑

i vi >
∑

i ui.

To facilitate welfare comparisons, it is useful to write the social network welfare

as a weighted sum of the private utilities of all agents with weights determined by

the importance of agents as defined in Section 2:
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∑
j δjuj,

where δj is agent j’s importance as presented in Definition 1.1, i.e. δj =
∑

iwij. Index

agents by increasing values of private utility such that agent 1 is the lowest private

utility agent and agent n is the highest private utility agent. Hence, u = (u1, ..., un)′

is a sorted private utility profile such that u1 ≤ u2 ≤ ... ≤ un. It is now easy to

see that social network welfare increases as the importance of high private utility

agents increases and, as a consequence, the importance of low private utility agents

decreases. To formalize this intuition, define the distribution of importance as the

vector (δ1/n, ..., δn/n). This is a distribution because, recalling that 0 < δi < n

for each i, every element in the distribution of importance lies between zero and one.

With this in mind, the next proposition formalizes the idea that the network increases

social welfare by shifting improtance to agents with higher private values of the public

good.

Proposition 1.4. (Welfare-increasing networks). For all sorted private

utility profiles u, if the distribution of importance of a network W first order

stochastically dominates (FOSD) that of the social isolation case, then W is a welfare-

increasing network.

Under social isolation, the induced network W is equal to the identity matrix. As

a result, every agent in the network has the same importance δ = 1. Thus, if the

network’s distribution of importance FOSD the (social isolation) uniform distribution

of importance, then the provision of a public good in the network will generate welfare

greater than the sum of the private values. Proposition 1.4 has important implications

as the welfare generated by the provision of a public good can be enhanced or

diminished by social networks with the outcome depending on the distribution of

importance.

One implication is that public goods policy should target high importance

individuals. This view provides new insights to questions like “Should the government

fund fine arts?”. A traditional approach to this problem would consider the
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potentially high costs associated with benefits to a select group of individuals with

significant high utility from fine arts. However, if these individuals are important (or

popular) individuals in the social network, the positive externalities generated from

these policies may justify such public investments.

Accordingly, Proposition 1.4 provides structure to the idea of opinion leadership,

that is, the existence of agents who can facilitate change. For a given population

governed by a given network, projects valued more highly by agents with higher

importance tend to be the projects valued by the entire population. In extreme cases,

efforts to undertake projects valued highly by the single individual with the greatest

importance tend to be more successful than those valued negatively by that same

individual. Thus, opinion leadership and importance are linked in our framework.

This is consonant with the conclusions from Flores (2002) and Bergstrom (2006),

highlighting the fact that social utility can play an important role in cost-benefit

analysis. A public project may be Pareto improving even though the sum of private

values is not large enough to justify the public investments. That Pareto improvement

comes from the high private values of highly important agents, or opinion leaders.18

If the social network is capable of generating striking changes in social welfare,

it is important to understand which types of network are more desirable. This is

formalized in the next proposition that facilitates comparisons of networks focusing

on social welfare.

Proposition 1.5. (Network welfare comparisons). For all sorted private

utility profiles u, if the distribution of importance of a network W FOSD that of

another network W’, then W generates greater social network welfare than W’.

According to Proposition 1.5, a network that favors high private utility agents

generates greater social network welfare than one that favors low private utility

agents. The following example stresses the relevance of this result. Consider two

18These ideas in turn provide an intuitive rationale why, for example, the United Nations
might name a Hollywood actress such as Angelina Jolie as a Goodwill Ambassador. Refer to
http://www.unhcr.org/pages/49c3646c56.html. Accessed on October 26, 2011.
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geographically separated populations of same size, with separated social networks

but with identical private utility profile u. Assume that a central planner has the

resources to implement a public project in one of the two populations. In which

population should the project be implemented? If the cost of implementation is

the same in both populations, private benefit-cost analysis would indicate that the

central planner should be indifferent between the two options. Social benefit-cost

analysis leads to a different conclusion. Considering definition 1.3A of social network

welfare, if the two populations have different social networks, the project should be

implemented in the network that places more weight on agents with higher private

utility. Corollary 1.4 considers network effects on aggregate valuation.

Corollary 1.4. (Network effects on aggregate valuation). Cnetwork ≥

Cprivate if and only if
∑

i

(
δi − 1

)[
(ui(g

1)− ui(g0)
]
≥ 0.

The corollary indicates that a social network has positive effects on aggregate

valuation when the weighted sum of private willingness to pay is positive, with the

weights determined by deviations from the mean importance. Intuitively, the more

the distribution of importance favors agents with high private valuation, the greater

is the aggregate network valuation. This result has important implications.

For example, suppose the public project is one that targets the improvement of

attributes of a beach frequented by n residents of a certain neighborhood. Suppose

few residents are surfers. As committed surfers, they love to be at the beach and

have high private willingness to pay for an increase in beach quality. Now suppose

that these few surfers have several friends and, as a result, are very popular residents

of this neighborhood. Moreover, assume that this is a high enough combination of

popularity and private valuation such that corollary 1.4 holds. The consequence is

that these few surfer residents may be responsible for a significant boost in the value

of the public project making Cnetwork > Cprivate. Now imagine that the surfers leave

the neighborhood. Clearly, if high valuation agents are not considered, the aggregate

value of the public project decreases. However, because of the network structure,
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the aggregate value may drop further. Shocks in the network can make second-order

valuation effects (network effects) larger than first-order effects. As a consequence,

the condition in corollary 1.4 may be no longer satisfied in a neighborhood without

surfers. The example emphasizes how sensitive aggregate valuation can be to changes

in social structure.

1.5 Conclusion

Directed altruism towards friends or joint consumption of public goods with friends

are possibly two important reasons to consider social structure in non-market

valuation approaches. The paper builds a network model for analyzing provisions

of public goods accounting for the presence of social utility operating through social

connections. The model assumes that individuals’ private values are the ones that

pertain in the absence of social network effects while social values weight own private

utility and social utilities of friends. This framework allows us to study the effects

of the shape of the connections on non-market values, holding constant the effect of

network size.

Current research on public goods in networks study environments in which links

are used to share non-excludable goods, i.e. local public goods. Differently, the focus

of our research is not to study incentives problems related to the production of local

public goods. Instead, we present a valuation model in social networks. The model

delivers two measures of willingness to pay for an increase in the provision of public

goods: willingness to pay under network interaction, a measure that accounts for the

influence of connected friends and feedback effects; and standard willingness to pay

in social isolation, a special case of the model that arises when the network structure

is neutral.

By comparing these two measures, the paper demonstrates that non-market values

can significantly be affected by social networks. For example, if the network is such

that connections with high private utility agents are more intense, private willingness
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to pay understates the true value of non-market goods. However, if agents are equally

“popular” in the social network, i.e. all agents receive the same amount of attention

from their friends, the social structure may affect individual values but the overall

welfare generated by the provision of the public good is the same of that generated

in an environment of complete social isolation. We demonstrate that social welfare

changes as a function of the distribution of popularity of agents in the network. When

popular agents have high private valuation, the second-order (networks) effects have

high impact on aggregate valuation.

The network model presented in this research can potentially guide empirical work.

If the underlying consumption decisions involve considerations about the well-being of

socially connected agents, conventional non-market valuation approaches may mislead

econometric identification by not taking into account an important source of variation

in the willingness to pay of agents: the social network. With network interaction, the

value an individual attributes to a public good is a function of the values that friends

attribute to the public good, and the value that friends attribute to the public good

is a function of the individual’s valuation. Manski (1993, 2000) refers to this as the

reflection problem. If this is the case, the estimation of non-market values becomes

even more challenging.19

Future empirical research should focus on the development of econometric models

and survey techniques to facilitate estimation of non-market values accounting for the

possible social network effects demonstrated in this paper. Future theoretical work

should focus on generalizations of the analyzes developed in this research. These

may include, for instance, the study of environments with multiple (substitute or

complementary) public goods or the investigation of congestion effects.

19Readers interested in econometric identification of peer effects through social networks should
refer to Bramoullé et al. (2009).

23



Chapter 2

Estimation of Non-market Values

in the Presence of Social Network

Effects: the Case of Advisory

Referenda

2.1 Introduction

The ability to estimate non-market values has made economists a fundamental asset

in formulating and analyzing public policies. It is common for policymakers to face

choices that comprise trade-offs involving non-market goods. In such circumstances,

the non-market valuation literature provides guidance to estimation of non-market

values, which is essential to benefit-cost analyses.

Contingent valuation (CV) is often the only available approach to evaluate public

projects. Using CV policymakers can study the provision of non-market goods in

terms that are different from what is observed in revealed behavior data. Surveys

allow researchers to create scenarios and obtain monetary values for different non-

market goods, with different provision rules. This enables policymakers to design
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better projects, aiming at maximum welfare for a given budget constraint. As

highlighted by Carson and Hanemann (2005, pg. 825), “much of the usefulness of

conducting a CV study has nothing to do with explicitly obtaining an estimate of

monetary value”. They argue that CV data provide valuable information about

the distribution of values of a public project, and how this distribution varies with

variables such as demographics and characteristics of the project.

Under the simplest and most commonly used CV question format, the respondent

is offered a binary choice between two alternatives. First, she can vote for maintaining

the status quo policy. Second, she can vote in favor of an alternative policy at a

specified cost. In addition to its simplicity, Carson and Groves (2007) demonstrate

that under certain assumptions dichotomous-choice questions framed as referendum

vote have desirable properties of incentive compatibility.1

Two frameworks provide the econometric foundation for dichotomous choice CV.

Hanemann (1984) and Hanemann and Kanninen (1996) develop random utility

models (RUM) based on differences in the indirect utility functions, comparing utility

before and after the proposed policy.2 Cameron and James (1987) and Cameron

(1988) construct random willingness to pay (WTP) models based on differences in

the expenditure function.3 McConnell (1990) demonstrates that, under a reasonable

set of assumptions, these frameworks are dual to one another.

The utility-theoretic interpretation of the yes/no responses in both RUM and

WTP frameworks are constructed based on agents in social isolation. However,

Chapter 1 develops a utility-based model in which the value of non-market goods

can be affected by characteristics of the respondents’ social network. If a respondent

is altruistic and cares about non-market goods that benefit her friends, the utility

of friends will influence the respondent’s voting decision in a CV survey. Similarly,

1The literature early on recognizes advantages of the binary choice format. The Gibbard-
Satterwaite theorem states that multinomial choice questions (i.e. the respondent is offered k > 2
alternatives) can not be incentive compatible without placing restrictions on the respondent’s utility
(see Gibbard (1973) and Satterthwaite (1975)).

2This approach is often referred to as the Hanemann’s approach.
3This approach is often referred to as the Cameron’s approach.
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friends may also be altruistic and the utility of friends of friends may influence the

voting behavior of the respondent’s friends. This leads to network effects.4

The social structure of the population of interest can be an important determinant

of the shape of the WTP distribution. With social network effects, a respondent’s

vote is influenced by her friends’ votes. Her friends’ votes, in turn, are influenced by

the respondent’s vote. This generates a reflection problem (see Manski (1993, 2000)).

Therefore, an approach to recover non-market values from yes/no CV responses must

be based on the estimation of a discrete choice model with network dependence. This

issue has been, however, overlooked by the empirical non-market valuation literature.

This paper investigates the consequences of ignoring social network effects for

dichotomous choice CV. We built on the work of Cameron and James (1987) to

develop a random WTP model with social networks.5 The model is directly related

to the theory developed in Chapter 1. It can be easily shown that a standard WTP

model utilized in Cameron-like approaches is a especial case of the more general

network formulation developed in this paper. Our econometric specification is similar

to a spatial autoregressive dependent variable model (SAL). The model is constructed

by replacing the traditional weighting matrix of a spatial econometric model, usually

assumed to be a distance matrix, by a row stochastic matrix that represents the social

network.

The main result of the paper is that, in the presence of social network effects,

standard dichotomous choice estimation approaches are inconsistent. Specifically,

when utilities are influenced by social networks, the standard RUM and WTP

models are misspecified. Hence, maximum likelihood estimation of the parameters of

these models is inconsistent because estimation is based on a misspecified likelihood

4As discussed in Chapter 1, altruism is only one possible channel for the interdependence of
respondents’ utilities. Another reason might be joint consumption. If the utility of consuming a
good in social isolation is different from the utility of consuming the same good with friends, joint
consumption may also lead to network effects.

5Our econometric model builds on Cameron’s expenditure difference formulation of dichotomous
choice responses, however, the results can be extended to Hanemann’s utility difference formulation.
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function. The inconsistency arises from the heteroskedasticity induced by the network

dependence in the discrete choice model.

If social networks are an important determinant of WTP, then estimation of non-

market values is more challenging than is currently believed to be. A proper valuation

approach must account for the heteroskedasticity induced by the network dependence.

Moreover, for efficiency to be achieved, estimation must also use all the information

contained in the non-diagonal variance-covariance structure of network models.6

The paper reports results of a Monte Carlo experiment designed to explore how the

bias of standard approaches is influenced by characteristics of the social network and

the intensity of the network effect. In an initial control simulation without network

effects we find that the traditional mean WTP estimation is indeed consistent. Next,

we find that when WTP is influenced by Erdos-Renyi networks, the performance

of the standard estimation approach is negatively affected by the strength of the

network effect, but is not influenced by the density of the network. We also find that,

in networks with high correlation between respondents’ importance (i.e. a measure of

“popularity” of respondents) and private WTP, the estimation bias is very sensitive to

strong network effects. Specifically, the coefficient of variation of of the distribution

of traditional estimates of mean WTP is 308% in such an environment. Finally,

the experiment shows that traditional mean WTP estimates are not reliable when

the data is generated using real world social networks. We use data collected by

Banerjee et al. (2011) of social networks in three rural villages of India to perform

three Monte Carlo experiments. We find that, although the standard approach is

theoretically inconsistent, it performs relatively well for simulations with villages 1

and 2. However, the distribution of estimated mean WTP shifts to the left when

the network of village 3 generates the data. Network-level statistics are not able to

explain this phenomenon. Further research is needed to formally identify the effects

6Refer to Fleming (2004) for a detailed discussion about spatial models with binary dependent
variable. Refer to Bramoullé et al. (2009) for estimation of network models with continuous
dependent variable.
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of the characteristics of real world social networks on standard estimates of mean

WTP.

Our results indicate that social networks place an additional layer of complexity

to benefit transfer. With social network effects, the welfare generated by non-market

goods provision takes place in the context of a particular social structure. A similar

public project in a different location will probably be implemented in a very different

social network. This type of difficulty is usually associated with revealed preference

studies (because observed behavior is a function of the market structure) and should

also be recognized in CV studies.

The remainder of the paper is organized as follows. Section 2.2 presents a network

model of random willingness to pay. Section 2.3 discusses the consequences of

ignoring social networks in dichotomous choice CV. Section 2.4 provides a Monte-

Carlo investigation. Section 2.5 concludes.

2.2 A Stochastic Model of Willingness to Pay in

Social Networks

There are n agents arranged in a social network. Let A be an n × n row stochastic

matrix that represents the network. Diagonal elements of A are equal to zero while

off-diagonal elements are either aij 6= 0, if agent i is influenced by agent j, or aij = 0

otherwise. An element aij (for i 6= j) is the weight of i’s social connection to agent

j. Notice that symmetry of A (typically assumed in spatial models) is not required,

hence, A denotes a directed network.7

Agents have utility over a non-market good that is provided to the entire network.

The goal is to evaluate a public project that yields a discrete increase in the provision

7In spatial models, the matrix A define the spatial lags of the left-hand side variable and it is
typically assumed to be row stochastic and symmetric, e.g. a matrix of relative distances (see LeSage
(1999)).
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of this non-market good. Assume that the willingness to pay for the public project

is given by

WTP∗ = αi + Xγ + βAWTP∗ + ε, (2.1)

where WTP∗ is an n× 1 vector of unobserved willingness to pay, i is an n× 1 vector

of ones, X is an n×k matrix of k exogenous variables, and ε is an n×1 vector of i.i.d.

normal errors, i.e. ε
iid∼ N(0, σ2

ε ).
8 The i-th row of AWTP∗ is a weighted average

of i’s connected agents’ willingness to pay. The intercept of the model is α. γ is a

k × 1 parameter vector that captures the effects of the agents’ own characteristics

X on WTP. β is the network effect parameter that captures the effect of connected

agents’ WTP on own WTP.

The random WTP model is closely related to the network model developed in

Chapter 1. To see this, recall that the respondents’ social utility profile under the

status quo provision level of the public good (g0) is

v(g0) = (I−Λ)u(g0) + ΛAv(g0), (2.2)

and the social utility profile under the policy provision level of the public good (g1)

is

v(g1) = (I−Λ)u(g1) + ΛAv(g1). (2.3)

Subtracting (2.2) from (2.3) we obtain

Cnetwotk = (I−Λ)Cprivate + ΛACnetwork.

The deterministic term αi + Xγ in equation (2.1) corresponds to private WTP.

The innovation of model (2.1) is the introduction of the network term βAWTP∗

8We assume strict exogeneity of X, i.e. E(ε|X) = 0.
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that predicts the impact of connected agents on own valuation. A hypothesis test of

the null H0 : β = 0 is an empirical test of the existence of social network effects.9

Policymakers are interested in estimates of θ = (α, γ, β) to better design policy.

Features of the public project are often included in X along with respondents’

characteristics. With dichotomous choice CV, the econometrician does not observe

WTP. Thus, estimates of θ are obtained through observed voting behavior on “take-

it-or-leave-it” survey questions. Assuming that the structural model (2.1) determines

WTP, section 2.3 discusses the properties of estimates of θ when estimation is guided

by the standard WTP approach that does not account for social network effects.

2.3 Consequences of Ignoring Network Effects

The structural model (2.1) describes a respondent’s latent WTP. Yes/no survey

responses are, however, determined by the reduced form of model (2.1). The reduced

form equation is

WTP∗ = (I− βA)−1αi + (I− βA)−1Xγ + η (2.4)

where η = (I − βA)−1ε. We make the standard assumption that | β |< 1, thus, the

matrix (I - βA) is invertible.10

The paper focuses on the expenditure difference formulation of dichotomous choice

responses (Cameron’s approach), however our results can be extended to the utility

difference formulation (Hanemann’s approach). In a dichotomous choice study we

present respondent i with a “take-it-or-leave-it” offer to vote yes or no for the public

9Notice that the econometric model does not impose the restriction that α+γ+β = 1. This cannot
be done because WTP∗ is measured in dollars and X is not. Hence, β should not be interpreted as
the average degree of social interaction of the population (the parameter λ of Chapter 1). In fact, a
situation in which β is negative is possible and represents environments in which friends negatively
affect social WTP, possibly leading to a situation in which WTP in social isolation is greater than
WTP under network interaction.

10If | β |< 1, then (I−βA) is a strictly diagonally dominant matrix and, by the Levy-Desplanques
theorem, cannot be singular (see Taussky (1949), Theorem I).
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project at cost ti. Assuming that respondents truthfully answer the survey we observe

the following data.

yi =

 1 if WTP ∗i ≥ ti

0 if WTP ∗i < ti

The marginal probabilities are obtained as follows.

Prob
(
yi = 1|X

)
= Prob

([
(I− βA)−1αi

]
i
+
[
(I− βA)−1Xγ

]
i
+ ηi > ti

)
= Prob

(
ηi > ti −

[
(I− βA)−1αi

]
i
−
[
(I− βA)−1Xγ

]
i

)
(2.5)

The network effect introduces an interdependence in WTP ∗i and, as a result, the

reduced form error η is distributed by a n-dimensional multivariate normal, with

mean zero and variance-covariance matrix equal to

E(ηη′) = (I− βA)−1(I− βA)−1′σ2
ε . (2.6)

Denote the i-th diagonal element of (2.6) as σ2
ηi(β), and construct the standardized

variable zi = ηi/σ
2
ηi(β). We can re-write (2.5) as

Prob
(
yi = 1|X

)
= Prob

(
zi >

ti −
[
(I− βA)−1αi

]
i
−
[
(I− βA)−1Xγ

]
i

σ2
ηi(β)

)
.(2.7)

Equation (2.7) highlights the econometric challenge of the estimation of θ. With

no network effects (β = 0) equation (2.7) simplifies to

Prob
(
yi = 1|X

)
= Prob

(
z′i >

ti −
[
αi−Xγ

]
i

σ2
ε

)
, (2.8)

where z′i = εi/σ
2
ε is the standard normal random variable. Equation (2.8) is the

basis for estimation of WTP through standard maximum likelihood approaches.

However, the procedure is based on the diagonal variance-covariance matrix σ2
ε I.
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With independent errors, the likelihood of observing the data is

Πn
i=1

∫ ai

−∞
φ(zi)dzi, (2.9)

where φ is the standard normal pdf, and ai = [1− 2yi][ti − (αi−Xγ)i]/σε.

The variance-covariance matrix of the model is described by (2.6) when there are

network effects. The off-diagonal elements of E(ηη′) are not zero, errors are correlated

and distributed according to a n-dimensional normal. The likelihood of observing the

data is now ∫ a1

−∞
...

∫ an

−∞
f(z)dz, (2.10)

where f is the multivariate normal governing z.11

In summary, the reduced form model that explains yes/no responses has a

heteroskedastic error term. The heteroskedasticity is induced by the social network

structure. This leads to the paper’s proposition.

Proposition 2.1. If respondents consider their social networks when valuing public

projects (i.e. β 6= 0), then the standard approach for estimation of non-market values

is inconsistent.

Proof. Standard estimation uses optimization techniques to maximize the logarithm

of the likelihood function (2.9). The log-likelihood function is

L =
∑n

i=1

{
yilog

[
1−Φ

(
(ti−

[
αi−Xγ

]
i
)/σε

)]
+(1−yi)log

[
Φ
(

(ti−
[
αi−Xγ

]
i
)/σε

)]}
,

where Φ is the standard normal cdf. However, with network effects, i.e. β 6= 0,

the function L is misspecified and estimation must be based on (2.10), and not on

(2.9).

In words, the network structure introduces heteroskedasticity to the WTP

model. Hence, standard approaches that ignore network effects are inappropriate for

11Refer to Fleming (2004) for additional details.

32



estimation of θ because they are not robust to unspecified heteroskedasticity. Clearly,

estimates of mean WTP are also inconsistent. Two facts make this an unsettling

result. First, to the best of our knowledge, the CV literature has failed to attempt

estimation of non-market values accounting for social network effects. Second, the

norm of the profession is to perform CV using dichotomous choice data given the

incentive compatibility properties of this elicitation mechanism.

The paper’s proposition implies that estimation of non-market values based on

dichotomous choice data must use techniques for estimating spatially dependent

discrete choice models.12 In general, these estimators can be divided in two major

groups: heteroskedastic estimators, and full information estimators. Heteroskedastic

estimators address the spatial (or network) dependence issue and provide consistent

estimates of the parameters of the likelihood function. However, consistency relies on

the assumption that the off-diagonal elements of the variance-covariance matrix are

zero.

Full spatial information estimators account for the off-diagonal variance-covariance

terms. These terms are usually not zero in real-world applications with complex social

networks. This highlights a major practical difference between maximum likelihood

estimation with and without networks. The variance structure of the network model

does not allow the simplification of the multivariate normal into the product of

univariate normal distributions. Valuation of the likelihood function is complex

because involves integrating the joint distribution over n dimensions.

According to Proposition 2.1, standard estimation approaches deliver inconsistent

estimates of mean WTP when non-market values are influenced by social networks.

Since the dichotomous choice elicitation format has been so widely used, it is

important to understand how the structure of a network influences traditional

estimates. Next section investigates this question.

12Refer to LeSage (1999), Fleming (2004), and Franzese Jr and Hays (2008) for a discussion of
the estimation challenges related to discrete choice models with spatial dependence.
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2.4 Monte Carlo Experiments

The Monte Carlo experiments examine the random WTP model (2.1). Our goal

is to explore the performance of standard estimation approaches when the social

network term βAY∗ is ignored. To do this, we estimate mean WTP using a maximum

likelihood probit regression model as discussed by Cameron and James (1987). The

dependent variable is a binary indicator for the yes/no response. The policy cost is

included on the right hand side among the explanatory variables X. The parameters

of the latent WTP model are recovered from the probit estimates as demonstrated

by Cameron and James (1987).

We expect that the standard estimation approach performs poorly when β 6= 0

and delivers inconsistent estimates of mean WTP (see proposition 2.1). Our Monte

Carlo experiments aim to explore how the WTP bias reacts to changes in the strength

of the network effect, β, and to changes of the type of network structure.

The setup of each Monte Carlo experiment is the following. We consider a

population of size n = 300. We use the reduced form equation (2.4) to construct

a vector of “true” WTP (i.e. a vector in which element i is the WTP of respondent

i). Next, we generate 1000 Monte Carlo samples by re-sampling the error term (the

Monte Carlo samples are replications of the “true” model). We use the standard

approach to estimate mean WTP in each Monte Carlo sample. Specifically, for every

replication j = 1, ..., 1000, each respondent i = 1, ..., 300 votes yes or no for the

project at cost ti. A “yes” response (yi = 1) is observed if WTPi ≥ ti, “no” (yi = 0)

is observed otherwise. The cost ti faced by respondent i is randomly selected from

the set of the deciles of the original “true” WTP distribution.

The variables of the right hand side of equation (2.4) are determined as follows.

For simplicity, X is assumed to be a single variable. The explanatory variable is

constructed to be orthogonal to the error term ε and the network matrix A as follows.

Define X̃ as a vector with elements increasing in equal increments from X̃1 = 0 to
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X̃n = 1. The vector X is a scrambled version of the vector X̃. The same vector X is

used in every Monte Carlo sample.

The parameters values are fixed as follows.

α = 2 γ = 4

This implies that the deterministic part of the unobserved WTP (i.e. αi+Xγ) ranges

from $2 to $6. We explore four values for β. First we assume β = 0 representing no

network effects. We expect the standard approach to perform very well in this model.

Next we set β equal to 0.25, 0.50, and 0.75, representing environments of increasing

social network effects.

Three types of networks are explored. First we study Erdos-Renyi networks in

which links are i.i.d. and each pair of respondents is connected with fixed probability

d. Second we explore networks with a strong correlation between private WTP

and respondents’ “popularity” (i.e. agent importance in Chapter 1). Finally, we

investigate estimation of WTP using real-world social network data collected by

Banerjee et al. (2011).

As a result, we perform 37 Monte Carlo experiments. The number of experiments

is determined by the number of networks (eight in section 2.4.1, one in section 2.4.2,

and three in section 2.4.3) and the number of βs (0, 0.25, 0.50, and 0.75). Hence, 37

vectors of “true” WTP are generated according to the reduced form equation (2.4).13

The same vector of errors ε, with elements drawn independently from a standard

normal distribution, is used to construct the “true” WTP vector of all experiments.

Therefore, as previously described, we generate 1000 Monte Carlo samples for each

one of the 37 experiments. The size of each sample is equal to n = 300. We construct

these samples by re-drawing 1000 vectors ε. We use the same 1000 error vectors,

together with the fixed vector X, in all experiments. Hence, the differences between

the experiments come exclusively from variations of β and A.

13Number of experiments is equal to the number of networks (12) times the number of βs that
are different from zero (3), plus the model with no network effect (β = 0).
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To evaluate the performance of the standard approach we first compute the

mean WTP Root-Mean-Square-Error (RMSE). For each Monte Carlo experiment,

the RMSE is computed as

RMSE =

√∑r
j=1

(
̂E[WTP ]j−E[WTP ]

)2
r ,

where r is the number of Monte Carlo samples (or replications), ̂E[WTP ]j is the

standard prediction about mean WTP in replication j, and E[WTP] is the “true”

mean WTP. Specifically, the WTP prediction is given by

̂E[WTP ]j =
∑n

i=1 ŴTPij

n ,

where ŴTPij is the estimate of WTP of respondent i in replication j.14 The

RMSE is measured in dollar units and can, therefore, be directly compared with the

“true” mean WTP. The normalization RMSE/E[WTP] is particularly informative and

measures the average bias of the standard approach in percentage terms. We refer to

this value as the coefficient of variation of the distribution of estimated WTP.

Let us first evaluate the performance of the traditional estimator when β = 0. In

this case, there is no network effect and the likelihood function is correctly specified.

Figure B.1 presents the kernel density function of the ̂E[WTP ] obtained through

the r = 1000 trials. The vertical line denotes the “true” value of mean WTP. As

expected, the standard estimator performs well and the coefficient of variation is only

0.0323, i.e. less than 5%. Bellow we examine situations in which β 6= 0.

14WTPij is obtained by plugging the estimates of θ in equation (2.4) and taking the conditional
expectation. Notice that even thought η has a complex variance structure, η is a mean zero error.

36



2.4.1 Erdos-Renyi Networks

Erdos-Renyi networks are a natural starting point for the simulations with β 6= 0.

These networks assume that there is a fixed set of nodes (i.e. n = 300). Each link is

formed with a given probability d, and the formation of links is independent. Let the

network density be the ratio of actual number of links over the maximum possible

number of links (i.e. the relative fraction of existing links). Clearly, the expected

density of Erdos-Renyi networks is equal to the probability of connection d.

We perform 24 simulations using Erdos-Renyi networks.15 We explore four low

density networks (d equal to 0.025, 0.050, 0.075, and 0.1), and four high density

networks (d equal to 0.2, 0.4, 0.6, and 0.8). Table B.1 presents the coefficient of

variation of the empirical distribution of ̂E[WTP ]. Our simulations show that the

coefficients of variation hover around 3% when there is a small network effect of

β = 0.25. This result indicates that, when links are independently formed with fixed

probability, the standard estimation approach, although theoretically inconsistent,

performs remarkably well. In fact, the kernel densities displayed in the first column

of Figures B.2 and B.3 (in the appendix) are similar to the density shown in Figure

B.1, in which the data generating process has no network effects.

The performance of standard approach is, however, unsatisfactory when β

increases to 0.50. The coefficients of variation are approximately 13%. Moreover, the

kernel densities peak to the left of the true mean WTP suggesting that the standard

approach underestimates mean WTP (see second column of Figures B.2 and B.3).

The negative bias is also observed in the Monte Carlo samples with β = 0.75. In

strong network effect conditions, the coefficients of variation are enormous, reaching

123% when d = 0.6. The network density seems to have no impact on the mean WTP

bias for conditions with β = 0.25 and β = 0.50. There is significant fluctuation in the

coefficients of variation of the different density simulations when β = 0.75. However,

it is hard to identify a pattern between network density and these errors.

15We use 8 networks and 3 βs, totaling 24 simulations.
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2.4.2 Matching Importance and Private WTP

In this section, the explanatory variable is constructed to be correlated with the

column sums of the network matrix A as follows. The right hand side variable X

equals X̃, i.e. a (n× 1) vector with elements increasing in equal increments from 0 to

1. Links within columns of the network A are formed with independent probability.

The probability of a link in the first column of A is equal to X1 = 0, the probability

of a link in the second column of A is equal to X2 = 0.0033, the probability of a link

in the third column of A is equal to X3 = 0.0066, and so on. In the last column, the

probability of a link is equal to X300 = 1. The expected density in this network is

0.5. Clearly, there is a strong positive correlation between X and the importance of

respondents. Figure B.4 demonstrates this correlation.

Results again indicate that the performance of the standard approach is satisfac-

tory when β = 0.25 (see Figure B.5). The distribution of estimated mean WTP is

centered around the true value, and the coefficient of variation is again 3%. As in

Erdos-Renyi networks, the performance suffers when β increases. The coefficient of

variation increases to 8% when β = 0.50, and to an impressive 308% when β = 0.75.

This result suggests that a strong correlation between respondents’ importance

and respondents’ exogenous characteristics significantly affects the performance of

standard approaches in environments with strong network effects.

2.4.3 A Real World Social Network

This section uses real network data collected by Banerjee et al. (2011) and made

available by the authors online.16 The data was obtained from a survey of social

networks in rural villages of southern Karnataka, a state in India. Individuals were

asked detailed questions about the relationships they had with others in the village.

This information enables the construction of network graphs for each village.17 This

16Data source: http://dvn.iq.harvard.edu/dvn/dv/jpal/faces/study/StudyPage.xhtml?globalId=hdl:1902.1/16559.
17Refer to Banerjee et al. (2011) for a detalied description of the data.
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section uses data on the first three villages of the dataset. We denote these villages

as Village 1 (n1 = 182 respondents), Village 2 (n2 = 195 respondents), and Village 3

(n3 = 292 respondents). Table B.2 presents characteristics of these networks.18

Figures B.6, B.7, and B.8 confirm that the standard approach is able to deliver

robust estimates in a model with small network effects. When β = 0.25, the

coefficients of variation are below 5% for the Monte Carlo simulations of all three

villages. In Village 1, the coefficients of variation are below 10% even when β is

high. In Village 2, the coefficient of variation is a little above 10% for β = 0.75. In

general, the kernel densities of both villages are centered and the performance of the

traditional mean WTP estimator is relatively good. This is not the case with data

from Village 3. The mode of the estimated mean WTP distributions for the models

with β = 0.5 and β = 0.75 are located significantly to the left of the true mean

WTP. The coefficient of variation for β = 0.5 is 14% and for β = 0.75 is 52%. This

result demonstrate how unpredictable the theoretical bias of the standard estimator

is when WTP is influenced by real world social networks. Drawing conclusions from

the network measures of Table B.2, one would think that the bias increases with

the size of the real world network, and decreases with their transitivity. We are,

however, unable to draw firm conclusions from only three networks. Future work is

needed to explore this issue. For instance, with more network data, identification of

the sensitivity of the standard approach to the network can be accomplished with a

regression of the coefficient of variation on characteristics of the networks.

18A node corresponds to a respondent. The degree of a node is the number of connections of the
node. The average path length is the average distance between any two nodes in the network. The
betweenness centrality captures how important a node is in terms of connecting other nodes. The
closeness centrality tracks how easily a node can reach other nodes. The density is the average
degree divided by n−1. The transitivity measures the probability that the adjacent nodes of a node
are connected. The diameter of a network is the largest distance between any two nodes. Refer to
Jackson (2008) for a detailed explanation of these network measures.
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2.5 Conclusion

There is empirical evidence suggesting that social utility may be an important

component of non-market values.19 Social networks are natural channels for social

preferences to operate through. However, current stated preference approaches

to estimation of non-market values do not explicitly accommodate possible social

network effects.

This paper builds a network model of random willingness to pay to discuss

the consequences of ignoring social network effects in standard approaches for

estimation of non-market values using dichotomous choice data. In our framework,

the probability of yes/no response is governed by the reduced form equation of the

WTP model with networks. The econometric challenge is that, with network effects,

the error term of the reduced form model is not homoscedastic. In fact, the variance-

covariance matrix of the reduced form model is not diagonal. The reduced form errors

are not independent even when the error term of the structural model is homoscedastic

and not correlated. This complex variance-covariance matrix structure is induced by

the social network that correlates the WTP of a respondent to that of her friends.

We use Monte Carlo experiments to investigate the performance of standard

approaches when the data generating process involves a network. We find that the

density of Erdos-Renyi networks does not influence the bias of traditional estimates.

Also, when respondents’ importance is correlated with private WTP, estimates

from the traditional approach that ignores the network structure have coefficients

of variation that can reach 308% of the true WTP value. In addition, standard

approaches are not reliable when the simulations use data collected by Banerjee et al.

(2011) on social networks of three villages in rural India. Finally, in all simulations,

the bias monotonically increases with the strength of the network effect.

19For instance, McConnell (1977) finds that lot of teenagers at a beach make it more attractive
to other teenagers. Timmins and Murdock (2007) show that ignoring congestion leads to an
understatement of more than 50% of the value of a recreation fishing site. Morey and Kritzberg
(2010) use a choice experiment to demonstrate that the presence of a companion can significantly
change the value of mountain bike trails.
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With social network effects, the characteristics of the reduced form error term

invalidate maximum likelihood estimation based on standard probit or logit models.

This presents a great challenge for welfare analysis. Contingent valuation approaches

are valuable because they provide rich information about the distribution of WTP.

Clearly, a better understanding of the WTP variation allows policymakers to design

better public projects. However, failure to account for network effects in the widely

used probit models make it impossible to consistently estimate marginal effects.

Future work should focus on the development of estimation approaches to overcome

these difficulties, allowing researchers to rely on data from the mostly used CV

elicitation format even when responses are influenced by social network effects.
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Chapter 3

Added Surplus and Lost

Bargaining Power in Long-term

Contracting: An Experimental

Investigation

3.1 Introduction

When a firm signs a long-term contract for a building or design project, two things

happen. On the positive side, the long-term relationship allows the linked parties to

make relationship-specific investments that can increase the joint surplus they share.

On the negative side, the long-term contract changes the nature of the bargaining

game the parties face over any subsequent increases in that surplus. This alteration

in the bargaining game can account for why, once the contract is signed, any changes

in the output are more expensive than they would have been before the contract was

signed. The contract transfers bargaining power to the vendor, who then receives a

disproportionate share of any additional surplus.
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This trade-off between surplus gains and bargaining power loss is especially acute

in military procurement, where large weapons systems require long development

processes and frequent changes. Examples abound of projects with long delays and

huge cost overruns, with final price tags often amounting to non-trivial multiples of the

original estimates. The US Department of Defense recognizes the problems inherent

in signing long-term contracts, and its regulations specifically state that before a

multiyear procurement contract can be signed the military must show evidence that a

multiyear contract will lead to substantial savings over a series of single-year contracts,

that the requirements, funding, and design are all stable, and that the cost estimates

are realistic.1 In other words, the Department of Defense seeks to limit long-term

contracts to situations in which the gains from increased surplus can be realized but

where the loss of bargaining power will not come into play.

The purpose of this paper is to explore the trade-off between increased surplus

and altered bargaining power in long-term contracts. We report results of an

experiment designed to capture these two features of the contracting environment.

The experiment involves two players. Player A takes the role of the procurer and

player B takes the role of the vendor in a two-period procurement process. Player A

initially makes a choice between a long-term contract or a sequence of two short-term

contracts. At the time of player A’s choice, both players know how much surplus

will be generated under the short-term and long-term contracts. Under the short-

term contract the players will bargain over two $20 surplus amounts using ultimatum

bargaining with player B making the offer. Under the long-term contract the players

will bargain once over some other fixed and known amount, ranging from $30 to

$50, using a dictator game with a restricted offer space and player B again making

the offer. So, in choosing the long-term contract player A loses bargaining power by

switching from being the receiver in two ultimatum games to being the receiver in a

single dictator game, but also changes the surplus to be shared, in some treatments

increasing it by $10.

1See GAO (2009), available at www.gao.gov/assets/290/287947.pdf .
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The paper investigates whether the changes in bargaining power lead to welfare

losses in the sense that the procurer foregoes additional surplus in order to retain

bargaining power. The results are striking. Three quarters of subjects give up the

additional $10 surplus (i.e. an increase of 25% of the surplus to be shared) when

obtaining it requires moving to a standard, unconstrained dictator game. Even when

the dictator offers are constrained so that the recipient is guaranteed at least $10 from

the $50 dictator endowment, half of the subjects still opt for the greater bargaining

power provided by the two $20 ultimatum games. This result is especially notable

when one considers that the ultimatum game offers only very weak bargaining power,

as the standard game theoretic solution suggests that the receiver earns $0 in both

the ultimatum and the unconstrained dictator games.

The game as designed has a gift exchange component. To understand how,

consider player A’s choice between playing the dictator game or the two ultimatum

games. Choosing the dictator game constitutes a gift to player B in that player A

cedes the right to reject player B’s offer, giving player B more freedom to take a

larger share of the endowment. If player B is reciprocal, player B might make a

higher offer to A in the dictator game than in the two ultimatum games. Moreover,

if the dictator game is a gift from player A to player B, the size of the gift increases

with the endowment received by player B, and decreases with the minimum allowable

offer in the constrained dictator games. We find mixed evidence that reciprocity is

organizing the data. Player A chooses the dictator game more often when the surplus

grows from $30 to $50, however this may also be a reflect of efficiency preferences.

Moreover, player A is more likely to choose the dictator game when the minimum-

allowable offer is higher. These results suggest that the bargaining power obtained

by player A through the constraint on player B’s offer crowds-out any reciprocity

motivation that player A might have. In fact, player A’s average payoff is higher with

the sequence of two ultimatum games demonstrating that possible reciprocity beliefs

are misplaced.
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The paper relates to an established literature on contracting structures and

efficiency. Klein, Crawford, and Alchian (1978) and Williamson (1983) conclude

that long-term contracts provide the incentive for more efficient relationship-specific

investment by reducing the possibility of ex post opportunism behavior or the holdup

problem. Crawford (1988) writes a model in which parties have perfect information

and perfect foresight, however, short-term contracts must be voluntarily negotiated

in the bargaining environments created by earlier contracts. Crawford shows that

a sequence of short-term contracts distorts investment decisions only when the

efficient investment plan involves mainly sunk-costs and the relationship plays a

consumption-smoothing role, with a general tendency to underinvest. Fudenberg

et al. (1990) develop a principal-agent model in which the agent is always at least as

well informed as the principal. They find that the timing of the agent’s information

advantage is central for determining the value of long-term contracts. Long-term

contracts are efficient if the principal and the agent have the same beliefs about future

payoff. Hence, long-term contracts are beneficial only to avoid recontracting under

asymmetric information. Rey and Salanie (1990) consider multi-period principal-

agent relationships to show that a sequence of short-term contracts can be as efficient

as long-term contracting when there is no asymmetric information at the recontracting

dates. Anderson and Devereux (1991) study contract structures in a labor market

in which a monopoly trade union supplies labor to an industry. They explore the

trade-off between the wage precommitment of long-term contracts and the wage

flexibility of short-term contracts. They find that long-term contracts are beneficial

in industries with flexible techniques (i.e. high degree of complementarity between

factors of production) and with relatively stable output prices. Theilen (2011) writes

a principal-agent model relaxing the assumption that the contractor (principal) has

all the bargaining power and that the contractee and subcontractee (agents) have

none. He finds that a centralized structure is not always preferable to a decentralized

structure.
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More recently, the efficiency of contracts has also been studied in bargaining

experiments. In an experimental paper, Cabrales et al. (2011) explore the effect of

different degrees of bargaining power on the design and the selection of contracts in

a hidden-information context. They find that when principals compete against each

other to hire agents of unknown types, inefficiencies generated by the information

asymmetries may disappear. However, when agents compete to be hired, efficiency

improves dramatically. Cabrales and Charness (2011) analyze an experiment in which

a principal offers one of three possible contract menus to a team of two agents of

unknown type, with both agents’ participation needed for production. They observe

that rejection of contract menu offers depends on how discriminating the offers are,

concluding that there is a trade-off between overall efficiency and the distribution of

earnings in relation to the rejection payoffs.

Finally, the paper contributes to a growing literature that studies contracting in

the context of social preferences. MacLeod (2007) concludes that when the party

with the bargaining power in a surplus-generating relationship has some taste for

honesty, and reciprocates good behavior, parties can achieve close to the first best,

with cooperation decreasing as we reach the end of the relationship. Von Siemens

(2009) develops a model of ultimatum bargain in which the vendor’s type varies in

the level of fairness and is private information. He finds that investments may affect

the procurer’s beliefs about the vendor’s type and hence the procurer’s bargaining

behavior, which can generate strong incentives to invest. Hart and Moore (2008)

argue that contractual performance depends on whether the trading parties are able

to realize the profits they believe themselves to be entitled to. If expected profits are

not realized, they feel mistreated and engage in punishing behavior. This negative

reciprocity leads to welfare losses. Fehr et al. (2011) provide an experimental test of

Hart and Moore’s theory. Their experiment is designed as follows. A buyer determines

what type of contract to offer, a rigid or a flexible contract. In a second stage contracts

are auctioned off in a competitive setting. The theory predicts that rigid contracts

will ensure the delivery of high quality by the sellers. Fehr et al. find that sellers shirk
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less often when paid a low price if the buyer defers price determination to the market

process rather than choosing a low price directly in a rigid contract. This finding

supports the view of rigid contract prices as reference points. Similar experimental

evidence is obtained by Charness (2004). His results show that reciprocity is lower

when wage is determined by a third party. Reference point effects are also observed

in an experiment by Erlei and Reinhold (2012). However, in contrast to Fehr et al.

(2011) the magnitude of these effects is only small. Erlei and Reinhold introduce a new

treatment in which contract types are exogenously determined by the experimenter.

They find that negative reciprocity leads to more shading than Fehr et al. with respect

to endogenously chosen rigid contracts. They argue that this happens because sellers

punish buyers for choosing rigid contracts.

The reminder of the paper is organized as follows. Section 3.2 presents the

theory and predictions. Section 3.3 describes the experimental design. Section 3.4

discusses the results. Section 3.5 investigates behavior through the lens of a theory

of reciprocity. Section 3.6 concludes.

3.2 Theory and Predictions

Two players, A and B, are in a surplus-generating relationship that lasts for n periods.

Player A chooses whether to govern the relationship with a single long-term contract

or a series of short-term contracts. This choice impacts the relationship in two ways.

First, it changes the total amount of surplus to be shared over the n periods.

Let VL denote the total surplus generated when the contract governs all n periods,

and let VS denote the per-period surplus when the relationship is governed by single-

period contracts. In general nVS 6= VL, and one could easily envision reasons why

the inequality might go either way. If a long-term contract allows one party to make

long-term relationship-specific investments but the series of short-term contracts does

not, one would expect nVS < VL. On the other hand, if the long-term contract allows
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one or both of the players to shirk in their effort decisions, one would expect nVS > VL

because renegotiation of short-term contracts allows for punishment of this shirking.

The second change instituted by the long-term contract is that it alters the

bargaining power of the two parties. To capture this, let αS denote player A’s share

of the surplus under a short-term contract, and let αL similarly denote player A’s

share under a long-term contract. Likewise, let βS and βL denote player B’s short-

term and long-term shares, respectively, with αS + βS = αL + βL = 1. Again, the

change in bargaining power could go in either direction. One possibility is that when

A chooses a long-term contract, that contract encourages player B to inflate his costs

to capture more of the long-term surplus. In this case αS > αL. Of course, the

long-term contract might instead allow player A to inflate her costs at B’s expense,

in which case αS < αL.2

The basic premise for the paper is that when player A chooses a long-term contract

over a series of short-term ones, she institutes a trade-off between increased total

surplus and reduced bargaining power, so that nVS < VL but αS > αL. When player

A chooses a long-term contract her payoff is αLVL, and when she chooses a series of

short-term contracts her total payoff is nαSVS. Obviously, she chooses the long-term

contract if and only if

αLVL ≥ nαSVS.

In the experiment, the sequence of short term contracts is implemented using

a sequence of two $20 ultimatum games. Player A, who chooses between the two

contracts, is the receiver in both ultimatum games, and player B is the proposer. The

timing of the ultimatum games is as follows. Player B makes an offer 0 ≤ x1 ≤ 20

in the first ultimatum game, and player A chooses whether to accept or reject. If she

rejects, both players receive payoffs of zero and the game ends. If she accepts, their

payoffs are locked in and they move on to the second ultimatum game, with player

2Player A’s effective bargaining power might also be impacted by any feelings of reciprocity that
A’s contract choice generates in player B. We explore this idea separately in Section 5.
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B making an offer 0 ≤ x2 ≤ 20 and A accepting or rejecting. If A rejects they both

receive their payoffs from the first game but nothing else, that is, A receives x1 and

B receives 20 − x1. If A accepts they both receive the agreed-upon payments from

both ultimatum games, that is, A receives x1 + x2 and B receives 40− x1 − x2.

If players behave according to the standard theoretical paradigm with purely

self-interested players and subgame perfection, A accepts any offer and B offers

zero. For these selfish, backward-inducting players, then, the appropriate bargaining

power levels are αS = 0 and βS = 1. The ultimatum game is so widely used in

the experimental literature, however, precisely because the selfish subgame perfect

equilibrium prediction fails. In that literature offers tend to be around 40% of the

surplus (see Camerer (2003) for a review), so a more likely level of bargaining power

for short-term contracts has αS = 0.4 and βS = 0.6.

The experiment implements the long-term contract scenario using a single

constrained dictator game with player A acting as the receiver. This game is governed

by two parameters: the total surplus to be shared (VL) and the minimum allowable

offer (m). Player B can choose any amount m ≤ x ≤ VL to give to player A. The

payoffs are then x for player A and VL − x for player B.

In the standard theoretical paradigm with purely self-interested players, B gives

the minimum allowable amount m to player A. The experimental literature contains

many studies with dictator games in which m is zero, and the average amount given

is about 20% of the surplus. If this continues to hold for the experiment used here,

an empirically likely level of bargaining power for long-term contracts has αL =

max
{

0.2, m
VL

}
.

Whether player A should opt for the long-term contract or the sequence of short-

term contracts depends on both the size of the long-term surplus, VL, and her beliefs

about bargaining power. In keeping with previous notation, suppose that player A

believes that she will receive a share α̂S of the ultimatum game surplus and a share α̂L

of the dictator game surplus when there is no minimum offer constraint. She chooses

the sequence of short-term contracts if and only if
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40α̂S ≥ max{m, α̂LVL}.

This consideration leads to our first two hypotheses.

Hypothesis 1. Increases in the size of the long-term contract surplus VL make it

more likely for player A to choose the long-term contract.

Hypothesis 2. Increases in the minimum allowable dictator offer m make it more

likely that player A chooses the long-term contract.

A third hypothesis arises from thinking about likely values of α̂S and α̂L. If beliefs

are driven by standard game-theoretic constructs, both α̂S and α̂L are zero and player

A chooses the long-term contract if and only if m ≥ 0. On the other hand, if beliefs

are consistent with laboratory behavior so that α̂S ≈ 0.4 and α̂L ≈ 0.2, then given

that the ultimatum games have surpluses of $20 each she should opt for the sequence

of short-term contracts unless either m ≥ 16 or VL ≥ 80. None of our experimental

treatments have parameters this large, so under this rational expectations assumption

she should always choose the short-term contract. This leads to our final hypothesis.

Hypothesis 3. Player A’s average payoffs are higher with short-term contracts for

all parameter values.

In the experiment we use three different values for the dictator-game surplus

(VL = 30, 40, 50) and we use three different values for the minimum allowable dictator

offer (m = 0, 2, 10). If play in the ultimatum and dictator games is consistent with

behavior in other experiments, so that the receiver averages 40% of the ultimatum

game surplus and 20% of the dictator game surplus, then player A’s expected payoffs

from the sequence of short-term contracts should average $16, and her average payoffs

from the long-term contract should follow the pattern in Table C.1.
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3.3 Experimental Design

A total of 268 subjects were recruited from the undergraduate student body at the

University of Tennessee-Knoxville in the fall of 2010. The experiment was conducted

in 12 sessions in the UT Experimental Economics Laboratory. The laboratory con-

sisted of 24 networked computer workstations in separate cubicles. The experiment

was implemented on the computers using custom-made software programmed in

Java.3 All experimental sessions lasted around 1 hour and participants’ average

earnings were $17.62.

Participants played four different types of games.4 A game requires two players, A

and B. At the start of the experiment, subjects were randomly assigned to the role of

either player A or B, and remained in the assigned role throughout the experiment.

In each game, participants were randomly matched with a different player of the

opposite type. It was carefully explained that neither player will ever learn with

whom they were paired.

In each game, player A moves first by selecting one of two options. First, player

A can be a recipient in a sequence of two ultimatum games. This option represents

A’s preference for a sequence of two short-term contracts. Alternatively, player A

can be a recipient in one dictator game. This option represents A’s preference for the

long-term contract.

The two ultimatum games are played as described in the preceding section. The

rules of the dictator game define our treatments. Dictator games differ in two

dimensions: i) the endowment of the game, and ii) restrictions on player B’s action

space. In our baseline treatment the endowment of the dictator game is $40 and

no restrictions are placed on B’s offers, i.e. the minimum allowable offer m is zero.

Hence, our baseline treatment involves a standard dictator game over $40. We refer

to this treatment as No-40, where the notation “No” indicates that no restrictions

are placed on B’s offer and the “40” indicates the size of the surplus.

3Screen shots are available in the Appendix.
4This paper, however, focuses on three games.

51



Treatments No-30 and No-50 are identical to the baseline treatment except that

the endowments are $30 and $50, respectively. These treatments capture the fact that

long-term contracts may have lower or greater surplus when compared to a sequence

of short-term contracts. Our next treatments involve a small increase in player A’s

bargaining power in the dictator game by restricting B’s minimum allowable offer to

$2, i.e. m = 2. Three treatments involve this restriction: Low-30, Low-40, and Low-

50. The increase in bargaining power is “low” because, according to the empirical

belief α̂L = 0.2, the restriction m = 2 does not bind (see Table C.1).

Completing the experimental design are three discrete dictator treatments: High-

30, High-40, and High-50. In these treatments, dictator games are again played over

$30, $40, and $50, however, B’s offer is restricted to be either $10 or half of the

total endowment, i.e. $15, $20, or $25, respectively. These are our high bargaining

power treatments in which A is guaranteed a minimum of $10 in the dictator game,

i.e. m = 10. In all treatments, player B’s splitting choices are restricted to whole

numbers.

Each subject played three games holding the dictator game constant at either $30,

$40, or $50, but varying the bargaining power between no bargaining power (m = 0),

low bargaining power (m = 2), and high bargaining power (m = 10). The order of

the games was randomized. Table C.2 shows how the 397 observations are distributed

throughout the treatment cells.5

3.4 Results

We begin by presenting player A’s behavior on the first choice. Overall, 26% of the

subjects choose the dictator game. Figure C.1 shows A’s first choice broken down

by the endowment of the dictator game. Pooling across all game types, an increase

of the endowment of the dictator game leads to an increase of the share of subjects

5Five observations were lost due to technical problems in the computer recording processes.
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choosing the dictator game. However, this increase is not statistically significant from

treatment 30 to treatment 40.6

Figure C.2 shows A’s first choice broken down by the amount of bargaining power

that A holds in the dictator game. Pooling across endowments, an increase of A’s

bargaining power in the dictator game leads to an increase of the share of subjects

choosing the dictator game. However, this increase is not statistically significant from

treatment No to treatment Low.7

Figure C.3 shows, for each treatment cell, the proportion of subjects that choose

the dictator game. Holding constant the action space for the dictator game, an

increase of the endowment of the dictator game leads to an increase of the share

of subjects choosing the dictator game. However, the only statistically significant

difference in proportions is the one between treatment High-40 and treatment High-

50.8

We obtain evidence in support of Hypothesis 1. We observe the following

relationship between player A’s first choice and the surplus to be shared in the dictator

game.

Result 1. Holding B’s action space constant, the probability that player A chooses

the dictator game increases as the endowment of the dictator game increases from

$30 to $50.

Holding constant the endowment of the dictator game, we find the puzzling pattern

that dictator game choice frequency rises with the amount of bargaining power for

6Two-sided tests on the equality of proportions: H0: Prop(30) = Prop(50) with P-value = 0.0009,
H0: Prop(30) = Prop(40) with P-value = 0.1312, and H0: Prop(40) = Prop(50) with P-value =
0.0722.

7Two-sided tests on the equality of proportions: H0: Prop(No) = Prop(Low) with P-value =
0.8054, H0: Prop(No) = Prop(High) with P-value = 0.0167, and H0: Prop(Low) = Prop(High)
with P-value = 0.0326.

8Figure C.3 makes it readily apparent that differences between No-40 and No-50 and differences
between High-30 and High-40 cannot be statistically significant. For the remaining comparisons the
two-sided tests on the equality of proportions are as follows: H0: Prop(No-30) = Prop(No-40) with
P-value = 0.2928, H0: Prop(Low-30) = Prop(Low-40) with P-value = 0.1051, H0: Prop(Low-40)
= Prop(Low-50) with P-value = 0.3617, and H0: Prop(High-40) = Prop(High-50) with P-value =
0.0433.
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two surplus levels but not for the third. The share of subjects who choose the dictator

game when the endowment is $30 more than doubles from 11% in treatment Low-30

to 27% in treatment High-30. For the larger endowment of $50, the share of subjects

choosing the dictator game doubles from 25% in treatment No-50 to 49% in treatment

High-50. In contrast, for the $40 endowment we find no statistical evidence that the

proportion of subjects choosing the dictator game varies according to the bargaining

power.9

In general, we obtain evidence in support of Hypothesis 2. The following result

describes A’s behavior with respect to B’s minimum allowable offer in the dictator

game.

Result 2. Holding the endowment of the dictator game constant, the probability

that player A chooses the dictator game increases as B’s minimum allowable offer in

the dictator game increases from $0 to $10.

Hypothesis 3 concerns player A’s earnings across the two contract choices, and

discussing those requires looking at player B’s offers. Accordingly, we now to player

B’s offer in the dictator game. Table C.3 shows B’s average offer in the dictator

game in each treatment cell. Sample sizes are reported because we did not utilize

the strategy method, and therefore the experiment only generated observations when

player A actually chose the dictator game. The small sample sizes lead to low power

statistical tests, but the following broad patterns emerge. First, on average offers

amounted to 28% of the endowment, which is higher than the usual amount for

laboratory dictator games. Part of this may be due to the constraints on the dictator

offers, as offers in the no bargaining power treatments are 11%, 22%, and 22% of

the $30, $40, and $50 endowments, respectively. Second, moving down the columns

shows that even though the offer limit m does not bind the average, a small increase

in receiver bargaining power from m = 0 to m = 2 increases average offers by about

9Two sided tests on the equality of proportions. H0: Prop(Low-30) = Prop(High-30) with P-
value = 0.0525, H0: Prop(Low-40) = Prop(High-40) with P-value = 0.7140, and H0: Prop(No-50)
= Prop(High-50) with P-value = 0.0197.
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$5 for the $30 and $40 endowments and by $2.60 for the $50 endowment.10 Third,

moving across the rows shows that offers increase when the endowment improves from

$30 to $40.11 Offers, however, do not increase when the endowment rises from $40 to

$50.12 Finally, with the single exception of the High-30 treatment, offers are at least

as high as those predicted in Table C.1.

Table C.4 shows player B’s average offers in the ultimatum games. These offers

hover around 40% of the $20 endowment, which is consistent with behavior observed

in other laboratory ultimatum game experiments. Strikingly, there is no variation

across treatments.

Table C.5 summarizes information about average payoff of player A. We find

evidence in favor of Hypothesis 3. Player A is better off choosing the ultimatum

games as opposed to the dictator game in six of the nine treatments (the exceptions

are Low-50, High-40, and High-50). Because the experiment only generated data

for dictator games when subjects actually chose the dictator games, statistical tests

between the payoffs are impossible for some of the cells. Every time we have the power

to reject the null that player A’s average payoff is different between the ultimatum

and dictator games, though, the two-sided t-test favors the ultimatum games (No-30,

No-40, Low-30, and High-30). This leads to our next result.

Result 3. In general, player A’s average payoff is higher with the sequence of two

ultimatum games.

A major concern of this paper regards the trade-off implicit in the signing of long-

term contracts. Entering into a long-term contract can increase the surplus to be

10Two sided t-tests. H0: Mean(No-30) = Mean(Low-30) with P-value = 0.0821, H0: Mean(No-40)
= Mean(Low-40) with P-value = 0.2175, and H0: Mean(No-50) = Mean(Low-50) with P-value =
0.5332.

11Two sided t-tests. H0: Mean(No-30) = Mean(No-40) with P-value = 0.2304, H0: Mean(Low-30)
= Mean(Low-40) with P-value = 0.1572, and H0: Mean(High-30) = Mean(High-40) with P-value =
0077.

12Two sided t-tests. H0: Mean(No-40) = Mean(No-50) with P-value = 0.6194, H0: Mean(Low-40)
= Mean(Low-50) with P-value = 0.9769, and H0: Mean(High-40) = Mean(High-50) with P-value
=0.6916.
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shared by the two parties, but at the cost of reducing the bargaining power of one of

those parties. The game subjects faced allows player A to choose between a long-term

contract and a short-term contract, and treatments vary according to the size of the

surplus in the long-term contract and the amount of bargaining power retained by

player A in the long-term contract.

The clearest trade-off between efficiency and bargaining power arises in the No-

50 treatment, where player A has the choice between retaining some bargaining

power through the two $20 ultimatum games or giving up all bargaining power but

participating in a $50 dictator game. In this treatment, 75% of the subjects chose

the bargaining power (see Figure C.3), foregoing the additional surplus, suggesting

that diminished bargaining power can be a serious detriment to realizing long-term

gains from trade. Similar patterns emerge for the other $50 constrained dictator

treatments, with 67% of player As in the Low-50 and 51% of the player As in the

High-50 treatment also choosing to forego the additional surplus from the long-term

contract.13

The treatment High-30 allows consideration of the same issue but in the opposite

direction. In this case player A has significant bargaining power in the constrained

dictator game, because player B’s only possible offers are $10 and $15. The issue

arises as to whether player A elects to guarantee a payoff of at least $10 but at the

expense of generating $10 less surplus. 27% of player As made this choice.14 This

rate of surplus-avoidance is smaller than in the $50 surplus cases, but the lower rate

is consistent with the fact that, according to Table 5, player A earns an average of

$4.50 more playing the ultimatum games than the dictator game in this treatment.

13All of these proportions differ significantly from zero at the P = 0.000 level.
14This proportion differ significantly from zero at the P = 0.000 level.
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3.5 Reciprocity

The results from section 3.4 show that when trading off bargaining power against

added surplus to be shared, choices often favor bargaining power. The experimental

design allows us to address additional issues that are interesting in their own light.

Let us start by examining what beliefs player A holds when making the original

choice. As noted in Section 3.2, if player A forms beliefs according to standard,

self-interested game theory, player A should choose the dictator game 100% of the

time in the Low and High bargaining treatments. Subjects clearly did not behave

this way. If, instead, player A forms beliefs consistent with typical play in laboratory

ultimatum and dictator experiments, she should choose the ultimatum games 100%

of the time. The answer seems to be somewhere in between and may be driven by

beliefs about reciprocity.

Reciprocity beliefs are possible because the game, as designed, has a gift exchange

component. To see how, consider the No-40 treatment in which player A chooses

between two $20 ultimatum games and a standard $40 dictator game. Choosing the

dictator game constitutes a gift to player B in that player A cedes the right to reject

player B’s offer, giving player B more freedom to take a larger share. If player B is

reciprocal, player B might give A a larger share of the $40 in the dictator game than

in the ultimatum games. The No-50 treatment has a bigger gift, in that choosing the

dictator game not only cedes complete control to player B but also increases the size

of B’s endowment. By the same token, the Low-40 treatment has a smaller gift than

the No-40 treatment because player A cedes less control to player B when choosing

the constrained dictator game than when choosing the unconstrained dictator game.

In general, the gift embodied in the dictator game choice is larger as one moves from

left to right in a row of Table C.3 and as one moves from bottom to top in a column

of Table C.3.

It is possible to adapt the model of Section 2 to account for reciprocity. Because

Table 4 shows that ultimatum offers do not seem to vary with the treatment, we
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restrict attention to the effects of player B’s reciprocity on dictator offers only. Let

α̂L(m,VL) denote player A’s beliefs about the share player B will offer in a dictator

game with minimum offer m and surplus VL. The size of A’s gift to B decreases in m

and if smaller gifts lead to less reciprocity, α̂L is decreasing in m. Similarly, the size

of A’s gift to B increases in VL and if larger gifts lead to greater reciprocity, α̂L is

increasing in VL. Player A chooses the sequence of short-term contracts if and only if

40α̂S ≥ max{m, α̂L(m,VL)VL}.

This analysis provides an additional motive for player A to choose the long-term

contract: she might believe that her returns from giving gifts will exceed her returns

from retaining bargaining power.

The function α̂L(m,VL) is reminiscent of the emotional state function posited by

Cox et al. (2007). In their model a player’s emotional state determines the marginal

rate of substitution between own payoff and others’ payoff, and the emotional state

depends on both the size of the gift and the players’ reletive social status. They

provide empirical evidence that supports their theory and find that other-regarding

preferences may indeed depend on reciprocity. The function α̂L(m,VL) can be thought

of as a reduced-form representation where player A believes the size of the gift impacts

player B’s emotional state which in turn affects B’s dictator offer to A.

The gift exchange theory predicts that as the size of the dictator-game surplus

increases, the size of the gift entailed by choosing the dictator game increases, and

so subjects should choose the dictator game with higher frequency. This behavior

generates exactly the same pattern as Hypothesis 1. The gift exchange theory also

predicts that as the minimum-allowable offer increases, the size of the dictator game

“gift” shrinks, and so subjects should choose the dictator game with lower frequency.

This patter runs exactly opposite of Hypothesis 2. Since the model of Section 2 was

built entirely on the idea of perceived bargaining power, looking at how contract

choices compare as the minimum-allowable offer changes provides a test of the gift-

exchange model against the bargaining power model.
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Figure 1 shows that player A chooses the dictator game more often when the

surplus grows, a result consistent with both models. Figure 2 shows that player

A’s contract choices are more consistent with the bargaining power model than the

reciprocity-based one, with subjects more likely to choose the dictator game when

the minimum-allowable offer is higher. Figure 3 breaks this down by surplus size,

and the only statistically significant changes in behavior have player A taking the

dictator game more frequently, not less frequently, when the minimum-allowable offer

increases. This is evidence that, if reciprocity plays any role in contract choice, it

is crowded-out by the demand for bargaining power. In fact, when the change in

bargaining power is large (from Low to High), the change in behavior is also large

and in the direction predicted by the bargaining power model. The frequency of

dictator game choices increases from 23% in Low to 35% in High.

Despite this, there is evidence that reciprocity plays some role in behavior, and this

can be found from player B’s allocations in the dictator game. As Table C.3 shows,

offers are much smaller in the No-30 treatment than in any of the other treatments,

and about half of the standard 20% benchmark. Choosing the dictator game in this

treatment is a negative gift because it reduces the surplus, and it leads to negative

reciprocity. As for the other treatments, offers do increase weakly as one moves from

left to right in the first two rows of Table C.3, but we are hesitant to overplay this

because the increase could also simply reflect the larger endowment player B has

available to share. In our High discrete offer space treatment, in which B can offer

either $10 or half of the endowment, we observe that players offer the fair split only

8% of the time in treatment High-30. That proportion grows to 27% in treatment

High-50.15 It must be said that, again, this might be an endowment effect as opposed

to evidence of reciprocity.

Another test of reciprocity would come from looking at the columns of Table C.3,

with reciprocity predicting higher offers with movements up a column. Giving up the

15The fair split accounts for 50% of offers in treatment High-40. Thus, the proportion of type
B players choosing to be fair does not monotonically increase with the endowment of the dictator
game (the gift).
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bargaining power associated with the right of refusal in the two ultimatum games

constitutes a larger gift when the alternative is an unconstrained dictator game than

when there is a minimum allowable offer. The evidence in Table C.3 shows that

offers increase with movements down the column, not movements up the column as

reciprocity predicts. This is not a clean test, however, because movements down the

column restrict the offers the dictator can actually make. Nevertheless, this provides

further evidence suggesting that bargaining power may, in fact, crowd-out reciprocity.

If one takes the gift exchange argument seriously, then one should also find an

effect in the ultimatum game offers. This time, though, if choosing the dictator game

is a positive gift then choosing the ultimatum game is a negative gift, and so gift

exchange would suggest lower offers as one moves to the right along a row in Table

C.4 and higher offers as one moves down a column. Once again the reciprocity pattern

does not seem to fit the data in Table C.4. For instance, the large negative gift entailed

in choosing the dictator game in No-30 does not correspond to a large positive gift

from choosing the ultimatum game instead. The lack of response in the ultimatum

offers may simply be driven by the fact that A can reject low offers, in which case

this provides further evidence that bargaining power crowds out reciprocity.

A final opportunity for identifying if player A believes in reciprocity comes from

A’s rejection behavior in the ultimatum games. To see how this works, compare two

treatments, No-40 and High-40. In the baseline game No-40 player A’s initial choice

involves either two $20 ultimatum games or a single, unconstrained $40 dictator game.

In High-40 the unconstrained dictator game is replaced by a constrained one in which

B can only offer $10 or $20. Choosing the dictator game in No-40 is more of a gift

to player B than choosing the dictator game in High-40. Conversely, choosing the

ultimatum games in High-40 is more of a gift than choosing the ultimatum games in

No-40. If player A believes that choosing the ultimatum games in High-40 is, in fact,

a gift to player B, then she would expect B to reciprocate with higher offers in those

games. If she receives a low offer, she would be more likely to reject than if she had
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not given a gift, so we would expect to see higher ultimatum game rejection rates,

conditional on the offer level, in High-40 than in No-40.

Table C.6 shows the marginal effects from Probit regressions on A’s ultimatum

game rejection decisions with P-values in parentheses. Column (1) conditions only on

the amount being offered, and column (2) controls for the second ultimatum game.

The results show that A is less likely to reject a higher offer, as expected, and also

more likely to reject in the second round than in the first. Column (3) controls for

A’s initial gift of giving up the high bargaining power in the High-30, High-40, and

High-50 treatments by using treatment dummy variables. This coefficient is positive,

which is in line with a hypothesis that player A believes that choosing the ultimatum

games constitutes a gift, but it is not statistically significant. Column (4) adds a

dummy for the No-50 treatment, which represents the most negative “gift” player A

can give to player B. Choosing the dictator game in No-50 gives B complete freedom to

allocate the largest surplus available with no constraints whatsoever, while choosing

the ultimatum games instead both reduces the surplus and gives A bargaining power.

If A recognizes the ultimatum game as a negative “gift,” she would follow up by being

more lenient in rejecting offers and one would expect a negative coefficient on the No-

50 dummy. The coefficient is negative, but far from significant. The addition of the

No-50 dummy almost makes the High Bargaining treatment coefficient statistically

significant, providing the closest evidence from this analysis that player A believes in

a gift exchange paradigm.

The intriguing appeal of the gift exchange argument is that it provides an

explanation for why subjects might choose the dictator game and lower bargaining

power in the first place. If they think that player B will view the dictator game as a

gift and then reciprocate, they might believe that their payoffs will be higher in the

dictator game than in the sequence of ultimatum games. Table C.5 shows that these

beliefs are misplaced, however, and that player A ultimately earns more on average

by choosing the ultimatum games.
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3.6 Conclusion

This paper reports results of a bargaining experiment in which the first mover (the

procurer) selects whether to be the recipient in a single-shot dictator game or in

a sequence of two $20 ultimatum games. The second mover takes the role of the

vendor. Our treatments modify the dictator game in two dimensions. First we vary

the endowment received by the vendor in the dictator game to amounts that are lower

($30), equal ($40), or higher ($50) than the total endowment of the ultimatum games.

Second we vary the minimum-allowable offer in the dictator game from $0 to $2, and

then to $10.

The game design allow us to study a procurer’s decision between offering a vendor

a long-term contract (implemented through the dictator game) or a sequence of short-

term contracts (implemented through the ultimatum games), exploring the trade-off

between added surplus and lost bargaining power in long-term relationships. We

find that 75% of the participants prefer to retain the bargaining power provided

by the accept/reject decision in the sequence of ultimatum games as opposed to

engage in a unconstrained dictator game played over the bigger endowment of $50.

Moreover, even when the dictator’s offer is restricted to a minimum of $10, the share

of subjects selecting the dictator game over $50 increases to only 49%, a striking result

considering that backward-inducting game theory predicts that the procurer would

receive $0 in the sequence of ultimatum games. This result suggests that diminished

bargaining power can be a serious detriment to realizing long-term gains from trade.

We also explore behavior through the lens of a theory of reciprocity. This is

possible because the experiment, as designed, has a gift exchange component. The

dictator game can be viewed as a gift from the procurer to the vendor because the

procurer forgoes the right to reject the vendor’s offer. The size of the gift is positively

correlated with the endowment of the dictator game. The gift, however, decreases

with the minimum-allowable offer imposed to the vendor in the dictator game. If the

procurer has reciprocity beliefs, she may choose the dictator game more often when it
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constitutes a bigger gift in hope that the vendor reciprocates by offering a high share

of the endowment.

Reciprocity can be an important aspect of contracting. As argued by MacLeod

(2007), surplus-generating relationships are more efficient when the party with the

bargaining power has some taste for honesty, and reciprocates good behavior. In

our experiment, however, we find mixed evidence of reciprocity beliefs. Although

participants choose the dictator game more often when its endowment increases, they

select the dictator game more often when the minimum allowable offer increases (i.e.

decreasing the gift). Also, the procurer’s average payoff is higher with the sequence of

two ultimatum games. These results suggest that feelings of reciprocity are crowed-

out by a preference for bargaining power. Hence, in our experiment, reciprocity is

not able to prevent efficiency losses.
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Bramoullé, Y. and Kranton, R. (2007a). Public goods in networks. Journal of

Economic Theory, 135(1):478–494. 5
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Appendix A

Appendix

A.1 Social Networks and Non-market Valuation

Lemma 1.1. Agent i’s social utility is a convex combination of the private utilities

of all agents, i.e. for all i and j, wij ∈ [0, 1] and
∑

j wij = 1.

Proof. First notice that (I − ΛA) is a strictly diagonally dominant matrix and, by

the Levy-Desplanques theorem, cannot be singular (see Taussky (1949), Theorem I).

Hence W always exists. (I−ΛA)−1 is a nonnegative matrix. To see this, note that

the matrix (I−ΛA)−1 can be written as the Neumann series (I + (ΛA) + (ΛA)2 +

(ΛA)3 + ...), i.e. a sum of nonnegative matrices. Since (I−Λ) is also a nonnegative

matrix, W = (I − ΛA)−1(I − Λ) is a nonnegative matrix. To prove lemma 1.1 it

must be demonstrated that t, the row sum vector of the matrix W, is a vector whose

entries are all 1. The row sum vector of a matrix can be obtain by pos-multiplying

the matrix by a column vector i whose entries are all 1. Thus, t can be written as

t = (I−ΛA)−1(I−Λ)i (A.1)
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By construction, (I−ΛA) and (I−Λ) have the same row sum column vector r, with

the i-th entry equal to 1− λi. As a consequence,

(I−ΛA)i = r (A.2)

(I−Λ)i = r (A.3)

Plugging (A.3) into (A.1) yields to

t = (I−ΛA)−1r

According to (A.2), i = (I−ΛA)−1r. Thus, t = i.

Lemma 1.2. Every agent in the network has positive importance, i.e. δi > 0 for all

i.

Proof. Rewrite W = (I−ΛA)−1(I−Λ) as W = XY. Notice that an element of W

can be written as wii = xi1y1i + xi2y2i + ... + xiiyii + ... + xinyni, where xij and yij

are elements of X and Y, respectively. Elements of the diagonal of X are greater or

equal to 1, i.e. xii ≥ 1. To see this, recall that X can be written as the Neumann

series (I + (ΛA) + (ΛA)2 + (ΛA)3 + ...), which is a sum of the identity matrix with

nonnegative matrices. Y is a diagonal matrix with 0 < yii ≤ 1. To see this, recall

that Λ is a diagonal matrix with elements 0 ≤ λi < 1 . Therefore, since X and

Y are nonnegative matrices, and xiiyii > 0, it follows that wii > 0 for all i, thus

δj =
∑

iwij > 0.
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Proposition 1.1. Network neutrality holds if and only if all agents are socially

isolated (i.e. λi = 0 ∀i).

Proof. According to equation (1.2), vi = (1 − λi)ui + λi
∑

j aijvj. If λi = 0, then

vi = ui. This establishes the “if” part. For the other direction, suppose on the

contrary that λi > 0 for some i. Without loss of generality, suppose that i = 1. Set

u1 = 0 and u2 = ... = un = ū 6= 0. Then v1 = λ1
∑

j 6=1 a1jū = λ1ū > 0, which

provides a contradiction.

Corollary 1.1. If network neutrality holds, the willingness to pay measure Cnetwork
i

is equal to the private measure Cprivate
i .

Proof. Cnetwork
i =

∑
j wijuj(g

1)−
∑

j wijuj(g
0) (see equation (1.8)), or just Cnetwork

i =

vi(g
1) − vi(g0). If the network is neutral, vi(g) = ui(g). It follows that Cnetwork

i =

ui(g
1)− ui(g0) = Cprivate

i (see equation (1.9)).

Proposition 1.2. In non-neutral networks (i.e. wii 6= 1), the network benefits agent

i, i.e. vi(g) > ui(g), if and only if

ui(g) <

∑
j 6=iwijuj(g)∑

j 6=iwij
.

Proof. vi(g) > ui(g) ⇐⇒
∑

j wijuj(g) > ui(g) ⇐⇒ wiiui(g)+
∑

j 6=iwijuj(g) > ui(g)

⇐⇒
∑

j 6=iwijuj(g) > (1− wii)ui(g) ⇐⇒
∑

j 6=i wijuj(g)∑
j 6=i wij

> ui(g).

According to lemma 1.1,
∑

j 6=iwij = (1− wii). Thus, for wii 6= 1,
∑

j 6=iwij > 0.

Corollary 1.2. In non-neutral networks (i.e. wii 6= 1), Cnetwork
i ≥ Cprivate

i if and

only if
(
ui(g

1)− ui(g0)
)
≤
∑

j 6=i wij [uj(g
1)−uj(g0)]∑

j 6=i wij
.
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Proof. Cnetwork
i > Cprivate

i ⇐⇒ vi(g
1)−vi(g0) > ui(g

1)−ui(g0) ⇐⇒
∑

j wijuj(g
1)−∑

j wijuj(g
0) > ui(g

1)−ui(g0) ⇐⇒ (1−wii)ui(g1)−(1−wii)ui(g0) <
∑

j 6=iwijuj(g
1)−∑

j 6=iwijuj(g
0) ⇐⇒

(
ui(g

1)− ui(g0)
)
<

∑
j 6=i wij(uj(g

1)−uj(g0))∑
j 6=i wij

.

According to lemma 1.1,
∑

j 6=iwij = (1− wii). Thus, for wii 6= 1,
∑

j 6=iwij > 0.

Proposition 1.3. If every agent in the network has the same importance, then the

social network welfare is equal to the social isolation welfare.

Proof.
∑

i vi = u1
∑

j wj1 + u2
∑

j wj2 + ...+ un
∑

j wjn =
∑

i

∑
j wjiui. When agents

have the same importance, the columns of the induced network sum to one, i.e.,∑
j wji = 1. To see this, note that since the rows of W sum to 1, i.e.

∑
j wij = 1

(see lemma 1.1), the sum of all entries in W is equal to
∑

i

∑
j wij = n. If all agents

have the same importance, the importance of a single agent is obtained by dividing

n evenly among the n columns of W. If this is the case, the column sum vector of

W is a vector of ones. Hence, equality of agents’ importance implies
∑

j wji = 1.

Therefore,
∑

i vi =
∑

i

∑
j wjiui =

∑
i ui.

Corollary 1.3. If welfare neutrality holds, then Cnetwork = Cprivate.

Proof. Cnetwork =
∑

iC
network
i =

∑
i vi(g

1) −
∑

i vi(g
0) . If welfare neutrality holds,∑

i vi(g) =
∑

i ui(g). Then, Cnetwork =
∑

i ui(g
1)−

∑
i ui(g

0) = Cprivate.

Proposition 1.4. For all sorted private utility profiles u, if the distribution of

importance of a network W first order stochastically dominates (FOSD) that of the

social isolation case, then W is a welfare-increasing network.

Proof. See proposition 1.5 with W’ equal to the identity matrix.
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Proposition 1.5. For all sorted private utility profiles u, if the distribution of

importance of a network W FOSD that of another network W’, then W generates

greater social network welfare than W’.

Proof. It will be shown that, for all sorted private utility profile, if distribution of

importance of a network W FOSD that of another network W’, then W generates

greater social network welfare than W’. Hence, it must be demonstrated that,∑k
i=1 δi ≤

∑k
i=1 δ

′
i implies

∑n
i=1 δiui ≥

∑n
i=1 δ

′
iui, for all sorted private utility profile

u.

W generates greater social network welfare than W’ when

∑
i

δiui >
∑
i

δ′iui (A.4)

(see proof of Proposition 1.3). Construct pi = δi/n and re-write (A.4) as

∑
i

piui >
∑
i

p′iui. (A.5)

Since p = (p1, ..., pn) represents a probability vector, Ui =
∑

i piui is a expected utility

function. Let P (k) =
∑k

i=1 pi be the cdf that governs the probability vector p. If

P (k) FOSD P ′(k), i.e.
∑k

i=1 pi ≤
∑k

i=1 p
′
i for all k, then the expected utility under

P is greater than the expected utility under P ′, Ui > U ′i , as in (A.5).

Corollary 1.4. Cnetwork ≥ Cprivate if and only if
∑

i

(
δi − 1

)[
(ui(g

1)− ui(g0)
]
≥ 0.

Proof. Cnetwork ≥ Cprivate ⇐⇒
∑

iC
network
i ≥

∑
iC

private
i ⇐⇒

∑
i vi(g

1) −∑
i vi(g

0) ≥
∑

i ui(g
1) −

∑
i ui(g

0) ⇐⇒
∑

i δiui(g
1) −

∑
i ui(g

1) −
∑

i δiui(g
0) +∑

i ui(g
0) ≥ 0 ⇐⇒

∑
i

(
δi − 1

)(
(ui(g

1)− ui(g0)
)
≥ 0.
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Appendix B

Appendix

B.1 Estimation of Non-market Values in the Pres-

ence of Social Network Effects: the Case of

Advisory Referenda

Figure B.1: Kernel Estimates for MC Trials with No Network Effect
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Figure B.2: Kernel Estimates for MC trials with Low Density Erdos-Renyi Networks
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Figure B.3: Kernel Estimates for MC trials with High Density Erdos-Renyi
Networks
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Table B.1: Coefficient of Variation for Erdos-Renyi Simulations (1000 draws).

Network Effect β
d 0.25 0.50 0.75

0.025 0.0310 0.1303 0.9413

0.050 0.0317 0.1315 0.7649

0.075 0.0311 0.1316 0.6832

0.10 0.0308 0.1285 1.0147

0.20 0.0308 0.1278 0.6597

0.40 0.0303 0.1335 0.8910

0.60 0.0307 0.1299 1.2280

0.80 0.0310 0.1334 0.9040
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Figure B.4: Correlation Between Importance and X
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Figure B.5: Kernel Estimates for MC trials with Network Importance Matching X

Table B.2: Real World Networks

Village 1 Village 2 Village 3
Number of nodes 182 195 292

Average degree 19.08 17.73 17.73

Average path length 2.5734 2.9540 2.8130

Average betweenness 0.0162 0.0169 0.0108

Average closeness 0.0006 0.0002 0.0001

Density 0.0524 0.0355 0.0304

Transitivity 0.1751 0.1777 0.1285

Diameter 5 6 6
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Figure B.6: Kernel Estimates for MC trials - Banerjee et al. - Village 1
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Figure B.7: Kernel Estimates for MC trials - Banerjee et al. - Village 2
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Figure B.8: Kernel Estimates for MC trials - Banerjee et al. - Village 3
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Appendix C

Appendix

C.1 Added Surplus and Lost Bargaining Power

in Long-term Contracting: An Experimental

Investigation

Table C.1: Expected player A payoffs from long-term contract, α̂L = 0.2

VL
30 40 50

m = 0 6 8 10
m = 2 6 8 10
m = 10 10 10 10

Table C.2: Number of observations in each treatment cell.

30 40 50 All
No (m = 0) 45 45 44 134
Low (m = 2) 45 41 45 131
High (m = 10) 44 43 45 132
All 134 129 134 397
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Figure C.1: A’s first choice and endowments

Figure C.2: A’s first choice and bargaining power

Figure C.3: A’s first choice, endowments, and bargaining power
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Table C.3: B’s average offer in the dictator game

30 40 50
No (m = 0) 3.43 8.64 11.00

n = 7 n = 11 n = 11

Low (m = 2) 8.60 13.50 13.60
n = 5 n = 10 n = 15

High (m = 10) 10.42 15.00 14.09
n = 12 n = 12 n = 22

Table C.4: B’s average offer in the ultimatum games

first ultimatum second ultimatum
30 40 50 30 40 50

No (m = 0) 8.71 8.50 8.39 7.64 8.07 7.47
Low (m = 2) 8.05 7.90 8.00 7.57 8.21 7.85
High (m = 10) 8.41 8.52 8.39 7.90 7.43 8.11

Table C.5: Player A’s payoff

Ultimatum Dictator
30 40 50 30 40 50

No (m = 0) 15.24 14.15 14.42 3.43*** 8.64** 11.00
Low (m = 2) 14.10 13.94 13.30 8.60* 13.50 13.60
High (m = 10) 14.91 13.35 13.17 10.42** 15.00 14.09
T-tests. H0: Mean(Ultimatum)= Mean(Dictator)

*** P-value ≤ 0.01, ** P-value ≤ 0.05, * P-value ≤ 0.10
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Table C.6: A’s rejection - Probit regressions

Dep. Variable: Rejection=1 (1) (2) (3) (4)
Offer -0.049 -0.046 -0.046 -0.046

(0.000) (0.000) (0.000) (0.000)

Second Ultimatum 0.034 0.033 0.033
(0.043) (0.043) (0.046)

High Bargaining 0.033 0.031
(0.117) (0.103)

No-50 -0.011
(0.590)

Predicted Prob. of Rejection 0.067 0.063 0.060 0.060
N 555 555 555 555

Probit regression with a constant.

Coefficients represent marginal effects.

P-value in parenthesis.

C.2 Instructions

Thank you for participating in this experiment.

This is an experiment in individual decision-making. The instructions are simple, and

if you follow them carefully and make good decisions, you will have the opportunity

to earn a considerable amount of money. You will be paid for your participation in

cash at the end of the experiment. Your earnings for today’s experiment will depend

partly on your decisions and partly on the decisions of the player with whom you are

matched.

It is important that you strictly follow the rules of this experiment. If you disobey

the rules, you will be asked to leave the experiment.

If you have a question at any time during the experiment, please raise your hand and

a monitor will come over to your desk and answer it in private.

Description of the Task
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You will be participating in a simple experiment in which you will play 4 games.

A game requires 2 players, one of whom will be called Red Player and the other

Blue Player. At the start of the experiment, the computer will randomly assign you

the role of either Red Player or Blue Player. You will remain in your assigned role

throughout the experiment.

In each game, you will be randomly matched with a different Player of the opposite

type. That is, if you are a Blue Player you will be matched with a different Red

Player for each game. Please note that neither you, nor the person with whom you

are matched, will ever learn with whom they were paired.

The Blue Player will move first by selecting one of two branches, Branch A or Branch

B. If the Blue Player selects Branch A, the Red Player will be provided an endowment

and will propose a way to split this endowment with the Blue Player. The Blue Player

will then decide whether to accept or reject the offer. If the Blue Player accepts the

offer, the Red Player will be provided a new endowment and the decision problem

will be repeated. If the Blue Player rejects the offer, the game will end.

If the Blue Player selects Branch B, the Red Player will be provided an endowment

of money and will propose a way to split this endowment with the Blue Player. Once

the Red Player decides how to split the endowment, the game will end.

The terminal brackets contain the payoff information. The game will end at one of

the four terminal brackets. The top number in each bracket gives the formula for

calculating the payoff in $’s for the Blue Player. The bottom number in each bracket

gives the formula for calculating the payoff in $’s for the Red Player.

Procedure for Playing the Game

The Blue Player will move first by selecting one of two branches, Branch A or Branch

B. The procedure for playing the game that follows from each of these branches is

detailed below.
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Branch A

If the Blue Player selects Branch A, the Red Player will receive an endowment of

money $EA1 from the experimenters. Red Players will then have to decide how much

of their endowment, if anything, to transfer to their Blue partner.

The Blue player then has to decide whether to Accept the offer of to Reject the offer.

If Blue accepts the offer:

- Blue gets the transfer

- Red gets their endowment (EA1) minus the transfer.

If Blue rejects the offer:

- Blue gets nothing

- Red gets nothing

If Blue rejects the offer, the game will end. If Blue accepts the offer, a second and

final round will be played. At the start of the second round, the Red Player will

receive a new endowment of money $EA2 from the experimenters. They will then

have to decide how much of this new endowment, if anything, to transfer to their

Blue partner.

The Blue Player then has to decide whether to Accept or Reject this second offer.

If Blue accepts the second offer:

- Blue gets the initial and second transfer.

- Red gets their initial endowments (EA1 and EA2) minus the initial and second

transfers.

If Blue rejects the offer:

- Blue gets the initial transfer.
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- Red gets their initial endowment (EA1) minus the initial transfer.

Regardless of the decision made, the game will end after the Blue Player accepts or

rejects the second transfer. Please note that the payoffs of each round are independent.

Therefore, actions in the second round do not affect the payoffs from the first round.

Branch B

If the Blue Player selects Branch B, the Red Player will be given an initial endowment

of money $EB. The Red Player will then have to decide how much of their endowment,

if anything, to transfer to their Blue partner. Once the Red Player determines a

transfer amount, payoffs are realized as follows:

• Blue gets the transfer

• Red gets the initial endowment minus the transfer

This will be the end of the game.

Important Note

Red Player’s splitting choices must be whole numbers. In some games, Red Player’s

choice will be restricted. Red’s possible proposals could be restricted to two specific

amounts or to a subset of whole numbers. These restrictions are always imposed by

the experimenters.

Please, take some time now to study the structure of the game. This same basic

procedure will be followed for each of the four games.

Final Payoffs

You will only be paid your earnings for one of the four games you will play during

today’s session. After all four games have been completed, we will randomly select

one of the games by selecting an index card that is numbered from 1 to 4. The number
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on the card which is selected will determine which game will determine your earnings

for today’s session.

Even though you will make four decisions, only one of these will end up affecting your

earnings. You will not know in advance which decision will hold, but each decision

has an equal chance of being selected.

Figure C.4: Game Tree.
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C.3 Screen Shots

Figure C.5: Welcome screen.

Figure C.6: Random assignment of player type - Player A (Blue). Player A’s
original choice (Treatment No-50).
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Figure C.7: Random assignment of player type - Player B (Red).

Figure C.8: Waiting screen - Player A.

Figure C.9: Player B’s offer in the first ultimatum game.
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Figure C.10: Player B is waiting for A’s first accept/reject decision.

Figure C.11: Player A’s first accept/reject decision in first ultimatum.

Figure C.12: Confirmation screen - Player A.
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Figure C.13: Waiting screen - Player A

Figure C.14: Player B’s offer in the second ultimatum game.

Figure C.15: Player B is waiting for A’s second accept/reject decision.
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Figure C.16: Player A’s second accept/reject decision in first ultimatum.

Figure C.17: Confirmation screen - Player A.

Figure C.18: Confirmation screen - Player B.
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Figure C.19: Starting next treatment - Player A.

Figure C.20: Starting next treatment - Player B.
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