
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2012

Sketchmate: A Computer-Aided Sketching and
Simulation Tool for Teaching Graph Algorithms
Kristy Sue Van Hornweder
kvanhorn@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Van Hornweder, Kristy Sue, "Sketchmate: A Computer-Aided Sketching and Simulation Tool for Teaching Graph Algorithms. " PhD
diss., University of Tennessee, 2012.
https://trace.tennessee.edu/utk_graddiss/1437

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Kristy Sue Van Hornweder entitled "Sketchmate: A
Computer-Aided Sketching and Simulation Tool for Teaching Graph Algorithms." I have examined the
final electronic copy of this dissertation for form and content and recommend that it be accepted in
partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Computer
Science.

Bradley T. Vander Zanden, Major Professor

We have read this dissertation and recommend its acceptance:

Lynne E. Parker, James S. Plank, Christopher H. Skinner

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Sketchmate: A Computer-Aided Sketching
and Simulation Tool for Teaching Graph

Algorithms

A Dissertation
Presented for the

Doctor of Philosophy
Degree

The University of Tennessee-Knoxville

Kristy Sue Van Hornweder

August 2012

Copyright c© 2012 Kristy Sue Van Hornweder.
All rights reserved.

ii

Acknowledgements

I would like to thank my research committee members, Dr. Brad Vander Zanden, Dr. Lynne
Parker, Dr. Jim Plank, and Dr. Chris Skinner for serving on my committee and providing
support and guidance for my research.

I would also like to extend a special thank you to Dr. Vander Zanden for being willing to
serve as my advisor upon my decision to change research direction. During our weekly meet-
ings over the last few years, he has offered much advice and direction for various activities
such as Java program design, dissertation writing, teaching assistant duties, teaching style
and philosophy, job searching, and non-academic pursuits, including hiking in the Great
Smoky and Blue Ridge Mountains.

In addition, I would like to thank Dr. Chris Skinner for providing much guidance in
designing and conducting my research experiments. I also appreciate the assistance of Dr.
Skinner’s colleague Mike O’Neil in providing support for statistical analysis of my experi-
mental data.

I would also like to thank Dr. Plank and Dr. Vander Zanden for allowing me to use one
of their class periods to conduct my research experiments. I also thank the students in those
classes for their participation.

I also owe a special thank you to Dr. Timothy Colburn and Dr. Robert McFarland,
my former advisors from the University of Minnesota-Duluth. Dr. Colburn directed my
Computer Science Masters thesis, as well as supervised my work as a teaching assistant, an
experience that led to my desire to pursue a career in academia. Dr. McFarland directed
my Mathematics Masters project, taught several of my undergraduate courses, and inspired
much interest in attending graduate school. Both Dr. Colburn and Dr. McFarland have
played a major role in helping me define my career path.

Finally, I would like to extend gratitude to my friend Jill Torgerson, whom I met at
the University of Minnesota-Duluth. She has served as a confidant for many years and has
provided me invaluable feedback on my teaching while I was a Masters student. She has
played an instrumental part in motivating my interest in teaching and pursuing a PhD so
that I could ultimately become a professor.

iii

Abstract

In this dissertation, we developed and tested a sketching, visualization, and simulation tool
called Sketchmate for demonstrating graph algorithms commonly taught in undergraduate
computer science courses. For this research, we chose to focus on shortest path and net-
work flow algorithms. Two versions of this tool have been implemented: 1) an instructor
tool that supports computer-aided manual simulations of algorithms that augment tradi-
tional whiteboard presentations, allowing lectures to be more dynamic and interactive, and
2) a student tool that supports computer-aided manual practice of algorithms that enables
students to work through homework problems more quickly while providing detailed incre-
mental feedback about their performance and about how to solve a problem when they get
stuck. Previous algorithm simulation systems have essentially forced instructors to narrate
an algorithm as though they were describing an automated set of slides. In contrast, our
tool allows instructors to manually manipulate attributes of a graph as they demonstrate an
algorithm.

A set of experiments was conducted using the tools. The results for the student tool
showed that there was no statistically significant difference in test score improvement between
Sketchmate and paper and pencil students, although they did show that Sketchmate students
scored roughly one letter grade higher than paper and pencil students. Based on survey
data, the students preferred using the tool to using paper and pencil. The results of the
experiment involving the instructor tool showed that although there was no statistically
significant difference in learning between Sketchmate and the whiteboard, both the instructor
and the students preferred a Sketchmate lecture to a whiteboard lecture.

iv

Contents

1 Introduction 1

2 Related Work 5
2.1 Effectiveness of Algorithm Visualization Tools 5
2.2 Animation and Visualization Tools for Teaching Computer Science 6
2.3 General Presentation and Annotation Tools 7
2.4 Animation and Visualization Tools Capable of Demonstrating Graph Algorithms 8

2.4.1 Tools with Automatic Simulation, Continuous Display, and Graph Cre-
ation Capability . 9

2.4.2 Tools with Automatic Simulation, Continuous Display, and Toolkit-
Provided Graphs . 12

2.4.3 Tools with Automatic Simulation and Discrete Stepping 13
2.4.4 Tools with Manual Practice and Automatic Simulation 14
2.4.5 Summary . 17

2.5 Sketchmate for Splay Trees . 18

3 Research Goals 20

4 Overview of Graph Algorithms 23
4.1 Graph Terminology . 23
4.2 Dijkstra’s Shortest Path Algorithm . 23
4.3 Maximal Network Flow Algorithm . 26

5 Description of the Sketchmate Environment 30
5.1 Create Pane . 31

5.1.1 Adding and Modifying Vertices and Edges 31
5.1.2 General Operations of the Create Pane 33

5.2 Simulate Pane . 33
5.2.1 Simulate Pane for Shortest Path . 33
5.2.2 Simulate Pane for Network Flow . 34
5.2.3 General Features of the Simulate Pane 36

5.3 Revert Pane . 37
5.4 Student Tool . 37

v

5.4.1 Student Simulate Pane for Shortest Path 37
5.4.2 Student Simulate Pane for Network Flow 39
5.4.3 General Features of the Student Simulate Pane 40

5.5 Sample Sketchmate Sessions . 42
5.5.1 Sample Session of the Student Tool for Shortest Path 42
5.5.2 Sample Session of the Instructor Tool for Network Flow 51

6 Analysis and Evaluation of the Student Tool Experiment 62
6.1 Subjects, Setting, and Materials . 63
6.2 Design . 63
6.3 Procedures . 64
6.4 Results and Discussion . 65

6.4.1 Shortest Path . 65
6.4.2 Network Flow . 70
6.4.3 Survey Results . 74

6.5 Limitations . 77
6.5.1 Limitations of the Experiment . 77
6.5.2 Limitations of Sketchmate . 78

6.6 General Discussion . 78

7 Analysis and Evaluation of the Instructor Tool Experiment 80
7.1 Subjects, Setting, and Materials . 81
7.2 Design . 81
7.3 Procedures . 81
7.4 Results and Discussion . 82
7.5 Limitations . 86

7.5.1 Limitations of the Experiment . 86
7.5.2 Limitations of Sketchmate . 87

7.6 General Discussion . 87

8 Conclusions and Future Work 89
8.1 Student Tool . 89
8.2 Instructor Tool . 90
8.3 Lessons Learned . 90
8.4 Future Work . 91

Bibliography 93

Appendix 99

Vita 103

vi

List of Tables

2.1 Summary of AV tool capabilities. Entries with a question mark (?) were
unable to be determined with certainty. “N” = “Nodes” and “E” = “Edges”. 17

6.1 Student tool points/accuracy for shortest path pre-test and post-test (SD =
standard deviation). 197 possible points for both pre- and post-test. 66

6.2 Student tool points/accuracy for shortest path exercise problems (SD = stan-
dard deviation, C = cutoff, NC = no-cutoff). 312 possible points. 69

6.3 Student tool steps/accuracy for shortest path exercise problems (SD = stan-
dard deviation, C = cutoff, NC = no-cutoff). 41 possible steps. 70

6.4 Student tool points/accuracy for network flow pre-test and post-test (SD =
standard deviation). 218 possible points for both pre- and post-test. 71

6.5 Student tool points/accuracy for network flow exercise problems (SD = stan-
dard deviation, C = cutoff, NC = no-cutoff). 354 possible points. 71

6.6 Student tool steps/accuracy for network flow exercise problems (SD = stan-
dard deviation, C = cutoff, NC = no-cutoff). 51 possible steps. 72

6.7 Student tool survey results for shortest path questions (SD = standard devia-
tion, P = Paper/Pencil, S = Sketchmate). The Sketchmate column gives the
ratings that Sketchmate users assigned to Sketchmate and to Paper/Pencil,
while the Paper/Pencil column gives the ratings that the Paper/Pencil group
assigned to Paper/Pencil. For Sketchmate users, the Paper/Pencil ratings
refer to their experience with Paper/Pencil on the pre- and post-tests. 75

6.8 Student tool survey results for network flow questions (SD = standard devia-
tion, P = Paper/Pencil, S = Sketchmate). The Sketchmate column gives the
ratings that Sketchmate users assigned to Sketchmate and to Paper/Pencil,
while the Paper/Pencil column gives the ratings that the Paper/Pencil group
assigned to Paper/Pencil. For Sketchmate users, the Paper/Pencil ratings
refer to their experience with Paper/Pencil on the pre- and post-tests. 75

6.9 Student tool survey results for the difference between Sketchmate students’
ratings for Sketchmate and Paper/Pencil for the shortest path and network
flow operations. Statistical significance level is 0.05. A small effect size is 0.1,
a medium effect size is 0.25, and a large effect size is 0.4. Effect sizes larger
than 0.4 are generally unrealistic. 76

vii

6.10 Student tool survey free response results. Numbers in parentheses are the
number of students who commented on that particular aspect of the tool. 37
students filled out a survey. 77

7.1 Instructor tool experiment results for network flow pre-test and post-test (SD
= standard deviation). 257 possible points for both pre- and post-test. . . . 83

7.2 Instructor tool survey results for students viewing Sketchmate lecture (SD =
standard deviation) . 84

7.3 Instructor tool survey free response results. Numbers in parentheses are the
number of students who commented on that particular aspect of the tool. 17
students filled out a survey. 86

viii

List of Figures

2.1 Taxonomy of AV tools . 9

3.1 Hypothesized learning rate for Sketchmate compared with learning rate for pa-
per and pencil. The y-axis indicates the number of points accumulated or the
number of steps successfully completed. Points/steps increase as one moves
up the y-axis and time increases as one moves rightward along the x-axis. We
did not necessarily expect to double the learning rate but we hypothesized
that the learning rate would be increased for network flow problems. 22

4.1 Directed graph with five vertices . 24
4.2 Shortest path after visiting vertex s . 25
4.3 Shortest path after visiting vertex x . 25
4.4 Shortest path after visiting all vertices . 26
4.5 Initial and final flow through a graph for a network flow problem. The flows

along the edges are initially 0. The final graph shows the maximal flow along
each edge. 27

4.6 Flow and residual graphs of a flow network 27
4.7 Flow and residual graphs after the first step of the network flow algorithm . 28
4.8 Flow and residual graphs after the second step of the network flow algorithm 29

5.1 Create pane for both the instructor and student tool 32
5.2 Instructor simulate pane for shortest path 34
5.3 Instructor simulate pane after finding the first augmenting path for network

flow . 35
5.4 Instructor simulate pane during updating the residual graph for the first aug-

menting path for network flow . 36
5.5 Revert pane (instructor tool only) . 38
5.6 Student simulate pane for shortest path . 39
5.7 Student simulate pane for the augmenting path step of network flow 40
5.8 Student simulate pane for the flow and residual graph step of network flow . 41
5.9 The initial screen for the student walk-through example. s is the start vertex. 43

ix

5.10 Walk-through after visiting s. Vertices u and x have been marked as seen but
not visited. The cost of start vertex s is marked as 0. The costs of vertices u
and x have been updated to indicate the cost from the start vertex s to each
of u and x. Edges s-u and s-x have been shaded to indicate they are added to
the shortest path. 44

5.11 Walk-through while visiting x and updating y. Vertex y has been marked as
seen but not visited. The cost of vertex y becomes 7 since it is 5 units from
s to x and another 2 units from x to y. Edge x-y has been shaded to indicate
it is added to the shortest path. 45

5.12 Walk-through while visiting x and updating u. The cost of u has been changed
to 8 since it is shorter to go from s to u through x than it is to go from s to u
directly. To reflect this change, edge x-u has been added to the shortest path
and edge s-u has been removed from the shortest path. 46

5.13 Walk-through while visiting x and updating v. Vertex v has been marked as
seen but not visited. The cost of vertex v becomes 14 since it is 5 units from
s to x and another 9 units from x to v. Edge x-v has been shaded to indicate
it is added to the shortest path. 47

5.14 Walk-through after visiting y. Vertex y has been marked as visited. The
student misunderstands that the cost of vertex v should be reduced to 13
since s-x-y-v is a shorter path than the previous path of s-x-v. In addition to
the incorrect cost for vertex v, edge y-v is colored red to indicate it should
have been added to the shortest path and edge x-v is colored red to indicate
it should have been removed from the shortest path. 48

5.15 Walk-through after visiting u. Note that the student’s mistakes in the previous
step have been corrected. In this step, the student mistakenly visited vertex
v instead of vertex u. Vertex u should have been visited instead since it has a
smaller cost than vertex v. Additionally, the cost of vertex v should have been
reduced to 9 since s-x-u-v is a shorter path than the previous path s-x-y-v. As
indicated by the red edges, edge u-v should have been added to the shortest
path and edge y-v should have been removed from the shortest path. 49

5.16 Walk-through after visiting v. Note that the student’s mistakes in the previous
step have been corrected. In this step, vertex v has been marked as visited,
and now the problem has been completed. 50

5.17 Walk-through of a network flow problem in its initial state. The instructor is
about to mark the augmenting path in the residual graph. 51

5.18 Walk-through after the instructor marks the first augmenting path, but before
the instructor clicks “Finish step”. In the residual graph, edges a-c and c-d
are marked to be on the augmenting path since that path has the maximal
flow of 6. 52

x

5.19 Walk-through after finding the first augmenting path and after clicking the
“Finish step” and “Next step” buttons. In the residual graph, edges a-c and c-
d are marked to be on the augmenting path since that path has the maximal
flow of 6. All graph components that need to be updated, as well as the
augmenting path itself, are highlighted in magenta in the flow and residual
graphs. All of these graph components are along the augmenting path. . . . 53

5.20 Walk-through after updating the flow graph for the first augmenting path.
The flow of the augmenting path is 6, so the flow for edges a-c and c-d in the
flow graph have been updated to 6. 54

5.21 Walk-through during updating the residual graph for the first augmenting
path. Backedge c-a has been added to the residual graph and assigned capacity
6 since 6 is the flow along the augmenting path. The capacity of a-c is reduced
by the flow of 6 units to 2. 55

5.22 Walk-through after updating the residual graph for the first augmenting path.
Edge c-d has been flipped to become edge d-c since all of the flow has been
used up and is now a back flow. 56

5.23 Walk-through after finding the second augmenting path. The instructor has
marked edges a-b and b-d to be on the augmenting path. The instructor is
about to update the flow and residual graphs. 57

5.24 Walk-through after only partially updating the flow and residual graphs for the
second augmenting path. The instructor only updated the flow and residual
graphs for the edge a-b before clicking “Finish step”. The graph components
along edge b-d that should have been updated are marked in red as incorrect.
The dashed edge d-b in the residual graph denotes a backedge that should
have been added. 58

5.25 Walk-through after the instructor clicked the “Next step” button and the
updates to the flow and residual graphs have been corrected by the computer. 59

5.26 Walk-through after finding the third augmenting path. The instructor has
selected edges a-c, c-b, and b-d to be on the augmenting path. All graph
components along this path that need to be updated are highlighted. 60

5.27 Walk-through after updating the flow and residual graphs for the third aug-
menting path. The instructor has updated the flow and residual graph as
explained in the notepad text under Step 3. The problem is complete at this
point since there cannot be any more outflow from the source vertex a. . . . 61

6.1 Improvement of total number of points for shortest path pre-test and post-test.
C = Computer (solid line), P = Paper/Pencil (dashed line) 67

6.2 Improvement of percent accuracy for shortest path pre-test and post-test. C
= Computer (solid line), P = Paper/Pencil (dashed line) 68

6.3 Improvement of total number of points for network flow pre-test and post-test.
C = Computer (solid line), P = Paper/Pencil (dashed line) 72

6.4 Improvement of percent accuracy for network flow pre-test and post-test. C
= Computer (solid line), P = Paper/Pencil (dashed line) 73

xi

7.1 Improvement of total number of points for network flow pre-test and post-test.
C = Computer (solid line), W = Whiteboard (dashed line) 84

7.2 Improvement of percent accuracy for network flow pre-test and post-test. C
= Computer (solid line), W = Whiteboard (dashed line) 85

xii

Chapter 1

Introduction

It is common practice to use illustrations when teaching abstract concepts in computer
science to help make these concepts more concrete. The instructor will often draw a given
data structure on the whiteboard and use it to step through the process of performing an
algorithm on that data structure. Textbooks often include a series of diagrams of data
structures to accompany the textual description and explanation of the given algorithm.
While use of a whiteboard for free-drawing pictures is convenient and easily accessible, there
are disadvantages of using this technique. These pictures are static and do not clearly show
transitions between states of the given data structure. The diagrams can be cumbersome
to draw by hand and use of this technique is prone to making errors. These diagrams lack
domain-specific knowledge, which means that errors introduced by an instructor will not be
caught. With static illustrations drawn on the whiteboard, it is more difficult to revert to
previous stages or to save these diagrams for later use. A Smartboard (SMART-Technologies,
2012) allows one to save diagrams, but that requires the instructor to remember when to
save the diagram. In some cases, instructors will erase portions of the data structure and
redraw new components as they step through an algorithm. This makes the presentation
more difficult to follow as the history of the algorithm’s progression is lost. To preserve
information, instructors have the option of recopying the data structure for each stage,
however, most of the components of the data structure will not change in a given step, and
so this method is time consuming, wasteful in terms of whiteboard space, and more prone
to errors being introduced.

Another illustration strategy is the use of computerized simulations for presenting more
complex concepts and algorithms. Several studies [(Hundhausen et al., 2002), (Narayanan
and Hegarty, 2002), (Laakso and Salakoski, 2004), (Kumar, 2004), (Kumar, 2005b), (Ba-
loukas, 2009)] have suggested that student learning may be improved by using simulations
as opposed to traditional paper and pencil methods. Since simulations are dynamic, it
is possible to watch the algorithm in action as it manipulates a data structure, and the
transitions between steps is much more pronounced. Since the entire process is automated,
these transitions can be demonstrated without needing to manually erase or recopy the data
structures. A computer simulation is pre-programmed with the algorithm, thus making
it easier to prevent errors when presenting the simulation to students. The example data

1

structures used in computer simulations also can be saved for later review and practice,
either for instructors to present in their lectures, or for students to study the workings of
the algorithms.

While computer simulations can be a significant improvement over static illustrations,
they limit an instructor to narrating what is essentially an automated slide show that unfolds
in a manner prescribed by the simulation tool, instead of allowing instructors to present the
simulations in their own way. In this dissertation, we have developed a manual simulation
tool that allows instructors to manually manipulate graph data structures as they would
on a whiteboard, rather than helplessly watching as the computer manipulates the data
structure for them. This tool essentially functions as an enhanced whiteboard with “smart
objects”, which correspond to key elements of graph diagrams, such as labeled vertices and
edges. Previous tools such as MatrixPro (Karavirta et al., 2004) and Sketchmate (Orsega,
2009) provide the instructor with a library of pre-defined high-level operations that can be
performed on a data structure. In contrast, our tool defines a set of graph attributes, such
as vertex state and edge selection, and allows the instructor to manually manipulate these
attributes. Hence, the instructor has finer-grained control over the simulation, since the
instructor can choose the order in which the attributes are manipulated. Several additional
features are also included. Users are allowed to create a custom graph on which to perform
the simulation and are not limited to built-in examples. The application provides a history
list of the graph algorithm steps to allow the user to revert to any previous step for review.
Finally, the tool provides a notepad feature where the instructor can annotate a simulation
with key concepts, which is similar to writing these concepts on a whiteboard.

In addition to a lecture aid for instructors, we also address the computer-aided simulation
of practice exercises and completion of homework assignments for graph algorithms. Existing
computer simulations allow a student to passively watch but do not actively engage the
student. Hundhausen’s meta-study (Hundhausen et al., 2002) suggests that student learning
outcomes are typically optimized when a student is actively engaged in a simulation. This
requires a manual simulation tool. A student using a modified version of the instructor’s tool
to study an algorithm and work practice exercises could obtain detailed feedback at each
step that will explain what the student did incorrectly as opposed to simply stating that
the student’s action was incorrect. Such a tool could also facilitate the grading of student
homework, since much of the process can be automated and not require hours of instructor
time to carefully read student solutions. In this dissertation, we have also developed the
student version of the manual simulation tool described here.

To design our tools, we conceptually built on Michael Orsega’s Sketchmate tool [(Orsega,
2009), (Orsega et al., 2011), (Orsega et al., 2012)]. Orsega’s Sketchmate tool supports an
instructor version and a student version, it visualizes splay tree operations, and it implements
several of the features mentioned in the preceding paragraphs, including “smart” tree objects,
manual simulation for students, and detailed immediate feedback for students. It does not
support manual simulation for instructors, which is one of the main contributions of this
research.

In this dissertation, two versions of Sketchmate for prioritized graph search algorithms

2

have been implemented: a teaching version for instructors to teach graph algorithms dur-
ing their lectures, and a tutoring version for students to practice examples and complete
homework exercises. Our Sketchmate software for graphs contains several features beyond
allowing the basic demonstration of graph algorithms. Users are able to input a custom
graph, such as that found in a course textbook, rather than relying solely on built-in exam-
ples or random graphs. A history window of operations can be displayed with the instructor
tool to enable users to refer to any previous step of the algorithm. A diagram of the graph
structure at the previous step of the algorithm is displayed along with a diagram of the
current graph structure to allow for easier viewing of changes between steps. An instructor
is able to manually simulate the process of the algorithm, as well as annotate the simulations
using a notepad feature.

A student using the student tool is able to obtain detailed feedback at each step that
explains what the student did incorrectly as opposed to simply stating that the student’s
action was incorrect. Users have the option of saving their work for future reference and
review. Students are able to complete a typical homework assignment using the tool, submit
their work, and receive immediate feedback and a score. As noted in the related work
chapter, very few previous tools support manual simulation and none exists that implements
all of the above features as applied to graph algorithms.

Unlike most of the existing simulation tools, we have performed a formal evaluation of
both the instructor and the student tool. The experiment performed with the instructor
Sketchmate tool involved a group of undergraduate students observing a lecture on network
flow problems. Half of the students observed the lecture presented using Sketchmate, and the
other half of the students observed a traditional whiteboard lecture on the same problems.
The instructor Sketchmate tool was evaluated based on student learning as measured by the
difference between pre-test and post-test scores, as well as overall satisfaction of observing a
lecture that uses Sketchmate.

The student Sketchmate tool experiment involved a group of undergraduate students
working through practice exercises for shortest path and network flow. In one part of the ex-
periment, half of the students worked through the shortest path exercises using Sketchmate,
while the other half of the students worked through the same exercises using a traditional
paper and pencil method. For the other part of the experiment, the students who worked
through the shortest path exercises using paper and pencil worked through network flow ex-
ercises using Sketchmate, and the students who worked through the shortest path exercises
using Sketchmate worked through the same network flow exercises using paper and pencil.
The evaluation of the student Sketchmate tool was based on the amount of learning achieved
from performing the exercises as measured by the difference between pre-test and post-test
scores, as well as students’ scores on the practice exercises, and overall satisfaction of using
Sketchmate.

The remainder of this dissertation is organized as follows. Chapter 2 surveys related work
in algorithm visualization and general teaching tools. Goals of this research are discussed in
Chapter 3. Chapter 4 reviews basic graph terminology and explains the shortest path and
network flow algorithms in terms of example problems. In Chapter 5, a detailed description

3

of the instructor and student Sketchmate simulation tools is given. Chapter 6 presents
the experimental results of the study with the student tool, while Chapter 7 presents the
experimental results of the study with the instructor tool. Conclusions and directions for
future work are included in Chapter 8.

4

Chapter 2

Related Work

In this chapter, existing work in algorithm visualization (AV) and computerized teaching
tools is surveyed. Many aspects of these tools are closely related to those of the tools devel-
oped in this dissertation. This chapter first discusses research on the general effectiveness of
AV tools. It then surveys existing AV tools for teaching computer science. Next, it provides
a brief summary of tools that can be used for general presentation and annotation. It then
analyzes AV tools that are specifically aimed at simulating and visualizing graph algorithms.
Finally, it summarizes features of the previous Sketchmate tool for splay trees, along with the
similarities and differences of the Sketchmate tool for graphs developed in this dissertation.

2.1 Effectiveness of Algorithm Visualization Tools

There have been numerous studies analyzing the effectiveness of algorithm visualization
tools. Research by Mayer et. al. [(Mayer and Anderson, 1991), (Mayer and Anderson,
1992), (Mayer and Sims, 1994)] has shown that presenting text along with images results in
better recall and problem solving skills than text presented before images or images presented
without text. Furthermore, animation presented without explanatory text or narration is no
different than receiving no instruction at all.

Hundhausen (Hundhausen et al., 2002) conducted a meta-analysis of 24 algorithm vi-
sualization (AV) studies and obtained mixed results. The main conclusion was that how
students use an AV has a greater impact than what the AV demonstrates, and that students
learn better if they are actively engaged in the learning process. Narayanan (Narayanan and
Hegarty, 2002) also concluded that learning is enhanced if students are actively involved and
create their own ideas and explanations. He also found that the content and structure of the
visualization is more important for comprehension and learning than the media or modality
by which the algorithm is presented. Palmiter (Palmiter and Elkerton, 1991) notes that it is
important to carefully choose the text to accompany animations; otherwise, the animations
may not provide instructions that are useful for later recall and application. Pane (Pane
et al., 1996) points out that the use of animations and simulations does not guarantee im-
provement in learning and that well-designed static text and images may be just as effective

5

for learning. However, visualizations may be more appealing and thus more motivating, so
students may spend more time with them, and thus learn more. The findings of Kumar
(Kumar, 2005b) were that students learn more using an online tutor than a textbook, pre-
senting images and text together is more effective than presenting only images, and using
images alone results in better learning than no instruction at all.

Kumar (Kumar, 2004) also analyzed results from a survey asking students what they
think of the use of online tutors. Students generally felt they learned better with text and
graphics. They think that tutors that provide feedback are more effective, although tutors
that give verbose feedback are less effective. Kumar also found that it might be necessary to
consider variations among different demographic groups when assessing instructional meth-
ods for computer science courses (Kumar, 2009), and that female students tend to evaluate
online tutors more positively than male students (Kumar, 2008).

To summarize, various studies on the effectiveness of AV tools have produced mixed
results. The major conclusions are that simulations and visualizations are more effective if
students are actively engaged in the learning process, text and images presented together
results in better learning outcomes than when text and images are presented separately, the
text presented with an image must be chosen carefully to ensure that it actually enhances
understanding of the image, and AV tools that include detailed feedback are more effective
than those that do not, although tools that give verbose feedback are less effective.

2.2 Animation and Visualization Tools for Teaching

Computer Science

The first animation tool for teaching computer science concepts dates back to 1981 with the
movie Sorting Out Sorting (Baecker, 1981). Since then, numerous animation and visualiza-
tion systems have been developed, each with their set of features and limitations. Various
general purpose software systems such as graphical editors, PowerPoint, and Flash can be
used to simulate animations. However, creating animations using these tools is time consum-
ing and these tools do not contain any domain-specific knowledge about the data structure
or algorithm at hand.

Systems such as XTANGO (Stasko, 1992) can function as a visual debugger where stu-
dents replace existing function calls with calls to non-standard libraries. However, its focus
on visual debugging differs from our focus on conceptual understanding of the algorithm.
Programs such as BALSA (Brown, 1988) allow students to create generic animations. How-
ever, students need to have deep knowledge of the algorithm, as well as the programming
language and application interface. A programmatic tool for building visualizations that
focuses on conceptual understanding of the algorithm is Visualiser (Naps, 1998). This tool
involves students annotating their code to produce a visual slide show that displays the state
of the data structures at each step. While these visualizations are actively created by stu-
dents, the visualizations do not allow the student to manually manipulate the components
of the data structure, nor do they provide a detailed explanation of what is occurring at

6

each step. Tools such as JAWAA (Pierson and Rodger, 1998) and ANIMAL (Robling et al.,
2000) allow users to create animations visually through a drawing editor using primitive
graphical objects, and easy drag and drop functions. While little knowledge of the algorithm
is required, these systems do not have built-in operations specific to the data structures of
interest.

The Problets website (Kumar, 2010) contains a collection of fully automated tutors for
teaching basic computer programming concepts, such as programming scope (Kumar, 2005a)
and for loops and parameter passing (Kumar, 2006). These tutors automatically generate
problems, answers, grades, and feedback. The problems are generated using templates or a
model of the problem domain, and answers are generated by solving the problems using tree
traversal algorithms. The feedback can be minimal (diagnostic) or detailed (step-by-step
explanation). Studies have found that detailed feedback is more effective for learning and
that succinct feedback is more effective than verbose feedback. The tutors are also more
effective when they are adapted to the needs of the individual learner, such as focusing on
concepts the student finds more difficult.

Based on the above discussion, the goal of this dissertation project was to develop a tool
that: contains domain-specific knowledge and built-in operations for the data structure and
algorithm of interest, allows the user to focus on conceptual aspects of the algorithm without
becoming bogged down in coding details, includes an intuitive and easy to learn interface,
and provides detailed feedback and step-by-step explanation of the algorithm.

2.3 General Presentation and Annotation Tools

The tools discussed thus far were designed for animating and visualizing concepts and algo-
rithms for computer science. Another feature needed to teach these concepts during lecture
is a way to annotate and make notes on presentations. A number of lecture aids have been
designed to help fulfill this purpose. ScreenCrayons (Olsen et al., 2004) allows the user to
make annotations on a screen capture and highlight portions of a document or image. The
user can create notes using this tool and save them to a file system for later reference. The
Lecturer’s Assistant (Buckalew and Porter, 1994) enables communication between the lec-
turer and the students in that the student can make annotations and ask questions without
the need to leave their seat. Several tools are designed to work with pen-based computers
and tablet PCs where slides are annotated with text or notes [(Berque et al., 2001), (An-
derson et al., 2004), (Golub, 2004), (Wilkerson et al., 2005), (Berque, 2006)]. Tools have
also been developed for PDAs and handheld devices [(Myers et al., 1998), (Myers, 2001),
(SMART-Technologies, 2012)], which allows for multiple devices to be connected to a shared
whiteboard application.

In summary, various presentation tools have been developed for annotating slides with
notes, enhancing communication between lecturer and students, and enabling students to
simultaneously connect to an electronic whiteboard. These tools are domain-independent
and hence not restricted to computer science. They operate at a higher level than the domain-
specific tools described in this dissertation and could complement these tools. However, the

7

instructor tool developed in this dissertation incorporates an annotation feature by providing
a notes window for annotating graph simulations demonstrated during lecture. This feature
is a significant enhancement over the existing AV tools for simulating graph algorithms.

2.4 Animation and Visualization Tools Capable of De-

monstrating Graph Algorithms

The following sections discuss several tools that are capable of working with graph algorithms
such as Dijkstra’s shortest path and network flow algorithms. These AV tools are discussed
with the following desired features in mind:

• Supporting automatic continuous display of algorithm steps from beginning to end,
without pausing between steps, which the user passively views as if they are watching
a movie

• Providing a discrete step-by-step mode that pauses after each step, and allows a user
to click a button to continue

• Stepping back to previous steps to reverse the visualization process

• Providing a history list of operations performed, with capability of reverting to any
previous step

• Presenting animations of objects moving to a new location or flashing objects to draw
attention to them

• Allowing the user to create a custom graph from scratch

• Displaying a textual description of what is occurring at each step

• Allowing the user to manually practice a problem step by step

• Grading the user’s solution in terms of the number of correct steps

• Providing detailed feedback of the user’s solution when the user is incorrect

All of the surveyed AV tools allow the user to proceed through the algorithm one step
at a time, pausing between steps. Each of the above features is supported by at least one
existing AV tool, except for a history list of operations where the user can select a step to
revert back to for review. No existing tool for visualizing graph algorithms supports such a
history list. Sketchmate for splay trees (Orsega, 2009) does support a history list feature,
and this feature has been extended to our Sketchmate for graphs. To help organize the above
features, we have created a taxonomy of AV tools, as shown in Figure 2.1, based on three
criteria:

8

1. Automatic simulation of graph algorithms (for instructor) vs. manual practice of graph
algorithms (for student). “Automatic simulation” means that the computer displays
the simulation on its own, and “manual practice” means that a human user simulates
the algorithm manually.

2. Continuous display of steps vs. discrete step-by-step display

3. Graph creation capabilities vs. toolkit-provided or random graphs

Figure 2.1: Taxonomy of AV tools

Each classification as based on the leaves of the tree in Figure 2.1 is discussed below,
and examples of each class are analyzed. Most of these tools can be found in the AlgoViz
Wiki website catalog (AlgoViz, 2010). An overview of AlgoViz and the state of the field is
available in (Shaffer et al., 2010).

2.4.1 Tools with Automatic Simulation, Continuous Display, and
Graph Creation Capability

All of the tools in this category are capable of automatic simulation but not manual practice,
continuous display of the algorithm steps, and the custom creation of a graph. These include
GALGO (Hoebel and Burrer, 2003), Dijkstra’s Shortest Path (DSP) (Laffra, 1996), EVEGA
(Khuri and Holzapfel, 2001), Swan (Yang et al., 1996), Network Flow (Chalidabhongse,
1996), and JAVENGA [(Baloukas, 2009), (Athanasios, 2009)]. Each of these is examined in
turn.

GALGO The GALGO applet (Hoebel and Burrer, 2003) does not have any of the other
desired features shown in the list at the beginning of this section. It allows users to create
and edit graphs by clicking and dragging vertices and edges. Users are able to choose a

9

start vertex. During execution of the algorithm, the vertex and edges currently being visited
flash once in different colors, but none of the components actually move. The adjacency
matrix is displayed in another window. GALGO supports the visualization of a number of
graph algorithms, including Dijkstra’s shortest path, Floyd-Warshall, spanning trees, graph
traversal, Kruskal, and Prim, as well as algorithms for trees. The applet does not work on
the Ubuntu system and it runs somewhat slowly on a PC. The interface is a little difficult to
learn how to use, partly because some of the components are in German, such as file choices,
warning messages, and help information.

Dijkstra’s Shortest Path (DSP) DSP (Laffra, 1996) is an applet that includes a textual
description of the algorithm steps. The user can create or edit graphs by adding nodes and
edges or changing the weights of the edges. The toolkit also includes built-in example graphs.
Nodes currently being visited in the simulation are displayed in a different color. None of the
components are animated, although the simulation does pause between steps. DSP is specific
to Dijkstra’s shortest path algorithm; it is not capable of performing any other algorithms.
The applet does not appear to run on the Ubuntu system, but it runs smoothly on a PC
machine.

EVEGA EVEGA (Khuri and Holzapfel, 2001) is a standalone Java application that is
specialized for simulating graph algorithms. It uses colors, multiple views, and a textual
description of each step of the algorithm. It allows for direct manipulation and creation of
graphical objects with a drawing editor. The package also includes built-in graph generators.
The tool is able to step through an algorithm and pause between steps. The speed of the
simulation can be controlled by the user. The tool provides online help and is designed to
prevent most possible user errors. EVEGA is capable of simulating maximum flow algo-
rithms. EVEGA includes the capability of analyzing the runtime and number of operations
of the algorithm. The tool allows an instructor to change or create a graph in class to answer
“what if” questions asked by students, as well as create a simulation in advance and save it
for a later time.

Swan Swan (Yang et al., 1996) is a standalone Java application that includes a few built-
in examples of graphs that the user can modify by adding and deleting nodes and edges.
Both the graph representation and its corresponding adjacency list are displayed during the
simulation. The user can step through the algorithm in discrete steps or run it continuously
until the end, although the steps are displayed in succession very rapidly. There is no actual
animation of graph components but different colors and thicknesses are used for the edges
to indicate their current state in the simulation. A brief textual description of each step
appears below the graph. The user can zoom in or zoom out, save the screen to a file, and
change the attributes of the graph or its components such as color, thickness, position, and
layout. The application is capable of working with several different algorithms and data
structures including binary search, heapsort, Huffman encoding, string matching, network
flow, finding the minimum and maximum elements of a list, red black trees, topological sort,

10

and vertex cover.
The project is no longer active and has not been updated since the mid-1990’s. The

program could only be successfully run on a Windows system; it could not be run on a
LINUX box. The software also contains a few bugs such as closing the entire application
when step mode completes and after clicking the cancel button of the attribute dialog box.
The application also requires users to supply the exact filename containing the graph example
rather than allowing them to locate the file via a file chooser.

Network Flow Network Flow (Chalidabhongse, 1996) is an applet that allows users to
create and edit a graph from scratch. The simulation can be run in discrete step mode or in
continuous mode, although the steps are executed so quickly that the simulation appears to
jump to the end state and the intermediate states are not able to be viewed. None of the
components of the graph are animated and the nodes and edges do not change colors; only
the flows and costs along the edges are changed. The user is able to restart the algorithm in
order to replay the simulation from the beginning.

JAVENGA JAVENGA [(Baloukas, 2009), (Athanasios, 2009)] is an applet capable of
simulating a number of graph algorithms, including Dijkstra’s shortest path, depth-first
search, breadth-first search, topological sort, Bellman-Ford, Prim, Kruskal, and network
simplex. In addition to displaying a textual description for the history of algorithm steps,
JAVENGA also allows the user to step forward or backward through the algorithm, and the
speed of execution can be controlled. The values of variables are displayed at each step.
Although none of the components are animated, the nodes currently being visited flash in
different colors. The tool provides a window to create a graph by clicking to add nodes and
edges, and it allows the user to type in the initial edge and node costs. The adjacency matrix
can be viewed, although not at the same time as the graph. The tool also provides help files
and windows.

There are several issues with using JAVENGA. The graph creation process requires read-
ing and scrolling through a window of instructions instead of being intuitive. It is nearly
impossible to slow down or pause the simulation, and the entire graph window flashes rapidly
as well as the PC desktop items outside the applet window. The graph window flashes con-
tinuously, and users cannot stop the simulation without closing the window. The textual
information printed to the text box flashes and disappears, making it impossible to read.
The tool will not run at all on the Ubuntu system.

JAVENGA researchers have tested their tool on a small group of students who were
given either a Powerpoint presentation on Dijkstra’s shortest path algorithm or a JAVENGA
visualization of the algorithm. The students who used JAVENGA performed better on test
questions involving the application or analysis of the algorithm and worse on questions
involving fact-based knowledge of the algorithm. In other experiments, the same researchers
also found that visualization has significantly improved learning of difficult concepts, such
as the network simplex algorithm.

11

2.4.2 Tools with Automatic Simulation, Continuous Display, and
Toolkit-Provided Graphs

The tools in this grouping allow for automatic simulation but not manual practice, continuous
display of algorithm steps, but do not allow users to create their own graphs. Instead, users
operate on built-in graphs or randomly generated graphs. These tools include Data Structure
Visualization (DSV) (Galles, 2006), Auckland (Ng et al., 1998), Project Links (Holmes et al.,
1999), and Animal [(Brodowski, 1999), (Robling et al., 2000)]. A discussion of each of these
tools follows.

Data Structure Visualization (DSV) DSV (Galles, 2006) is a downloadable Java ap-
plication that does not support any of the other desired features shown in the list at the
beginning of this section. It does include a few annotations and the user can view the adja-
cency list or matrix, although it cannot be viewed at the same time as viewing the graph.
In addition to the ability to step through the simulation one step at a time, the user is also
able to skip to the end result. In automated continuous display mode, the user is able to
pause the simulation and control the simulation speed. Users can move vertices and edges
around to improve readability and they can choose the start vertex. During each step in the
simulation, a copy of a vertex number animatedly moves from a table of vertex state infor-
mation to a path list for a vertex to the right of the table, but nothing in the actual graph
representation is animated. The vertex and edges currently being visited are highlighted
in both the graph and table representations. The package includes smaller graph problems
and larger, more complex ones. DSV is capable of visualizing several graph algorithms,
including Dijkstra’s shortest path, depth-first search, breadth-first search, topological sort,
Floyd-Warshall, Kruskal, Prim, and connected components, as well as many other data struc-
tures and algorithms, such as lists, stacks, queues, sorting, trees, heaps, hashing, Huffman
encoding, and dynamic programming. One minor issue is that the final path in the graph is
not highlighted so it is a little more difficult to see the solution.

Auckland Auckland (Ng et al., 1998) is an applet that includes annotations and limited
textual descriptions of the steps, as well as pseudocode with the current step highlighted.
During the simulation, the nodes and edges currently being visited blink, but nothing in the
graph actually moves. Nodes are displayed in different colors, depending on their current
state. The speed of the simulation can be controlled by the user. Two different graph
examples are provided. Other data structures and algorithms simulated by Auckland include
sorting, trees, dynamic programming, Huffman encoding, heaps, hashing, and minimum
spanning trees.

Project Links Project Links (Holmes et al., 1999) is an applet that is capable of simulating
the Dijkstra shortest path and Bellman-Ford graph algorithms. The user can click the Go,
Pause, and Reset buttons to control the simulation. It is not possible to step through the
algorithm one step at a time, but the Pause button can be used to simulate the discrete

12

step mode. The colors of nodes and edges are changed throughout the simulation, but no
components of the graph are actually animated. A brief textual description of the current
step is given above the graph. When running the applet on a Windows machine, there are
issues with refreshing the screen between steps of the simulation. The graph and information
bar appear duplicated and the user must scroll up or down the web page in order to eliminate
these ghosting effects. This display issue makes it difficult to read the graph and the textual
descriptions.

Animal As with Auckland, Animal [(Brodowski, 1999), (Robling et al., 2000)] also in-
cludes textual descriptions and highlighting of the current step in the pseudocode, however,
these descriptions and pseudocode are very high level. Animal is also capable of navigat-
ing backwards to any previous step of the algorithm. The nodes and edges currently being
visited in the graph are highlighted, although there is nothing that animates. The user can
zoom in on the graph for easier viewing. The software is capable of handling many types
of data structures and algorithms, including sorting, searching, compression, cryptography,
trees, hashing, and graph algorithms such as Dijkstra’s shortest path and Floyd-Warshall.
Animal is a downloadable Java application. The tool appears to allow the user to change
vertices and edges, however, it does not seem to reload the user’s new graph to use in the
simulation.

2.4.3 Tools with Automatic Simulation and Discrete Stepping

Each tool referred to in this class is capable of automatic simulation but not manual practice,
and only allows discrete stepping through the algorithm and no automated continuous display
of steps. The tools described here include Shortest Path Problem (SPP) (Ikeda, 2004),
Minimum Routes Finder (MRF) (Papagelis, 1997), tutORial (Sniedovich, 2000), ALVIE
(Crescenzi, 2009), and JHAVE [(Naps, 2005), (Teviotdale and Naps, 2008)].

Shortest Path Problem (SPP) SPP (Ikeda, 2004) is a very simple applet that does
not include any of the other desired features listed at the beginning of this section. Several
graph examples are provided by the toolkit. Although there is nothing that animates, the
simulation uses different colors for nodes and edges that are currently being visited. The
tool can also simulate other algorithms, such as simplex, Prim, Kruskal, and Ford-Fulkerson.

Minimum Routes Finder (MRF) MRF (Papagelis, 1997) is an applet that does not
have any of the other features of interest. The changing graph is displayed next to the
initial graph. The nodes are colored based on their current state, but nothing in the graph
actually moves. Users can skip to the solution, but only the final result is shown, none of the
intermediate steps are displayed. There is a bug in that if the user clicks “next step” at the
end of the simulation, the graph is cleared and therefore the solution is no longer viewable.
The tool is specific to shortest path algorithms; it is not capable of simulating any other
algorithms. While the tool runs correctly on a PC, it will not run on the Ubuntu system.

13

tutORial tutORial (Sniedovich, 2000) is an applet that simulates a map of Australia with
routes between cities. It includes detailed textual descriptions as the user steps through the
algorithm, and the user is able to choose the start and end vertices. The nodes and edges
currently being visited are colored, but nothing in the graph actually moves. The tool is also
capable of simulating other algorithms such as dynamic programming, queuing networks,
linear programming (simplex algorithm), linear algebra algorithms, integer programming,
and topological sorting.

ALVIE ALVIE (Crescenzi, 2009) is a Java-based application that includes a textual de-
scription of algorithm steps, the ability to step backwards or to the end, and a display of
pseudocode with the current step highlighted. Nodes and edges currently being visited are
colored, but nothing in the simulation is animated. The tool can also simulate other algo-
rithms, including Bellman-Ford, breadth-first search, depth-first search, Hamiltonian paths,
graph coloring, independent sets, Kruskal, Prim, vertex covering, nearest neighbor, hashing,
Fast Fourier Transformations, Huffman encoding, dynamic programming, linear program-
ming, matrix algorithms, sorting, and searching. It takes a little time to learn how to open a
graph problem as the interface includes icons instead of words. It appears that ALVIE may
allow the user to create graphs, however, the interface is difficult to use and this precludes
us from getting it to work properly.

JHAVE JHAVE [(Naps, 2005), (Teviotdale and Naps, 2008)] provides a more direct way
to revert to previous steps than the other tools discussed thus far. Users click a tick mark on
a timeline to revert to a previous step; however, there is no textual description of the history
of steps. Another difference from previously discussed tools is that JHAVE engages users
by popping up a quiz-like question after each step, and after completion of the algorithm,
the user receives a score indicating the number of questions answered correctly. A window
with pseudocode is displayed next to the graph. The user can zoom in or out. None of the
components in the simulation are animated. The tool displays a vertical listing of vertices
with their costs and predecessors. JHAVE is able to simulate many other algorithms, includ-
ing searching, sorting, trees, Huffman encoding, hashing, dynamic programming, depth-first
search, breadth-first search, Prim, Kruskal, topological sorting, and Floyd-Warshall. The
tool can be run directly on the website or it can be downloaded as a Java application.

2.4.4 Tools with Manual Practice and Automatic Simulation

None of the tools discussed thus far allow the user to manipulate the graphs and practice a
problem manually. There are three AV tools that include this capability: Trakla2 [(Korhonen
et al., 2003), (Laakso and Salakoski, 2004), (Karavirta et al., 2006), (Myller et al., 2007)],
MatrixPro (Karavirta et al., 2004), and PILOT [(Bridgeman et al., 2000), (Baker, 2000)].
These tools are discussed in more detail in the following paragraphs.

14

Trakla2 When students solve problems using the Trakla2 applet [(Korhonen et al., 2003),
(Laakso and Salakoski, 2004), (Karavirta et al., 2006), (Myller et al., 2007)], they can im-
mediately obtain a score indicating the number of steps they have performed correctly. This
grading only includes a score; it does not include any explanation or detailed feedback of
their incorrect steps. Trakla2 does not appear to include animation capabilities, but in addi-
tion to the ability to step forward, it is also possible to step backwards to any previous step
of the algorithm for review. The user can also undo or redo a step in the manual-practice
mode. The user can change the font size to apply a zoom function to the graph. Trakla2 is
also capable of simulating other data structures and algorithms such as searching, traversing,
sorting, heaps, trees, hashing, breadth-first search, depth-first search, and Prim.

Trakla2 displays a list of nodes, where the list item for each node gives its cost and a
list of nodes that it is connected to, but it is static and difficult to relate to the graph.
Code is displayed next to the graph, but it is static and the current step is not highlighted.
Trakla2 does not display any textual descriptions of the algorithm steps; it only shows the
final solution. The user cannot create a custom graph. In manual-practice mode, the user’s
answer can be reviewed step by step, but there is no feedback provided at each step, so the
user will not know whether or not a given step is correct. However, if the user becomes
stuck, then the user has the option of viewing the model solution to see the correct answer,
although the edge costs are not shown in the graph, making it more difficult to understand
the solution.

Despite its shortcomings, student feedback for Trakla2 has been positive. They think it
is more elegant than paper and pencil teaching methods and they feel it helps give them
more motivation to learn the subject. They think that the tool concretizes the actions and
operations of the algorithm, therefore making it easier to learn. Researchers have found that
the tool is most helpful for students who are struggling, in that it helps them get over the
hump and pass the course. While there has been a formal evaluation of Trakla2 applied to
binary heap problems, there has not been a formal evaluation of the tool applied to graph
problems.

MatrixPro MatrixPro (Karavirta et al., 2004) builds on Trakla2 by allowing an instructor
to create custom animations with custom input data sets. The instructor can demonstrate
algorithms on the fly by using different input, and this allows for the handling of “what if”
questions asked in class, thus enhancing instructor and student interaction. The features
of this tool allow the instructor to present algorithms from a conceptual perspective and
suppress the coding details. Animations can be prepared before or during lecture. The user
is able to customize the look and feel of the interface by controlling what operations are
displayed in the toolbar, font sizes, the layout of the interface and the graph data structures,
and how the data structures are visualized (e.g., whether or not node labels are shown).
A graph can be created by dragging and dropping pre-defined labels from an array into a
window that displays the graph structure, however, it is somewhat difficult to figure out how
to add edges to the graph. It is possible to cut, copy, and paste different components of the
data structures. The user can walk through an algorithm by invoking pre-defined operations

15

on the data structures, such as inserting a node into a tree. The user is not able to walk
through an algorithm by manipulating the data structure at the level of vertices and edges.
The speed of the simulation can be adjusted and the granularity of the visualized execution
can also be controlled. Breaks in the animation can be inserted to fine tune the granularity
of the animation and steps and substeps in the animation can be joined or split. The user
can undo and redo operations and rewind the series of steps and reapply them. The user is
able to step backward or forward and jump to the beginning or the end of the animation, but
there is no support for a history list of operations. It is not clear whether the tool supports
continuous simulation of steps, or whether any components of the data structure are moved
during simulation. There is no textual description of what is occuring at each step of the
simulation. An animation can be loaded, saved, or printed. MatrixPro is capable of handling
many types of data structures and algorithms, such as searching, traversing, sorting, search
trees, priority queues, hashing, string matching, spatial data structures, and several graph
algorithms including depth-first search, breadth-first search, Prim, and Dijkstra’s shortest
path. As with Trakla2, the user is able to solve problems manually by selecting nodes and
edges. There are several built-in example exercises for the user to work through. If users
become stuck, they can view a model solution to see the correct answer. A user’s work can
be graded, although only the number of correct steps is given; the tool does not provide
any detailed feedback about what the user has done incorrectly, nor does it provide detailed
feedback at each step as the user works through the example.

PILOT PILOT [(Bridgeman et al., 2000), (Baker, 2000)] is a Java-based AV tool specific
to graph problems that is similar to Trakla2 in that it assigns a grade to a student’s submitted
solution. The main difference is that it also provides the student with detailed feedback of
what they did incorrectly. It also provides immediate feedback at each step of manually
practicing the problem by alerting the student to incorrect choices with colors, flashing,
and animations. PILOT also awards the student partial credit where appropriate. As with
Trakla2, it allows the user to view a model solution, but enhances Trakla2’s capability by
including textual explanations of each step. Users can undo and redo actions, as well as
drag vertices around to improve readability. The tool provides three different modes: Learn,
Exam Practice (grade does not count), and Exam (grade counts for the course). Graph
algorithms that can be simulated are minimum spanning trees, breadth-first search, depth-
first search, and shortest path. Limitations of this tool are that it does not allow the user
to create a graph from scratch, it does not provide a history list of operations, and detailed
feedback is only given after completion of the problem as opposed to being given at each
step. PILOT also does not appear to be publicly available for download.

The developers of PILOT conducted an empirical study where the tool was used in a
CS data structures course and compared with results of students solving problems involving
Prim’s algorithm for minimum spanning trees using a traditional paper and pencil method.
It appears that students answered only one problem with each method and that over 90
percent of the students in both the computer and paper and pencil groups achieved a perfect
score on those problems, which essentially prevented any conclusions from being drawn about

16

the effectiveness of the computer tool. The authors of PILOT suggested that it is possible
that this outcome is a result of the given problem or algorithm being too easy to learn, and
posed the question of whether a similar result would occur with a more challenging problem,
such as maximum flow.

2.4.5 Summary

The AV tools discussed in this chapter each have their own set of strengths and limitations.
Table 2.1 summarizes the capabilities of each of these tools. Discrete step-through mode is
not included since all of the tools have this capability, and history list is not included since
none of the tools support this feature.

Table 2.1: Summary of AV tool capabilities. Entries with a question mark (?) were unable
to be determined with certainty. “N” = “Nodes” and “E” = “Edges”.

Tool Cont. Anim. Step Create Text Man. Grade Det.
disp. back graph descr. pract. fdbk

GALGO Yes N,E blink No Yes No No No No
DSP Yes No No Yes Yes No No No

EVEGA Yes No? No Yes Yes No No No
Swan Yes No No Yes Yes No No No

Net. Flow Yes No No Yes No No No No
JAVENGA Yes N,E blink Yes Yes Yes No No No

DSV Yes N num’s No No No No No No
Auckland Yes N,E blink No No Yes No No No

Proj. Links Yes No No No Yes No No No
Animal Yes No Yes No Yes No No No

SPP No No No No No No No No
MRF No No No No No No No No

tutORial No No No No Yes No No No
ALVIE No No Yes No Yes No No No
JHAVE No No Yes No No No No No
Trakla2 No No Yes No No Yes Yes No

MatrixPro Yes? No? Yes Yes No Yes Yes No
PILOT Yes? N,E blink Yes? No Yes Yes Yes Yes

Since the automated “slide show” approach has been used for most of the existing tools,
our Sketchmate software for graphs focuses on the implementation of a manual simulation
environment for both the student and instructor versions. Users can manually manipulate
graph components, which more actively engages the user than simply clicking through a series
of representations of the graphs. The automated solution approach is actually implemented
for shortest path and network flow problems, but behind the scenes as a means of verifying

17

that the user’s solution is correct. The student Sketchmate tool can also be used as an
automated discrete stepping tool if the user repeatedly clicks the “Submit” and “Continue”
buttons without manipulating the graph components in any way. In this manner, the student
tool can be used as an automated instructor tool which provides detailed feedback at every
step. An additional feature of the instructor tool is a notepad where the instructor can
interactively add explanations of each step of the algorithm. Thus, the instructor tool
functions as an enhanced whiteboard, where an instructor is able to manually simulate the
steps of an algorithm and add verbal explanations as the graph structure is being worked
on. As mentioned previously, the instructor tool also includes a Revert pane for reviewing
previous steps of the algorithm. The research performed in this dissertation also differs from
the work done with other AV tools in that we performed formal experimental studies of
the effectiveness of both the instructor tool and the student tool. PILOT and JAVENGA
were the only two projects in which the researchers formally evaluated learning outcomes of
experiments with graph problems (Trakla2 researchers formally evaluated learning outcomes,
but for experiments with binary heaps, not graphs). Our study also differs from these
previous studies in that it focuses on both learning rates and learning outcomes.

2.5 Sketchmate for Splay Trees

Orsega’s Sketchmate for splay trees [(Orsega, 2009), (Orsega et al., 2011), (Orsega et al.,
2012)] includes an instructor tool for demonstrating splay tree operations during lecture, and
a student tool for working practice exercises. The instructor tool allows a user to create a
custom splay tree on which to operate. The tool performs operations on the created splay
tree and displays this process as a series of animations with pauses between steps. Users can
also revert to previous operations by choosing the desired operation from a history list. The
student tool contains several built-in exercises in which the student can manually perform
operations on the given splay tree. An image of the previous splay tree structure is displayed
beside the splay tree the student is currently working on. When the student performs an
incorrect operation, detailed feedback is given on what the student has done incorrectly.
Students also can receive a grade for their work.

Experiments with the instructor tool studied its usability in a lecture setting, and ex-
periments involving the student tool analyzed student learning outcomes and learning rate.
The results of the experiments with the student tool were that learning outcome was slightly
increased when using Sketchmate versus traditional paper and pencil methods, although the
increase is not statistically significant. However, using Sketchmate did result in learning
rate being increased significantly. As stated in Orsega’s dissertation, “students were able to
complete the exact same exercises nearly 40% faster when using Sketchmate versus paper
and pencil.”

Sketchmate for graphs shares several similarities with Sketchmate for splay trees. Sketch-
mate for graphs also includes both instructor and student tools. The instructor tool allows
users to create a custom graph, simulate algorithms operating on the graph, and revert to
previous steps of the algorithm’s process via a history list. The student tool enables a stu-

18

dent to practice graph algorithm problems, and provides a grade for their work, as well as
detailed feedback explaining what the student has done incorrectly. Sketchmate for graphs
also includes studies on the usability of the instructor tool in a classroom environment, and
studies exploring Sketchmate’s effect on student learning outcomes and learning rate.

Sketchmate for graphs differs from Sketchmate for splay trees in a number of ways. The
most fundamental difference is that our Sketchmate is applied to a data structure other than
splay trees. Another major difference is that the instructor tool allows the user to manually
simulate graph algorithms in a type of “enhanced whiteboard” environment, as opposed to
viewing a slide show presentation of algorithm steps. An image of the previous graph is
displayed concurrently with the graph currently being worked on for both the instructor and
student tools. The instructor tool also includes a notepad feature, which allows instructors
to annotate their simulations with notes explaining what is occurring at a given step. The
student tool allows the user to input any graph, and thus does not restrict the student to
work with built-in exercises. A graph problem is solved by the computer in the background,
and detailed feedback is generated from this automated solution. The automated solution
can also be used to verify the instructor’s solution. The experiment for the instructor tool
also evaluated student learning rate and learning outcome in addition to usability in the
classroom.

19

Chapter 3

Research Goals

This research has two broad objectives: 1) developing a tool that supports computer-aided
manual simulations of algorithms to augment traditional whiteboard presentations, allowing
lectures to be more dynamic and interactive, and 2) improving student learning rate and
accuracy by developing a tool that supports computer-aided student practice of algorithms
by enabling students to work through homework problems more quickly while providing
detailed incremental feedback about their performance and about how to solve a problem
when they get stuck. Between the instructor tool and the student tool, all features in Table
2.1 except for the first two features were implemented. The Sketchmate instructor tool for
graphs also includes several features not present in existing AV tools for graphs, as discussed
below.

• Supporting manual simulation of the algorithms in addition to the automated solution
computed in the background

• Including a revert pane that lists all steps performed on the graph and allows the
viewing of any previous step in the simulation

• Displaying a diagram of the previous step along with a diagram of the current step so
that students can easily see the changes between steps

• Providing a notepad feature for adding explanations for each step

• Using the automatic solution in the instructor tool to check the manual solution and
ensure that all state information is updated correctly before the instructor advances
to the next step

• Developing an AV tool that is easy, fast, and convenient to use, requires a low learning
curve to use, and uses class time more efficiently

• Exploring mixed modes of delivery where the student can view the computer-aided
manual simulation of an algorithm as the instructor modifies various parts of the screen
and simultaneously hear the instructor’s explanation of each step

20

As with the instructor tool, the student tool displays diagrams of both the previous and
current graphs simultaneously, and an effort has been made to develop the student tool to
be as easy and fast to use as possible. An additional feature includes allowing the user to
practice with any custom-made graph and not be restricted to built-in exercises.

Another goal in developing the student tool was to increase student learning rate com-
pared with that obtained from using paper and pencil. Learning rate refers to how much a
student learns in a given amount of time, as illustrated in Figure 3.1. In our experiments,
students were given an open-ended set of test problems and practice exercises to see how
many points they could accumulate and how many problem steps they could successfully
complete in a fixed amount of time. The hope was that students could earn higher scores
for number of points and number of steps using Sketchmate (thus an increased learning
rate), and that this additional practice would lead to improved learning outcomes on a more
complicated algorithm, such as the maximum flow network flow problem.

An earlier study (Baker, 2000) had suggested that manual simulations might not lead to
improved learning outcomes on a simpler algorithm, such as shortest path, but that it might
lead to improved learning outcomes on a more complicated problem like network flow. We
thus built shortest path and network flow problems into our student tool and performed an
experiment that measured student learning rates and learning outcomes on each algorithm.
We hoped that learning rates and learning outcomes would improve on network flow, and
could not be sure what would happen with shortest path.

A recent study (Babcock and Marks, 2010) has shown that students currently spend 27
hours a week studying or completing homework, while 50 years ago they spent 40 hours
a week studying. If our tool indeed increases a student’s learning rate, then it can help
compensate for the reduced amount of time students spend studying.

21

Figure 3.1: Hypothesized learning rate for Sketchmate compared with learning rate for
paper and pencil. The y-axis indicates the number of points accumulated or the number
of steps successfully completed. Points/steps increase as one moves up the y-axis and time
increases as one moves rightward along the x-axis. We did not necessarily expect to double
the learning rate but we hypothesized that the learning rate would be increased for network
flow problems.

22

Chapter 4

Overview of Graph Algorithms

This chapter first gives a brief overview of basic graph terminology. Next it presents a brief
description of the shortest path and maximal network flow algorithms and illustrates each
algorithm performing on an example graph. A full presentation of these algorithms can be
found in textbooks such as (Weiss, 2006) and (Cormen et al., 1990).

4.1 Graph Terminology

A graph is a collection of vertices and edges. An edge connects two vertices. Vertices can be
thought of as cities on a map, and edges can be thought of as road between the cities. A graph
may be directed or undirected. If the graph is directed, then each edge is a one-way edge
that is represented as an arrow that points from the source vertex to the destination vertex.
Edges may have a cost or weight associated with them, that can represent measurements
such as the distance between two cities or the capacity of a pipe. Figure 4.1 shows an example
of a directed graph with five vertices. The numbers along the edges are the edge costs.

4.2 Dijkstra’s Shortest Path Algorithm

Dijkstra’s shortest path algorithm involves finding the shortest path from a start vertex to
each of the other vertices in the graph, where the edges in the graph must have positive cost.
A path is given by a sequence of vertices. Initially each vertex in the graph is marked as
unseen. The start vertex s is assigned a cost of 0 and the remaining vertices are assigned a
cost of infinity. A vertex’s cost represents the length of the shortest path found thus far from
the start vertex to this vertex using only visited vertices. The algorithm proceeds in steps,
with the first step visiting the start vertex and each subsequent step visiting a previously
unvisited vertex. The algorithm selects the lowest cost unvisited vertex (i.e., the unvisited
vertex with the shortest path from the start vertex) as the next vertex to visit. When the
algorithm visits a vertex v, it marks the vertex as visited, and then examines each of v’s
neighbors to determine whether there is a shorter path to each neighbor w which includes
v. This is done by adding v’s cost and the edge cost from v to w and checking whether

23

Figure 4.1: Directed graph with five vertices

the sum is less than the current cost of w. If so, then there is a shorter path to w through
v that includes the edge v-w. The cost of w is decreased to the cost of this new shortest
path and the edge v-w is selected as being on the shortest path from the start vertex to w.
Some textbooks use another state to either denote vertices that have been seen but not yet
visited or to denote the vertex that is currently being visited. Our Sketchmate tool supports
these various notations by allowing a vertex to be in one of four states: visited, seen but not
visited, unseen, and currently being visited.

As an example of Dijkstra’s algorithm, consider how it would operate on the graph in
Figure 4.1. The start vertex is visited first (marked with a thickened border in the graph).
The result of this step is shown in Figure 4.2. The start vertex s has been colored gray to
denote it as visited. Then, each of the neighbors of s, which are u and x, are examined one
at a time. These two vertices are colored green to denote that they are vertices that have
been seen but not visited. Edge s-u has a cost of 10, so the cost to go from s to u is 10,
thus the cost of u is updated to 10. Similarly, the cost of x is updated to 5. Note that “i”
denotes a cost of infinity. The edges s-u and s-x are now shaded to mark them as being on
the shortest path, since the shortest path to u and to x is from s. The step involving visiting
vertex s is now complete, and the algorithm moves to the next step.

Figure 4.3 shows the result of the second step of the algorithm. The vertex to be visited
is chosen as the vertex with the lowest cost that has not yet been visited. In this case, that
vertex is x, as indicated by its gray color in the figure. The algorithm then examines each
neighbor of x: u, v, and y. Each of these neighbors is colored green if it has not been colored
green previously. We will first examine vertex u. The cost of x-u is 3, while the cost from s
to x is 5. Adding these together yields a total cost of 8, which is less than the previous cost
of u, which was 10. The cost of u is now updated to 8, since s-x-u is a shorter path than s-u.
The edge x-u is now shaded since it is on the new shortest path from s to u, and the edge
s-u is unshaded since it is no longer on the shortest path from s to u. Next we will examine

24

Figure 4.2: Shortest path after visiting vertex s

vertex v. The cost of edge x-v is 9, while it is a cost of 5 from s to x, thus the total cost
of v is updated to 14. The edge x-v is shaded to mark it as being on the shortest path. In
a similar manner as for vertex v, the cost of vertex y is updated to 7, and the edge x-y is
added to the shortest path.

Figure 4.3: Shortest path after visiting vertex x

The algorithm proceeds in this manner until all vertices have been visited. Note that
when a vertex’s neighbors are examined, only the neighboring vertices that have not yet been
visited are examined. The final graph, which is illustrated in Figure 4.4, gives the shortest
path from the start vertex s to each of the other vertices in the graph.

25

Figure 4.4: Shortest path after visiting all vertices

4.3 Maximal Network Flow Algorithm

The maximal network flow algorithm involves finding the maximal amount of flow that can
be pushed through a network. A graph in this case can be thought of as a network with water
flowing through a system of pipes. The network contains a source vertex and a sink vertex.
The purpose of the algorithm is to find the maximal amount of flow from the source vertex
to the sink vertex. Flow passes through the edges in the network. Each edge is assigned
a capacity to indicate the maximal amount of fluid that can flow through that edge. The
combined flow out of a vertex must equal the combined flow into the vertex. Figure 4.5 shows
the flow through a graph initially on the left, and the maximal flow through that graph after
performing the network flow algorithm on the right. The left number associated with each
edge is the amount of flow through that edge, and the right number is the capacity of that
edge.

The network flow algorithm involves two graphs: a flow graph to keep track of the flows
along each of the edges, and a residual graph to keep track of the amount of flow that can
still be added to each edge. An example of a flow graph and a residual graph is given in
Figure 4.6. In the flow graph on the left, the flow values are initialized to 0. In the residual
graph on the right, the numbers along the edges denote the free capacity of the respective
edge. These capacities are the same as the corresponding capacities in the flow graph at this
point, since all of the flow can still be added to the edges.

As the algorithm starts to allocate flow to various edges, backedges start being added
to the residual graph, which allow flow to be “pushed back” along the forward edge, thus
reducing the amount of flow allocated to that edge. For example, in Figure 4.7, there is a
flow of 3 units along the edge a-d and there is a backedge in the residual graph with 3 units
of flow from d to a, which indicates that up to 3 units of flow can be pushed back along the
edge d-a, thus reducing the flow allocated to edge a-d by up to 3 units. The thick magenta
edges will be explained shortly.

26

Figure 4.5: Initial and final flow through a graph for a network flow problem. The flows
along the edges are initially 0. The final graph shows the maximal flow along each edge.

Figure 4.6: Flow and residual graphs of a flow network

27

Each step of the network flow algorithm consists of two parts: first, finding the maximal
augmenting path through the network, and second, updating the flow and residual graphs
along this path. An augmenting path is a path from the source vertex to the sink vertex
that takes into account the amount of flow that can still be pushed through the edges. Thus,
the residual graph is used to find the augmenting path. The flow for a path through the
network from source to sink is given by the smallest capacity of all the edges on that path.
To find the augmenting path that will yield maximal flow, a variant of the Dijkstra’s shortest
path algorithm is used, where the goal is to find a maximal flow rather than a smallest cost.
According to (Weiss, 2006), choosing a maximal flow augmenting path at each step will
minimize the number of steps required to find a maximal flow through the network. The
augmenting path in the first step using our example graph is denoted by the magenta shaded
edges in Figure 4.6. This path contains a flow of 3, which is the maximal flow that can be
obtained among any of the paths from source vertex s to sink vertex t.

The next part of this step is to update the flow and residual graphs along this augmenting
path. Figure 4.7 shows the updates to these two graphs (the magenta edges in these graphs
denote the augmenting path of the next step, which can be ignored for the moment). The
flow along the augmenting path is 3, thus, 3 is added to the flow for each of the three
edges along the augmenting path in the flow graph. In the residual graph, the flow of 3
is subtracted from each forward edge along the augmenting path since their free capacity
has been decreased by 3 units. If the free capacity of an edge becomes 0, then that edge is
removed from the residual graph. A flow of 3 is added to the corresponding backedges of
the augmenting path, to indicate that 3 units of flow can be “pushed back” along the edge
to free up capacity in the pipe. Note that if a backedge did not previously exist, then it is
added to the residual graph.

Figure 4.7: Flow and residual graphs after the first step of the network flow algorithm

At this point, the next step of the algorithm begins. The maximal augmenting path is
shown in the residual graph of Figure 4.7. In this case, the edge d-a is actually a backedge

28

that was added in the previous step; this edge is not in the original graph. Because of this,
the updating of the flow and residual graphs is altered slightly, as shown in Figure 4.8. The
flow along the augmenting path is 2 units. In the flow graph, 2 units of flow are added
to each of the edges, except for a-d. For the edge a-d, since its corresponding edge in the
residual graph is a backedge, the flow of 2 units is subtracted from the flow of a-d, reducing
its flow to 1. In the residual graph, the flow of 2 is subtracted from each of the edges along
the augmenting path, and the flow of 2 is added to the backedge corresponding to each edge
along the path. Note that the backedge of d-a is a-d, which is an edge in the original graph.
In this case, since the algorithm is pushing 2 units of flow “back” through the backedge, it
is actually increasing the free capacity of the pipe from a to d by 2 units.

Figure 4.8: Flow and residual graphs after the second step of the network flow algorithm

After updating the flow and residual graphs in this step, the problem is now complete
because there is no longer a path from the source vertex s to the sink vertex t in the residual
graph. The final result is that the maximal flow of this network is 5 units, since 3 units flow
out of s to a and 2 units flow out of s to b. Note that the amount of flow coming out of s is
the same as the amount of flow coming in to t.

29

Chapter 5

Description of the Sketchmate
Environment

Two versions of the Sketchmate tool have been implemented and tested: one for instructors
to use during their lectures, and another for students to use for studying and completing
homework exercises. Many of the same or similar features are included in both tools, which
are focused on graphs. Graphs consist of vertices and edges, where the vertices contain a
label and a cost in the case of shortest path, and the edges contain a cost in the case of
shortest path, and a flow and/or capacity in the case of network flow. A flow in a network
flow problem indicates the amount of substance currently flowing through its associated edge
(or pipe) in the flow graph. A capacity in a network flow problem indicates the amount of
substance that can still flow through its associated edge (or pipe) in the residual graph. Both
tools support a number of domain-specific operations required by shortest path and network
flow algorithms, including:

1. Setting the state of a vertex to one of visited, seen but not visited, unseen, and currently
being visited.

2. Highlighting or unhighlighting edges that are part of certain paths, such as a shortest
path or an augmenting path.

3. Modifying vertex costs to represent updates to a vertex’s cost, such as the length of
the current shortest path from the start vertex to that vertex.

4. Modifying edge labels, such as changing the flow of an edge in a flow graph or the
capacity of an edge in a residual graph.

5. Adding edges to or removing edges from a residual graph.

Both the instructor and student versions are capable of working with both the shortest
path and network flow algorithms. The instructor tool includes three different panes: Create,
Simulate, and Revert, while the student tool includes the Create and Simulate panes.

30

This chapter is organized as follows. First a discussion of the Create pane for both the
instructor and student tools is presented. Following is a description of the Simulate and
Revert panes for the instructor tool. Next, a discussion of the Simulate Pane for the student
tool is given. Finally, step-by-step sample Sketchmate sessions for both tools are presented:
first appears a session of the student tool applied to shortest path, and second appears a
session of the instructor tool applied to network flow.

5.1 Create Pane

Both the instructor and student tools contain the Create pane. The Create pane contains
a blank area of the screen where the user can create a custom graph. It supports several
operations for adding vertices and edges and editing their labels, costs, flows, and capacities.
A screen capture of the Create pane in the instructor tool with a shortest path problem is
shown in Figure 5.1. The upper left portion under the toolbar contains the graph that is
being created (this example graph is from (Cormen et al., 1990)). Underneath the graph area
is a set of operations for adding or modifying components of the graph. The panel to the
right of the graph drawing area includes basic instructions for how to create a graph. The
instructions vary, depending on which operation mode is currently selected. This example
shows the instructions for the “Select” mode.

5.1.1 Adding and Modifying Vertices and Edges

A vertex can be added by selecting the “Add vertex” mode and clicking on the desired
position in the graph area. A label will be automatically assigned and appear in an editable
textbox inside the vertex. Another editable textbox will be added underneath the vertex to
denote its cost for a shortest path graph (default value is infinity, which is denoted as “i” in
the figure). If the network flow algorithm is selected, then no cost will appear underneath
the vertex.

The user can add an edge by dragging a line from the source vertex to the destination
vertex while in “Add edge” mode. If the “directed” radio button in the toolbar is selected
(the default), an arrowhead will appear at the destination vertex. An editable textbox
containing the cost or capacity (default value is 0) will also be added along the middle of
the edge.

A vertex label or cost can be changed by selecting the “Change cost/capacity/label”
mode and then clicking on the textbox associated with the vertex label or cost, editing the
label or cost, and pressing the “Enter” key to commit the change. An edge cost or capacity
can be changed in a similar way.

To delete a vertex, while in “Select” mode, the user can click on the chosen vertex and
press the delete or backspace key. All associated textboxes and edges will also be deleted.
Deleting an edge can be performed in a similar manner.

Also while in “Select” mode, the user can move a vertex by clicking on it and dragging
it to its new location. All attached edges and all associated costs or capacities will move

31

Figure 5.1: Create pane for both the instructor and student tool

32

along with the moved vertex. The individual cost and capacity textboxes for the vertices
and edges can be moved similarly. Allowing users to move the various graph objects will
enable them to improve the readability of the graph.

There are also modes for assigning a start vertex in the case of shortest path, and a
source vertex and sink vertex in the case of network flow. To assign a start, source, or sink
vertex, the user can click on the corresponding radio button operation, and then click on the
desired vertex. The chosen start or source vertex will then be drawn with a thickened solid
border, and the chosen sink vertex will be drawn with a thickened dashed border.

5.1.2 General Operations of the Create Pane

Clicking on “Clear graph” clears the graph drawing area and allows the user to draw a new
graph from scratch. When the user is finished creating a graph, clicking on “Done” will
transfer the newly created graph to the Simulate and Revert panes. The user also has the
ability to load a previously created graph and save a graph for later use. These features
enable an instructor to create graphs prior to lecture, as well as continue a simulation with
a particular graph in subsequent lectures. It also allows students to reuse graph examples
for any number of study sessions.

Other operations in the toolbar include selecting the type of graph (directed or undi-
rected), and selecting the algorithm to simulate from the choices “Shortest path” and “Net-
work flow”.

5.2 Simulate Pane

The instructor tool Simulate pane allows the instructor to manually manipulate the graph
objects to step through the chosen algorithm, thus functioning as an “enhanced whiteboard”.
The tool has specific built-in knowledge for shortest path and network flow that allows it to
check the correctness of a solution after each step of the algorithm has been completed.

5.2.1 Simulate Pane for Shortest Path

A screen capture of the Simulate pane using the shortest path algorithm appears in Figure
5.2. The upper left area below the toolbar contains the graph that is being worked on. The
darkened edges denote edges along the shortest path found so far from the start vertex to
each of the other vertices. An edge can be darkened by clicking on it, and undarkened by
clicking on it again. The start vertex appears with a thickened border. The vertices are
colored based on their current state: white for a vertex that has not yet been visited or seen,
light blue for a vertex that is currently being visited, green for a vertex that has been seen
but not yet visited, and gray for a vertex that has been visited. The state of a vertex can be
changed by clicking on the appropriate button below the graph to select the desired state,
and then clicking on the vertex to change its state. A vertex cost of infinity is indicated with

33

an “i” underneath or next to the vertex. The user can change the costs of the vertices by
clicking on and editing the associated textboxes.

The area to the right of the current graph contains the graph as it appeared at the
beginning of the current step so that a student can easily observe the changes that occurred
from the previous step to the current step. A step involves the visitation of a single vertex.
Visiting a vertex includes sub-steps such as examining each neighboring vertex, changing the
costs of the neighboring vertices, and shading an edge if it is on the new shortest path from
the start vertex, along with unshading an edge that is no longer on the shortest path from
the start vertex. The right-hand region under the toolbar contains a notepad-like object
where the instructor can interactively type in notes as the algorithm progresses. The two
blank areas on the bottom of the interface are used for network flow, and therefore are not
used in this example.

Figure 5.2: Instructor simulate pane for shortest path

5.2.2 Simulate Pane for Network Flow

This section describes examples of an instructor working through a network flow problem.
Each step of the algorithm includes two substeps: the first substep involves finding the

34

maximal augmenting path, and the second substep involves updating the graph components
along the augmenting path in the flow and residual graphs. Finding the augmenting path
involves shading the appropriate edges in the residual graph. Updating the flow and residual
graphs involves changing the flows in the flow graph, adding or removing edges in the residual
graph, and changing edge capacities in the residual graph.

Figure 5.3 shows an example of how the interface might look after finding the first aug-
menting path in the residual graph. The upper left region contains the current flow graph,
and the lower left region contains the residual graph. The source vertex appears with a
thickened solid border and the sink vertex appears with a thickened dashed border. Mark-
ing the augmenting path involves selecting edges in the residual graph, as shown by the
thickened edges in the previous residual graph. At this point, the instructor is about to
update the flow and residual graphs. In both the current flow and current residual graphs,
all graph components along the augmenting path, as well as the augmenting path itself, are
highlighted in magenta to denote that these are the components that need to be updated.

Figure 5.3: Instructor simulate pane after finding the first augmenting path for network flow

An example of the Simulate pane for partially updated flow and residual graphs is given in
Figure 5.4. The graph components that still need to be modified are highlighted in magenta.
In the flow graph, the left hand numbers along the edges are the edge flows, and the right

35

hand numbers are the edge capacities. The numbers along the edges in the residual graph
are the edge capacities. The previous flow and residual graphs are displayed to the right of
their respective current graphs. The middle panel contains instructions to remind the user
which substep is currently being worked on. The rightmost pane contains a notepad where
the instructor can type notes explaining the steps for solving the problem.

Figure 5.4: Instructor simulate pane during updating the residual graph for the first aug-
menting path for network flow

5.2.3 General Features of the Simulate Pane

Sketchmate has built-in knowledge of how to simulate a shortest path or a network flow
problem. The automated solution is created behind the scenes and it can be used to verify
the instructor’s work.

When the instructor wishes to move to the next step, the “Finish step” button can be
clicked to first check the instructor’s solution for that step by comparing it to the corre-
sponding step in the solution that is automatically computed in the background. If any
components of the graph are incorrect, those components will be highlighted in red. The
instructor is free to correct any mistakes at this point. Clicking “Next step” updates the

36

graph to its correct state and allows the instructor to begin the next step of the algorithm’s
simulation.

Behind the scenes, the state of the graph after each finished step is recorded. These
recordings build a history list that can be accessed through the Revert pane. Clicking on the
“Reset step” button will restore the graph to the last recorded step. This allows instructors
to undo their last few operations in case they make a mistake. Clicking on “Reset problem”
will start the problem over again from the beginning.

5.3 Revert Pane

The Revert pane, as shown in Figure 5.5 for a network flow problem, allows users to revert
back to any previous step of the algorithm’s execution. Reversion can allow the instructor
to review previous steps by successively stepping through the radio buttons, or answer a
student’s question. A listing of the steps of the algorithm is displayed and the user can
choose the desired step from the list. The history list displays the order in which the steps
are completed. When a step is chosen, the graph corresponding to that step will be displayed
in the graph viewing area. After the user clicks on “Restore graph”, the associated graph
will be restored to the Simulate pane. The list of steps is generated from the solution that
is automatically computed behind the scenes in the Simulate pane. Note that the list of
steps in this case alternates between finding an augmenting path and updating the flow and
residual graphs.

5.4 Student Tool

Like the instructor tool, the student tool contains a Create pane and a Simulate pane,
but in the student tool the Simulate pane also provides feedback for the submitted solution.
Another difference from the instructor tool is that the student tool does not contain a Revert
pane.

5.4.1 Student Simulate Pane for Shortest Path

A screen capture of the student tool for shortest path is given in Figure 5.6. The user is able
to manually manipulate the graph objects in the graph area in the upper left region below
the toolbar. The graph at the beginning of the current step is shown at the far right of the
interface to provide a reference for the student. Orsega (Orsega, 2009) found that displaying
the previous state of the data structure helped prevent a student from getting “lost” when
updating the data structure. By being able to check back to the previous state of the data
structure, the student could see what changes had already been made and what changes still
needed to be made. The correct graph is shown next to the current graph when the student
submits a solution to the given step. In this case, it is the same as the current graph since
the user correctly updated the graph for this step. The center panel of the right-hand side

37

Figure 5.5: Revert pane (instructor tool only)

38

of the interface contains either instructions or feedback. If the user is working through the
current step, then instructions of how to manipulate the graph are displayed. If the user
has submitted a solution for the current step, then feedback on the submitted solution is
presented. The three bottom panels of the interface are used for network flow, so they can
be ignored for this example.

Figure 5.6: Student simulate pane for shortest path

5.4.2 Student Simulate Pane for Network Flow

Figure 5.7 shows the student simulate pane for the augmenting path step of network flow.
The top set of graphs displays the current, correct, and previous graphs for the flow graph,
and the bottom set of graphs displays the same respective graphs for the residual graph.
All graph components that are incorrect are highlighted in red in the current residual graph
and the corresponding correct components are highlighted in magenta in the correct residual
graph for easier comparison. In this case, the user selected an incorrect path a-c-b-d, while
the correct path is a-c-d. Note that the flow graph is unmarked for this example since it
is not used in finding the augmenting path. The feedback box explains in detail why the

39

student’s answer is incorrect for each incorrect component of the graph. The student is also
given scoring for the step, which is explained in Section 5.4.3.

Figure 5.7: Student simulate pane for the augmenting path step of network flow

In Figure 5.8, an example of the student simulate pane for updating the flow and residual
graphs is given. As in the previous example, all incorrect flow or residual graph components
are highlighted in red, while the corresponding correct graph components are highlighted
in magenta in the correct graphs. In the residual graph, the solid edge that is highlighted
should have been removed, and the highlighted dashed edge denotes a backedge that should
have been added. In other words, the user should have replaced edge c-d with its backedge
d-c. The capacity for edge c-a was updated incorrectly, and the capacity for edge b-d should
not have been changed, since the edge b-d is not on the augmenting path for this step. The
user is also given detailed feedback in this step, for both the flow and residual graphs, as
well as scoring for both graphs.

5.4.3 General Features of the Student Simulate Pane

If the user makes a mistake in manipulating the graph vertices and edges and has not yet
submitted the solution for grading, then clicking the “Reset step” button will restore the

40

Figure 5.8: Student simulate pane for the flow and residual graph step of network flow

41

graph to the beginning of that step. This feature compares favorably with students needing
to erase or scratch out their work in a paper and pencil based homework.

When the user is finished with the current step, the “Submit” button can be clicked
to obtain feedback. The user will be told whether the answer is correct or not, and will
also be given an explanation of any graph components that are incorrect. The explanation
is generated from the computer automatically solving the problem in the background and
comparing the student’s solution to the internally computed solution. A full list of possible
feedback messages can be found in the Appendix.

The feedback will also give a score for each component of the algorithm, as well as the
overall score for that step. For shortest path, the score consists of one point for each correct
vertex state change, one point for each correct vertex cost change, one point for each correct
edge state change, and an “other” category for deducting points for any changes made to
graph components that should not be changed in that step. This “other” score is worth 2
points; if the student changes at least one graph component that should not change in that
step, the “other” score is 0 points, and if the student does not change any graph component
that should not change in that step, the “other” score is 2 points. For the augmenting path
step of network flow, the score consists of one point for each correct edge selection, and an
“other” category to deduct 2 points for edges that are incorrectly selected. For the step
involving updating the flow and residual graphs, the score consists of one point for each
correct flow change, a two point “other” category for the flow graph, one point for each
correct residual edge capacity change, one point for each correct residual edge change (i.e.,
adding or removing edges), and a two point “other” category for the residual graph. The
“other” score is awarded in the same manner as it is for shortest path.

Users can click “Continue” to move on to the next step after they are through with
reading the feedback. After the problem has been completed, the student will be given a
final score, which is the sum of the points earned for each of the steps of the problem.

5.5 Sample Sketchmate Sessions

In this section, two sample Sketchmate sessions are presented in a step-by-step manner. First
is a session of the student tool working with a shortest path problem, and second is a session
of the instructor tool working with a network flow problem.

5.5.1 Sample Session of the Student Tool for Shortest Path

The following series of figures (Figures 5.9-5.16) gives a walk-through from beginning to
end of how the student tool interface might look while simulating Dijkstra’s shortest path
algorithm on an example graph. The step where the vertex x is visited is further divided
into three substeps, with the updating of each neighboring vertex being one of the sub-
steps, to show in more detail a sample of the student’s thought process as the step is being
worked through. The steps where vertices y and u are visited contain some incorrect graph
components to illustrate the feedback messages given in these cases.

42

Figure 5.9: The initial screen for the student walk-through example. s is the start vertex.

43

Figure 5.10: Walk-through after visiting s. Vertices u and x have been marked as seen but
not visited. The cost of start vertex s is marked as 0. The costs of vertices u and x have
been updated to indicate the cost from the start vertex s to each of u and x. Edges s-u and
s-x have been shaded to indicate they are added to the shortest path.

44

Figure 5.11: Walk-through while visiting x and updating y. Vertex y has been marked as
seen but not visited. The cost of vertex y becomes 7 since it is 5 units from s to x and
another 2 units from x to y. Edge x-y has been shaded to indicate it is added to the shortest
path.

45

Figure 5.12: Walk-through while visiting x and updating u. The cost of u has been changed
to 8 since it is shorter to go from s to u through x than it is to go from s to u directly.
To reflect this change, edge x-u has been added to the shortest path and edge s-u has been
removed from the shortest path.

46

Figure 5.13: Walk-through while visiting x and updating v. Vertex v has been marked as
seen but not visited. The cost of vertex v becomes 14 since it is 5 units from s to x and
another 9 units from x to v. Edge x-v has been shaded to indicate it is added to the shortest
path.

47

Figure 5.14: Walk-through after visiting y. Vertex y has been marked as visited. The student
misunderstands that the cost of vertex v should be reduced to 13 since s-x-y-v is a shorter
path than the previous path of s-x-v. In addition to the incorrect cost for vertex v, edge
y-v is colored red to indicate it should have been added to the shortest path and edge x-v is
colored red to indicate it should have been removed from the shortest path.

48

Figure 5.15: Walk-through after visiting u. Note that the student’s mistakes in the previous
step have been corrected. In this step, the student mistakenly visited vertex v instead of
vertex u. Vertex u should have been visited instead since it has a smaller cost than vertex
v. Additionally, the cost of vertex v should have been reduced to 9 since s-x-u-v is a shorter
path than the previous path s-x-y-v. As indicated by the red edges, edge u-v should have
been added to the shortest path and edge y-v should have been removed from the shortest
path.

49

Figure 5.16: Walk-through after visiting v. Note that the student’s mistakes in the previous
step have been corrected. In this step, vertex v has been marked as visited, and now the
problem has been completed.

50

5.5.2 Sample Session of the Instructor Tool for Network Flow

The next series of figures (Figures 5.17-5.27) shows a sample walk-through from beginning to
end of a session with the instructor tool working on a network flow problem. There are three
sets of finding the augmenting path and updating the flow and residual graphs. The first
updating of the flow and residual graphs is divided into substeps to give an idea of what the
process of demonstrating that step might be. In the second update of the flow and residual
graphs, the instructor only partially updates the graphs, thus the remaining components
of the graphs to be updated are highlighted in red upon clicking “Finish step”. They are
corrected when the user clicks “Next step”. Notice that the instructor adds explanations
to the notepad at each step and substep to explain what is occurring in the graphs as the
solution is being worked through.

Figure 5.17: Walk-through of a network flow problem in its initial state. The instructor is
about to mark the augmenting path in the residual graph.

51

Figure 5.18: Walk-through after the instructor marks the first augmenting path, but before
the instructor clicks “Finish step”. In the residual graph, edges a-c and c-d are marked to
be on the augmenting path since that path has the maximal flow of 6.

52

Figure 5.19: Walk-through after finding the first augmenting path and after clicking the
“Finish step” and “Next step” buttons. In the residual graph, edges a-c and c-d are marked to
be on the augmenting path since that path has the maximal flow of 6. All graph components
that need to be updated, as well as the augmenting path itself, are highlighted in magenta
in the flow and residual graphs. All of these graph components are along the augmenting
path.

53

Figure 5.20: Walk-through after updating the flow graph for the first augmenting path. The
flow of the augmenting path is 6, so the flow for edges a-c and c-d in the flow graph have
been updated to 6.

54

Figure 5.21: Walk-through during updating the residual graph for the first augmenting path.
Backedge c-a has been added to the residual graph and assigned capacity 6 since 6 is the
flow along the augmenting path. The capacity of a-c is reduced by the flow of 6 units to 2.

55

Figure 5.22: Walk-through after updating the residual graph for the first augmenting path.
Edge c-d has been flipped to become edge d-c since all of the flow has been used up and is
now a back flow.

56

Figure 5.23: Walk-through after finding the second augmenting path. The instructor has
marked edges a-b and b-d to be on the augmenting path. The instructor is about to update
the flow and residual graphs.

57

Figure 5.24: Walk-through after only partially updating the flow and residual graphs for the
second augmenting path. The instructor only updated the flow and residual graphs for the
edge a-b before clicking “Finish step”. The graph components along edge b-d that should
have been updated are marked in red as incorrect. The dashed edge d-b in the residual graph
denotes a backedge that should have been added.

58

Figure 5.25: Walk-through after the instructor clicked the “Next step” button and the
updates to the flow and residual graphs have been corrected by the computer.

59

Figure 5.26: Walk-through after finding the third augmenting path. The instructor has
selected edges a-c, c-b, and b-d to be on the augmenting path. All graph components along
this path that need to be updated are highlighted.

60

Figure 5.27: Walk-through after updating the flow and residual graphs for the third aug-
menting path. The instructor has updated the flow and residual graph as explained in the
notepad text under Step 3. The problem is complete at this point since there cannot be any
more outflow from the source vertex a.

61

Chapter 6

Analysis and Evaluation of the
Student Tool Experiment

The focus of the development of the student tool was on creating an interactive learning
environment and providing detailed immediate feedback on the student’s progress as they
work through exercise problems. The only existing tool to provide such feedback to students
as applied to graph problems is PILOT (Baker, 2000). While the experimenters of PILOT
formally evaluated learning outcomes, they did not study learning rate. The goal of our
experiment with the student tool was to measure whether student learning rate and learning
outcome improved through using Sketchmate as compared to using a traditional paper and
pencil technique. The hope was that the feedback Sketchmate provides students would help
students learn how to complete graph problems more effectively than with a paper and pencil
method which provides no feedback.

The experiment was a between-subjects, pre-test and post-test design. Students were
given practice exercises on both shortest path and network flow to work through during the
class period using either Sketchmate or paper and pencil. Students were allotted a fixed
amount of time to complete the pre-tests, practice exercises, and post-tests. The tests and
the exercises were both designed to be open-ended, that is, they contained more problems
than the students could complete in the allotted time. This design allowed us to measure
learning rate, given by the amount learned within a fixed period of time. The experiment
was designed to test several hypotheses.

The first hypothesis was that there would be no difference in learning for shortest path,
as measured by the difference between pre- and post-tests, when using either method. The
shortest path algorithm is a relatively simple algorithm, and we presumed that the method
of learning would be inmaterial in terms of learning outcomes. Results of the PILOT study
(Baker, 2000) support this presumption. The hope was that this hypothesis would be rejected
so that the conclusion would be that using Sketchmate for shortest path exercises would lead
to better learning.

The second hypothesis was that the students would learn better for network flow problems
using Sketchmate than paper and pencil. The reasoning behind this hypothesis is that we
presumed that Sketchmate would have more of an impact on learning for a more difficult

62

algorithm such as network flow. In addition, since the students were given more problems
than they could complete in the allotted time, we presumed that the Sketchmate students
would complete more problems and thus earn more points than students who used paper
and pencil.

We also tested for significant differences in student performance on the practice exercises.
The hypothesis was that Sketchmate students would perform the same as paper and pencil
students for shortest path problems, and that Sketchmate students would perform better
than paper and pencil students on network flow problems, for the same reasons as explained
above.

Finally, we collected data of how students perceived ease of use and effectiveness with
either of the methods. The hope was that students would enjoy using the Sketchmate tool
at least as much, and possibly more than, using paper and pencil.

6.1 Subjects, Setting, and Materials

Approximately 40 students from the Fall 2011 undergraduate Algorithms course in the
Electrical Engineering and Computer Science department at the University of Tennessee-
Knoxville participated in the study. The experiment was included as a lab activity for the
course. The study was conducted in a computer science lab on campus. The students were
provided with a means of accessing Sketchmate through the internet. The experimenters
developed nine different shortest path problems and six different network flow problems of
varying difficulty. Both paper and Sketchmate versions of the problems were produced. The
students needed to show all of the steps in solving the problems.

6.2 Design

The experimenters used a between-subjects, pre-test and post-test model for testing dif-
ferences in learning rate and learning outcome on both the practice exercises and on the
difference between pre- and post-test scores for students using Sketchmate (experimental
condition) and students using paper and pencil (control condition). For the pre- and post-
tests, the dependent variables were the difference between pre- and post-test scores in terms
of number of points (a measure of learning rate) and percent accuracies (a measure of learning
outcome). For the practice exercises, the dependent variables were the number of points (a
measure of learning rate), number of correct steps (a measure of learning rate), and percent
accuracies for each (measures of learning outcome). For the pre- and post-tests, significant
differences across dependent variables were tested for using repeated measures analysis of
variance (ANOVA), and for the practice exercises, significant differences across dependent
variables were tested for using one-way analysis of variance (ANOVA). For both the tests
and the exercises, differences are considered significant at the ρ < 0.05 level for the learning
rate measures, and the ρ < 0.025 level for the learning outcome measures. These differences
in significance levels were necessary because the learning rate and learning outcome measures

63

were largely based on the same data set. In order to obtain valid tests of significance for the
learning outcome measures, the confidence interval needed to be halved.

6.3 Procedures

The Algorithms course consisted of twice weekly lectures and a weekly three hour lab. There
were two lab sections and the experiment took place in each lab section in the computer lab.
Students were first given an 8-minute written pre-test on shortest path graph problems and
a 12-minute written pre-test on network flow graph problems. These two algorithms were
already covered in lecture prior to the experiment. Hence, the pre-tests should have measured
the students’ ability to work these problems after having seen a lecture on these problems,
but before they had done any homework with these problems.

After the pre-tests, the students were randomly assigned to two different groups. One
group completed shortest path problems with paper and pencil, and the other group com-
pleted the same exercises with Sketchmate. The set of problems was designed so that there
were more problems than the students could complete in the allotted time. Students were
given 20 minutes to complete as many problems as possible. After this part of the experi-
ment, the students using paper and pencil switched to using Sketchmate, and the students
using Sketchmate switched to using paper and pencil, and both groups completed the same
exercises on network flow. For this activity students were allotted 25 minutes. The students
were given a 5-10 minute demonstration of how to use the computer tool for each problem
type. For the students who worked with Sketchmate, their scores were recorded to a log file
each time they completed a problem. After each exercise portion, print-outs of these log files
were collected along with the other paper materials.

After the exercise sessions, all students were given about 10 minutes to review the so-
lutions to the exercises. Then all students were given a written post-test for both shortest
path and network flow problems. The structure of these post-tests was identical to that of
the respective pre-tests. The post-tests were given in the same class period as the exercises
to avoid the possibility of students studying for them and therefore distorting their scores.
Sections 4.2 and 4.3 give an example of a shortest path problem and a network flow problem
similar to the problems used in this experiment.

The participants were also given a written survey to obtain feedback on how well the
students liked each of the two methods, and how well the students felt those methods helped
them learn the material. There were several Likert scale questions with a rating between 1
(unfavorable) to 7 (favorable), as well as free response questions.

Only students who attempted the pre-tests and post-tests and who followed directions
properly were used in the study. The primary experimenter scored all attempted pre- and
post-test problems and in-class exercises for accuracy. The grading scheme was identical to
the automatic grading scheme used by Sketchmate, but it is quickly reviewed here. For each
step of shortest path, there were four components to the score: one point for each correct
vertex state change, one point for each correct vertex cost change, one point for each edge
properly added to or subtracted from the shortest path, and an “other” score for deducting

64

for any changes in areas of the graph that should not be changed in that step. This “other”
score was either 2 points for all unchanged components being correctly left unchanged, or
0 points for one or more unchanged components being incorrectly changed. For each step
of network flow, there were components of the score for the augmenting path, flow graph,
and residual graph. For the augmenting path, the score consisted of one point for each
correct edge selection and an “other” score. For the flow graph, the score consisted of one
point for each correct flow change and an “other” score. For the residual graph, the score
consisted of one point for each correct edge capacity change, one point for each correct edge
addition/deletion, and an “other” score.

A second experimenter independently scored all of the attempted problems on both the
shortest path and network flow post-tests to determine interscorer agreement. For shortest
path the experimenters achieved 98.79% agreement, and for network flow the experimenters
achieved 99.71% agreement, which suggests that the post-test problems were scored consis-
tently. Most of the differences resulted from illegible handwriting of the students, or in one
case, a student being unclear about where he or she began the problem.

6.4 Results and Discussion

In this section we present our results for the shortest path tests and exercises, followed by
our results for the network flow tests and exercises. We then discuss our results for the
survey questions.

6.4.1 Shortest Path

The results of the pre- and post-tests of the shortest path portion of the experiment are
shown in Table 6.1. The mean, standard deviation, and median for the pre-test, post-test,
and difference between pre- and post-test are given for both the Sketchmate and paper and
pencil groups. The top three rows give the statistics for the total number of points earned
on the pre- and post-test. These numbers do not take into account whether the student
finished the attempted problems. The bottom three rows give the statistics for the percent
accuracy of completed problems. These numbers only consider the scores for problems that
were completed by the student.

While there was a statistically significant difference between pre- and post-test scores for
all students (ρ = 0.000), there was not a statistically significant difference in learning rate or
learning outcome between the Sketchmate and paper and pencil groups. For the total points
(learning rate) measure, the paper and pencil group actually improved by 5 points more
on average than the computer group, though statistically, the two groups are essentially
equivalent (ρ = 0.974). Interestingly, the median measure indicates that the computer
group actually scored 2 points more than the paper and pencil group. This suggests that
it is inconclusive which group achieved a higher learning rate. Note that the statistical
significance values are for the mean rather than the median (this is true for all results
reported in this dissertation). For the percent accuracy measure, the Sketchmate students

65

had a mean 8 percentage point gain and a median 11 percentage point gain over the paper
and pencil group. While these results are statistically equivalent with ρ = 0.896 for the
mean, they do show that Sketchmate students scored roughly one letter grade higher than
paper and pencil students.

Table 6.1: Student tool points/accuracy for shortest path pre-test and post-test (SD =
standard deviation). 197 possible points for both pre- and post-test.

Sketchmate Paper/Pencil
Measure Mean SD Median Mean SD Median

Pre points 48 22 42 46 23 42
Post points 92 31 99 94 40 92
Diff. points 43 23 46 48 36 44

Pre accuracy 63.5% 21.9% 58.3% 66.4% 19.1% 72.4%
Post accuracy 83.6% 17.9% 91.0% 79.2% 16.3% 85.1%
Diff. accuracy 20.1% 18.0% 18.6% 12.7% 23.3% 7.2%

Figure 6.1 shows a plot of the improvement from pre- to post-test for the total number
of points for both groups. The lines are nearly on top of one another, so it is clear that the
performance of the two groups is essentially equivalent. Figure 6.2 illustrates a plot of the
difference between pre- and post-test for the percent accuracy for both groups. While this
plot clearly shows that the Sketchmate group had a higher improvement in scores, it was
still not enough to rise to the level of statistical significance.

Tables 6.2 and 6.3 give the results for the shortest path exercise problems. The mean,
standard deviation, and median for the total number of points and the percent accuracy of
points are given in Table 6.2. The first two rows give the results for the case where the grading
was cut off once a student received less than 50 percent of the points in a step of the problem.
This cutoff applied to both the Sketchmate and the paper and pencil groups. The last two
rows of the table show the results for the case in which there was no cutoff in the grading
and all of the attempted steps of the problems were graded, regardless of the student’s score
for any given step. This grading without cutoff scheme was only applied to Sketchmate
students; the paper and pencil students were always graded with a cutoff. The reason for
this grading decision is that once the paper and pencil students went off track and scored
lower than 50 percent on a step, the rest of their steps for that problem would be based on
a largely incorrect step, thus making it difficult to determine which portions of their answer
were actually correct or not, or if they were correct just by coincidence. However, when
students completed homework problems using Sketchmate, then if the students answered a
step incorrectly, Sketchmate corrected their answer before moving on to the next step. Thus,
each student answer for a step was based on beginning that step with the correct graph.

Each of the four measures in the table resulted in enough difference between Sketchmate
and paper and pencil that the results were statistically significant, as shown in the last
column of the table. With a grading cutoff applied, Sketchmate students scored 85% on

66

Figure 6.1: Improvement of total number of points for shortest path pre-test and post-test.
C = Computer (solid line), P = Paper/Pencil (dashed line)

67

Figure 6.2: Improvement of percent accuracy for shortest path pre-test and post-test. C =
Computer (solid line), P = Paper/Pencil (dashed line)

68

average, and without a grading cutoff, they were able to score 89% on average, as opposed
to the paper and pencil group only scoring 70% on average. Again, for statistical significance,
the necessary ρ value for the total points measure was 0.05 and the necessary ρ value for
the percent accuracy measure was 0.025. It should be noted that because Sketchmate only
recorded the students’ scores for a problem after they completed that problem, only the
problems that were completed are included in the data for the exercise problems in order to
treat the two groups equally. Also note that the results for the paper and pencil group are the
same for the cutoff and no-cutoff cases, since the grading without cutoff scheme only applied
to Sketchmate students. Another encouraging result is that Sketchmate students scored an
average of roughly one and half letter grades higher than paper and pencil students in the
case of cutoff, and roughly two letter grades higher in the case of no-cutoff than paper and
pencil students.

Table 6.2: Student tool points/accuracy for shortest path exercise problems (SD = standard
deviation, C = cutoff, NC = no-cutoff). 312 possible points.

Sketchmate Paper/Pencil
Measure Mean SD Median Mean SD Median Sig.

Points (C) 191 80 194 135 76 153 0.042
Accuracy (C) 84.9% 11.1% 84.3% 69.9% 22.9% 72.5% 0.020

Points (NC) 199 79 199 135 76 153 0.021
Accuracy (NC) 88.7% 8.5% 89.7% 69.9% 22.9% 72.5% 0.003

Table 6.3 presents the analogous results in terms of the number of correct steps, as
opposed to earned points. A step is considered correct if the student receives at least 50
percent of the points for that step. The percent accuracy measure in the cutoff case indicates
how much of the problem a student successfully completed before the grading was cut off
or before the student ran out of time (if applicable), averaged over all of the problems that
were attempted by the student. For example, suppose a student attempted two problems,
the first of which contained 5 steps and the second of which contained 6 steps. The student
attempted all 5 steps in the first problem and all 6 steps in the second problem. However,
the student was cut off after 4 steps in the first problem and after 5 steps in the second
problem. That means that the student successfully completed 3/5 steps (60%) in the first
problem and 4/6 steps (66.7%) in the second problem. Averaging over both problems, the
student’s percentage accuracy would therefore be 63.4%. In the no-cutoff case, the percent
accuracy measure indicates the percentage of successful steps throughout the entire problem,
averaged over all of the problems that were attempted by the student.

Both measures in the case of no-cutoff achieved the level of statistical significance. Both
measures in the case of cutoff approached statistical significance with a ρ value of 0.064
for number of steps (ρ = 0.05 is significant), and a ρ value of 0.039 for percent accuracy of
steps (ρ = 0.025 is significant). On average, Sketchmate students improved from 84% to 91%
when the grading cutoff was not used, as compared to 68% accuracy for the paper and pencil

69

students. It is interesting that the mean and median scores for Sketchmate are very close to
one another, while the mean and median scores for paper and pencil are 9 percentage points
apart. This is possibly explained by the higher standard deviations for paper and pencil
than for Sketchmate. As with the number of points result, Sketchmate students achieved
roughly one and a half letter grades higher on average for the cutoff case, and roughly two
letter grades higher on average for the no-cutoff case than paper and pencil students.

Table 6.3: Student tool steps/accuracy for shortest path exercise problems (SD = standard
deviation, C = cutoff, NC = no-cutoff). 41 possible steps.

Sketchmate Paper/Pencil
Measure Mean SD Median Mean SD Median Sig.
Steps (C) 25 10 26 18 11 19 0.064

Accuracy (C) 84.3% 13.8% 84.4% 68.4% 27.4% 77.4% 0.039

Steps (NC) 27 10 28 18 11 19 0.019
Accuracy (NC) 91.0% 8.9% 93.6% 68.4% 27.4% 77.4% 0.003

6.4.2 Network Flow

Table 6.4 gives the results of the pre- and post-tests of the network flow portion of the
experiment. Similar to the shortest path case, the mean, standard deviation, and median
for the pre-test, post-test, and difference between pre- and post-test are given for both the
Sketchmate and paper and pencil groups. Again, the top three rows give the statistics for the
total number of points earned, and the bottom three rows give the statistics for the percent
accuracy of completed problems. As with shortest path, there was statistical significance
(ρ = 0.000) for the difference between pre- and post-test for both groups, but no statistical
significance for the difference between the two groups. For the total points (learning rate)
measure, the Sketchmate group improved by 9 points more on average, and 21 points more
using the median measure, and while the result looks favorable, the result is not statistically
significant (ρ = 0.583 for the mean). For the percent accuracy measure, the Sketchmate
group scored an average of a 12 percentage points gain more and a median of 6 percentage
points gain more than the paper and pencil group, but this difference was not enough for
statistical significance (ρ = 0.274 for the mean). However, even though this result is not
statistically significant, the difference between the two groups amounts to roughly one letter
grade higher for Sketchmate students.

Figure 6.3 shows a plot of the difference between pre- and post-test for the total number
of points for both groups. Even though the Sketchmate group improves slightly more, the
lines are nearly parallel, and therefore do not show statistically significant improvement.
Figure 6.4 gives a plot of the improvement from pre- to post-test for the percent accuracy
for both groups. This graph shows a much larger difference in score improvements, although
it was still not enough to be statistically significant. However, as mentioned previously, the

70

Table 6.4: Student tool points/accuracy for network flow pre-test and post-test (SD =
standard deviation). 218 possible points for both pre- and post-test.

Sketchmate Paper/Pencil
Measure Mean SD Median Mean SD Median

Pre points 74 61 72 68 56 69
Post points 133 57 145 118 67 124
Diff. points 59 46 72 50 46 51

Pre accuracy 40.6% 37.6% 31.7% 36.4% 36.1% 41.2%
Post accuracy 78.1% 26.3% 88.7% 61.3% 35.3% 72.5%
Diff. accuracy 37.6% 39.4% 29.5% 25.0% 37.4% 23.0%

Sketchmate group improved by roughly one letter grade higher compared to the paper and
pencil group.

In Tables 6.5 and 6.6, results of the network flow exercise problems are shown. Table 6.5
gives results for total number and percent accuracy of points, and Table 6.6 gives analogous
results for total number and percent accuracy of correct steps, just as in the shortest path
exercise problems. Note that finding the augmenting path and updating the flow and residual
graphs are considered two different steps in these calculations. The Sketchmate and paper
and pencil groups are much closer in the scoring for these exercises than with the shortest
path exercises, as is evident from the significance values in the last column of the tables. The
only measures that achieved statistical significance for either the points or the steps measures
were the percent accuracy measures in the no-cutoff case. The total points measure in the
no-cutoff case was close to statistical significance, with a ρ value of 0.075 (ρ = 0.05 is
significant).

Table 6.5: Student tool points/accuracy for network flow exercise problems (SD = standard
deviation, C = cutoff, NC = no-cutoff). 354 possible points.

Sketchmate Paper/Pencil
Measure Mean SD Median Mean SD Median Sig.

Points (C) 197 113 211 182 101 194 0.696
Accuracy (C) 68.6% 26.1% 74.9% 60.3% 31.2% 64.7% 0.407

Points (NC) 247 106 282 182 101 194 0.075
Accuracy (NC) 88.2% 9.2% 89.8% 60.3% 31.2% 64.7% 0.002

The most interesting results here are the differences between using cutoff and no-cutoff
with the Sketchmate students, both for number of points and for number of steps, in terms
of percent accuracy. In the case of number of points, Sketchmate students scored nearly 20
percentage points higher on average when the grading was allowed to continue instead of
being cut off. When the grading cutoff was applied, Sketchmate students scored roughly one

71

Figure 6.3: Improvement of total number of points for network flow pre-test and post-test.
C = Computer (solid line), P = Paper/Pencil (dashed line)

Table 6.6: Student tool steps/accuracy for network flow exercise problems (SD = standard
deviation, C = cutoff, NC = no-cutoff). 51 possible steps.

Sketchmate Paper/Pencil
Measure Mean SD Median Mean SD Median Sig.
Steps (C) 29 17 34 28 15 30 0.812

Accuracy (C) 69.5% 27.5% 75.7% 63.1% 31.8% 70% 0.542

Steps (NC) 36 15 41 28 15 30 0.129
Accuracy (NC) 87.7% 12.4% 91.6% 63.1% 31.8% 70% 0.007

72

Figure 6.4: Improvement of percent accuracy for network flow pre-test and post-test. C =
Computer (solid line), P = Paper/Pencil (dashed line)

73

letter grade higher for both mean and median than the paper and pencil students. However,
when no grading cutoff was applied, Sketchmate students scored roughly three letter grades
higher using the mean measure, and roughly two and a half letter grades higher using the
median measure, than the paper and pencil students. Sketchmate students scored more
than 18 percentage points higher in the case of number of steps when the grading was not
cut off, as opposed to when the grading cutoff was applied. When the grading cutoff was
applied, Sketchmate students achieved roughly half a letter grade higher for both mean
and median than the paper and pencil students. However, when no grading cutoff was
applied, Sketchmate students scored roughly two and a half letter grades higher using the
mean measure, and roughly two letter grades higher using the median measure, than the
paper and pencil students. Not using a grading cutoff allows the Sketchmate students to
achieve statistically significant higher scores than the paper and pencil students. Because
Sketchmate gets students back on track after making serious errors, the students are able
to regroup and build up many more points beyond the step at which grading would have
otherwise stopped.

6.4.3 Survey Results

The numerical results from the survey are given in Table 6.7 for the shortest path questions
and Table 6.8 for the network flow questions. The first three columns of numbers give
the mean, standard deviation, and median for the students who used Sketchmate for that
algorithm, and the last three columns show the same statistics for the students who used
paper and pencil for that algorithm. The students gave an assessment of their comfort level
with the algorithm before and after working through the experimental activities. It is clear
that all students felt more comfortable with the algorithms after the activities, regardless
of whether they used Sketchmate or paper and pencil for the algorithms. They were also
asked to provide an assessment of their experience with the various operations for updating
the graphs in each step of the algorithm. Shortest path involves marking the edges in the
shortest path from the start vertex to the other vertices in the graph, updating vertex states,
and updating vertex costs. Network flow involves marking the augmenting path, updating
the flows and capacities along the edges, and adding or removing edges to/from the residual
graph. The students rated their experience for each of these operations for both Sketchmate
and paper and pencil on a scale of 1 to 7, with 1 being the most unfavorable and 7 being
the most favorable. All students could give a rating for the paper and pencil portions since
all students worked through the pre- and post-tests with paper and pencil. However, the
students who only used paper and pencil for the given algorithm could not give an assessment
for the Sketchmate portions of the questions, hence the blank entries in the tables.

An interesting result is that on average, for each operation of both algorithms, the Sketch-
mate students favored the Sketchmate version over the paper and pencil version. For exam-
ple, the Sketchmate students rated marking the shortest path with paper and pencil as 4.2,
which is lower than their rating of 5.5 for the Sketchmate version of marking the shortest
path. This result suggests that in general, students prefer Sketchmate to paper and pencil.
Table 6.9 shows the significance levels and effect sizes for each of the operations (ρ = 0.05

74

Table 6.7: Student tool survey results for shortest path questions (SD = standard deviation,
P = Paper/Pencil, S = Sketchmate). The Sketchmate column gives the ratings that Sketch-
mate users assigned to Sketchmate and to Paper/Pencil, while the Paper/Pencil column
gives the ratings that the Paper/Pencil group assigned to Paper/Pencil. For Sketchmate
users, the Paper/Pencil ratings refer to their experience with Paper/Pencil on the pre- and
post-tests.

Sketchmate Paper/Pencil
Question Mean SD Median Mean SD Median

Comfort before 4.2 1.6 4 4.8 1.4 5
Comfort after 5.8 1.2 6 5.9 1.2 6

Shortest path (P) 4.2 1.9 5 4.3 1.5 4
Shortest path (S) 5.5 1.5 6 - - -
Vertex states (P) 5 1.2 5 4.9 1.5 5
Vertex states (S) 5.4 1.5 5.5 - - -
Vertex costs (P) 5.4 1.7 6 4.6 1.2 5
Vertex costs (S) 5.8 1.1 6 - - -

Table 6.8: Student tool survey results for network flow questions (SD = standard deviation, P
= Paper/Pencil, S = Sketchmate). The Sketchmate column gives the ratings that Sketchmate
users assigned to Sketchmate and to Paper/Pencil, while the Paper/Pencil column gives the
ratings that the Paper/Pencil group assigned to Paper/Pencil. For Sketchmate users, the
Paper/Pencil ratings refer to their experience with Paper/Pencil on the pre- and post-tests.

Sketchmate Paper/Pencil
Question Mean SD Median Mean SD Median

Comfort before 3.2 2.1 3 3.6 1.9 3
Comfort after 5.1 1.6 5 5.6 1.3 6
Aug. path (P) 4.3 1.5 4 4.2 1.9 5
Aug. path (S) 5.5 1.5 6 - - -

Flows/capacities (P) 4.6 1.2 5 5.4 1.7 6
Flows/capacities (S) 5.5 1.2 6 - - -

Edge add/remove (P) 4.3 1.5 4 4.9 1.8 5
Edge add/remove (S) 5.6 1.4 6 - - -

75

is significant). The difference in rating for the augmenting path was statistically signifi-
cant with ρ = 0.030. The differences in rating for the shortest path and adding/removing
edges were near statistical significance with ρ = 0.060 for shortest path and ρ = 0.058 for
adding/removing edges. The effect sizes for vertex states and augmenting path were between
medium and large, while the effect sizes for shortest path and adding/removing edges were
medium. The effect sizes for updating the vertex costs and edge flows and capacities were
between small and medium, which is consistent with the fact that a number of students
commented that these operations were somewhat cumbersome.

Table 6.9: Student tool survey results for the difference between Sketchmate students’ rat-
ings for Sketchmate and Paper/Pencil for the shortest path and network flow operations.
Statistical significance level is 0.05. A small effect size is 0.1, a medium effect size is 0.25,
and a large effect size is 0.4. Effect sizes larger than 0.4 are generally unrealistic.

Operation Significance Effect size
Shortest path 0.060 0.286
Vertex states 0.108 0.373
Vertex costs 0.195 0.2

Augmenting path 0.030 0.337
Edge flows/capacities 0.144 0.146

Edge add/remove 0.058 0.234

Table 6.10 shows a summary of the results of the free response portion of the survey.
Students commented on aspects of the computer tool that they liked and that they did
not like, as well as suggestions for improvement, as indicated in the Positive and Negative
columns of the table. Only the aspects of the tool for which two or more students commented
are given in the table. A large number of students commented that they liked the immediate
feedback and that it helped them learn the algorithm. In general, students also seemed to
like the interface look and feel and the ease of use of the tool. The most frequent negatives
commented by students were that it was somewhat cumbersome to change vertex costs and
edge flows and capacities, and that the application would occasionally crash or freeze. A
separate survey question asked the students whether they prefer using Sketchmate or paper
and pencil. Out of the 34 responses to this question, 27 students preferred Sketchmate, 3
students preferred paper and pencil, and 4 students either had no preference or they preferred
using a combination of both Sketchmate and paper and pencil. A chi-square test showed
that this result was statistically significant with ρ = 0.000. Overall, the students enjoyed
using Sketchmate, and upon improving the functionality and user-friendliness of the tool,
future studies may show even more preference for Sketchmate.

76

Table 6.10: Student tool survey free response results. Numbers in parentheses are the number
of students who commented on that particular aspect of the tool. 37 students filled out a
survey.

Positive Negative
Feedback/explanation (24) Changing costs/capacities (23)

Well-organized/nice overall (10) Crashes/bugs (10)
Ease of use (10) Tedious (6)

Helpful/useful (8) Include more explanation for feedback (4)
Efficient/fast (8) Residual graph messy (edges) (3)
Clean/neat (7) Should split flow/residual into 2 steps (2)

Look & feel/layout (6) Should highlight areas to be changed (2)
Intuitive (4) Would like to undo last operation (2)

Corrects the working graph (2) Would like to show file name of graph (2)
Prefer to paper/pencil (2) Would like to work with random graph (2)

6.5 Limitations

In this section we discuss limitations of both the experimental design and the Sketchmate
software.

6.5.1 Limitations of the Experiment

One major limitation in this experiment was the small number of participants, as it was
restricted by the number of students enrolled in the course, which was approximately 50
students. A much larger sample, perhaps a couple hundred students, was needed in order
to reduce the variation in the data and allow for the possibility of producing more results
with statistical significance. Class sizes of that magnitude were simply not available for this
study. It may be difficult to ever achieve statistical significance because algorithms classes
will almost never be large enough to reduce the variability to the point where it is possible
to obtain statistically significant conclusions. Attempting to pool data from different classes
is not a viable option, even if taught by the same instructor, because variations in aspects
such as the sequencing of topics, the manner in which the topics are taught, and student
abilities would introduce additional independent variables that would be almost impossible
to control for.

Another issue was with the design of the pre- and post-tests. The problems increased
in difficulty for the first two or three problems, and then became easier for the problems at
the end of the tests. This design decision ensured that most students would have time to
complete at least two of the more difficult problems, which was a much better test of students’
knowledge than testing students on easy problems. We did not expect most students to have
time to work the easy problems towards the end of the test, and while few students were able
to get to the later problems, those who did scored high on these problems since they were

77

much easier. Thus, students were not tested with enough difficult problems, and therefore
some post-test scores may have been inflated. For the shortest path post-test, the only
student in the experiment who completed the last two problems was a paper and pencil
student. A better test design would have been to order the problems in terms of difficulty
so that each problem is of the same or greater difficulty, but never of less difficulty, than the
previous problems. This test design flaw was corrected for the instructor tool experiment.

Another possible issue is the difference of format for the pre-test, exercises, and post-test.
For the students in the paper and pencil group, paper and pencil was the format of all of
the problems they worked through, whether it was pre-test, exercises, or post-test. However,
for the Sketchmate group, the pre- and post-tests were in paper and pencil format, while
the exercises were in computer format. Thus, students needed to become accustomed to a
different format between the pre-test and the exercises, and again between the exercises and
the post-test. This “context switching” possibly may have detracted from their performance.

An additional concern was that many of the students in both groups were able to complete
all the problems in the network flow practice problem set. The experimenters overestimated
the time that students would need to complete the problems, resulting in a shortage of
problems, which could have led to distorted results since the experiment was designed to test
students on the basis of an open-ended problem set. There were not enough practice problems
available to properly test if students using Sketchmate would complete more problems than
students using paper and pencil.

6.5.2 Limitations of Sketchmate

One of the limitations of the Sketchmate software is that it contained a few small program-
ming bugs, as is common for all new and developing software packages. In several cases, the
program would crash while the students were working through the exercises. This would
cause the students to have to repeat the exercise they were on at the time of the crash, thus
slowing down their progress and resulting in students not getting through as many problems
as they could with bug-free software. While this was not a major factor, it did detract from
some students achieving higher scores on the exercises.

Related to the programming bugs in the software is the fact that Sketchmate was not as
user friendly as it could have been. Many students commented on the survey that it was
somewhat difficult and unwieldy to edit the vertex costs and edge capacities and flows. This
shortcoming slowed the students’ progress on working through the exercises.

6.6 General Discussion

The results of this study were encouraging overall. While it was somewhat of a disappoint-
ment that learning rates did not improve significantly for a more complicated problem like
network flow, it was a rather pleasant surprise that for a simple problem like shortest path,
the improvement in percent accuracy for Sketchmate users was roughly one letter grade
higher (8% for mean and 11% for median) than for paper and pencil students. It was also

78

pleasing, but more expected, to see a mean improvement in percent accuracy of at least one
letter grade higher for network flow.

It was somewhat surprising that the Sketchmate results for the shortest path practice
exercises were actually better than the Sketchmate results for the network flow practice
exercises, in terms of levels of significance. Since the network flow algorithm is more com-
plicated, it is possible that the more complex computer interface could have presented a
greater challenge for students, as compared with shortest path. It would be of interest to see
if improving the efficiency and user-friendliness of the interface would result in any difference
in student performance. The measures of total points in both the cutoff and no-cutoff cases
showed a significant improvement for Sketchmate users for the shortest path exercises. In
terms of percent accuracy, Sketchmate students achieved two to three letter grades higher on
the shortest path exercises. The percent accuracy measure for the no-cutoff case showed a
significant improvement for Sketchmate students for the network flow exercises. This result
amounts to nearly three letter grades higher for Sketchmate students in terms of total points.

The most encouraging results are the differences between the measures when grading
cutoff is used as opposed to using no grading cutoff, especially in the case of network flow.
With network flow, eliminating the grading cutoff allowed the differences in the percent
accuracies for points and for steps to rise to the level of statistical significance. This allowed
Sketchmate students to score two and a half to three letter grades higher on the exercises
than the paper and pencil students, whereas with cutoff applied, Sketchmate students would
only score up to one letter grade higher than paper and pencil students. In many cases,
students would choose an incorrect augmenting path in the first step, resulting in grading
being cut off immediately. When students are then shown the correct path with Sketchmate,
they are able to learn from this feedback and get back on track to correctly solve much, if not
all, of the remainder of the problem. An argument could be made to also apply no grading
cutoff to paper and pencil solutions, and attempt to find correct portions of the graph for
the rest of the student’s problem solution. However, attempting this technique is risky and
becomes a very subjective process in that the grader would need to somehow guess at the
student’s thought process. With Sketchmate correcting the graph at each step, the students
are starting with a correct set of graphs each time, resulting in there being no doubt in
grading the student’s answer for the next step.

According to student feedback from the survey, in general, students prefer using Sketch-
mate to using paper and pencil to work through the problems. Students commented that the
immediate feedback and explanation was very helpful for them, and that they enjoyed the
overall interface experience and ease of use of the tool. The students made suggestions for
improvement in the areas of user-friendliness and functionality, and with these improvements,
Sketchmate may become more effective as a learning tool in the future.

79

Chapter 7

Analysis and Evaluation of the
Instructor Tool Experiment

The focus of the development of the instructor tool was on providing an interface in which the
instructor can manually manipulate the components of a graph one by one in an interactive
environment, annotate their lecture with the use of a notepad object, and revert to previous
steps of the algorithm for review. The only existing tool that supports manual simulation
of graph algorithms for the instructor is MatrixPro (Karavirta et al., 2004), however, it only
allows the instructor to invoke a pre-defined library of high-level operations, rather than
allowing the instructor to manipulate the graphs at the level of vertices and edges. No
existing tool designed for simulating graph problems provides the Revert pane or notepad
features. The goal of the experiment with our instructor tool was to measure student learning
rate and learning outcome applied to graph problems resulting from observing a lecture based
on using Sketchmate compared to observing a lecture using the traditional whiteboard. The
hope was that a Sketchmate lecture would lead to equivalent learning rates and learning
outcomes as a whiteboard lecture, and that this dynamic environment can help use class
time more effectively than a static whiteboard environment using hand-drawing and erasing.

The experiment was a between-subjects, pre-test and post-test design. Students observed
a lecture on network flow based on using either Sketchmate or the whiteboard. Students
were allotted a fixed amount of time to complete the pre-test and post-test. The tests were
designed to be open-ended, that is, they contained more problems than the students could
complete in the allotted time. This design allowed us to measure learning rate, given by the
amount learned within a fixed period of time.

The experiment was designed to test the hypothesis that there would be no difference
in learning for network flow problems with a Sketchmate-based lecture as compared with a
whiteboard lecture. In other words, the hypothesis was that a Sketchmate lecture would not
detract from learning as compared with a whiteboard lecture. The literature [(Hundhausen
et al., 2002), (Narayanan and Hegarty, 2002)] suggests that the use of computer simulators
paired with passive learning does not increase learning outcomes. The main reason for
developing the tool is that it allowed for a cleaner and smoother presentation compared to
the whiteboard, and that an interactive manual simulation tool would make lectures more

80

efficient and seamless.
We also collected data of how students perceived the presentation efficiency and effec-

tiveness with either of the methods. The hope was that students would enjoy observing
the Sketchmate lecture at least as much, and possibly more than, observing the whiteboard
lecture.

7.1 Subjects, Setting, and Materials

Approximately 40 students from the Spring 2012 undergraduate Programming Languages
and Systems course in the Electrical Engineering and Computer Science department of the
University of Tennessee-Knoxville participated in the study. The experiment was included
as a class activity for the course. The study was conducted in a department lecture hall on
campus. The experimenters developed whiteboard and Sketchmate versions of two different
network flow problems of varying difficulty. The students needed to observe a lecture on
both problems.

7.2 Design

The experimenters used a between-subjects, pre-test and post-test model for testing differ-
ences in learning rate and learning outcome as measured by the difference between pre- and
post-test scores for students observing a Sketchmate-based lecture (experimental condition)
and students observing a whiteboard lecture (control condition). The dependent variables
were the difference between pre- and post-test scores in terms of number of points (a measure
of learning rate) and percent accuracies (a measure of learning outcome). Significant differ-
ences across dependent variables were tested for using repeated measures analysis of variance
(ANOVA), with differences being considered significant at the ρ < 0.05 level for the learning
rate measure, and the ρ < 0.025 level for the learning outcome measure. These differences in
significance levels were necessary because the learning rate and learning outcome measures
were largely based on the same data set. In order to obtain valid tests of significance for the
learning outcome measure, the confidence interval needed to be halved.

7.3 Procedures

The experiment took place during a regular lecture period of the Programming Languages
and Systems course. Students were first given a 12-minute written pre-test on network flow
graph problems. The students should have previously seen network flow in an algorithms
course, but the algorithm is sufficiently complex that we presumed that students would not
have retained much knowledge about the algorithm. Comparing the pre-test scores in Tables
6.4 and 7.1, this seems like a reasonable assumption since the students in this experiment
did not perform better on the pre-test than the students in the algorithms course in the
student tool experiment.

81

After the pre-test, the students were randomly assigned to two different groups. The first
group observed the instructor give an approximately 20 minute lecture on two network flow
problems using Sketchmate. The second group observed the instructor lecturing on the same
two network flow problems using the traditional whiteboard for approximately 20 minutes,
immediately after his Sketchmate presentation. One problem involved a straight-forward
network flow graph and the other involved a graph in which an augmenting path followed a
backedge. Section 4.3 gives an example of a network flow problem similar to the problems
used in this experiment. The time taken to lecture on the two problems was noted for each
technique.

After the lecture sessions, the students were given a written post-test on network flow
problems. The structure of the post-test was identical to that of the pre-test. The post-test
was given in the same class period as the lectures to avoid the possibility of students studying
for it and therefore distorting their scores.

The students who observed the computer tool lecture were also given a survey that asked
them questions about how they liked the computer tool compared to the whiteboard lecture
on the same material that they received in a previous semester. There were several Likert
scale questions with a rating between 1 (unfavorable) to 7 (favorable), as well as free response
questions. The survey included a question that asked students if they would prefer observing
a future network flow lecture presented with the whiteboard or the computer tool, and they
were asked to explain their preference.

Only students who attempted the pre-test and post-test and who followed directions
properly were included in the study. The primary experimenter scored all attempted pre-
and post-test problems for accuracy using the same scoring scheme described in Chapter 6.

An interscorer agreement test was not performed for this study, since the method for
grading the pre- and post-tests was exactly the same as the method used in the student tool
study.

7.4 Results and Discussion

Table 7.1 shows the results of the experiment with the instructor tool used for network
flow. The mean, standard deviation, and median for the pre-test, post-test, and difference
between pre- and post-test are given for both the Sketchmate and whiteboard groups. The
top three rows give the statistics for the total number of points earned (learning rate), and
the bottom three rows give the statistics for the percent accuracy of completed problems
(learning outcome). There was statistical significance (ρ = 0.000) for the difference between
pre- and post-test for both groups, but no statistical significance for the difference between
the two groups. For the total points measure, the Sketchmate group scored 28 points higher
on average and 30 points higher using the median measure, which seems promising, but was
not enough to be statistically significant (ρ = 0.147). For the percent accuracy measure,
the Sketchmate group only scored an average of roughly 6 percentage points higher than
the whiteboard group, which is consistent with the high ρ value (ρ = 0.502). Note that the
statistical significance values are for the mean rather than the median.

82

An interesting result for percent accuracy is that using the mean measure, the Sketchmate
group scored roughly 6 percentage points higher than the whiteboard group, while using the
median measure, the whiteboard group scored roughly 2 percentage points higher than the
Sketchmate group. This indicates that the results of this experiment are ambiguous for the
percent accuracy measure in that it is unclear which method resulted in higher learning
outcomes. This odd result is most likely explained by the very high variability in the test
scores. A future experiment would perhaps produce a clearer indication of which method is
more effective in terms of learning.

Table 7.1: Instructor tool experiment results for network flow pre-test and post-test (SD =
standard deviation). 257 possible points for both pre- and post-test.

Sketchmate Whiteboard
Measure Mean SD Median Mean SD Median

Pre points 80 64 61 64 74 13
Post points 180 63 195 136 79 151
Diff. points 100 69 85 72 64 55

Pre accuracy 44.7% 32.8% 36.3% 41.5% 39.1% 36.1%
Post accuracy 76.4% 25.6% 83.9% 67.5% 33.5% 82.4%
Diff. accuracy 31.7% 34.1% 22.9% 26.0% 43.0% 25.3%

Figure 7.1 shows a plot of the difference between pre- and post-test for the total number
of points for both groups. There is clearly more improvement for the Sketchmate group,
however, not enough for statistical significance. Figure 7.2 gives a plot of the improvement
from pre- to post-test for the percent accuracy for both groups. These lines are even closer
together than those of the plot of number of points, thus illustrating the lack of statistical
significance in the results.

In Table 7.2, the mean, standard deviation, and median of the results for the student
survey are given. Only the students who viewed the computer-based lecture completed
the survey, as the students who viewed the whiteboard lecture could not comment on any
aspects of using Sketchmate as a lecture aid. Students rated each feature on a scale of 1 to
7, with 1 being most unfavorable and 7 being most favorable. As expected, all students felt
more comfortable with the network flow algorithm after the lecture than before the lecture.
In general, students preferred the Sketchmate lecture, as indicated by a score of 5.2 for
Sketchmate preference, and a score of 5.4 for overall experience of the Sketchmate lecture.
Individual aspects of updating the graphs were also favorable. Students also felt that the
Revert pane and notepad features were quite helpful in their understanding of the algorithm.

The results from the free response questions of the survey are shown in Table 7.3. Stu-
dents were asked to comment on aspects of Sketchmate that they liked and that they did
not like, and to give suggestions for improvement. The comments are only reported if two or
more students addressed that particular aspect. A number of students indicated that they
liked the fact that the graph items to be changed were highlighted in color, and that using

83

Figure 7.1: Improvement of total number of points for network flow pre-test and post-test.
C = Computer (solid line), W = Whiteboard (dashed line)

Table 7.2: Instructor tool survey results for students viewing Sketchmate lecture (SD =
standard deviation)

Question Mean SD Median
Comfort before 4.1 1.9 5
Comfort after 6.3 1.0 7

Preference for Sketchmate 5.2 1.3 5
Overall experience 5.4 0.9 6
Augmenting path 5.5 1.0 5

Edge flows/capacities 5.1 1.1 5
Edge add/remove 5.2 1.3 5

Revert pane 5.6 1.1 6
Notepad 5.5 1.2 5

84

Figure 7.2: Improvement of percent accuracy for network flow pre-test and post-test. C =
Computer (solid line), W = Whiteboard (dashed line)

85

the tool is cleaner and more efficient, especially since the instructor does not need to erase
and redraw graphs. The most frequent negative aspects are that the interface is complicated
and very busy, and that updating the residual graphs and edge capacities could be made
smoother and cleaner. Overall, the students seemed to enjoy the use of Sketchmate in the
network flow lecture, and preferred it to an analogous whiteboard lecture.

Table 7.3: Instructor tool survey free response results. Numbers in parentheses are the
number of students who commented on that particular aspect of the tool. 17 students filled
out a survey.

Positive Negative
Efficient/fast (no redrawing graphs) (9) Cluttered/complicated (5)

Clean/neat (no handwriting) (7) Drawing graphs messy/slow (4)
Easy/clear (5) Updating flows/capacities (2)

Highlights items to change (3) Layout (2)
Notepad (3) Would like more color (2)

Revert pane (2) Would like for students to try it (2)
Useful/helpful (2) Fast-paced lecture (2)
Well-organized (2) Notepad text too small (2)

Like better than whiteboard (2) Would like notes/images distributed (2)

7.5 Limitations

In this section we discuss limitations of both the experimental design and the Sketchmate
software.

7.5.1 Limitations of the Experiment

One major limitation in this experiment was the small number of participants, as it was
restricted by the number of students enrolled in the course, which was approximately 50
students. A much larger sample, perhaps a couple hundred students, was needed in order
to reduce the variation in the data and allow for the possibility of producing results with
statistical significance. Class sizes of that magnitude were simply not available for this study.

Another issue is that the students only observed a lecture passively; they did not have an
opportunity to work with the computer tool hands-on. Had more time been allowed for the
lecture, the instructor may have incorporated methods of engaging the students by having
them follow along with the lecture by using the tool themselves. This approach may possibly
increase student learning outcomes.

86

7.5.2 Limitations of Sketchmate

A number of students commented that the interface of Sketchmate was rather busy and
complicated. They would have preferred fewer graphs being shown and splitting the updating
of the flow and residual graphs into two separate steps. Both the students and the instructor
remarked that it was not necessary to show the previous flow graph. Students also felt
that drawing the residual graph could have been cleaner in terms of drawing new edges
and updating the edge capacities. Students seemed to find these interface shortcomings
distracting and it may have detracted from their learning. The instructor also commented
that clicking and typing to edit the edge flows and capacities was somewhat unwieldy and
slowed the lecture slightly. He suggested that a tab-key or a click-and-type (without the need
to manually delete the old value) approach might help the edge flow and capacity editing
process become smoother.

7.6 General Discussion

The results of this study were inconclusive. Students observing the lecture using Sketchmate
did not learn significantly better than students observing the whiteboard lecture. While
Sketchmate students achieved higher learning rates for both the mean and median, results
were mixed for the percent accuracy measure. Sketchmate students scored a higher mean
but a lower median than the whiteboard students in terms of percent accuracy. This incon-
sistency may possibly have been a result of the very high amount of variability in the data.
These ambiguous results warrant further investigation in a future study.

The instructor reported that he was able to cover more material in less time in the
Sketchmate lecture compared to the whiteboard lecture. The Sketchmate lecture took ap-
proximately 19 minutes while the whiteboard lecture took 20 minutes. In both lectures, he
verbally addressed five important points about flow and residual graphs, but in the white-
board lecture he only had time to write down three of these points, while in the Sketchmate
lecture he had time to type all five of these points. In the Sketchmate lecture he had time
to review the second example using the Revert pane, while in the whiteboard lecture he did
not have any time to review the second example. Even if he would have had time, there was
no easy way to review the steps, as the previous graphs had been erased. In the whiteboard
lecture, the instructor did not have time to update the residual graph in the last step of the
second problem, whereas in the Sketchmate lecture, he had time to complete both problems
in their entirety, as well as review the second problem via the Revert pane.

Another advantage of Sketchmate that the instructor reported is that it is much cleaner to
work with the graphs using Sketchmate than by hand-drawing the graphs on the whiteboard.
During the whiteboard lecture, he often needed to switch between different markers and erase
augmenting paths drawn in different colors, erase flow numbers to write a new number,
redraw edges after wiping them out while erasing the augmenting path, and erase edges
in the residual graph. It was much cleaner using Sketchmate, since he was able to simply
choose the affected item and modify it. He also found it easier in Sketchmate to highlight

87

alternative augmenting paths since he could simply click and select/deselect edges, rather
than needing to draw an augmenting path with a different color marker and then erase it.
Finally, the instructor found the ability to load pre-prepared graphs very helpful since hand-
drawing a graph on the whiteboard was time consuming and during his lecture he made
several mistakes in the graph while drawing it on the whiteboard.

The instructor also commented on several other features of Sketchmate that he found
helpful in delivering his lecture. As the students also indicated, he found the fact that
Sketchmate highlights in color all graph edges and flows that need to be changed useful. It
served as a reminder of what changes he needed to make to the graphs, plus it was much
clearer to the students that the changes in the flow and residual graphs only occur along the
augmenting path. The instructor also found it helpful that Sketchmate displays the previous
residual graph that clearly shows the augmenting path, because the augmenting path in the
current residual graph is obscured upon creating backedges. Lastly, the instructor found
the notepad to be a valuable feature in that it allowed him to quickly type definitions and
important points.

According to the student feedback from the survey, in general, students prefer observing
a Sketchmate-based lecture to a whiteboard lecture. Students commented that highlighting
changes, the Revert pane, and the notepad were helpful for them, and that they enjoyed the
overall interface experience and clean aspect of the tool. The students made suggestions for
improvement in the areas of interface complexity and the smoothness of drawing and updat-
ing residual graphs, and with these improvements, Sketchmate may become more effective
as a learning tool in the future. In general, both the instructor and the students preferred
using Sketchmate in lecture as opposed to the whiteboard, and with further development
and refinement of the computer tool, it may prove to serve as a useful lecture aid in the
future.

88

Chapter 8

Conclusions and Future Work

This research involved developing and testing two versions of a computerized instructional
tool for teaching the shortest path and network flow graph algorithms. One version is for
students to use in studying practice exercises and completing homework problems, and the
other is for instructors to use as an aid in presenting lectures. An experiment was designed
and performed for each tool to measure its effectiveness compared with traditional teaching
methods such as paper and pencil based homework and a whiteboard lecture. The following
sections present a summary of the findings from both studies, as well as possible directions
for future work.

8.1 Student Tool

The student tool allows students to practice shortest path and network flow graph problems
and receive detailed immediate feedback at each step of the algorithm. Results from the
experiments showed that students improved by about a letter grade more with Sketchmate
than with paper and pencil between pre- and post-test for both shortest path and network
flow, although the result was not statistically significant. Sketchmate students achieved
higher learning rates and higher percent accuracy than paper and pencil students on the
shortest path exercises, and these results were statistically significant. This corresponded to
a one and a half to two letter grade difference. The Sketchmate students achieved higher
learning rates and higher percent accuracy than paper and pencil students on the network
flow exercises, but these results were only statistically significant for the percent accuracy
measure when no grading cutoff was applied. The result amounts to a two and a half to three
letter grade difference. Overall, the students preferred using Sketchmate to using paper and
pencil for working through the exercises, and they felt that the immediate detailed feedback
was very helpful. Future goals for the student tool include improving learning rates, reducing
the amount of time to complete homework, and increasing, or at least maintaining, accuracy
of student homework submissions.

89

8.2 Instructor Tool

The instructor tool provides a manual simulation environment for shortest path and network
flow graph problems with the ability to annotate simulations with notes and review previous
steps in the algorithm through the use of a Revert pane. Experimental results were somewhat
ambiguous and need further study. Sketchmate students achieved higher learning rates than
whiteboard students according to both the mean and median scores. However, for the percent
accuracy measure, the mean suggested that the Sketchmate tool might provide a slightly
better learning outcome, but the median suggested that a whiteboard lecture might provide a
slightly better learning outcome, and in any event, neither result was statistically significant.
The instructor reported that using Sketchmate allowed him to cover more material in less
time, and that it was much cleaner and more efficient to work with than hand-drawn graphs
on the whiteboard. In general, the students also preferred the use of Sketchmate compared
to the whiteboard because it is cleaner, it clearly indicates where changes need to be made,
and it includes additional useful features such as the Revert pane and notepad. Future goals
for the instructor tool include finding techniques to allow for easier, faster, and more effective
preparation and presentation of lectures involving data structures and algorithms, as well as
more efficient use of class time.

8.3 Lessons Learned

Several observations resulted from performing the two experiments. These observations are
discussed below.

1. Providing immediate feedback after intermediate steps in a homework simulation exer-
cise and correcting a graph so that it starts in a correct state after each step seems to
be a significant improvement over the traditional method of completing a homework
assignment and receiving some feedback on it a week or two later. Immediate feed-
back could be one of the biggest wins one gets from computer-aided tutoring systems.
The experimental results showed that manual simulation with interactive feedback in
a homework assignment can result in significant improvement in homework assignment
grades even for simple problems such as shortest path. They also suggested that such
interactive simulation systems might result in some improvement in overall learning
outcomes, as measured by the improvement from a pre- to a post-test, although unlike
the homework exercises, the results for the tests were not statistically significant.

2. Displaying both a “before” and “after” view of graphs, both in the instructor and
student tools, provided students with helpful contextual information, since in the tra-
ditional single view, the old state of the graph quickly gets destroyed and it can be
difficult to remember what it looked like or what changes still need to be applied by
the algorithm to complete the next step.

3. Providing a Revert pane is very helpful for quickly reviewing a problem or stepping
back to a previous step if a student has a question.

90

4. Providing an annotation window is very helpful for quickly entering notes that the
instructor would like students to copy. The instructor who tested the tool initially
thought the window would be superfluous, but then found it quite useful during his
actual lecture.

5. Getting statistically significant results in experimental studies with students is ex-
tremely difficult because of the limited size of upper division classes at many univer-
sities. It took a nearly 2 letter grade difference between the experimental and control
groups to get statistical significance in a class of 50 students, which is an unrealistic
level of improvement for most tools. It is also difficult to compare studies across dif-
ferent semesters or studies from different universities because additional independent
variables get introduced, such as different instructors, different sequences of topics, or
different student capabilities.

8.4 Future Work

This research offers many possible avenues for future work. Possible future research directions
for both the instructor and student tool include:

1. Implementing manual simulation to operate on data structures other than graphs,
such as trees, heaps, lists, and hash tables. Applying manual simulation to other data
structures would offer insight into its level of success in multiple domains.

2. Working with randomly generated graphs in addition to user supplied graphs. This
ability would allow for unlimited practice of graph algorithms since users would not
need to design and input a graph themselves.

3. Modifying the means for updating vertex costs and edge flows and capacities through
the use of a type-and-tab method or a click-and-type method, to replace the present
method that involves deleting the old value and typing Enter to commit the change.
Both the students and the instructor found the current approach to be rather cumber-
some.

4. Displaying a table next to the graph showing the state information of the vertices
such as cost, predecessor, and whether or not the vertex has been visited. This table
would allow for an easier transition from the graphical representation to the algorithm
implementation in code.

5. Providing a code window where code can be entered and then executed, while changing
the appropriate component of a graphical representation of the data structure. This
would enable the user to visualize the correspondence between the current line of
code and its effect on the data structure and might help with the transition from the
graphical representation to the algorithm implementation in code.

91

6. Collecting experimental data from different courses at various colleges, universities,
and community colleges to test the tool’s effectiveness across different institutions and
levels of instruction, and to help resolve whether the tool is beneficial to learning,
detrimental to learning, or neutral to learning.

In addition, the following items are possible future directions for the instructor tool:

1. Allowing the instructor to change the costs or capacities of the edges during the middle
of the simulation to address student “what if” questions or to correct a mistake that
might have been made when creating an impromptu graph.

2. Simplifying the instructor tool interface layout and reducing its level of complexity to
make it less overwhelming and distracting for students.

3. Allowing the instructor to manually simulate a general prioritized graph search algo-
rithm in addition to the built-in shortest path and network flow algorithms.

4. Providing a means for the students to actively work with the tool during class, rather
than passively viewing a lecture. If students are actively engaged in the material, it
may help students learn the subject better.

92

Bibliography

93

AlgoViz (2010). Data Structures and Algorithms Visualization Wiki. http://web-cat.cs.
vt.edu/AlgovizWiki.

Anderson, R., Anderson, R., Simon, B., Wolfman, S., VanDeGrift, T., and Yasuhara, K.
(2004). Experiences with a Tablet PC Based Lecture Presentation System in Computer
Science Courses. In SIGCSE ’04: Proceedings of the 35th CSE Technical Symposium on
Computer Science Education, pages 56–60. Norfolk, VA, USA, ACM Press.

Athanasios, B. (2009). JAVENGA Java Applet. http://users.uom.gr/~thanasis/

JAVENGA.html.

Baloukas, T. (2009). JAVENGA: JAva-Based Visualization Environment for Network and
Graph Algorithms. Computer Applications in Engineering Education.

Babcock, P. and Marks, M. (2010). The Falling Time Cost of College: Evidence from Half
a Century of Time Use Data. Review of Economics and Statistics.

Baecker, R. M. (1981). Sorting Out Sorting. SIGGRAPH Video Review, 7.

Baker, R. (2000). PILOT: An Interactive Tool for Learning and Grading. Senior Thesis.

Berque, D. (2006). An Evaluation of a Broad Deployment of Dyknow Software to Support
Notetaking and Interaction Using Pen-Based Computers. Journal of Computing Sciences
in Colleges, 21(6):204–216.

Berque, D., Johnson, D., and Jovanovic, L. (2001). Teaching Theory of Computation Using
Pen-Based Computers and an Electronic Whiteboard. In ITiCSE ’01: Proceedings of the
6th Annual Conference on Innovation and Technology in Computer Science Education,
pages 169–172. Canterbury, UK, ACM Press.

Bridgeman, S., Goodrich, M., Kobourov, S., and Tamassia, R. (2000). PILOT: An Interactive
Tool for Learning and Grading. In SIGCSE ’00: Proceedings of the 31st SIGCSE Technical
Symposium on Computer Science Education, pages 139–143. Austin, TX, USA, ACM
Press.

Brodowski, J. (1999). Animal Animation. http://www.animal.ahrgr.de/

showAnimationDetails.php3&anim=15.

Brown, M. H. (1988). Exploring Algorithms Using BALSA-II. Computer, 21(5):14–36.

Buckalew, C. and Porter, A. (1994). The Lecturer’s Assistant. In SIGCSE ’94: Proceedings
of the 25th SIGCSE Symposium on Computer Science Education, pages 193–197. Phoenix,
AZ, USA, ACM Press.

Chalidabhongse, T. H. (1996). Network Flow Applet. http://www.cs.pitt.edu/~kirk/

cs1501/animations/Network.html.

94

Cormen, T., Leiserson, C., and Rivest, R. (1990). Introduction to Algorithms. MIT
Press/McGraw Hill.

Crescenzi, P. (2009). ALVIE Java Application. http://alvie.algoritmica.org/.

Galles, D. (2006). Data Structure Visualization Java Application. http://www.cs.usfca.

edu/galles/visualization/download.html.

Golub, E. (2004). Handwritten Slides on a TabletPC in a Discrete Mathematics Course. In
SIGCSE ’04: Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education, pages 51–55. Norfolk, VA, USA, ACM Press.

Hoebel, N. and Burrer, M. (2003). GALGO Java Applet. http://www.informatik.fb2.

fh-frankfurt.de/~hoebel/graphen/galgo/en/index.html.

Holmes, M., Spiker, R., and Goldberg, M. (1999). ProjectLinks Java Applet. http://links.
math.rpi.edu/devmodules/graph_networking/xhtml/page14.xml.

Hundhausen, C., Douglas, S., and Stasko, J. (2002). A Meta-Study of Algorithm Visualiza-
tion Effectiveness. Journal of Visual Languages and Computing, 13(3):259–290.

Ikeda, K. (2004). Shortest Path Problem Java Applet. http://www-b2.is.tokushima-u.

ac.jp/~ikeda/suuri/dijkstra/Dijkstra.shtml.en.

Karavirta, V., Korhonen, A., Malmi, L., and Stalnacke, K. (2004). MatrixPro - A Tool for
On-the-Fly Demonstration of Data Structures and Algorithms. In Proceedings of the 3rd
Program Visualization Workshop, pages 26–33. University of Warwick, UK.

Karavirta, V., Korhonen, A., Malmi, L., and Stalnacke, K. (2006). Trakla2 Java Application.
http://www.cs.hut.fi/Research/TRAKLA2/exercises/Dijkstra.html.

Khuri, S. and Holzapfel, K. (2001). EVEGA: An Educational Visualization Environment
for Graph Algorithms. In ITiCSE ’01: Proceedings of the 6th Annual Conference on
Innovation and Technology in Computer Science Education, pages 101–104. Canterbury,
UK, ACM Press.

Korhonen, A., Malmi, L., and Silvasti, P. (2003). TRAKLA2: A Framework for Automati-
cally Assessed Visual Algorithm Simulation Exercises. In Proceedings of Kolin Kolistelut
/ Koli Calling - 3rd Annual Baltic Conference on Computer Science Education, pages
48–56. Joensuu, Finland.

Kumar, A. (2004). Using Online Tutors for Learning - What do Students Think? In Pro-
ceedings of 34th Annual Frontiers in Education Conference. Savannah, GA, USA. Session
T3C.

Kumar, A. (2005a). Generation of Problems, Answers, Grade, and Feedback - Case Study
of a Fully Automated Tutor. Journal on Educational Resources in Computing, 5(3).

95

Kumar, A. (2005b). Results from the Evaluation of the Effectiveness of an Online Tutor
on Expression Evaluation. In SIGCSE ’05: Proceedings of the 36th SIGCSE Technical
Symposium, pages 216–220. St. Louis, MO, USA.

Kumar, A. (2006). Explanation of Step-by-Step Execution as Feedback for Problems on
Program Analysis, and its Generation in Model-Based Problem-Solving Tutors. Journal
of Technology, Instruction, Cognition, and Learning, 4(1):65–107.

Kumar, A. (2008). Female Students Assess Software Tutors More Positively Than Male
Students. In Proceedings of Frontiers in Education Conference. Saratoga Springs, NY,
USA. Session S4F.

Kumar, A. (2009). Need to Consider Variations within Demographic Groups When Evaluat-
ing Educational Interventions. In ITiCSE ’09: Proceedings of Innovations and Technology
in Computer Science Education, pages 176–180. Paris, France.

Kumar, A. (2010). Problets website. http://www.problets.org/about/publications.

html.

Laakso, M. and Salakoski, T. (2004). Automatic Assessment of Exercises for Algorithms
and Data Structures - A Case Study with TRAKLA2. In Proceedings of Kolin Kolistelut
/ Koli Calling - Fourth Finnish/Baltic Sea Conference on Computer Science Education,
pages 28–36.

Laffra, C. (1996). Dijkstra’s Shortest Path Algorithm Java Applet. http://www.dgp.

toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html.

Mayer, R. and Anderson, R. (1991). Animations Need Narrations: An Experimental Test
of a Dual-Coding Hypothesis. Journal of Educational Psychology, 83(4):484–490.

Mayer, R. and Anderson, R. (1992). The Instructive Animation: Helping Students Build
Connections Between Words and Pictures in Multimedia Learning. Journal of Educational
Psychology, 84(4):444–452.

Mayer, R. and Sims, V. (1994). From Whom is a Picture Worth a Thousand Words?
Extensions of a Dual-Coding Theory of Multimedia Learning. Journal of Educational
Psychology, 86(3):389–401.

Myers, B. (2001). Using Handhelds and PCs Together. Communications of the ACM,
44(11):34–41.

Myers, B., Stiel, H., and Gargiulo, R. (1998). Collaboration Using Multiple PDAs Connected
to a PC. In CSCW ’98: Proceedings of the 1998 ACM Conference on Computer Supported
Cooperative Work, pages 285–294. Seattle, WA, USA, ACM Press.

96

Myller, N., Laakso, M., and Korhonen, A. (2007). Analyzing Engagement Taxonomy in
Collaborative Algorithm Visualization. In ITiCSE ’07: Proceedings of the 12th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education, pages
251–255. Dundee, Scotland, UK, ACM Press.

Naps, T. (1998). A Java Visualiser Class: Incorporating Algorithm Visualisations into
Students’ Programs. In ITiCSE ’98 Proceedings of the 6th Annual Conference on the
Teaching of Computing and the 3rd Annual Conference on Integrating Technology into
Computer Science Education: Changing the Delivery of Computer Science Education,
pages 181–184. Dublin, Ireland, ACM Press.

Naps, T. (2005). JHAVE - Addressing the Need to Support Algorithm Visualization with
Tools for Active Engagement. IEEE Computer Graphics and Applications, 25(6):49–55.

Narayanan, N. H. and Hegarty, M. (2002). Multimedia Design for Communication of Dy-
namic Information. International Journal of Human-Computer Studies, 57(4):279–315.

Ng, M., Ang, W., and Morris, J. (1998). Auckland Java Applet. http://www.cs.auckland.
ac.nz/software/AlgAnim/dijkstra.html.

Olsen, D., Taufer, T., and Fails, J. (2004). ScreenCrayons: Annotating Anything. In UIST
’04: Proceedings of the 17th Annual ACM Symposium on User Interface Software and
Technology, pages 165–174. Santa Fe, NM, USA, ACM Press.

Orsega, M. (2009). Evaluating Sketchmate: A Digital Drawing Tool for the Splay Tree Data
Structure. PhD thesis, University of Tennessee Knoxville.

Orsega, M., Vander Zanden, B., and Skinner, C. (2011). Two Experiments Using Learning
Rate to Evaluate an Experimenter Developed Tool for Splay Trees. In SIGCSE ’11:
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, pages
135–140. Dallas, TX, USA, ACM Press.

Orsega, M., Vander Zanden, B., and Skinner, C. (2012). Experiments with Algorithm Vi-
sualization Tool Development. In SIGCSE ’12: Proceedings of the 43nd ACM Technical
Symposium on Computer Science Education, pages 559–564. Raleigh, NC, USA, ACM
Press.

Palmiter, S. and Elkerton, J. (1991). An Evaluation of Animated Demonstrations for Learn-
ing Computer-Based Tasks. In CHI ’91: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 257–263. New Orleans, LA, USA, ACM Press.

Pane, J., Corbett, A., and John, B. (1996). Assessing Dynamics in Computer-Based Instruc-
tion. In CHI ’96: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 194–204. Vancouver, British Columbia, Canada, ACM Press.

Papagelis, A. (1997). Minimum Routes Finder Java Applet. http://students.ceid.

upatras.gr/~papagel/project/kef5_7_1.htm.

97

Pierson, W. C. and Rodger, S. H. (1998). Web-Based Animation of Data Structures Using
JAWAA. In SIGCSE ’98: Proceedings of the 29th SIGCSE Technical Symposium on
Computer Science Education, pages 267–271. Atlanta, GA, USA, ACM Press.

Robling, G., Schuler, M., and Freisleben, B. (2000). The ANIMAL Algorithm Animation
Tool. In ITiCSE ’00: Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE Confer-
ence on Innovation and Technology in Computer Science Education, pages 37–40. Helsinki,
Finland, ACM Press.

Shaffer, C., Cooper, M., Alon, A. J. D., Akbar, M., Stewart, M., Ponce, S., and Edwards, S.
(2010). Algorithm Visualization: The State of the Field. ACM Transactions on Computing
Education, 10(3):1–22.

SMART-Technologies (2012). SMART Board Interactive Whiteboards. http://www.

smarttech.com/SmartBoard.

Sniedovich, M. (2000). TutORial Javascript Application. http://www.ifors.ms.unimelb.
edu.au/tutorial/dijkstra/island.html.

Stasko, J. (1992). Animating Algorithms with XTANGO. SIGACT News, 23(2):67–71.

Teviotdale, R. and Naps, T. (2008). JHAVE Java Application. http://jhave.org/learner/
graphs/Dijkstra/dijkstra.php.

Weiss, M. (2006). Data Structures and Algorithm Analysis in C++, Third Edition. Addison
Wesley.

Wilkerson, M., Griswold, W., and Simon, B. (2005). Ubiquitous Presenter: Increasing Stu-
dent Access and Control in a Digital Lecturing Environment. In SIGCSE ’05: Proceedings
of the 36th Technical Symposium on Computer Science Education, pages 116–120. St.
Louis, MO, USA, ACM Press.

Yang, J., Nielsen, J., and Shaffer, C. (1996). Swan Network Flow Application. http:

//research.cs.vt.edu/AVresearch/Swan/.

98

Appendix

99

The following list presents all the possible feedback messages a student could receive
while working through a shortest path problem. The letters and numbers assigned to the
vertices and edges are arbitrary. For purposes of this presentation, each message should
be treated as independent of the others. The purpose is to show each possible scenario of
incorrectly updating the graphs.

• Vertex v should be marked as Visited since it is the start vertex.

• Vertex v should be marked as Visited since it is the seen vertex with the smallest cost.

• Vertices x,y should be marked as Seen, Unvisited since they are neighbors of the visited
vertex v.

• Vertices u,w should still be Unseen, Unvisited since they are not neighbors of a previ-
ously visited vertex.

• Vertex v should still be marked as Visited and should not have been changed.

• Vertices x,y should still be marked as Seen, Unvisited and should not have been
changed.

• Vertex v should have a cost of 0 since it is the start vertex.

• Vertex v should have a cost of 10 and should not have been changed.

• Vertex v should have a cost of 10 and edge u-v should now be selected.

• Vertex v should have a cost of 8 since going through u is on a shorter path (8) than
going through w (10).

• Vertex v should have a cost of 8 since going through u is on a shorter path (8) than
going through w (10) and edge u-v should now be selected.

• Vertex v should have a cost of 8 since going through u is on a shorter path (8) than
going through w (10) and edge w-v should no longer be selected.

• Vertex v should have a cost of 8 since going through u is on a shorter path (8) than
going through w (10) and edge u-v should now be selected and edge w-v should no
longer be selected.

• Edge u-v should now be selected since a shorter path to v was found through u.

• Edge u-v should now be selected and edge w-v should no longer be selected since a
shorter path to v was found through u.

• Edge w-v should no longer be selected since a shorter path to v was found through u.

• Edge x-u should not have been deselected since it is still on the shortest path.

100

• Edge y-z should not have been selected since it is not on the shortest path.

The following list presents all the possible feedback messages a student could receive while
working through a network flow problem. The letters and numbers assigned to the edges are
arbitrary. For purposes of this presentation, each message should be treated as independent
of the others. The purpose is to show each possible scenario of incorrectly updating the
graphs.

• Edges a-b, b-c should be selected since they are on the maximum flow augmenting
path, which has flow 6.

• Edges c-d, d-e should not be selected since they are not on the maximum flow aug-
menting path, which has flow 6.

• Edge a-b should have a flow of 8 since 6 is the flow along the augmenting path which
got added to its previous flow of 2.

• Edge b-c should have a flow of 6 since 6 is the flow along the augmenting path.

• Edges a-b, b-c should have a flow of 2 since the corresponding backedges in the residual
graph are on the augmenting path, therefore flow needs to be subtracted.

• Edges c-d, d-e should have a flow of 4 and should not have been changed since they
(and their backedges) are not on the augmenting path.

• Edge a-b should have a capacity of 8 since it replaced its backedge and now carries the
flow 6.

• Edge b-c should have a capacity of 6 since it replaced its backedge and now carries all
the flow.

• Edge c-d should have a capacity of 4 and should not have been changed since it is not
on the augmenting path.

• Edge a-b should have capacity 2 since it is reduced by the flow 6 because it is on the
augmenting path.

• Edge b-c should have capacity 8 since the flow 6 is added to it because it is a backedge
to an edge on the augmenting path.

• Edge a-b should have capacity 6 since 6 is the flow along the augmenting path.

• Edge d-c should not be in the residual graph since it and its backedge are not on the
augmenting path.

• Edge a-b should be deleted from the residual graph since it got replaced by its backedge.

101

• Edge b-c should be deleted from the residual graph since its backedge now carries all
of the flow.

• Edge a-b should be replaced with its backedge b-a and its capacity should be the flow
6.

• Edge c-d should not have been reversed and should’ve been left alone since it is not on
the augmenting path and its capacity should be 4.

• Edge b-a should now be in the residual graph since it is a backedge that replaces a-b
and its capacity should be the flow 6.

• Edge c-d should not have been deleted since it is not on the augmenting path and its
capacity should be 4.

• Edge b-a should be added as a backedge to a-b and its capacity should be the flow 6
and the capacity of a-b should be reduced to 2.

• Edge d-e should not have been removed and its capacity should be 4.

102

Vita

Kristy Sue Van Hornweder was born on November 4, 1977 in Superior, Wisconsin. She
earned a Bachelor’s degree in Computer Science and Mathematics from the University of
Minnesota-Duluth in 2000. In 2002, she earned a Master’s degree in Computer Science,
and in 2004, she earned a Master’s degree in Applied and Computational Mathematics,
both from the University of Minnesota-Duluth. She worked as an adjunct instructor in
Mathematics at the College of St. Scholastica in Duluth, Minnesota in the fall of 2005.
In 2006, Kristy began work towards her PhD in Computer Science at the University of
Tennessee-Knoxville. She completed this degree in 2012, and has accepted a one-year Visiting
Lecturer position in Computer Science at the University of Virginia in Charlottesville. She
would like to eventually obtain a position as a tenured professor in Computer Science at a
teaching university or college in Western North Carolina or Eastern Tennessee.

103

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2012

	Sketchmate: A Computer-Aided Sketching and Simulation Tool for Teaching Graph Algorithms
	Kristy Sue Van Hornweder
	Recommended Citation

	tmp.1343739520.pdf.qDzoX

