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Abstract 

Accelerometer-based activity monitors are commonly used to measure physical activity 

energy expenditure (PAEE).  Newly designed wrist and hip-worn triaxial accelerometers 

claim to accurately predict PAEE across a range of activities.  Purpose: To determine if 

the Nike FuelBand (NFB), Fitbit (FB) and ActiGraph GT3X+ (AG) estimate PAEE in 

various activities.  Methods: 21 healthy, college-aged adults wore a NFB on the right 

wrist, a FB on the left hip, and AG on the right hip, while performing 17 activities.  AG 

data were analyzed using Freedson’s kcal regression equation.  PAEE was measured 

using the Cosmed K4b2 (K4).  Repeated measures ANOVAs were used to compare mean 

differences in PAEE (kcal/min).  Paired sample t-tests with Bonferroni adjustments were 

used to locate significant differences.  Results: For each device, the mean difference in 

PAEE was significantly different from the K4 (NFB, -0.45 + 2.8, FB, 0.48 + 2.27, AG, 

0.64 + 2.59 kcal/min, p = 0.01).  The NFB significantly overestimated most walking 

activities (e.g., regular walking; K4, 3.1 + 0.2 vs. NFB, 4.6 + 0.2 kcal/min) and activities 

with arm movements (e.g., sweeping; K4, 3.0 + 0.8 vs. NFB, 4.7 + 0.4 kcal/min, p < 

0.05). The NFB trended towards overestimating sport activities (basketball; K4, 10.8 + 

0.8 vs. NFB, 12.2 + 0.5 kcal/min) (racquetball; K4, 9.6 + 0.8 vs. NFB 11.1 + 0.5 

kcal/min).  The FB and the AG significantly overestimated walking (K4, 3.1 + 0.2; FB, 

5.4 + 0.3, AG, 5.8 + 0.4 kcal/min, p = 0.01) and underestimated PAEE of most activities 

with arm movements (e.g., Air Dyne, K4 5.6 + 0.2; Fitbit, 0.3 + 0.2; AG, 0.2 + 0.1 

kcal/min, p < 0.05) (racquetball, K4, 9.6 + 0.8 kcal/minute vs. FB, 7.4 + 0.6 kcal/minute, 

vs. AG, 6.5 + 0.4 kcal/minute, p < 0.05).  Conclusion:  The NFB overestimated PAEE 
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during most activities with arm movements and tended to overestimate sport activities, 

while the AG and FB overestimated walking and underestimated activities with arm 

movements.  Overall, the wrist-worn NFB had similar accuracy to the waist-worn triaxial 

accelerometers; however, none of the devices were able to estimate PAEE across a range 

of activities. 
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Chapter 1  

Introduction 
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 It is well documented that regular physical activity (PA) can be beneficial to 

health and quality of life in adults [1-3].  However, most Americans do not accumulate 

enough PA to achieve the minimum health benefits.  According to the Centers for 

Disease Control and Prevention (CDC), 25 percent of Americans do not participate in any 

kind of leisure-time physical activity, and 35 percent of Americans do not meet the PA 

recommendations [4].  In light of the health risks associated with insufficient PA among 

U.S. citizens, the Physical Activity Guidelines Committee Report was issued in 2008.  

Furthermore, the American Heart Association (AHA) in conjunction with the American 

College of Sports Medicine (ACSM), emphasized that adults should accumulate 150 

minutes of moderately intense PA or 75 minutes of vigorous PA per week in bouts 10 or 

more minutes [5].  The lack of regular PA among adults has also prompted key 

organizations to establish new goals for increasing PA among Americans.  Healthy 

People 2020 goals include reducing the prevalence of no-leisure-time PA among adults 

and increasing the proportion of adults who meet the current PA recommendations [6].  

  The measurement of PA is important for identifying trends in PA levels and 

implementing nationwide health recommendations for disease prevention.  Traditionally, 

self-report methods (surveys, questionnaires) have been used for the assessment of PA 

levels.  More recently, researchers have transitioned to the use of PA monitors (e.g. 

pedometers and accelerometers) instead self-report methods.  This is partly due to 

inherent limitations of self-report methods that can lead to inaccurate assessments of PA.  
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Although PA monitors also have limitations [7, 8], objectively-measured PA has been 

more strongly associated with health outcomes compared to self-reported PA [9].    

Traditionally, PA monitors were able to detect the number of steps taken over 

time.  A number of studies have documented the validity and reliability of activity 

monitors and their ability to track steps [10-13] , and in many cases, their ability to 

increase PA adherence [14, 15].  More recently, PA monitors, specifically accelerometer-

based devices, have undergone significant changes and now include improvements such 

as, increased data storage, online synchronization, and ability to capture the galvanic 

response [8, 13, 16-18].  Unlike pedometers, many accelerometers are equipped with 

piezoelectric technology, which makes them less likely to have measurement error.  

Another major feature of accelerometer-based devices is the ability to detect static, as 

well as dynamic, acceleration which is sometimes used to differentiate between walking, 

sitting, and standing.  Additionally, triaxial accelerometer-based devices are able to detect 

motion in the vertical, horizontal, and diagonal planes.  These measurement capabilities 

in accelerometer-based devices give them an advantage over pedometers in that 

accelerometer-based devices provide other information in addition to steps such as PA 

patterns (e.g. intensity). 

Researchers have also developed prediction equations that relate accelerometer 

‘counts’ to energy expenditure for different types of activities such as walking and 

running [19-22].  Traditionally, this has been done by performing calibration studies to 

determine the linear relationship between counts and energy expenditure.  Due to 

inherent limitations (e.g., band-pass filtering and the inability to investigators to precisely 
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quantify a count) with some types of accelerometers, more researchers have begun to use 

raw acceleration data to develop prediction models and equations.  Currently, pattern 

recognition is emerging as a method for interpreting accelerometer-based output to 

predict energy expenditure.  Pattern recognition or “machine-learning” assigns different 

categories or classes to data.  Pattern recognition has been used in several newly designed 

accelerometer-based devices [23-25].  Types of pattern recognition include Hidden 

Markov Models (HMMs) and Artificial Neural Networks (ANNs). 

Statement of the Problem  

 Most accelerometer-based devices are designed to be worn on the hip.  However, 

these devices are limited, in that they are not capable of capturing physical activities 

performed with the upper body (e.g., the arms).  Thus, large commercial companies have 

created more technologically advanced hip-worn (Fitbit) and wrist-worn devices (Nike) 

that may be capable of detecting a greater variety of activities involving simultaneous 

upper and lower limb movement (e.g., basketball, household activities).  However, it has 

not yet been determined whether these devices are capable of accurately assessing PA 

and energy expenditure across a wide range of activities.   

Statement of Purpose 

The purpose of this dissertation is to determine the accuracy of three triaxial 

accelerometer-based activity monitors for measuring energy expenditure and steps (the 

Nike FuelBand, the Fitbit, and the GT3X+). 
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Significance of the Study  

Accelerometer-based devices are now being used in assessing nationwide PA 

patterns.  As the design and development of accelerometer-based devices continues to 

increase, it is imperative that researchers continue to investigate the ability of these 

devices to accurately assess PA-related variables (i.e. steps and energy expenditure).  

Additionally anecdotal evidence suggests that the use of PA monitors is becoming more 

widely accepted by the general population for tracking PA habits.   

List of Terms 

Accelerometer-based Physical Activity Monitor: Portable device used for quantifying 

physical activity by measuring the acceleration associated with human movement. 

Pattern Recognition: Also known as ‘machine learning’, pattern recognition is a 

mathematical process in which a particular label (variable) is assigned a specific value.   

Physical Activity Energy Expenditure (PAEE): Energy expenditure associated with 

that above normal resting values.  Physical activity energy expenditure is also known as 

‘net’ energy expenditure. 

Triaxial Accelerometer: An accelerometer capable of detecting accelerations in three 

planes (anterior-posterior, medial-lateral, and vertical). 
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Chapter 2: Review of Literature 
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Physical activity (PA) is any muscular movement resulting in energy expenditure 

above that of resting values [26, 27].  PA is a multi-dimensional behavior, characterized 

by frequency, mode, intensity, and duration.  Taken together, these variables characterize 

PA energy expenditure (PAEE).  Exercise, a subcategory of PA, is planned, structured, 

and often done for the purpose of maintaining or increasing physical fitness [26]. 

The impact of regular PA on health and well-being has been a longstanding focus 

of many health professionals and researchers [3, 27, 28].  The plethora of evidence 

collected over the past 40 years has been cited in a variety of health reports [2, 29, 30] 

developed with the intent of increasing public awareness and knowledge of regular PA 

and its associated health outcomes, and to provide safe and effective guidelines for 

maintaining a physically active lifestyle [2, 30].  In spite of the evidence cited in health 

reports and National Physical Activity Recommendations, PA levels among U.S. citizens 

are low and have been for some time.  National attention pertaining to insufficient PA 

among U.S. citizens dates back to the early 1990’s [31].  Due to the insufficient PA levels 

among Americans and the impact of insufficient PA on disease and disease risk, the 

Surgeon General’s Report on Physical Activity and Health was published in 1996 [30].  

This report emphasized the importance of regular PA and the negative impact that 

insufficient PA has on various health outcomes.  The Surgeon General’s Report also 

emphasized the benefits of regular, moderate PA on health and overall wellness.  The 

report concluded that Americans can receive health-related benefits with as little as 30 

minutes of PA on most days of the week [30].  Currently, the Department of Health and 

Human Services (DHHS) recommends that adults achieve a weekly minimum of 150 
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minutes of moderate PA or 75 minutes of vigorous activity in bouts of at least 10 minutes 

[3].  Additionally, Americans should engage in muscle-strengthening activities at least 

two times per week.  However, most Americans do not meet the national PA 

recommendations.  In 2008, less than half of all American adults met the guidelines [4], 

and approximately 25-30% of Americans reported no leisure-time PA (LTPA).  Sex and 

age are related to the volume of PA that people accumulate.  More men than women meet 

the PA recommendation.  Approximately 60% of young adults age 18-24 meet the PA 

recommendations, but less than 40% of adults 65 years and older met the PA 

recommendations [4]. 

What is known for sure is that increasing daily PAEE over is directly related to 

lowering disease risk [2, 3, 29, 32, 33].  In light of the fact that most Americans do not 

meet the recommended levels of PA, it is important that current and future research 

identify strategies to increase PA levels and decrease the associated disease risks linked 

to sedentary behavior and inadequate PA.  It is well documented that high levels of PA 

decrease risk for heart disease [1, 34-38], and research has shown that PA accumulated in 

bouts as small as 10 minutes (towards the 150-minute-per-week goal) can be beneficial to 

decreasing the risk for certain chronic diseases [39-42].  

Self-Report and Physical Activity Monitors 

Self-Report of Physical Activity 

Understanding habitual PA levels and relating those habits to health-related risks 

and benefits depend on accurate and precise measurement techniques. PA is a multi-

dimensional behavior and measurement techniques continue to evolve.  It is essential that 
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PA assessment methodologies, self-report and objective, are valid, reliable, and accurate 

in the population of interest.  Four domains are typically used to classify PA: leisure-time 

PA (LTPA), transportation-related PA (TPA), domestic PA (DPA), and occupation-

related physical activity (OPA).  Traditionally, PA levels were assessed using self-report 

methods.  Self-reports can be self-administered or interviewer-directed and include 

diaries, questionnaires/surveys, and PA logs.  Since many self-report methods have been 

tested and utilized in large populations, researchers are able to describe PA levels on a 

population level, and thus, much of the epidemiological evidence linking PA to disease 

risk is based on self-report from national surveys [43, 44]. However, self-report methods 

have several significant flaws.  First, self-report presents a burden to the subject, because 

it forces the individual to complete real-time activity logs, to rely on recall ability or, on 

some instruments, the ability to recall previous PA patterns over an extended period.  

Second, some national surveys, such as the Behavioral Risk Factor Surveillance System 

(BRFSS), include a limited number of questions used to describe and summarize total PA 

behavior.  For example, 2008 and 2010 BRFSS only contained one question related PA 

levels (During the past month, other than your regular job, did you participate in any 

physical  activities or exercises such as running, calisthenics, golf, gardening, or walking 

for exercise?).  The scope of the question is limited, because it only determines the 

prevalence of leisure-time physical inactivity.  Essentially, it does not capture the 

intensity or frequency of the activity.  However, the 2011 BRFSS does include questions 

regarding the frequency and mode of PA, which enables researchers to identify the 

prevalence of individuals meeting the PA guidelines.  However, BRFSS provides a 
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limited amount of detail relating to PA patterns.  Population surveys taken out of context 

may lead to a misrepresentation of PA patterns at a population level.  Lastly, self-reports 

are subject to reporting bias, because subjects have a tendency to underreport unwanted 

and/or unfavorable/unexpected outcomes [45, 46].   

Objective Monitoring 

Although there are some advantages to using self-report (e.g. assessing a large 

sample at a relatively low cost), research has shown that objective monitoring, or PA 

monitors (pedometers, accelerometers, etc.), are valid and reliable tools for assessing PA 

[47-51].  Arguably, PA monitors are better than self-report methods for a number of 

reasons.  One reason that objective monitoring is generally believed to be more valid than 

subjective data is due to their stronger correlation with health biomarkers [9].  Second, 

although hip-mounted PA monitors lack the ability to assess upper-body activities and are 

limited to measurements of hip accelerations, they assess ambulatory movement 

throughout the day, and thus give a more detailed indication of daily, ambulatory PA.  

For example, walking is a common form of LTPA among American adults [31, 52, 53].  

However walking is difficult to accurately assess using subjective methods.  Objective 

devices (e.g., accelerometer-based activity monitors) provide more detailed (e.g., walking 

patterns, time, distance, energy expenditure) information about the activity.  Essentially, 

this results in a more detailed approach to PA measurement.  Third, objective monitoring 

has also been used to determine the effectiveness of interventions with the overall goal of 

increasing PA [15, 54].  This is important, because understanding the impact of objective 
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monitoring on PA adherence and how these devices are best used to encourage PA is 

critical for increasing PA levels.   

The StepWatch  

 One common PA monitor used to detect physical activity is the StepWatch (SW) 

(Orthocare Innovations), which detects steps.  The device is relatively small, measuring 

70 x 50 x 20mm and weighing less than 40 grams.  The SW is an ankle-mounted PA 

monitor worn on the lower leg, just above the lateral malleolus of the fibula.  The device 

is secured to the leg using an elastic band with velcro.  The battery life of the SW is 

approximately 7 years, and it can record data for up to 2 months between downloads.  

Unlike many PA monitors, the SW does not have a digital display, so the user cannot 

receive any real-time feedback on PA patterns.  The SW synchronizes with a portable 

docking station (connected to a computer by USB) that communicates using an infrared 

beam enclosed within the SW, which then allows for data download and management.  

The SW output is available as steps taken over time, and the SW software allows for the 

adjustment and analysis of steps taken at a slow (<30 steps.minute-1), moderate (30-80 

steps.minute-1), and/or medium (>80 steps.minute-1) pace [55].  To date, the SW is one of 

the most valid and reliable tools for detecting ambulatory activity in several populations 

(i.e., healthy, obese, elderly, and diseased) [50, 56-60].    

Several studies have compared the accuracy of the SW PA monitor to other PA 

monitors such as pedometers.  In 1999 Shepard et al. [58] investigated the accuracy of the 

StepWatch during brisk walking, slow walking, and stair walking.  Twenty-nine subjects 

wore a Sportline pedometer on the hip and the SW on the lateral ankle.  Compared to the 
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Sportline pedometer, the SW had a lower mean error score during all activities (0.54%, 

SW vs. 2.82%, Sportline pedometer).  Authors also found that the SW performed 

similarly in normal weight and obese individuals, whereas the Sportline pedometer did 

not, yielding a significant correlation between error score and body mass index (r = 

0.792, p < 0.0001).  In 2005, Karabulut et al. [61] compared the accuracy of the 

StepWatch and another ankle-mounted device [Activity Monitoring Pod 331 (AMPankle)] 

to 2 waist-mounted pedometers [New Lifestyles NL-2000 (NLwaist) and Digiwalker SW-

701 (SW-701waist)] under laboratory and field conditions.  In phase one, subjects (n = 20) 

were asked to walk at treadmill speeds of 27-107m.min-1.  In phase two, subjects were 

asked to participate in leg swinging, heel tapping, stationary cycling, and car driving.  

Finally, 15 subjects wore the pedometers over a 24-hour period.  Results indicated that 

the SW was more accurate at detecting steps during treadmill walking compared to all 

other devices (mean score within 1% of actual steps measured with a hand counter for all 

treadmill speeds).  Additionally, during the 24-hour monitoring period, the AMPankle 

recorded 18%, the NLwaist 11%, and the SW-701waist recorded approximately 15% fewer 

steps than the SW, which lead Karabulut et al. [61] to conclude that the SW was more 

capable of counting steps during a wide range of activities and walking speeds compared 

to other ankle-mounted and hip-mounted devices. 

In 2005, Foster et al. [57] also examined the accuracy of the SW under several 

different conditions.  Their study included lean (n = 10) and obese (n = 10) individuals 

who engaged in treadmill walking (1, 2, and 3 mph) and over ground walking (hallway 

walking at 1 and 1.85 mph).  Each subject wore three devices (Accusplit, Omron HF-100, 
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and the SW).  Foster et al. [57] found that that the mean accuracy for the SW was 99.7 + 

0.67% during all treadmill speeds, whereas the other devices produced a larger amount of 

variance (SD = 4-13 steps) across treadmill speeds (98% accuracy for Omron HF and 

Accusplit at 3 mph vs. 61 + 3.3% at 1 mph, Omron HF and 26 + 2.8%, Accusplit 1 mph).  

Authors concluded that the StepWatch was far more accurate than the other devices, 

particularly at low speeds.  

Accelerometers 

Accelerometer-based PA monitors, or accelerometers, are portable devices used 

to classify PA by measuring acceleration during human movement [24, 62, 63].  Most 

accelerometers contain a transducer, (common types include piezoelectric, piezoresistive, 

or variable capacitive) that detect acceleration in one to three orthogonal planes 

(anteriorposterior, mediolateral, and vertical) [64].  The functional capability of an 

accelerometer depends on the type of transducer within the unit.  Unlike pedometers, 

summed accelerations (e.g., counts) from accelerometers can be used to classify PA 

patterns (bout frequency, intensity, and duration) over time.  Accelerometers can be 

grouped based on presence or absence of passive components (i.e., requires little or no 

power consumption), as well as those that are sensitive to static accelerations (i.e., 

acceleration due to gravity) [64].  Since accelerometers measure accelerations along one 

to three axes, they are able to determine the bout frequency and intensity of human 

movement.  Unlike pedometers, accelerometers are not affected by tilt, which gives 

accelerometers a measurement advantage over pedometers, which can be affected by tilt 

[57, 64].   



  14 

The History of Accelerometers in Physical Activity Research 

Initial designs of the accelerometer for use in PA measurement date back to the 

1950’s [65].  Given their relatively high cost and bulky design [65, 66], accelerometers 

developed during the 1950’s did not gain much traction in research, and were not very 

useful for the measurement of PA.  However, with the advancement of science and 

technology, the measurement of human motion using accelerometers resurfaced during 

the 1970’s [63, 67, 68].  During this time period, Morris [63] suggested that the use of 

accelerometers for detecting human motion had many advantages over other methods, 

and he eventually designed the first cantilever-based accelerometer with strain gauge 

elements.  By the early 1980’s, the use of accelerometer-based devices for measuring 

human motion and energy expenditure received attention from other researchers.  

Specifically, Wong, Webster, Montoye and Washburn [69] examined the accuracy of 

modified ceramic phonocartridge accelerometers to measure energy expenditure 

compared to the criterion measurement (microcomputer-based Beckman metabolic 

function cart).  Compared to the two other PA monitors used in the study (a mechanical 

pedometer and a graphical multi-meter activity displaying monitor), the modified ceramic 

phonocartridge accelerometer had the best correlation with oxygen consumption.  This 

finding was significant, because it provided strong evidence for the development and use 

of accelerometer-based activity monitors capable of estimating energy expenditure and 

PA levels. 

The Concept behind Accelerometry for the Measurement of Human Motion 

Acceleration is the change in speed over time.  Since human acceleration requires 

the use of muscle mass, and muscle mass requires energy to perform work, measuring 
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acceleration is a good indicator of the amount of energy expended during movement.  

Although accelerometers can be worn in several different locations (e.g., lower leg, arm, 

hip), the hip is perhaps the most common place for accelerometer.  This is primarily 

because the hip is near the center of mass (i.e., the torso), and it can be inferred that the 

measurement of acceleration at the hip is a great representation of most human 

locomotion.  Technically speaking, accelerometers contain inertial sensors that measure 

acceleration along various axes, or the angular motion around one or multiple axes using 

a combination of accelerometers and/or gyroscopes [51].  Most accelerometers operate 

based on a sensing element, which incorporates a seismic mass coupled with a 

mechanical suspension system.  Changes in acceleration will cause the seismic mass to 

deflect.  Thus, acceleration of the seismic mass is calculated based on the physical 

displacement of the seismic mass.  Acceleration is typically measured in gravitational 

units (g, in which 1g is approximately equal to -9.8m.s-2) [51, 64, 70, 71]. 

Monitor Placement 

 Accelerometer output is primarily dependent on two major factors: the position of 

the accelerometer on the body and the sensor properties of the accelerometer.  Studies 

have shown that accelerometers can be worn in multiple positions on the body (i.e., hip, 

wrist, leg, and ankle) [72], with few studies suggesting that one location has measurement 

advantage over the others. Traditionally, accelerometers placed on the lower leg/ankle are 

primarily used to detect ambulatory movement.  However, a number of the previously 

designed accelerometers are worn on the hip.  Thus, for movement requiring the ‘whole 

body’ (e.g., walking), areas in closer proximity to the center of mass are ideal locations. 
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Recently, more speculation has emerged pertaining to the accuracy of the wrist 

and/or arm as a location for accelerometer placement.  Few accelerometers have been 

solely designed for the arm or the wrist.  However, wrist and arm locations may offer a 

potential measurement advantage over other locations, because upper body activities may 

be captured by wearing accelerometers in these areas. Whether a wrist/arm-mounted 

accelerometer provides greater measurement accuracy over traditional waist/hip-mounted 

accelerometers is yet to be determined. 

Piezoelectric Sensors 

Since the mid-1980’s, a number of accelerometer-based PA monitors have been 

developed for the study of human movement.  Initial accelerometer designs during the 

1980’s and early 1990’s centered around piezoelectric technology [69].  The piezoelectric 

sensor functions similar to a spring-loaded system.  In a spring-loaded system, once an 

external acceleration is applied, a small mass within the accelerometer applies a force to 

the spring, which causes it to stretch or compress.  The acceleration is then calculated 

from the displacement of the spring [64].  In a piezoelectric design, a sensing element 

within the unit bends due to the applied external acceleration.  The bending causes the 

seismic mass within the unit to produce a voltage proportional to the applied external 

acceleration.  Piezoelectric accelerometers are typically lightweight, small, and provide a 

range of 9-45 days of continuous measurement.  Piezoelectric accelerometers are able to 

detect dynamic changes in acceleration, but they are not able to detect static acceleration 

(i.e., acceleration due to gravity) [64, 70].  Piezoelectric pedometers have an advantage 

over traditional spring-loaded pedometers, because piezoelectric pedometers are not 
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affected by high body mass index (BMI), waist circumference, and tilt angles, all of 

which have been shown to affect the accuracy of spring-loaded pedometers [73, 74]. 

Examples of accelerometers piezoelectric accelerometers include the AM7164 

(ActiGraph, Pensacola, FL), the RT3 (StayHealthy, Monrovia, CA), and the Actical 

(Philips Respironics, Chichester, UK).   

Piezoresistive and Capacitive Sensors 

To date, many accelerometer-based PA monitors incorporate the use of 

piezoresistive or variable capacitance sensors.  A piezoresistive accelerometer consists of 

a cantilever beam and a seismic mass.  The piezoresistors are arranged in a Wheatstone 

bridge configuration (i.e., an electrical circuit in which an unbalancing of the sensing 

elements results in a corresponding electrical signal), in which the electrical resistance 

increases with an increase in applied external acceleration forces [51, 64].  The size of the 

voltage is proportional to the amount of acceleration.  Unlike piezoelectric 

accelerometers, piezoresistive accelerometers are capable of measuring constant 

acceleration such as gravity, and thus are equipped to measure static and dynamic 

accelerations.  Common examples of piezoresistive accelerometers include the Intelligent 

Device for Energy Expenditure, (IDEAA), and the TracmorD (Philips New Wellness 

Solutions). 

Differential capacitance accelerometers operate by the use of a differential 

capacitor with a central plate attached to the moving mass and fixed external plate.  An 

applied acceleration unbalances the capacitor, creating a voltage output proportional to 

the amplitude to the acceleration.  Advantages to using a differential capacitance 
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accelerometer include the low power consumption, the relatively large output level, and 

the fast response to human motion [51, 64]. The GT1M and the GT3X (both developed 

by ActiGraph) are commonly used capacitive accelerometers. 

Current accelerometer-based PA monitors (piezoresistive and differential 

capacitive resistors) contain micro-electro-mechanical accelerometers (MEMs).  

Relatively new in design, MEMs are equipped with relatively small (micro-scale) 

structural components that consist of a micro processing unit and several other sensors 

that function alongside the main microprocessor unit [71]. In essence, the MEMs give 

many accelerometers the capacity to detect human movement in multiple planes (i.e. 

biaxial and triaxial) without compromising the measurement capability of the 

accelerometer.  More recently, accelerometer-based PA monitors equipped with MEMs 

technology have become available for consumer use (e.g., IDEAA monitor, Actical), and 

are typically inexpensive compared to many other devices capable of detecting human 

motion [75].   

The ActiGraph 

ActiGraph is a major manufacturer of several commonly used accelerometers for 

measuring human motion.  Since 1993, ActiGraph has developed several accelerometer 

models, beginning with the 7164.  Since the 7164, three new models were introduced 

(GTM, GT3X, and GT3X+) from ActiGraph .  Each of ActiGraph’s PA monitors are 

capable of compiling activity counts (the sum of accelerations over a user specified time 

period) and composite vector magnitudes from one to three axes [17, 76].   
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Relatively small in size, the 7164 measures 5.1 x 3.8 x 1.5 cm and weighs 

approximately 43 grams.  The 7164 is uniaxial and measures acceleration in the vertical 

plane of human movement [77].  The 7164 has a cantilever beam design, in which 

external accelerations ignite a small charge within the unit proportional to the amount of 

acceleration applied.  The charge is then filtered and digitized by an analog/digital (A/D) 

converter at a rate of 10 cycles per second (10Hz).  The 7164 is most commonly worn on 

the waist [77].  

Generally speaking, walking causes up-and-down movements at the hip and 

oscillatory movements at the wrist [77].  When properly worn on the hip (i.e. just above 

the anterior superior iliac spine), the 7164 stores information on vertical accelerations 

within user-defined sampling intervals (epochs).  The sampling interval is predetermined 

by the user (1, 10, 15, and 30 seconds).  As information is digitized and filtered, the data 

are stored within the accelerometer’s random access memory (RAM).  The device is 

powered by a single 2430 lithium coin cell battery.  Data from the 7164 unit are 

downloaded using a reader interface unit (RIU) through a serial port to a computer.  Once 

downloaded, data can be viewed in a spreadsheet format [77]. 

 Advances in microchip technology over the past decade have led to the improved 

design and functional capacity of accelerometer-based PA monitors.  During the early 

2000’s, the 7164 from Computer Science Application was replaced by GT1M model, and 

the manufacturer, Computer Science Applications become known as ActiGraph.  

Although the accelerometer output is similar to the 7164 [17], the GT1M has several 

advanced measurement capabilities.  Primarily, the accelerometer includes a 
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miniaturized, dual-axis, MEMs accelerometer, which includes a capacitive sensor that 

detects external accelerations based on variances in the capacitance, or the potential 

energy of the sensor.  This enables the accelerometer unit to detect both static 

(acceleration due to gravity) and dynamic acceleration.  The GT1M capacitive sensor 

(Analog Devices, Norwood, MA) is smaller than the 7164 (5.1 x 3.8 x 1.5 cm), 

measuring 4 x 4 x 1.5mm.  In 2008, ActiGraph unlocked dual axes capabilities in the 

GT1M, which enabled the GT1M with the capability of detecting accelerations in the 

antero-posterior and vertical planes [76].   

 Following the production of the GT1M, ActiGraph developed the GT3X in 2009, 

and discontinued production of the GT1M.  Currently, the ActiGraph GT3X is one of the 

most advanced accelerometer-based activity monitors.  The GT3X is triaxial, capable 

detecting motion in three orthogonal planes (vertical, horizontal, and diagonal).  Unlike 

previous versions of the ActiGraph, the GT3X provides activity counts and vector 

magnitudes from three orthogonal planes, compiling a more comprehensive assessment 

of human motion.  Both  (GT1M and GT3X) models include a 12-bit A/D converter, 

which samples at 30Hz, contrary to the older 7164, which samples at 10Hz.  However the 

GT3X has greater memory storage capabilities (4MB vs. 1 MB) and a longer battery life 

(22 days vs. 14 days) than the GT1M [17, 78].   

The most current version of the ActiGraph is the GT3X+.  The GT3X+ has an 

external, water-resistant casing.  The GT3X+ is somewhat smaller (4 x 6 x 3 x 3) than 

previous versions.  The battery is composed of a single cell prismatic lithium ion polymer 

(3.7V).  The circuit board includes the following components: tin plated surface, a solder 
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mask, and a surface mounted capacitive accelerometer with resistors.  The ActiGraph 

GT3X+ measures accelerations ranging from +/- 6 g’s, and uses a twelve-bit A/D 

convertor.  The ActiGraph GT3X+ also includes an inclinometer and an ambient light 

sensor, and can collect and store data for approximately 40 days at a sampling rate of 

30Hz without external charging.  Unlike its predecessors, the GT3X+ has a unique 

feature, in that the unit initially collects raw data at a user-defined sampling rate of 30-

100Hz.  Filtering and epoch selection are adjusted following data collection.  This allows 

researchers to manipulate multiple accelerometer parameters (epoch length, ambient light 

detection, filtering, etc.) after wear-time has ended. 

 As previously discussed, a number of MEMs-based PA monitors have been 

developed for the measurement of physical activity, and have become one the most 

widely used activity monitors.  Furthermore,  accelerometers have been studied for their 

accuracy for measuring PA patterns and for predicting energy expenditure in laboratory 

settings [10, 20, 79]  as well as in free-living settings [18, 21, 22, 80, 81]. 

Predicting Energy Expenditure from Accelerometer-Based Activity Monitors 

during Laboratory and Free-living Activity 

To date, most accelerometer-based activity monitors store acceleration data as 

activity counts [7, 50, 62].  Activity counts reflect the duration and intensity of activity 

over a user-specified period (e.g., 30 seconds, 1 minute) known as epochs [62, 70].  To 

translate accelerometer counts into physiologically meaningful data, calibration is 

required.  Thus, calibration studies are necessary to quantify the relationship between 

accelerometer counts and PA.  A ‘value’ calibration is necessary to evaluate 

accelerometer count variation across a wide range of activities [82, 83].  In many 
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calibration studies, accelerometer counts are directly compared against measured oxygen 

consumption (VO2) during a variety of activities: sport-specific activities, household 

activities, and other activities of daily living.  Accelerometer counts are then used in 

regression equations to develop prediction equations that provide an estimate of energy 

expenditure during activities of various bout frequencies, intensities, and durations [69, 

82, 83]. 

The current understanding of accelerometer-based PA monitors has greatly 

improved over the last two decades, and has resulted in an array of prediction equations 

designed to estimate energy expenditure.  Previous and current prediction equations are 

primarily based on two types of activities: dynamic (i.e., walking and running) and static 

(i.e., sitting and lying down).  Several previously developed prediction equations were 

used to convert raw accelerometer counts to energy expenditure.  The initial research 

underlying the relationship between accelerometer counts and energy expenditure found 

relatively high correlations between accelerometer counts and indirect calorimetry during 

walking, running, and other laboratory-based activities (e.g., lying, standing, and/or a 

series of increasing treadmill speeds as a test protocol; r =0.80 - 0.90) [7, 20, 21].  

However, these studies were limited, because they did not examine the accuracy of 

accelerometer prediction equations during lifestyle and field-based activities.  Therefore, 

more studies were conducted to determine how well previously developed prediction 

equations predicted energy expenditure during lifestyle activities such as gardening and 

household chores [7, 21, 22].   
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A number of studies investigating the validity of accelerometers to predict energy 

expenditure were published during the mid-1990s.  Freedson and colleagues [20] were 

one of the first groups to determine the validity of the first ActiGraph models (CSA 

7164).  In their study, subjects (n=50) performed treadmill walking and running at three 

speeds (4.8, 6.7, and 9.7 km/hr) while wearing the CSA accelerometer on the hip.  

Freedson et al. [20] developed an energy expenditure prediction equation based on 

accelerometer counts: kcal . min -1 = (0.00094 * cnts . min-1) + (0.1346 * mass in kg) – 

7.37418 (r2 = 0.82, SEE = +/- 1.40 kcal . min-1).  They found a high correlation (r = 0.93) 

between the actual and predicted energy expenditure during all treadmill walking and 

running speeds.   

Although Freedson’s group was able to show a strong correlation between CSA 

counts and oxygen consumption during walking and running, there was still a need to 

determine the accuracy of accelerometer-determined prediction equations during field-

based activities.  Thus, several studies were undertaken to determine the accuracy of 

accelerometer-based PA monitors in the field.  Hendelman’s group [21] investigated the 

accuracy of hip-worn accelerometers (CSA and Tritrac accelerometer) in the field during 

several different activities (over ground walking at a self-selected pace, golf, and indoor 

and outdoor household activities).  Although the correlation between accelerometer 

counts and oxygen consumption during walking was strong (r = 0.77, CSA; Tritrac, r = 

0.89), the correlation was not as strong during the field-based activities (CSA, r = 0.59, 

Tritrac, r = 0.62).  Nichols et al. [84] conducted a similar calibration study with the CSA 

accelerometer, in which they sought  to show a linear relationship between CSA 
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accelerometer counts and oxygen consumption.  In their study, 30 participants walked on 

a treadmill at 3.2, 6.4, and 9.7 km/hr at a 0% grade and at 6.4 km/hr on a 5% grade.  

Another sample of 30 participants performed field-based activity, which included a brisk 

walk and jog at a self-selected pace on a 400-meter track.  Oxygen consumption was 

measured using an automated metabolic cart (SensorMedics Vmax 29, Anaheim, CA).  

Results confirmed a linear correlation between VO2 and CSA accelerometer counts 

during walking and running activities (r2 = 0.89, standard error = 3.72 ml.kg-1.min-1).  

However, there were significant differences between CSA counts in the laboratory setting 

and the field-based setting (p < 0.05) during activities of varying intensities.  This finding 

led investigators to conclude that prediction equations developed from walking and 

running activities were not as accurate during field-based activities.  Given the limitations 

of accelerometers to predict energy expenditure during field-based activities, several 

hypotheses were tested to improve the measurement capabilities of the accelerometer by 

either changing the location of the unit, the prediction equation, and/or the instrument.   

Swartz et al. [22] investigated the accuracy of accelerometer devices worn at 

multiple sites (hip only versus hip and wrist) during activities from six different 

categories: yard work, housework, recreation, family care, occupation, and conditioning.  

The Cosmed K4 b2 was used as the criterion for oxygen consumption.  Their results 

indicated that wearing the CSA accelerometer on the wrist, in addition to the waist, added 

more accuracy, in that it explained roughly 3% more of the variance in energy 

expenditure than wearing the CSA accelerometer on the hip only (hip only, 31.3% vs. hip 

and wrist combined, 34.7%).  However, authors concluded that the additional 3% 
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explained by wearing the CSA accelerometer on the wrist was not significant enough to 

warrant wearing multiple monitors. 

A number of other strategies were undertaken to improve the estimation of energy 

expenditure using accelerometers.  In 2005, Crouter et al. [81] investigated an alternative 

to using previously developed regression equations to predict energy expenditure.  

Unpublished data previously collected by Crouter et al. [81] suggested that accelerometer 

counts during walking and running varied less than accelerometer counts from other 

types of activities. More specifically, they hypothesized that walking and running 

activities could be distinguished based on the coefficient of variation for 6-to-10-second 

epochs over a 1-minute period, and that an appropriate regression model would yield a 

more precise estimate of energy expenditure across a broader range of activities.  Based 

on this finding, Crouter et al. [81] developed and tested a 2-regression model to predict 

energy expenditure from accelerometer counts over a wide range of laboratory-based 

activities and activities in the field.  Their study included 48 subjects who performed 

three exercise routines of a light, moderate, and vigorous nature.  Participants wore an  

(model 7164) accelerometer on the hip.  The coefficient of variation (CV) per 10 seconds 

was used to identify the activity as walking/running or another activity.  Depending on 

the CV (either <10 or >10), an appropriate regression (walk/run, or a lifestyle/leisure) 

model was applied.  The Cosmed K4 b2 was used as the criterion measure for oxygen 

consumption.  Their results illustrated that the 2-regression model was more accurate for 

energy expenditure prediction compared previously developed regression equations.  In a 

sample of 34 adults, Rothney et al. [85]  conducted a study to determine the validity of 
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the two-regression model for predicting energy expenditure using the  GT1M.  Their 

study compared the accelerometer-derived activity counts to whole-room indirect 

calorimetry and doubly labeled water (DLW). Their study found that the 2-regression 

model overestimated total energy expenditure by only 10.2 + 11.4% (1,282 ± 125 vs. 

1,174 ± 152 MET-min, p<0.001), indicating fairly good agreement between the 2-

regression model and room calorimetry.  Currently the 2-regression model developed by 

Crouter et al. [81] is an accepted model for predicting energy expenditure from 

accelerometer counts. 

An overestimation of energy expenditure during light activities and an 

underestimation of energy expenditure during vigorous activities are a common issue in 

PA research.  In 2006, Crouter et al. [80] also compared the accuracy of previously 

published regression equations (n=15 equations) [20, 21, 84, 86-90] designed to estimate 

energy expenditure during a variety of activities.  Several accelerometers (Actical, 

ActiGraph, and AMP-331) were compared.  In general, investigators found the prediction 

equations overestimated sedentary/light activities such as sitting and walking [20-22, 84, 

87, 90], and underestimated vigorous activities.  Thus, investigators have concluded that 

most count-based regression equations perform well only during activities from which 

the regression equation was modeled, and do not accurately predict energy expenditure 

across a variety of activities.  A number of reasons can be cited for these findings.  First, 

accelerometers only detect accelerations with respect to the axis of measurement.  For 

example, if the accelerometer is placed on the hip or waist, upper-body movement is 

undetected by the accelerometer.  Furthermore, accelerometers cannot detect activities 



  27 

with additional energy expenditure such as walking while carrying a box, uphill running, 

or resistance training.  Although some trixial accelerometers can also detect postural 

changes, they cannot detect additional resistance applied during uphill or downhill 

walking and running.  Additionally, count-based PA monitors are subject to the “plateau 

phenomenon” [8, 50].  While the accelerometer is able to discern between walking 

speeds of 2-5 mph, it is not able to differentiate running speeds between 6 and 12 mph.  

Previous research has illustrated that ActiGraph counts plateau at speeds > 6 mph [8, 50].  

For example, King et al. [91] compared the accuracy of five different devices (CSA, 

TriTrac-R3D, RT3, SenseWear Armband, and the BioTrainer-Pro) for measuring energy 

expenditure across three walking speeds and four running speeds. They found that neither 

the CSA nor the Biotrainer illustrated a linear relationship with energy expenditure with 

speeds greater than 161 m.min-1.  Likewise, Barge et al. [86] also found that the CSA 

model 7164 leveled off at treadmill speeds greater than 9 km.h-1, which in turn, caused an 

underestimation of VO2 by 10% at 10 km.h-1 and approximately 50% at 16 km.h-1.  

Ultimately, this causes walking and running-based accelerometer prediction equations to 

misclassify some vigorous activities.  To the researcher's knowledge, there are no 

accelerometer-based activity monitors designed to circumvent this issue. 

The inability of accelerometer-based PA monitors to detect differences during 

various running speeds, their inability to determine when loads are being carried, and 

difficulty in distinguishing walking on an incline are limitations to the technology.  

Furthermore, the overestimation and underestimation of energy expenditure using 

accelerometer counts during lifestyle and laboratory/structured PA is often cited as a 
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limitation to most, if not, all accelerometer-based prediction equations.  Essentially, 

unique relationships exist between human movement patterns and energy expenditure 

during certain activities.  However, accelerometer prediction equations based on 

movement patterns will likely underestimate energy expenditure (and total PA levels) 

from lifestyle activities and lifestyle equations will likely overestimate general activity 

such as walking and running.  Thus, it is improbable that a single prediction equation will 

accurately detect a wide range of activities.  Therefore, researchers have begun to 

investigate alternatives to solely relying on accelerometer counts for the estimation of 

energy expenditure and PA classification.  Other alternatives include wearing the unit in a 

different location, using raw acceleration units (e.g. gravitational units) instead of 

accelerometer counts, and using more complex equations to estimate energy expenditure. 

  Traditionally, accelerometers are worn on the hip for PA assessment.  However, 

more research has begun to investigate alternative wear sites.  The National Health and 

Nutrition Examination Survey (NHANES), one of the few national surveys that rely on 

objective monitoring for PA assessment, began reporting accelerometer-derived PA 

levels of adults in 2003.  Initially, participants wore the 7164 accelerometer on the hip.  

Beginning in 2011, NHANES changed the unit location for PA assessment to the wrist.  

During the 2003-2004 NHANES cycle, only 26% of the respondents who participated in 

the PA assessment wore the 7164 for at least 7 days [92].  This is important, because 

much of the awareness concerning PA levels among U.S. citizens is shaped from national 

survey data, and wear-time compliance on the hip has not proven to be reliable on a 

national scale.  This could be due to a number of reasons.  For instance, accelerometers 
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worn on the waist must be removed during occasions such as when changing clothes, 

sleeping, and during high-contact sports.  Additionally, some formal occasions may 

require the removal of a hip-worn accelerometer.  These types of events are likely 

contributing to a decreased accelerometer wear-time period.  Another issue with hip-worn 

accelerometers is the classification of non-wear time versus sedentary time.  For example, 

if a researcher observes a pattern of ‘zero counts’ from the accelerometer over a specified 

time period, it is difficult to determine whether the accelerometer was removed, or, if it 

was truly sedentary time.  If data are classified as sedentary time, and the device was 

actually removed, PA will be underestimated, and sedentary time will be overestimated.  

Although PA monitoring will never capture 100% of PA, researchers may be able to 

avoid some of these issues with wrist-worn devices.  Conclusively, wrist-worn devices 

may be more suitable for PA measurement, and may also enhance wear-time compliance 

[93].   

Pattern Recognition 

Another proposed strategy to increase the accuracy of predicting PA is using a 

mathematical technique known as pattern recognition or “machine learning”.  In pattern 

recognition, classification algorithms are applied and, ‘trained’, to learn and recognize 

patterns associated with a particular activity.  Several types of pattern recognition are 

commonly used in PA research.  In an Artificial Neural Network (ANN), inputs (i.e., 

independent variables) and outputs (dependent variables) are included in the model, and a 

processing layer exist between the inputs and outputs [71, 94] that further categorizes and 

classifies the activity based on user inputs.  Thus, the processing layer can be 
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manipulated through learned algorithms.  Supervised and unsupervised learning are 

examples of learned algorithms.  In supervised learning, once the inputs and outputs are 

applied to the ANN, self-learning occurs until a prediction error reaches a preset 

threshold [71, 94].  On the other hand, Hidden Markov Models (HMMs) function in 

conjunction with a Markov Chains (MC), which identify activities as individual “states”.  

Once applied to the MC, a HMM determines the model state based on observable 

parameters (e.g., accelerometer counts).  More recently, several studies have developed 

and tested algorithms based on Artificial Neural Networking to predict energy 

expenditure, PA type, or both [23, 25, 95].  Researchers have used ANNs to detect many 

types of activities and their associated energy expenditure (e.g. ascending and descending 

stairs, soccer, tennis) [71, 96-98].  With the advancement of technology and the need to 

better understand and detect physical activity, more investigations have included the 

application of pattern recognition algorithms to accelerometer data [99-101].   

Newly Designed Physical Activity Monitors 

Nike FuelBand 

In February of 2012, Nike released a new PA monitor known as the Nike 

FuelBand.  The device is worn on the wrist and includes a triaxial accelerometer.  The 

Nike FuelBand is available in three different sizes (small, 14.7 cm; medium, 17.2 cm; 

large, 19.7cm), and includes a sizing tool and ‘links’, that allow for the adjustment of the 

FuelBand for a more snug fit on the wrist.  Additionally, the FuelBand has 20 color light-

emitting diodes (LED) for a digital display.  The FuelBand displays time, steps taken, and 

calories burned, which allows the user to monitor real-time PA data.  Additionally, the 
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Nike FuelBand also gives a proprietary unit of measurement known as 'Fuel', calculated 

based on the energy cost and other activity-based parameters unspecified by the 

manufacturer.  The Nike FuelBand also comes with a USB charging cable and charging 

stand, which are connected to a compatible computer for data uploading.  Once the user 

downloads the software (Nike PlusTM), height, weight, Fuel Points Goal™, and hand 

dominance are uploaded to the FuelBand, and a user profile is created.  As the user 

progresses through the day, the LED display on the FuelBand progresses from red to 

green, indicating the user’s daily goal progress.  The FuelBand also includes Bluetooth 

software, allowing for compatibility with Bluetooth-enabled phones (currently, this is 

only available to use with the Apple IOS operating system and the Android operating 

system).  The Nike FuelBand also includes an “Airplane” mode, which disables radio 

connections.  The FuelBand is currently available from Nike for $150 [102].  To date, 

there is no previously published research regarding the accuracy of the device to detect 

human motion, PA, and/or energy expenditure.  Although proprietary testing of the 

FuelBand has been conducted by Nike, the results of that testing have not been made 

public knowledge.  It is therefore unclear if the activity-based outcome variables (steps, 

fuel points, distance and calories) from the Nike FuelBand are solely dependent upon raw 

accelerometer data, or, if accelerometer data were treated with a pattern recognition 

algorithm.  

The Fitbit  

The first version of the Fitbit was released in the fall of 2008.  The Fitbit is a 

MEMs-based triaxial accelerometer capable of detecting PA and energy expenditure.  
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The Fitbit measures 5.5cm x 19.5cm x 14mm and weighs slightly fewer than 12 grams.  

The Fitbit is not waterproof and thus should not be used during water-based activities 

such as swimming.  Similar to the Nike FuelBand, the Fitbit features a single-button 

control, which allows the user to cycle through several outputs using an organic light-

emitting diode (OLED) display which indicates calories burned, steps taken, miles, time, 

floors climbed, and a flower which grows with increasing PA throughout the day.  There 

is also an option for the user to include an optional greeting and user-specified ‘chatter’ 

for daily encouragement.  The Fitbit includes a base station operating on an ultra-low 

powered 2.4 GHz ANT radio transceiver.  The unit is also capable of wireless 

synchronizing, if the unit is within 15 feet of the base station.  The rechargeable lithium-

ion polymer battery can operate for 5-7 days without charging.  The Fitbit provides 

minute-by-minute data on PA and energy expenditure using internet-based software.  

During initialization, the user uploads information on height, weight, gender, and age, 

which are used to calculate resting energy expenditure based on a prediction equation 

from the Food and Drug Administration (FDA) [103].  However, for more detailed data 

regarding PA patterns and energy expenditure, the user must purchase additional software 

packages from the manufacturer.   

The Fitbit Ultra, the most recent version of the Fitbit, is similar to the model 

designed in 2008.  However, the most current unit includes an altimeter, which detects 

the vertical climb up stairs and hills [103].  Similar to the Nike FuelBand, the Fitbit is 

also new, and to the researcher’s knowledge, no previous research has been published on 

the Fitbit.   
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If proven valid and reliable, the Nike FuelBand and the Fitbit have promising 

potential for consumer use.  They are relatively easy to use, lightweight, and unlike 

traditional accelerometers, capable of providing real-time feedback on PA patterns and 

energy expenditure.  This is especially important, due to the fact those PA monitors (i.e. 

monitors with a real-time, digital display) have been shown to enhance PA levels [15].  

Although little is currently known about either device, it is speculated that consumer use 

of these devices will be high, given that these companies design other products (weight 

scales, clothing, shoes, sport-related equipment, etc.) that are endorsed by celebrated 

individuals (i.e., professional athletes).  Essentially, this enhances the marketability of 

their products, particularly among young adults.  Therefore, it is important that future 

research examine whether or not these devices are capable of accurately detecting PA and 

energy expenditure under both laboratory and field conditions.   
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Chapter 3: The Estimation of Energy Expenditure using Triaxial Accelerometers 
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Abstract 

Background: Accelerometer-based activity monitors (accelerometers) have become the 

standard for monitoring physical activity (PA) patterns.  Consumer use of PA monitors 

has also gained considerable traction among U.S. citizens.  However it is not known if 

current triaxial accelerometers, worn on different body locations, can predict energy 

expenditure (EE) across a wide range of activities.  Purpose: To determine if three 

triaxial accelerometers can predict EE across a range of activities.  Methods:  21 healthy, 

college-aged adults wore a Nike FuelBand on the right wrist, a Fitbit on the left hip, and 

ActiGraph GT3X+ (ActiGraph) on the right hip, while performing 17 lifestyle and 

recreational activities.  EE was measured using the Cosmed K4b2.  ANOVA repeated 

measures were used to compare mean differences in net EE (kcals . min-1).  Paired sample 

t-tests with Bonferroni adjustments were used to locate significant differences.  Results:  

For each device, the mean difference in EE was significantly different from the criterion 

measure (FuelBand, -0.45 + 2.8, Fitbit, 0.48 + 2.27, ActiGraph, 0.64 + 2.59 kcal.min-1, p 

< 0.01).  The Nike FuelBand significantly overestimated most walking activities and 

activities involving significant arm movement (sweeping; Cosmed, 3.0 + 0.8 vs. Nike 

FuelBand, 4.7 + 0.4 kcals per minute, p < 0.05) (regular walking; Cosmed, 3.1 + 0.2 vs. 

Nike FuelBand, 4.6 + 0.2 kcals . min-1).  The Fitbit and the ActiGraph performed 

similarly across most activities, underestimating EE of activities requiring arm movement 

(Air Dyne; Cosmed 5.6 + 0.2; Fitbit, 0.3 + 0.2; ActiGraph, 0.2 + 0.1 kcals . min-1, p < 

0.05).  Conclusion:  For any given individual, the error in EE prediction from one of the 

tested devices could be quite large.  The wrist-worn Nike FuelBand captured the EE 

during several of the activities requiring arm movement, and sport activity, while the hip-
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worn ActiGraph GT3X+ and Fitbit performed similarly, but underestimating activities 

with arm movement.  Therefore, wrist-worn and hip-worn moderately predict EE during 

some activities, but still suffer from similar limitations seen with previously designed 

accelerometer-based devices. 

Keywords:  kilocalories, sensor, physical activity, exercise  
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Introduction  

Accelerometer based-physical activity (PA) monitors, or accelerometers, are 

devices capable of detecting motion by measuring acceleration along an axis of 

movement [50, 62, 70].  Over the past 25 years, the use of accelerometers to measure PA 

in research has increased because they have been shown to provide valid and objective 

measures of this human behavior.   

There have been several advances in accelerometer technology over the last three 

decades [62].  Some accelerometers have piezoelectric sensors with an inertial mass on 

the end of a cantilevered beam.  When exposed to acceleration, the mass causes the beam 

to deflect and to compress a piezoelectric crystal, resulting in an electrical current being 

generated. These early accelerometers were capable of detecting dynamic accelerations 

due to body movements, but required individual calibration (i.e., assuring that 

accelerometers accurately measure acceleration signals following exposure to external 

forces such as mechanical shakers).  Later developments led to piezeoresistive and 

capacitive accelerometers that use electrical currents powered by a battery.  When these 

devices are exposed to acceleration, the resistance to flow of electrical current, or the 

charge separation, is altered [62, 98].  The manufacturing process for the capacitive 

accelerometers with solid-state circuitry results in much more consistent responses, 

eliminating the need for individual calibration.  In addition, these newer accelerometers 

are capable of detecting static, as well as dynamic, acceleration.  Over the past decade, 

advances in technology have led to smaller (i.e., microelectromechanical or MEMS) 

accelerometers capable of detecting movement in three orthogonal planes (i.e., triaxial) 

[51, 64, 98], which may potentially improve estimates of PAEE. 
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Memory capacity of accelerometer-based PA monitors has also increased over the 

past two-and-a-half decades.  The CSA ActiGraph originally had 64 KB of memory, 

while the ActiGraph GT3X+ now has 516 MB of memory [50].  This has allowed data to 

be stored in smaller and smaller increments.  Rather than storing accelerometer “counts” 

in 1-min epochs, it is now common practice to store raw acceleration data at 30-100 Hz.  

With these advances in computer memory chips, it has become possible to use new 

methods of analyzing accelerometer data.  One of these methods is “pattern recognition”, 

a form of artificial intelligence that uses sophisticated mathematical algorithms based on 

machine learning.  Essentially, increased storage capacities and more complex 

mathematical algorithms for accelerometers may produce more precise estimates of 

PAEE. 

Accelerometers can be worn in multiple locations such as the hip, wrist, thigh, 

and ankle [7, 94].  Traditionally, accelerometers are primarily worn on the hip.  Hip-worn 

accelerometers have proven to be valid for quantifying PA levels and patterns [10, 18, 20, 

21, 74, 79, 104, 105].  Previous studies have shown that hip-worn accelerometers are 

capable of detecting PA across a range of activities [10, 18, 20, 21, 74, 79, 104, 105].  

However, hip-worn accelerometers are limited, because their positioning limits their 

ability to detect additional EE associated with upper-body movements and thus they tend 

to under-estimate the EE of ambulatory activity requiring significant upper-body 

movement (e.g., basketball and racquet sports) and intermittent lifestyle activities [7, 20, 

21, 79, 82, 83, 89].  Furthermore, hip-worn accelerometers can be burdensome to the 
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participant leading to a decrease in wear-time compliance when compared to wrist 

accelerometers [106]. 

Given the current limitations of hip-worn accelerometers, wrist-worn 

accelerometers may have an advantage over hip worn accelerometers, because they may 

be able to capture additional activities requiring significant upper body movements.  

Recently, there has been an increase in the number of accelerometer-based PA monitors 

designed solely for consumer use that are worn on the wrist (e.g. Jawbone, San Francisco, 

CA and Nike FuelBand, Beaverton, OR).  Furthermore, the National Institutes of Health 

(NIH) began using a wrist-worn accelerometer for the National Health and Nutrition 

Examination Survey (NHANES) starting in 2011, due to a desire to increase wear-time 

compliance and to obtain an objective measure of sleep.   

Recently, several companies developed new triaxial accelerometers aimed at 

detecting PA levels.  Nike, Fitbit, and Actigraph have released triaxial accelerometers 

capable of detecting movement and estimating EE [78, 102, 103].  With the increase in 

the production of accelerometers and their potential to provide more detailed information 

regarding PA patterns, as well as their potential to encourage PA, researchers must 

determine whether these devices accurately detect PA and the associated EE.  It is also 

important to determine whether or not newly developed triaxial accelerometers are 

capable of predicting EE across a wide variety of activities such as sedentary, household 

and recreational activities.  Therefore, the purpose of this study was to determine the 

accuracy of three newly developed, triaxial accelerometers (Nike FuelBand, Fitbit, and 

ActiGraph GT3X+) across a wide range of activities.   
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Materials and Methods  

The study included 21 participants (14 males, 7 females).  The University of 

Tennessee, Knoxville’s Institutional Review Board approved the study protocol prior to 

participant recruitment and data collection.  All participants provided informed consent 

prior to testing.  The participants were 18-45 years old, body mass index (BMI) between 

18.5 kg.m-2 and 29.9 kg.m-2, regularly active (at least 150 minutes per week of moderate 

activity or 75 minutes per week of vigorous activity), free of any musculoskeletal 

limitations, and capable of performing all activities in the study (We asked participants 

about their ability to engage in vigorous activities, such as racquetball and basketball, for 

approximately 10 minutes per activity.).  Only those individuals who reported meeting 

the PA guidelines and indicated ability to perform the sports in question were allowed to 

participate in the study.  Individuals not meeting these criteria were excluded from the 

study.   

Testing sessions consisted of 3 separate visits.  During the first visit to the 

laboratory, participants were briefed on the nature of the study and completed an 

informed consent form and a PA readiness questionnaire (PAR-Q) [107] to screen for 

potential conditions that indicated the individual should not engage in moderate-to-

vigorous exercise.  Subsequently, their height (cm) was measured with a standard 

stadiometer and weight (kg) was measured with an electronic scale (Tanita Body 

Composition analyzer, Model BC-418).  Subjects then completed one of three PA 

routines. 
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All participants performed one to three activity routines of varying intensities 

(Table 1), with each participant completing at least one routine.   

Table 1. Routines used in the study. 

 

Routine 1 (sedentary/walking) 

Seated computer work 
Standing 
Walking, self-paced 
Walking with an umbrella* 
Walking with a backpack** 
Walking up and down stairs 

Routine 2 (housework/yard work) 

Vacuuming 
Sweeping 
Washing dishes 
Mowing (push mower) 
Raking 

Routine 3 (sports/exercise) 

Racquetball 
Basketball 
Elliptical 
Air Dyne bike 
Treadmill, 9.3 km/hr 
Treadmill, 12.0 km/hr 

 
All walking activities performed on an outdoor track at self-selected pace. 
* - Umbrella was held in dominant hand. 
** - Backpack weighed 4.5kg. 
All routine activities consisted of 8-minutes bouts. 
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Each activity routine consisted of 5-6 activities, and one routine was completed 

per day.  The order in which routines were completed was randomized, but the order in 

which the activities were completed was consistent across each routine.  The routines 

were as follows: 

Routine 1:   computer work, standing, self-paced walking, self-paced walking with an 

umbrella in the dominant hand, self-paced walking with a backpack, and walking flights 

of stairs. 

Routine 2: vacuuming, sweeping, washing dishes, mowing (using a push mower), and 

raking. 

Routine 3: racquetball, basketball, elliptical, Air Dyne biking, treadmill running at 9.7 

km/h, and treadmill running at 12.0 km/h.   

A total of 21 participants performed at least two of three routines.  Specifically, 

21 participants performed Routines 1 and 2, and 20 participants performed all three 

routines.  Each activity was performed for eight minutes.  Participants were given a 3-4 

minute rest between each activity.  During each activity routine, oxygen consumption 

(VO2) was measured using indirect calorimetry (Cosmed K4 b2 , Rome, Italy).  Previous 

research in our laboratory has validated VO2 values from the Cosmed K4 b2 [108].  Prior 

to each test, the K4 b2 was calibrated according to the manufacturer’s instructions.  This 

consisted of performing a room air calibration and a reference gas calibration using 

16.00% oxygen and 3.98% carbon dioxide.  The flow turbine was calibrated using a 3.0-

liter syringe (Hans-Rudolph).  An additional delay calibration was performed to account 

for the lag time that occurs between the expiratory flow measurement and the gas 
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analyzers assessment of the gas fractions.  The Cosmed K4 b2 was used as the criterion 

measure for EE (net kilocalories per minute).  In order to estimate resting EE, participants 

also wore the Cosmed K4 b2 while lying supine for approximately 15 minutes prior to 

performing routines on day 1.   

 ActiGraph GT3X+ accelerometer:  The ActiGraph GT3X+ (ActiGraph) accelerometer 

was securely placed over the right hip using a nylon belt.  The ActiGraph was initialized 

using Actilife 5 (ActiGraph) computer software.  Data from the ActiGraph were collected 

at a rate of 100 Hz with 30-second epoch lengths.  At the completion of each routine, data 

were uploaded from the ActiGraph to a laboratory computer using a standard universal 

serial bus (USB) drive.   

Nike FuelBand:  The Nike FuelBand (Nike, Beaverton OR), a bracelet-sized device, was 

placed around the dominant wrist.  The Nike FuelBand is available in three sizes (small, 

medium, and large) and comes pre-packaged with additional extenders that allow 

individuals to adjust the size of the Nike FuelBand.  The Nike FuelBand was initialized 

using web-based software (http://nikeplus.nike.com/plus/setup/fuelband) in which 

personalized data (height, weight, and age) is stored within the software, and 

synchronized with the Nike FuelBand to estimate net EE during activity.   

The Fitbit: The Fitbit (San Francisco, CA) was placed on a belt around the waist of each 

participant, at the anterior iliac crest.  Similar to the Nike FuelBand, the Fitbit was 

initialized using web-based software (www.fitbit.com/start) and individualized data 

(gender, age, height, weight, and stride rate) were used in estimating gross EE during PA.   
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Measures  

Kilocalories 

Breath-by-breath measurements were collected using the Cosmed K4b2 and 

averaged over 1-minute periods.  Net kilocalories per minute (kcal.min-1) was the variable 

of interest.  For the Cosmed K4 b2, the last 4 minutes of each activity was used in the 

final analysis. The kcal.min-1 values for the last 4 minutes of each activity were averaged 

to obtain a net kcal.min-1 value.  In order to obtain net kilocalories from the Cosmed K4 

b2, resting metabolic rate was subtracted from the average gross kilocalorie value (per 

activity) given by the Cosmed K4 b2.  For the Nike FuelBand and Fitbit, an initial kcal 

value was subtracted from the final kcal value at the end of each activity to obtain the 

total kilocalories per activity.  The FuelBand provides an estimate of PAEE, thus can be 

directly compared with the net kcal per min obtained from the Cosmed.  The Fitbit 

estimates gross kilocalories (PAEE + kilocalories expended at rest) using a combination 

of the Mifflin St. Jeor equation [109, 110]  for resting metabolic rate and other 

undisclosed equations to compute the activity EE using proprietary algorithms [109, 

110].  Therefore, PAEE for the Fitbit was estimated by subtracting resting metabolic rate 

(i.e., gross EE minus resting metabolic rate using the Mifflin St. Jeor equation) from the 

average kcal.min-1 value derived for each activity.  For the ActiGraph, data were 

downloaded to a computer, and a kilocalorie value for each bout of activity was derived 

from the software.  The combination equation consisting of a standard work-energy 

theorem and the Freedson prediction equation [20] was used to calculate EE from 

accelerometer counts.  Accelerations less than or equal to 1952 counts.min-1 are converted 
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to kcals using the work-energy theorem.  Likewise, accelerations totaling greater than 

1952 counts.min-1, are converted to kcal.min-1 using the Freedson kcal equation was used:  

Work energy Theorem:  kilocalories = Counts × 0.0000191 × Mass  

Freedson: kilocalorie
.
min

-1
 = (0.00094×Counts + (0.1346×Mass-7.37418).   

According to ActiGraph’s website [111], these equations were developed to determine 

PAEE [111], which is synonymous with net EE (i.e., EE in excess of the resting EE). 

Measures  

Statistical Approach 

All data were analyzed using SPSS 19 for Windows (SPSS Inc., Chicago, IL).  An 

alpha level of 0.05 was set as an indicator of statistical significance.  Repeated measures 

ANOVAs were used to determine significant differences in measured and predicted net 

EE (net kcal.min-1) for all activities.  Paired sample t-tests with Bonferroni adjustments 

were used to locate significant differences across devices.   

Modified Bland-Altman plots were used to illustrate the variability in individual 

error scores (measured kilocalories per min – predicted kilocalories per min) across 

activities (n = 17 activities for kilocalories per min) and devices (Nike FuelBand, Fitbit, 

and Actigraph).  Data points below zero indicate an overestimation, while data points 

above zero indicate an underestimation.   

Results 

Due to device error and the inability of several individuals to complete some of 

the activities, data were missing for some participants, and thus were excluded from the 

final analysis (three of 21 individuals were excluded for routine 1 and routine 2, and five 
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of 20 subjects were excluded for routine 3).  As a result, the final analysis included 18 

individuals who completed routine 1 and 2, and 15 individuals who completed routine 3. 

Table 2 shows the physical characteristics of participants.   
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Table 2. Physical characteristics of study participants.  

 

Age (y)  24.5 + 2.6 (21 – 30) 

   Height (cm)    176.8 + 8.6 (156.0 – 192.0) 

  Body mass (kg)   75.8 + 16.5 (50.0 – 112.0) 

BMI (kg.m-2)  23.9 + 3.6 (18.2 – 33.0) 

Resting EE (kcal.min-1): 1.3 + 0.4 (0.87 – 1.72) 

n = 21 
Male = 14 
Female = 7  
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Table 3 Compares the actual (Cosmed K4b
2
) and predicted (Nike FuelBand, Fitbit, 

and ActiGraph GT3X+) net EE (net kcals
.
min

-1
) across 17 activities. 

a: Nike FuelBand significantly different from criterion measure (p < 0.05). 

b: Fitbit significantly different from criterion measure (p < 0.05). 

c: ActiGraph significantly different from criterion measure (p < 0.05). 

 

Activity Cosmed K4b2
 FuelBand Fitbit ActiGraph 

GT3X+ 

Computer 
Work (a,c) 
 

0.4 + 0.0 

(0.1 – 0.5) 
0.0 +  0.0 

(0.0 – 0.0) 

 

0.3 + 0.05 
(0.3 – 0.4) 

0.0+ 0.0 
(0.0 – 0.0) 

Standing  
(a,c)    

0.2 + 0.1 
(0.1 – 0.3) 

0.0 + 0.0 
(0.0 – 0.0) 

0.1 + 0.1 
(-0.1 – 0.3) 

0.0 + 0.0 
(0.0 – 0.0) 

Self-paced 
Walking 
(a,b,c) 

3.1 + 0.2 
(2.8 – 3.5) 

4.6 + 0.2 
(4.2 – 5.1) 

5.4 + 0.3 
(4.8 – 6.0) 

5.8 + 0.4 
(4.9 – 6.7) 

Walking with 
Umbrella 
(b,c) 

3.3 + 0.2 
(3.0 – 3.8) 

3.5 + 0.5 
(2.5 – 4.5) 

5.2 + 0.3 
(4.5 – 6.0) 

5.8 + 0.5 
(4.7 – 6.9) 

Walking with 
Backpack 
(a,b,c) 

3.6 + 0.2 
(3.2 – 3.9) 

4.7 + 0.2 
(4.3 – 5.1) 

5.0 + 0.3 
(4.6 – 6.0) 

5.6 + 0.5 
(4.5 – 6.8) 

Walking up-
and-down 
Stairs 

6.7 + 0.4 
(6.0 – 7.6) 

6.0 + 0.4 

(5.1 – 7.0) 
7.0 + 0.4 
(6.1 - 8.0) 

6.7 + 0.6 
(5.5 – 8.0) 

Vacuuming  
(c) 

2.6 + 0.2 
(2.1 – 3.0) 

2.7 + 0.4 
(2.0 – 3.5) 

2.2 + 0.1 
(1.9 – 2.5) 

0.7 + 0.1 
(0.6 – 0.9) 

Sweeping 
(a,b,c) 
 

3.0 + 0.8 
(2.5 – 3.3) 

4.7 + 0.4 
(4.0 – 5.5) 

2.0 + 0.2 
(1.5 – 2.3) 

1.0 + 0.2 
(0.7 – 1.3) 

Dishwashing 
(a,b,c) 

1.5 + 0.1 
(1.2 – 1.8) 

3.0 + 0.3 
(2.5 – 3.6) 

0.2 + 0.1 
(0.1 – 0.3) 

0.1 + 0.5 
(0.0 – 0.2) 

Mowing 
(a,b,c) 

5.3 + 0.4 
(4.6 – 6.1) 

6.8 + 0.5 
(5.8 – 7.9) 

4.3 + 0.4 
(3.6 – 5.1) 

3.7 + 0.4 
(2.7 – 4.8) 

Raking (a,b,c) 3.5 + 0.2 
(3.0 – 3.9) 

8.0 + 0.5 
(7.0 – 9.0) 

2.5 + 0.1 
(2.2 – 2.8) 

1.2 + 0.1 
(1.0 – 1.3) 

Racquetball 
(b,c) 

9.6 + 0.8 
(7.9 – 11.2) 

11.1 + 0.5 
(9.9 – 12.3) 

7.4 + 0.6 
(6.1 – 8.6) 

6.5 + 0.4 
(5.7 – 7.4) 

Basketball (c) 
 

10.8 + 0.8 
(9.0 – 12.5) 

12.2 + 0.5 
(11.2 – 13.3) 

8.8 + 0.6 
(7.4 – 10.2) 

8.3 + 0.8 
(9.0 – 12.5)* 
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Elliptical (a,c) 5.0 + 0.2 
(4.5 – 5.5) 

3.1 + 0.4 
(2.3 – 4.0) 

5.5 + 0.4 
(4.7 – 6.3) 

7.6 + 0.4 
(6.7 – 8.5) 

Air Dyne 
(b,c) 

5.6 + 0.2 
(5.2 – 6.1) 

4.9 + 0.5 
(3.9 – 6.0) 

0.3 + 0.2 
(0.0 – 0.1) 

0.2 + 0.1 
(0.0 – 0.5) 

Treadmill 
9.7km/h (a,c) 

9.7 + 0.4 
(8.9 – 10.7) 

12.7 + 0.7 
(11.3 – 14.1) 

10.8 + 0.6 
(9.5 – 12.1) 

10.9 + 0.5 
(9.8 – 12.0) 

Treadmill 
12.0km/h 
 

11.9 + 0.6 
(10.5 – 13.3) 

10.8 + 0.8 
(8.9 – 12.6) 

10.3 + 0.9 
(8.3 – 12.2) 

11.2 + 0.7 
(10.5 – 13.2) 

 

Table 3 Compares the actual (Cosmed K4b2) and predicted (Nike FuelBand, Fitbit, and 

ActiGraph GT3X+) net EE (net kcals.min-1) across 17 activities. 

a: Nike FuelBand significantly different from criterion measure (p < 0.05). 

b: Fitbit significantly different from criterion measure (p < 0.05). 

c: ActiGraph significantly different from criterion measure (p < 0.05). 

 



 

. 

 

Figure 1: Illustrates the percent of actual (Cosmed K4

and ActiGraph GT3X+). 

a: Nike FuelBand significantly different from criterion measure p < 0.05 level. 
b: Fitbit significantly different from criterion measure p < 0.05 level. 
c: ActiGraph significantly different from criterion measure at p < 0.05 level

  

 50 

llustrates the percent of actual (Cosmed K4 b
2
) net kcals per minute across all activities and 3 devices (Nike FuelBand, Fitbit, 

: Nike FuelBand significantly different from criterion measure p < 0.05 level.  
b: Fitbit significantly different from criterion measure p < 0.05 level.  
c: ActiGraph significantly different from criterion measure at p < 0.05 level 

 

) net kcals per minute across all activities and 3 devices (Nike FuelBand, Fitbit, 



 

 

 

Figure 2: Measured (Cosmed K4b
2
) and estimated net kilocalories per minute (kcal

a: Nike FuelBand significantly different from criterion (p < 0.05 level)

c: ActiGraph significantly different from criterion (p < 0.05).
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) and estimated net kilocalories per minute (kcal
.
min

-1
) across activities of varying intensities

a: Nike FuelBand significantly different from criterion (p < 0.05 level); b: Fitbit significantly different from criterion (p < 0.05).

aph significantly different from criterion (p < 0.05). 

 

) across activities of varying intensities. 

b: Fitbit significantly different from criterion (p < 0.05). 
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Figures 3a, 3b, and 3c show modified Bland-Altman Plots for individual error scores for EE (kcals per minute) for the 

Nike FuelBand (Figure 3a), Fitbit (Figure 3b), and the ActiGraph (Figure 3c).  
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Fig (3a): Modified Bland-Altman plot depicting individual error scores for the Nike FuelBand (kcal
.
min

-1
) for all activities.  Dashed lines 

represent the 95% limits of agreement.  Solid line represents the mean difference. 
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Fig (3b): Modified Bland-Altman plot depicting individual error scores for the Fitbit (kcal
.
min

-1
) for all activities.  Dashed lines represent 

the 95% limits of agreement.  Solid line represents the mean difference. 
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Fig (3c): Modified Bland-Altman plot depicting individual error scores for the ActiGraph (kcal
.
min

-1
) for all activities.  Dashed lines 

represent the 95% limits of agreement.  Solid line represents the mean difference. 
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The Nike FuelBand significantly overestimated the energy cost of 7 out of the 17 

total activities included in the study (Table 1, Figures 1 and 2), and underestimated the 

energy cost of 3 of the 17 activities.  More specifically, during nearly all the walking 

activities, the Nike FuelBand significantly overestimated EE.  The only exception to this 

was during the umbrella activity in which arm movement was limited (Table 3).  During 

household activities requiring significant arm movement, the Nike FuelBand significantly 

overestimated EE (sweeping; Cosmed, 3.0 + 0.8 vs. Nike, 4.7 + 0.4 kcals per minute, p = 

0.00) (Dishwashing; Cosmed, 1.5 + 0.1 vs. Nike, 3.0 + 0.3 kcals per minute, p < 0.05).  

During sport activities, however, the FuelBand performed somewhat better than during 

household activities.  There were no significant differences between the Nike FuelBand 

and the criterion measure during racquetball and basketball (Figure 2).  During stationary 

exercises that required equipment and significant arm movement (i.e., elliptical and Air 

Dyne biking), the FuelBand accurately predicted EE (Table 3, Figure 2), but did not 

accurately predict EE for the elliptical machine involving arm movement (Cosmed, 5.0 + 

0.2 vs. Nike, 3.1 + 0.4 kcals per minute, p < 0.05).  The FuelBand accurately predicted 

EE during the faster running speed (Table 3), but was significantly different from the 

criterion measure during the slower running speed (Cosmed, 9.7 + 0.4 vs. Nike, 12.7 + 

0.7 kcals per minute,  p < 0.05)  

Similar to the Nike FuelBand, the Fitbit and the ActiGraph overestimated nearly 

all walking activities (Table 3).  The Fitbit and the ActiGraph gave remarkably similar 

values for most activities.  In general, the Fitbit and the ActiGraph significantly 
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underestimated several of the same activities (e.g., dishwashing, sweeping, and 

racquetball).  For example, the Fitbit and the ActiGraph recorded close to 0 kcals per 

minute during household activities requiring significant arm movements (e.g., 

dishwashing and sweeping), and they recorded over 2-3 calories per minute less than the 

criterion measure during racquetball (Cosmed, 9.6 + 0.8 kcals per minute vs. Fitbit, 7.4 + 

0.6 kcals per minute, vs. ActiGraph, 6.5 + 0.4 kcals per minute, p < 0.05).  It can also be 

observed from Figure 1 that the Fitbit and the ActiGraph were unable to capture the 

additional EE resulting from upper body movements on the Schwinn Air Dyne.  

Additionally, they were unable to accurately predict the EE associated with the elliptical 

machine (Table 3).  

The modified Bland-Altman Plots (Figure 3) indicated that the Nike FuelBand, on 

average when all activities were combined, differed from the criterion value by -0.46 + 

2.84 kcals.min-1 (p = 0.01) indicating a slight overestimation by the Nike FuelBand.  In 

comparison, EE (net kcal.min-1) from the Fitbit differed from the Cosmed K4b2 by 0.48 + 

2.28 kcal.min-1 (p = 0.00), while the mean difference between the Cosmed K4b2 and the 

ActiGraph was 0.64 + 2.6 kcal.min-1 (p = 0.000).  The 95% prediction intervals were 

roughly + 5 MET, for all three devices.  Thus, the Nike FuelBand, Fitbit, and ActiGraph 

had limited accuracy for predicting EE across a wide range of activities. 

Discussion 

Although the Nike FuelBand, Fitbit, and ActiGraph accurately predicted EE for 

several of the activities, our results suggest that, collectively, these newly-designed 

triaxial accelerometers had limited ability to predict EE across a range of activities.  Out 
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of 17 total activities, both the wrist-worn FuelBand and the waist-worn Fitbit accurately 

predicted 7 out of 17 possible activities.  Thus it appears that, overall, the wrist-mounted 

and hip-mounted device performed similarly for predicting EE across a range of 

activities.  However, when considering all activities together, the mean bias for the 

FuelBand and Fitbit went in opposite directions (Nike; -0.455 + 2.84 kcals.min-1, p = 

0.01, Fitbit; 0.482 + 2.28 kcal.min-1, p = 0.00). Furthermore, the wrist-mounted and hip-

mounted devices differed in their accuracy for predicting the EE of specific activities.    

The Nike FuelBand overestimated most of the household activities as well as 

most of the walking activities (Table 3).  The FuelBand tended to overestimate household 

activities requiring arm movements (Routine 2, Table 2), and waking activities during 

which arms swung freely by the participant’s side.  The FuelBand performed the best 

during the sport activities, and accurately predicted EE during one of the stationary 

exercises (Schwinn Air Dyne) and during the fastest treadmill speed (12.0 km/h).  Thus, 

it appears that the Nike FuelBand overestimates EE during low-to-moderate lifestyle 

activities such as self-paced walking and household activities, but adequately predicts EE 

during sport activities.  The overestimation during low to moderate intensity activities 

and activities requiring significant arm movement may be explained by the placement of 

the FuelBand on the wrist.  For example, the Nike FuelBand dramatically overestimated 

the EE of raking by over 200% (Figure 1).  During dishwashing, and activities requiring 

almost no lower body movement and significant arm movements, the Nike FuelBand also 

overestimated EE by over 150% (Figure 1), indicating that the FuelBand is very sensitive 

to exaggerated arm/wrist movement. Although the Nike FuelBand does not appear to 
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perform superiorly to the Fitbit and the ActiGraph, the Nike FuelBand has the ability to 

capture EE associated with upper body movements and may perform superior to hip 

worn-accelerometers to predict EE during activities requiring significant arm movement.   

The ActiGraph and the Fitbit underestimated EE during activities requiring arm 

movements, and overestimated EE during most of the walking activities.  Both devices 

also underestimated sport activities, and the ActiGraph significantly underestimated the 

slower treadmill speed (9.7 km.h-1).  Although the ActiGraph significantly overestimated 

EE during the slower treadmill speed, the predicted EE from the ActiGraph was not 

significantly different from the Fitbit (ActiGraph, 10.9 + 0.5 vs. Fitbit, 10.8 + 0.6 kcals 

per minute, p = 1.00).  Therefore, comparing the Fitbit to the Actigraph, the two devices 

performed similarly during most activities.   

Our study used a previously developed algorithm to predict EE from the 

ActiGraph.  The algorithm is derived from a combination of the Freedson kcal equation 

[20] and a work/energy theorem to calculate caloric expenditure [111].  Furthermore, it 

only uses the vertical axis on the ActiGraph GT3X+ to produce accelerometer counts for 

EE.  This is significant, because previous research has found that triaxial accelerometers 

are advantageous to uniaxial designs [112-114] when estimating EE during PA.  Thus, 

when using the combination equation with the ActiGraph GT3X+, it is likely that EE for 

some activities (especially those involving significant movements in the horizontal plane) 

may be underestimated. Nevertheless, several prediction equations do exist that 

incorporate vector magnitude counts of three axes.  However, further research is needed 
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to develop algorithms based on raw, triaxial acceleration data, and to determine the 

accuracy of newly-developed prediction equations. 

Previous research has shown that accelerometer-based activity monitors often 

exhibit a ‘plateau’ effect during faster treadmill speeds, in which filtering mechanisms 

within the accelerometer prevent the device from discerning the differences in EE during 

treadmill speeds greater than approximately 9.5 – 10km/hr [8, 17].  Specifically in our 

study, when comparing the 9.7km/hr treadmill run to the 12.0km/hr treadmill run, it 

appeared that the ActiGraph, Fitbit, and the Nike FuelBand suffered from the plateau 

effect, in which filtering mechanisms prevented the accelerometers (mainly the Nike 

FuelBand), from detecting differences in treadmill speeds greater than approximately 9.5 

- 10km/hr.  Although none of the devices were significantly different from the measured 

kcal.min-1 at the faster treadmill speed, it appeared that the filtering limitation may have 

caused EE during faster running speeds to be somewhat similar to the EE seen for the 

FuelBand, Fitbit, and ActiGraph at the slower treadmill speed.  The ability to differentiate 

among high intensity activities (e.g., various running speeds) is a major limitation to 

currently available accelerometers. 

Pattern recognition or ‘machine learning’ has been proposed as a potential method 

of converting accelerometer counts to EE.  Previous research has shown that wrist-worn 

accelerometers and hip-worn accelerometers have similar accuracy, but limited data is 

available regarding the accuracy of pattern recognition applied to wrist-worn 

accelerometers [93].  According to a website containing Fitbit source code (developed by 

Fitbit engineers) [109], physical activity EE is computed using ‘proprietary algorithms’ 
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based on the user’s actigraphy data.  Currently, it is unknown if the Nike FuelBand uses 

pattern recognition to estimate EE because the device uses proprietary algorithms.  More 

research is needed to determine if the use of pattern recognition would enhance estimates 

of EE across a range of activities and at multiple locations (i.e., hip and wrist). 

Neither the FuelBand nor the Fitbit were able to predict energy expenditure across 

a range of activities. Therefore, it would be impractical to utilize these devices as 

criterion measures during experiments in which energy expenditure is the main outcome 

variable.  However, given their novelty and popularity, the Nike FuelBand and Fitbit do 

have the potential to encourage PA among previously inactive or low active individuals.  

The general public can utilize these devices as rough estimates of energy expenditure 

during activity. 

In summary, these triaxial accelerometer-based activity monitors were not able to 

accurately predicting EE across all activities.  Wrist-worn devices tended to overestimate 

EE during activities requiring arm movement, whereas hip-worn devices underestimate 

activities requiring arm movement. Furthermore, both devices performed similarly across 

walking activities. Overall, the accuracy of the waist-worn Fitbit and wrist-worn Nike 

FuelBand were similar to that of the Actigraph.  However, none of the devices accurately 

predicted EE across a wide range of activities. 
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Estimation of Steps using three Triaxial Accelerometers 

Introduction 

The measurement of physical activity energy expenditure (PAEE) is crucial for 

understanding the relationship between PA and health outcomes.  Using data from the 

current study, the Nike FuelBand and Fitbit have shown limited accuracy for predicting 

energy expenditure (EE), in kcal.min-1over a range of activities.  However, it is unknown 

if these devices (Fitbit and Nike FuelBand) are able to detect steps, relative to a criterion 

measure, during the same activities.  In addition to determining if these devices could 

predict energy expenditure (kcal.min-1), a secondary purpose was to determine whether 

the Nike FuelBand and the Fitbit could predict steps (steps.min-1) taken during several of 

the activities used in this study. 

Methods 

Methodologies for the Nike FuelBand and Fitbit are described elsewhere (Chapter 

3).  The StepWatch 3 (Orthocare Innovations, Oklahoma City, OK) (SW) pedometer was 

the criterion measure and was worn around the left ankle, just above the lateral malleolus.  

The SW was secured to the ankle using an elastic strap.  The participant’s height was 

entered into the SW software.  Additionally, within the SW software, the user selects pre-

programmed speeds (normal and quick stepping) based on the activity.  For our walking 

activities, the SW speed was set to ‘normal’.  For the running activities, the SW was set 

to the ‘quick-stepping’ speed.  All devices were initialized using the same computer to 

ensure time synchronization between the devices.  Total steps per minute (steps.min-1) for 

activities were compared for the Nike FuelBand, the Fitbit, and the SW.  The SW 

software does not include a ‘uniformed’ step rate setting, which is consistent across 
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activities of varying step rates.  Thus, we limited the step analysis to 10 of the 17 

activities (regular walking, walking with an umbrella, walking with a backpack, walking 

up-and-down stairs, vacuuming, sweeping, mowing, raking, treadmill running at 9.7 

km/hr, and 12 km/hr).  The SW was the criterion measure for steps. 

Statistical Analysis 

One-sample t-tests were used to determine mean differences between the Nike 

FuelBand and the SW, and the Fitbit and SW.  We also developed modified Bland-

Altman plots to illustrate the variability in individual error scores for steps per min, 

across 10 activities and two devices (Fitbit and Nike FuelBand).  Data points below zero 

indicate an overestimation, while data points above zero indicate an underestimation.   

Results  and Discussion 

Figure 4a and 4b show modified Bland-Altman plots depicting individual error 

scores for steps.min-1for the Nike FuelBand (Figure 4a) and Fitbit (Figure 4b).   
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Fig (4a): Modified Bland-Altman plot depicting individual error scores for the Nike 

FuelBand (steps
.
min

-1
) for 10 activities.  Dashed lines represent the 95% limits of 

agreement.  Solid line represents the mean difference. 
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Fig (4b): Modified Bland-Altman plot depicting individual error scores for the Fitbit 

(steps
.
min

-1
) for 10 activities.  Dashed lines represent the 95% limits of agreement.  Solid 

line represents the mean difference. 
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The mean difference between the Fitbit and the StepWatch was 3.93 + 17.7 

steps.minute-1 (p = 0.03).  The mean difference between the Nike FuelBand and the 

StepWatch was 1.98 + 30.1 steps.minute-1, but the mean difference between the two 

devices was not significant (p = 0.38).  The 95% prediction intervals were nearly twice as 

wide for the FuelBand as for the FitBit (Figures 4a and 4b).  Thus it appears that the 

Fitbit had a significantly larger mean error than the FuelBand, but the FuelBand had 

greater individual variation.  As seen with kilocalories, the individual error in predicting 

steps.minute-1 across a range of activities could be quite large.  Thus, caution should be 

exercised when using the Fitbit and the FuelBand for measuring steps during PA.  
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INFORMED CONSENT FORM 
 

The Estimation of Caloric Expenditure and Physical Activity using Accelerometer-based 
Physical Activity Monitors 
 
Investigator Contact Information: 

Tyrone Ceaser 
University of Tennessee 
Department of Kinesiology, Recreation, and Sport Studies 
HPER 303 
1914 Andy Holt Ave. 
Knoxville, TN 37923 
Telephone: (865) 974-5091 Email: tceaser@utk.edu  

 
Study Purpose 

The purpose of this study is to determine whether newly-designed motion sensor 
devices (accelerometer-based physical activity monitors) can accurately estimate the 
calories burned and steps taken during different activities.  In order to be eligible for this 
study, you must be healthy, regularly active, and able to complete the activities included 
in this study. 
Testing Protocol 

You will be asked to come to the Applied Physiology Lab on 3 separate occasions 
for 1.5 to 2 hours per visit.  On each visit you will perform a different exercise routine.  
On the first visit, you will be given information about this study and asked to sign an 
informed consent form (this form).  You will also be asked to complete a form about your 
health. Once these are completed, your height and weight will be measured.  You will 
then be fitted with several different devices that will measure the amount of calories you 
burn at rest and during each activity you perform. You will wear a total of 6 different 
devices (2 on the hip, 1 on the ankle, 1 on each wrist, and 1 around your torso that will be 
connected to a facemask which will allow you to breathe normally).  All of the devices 
are safe, and will not harm you in any way. Once you have been fitted with these devices, 
you will begin your first exercise routine.  Each activity will last for 8 minutes, and you 
will have 2-4 minutes to rest in between each activity.  The order in which you do each of 
the following activity routines will be randomized.  In other words, the activities you 
perform on day 1 may not necessarily be routine 1.   
 

For routine 1, you will perform the following activities: seated computer work, 
standing, walking with arms swinging by side, walking with an umbrella, walking while 
holding onto backpack strap, and walking up-and-down stairs.  The walking activities in 
routine 1 will be done on the university outdoor track and field complex at a self-selected 
pace. 
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For routine 2, you will perform the following activities:  Vacuuming, sweeping, 
washing dishes, lawn mowing, and raking.  These activities will be done in and around 
the Applied Physiology Lab in the HPER building. 

 
For routine 3, you will perform the following activities:  Racquetball, basketball, 

elliptical machine, Air Dyne (requires arm and leg movement while on a stationary 
cycle), slow treadmill running (6 mph), and fast treadmill running (7.5 mph).  These 
activities will be done in the HPER building. 
 
Risks 

There are health risks associated with any type of moderate-to-strenuous exercise.  
These include muscular discomfort, dizziness, headaches, abnormal blood pressure 
responses, and heart attack.  However, the health risks that come with exercise are 
minimal for people who are healthy and exercise regularly. People who are at increased 
risks for these types of responses will not be included in the study.   
 

Emergency Medical Treatment 
In the event that you are injured during this research project, the University of 

Tennessee does not automatically pay for the treatment of injuries. If physical injury is 
suffered in the course of research, or for more information, please notify the investigator 
in charge Tyrone Ceaser (865) 974-5091. 
 

Benefits 

There are no direct benefits to participating in this study.  However, you will be 
given an opportunity to see how different devices work to measure calorie expenditure.  
We will also measure your height and weight and provide you with that information.  
 
Compensation 

There will be no compensation for your participation in this study.   
 

Confidentiality 

All data collected will be treated as confidential.  We will identify you in our 
records by an identification number and not by any personal identifiers such as name, 
date of birth, etc.  Data will be stored in a locked file in the HPER building. 
 

Contact Information 

For the duration of the study, you will be contacted and notified by phone and/or 
email concerning upcoming visits to the lab and/or problems you may be experiencing.  
If you have any questions about participating in this research study (or you experience 
any adverse effects as a result of participating in this study), contact Tyrone Ceaser , The 
University of Tennessee, 1914 Andy Holt Avenue, Knoxville, TN, 37996  or (865) 974-
5091.  Furthermore, if you have questions about your rights as a participant, please 
contact the University of Tennessee, Knoxville Office of Research Compliance Officer at 
(865) 974-3466. 



  83 

 

Participation 

 Your participation in this study is completely voluntary.  You are under no 
obligation to participate in this study and may decline to continue participation at any 
time during the study.  In the event that you do not finish the study, any data collected 
from you may be used for research, unless you specify otherwise.  If you do not wish for 
your data to be used for research, please let the researcher (Tyrone Ceaser) know, and it 
will be destroyed.  
________________________________________________________________________
__ 
 
Consent 
By signing this consent form, I am indicating that I have read this form and agree to take 
part in this study. I have received a copy of this form. 
  

___________________________________   

 Print Name      
  

           
Your signature      Date 
 
           

             Researcher’s Signature    Date 
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Physical Activity Readiness Questionnaire Form 

PHYSICAL ACTIVITY READINESS QUESTIONNAIRE (PAR-Q) 

 

Regular physical activity is fun and healthy, and increasingly more people are starting to 

become more active every day.  Being more active is very safe for most people.  

However, some people should check with their doctor before they start becoming much 

more physically active. 

If you are planning to become much more physically active than you are now, start by 

answering the seven questions in the box below.  If you are between the ages of 15 and 

69, the PAR-Q will tell you if you should check with your doctor before you start.  If you 

are over 69 years of age and you are not used to being very active, check with your 

doctor. 

No 

�  
 

�  
�  
�  
�  
�  
 

�  

Yes 

�  
 

�  
�  
�  
�  
�  
 

�  

 

1. Has your doctor ever said that you have a heart condition and that you 
should only do physical activity recommended by a doctor? 

2. Do you feel pain in your chest when you do physical activity? 
3. In the past month, have you had chest pain when you were not doing 

physical activity? 
4. Do you lose your balance because of dizziness or do you ever lose 

consciousness? 
5. Do you have a bone or joint problem that could be made worse by a 

change in your physical activity? 
6. Is your doctor currently prescribing drugs (for example water pills) for 

your blood pressure of heart condition? 
7. Do you know of any other reason why you should not do physical 

activity? 

 

Please note: If your 

health changes so that 

you then answer YES 

to any of these 

questions, tell your 

fitness or health 

professional.  Ask 

whether you should 

 If you answered YES to one or more questions 

 Talk to your doctor by phone or in person BEFORE you start 

becoming much more physically active of BEFORE you have 

a fitness appraisal.  Tell your doctor about the PAR-Q and 

which questions you answered YES. 

• You may be able to do any activity you want as long as 
you start slowly and build up gradually.  Or you may need 
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change your physical 

activity plan. 

to restrict your activities to those which are safe for you.  
Talk to your doctor about the kinds of activities you wish 
to participate in and follow his/her advice. 

• Find out which community programs are safe and helpful 
for you. 

 

If you answered NO to all questions  Delay becoming much more 

active if: 

• You are not feeling well 
because of a temporary 
illness such as a cold or a 
fever – wait until you feel 
better, or 

• If you are or may be 
pregnant – talk to your 
doctor before you start 
becoming more active. 

If you have answered NO honestly to all PAR-Q 

questions, you can be reasonably sure that you can: 

• Start becoming much more physical active – 
begin slowly and build up gradually.  This is 
the safest and easiest way to go. 

• Take part in a fitness appraisal – this is an 
excellent way to determine your basic fitness so 
that you can plan the best way for you to live 
actively. 

 

 

I understand that my signature signifies that I have read and understand all the 

information on the questionnaire, that I have truthfully answered all the questions, and 

that any question/concerns I may have had have been addressed to my complete 

satisfaction. 

 

Name (please print)      

 

Date____________________________________________________ 

 

Signature_______________________________________________ 
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Vita 

Tyrone Ceaser was born in Los Angeles California.  He resided in California for several 

years, and then relocated to Marion, South Carolina by way of adoption.  Tyrone has 3 

biological brothers, 1 biological sister, and 7 siblings by way of adoption.  Tyrone 

attended Marion High School in Marion, South Carolina,  After graduation, he attended 

Winthrop university in Rock Hill, South Carolina, where he obtained a bachelor’s degree 

in Athletic Training.  After completion of his bachelor’s degree, Tyrone relocated to 

Chralotte, North Carolina, where he accepted a teaching assistantship and completed his 

Master’s degree in Clinical Exercise Physiology.  Immediately following his master’s 

degree, Tyrone relocated to Knoxville, Tennessee, where he accepted a graduate teaching 

associate assistantship and graduate with a Doctorate degree in Kinesiology.  He is 

currently a post-doctoral fellow at Gramercy Research Group in Winston-Salem, North 

Carolina.   
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