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Abstract

Presented within are neutron scattering studies detailing the spin dynamics of

BaNixFe2−xAs2 for x = 0 (parent), 0.04 (underdoped), and 0.1 (optimal) dopings,

and FeSexTe1−x for x = 0 (parent), 0.3 (underdoped), and 0.4 (optimal) dopings.

These recently discovered Fe-based superconducting compounds are strikingly similar,

in many respects, to the cuprate class of unconventional superconductors and

share qualitatively similar phase diagrams consisting of a long range ordered

magnetic ground state in the parents which, upon doping, is supplanted in favor

of superconductivity. The dopings discussed herein allow us to tune through the

phase diagram, beginning with long range ordered parents and ending with optimally

doped superconductors with short range magnetic correlations.

For BaFe2As2, the excitations in the ordered state are strongly damped and persist

up to 300meV. Low energies excitations are centered around QAMF and disperse

towards the zone boundary with increasing energy. Only scattering above 100meV

is effected when warming above TN . In underdoped x = 0.04 BaNixFe2−xAs2,

we find an order of magnitude reduction in the coupling between layers and a

corresponding crossover from 3D to 2D magnetism. In coauthor work on optimal

doped x = 0.1 BaNixFe2−xAs2 we establish the existence of a 3D resonance mode in

the superconducting state. Excitations at optimal doping above the resonance are

very similar to the paramagnetic scattering observed in the parent and consists of

diffuse scattering below 100meV while above this threshold the signal has similar

dispersion, linewidths, and intensity as the ordered state.
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For FeTe, I discuss our existing efforts and data collection aimed at addressing

issues associated with calculating the effective moment from Q,E-integrated data.

Tuning through the phase diagram to the x = 0.3 underdoped FeSexTe1−x system

we find filamentary superconductivity with magnetic spectral weight sitting at both

the AFM and nesting vector. Upon reaching x = 0.4 optimal doping, the scattering

completely transfers over to the nesting vector and a 2D resonance mode appears

below Tc.

viii



Contents

List of Figures xii

1 Introduction 1

1.1 Introduction to Conventional Superconductivity . . . . . . . . . . . . 1

1.2 Introduction to Unconventional Superconductivity . . . . . . . . . . . 3

1.2.1 The Cuprates . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 The Fe-based Superconductors . . . . . . . . . . . . . . . . . . 5

1.2.3 The Heavy Fermions . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Magnetism in Unconventional Superconductors . . . . . . . . . . . . 9

1.3.1 Localization, Itinerancy, and Everything In between: An

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Magnetism in the Cuprates . . . . . . . . . . . . . . . . . . . 10

1.3.3 Magnetism in the Fe-based Superconductors . . . . . . . . . . 16

1.3.4 Magnetism in the Heavy Fermions . . . . . . . . . . . . . . . . 24

1.4 Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Scattering Cross-Sections . . . . . . . . . . . . . . . . . . . . . 28

1.4.2 Nuclear Scattering Cross-Section . . . . . . . . . . . . . . . . 33

1.4.3 Magnetic Scattering Cross-Section . . . . . . . . . . . . . . . . 35

1.4.4 Fluctuation Dissipation Theorem . . . . . . . . . . . . . . . . 37

1.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5.1 Transformations between Unit Cells . . . . . . . . . . . . . . . 41

ix



1.5.2 Normalization of Data to Absolute Units . . . . . . . . . . . . 44

1.5.3 Resolution Calculations and Model Convolution . . . . . . . . 46

1.6 Motivation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Pnictides 54

2.1 Magnetic Excitations in the BaFe2As2 Parent . . . . . . . . . . . . . 54

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.1.2 7K Data and Model . . . . . . . . . . . . . . . . . . . . . . . . 56

2.1.3 Resolution Convolved Model Fitting . . . . . . . . . . . . . . 63

2.1.4 Magnetic Excitation across the Phase Transition; 125K and 150K 71

2.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.2 Magnetic Excitations in Under Doped BaFe2As2 . . . . . . . . . . . . 82

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.2.2 Spin Wave Scattering with 2D Character in the Ordered State 83

2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.3 Magnetic Excitations in Optimal Doped BaFe2As2 . . . . . . . . . . . 93

2.3.1 Mapping out the Resonance . . . . . . . . . . . . . . . . . . . 93

2.3.2 Comparison of High Energy Magnetic Excitations in the Parent

and Optimal Doped BaFe2As2 . . . . . . . . . . . . . . . . . . 105

3 Chalcogenides 113

3.1 Parent and Underdoped . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.1.2 Local, Itinerant, Frustration... . . . . . . . . . . . . . . . . . . 114

3.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.2 Optimal Doped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.2.2 Characterization of the Resonance Mode Energy . . . . . . . . 125

3.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

x



4 Looking Back, Looking Forward 140

4.1 Ongoing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.1.1 Temperature Dependence of the Effective Moment in FeTe . . 140

4.1.2 High Temperature Study of Magnetic Excitations in BaFe2As2 143

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Vita 164

xi



List of Figures

1.1 a) Chemical structure of the parent (x=0) La2−xSrxCuO4−y (figure

taken from http://www.physics.ubc.ca/ berciu/RESEARCH/). b)

Doping replaces La3+ with Sr2+, the reduction of oxidation state draws

electrons from the CuO2 layers and effectively hole dopes these planes.

c) The antiferromagnetic order in the copper oxide planes is of simple

G-type order and with sufficient doping this long range order is replaced

by a dome of superconductivity in the phase diagram as depicted in

d). Fig 1d reproduced from Damascelli, et al. . . . . . . . . . . . . . 4

1.2 a) Q-integrated local susceptibility as a function of Tc for overdoped

La2−xSrxCuO4−y with x = 0.25, 0.27, 0.28, and 0.30 [123]. The

linear correlation suggests that superconductivity is contingent on the

presence of magnetic excitations. Inset provides a measure of Tc via

the superconducting dielectric response for the dopings studied. b)

The energy about which a superconducting resonant gain in magnetic

intensity appears can be linearly correlated to the Tc of the system

[139]. c) A similar linear dependence exists between the resonant

energy and the superconducting gap [139]. The points correspond

to different dopings across multiple classes including the cuprates,

pnictides, and heavy Fermion systems. Thus, these features appear to

be ubiquitous to unconventional superconductivity where magnetism

is present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

xii



1.3 Crystal structure of the four Fe-based families [75]: a) LaFeAsO, b)

SrFe2As2, c) LiFeAs, and d) Fe1+xTe. The stripe antiferromagnetic

(AFM) order of the Fe spins is depicted for LaFeAsO and SrFe2As2.

AFM order in the (111) class was originally found to be absent.

However, experiments now demonstrate an identical magnetic ordering

[62] as the (1111) and (122) classes with weak magnetic moments

that are quickly suppressed due to Li evaporation. In Fe1+xTe, stripe

AFM ordering is also present, however the spin alignment is rotated

45 degrees away with respect to AFM order in the other classes.

Inhomogeneity in the form of excess iron Fe(2) is also present in these

systems and can effect the magnetic ordering of the system [3]. . . . . 7

1.4 Time of flight neutron scattering data for spin wave scattering in the

cuprate parent LaCuO4 with fits to the Heisenberg Hamiltonian given

in Eq. 1.8. a) Extracted dispersion along the path in reciprocal space

described by the subpanel in c). The red line is a fit to the model. b)

A 2-D data slice of the same dispersion path with the intensity of the

scattering included as a color profile. c) The intensity corresponding to

the dispersion in panel a). d) The ratio of the experimental intensity

over the model intensity demonstrates that the model fits very well

everywhere except at the wave vector (1/2, 0) where the spin wave

lifetime damps out due to a decay process discussed in the body of

text. e) In general the Heisenberg model gives an hour glass dispersion

propagating out of the long-range ordering wave vector, the exact

structure and spin band width depend on the exchange couplings of the

systems. Panel f) describes the different exchange couplings used to fit

the data. Note that the copper and oxygen orbitals spacial character

support a hopping that would reduce J2 while simulateously enhance

a cyclic exchange. Panels taken from figures in [44, 16] . . . . . . . . 14

xiii



1.5 (a) Incommensurability in the magnetic scattering of hole doped LSCO.

Insets are cartoons describing the direction of the incommensurability

about the AFM wave vector. At the metal to insulator transition

the incommensurability rotates by 45 degrees from a diagonal to

parallel alignment with the unit cell. (b) Upon doping the short range

fluctuations left over from broken long range order remain dispersive,

however an hourglass feature is introduced at low energies in the

dispersion. Figures taken from [110] and comprise the work of several

papers. Refer to this work (Ch. 6) for references to original data. . . 16

1.6 a) Spin-split bands separated by an energy ∆. b) The susceptibility of

an electron gas. c,d) The corresponding nesting conditions associated

with panel b. Panels are reconstructed from figures appearing in [6, 39]. 18

1.7 a,b) Phase diagram for electron and hole doping of BaFe2As2 includ-

ing information for the structural, magnetic, and superconducting

phases. The acronyms IC-AF, C-AF correspond to incommensurate

and commensurate elastic scattering while IC-SF corresponds to

incommensurate inelastic scattering. The incommensurate structure is

dependent on the doping type and depicted as insets on the respective

sides of the phase diagram. c-e) Geometry of the Fermi surface where

the role of doping enlarges and/or shrinks pockets depending on doping

type. e-f) Structure of inelastic excitations due to the off-nesting that

results from doping. Panels taken from a forthcoming publication in

Nature Physics Review article [18]. . . . . . . . . . . . . . . . . . . . 21

xiv



1.8 a) Qualitative regions of phase space based off of Hubbard model

calculations with the yellow ellipse corresponding to region where

experiment agrees well with theory. b) DMFT vs RPA calculations

of the distribution of the fluctuating moment across energy transfer.

Comparing this with inelastic neutron scattering data c) we find

that the DMFT calculations, which can capture stronger electronic

correlations than RPA, lead to much better agreement between

experiment and theory. d) A qualitative sketch of the Hubbard model

as a function of electron correlation with a guess as to where the

pnictides fall between the two extremes of localized and itinerant

magnetism. Panels taken from [18, 67] . . . . . . . . . . . . . . . . . 23

1.9 Possible ground states resulting from the competition between the

Kondo and RKKY interactions. Tm is the ordering temperature and

JN is the f-d exchange coupling times the f density of states at the

Fermi energy. [105] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.10 a) Confirmation of T ∗ given by the intersite RKKY interaction for

a variety of Kondo lattice materials; c = 0.45. b) Updated Doniach

diagram for Kondo lattice materials. [29] . . . . . . . . . . . . . . . . 28

xv



1.11 Definition of Unit Cells: a) The black box defines the tetragonal unit

cell corresponding to the lattice symmetry for temperatures above

the structural phase transition. In the tetragonal state, the magnetic

moments associated with the iron atoms are disordered as represented

by the black arrows. b) Below the phase transition, the tetragonal cell

undergoes an inplane angular distortion leading to the monoclinic unit

cell defined in red. The low temperature phase can also be described

by an orthorhombic unit cell (dashed green line) which consists of 4

neighboring diagonals of the monoclinic cell. The structural distortion

is accompanied by a long range ordering of the magnetic moments

with the the spins aligning antiferromagnetically and ferromagnetically

along the orthorhombic a and b axis respectively. . . . . . . . . . . . 42

1.12 Fourier Transform of the Structure: a) Superposition of the real space

orthorhombic (dashed green) and tetragonal (solid blue) cells. b)

Fourier transform of cells. c) Relationship between the lattice vectors

of the two cells. Given that the distortion is extremely small, its effects

have been ignored in the figure, ie: aO = bO with axis 90o apart and

θ = 45o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.13 a) Example of an experimental determination of elastic energy resolu-

tion based on an E-scan of the elastic line about E=0. b) Triple axis

spectrometer with labeled quantities that contribute to the resolution:

4 collimations, 3 mosaics, 2 neutron wave vectors, 1 spectrometer

handedness. c) Example of two resolution ellipses at equivelant

positions along an acoustic phonon dispersion centered on an (0,0,4)

nuclear Bragg peak. d) The resulting intensity and linewidth difference

of the two equivalent peaks results from one resolution ellipse lying

more or less perpendicular to the dispersion line while the other lies

along it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xvi



1.14 Time of flight spectrometer with labeled quantities that contribute to

the resolution: 3 spacial spans, 2 flight paths, 2 pulse widths, 2 energies 50

2.1 a) Constant energy cuts of the spin wave excitations at 7K for BaFe2As2

and CaFe2As2 in absolute units within the first Brillouin zone. The

data for CaFe2As2 and BaFe2As2 are from Ref. [40] and [144] respectively. 57

2.2 a) 2D Constant-energy slices of spin wave data in CaFe2As2. Each

consecutive panel shows a slice at a higher energy transfer. At energies

below 50meV (top left panel) the scattering is centered at the AFM

wave vector, as the energy transfer increases the scattering spreads

out into well formed ellipses that track the cone like dispersion of spin

waves. Upon approach of the zone boundary at 175meV (bottom right

panel) the scattering becomes very diffuse with maxima at the zone

edge. The third panel in the top row includes an arrow showing the

direction that 1D cuts were made in b) The lines overplotting the data

in b) are global fits to the Heisenberg model described in the text with

a Q-isotropic damping Γ = Γ0 + (slope) · E [144]. . . . . . . . . . . . 59

2.3 Constant energy slices of the 7K spin wave data for BaFe2As2. a)

At lower energies the scattering forms an ellipse centered around the

AFM wave vector much like CaFe2As2. b) At intermediate energy

transfers the scattering breaks apart along the H-direction to form

two mirror image rods (ie: L independent) of scattering above and

below the H-axis. These rods translate along the K-direction with

increasing energy transfer. c) At high energies the scattering combines

with contributions from twinned domains to form a ringlike excitation

about the zone boundary. Above the zone boundary (not shown) the

scattering stretches out in a long damping tail and fills in to form a

single center of scattering at (1,1). . . . . . . . . . . . . . . . . . . . . 60

xvii



2.4 a) Comparison of a normalized RPA calculation from Ref. [52] and our

data. Given the normalization correction, RPA appears to fit the data. 61

2.5 (Figure on next page.) a) The AF Fe spin ordering in BaFe2As2

with the magnetic exchange couplings J1a , J1b, J2 along different

directions. b) Temperature dependence of the resistivity in detwinned

BaFe2As2 (from Ref. [12]). The inset is a plot of the resistivity for the

twinned sample used in our neutron measurements with the blue points

corresponding to T = 7, 125, and 150 K. (c) Color plots describing

qualitatively how the spin wave scattering evolves from Q = (1, 0) to

(1, 1) as a function of energy using an anisotropic damping Γ. The

solid black contours are an overlay of the same model with identical

exchange coupling parameters but with no damping. The exchange

couplings used are from best fits of the data. d) Color plot of the

anisotropic damping Γ, which is much stronger along the H direction

than along the K direction. (e) Spin wave dispersion along the (1, K)

direction as determined by energy and Q cuts of the raw data below

and above TN . The solid line is a Heisenberg model calculation using

anisotropic exchange couplings SJ1a = 59.2 ± 2.0, SJ1b = −9.2 ± 1.2,

SJ2 = 13.6 ± 1.0, SJc = 1.8 ± 0.3 meV determined by fitting the

full cross-section. The dotted line is a Heisenberg model calculation

assuming isotropic exchange coupling SJ1a = SJ1b = 18.3 ± 1.4,

SJ2 = 28.7 ± 0.5, and SJc = 1.8 meV. f) Dispersion along the (H, 0)

direction; data points beyond H = 1.4 could not be reliably obtained

due to strong damping at higher energies. The red shading stresses

how the damping grows as a function of H. Error bars are systematic

and represent the difference between Q and E cut dispersion points.

The statistical error of the Q and E cuts are much smaller. . . . . . . 64

xviii



2.6 Control flow describing the three fitting paths and starting parameters

used to determine the final parameters of best fit for the anisotropic

Heisenberg model used. Details about each route are described in the

text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7 (Figure on next page.) Wave vector dependence of the spin waves for

energy transfers of (a) E = 26 ± 10 meV [Ei = 450 meV and Q =

(H, K, 1)]; (b) E = 81 ± 10 meV [Ei = 450 meV and Q = (H, K,

3)]; (c) E = 113 ± 10 meV [Ei = 450 meV and Q = (H, K, 5)]; (d)

E = 157±10 meV [Ei = 600 meV and Q = (H, K, 5)]; e) E = 214±10

meV [Ei = 600 meV and Q = (H, K, 7)] f) The projection of the spin

waves on the energy transfer axis and (1, K) direction (with integration

of H from 0.8 to 1.2 rlu) after subtracting the background integrated

from 1.8 < H < 2.2 and from −0.25 < K < 0.25 with Ei = 450

meV. The color bar scales represent the absolute spin wave intensity

in units of mbarn·sr−1·meV−1·f.u.−1 and the dashed boxes indicate zone

boundaries. The missing low-energy data in (f) is due to imperfect data

subtraction. (g)-(l) Model calculation of identical slices as in (a)-(f)

using anisotropic exchange couplings from best fits and convolved with

the instrumental resolution. . . . . . . . . . . . . . . . . . . . . . . . 68

2.8 (a)-(c) Spin waves of E = 50±10 meV; (d)-(f) E = 75±10 meV; (g)-(i)

E = 125± 10 meV; and (j)-(l) E = 150± 10 meV for temperatures of

T = 7, 125, and 150 K. The dashed curves show fixed reciprocal space

sizes at different temperatures. . . . . . . . . . . . . . . . . . . . . . . 72

xix



2.9 (Figure on next page.) The blue diamonds in (a)-(d) are constant-Q

cuts at Q = (1, 0.05), (1, 0.2), (1, 0.35), and (1, 0.5), respectively,

at T = 7 K. The green squares and red circles in (a)-(d) are identical

constant-Q cuts at T = 125 and 150 K, respectively. The dashed

lines are guides to the eye for the observed paramagnetic scattering.

(e) and (f) Q dependence of the spin wave excitations below and

above TN obtained through constant-E cuts at E = 19 ± 5 and

128± 5 meV. The solid lines in (a)-(f) are fits to the anisotropic spin-

wave model discussed in the text, and the horizontal bars represent

the instrumental energy (E)/wave vector (Q) resolution. (g) Energy

dependence of the dynamic spin-spin correlation lengths below and

above TN obtained by Fourier transform of constant-E cuts similar to

(e) and (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.10 (a)-(d) Results from an isotropic J1 − J2 −K Heisenberg model [141].

Consecutive panels are of increasing energy transfer following the

dispersion of magnetic excitations from the (1, 0) zone center at low

energy (panel a) to the (1, 1) zone boundary at high energies (panel

d). (e) and (f) are reproductions of zone center and zone boundary

data from Fig. 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.11 (a) Different unit cells in the real space of the crystal: Solid black is

Fe sublattice required by RPA, red and blue are the tetragonal and

orthorhombic cells respectively. (b) Corresponding Brillioun zones in

reciprocal space. Taken from [27]. . . . . . . . . . . . . . . . . . . . . 79

2.12 (a) Structure of scattering as a function of increasing energy based on

DMFT calculations. (b) Structure of scattering from our measurement.

Figure taken from [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xx



2.13 (a) Diagram of the parent compound BaFe2As2 with Fe spin ordering

and magnetic exchange couplings depicted. (b) Electronic phase

diagram from Ref. [7]. (c) Temperature dependence of the resistance

showing anomalies at Ts, TN , and Tc. (d) Temperature dependence

of the Meissner and shielding signals on a small crystal (field cooled

4πχ = −0.001 at 4.5 K) and the (1, 0, 1) magnetic Bragg peak

intensity. (e) The structural distortion of the lattice as determined

by tracking the width of the (2, 0, 0) nuclear Bragg peak using λ/2

scattering without Be filter. (f ) Magnetic order parameter determined

by Q scans around the (1, 0, 1) magnetic Bragg peak above background.

The solid line shows an order parameter fit using (1 − T/TN)2β with

TN = 91.3± 0.7 K and β = 0.3± 0.02. . . . . . . . . . . . . . . . . . 84

2.14 (Figure on next page.) (a) Energy scans at Q = (1, 0, 1) and Q =

(1, 0, 0) above and below Tc. (b) χ′′(Q, ω) at Q = (1, 0, 1). (c) Energy

scans at higher temperatures and, (d) the corresponding χ′′(Q, ω). The

solid lines in (b) and (d) are guides to the eye. (e) Q scans along

the [H, 0, 1] direction at 4 meV. At 86 K, the Gaussian peak has

FWHM = 0.098±0.006 rlu which corresponds to minimum correlation
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Chapter 1

Introduction

1.1 Introduction to Conventional Superconductiv-

ity

The definitive text describing superconductivity, BCS Theory [4], provides both a

microscopic model for qualitatively understanding the formation of this phase and a

fully non-relativistic quantum mechanical framework that establishes a quantitative

basis for calculating measurable parameters. The applicability of BCS theory

is constrained primarily to spatially isotropic systems. In cases where spatial

inhomogeneity must be taken into account, an ever present concern in type II

superconductivity, the microscopic BCS model becomes cumbersome and must be

replaced with a limiting form, Ginzberg-Landau (GL) theory [35]. Taken together,

these two theories stand as a crowning achievement in condensed matter physics and

provide an excellent description of the superconducting state.

In 1956, a year prior to the publication of BCS Theory, Cooper demonstrated

that a net positive attraction between two electrons will generate a gapped ground

state and, as a result, the Fermi sea becomes unstable against electron pair formation

[17]. In conventional BCS theory, this electronic phase transition is driven by an

attractive potential between two electrons mediated via electron-lattice coupling.
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This mediating interaction dictates the form of the gap via the self consistency gap

equation

∆k = −1

2

∑
k′

∆k′

(∆2
k + ξ2)1/2

Vkk′ (1.1)

where ξ is the difference between the single particle energy and the Fermi energy

ξ = εk − εF . Since the superconducting state is governed by the gap, this implies

that the nature of the mediating interaction has profound consequences on the

observed properties of the system. In the case of electron-lattice coupling, the matrix

components of the Fourier transformed interaction energy, Vkk′ = Ω−1
∫
V (r)ei(k

′−k)dr

can be well described as a constant (-V) in a thin shell of thickness ~ωc around the

Fermi surface and zero elsewhere. Converting the sum in (1.1) to an integral and

taking ωc to be the Debye phonon cutoff frequency leads to

∆ =
~ωD

sinh[1/(NFV )]
(1.2)

Upon inspection of Eq. 1.2, it is clear that the isotropic nature of the electron-lattice

interaction energy translates into an isotropic gap sitting at the Fermi surface with a

phonon frequency dependent magnitude. Working through the details of BCS theory

within this simplified s-wave framework yields several quantitative parameters that

can be checked directly [121]. In particular, the ratio of the superconducting gap and

Tc is a constant in value:
∆(0)

kTc
= 1.764 (1.3)

Measurement of the gap over a wide range of conventional superconductors lead to

values distributed very closely around this BCS value of 1.764. Moreover, these

measurements have been checked along different directions in k-space and yield the

same universal value, providing direct evidence of an s-wave symmetry. As well, since

the phonon frequencies depends on mass as M−1/2 we find that the superconducting

properties of chemically identical samples consisting of different isotopes tend to

renormalize in response to variations in isotopic mass [81]. These observations,
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among others, provide a large and consistent body of evidence identifying phonons

as the appropriate mediating quasiparticle binding Cooper pairs in a conventional

superconducting lattice.

1.2 Introduction to Unconventional Superconduc-

tivity

1.2.1 The Cuprates

In 1986 Bednorz and Muller discovered a new class of unconventional superconductors

now known as the cuprates [5]. Unlike their predecessors which tended to be

chemically simple, metallic systems, this new class is comprised of ceramic insulators

with a much more complicated chemical structure. Interestingly, both the isotope

effect [34] and an s-wave gap are absent. Although it is possible for the gap symmetry

of conventional superconductors to manifest as lower than s-wave, this reduction is

due solely to the gap following the symmetry of the lattice. However, in the cuprates,

these systems display a d-wave gap with sign reversal on opposing lobes which

reflects a symmetry lower than the underlying tetragonal lattice [131, 122, 80]. The

anomalously high Tc of some of these systems, as high as 134K in HgBa2Ca2Cu3O1+x

[109], also suggests that a binding interaction stronger than phonons is likely

required to reach such high transition temperatures. Despite these striking differences

with conventional superconductors, both BCS and GL Theory provide satisfactory

descriptions of these systems upon substitution of the observed Tc, crystal anisotropy,

Fermi velocity, and density of states [121]. Thus, it is expected that BCS and

GL theory can provide a broader, first principles understanding of unconventional

superconductivity by substitution of the correct set of Vkk′ matrix elements. As a

result, there now exists an extensive effort by the condensed matter community to

identify the interaction responsible for Cooper pairing with much evidence at present

pointing towards magnetic excitations as the most likely candidate [86].
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Figure 1.1: a) Chemical structure of the parent (x=0) La2−xSrxCuO4−y (figure taken
from http://www.physics.ubc.ca/ berciu/RESEARCH/). b) Doping replaces La3+

with Sr2+, the reduction of oxidation state draws electrons from the CuO2 layers and
effectively hole dopes these planes. c) The antiferromagnetic order in the copper oxide
planes is of simple G-type order and with sufficient doping this long range order is
replaced by a dome of superconductivity in the phase diagram as depicted in d). Fig
1d reproduced from Damascelli, et al.

The cuprates as a family consist of 2D antiferromagnetically aligned Copper-

Oxide planes separated by buffer layers. These buffer layers act as a charge reservoir

which, upon doping, destroy the long range antiferromagnetic order. As a result,

the spin waves of the parent are supplanted by loosely correlated spin fluctuations

(Fig. 1.1). One of the most important features of these superconductors is that

they are all derived from the doping of their antiferromagnetically ordered parents.

Without doping, the compounds are well-described as antiferromagnets with long-

range three-dimensional order due to a weak inter-plane coupling between spins. As
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charge carriers (holes or electrons) are doped into the planes, these high-Tc systems

evolve from long range antiferromagnets (AF) into superconductors. Even though

the static AF order is destroyed upon carrier doping toward the SC phase, strong

AF spin fluctuations persist into superconducting concentrations. This persistence of

AF spin fluctuations into the SC phase has led to theories seeking a magnetic role

in the pairing mechanism [108]. Of particular interest is a resonant mode in the spin

excitation spectrum [32, 102]. This mode appears upon entering the superconducting

state and is evidenced by a sharp climb in spectral weight about a particular energy

(ER). The resonance intensity (I) as a function of temperature takes the form of an

order parameter that tracks Tc as I(T ) ∝ (T−Tc)−α. Furthermore, systematic studies

over a wide range of samples reveal that the energy of the resonance displays a strong

linear correlation with Tc [128] and the superconducting gap [139]. With sufficient

overdoping, the magnetism becomes completely uncorrelated and superconductivity

is suppressed.

In the case of overdoped La2−xSrxCuO4−y (LSCO) it has been shown that the local

susceptibility,
∫
χ′′(Q, ω)dQ, of the spin excitation spectrum reduces linearly with Tc

with full suppression of these two phases concomitant with doping (Fig. 1.2) [123].

Taken together, the antiferromagnetic ground state, resonant mode, and correlation

between the local susceptibility and Tc provide clear evidence that superconductivity

is closely coupled to magnetism in the cuprates. However, despite this strong level of

correlation, the exact relationship between these phases and determining if magnons

are indeed the correct excitation driving Cooper pair formation has remained elusive.

1.2.2 The Fe-based Superconductors

In 2008 a new class of unconventional Fe-based superconductors was discovered upon

doping Fluorine into LaFeAsO [51]. This new class breaks down further into four

distinct families, all of which are structurally very similar to the cuprates (Fig. 1.3).

The first three, known as the pnictides, consist of quasi-2D FeAs planes to which the
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Figure 1.2: a) Q-integrated local susceptibility as a function of Tc for overdoped
La2−xSrxCuO4−y with x = 0.25, 0.27, 0.28, and 0.30 [123]. The linear correlation
suggests that superconductivity is contingent on the presence of magnetic excitations.
Inset provides a measure of Tc via the superconducting dielectric response for the
dopings studied. b) The energy about which a superconducting resonant gain
in magnetic intensity appears can be linearly correlated to the Tc of the system
[139]. c) A similar linear dependence exists between the resonant energy and
the superconducting gap [139]. The points correspond to different dopings across
multiple classes including the cuprates, pnictides, and heavy Fermion systems. Thus,
these features appear to be ubiquitous to unconventional superconductivity where
magnetism is present.

superconductivity is confined with buffer layers in between. Archtypical examples

of these groups are BaFe2As2, LaFeAsO, and NaFeAs which are often referenced

simply by their stoichiometry; (122), (1111), and (111) respectively. The last family,

the chalcoginides (11), consists of quasi-2D FeTe/(Se) planes stacked directly upon

one another with no separating layer. At the time of this writing, a new (122)

chalcogonide family has just emerged which also contains FeSe layers but with K,

Rb, or Cs intercalated between and a much more complicated nuclear and magnetic

structure due to ordered Fe vacancies within the FeSe layers and unordered vacancies

in the intercalated buffer layer [126, 134].

In many respects, the phase diagrams of the Fe-based families are qualitatively

similar to the cuprates and consist of an antiferromagnetic ground state [21] that is
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Figure 1.3: Crystal structure of the four Fe-based families [75]: a) LaFeAsO, b)
SrFe2As2, c) LiFeAs, and d) Fe1+xTe. The stripe antiferromagnetic (AFM) order of
the Fe spins is depicted for LaFeAsO and SrFe2As2. AFM order in the (111) class was
originally found to be absent. However, experiments now demonstrate an identical
magnetic ordering [62] as the (1111) and (122) classes with weak magnetic moments
that are quickly suppressed due to Li evaporation. In Fe1+xTe, stripe AFM ordering
is also present, however the spin alignment is rotated 45 degrees away with respect
to AFM order in the other classes. Inhomogeneity in the form of excess iron Fe(2) is
also present in these systems and can effect the magnetic ordering of the system [3].

replaced in favor of superconductivity upon doping [48, 145]. Studies of the magnetic

excitations have revealed that the resonant excitation is also present in these material

and scales with Tc and the superconducting gap with a similar linear dependence (Fig.

1.2b) [10]. However, the Fe-based superconductors are distinctly different from the

cuprates in several fundamental ways. To begin, the simple G-type AFM order of the

cuprates is replaced by a colinear order consisting of antiferromagnetically aligned

spins along the a-axis and ferromagnetically aligned spins along the b-axis. Second,

whereas the magnetism in the cuprates is described in terms of a local moment picture

derived from a Mott insulating ground state, the Fe-based superconductors are semi-

metallic with the AFM order potentially itinerant in nature. A further difference

is that in the cuprates, doping of the CuO2 planes is realized by substitutions

in the buffer layers which results in electron or hole doping of the planes, while

in the Fe-based systems, superconductivity can be achieved by way of electron,

hole, or isostructural substitutions with the sites often existing in-plane. Thus, it
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appears that the electronic groundstate and form of doping are flexible features of

the superconducting systems, with the ubiquitous feature in the superconducting

phase being short range magnetic fluctuations left over from a broken long range

ordered magnetic state.

1.2.3 The Heavy Fermions

The story of unconventional superconductivity actually began in 1979, seven years

before the cuprates, when superconductivity was discovered in CeCu2Si2 [114] with a

transition temperature of 0.5K. The normal state properties of this system revealed

an effective carrier mass two orders of magnitude larger than a free electron. Such

systems, known as heavy Fermions, form a class of materials typically containing

magnetic ions with f-electrons in their outer valency. In conventional superconductors,

the inclusion of magnetic ions act as pair breakers and suppress the superconducting

state. Thus, this system was a first indication that a non-conventional electronic

pairing mechanism could be at play in some materials. Superconductivity was

subsequently discovered over a wide range of heavy Fermion material, however the

Tc of these systems is typically on the order of 1K. As a result, most research on

these systems was abandoned when the cuprates, with their much higher transition

temperatures were discovered. Nonetheless, the magnetic properties of these systems

(ordered groundstates, resonance feature [107, 115], and loosely correlated fluctuation

upon doping) help establish a broad and consistent framework identifying a strong

coupling of the spin degrees of freedom to the superconducting state.
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1.3 Magnetism in Unconventional Superconduc-

tors

1.3.1 Localization, Itinerancy, and Everything In between:

An Introduction

The origin and phenomenology of magnetism can arise from two opposite extremes.

On the one hand, valence electrons tightly bound to their host will lead to a non-

zero spin. In this picture, the resulting lattice of localized magnetic ions will take

on different ground states, ie: paramagnetic, ordered, spin glass, etc., depending on

the details of the magnetic exchange couplings between sites. At the other extreme,

analogous groundstates can be derived from the non-site specific conduction electrons

as they move through the lattice. However, this dichotomy between localized and

itinerant magnetism is in no way mutually exclusive. Indeed, the parents of the

cuprates are understood in terms of fully localized magnetic systems whose long

range order dissolves as itinerancy is favored due to doping. Thus these systems

follow a classic Heisenberg model securely tethered to a fully localized picture of

magnetism with no Fermi surface present in the insulating parent state. However

with increased doping Fermi arcs appear and this local moment picture blurs into

an intermediate regime with the exact state unclear before finally reemerging on

the overdoped side as an itinerant paramagnet with properties governed by the

fully formed Fermi surface. To compare with the case of the pnictides, it has been

established that the local moment Heisenberg model can also fit the parent data very

well if a damping parameter is included to account for itinerant electron-electron

interactions. Despite this quasi-local moment fit, the Fe-based superconductors are

known to be semimetallic with a Fermi surface topology that supports itinerant

descriptions for some, but not all, of the observed magnetic properties. To date, the

debate between itinerant and localized descriptions of the Fe-based superconductors

is ongoing with the correct picture likely a mixture of these two states.
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In this section, details of fully local moment magnetism will be discussed in terms

of the groundstate of the cuprates while the details of itinerant magnetism will be

relegated to the ongoing discussion of the appropriate groundstate for the pnictides.

Thus, these two classes, the cuprates and pnictides, provide a natural stage for

discussing the two opposing ends of magnetic interaction. Interestingly, magnetism in

the heavy Fermions is now understood in terms of a mixture of localized and itinerant

components in the form of Kondo and RKKY interactions respectively. Thus, these

systems provide a good bridge for discussing the details of how the overall magnetic

properties of a system can be governed by contributions from both a localized and

itinerant channel.

1.3.2 Magnetism in the Cuprates

What’s past is prologue....

-William Shakespeare The Tempest

In the undoped Cuprate parents, the 3d9 Hund’s filling of the copper states dictate

that there should exist a single half-filled hole band. As a result, the naive expectation

is that these systems should be band metals. In practice, however, a strong on site

Coulombic repulsion (U) tightly binds the electrons onto their respective ions thereby

driving the system into a Mott insulating state. This on-site repulsion is responsible

for a band splitting that leaves the Fermi energy sitting inside a large gap. Each site

carries a single unpaired electron which, collectively, form an antiferromagnetically

aligned lattice of magnetic moments. Since a band metal picture fails for the Cuprates,

the simplest correction to the electronic groundstate is to include a Coulombic

potential energy to the tight-binding model. The resulting Hamiltonian, known as

the Hubbard Model is given by

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

ni↑ni↓ (1.4)
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where i,j are sites on the lattice with 〈i, j〉 dictating that the sum is only over

neighboring sites, t is an overlap integral for neighboring orbitals on the the lattice,

c†i,σ and cj,σ are creation and annihilation operators respectively, σ is the spin of the

electron (up or down), U is the onsite potential energy, and ni,σ = c†i,σci,σ is the number

operator (either 0 or 1). The first term in the Hubbard model is a kinetic energy

term associated with electron hopping between sites. The second term sums through

all sites and adds an energy cost of U whenever double occupation is encountered.

Hopping will generally lead to a reduction in the kinetic energy of the system. This

can be qualitatively understood by comparison with the quantum particle in a box,

here the energy is proportional to L−2. Thus, as the box becomes larger the energy

of the system reduces. For a lattice, site hopping effectively increases the ’box size’

that the electron occupies. However, since the copper d-orbitals are exactly half

filled, off-site hopping neccissarily leads to double occupation. Thus, the kinetic

and potential energy terms directly compete. In the parents of the cuprates the on-

site repulsion dominates, reducing the hopping drastically and driving the system

into a Mott insulating state. With the system sufficiently localized, the resulting

electrostatic Hamiltonian can be rewritten in terms of spin operators S weighted

by a site-to-site exchange coupling J . The resulting simplification is known as the

Heisenberg Hamiltonian and for the case of only nearest neighbor exchange can be

written as

H = J
∑
〈i,j〉

Si · Sj (1.5)

where again 〈i, j〉 refers to summation of only nearest neighbor sites and J = 4t2/U .

Since magnetetic moments do not feel the Coulombic force, at first glance it seems

peculiar that a purely electrostatic potential can be recast in terms of moment

operators. The key to unraveling this mystery can be understood by considering

a two particle system. Here the expectation of the square of the separation distance

between the two electrons depends on whether the particles wave function combine
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symmetrically or antisymmetrically [38].

〈(x1 − x2)2〉± = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ∓ 2|〈x2〉ab|2 (1.6)

where ψa(x) and ψb(x) refer to the wave functions of the two electrons and 〈x〉ab =∫
xψ†a(x)ψb(x). Since, the distance between electrons directly effects the resultant

Coulomb energy, this provides a mechanism for aligning spins either ferromagnetically

or antiferromagnetically in order to reduce the total energy of the system. Indeed,

in the two body case it is customary to write the exchange coupling in terms of the

difference in energy between the single and triplet state

J =
E− − E+

2
=

∫
ψ†a(r1)ψ†b(r2)Uψa(r1)ψa(r1)dr1dr2 (1.7)

From this we see that the sign of the exchange coupling determines whether the singlet

(antiferromagnetism) or triplet state (ferromagnetism) is favored, ie: a negative J

implies E− < E+ while a positive J implies E− > E+. Although the multibody

case is much more complicated, the basic idea remains the same with the sign of the

exchange coupling governing the magnetic ordering.

The Heisenberg Hamiltonian describes the Goldstone modes (spin waves) resulting

from the symmetry breaking operation of establishing a long range ordered magnetic

groundstate within the lattice. The solution can be obtained from linear spin wave

theory. In the presence of solely spin wave excitations, the pair-correlation tensor

〈Sα0 S
β
t 〉 governing the structure of the dynamical susceptibility and (equivalently) the

cross-section for neutron scattering (see the following neutron scattering section for

details), gives off-diagonal elements of zero while the diagonal elements consist of two

transverse terms that carry the inelastic spectral weight and one longitudinal term

that carries the elastic signal. (Technically this is only true for linear spin-wave theory,

higher order terms in the expansion bring with it inelastic multi-magnon processes
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that transfer inelastic spectral weight from the transverse channel to the longitudinal

channel [69].)

In the Cuprates, linear spin wave theory has been used to accurately model the

both the dispersion and intensity across all of S(Q, ω) using a Heisenberg model that

includes nearest, next nearest, next next nearest neighbor exchange couplings and a

ring exchange coupling four spins [44, 16]

H = J1

∑
〈i,j〉 Si · Sj + J2

∑
〈i,i′〉 Si · Si′ + J3

∑
〈i,i′′〉 Si · Si′′+

Jc
∑
〈i,j,k,l〉{(Si · Sj)(Sk · Sl) + (Si · Sl)(Sk · Sj)− (Si · Sk)(Sj · Sl)}

(1.8)

Inclusion of exchange to further neighbors indicates a coherent hopping of electrons

across increasingly large length scales which is, in large part, due to the ring exchange

that results from hybridization of in plane orbitals creating a charge transfer path

across copper plaquettes of four neighboring ions (see panel f in Fig 1.4) [16].

In acquiring a fit of the data to the Heisenberg model, the exchange couplings are

treated as fitting parameters. In LaCuO4 these values are determined to be around

J1 ≈ 140meV, J2 = J3 ≈ 2meV, and Jc ≈ 50meV. The exchange couplings are

quantitatively related to ratio’s of hopping t and Hubbard U to increasing order for

more distant J [120, 101]. Thus, model fits provide a means for backing out the

Hubbard parameters describing the competing physics of the system. Comparison of

these values with those determined from photoemission [55] and optical spectroscopy

[111] are in good agreement.

Electron or hole doping of the CuO4 planes in the Cuprates can be achieved

by substitutions of ions sitting in the out-of-plane buffer layers with elements of a

higher or lower valence respectively. Here I will focus exclusively on hole doped

compounds since they have been studied much more extensively than their electron

doped counterparts. The Mott insulating state derives not solely from the strong

on-site Coulomb repulsion. Of equal importance, the 3d9 copper orbital corresponds

to an exactly half filled state. As a result, for every copper atom their is exactly
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Figure 1.4: Time of flight neutron scattering data for spin wave scattering in the
cuprate parent LaCuO4 with fits to the Heisenberg Hamiltonian given in Eq. 1.8. a)
Extracted dispersion along the path in reciprocal space described by the subpanel in
c). The red line is a fit to the model. b) A 2-D data slice of the same dispersion
path with the intensity of the scattering included as a color profile. c) The intensity
corresponding to the dispersion in panel a). d) The ratio of the experimental intensity
over the model intensity demonstrates that the model fits very well everywhere except
at the wave vector (1/2, 0) where the spin wave lifetime damps out due to a decay
process discussed in the body of text. e) In general the Heisenberg model gives
an hour glass dispersion propagating out of the long-range ordering wave vector, the
exact structure and spin band width depend on the exchange couplings of the systems.
Panel f) describes the different exchange couplings used to fit the data. Note that the
copper and oxygen orbitals spacial character support a hopping that would reduce J2

while simulateously enhance a cyclic exchange. Panels taken from figures in [44, 16]
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one unpaired electron. These electrons spread uniformly across the lattice in order

to remove the cost of double occupation. Qualitatively, the introduction of holes

in the lattice allows electrons to hop without double occupation onto these empty

sites thereby reducing the total energy. With sufficient doping, the system evolves

from an insulating to metallic state and long range ordered magnetism dissolves. The

short range magnetic fluctuations within the system remain dispersive and centered

about the AFM wave vector much like in the parents with the bandwidth of the doped

systems proportional to their magnetic exchange J . However, the excitations are split

incommensurately about QAFM due to a fluctuating order associated with doped holes

collecting into 1D stripe configurations. The alignment of these stripes rotate by 45

degrees across the metal to insulator transition resulting in a corresponding rotation

of the incommensurate signal. As well, the dispersion in doped samples display an

hour glass-feature not present in the parents and as they are tuned to optimal doping

the total spectral weight given by (Q, ω) integration of the data decreases [110].

Theoretical models for describing the magnetic fluctuations in doped cuprates can

be constructed using either the strongly correlated parent or the weakly correlated,

heavily overdoped side of the phase diagram as the appropriate starting point. In

the former case, Anderson proposed early on a valence band model where, upon

loss of long range order, electrons remained bound in singlet pairs due to a residual

exchange force left over from the parent. As the system is doped into a metal,

superconductivity forms directly from these preformed singlet pairs. Thus, in this

picture, the same electrons that participate in long range order in the parent also

participate in superconductivity in doped samples [2]. From the other extreme,

with heavy doping the cuprates are a weakly correlated metal. Thus the magnetic

properties are thought to be derived from particle-hole excitations across the Fermi-

surface. RPA on the bandstructure is then the natural starting point for modeling

the dynamic response of the systems. Although both these methods have had some

success in describing doped cuprates, neither provide a satisfactory description in
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the intermediate regime of the diagram and, to date, this remains an area of active

research.

(b)

Figure 1.5: (a) Incommensurability in the magnetic scattering of hole doped LSCO.
Insets are cartoons describing the direction of the incommensurability about the AFM
wave vector. At the metal to insulator transition the incommensurability rotates by
45 degrees from a diagonal to parallel alignment with the unit cell. (b) Upon doping
the short range fluctuations left over from broken long range order remain dispersive,
however an hourglass feature is introduced at low energies in the dispersion. Figures
taken from [110] and comprise the work of several papers. Refer to this work (Ch. 6)
for references to original data.

1.3.3 Magnetism in the Fe-based Superconductors

Introduction to Itinerant Magnetism

In general, the magnetic moment operator is given by µ̂ = gµB(L̂+ Ŝ). Assuming no

orbital contribution to the moment, the Landé g-factor g ≈ 3
2
+ S(S+1)−L(L+1)

2J(J+1)
becomes

2 and we can write the total moment as

µ2 = 4µ2
BS(S + 1) (1.9)
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In localized systems dominated by Hund’s exchange, the size of the moment is dictated

by the Hund’s filling of the orbitals. In the case of bulk iron, the 3d6 electrons should

give a spin S = 2 and, according to Eq. 1.9, a corresponding moment of m2 = 24µ2
B

on each ion in the lattice. Instead, experimentally we find a much smaller moment

of m2 = 4.9µ2
B. From this, it is clear that the moment based on orbital filling of

atomic iron is effected dramatically when these atoms are combined in bulk. The

origin of this phenomenon is associated with the splitting of discrete atomic orbitals

into effectively continuous energy bands as individual iron atoms bond into a metallic

long range ordered lattice. In a metal, each momentum state in a band allows for

two electrons: one up and one down. These fill in equal number to the Fermi energy.

However, the application of a magnetic field B will create two separate spin-split

subbands separated by a small energy of 2µBB. Thus, the electrons no longer fill in

equal number (Fig. 1.6) resulting in a small net moment appearing in the system.

Even outside of an externally applied field the band can still spin split spontaneously

due to a run away effect of microscopic spin flip fluctuations across the bands. In

this picture, a spin flip process creates a local field, this field in turn polarizes other

electrons adding to the field. This cycle continues until the energy reduction due to

magnetization is balanced by the kinetic energy gain associated with taking electrons

at the Fermi surface from one spin band and depositing them in a larger free energy

state in the other band [6].

This so called ’Stoner enhancement’ in the magnetism can be recast in terms of

instabilities appearing in the susceptibility. A perturbation φ to the free electron gas

can be treated within linear response theory, allowing us to write the induced density

as

ρind(q) = χ(q)φ(q) (1.10)

where χ(q) is given by [39]

χ(q) =

∫
dk

(2π)d
fk − fk+q

Ek − Ek+q

(1.11)
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Panels are reconstructed from figures appearing in [6, 39].
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here d is the dimensionality of the system, fk is the Fermi function and E(k) is

the electron dispersion. On inspection, we see that the integrand diverges whenever

Ek = Ek+q. If for a given qorder there exist many k that satisfy this condition, then it

is possible for the susceptibility to form an instability at this ’nesting vector’ χ(qorder)

and, by extension, the density ρ(qorder). Fourier transforming this back to real space

gives a long range modulation of the lattice with a period defined by (2π)/(qorder).

Physically, this corresponds to a strong enhancement in band scattering between

empty and filled states at the Fermi energy due to a nesting condition associated

with the geometry of the Fermi surface that generates multiple paths for a scattering

process with momentum transfer qnesting to proceed. A trivial example of this is a 1D

free electron gas. Here the Fermi ’surface’ consists of only 2 points −kF and kF . Thus

the entire surface is well nested and leads to long range ordering of the lattice at T=0

(for finite temperatures the reduced dimensionality of the system makes it unstable

against fluctuations and order cannot be maintained.) In a 2D electron gas the Fermi

surface is a single circle and the nesting condition is lost, leading to a non-divergent

susceptibility Fig. 1.6, but an enhancement for q < 2kF (the Fermi surface diameter),

since these q will always connect some states.

A Case for Itinerant Magnetism in the Fe-based superconductors

Since itinerant magnetism is derived from perturbation theory starting with an

electron gas, this implies that it is only valid for weakly correlated materials.

Unlike the cuprate parents, which are strongly correlated insulators, the pnictides

are semi-metallic [51, 103]. Thus, from the outset their was speculation that the

magnetism in these systems could be described within the Stoner model. Moreover,

band structure calculations from DFT predicted before experiment that the Fermi

surface of these systems consisted of hole pockets at the zone center that were well

nested by q = (1, 0, Lodd)ort to electron pockets at the zone boundary . Subsequent

measurements by angle resolved photoemission spectroscopy confirmed the geometry

of the Fermi surface [100] predicted by theory and neutron diffraction measurements
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determined that, in the case of pnictide, the parents developed colinear long range

AFM order consistent with the nesting condition present on the Fermi surface and

with a moment of ≈ 1µB/Fe [21, 62], much smaller than what would be expected in

a local moment picture. In terms of magnetic excitations, RPA can be used as an

indicator of how well a nesting picture works for scattering in the inelastic channel.

Here, the expected structure of the magnetic fluctuations based off band structure

is captured well by RPA since this method calculates the dynamic linear response

of a system from superpositions of particle hole excitations. Moreover, these RPA

calculations have been carried out on band structure for parent, electron and hole

doped systems [91, 36], allowing for a systematic comparison of theory and experiment

across both sides of the phase diagram. It was found that the effect of doping on the

geometry of the Fermi surface follows naive expectations. Namely, electron doping

enlarges the electron pockets at the zone boundary while simultaneously shrinking

the hole pockets in the center, with hole doping the reverse effect is observed. The

resulting mismatch of nested pockets due to doping leads to short range magnetic

fluctuations that are transversely elongated in the case of electron doping while for

hole doping the reversed pocket mismatch leads to an elongations that is rotated

90 degrees, Fig. 1.7. All of these features are observed from neutron scattering

measurement of parent [144], electron [91] and hole doped [58] BaFe2As2 compounds.

Thus, at first blush, nesting provides a simple and intuitive picture for the origin and

evolution of magnetism in these systems and is in line, qualitatively, with much of

what has been observed experimentally.

A case for local moments in the Fe-based Superconductors

Although nesting has proven useful for describing many of the magnetic properties of

the Fe-based superconductors, there is now mounting evidence that it is insufficient

to fully account for the magnetism. Indeed the (11) chalcogenides are composed

of an identical quasi 2D chemical structure as the pnictides but with Te (instead

of As) tetrahedrally coordinated with Fe. Thus, it came as no surprise that the
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(11)’s have nearly identical Fermi surfaces as their pnictide counterparts. What was

surprising though is that the long range order in these systems does not correspond

to the nesting vector connecting zone and boundary Fermi pockets and therefore a

Stoner model of itinerant magnetism fails immediately. Moreover, even in the case of

the pnictides where a nesting picture meets with some success, the total moment as

determined by integration of neutron data in both the elastic and inelastic channel

gives a moment that is much too small to be fully local, but also larger than what is

expected from a fully itinerant picture [90]. To make matters worse, the magnetism

in the (122) systems is a factor of 3 greater than the (1111) systems even though

the latter have better nested Fermi surfaces. The fact that calculations in the virtual

field approximation demonstrate that the dimensionality of the (122) systems is more

3D than the 1111 suggest that interlayer coupling has more to do with the onset and

magnitude of the magnetism rather than the Fermiology [82]. As well, electron spin

resonance measurements (ESR) on LaFeAsO1−xFx, which is capable of dynamically

probing the local moment, indicate that local moments are present and interact with

itinerant electrons at higher temperatures. Further support for a strongly coupled

system is evidenced by the ESR determined spin susceptibility which follows a Curie

Weiss behavior in the parent [132]. Later x-ray emission spectroscopy measurement

confirmed that local moments existed at room temperature in the paramagnetic state

[37].

It is important to keep in mind that the local and itinerant pictures fall on

opposite ends of a broad spectrum of physically realizable systems. This spectrum

of possibilities can be characterized in terms of a ratio of the Hubbard parameters

U/W where again, U is the Hubbard repulsion and W is the bandwidth which is

directly related to the hopping coefficient t describing the kinetic energy term in

the Hamiltonian. This parameterization is effectively a measure of how correlated

the electrons are with very small U/W describing weakly correlated metals in the

perturbation regime where the Stoner model is appropriate while very large U/W

describes strongly correlated insulators where local moments govern the magnetic
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Figure 1.8: a) Qualitative regions of phase space based off of Hubbard model
calculations with the yellow ellipse corresponding to region where experiment agrees
well with theory. b) DMFT vs RPA calculations of the distribution of the fluctuating
moment across energy transfer. Comparing this with inelastic neutron scattering
data c) we find that the DMFT calculations, which can capture stronger electronic
correlations than RPA, lead to much better agreement between experiment and
theory. d) A qualitative sketch of the Hubbard model as a function of electron
correlation with a guess as to where the pnictides fall between the two extremes
of localized and itinerant magnetism. Panels taken from [18, 67]
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properties. Hubbard model calculations, though difficult due to the multi-orbital

nature of the systems, have been performed and comparison with neutron and ARPES

data suggest that the Fe-based superconductors inhabit a region of phase space that

is in close proximity to both a magnetic insulator and non-magnetic metallic phase

(Fig. 1.8 a) with an intermediate U/W ≈ 0.3 − 0.4 [72, 140]. The idea that these

systems can be characterized as ’correlated metals’ is backed further by the fact

that they are poor metals with Haas van Alphen measurements reporting effective

elecron masses up to a factor of 7 larger than the bare electron mass. Dynamic

mean field theory (DMFT) calculations that are able to incorporate much stronger

interactions than are captured by RPA, have proven successful at obtaining effective

masses similar to those measured in experiment [136], can qualitatively track the

evolution of spin excitations as a function of energy in the BaFe2As2 parent [90],

and quantitatively track the distribution of neutron spectral weight [67] (e.g. time

resolved fluctuating moment) to a much higher degree of accuracy than RPA, Fig.

1.8 b,c. Taken together, the ontology of magnetism in this new class of materials

is still an open question. However, it has become clear that the simple picture of

nesting must be replaced with something that, although much more messier, is also

much richer and interesting in terms of physics.

1.3.4 Magnetism in the Heavy Fermions

Heavy Fermion systems are a collection of materials whose properties are governed

by a lattice that carries f-electron magnetic ions at crystallographic sites [45]. The

electrons within these f-orbitals interact magnetically with conduction electrons

within the system. This state of affairs is reminiscent of the single ion Kondo problem

that arises in other systems. In single ion Kondo systems, magnetic impurities are

injected into the system which then interact with passing conduction electrons. This

results in a direct exchange coupling J forming between the localized spin impurities

and those of the itinerant conduction electrons.
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Figure 1.9: Possible ground states resulting from the competition between the Kondo
and RKKY interactions. Tm is the ordering temperature and JN is the f-d exchange
coupling times the f density of states at the Fermi energy. [105]

A direct consequence of this interaction is that resistivity within these systems

breaks from standard Fermi liquid theory at very low temperatures . Moreover, with

decreasing temperature the coupling can screen out the spin impurities by binding

conduction electrons to them to form a singlet state. The temperature at which this

screening occurs is referred to as the Kondo Temperature, TK . Jun Kondo was the

first to solve this problem and provide a logarithmic correction term to the resistivity

[57]. This term accurately accounted for the peculiar upturn in resistivity at low

temperatures but also asymptotically diverged as the temperature was suppressed to

absolute zero. Further work by others succeeded in fixing the divergence and today
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the solution to the Kondo problem stands as an impressive achievement in solid state

physics.

A fundamental and very important difference between single ion Kondo systems

and heavy Fermion systems is that in the former, the ions exist as impurities scattered

within the system and, as a result, interactions are isolated short range events.

However, in heavy electron systems, the f-orbitals are part of the crystallographic

structure and form a Kondo lattice of magnetic ions. Although this may at fist appear

to be a direct extension of the original Kondo problem, in practice a solution is much

less tractable. Moreover, due to the periodicity of the magnetic lattice, an indirect

exchange coupling mediated by the conduction electrons is established between the

sites; the so-called RKKY interaction [104, 53, 138]. Indeed, many models of heavy

Fermion systems are treated as a competition between a RKKY interaction that acts

to set up long range magnetic order at a temperature TRKKY and a Kondo effect that

begins screening the sites as the temperature drops below TK . In the Kondo effect

the onset of magnetic screening is given by

TK = ρ−1e−
1
ρJ (1.12)

where ρ is the density of states at the Fermi surface and J is the exchange coupling

between the conduction electrons and the localized magnetic f-orbitals. However, the

onset temperature for magnetic ordering due to the RKKY interaction goes as

TRKKY ∝ J2ρ (1.13)

Consequently, as the temperature is suppressed, the moments associated with the

long range magnetic order will begin to be screened away (Fig 1.9) as the Kondo

interaction begins to dominate the system.

Aside from TRKKY and TK , there exists a third temperature that plays a vital role

in determining the onset of property changes within heavy Fermion systems. This
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temperature, which is referred to as T ∗, corresponds to a point where the bound

f-electrons become (at least partially) itinerant. Interestingly, it is for temperatures

below T ∗ that the f-electrons begin to unbind. T ∗ is typically very low, around 1-

10K depending on the system [31]. A calculation of the change in entropy over this

temperature range reveals a sharp climb which is attributed to this unbinding process.

The magnitude of this change is fairly consistent from system to system, around

Rln(2) where R is Rydbergs constant, and is accompanied by significant changes in

properties such as reduced resistivity, modified spin susceptibility, an observed Knight

shift, etc [30]. Because of this, it is convenient to define T ∗ as

∆S =

∫ T∗

0

γdT = Rln(2) (1.14)

Recent work [29] has demonstrated that T ∗ can be modeled very well as

T ∗ = cJ2ρ (1.15)

where c is a parameter to be determined. Combining this with Eq. 1.12 gives the

relation:

[ln(TKρ)]−1 =
√
c−1T ∗ρ (1.16)

A value of c = 0.45 was determined by fitting Eq. 1.16 to experimental values of T ∗,

TK , and γ for a variety of Kondo lattices (Fig. 1.10a). From this, a modified version

(Fig. 1.10b) of the Doniach diagram [Doniach] was generated that relates the general

phase diagram behavior of the system to the fundamental quantities that drive this

behavior.
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Figure 1.10: a) Confirmation of T ∗ given by the intersite RKKY interaction for a
variety of Kondo lattice materials; c = 0.45. b) Updated Doniach diagram for Kondo
lattice materials. [29]

1.4 Neutron Scattering

1.4.1 Scattering Cross-Sections

Thermal neurons are a unique tool for studying materials for several reasons. First,

due to lack of charge, neutrons are able to pass through the sample without Coulombic

screening. As a result, they are able to penetrate deeply and provide a measure of the

bulk properties. As well, the lack of a Coulombic barrier allows neutrons to pass very

close to and interact directly with the nucleus. Second, although neutrons lack charge,

as Fermions they carry a spin 1/2 moment which allows them to probe the magnetic

properties of the system. Indeed, neutron scattering is the sole direct method available

for determining the (Q, ω) dependence of the the magnetic excitations in condensed

matter. Third, the wavelength of thermal neutrons is on the same order as the

interatomic spacing of atoms within a crystalline lattice. Thus, as neutrons travel

through the sample the resulting interference creates Bragg conditions that carry

information about the systems structure. Finally, many of the excitations within a

system are on the same order as the energy of thermal neutrons which makes it much

easier to determine the energy transfer between the neutron and the sample.
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The key elements of a neutron scattering experiment consist of sending a neutron

into a sample with an incident momentum k and energy E = ~2k2
2mn

and then measure

the final momentum k′ and energy E ′ = ~2k′2
2mn

upon leaving. Through energy and

momentum conservation, we can then determine the energy E = ~ω = E − E ′

and momentum κ = k − k′ of the excitation responsible for the scattering event.

By collecting the scattering for different energy and momentum transfers it is then

possible to create a map of the excitations in reciprocal space. In order to interpret

and quantitatively model this spectra, it is first necessary to have in hand the partial

differential cross-section for scattering of neutrons in condensed matter.

A complete derivation of the scattering cross-section requires a considerable

amount of mathematical detail. Thus, what follows is only a basic outline of the

construction following primarily the approach of Squires [113]. To begin, a given

incident flux multiplied into the partial differential scattering cross-section Φ d2σ
dΩdE′

measures the number of neutrons scattered per second into the solid angle dΩ with

final energy between E ′ and E ′ + dE ′. Thus, the cross-section effectively represents

a transition rate for processes within the sample. Hence, we can write:

(
dσ

dΩ

)
σλ→σ′λ′

=
1

Φ

1

dΩ

∑
k′ in dΩ

Wk,σλ→k′,σ′λ′ (1.17)

where Wk,σλ→k′,σ′λ′ is the number of transitions per second taking the neutron from

the momentum and spin state k, σ to k′, σ′ and the scattering system from the state λ

to λ′. In this form, we can make use of Fermi’s Golden Rule to calculate the transition

rate: ∑
k′ in dΩ

Wk,σλ→k′,σ′λ′ =
2π

~
ρk′ |〈k′σ′λ′ | V | kσλ〉|2 (1.18)

where V is the potential that the neutron travels through and ρk′ is the number of

momentum states in dΩ per unit energy range for neutrons in the state k′. Both ρ

and Φ are readily calculatable. As well, since we are considering a specific transition

from λ→ λ′, the energy dependence can be appended to the cross-section as a delta
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function. All together this gives:

(
d2σ

dΩdE ′

)
σλ→σ′λ′

=
k′

k

( m

2π~2

)2

|〈k′σ′λ′ | V | kσλ〉|2 δ(Eλ − Eλ′ + ~ω) (1.19)

This is the general result for the scattering cross-section. However, the present form

is incomplete since it still only considers a single state transition form σλ → σ′λ′.

When solving the cross-section down further in the presence of a nuclear or magnetic

scattering process, the standard treatment in both cases is to rewrite the energy delta

function in integral form:

δ(Eλ − Eλ′ + ~ω) =
1

2π~

∫ ∞
−∞

exp{i(Eλ − Eλ′)t/~} exp(−iωt)dt (1.20)

Since exp(−iHt/~)|λ〉 = exp(−iEλt/~)|λ〉 the integrand can be drawn into the matrix

elements and incorporated to give time dependent Heisenberg operators in the cross-

section of the general form:

A(t) = exp(iHt/~)A exp(−iHt/~) (1.21)

It should be clarified at this point that the potential V is not the potential associated

with the Hamiltonian H. V corresponds to the potential the neutron feels as it

travels through the material while H corresponds to the Hamiltonian of the system.

For instance, in nuclear scattering V is due to the nuclear force centered around the

nuclei. However, the Hamiltonian of the lattice describes the motion of the nuclei

about equilibrium, ie: phonon excitations.

Going from
(

d2σ
dΩdE′

)
σλ→σ′λ′

to d2σ
dΩdE′

requires summing the cross-section over all

states λ′ keeping λ fixed, and then averaging over all λ. This generally leads to

thermal averages of operators appearing in the cross-section

〈A〉 =
∑
λ

pλ 〈λ | A | λ〉 (1.22)
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where pλ is the probability that the system is in a given state λ. The details of

the above two steps (writing the delta function as an integral and performing the

sum/average) are carried out differently when working out the magnetic vs nuclear

cross-section and will not be discussed. A final general result stemming from the form

of Eq.1.19 is that the squaring of the matrix elements |M |2 = |〈k′σ′λ′ | V | kσλ〉|2

leads to a calculation of the form M †M and, combined with the above two general

properties, gives a cross-section dominated by thermally averaged Heisenberg operator

products of the form 〈Ai(0)Aj(t)〉. This important result identifies the scattering as

a pair correlation process. Indeed, we find that nuclear scattering is dominated by

terms of the form 〈exp{iκ ·Rj′(0)} exp{iκ ·Rj(t)}〉 where Rj is the distance to site

j. From this it follows that j = j′ corresponds to incoherent scattering, ie: the

correlation between the position of the same nucleus at different times, while j 6= j′

leads to coherent scattering of different sites at different times due to interference

effects. As well, the relationship between peak width and ordering length scale arises

naturally from considering the effect of this product pair on the cross-section. As an

example, in (purely) magnetic scattering we find that the cross-section is dominated

by terms of the form ∑
l

exp(iκ · l)〈Sα0 (0)Sβl (t)〉 (1.23)

where Sβl is the operator corresponding to the β component of spin for the ion l. In the

far limit of elastic paramagnetic scattering we have that the time dependence drops

out. Also, in a paramagnetic there is no correlation between the spins of different

ions. Therefore, for l 6= 0

exp(iκ · l)〈Sα0 Sβl 〉 = exp(iκ · l)〈Sα0 〉〈S
β
l 〉 = 0 (1.24)
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with each spin factor equaling zero due to the thermal averaging of randomly oriented

spins. For l = 0

exp(iκ · 0)〈Sα0 Sβ0 〉 = 〈(Sα0 )2〉 =
1

3
〈S2〉 =

1

3
S(S + 1) (1.25)

as a result we find that there is no paramagnetic scattering due to spin correlations

between different sites, however the onsite l = 0 cross-section for individual spins

leads to a constant magnitude, momentum independent scattering intensity. Thus we

see that uncorrelated elastic scattering can be interpreted as an infinitely broadened

peak in reciprocal space. In stark contrast, if we now consider elastic scattering from

infinitely long range ferromagnetically ordered spins then this corresponds to t→∞

with

lim
t→∞
〈Sα0 (0)Sβl (t)〉 = 〈Sα0 〉〈S

β
l 〉 (1.26)

if we set the spin ordering along the z direction then 〈Sxl 〉 = 〈Syl 〉 = 0 and 〈Szl 〉 = 〈Sz〉

and we get that

∑
l

exp(iκ · l)〈Sα0 (0)Sβl (t)〉 = 〈Sz〉
∑
l

exp(iκ · l) =
(2π)2

ν0

〈Sz〉
∑
τ

δ(κ− τ ) (1.27)

Here we see that the interference terms (l 6= 0) lead to delta functions in the cross-

section, ie: a peak width of zero, when the spin-spin product is the same on each

site pair. If, on the other hand, a glassy component was introduced, then the spin-

spin product for site pairs would vary leading to different amplitudes on the complex

exponentials exp(iκ · l). This would result in phase decoherence and broadening of

the peak in the cross-section.

In the following sections I will lay out the more complete cross-sections that result

from solving the matrix elements for the nuclear and magnetic potential. Although

the end result is quite complicated in both cases, it is useful to keep in mind that

the intrinsic properties of the system are carried in the matrix elements which distill

out into thermally averaged pair-pair correlation functions, in the form of Heisenberg
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operators. Extrinsic properties are pulled out as a trivial prefactor and consist of

the neutron mass, magnitude of incident and final neutron momentum, and several

constants as a byproduct of the derivation.

1.4.2 Nuclear Scattering Cross-Section

The potential for scattering of neutrons off the ions in the lattice is governed by

the nuclear force. Working out the cross-section quantitatively for this potential is

daunting. However, because the nuclear force is very short ranged with respect to the

distance between sites in the lattice, the potential at a given site can be approximated

as V (r) = αδ(r). The task then is to determine the value of α. Since the scattering

lengths b2 = dσ
dΩ

can be measured experimentally, this allows us to solve the differential

cross-section in the presence of the delta function potential

dσ

dΩ
=
( m

2π~2

)2
∣∣∣∣∫ V (r) exp(iκ · r)dr

∣∣∣∣2 =
( m

2π~2

)2

a2 (1.28)

and set it equal to b2, from this we get

V (r) =
2π~2

m
bδ(r) (1.29)

This result is known as the Fermi psuedopotential. In solving the full cross-section

this approximation is scaled up to include the entire lattice

V =
∑
j

2π~2

m
bjδ(r−Rj) (1.30)

where r is the distance to the neutron from the origin and Rj is the distance to the

jth nucleus from the origin. Solving the matrix elements under this potential gives
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the following results for coherent nuclear scattering

(
d2σ

dΩdE ′

)
coh

=
σcoh

4π

k′

k

1

2π~
∑
j,j′

∫ ∞
−∞
〈exp{iκ ·Rj′(0)} exp{iκ ·Rj(t)}〉 exp(−iωt)dt

(1.31)

with

σcoh = 4π(b̄)2 (1.32)

It is possible to extend this result even further and capture the thermal motion of the

nuclei by setting the Hamiltonian of the crystal equal to the sum of harmonic oscillator

Hamiltonians representing the normal modes. In this case, Rl = l + ul where l is the

equilibrium position for nucleus l and ul is the displacement from equilibrium to be

expressed as the sum of displacements due to a set of normal modes. Specifically, ul is

effectively a sum of complex exponentials weighted by the creation and annihilation

operators for harmonic oscillators. From this it can be shown that the coherent

cross-section can be written as

(
d2σ

dΩdE ′

)
coh

=
σcoh

4π

k′

k

N

2π~
exp〈U2〉

∑
l

exp(iκ·l)
∫ ∞
−∞

exp〈UV〉 exp(−iωt)dt (1.33)

where exp(U2) is the Debye-Waller factor that picks up an intensity drop due to

thermal motion, N is the number of unit cells and U and V are the operators

U = −iκ · u0(0),V = −iκ · ul(t) (1.34)

The standard treatment from here is to rewrite the exponential exp(UV) as a Taylor

series. This is referred to as the phonon expansion of the cross-section with the

nth term describing the n-phonon scattering cross-section. Thus the zeroth term, 1,

describes elastic nuclear scattering and we get

(
dσ

dΩ

)
coh el

=
σcoh

4π
N

(2π)3

ν0

exp(U2)
∑
τ

δ(κ− τ ) (1.35)
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while the next term, 〈UV〉 describes the 1-phonon process

(
d2σ

dΩdE ′

)
coh

=
σcoh

4π

k′

k

(2π)3

ν0

1

2M
exp(U2)

∑
s

∑
τ

(κ · es)2

ωs
〈ns+1〉δ(ω+ωs)δ(κ+q−τ )

(1.36)

where s stands for the double index q, j; q is the wave vector of the phonon mode

and j = 1, 2, 3 is the polarization index, es is the polarization vector. The sum over

s is over the N values of q in the 1st Brillouin zone, and over the three values of j. M

is the mass of the atom.

For the multiphonon processes, the scattering no longer leads to sharp peaks in

(κ, ω) due to the large number of ways that the neutron can scatter from the first

event to the second event. Hence, this higher order scattering contributes to the

background channel.

1.4.3 Magnetic Scattering Cross-Section

As a neutron passes through a system, its spin couples to the magnetic field produced

by electrons. There are two sources for the magnetic field. First, there is a field

produced by the electrons magnetic dipole moment µe = −2µBs where s is the spin

angular momentum operator and, in the case of electrons, carries eigenvalues of ±1/2

for its components. Second, an electron with momentum p will produce a field due

to the Biot-Savart law. Thus the total field is

B = Bs + BL =
µ0

4π

{
curl

(
µe × R̂

R2

)
− 2µB

~
p× R̂

R2

}
(1.37)

The potential is then given by dotting the moment of the neutron with the field

V = −µN ·B. Putting this into the cross-section, the matrix elements can be solved

down to give

(
d2σ

dΩdE ′

)
σλ→σ′λ′

= (γr0)2k
′

k
|〈σ′λ′ | σ ·Q⊥ | σλ〉|2 δ(Eλ − Eλ′ + ~ω) (1.38)
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From this we get the important result that neutrons only measure the component

of the electron moment Q⊥ that is perpendicular to the momentum transfer of the

neutron.

Q⊥ = − 1

2µB
κ̂× (M(κ)× κ̂) (1.39)

Here M(κ) is the Fourier transformed magnetization operator. When the matrix

elements are dotted with their complex conjugates, the fact that we measure only

a component of the electron’s moment translates into directionality factors in the

cross-section of the form

Q†⊥ ·Q⊥ =
∑
αβ

(δαβ − κ̂ακ̂β)Q†αQβ (1.40)

where α and β are the x, y, and z directions and κ̂ is the unit vector associated with

the momentum transfer of the neutron κ. After writing the delta function as an

integral and performing a sum/average over final and initial states, the general form

for the cross-section section can be written as

d2σ

dΩdE ′
=

(γr0)2

2π~
k
′

k

∑
αβ

(δαβ − κ̂ακ̂β)

∫
〈Qα(−κ, 0)Qβ(κ, t)〉 exp(−iωt)dt (1.41)

In the case of a localized system, the cross-section can be cleanly separated into

nuclear Ijj′(κ, t) and magnetic contributions Jαβjj′ (t) where

Ijj′(κ, t) = 〈exp{−iκ ·Rl′d′(0)} exp{iκ ·Rld(t)}〉 (1.42)

Jαβjj′ (t) = 〈Sαl′d′(0)Sβld(t)〉 (1.43)

here j is the combination l, d that singles out ion d in the lth unit cell and Sβld is

the operator corresponding to the β component of spin for that ion. To simplify the

results for a Bravias crystal the subscript d can be suppressed. These terms can be
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further separated into elastic (t =∞) and inelastic (time varying) contributions

Ijj′(κ, t) = Ijj′(κ,∞) + I ′jj′(κ, t) (1.44)

Jαβjj′ (t) = Jαβjj′ (∞) + J ′αβjj′ (t) (1.45)

The final magnetic scattering cross-section is then

d2σ
dΩdE′

= (γr0)2

2π~
k
′

k

∑
αβ

(δαβ − κ̂ακ̂β)
∑
jj′

1
4
gd′gdF

†
d′(κ)Fd(κ)

×
∫∞
−∞{Ijj′(κ,∞) + I ′jj′(κ, t)}{J

αβ
jj′ (∞) + J ′αβjj′ (t)} exp(−iωt)dt

(1.46)

The cross terms break the scattering into four different contributions:

Ijj′(κ,∞)Jαβjj′ (∞) - Elastic magnetic scattering

Ijj′(κ,∞)Jαβjj′ (t) - Inelastic magnetic scattering by

Ijj′(κ, t)J
αβ
jj′ (∞) - Magnetovibrational scattering, ie: phonon processes mediated

by the magnetic interaction; elastic in the magnetic channel, inelastic in the

nuclear channel.

Ijj′(κ, t)J
αβ
jj′ (t) - Inelastic scattering in both channels

1.4.4 Fluctuation Dissipation Theorem

When a neutron passes through a sample it probes the magnetic properties associated

with the systems Hamiltonian H . In the state ψ with energy E the total moment of

the system is given by

MV = −
〈
ψ

∣∣∣∣∂H∂H

∣∣∣∣ψ〉 (1.47)

where H is the applied field and M is the magnetization. This allows us to define the

total system magnetic moment operator

M = −∂H
∂H

(1.48)
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Table 1.1: Properties of a scattering system that simplify the dependencies associated
with the susceptibility

Linear Medium Susceptibility is Independent of Field
Stationary Medium Ω = ω
Medium is Translationaly Invariant q = k

which can be projected out to give the magnetic moment per unit volume, see for

instance White [127]. Using the density matrix approach [15], the magnetization

M(r) of the system can then be found by taking the ensemble average

M(r) = 〈M (r)〉 = trρM (r) (1.49)

In linear response theory the magnetization of a system is taken to be directly

proportional to the perturbing magnetic field and the susceptibility χ is the coefficient

of proportionality relating these two quantities. The real space structure (r, t) of the

field and magnetization can be rewritten in terms of Fourier components as

M(r, t) =
1

2πV

∑
k

∫
dΩM(k,Ω) exp{i(k · r− Ωt)} (1.50)

H(r, t) =
1

2πV

∑
q

∫
dΩH(q, ω) exp{i(q · r− ωt)} (1.51)

and from this the generalized susceptibility takes the form

Mν(k,Ω) =
∑
q

∫
dω
∑
µ

χνµ(k,q; Ω, ω)Hµ(q, ω) (1.52)

where ν and µ = x, y, z. In general, the temporal frequency and spacial modulation

of the field (q, ω) can be different from that of the resulting magnetization (k,Ω). As

well, the susceptibility also depends on the particular form of the field. However, Table

1.1 list properties of a system that simplify this general susceptibility considerably.

Since the systems under consideration satisfy all of these conditions, we can reduce
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the complexity from that of a field dependent χ(k,q; Ω, ω) to a field independent

χ(q, ω).

Because the magnetic response of the system can be out-of-phase with the

perturbing field, the susceptibility is complex in nature

χ(q, ω) = χ′(q, ω) + iχ′′(q, ω) (1.53)

The imaginary part of the susceptibility describes simultaneously both the fluctua-

tions and the dissipation when the system is driven away from equilibrium. To see

this, it is worth while to compare the magnetic response of a system to that of a

damped driven harmonic oscillator. The differential equation describing harmonic

motion is given by

ẍ+ 2βẋ+ ω2
0x = A cos(ωt) (1.54)

where 2β captures the dissipation and ω0 is the restoring force of the system. The

non-transient motion is given by the particular solution of this equation

xp(t) =
A√

(ω2
0 − ω2)2 + 4ω2β2

cos(ωt− δ) (1.55)

with

δ = tan−1

(
2ωβ

ω2
0 − ω2

)
(1.56)

from this we see that the difference in phase between the driving force and the

resultant motion is given by δ. Moreover, the magnitude of δ is directly related

to the dissipation in the system 2β. This also holds true for our magnetic system

where a complex susceptibility χ = χ′ + iχ′′ = |χ| exp(iδ) multiplied into a driving

magnetic field H0 exp(iωt) leads to an offset magnetization H0|χ| exp(i(ωt+ δ)). The

true importance of this result lies in the fact that the dissipation is related in a

fundamental manner to fluctuations in the system away from its equilibrium state.

This was first demonstrated for liquids where the viscosity (describing dissipation due
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to the collisions of molecules during fluid flow) was related directly to the fluctuations

encapsulated in the Brownian motion of an equilibrium (non-flowing) fluid due to

equivilent collision processes. In comparison, whereas the non-equilibrium properties

in a fluid are quantified by its coefficient of viscosity, in a magnetic system they

are quantified by the imaginary part of the susceptibility (dynamic susceptibility)

χ′′(q, ω). A powerful result from statistical mechanics known as the fluctuation-

dissipation theorem [94] allows us to quantify the relationship between the response

of a system and the spectrum of inelastic excitations representing fluctuations away

from equilibrium. In the case of magnetic systems this response is, again, the dynamic

susceptibility and the fluctuations under consideration are thermal fluctuations in the

magnetization with the relationship given by [127]

∫ ∞
−∞

dt〈{Mν(q, t)Mµ(−q)}〉eiωt =
2~V

1− e−
~ω
kBT

χ′′µν(q, ω) (1.57)

Given that neutron scattering measures the magnetic fluctuations within a system, it

comes as no surprise that the pair correlation function in the fluctuation dissipation

theorem is equivalent to the one appearing in the inelastic magnetic scattering cross-

section. Indeed, it can be shown that for a Bravais lattice this cross-section can be

rewritten as

(
d2σ

dΩdEf

)
mag inel

= (γr0)2kf
ki
N

[
1

2
gF (q)

]2

exp(U2)
∑
νµ

(δνµ−q̂ν q̂µ)
1

πg2µ2
B

1

1− exp(− ~ω
kBT

)
χ′′νµ(q, ω)

(1.58)

From this we see that the neutron scattering cross-section directly probes the structure

of the dynamic susceptibility. Moreover, the Kramer-Kronig relations provide a

method for obtaining the real part of the susceptibility χ′(q, ω) when the imaginary

part is completely known. Thus, neutron scattering is capable of mapping out the

total response function.
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1.5 Data Analysis

1.5.1 Transformations between Unit Cells

The parents of the Fe-based superconductors undergo a tetragonal to orthorhombic

phase transition as the temperature is reduced. This transition is quickly suppressed

as a function of doping leaving a single tetragonal phase over all temperatures.

As a result, the existing literature on these systems contains analysis performed in

the tetragonal unit cell for some papers and the orthorhombic unit cell for others.

Although most of our data is collected in the tetragonal unit cell, our final analysis

is typically converted to and published in the orthorhombic cell in order to facilitate

easy comparison across all of our studies. Nonetheless, due to the common usage

of both systems within the literature, a geometric understanding of the difference

between these two unit cells and a coordinate transformation between them will be

useful at times.

We will consider a simplified picture consisting only of the in plane Fe atoms from

which the magnetic properties originate. As seen in Fig 1.11, the structural phase

transition is not a direct stretching along the lattice vectors that define the tetragonal

unit cell. Rather, within this cell the lattice parameters remain equal across the phase

transition, a = b, with a monoclinic distortion of the lattice occurring within the ab-

plane. Although the monoclinic unit cell is the primitive cell of the lattice, it is

generally rejected in favor of a larger orthorhombic unit cell. Geometrically, the

boundary of the real space orthorhombic cell consists of 4 neighboring diagonals of

the monoclinic cell. It should be noted that this orthorhombic cell is accessible if and

only if am and bm remain the same. The benefits of this larger cell are two fold. First,

mirror reflections are restored in the orthorhombic cell giving it a higher degree of

symmetry. Second, although the monoclinic cell corresponds to the primitive cell of

the nuclear structure, the orthorhombic cell corresponds to the smallest magnetic cell
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Figure 1.11: Definition of Unit Cells: a) The black box defines the tetragonal unit
cell corresponding to the lattice symmetry for temperatures above the structural
phase transition. In the tetragonal state, the magnetic moments associated with
the iron atoms are disordered as represented by the black arrows. b) Below the
phase transition, the tetragonal cell undergoes an inplane angular distortion leading
to the monoclinic unit cell defined in red. The low temperature phase can also
be described by an orthorhombic unit cell (dashed green line) which consists of 4
neighboring diagonals of the monoclinic cell. The structural distortion is accompanied
by a long range ordering of the magnetic moments with the the spins aligning
antiferromagnetically and ferromagnetically along the orthorhombic a and b axis
respectively.

associated with the ordered antiferromagnetic phase that is concomitant (or in close

proximity) to the structural phase transition.

In deriving the transformation from tetragonal to orthorhombic units, we use the

approximation that the monoclinic distortion is small enough to be neglected. This

approximation is more than justified given that the angular distortion is less than

1%. Fig. 1.12 a) shows a single tetragonal and orthorhombic cell (solid blue and

dashed green lines respectively), with the latter shifted such that it encomapasses the

tetragonal cell. When Fourier transformed into reciprocal space, the orthorhombic

cell shrinks within the tetrogonal cell, Fig 1.12 b), while the angles between the lattice

vectors remains unchanged. Specifically, each systems set of reciprocal lattice vectors
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Figure 1.12: Fourier Transform of the Structure: a) Superposition of the real space
orthorhombic (dashed green) and tetragonal (solid blue) cells. b) Fourier transform
of cells. c) Relationship between the lattice vectors of the two cells. Given that the
distortion is extremely small, its effects have been ignored in the figure, ie: aO = bO
with axis 90o apart and θ = 45o

is orthogonal with an offset angle of 45o between the two systems. As a result, the

coordinate transformation in reciprical space can be expressed as a rotation matrix

with θ = 45o. Moreover, given that the rotation is within the ab-plane we know

immediately that QO
z = QT

z and, as a result, we need only to consider a 2D rotation

matrix.  cos θ sin θ

sin θ − cos θ

 QT
x

QT
y

 =

 QO
x

QO
y

⇒ 1√
2
QT
x + 1√

2
QT
y = QO

x

1√
2
QT
x − 1√

2
QT
y = QO

y

(1.59)

Since the tetragonal and orthorhombic cells are of size a and
√

2a respectively, when

expressed in terms of reciprocal lattice units, QT and QO differ in prefactor only

by a
√

2 in the denominator, ie: (QT
x , Q

T
y ) = (2π

a
HT ,

2π
a
KT ) whereas (QO

x , Q
O
y ) =
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( 2π√
2a
HO,

2π√
2a
KO). When combined with Eq. 1.59 we get the desired final result:


HO = HT +KT

KO = HT −KT

LO = LT

(1.60)

Technical Note: The rotation matrix is written with the negative out of place. It

should be assigned to the sin θ in the second row in order to correctly represent a

coordinate transformation associated with a counter clockwise rotation. However, by

mirror symmetry of the orthorhombic cell, we are free to identify the negative without

impunity to KT rather than HT which gives a slightly cleaner looking result.

1.5.2 Normalization of Data to Absolute Units

Often in neutron scattering experiments, calibration of intensities to absolute units

is of very little importance and therefore not performed. At triple axis facilities this

is very often the case since it is not customary for the facility to have a standard

operating procedure in place to normalize intensities for the user at the end of an

experiment. As a result, intensities are reguraly reported in terms of arbitrary

units consisting of the number of detector counts collected over a given period of

time. eg: counts/min. Although reporting arbitrary units in terms of a collection

time is common practice, in reality, the total flux incident on a sample over a given

length of time varies with the chosen incident energy of the spectrometer, upstream

collimation, and, to a lesser degree, the variation in the output of the reactor. To

account for this, an upstream detector measures flux pre-sample and scans are set to

collect each data point up to a predefined monitor count. As a result, the reported

collection time typically only provides a ball park measure of how long it took to

collect up to a preset total incident flux. Often measurements forgo reporting in

terms of time altogether and instead use units of counts/(x monitor counts) where

x is the total incident flux measured for each point by the upstream detector. Since
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different scans on the same experiment often carry different counting times, a trivial

normalization can be performed whereby the intensity of each scan point is multiplied

by the appropriate prefactor such that these intensities would all correspond to the

same total incident flux. For example, scan intensities collected for 20,000, 30,000 and

60,000 monitor counts could, for instance, be multiplied by 3, 2, and 1 respectively.

Such a procedure allows the experimenter to arbitrarily normalize the data set so

that it is possible to fairly cross compare the intensities of different scans within that

particular experiment(though not with others.)

When absolute units are desired on triple axis data, then the most often used

approach is to map out a transverse acoustic low energy phonon and use the

known differential one-phonon scattering cross-section in the long wavelength limit

to normalize the data [112]:

∂2σ

∂Ω∂E
= A

~2N

2E(q)

kf
ki

(n(ω) + 1)(κ · eqs)
2e−2W 1

M
|G(τ | ∂(E − E(q)) (1.61)

where the momentum transfer of the neutron κ and the reduced wave vector q are

related by the lattice vector of the associated phonon mode by κ = τ + q, N is the

number of unit cells, M is the mass of an individual unit cell, ki and kf are incident

and final neutron wavelengths, eqs is a unit vector in the direction of the displacement

of the atoms for the phonon mode, E(q) is the energy of the phonon mode, (n(ω)+1)

is the Bose population factor, e−2W is the Debye-Waller factor (approximated as 1),

G(τ )is the nuclear structure factor and A is the spectrometer dependent constant to

be determined.

Once A has been determined, this value can be used in the cross-section for

paramagnetic scattering to calculate the dynamic susceptibility in absolute units:

∂2σ

∂Ω∂E
= A

(γr0)2

4

kf
ki
N |f (κ)|2 e−2W (n(ω) + 1)

2

πµ2
B

χ′′(κ, ω) (1.62)

where f(κ) is the isotropic, magnetic form factor for (in our work) Fe2+.
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At ISIS, where all of the time of flight data within this thesis was performed,

collected data is normalized by the local contact to a vanadium standard as standard

operating procedure. The benefit of vanadium is that the scattering cross-section is

dominated by the incoherent contribution,
σVinc
σVcoh

= 250 (whereas, for comparison, the

ratio for iron is
σFeinc
σFecoh

= 0.035.) Moreover, since the elastic incoherent total scattering

cross-section for vanadium is well known (σinc
4π

)V = 404mbarn
s.r.

this provides us with

a straight forward means of normalizing to absolute units the scattering from the

sample AN sampleS(Q, ω) = I(Q, ω)sample using the elastic incoherent cross-section of

the vanadium AN van(σinc
4π

)van = Ivan. Where, N van and N sample are the number of

unit cells in the vanadium standard and the sample respectively, Ivan and Isample

are the spectrometer intensities, and A is the spectrometer dependent constant to be

removed. Equating these gives:

S(Q, ω) =
(σinc

4π

)van N van

N sample

Isample(Q, ω)

Ivan
(1.63)

Since the spectrometer prefactor A is a function of both Ei and chopper frequency ω,

this requires that monochromatic vanadium scans be performed for all of combinations

of Ei and ω that data was collected at. As well, a single white beam vanadium scan

is used to account for variation in the detector efficiencies.

1.5.3 Resolution Calculations and Model Convolution

Resolution is an important concern in neutron scattering. Especially given that many

measurements correspond to scattering processes characterized by infinite lifetimes,

such as undamped spin waves, or infinite spacial correlation, such as long range

ordered magnetic Bragg peaks. As a result, the (Q, ω) dependence takes the form

of delta functions in the associated cross-sections. Thus, in the far limit of infinite

correlation, we see that such measurements return resolution limited peak widths.

More generally, resolution must be taken into account in order to correctly separate
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resolution broadening from intrinsic broadening processes (damping, disorder, glass

phases, etc.) when fitting models to the data.

A simple, experimental estimate of the energy resolution can be obtained at (Q,

0) by performing an energy scan centered at E=0. Since the elastic background

scattering is orders of magnitude stronger than inelastic background scattering, this

results in a resolution limited peak at E=0, Fig. 1.13. Likewise, a similar experimental

estimate of the Q-resolution can often be obtained at (QB, 0) where QB is a resolution

limited Bragg peak. In order to determine the resolution at a general location in

(Q0, ω0), resolution calculations are required.

In triple axis experiments, the resolution function is described by a 4D Gaussian

distribution with dimensions (ω,Q) projected into the 4-vector L =
(
mn
~Qω,Q‖, Q⊥, Qz

)
and parameterized in terms of the spectrometer quantities that contribute to the

resolution width: mosaics of the sample, monochromator and analyzer crystals,

the full-width at half maximum of the transmission functions associated with the

collimators, incident and final neutron average wave vectors, and the ”‘handedness”’

of the spectrometer configuration. The resolution function can be written in the form

of a matrix multiplied on either side by the 4-vector ∆L [112]:

R(ω − ω0,Q−Q0) = R0 exp (−1

2
∆LM∆L ) (1.64)

where

∆L =

(
mn

~Q0

(ω − ω0), Q‖ −Q0, Q⊥, Qz

)
(1.65)

Here ω0 and Q0 define the location where the resolution is calculated. For the

components of Q0 inside the scattering plane, Q‖ is defined as the in plane component

along Q0 and Q⊥ as the in plane component perpendicular to Q0, Qz is the out of

plane component. M is a 4x4 matrix (see appendix A of [112]) and mn is the mass

of the neutron. Constant intensity contours are given by fixing the argument of the

exponential in Eq. 1.64. These contours take the form of 4D ellipses which can be

projected out onto the scattering plane to establish resolution widths at a particular
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Figure 1.13: a) Example of an experimental determination of elastic energy resolution
based on an E-scan of the elastic line about E=0. b) Triple axis spectrometer with
labeled quantities that contribute to the resolution: 4 collimations, 3 mosaics, 2
neutron wave vectors, 1 spectrometer handedness. c) Example of two resolution
ellipses at equivelant positions along an acoustic phonon dispersion centered on
an (0,0,4) nuclear Bragg peak. d) The resulting intensity and linewidth difference
of the two equivalent peaks results from one resolution ellipse lying more or less
perpendicular to the dispersion line while the other lies along it.

(Q0, ω0) or, leaving the argument unfixed, the resolution function can be convolved
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with a fitting model to describe the observed flux at the detector Fd(ω0,Q0):

Fd(ω0,Q0) = φ(k̄i)

∫
dωdQR(ω − ω0,Q−Q0)S(Q, ω) (1.66)

where φ(k)dk is the number of neutrons incident on C0 (see Fig. 1.13) and k̄i is the

average incident neutron wave vector.

Since the 4x4 matrix M contains non-vanishing off diagonal terms, this results in

the axis of the resolution ellipses and axes defined by ω0 and Q0 to lay at non-parallel

angles. In general, the orientation of the resolution ellipse can have a pronounced

effect on the observed intensities and line widths since they effectively represent an

integration volume. Acoustic phonon measurements are a good example of this in

practice. Measurements at two equivelant positions along the phonon dispersion

at low energies would give two nearly identical resolution ellipses. However, the

orientation of the ellipses will integrate a different length of the dispersion at these

equivalent positions, thereby leading to non-equivalent line widths and intensities,

Fig. 1.13. Presently, there are several software packages that allow the user to input

the resolution parameters and quickly extract out resolution widths or perform model

convolution.

In time of flight analysis, model convolution is complicated by the size of the

task. Unlike a triple axis spectrometer which consists of a single analyzer, time

of flight spectrometers consist of several thousand position sensitive, time resolved

detectors covering a large region of (Q, ω) space. For a given detector, kinematic

formulas relating pulse widths, flight times, flight paths and incident energies allow

for fairly straightforward calculations of the resolution. Additional contributions to

the resolution stem from the finite size of the detectors, moderator, and sample. It

is also possible to include the mosaic of the crystal in the calculation, although it

was not included in our work and does not contribute substantially. The chopper

and moderator contributions can be summed in quadrature to get the total energy
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Figure 1.14: Time of flight spectrometer with labeled quantities that contribute to
the resolution: 3 spacial spans, 2 flight paths, 2 pulse widths, 2 energies

resolution [130]:

∆E =
√

(∆Em)2 + (∆Er)2 (1.67)

where
∆Em

Ei
=

2

L1

(
2Ei
mn

) 1
2

∆tm (1.68)

and
∆Er

Ei
=

2

L1

(
2Ei
mn

) 1
2

∆tr

[
1 +

(
Ei − E
Ei

) 3
2 L1

L2

]
(1.69)

here ∆tm and ∆tr are the durations of the moderator and chopper neutron pulses

respectively, L1 and L2 are the moderator to sample and the sample to detector

distances respectively, and mn is the mass of the neutron.

Resolution broadening of models is achieved using a Monte-Carlo approach. In

brief, to calculate the convolved model at S(Q, E), we begin by considering a given

detector with nominal energy transfer, E, and wave vector Q. Since the data is

collected and sorted into energy bins, a random energy transfer, E ′, is chosen from a

uniform distribution with length equal to the energy bin size. A random deviation in
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the incident energy, ∆Ei, is chosen from a Gaussian distribution centered about the

nominal Ei with a width equal to the energy resolution at the sample. A deviation

from the final energy ∆Ef can be calculated from ∆Ei based off of results from Eq.

1.68. The actual energy transfer is then given by E ′′ = E ′+∆Ei−∆Ef . Positions on

the moderator, detector and crystal are then chosen from a uniform distribution and

used along with the above energy results to calculate the actual momentum transfer

Q′ using the appropriate kinematics and geometry. A single Monti Carlo point is

then constructed by passing Q′ and E ′′ into the model Sn(Q′n,E ′′n). Additional Monti

Carlo points for the detector can be collected by starting the entire procedure all

over again. The convolved cross-section at detector d is then taken as the mean of

the Monti Carlo points: Sd(Q,E)=mean[Sn(Q′n,E ′′n)]. After this process loops over all

detectors, the results are binned into pixels in reciprocal space and the model is then

ready to be passed, along with the data, into a fitting routine.

Due to the sheer number of detectors, this iterative Monti Carlo procedure is

very costly in terms of processor time. As a result, fitting complicated, non-analytic

models cannot always be achieved due to the time required for convergence of the

fitting routine to minima in reduced χ2. In such cases, one is relegated to searching

through parameter space by hand, using an unconvolved cross-section, in order to

approximate the correct parameters and then convolve the cross-section with these

parameters fixed. In my first author work, we considered a Heisenberg model with

an analytic form. Hence, we were able to run fits with a convergence time of roughly

5 minutes. However, on coauthor work, the system at hand required that for each

location in reciprocal space, we diagonalize an 8x8 matrix to extract out the intensity

of the four doubly degenerate dispersion branches at that location. In this case,

overnight runs were still insufficient to achieve convergence.

To get a single resolution width at a particular location, (Q0, ω0), in reciprocal

space, we convolve a Gaussian centered at (Q0, ω0) with a FWHM set extremely close

to zero. We then taken the resulting broadened FWHM of the convolved Gaussian
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as our resolution. For our time of flight data analysis, the software TobyFit [95] was

used for model convolution and fitting.

1.6 Motivation of Thesis

Within this introduction I have discussed in some detail the aspects of the Fe-based

systems that make them highly interesting for neutron scattering studies. First,

superconductivity exists in close proximity to long range antiferromagnetic order

with tuning between phases achieved via doping. Second, the short range magnetic

excitations that persist into the SC phase contain a resonant excitation that is strongly

correlated to Tc. The fact that these two features are also present in both the

heavy Fermions and the cuprates provides strong evidence that the unconventional

superconductivity observed in all these systems is coupled in a fundamental manner

to the magnetic degrees of freedom. However, beyond this general statement lies a

host of details that can potentially vary from system to system: What differences exist

between superconductivity derived from an itinerant magnet versus a local moment

system? How do different long range orders (G-type AFM vs. stripe AFM vs FM,

etc.) affect the magnetic excitations and, in turn, the superconductivity? Can the

source of differences between families be identified and categorized with respect to

one another, ie: pnictides vs closely related chalcogenides vs less related cuprates vs

even more distantly related heavy Fermions? How important is dimensionality to

unconventional superconductivity?

In order to answer these broader questions, it is first necessary to answer more

immediate questions associated with the Fe-based superconductors. At the start of

my thesis, very little was known about the physics of these system. Early on, Fermi

surface nesting and the metallicity suggested that the magnetism was itinerant in

origin. However, since then, it has become increasingly clear that corellations play

an important role in defining the magnetic groundstate. Moreover, at the start of

my work, there existed no systematic studies of the effect of doping on the magnetic
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excitations. Thus, neither the origin of the magnetism nor the evolution of magnetic

excitations in doped derivatives were in hand. This is equally true for both the

Chalcogenides and Pnictides. Hence, similar studies on both of these classes were

needed in order to acquire a comprehensive picture of the Fe-based superconductors.

Only after these measurements had been performed and there results compiled would

it be possible to do a sweeping review covering commonalities and differences between

the cuprates, heavy Fermions, and Fe-based systems.

As more has been learned about these new systems, the motivation to study their

properties has stretched beyond attempts to only fit the Fe-based superconductors

into a larger canvas consisting of multiple unconventional superconducting families. It

has been said that the asymptotic solutions come quickly and the deeper physics lies

in between. This is never truer than in magnetism where the (fairly well understood)

local and itinerant end solutions are situated in between a broad spectrum of potential

magnetic states that offer a rich variety of physics. It now appears that somewhere

within this middle lies the correct mix of driving interactions that give rise to the

magnetism the Fe-based systems. Thus, the chance to explore part of this more

complex realm and shed light on the underlying physics is of interesting in itself.
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Chapter 2

Pnictides

2.1 Magnetic Excitations in the BaFe2As2 Parent

2.1.1 Introduction

By the start of my work on the Ba(122) parent, a host of neutron scattering

experiments had been carried out on the pnictides. A large portion of these studies

had focused on the Ba-based (122) family. However, almost all of these experiments

studied spin excitations in either optimally or under doped superconductors [10, 70, 9],

with little investigation given to the spin wave excitations in the parent compound

[26, 79]. A comprehensive study of spin excitations up to the zone boundary had

been hindered due to the difficulty in growing the large amounts of single crystals

required for inelastic neutron scattering experiments.

Understanding the magnetic exchange coupling and fundamental Hamiltonian of

the parent compound of FeAs-based superconductors is extremely important, because

such information will lay the foundation from which to analyze the evolution of spin

excitations as the parent is doped away from its long range ordered groundstate.

For example, as discussed in the introduction, spin waves in the parent compound

of cuprates can be described very well by local moment Heisenberg Hamiltonian

[16]. Since the parent compound of FeAs-based superconductors are semimetals,
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much has been debated about the microscopic origin of the magnetism in these

materials. Although recent measurements by our group on CaFe2As2 at the MERLIN

spectrometer at ISIS [144] suggested that spin excitations in this material have

both local and itinerant features, it is not clear that these features are a general

property of all parent compounds of pnictides. Indeed, studies of pressure induced

superconductivity in AFe2As2 have demonstrated that the maximum Tc of the parents,

as well as the range of pressures that sustain superconductivity, increases with

the ionic size of A. Studies by Kimber et. al. and others provide evidence that

the structural effects of applying pressure are identical to those that result from

chemical doping. Namely, both methods of tuning into superconductivity suppress

the structural phase transition and decrease the As-Fe-As bond angle as well as the

Fe-Fe distance with the end result being that the structural changes to the FeAs layer

reduces nesting and destabilizes the SDW ground state [56]. Given that Ba, Sr, and

Ca all have very different sizes and in light of the existing relationships between ionic

size, Tc, and structural distortions, cross studies of all (122) parents would be very

interesting in order to sort out how spin excitations differ between them. As such,

our study would also probe the lattice effect on magnetic exchange couplings along

the c-axis and since Ba is considerably larger than Ca, it would be important to

determine whether Ba(122) has a weaker or stronger c-axis coupling compared with

Ca(122).

Additional motivation for studying BaFe2As2 arose because the existing triple-axis

work on single crystals [79] was not fully consistent with time-of-flight measurements

on powder samples [26]. Specifically, triple axis measurements up to 30meV energy

transfer by Matan et. al. found evidence of anisotropic scattering that they attributed

to electron hole excitations at the edge of the Stoner continuum [79]. No such Stoner

excitations were observed in time of flight Ba(122) powder measurements that extend

to 100meV or time of flight Ca(122) [144] measurements up to 300meV. Since we

had grown and coaligned 25g of single crystals, we had the necessary mass to probe

excitations all the way to the zone boundary and conclusively settle this discrepancy
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in the literature, fully determine the effective exchange couplings, and compare our

Ba(122) results with existing similar data on Ca(122).

For our experiment we grew our single crystals at the Institute of Physics in

Bejing and coaligned these using the triple axis spectrometer HB-1 attached to the

High Flux Isotope reactor at Oak Ridge National Laboratories. Time of flight data

was then collected using the MAPS spectrometer attached to ISIS at the Rutherford

Appleton Laboratories. The sample was aligned with the c-axis parallel to the beam

allowing for four folding of data in-plane at the expense of spectrometer coupling of

the energy transfer and the out of plane direction L. The sample was placed in a closed

cycle refrigerator and data collection was carried out at three different temperatures,

7K, 125K, and 150K corresponding to scattering deep inside the ordered state, and

scattering 10% below and 10% above TN respectively.

2.1.2 7K Data and Model

Upon review of our data it became immediately clear that the spin wave scattering

in BaFe2As2 in the low temperature, long range magnetically ordered state was very

different in character from that observed in CaFe2As2 [40]. To illustrate the dramatic

difference, we show in Fig. 2.1 constant-energy images of the spin waves for these two

materials. Since the AF structure, twinning, and lattice structure of BaFe2As2 and

CaFe2As2 are identical, one would naively expect that the structure of the scattering

and effective AF exchange couplings in these materials would be similar. Inspection

of Fig. 2.1 reveals that instead, at higher energies the spin waves of BaFe2As2 at

E = 144±15meV no longer form a ring centered around the AF ordering wave vector

as in the case of CaFe2As2.

Previous modeling of the spin wave data in CaFe2As2 was performed using a

Heisenberg Hamiltonian consisting of effective in-plane nearest-neighbors [Fig. 2.5,

J1a and J1b], next-nearest-neighbor [Fig. 2.5, J2], and out-of-plane (Jc) exchange
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Figure 2.1: a) Constant energy cuts of the spin wave excitations at 7K for BaFe2As2

and CaFe2As2 in absolute units within the first Brillouin zone. The data for CaFe2As2

and BaFe2As2 are from Ref. [40] and [144] respectively.

interactions. The dispersion relations are given by

E(q) =
√
A2
q −B2

q (2.1)

with

Aq = 2S{J1b[cos(πK)− 1] + J1a + Jc + 2J2 + Js}

Bq = 2S[J1a cos(πH) + 2J2 cos(πH) cos(πK) + Jc cos(πL)]
(2.2)

here Js is the single ion anisotropy constant, and q the reduced wave vector away

from the AF zone center. The neutron scattering cross section can be written as

d2σ

dΩdE

kf
ki

(r0

2

)2

f 2(Q)e−2W
∑
αβ

(δαβ −QαQβ)Sαβ(Q, E) (2.3)

57



(r0/2)2 = 72.65mb/sr, g is the g factor (≈2), f(Q) the magnetic form factor of iron

Fe2+, e2W the Debye-Waller factor (≈ 1 at 10 K), Qα the α component of a unit

vector in the direction of Q, Sαβ(Q, E) the response function that describes the αβ

spin-spin correlations, and ki and kf incident and final wave vectors of the neutron,

respectively. Assuming that only the transverse correlations contribute to the spin-

wave cross section, and finite excitation lifetimes can be described by a damped simple

harmonic oscillator with inverse lifetime Γ, we have

Syy(Q, E) = Szz(Q, E) = Seff
(Aq −Bq)

E0(1− eE/kBT )

4

π

ΓEE0

(E2 − E2
0)2 + 4(ΓE)2

(2.4)

where kB is the Boltzmann constant, E0 the spin-wave energy, and Seff the effective

spin. In general, the Heisenberg model forms a cone like dispersion propagating out of

the AFM wave vector that folds over at the zone boundary (see Fig. 1.4 e). As a result

the in-plane scattering forms ellipses centered around QAFM that grow larger with

increasing energy transfer. In CaFe2As2 this is exactly what was observed and the

above model was used with great success to fit the intensity across all of (Q, E) Fig.

2.2 [144]. Although the low energy excitations in BaFe2As2 below 100meV also form

similar rings, above this energy transfer the excitations break apart into two separate

regions of scattering that then translate along the K-direction with increasing energy

transfer until finally forming a ring around the zone boundary at (1, 1) along with

equivalent scattering regions from the twin domain (Fig. 2.3).

A staightforward way to interpret these data is to assume that spin waves along the

(1, 0) direction are heavily damped and no longer observable for BaFe2As2. Assuming

isotropic spin wave inverse lifetime Γ, we were unable to find any effective exchange

couplings that will describe the entire spin wave spectra as shown in Fig. 2.3. To

resolve this problem, we have used an anisotropic spin wave damping Γ assuming

Γ(H,K) = Γ0 + Γ1E + A[cos(
πH

2
)]2 +B[cos(

πK

2
)]2 (2.5)
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Ca(122)
a) b)

Figure 2.2: a) 2D Constant-energy slices of spin wave data in CaFe2As2. Each
consecutive panel shows a slice at a higher energy transfer. At energies below 50meV
(top left panel) the scattering is centered at the AFM wave vector, as the energy
transfer increases the scattering spreads out into well formed ellipses that track the
cone like dispersion of spin waves. Upon approach of the zone boundary at 175meV
(bottom right panel) the scattering becomes very diffuse with maxima at the zone
edge. The third panel in the top row includes an arrow showing the direction that
1D cuts were made in b) The lines overplotting the data in b) are global fits to the
Heisenberg model described in the text with a Q-isotropic damping Γ = Γ0+(slope)·E
[144].

where A and B are parameters controlling the magnitude of the spin wave damping.

For the best fit to the spin wave data, we have Γ0 = 32±10.6, Γ1 → 0, A = 51.9±9.0,

B = 27.8±7.3 with magnetic exchange couplings as listed elsewhere in the main text.

In general, the spin wave cross-section is resolution limited (ie: spin waves

propagate with infinite lifetime) for a fully local moment system where the Heisenberg

model is the true microscopic Hamiltonian describing the physics of the system. This

is observed in the Cuprates everywhere in (Q,E) except at (1/2, 0) [44] where the

spin waves were predicted prior to measurement to decay into spin 1/2 quasiparticles

at sufficiently high energy (Fig. 1.4 b,d) due to the coexistence of the Neel order with
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Figure 2.3: Constant energy slices of the 7K spin wave data for BaFe2As2. a) At lower
energies the scattering forms an ellipse centered around the AFM wave vector much
like CaFe2As2. b) At intermediate energy transfers the scattering breaks apart along
the H-direction to form two mirror image rods (ie: L independent) of scattering above
and below the H-axis. These rods translate along the K-direction with increasing
energy transfer. c) At high energies the scattering combines with contributions from
twinned domains to form a ringlike excitation about the zone boundary. Above the
zone boundary (not shown) the scattering stretches out in a long damping tail and
fills in to form a single center of scattering at (1,1).

other magnetic correlations not captured by spin wave theory [1, 106, 46]. Due to

the itinerant nature of the pnictides it is expected that electron-electron interactions

will create multiple decay paths for the spin waves at all (Q,E). For CaFe2As2 it was

sufficient to replace the spin wave delta function in the cross-section with a damped

harmonic oscillator and use a damping Γ that was isotropic in Q but grew linearly with

increasing energy. For a given 2D (H,K) constant-energy slice, this damping takes the

elliptical pattern of scattering and smears it isotropically so that the overall structure

of the scattering is preserved but only broader. Since BaFe2As2 damps much heavier

along H, the isotropic form failed and we were require to incorporate an anisotropic

damping. The form chosen was purely empirical and consisted of appending to the

original isotropic damping Γ0 + Γ1E two new terms whose form was chosen to be as
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simple as possible within the restrictions that it satisfy the periodicity of the magnetic

scattering and take only non-negative values: A[cos(πH
2

)]2+B[cos(πK
2

)]2. Surprisingly,

even this very simplistic inclusion of damping anisotropy resulted in dramatically

better fits of the data. Comparison of Fig. 2.3 and Fig. 2.5 c) demonstrates how

the ring like scattering is broken up and follows an identical pattern as observed

in our data when this anisotropic damping is included. Although our form for the

Figure 2.4: a) Comparison of a normalized RPA calculation from Ref. [52] and our
data. Given the normalization correction, RPA appears to fit the data.

anisotropic damping is completely empirical, the origin can be understood in terms

of excitations across the Fermi surface. Recent RPA calculations (Ref. [52]) of the

particle-hole excitation spectrum reveal that these excitations are also anisotropic;

however, they are suppressed below 200 meV due to a partially opened gap in the

density of states at the Fermi energy. In BaFe2As2, we found experimentally that

the anisotropic damping switches on around 100 meV. This would imply that the
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200-meV pseudogap is overestimated by about a factor of two in their study. Thus,

by renormalizing the particle-hole excitation spectrum to this experimental threshold

value and taking the damping intensity to be in correspondence with this particle-hole

spectrum, it may be possible to replace our phenomenological damping function with

a more theoretically sound counterpart. To test this relationship, the energy of the

RPA calculation was scaled by 0.6, and the spin-wave band intensity was determined

along the H and K directions. Upon direct comparison with our data, we find that

both the dispersion and anisotropic intensity are in excellent agreement with theory

(see Fig. 2.4). Hence, this implies that the pseudogap in the density of states strongly

influences the observed spin-wave scattering. Indeed, in CaFe2As2, a similar threshold

value of 100 meV was originally determined but with strong Q-isotropic damping

Γ(E) appearing above this energy (Ref. [24]), leading the authors to conclude that

the pseudogap may have provided a low energy window for the formation of local

moment excitations that can be well described by the Heisenberg model, but that

above this value the excitations quickly evolved into a Stoner picture. Later studies

on CaFe2As2 revealed that well-defined spin-waves could still be observed out to the

zone boundary, thereby ruling out a quick evolution into a Stoner continuum above

100 meV (Ref. 7). Nonetheless, both studies support an increase in itinerancy as a

function of energy, consistent with the idea that the pseudogap drives a transition

from local moment to itinerant physics, but with particle-hole excitations favoring the

AF direction. Since no damping anisotropy was observed in CaFe2As2, it is possible

that the pseudogap is larger than the spin-wave bandwidth in this system. As a

result only Q-isotropic damping from electron-magnon interactions are visible. In

regards to SrFe2As2, after finishing the present work, we became aware of a related

neutron scattering work on this compound, where strong magnetic anisotropy was

also reported. Although the authors prefer to use an itinerant approach to interpret

their data, the central conclusion is consistent with results present in our paper.
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2.1.3 Resolution Convolved Model Fitting

Describing our data with an effective Heisenberg model required fitting simultaneously

11 parameters: Intensity I, the in-plane nearest neighbor exchange coupling J1a,

the in-plane next nearest neighbor exchange coupling J1b, the in-plane next next

nearest neighbor exchange coupling J2, the out of plane exchange coupling Jc, the

anisotropy gap Js, the linear coefficients for an isotropic damping contribution Γ0 and

Γ1, the trigonometric coefficients for an anisotropic damping contribution A and B,

and finally a possible additional gap parameter appended to the dispersion ∆. Due

to this exceedingly large number of parameters, it would be extremely time intensive

and virtually impossible to run fits based on random starting parameters. This is

exacerbated by the fact that each fit is performed globally over approximately 50

cuts through S(Q,E) all of which must be convolved with the instrument resolution

in advance. To manage this task, the fitting was carried out systematically from three

different starting points. The control flow for each process is shown in Fig. 2.6 and

are labeled as A, B, and C. To begin, an unconvolved model was built in Matlab that

allowed all parameters to be fixed but one. The model could then run as a movie

where each frame corresponded to a slight increase in this free parameter. In this

way, it was possible to get an overview on how each parameter effected the model.

This approach, corresponding to Route B in the control flow, allowed us to get a first

estimate of parameters from scratch. As well, it was discovered that Js has virtually

no effect on the model. As a result, this parameters value was set to the value of Js

= 0.084 meV determined by an earlier group studying powders up to ≈100meV [26].

Also, the gap parameter ∆ only effected the scattering at extremely low energies, and

as such, had little effect on the exchange couplings whose values were governed by

scattering over a much larger range of energies. Moreover, the model is often written

excluding this gap parameter and since our time of flight data was mostly lacking in

the range where this value contributed the most we began by setting it to ∆ = 0.

After the full analysis had been done, this parameter was then freed up at multiple
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Figure 2.5: (Figure on next page.) a) The AF Fe spin ordering in BaFe2As2 with the
magnetic exchange couplings J1a , J1b, J2 along different directions. b) Temperature
dependence of the resistivity in detwinned BaFe2As2 (from Ref. [12]). The inset is a
plot of the resistivity for the twinned sample used in our neutron measurements with
the blue points corresponding to T = 7, 125, and 150 K. (c) Color plots describing
qualitatively how the spin wave scattering evolves from Q = (1, 0) to (1, 1) as a
function of energy using an anisotropic damping Γ. The solid black contours are an
overlay of the same model with identical exchange coupling parameters but with no
damping. The exchange couplings used are from best fits of the data. d) Color plot of
the anisotropic damping Γ, which is much stronger along the H direction than along
the K direction. (e) Spin wave dispersion along the (1, K) direction as determined
by energy and Q cuts of the raw data below and above TN . The solid line is a
Heisenberg model calculation using anisotropic exchange couplings SJ1a = 59.2±2.0,
SJ1b = −9.2±1.2, SJ2 = 13.6±1.0, SJc = 1.8±0.3 meV determined by fitting the full
cross-section. The dotted line is a Heisenberg model calculation assuming isotropic
exchange coupling SJ1a = SJ1b = 18.3± 1.4, SJ2 = 28.7± 0.5, and SJc = 1.8 meV.
f) Dispersion along the (H, 0) direction; data points beyond H = 1.4 could not be
reliably obtained due to strong damping at higher energies. The red shading stresses
how the damping grows as a function of H. Error bars are systematic and represent
the difference between Q and E cut dispersion points. The statistical error of the Q
and E cuts are much smaller.
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steps in the fitting procedure and we discovered that the convergence of χ2 was only

improved by 1%. Thus, we chose to discard the very small χ2 reduction in favor of a

simplified model with one less parameter.

To handle the remaining 9 parameters, the fitting procedure was broken up into

two parts. First, dispersions were extracted from Q-cuts (Route A) and E-cuts (Route

C) along both the high symmetry (H,0) and (1,K) directions. Since the dispersions

are intensity and damping independent, this allowed us to perform unconvolved global

fits of them using only the 4 exchange couplings as free parameters. The exchange

couplings determined from earlier powder measurement up to ≈100meV on BaFe2As2

[26] were used as starting parameters. This was cross-checked using the exchange

couplings on single crystals of CaFe2As2 up to ≈200 meV as the starting parameters.

Both sets of starting parameters converged to the same values. These dispersion fitted

exchange couplings were then passed back into the unconvolved Matlab model and

estimates of the intensity, Jc, and damping coefficients were determined by hand. In

this way, it was possible to put together three sets of starting parameters to use in the

resolution convolved fitting that was carried out globally over the approximately 50

cuts: starting parameters based primarily on A) E-cut dispersions, B) Estimations

by hand, C) Q-cut dispersions. Tobyfit was used to carry out the final resolution

convolved fitting in each case. It was found that Route A and B gave almost identical

results while Route C converged to a different best fit with a higher χ2. It was

expected in advance that the starting parameters based off of Q-cut dispersions would

lead to a poorer fit since Q-cuts cannot resolve the roll-over of the dispersion at

the zone boundary due to a large damping tail that extends up to 300meV. Fitting

parameters from route A were chosen as our reporting values since they corresponded

to the fitting path that relied on the least adjustments by hand. Figs. 2.7a) - e) show

two-dimensional constant-energy (E) images of spin-wave excitations of BaFe2As2 in

the (H, K) scattering plane for several Brillouin zones at L = 1, 3, 5, and 7. For

energy transfers of E = 26 ± 10 [Fig. 2.7 a)] and 81 ± 10 meV [Fig. 2.7 b)], spin

waves are still peaked at Q = (1, 0) in the center of the Brillouin zone, shown as
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Figure 2.7: (Figure on next page.) Wave vector dependence of the spin waves for
energy transfers of (a) E = 26 ± 10 meV [Ei = 450 meV and Q = (H, K, 1)]; (b)
E = 81 ± 10 meV [Ei = 450 meV and Q = (H, K, 3)]; (c) E = 113 ± 10 meV
[Ei = 450 meV and Q = (H, K, 5)]; (d) E = 157 ± 10 meV [Ei = 600 meV and
Q = (H, K, 5)]; e) E = 214 ± 10 meV [Ei = 600 meV and Q = (H, K, 7)] f) The
projection of the spin waves on the energy transfer axis and (1, K) direction (with
integration of H from 0.8 to 1.2 rlu) after subtracting the background integrated from
1.8 < H < 2.2 and from −0.25 < K < 0.25 with Ei = 450 meV. The color bar
scales represent the absolute spin wave intensity in units of mbarn·sr−1·meV−1·f.u.−1

and the dashed boxes indicate zone boundaries. The missing low-energy data in (f)
is due to imperfect data subtraction. (g)-(l) Model calculation of identical slices as
in (a)-(f) using anisotropic exchange couplings from best fits and convolved with the
instrumental resolution.
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Figure 2.7: Caption on previous page.
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dashed square boxes. As the energy increases to E = 113± 10 [Fig. 2.7 c)], 157± 10

[Fig. 2.7 d)], and 214 ± 15 meV [Fig. 2.7 e)], spin waves no longer form ellipses

centered around Q = (1, 0). Instead, they start to split along the K direction and

form an anisotropic and asymmetric ring around Q = (±1,±1), in stark contrast with

the spin waves at similar energies seen in CaFe2As2 [Fig. 2.2 a)]. To understand the

low-temperature spin waves in BaFe2As2, we cut through the two-dimensional images

similar to Fig. 2.2. Figures 2.5 e) and f) show spin wave dispersions along the (1, K)

and (H, 0) directions, respectively. Figure 2.7 f) shows the background subtracted

scattering for the Ei = 450 meV data projected in the wave vector (Q = [1, K]) and

energy space. Similar to spin waves in CaFe2As2 [144], we can see three clear plumes

of scattering arising from the in-plane AF zone centers Q = (1, -2), (1, 0), and (1, 2)

extending up to about 200 meV. After failing to fit the entire spin wave spectra in Fig.

2.7 using a Heisenberg Hamiltonian with an isotropic spin wave damping parameter Γ

[black curves in Fig. 2.5 c)] we included the anisotropic spin wave damping discussed

above [Fig. 2.5 d)] that produced an energy dependence of the spin wave profiles [color

plots in Fig. 2.5 c)] that is qualitatively similar to what we observe [Figs. 2.7 a)-e)].

Using the Q-dependent damping Γ(H, K), we were able to fit the entire measured

spin wave excitation spectra in absolute units by convolving the neutron scattering

spin-wave cross section with the instrument resolution. The effect of twin domains

is taken into account by a/b averaging. Consistent with earlier results on CaFe2As2

[144], we find that the Heisenberg Hamiltonian with SJ1a ≈ SJ1b ≈ 1
2
SJ2 fails to

describe the zone boundary data [Fig. 2.5 e)]. Our best fits to both the low-energy

and zone boundary spin waves are shown as solid lines in Fig. 2.5 e), f) and color

plots in Fig. 2.7 g) - l) with SJ1a = 59.2±2.0, SJ1b = 9.2±1.2, SJ2 = 13.6±1.0, and

SJc = 1.8± 0.3 meV. Comparing the above fitted results for BaFe2As2 with those for

CaFe2As2, we see that while the in-plane effective magnetic exchanges (SJ1a, SJ1b)

are very similar in these two materials, there is 30% reduction in SJ2 when Ca is

replaced by the larger Ba and the c-axis exchange coupling is reduced considerably

(from SJc = 5.3 ± 1.3 meV for CaFe2As2). In brief, while one can see clear spin
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wave ellipses centered around Q = (1, 0) in CaFe2As2 at all energies, spin waves in

BaFe2As2 are heavily damped along the a-axis direction and become hardly observable

for energies above 100 meV, consistent with the random phase approximation (RPA)

calculations discussed earlier [52]. This leads to very different scattering profiles

between these two parents. However, despite their distincly different patterns, the

same model can be used after inclusion of an anisotropic damping with the final

exchange couplings that are quite similar in the two systems.

2.1.4 Magnetic Excitation across the Phase Transition; 125K

and 150K

Having demonstrated that BaFe2As2 exhibits a large spin anisotropy in the low

temperature orthorhombic, magnetically ordered phase (LTO), it is important to

determine if this spin anisotropy also exists in the high-temperature tetragonal phase,

where the underlying crystal lattice structure has C4 rotational symmetry. In a

recent work on CaFe2As2, spin excitations in the paramagnetic tetragonal phase were

found to have a similar spatial line shape as those of the low-temperature spin waves

below 60 meV (Ref. [23]). These anisotropic short-range AF fluctuations can be

interpreted as frustrated paramagnetic scattering. If the observed large anisotropy

of SJ1a and SJ1b for BaFe2As2 (Figs. 2.5 and 2.7) and CaFe2As2 (Ref. [144]) in the

LTO phase becomes isotropic (SJ1a = SJ1b) in the paramagnetic tetragonal phase,

one would expect a huge softening of the zone boundary spin waves upon entering

into the tetragonal phase [see dotted lines in Fig. 2.5(e)], which we do not observe.

Figure 2.8 summarizes the temperature dependence of the spin wave excitations at

temperatures of 0.05TN , 0.93TN , and 1.09TN . For spin wave energies of E = 50± 10

and 75 ± 10 meV, we confirm the earlier result [23] on CaFe2As2 and find that spin

excitations above TN are weaker and broader than the spin waves below TN [Figs.

2.8(a) - (f)]. However, spin waves at energies of E = 125 ± 10 and 150 ± 10 meV

have virtually no temperature dependence of their intensity and line shape across
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Figure 2.8: (a)-(c) Spin waves of E = 50± 10 meV; (d)-(f) E = 75± 10 meV; (g)-(i)
E = 125±10 meV; and (j)-(l) E = 150±10 meV for temperatures of T = 7, 125, and
150 K. The dashed curves show fixed reciprocal space sizes at different temperatures.
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the AF orthorhombic-to-paramagnetic tetragonal phase transition [Figs. 2.8(g) - (l)].

Therefore, spin excitations near the zone boundary do not exhibit huge softening in

the paramagnetic state, which implies that the large in-plane exchange anisotropy

persists above TN without spin frustration. To test whether the observed scattering

above TN indeed arises from localized spin excitations similar to the spin waves below

TN and not from paramagnetic scattering centered at zero energy, we carried out

energy cuts of the spin excitations at different positions of the dispersion, as shown

in the inset of Fig. 2.9(a).

Near the Brillouin zone center at Q = (1, 0.05) and (1, 0.2), well-defined spin waves

are observed at E = 32 and 50 meV, respectively [blue diamonds in Figs. 2.9(a) and

(b)], in the AF ordered state. Upon warming to the paramagnetic tetragonal state

T = 1.09TN , the spin wave peaks disappear, and spin excitations become purely

paramagnetic with their highest intensity centered at zero energy [red circles in Figs.

2.9(a) and (b)]. Moving closer to the zone boundary at Q = (1, 0.35), the spin

wave peaks at 90 meV are virtually unchanged on warming from 0.05TN to 0.93TN

and decrease only slightly in intensity at 1.09TN [Fig. 2.9(c)]. At Q=(1, 0.5), spin

wave peaks at E=125 meV are temperature independent below and above TN [Fig.

2.9(d)]. Figures 2.9(e) and (f) show the Q-dependence of the magnetic scattering at

E = 19±5 and 128±5 meV, respectively. Consistent with Fig. 2.8, the spin waves at

low energies become broad paramagnetic spin excitations above TN , while they stay

unchanged at high energies near the zone boundary [Figs. 2.9(e) and (f)]. The energy

dependence of the dynamic spin-spin correlation lengths below and above TN in Fig.

2.9(g) suggests that short-range spin excitations at energies above ∼ 100 meV are

not sensitive to the orthorhombic-to-tetragonal phase transition and do not reflect

the C4 symmetry. The effective magnetic exchange couplings SJ1a and SJ1b in spin

clusters of sizes ξ = 15± 3Å must be anisotropic and therefore locally break the C4

tetragonal symmetry.
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Figure 2.9: (Figure on next page.) The blue diamonds in (a)-(d) are constant-Q cuts
at Q = (1, 0.05), (1, 0.2), (1, 0.35), and (1, 0.5), respectively, at T = 7 K. The green
squares and red circles in (a)-(d) are identical constant-Q cuts at T = 125 and 150
K, respectively. The dashed lines are guides to the eye for the observed paramagnetic
scattering. (e) and (f) Q dependence of the spin wave excitations below and above
TN obtained through constant-E cuts at E = 19± 5 and 128± 5 meV. The solid lines
in (a)-(f) are fits to the anisotropic spin-wave model discussed in the text, and the
horizontal bars represent the instrumental energy (E)/wave vector (Q) resolution. (g)
Energy dependence of the dynamic spin-spin correlation lengths below and above TN
obtained by Fourier transform of constant-E cuts similar to (e) and (f).
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Figure 2.9: Caption on previous page.
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2.1.5 Conclusion

We have discovered that the spin waves in BaFe2As2 are highly anisotropic with a

large damping along the metallic AF a-axis direction in the LTO phase (Figs. 2.5 and

2.7). On warming to the paramagnetic tetragonal phase, the low-energy spin waves

near the zone center evolve into paramagnetic scattering, while the anisotropy of the

high-energy spin excitations near the zone boundary persists (Figs. 2.8 and 2.9).

This means that the short-range effective magnetic exchange couplings in BaFe2As2

are anisotropic and unchanged across TN , consistent with a nematic spin fluid that

breaks the C4 symmetry of the tetragonal phase. In previous observations of electronic

nematic phases in different materials, there is usually a symmetry breaking field

present, such as an external magnetic field, uniaxial pressure, or an orthorhombic

crystalline lattice,[135, 14, 12] which is not the case here. The persistence of spin

anisotropy in the paramagnetic phase has obvious implications for the nature of

the magnetism in pnictides, which in turn has potentially profound implications

for the origin of superconductivity. Anisotropy in the resistivity has been seen to

persist for Co-doped BaFe2As2 samples into the region of the phase diagram where

superconductivity exists [12]. Moreover, the existence of a spin resonance in the

superconducting state of Ni-doped BaFe2As2, which is a doublet rather than a triplet,

is also consistent with local spin nematicity [65]. Since the spin excitations at short

length scales are intrinsically nematic in the paramagnetic tetragonal phase, the AF

phase transition and lattice distortion are likely induced by nematic spin fluctuations.

On the other hand, if orbital ordering were driving the spin nematicity, one would

expect a gradual change of spin anisotropy across TN depending on the strength of

spin-orbital coupling, contrary to our observations. Since the spin nematicity leads

to an enormous anisotropy in the near-neighbor exchange couplings, this could have

a profound impact on the nature of the superconducting electron pairing interaction.

Since publication of our results, there have been several studies done by separate

groups offering either explanations or alternatives to spin nematic behavior in
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Figure 2.10: (a)-(d) Results from an isotropic J1 − J2 − K Heisenberg model [141].
Consecutive panels are of increasing energy transfer following the dispersion of
magnetic excitations from the (1, 0) zone center at low energy (panel a) to the (1,
1) zone boundary at high energies (panel d). (e) and (f) are reproductions of zone
center and zone boundary data from Fig. 2.7.
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BaFe2As2. Local, itinerant, and mixed states have all been selected as starting

points. In terms of a local moment picture, attempts to build a Heisenberg model that

respects the C4 symmetry of the lattice have met with some success by considering an

isotropic J1 and J2 exchange but with the extra inclusion of a biquadratic exchange

term[141, 133].

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj −K
∑
〈i,j〉

(Si · Sj)2 (2.6)

where J1 and J2 are the nearest neighbor and next-nearest neighbor antiferromagnetic

exchange couplings and K is the biquadratic exchange for nearest neighbors. As can

be seen in Fig. 2.10 this model captures the most salient features of the scattering.

Namely, low energy elliptical scattering centered at the (1, 0) AFM wave vector that

evolves into scattering centered around the (1, 1) zone boundary at high energies.

It has been shown clearly that increasing the biquadratic exchange K results in a

corresponding decrease in the zone boundary softening [133]. In the absence of a

biquadratic term, an anisotropic Heisenberg model is required since this reduction

in zone softening is achieved via a corresponding reduction in J1b towards negative

values. Although both the anisotropic damping and lack of zone boundary softening

are both present in this isotropic spin model, the overall in-plane profile of the

scattering only roughly matches experiment. As well, there is no measure of how

well the model intensity could follow the experimental intensity across all (Q, E).

Nonetheless, this model does offer some evidence that it could be possible to build a

full fitting spin model that respects the symmetry of the lattice.

The spin nematic description has also been studied starting from the itinerant

end as well. Similar studies of SrFe2As2 carried out at the same time as ours by

a different group also found that this system does not fit well to a J1a − J1b − J2

model when only isotropic damping is considered [27]. In our study we retained

the local moment model and included an anisotropic damping to fix this problem;

appealing to RPA for a microscopic justification in terms of an anisotropic particle
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Figure 2.11: (a) Different unit cells in the real space of the crystal: Solid black is Fe
sublattice required by RPA, red and blue are the tetragonal and orthorhombic cells
respectively. (b) Corresponding Brillioun zones in reciprocal space. Taken from [27].

hole excitation spectra. The authors of the SrFe2As2 study preferred instead to

abandon the Heisenberg model altogether in favor of an itinerant RPA description.

In RPA, the calculation is carried out over the unit cell corresponding to four irons

in each corner. This leads to an enlarged Brillouin zone. As a result, whereas zone

boundary softening of the Heisenberg model at (1, 1) is required by symmetry when

J1a = J1b, in the RPA on the Fe sublattice (1, 1) and (0, 0) do not correspond to

equivalent zone centers, but, rather, inequivalent zone corner and center locations,

respectively (Fig. 2.11). Thus, the softening is not a necessary symmetry requirement

for itinerant magnetic scattering in the tetragonal state. Although RPA can explain

unsoftened paramagnetic scattering reaching to the zone boundary, the model predicts

an incommensurate signal for low energy scattering at the (1, 0) position most

likely associated with the partial nesting derived from the band structure used.

Furthermore, it runs afoul when attempting to account for the large spectral weight

sitting at high energies. This goes back to the original problem of itinerant models
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predicting total moments that are smaller than observation. Thus, mean field RPA

cannot account for the full signal observed by neutrons.

Attempts to go beyond RPA have modeled the scattering in terms of dynamical

mean field theory which is capable of capturing contributions from both the itinerant

and localized spins within the system. From this analysis, all aspects of the neutron

scattering signal were much better accounted for as shown in Fig. 2.12 and Fig. 1.8.

A key point of consideration is that the interaction strength required by DFMT to

reproduce the data is large enough to place it within the incoherent spectrum. As a

result, this implies that there exist electron correlations strong enough to drive local

moment physics within the system [83].

The nematic phase has also been explained using a mixed magnetic state consisting

of an isotropic local Heisenberg Hamiltonian with the addition of a double exchange

between local and itinerant electrons parameterized in terms of Hunds J and hopping

t, respectively. It is then shown that this can be mapped onto a purely local

anisotropic Heisenberg model similar to what we use. In this picture, the exchange

coupling of the local moments are indeed anisotropic and the fact that J1a > J1b is a

byproduct of ferro-orbital ordering which leads to a much stronger double exchange

coupling of itinerant and local electrons along the ferromagnetic direction [74]. It has

been pointed out within this picture that the observed anisotropic magnetic exchange

in our experiments does not signal a truly nematic state. All that is needed is a

fluctuating nematic/orbital order. Within the correlation length, there will be a

favorable nematic/orbital order (dxz or dyz), and consequently either J1a > J1b or

J1a < J1b. By summing over the whole sample, a C4 symmetric result is obtained,

which matches the raw data of our INS experiment. The analysis of our INS result is

the reverse of the above process, and the result of strong magnetic anisotropy simply

follows [73].
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Figure 2.12: (a) Structure of scattering as a function of increasing energy based on
DMFT calculations. (b) Structure of scattering from our measurement. Figure taken
from [90].
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2.2 Magnetic Excitations in Under Doped BaFe2As2

2.2.1 Introduction

The previous section focused on spin excitations in the superconducting parent

of BaFe2As2. However, understanding the doping evolution of spin excitations is

important because high-transition temperature (high-Tc) superconductivity arises

from electron or hole doping the antiferromagnetic (AF) parent compounds. For

undoped iron arsenides such as AFe2As2 (A = Ba, Sr, Ca) with a spin structure of

Fig. 2.13(a), spin waves consist of a large anisotropy gap at the AF zone center

and excitations extend up to ∼200 meV [40, 27, 144]. Upon doping to reach

optimal superconductivity, the gapped spin wave excitations are replaced by a gapless

continuum of scattering in the normal state and a neutron spin resonance below Tc

[10, 9, 70, 61]. Since spin fluctuations may play a crucial role in the superconductivity

of iron arsenides [82, 28, 124] it is imperative to determine the doping evolution of

spin dynamics of the parent compounds. In the undoped state, BaFe2As2 exhibits

simultaneous structural and magnetic phase transitions below Ts = TN = 143K [47].

Upon Co-doping to induce electrons onto the FeAs plane, the combined AF and

structural phase transitions are split into two distinct transitions and the electronic

phase diagram in the lower Co-doping region displays coexisting static AF order with

the superconductivity [87, 13]. Although neutron scattering experiments confirmed

that the upper transition is structural and the AF order occurs at a lower temperature

[11, 97] it is unknown why the structural and magnetic phase transitions should

be separated upon doping. More importantly, it is unclear what happens to the

spin waves of BaFe2As2 when electrons are doped into these materials. At the

time that I began this work, neutron scattering studies of the pnictides were just

beginning to appear in the literature with the majority of the experiments focused

on Co-doped samples where static AF order coexists with bulk superconductivity

[11, 97]. Thus, we chose to study lightly electron-doped BaFe1.96Ni0.04As2 (where
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Ni concentration is nominal) without the influence of bulk superconductivity [Fig.

2.13(b)] [7]. Although resistivity on our BaFe1.96Ni0.04As2 suggested Tc ≈ 15 K [Fig.

2.13(c)], susceptibility measurement [Fig. 2.13(d)] showed a weak Meissner effect

indicating a superconducting volume fraction of less than 0.2%. These results are

consistent with the electronic phase diagram of BaFe2−xNixAs2 in Fig. 2.13(b), where

no bulk superconductivity heat capacity anomaly was found for x ≤ 0.05 [7].

2.2.2 Spin Wave Scattering with 2D Character in the Or-

dered State

Using the self-flux method [60], we grew a ∼1 gram single crystal of BaFe1.96Ni0.04As2

with an in-plane and out-of-plane mosaic of 1.74o and 2.20o full width at half

maximum (FWHM, measured by doing rocking curves), respectively. We defined

the wave vector Q at (qx, qy, qz) as (H,K,L) = (qxa/2π, qyb/2π, qzc/2π) reciprocal

lattice units (rlu) using the orthorhombic magnetic unit cell (space group Fmmm),

where a = 5.5Å, b = 5.4Å, and c = 12.77Å. We performed our neutron scattering

experiment on the PANDA cold triple-axis spectrometer at the FRM II, TU Munchen,

Germany. Our sample was aligned in the [H, 0, L] zone inside a closed cycle

refrigerator. Since our work focused on mapping out spin excitations using a cold

triple axis spectrometer, we were constrained to collecting only 1D cuts through the

magnetic scattering at energies not to exceed 10meV. Thus, it was not possible to

obtain the more comprehensive profile of the scattering across all of (Q, ω) such

as was determined in our parent study using time of flight spectroscopy. However,

despite this limitation, cold triple axis provides an advantage of over time of flight

in that it can collect scans at much lower energy with no spectrometer coupling

of the L momentum transfer to the energy transfer. As well, there is much more

freedom to move around in temperature; allowing us to collect identical scans at

multiple temperatures and also sit at a specific spot in (Q, ω) and collect temperature

scans to determine how the scattering evolves across gaps and phase transitions.
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Figure 2.13: (a) Diagram of the parent compound BaFe2As2 with Fe spin ordering
and magnetic exchange couplings depicted. (b) Electronic phase diagram from Ref.
[7]. (c) Temperature dependence of the resistance showing anomalies at Ts, TN , and
Tc. (d) Temperature dependence of the Meissner and shielding signals on a small
crystal (field cooled 4πχ = −0.001 at 4.5 K) and the (1, 0, 1) magnetic Bragg peak
intensity. (e) The structural distortion of the lattice as determined by tracking the
width of the (2, 0, 0) nuclear Bragg peak using λ/2 scattering without Be filter. (f
) Magnetic order parameter determined by Q scans around the (1, 0, 1) magnetic
Bragg peak above background. The solid line shows an order parameter fit using
(1− T/TN)2β with TN = 91.3± 0.7 K and β = 0.3± 0.02.
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As a result, we were able to acquire a great deal of insight about the effect of

doping from a very focused set scans. Specifically, we find that the effect of electron

doping is to significantly reduce the c-axis exchange coupling and change the three-

dimensional (3D) spin waves of BaFe2As2 into quasi two-dimensional (2D) spin waves.

These results suggest that the separated structural and magnetic phase transitions in

BaFe1.96Ni0.04As2 may be associated with the diminishing spin anisotropy gap and the

3D to 2D transition of the spin excitations [43]. Since BaFe1.96Ni0.04As2 is not a bulk

superconductor [Figs. 1(b) and 1(d)] [6], it is not surprising that superconductivity

has negligible influence on the static AF order [Figs. 2.13(d) and (f)]. To show that

the scattering does indeed originate from spin waves associated with the long ranged

magnetic ordered state, panels (a)-(d) from figures 2.14 and 2.15 compare energy

scans at the (1, 0) AFM wave vector at different temperatures. After correcting

for the Bose population factor, all of these scans fall on a universal line as to be

expected for spin wave scattering. As a final check, we show in Fig. 2.16(a) the

temperature dependence of the 1 meV scattering at the Q = (1, 0, 0) (signal) and

Q = 1.4, 0, 0 (background) positions. While the background scattering only increases

slightly with increasing temperature and shows no anomaly across TN , the scattering

at Q = (1, 0, 0) clearly peaks at TN . Q scans along the [H, 0, 0] direction at 1 meV

confirm these results [Fig. 2.16(c)].

Of particular interest in the scattering profile of the spin waves is the magnitude

of the normal state gap. It is known that in undoped BaFe2As2, spin waves have

an anisotropy gap of about 8 meV at Q = (1, 0, 1) [∆(1, 0, 1) = 8 meV] [26, 79].

For optimally Co and Ni doped materials, spin excitations are gapless in the normal

state [70, 9] and superconductivity induced spin gaps open below Tc [61]. Figure

2.14(a) shows the constant-Q scans at the Q = (1, 0, 1)(signal) and Q = (1.2, 0, 1)

(background) positions above and below Tc for BaFe1.96Ni0.04As2. Figure 2.14(b)

plots the imaginary part of the dynamic susceptibility χ′′(Q, ω) after correcting for

background and Bose population factor. We find that χ′′(Q, ω) has a 2 meV normal

state spin gap.
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Figure 2.14: (Figure on next page.) (a) Energy scans at Q = (1, 0, 1) and Q =
(1, 0, 0) above and below Tc. (b) χ′′(Q, ω) at Q = (1, 0, 1). (c) Energy scans at
higher temperatures and, (d) the corresponding χ′′(Q, ω). The solid lines in (b)
and (d) are guides to the eye. (e) Q scans along the [H, 0, 1] direction at 4 meV.
At 86 K, the Gaussian peak has FWHM = 0.098 ± 0.006 rlu which corresponds to
minimum correlation lengths of ξ = 57 ± 4Å. (f) Estimated χ′′(Q, ω) at 4 meV. (g)
χ′′(Q, ω) at 7 meV with FWHM = 0.103± 0.013 rlu and minimum correlation length
of ξ = 54± 6Å. (h) Low temperature Q scans along the [1, 0, L] direction (c axis) at
4 meV (FWHM = 0.58 ± 0.06 rlu) and 7 meV (FWHM = 0.9 ± 0.3 rlu) correspond
to ξ = 14 ± 5 and 21 ± 2Å, respectively. The solid curves in e-h) are Gaussian fits
with centers fixed at (1, 0, 1) rlu.
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Figure 2.14: Caption on previous page.
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Figure 2.15: (Figure on next page.) (a) Energy scans at Q = (1, 0, 0) and Q =
(1.4, 0, 0) from 0.5 meV to 7 meV at 3.5 K and 18 K. (b) Background corrected
χ′′(Q, ω) showing clear evidence for a 4 meV spin gap. (c) Temperature dependence
of the signal [Q = (1, 0, 0)] and background [Q = (1.4, 0, 0)] scattering at various
temperatures. (d) χ′′(Q, ω) at different temperatures. The solid lines in (b) and (d)
are guides to the eye. (e) Q scans along the [H, 0, 0] direction at 4 meV and different
temperatures. (f ) Background corrected χ′′(Q, ω). (g) Temperature dependence of
the Q scans along the [H, 0, 0] direction at 6 meV (FWHM = 0.10 ± 0.01 rlu). (h)
Temperature dependence of the χ′′(Q, ω) at 6 meV. Gaussian fits to the data in (e-h)
have fixed centers at Q = (1, 0, 1) rlu.
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Figure 2.15: Caption on previous page.
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Figures 2.14(c) and (d) reveal that the magnetic intensity increase with increasing

temperature below TN is due mostly to the Bose population factor. These results are

confirmed by Q scans along the [H, 0, 1] direction at different temperatures [Figs.

2.14(e)(g)], which display well-defined peaks at Q = (1, 0, 1) that have similar widths

to the undoped BaFe2As2 at 10 meV [79]. Figure 2.14(h) shows Q scans along the c

axis [1, 0, L] direction. Fourier transforms of the wave vector scans in Figs. 2.14(g)

and (h) suggest that spins are only correlated around two unit cells (∼ 20Å) along

the c axis, much smaller than the 10 unit cell correlations (∼ 50Å) of in-plane spin

excitations. Therefore, spin excitations in BaFe1.96Ni0.04As22 are not entirely 2D like

those of optimally doped material [70].

Further evidences for quasi-2D spin excitations in BaFe1.96Ni0.04As2 are summa-

rized in Fig. 2.15. Assuming spin excitations in BaFe2−xNixAs2 can be described

by an effective Heisenberg Hamiltonian, the spin anisotropy gaps at Q = (1, 0, 1)

and Q = (1, 0, 0) are ∆(1, 0, 1) = 2S[(J1a + 2J2 + Jc + Js)
2 − (Jc + J1a + 2J2)2]1/2

and ∆(1, 0, 0) = 2S[(2J1a + 4J2 + Js)(2Jc + Js)]
1/2, respectively [145, 26, 79, 144].

Here S is the magnetic spin (=1); J1a, J2, Jc are effective in-plane nearest-neighbor,

next nearest-neighbor, and c-axis magnetic couplings, respectively [Fig. 2.15(a)].

Js represents the magnetic single ion anisotropy. From our time of flight data

on BaFe2As2, we report a Jc value of 1.8 meV and estimate that the zone center

(∆(1, 0, 1)) and zone boundary (∆(1, 0, 0)) gaps are ∼ 10 and ∼ 50 meV respectively.

More recently triple axis work by Kiemer’s group claims that this value is over-

estimated and that the true value is closer to Jc = 0.22 with a corresponding zone

boundary gap value of ∆(1, 0, 0) = 20meV [92]. It should be noted that in our data

analysis, the globally fitted Q-cuts were for odd L values above ∼ 25 meV. To get

a more accurate estimate of Jc it would have been necessary to collect lower energy

data over a broader range of Ei’s and sample alignments with an inclusion of cuts at

even L values since this would give a better measure Jc due to the gap modulation

along L at low energies. As well, since our parent data became L independent above

roughly 40meV, there was only a small 15meV window where it was possible to
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Figure 2.16: ((a) Temperature dependence of the 1 meV scattering at the signal
Q = (1, 0, 0) and background Q = (1.4, 0, 1) positions. The inset shows Q scans along
the [H, 0, 0] at 1 meV and different temperatures. The scattering shows no anomaly
across Tc but clearly peaks at TN . (b) Temperature dependence of the scattering at
4 meV and Q = (1, 0, 1) again peaks at TN .
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analyzing the L-dependence. As a result, it would not be surprising if the correct Jc

value in the parent BaFe2As2 is closer to 0.22 as opposed to our TOF estimation of

Jc = 1.8 meV. Regardless, upon electron doping to form BaFe1.96Ni0.04As2, these spin

gap values have been reduced to ∆(1, 0, 1) = 2 meV and ∆(1, 0, 0) = 4 meV [Figs.

2.14(b) and 2.15(b)]. Since such electron doping hardly changes the in-plane Q-scan

widths compared to that of the undoped BaFe2As2 [Figs. 2.14(e)(g), 2.15(e), and (g)]

[26, 79], it should only slightly modify the in-plane exchange couplings. Assuming

that J1a and J2 are unchanged in BaFe1.96Ni0.04As2, the observed ∆(1, 0, 1) = 2 meV

and ∆(1, 0, 0) = 4 meV would correspond to Jc = 0.01 meV and Js = 0.007 meV,

suggesting a rapid suppression of c-axis exchange coupling and magnetic single ion

anisotropy with electron doping.

2.2.3 Conclusion

We have shown that the most dramatic effect of electron doping in BaFe2As2 is

to transform the 3D anisotropic spin waves into quasi-2D spin excitations. Similar

dimension reduction on the electronic states of 122 materials has also been observed

in angle resolved photoemission spectroscopy [142, 66]. As well, within the effective

J1−J2−Jc model it is possible to understand the separated structural and magnetic

phase transitions for BaFe1.96Ni0.04As2 since the separation in temperature of these

two phases is controlled by the value of Jc [28]. When Jc is large there is only

one transition temperature. However, a finite separation between the two transition

temperatures occurs when Jc/J2 is reduced to the order of 10−3. Our experimental

result of Jc/J2 ∼ 0.5 × 10−3 is consistent with this picture. In closing, the apparent

reduction in dimensionality is in line with the idea that the loss of long range order is

not due (primarily) to a loss of nesting as the system is doped away from the parent

state. Rather, it is a general consequence of quantum disorder due to a reduction

in dimensionality [82]. As well, the seperation of the structural and magnetic phase

transitions is a natural consequence of a vanishing coupling between layers. While the
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microscopic origin of such dimension reductions upon doping is unclear, these results

suggest that reduced dimensionality in spin excitations of iron arsenides is important

for the separated structural and magnetic phase transitions in these materials, and

also possibly the occurrence of bulk superconductivity.

2.3 Magnetic Excitations in Optimal Doped BaFe2As2

2.3.1 Mapping out the Resonance

Introduction and Earlier Studies of the Resonance in the Pnictides

Given the strong correlation between superconductivity and magnetism in the

cuprates, it comes as no surprise that immediately after the discovery of unconven-

tional superconductivity in the pnictides, one of the primary questions was whether or

not magnetism was also present in these new systems as well. The first confirmation

came when it was shown that the ground state of the parent (x = 0) LaO1−xFxFeAs

consisted of a long range antiferromagnetic order [21] that was suppressed in favor of

superconductivity upon doping [48]. The strong parallel between the pnictides and

the cuprates could not be missed (ie: superconductivity existing in close proximity

to a long range ordered parent with tuning between phases achieved via doping) and

motivated a host of new studies focused on determining how closely magnetism and

superconductivity were correlated in these systems. With a magnetic structure in

the parent firmly established, attention quickly turned to determining if a resonance

magnetic excitation was present in doped superconducting samples. As discussed in

the introduction, the resonant mode, already observed in both the cuprates [32, 102]

and the heavy fermions [107, 115], is a feature that appears when the spin waves

associated with the long range order have been supplanted by short range magnetic

excitations that persist in proximity to the ordered state. The mode is distinguished

by an anomalous climb in spectral weight at a specific location in S(q, ω) = S(qR,

ωR) and is coupled to superconductivity in two distinct ways.
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Figure 2.17: a), b) Neutron scattering data on a powder sample of Ba0.6K0.4Fe2As2

at T = 5K (superconducting) and T = 50K (non superconducting) respectively. In
the SC state, a sharp increase in scattering is visible at 14meV, indicative of the
presence of a resonance. c) A temperature scan of the 14meV anomaly reveals that
intensity follows an order parameter in temperature, with suppression at Tc. d) (left
panel) Q-integrated energy scan of the resonance at T = 7K demonstrating that the
intensity peaks at ωR = 14meV. (right panel) The T = 7K energy scan compared to
an identical scan at T = 50K reveals that the resonant excitation disappears in the
normal state. Data from [10].
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First, the resonance is only present in the superconducting state with the

intensity following an order parameter in temperature and full suppression coinciding

with the transition Tc. Second, the resonance energy, ωR, is linearly correlated

to the superconducting transition temperature Tc [128] and (in many cases) the

superconducting gap 2∆ [139]. Moreover, magnetic field measurements of YBCO

revealed that the resonance was sensitive to applied field, acting as a potential probe

of the phase coherence time (resonance width) and superfluid density (integrated

intensity)[19]. Given the importance of the resonance in other unconventional

superconductors, establishing its existence and mapping it out in the pnictides was

the natural starting point for my thesis focusing on the role of magnetic excitations

in iron based superconductors.

Within a few short months after a magnetic groundstate was discovered in the

1111 system (x = 0) LaO1−xFxFeAs, powder measurements of the 122 compound

Ba0.6K0.4Fe2As2 (Fig. 2.17) by another group revealed the presence of a resonance

in the pnictides for the first time [10]. By comparison of panels 2.17 (a) T = 5K

(superconducting) and 2.17(b) T = 50K (nonsuperconducting), the resonance appears

as a diffuse signal gain in the 2D powder dispersions. 1D Temperature and energy

scans (2.17 (c) and (d) respectively) confirm that the resonance switches on a Tc with

a mode energy centered at 14meV. However, since the experiment was carried out on

powders, only the mod Q dependence of the excitation could be determined. In order

to verify the existence of the resonance and resolve its location and dependence on Q,

our group mapped out the spin excitations in optimal doped BaNi0.1Fe1.9As2. As well,

since the earlier powder measurement was on a hole doped derivative of BaFe2As2,

our confirmation of its existence in BaNi0.1Fe1.9As2 would demonstrate that, like the

cuprates, the resonance is a common feature for both n and p type doping.

Discovery of a 3D resonance (L-dependent) in BaNi0.1Fe1.9As2

Our neutron scattering experiments were performed on the PANDA cold triple-

axis spectrometer at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II),
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TU Munchen, Germany. We used pyrolytic graphite (0,0,2) as monochromator

and analyzer without any collimator. We defined the wave vector Q at (qx, qy, qz)

as (H,K,L) = (qxa/2π, qyb/2π, qzc/2π) reciprocal lattice units (rlu) using the

orthorhombic magnetic unit cell of the parent undoped compound (space group

Fmmm, a = 5.564, b = 5.564, and c = 12.77 Å). We choose this reciprocal space

notation (although the actual crystal structure is tetragonal) for easy comparison

with previous spin wave and elastic measurements on the parent compound, where

magnetic Bragg peaks and low-energy spin waves are expected to occur around (1,

0, 1) and (1, 0, 3) rlu positions. For the experiment, the BaNi0.1Fe1.9As2 crystal

assembly was mounted in the [H, 0, L] zone inside a closed cycle refrigerator. The

final neutron wave vector was fixed at either kf = 1.55Å−1 with a cold Be filter or at

kf = 2.662Å−1 with a pyrolytic graphite filter in front of the analyzer.

We first searched for possible static AF order in our samples. For undoped

BaFe2As2, magnetic Bragg peaks are expected at the (1, 0, 1) and (1, 0, 3) positions

with the associated low-temperature spin waves of the ordered state gapping below

about 9.8 meV [79]. Our elastic Q scans through these expected AF Bragg peak

positions were featureless, confirming the absence of static long range order above

30 K. Thus, the inelastic scattering observed is no longer derived from spin waves

propagating along a long range ordered lattice, but instead is due to strongly

correlated paramagnetic excitations.

Figure 2.18 (a)-(c) summarizes constant energy scans along (H, 0, 0) at 3 K (well

below Tc) and at 30 K (above Tc) at E = 2, 6, and 8.5 meV. Recall that in the

parent, the zone boundary gap ∆(1, 0, 0) is at least 20 meV [92] while upon light

electron doping it reduces greatly to ∼ 4meV [43]. From Fig. 2.18 (a) we observe at

30 K a clear peak centered at the in-plane AF wave vector (1, 0, 0) demonstrating

that upon reaching optimal doping, the normal state gap is completely suppressed.

Fourier transforms of the Gaussian peaks in Figs. 2.18(a) and (b) gave the minimum

dynamic spin correlation lengths of ξ = 16 ± 4 and 21 ± 4 Å for E = 2 and 6 meV,

respectively. In comparison, the spin-spin correlations extend only to several chemical
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Figure 2.18: Constant-energy scans around the (1, 0, 0) and (1, 0, 1) positions for
E = 2, 6, and 8.5 meV. (a-c) Q scan along the [H, 0, 0] direction at 30 and 3 K.
The inset in (a) shows the temperature difference plot and a Gaussian fit to the data.
The missing low-Q data for scans in (b) and (c) are due to kinematic constraint. (d)
Q scan along the [1, 0, L] direction for E = 8.5 meV at 3 K. Note two clear peaks
centered at (1, 0, -1) and (1, 0, 1), respectively.
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unit cells and are much smaller than the ξ = 80 ± 10 Å at E = 1.5 meV obtained

for electron-doped cuprate superconductor Pr0.88LaCe0.12CuO4. On cooling from 30

to 3 K, the Gaussian peak at E = 2 meV vanishes and suggests the opening of a spin

gap [Figs. 2.18(a)]. In contrast, the Gaussian peaks at E = 6 meV hardly change

across Tc [Fig. 2.18(b)], whereas the scattering at (1, 0, 0) for E = 8.5 meV actually

increases below Tc [Fig. 2.18(c)]. Taken together these results immediately suggest

that the static, long range, antiferromagnetic order and associated spin waves of the

parent are replaced by short range correlations only a few unit cells in length for doped

superconducting derivatives. Likewise, the spin wave gap in the non superconducting

parent closes upon doping as long as the superconducting compound is above Tc,

however when the system is cooled into the superconducting state a new spin gap at

a much lower energy appears. Energy scans at (1, 0, 0) reveal that the gap opens at

4meV, likewise a temperature scan of the gap reveals a dramatic drop in intensity at

Tc, directly tying the appearance of this gap with the superconducting transition.

Our initial scans focused on the (1, 0, 0) wave vector. From the energy scan above

and below Tc at (1, 0, 0) in Fig. 2.19 (a) it is clear that a resonant gain in signal

appears upon entering the superconducting state at ER = 9.1 meV. However from

Fig. 2.18(d) it is clear that the intensity actually peaks at the 3D antiferromagnetic

wave vector (1, 0 , 1)/(1, 0 , -1) with (1, 0 ,0) sitting in a minima. Thus, we carried

out additional measurements to search for a resonance at (1, 0, -1). The outcome in

Fig. 2.19(c) shows a large magnetic intensity gain below Tc at E = 7 meV, clearly

different from the 9.1 meV resonance at Q = (1, 0, 0). To further confirm that the

intensity gain at E = 7 meV is indeed the resonance occurring at Q = (1, 0, -1),

we carried out constant-energy scans around (1, 0, -1) and the outcome shows that

the intensity gain below Tc arises from scattering at the 3D AF ordering position

[Fig. 2.19(e)]. Finally, in Fig. 2.19(f) we plot the temperature dependence of the

scattering at (1, 0, -1) and ER = 7 meV. The scattering increases dramatically below

the onset of Tc and is remarkably similar to that of the resonance in high-Tc copper

oxides. If the resonance is a measure of electron pairing correlations in high-Tc
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Figure 2.19: (a) Energy scans at Q = (1, 0, 0) from 5 to 13 meV at 30 and 3 K.
(b) The temperature difference scattering between 3 and 30 K shows a clear resonant
peak at E = 9.1 ± 0.4 meV. (c) Energy scans at Q = (1, 0, -1) from 2 to 13 meV
at 30 and 3 K. (d) The temperature difference plot confirms that the mode has now
moved to 7.0 ± 0.5 meV. (e) Wave vector dependence of the scattering at 30 and 3
K for E = 7 meV, confirming that the resonance intensity gain occurs at Q = (1, 0,
-1). (f) Temperature dependence of the scattering at Q = (1, 0, -1) and E = 7 meV
shows a clear order-parameter-like increase below Tc.
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Figure 2.20: Summary of electron-doping dependence of the neutron spin resonance
energies at Q = (0.5, 0.5, 0) and (0.5, 0.5, 1) as a function of Tc. Solid lines are
linear fits to the data. Figure taken from [125] with data for BaFe2−xNixAs2 and
BaFe2−xCoxAs2 compiled from multiple papers. Refer to [125] for these references.

superconductors [19], the observed 3D resonance dispersion in BaFe1.9Ni0.1As2 would

suggest a variation of the superconducting gap ∆ along the c axis, similar to those in

UPd2Al3. This is quite different from the high-Tc copper oxides, where ∆ is strictly

2D and independent of the c axis modulations.

Conclusion and Later studies of the Resonance in the Pnictides

After the discovery of resonances in both optimally hole [10] and electron doped

BaFe2As2 [9, 70], further work on both the under and overdoped sides of the phase

diagram revealed that the mode was a ubiquitous feature of the superconducting

phase. Moreover, as with the cuprates, the location of the mode is linearly correlated

with the Tc of the doped derivatives [125]. Tracking the resonances across the phase

diagram at both the (1, 0, 1) and (1, 0, 0) positions reveal that the energy transfer

of both of these modes shift linearly as function of doping, but with each following

a different slope. This has been shown in Fig. 2.20 which is primarily composed of

compounds taken from the underdoped side of the phase diagram. Thus, the lower
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Tc values in Fig. 2.20 correspond to subsequently lower levels of doping. From this,

it is then clear that the separation distance of the resonances at (1, 0, 0) and (1, 0, 1)

decreases as the system is tuned towards optimal doping. The natural corrallary is

that the 3D nature of the resonance reduces in dimensionality as the system is doped

away from the parent. This is consistent with the discovery of a strong reduction in

Jc upon light nickel doping as discussed in the previous section.

A leading theory ascribes the origin of the resonance as an enhancement in

scattering below Tc due to the superconducting coherence factor. For quasiparticle

transitions across sign-revised s-wave electron (∆0
e) and hole (∆0

h) superconducting

gaps (s+−), the coherence factor should enhance scattering at an energy equal to

|∆0
e + ∆0

h| (or slightly less). Thus, the discovery of the resonance provided strong

support for identifying the superconducting state in the pnictides as unconventional.

Moreover, within this picture, the L-modulation of the resonance can be naturally

understood in terms of associated L-modulation in the superconducting gap sizes.

Indeed, although our original work on the 3D nature of the spin resonance in optimal

nickel doped BaFe2As2 only mapped out the resonance at (1, 0, 0) and (1, 0, 1), it

was expected that given an L modulation in the superconducting gaps of the form

∆e(kz) = ∆0
e+δ cos(kz) and ∆h(kz) = ∆0

h+δ cos(kz) then the resonance would appear

at all (1, 0, L) positions with a modulation that could be empirically fit by

ER(L) = E0
R +W | cos(πL/2)| (2.7)

Where E0
R is the resonance energy at the AFM wave vector (1, 0, 1) and W is

the bandwidth of the dispersive resonance. A careful study of the L dependence in

under and optimal Co doped BaFe2As2 by McQueeney’s group [96] confirmed that

the resonance does indeed follow this cosine modulation, with the the bandwidth

reducing considerably at optimal doping where the physics are expected to be more

two dimensional (Fig. 2.21).
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Figure 2.21: (a) Energy cuts of the resonance in underdoped Ba(Fe1−xCox)2As2

(Co=4.7%) for a range of L values throughout the Brillouin zone. (b) Comparison of
the resonance for under (4.7%) and optimal (8%) dopings at different L. (c) Dispersion
of the resonant peak energy as a function of L. Figure taken from [96].
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To contrast this quickly with other families of unconventional superconductors, a

similar L dispersion of the resonance has been observed in heavy fermionic systems

but not in the cuprates. However, it should be noted that in the bilayer cuprates,

symmetry under exchange of planes within a bilayer leads to only two independent

components in the dynamic susceptibility χ|| ≡ χ11 = χ22 and χ⊥ ≡ χ33 and,

subsequently, the cross-section can be partitioning into ’even’ and ’odd’ components

of the form

dσ2

dΩdE
∼ F 2(Q)

[
sin2

(
Qzd

2

)
χ′′o(Q, ω) + cos2

(
Qzd

2

)
χ′′e(Q, ω)

]
(2.8)

where d is the distance between CuO4 planes within a bilayer, F 2(Q) is the Cu2+

form factor, and the even and odd components are defined as

χ′′e(Q, ω) = χ′′||(Q, ω) + χ′′⊥(Q, ω)

χ′′o(Q, ω) = χ′′||(Q, ω)− χ′′⊥(Q, ω)
(2.9)

(see [25] for a more detailed discussion.) Within this framework it was discovered

that both the even and odd components carried a resonance at a different energy

[89]. In general, the susceptibility is a superposition of the even and odd components.

However, by scanning at the appropriate L value such that sin2 (Qzd/2) = 1 and

cos2 (Qzd/2) = 0 (or vice versa), it is possible to isolate an individual component

Fig. 2.22. Thus, there is a limited form of L-dependence on ER in the cuprates.

However, it is neither dispersive in nature nor associated with a modulation of the

superconducting gap (which is 2D).
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Figure 2.22: Resonance in YBa2Cu3O6.85 for both the odd (a,b) and even (c,d)
channels. L-scans in (b) and (d) reveal explicitly the sine squared and cosine squared
intensity modulation for the odd and even channels respectively. Figure taken from
[89].
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2.3.2 Comparison of High Energy Magnetic Excitations in

the Parent and Optimal Doped BaFe2As2

Introduction

From the above discussions of the parent (x = 0), under (x = 0.4) and optimal

doped (x = 0.1) BaFe2−xNixAs2 pnictide systems it is clear that the magnetic state is

dramatically affected at low energies upon doping. In the parent, the spins form a long

range order with magnetic fluctuations consisting of spin waves propagating through

this ordered spin lattice. Below 10meV, the excitations are gapped at the AFM wave

vector and with increasing temperature the scattering follows the Bose population

factor with critical scattering forming a peak at the Neèl temperature. In contrast,

even a very modest amount of doping (x = 0.04) leads to an order of magnitude

reduction of the dimensionality (as characterized by Jc) and upon reaching optimal

doping the long range spin lattice is completely dissolved with spin waves replace by

correlated paramagnetic fluctuations centered diffusely around the AFM wave vector.

In the normal state the spin gap is completely closed, however upon cooling below Tc

a superconducting spin gap emerges with spectral weight shoveled into a resonance

at energies directly above this newly formed gap.

Based off of the striking disparity between the magnetic state at low energies for

these different systems, it is natural to naively expect that the scattering profile across

the entire energy spectrum is completely restructured upon doping. However, the

lack of spin excitation data at higher energies in absolute units for doped compounds

precludes a full comparison with spin waves in undoped BaFe2As2. Only the absolute

intensity measurements in the entire Brillouin zone can reveal the effect of electron

doping on the overall spin excitation spectra. By comparing spin excitations in

BaFe1.9Ni0.1As2 and BaFe2As2 throughout the Brillouin zone, we were able to probe

how electron doping and superconductivity affect the overall spin excitation spectra.

We demonstrate that whereas the low-energy spin excitations are affected, the high-

energy excitations show only a very weak temperature and doping
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Figure 2.23: (Figure on next page.) a, AF spin structure of BaFe2As2 with Fe spin
ordering. The effective magnetic exchange couplings along different directions are
shown. b, RPA and LDA+DMFT calculations of χ′′(ω) in absolute units for BaFe2As2

and BaFe1.9Ni0.1As2. c, The solid lines show the spin wave dispersions of BaFe2As2

for J1a 6= J1b, along the [1, K] and [H, 0] directions obtained in [42]. The filled circles
and triangles are the spin excitation dispersions of BaFe1.9Ni0.1As2 at 5 K and 150
K, respectively. d, The solid line shows the low-energy spin waves of BaFe2As2.
The horizontal bars show the full-width at half-maximum of spin excitations in
BaFe1.9Ni0.1As2. e, Energy dependence of χ′′(ω) for BaFe2As2 (filled blue circles)
and BaFe1.9Ni0.1As2 below (filled red circles) and above (open red circles) Tc. The
solid and dashed lines are guides to the eye. The vertical error bars indicate statistical
errors of one standard deviation. The horizontal error bars in e indicate the energy
integration range. Figure taken from the coauthor work [67].
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dependence. Comparison of our results with various theories suggests that neither

a fully itinerant nor a localized picture explains the magnetic excitation spectrum.

However, a combination of density functional theory (DFT) and dynamic mean field

theory (DMFT) provides a natural way to improve on both these pictures.

Based off of the striking disparity between the magnetic state at low energies

for these different systems, it is natural to naively expect that the scattering profile

across the entire energy spectrum is completely restructured upon doping. However,

the lack of spin excitation data at higher energies in absolute units for doped

compounds precludes a full comparison with spin waves in undoped BaFe2As2.

Only the absolute intensity measurements in the entire Brillouin zone can reveal

the effect of electron doping on the overall spin excitation spectra. By comparing

spin excitations in BaFe1.9Ni0.1As2 and BaFe2As2 throughout the Brillouin zone, we

were able to probe how electron doping and superconductivity affect the overall spin

excitation spectra. We demonstrate that whereas the low-energy spin excitations are

affected, the high-energy excitations show only a very weak temperature and doping

dependence. Comparison of our results with various theories suggests that neither

a fully itinerant nor a localized picture explains the magnetic excitation spectrum.

However, a combination of density functional theory (DFT) and dynamic mean field

theory (DMFT) provides a natural way to improve on both these pictures.

High Energy Excitations in BaFe1.9Ni0.1As2

Our experiments were carried out on the MERLIN time-of-flight chopper spectrometer

at the Rutherford-Appleton Laboratory, UK [99]. We co-aligned 28 g of single crystals

of BaFe1.9Ni0.1As2 (with in-plane mosaic of 2.5o and out-of-plane mosaic of 4o). The

incident beam energies were Ei = 20, 25, 30, 80, 250, 450, 600 meV, and mostly with Ei

parallel to the c axis. To facilitate easy comparison with spin waves in BaFe2As2 [40],

we defined the wave vector Q at (qx, qy, qz) as (H,K,L) = (qxa/2π, qyb/2π, qzc/2π)

reciprocal lattice units (r.l.u.) using the orthorhombic unit cell, where a = b =

5.564Å, and c = 12.77Å. The data are normalized to absolute units using a vanadium
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standard, which may have a systematic error up to 20% owing to differences in neutron

illumination of the vanadium and sample, and time-of-flight instruments.

Figure 2.23 (c)-(e) summarizes our key findings for the electron-doped iron

arsenide superconductor BaFe1.9Ni0.1As2 and the comparison with the spin waves

in BaFe2As2. The data points in Fig. 2.23 (c) and (d) show the dispersion of

spin excitations for optimally doped BaFe1.9Ni0.1As2 along [1, K] and [H, 0] and

the solid lines show the fit of BaFe2As2 spin waves to an effective Heisenberg

J1a − J1b − J2 model [42]. Figure 2.23 (e) shows the local dynamic susceptibility per

formula unit (f.u.), which contains two Fe(Ni) atoms, in absolute units, defined as

χ′′(ω) =
∫
χ′′(q, ω)dq/

∫
dq [59], where χ′′(q, ω) = (1/3)tr(χ′′αβ(q, ω)), at different

energies for BaFe2As2 and BaFe1.9Ni0.1As2. It is clear that electron doping on

BaFe2As2 affects only the low-energy spin excitations by broadening the spin waves

below 80 meV, but has no impact on spin waves above 100 meV. Specifically, the

distribution of spectral weight integrated across the entire Brillioun zone is nearly

identical between the parent and optimal doped systems for energy transfers greater

than ∼ 100 meV while below this energy transfer the sum intensity is reduced

considerably for BaFe1.9Ni0.1As2 Fig. 2.23 e. From a physical point of view, the local

susceptibility is a measure of the distribution of the fluctuating moment on different

timescales. Thus, we see that whereas doping strongly effects the moment fluctuating

on a timescales slower than t ∼ ~/(100meV ), for timescales greater than this there

is no change. Indeed, we can estimate the total fluctuating moment, defined as

〈m2〉 = (3~/π)
∫
χ′′(ω)dω/(1− exp(−~ω/kT )) [59]. Since only a small portion of the

total spectral weight sits at energy transfers that are sensitive to doping, we find that

the total moment is nearly unchanged with 〈m2〉 = 3.17± 0.16 and 〈m2〉 = 3.2± 0.16

per Fe(Ni) for BaFe2As2 and BaFe1.9Ni0.1As2, respectively. Using the formula for the

magnetic moment of a spin 〈m2〉 = (gµB)2S(S + 1) (where g = 2; [69]), we find an

effective iron spin S of about 1/2, similar to that of CaFe2As2 [144]. These results

also show that superconductivity in electron doped systems hardly changes the total

size of the fluctuating moment. In the fully localized (insulating) case, the formal
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Fe2+ oxidation state in BaFe2As2 would give a 3d6 electronic configuration. Hund’s

rules would yield S = 2 and 〈m2〉 = 24µ2
B per Fe. This is much larger than the

observed values, suggesting significant hybridization of Fe 3d with pnictide p orbitals

and among themselves, which leads to a metallic state where the Hund’s coupling is

less important than in the atomic limit [119]

Inspection of 2.23 (c) and (d) reveal that the magnetic scattering in both systems

follow an identical dispersion but with a FWHM in BaFe1.9Ni0.1As2 broadening

considerably at low energies with respect to the parent. To compare the effect of

doping on the overall structure of the magnetic excitations in reciprocal space we

constructed identical 2D constant-energy [H, K] slices of the scattering across the full

spectrum of energy transfer for BaFe1.9Ni0.1As2 and BaFe2As2, Fig. 2.24. We found

that for energies above 100meV there is no discernible difference in the scattering

profile. Even at low energy the scattering is quite similar. However, the sharp

dispersive character of the parent is replaced upon doping by a more diffuse scattering

with weakened intensity centered around the AFM wave vector. It is interesting to

note that the effect of doping the system is strikingly similar to the paramagnetic

scattering observed in the parent when warmed just above TN Fig. 2.8. Here a nearly

identical threshold energy of 100meV separated the more diffuse scattering at low

energy from the dispersive scattering that tracked the spin wave character of the

magnetic excitations in the ordered state.

Conclusion

The partitioning of the scattering into a low energy part that is both temperature

and doping sensitive, and a high energy part that is indifferent to such tuning can be

understood in terms of mixed physics containing local and itinerant elements. The

quasiparticles that form within the spin density wave gap are sensitive to the Fermi

surface change on doping BaFe2As2 and, hence, the resulting low-energy itinerant spin

excitations change substantially, whereas the higher energy spin excitations are hardly

affected. To place this idea on firmer ground, we began by checking if spin excitations
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in AF BaFe2As2 and superconducting BaFe1.9Ni0.1As2 can be understood in a purely

itinerant picture, we calculate the local susceptibility χ′′(ω) using the random phase

approximation (RPA) based on realistic Fermi surfaces and band structures [90].

Using Ũ = 1.3 eV and J̃ = 0.4 eV as our screened Coulomb parameters and performing

calculations above TN [90], we find that the RPA estimate of χ′′(ω) for BaFe2As2 and

BaFe1.9Ni0.1As2 (dashed blue and red lines in Fig. 2.23 b) increases approximately

linearly with energy and has absolute values about a factor of three smaller than the

observation (Fig. 2.23 e). Although the RPA calculation depends on the Coulomb

parameters used, we note that the five-orbital Hubbard model calculation using Ũ

= 0.8 eV and J̃ = 0.2 eV produces essentially similar local magnetic spectra [36].

Therefore, a pure RPA-type itinerant model underestimates the absolute spectral

weight of the magnetic excitations in iron pnictides.

The solid blue and red lines in Fig. 2.23 (b) show the calculated local susceptibility

using a combined DFT and DMFT in the paramagnetic state. By comparing

DFT+DMFT and RPA calculations in Fig. 2.23 (b) with data in Fig. 2.23 (e),

we see that the former is much closer to the observation. Note that the calculation is

done in the paramagnetic state, hence the low-energy modifications of the spectra due

to the long range AF order are not captured in this calculation. RPA can describe

only the itinerant part of the electron spectra, whereas DFT+DMFT captures the

essential aspects of both the quasiparticles and the local moments of iron formed

by strong Hund’s coupling. The improved agreement of DFT+DMFT thus suggests

that both the quasiparticles and the local moment aspects of the electrons of iron are

needed to obtain the correct intensity and energy distribution of neutron scattering

spectra. It is worth noting that the same abinitio methodology which is here used

to compute the magnetic excitation spectra, was previously shown to describe the

photoemission, the optical spectra and the magnetic moments of this material [137]

in excellent agreement with experiment.
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Chapter 3

Chalcogenides

3.1 Parent and Underdoped

3.1.1 Introduction

My work on the FeySexTe1−x chalcogenides has been fairly limited, and is relegated

primarily to a published triple axis study of the resonance at optimal doping (x = 0.4)

and non-publishable triple axis work on a non superconducting underdoped derivative

(x = 0.3). Nonetheless, in order to provide a comprehensive picture of the Fe-

based superconductors, it is conducive to include a section describing the more salient

magnetic features of the parent and underdoped compounds and to contrast this with

the pnictides. As stated in the introduction, the crystal structure of the pnictides

and chalcogenides are very similar and consist of stacked quasi-2D planes of Fe

tetrahedrally coordinated with As or Te respectively. The fermiologies are also alike

with a band structure dominated by Fe orbitals at the Fermi energy with electron and

hole Fermi surface pockets sitting at the zone boundary and center respectively [118].

Given these similarities it is somewhat of a surprise that the magnetic ground state of

the parent FeTe (which, like the pnictides, nests its electron and hole Fermi surfaces

by a (1, 0) wave vector) consists of a ’double stripe’ AFM order sitting at (1/2, 1/2)

as opposed to (1, 0) [3]. Although the primary source of doping in the chalcogenides is
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to isovalently substitute tellurium with selinium, there is a much less controlled, but

equally important, interstitial doping of excess iron that has profound consequences

on the magnetism within the system [117, 116]. As a result, the doping phase diagram

of FeySexTe1−x includes an extra degree of freedom: x-y-T. In general, manufacturing

samples in stoichiometric proportions lead to a strong variation from the nominal

iron content. Moreover, the amount of excess iron is more or less a random variable

function of selinium doping with iron tending to approach stoichiometry near optimal

Se doping. Thus, the coupling of these two forms of doping, Se and Fe, has made it

inherently difficult to diffinitively ascribe the exact role that each plays in modifying

the physics of the system and has highlighted the need to check the exact doping level

of systems.

3.1.2 Local, Itinerant, Frustration...

In the parent FeyTe, the excitations at low energy (∼ 9 meV) have been mapped

out on powders for both y = 1.05 and 1.1 [117]. Here the increase in iron from

1.05 to 1.1 is sufficient to reduce TN from 75K to 60K, close a 7meV spin gap in the

energy spectrum, and drive the scattering off-center from the commensurate (1/2, 1/2)

AFM wave vector. Experiments to high energies at similar doping disparities, y =

1.057 [64] and 1.141 [143], appear to give a similar scattering profile (although a

direct comparison of in-plane 2D scattering slices to the zone boundary is not readily

available) and consist of diffuse scattering centered at the AFM wave vector that

broadens above 20meV to such a large degree that it canvases the majority of the

Brillouin zone. Although the scattering reaches energy transfers in excess of 200meV,

above 20meV peak intensities are drastically reduced with the scattering shifting away

from a simple spin wave like dispersive cone centered about the AFM wave vector Fig.

3.1. Attempts to fit the scattering to a Heisenberg model have met with some success

but are limited to only acquiring a dispersion fit along the (1, K) and (H, 0) high

symmetry directions but with effective exchange couplings that fail to fit the intensity
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Figure 3.1: Constant energy slices of the spin waves as a function of increasing energy
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(a) shows a crystallographic BZ. Figure taken from [64].

and evolution of scattering across all of (Q, ω) [64]. A separate model ascribes the role

of excess iron in FeyTe as inducing collective modes on a spin frustrated lattice. In this

picture, the excess iron acts as centers driving the condensation of four neighboring

localized spins into a ferromagnetic arrangement. These four-spin plaquettes create a

new collective degree of freedom that interact antiferromagnetically with neighboring

plaquettes [143]. Fits of the data to this checkerboard cluster model have proven to

fit the data quite well. In addition, the reduction of the static moment and TN with

increased excess iron [78], along with the exceptionally diffuse nature of the scattering

and competition/transfer of spectral weight between the (1/2, 1/2) and (1,0) wave
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vectors with doping [68] are all strong indicators that the addition of interstitial iron

does directly frustrate the magnetism. Regardless of whether the excess iron does

truly drive the moments to form fluctuating plaquettes, it is clear from experiments

in both the parent and doped samples that the magnetic properties of the system are

very sensitive to this secondary form of doping and complicate attempts to describe

the microscopic physics.

As FeySexTe1−x is tuned from the parent state to optimal doping x ≈ 0.4 to 0.5

there is a cross-over of spectral weight at low energies from the AFM wave vector to

the nesting wave vector. As well, with increasing doping the magnetic Bragg peaks

broaden past the instrumental resolution indicating that the static order picks up a

spin glass component with a switch from a long range to short range order [54]. By

x ≈ 0.35 all static order has dissolved and bulk superconductivity begins to emerge.

In underdoped FeySexTe1−x the scattering co-exists at both the AFM and nesting

wave vectors. At the (1/2, 1/2) AFM position the scattering peaks slightly off center

from this commensurate position depending on the amount of excess iron. At (1, 0)

the scattering consists of two transversely separated incommensurate peaks centered

equidistant from (1, 0) that follow a bell shaped dispersion. In a study on non

superconducting Fe1.01Se0.28Te0.72 it was shown that the distribution of spectral weight

between the (1, 0) and (1/2, 1/2) positions vary as a function of energy. Below 6meV

the scattering at (1/2, 1/2) is strongly suppressed while, in contrast, the scattering

at (1, 0) only extends up to approximately 6 meV, demonstrating that the loss of

spectral weight at one wave vector is offset by a corresponding increase at the other,

Fig. 3.2. Temperature scans at E = 1meV at each of these wave vectors reveal that

the scattering at both wave vectors follow identical critical scattering behavior with

a steep increase in intensity and line width that starts at ∼50K (approximately TN)

before peaking around ∼100K and then dropping gradually off [8].

Time of flight neutron scattering studies of Fe1.04Se0.27Te0.73 demonstrate that the

high energy excitations in the underdoped region evolve from two incommensurate

peaks centered transversely about (1, 0) to a ring of scattering about (1, 1) around
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45meV and, finally, for energies above 100meV this ring fills in completely to form

a broad circle of scattering about (1, 1) that survives to energy transfers in excess

of 200meV [71]. Interestingly, this scattering profile is more reminiscent of the high

energy scattering in BaFe2As2 (see Fig. 2.7) than the FeTe parent which consists

of extremely broad scattering that is not always clearly associated with a particular

wave vector at high energies. The same time of flight study also looked at optimal

doped FeSe0.49Te0.51 and found that the evolution of high energy excitations are nearly

identical to that of the underdoped sample. However, at low energies all scattering at

the AFM wave vector is suppressed and the 7meV pseudo gap at the nesting vector

closes.

The independent role of excess iron in underdoped samples has also been studied

by Stock, et. al where they made powders of fixed Se content, x = 0.3, and varied the

excess iron through the range of ∼ 1.01− 1.05 [116]. Low energy neutron scattering
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studies revealed that the powder dispersions across the range of samples consist of a

broad first moment peak centered at QAFM for y ≈ 1.05 that systematically evolves

to Qnesting as y is reduced to a near stoichiometric level of y = 1.01 Fig. 3.3 a) - d),

f). Given that this same wave vector transfer has been observed for Se doping this

demonstrates that tuning of excess iron provides a second pathway for destroying the

fluctuations at the AFM wave vector. Moreover, the superconducting volume fraction

as determined from susceptibility measurements increases from ∼1% at y = 1.05

to ∼17% at y = 1.01 which supports the conclusion that the QAFM fluctuations

destroy superconductivity and the Qnesting promote it. In panels Fig. 3.3 e), g) we

see that increasing the excess iron also systematically reduces the average energy

E0 =
∫
E · S(E)dE/

∫
S(E)dE while increasing the total low energy spectral weight

I =
∫
S(Q, E)dQdE. This can be understood in terms of the closing of a spin gap

when sufficient excess iron is introduced, which brings with it additional intensity in

the previously gapped region and, as a direct consequence, drives down the average

energy E0.

3.1.3 Conclusion

From the above discussion it is clear that the physics of the chalchogenide super-

conductors deviate considerably from those of the pnictides. However, we find that

the same discussion of itinerant vs local reemerges, albeit in both form and detail

that are distinct from the pnictides. The fact that the (1, 0) nesting vector competes

for spectral weight with the (1/2, 1/2) AFM wave vector is strong indication that

itinerant electrons and stoner enhancement play a role in shaping the physics of the

system. However, the very existence of magnetic scattering at (1/2, 1/2) makes a fully

itinerant scenario difficult to defend. Indeed, in a localized J1 − J2 − J3 picture, the

evolution with doping of magnetic scattering from the AFM wave vector to the nesting

vector can be understood in terms of the structural deformation imposed by selenium;

this deformation leads to a reduction in chalcogen height and, as a direct consequence,

118



o

(    ,    )

(    ,    )

o

e)

f )

g)

Figure 3.3: a)-d) The first momentum in energy as a function of momentum transfer
is illustrated for the interstitial iron concentrations investigated. The solid curves are
fits to the Hohenberg-Brinkman sum rule described in the original paper from which
this figure was taken [116]. e) Peak position of the magnetic spectrum in momentum.
f) Mean energy position. (g) Total integrated intensity in energy and momentum as
a function of interstitial iron concentration. All of the data is presented for T = 2 K.
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a corresponding increase in J1, J2, and reduction in J3. Such a modification to the

exchange couplings acts to reduce the bicollinear phase, resulting in a reduction in the

energy scale required to suppress scattering at (1/2, 1/2) and transfer spectral weight

to the nesting vector [8]. Equally, in resistivity measurements, at low temperatures

a sign change in the derivative, dI/dT, as a function of doping has been observed,

indicating that there is a cross-over from weakly localized spins to a more metallic

state as the doping is increased [68]. It is doubtful that the local and itinerant phases

exist independently with no direct interplay other than to grow or shrink at the

others expense. As mentioned above, studies of the low energy spectral weight at

the two wave vectors follow an identical temperature dependence linking them to

the transition from a long range ordered to paramagnetic state; indicating that both

types of fluctuations have a common origin. To confound the physics further, a more

extensive study of the total sum spectral weight across all (Q, ω) reveals that the

effective moment is not conserved as a function of temperature in the parent which

has lead some to conclude that there is a cross-over of electrons between the local

and itinerant channels as the temperature is increased [143]. However, unlike the

low energy spectral weight, this temperature dependence is oblivious to the magnetic

phase transition (see Section 4.1 for a more complete discussion). Added to all this is

the fact that excess interstitial iron acts as a strong source of frustration thus further

complicating the mixture of physics already present.

Taken together, it is clear that the rich physics present in FeSexTe1−x has lead

to many interesting discoveries but an incomplete picture. However, the unique

magnetism of this system has provided us with a rare instance to observe the effect of

two co-existing magnetic fluctuating orders on an emerging superconducting phase.

In this regard, we have found that the weakly localized magnetic order at (1/2, 1/2)

hinders the development of superconductivity, while the magnetism at (1, 0) that

dominates in the more metallic region of the phase diagram both coexists and couples

to the superconducting state. In the non superconducting parent, long range static

order and strong fluctuations about the AFM wave vector dominate the system at low
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energies and superconductivity is completely suppressed. In the underdoped region

filamentary superconductivity can survive in the presence of persisting short range

static order with spectral weight sitting at both wave vectors. However, it is not until

the static order has completely dissolved and the majority of low energy fluctuations

associated with the AFM wave vector have transfered over to the nesting vector that

bulk superconductivity can gain a solid foothold within the system.

3.2 Optimal Doped

3.2.1 Introduction

As in the pnictide superconductors, the chalcogenides exhibit a resonant mode in

the magnetic spectrum when cooled below Tc [98]. In the s+− picture this resonance

is expected to appear at an energy transfer equal to (or slightly smaller than) the

superconducting gap 2∆. This picture was already supported by the 3D nature of

the resonance in doped BaFe2As2, which can be ascribed to an L-modulated 3D

superconducting gap [9]. As well, all of the measured base temperature resonance

modes mapped out in the Fe-based families are at an energy transfer that is less than

2∆ [140]. However, a more direct test of this picture was performed on optimal Co

doped BaFe2As2 where the mode energy was remeasured over a range of temperatures

from base to Tc. Since the superconducting gap reduces in magnitude as an order

parameter when Tc is approached, this implies that the resonance energy should

shift to lower energy values with increasing temperature in order to remain bounded

by the reducing superconducting gap energy. In this experiment, it was discovered

that this is indeed the case [49] for the electron doped pnictides. Indeed, with

increasing temperature the resonance energy followed an order parameter very similar

to that of the superconducting gap and with the reduction in superconductivity

met by a corresponding reduction in the intensity of the resonance. A similar
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study has also been performed on optimal Ni doped BaFe2As2, but using an out-

of-plane magnetic field instead of temperature as the tuning parameter to reduce the

superconducting gap [146]. Likewise, the application of a 14.5T field resulted in a

corresponding reduction in the mode energy and intensity. As well, the appearance

of the resonance tracked the shift in Tc upon application of the field. Taken together,

the above measurements provide strong evidence that the resonance mode is a

byproduct of the superconducting coherence factor and linked to sign reversal of

nested superconducting gaps.

In contrast, the cuprates also show sign reversal on alternating lobes of the d-

wave superconducting gap. However, it has been shown that the resonance energy in

fully oxygenated YBa2Cu3O7 is insensitive to temperature changes, at least within

the range of experimental measurements up to 0.8Tc [33]. This strongly suggests

that the resonance energy does not remain bounded below the superconducting gap

energy as Tc is approached. Given that the resonance is a ubiquitous property of

unconventional superconductivity, it stands to reason that the mode would have a

common origin in all of the superconducting families. Although other properties of the

resonance (ie: dimensionality, line width, intensity, etc.) can and do differ between

different systems, a lack of similar behavior in the temperature dependence of the

resonance energy is very difficult to justify in a picture describing it as originating

from sign-reversal on different parts of the superconducting gap. Since the physics

of the cuprates and the pnictides are quite removed from one another, it is highly

interesting to retest the temperature dependence of the resonance on the much more

closely related FeSexTe1−x. At the time of our study there was evidence on FeSexTe1−x

that the picture of a sign reversed scattering enhanced resonance did not work for

this system. Specifically, measurements under an in-plane field in optimal doped

FeSexTe1−x x = 0.5, (x = 0.4) of strength H = 7T, (H = 14T ) did not observed any

shift in the energy of the resonance. As well, an existing study of the resonance in

FeSe0.4Te0.6 provides a very nice color plot suggesting that the resonance energy is

independent of temperature [98]. However, since the scan resolution of their color
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Figure 3.4: a), c) Energy scans of the resonance at different temperatures. b), d)
Energy of the resonance obtained by fits to the data from panels a) and c) respectively.
Panels a), b) taken from [49] and panels c), d) taken from [33].
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profile is unknown, it is possible that the resonance did shift in energy but that this

information was lost when interpolated into a color plot. Indeed, in Inosov’s paper

[49] demonstrating that the energy of the resonance in optimal doped Ba(122) is

dependent on temperature, it is his careful analysis of the 1D cuts that are convincing,

his 2D mesh of Energy vs Temp is not very suggestive at all. We addressed the above

concerns by producing a systematic series of energy scans very close in temperature

(separated by only 1-2 degrees) and directly checked each one for a shift in energy.

At the time of our study the 3D L-dependent character of the resonance had

already been observed in the pnictides [9, 96]. For the chalcogenides, existing studies

suggested that the resonance was completely independent of L, although this had

yet been confirmed directly. In our work [41], we report inelastic neutron-scattering

studies of superconducting FeTe0.6Se0.4 (Tc = 14 K). First, we confirm the earlier

work [98] that the mode is purely two dimensional and dispersionless for wave vectors

along the c axis, which is different from the dispersive nature of the resonance in

electron-doped BaFe2−x(Co,Ni)xAs2. Second, we extend the earlier work [98] on the

temperature dependence of the mode. By carrying out systematic series of energy

scans very close and above the superconducting transition temperature Tc, we find

that the energy of the mode is essentially temperature independent and collapses at a

temperature slightly above Tc, and does not follow the temperature dependence of the

superconducting electronic gap as determined from Andreev reflection measurements

[93]. Finally, we show that the intensity gain of the resonance is approximately

compensated by spectral weight loss at energies below it, and there is a spin gap

opening for low-energy spin excitations below Tc. These results suggest that the

neutron spin resonance in the FeTe0.6Se0.4 system may not be directly coupled to the

superconducting electronic gap as those for BaFe2−x(Co,Ni)xAs2.
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3.2.2 Characterization of the Resonance Mode Energy

We carried out neutron-scattering experiments on the HB-3 thermal triple axis

spectrometer at the High Flux Isotope Reactor (HFIR), Oak Ridge National

Laboratory. We used a pyrolytic graphite PG(002) monochromator and analyzer

with a collimation of 48’-monochromator-60’-sample-80’-analyzer-240’-detector. The

data were collected in fixed Ef mode at 14.7 meV with a PG filter placed between

the sample and analyzer to remove contamination from higher-order reflections. We

coaligned two single crystals in the [H,H,L] scattering plane and loaded them in a

liquid-He orange cryostat. The total mass was ∼10 g with an in-plane and out-of-

plane mosaic of 2.0o and 2.1o full width at half maximum (FWHM), respectively.

We defined the wave vector Q at (qx, qy, qz) as (H,K,L) = (qxa/2π, qyb/2π, qzc/2π)

reciprocal-lattice units (rlu) using the tetragonal unit cell (space group P4/nmm),

where a = 3.8Å, b = 3.8Å, and c = 6.0Å. In the earlier sections on the parent

and underdoped compounds, all units were reported in th orthorhombic cell which

placed the AFM wave vector at (1/2, 1/2, 1/2)O and the nesting vector at (1, 0, 0)O.

However, since our work on FeTe0.6Se0.4 was published with the discussion and figures

(which are included in my thesis below) in the tetragonal unit cell, I will now break

from the usage of orthorhombic units in favor of tetragonal. This corresponds to a

45o vector rotation with the AFM wave vector now sitting at (1/2, 0, 1/2)T and the

nesting vector at (1/2, 1/2, 0)T ; the subscripts will be suppressed for the remainder

of the discussion.

In the non superconducting FeTe1−xSex samples (x = 0.3), spin excitations

coexist at both the (1/2, 0, 1/2) AFM wave vector, and the (1/2, 1/2, L) wave vector

associated with nesting of electron and hole pockets on the Fermi surface. Upon

reaching optimal doping, spin excitations at the AFM wave vector are suppressed,

however, they remain strong near the nesting vector and consist of a commensurate

resonance mode (in the superconducting state) sitting on top of an incommensurate

magnetic signal that follows an hourglass dispersion at low energies [63]. We chose
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the [H,H,L] scattering plane for our experiments since this zone gives us full freedom

to probe the L dependence of the resonance. In general, the excitations in this

system are extremely diffuse and, as a result, much broader than the instrumental

resolution. To quantify this, we have calculated the resolution along the (H, 1 −H)

direction at the (0.5, 0.5) position as a function of energy. The resulting instrumental

resolution width in FWHM is roughly 20 times smaller than the incommensurate peak

separation. Thus our data collection is a good measure of signal centered directly at

the (0.5, 0.5) position.

Although previous measurements suggest that the resonance in FeTe1−xSex is two-

dimensional [85, 98], there have been no explicit measurements of the resonance at

different L- values. With this in mind, we have carried out detailed energy scans

of bulk superconducting FeTe0.6Se0.4 at the resonance wave vector (1/2, 1/2, L) as

a function of temperature and L. Figures 3.5c-e show constant-Q scans at the

signal Q = (0.5, 0.5, 0), (0.5, 0.5, 0.5), (0.5, 0.5, 1) and background Q = (0.65, 0.65, 0)

positions above and below Tc. Consistent with earlier results [85, 98], we see a clear

enhancement of scattering around E ≈ 7 meV below Tc at the signal wave vectors for

all the L values probed. Figure 3.5f over-plots the temperature differences between

2 K and 25 K data for three L values. It is clear that for all L values the resonance

energy is the same within the errors of our measurements (E = 6.95 ± 0.5 meV).

Therefore, in comparison, we find that the dimensionality of the mode is more like

the cuprates (2D) as opposed to the dispersive mode along the c-axis observed in the

more closely related electron doped pnictides.

In previous neutron scattering experiments on optimally electron-doped BaFe2−xCoxAs2,

careful temperature dependence measurements revealed that the energy of the

resonance with increasing temperature tracks the temperature dependence of the

superconducting gap energy [49]. These results, as well as the magnetic field effect

of the resonance [146], provided compelling evidence that the resonance energy is

intimately associated with the superconducting electronic gap energies. To see if the

resonance in FeTe0.6Se0.4 behaves similarly, we carried out a series of energy scans
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Figure 3.5: (a) Diagram of the Fe spin ordering with the shaded region defining the
magnetic unit cell. (b) Cartoon of the scan directions though the (1/2, 1/2, L) nesting
vector. The inset illustrates the direction in the [H,K] plane that scans were confined
to. Excitations at (1/2, 1/2, L) in FeTe1−xSex consist of two incommensurate peaks
that spread away from one another in the transverse direction. The red circles in the
inset depict these excitations with the radius of the circles equal to twice the FWHM
of the (1/2, 1/2, 0), 7.5 meV resonance peaks measured on crystals from the same
batch on a different experiment. The separation of their centers is set to agree with the
dispersion mapped out in this previous experiment [63] (c-e) Energy scans about the
7 meV resonance position above and below Tc for L = 0, 1/2, 1. Clear intensity gain is
observed inside the superconducting state. The background at L = 0 is plotted above
and below Tc and is found to be identical, allowing direct temperature subtraction
of the scans with no need for background correction. (f) Temperature subtraction
of energy scans shown in panels (c-e) demonstrating no observable dispersion of the
resonance energy along L.
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Figure 3.6: (Figure on next page.)(a) Raw data for energy scans at Q = (1/2, 1/2, 1/2)
for multiple temperatures below Tc. At 2 K the 7 meV resonance is clearly present.
A strong reduction in scattering for energies below 4 meV is also visible, indicating
the opening of a gap in the system. Subsequent Q-scans, however, show that this is
not a true gap. As the temperature increases to Tc the resonance suppresses and the
partial gap closes up. (b) Temperature subtraction of scans shown in panel (a). All
of the data is fit with a Gaussian leaving the center energy as a free parameter to
be determined. (c) Position of the resonance energy vs temperature as determined
from the fits in panel b), note that circle above T = 15K are meant to indicate that
the resonance has been completely suppressed. The temperature dependence of the
superconducting gap [93] is also graphed, explicitly demonstrating that the resonance
does not shift in energy as a function of temperature so as to remain inside 2∆ as
required by the spin exciton scenario.
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Figure 3.6: Caption on previous page.
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from base temperature (2 K) to just above Tc (20 K) at Q = (0.5, 0.5, 0.5) (Fig. 3.6a).

As the temperature is increased, we see that the resonance drops monotonically in

intensity. To accurately determine the temperature dependence of the mode, the

energy scans in the superconducting state were subtracted from the energy scan at

20 K in the normal state. The resulting plots of the resonance intensity gain were

then fit to a Gaussian on a linear background with the center left as a free parameter

(Fig. 3.6b). By plotting the fitted values of the resonance energy as a function of

temperature (Fig. 3.6c), we see that the resonance energy is essentially temperature

independent until it abruptly disappears above Tc. This is clearly different from the

temperature dependence of the resonance for electron-doped BaFe2−xCoxAs2 [49] and

the temperature dependence of the superconducting gap for FeTe0.6Se0.4 as determined

from the Andreev reflection measurements (Fig. 3.6c) [93].

To further characterize the resonance, a series of Q-scans were carried out at

E = 6.5 meV. Scans along the [H,H] direction for L = 0.5 confirm that the resonance

peaks at the (0.5, 0.5) position with a strong gain in intensity in the superconducting

state (Figs. 3.7a and 3.7c). For temperatures above 20 K, the drop in intensity is

much more gradual with the peak at (0.5, 0.5) fully suppressed by 100 K. Similar scans

along the [0.5, 0.5, L] direction (Fig 3.7d-f) reveal that the scattering is much broader.

The intensity gain of the resonance is extracted by subtraction of the 20 K and 2 K

data. The L-dependence of the signal fits well to the Fe2+ form factor, a further

indication that the resonance is purely two-dimensional in nature. A temperature

scan at (0.5, 0.5, 0.5) for E = 6.8 meV confirmed that the resonance is strongest at

base temperatures and then reduces like an order parameter to Tc in good agreement

with earlier measurements of the system [85, 98, 63].

Interestingly, the 15K energy scan in Fig. 3.6 b) and the temperature scan of the

resonance in Fig. 3.7 e,f) suggest that the resonance mode first forms in the normal

state while in close proximity to superconductivity. This behavior was also observed

by Qiu [98] in their temperature and energy scans of the resonance in FeSe0.4Te0.6. A

similar analysis on optimally doped BaFe1.85Co0.15As2 does not display such behavior
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Figure 3.7: (a,b) Raw Q-scan data along [H,H] and L respectively at ER = 6.5meV at
several temperatures. (c,d) χ′′(Q,ω) is determined by subtraction of the background
and correcting for the Bose factor. In c) the 100 K data was used as a final background
subtraction in order to remove a spurion at (0.45, 0.45, 0.5) and a phonon tail for
points near (0.7, 0.7, 0.5). (d) The intensity gain due to the resonance is determined
by subtraction of the 2 K and 20 K data. The resulting signal is very broad and fits
well to the Fe2+ form factor; a testament to the 2D nature of the resonant mode.
(e,f) Temperature dependence of the resonance for Q = (1/2, 1/2, 1/2) and E = 6.8
meV. The resonance suppresses as an order parameter as Tc is approached.
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Figure 3.8: (a,b) Q-scan data along the [H,H] direction for L = 1 and E = 3
meV. The scattering becomes stronger as Tc is approached from higher temperatures,
upon entering the superconducting state the intensity drops significantly by 2 K but
does not fully gap. (c) Temperature dependence at 3 meV inside of the pseudo spin
gap region reveals that near Tc a gap begins to form but never fully forms by base
temperature. (d) S(Q,ω) of the temperature scan as determined by interpolating
and subtracting the background collected using A3 rocking curves. Yellow diamonds
correspond to cross checks with fitted Q-scans from panels (a,b). Since the Q-scans
and temperature scan were collected on different experiments, the data sets were not
normalized to one another by monitor count but rather shifted to coincide at 20 K.
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[146]. Although the origin of this effect is unclear, it is consistent with the idea of

preformed Cooper pairs developing in the normal state prior to establishing long range

phase coherence. Indeed, an early onset resonance extending more than 50K above

Tc has been associated with the psuedogap region of YBa2Cu3O6+x where preformed

pairs have been hypothesized as the origin of this state [20].

From Figs. 3.5 and 3.6, we see that the intensity gain of resonance in the

superconducting state is accompanied by a loss in signal for energies below 4 meV,

suggesting that conservation of spectral weight is satisfied by a reduction of scattering

below the resonance energy. However, earlier measurements [63] suggest that the

spin gap in FeTe0.6Se0.4 is unclean and does not fully open until ∼1 meV. Thus, it

is interesting to investigate the temperature dependence of the spin excitations for

energies above the spin gap and below the resonance. Figure 3.8a shows Q-scans

along the [H,H, 1] direction at different temperatures. With increasing temperature

from 2 K, a peak at (0.5, 0.5, 1) above background initially increases at T=20 K,

then decreases upon further warming until disappearing at 100 K. Assuming that

there are only background scattering at 100 K, the temperature difference plots

in Fig. 3.8b confirm that the magnetic scattering increases on warming to Tc and

then decreases with further increasing temperature. Figure 3.8c shows the detailed

temperature dependence data at the signalQ = (0.5, 0.5, 0.5) and background (sample

rotated away from the signal position by 30 degrees) position. As we can see,

the scattering shows a clear kink at Tc and decreases monotonically above Tc with

warming. Figure 3.8 shows the background corrected temperature dependence of the

magnetic scattering assuming that the temperature dependence of the background

follows the solid line in Fig. 3.8c. The effect of superconductivity is to open a pseudo

gap in spin excitations spectrum below Tc.

In the case of electron and hole-doped Ba-122, the enhancement of the resonance

occurs at the expense of a full spin gap opening below the resonance. Previously, the

situation for Fe(Se,Te) was not completely clear since there are no clean spin gaps

for Fe(Se,Te). Furthermore, it was not even clear whether the reduction in magnetic
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intensity at energies below the resonance occurs exactly at Tc, when the resonance

appears. From our data we see that this is indeed the case, which suggests that

the intensity gain of the resonance comes at the expense of spectral weight loss for

energies below the resonance. It is worth noting that in terms of lightly doped, non

superconducting FeTe, measurements at (0.5, 0.5) also reveal a loss in scattering at

3meV. However, for this underdoped system no resonance is present to suck away

spectral weight. Rather, the signal loss is due to the fact that at lower dopings

there exists inelastic magnetic scattering at both (0.5,0) and (0.5, 0.5) with a strong

crossover of spectral weight between these wave vectors occurring around 3meV [8].

To determine whether spin excitations at energies above the resonance also

respond to superconductivity, we carried out a series of constant-energy E = 11 meV

scans along the [H,H, 1] direction. The outcome shown in Figs. 3.9a and b reveals

that magnetic scattering gradually increases in intensity on cooling. However, upon

entering the superconducting state, the scattering appears to level off with the 2 K and

20 K Q-scans nearly identical in intensity. Temperature scans at E = 11 meV at the

signal [Q = (0.5, 0.5, 0.5)] and background [Q = (0.7, 0.7, 0.5)] positions are shown

in Fig. 3.9c. The background and Bose factor corrected temperature dependent

imaginary part of the dynamic susceptibility, χ′′(Q,E), at Q = (0.5, 0.5, 0.5) and

E = 11 meV is shown in Fig. 3.9d. It is clear that the magnetic scattering grows

with decreasing temperature but essentially saturates at temperatures below ∼15 K.

Finally, Figure 3.10a shows the temperature evolution of the constant-Q [Q =

(0.5, 0.5, 0.5)] scans from 2 K to 100 K. After correcting for the temperature

dependence of the background scattering and Bose population factor, we obtain the

temperature dependence of χ′′(Q,E) at Q = (0.5, 0.5, 0.5) (Fig. 3.10b). The χ′′(Q,E)

increases linearly with increasing energy, and the resonance appears below Tc together

with the opening of a spin gap at lower energies. These results are consistent with

earlier work [85, 98].
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Figure 3.9: (a) Raw Q-scan data along the [H,H] direction for L = 1 and E = 11
meV. (b) χ′′(Q,ω) determined by background subtraction and correcting for the Bose
factor. The resonance is no longer visible, instead the scattering at 2 K is nearly
identical to 20 K. Upon entering the normal state, the intensity begins dropping
monotonically with increasing temperature but remains robust up to 100 K. (c,d)
Temperature scan at (1/2, 1/2, 1/2) for E = 11 meV. Red stars correspond to cross
checks with fitted peak intensities from Q-scans in panel a) that have been form factor
corrected and normalized by monitor count.
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Figure 3.10: (a) Energy scans focusing on temperatures above Tc. (b) The background
subtraction of χ′′(Q,ω) is determined from Q-scans. Aside from the resonance in the
2 K data, all other energy scans follow a similar linear trend; fanning out as a function
of temperature.
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3.2.3 Conclusions

From our characterization, we find that the resonance in the chalcogenide supercon-

ductors deviates considerably from that observed in the pnictides. Interestingly, this

resonance is in many ways much more similar to the cuprates, as can be seen from

Table 3.1. The presence of a neutron spin resonance in various high-Tc copper oxide

Table 3.1: Comparison of the Resonance Properties in the Pnictides, Chalcogenides,
and Cuprates. The precursor resonance refers to a small, gradual, and anomalous
increase in spectral weight at the resonance position prior to the onset of
superconductivity. The temperature dependence of the resonance refers explicitly to
the location of the mode energy as a function of temperature, not its intensity which
follows an order parameter in all systems. The dimensionality of the resonance refers
to whether the resonance or not the mode energy is (3D) or is not (2D) dispersive
along L.

System Precursor Resonance Temp. Dep. of ER Dimen. of Resonance

BaMxFe2−xAs2 No Yes 3D
FeSexTe1−x Yes No 2D

YBa2Cu3O6+x Yes No 2D

and Fe-based superconductors has been suggested as the result of a spin-fluctuation

mediated electron pairing mechanism [50, 139]. In an earlier work mostly on copper

oxide superconductors [139], it was proposed that the resonance energy is universally

associated with the superconducting electronic gap ∆ via ~ωres/2∆ = 0.64 instead

of being proportional to the superconducting transition temperatures Tc [128]. In a

more recent summary of neutron scattering data on iron-based superconductors [50],

it was found that the energies of the resonance for underdoped BaFe2−x(Co,Ni)xAs2

deviate from this relationship, particularly for the resonance energy at L = 0. For

FeTe0.6Se0.4, angle resolved photoemission spectroscopy experiments [84] reveal a 4.2

meV gap on the electron Fermi surface and a 2.5 meV gap on the hole Fermi surface.

Since the addition of the electron and hole superconducting electronic gap energies is

consistent with the energy of the resonance at low temperature, the result has been
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interpreted as evidence that the resonance in FeTe0.6Se0.4 also arises from electron-

hole pocket excitations [84]. However, if we assume that the superconducting gap

energy gradually decreases for temperatures approaching Tc, the resonance energy

will exceed that of the superconducting gap energy, contrary to the expectation for a

spin exciton in the sign revised s-wave electron pairing scenario [77, 76].

If superconductivity in iron-based materials is mediated by orbital fluctuations

associated with fully gapped s-wave state without sign reversal (s++-wave state), one

would expect a neutron spin resonance at an energy above the addition of the electron

and hole superconducting electronic gap energies [88]. Since the superconducting gaps

decrease with increasing temperature, one would expect a reduction in the resonance

energy with increasing temperature even in this scenario, contrary to the observation.

In the SO(5) theory for high-Tc superconductivity [22], it is postulated that the

AF and SC phases in the cuprates share a common microscopic origin. To develop the

theory along these lines the 3D AF order parameter (Nx, Ny, Nz) is combined with

the 2D superconducting order parameter (Re∆, Im∆) to form a single 5D ’superspin’

vector. In this picture, spatial and temporal variations of the superspin are then

responsible for the ground state and the dynamics of collective excitations in various

phases; ie: rotation of the superspin can tune you from, for instance, a local moment

spin ordered insulator into a paramagnetic superconducting state. Since we are

dealing with a five-dimensional order-parameter space, the most general rotations

are given to us by the SO(5) symmetry group. Thus, it is in a context analogous

to the unification of electo-magnetism that the unification of superconductivity and

magnetism is developed. Within this theory, the resonance emerges as a Goldstone

boson associated with a breaking of the symmetry, and in the full development of the

theory it is shown that the resonance is fixed in energy as a function of temperature.

Although this is consistent with our present work, it remains unclear how the SO(5)

theory originally designed for high-Tc copper oxide superconductors would apply in

the case of iron-based superconductors. As well, this theory conflicts with the data for

the pnictides which displays a temperature dependent resonance. Hence, our present

138



work demonstrates that the correct microscopic description of the resonance is both

unclear and conflicting, highlighting the need for more work to resolve this problem. It

would be of great interest to understand why, in some systems the resonance is clearly

linked to the superconducting electronic gap whereas our results on the FeTe0.6Se0.4

system suggest that the resonance itself may not be directly associated with ∆.
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Chapter 4

Looking Back, Looking Forward

4.1 Ongoing Work

4.1.1 Temperature Dependence of the Effective Moment in

FeTe

At the time of this writing it has recently been shown by Zaliznyak, et. al. [143]

that the effective moment in FeyTe, as determined by zone and energy integration

of the S(Q, ω) intensity, is not constant as a function of temperature. In general,

conservation of spectral weight implies that the loss of scattering in one region of

(Q, ω) must be offset by a one-to-one increase in scattering in another region. Thus,

the total effective moment of the system should remain constant. However, in FeyTe

the moment appears to climb as a function of temperature from a value of µeff = 2.7µB

at T = 10K to µeff = 3.6µB at T = 100K Fig. 4.1c). These values are very close to

the moments expected for local spins of S = 1 (2.8µB) and S = 3/2 (3.9µB). Thus

the authors surmise that their is an effective change of 1 electron transferring from

the itinerant channel into the local channel.

Previous neutron scattering experiments on FeTe observed excitations extending

up to approximately 250meV, Fig. 3.1 [64]. At low energies (≤30meV) the signal is

centered around the (1
2
,1
2
) ordering wave vector while above this energy the scattering
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Figure 4.1: (a) χ′′(Q, ω) as a function of energy for Q = (0, 0.45) at 10 K, 80 K and
300 K. (b) Temperature dependence of S(E), excluding Bragg scattering. (c) Square
of the effective magnetic moment obtained by integrating the S(E), as a function of
temperature. Upper (blue) symbols show the total response, bottom (red) symbols
are the Bragg contribution, green symbols are the quasi elastic contribution. Figure
taken from [143].
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becomes extremely diffuse and stretches across the majority of the Brillioun zone. The

Q-integrated data in the study by Zaliznyak, et. al. suggest that the overwhelming

majority of the spectral weight lies in energy transfers below 30meV Fig. 4.1b).

Thus, it is only over this energy interval [0meV, 30meV] that they integrated their

data to obtain estimations of the total moment. However, due to the diffuse nature

of the scattering, background subtraction above 30meV becomes extremely difficult

and could lead to an unintentional subtraction of magnetic scattering which would

artificially suggest that spectral weight suppresses quickly above 30meV, thereby

leading to corresponding incorrect moment calculations. To check against this

possibility we collected data with good statistics to very high energies over a range

of temperatures from 2K to 300K. We plan to first perform moment integrations of

background subtracted data up to 30meV so that we may directly check our result

against theirs over an identical integration region. Next, to check the contribution of

higher energy excitations to the moment, we will integrate to much higher energies.

Although difficult, it is our hope that we will be able to properly correct for both

background and detector bank gaps. However this may not be possible, in this event

we will leave the background intact, which should be mostly temperature independent

at energies above the phonon cutoff frequency of 30meV, and then account for the

background contribution by taking ratios of moments at different temperatures.

R =
µE>30

eff (T1) +
∫
BKG

µE>30
eff (T2) +

∫
BKG

(4.1)

The ratios (R) obtained from this procedure will restrict us from determining the

absolute value of the moment at a particular temperature. However, we will be

left with the capability to check for temperature dependence, which is the primary

motivation for our study.
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4.1.2 High Temperature Study of Magnetic Excitations in

BaFe2As2

In our previous study of BaFe2As2 (see Section 2.1) we carried out measurements at

three different temperatures: 7K where the spin lattice carries long range magnetic

order and temperatures roughly 10% (T = 125K) below and 10% (T = 150) above the

magnetic phase transition (TN = 135K). Since these measurements were carried out

using time of flight spectroscopy, we were able to map out the magnetic excitations all

the way to the zone boundary (∼250meV). At 7K, the spin wave dispersion observed

in our Ba(122) parent study differed significantly from the closely related Ca(122)

parent. In Ca(122) the spin waves remain centered at the (1,0,0) wavevector all

the way to the zone boundary and are well described by an anisotropic J1a − J1b −

J2 Heisenberg model [144]. However, in Ba(122) there is a wavevector transfer of

scattering to the (1,1,0) position for energy transfers greater than 150meV and the

data can only be fit with the same Heisenberg model if a strong Q-anisotropic damping

is used. We found that the scattering in close to proximity to TN was identical to the

low temperature spin wave scattering for energy transfers above 100meV and that

only energy transfers below this threshold carried any significant differences among

the different temperatures. Given that the scattering is not strongly modified across

the phase transition, we collected an entirely new set of data for Ei’s at much higher

temperatures (up to room temperature) to see how these excitations evolve. In our

priliminary analysis of the data we have found that the striking similarity of the

scattering profile at 10% above TN to the 7K ordered spin wave data is not associated

with the close proximity of the phase transition. Rather, at T = 300K we find that

the scattering was modified only slightly by the large increase in temperature.

Altogether our data sets on BaFe2As2 provide us with enough coverage of S(Q, ω)

to also integrate out the effective moment at five different temperatures: 7K, 125K,

150K, 225K, 290K. This provided us with the opportunity to directly compare our

results with the existing results for FeTe described above. We found that, unlike FeTe,
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Figure 4.2: (a)-(e) Temperature dependence of S(E), excluding Bragg scattering. (f)
Overplot at all temperatures of the empirical fits used to integrate out the moment.
(g) Square of the effective magnetic moment as a function of temperature. Figure
taken from unpublished work by our group.

144



the total moment sum rule is satisfied and the effective moment remains constant as a

function of temperature Fig. 4.2. In BaFe2As2, the scattering is much less diffuse and

so carrying out the integration was much more straightforward compared to FeTe.

Thus, it is unclear if our result signals that the physics of these systems truly are

different in this respect, or if the integration of FeTe needs to be re-evaluated for

error.

Currently, our progress towards publication of our high temperature results on

BaFe2As2 is fairly well advanced. Final figures are nearing completion and a rough

draft is pending upon a more critical review and interpretation of the results.

4.2 Future Work

When deciding on the direction of my future work, it is important to balance projects

that I am interested in against the spectroscopic techniques and samples that are

most accessible. Upon leaving UT, I will immediately take a position at the National

Institute of Standards and Technology as a local contact on the spin polarized inelastic

neutron scattering (SPINS) spectrometer with 15% of the instument’s beamtime

reserved for my own studies. Since SPINS is a cold triple axis spectrometer, it

will carry a low flux (high count times) and only allow for consecutive collection

of 1D scans through (Q, ω) (as opposed to TOF where all of (Q, ω) is collected

concurrently.) The benefit is that these 1D scans can reach exceptionally low energy

transfers of ∼0.2meV with no spectrometer coupling of energy to a direction in Q.

As well, the supermirrors of spins should allow for the collection of polarization data

without a drastic reduction in incident flux and within the year SPINS will be retooled

so that it can be outfitted with a 14T magnetic. Thus, my studies would benefit the

most by taking into account the above considerations.

Although specific future studies have not been finalized, there has been some

thought given to doing a pressure study of Ru doped BaFe2As2. Another possibility

would be to look at a possible disorder effect in the parent BaFe2As2 that is suggested
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by a shift in TN when the system is annealed. There has also been work by Wilson et.

al. [129] demonstrating that the nuclear and magnetic phase transitions always follow

an Ising order parameter in the pnictides with the dimensionality 2D if Tc and TN

are concomitant and 3D if they are separated. However, there is much work that can

still be done to test the universality of this relationship. This is especially interesting

given that the separation of the phase transition is controlled by the exchange coupling

along the c-axis Jc [28]. In our work on underdoped BaFe2As2 (see Sec. 2.2) we find

that Jc reduces very quickly with even a very modest amount of doping and that this,

in turn, reduces the dimensionality of the system from 3D to 2D and drives the phase

transitions away from one another. Yet oddly, in Wilson’s work, separated phase

transitions lead to 3D Ising behavior which is counterintuitive to what is expected.

Apart from the pnictides, it would be interesting to return to studies of the electron

doped cuprates which were still trending just before the Fe-based superconductors

were discovered. Particularly, in PLCCO it was discovered that extremely small

amounts of Ni doping could drastically reduce the Tc of the system, thus it would

be very interesting to map out the low energy magnetic fluctuations of Ni doped

compounds and compare them to their corresponding non-Ni doped counterparts.

Aside from experiments, my work on time of flight data has revealed several

improvements that can be made to the existing data analysis software. The standard’s

right now for cutting and slicing the large 4D data sets for analysis is Mslice.

Instrument convolution and model fitting of this processed data is achieved using

a separate program Tobyfit. There is also some built-in capability to directly send

data to mFit, a primarily triple axis software written at ILL, that allows for very

quick unconvolved fitting of 1D cuts to several general forms. Separately, each piece

of software works exceptionally well. However, a close integration of these softwares

is lacking which leads to alot of undue front-end effort by users to move data and

spectrometer parameters from one place to another. As well, to acquire a global

view of the 4D data set requires a very cumbersome amount of cutting and slicing

of the data. This is also a problem for certain tasks, such as building a dispersion,
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Figure 4.3: Screen shot of Lslice, a developmentary software for improving the
functionality, user friendliness, and integration of existing time of flight software.
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which require the user to systematically extract a host of mostly identical cuts that

differ only by a step in Q or E and painstaking fit them individually and compile

the fitted results. To address these problems, I have extracted out and modified the

core subroutines in Mslice so that they may be called by an upper level of routines

that automates many of the step-wise and repetitive procedures that currently slows

down and unneccesarily burdens users. All of this will then be wrapped into a new

GUI that provides a user friendly interface for the new functionality. To date, I have

roughly a quarter of the upper level routines written and half of the first layer GUI.

Ultimately, the hope is to fully integrate all three pre-existing softwares (as well as an

internal data storage) and provide a tabbing between the multiple layers of a master

GUI that allows you to quickly navigate between the different levels of functionality.

Fig. 4.3 shows a screenshot of the program. To give a few of the more basic details, a

2D slice of real data is plotted in the upper left graphing window. The red horizontal

line running through this window allows the user to cut the 2D slice into a 1D cut.

This cut would show up in the top right graphing window (routine not finished). The

line is interactive and can be moved up and down with the results changing in real

time in the 1D plotting window. A similar vertical line will be included to plot data

in the lower left plotting window. All quantities are set on sliders so that users can

quickly step systematically through sliced data in the four different directions (H, K,

L, E). A ’plot all’ option will allow users to create and save an entire series of 1D or

2D plots that all change by a set step. These can be compiled into a collection of

side by side plots, or overplotted for easy viewing. As well, systematic fitting can be

performed where the fitted parameters from a plot are used as the starting parameters

for the consecutive plot one step up.

4.3 Concluding Remarks

Before the discovery of the Fe-based superconductors, the cuprates were the only

known source of high temperature superconductivity. Although comparison to the
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heavy fermions provided a good measure of insight, the extremely low Tc, exotic

physics, and very different magnetic origin of these systems meant that they were

in many ways far removed from their Cu-based counterparts. Thus, the Fe-based

systems provide an exciting opportunity to probe novel compounds with transition

temperatures and a chemical structure that are similar to the cuprates, yet different

enough in electronic and magnetic structure to be unique in their own right. It is

my hope that the experiments detailed above will help further our understanding of

the relationship between unconventional superconductivity and magnetism and add

to the growing body of scientific work necessary to acquire a comprehensive picture

of these systems.
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