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Abstract

In this dissertation, we developed and tested a sketching, visualization, and simulation tool
called Sketchmate for demonstrating graph algorithms commonly taught in undergraduate
computer science courses. For this research, we chose to focus on shortest path and net-
work flow algorithms. Two versions of this tool have been implemented: 1) an instructor
tool that supports computer-aided manual simulations of algorithms that augment tradi-
tional whiteboard presentations, allowing lectures to be more dynamic and interactive, and
2) a student tool that supports computer-aided manual practice of algorithms that enables
students to work through homework problems more quickly while providing detailed incre-
mental feedback about their performance and about how to solve a problem when they get
stuck. Previous algorithm simulation systems have essentially forced instructors to narrate
an algorithm as though they were describing an automated set of slides. In contrast, our
tool allows instructors to manually manipulate attributes of a graph as they demonstrate an
algorithm.

A set of experiments was conducted using the tools. The results for the student tool
showed that there was no statistically significant difference in test score improvement between
Sketchmate and paper and pencil students, although they did show that Sketchmate students
scored roughly one letter grade higher than paper and pencil students. Based on survey
data, the students preferred using the tool to using paper and pencil. The results of the
experiment involving the instructor tool showed that although there was no statistically
significant difference in learning between Sketchmate and the whiteboard, both the instructor
and the students preferred a Sketchmate lecture to a whiteboard lecture.
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Chapter 1

Introduction

It is common practice to use illustrations when teaching abstract concepts in computer
science to help make these concepts more concrete. The instructor will often draw a given
data structure on the whiteboard and use it to step through the process of performing an
algorithm on that data structure. Textbooks often include a series of diagrams of data
structures to accompany the textual description and explanation of the given algorithm.
While use of a whiteboard for free-drawing pictures is convenient and easily accessible, there
are disadvantages of using this technique. These pictures are static and do not clearly show
transitions between states of the given data structure. The diagrams can be cumbersome
to draw by hand and use of this technique is prone to making errors. These diagrams lack
domain-specific knowledge, which means that errors introduced by an instructor will not be
caught. With static illustrations drawn on the whiteboard, it is more difficult to revert to
previous stages or to save these diagrams for later use. A Smartboard (SMART-Technologies,
2012) allows one to save diagrams, but that requires the instructor to remember when to
save the diagram. In some cases, instructors will erase portions of the data structure and
redraw new components as they step through an algorithm. This makes the presentation
more difficult to follow as the history of the algorithm’s progression is lost. To preserve
information, instructors have the option of recopying the data structure for each stage,
however, most of the components of the data structure will not change in a given step, and
so this method is time consuming, wasteful in terms of whiteboard space, and more prone
to errors being introduced.

Another illustration strategy is the use of computerized simulations for presenting more
complex concepts and algorithms. Several studies [(Hundhausen et al., 2002), (Narayanan
and Hegarty, 2002), (Laakso and Salakoski, 2004), (Kumar, 2004), (Kumar, 2005b), (Ba-
loukas, 2009)] have suggested that student learning may be improved by using simulations
as opposed to traditional paper and pencil methods. Since simulations are dynamic, it
is possible to watch the algorithm in action as it manipulates a data structure, and the
transitions between steps is much more pronounced. Since the entire process is automated,
these transitions can be demonstrated without needing to manually erase or recopy the data
structures. A computer simulation is pre-programmed with the algorithm, thus making
it easier to prevent errors when presenting the simulation to students. The example data



structures used in computer simulations also can be saved for later review and practice,
either for instructors to present in their lectures, or for students to study the workings of
the algorithms.

While computer simulations can be a significant improvement over static illustrations,
they limit an instructor to narrating what is essentially an automated slide show that unfolds
in a manner prescribed by the simulation tool, instead of allowing instructors to present the
simulations in their own way. In this dissertation, we have developed a manual simulation
tool that allows instructors to manually manipulate graph data structures as they would
on a whiteboard, rather than helplessly watching as the computer manipulates the data
structure for them. This tool essentially functions as an enhanced whiteboard with “smart
objects”, which correspond to key elements of graph diagrams, such as labeled vertices and
edges. Previous tools such as MatrixPro (Karavirta et al., 2004) and Sketchmate (Orsega,
2009) provide the instructor with a library of pre-defined high-level operations that can be
performed on a data structure. In contrast, our tool defines a set of graph attributes, such
as vertex state and edge selection, and allows the instructor to manually manipulate these
attributes. Hence, the instructor has finer-grained control over the simulation, since the
instructor can choose the order in which the attributes are manipulated. Several additional
features are also included. Users are allowed to create a custom graph on which to perform
the simulation and are not limited to built-in examples. The application provides a history
list of the graph algorithm steps to allow the user to revert to any previous step for review.
Finally, the tool provides a notepad feature where the instructor can annotate a simulation
with key concepts, which is similar to writing these concepts on a whiteboard.

In addition to a lecture aid for instructors, we also address the computer-aided simulation
of practice exercises and completion of homework assignments for graph algorithms. Existing
computer simulations allow a student to passively watch but do not actively engage the
student. Hundhausen’s meta-study (Hundhausen et al., 2002) suggests that student learning
outcomes are typically optimized when a student is actively engaged in a simulation. This
requires a manual simulation tool. A student using a modified version of the instructor’s tool
to study an algorithm and work practice exercises could obtain detailed feedback at each
step that will explain what the student did incorrectly as opposed to simply stating that
the student’s action was incorrect. Such a tool could also facilitate the grading of student
homework, since much of the process can be automated and not require hours of instructor
time to carefully read student solutions. In this dissertation, we have also developed the
student version of the manual simulation tool described here.

To design our tools, we conceptually built on Michael Orsega’s Sketchmate tool [(Orsega,
2009), (Orsega et al., 2011), (Orsega et al., 2012)]. Orsega’s Sketchmate tool supports an
instructor version and a student version, it visualizes splay tree operations, and it implements
several of the features mentioned in the preceding paragraphs, including “smart” tree objects,
manual simulation for students, and detailed immediate feedback for students. It does not
support manual simulation for instructors, which is one of the main contributions of this
research.

In this dissertation, two versions of Sketchmate for prioritized graph search algorithms



have been implemented: a teaching version for instructors to teach graph algorithms dur-
ing their lectures, and a tutoring version for students to practice examples and complete
homework exercises. Our Sketchmate software for graphs contains several features beyond
allowing the basic demonstration of graph algorithms. Users are able to input a custom
graph, such as that found in a course textbook, rather than relying solely on built-in exam-
ples or random graphs. A history window of operations can be displayed with the instructor
tool to enable users to refer to any previous step of the algorithm. A diagram of the graph
structure at the previous step of the algorithm is displayed along with a diagram of the
current graph structure to allow for easier viewing of changes between steps. An instructor
is able to manually simulate the process of the algorithm, as well as annotate the simulations
using a notepad feature.

A student using the student tool is able to obtain detailed feedback at each step that
explains what the student did incorrectly as opposed to simply stating that the student’s
action was incorrect. Users have the option of saving their work for future reference and
review. Students are able to complete a typical homework assignment using the tool, submit
their work, and receive immediate feedback and a score. As noted in the related work
chapter, very few previous tools support manual simulation and none exists that implements
all of the above features as applied to graph algorithms.

Unlike most of the existing simulation tools, we have performed a formal evaluation of
both the instructor and the student tool. The experiment performed with the instructor
Sketchmate tool involved a group of undergraduate students observing a lecture on network
flow problems. Half of the students observed the lecture presented using Sketchmate, and the
other half of the students observed a traditional whiteboard lecture on the same problems.
The instructor Sketchmate tool was evaluated based on student learning as measured by the
difference between pre-test and post-test scores, as well as overall satisfaction of observing a
lecture that uses Sketchmate.

The student Sketchmate tool experiment involved a group of undergraduate students
working through practice exercises for shortest path and network flow. In one part of the ex-
periment, half of the students worked through the shortest path exercises using Sketchmate,
while the other half of the students worked through the same exercises using a traditional
paper and pencil method. For the other part of the experiment, the students who worked
through the shortest path exercises using paper and pencil worked through network flow ex-
ercises using Sketchmate, and the students who worked through the shortest path exercises
using Sketchmate worked through the same network flow exercises using paper and pencil.
The evaluation of the student Sketchmate tool was based on the amount of learning achieved
from performing the exercises as measured by the difference between pre-test and post-test
scores, as well as students’ scores on the practice exercises, and overall satisfaction of using
Sketchmate.

The remainder of this dissertation is organized as follows. Chapter 2 surveys related work
in algorithm visualization and general teaching tools. Goals of this research are discussed in
Chapter 3. Chapter 4 reviews basic graph terminology and explains the shortest path and
network flow algorithms in terms of example problems. In Chapter 5, a detailed description



of the instructor and student Sketchmate simulation tools is given. Chapter 6 presents
the experimental results of the study with the student tool, while Chapter 7 presents the
experimental results of the study with the instructor tool. Conclusions and directions for
future work are included in Chapter 8.



Chapter 2
Related Work

In this chapter, existing work in algorithm visualization (AV) and computerized teaching
tools is surveyed. Many aspects of these tools are closely related to those of the tools devel-
oped in this dissertation. This chapter first discusses research on the general effectiveness of
AV tools. It then surveys existing AV tools for teaching computer science. Next, it provides
a brief summary of tools that can be used for general presentation and annotation. It then
analyzes AV tools that are specifically aimed at simulating and visualizing graph algorithms.
Finally, it summarizes features of the previous Sketchmate tool for splay trees, along with the
similarities and differences of the Sketchmate tool for graphs developed in this dissertation.

2.1 Effectiveness of Algorithm Visualization Tools

There have been numerous studies analyzing the effectiveness of algorithm visualization
tools. Research by Mayer et. al. [(Mayer and Anderson, 1991), (Mayer and Anderson,
1992), (Mayer and Sims, 1994)] has shown that presenting text along with images results in
better recall and problem solving skills than text presented before images or images presented
without text. Furthermore, animation presented without explanatory text or narration is no
different than receiving no instruction at all.

Hundhausen (Hundhausen et al., 2002) conducted a meta-analysis of 24 algorithm vi-
sualization (AV) studies and obtained mixed results. The main conclusion was that how
students use an AV has a greater impact than what the AV demonstrates, and that students
learn better if they are actively engaged in the learning process. Narayanan (Narayanan and
Hegarty, 2002) also concluded that learning is enhanced if students are actively involved and
create their own ideas and explanations. He also found that the content and structure of the
visualization is more important for comprehension and learning than the media or modality
by which the algorithm is presented. Palmiter (Palmiter and Elkerton, 1991) notes that it is
important to carefully choose the text to accompany animations; otherwise, the animations
may not provide instructions that are useful for later recall and application. Pane (Pane
et al., 1996) points out that the use of animations and simulations does not guarantee im-
provement in learning and that well-designed static text and images may be just as effective



for learning. However, visualizations may be more appealing and thus more motivating, so
students may spend more time with them, and thus learn more. The findings of Kumar
(Kumar, 2005b) were that students learn more using an online tutor than a textbook, pre-
senting images and text together is more effective than presenting only images, and using
images alone results in better learning than no instruction at all.

Kumar (Kumar, 2004) also analyzed results from a survey asking students what they
think of the use of online tutors. Students generally felt they learned better with text and
graphics. They think that tutors that provide feedback are more effective, although tutors
that give verbose feedback are less effective. Kumar also found that it might be necessary to
consider variations among different demographic groups when assessing instructional meth-
ods for computer science courses (Kumar, 2009), and that female students tend to evaluate
online tutors more positively than male students (Kumar, 2008).

To summarize, various studies on the effectiveness of AV tools have produced mixed
results. The major conclusions are that simulations and visualizations are more effective if
students are actively engaged in the learning process, text and images presented together
results in better learning outcomes than when text and images are presented separately, the
text presented with an image must be chosen carefully to ensure that it actually enhances
understanding of the image, and AV tools that include detailed feedback are more effective
than those that do not, although tools that give verbose feedback are less effective.

2.2 Animation and Visualization Tools for Teaching
Computer Science

The first animation tool for teaching computer science concepts dates back to 1981 with the
movie Sorting Out Sorting (Baecker, 1981). Since then, numerous animation and visualiza-
tion systems have been developed, each with their set of features and limitations. Various
general purpose software systems such as graphical editors, PowerPoint, and Flash can be
used to simulate animations. However, creating animations using these tools is time consum-
ing and these tools do not contain any domain-specific knowledge about the data structure
or algorithm at hand.

Systems such as XTANGO (Stasko, 1992) can function as a visual debugger where stu-
dents replace existing function calls with calls to non-standard libraries. However, its focus
on visual debugging differs from our focus on conceptual understanding of the algorithm.
Programs such as BALSA (Brown, 1988) allow students to create generic animations. How-
ever, students need to have deep knowledge of the algorithm, as well as the programming
language and application interface. A programmatic tool for building visualizations that
focuses on conceptual understanding of the algorithm is Visualiser (Naps, 1998). This tool
involves students annotating their code to produce a visual slide show that displays the state
of the data structures at each step. While these visualizations are actively created by stu-
dents, the visualizations do not allow the student to manually manipulate the components
of the data structure, nor do they provide a detailed explanation of what is occurring at



each step. Tools such as JAWAA (Pierson and Rodger, 1998) and ANIMAL (Robling et al.,
2000) allow users to create animations visually through a drawing editor using primitive
graphical objects, and easy drag and drop functions. While little knowledge of the algorithm
is required, these systems do not have built-in operations specific to the data structures of
interest.

The Problets website (Kumar, 2010) contains a collection of fully automated tutors for
teaching basic computer programming concepts, such as programming scope (Kumar, 2005a)
and for loops and parameter passing (Kumar, 2006). These tutors automatically generate
problems, answers, grades, and feedback. The problems are generated using templates or a
model of the problem domain, and answers are generated by solving the problems using tree
traversal algorithms. The feedback can be minimal (diagnostic) or detailed (step-by-step
explanation). Studies have found that detailed feedback is more effective for learning and
that succinct feedback is more effective than verbose feedback. The tutors are also more
effective when they are adapted to the needs of the individual learner, such as focusing on
concepts the student finds more difficult.

Based on the above discussion, the goal of this dissertation project was to develop a tool
that: contains domain-specific knowledge and built-in operations for the data structure and
algorithm of interest, allows the user to focus on conceptual aspects of the algorithm without
becoming bogged down in coding details, includes an intuitive and easy to learn interface,
and provides detailed feedback and step-by-step explanation of the algorithm.

2.3 General Presentation and Annotation Tools

The tools discussed thus far were designed for animating and visualizing concepts and algo-
rithms for computer science. Another feature needed to teach these concepts during lecture
is a way to annotate and make notes on presentations. A number of lecture aids have been
designed to help fulfill this purpose. ScreenCrayons (Olsen et al., 2004) allows the user to
make annotations on a screen capture and highlight portions of a document or image. The
user can create notes using this tool and save them to a file system for later reference. The
Lecturer’s Assistant (Buckalew and Porter, 1994) enables communication between the lec-
turer and the students in that the student can make annotations and ask questions without
the need to leave their seat. Several tools are designed to work with pen-based computers
and tablet PCs where slides are annotated with text or notes [(Berque et al., 2001), (An-
derson et al., 2004), (Golub, 2004), (Wilkerson et al., 2005), (Berque, 2006)]. Tools have
also been developed for PDAs and handheld devices [(Myers et al., 1998), (Myers, 2001),
(SMART-Technologies, 2012)], which allows for multiple devices to be connected to a shared
whiteboard application.

In summary, various presentation tools have been developed for annotating slides with
notes, enhancing communication between lecturer and students, and enabling students to
simultaneously connect to an electronic whiteboard. These tools are domain-independent
and hence not restricted to computer science. They operate at a higher level than the domain-
specific tools described in this dissertation and could complement these tools. However, the



instructor tool developed in this dissertation incorporates an annotation feature by providing
a notes window for annotating graph simulations demonstrated during lecture. This feature
is a significant enhancement over the existing AV tools for simulating graph algorithms.

2.4 Animation and Visualization Tools Capable of De-
monstrating Graph Algorithms

The following sections discuss several tools that are capable of working with graph algorithms
such as Dijkstra’s shortest path and network flow algorithms. These AV tools are discussed
with the following desired features in mind:

e Supporting automatic continuous display of algorithm steps from beginning to end,
without pausing between steps, which the user passively views as if they are watching
a movie

e Providing a discrete step-by-step mode that pauses after each step, and allows a user
to click a button to continue

e Stepping back to previous steps to reverse the visualization process

e Providing a history list of operations performed, with capability of reverting to any
previous step

e Presenting animations of objects moving to a new location or flashing objects to draw
attention to them

e Allowing the user to create a custom graph from scratch

e Displaying a textual description of what is occurring at each step
e Allowing the user to manually practice a problem step by step

e Grading the user’s solution in terms of the number of correct steps

e Providing detailed feedback of the user’s solution when the user is incorrect

All of the surveyed AV tools allow the user to proceed through the algorithm one step
at a time, pausing between steps. Each of the above features is supported by at least one
existing AV tool, except for a history list of operations where the user can select a step to
revert back to for review. No existing tool for visualizing graph algorithms supports such a
history list. Sketchmate for splay trees (Orsega, 2009) does support a history list feature,
and this feature has been extended to our Sketchmate for graphs. To help organize the above
features, we have created a taxonomy of AV tools, as shown in Figure 2.1, based on three
criteria:



1. Automatic simulation of graph algorithms (for instructor) vs. manual practice of graph
algorithms (for student). “Automatic simulation” means that the computer displays
the simulation on its own, and “manual practice” means that a human user simulates
the algorithm manually.

2. Continuous display of steps vs. discrete step-by-step display

3. Graph creation capabilities vs. toolkit-provided or random graphs

AVs

Instructor Student
Automatic simulation Ivlanual practice
Continuous display Discrete stepping only
User mav Toolkit-provided
create graph graphs only

Figure 2.1: Taxonomy of AV tools

Each classification as based on the leaves of the tree in Figure 2.1 is discussed below,
and examples of each class are analyzed. Most of these tools can be found in the AlgoViz
Wiki website catalog (AlgoViz, 2010). An overview of AlgoViz and the state of the field is
available in (Shaffer et al., 2010).

2.4.1 Tools with Automatic Simulation, Continuous Display, and
Graph Creation Capability

All of the tools in this category are capable of automatic simulation but not manual practice,
continuous display of the algorithm steps, and the custom creation of a graph. These include
GALGO (Hoebel and Burrer, 2003), Dijkstra’s Shortest Path (DSP) (Laffra, 1996), EVEGA
(Khuri and Holzapfel, 2001), Swan (Yang et al., 1996), Network Flow (Chalidabhongse,
1996), and JAVENGA [(Baloukas, 2009), (Athanasios, 2009)]. Each of these is examined in
turn.

GALGO The GALGO applet (Hoebel and Burrer, 2003) does not have any of the other
desired features shown in the list at the beginning of this section. It allows users to create
and edit graphs by clicking and dragging vertices and edges. Users are able to choose a
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start vertex. During execution of the algorithm, the vertex and edges currently being visited
flash once in different colors, but none of the components actually move. The adjacency
matrix is displayed in another window. GALGO supports the visualization of a number of
graph algorithms, including Dijkstra’s shortest path, Floyd-Warshall, spanning trees, graph
traversal, Kruskal, and Prim, as well as algorithms for trees. The applet does not work on
the Ubuntu system and it runs somewhat slowly on a PC. The interface is a little difficult to
learn how to use, partly because some of the components are in German, such as file choices,
warning messages, and help information.

Dijkstra’s Shortest Path (DSP) DSP (Laffra, 1996) is an applet that includes a textual
description of the algorithm steps. The user can create or edit graphs by adding nodes and
edges or changing the weights of the edges. The toolkit also includes built-in example graphs.
Nodes currently being visited in the simulation are displayed in a different color. None of the
components are animated, although the simulation does pause between steps. DSP is specific
to Dijkstra’s shortest path algorithm; it is not capable of performing any other algorithms.
The applet does not appear to run on the Ubuntu system, but it runs smoothly on a PC
machine.

EVEGA EVEGA (Khuri and Holzapfel, 2001) is a standalone Java application that is
specialized for simulating graph algorithms. It uses colors, multiple views, and a textual
description of each step of the algorithm. It allows for direct manipulation and creation of
graphical objects with a drawing editor. The package also includes built-in graph generators.
The tool is able to step through an algorithm and pause between steps. The speed of the
simulation can be controlled by the user. The tool provides online help and is designed to
prevent most possible user errors. EVEGA is capable of simulating maximum flow algo-
rithms. EVEGA includes the capability of analyzing the runtime and number of operations
of the algorithm. The tool allows an instructor to change or create a graph in class to answer
“what if” questions asked by students, as well as create a simulation in advance and save it
for a later time.

Swan Swan (Yang et al., 1996) is a standalone Java application that includes a few built-
in examples of graphs that the user can modify by adding and deleting nodes and edges.
Both the graph representation and its corresponding adjacency list are displayed during the
simulation. The user can step through the algorithm in discrete steps or run it continuously
until the end, although the steps are displayed in succession very rapidly. There is no actual
animation of graph components but different colors and thicknesses are used for the edges
to indicate their current state in the simulation. A brief textual description of each step
appears below the graph. The user can zoom in or zoom out, save the screen to a file, and
change the attributes of the graph or its components such as color, thickness, position, and
layout. The application is capable of working with several different algorithms and data
structures including binary search, heapsort, Huffman encoding, string matching, network
flow, finding the minimum and maximum elements of a list, red black trees, topological sort,
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and vertex cover.

The project is no longer active and has not been updated since the mid-1990’s. The
program could only be successfully run on a Windows system; it could not be run on a
LINUX box. The software also contains a few bugs such as closing the entire application
when step mode completes and after clicking the cancel button of the attribute dialog box.
The application also requires users to supply the exact filename containing the graph example
rather than allowing them to locate the file via a file chooser.

Network Flow Network Flow (Chalidabhongse, 1996) is an applet that allows users to
create and edit a graph from scratch. The simulation can be run in discrete step mode or in
continuous mode, although the steps are executed so quickly that the simulation appears to
jump to the end state and the intermediate states are not able to be viewed. None of the
components of the graph are animated and the nodes and edges do not change colors; only
the flows and costs along the edges are changed. The user is able to restart the algorithm in
order to replay the simulation from the beginning.

JAVENGA JAVENGA [(Baloukas, 2009), (Athanasios, 2009)] is an applet capable of
simulating a number of graph algorithms, including Dijkstra’s shortest path, depth-first
search, breadth-first search, topological sort, Bellman-Ford, Prim, Kruskal, and network
simplex. In addition to displaying a textual description for the history of algorithm steps,
JAVENGA also allows the user to step forward or backward through the algorithm, and the
speed of execution can be controlled. The values of variables are displayed at each step.
Although none of the components are animated, the nodes currently being visited flash in
different colors. The tool provides a window to create a graph by clicking to add nodes and
edges, and it allows the user to type in the initial edge and node costs. The adjacency matrix
can be viewed, although not at the same time as the graph. The tool also provides help files
and windows.

There are several issues with using JAVENGA. The graph creation process requires read-
ing and scrolling through a window of instructions instead of being intuitive. It is nearly
impossible to slow down or pause the simulation, and the entire graph window flashes rapidly
as well as the PC desktop items outside the applet window. The graph window flashes con-
tinuously, and users cannot stop the simulation without closing the window. The textual
information printed to the text box flashes and disappears, making it impossible to read.
The tool will not run at all on the Ubuntu system.

JAVENGA researchers have tested their tool on a small group of students who were
given either a Powerpoint presentation on Dijkstra’s shortest path algorithm or a JAVENGA
visualization of the algorithm. The students who used JAVENGA performed better on test
questions involving the application or analysis of the algorithm and worse on questions
involving fact-based knowledge of the algorithm. In other experiments, the same researchers
also found that visualization has significantly improved learning of difficult concepts, such
as the network simplex algorithm.
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2.4.2 Tools with Automatic Simulation, Continuous Display, and
Toolkit-Provided Graphs

The tools in this grouping allow for automatic simulation but not manual practice, continuous
display of algorithm steps, but do not allow users to create their own graphs. Instead, users
operate on built-in graphs or randomly generated graphs. These tools include Data Structure
Visualization (DSV) (Galles, 2006), Auckland (Ng et al., 1998), Project Links (Holmes et al.,
1999), and Animal [(Brodowski, 1999), (Robling et al., 2000)]. A discussion of each of these
tools follows.

Data Structure Visualization (DSV) DSV (Galles, 2006) is a downloadable Java ap-
plication that does not support any of the other desired features shown in the list at the
beginning of this section. It does include a few annotations and the user can view the adja-
cency list or matrix, although it cannot be viewed at the same time as viewing the graph.
In addition to the ability to step through the simulation one step at a time, the user is also
able to skip to the end result. In automated continuous display mode, the user is able to
pause the simulation and control the simulation speed. Users can move vertices and edges
around to improve readability and they can choose the start vertex. During each step in the
simulation, a copy of a vertex number animatedly moves from a table of vertex state infor-
mation to a path list for a vertex to the right of the table, but nothing in the actual graph
representation is animated. The vertex and edges currently being visited are highlighted
in both the graph and table representations. The package includes smaller graph problems
and larger, more complex ones. DSV is capable of visualizing several graph algorithms,
including Dijkstra’s shortest path, depth-first search, breadth-first search, topological sort,
Floyd-Warshall, Kruskal, Prim, and connected components, as well as many other data struc-
tures and algorithms, such as lists, stacks, queues, sorting, trees, heaps, hashing, Huffman
encoding, and dynamic programming. One minor issue is that the final path in the graph is
not highlighted so it is a little more difficult to see the solution.

Auckland Auckland (Ng et al., 1998) is an applet that includes annotations and limited
textual descriptions of the steps, as well as pseudocode with the current step highlighted.
During the simulation, the nodes and edges currently being visited blink, but nothing in the
graph actually moves. Nodes are displayed in different colors, depending on their current
state. The speed of the simulation can be controlled by the user. Two different graph
examples are provided. Other data structures and algorithms simulated by Auckland include
sorting, trees, dynamic programming, Huffman encoding, heaps, hashing, and minimum
spanning trees.

Project Links Project Links (Holmes et al., 1999) is an applet that is capable of simulating
the Dijkstra shortest path and Bellman-Ford graph algorithms. The user can click the Go,
Pause, and Reset buttons to control the simulation. It is not possible to step through the
algorithm one step at a time, but the Pause button can be used to simulate the discrete
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step mode. The colors of nodes and edges are changed throughout the simulation, but no
components of the graph are actually animated. A brief textual description of the current
step is given above the graph. When running the applet on a Windows machine, there are
issues with refreshing the screen between steps of the simulation. The graph and information
bar appear duplicated and the user must scroll up or down the web page in order to eliminate
these ghosting effects. This display issue makes it difficult to read the graph and the textual
descriptions.

Animal As with Auckland, Animal [(Brodowski, 1999), (Robling et al., 2000)] also in-
cludes textual descriptions and highlighting of the current step in the pseudocode, however,
these descriptions and pseudocode are very high level. Animal is also capable of navigat-
ing backwards to any previous step of the algorithm. The nodes and edges currently being
visited in the graph are highlighted, although there is nothing that animates. The user can
zoom in on the graph for easier viewing. The software is capable of handling many types
of data structures and algorithms, including sorting, searching, compression, cryptography,
trees, hashing, and graph algorithms such as Dijkstra’s shortest path and Floyd-Warshall.
Animal is a downloadable Java application. The tool appears to allow the user to change
vertices and edges, however, it does not seem to reload the user’s new graph to use in the
simulation.

2.4.3 Tools with Automatic Simulation and Discrete Stepping

Each tool referred to in this class is capable of automatic simulation but not manual practice,
and only allows discrete stepping through the algorithm and no automated continuous display
of steps. The tools described here include Shortest Path Problem (SPP) (Ikeda, 2004),
Minimum Routes Finder (MRF) (Papagelis, 1997), tutORial (Sniedovich, 2000), ALVIE
(Crescenzi, 2009), and JHAVE [(Naps, 2005), (Teviotdale and Naps, 2008)].

Shortest Path Problem (SPP) SPP (Ikeda, 2004) is a very simple applet that does
not include any of the other desired features listed at the beginning of this section. Several
graph examples are provided by the toolkit. Although there is nothing that animates, the
simulation uses different colors for nodes and edges that are currently being visited. The
tool can also simulate other algorithms, such as simplex, Prim, Kruskal, and Ford-Fulkerson.

Minimum Routes Finder (MRF) MRF (Papagelis, 1997) is an applet that does not
have any of the other features of interest. The changing graph is displayed next to the
initial graph. The nodes are colored based on their current state, but nothing in the graph
actually moves. Users can skip to the solution, but only the final result is shown, none of the
intermediate steps are displayed. There is a bug in that if the user clicks “next step” at the
end of the simulation, the graph is cleared and therefore the solution is no longer viewable.
The tool is specific to shortest path algorithms; it is not capable of simulating any other
algorithms. While the tool runs correctly on a PC, it will not run on the Ubuntu system.
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tutORial tutORial (Sniedovich, 2000) is an applet that simulates a map of Australia with
routes between cities. It includes detailed textual descriptions as the user steps through the
algorithm, and the user is able to choose the start and end vertices. The nodes and edges
currently being visited are colored, but nothing in the graph actually moves. The tool is also
capable of simulating other algorithms such as dynamic programming, queuing networks,
linear programming (simplex algorithm), linear algebra algorithms, integer programming,
and topological sorting.

ALVIE ALVIE (Crescenzi, 2009) is a Java-based application that includes a textual de-
scription of algorithm steps, the ability to step backwards or to the end, and a display of
pseudocode with the current step highlighted. Nodes and edges currently being visited are
colored, but nothing in the simulation is animated. The tool can also simulate other algo-
rithms, including Bellman-Ford, breadth-first search, depth-first search, Hamiltonian paths,
graph coloring, independent sets, Kruskal, Prim, vertex covering, nearest neighbor, hashing,
Fast Fourier Transformations, Huffman encoding, dynamic programming, linear program-
ming, matrix algorithms, sorting, and searching. It takes a little time to learn how to open a
graph problem as the interface includes icons instead of words. It appears that ALVIE may
allow the user to create graphs, however, the interface is difficult to use and this precludes
us from getting it to work properly.

JHAVE JHAVE [(Naps, 2005), (Teviotdale and Naps, 2008)] provides a more direct way
to revert to previous steps than the other tools discussed thus far. Users click a tick mark on
a timeline to revert to a previous step; however, there is no textual description of the history
of steps. Another difference from previously discussed tools is that JHAVE engages users
by popping up a quiz-like question after each step, and after completion of the algorithm,
the user receives a score indicating the number of questions answered correctly. A window
with pseudocode is displayed next to the graph. The user can zoom in or out. None of the
components in the simulation are animated. The tool displays a vertical listing of vertices
with their costs and predecessors. JHAVE is able to simulate many other algorithms, includ-
ing searching, sorting, trees, Huffman encoding, hashing, dynamic programming, depth-first
search, breadth-first search, Prim, Kruskal, topological sorting, and Floyd-Warshall. The
tool can be run directly on the website or it can be downloaded as a Java application.

2.4.4 Tools with Manual Practice and Automatic Simulation

None of the tools discussed thus far allow the user to manipulate the graphs and practice a
problem manually. There are three AV tools that include this capability: Trakla2 [(Korhonen
et al., 2003), (Laakso and Salakoski, 2004), (Karavirta et al., 2006), (Myller et al., 2007)],
MatrixPro (Karavirta et al., 2004), and PILOT [(Bridgeman et al., 2000), (Baker, 2000)].
These tools are discussed in more detail in the following paragraphs.
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Trakla2 When students solve problems using the Trakla2 applet [(Korhonen et al., 2003),
(Laakso and Salakoski, 2004), (Karavirta et al., 2006), (Myller et al., 2007)], they can im-
mediately obtain a score indicating the number of steps they have performed correctly. This
grading only includes a score; it does not include any explanation or detailed feedback of
their incorrect steps. Trakla2 does not appear to include animation capabilities, but in addi-
tion to the ability to step forward, it is also possible to step backwards to any previous step
of the algorithm for review. The user can also undo or redo a step in the manual-practice
mode. The user can change the font size to apply a zoom function to the graph. Trakla2 is
also capable of simulating other data structures and algorithms such as searching, traversing,
sorting, heaps, trees, hashing, breadth-first search, depth-first search, and Prim.

Trakla2 displays a list of nodes, where the list item for each node gives its cost and a
list of nodes that it is connected to, but it is static and difficult to relate to the graph.
Code is displayed next to the graph, but it is static and the current step is not highlighted.
Trakla2 does not display any textual descriptions of the algorithm steps; it only shows the
final solution. The user cannot create a custom graph. In manual-practice mode, the user’s
answer can be reviewed step by step, but there is no feedback provided at each step, so the
user will not know whether or not a given step is correct. However, if the user becomes
stuck, then the user has the option of viewing the model solution to see the correct answer,
although the edge costs are not shown in the graph, making it more difficult to understand
the solution.

Despite its shortcomings, student feedback for Trakla2 has been positive. They think it
is more elegant than paper and pencil teaching methods and they feel it helps give them
more motivation to learn the subject. They think that the tool concretizes the actions and
operations of the algorithm, therefore making it easier to learn. Researchers have found that
the tool is most helpful for students who are struggling, in that it helps them get over the
hump and pass the course. While there has been a formal evaluation of Trakla2 applied to
binary heap problems, there has not been a formal evaluation of the tool applied to graph
problems.

MatrixPro MatrixPro (Karavirta et al., 2004) builds on Trakla2 by allowing an instructor
to create custom animations with custom input data sets. The instructor can demonstrate
algorithms on the fly by using different input, and this allows for the handling of “what if”
questions asked in class, thus enhancing instructor and student interaction. The features
of this tool allow the instructor to present algorithms from a conceptual perspective and
suppress the coding details. Animations can be prepared before or during lecture. The user
is able to customize the look and feel of the interface by controlling what operations are
displayed in the toolbar, font sizes, the layout of the interface and the graph data structures,
and how the data structures are visualized (e.g., whether or not node labels are shown).
A graph can be created by dragging and dropping pre-defined labels from an array into a
window that displays the graph structure, however, it is somewhat difficult to figure out how
to add edges to the graph. It is possible to cut, copy, and paste different components of the
data structures. The user can walk through an algorithm by invoking pre-defined operations
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on the data structures, such as inserting a node into a tree. The user is not able to walk
through an algorithm by manipulating the data structure at the level of vertices and edges.
The speed of the simulation can be adjusted and the granularity of the visualized execution
can also be controlled. Breaks in the animation can be inserted to fine tune the granularity
of the animation and steps and substeps in the animation can be joined or split. The user
can undo and redo operations and rewind the series of steps and reapply them. The user is
able to step backward or forward and jump to the beginning or the end of the animation, but
there is no support for a history list of operations. It is not clear whether the tool supports
continuous simulation of steps, or whether any components of the data structure are moved
during simulation. There is no textual description of what is occuring at each step of the
simulation. An animation can be loaded, saved, or printed. MatrixPro is capable of handling
many types of data structures and algorithms, such as searching, traversing, sorting, search
trees, priority queues, hashing, string matching, spatial data structures, and several graph
algorithms including depth-first search, breadth-first search, Prim, and Dijkstra’s shortest
path. As with Trakla2, the user is able to solve problems manually by selecting nodes and
edges. There are several built-in example exercises for the user to work through. If users
become stuck, they can view a model solution to see the correct answer. A user’s work can
be graded, although only the number of correct steps is given; the tool does not provide
any detailed feedback about what the user has done incorrectly, nor does it provide detailed
feedback at each step as the user works through the example.

PILOT PILOT [(Bridgeman et al., 2000), (Baker, 2000)] is a Java-based AV tool specific
to graph problems that is similar to Trakla2 in that it assigns a grade to a student’s submitted
solution. The main difference is that it also provides the student with detailed feedback of
what they did incorrectly. It also provides immediate feedback at each step of manually
practicing the problem by alerting the student to incorrect choices with colors, flashing,
and animations. PILOT also awards the student partial credit where appropriate. As with
Trakla2, it allows the user to view a model solution, but enhances Trakla2’s capability by
including textual explanations of each step. Users can undo and redo actions, as well as
drag vertices around to improve readability. The tool provides three different modes: Learn,
Exam Practice (grade does not count), and Exam (grade counts for the course). Graph
algorithms that can be simulated are minimum spanning trees, breadth-first search, depth-
first search, and shortest path. Limitations of this tool are that it does not allow the user
to create a graph from scratch, it does not provide a history list of operations, and detailed
feedback is only given after completion of the problem as opposed to being given at each
step. PILOT also does not appear to be publicly available for download.

The developers of PILOT conducted an empirical study where the tool was used in a
CS data structures course and compared with results of students solving problems involving
Prim’s algorithm for minimum spanning trees using a traditional paper and pencil method.
It appears that students answered only one problem with each method and that over 90
percent of the students in both the computer and paper and pencil groups achieved a perfect
score on those problems, which essentially prevented any conclusions from being drawn about
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the effectiveness of the computer tool. The authors of PILOT suggested that it is possible
that this outcome is a result of the given problem or algorithm being too easy to learn, and
posed the question of whether a similar result would occur with a more challenging problem,
such as maximum flow.

2.4.5 Summary

The AV tools discussed in this chapter each have their own set of strengths and limitations.
Table 2.1 summarizes the capabilities of each of these tools. Discrete step-through mode is
not included since all of the tools have this capability, and history list is not included since
none of the tools support this feature.

Table 2.1: Summary of AV tool capabilities. Entries with a question mark (?) were unable
to be determined with certainty. “N” = “Nodes” and “E” = “Edges”.

Tool Cont. | Anim. | Step | Create | Text | Man. | Grade | Det.

disp. back | graph | descr. | pract. fdbk

GALGO Yes | NLE blink | No Yes No No No No
DSP Yes No No Yes Yes No No No
EVEGA Yes No? No Yes Yes No No No
Swan Yes No No Yes Yes No No No
Net. Flow Yes No No Yes No No No No
JAVENGA | Yes | N,E blink | Yes Yes Yes No No No
DSV Yes N num’s No No No No No No
Auckland Yes | NLJE blink | No No Yes No No No
Proj. Links | Yes No No No Yes No No No
Animal Yes No Yes No Yes No No No
SPP No No No No No No No No
MRF No No No No No No No No
tutORial No No No No Yes No No No
ALVIE No No Yes No Yes No No No
JHAVE No No Yes No No No No No
Trakla2 No No Yes No No Yes Yes No
MatrixPro | Yes? No? Yes Yes No Yes Yes No
PILOT Yes? | N,E blink | Yes? No Yes Yes Yes Yes

Since the automated “slide show” approach has been used for most of the existing tools,

our Sketchmate software for graphs focuses on the implementation of a manual simulation
environment for both the student and instructor versions. Users can manually manipulate
graph components, which more actively engages the user than simply clicking through a series
of representations of the graphs. The automated solution approach is actually implemented
for shortest path and network flow problems, but behind the scenes as a means of verifying
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that the user’s solution is correct. The student Sketchmate tool can also be used as an
automated discrete stepping tool if the user repeatedly clicks the “Submit” and “Continue”
buttons without manipulating the graph components in any way. In this manner, the student
tool can be used as an automated instructor tool which provides detailed feedback at every
step. An additional feature of the instructor tool is a notepad where the instructor can
interactively add explanations of each step of the algorithm. Thus, the instructor tool
functions as an enhanced whiteboard, where an instructor is able to manually simulate the
steps of an algorithm and add verbal explanations as the graph structure is being worked
on. As mentioned previously, the instructor tool also includes a Revert pane for reviewing
previous steps of the algorithm. The research performed in this dissertation also differs from
the work done with other AV tools in that we performed formal experimental studies of
the effectiveness of both the instructor tool and the student tool. PILOT and JAVENGA
were the only two projects in which the researchers formally evaluated learning outcomes of
experiments with graph problems (Trakla2 researchers formally evaluated learning outcomes,
but for experiments with binary heaps, not graphs). Our study also differs from these
previous studies in that it focuses on both learning rates and learning outcomes.

2.5 Sketchmate for Splay Trees

Orsega’s Sketchmate for splay trees [(Orsega, 2009), (Orsega et al., 2011), (Orsega et al.,
2012)] includes an instructor tool for demonstrating splay tree operations during lecture, and
a student tool for working practice exercises. The instructor tool allows a user to create a
custom splay tree on which to operate. The tool performs operations on the created splay
tree and displays this process as a series of animations with pauses between steps. Users can
also revert to previous operations by choosing the desired operation from a history list. The
student tool contains several built-in exercises in which the student can manually perform
operations on the given splay tree. An image of the previous splay tree structure is displayed
beside the splay tree the student is currently working on. When the student performs an
incorrect operation, detailed feedback is given on what the student has done incorrectly.
Students also can receive a grade for their work.

Experiments with the instructor tool studied its usability in a lecture setting, and ex-
periments involving the student tool analyzed student learning outcomes and learning rate.
The results of the experiments with the student tool were that learning outcome was slightly
increased when using Sketchmate versus traditional paper and pencil methods, although the
increase is not statistically significant. However, using Sketchmate did result in learning
rate being increased significantly. As stated in Orsega’s dissertation, “students were able to
complete the exact same exercises nearly 40% faster when using Sketchmate versus paper
and pencil.”

Sketchmate for graphs shares several similarities with Sketchmate for splay trees. Sketch-
mate for graphs also includes both instructor and student tools. The instructor tool allows
users to create a custom graph, simulate algorithms operating on the graph, and revert to
previous steps of the algorithm’s process via a history list. The student tool enables a stu-

18



dent to practice graph algorithm problems, and provides a grade for their work, as well as
detailed feedback explaining what the student has done incorrectly. Sketchmate for graphs
also includes studies on the usability of the instructor tool in a classroom environment, and
studies exploring Sketchmate’s effect on student learning outcomes and learning rate.

Sketchmate for graphs differs from Sketchmate for splay trees in a number of ways. The
most fundamental difference is that our Sketchmate is applied to a data structure other than
splay trees. Another major difference is that the instructor tool allows the user to manually
simulate graph algorithms in a type of “enhanced whiteboard” environment, as opposed to
viewing a slide show presentation of algorithm steps. An image of the previous graph is
displayed concurrently with the graph currently being worked on for both the instructor and
student tools. The instructor tool also includes a notepad feature, which allows instructors
to annotate their simulations with notes explaining what is occurring at a given step. The
student tool allows the user to input any graph, and thus does not restrict the student to
work with built-in exercises. A graph problem is solved by the computer in the background,
and detailed feedback is generated from this automated solution. The automated solution
can also be used to verify the instructor’s solution. The experiment for the instructor tool
also evaluated student learning rate and learning outcome in addition to usability in the
classroom.
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Chapter 3

Research Goals

This research has two broad objectives: 1) developing a tool that supports computer-aided
manual simulations of algorithms to augment traditional whiteboard presentations, allowing
lectures to be more dynamic and interactive, and 2) improving student learning rate and
accuracy by developing a tool that supports computer-aided student practice of algorithms
by enabling students to work through homework problems more quickly while providing
detailed incremental feedback about their performance and about how to solve a problem
when they get stuck. Between the instructor tool and the student tool, all features in Table
2.1 except for the first two features were implemented. The Sketchmate instructor tool for
graphs also includes several features not present in existing AV tools for graphs, as discussed
below.

e Supporting manual simulation of the algorithms in addition to the automated solution
computed in the background

e Including a revert pane that lists all steps performed on the graph and allows the
viewing of any previous step in the simulation

e Displaying a diagram of the previous step along with a diagram of the current step so
that students can easily see the changes between steps

e Providing a notepad feature for adding explanations for each step

e Using the automatic solution in the instructor tool to check the manual solution and
ensure that all state information is updated correctly before the instructor advances
to the next step

e Developing an AV tool that is easy, fast, and convenient to use, requires a low learning
curve to use, and uses class time more efficiently

e Exploring mixed modes of delivery where the student can view the computer-aided
manual simulation of an algorithm as the instructor modifies various parts of the screen
and simultaneously hear the instructor’s explanation of each step
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As with the instructor tool, the student tool displays diagrams of both the previous and
current graphs simultaneously, and an effort has been made to develop the student tool to
be as easy and fast to use as possible. An additional feature includes allowing the user to
practice with any custom-made graph and not be restricted to built-in exercises.

Another goal in developing the student tool was to increase student learning rate com-
pared with that obtained from using paper and pencil. Learning rate refers to how much a
student learns in a given amount of time, as illustrated in Figure 3.1. In our experiments,
students were given an open-ended set of test problems and practice exercises to see how
many points they could accumulate and how many problem steps they could successfully
complete in a fixed amount of time. The hope was that students could earn higher scores
for number of points and number of steps using Sketchmate (thus an increased learning
rate), and that this additional practice would lead to improved learning outcomes on a more
complicated algorithm, such as the maximum flow network flow problem.

An earlier study (Baker, 2000) had suggested that manual simulations might not lead to
improved learning outcomes on a simpler algorithm, such as shortest path, but that it might
lead to improved learning outcomes on a more complicated problem like network flow. We
thus built shortest path and network flow problems into our student tool and performed an
experiment that measured student learning rates and learning outcomes on each algorithm.
We hoped that learning rates and learning outcomes would improve on network flow, and
could not be sure what would happen with shortest path.

A recent study (Babcock and Marks, 2010) has shown that students currently spend 27
hours a week studying or completing homework, while 50 years ago they spent 40 hours
a week studying. If our tool indeed increases a student’s learning rate, then it can help
compensate for the reduced amount of time students spend studying.
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— Computer Tool
— — Paper/Pencil

Points/steps

Time spent on homework

Figure 3.1: Hypothesized learning rate for Sketchmate compared with learning rate for
paper and pencil. The y-axis indicates the number of points accumulated or the number
of steps successfully completed. Points/steps increase as one moves up the y-axis and time
increases as one moves rightward along the x-axis. We did not necessarily expect to double
the learning rate but we hypothesized that the learning rate would be increased for network
flow problems.
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Chapter 4

Overview of Graph Algorithms

This chapter first gives a brief overview of basic graph terminology. Next it presents a brief
description of the shortest path and maximal network flow algorithms and illustrates each
algorithm performing on an example graph. A full presentation of these algorithms can be
found in textbooks such as (Weiss, 2006) and (Cormen et al., 1990).

4.1 Graph Terminology

A graph is a collection of vertices and edges. An edge connects two vertices. Vertices can be
thought of as cities on a map, and edges can be thought of as road between the cities. A graph
may be directed or undirected. If the graph is directed, then each edge is a one-way edge
that is represented as an arrow that points from the source vertex to the destination vertex.
Edges may have a cost or weight associated with them, that can represent measurements
such as the distance between two cities or the capacity of a pipe. Figure 4.1 shows an example
of a directed graph with five vertices. The numbers along the edges are the edge costs.

4.2 Dijkstra’s Shortest Path Algorithm

Dijkstra’s shortest path algorithm involves finding the shortest path from a start vertex to
each of the other vertices in the graph, where the edges in the graph must have positive cost.
A path is given by a sequence of vertices. Initially each vertex in the graph is marked as
unseen. The start vertex s is assigned a cost of 0 and the remaining vertices are assigned a
cost of infinity. A vertex’s cost represents the length of the shortest path found thus far from
the start vertex to this vertex using only visited vertices. The algorithm proceeds in steps,
with the first step visiting the start vertex and each subsequent step visiting a previously
unvisited vertex. The algorithm selects the lowest cost unvisited vertex (i.e., the unvisited
vertex with the shortest path from the start vertex) as the next vertex to visit. When the
algorithm visits a vertex v, it marks the vertex as visited, and then examines each of v’s
neighbors to determine whether there is a shorter path to each neighbor w which includes
v. This is done by adding v’s cost and the edge cost from v to w and checking whether
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Figure 4.1: Directed graph with five vertices

the sum is less than the current cost of w. If so, then there is a shorter path to w through
v that includes the edge v-w. The cost of w is decreased to the cost of this new shortest
path and the edge v-w is selected as being on the shortest path from the start vertex to w.
Some textbooks use another state to either denote vertices that have been seen but not yet
visited or to denote the vertex that is currently being visited. Our Sketchmate tool supports
these various notations by allowing a vertex to be in one of four states: visited, seen but not
visited, unseen, and currently being visited.

As an example of Dijkstra’s algorithm, consider how it would operate on the graph in
Figure 4.1. The start vertex is visited first (marked with a thickened border in the graph).
The result of this step is shown in Figure 4.2. The start vertex s has been colored gray to
denote it as visited. Then, each of the neighbors of s, which are u and x, are examined one
at a time. These two vertices are colored green to denote that they are vertices that have
been seen but not visited. Edge s-u has a cost of 10, so the cost to go from s to u is 10,
thus the cost of u is updated to 10. Similarly, the cost of x is updated to 5. Note that “i”
denotes a cost of infinity. The edges s-u and s-x are now shaded to mark them as being on
the shortest path, since the shortest path to u and to x is from s. The step involving visiting
vertex s is now complete, and the algorithm moves to the next step.

Figure 4.3 shows the result of the second step of the algorithm. The vertex to be visited
is chosen as the vertex with the lowest cost that has not yet been visited. In this case, that
vertex is x, as indicated by its gray color in the figure. The algorithm then examines each
neighbor of x: u, v, and y. Each of these neighbors is colored green if it has not been colored
green previously. We will first examine vertex u. The cost of x-u is 3, while the cost from s
to x is 5. Adding these together yields a total cost of 8, which is less than the previous cost
of u, which was 10. The cost of u is now updated to 8, since s-x-u is a shorter path than s-u.
The edge x-u is now shaded since it is on the new shortest path from s to u, and the edge
s-u is unshaded since it is no longer on the shortest path from s to u. Next we will examine
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Figure 4.2: Shortest path after visiting vertex s

vertex v. The cost of edge x-v is 9, while it is a cost of 5 from s to x, thus the total cost
of v is updated to 14. The edge x-v is shaded to mark it as being on the shortest path. In
a similar manner as for vertex v, the cost of vertex y is updated to 7, and the edge x-y is
added to the shortest path.

Figure 4.3: Shortest path after visiting vertex x

The algorithm proceeds in this manner until all vertices have been visited. Note that
when a vertex’s neighbors are examined, only the neighboring vertices that have not yet been
visited are examined. The final graph, which is illustrated in Figure 4.4, gives the shortest
path from the start vertex s to each of the other vertices in the graph.
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Figure 4.4: Shortest path after visiting all vertices

4.3 Maximal Network Flow Algorithm

The maximal network flow algorithm involves finding the maximal amount of flow that can
be pushed through a network. A graph in this case can be thought of as a network with water
flowing through a system of pipes. The network contains a source vertex and a sink vertex.
The purpose of the algorithm is to find the maximal amount of flow from the source vertex
to the sink vertex. Flow passes through the edges in the network. Fach edge is assigned
a capacity to indicate the maximal amount of fluid that can flow through that edge. The
combined flow out of a vertex must equal the combined flow into the vertex. Figure 4.5 shows
the flow through a graph initially on the left, and the maximal flow through that graph after
performing the network flow algorithm on the right. The left number associated with each
edge is the amount of flow through that edge, and the right number is the capacity of that
edge.

The network flow algorithm involves two graphs: a flow graph to keep track of the flows
along each of the edges, and a residual graph to keep track of the amount of flow that can
still be added to each edge. An example of a flow graph and a residual graph is given in
Figure 4.6. In the flow graph on the left, the flow values are initialized to 0. In the residual
graph on the right, the numbers along the edges denote the free capacity of the respective
edge. These capacities are the same as the corresponding capacities in the flow graph at this
point, since all of the flow can still be added to the edges.

As the algorithm starts to allocate flow to various edges, backedges start being added
to the residual graph, which allow flow to be “pushed back” along the forward edge, thus
reducing the amount of flow allocated to that edge. For example, in Figure 4.7, there is a
flow of 3 units along the edge a-d and there is a backedge in the residual graph with 3 units
of flow from d to a, which indicates that up to 3 units of flow can be pushed back along the
edge d-a, thus reducing the flow allocated to edge a-d by up to 3 units. The thick magenta
edges will be explained shortly.
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Figure 4.5: Initial and final flow through a graph for a network flow problem. The flows
along the edges are initially 0. The final graph shows the maximal flow along each edge.

Figure 4.6: Flow and residual graphs of a flow network
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Each step of the network flow algorithm consists of two parts: first, finding the maximal
augmenting path through the network, and second, updating the flow and residual graphs
along this path. An augmenting path is a path from the source vertex to the sink vertex
that takes into account the amount of flow that can still be pushed through the edges. Thus,
the residual graph is used to find the augmenting path. The flow for a path through the
network from source to sink is given by the smallest capacity of all the edges on that path.
To find the augmenting path that will yield maximal flow, a variant of the Dijkstra’s shortest
path algorithm is used, where the goal is to find a maximal flow rather than a smallest cost.
According to (Weiss, 2006), choosing a maximal flow augmenting path at each step will
minimize the number of steps required to find a maximal flow through the network. The
augmenting path in the first step using our example graph is denoted by the magenta shaded
edges in Figure 4.6. This path contains a flow of 3, which is the maximal flow that can be
obtained among any of the paths from source vertex s to sink vertex t.

The next part of this step is to update the flow and residual graphs along this augmenting
path. Figure 4.7 shows the updates to these two graphs (the magenta edges in these graphs
denote the augmenting path of the next step, which can be ignored for the moment). The
flow along the augmenting path is 3, thus, 3 is added to the flow for each of the three
edges along the augmenting path in the flow graph. In the residual graph, the flow of 3
is subtracted from each forward edge along the augmenting path since their free capacity
has been decreased by 3 units. If the free capacity of an edge becomes 0, then that edge is
removed from the residual graph. A flow of 3 is added to the corresponding backedges of
the augmenting path, to indicate that 3 units of flow can be “pushed back” along the edge
to free up capacity in the pipe. Note that if a backedge did not previously exist, then it is
added to the residual graph.

Figure 4.7: Flow and residual graphs after the first step of the network flow algorithm

At this point, the next step of the algorithm begins. The maximal augmenting path is
shown in the residual graph of Figure 4.7. In this case, the edge d-a is actually a backedge
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that was added in the previous step; this edge is not in the original graph. Because of this,
the updating of the flow and residual graphs is altered slightly, as shown in Figure 4.8. The
flow along the augmenting path is 2 units. In the flow graph, 2 units of flow are added
to each of the edges, except for a-d. For the edge a-d, since its corresponding edge in the
residual graph is a backedge, the flow of 2 units is subtracted from the flow of a-d, reducing
its flow to 1. In the residual graph, the flow of 2 is subtracted from each of the edges along
the augmenting path, and the flow of 2 is added to the backedge corresponding to each edge
along the path. Note that the backedge of d-a is a-d, which is an edge in the original graph.
In this case, since the algorithm is pushing 2 units of flow “back” through the backedge, it
is actually increasing the free capacity of the pipe from a to d by 2 units.

Figure 4.8: Flow and residual graphs after the second step of the network flow algorithm

After updating the flow and residual graphs in this step, the problem is now complete
because there is no longer a path from the source vertex s to the sink vertex t in the residual
graph. The final result is that the maximal flow of this network is 5 units, since 3 units flow
out of s to a and 2 units flow out of s to b. Note that the amount of flow coming out of s is
the same as the amount of flow coming in to t.
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Chapter 5

Description of the Sketchmate
Environment

Two versions of the Sketchmate tool have been implemented and tested: one for instructors
to use during their lectures, and another for students to use for studying and completing
homework exercises. Many of the same or similar features are included in both tools, which
are focused on graphs. Graphs consist of vertices and edges, where the vertices contain a
label and a cost in the case of shortest path, and the edges contain a cost in the case of
shortest path, and a flow and/or capacity in the case of network flow. A flow in a network
flow problem indicates the amount of substance currently flowing through its associated edge
(or pipe) in the flow graph. A capacity in a network flow problem indicates the amount of
substance that can still flow through its associated edge (or pipe) in the residual graph. Both
tools support a number of domain-specific operations required by shortest path and network
flow algorithms, including;:

1. Setting the state of a vertex to one of visited, seen but not visited, unseen, and currently
being visited.

2. Highlighting or unhighlighting edges that are part of certain paths, such as a shortest
path or an augmenting path.

3. Modifying vertex costs to represent updates to a vertex’s cost, such as the length of
the current shortest path from the start vertex to that vertex.

4. Modifying edge labels, such as changing the flow of an edge in a flow graph or the
capacity of an edge in a residual graph.

5. Adding edges to or removing edges from a residual graph.

Both the instructor and student versions are capable of working with both the shortest
path and network flow algorithms. The instructor tool includes three different panes: Create,
Simulate, and Revert, while the student tool includes the Create and Simulate panes.
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This chapter is organized as follows. First a discussion of the Create pane for both the
instructor and student tools is presented. Following is a description of the Simulate and
Revert panes for the instructor tool. Next, a discussion of the Simulate Pane for the student
tool is given. Finally, step-by-step sample Sketchmate sessions for both tools are presented:
first appears a session of the student tool applied to shortest path, and second appears a
session of the instructor tool applied to network flow.

5.1 Create Pane

Both the instructor and student tools contain the Create pane. The Create pane contains
a blank area of the screen where the user can create a custom graph. It supports several
operations for adding vertices and edges and editing their labels, costs, flows, and capacities.
A screen capture of the Create pane in the instructor tool with a shortest path problem is
shown in Figure 5.1. The upper left portion under the toolbar contains the graph that is
being created (this example graph is from (Cormen et al., 1990)). Underneath the graph area
is a set of operations for adding or modifying components of the graph. The panel to the
right of the graph drawing area includes basic instructions for how to create a graph. The
instructions vary, depending on which operation mode is currently selected. This example
shows the instructions for the “Select” mode.

5.1.1 Adding and Modifying Vertices and Edges

A vertex can be added by selecting the “Add vertex” mode and clicking on the desired
position in the graph area. A label will be automatically assigned and appear in an editable
textbox inside the vertex. Another editable textbox will be added underneath the vertex to
denote its cost for a shortest path graph (default value is infinity, which is denoted as “i” in
the figure). If the network flow algorithm is selected, then no cost will appear underneath
the vertex.

The user can add an edge by dragging a line from the source vertex to the destination
vertex while in “Add edge” mode. If the “directed” radio button in the toolbar is selected
(the default), an arrowhead will appear at the destination vertex. An editable textbox
containing the cost or capacity (default value is 0) will also be added along the middle of
the edge.

A vertex label or cost can be changed by selecting the “Change cost/capacity/label”
mode and then clicking on the textbox associated with the vertex label or cost, editing the
label or cost, and pressing the “Enter” key to commit the change. An edge cost or capacity
can be changed in a similar way.

To delete a vertex, while in “Select” mode, the user can click on the chosen vertex and
press the delete or backspace key. All associated textboxes and edges will also be deleted.
Deleting an edge can be performed in a similar manner.

Also while in “Select” mode, the user can move a vertex by clicking on it and dragging
it to its new location. All attached edges and all associated costs or capacities will move
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Figure 5.1: Create pane for both the instructor and student tool
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along with the moved vertex. The individual cost and capacity textboxes for the vertices
and edges can be moved similarly. Allowing users to move the various graph objects will
enable them to improve the readability of the graph.

There are also modes for assigning a start vertex in the case of shortest path, and a
source vertex and sink vertex in the case of network flow. To assign a start, source, or sink
vertex, the user can click on the corresponding radio button operation, and then click on the
desired vertex. The chosen start or source vertex will then be drawn with a thickened solid
border, and the chosen sink vertex will be drawn with a thickened dashed border.

5.1.2 General Operations of the Create Pane

Clicking on “Clear graph” clears the graph drawing area and allows the user to draw a new
graph from scratch. When the user is finished creating a graph, clicking on “Done” will
transfer the newly created graph to the Simulate and Revert panes. The user also has the
ability to load a previously created graph and save a graph for later use. These features
enable an instructor to create graphs prior to lecture, as well as continue a simulation with
a particular graph in subsequent lectures. It also allows students to reuse graph examples
for any number of study sessions.

Other operations in the toolbar include selecting the type of graph (directed or undi-
rected), and selecting the algorithm to simulate from the choices “Shortest path” and “Net-
work flow”.

5.2 Simulate Pane

The instructor tool Simulate pane allows the instructor to manually manipulate the graph
objects to step through the chosen algorithm, thus functioning as an “enhanced whiteboard”.
The tool has specific built-in knowledge for shortest path and network flow that allows it to
check the correctness of a solution after each step of the algorithm has been completed.

5.2.1 Simulate Pane for Shortest Path

A screen capture of the Simulate pane using the shortest path algorithm appears in Figure
5.2. The upper left area below the toolbar contains the graph that is being worked on. The
darkened edges denote edges along the shortest path found so far from the start vertex to
each of the other vertices. An edge can be darkened by clicking on it, and undarkened by
clicking on it again. The start vertex appears with a thickened border. The vertices are
colored based on their current state: white for a vertex that has not yet been visited or seen,
light blue for a vertex that is currently being visited, green for a vertex that has been seen
but not yet visited, and gray for a vertex that has been visited. The state of a vertex can be
changed by clicking on the appropriate button below the graph to select the desired state,
and then clicking on the vertex to change its state. A vertex cost of infinity is indicated with
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an “i” underneath or next to the vertex. The user can change the costs of the vertices by

clicking on and editing the associated textboxes.

The area to the right of the current graph contains the graph as it appeared at the
beginning of the current step so that a student can easily observe the changes that occurred
from the previous step to the current step. A step involves the visitation of a single vertex.
Visiting a vertex includes sub-steps such as examining each neighboring vertex, changing the
costs of the neighboring vertices, and shading an edge if it is on the new shortest path from
the start vertex, along with unshading an edge that is no longer on the shortest path from
the start vertex. The right-hand region under the toolbar contains a notepad-like object
where the instructor can interactively type in notes as the algorithm progresses. The two
blank areas on the bottom of the interface are used for network flow, and therefore are not
used in this example.
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Figure 5.2: Instructor simulate pane for shortest path

5.2.2 Simulate Pane for Network Flow

This section describes examples of an instructor working through a network flow problem.
Each step of the algorithm includes two substeps: the first substep involves finding the
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maximal augmenting path, and the second substep involves updating the graph components
along the augmenting path in the flow and residual graphs. Finding the augmenting path
involves shading the appropriate edges in the residual graph. Updating the flow and residual
graphs involves changing the flows in the flow graph, adding or removing edges in the residual
graph, and changing edge capacities in the residual graph.

Figure 5.3 shows an example of how the interface might look after finding the first aug-
menting path in the residual graph. The upper left region contains the current flow graph,
and the lower left region contains the residual graph. The source vertex appears with a
thickened solid border and the sink vertex appears with a thickened dashed border. Mark-
ing the augmenting path involves selecting edges in the residual graph, as shown by the
thickened edges in the previous residual graph. At this point, the instructor is about to
update the flow and residual graphs. In both the current flow and current residual graphs,
all graph components along the augmenting path, as well as the augmenting path itself, are
highlighted in magenta to denote that these are the components that need to be updated.
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Figure 5.3: Instructor simulate pane after finding the first augmenting path for network flow

An example of the Simulate pane for partially updated flow and residual graphs is given in
Figure 5.4. The graph components that still need to be modified are highlighted in magenta.
In the flow graph, the left hand numbers along the edges are the edge flows, and the right
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hand numbers are the edge capacities. The numbers along the edges in the residual graph
are the edge capacities. The previous flow and residual graphs are displayed to the right of
their respective current graphs. The middle panel contains instructions to remind the user
which substep is currently being worked on. The rightmost pane contains a notepad where
the instructor can type notes explaining the steps for solving the problem.
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Figure 5.4: Instructor simulate pane during updating the residual graph for the first aug-
menting path for network flow

5.2.3 General Features of the Simulate Pane

Sketchmate has built-in knowledge of how to simulate a shortest path or a network flow
problem. The automated solution is created behind the scenes and it can be used to verify
the instructor’s work.

When the instructor wishes to move to the next step, the “Finish step” button can be
clicked to first check the instructor’s solution for that step by comparing it to the corre-
sponding step in the solution that is automatically computed in the background. If any
components of the graph are incorrect, those components will be highlighted in red. The
instructor is free to correct any mistakes at this point. Clicking “Next step” updates the
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graph to its correct state and allows the instructor to begin the next step of the algorithm’s
simulation.

Behind the scenes, the state of the graph after each finished step is recorded. These
recordings build a history list that can be accessed through the Revert pane. Clicking on the
“Reset step” button will restore the graph to the last recorded step. This allows instructors
to undo their last few operations in case they make a mistake. Clicking on “Reset problem”
will start the problem over again from the beginning.

5.3 Revert Pane

The Revert pane, as shown in Figure 5.5 for a network flow problem, allows users to revert
back to any previous step of the algorithm’s execution. Reversion can allow the instructor
to review previous steps by successively stepping through the radio buttons, or answer a
student’s question. A listing of the steps of the algorithm is displayed and the user can
choose the desired step from the list. The history list displays the order in which the steps
are completed. When a step is chosen, the graph corresponding to that step will be displayed
in the graph viewing area. After the user clicks on “Restore graph”, the associated graph
will be restored to the Simulate pane. The list of steps is gen