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Abstract

Synthesis of well-defined nanostructures by pulsed laser melting is an interesting subject from both a funda-
mental and technological point of view. In this thesis, the synthesis and functional properties of potentially
useful materials were studied, such as tin dioxide nanostructured arrays, which have potential applications
in hydrogen gas sensing, and ferromagnetic Co nanowire and nanomagnets, which are fundamentally im-
portant towards understanding magnetism in the nanoscale. First, the formation of 1D periodic tin dioxide
nanoarrays was investigated with the goal of forming nanowires for hydrogen sensing. Experimental obser-
vations combined with theoretical modeling successfully explained the mechanisms of structure formation.
One of the primary findings was that evaporation of tin dioxide was the most significant contributor to the
pattern formation. Next, the spontaneous liquid film spinodal dewetting process under pulsed laser melting
was modeled using the viscous dissipation approach. We found that the fluid condition for spinodal dewet-
ting is where the film-substrate tangential stress is zero. Following this, the remainder of the thesis focused
on synthesis and characterization of magnetic nanostructures. We first successfully installed a home-built
Surface Magneto-optical Kerr Effect (SMOKE) system. Using SMOKE we measured the Kerr rotation from
potential plasmonic-ferromagnetic magneto-optical materials made from Co-Ag thin films and nanoparti-
cles as a function of composition. We found that films made by co-deposition of Co and Ag showed higher
Kerr rotation in contrast to bilayer film structures with same effective amount of Co and Ag. Next, we inves-
tigated the shape and size dependence of magnetic properties of nanostructures, specifically hemispherical
nanoparticles, nanowires and nanorods, prepared by the pulsed laser process. The magnetic anisotropy
was studied by using the SMOKE system complemented with magnetic force microscopy (MFM) analy-
sis. Results from magnetic hysteresis measurements of the nanostructures in different geometries showed
coercivity and remanence that could be attributed to magnetic shape anisotropy. MFM analysis showed
that domain orientation was found to depend on the aspect ratio of the nanostructure. These investigations
generally helped advance the science of nanostructure synthesis using nanosecond pulsed laser techniques
as well demonstrate that SMOKE is a promising method to investigate nanostructure magnetism.
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Chapter 1

Structure-property studies in laser

synthesized nanostructured materials: An

introduction and overview

1.1 Introduction

Despite its relatively short history, concepts of nanotechnology have been discussed over a long period of
time. As early as in the 1960’s, Richard Feynman discussed in his famous lecture about “manipulating and
controlling things on a small scale” that nanotechnology could be one of the most exciting advancements
of science, and there was potential for an enormous number of technical applications [18]. He envisioned
that at some point we might be able to arrange atoms the way we want, and that such technology would
impact our life [18]. Twenty years later, as he predicted, the rise of nanotechnology gradually began due to
technological advancements in fabrication and characterization. Scientists and engineers started inventing
innovative methods to construct structures in the nanoscale by techniques such as physical vapor deposi-
tion (PVD), chemical vapor deposition (CVD), chemical etching, lithography, electrochemistry, and colloid
& cluster chemistry. In parallel, they began to study nanoscopic properties, for example, by electron &
ion microscopy, scanning probe microscopy (SPM), nano-indentation, X-ray spectroscopy, and optical/laser
spectroscopy. For example, in 1982 Binning and Rohrer developed a new type of microscopy system, scan-
ning tunneling microscopy (STM), which was capable of imaging single atoms in Si crystal [19]. Scientists
and researchers were intrigued by this nanomaterial because they exhibited surprisingly unique and extraor-
dinary properties, such as exhibiting superparamagnetism when a ferromagnetic particle size decreases to
nanoscale dimensions, improved catalytic processes by nanosized catalysts, strong light absorption in the
UV-visible region due to the size and shape dependent localized surface plasmon resonance (LSPR), shape
dependent enhanced magnetic anisotropy, and so on. Now, nanomaterials are acknowledged to have dis-
tinct physical properties from bulk materials and are being utilized in all areas of science and technology,
including energy harvesting [20, 21, 22, 23, 24], catalysis [25], drug delivery [26], bio-imaging [27, 28],
and biological-, chemical- and physical- sensing [29, 30, 31, 32, 33, 21, 34].
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The common theme of this research involves the synthesis of nanomaterials by physical vapor thin
film deposition and nanosecond pulsed laser irradiation. Pulsed laser synthesis and processing, especially
in the nanosecond (ns) or shorter time scales, has enabled a number of advances in materials science due
to the highly non-equilibrium nature of the interaction. One of the most important of these has been the
ability to make stoichiometric films of important classes of materials, such as the high-Tc superconductors
or transparent conducting oxides, which contain multiple different components with varying vapor pressure.
As shown early on by the groups of Venketasan et al in Maryland, and Narayan et al at NC State, films
of the multi-component oxide high-Tc superconductors like YBCO or semiconductors like ZnO, could be
made with extremely high quality by using nanosecond pulsed laser ablation [35, 36, 37, 38, 39]. In the
context of the research presented here, nanosecond laser processing has been an enabling technique to study
the spontaneous dynamics of ultrathin film deformation under melting, as was first shown by Bischof and
co-workers in 1996 [40, 41]. Their nanosecond pulsed laser work on the spinodal dewetting instability of
ultrathin metal films has triggered a growth in the thermal dewetting study of metal films, and has lead to a
number of groups, including our own, focusing on the science of laser-metal interactions to investigate the
phenomenon of self-organization and structure formation [42, 43, 12]. One of the most important aspects
of ns laser processing of thin films on surfaces is that the high heating and cooling rates can quench in the
various intermediate structures during the deformation process. In other words, each laser pulse progresses
(and quenches in) the deformation, which can be captured by imaging techniques such as scanning electron
microscopy (SEM) or atomic force microscopy (AFM), thus leading to a sequence of pictures, like in a
high-speed camera”, that accurately represents the evolution. An example of this is shown in Fig. 1.1 for
the case of Ag on SiO2 substrate [44]. Therefore, pulsed lasers have become a powerful tool in the study of
dynamic phenomenon such as dewetting, which we discuss in Sec. 1.3.

Figure 1.1: The characteristic nanomorphologies following nanosecond pulsed laser-induced spontaneous
dewetting of an ultrathin Ag film on SiO2 substrates. (left) At early stages of dewetting (irradiation by ~10
laser pulses), holes with a narrow size distribution. (center) Later stage dewetting (~1000 pulses) leads
to the formation of polygonal features with a narrow size distribution. (right) The final dewetting state
(~10,000 pulses) consists of nanoparticles with a well defined nearest-neighbor spacing. Each image is of
dimensions 8µm×8µm. Figures and text taken from ref. [1].

In this thesis, we have utilized ns pulsed laser irradiation to synthesize nanostructures of semiconductor
oxide and metallic materials with controlled size, spacing and shape. Such nanomaterials have many ap-
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plications. For instance, increased surface-to-volume ratio shown by semiconductor nanowire arrays over a
planar film can provide high sensitivity and selectivity for sensing of toxic and reactive gases [45, 3]. Plas-
monic or semiconducting nanoparticles with strong optical scattering and/or fluorescence, incorporated on
the surface, can be used for enhancement of solar cell efficiency [23, 24, 20]. Metallic nanomaterials made
of combined localized surface plasmon resonance (LSPR) and ferromagnetic materials can realize high sen-
sitivity bio- and chemical-sensors [46, 47, 48]. High aspect ratio magnetic nanowires can be used for data
transfer and storage applications [49, 50, 51]. And finally, nanoscale optical biosensors can be based on
localized surface plasmon resonance of metallic nanoparticles [52] and nanorods [53].

1.2 Functional Nanostructured materials and techniques

Among the many possible materials and techniques available, this thesis concentrates on two different as-
pects of the field. One pertains to the investigation of the synthesis of potentially useful materials. In this
context, we have studied the synthesis of tin oxide (SnO2) nanostructured arrays, which have potential ap-
plications in hydrogen gas sensing. Another is the synthesis and magnetic characterization of nanowires
and nanomagnets of ferromagnetic Co, which is of fundamental interest and has applications in data stor-
age. The other study pertains to the implementation of the Surface Magneto-optical Kerr Effect (SMOKE)
technique, which is an important tool to investigate magnetism from surfaces and nanostructures, while also
being able to measure magneto-optical Kerr and Faraday rotations, which are potentially useful in optical
communication and sensing applications. To test the home-built system, we have studied the Kerr rotation of
nanostructures of Co-Ag bimetallic systems, which have potential applications as plasmonic and magneto-
optical devices. In the next few sections, we briefly overview some of these applications and the material
requirements.

1.2.1 Nanostructured array based gas sensors

The wide variety of electronic and chemical properties of metal oxides makes them exciting materials for
basic research and for technological applications. SnO2 thin films have been of interest for several applica-
tions, including in electrode materials, and solar cells and is also known for its excellent gas sensitivity [54].
This is mainly because SnO2 belongs to a class of oxide materials that have high electrical conductivity
[55]. The schematic diagram and plot in Fig. 1.2 depicts the band bending mechanism at the surface when
charged molecules attach [Fig. 1.2(a)], leading to changes in the electrical conductance when a sensor is
exposed to gases [Fig. 1.2(b)]. Currently, SnO2 that is doped with various appropriate elements, such as
In2O3 [56], CuO [57] and Pd [58], is a promising area of research for improved gas sensor performance. In
addition, the size and morphology of SnO2 grains and nanostructures [59, 60] strongly affects their applica-
tion and therefore appropriately doped and nanostructured SnO2 can potentially serve as ultrasensitive gas
sensors [61].

For gas sensing, a primary motivation to explore the synthesis of well-defined nanostructures is the
associated increase in surface-to-volume ratio, which is known to translate into increased functionality of
the sensor. In fact, increasing the surface to volume ratio of semiconducting metal oxide nanostructures
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(a) (b)

Figure 1.2: (a) (left) Schematic representation of band bending model illustrating adsorption of O2 at the
surface and, (right) variation of the gas sensor’s electrical conductance during the alternative exposure to
O2 and H2 are shown [2]. (b) Schematic view of SnO2 nanowire based gas sensing device. The wires are
covered with vapor-deposited Pd clusters [3].

[Fig. 1.2(b)] make them highly sensitive to surface chemical processes resulting in efficient transduction
into electrical signals [3, 45]. One promising architecture is an array of nanowires. This structure will have
increased surface-to-volume ratio over the planar films, and is likely to show decrease in the electrical noise,
as compared to, for example, a porous type of nanostructure [62]. In addition to the architecture, among
polycrystalline gas sensing materials, the grain size plays a major role on sensor functionality, sensitivity,
selectivity and reaction time. For instance, the band bending [55], increased surface area of the depletion
layer [2], and the enhanced mobility of the free charge carriers [63], are all considered to be caused by the
decreased grain size and these effects lead to improved functionality of the sensors [55].

As the use of hydrogen (H2) gas as an alternative clean energy source is stimulated, accurate and fast
detection of the H2 has become exceedingly important for its safe handling, transportation and operation.
Vehicles utilizing domestic fuel cell based cogeneration systems [64], solid oxide fuel cell (SOFC) technol-
ogy [65], and internal combustion engines [66] are already commercialized H2 powered systems. Due to its
very small size, H2 is very susceptible to leakage. Since H2 molecules are quite reactive in the vapor phase,
typically about 1-3 vol. % of the H2 is considered to be explosive, hence, careless treatment can lead to
expensive and damaging incidents. Currently, there are several available techniques for measuring H2 gas
concentration, including conductivity changes in pure continuous or porous SnO2 films [67, 68, 69]. How-
ever, there are several challenging issues that remain to be solved, such as the requirements of low working
temperature (room temperature and below), fast response and recovery time, as well as high sensitivity and
selectivity. The current state of art in the measurement of hydrogen using SnO gas sensors, as outlined by
our collaborators at the University at Central Florida, is shown in Fig. 1.3. As is evident, there is a huge gap
in the measurement of hydrogen at room temperature and is therefore one of the reasons for our work on
SnO2 arrays.
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Figure 1.3: Characteristics of the nanocrystalline SnO2 based thin film H2 sensors. Each data point rep-
resents reported SnO2 based H2 sensor sensitivity at certain operating temperature. The sensors exhibit
maximum H2 sensitivity in the high temperature range (250 to 300oC ). [4]

1.2.2 Magnetic nanostructures

When the size of a magnetic material is decreased to a length scale comparable with the magnetic domain
wall or exchange force distance, the material starts exhibiting unusual magnetic behaviors. For instance,
well-studied ferromagnetic material like cobalt exhibits unique magnetic properties when it is in the form
of nanoparticles. Krishna et al. showed that Co nanoparticles synthesized via pulsed laser treatment exhibit
unusual size dependent magnetization [5]. These single domain nanoparticles have the magnetization di-
rection oriented in-plane for the smaller particles (< 75 nm) and out-of-plane for the larger particles (< 180
nm) [5] [Fig. 1.4(a)]. For recording media application, perpendicular recording (using out-of-plane oriented
data bit) has several advantages over currently commercially used parallel recording (in-plane), such as high
density data storage, high stability, and short bit length [70]. In order to make this technology possible,
out-of-plane oriented magnetic data bit with large magnetic anisotropy and greater stability are desired.

Similarly, arrays of nanowires [Fig. 1.4(b)] made from Co with high length to width aspect ratio exhibit
large coercivity, large anisotropy and high remanence due to the shape and crystalline anisotropy [6, 71].
Henry et al. showed that the competition between magnetocrystalline and shape anisotropy causes pref-
erential magnetization direction to be either parallel or perpendicular to the wire direction, and this was
differentiated by the diameter (~ 50 nm) [6]. In both studies, cobalt was chosen due to its hard magnetic
properties, such as high coercivity and magnetization values, large magneto-optic constant, and high Curie
point. Ferromagnetic nanowires have potential applications in magnetic MEMS (micro-electric-mechanical-
system). Nanowires can be utilized for sensing, manipulating and separating biological cells [72, 73] and
these applications require high coercivities and stability at ambient conditions.
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(a) (b)

Figure 1.4: (a) The simulated contrast in the MFM images of a single domain ferromagnetic particle with
(left) in-plane (0 deg), (center) at an angle of 45 deg and (right) perpendicular to the plane (90 deg) [5],
(b) High resolution MFM image of a portion of a Co nanowire, 150 nm in a diameter and (right) possible
domain structures [6].

1.2.3 Surface magneto-optical Kerr effect (SMOKE) sensing with plasmonic-ferromagnetic

(PF) materials

Enhanced magneto-optical (M-O) Kerr effect sensing with plasmonic-ferromagnetic (PF) material utilizes
both surface plasmon resonance (SPR) and magneto-optical (M-O) effects [74, 75, 76, 77]. SPR is the
collective oscillation of the conduction electrons [78], and M-O effects are phenomena arising as a result of
interaction between light and matter when the latter is under a magnetic field [79]. This hybrid material, i.e.
one which could show enhanced M-O effects, was theoretically hypothesized [74, 75, 80, 81] by having SPR
and ferromagnetism effects in the proximity of each other. Therefore, SPR materials like Au, Ag, Cu and
M-O materials, like Co, Fe, Ni, Fe2O3, YIG, etc. needed to be combined together without chemical binding,
i.e. as composites rather then as alloys or compounds. From a nanoscale picture, a nanocomposite of SPR
and M-O materials can be assumed as a optically homogeneous material if the dimension of the composite
structure is smaller than the wavelength of light [80, 82]. The propagation of an electromagnetic wave in
such a material can be described in terms of an effective dielectric and magnetic permeability tensor [80].
The theoretical calculations revealed that the diagonal part of the effective dielectric tensor (linked to SPR
material) can enhance the strength of magneto-optical effect, which is in the off-diagonal part of the tensor
[75, 74]. Hence, such composites exhibit enhanced M-O effects at or near the surface plasmon resonance
frequency. Initial work focused on investigations of multilayered SPR and M-O materials prepared by PVD
techniques and these showed large M-O enhancement at locations of the surface plasmon [77, 76, 83, 84, 85].
Subsequently, different types of architectures were fabricated, including Au and Co nanosandwiches [47],
Ag coated nanoparticles [46], embedded Au particles in YIG medium [86], Au particles on M-O materials
[87], and paired SPR and M-O nanoparticles [48, 88].

Among various elemental/material combinations, one suitable candidate for the PF nanoparticle is a
mixture of a ferromagnetic metal like Co, with a well suited plasmonic material, like Ag. From the binary
phase diagram, Co and Ag is an immiscible system, both in their liquid phase as well as solid phase, and
therefore, combining Co with Ag can potentially show controllable ferromagnetic anisotropy as well as
strong LSPR effect. Additionally, we found in a recent study that the proximity of Co and Ag within
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a nanoparticle could reduce the environmental degradation of Ag, thus permitting more environmentally
stable magneto-optical behavior [17].

In this thesis, our focus has been to implement a home-built surface magneto-optical Kerr effect (SMOKE)
system. SMOKE is easy implementation and surface sensitive characterization technique. It’s a powerful
tool to study magnetism of nanostructures. Especially, its usefulness is substantial in the understanding of
magnetic anisotropies [89], domain orientation behavior [90] and magnetic switching process [91]. SMOKE
operates on the principle of a complex rotation of the plane of polarization of linearly polarized incident light
upon reflection from the surface of magnetic material. The rotation is linearly proportional to the magnetiza-
tion of the material within the probing region of the light. Hence, the measured rotation values as a function
of applied magnetic field yields the magnetic hysteresis loops.

1.3 Synthesis of nanomaterials by self-organization and/or self-assembly

Nanostructured self-organization is one of the potential routes to make well-defined nanostructures in a
highly repeatable and efficient manner. The self-organizing (SO) or self-assembling (SA) process refers to a
broad range of autonomous pattern-forming processes which are commonly seen in physical and biological
systems [92, 7]. In self-organizing systems, pattern formation occurs through interactions internal to the
system, or in other words, without need for intervention by external directing influences, such as human
intervention [7, 92]. Also, SO/SA reflects information coded in shape, physical properties, charge, magnetic
dipole, etc. within the individual components. These characteristics determine the interactions among them.
In order to reach a final structure, the system goes through certain thermodynamic or kinetic pathways,
and eventually stability is obtained with the formation of characteristic patterns. Therefore, nature is able
to replicate vast amounts of material repeatedly and accurately in a wide range of scales, from nanometer
[size of deoxyribonucleic acid (DNA)] to astronomical units [size of the solar system]. For instance, sand
grains assembling into rippled dunes [Fig. 1.5(a)], chemical reactants forming swirling spirals produced
by the Belousov-Zhabotinksi reaction [8, 93] [Fig. 1.5(b)], cells making up highly structured tissues [94],
highly ordered metal nanoparticles of well-defined size and shape made by laser melting [9], and fish joining
together in schools [95], are all formed based on SO/SA processes. One of the characteristics relevant to this
research is that the SO/SA system also has ability to produce well-defined nanostructures and is therefore
viewed as a practical strategy for making large quantities of nanostructures with low cost and high precision
[95, 92].

1.3.1 Self-organization by spinodal dewetting

Spinodal dewetting is a robust and predictable approach to making self-organized nanostructures with char-
acteristic size and spacing. A thin liquid film on a non-wetting solid surface is not thermodynamically stable,
and so the film can break up spontaneously into a lower energy state comprised of liquid droplets. In daily
life, similar phenomena can be observed in numerous occasions like on a car’s windshield and on a rain
jacket’s surface. Interestingly, the liquid droplet formation processes can be seen in the nanoscopic state as
well. In general, this whole process of droplet formation is called dewetting. Usually, liquid droplets are
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(a) (b) (c)

Figure 1.5: (a) Wind-blown ripples on the surface of a sand dune [7], (b) spiral patterns produced by the
Belousov-Zhabotinski chemical reaction [8] and (c) Co nanoparticles with well-defined size and shape [9].

formed by overcoming an energy barrier, such as at nucleation sites-like tiny dust particles or other defects
on a surface. Due to the inherent randomness of this process, no characteristic length exists in this type of
pattern. However, it is also possible for the droplet formation to occurs without a nucleation barrier, i.e.
spontaneously. In such a case, the dewetting process has been termed spinodal dewetting in analogy to the
behavior of the thermodynamic thin film free energy curvature to that of spinodal decomposition of immis-
cible binary systems [11]. In order to understand the physical origin and mechanism of spinodal dewetting,
the theory of dewetting is discussed in the following section.

1.3.1.1 Theory of spinodal dewetting

In the earliest reported studies of spinodal dewetting, Vrij theorized how thin liquid films are influenced by
van der Waals and interfacial repulsion forces, and how these forces lead to formation of liquid droplets
without requirement of nucleation [96, 97]. He defined that the spinodal dewetting occurs when the system
satisfies the spinodal condition of the second derivative of the excess intermolecular free energy with respect
to the film thickness, i.e. a negative value of ∂ 2∆G/∂h2 [96]. Sharma incorporated excess free energy per
unit area from van der Waals interactions and pressure as:

∆G =−A/12πh2 +SP exp[(d0−h)/l] (1.1)

where SP is the polar component of spreading coefficients [98]. Williams, Sharma and Paulsen incorporated
van der Waals (intermolecular) interactions to make the generalized disjoining pressure expression or the
free energy per unit volume, which is a differentiation of Eq. 1.1, as :

φ = α(d2
0/h3)− (SP/l)exp[(d0−h)/l] (1.2)

Vrij further discovered that there are multiple growing wavelengths λ , and characteristic dewetting time
scales τ during spinodal dewetting [96]. He related λ to ∂ 2∆G/∂h2 as:
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λc(h) =

�
−2π2γ

∂ 2∆G/∂h2 (1.3)

and, τ to ∂ 2∆G/∂h2 as

τ(h) =
24γη

h3
0(∂ 2∆G/∂h2)2 (1.4)

The relations tells us that λc and τ vary with respect to the initial film thickness h. Vrij found that among
the wavelengths, the fastest growing wavelength, λc will dominate the dewetting length scale [96]. Hence
he predicted λc or the characteristic length scale should be proportional to the square of film thickness, h2.
Also, he evaluated τ , and showed that the characteristic time scale associated with the growth of the fastest
growing wavelength should be proportional to h5.

(a)

(b)

Figure 1.6: (a) (left) Micrographs at the holes state during dewetting of a 40 nm thick polystyrene film on a Si
wafer and (right) Double logarithmic plot of the average diameter of particles and the average interparticle
spacing (calculated from average number of particles per unit area) as a function of film thickness [10]. (b)
Dewetting morphology of a 4 nm PS film on Si wafer as a function of annealing time. (left) Circular holes,
(center) holes break up and (right) droplets formation at the end of the dewetting process [11].
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1.3.2 Background and/or state-of-art for spinodal dewetting

Experimentally, over the last few decades, the spinodal dewetting system has been examined in both organic
and inorganic materials. The dewetting of thin liquid polymer films has been studied extensively for more
than three decades [99, 100, 10, 101, 102, 103]. For the first time, Reiter showed that the average hole-hole
spacing of polymer liquid films follows h2 relation which is the characteristic relation of spinodal dewetting
[10, 101] [Fig. 1.6(a)]. He studied the influence of the film thickness on dewetting processes using thermally
annealed thin polymer films (< 100 nm). Xie et al. further studied dewetting of thin polymer films (< 20 nm)
and also confirmed spinodal dewetting [103]. Besides, they found that a transition in the dewetting process
with the film thickness < 10 nm [103]. Sharma and Reiter presented well matched theoretical predictions
and experimental results for all stages of thin polymer films (< 60 nm) dewetting [100, 102] (Fig. 1.6(b)).
On the other hand, studies of the dewetting of liquid metal films started about fifteen years ago [40, 41]. The
earliest evidence of spinodal-like instability (λ (h) ∝ h2) from thin metal films was observed under pulsed
laser melting first by Bischof et al. [40] and then by others [104, 43]. Trice et al. showed that because of
the nanoscopic nature of pulsed laser heating, under certain conditions, thermal gradient along the interface
play a dominant role in the dewetting process [12, 105]. In the metal film cases, patterns similar to those
found in polymers have been observed [1] (Fig. 1.1). However, because of the high melting point of metals,
thermal annealing, which is the central technique to dewet polymers, cannot readily be applied. In the next
subsection, two different types of techniques, pulsed laser irradiation and ion beam induced melting, are
discussed in order to study dewetting in metals.

1.3.2.1 Pulsed laser induced Spinodal dewetting (PLiD)

Compared to metals and oxides, polymer thin films have high stability and relatively low melting point,
so all morphological stages of dewetting can be studied by thermally annealing films at room temperature.
Relatively large length (~ micrometer) and time (~ second) scales compared to metals help to study the evo-
lution of morphology. This is due to the thick film thickness and the materials physical properties compared
to metals. On the other hand, studying dewetting in metals, semiconductors and metal oxides is challenging
due to their high melting point. Additionally, dewetting of these materials under conventional long-time
annealing is complicated because various surface processes including metal-substrate chemical interactions
and metal diffusion into the substrate can influence dewetting. Solid state diffusion via thermal annealing at
below melting point may be one solution. However slow mass transport process is not practical in terms of
industrial applications, and as has been shown, solid state dewetting involves fundamentally different mass
transport processes, which will lead to different length and time scales [106]. Exploring metal film spinodal
dewetting via nanosecond pulse laser heating or ion beam irradiation is an alternate solution. Rapid melting
of films minimize unwanted chemical reactions between metal and substrate. Also, because the viscosity
of liquid metals is orders of magnitude lower and surface energies are higher than typical liquid polymers,
the dewetting time scale would be in the micron- to nano- second range [41]. Hence, short liquid life time
per single irradiation (~ few nanosecond) allows us to examine liquid dynamics of the dewetting process in
details.
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The dewetting of metal thin film has been studied since mid 1990’s [40, 41, 104]. In the initial stage of
the study, Bischof et al. deposited Au, Cu and Ni films with thickness ranging from 25 to 50 nm on fused
silica substrates with an intermediate layer of less than 2 nm thick Cr. Resulting surface morphology was
explored after pulsed laser irradiation on the metal films using Q-switched Nd:YAG laser with 7 ns pulsed
width, 532 nm wavelength [41, 40]. From detailed surface roughness analysis using a scanning electron
microscope, they found surface undulations at the early stage and holes at a later stage. They observed
that the surface undulations as a function h follows spinodal-like instability relation, λ (h) ∝ h2, and the
characteristic wavelength growth time scale follows τ(h) ∝ h5 relation [40]. From the free energy analysis,
they also confirmed the second derivative of the effective potential was negative, ∂ 2∆G/∂h2 < 0, which was
a necessary condition for spinodal dewetting [41].

Ion beam induced metal and semiconductor films dewetting has been studied by Cahill et al. [107, 108,
109, 110, 111]. Nanopattern formation upon irradiation of films as a function of the number of ions were
studied. In contrast to typical methods to induce dewetting (films are heated homogeneously, and dewet-
ting occurs over large areas), irradiation with ion beams leads to a different kind of heating. Accelerated
individual heavy-ion strikes on the films, and ion-phonon coupling leads to heat the materials far above
their melting temperatures. Such heating is highly localized both in space (~ nanometer) and time (~ pi-
coseconds) [107]. The maximum size of this locally melted area (molten zone) varies from ion to ion, i.e.
in the case of 800 keV Kr+ incident on Pt films, the average molten zone size was ~ 5 nm [107]. Upon
melting, a radial temperature gradient is built up, which also establishes a gradient in the surface tension γ
from the dependence of γ on temperature. The combination of the ion-imparted momentum and the surface
tension gradient in the molten zone drives mass transport [107]. Therefore, the observed dewetting is either
heterogeneous with a lateral size distribution of dry patches, presumably due to nucleation and growth, or
homogeneous with a characteristic lateral size. Since the amplification of surface fluctuations requires that
the lateral dimension of the fluctuated homogeneous liquid film be larger than the fluctuation wavelength
[96], spinodal dewetting may not be applicable to ion-induced dewetting when the molten zone size is in the
range of a few nanometers [108].

In summary, nanosecond (ns) pulsed laser melting has demonstrated that it is a well-suited approach
to study dewetting of metal films compared to ion beam induced melting. In the following subsection, a
detailed study of thin metal film dewetting, specifically in the range of 2 to 20 nm film thickness is discussed,
which results in nanostructures with size in the range of 10 to ~100 nm.

1.3.2.2 Thin metal film dewetting: 2 < h < 20 nm

Pulsed laser induced spinodal dewetting of thin films has been studied extensively [12, 43, 104]. Favazza et
al. explored dewetting of metal films with thickness ranging from 2 to 20 nm. They explored the resulting
morphology in terms of characteristic intermediate hole-hole spacing, inter-particle spacing and particle
diameter as a function of initial film thickness. In the experiments, several different thick metal films were
deposited on SiO2 substrates primarily by physical vapor deposition (PVD) techniques, such as e-beam or
pulsed laser deposition. After the pulsed laser irradiation of the films, the resulting morphologies were
studied. As was observed in the polymer dewetting and metal films (thickness: 25 to 50 nm) dewetting
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Figure 1.7: Comparisons of characteristic pattern length scales for Co (dashed line) and Fe (solid line) film
on SiO2. The symbols represent the ratio of the experimentally measured nearest-neighbor spacing Λexpt to
the spinodal length scale Λc. The lines represent the ratio Λ/Λc, where Λ is the predicted length scale in the
presence of intrinsic thermocapillary effects. For Co film thickness < 9 nm, Λexpt increases ∼ h2 consistent
with spinodal dewetting, however for thickness ≥ 9 nm case Λexpt decreases sharply with increasing h.
Taken from ref. [12].

systems, the formation of an array of nanoparticles with a monomodal size distribution and short range
spatial order in the nearest neighbor spacing were observed in the liquid metal films (thickness: 2 to 20
nm) dewetting systems [43, 112]. In the thin metal film dewetting system, the size and spacing of the
nanoparticles dependence on the initial film thickness were shown with the particle radius and spacing
varying as h∼5/3 and h∼2 [43, 112]. One of the major findings of this previous work was the discovery of
novel effects related to the thickness-dependent heating of the films. Specifically, a reduction in the particle
spacing with increasing h was observed for Co and Fe films, as shown in Fig. 1.7. This was attributed to
the thickness dependence of laser heating arising from thickness-dependent optical reflectivity and the heat
sinking into the substrate, which resulted in intrinsic thermocapillary effects along the plane of the substrate
[105, 12]. This work clearly indicated that ns pulsed laser processing can often produce new and unexpected
results, as will also be shown in this thesis.

1.4 Outline of Dissertation

• Chapter 2: Thickness dependent self limiting 1-D tin oxide nanowire arrays by nanosecond pulsed
laser irradiation
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An experimental study of the synthesis and characterization of 1-D SnO2 periodic nanostructures via
pulsed laser processing technique is presented. Two beam laser interference irradiation was performed
on SnO2 films on SiO2 substrates. The resulting surface morphology was characterized by SEM
and AFM. Experimental observations combined with theoretical modeling of the thermal behavior of
the thin film under laser irradiation was used to explain the mechanism of nanostructure formation.
In collaboration with the University of Central Florida, these SnO2 samples were used to measure
sensitivity to hydrogen gas detection. The sensor results showed improved sensitivity, selectivity and
response time over the planar SnO2 thin film.

• Chapter 3: Thermodynamic modeling of thin metallic liquid films dewetting

In the studies of dewetting instabilities, insight into the nature of fluid flow as well as the energy
pathway is critical. We have applied an energy rate approach to describe the case of isothermal and
non-isothermal dewetting, i.e. in which film thickness dependent Marangoni effect or thermocapillary
forces are also present. Specifically, within the energy rate analysis, the rate of thermodynamic free
energy decrease due to film thickness fluctuations is balanced by the rate of energy loss due to viscous
dissipation. This approach permits a rapid analysis of the dewetting length scales for classical spinodal
dewetting as well as for dewetting with thickness-dependent Marangoni effects.

• Chapter 4: Implementation and testing of a home-built SMOKE system for up to 0.7 T field measure-
ments.

In this chapter, we first discuss the successful implementation of a SMOKE system built in-house.
Subsequently, to test the system, we measured the Kerr rotation from nanostructures of the Co-Ag sys-
tem in various geometries and shapes. This included measurements from bilayer films, co-deposited
composite films and nanoparticles. The co-deposited film showed higher Kerr rotation ( 6× 10−3

degrees) then the bilayer structures with same effective amount of Co and Ag. Furthermore, nanopar-
ticles showed a factor of 2 or higher Kerr rotation then composite films of similar Co composition
ranging between 35 to 100%.

• Chapter 5: Magnetic properties of Co nanowires and nanoparticle arrays synthesized by pulsed laser
melting

Previous investigations of ferromagnetic nanoparticles by our group has focused on synthesis of
nanoparticles by nanosecond laser dewetting. Those studies demonstrated that the resulting nanopar-
ticles show unusual magnetic anisotropy behaviors [5, 113]. Here, we have focused on the shape
dependence of the magnetic behavior of Co nanostructures prepared by nanosecond laser interfer-
ence technique. First, Co nanostructures of various shapes, including nanowires (high in-plane as-
pect ratio), nanorods (medium in-plane aspect ratio), and nanoparticles (in-plane aspect ratio of 0.5)
were prepared by laser interference processing and the Rayleigh instability. Subsequently the mag-
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netic domain and magnetization reversal behavior of these structures were were studied using Surface
magneto-optic Kerr effect (SMOKE) and magnetic force microscopy (MFM). Multidomain features
as well as large anisotropy were observed. We concluded that shape anisotropy was primarily respon-
sible for the magnetic behaviors.

• Chapter 6: Summary and future work

A summary of the main results of this dissertation as well as some potential future directions of
research pertaining to hydrogen sensing and magneto-optical sensing is discussed.
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Chapter 2

Thickness dependent self limiting 1-D tin

oxide nanowire arrays by nanosecond

pulsed laser irradiation for hydrogen

sensing

(Reported to Nanoscale vol. 3, 1090 (2011))

2.1 Summary

Fast, sensitive and discriminating detection of hydrogen at room temperature is crucial for storage,
transportation, and distribution of hydrogen as an energy source. One dimensional nanowires of SnO2 are
potential candidates for improved H2 sensor performance. The single directional conducting continuous
nanowires can decrease electrical noise, and their large active surface area could improve the response and
recovery time of the sensor. In this work we discuss synthesis and characterization of nanowire arrays made
using nanosecond ultraviolet wavelength (266 nm) laser interference processing of ultrathin SnO2 films on
SiO2 substrates. The laser energy was chosen to be above the melting point of the films. The results show
that the final nanowire formation is dominated by preferential evaporation as compared to thermocapillary
flow. The nanowire height (and hence wire aspect ratio) increased with increasing initial film thickness
ho and with increasing laser energy density Eo. Furthermore, a self-limiting effect was observed where-
in the wire formation ceased at a specific final remaining thickness of SnO2 that was almost independent
of ho for a given Eo. To understand these effects, finite element modeling of the nanoscale laser heating
was performed. This showed that the temperature rise under laser heating was a strong non-monotonic
function of film thickness. As a result, the preferential evaporation rate varies as wire formation occurs,
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eventually leading to a shut-off of evaporation at a characteristic thickness. This results in the stoppage of
wire formation. This combination of nanosecond pulsed laser experiments and thermal modeling shows that
several unique synthesis approaches can be utilized to control the nanowire characteristics.

2.2 Introduction

As the use of hydrogen (H2) gas as an alternative clean energy source is stimulated, accurate and fast
detection of the H2 will become exceedingly important for its safe handling, transportation and operation.
Vehicles utilizing domestic fuel cell based cogeneration systems [64], solid oxide fuel cell (SOFC) technol-
ogy [65], and internal combustion engines [66] are already commercialized H2 powered systems. Due to
its very small size, H2 is very susceptible to leakage. Since H2 molecules are quite reactive in the vapor
phase, typically about 1-3 vol % of the H2 is considered to be explosive, hence, careless treatment can lead
to expensive and damaging incidents. Thus, precise control of the gas is essential, especially via detection
of leaks. Currently, there are several available techniques for measuring H2 gas concentration, including
conductivity changes in pure continuous or porous SnO2 films [67, 68, 69] and in TiO2 nanotubes arrays
[114, 115], measurement of surface plasmon resonance utilizing palladium [116], using the Schottky ef-
fect in Pt-Carbide [117] and carbon nanotubes decorated with Pd nanoparticles. However, there are several
challenging issues that remain to be solved, such as the requirements of low working temperature (room
temperature and below), fast response and recovery time, as well as high sensitivity and selectivity.

SnO2 thin films have been of interest for several applications such as transistors, electrode materials,
and solar cells and is also known for its excellent gas sensitivity [54]. SnO2 doped with various appropriate
elements, such as In2O3 [56], CuO [57] and Pd [58], is a promising area of research for improved gas
sensor performance. This type of doping generates an excess concentration of lattice oxygen-ion vacancies
and decreases the concentration of free electrons to maintain the charge balance. In addition, the size
and morphology of SnO2 grains and nanostructures [59] strongly affects their application and therefore
appropriately doped and nanostructured SnO2 can serve as ultrasensitive gas sensors [61]. In this paper,
we explore the synthesis of arrays of one dimensional (1-D) nanowires of SnO2, with the eventual goal
of fabricating In2O3-doped SnO2, which is a potential candidate for improved H2 sensor. The doped In3+

cations are effective in increasing the number of active surface area sites enabling the sensor to detect H2 at
lower operating temperatures.

A primary motivation to explore the synthesis of well-defined nanostructures is the associated increase in
surface-to-volume ratio, which is known to translate into increased sensitivity, selectivity and response speed
of the H2 sensor [55]. Another potential advantage of an array of continuous nanowires is a decrease in the
electrical noise, as compared to, for example, a porous type nanostructure [118]. Here we focus on synthesis
and characterization of arrays made from thin films of pure SnO2 on SiO2 substrates by use of nanosecond
pulses of ultraviolet (UV) wavelength (266 nm) laser. Pulsed laser interference irradiation is a well-known
means of creating a well-defined and spatially periodic but transient surface temperature profile [119, 120,
121]. For appropriate energy densities, the film can be locally evaporated or melted, with the liquid being
subject to strong thermocapillary forces under the thermal gradients. As a result, a periodic structuring
of the film material can take place. For irradiation with nanosecond pulses, the heating and cooling rates
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are extremely large [104, 105] and as a result, the morphology changes occurring in the liquid phase can
be rapidly quenched, resulting in periodic structures [9]. However, as has been shown recently, nanoscale
effects strongly influence the UV laser heating of very thin films, often resulting in unusual and unexpected
effects on morphology evolution [12, 44]. Here we have utilized a thermal model based on finite element
analysis that accurately accounts for the nanoscale thickness dependent optical and thermal behavior of the
film-substrate system in order to predict the thermal behavior of the films. By comparison with experimental
observations of melting and array formation, a reliable model for the mechanism of nanowire array formation
was established. The nanowire formation was dominated by preferential evaporation. We also observed
experimentally that the final effective thickness of SnO2 remaining after array formation was nearly constant
for various starting film thickness at a given laser energy density. This self-limiting effect was due to the
strong thickness-dependent temperature of the film under laser irradiation for any given energy density.
As a result, thermal evaporation and thermocapillary flow can both shut down as the film morphology
evolves. Other features of the nanowire morphology, including nanowire height and aspect ratio were found
to increase with increasing film thickness and laser energy. These results are qualitatively consistent with the
thermal model result based on the temperature difference between the regions of interference maxima and
minima. The experimental and supporting theoretical modeling results permits selection of the appropriate
thin film and laser parameters to achieve desired nanowire morphology characteristics.

2.3 Experimental Procedure

Thin films of SnO2, with thickness between 5 to 100 nm, were deposited onto 400 nm thick thermally
grown SiO2 on Si wafers and quartz wafers by pulsed laser deposition (PLD). The substrates were ultrason-
ically rinsed and dried in air prior to use. Deposition was performed under ultrahigh vacuum (UHV) con-
ditions, at a base pressure of 10−7 Torr, with the substrate at room temperature. SnO2 slugs (99.9% purity,
obtained from CERAC, inc.) were used as PLD targets. Thickness of the as-deposited films was measured
by performing atomic force microscopy (AFM) on a step-height region generated by the application and
subsequent removal by acetone of a nitrocellulose mask. Besides, AFM analysis yielded a maximum RMS
roughness of the as-deposited films of 0.3 nm. Energy dispersive X-ray spectroscopy (EDS) measurements
were employed to determine the relative concentration of Sn within the electron interaction zone. The result-
ing concentrations were then fitted on a exponential curve, so that subsequent measurements of the effective
thickness of the laser irradiated films could be determined from the EDS measurements. The optical proper-
ties of the as-deposited films were measured by an Ocean Optics HR2000+ spectrometer in order to obtain
the accurate complex refractive index for the deposited films, which are known to differ from bulk values
[122].

Laser processing was performed with the 4th harmonic (266 nm wavelength) of an Nd:YAG laser, with a
9 ns pulse width and a repetition rate f = 50 Hz. All the results presented here are based on irradiations done
under ambient conditions. First, the melt threshold energy for various SnO2 film thickness (5 and 42 nm)
was obtained by normal incidence single beam irradiation with 3000 pulses at various laser energy densities,
Eo. The melt threshold was defined as the minimum energy required to show a substantial morphology
change to the surface of the film after substantial irradiation times, as has been done in the past [105].
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This morphology change was evidenced in a scanning electron microscope (SEM). These measurements
enabled a quantitative comparison of the experimentally determined melting energy with the finite element
model for laser heating of the films. Based on the melt threshold energies determined by single beam
experiments, two-beam laser irradiation was performed for nanowire array synthesis. The laser beam was
split into two equal energy beams using a 50-50 beam splitter and were incident on the sample at inclusive
angle, θi, of 72° (and 86o) with a resulting theoretical interference fringe spacing of 224 nm (and 195 nm)
respectively. Approximately 3000 pulses were applied in order to produce an array of wire-like features
within the irradiated area. The resulting film morphology was characterized by SEM (using either a Hitachi
S4300N or a Gemini: LEO 1525), AFM in a Nanonics MultiView 1000, and by EDS measurements in the
LEO 1525. The elemental compositions of select samples were also characterized by X-ray photoelectron
spectroscopy (XPS) using a Physical Electronics (PHI5400 ESCA) spectrometer with a monochromatic Al
Kα X-ray source operated at 300W. The crystal structures of select samples were characterized by x-ray
diffractometry (XRD) using a Rigaku D/MAX RAPID II microdiffractometer with a curved imaging plate
and a rotating Cr anode operating at 35 kV and 25 mA.

2.4 Results

2.4.1 Nanostructured arrays morphology

Fig. 2.1(a) shows the SEM image of an SnO2 nanowire array synthesized from SnO2 films of initial
thickness h0 = 42 nm and at an energy density of 300 mJ/cm2 with θi= 72◦ degrees. This and similar
SEM micrographs were used to analyze the average spacing Λav of the nanowires in the array. Also, EDS
measurements performed over large portions of the array, ∼ 100 µm2, were used to estimate the remaining
amount (hrem) of SnO2 in the array. In order to quantify hrem value, the weight percentage of Sn per unit
area with varying thickness of as-deposited SnO2 film was calibrated. The EDS measurement parameters,
such as the acceleration voltage (10 kV), the probing area (∼ 100 µm2), the processing time (200 seconds)
and the substrate (400 nm thick SiO2 layer on Si wafer), were fixed. Fig. 2.2 shows areal density of Sn (wt.
%/µm2) with respect to SnO2 film thickness (nm). From comparison between the exponential and linear fit
curves, the exponential curve agrees with overall trend of the experimental data. Fig. 2.1(b) shows the AFM
image of the same sample for which the SEM image is shown in Fig. 2.1(a) is shown. AFM was performed
to extract the topographic information of the wires, from which line profiles, such as shown in Fig. 2.1(c),
were extracted. From such line profiles, the average nanowire height hnw was measured as the value between
the peak to trough of the nanowires averaged over large portions of the array.
2.4.2 Crystal and chemical bonding properties

The surface elemental composition of the SnO2 before and after laser processing was evaluated using
XPS. In Fig. 2.3, XPS spectra of Sn 3d5/2 measured on the as-deposited SnO2 film of thickness 42 nm
and nanowires synthesized at a laser energy density of 300 mJ cm−2 from the 42 nm film are shown. The
photoemission intensity peaks occur at 486.46 and 486.57 (eV) respectively, for the two surfaces, and this
corresponds well to the Sn4+ binding energy component of stoichiometric SnO2, which is at 486.3 eV [13].
The Sn 3d5/2 peak for SNO is 0.5 eV lower than the SnO2 peak and we did not observe this peak shift in
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(a) (b) (c)

Figure 2.1: (a) SEM images of SnO2 nanowires synthesized from a 42 nm film at 300 mJ cm−2 and an
interference angle of 72o. SnO2 rich and poor regions correspond to bright and dark contrasts, respectively.
The average nanowire spacing is 232.3 nm while average width was estimated to be 97 nm. (b) AFM
topography image of SnO2 nanowires of the same sample as (a). (c) A typical AFM line profile of the
nanowires of (b). From such line profiles, the average nanowire height, hnw, could be calculated, and in this
case it was 16 nm.

the nanowires sample. This suggests that upon irradiation of the as-deposited SnO2 films, the formation of
nanowires is not assisted by valence change, and thus the nanowires remained as SnO2.

The crystal structure of the samples before and after the irradiation was evaluated by glancing angle
XRD. The XRD equipped with a curved imaging plate and a rotating Cr anode operating at 35 kV and 25
mA. An optical prefix consisting of horizontal and vertical mirrors specific to Cr Kα radiation was employed
in the incident beam to provide a focused x-rays at the sample position. At the end of the incident beam path,
a 0.3 mm collimator was used to optimize the resolution and signal to noise ratio of the diffraction patterns.
The incident beam path from x-ray generator to the collimator was protected by o-ring sealed tubing that
was purged with Helium gas to improve the x-ray flux at the sample position. The samples were mounted
on a stainless steel sample holder with the x-ray beam 2o off axis from the plane of the sample. JADE
8.5 from Materials Data Inc., and PDF4+ database from ICSD were used to analyze x-ray diffraction data.
Fig. 2.4(a) and (b) shows the background subtraction XRD data of the nanowires synthesized from a 42
nm film and an as-deposited SnO2 film of thickness 42 nm, respectively. Analysis of the nanowire sample
indicated a polycrystalline tetragonal crystal structure with lattice parameters of a = 4.78 and c = 3.21, but
the initial SnO2 film was found to be single crystal in nature, since only the (110) and (220) peaks of SnO2

appeared in the XRD scans. No change in the lattice parameter was found between the two samples. From
the Scherrer equation, B(2θ) = 0.94λ

Lcosθ , the average grain size at (110) orientation for film: Lavg = 53nm and
NSA: Lavg = 18nm were calculated. B and θ represent peak width and angle in XRD spectrum, respectively.
λ is x-ray wavelength, and L is crystallite size. From the XRD spectrum in Fig. 2.4, full width at half
maximum (FWHM) of (110) orientation diffraction peaks of both film and NSA were obtained. From the
calculation, there was approximately 65% decrease in the average grain size of NSA from film.
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Figure 2.2: EDS (Energy-dispersive X-ray spectroscopy) measured areal density of Sn (wt. %/µm2) with
respect to as-deposited SnO2 film thickness (nm). The exponential growth fit (red) and linear fit (blue) curves
are shown.

Figure 2.3: XPS (X-ray photoelectron spectroscopy) spectra of Sn 3d5/2 measured on SnO2 film and
nanowires. The film (line with open symbols) and nanowires (line with closed symbols) photoemission
intensity peaks of, 486.46 and 486.57 (eV) respectively, correspond with the binding energy of Sn4+ compo-
nent, which is 486.3 (eV) [13]. Inset shows SEM image of nanowire region from which XPS was measured.

20



(a)

Figure 2.4: XRD spectra with the background removed of an SnO2 (top) NSA sample with low index reflec-
tions of SnO2 identified, where the relative intensity of the reflections indicate a tetragonal polycrystalline
structure of a = 4.78 Å and c = 3.21 Å. (bottom) film sample, which indicates a single crystalline tetragonal
structure due to the lack of SnO2 reflections beyond (110) and (220).

2.4.3 Understanding formation mechanism of NSA from films

2.4.3.1 Initial film thickness dependence

The quality of nanowires, or equivalently, its quantitative morphological characteristics given by hnw,
hrem, and the aspect ratio given by AR = hnw Λ−1

av , was next investigated as a function of initial film thickness
ho for various laser energy densities Eo. In Fig. 2.5, SEM images of the nanowires formed from two
different ho values but from similar Eo (308 mJ cm−2), interference angle (72o) and number of pulses
(3000) are shown. A clear difference in morphology can be seen between the two arrays with films of larger
ho producing a more well defined nanowire structure. In Fig 2.6, the AFM measurements and typical line
scans of the wire profile for three different ho values prepared with above energy and interference conditions
are shown. The average nanowire height, hnw, was obtained by averaging over 128 consecutive line scans,
corresponding to a length of 375 nm, over 7 nanowires. The, hrem was measured using EDS over an area of
100 µm2 (or approximately 50 wires) at a location corresponding to the AFM measurements. The results
of these measurements are shown in Fig. 2.7 for the various thicknesses. Fig. 2.7(a) corresponds to the
average hnw (open symbols correspond to experimental measurements) while Fig. 2.7(b) is the remaining
film thickness hrem. Fig. 2.7(a) clearly shows that hnw, and therefore the aspect ratio of the wire increases
with increasing initial film thickness ho. This behavior is especially important from viewpoint of maximizing
the effective surface area for use in sensor applications. On the other hand, Fig. 2.7(b) shows that the final
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amount hrem of SnO2 is 14±1 nm, which is substantially lower then the starting thickness. This clearly
points to a large contribution from evaporation for the wire synthesis. More interesting however, is the
little dependence of hrem on the initial thickness ho for processing at a constant laser energy density Eo.
Nanowires derived from films that undergo substantial evaporation (h0 � hrem), such as Figs. 2.6(b) and
(c), yield a continuous nanowire structure, but samples produced where evaporation was negligible (h0 ≈
hrem), Fig. 2.5 (b), show inconsistencies that may include the formation of clusters of nanoparticles. One
important observation on the synthesis of nanowires is its dependence on the number of laser pulses. While
the dependence on film thickness (and energy, which is discussed next) was performed at a fixed number
of pulses (3000), the actual final state of the wires is typically formed at a much shorter number of pulses.
In other words, the wire formation appears to stop very early in the irradiation and further irradiation does
not result in any changes to the wire characteristics. Therefore, following 3000 pulses the morphology is
in a stable state and does not progress further. This observation points to a self-limiting or self-stopping
mechanism, where the wire formation ceases due to intrinsic conditions.

(a) (b)

Figure 2.5: SEM images of SnO2 nanowires formed from two different initial film thickness (a) ho = 90 nm
and (b) ho = 15 nm using the same interference angle, θi = 72o and 3000 pulses at an energy density of 308
mJ/cm2. The average nanowire spacing of (a) and (b) are 221 nm and 216 nm respectively.

2.4.3.2 Laser energy density dependence

Next, we investigated the dependence of nanowire morphology on the laser energy density (between 440
to 700 mJ/cm2) for films of a fixed thickness (ho= 42 nm), irradiated using the same interference angle of
θi= 86◦ degree, and with 3000 laser pulses. In Fig. 2.8(a) and (c) SEM images of the nanowires formed from
Eo values or 440 and 535 mJ cm−2 respectively, are shown. In Fig. 2.8(b) and (d), magnified SEM images
corresponding to (a) and (c) respectively, are shown. In Fig. 2.9 the AFM and line profiles corresponding
to 440, 535 and 700 mJ cm−2 energy density values are shown. In Fig. 2.10(a) and (b), the hnw and hrem

are shown, respectively, as a function of Eo. The wire height was found to increase with increasing energy
density [Fig. 2.10(a)]. Higher irradiation energy densities were also found to consistently produce a more
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(a) (b) (c)

Figure 2.6: AFM topography image and line scans of the wire profile of SnO2 nanowire arrays formed from
three different initial film thickness, (a) ho = 15, (b) ho = 25 and (c) ho = 90 nm respectively. The SEM
images of the sample ho = 15 and 90 nm are shown in Fig 2.5. All three nanowires were synthesized using
the same interference angle,θi = 72o and 3000 pulses at an energy density of 308 mJ cm−2. The average
nanowire height of each sample is (a) hnw = 2, (b) hnw = 8 and hnw = 15 nm.

nanowire structure with clusters of nanoparticles, such as that of 2.8(d) in contrast to the lower energy density
case, (b). Again, this a useful result as it shows that Eo can be used as an experimental control parameter in
the synthesis of wires with different morphology. Also, the remaining film thickness was found to decrease
with increasing energy density [Fig. 2.10(b)].

Based on the SEM and AFM results presented above, one can conclude some general aspects about
the mechanism of nanowire synthesis. First, evaporation appears to be playing an important role in the
synthesis, as is evident from the lower film thickness remaining following the processing [Fig. 2.7(b) and
Fig. 2.10(b)]. This observation of large evaporation is also important in the context of the chosen energy
densities, which were close to the melt threshold energy of the SnO2 films. Secondly, the wire height (and
aspect ratio) increase with increasing initial film thickness as well as increasing energy density. Finally, the
self-limiting effect on wire formation needs to be explained. In this effect, wire formation appears to stop
when the remaining film thickness achieves a stable value shown in Fig. 2.7(b) and Fig. 2.10(b). In order
to understand these aspects, we have resorted to finite element calculations of the nanosecond pulsed laser
interference heating of the SnO2 films to determine the temperature behavior as a function of film thickness
and laser energy density.
2.4.4 Collaborative work on SnO2 NSA based hydrogen sensor

In the previous sections, synthesis and applications of 1-D SnO2 periodic nanostructured arrays (NSA)
using a pulsed laser interference technique for H2 gas sensing was explained. Our collaborators at the
University of central Florida have shown that the 1D SnO2 shows excellent sensitivity to hydrogen sensing
at room temperature, with the ability to detect less that 300 ppm of hydrogen. This result is significantly
better then any current hydrogen sensor. Our collaborators at UCF are presently working on developing a
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(a) (b)

Figure 2.7: Behavior of the nanowire characteristics prepared at the same laser energy density as a function
of starting film thickness. (a) Experimentally determined nanowire height hnw (open circles, left axes) and
theoretically estimated integrated evaporation Γ∗ (line, right axes). The nanowire height hnw increases with
increasing starting film thickness ho. (b) Observation of the self-limiting effect. The experimentally measured
remaining film thickness hrem (symbols) is almost similar for all the films. The laser energy density used was
300 mJ cm−2, the interference angle was 72o and the number of pulses was 3000 for all samples.

model to explain the enhanced hydrogen sensing capability of our materials, as described below [14]. We
first summarize their results here.

Figure 2.11: Image obtained through confocal microscope of SnO2 nanostructured array supported on
SiO2/Si substrate with Au pads and wire bonding. It shows the sensing material region exposed to the
environment [14].

2.4.4.1 Experimental details of sensor array fabrication

At room temperature, 24 nm thick SnO2 films were deposited by pulsed laser deposition (PLD) tech-
nique under ultra high vacuum conditions (5×10−8 Torr) on commercially available and optically smooth
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(a) (b) (c) (d)

Figure 2.8: SEM images of nanowires from 42 nm film for two different Eo with the interference angle, θi =
86o, and 3000 laser pulses. (a) Eo = 440 mJ cm−2 and (b) magnified image of (a). (c) Eo = 535 mJ cm−2

and (d) magnified image of (c).

400 nm thick SiO2 on Si wafers. Thickness of the films was measured by performing step height measure-
ments with AFM (Multiview-1000, Nanonics). Following the deposition, Nd:YAG laser at its 4th harmonic
with a 9 ns pulse width and a 50 Hz repetition rate (Lab130-50, Spectra Physics) was used for laser process-
ing. Under ambient conditions, the films were irradiated by two equally split laser beams at an interference
angle of 72 degrees. The laser energy density before the split was 310 mJ/cm2 and 3000 laser pulses were
applied. Further details of the synthesis processes and characterizations can be found in an earlier work
[123]. To perform sensor measurement evaluation, the electrical contacts were made on SnO2 planar film
and SnO2 nanostructured arrays (NSA) in combination with UV-lithography and e-beam deposition. First,
the contact locations were defined by the lithography, and then Cr/Au (5 nm/45 nm) layers were deposited
using e-beam evaporation technique. Wire contacts were prepared on Au pads by wire bonding. The device
fabrication and testing was performed by our collaborators at the University of Central Florida (UCF). The
figure of the final sensor device is shown in Fig. 2.11.
2.4.4.2 Testing of Sensor Devices by UCF collaborators

The SnO2 sensors were tested under dynamic condition by which the sensors were exposed to a cal-
culated concentration of hydrogen gas, flowing in a closed and controlled environment (KSC NASA Test
Chamber). The sensor test set-up has already been described elsewhere in detail [124]. During the testing,
the four-probe technique was used to measure the resistance in air as well as in the hydrogen containing
environment. The sensor test was conducted at room temperature (25 deg). Tests of the nanoarrays were
accomplished in a similar manner using dynamic conditions to simulate the actual environmental conditions
under which the sensors were expected to perform. At the beginning of the test, Ultra High Purity (UHP)
oxygen gas was blown into the chamber at 50 Torr and 25 degree Celsius for 24 hours to remove any pre-
adsorbed hydrogen and surface impurities. Next, the test was conducted by exposing the sensors to UHP
Air for 15 minutes, then to UHP hydrogen gas for the same time interval with UHP nitrogen as the carrier
gas. At first, cyclic tests were conducted at constant concentration (3000 ppm to zero volume percent and
then repeated) of hydrogen within the mixture of UHP nitrogen. Next, the concentration of hydrogen was
gradually decreased (6000 ppm, 3000 ppm, 1500 ppm, etc.) to observe the sensors response to varying
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(a) (b) (c)

Figure 2.9: AFM line scans of the wire profiles of SnO2 nanowires formed from three different energy
densities (a) Eo = 440, (b) Eo = 535 and (c) Eo = 700 mJ cm−2. The initial film thickness was 42 nm,
the interference angle was 86o, and the number of laser pulses was 3000. The average for all measured
nanowire height for each sample is (a) hnw = 14, (b) hnw = 16 and hnw = 19 nm respectively.

concentrations of hydrogen and to detect the limits of each sensor’s capability.
2.4.4.3 Testing Results and Discussion

The change in conductance of SnO2 NSA and SnO2 planar thin film sensors as a function of concentra-
tion of hydrogen at room temperature is presented in Fig. 2.12(a). The H2 gas was varied in a wide range
of concentration, ranging from 300 ppm to 6000 ppm. For SnO2 NSA sensor, change in resistance varies
significantly from 6000 ppm to 300 ppm, which demonstrates the sensor capability to detect H2 gas at very
low concentrations. On the other hand, the resistance of the film sensor does not change significantly on ex-
posure to H2 gas and the change in the resistance is minimal with decreasing H2 gas concentration between
9000 to 300 ppm. Similarly, the variation the H2 gas sensitivity of SnO2 NSA and film sensors with respect
to the hydrogen concentration is shown in Fig. 2.12(b). From the plot, the exhibited electrical response of
the SnO2 NSA to the varying H2 concentrations shows that minimum sensitivity is around 137%. This is
evidence that SnO2 NSA are capable of detecting low H2 concentrations even at room temperature. Typical
a sensitivity of 100% for the desired hydrogen concentration is taken as a useful benchmark for a practical
device. However, the electrical response of the SnO2 film is relatively poor. Compared with the previous
studies of Shukla et al., sensitivity and detection limit of hydrogen gas of SnO2 NSA has been dramatically
improved at room temperature [124]. In Fig. 2.13, the resistance variation of SnO2 NSA and SnO2 thin
film sensors at room temperature on exposure to H2 gas at a constant concentration at 3000 ppm are shown.
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(a) (b)

Figure 2.10: Behavior of hnw and hrem as a function of E0 for 42nm films at an interference angle of
86o irradiated by 3000 pulses: (a) the experimentally determined nanowire height (open circles, left axes)
and theoretically predicted behavior of the integrated evaporation difference Γ∗ between regions of maxim
and minima (dashed line, right axes). (b) The experimentally measured (open symbols) and theoretically
predicted (line) remaining film thicknesses hrem.

Cyclic exposure to fixed concentration of H2 shows that the sensor is very robust and stable.

2.5 Discussion

In order to better understand the mechanism responsible for the formation of nanowires, an optical +
thermal model was constructed to determine the temperature evolution of a multilayer system comprised
of an SnO2 thin film on a SiO2/Si substrate irradiated by uniform as well as interfering laser beams. The
first step in creating this model, shown schematically in Fig. 2.14(a), is to accurately determine the optical
properties of all the materials involved, in this case the SnO2 films, and the SiO2 and Si substrate compo-
nents. The values of the complex refractive index, N, at λ = 266 nm is reported as NSiO2= 1.4585 and NSi

1.831-4.426i for the substrate materials [122, 125]. The optical properties of SnO2 at λ = 266 nm measured
by Jimenez et al. is N=2.04-0.2i, and implies that SnO2 films should be nearly transparent for the thick-
nesses and wavelengths used in this work, making pattern formation by laser-thermal heating very difficult.
However, it was mentioned by the same authors in ref. [126] that the index may vary significantly depending
on the method of film deposition [126]. To address this, experimental values of reflectivity, R, and transmis-
sivity, T, for SnO2 films of various thickness (15, 25, and 90 nm) prepared on 750 µm SiO2 substrates was
measured. The experimental R and T were compared to theoretical values calculated under the assumption
of coherent layers [127]. Using a simple least squares optimization of the data, we determined that the best
fit of N=2.0-0.97i yielded a reasonably good agreement between the measured and theoretical values of R
and T, as shown in 2.14(b) and (c) respectively.

The next step to an accurate model was to find the time and position dependent energy absorption
within the multilayer SnO2/SiO2/Si system when irradiated by a pulsed laser in interference. The method
outlined by Prentice [127] was modified by including the angle dependent reflectivity at the interfaces [128].
Following the same method, and accounting for the two beam interference pattern while applying a position

27



(a) (b)

Figure 2.12: (a) The resistance variation of SnO2 nanostructured array (red line) and SnO2 thin film (green
line) at room temperature on exposure to hydrogen gas in a wide range of concentration, ranging from
300 ppm to 6000 ppm. Change in resistance does not decrease significantly from 6000 ppm to 300 ppm,
which demonstrates the sensor capability to detect H2 gas at very low concentrations. The resistance of
the film sensor does not change significantly on exposure to H2 gas and the change in the resistance do not
significantly increase with increasing H2 gas concentration even upto 9000 ppm. (b) The exhibited electrical
response of the SnO2 NSA to the varying H2 concentrations shows that minimum sensitivity is around 137.
This is evidences that SnO2 are more than capable of detecting lower concentration. The electrical response
of the SnO2 film is relatively insensitive [14].

dependent phase change to each beam and adding the normalized resultant electric field, E, the resultant
absorption profile for a SnO2/400nm SiO2/Si film stack can be determined [128]. The resulting normalized
absorption profile is given as α∗ = α |E(x,z)|2

|Ei|2 , where α is the absorption coefficient of the film, |Ei| is the
modulus of the average incident electric field, and |E(x,z)| is the modulus of the resultant electric field within
the film which varies as a function of the lateral dimension, x, due to the interference pattern and the depth,
z, due to absorption and reflection effects. The normalized absorption as a function of depth (z) is shown in
Fig. 2.15(a), for x position corresponding to the maximum incident intensity due to complete constructive
interference. The two-beam interference pattern assuming 36° off normal incidence (72° between the beams)
is shown as the normalized surface absorption profile in Fig. 2.15(b), but this characteristic shape may be
found for any depth. Assuming a Gaussian pulse shape, the total volumetric rate of energy absorption is
given by:

q̇ = α∗ Ep

σ
√

2π
e−

(t−tp)2

2σ2 ,

where Ep is the total energy per pulse per unit area, tp is the pulse width, and the standard deviation of
the pulse σ = tp

2
√

2ln(2)
[105].

This model was then applied to a 2-D thermal finite element analysis (COMSOL) including characteriza-
tion of the melting of the SnO2 film as was conducted by Trice et al. to determine the temperature evolution
at every point in the film stack [105]. The thermal conductivity of SiO2 was taken as the non-radiative
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Figure 2.13: The resistance variation of SnO2 nanostructured array (red line) and SnO2 thin film (green
line) at room temperature on exposure to hydrogen gas at a constant concentration at 3000 ppm. Cyclic
exposure to fixed concentration of H2 shows that the sensor is very robust and stable [14].

SnO2

400nm  SiO2

Si

Coherent  Split  Beam

Intensity

(a) (b) (c)

Figure 2.14: (a) Schematic of geometry used for the optical + thermal model. (b) The measured reflectivity,
and (c), transmittance (open symbols) of known thicknesses of SnO2 deposited on 750 µm quartz from
optical spectroscopy. The best fits (crosses) were modeled assuming NSnO2 = 2.0 - 0.97i .

thermal conductivity since the length scales involved are significantly shorter than wavelengths involved
in radiative transport [129, 130]. The temperature dependent heat capacity of SnO2 was determined from
Pankratz [131] and density from Taylor [132]. Due to the lack of data, only the room temperature thermal
conductivity of SnO2, k = 10 Wm−1K−1, was available, so this value was taken as temperature independent
[133]. The remaining thermal properties of SiO2, and those of Si were taken as the temperature dependent
functions given in a material constants handbook [134]. The melting temperature of SnO2 (1903.2°K) and
the enthalpy of fusion (155.3 J g-1) were employed to model the phase change by an effective heat capacity
technique [134, 105]. A complete list of the optical and thermal properties used for this simulation are given
in Table 2.1 and Table 2.2, respectively. Verification of the 2-D thermal model was performed by comparing
the experimentally determined melt threshold for single beam irradiation at normal incidence of two samples
of known thickness, which yielded 63 and 99 mJ cm−2 for 5 nm and 42 nm films respectively. These values
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Figure 2.15: Absorption profiles of the SnO2/SiO2/Si stack for the case of: (a) complete constructive inter-
ference depth profile and (b) surface absorption profile.

compared favorably with the model, which predicted values of 60 and 91 mJ cm−2.

Table 2.1: Optical values used in the simulation.

Quantity Description Value [Reference]

NSnO2 Index of refraction 2.0 - 0.97i (Fit,[126])
NSiO2 Index of refraction 1.45846 [122]
NSi Index of refraction 1.831 - 4.426i [125]
σ =

tp/2
�

2ln(2)
Standard deviation 3.822 ns [105]

Applying this model to the experimental conditions outlined previously, the temperature difference be-
tween interference maxima and minima of the liquid SnO2, ∆T , determined at the moment the entire film
has melted is given in Fig. 2.16(a). The film temperature at the maxima and minima of the interference pat-
tern for the case of average incident energy per pulse of 400 mJ cm−2, is shown in Fig. 2.16(b) as a function
of film thickness. Clearly, the thickness of the SnO2 film has a profound effect on these temperatures. A
non-monotonic variation in the temperature is seen, with a maxima occurring around a film thickness of 25
nm, and dropping sharply for thinner films. This type of temperature variation has been observed previously
for ultrathin metal films on optically transparent substrates [105]. The behavior arises from the nanoscale
nature of laser-film heating and can be briefly explained here as follows [12, 44]. For the case of SnO2, the
experimentally estimated skin depth δ at 266 nm wavelength is 21.8 nm (as obtained from the experimen-
tally extracted k values). Consequently, for SnO2 films with thickness comparable to the skin depth, the
intensity of light energy absorbed will vary exponentially with thickness as I(ho) = Io(1−e−ho/δ ), where Io

is the incident light intensity. Secondly, the effective reflectivity of light from the surface of the SnO2 film
on the SiO2 substrate is also strongly dependent on SnO2 film thickness. This can be understood physically
by noting that at zero film thickness the reflectivity will be that of the SiO2 substrate (which is practically
zero for UV light) while it will be the value of the bulk SnO2 (which is >> zero) for a very thick film.
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From the experimental measurements of reflectivity and estimated N values, a quantitative calculation based
on evaluating the Fresnel coefficients for such SnO2/SiO2 bilayer systems yields the general nature of the
thickness dependent reflectivity as R(ho) = ro(1− exp(−arho)), where ar and r0 are materials-dependent
parameters [128]. Third, the effective mass of the material heated M(ho) is also a strong function of film
thickness for the following reason. When the film thickness is less then one thermal conduction depth, any
heat generated within the nanoscopic metal film due to optical absorption will diffuse into the underlying
SiO2 substrate. Consequently, the effective mass of material heated will include the thermal mass of the film
and an effective thermal mass of the substrate estimated from the length scale of thermal diffusion occurring
within the substrate in the nanosecond time scales of the experiment. Therefore, the heated mass will be
M(ho) = (ρCp)mho +(ρCp)S

�
Dth

S τ , where the subscript m and s denote metal and substrate while ρ and
Cp are values of density and specific heat, Dth

S is the substrate thermal diffusivity and τ is the ns time scale
of laser heating. Consequently, energy balance shows that the temperature rise will be qualitatively given by
∆T (ho) = I(ho)(1−R(ho))τ/M(ho). As can be noted, in this function, I increases with increasing thickness
while (1-R) and 1/M decrease with increasing thickness. As a result, a non-monotonic variation in temper-
ature with film height ho can be expected for any given laser intensity and in fact at a critical film thickness
the temperature rise will be a maximum. This behavior, as estimated from a more accurate finite element
modeling, is shown in Fig. 2.16(b). A maxima in temperature occurs around a film thickness of 25 nm,
while there is a large rate of change in temperature with thickness for films on either side of this maxima.

(a) (b) (c)

Figure 2.16: Thermal model results showing: (a) the temperature difference between the the interference
maxima and minima when the entire film has melted; (b) maximum surface temperature as a function of
SnO2 film thickness for θ = 72o and Eo = 400 mJ/cm2; and (c) maximum surface temperature as a function
of SnO2 film thickness for θ = 86o and Eo = 550 mJ/cm2. The shaded regions in (b) and (c) represent the
integrated evaporation difference Γ∗.

2.6 Conclusion

The nanowire array may be formed by either liquid movement due to thermocapillary (TC) forces re-
sulting from a temperature induced surface tension gradient, or preferential evaporation of the film between
the regions of high intensity (constructive interference) and low intensity. As shown in Fig. 2.16(a), the two
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beam irradiation causes a temperature disparity between the regions of constructive and destructive inter-
ference. Consequently, the surface tension gradient generates marangoni or thermocapillary flow along the
plane. An estimate of magnitude of contribution of TC effects on fluid flow may be directly obtained from
the characteristic time scale of TC flow τM. As shown in ref. [135], τM depends on the temperature gradient
on the film surface, the film thickness ho, as well as materials parameters, and can be expressed as:

τM =
Λ2

laserη
4 ∂γ

∂T ∆T ho
(2.1)

where Λlaser, η , ∂γ
∂T and ∆T are the laser fringe spacing, dynamic viscosity of the film material, rate of

surface tension change with temperature and peak-valley temperature difference, respectively. Due to the
unavailability of actual dynamic viscosity and the surface tension data for SnO2 the material constants of
a known ceramic oxide, close to the position of tin oxide in the periodic table (such as lead oxide), was
adapted judiciously. For lead oxide, η= 2.1 Pa·s and is ∂γ

∂T = −0.0968Jm−2K−1and this was used used to
estimate the TC time scale [136]. For the case of Eo = 400 mJ cm−2 and ho = 50 nm, a temperate difference
of ∆T = 530 K was obtained from thermal modeling for a fringe spacing of Λlaser= 225 nm (corresponding
to θi= 72◦). From this, the value of τM was estimated to be around 9 ns, which is comparable to the laser
pulse time scale suggesting that it is reasonable to expect some contribution from TC flow under the two
beam interference irradiation. However, at this stage, the experimental observations from wire formation
cannot clearly differentiate between contributions from TC flow versus evaporation. Moreover, since we
have observed substantial evaporation, it is also important to estimate the magnitude of contribution from
preferential evaporation on the wire formation.

First, the maximum rate of evaporation at a given temperature can be estimated from the classical relation
between pressure and temperature [137] as:

Γe = 5.834∗10−2Pe

�
M
T

(2.2)

where Γe= the mass evaporation rate in g
cm2s , M is the molecular weight, and Pe is the equilibrium pres-

sure in Torr . Assuming a 9 ns melt time, the theoretical evaporation rate for SnO2 at its boiling temperature
of 2173 K is 0.15 nm pulse-1. Assuming a constant evaporation rate, fewer then 1000 pulses would be
required to remove 100 nm of film. However, as seen from Fig. 2.16(b) the peak film temperature is non-
monotonic with respect to ho leading to a cut-off of evaporation at a critical thickness, which corresponds
approximately to the film thickness where the maximum film temperature is equal to the melting point of
the SnO2. For the case of θi = 72oand E0 =400 mJ cm−2, Fig. 2.16(b), this occurs at h = 11 nm. From the
above discussion, the observation of a final fixed remaining thickness hrem following processing of films of
varying initial thickness at a given energy density Eo can also be explained qualitatively. The model predicts
that for E0 = 300 mJ cm−2 and θi = 720, hrem = 13 nm, which is in good agreement with our experimental
observation shown in Fig. 2.7(b). Additionally, for the case of θi = 860 and h0 = 42 nm, hrem was found
to be only weakly dependent on E0 (Fig. 2.10(b), open circles), which agrees with the theoretical predic-
tion (solid line), and the true nature of the dependence (predicted to be decreasing hrem with increasing E0)
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may be masked by the inherent error in the experiment. From this analysis, one can claim that evaporation
sharply drops following thinning of the film beyond the position of the temperature maxima. Interestingly,
the temperature gradient also drops sharply in this region, as evident from Fig. 2.16(b). Therefore, we sug-
gest that the self-limiting behavior occurs due to this shutting-off of evaporation and the parallel reduction
in thermal gradients, which reduces TC flow.

Table 2.2: Thermal values used in the simulation. L is heat of transformation; ρ is density; k is thermal
conductivity; C is heat capacity; T is temperature, and ε is phase change tuning parameter.

Quantity Value [Reference]

L 155.3 J g-1 [134]

ρSnO2
ρ =

�
−0.1062T +6930.86 kg m-3, if T ≤ 1773 K

6742.57 kg m-3, if T > 1773 K
[132]

ρSiO2 ρ =






1.43E−14−T 55.00E−11T 4 +6.98E−8T 3−4.71E−5T 2 +1.11E−2T
+2219.39 kg m-3, if T ≤ 1000 K

2217.53 kg m-3, if T > 1000 K

ρSi ρ =






−1.37T 4 +4.29E−8T 3−5.43E−5T 2 +3.84E−3T
+2332.57 kg m-3, i f T ≤ 1000 K

2311.28 kg m-3, if T > 1773 K
kSnO2 10 W m-1 K-1 [134]
kSiO2 Extrapolated from: [129]

kSi k =






−1.53E−17T 4 +4.76E−14T 3−5.54E−11T 2 +3.02E−8T
−2.62E−6 W m-1K-1, if T ≤ 1000 K

4.40E−6 W m-1K-1, if T > 1000 K
[138, 139]

CpSnO2 Cp =






1.62E−10T 4−2.72E−7T 3−2.96E−4T 2 +0.826T
+134.45 J kg-1K-1, if T ≤ 1100 K
1.01E−8T 3−6.21E−5T 2 +0.149T

+457.63 J kg-1K-1, if 1100 K < T ≤ 1800 K
583.97 J kg-1K-1, if T > 1800K

[131]

CpSiO2 Cp =






−7.06E−12T 5 +1.88E−8T 4−1.70E−5T 3−4.46E−3T 2

+1.93T +61.49 J kg-1K-1, if T ≤ 925 K
3.13E−8T 3−1.11E−4T 2 +0.371T +890.24 J kg-1K-1, if 925 K < T ≤ 2000 K

1188.24 J kg-1K-1, if T > 2000 K

[140, 141]

CpSi Cp =






−1.91E−9T 4 +5.95E−6T 3−6.95E−3T 2 +3.77T
+63.04J kg-1K-1, if T ≤ 900K

−3.18E−5T 2 +0.187T +769.46J kg-1K-1, if 900K < T ≤ 1685K
994.45J kg-1K-1, if T > 1685K

[140, 141]

Tmelt (SnO2) 1903 K
Tboil (SnO2) 2173 K

ε 10 K [105]

The thermal model can also be used to explain the behavior of hnw as a function of ho and Eo. In
Fig.2.16(b) and (c), the temperature difference between the regions of maxima and minima are shown as
a function of starting film thickness ho for the 72 and 86o irradiation geometries respectively. As 2.16(b)
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and (c) show, evaporation will occur at the maxima and minima locations, but at different rates because of
the different temperatures. For thick films (> 25 nm or so), this evaporation rate increases as the film thins.
Now, as the temperature in the maxima continues to rise, the temperature in the minima will also begin to
rise as a consequence of thermal diffusion. Consequently, the minimum also enters the evaporation zone
and starts thinning. Now, a parallel thinning of the maxima and minima occur, albeit at slight different rates,
as given by their respective temperatures. Finally, both locations thin enough such that the evaporation
stops. From Fig. 2.16(b) or (c), the two regimes can be seen to have slightly different evaporation cut-
off thicknesses.If one assumes a constant evaporation rate for the entire film, so that the total evaporation
time tevap ∝ h0− he f f , and if the local evaporation rate is assumed to be relative to the modeled T-Tboil,
a relative measure of preferential evaporation may be determined by integrating the relative temperature
difference that exists above the melting point and the thickness. This relative evaporation difference Γ∗ can
be evaluated as:

Γ∗ =
h0ˆ

0

T ∗maxima(h)−T ∗minima(h) (2.3)

where

T ∗ =





T ∗ −TboilT ∗ ≥ Tboil, if T ∗ ≥ Tboil

0, if T ∗ < Tboil,
(2.4)

where T ∗maxima and T ∗minima are, for a given h, the difference between the peak temperatures of the interference
maxima and minima and the boiling point, and where temperatures below the boiling point result in a
value of zero. If the previous assumptions are valid, the resulting integrated evaporation, Γ∗, should be
proportional to hnw. As shown by the open circles in 2.7(a), films of larger initial thickness exhibit a much
greater hnw, and are in qualitative agreement with the theoretical Γ∗, plotted as the solid line. It should be
noted that the scale of Γ∗ is arbitrary, but agrees with the experimentally measured data when both y axes
intersect the x axis at 0. Similarly, increasing E0 should increase Γ∗, since ∆T increases in concert with
E0. This relationship agrees with the experimentally determined data in 2.10(a). However, due to the angle
disparity between the constant energy and thickness experiments, the absolute values of Γ∗ could not be
compared between the two cases.

From this discussion, the non-monotonic thickness-dependent temperature behavior provides opportu-
nity to synthesize wires under a variety of interesting laser parameters. For instance, by varying the intensity
of the individual interfering beams, it is possible to modulate the temperature difference between the max-
ima and minima. Hence, this can be used to influence hnw as well as the hrem. Another important aspect
of the processing of SnO2 is the relatively small difference between the melting point and boiling point
(i.e. 270 K). As a result, wire formation by pure thermocapillary flow requires stringent control on the laser
energy as well as in the intensity of each of the interfering beams. These studies could form the basis for
further investigations of wire formation in SnO2.

In conclusion, we have synthesized parallel nanowire arrays of SnO2 on SiO2 substrates by nanosecond
pulsed laser irradiation. Such nanowires are potential candidates for improved H2 sensor performance The
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array morphology was characterized by SEM and AFM, in conjunction with EDS and XPS measurements
to evaluate concentration and stoichiometry. Due to evaporation, the final nanowire array had a lower ef-
fective SnO2 film thickness, whose value was independent of starting film thickness for any given laser
energy density, but decreased with increasing energy density. Furthermore, a self-limiting effect was ob-
served wherein the wire formation stopped at this effective remaining film thickness. These behaviors could
be explained by nanoscale effects of the laser-film heating that resulted in a highly non-monotonic film tem-
perature dependence on film thickness. In addition to the nanowire height, the structure of the nanowires
was dependent on the amount of evaporation, with large initial thicknesses producing consistent nanowires
and small thicknesses, where no evaporation takes place, producing clusters of nanoparticles. These results
show that fabrication of large nanowire arrays can be achieved by careful analysis of the thermal behavior
in conjunction with experiments. Also, the SnO2 nanostructured arrays based hydrogen sensor was tested
under dynamic conditions of hydrogen environment. The electrical response of SnO2 towards hydrogen at
low concentration at room temperature operation was improved in the nanostructured arrays as compared to
the film. The results suggest that SnO2 nanostructured arrays has the potential to produce highly functional
hydrogen sensor at room temperature for practical applications.
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Chapter 3

Thermodynamic modeling of thin metallic

liquid films dewetting

(Reported to J. Appl. Phys. 108, (2010))

Thermodynamic model for the dewetting instability in ultrathin films

3.1 Summary

The spontaneous pattern formation via the classical spinodal dewetting instability in ultrathin films is a
nonlinear process. However, the physical manifestation of the instability in terms of characteristic length
and time scales can be described by a linearized form of the initial conditions of the film’s dynamics.
Alternately, the thermodynamic (TH) approach based on equating the rate of free energy decrease to the
rate of frictional loss via viscous dissipation [de Gennes, C. R. Acad. Paris 298, 111 (1984)] can give
similar information. Here we have evaluated dewetting in the presence of film-thickness- (h) dependent
thermocapillary forces. Such a situation can be found during pulsed laser melting of ultrathin metal films
where nanoscale effects lead to a local h-dependent temperature. The TH approach provides an analytical
description of this thermocapillary dewetting. The results of this approach agree with those from linear
theory and experimental observations provided the minimum dissipation is equated to the rate of free energy
decrease. The flow boundary condition that produces this minimum dissipation is when the film-substrate
tangential stress is zero. The physical implication of this finding is that the spontaneous dewetting instability
follows the path of minimum rate of energy loss.

3.2 Introduction

Investigations of thin film morphology evolution and control is of fundamental and technological interest.
In particular, spontaneous self-organizing processes [142] that lead to nanostructure formation in a reliable
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way have attracted tremendous attention. The resulting nanostructures can have novel behavior as well as
be utilized in a wide variety of technologies, such as, energy harvesting [143, 144, 145], biomedicine[146,
147], spintronics [148], photonics [34] and magnetism [149, 5]. One example of a self-organizing process
is the spontaneous dewetting of a continuous liquid film from a surface. A scientific understanding of
dewetting has implications to many industrial applications, including in the deicing of airplane wings with
non-wettable surfaces, in preventing hydroplaning of automobiles on wet roads due to thin continuous layer
of water and in designing chemicals to prevent the break-up of the lachrymal film that protects the cornea of
the eye. Another growing application of dewetting is in the fabrication of nanoscale structures in a robust,
controllable and cost-effective manner. The extensive studies of polymer thin films and growing number of
investigations of dewetting in metallic thin films is indicative of this technological interest and also to the
need for a deeper understanding of the phenomenon [150, 151, 41, 152, 153, 104, 154, 10, 43, 105].

The classical dewetting instability in thin films can be interpreted as a competition between two energy
terms. For the case of a large number of polymer or metallic films studied, these two energies correspond
to the surface tension and the attractive intermolecular dispersion force between the film-substrate and film-
vacuum interfaces mediated by the film material. As shown first by Vrij [96, 97], the instability can be
described from an energetic viewpoint by evaluating the thermodynamic free energy change of the system
under perturbations to the film height. The prediction from such an energy analysis is that for certain
perturbation wave vectors, the film enters an unstable state and thus, can spontaneously dewet. As a result,
studies of dewetting have focused largely on the fluid dynamics of the film, through which it is possible to
obtain the relationship between the rate of growth or decay of surface perturbations to their wave vector, i.e.
the dispersion relation. However, the fluid dynamics for even the simplest dewetting scenario, such as the
example above, is a highly nonlinear process, and, while addressable by many numerical techniques [155,
156, 157, 99], is often evaluated through a linear analysis in order to achieve physical insights into dewetting.
An alternate approach to quantitatively evaluate dewetting is thermodynamics. Fluid flow pathways can
be analyzed through thermodynamic considerations in which the conversion of useful internal energy to
external energy loss via heat, such as by viscous dissipation, is used to quantify the behavior [158, 159].

In this work, we show that such an approach can provide meaningful insight into the nature of fluid flow
as well as the energy pathway for dewetting instabilities. Specifically, we have applied the thermodynamic
formulation to the case of dewetting in which film thickness dependent Marangoni or thermocapillary forces
are also present. Such a situation has been observed in the melting of thin metallic films by nanosecond
pulsed lasers [12, 44]. In our thermodynamic analysis the rate of thermodynamic free energy decrease
due to film thickness fluctuations is balanced with the rate of energy loss due to viscous flow, i.e. viscous
dissipation. This leads to a analytical description of the dewetting process without explicit need to solve
the the height evolution dynamical equation from the Navier-Stokes (NS) equation. The thermodynamic
and linear approach show identical results for classical dewetting. For thermocapillary dewetting, the two
approaches agree only if the minimum viscous dissipation is evaluated. This minimum was found to occur
for a particular flow boundary condition, which related the pressure gradient with the thermocapillary forces,
and resulted in zero tangential stress at the film-substrate interface. Besides this physical insight into the
fluid flow, the thermodynamic analysis also showed that the dewetting pathway is one in which the rate of
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energy loss is minimized.

3.3 Theory

For completeness, we first begin by summarizing the derivation of the thin film fluid velocity for a one-
dimensional (1D) incompressible fluid from the NS equation within the lubrication approximation. A com-
plete analysis is provided in ref. [160]. In this approximation the average or unperturbed thickness ho of
the film is much smaller than the in-plane dimension (x), as a result of which, the only velocity change of
importance occurs along the thickness or z-direction. Furthermore, because of the small thickness of the
film, inertial effects can be neglected and so the flow is dominated by the viscous effects. Using the above
approximations, the NS equation for the steady-state condition (ρ dv

dt = 0) in the x-direction is given by:

∇P = η d2v
dz2 (3.1)

where v is the x-component of the liquid velocity, ∇P = d p
dx is the pressure gradient in the direction of

flow x, and η is the dynamic viscosity. By integrating the velocity v as a function of height z we get:

v = ∇P
z2

2η
+az+b (3.2)

Typical boundary conditions used to analyze the classical dewetting instability are the no-slip condition at
the film-substrate, so v(h = 0) = 0, and a stress-free boundary condition at the top film surface. The no-slip
condition results in b = 0. At the top surface, we introduce the h-dependent Marangoni effect by equating the
shear stress to the surface tension gradient: η dv

dz |h0 = dγ(h)
dh

dh
dx = γh

dh
dx = (γhh�)ho , where, γ(h) is h-dependent

surface tension of the film-vapor interface, | γh |=| dγ
dh | is the magnitude of the height coefficient of surface

tension, and dh
dx = h� is the thickness/height gradient along the flow direction, with all quantities evaluated

at the average film thickness ho. From this, the velocity and velocity gradient in the z-direction can be
respectively expressed as:

v =
∇P
2η

z2− ∇Ph0− γhh�

η
z (3.3)

and
dv
dz

=
∇P
η

z− ∇Ph0− γhh�

η
(3.4)

Based on this, one can now easily evaluate the rate of energy loss due to viscous liquid flow, i.e. the viscous
dissipation, per unit volume ė occurring in the film. This quantity is given by [161]:

ė = η(
dv
dz

)2 =
(∇P)2

η
z2− 2∇P(∇Ph0− γhh�)

η
z+

(∇Ph0− γhh�)2

η
(3.5)

For the case of classical dewetting, i.e. in which Marangoni forces are absent (γh = 0), the viscous
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dissipation will be:

ėC =
(∇P)2

η
(z−ho)2 (3.6)

where the superscript denotes classical.
Next, we can evaluate the rate of thermodynamic free energy change ∆̇F for fluctuations/perturbations

to the initial height of the film. Since we are primarily concerned with the dewetting instability, we will use
the classical approach proposed by Vrij where-in the film-vapor surface tension energy competes with the
attractive dispersion energy. Film height perturbations will increase the top film surface area and so surface
tension increases the overall thermodynamic free energy of the film. On the other hand, the long range
attractive dispersion energy varies as A/2πh4(= Π��), where A is the Hamaker coefficient with negative sign,
leading to an overall decrease in thermodynamic free energy. As Vrij showed, it is the free energy decrease
resulting from competition between these two energy terms that drives the dewetting instability. Here, we
evaluate the rate of this free energy change by expressing the height perturbations as Fourier components of
type:

h(x, t) = h0 + εeσte−ikx (3.7)

where the perturbation has an amplitude of ε , a characteristic temporal decay rate σ and a corresponding
wave vector k. In this work, we explore the thermodynamic solution for a thermocapillary/Marangoni
problem where the surface tension is dependent on the local height, but its derivative with respect to the
film height (γh = dγ/dh) is independent of the x-position on the surface. Consequently, the surface tension
change does not contribute to a change in free energy. This can be shown as follows. The standard procedure
is to calculate the rate of total free energy change due to the height perturbation and evaluate it over one
wavelength of the perturbation [96]. In this case, the resulting rate of energy change will be:

∆Fsinglewavelength =
ˆ λ

0

�
1
2

γ | ∂h
∂x

|2 +
1
2

Π��∆h2 +
1
2

γh∆h
�

dx (3.8)

One can immediately see that since γh is independent of the x-position along the film, the integral of
the third term is

´ λ
0

1
2

dγ
dh εe−ikx+σtdx = 0. Consequently, to calculate the rate of change in the free energy,

we can ignore the contribution from γh, and express it as the difference due to the initial and perturbed film
thickness at any position x [97] as:

∆̇F =
∂
∂ t

�
1
2

γ | ∂h
∂x

|2 +
1
2

Π��
���
ho

∆h2
�

= σ
�

γk2 +
A

2πh4
0

�
ε2e2(σt−ikx) (3.9)

The first term in the expression on the right hand side is the rate of increase of surface tension energy, and
the second one is the rate of change in energy from the dispersive interaction.
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3.4 Results and Discussion

3.4.1 Dispersion relation for classical dewetting

Here we compare the characteristic dewetting length scales obtained from fluid dynamics versus the ther-
modynamic approach. The typical approach to obtain the dispersion relation between the rate σ and wave
vector k has been to describe the rate of change in film height based on the NS equation and mass conserva-
tion [96, 97]. For the classical dewetting instability, i.e. without Marangoni effects, the resulting dynamics
is described by the equation [162, 43]:

3η ∂h
∂ t

=−� .

�
γh3� .�2 h− A

2πh
�h

�
(3.10)

As is evident, this equation is non-linear in h and presents considerable challenges towards achieving
an analytical description of dewetting that could provide simple but physically insightful information about
the instability. Consequently, a prevalent approach is a solution afforded by linear stability analysis. Hence,
after an expansion of the right hand side of Eq. 3.10:

3η ∂h
∂ t

= (3.11)

(−k2εeσt−ikx)
�

γk2(h3
o +6h2

oεeσt−ikx +9hoε2e2(σt−ikx) +4ε3e3(σt−ikx))+
Aho

2π(ho + εeσt−ikx)2

�

and applying by keeping terms only linear in the perturbation amplitude ε , as required by LSA, Eq. 3.11
reduces to :

3η(εσeσt−ikx) = (−k2εeσt−ikx)
�

γk2h3
o +

A
2πho

�
(3.12)

Consequently, the resulting dispersion relation is given by [12]:

σLSA
C =−

h3
0k2

3η
(γk2 +

A
2πh4

0
) (3.13)

The characteristic (or classical) dewetting length scale ΛLSA
C can be obtained from the dispersion relation

by the maxima condition dσ
dk = 0 and leads to:

ΛLSA
C =

�
−8π2γh3

o
A

2πh0

�1/2

=

�
−16π3γ

A
h2

o (3.14)

where the superscript refers to LSA.
On the other hand, the thermodynamic (TH) approach is based on equating the rate of free energy change

(Eq. 3.9) to the total viscous dissipation in the film. We can calculate the total viscous dissipation per unit
area Ė for the liquid film by integrating over the film thickness as follows:
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ĖC =
h0ˆ

0

ėCdz =
(∇P)2

3η
h3

0 (3.15)

The next, and important, step in evaluating this integral is to relate the pressure gradient to the film
height through a volume conservation argument. Volume conservation requires that the rate of change of
film height ∂h/∂ t be related to the flux of liquid flow J(x) as ∂h/∂ t =−∇ � J (x). To evaluate this we have
used the thin film lubrication approximation in which flux can be written in terms of the height-averaged
liquid velocity < v > as [160]:

J (x) = ho < v >= ho.(
1
ho

ˆ ho

0
vdz) =−∇P

3η
h3

o (3.16)

from which we can express the volume conservation equation as:

∂h
∂ t

=−∇.J =
∇2P
3η

h3
o (3.17)

By rearranging terms we get the desired relation for the pressure gradient as follows:

∇P =
ˆ

∇2Pdx =
i
k
(
3ησ
h3

o
)εeσt−ikx (3.18)

where we have made use of Eq. 3.7. Using this expression in Eq. 3.15, the total dissipation is:

ĖC =− 3η
h3

0k2 σ2ε2e2(σt−ikx) (3.19)

Then, equating Eq. 3.19 with the rate of decrease of free energy, Eq. 3.9, ∆̇F = ĖC, and expressing the
result in terms of σ we get the dispersion relation from the thermodynamic approach:

σT H
C =−

h3
0k2

3η
(γk2 +

A
2πh4

0
) (3.20)

from which, the classical dewetting length scale ΛT H
C can be expressed as:

ΛT H
C =

�
−

8π2γh3
O

A
2πho

�1/2

=

�
−16π3γ

A
h2

o (3.21)

where the superscript and subscript refers to thermodynamic. As expected, the fluid dynamics described
by LSA and the TH approach give identical results for the classical dewetting instability [163, 158]. On
the other hand, as we show next, dewetting with Marangoni (or Thermocapillary) forces requires a more
stringent evaluation of the viscous dissipation in order to provide results comparable to LSA.

41



3.4.2 Dispersion relation for thermocapillary dewetting from thermodynamics

As in the previous section, we analyze the LSA and TH approaches for dewetting in the presence of
thickness-dependent Marangoni effects. In order to relate our work to experimental observations, we de-
scribe LSA results for the case when ultrathin metal films on SiO2 substrates are melted by nanosecond
ultraviolet wavelength laser pulses [41, 104]. In this situation, there is a strong thickness-dependent reflec-
tion and absorption of light by the thin metal film which leads to a local h-dependent temperature of the
liquid metal film [105]. In addition, as reported previously, the temperature gradient along the plane of the
film, dT/dx, generated by this nanoscale heating effect, can have a positive or negative sign depending upon
the initial film thickness ho [12]. With this, the boundary condition describing the h-dependent Marangoni
effect can be rewritten in the form of a thermocapillary effect as follows:

η dv
dz

|h0 =
dγ(h)

dh
dh
dx

=− | γT | Thh� (3.22)

Where γT = dγ
dT is the temperature coefficient of surface tension, Th = dT/dh is the film height-dependent

temperature and h� = dh/dx. Given that all metals have a negative value of γT , we have expressed the
boundary condition in a more conventional form using γT =− | γT |. In this scenario, the resulting dynamical
equation of the film height is given by:

3η ∂h
∂ t

=−� .

�
γh3� .�2 h− A

2πh
�h+

3
2

h2∇γ
�

(3.23)

Applying steps similar to the classical case (see Eq. 3.11), the right hand side of Eq. 3.23 is:

3η ∂h
∂ t

= (−k2εeσt−ikx)
�

γk2(ho + εeσt−ikx)2
�

ho +4εeσt−ikx
�

+
Aho

2π(ho + εeσt−ikx)2 +3 | γT | Th(ho + εeσt−ikx)
�

ho

2
+

3
2

εeσt−ikx
��

(3.24)

which, upon applying LSA, reduces to:

3η(εσeσt−ikx) = (−k2εeσt−ikx)
�

γk2h3
o +

A
2πho

+
3
2

h2
o | γT | Th

�
(3.25)

and the resulting dispersion relation is[12]:

σLSA
TC =−

h3
0k2

3η
(γk2 +

A
2πh4

0
+

3
2
| γT | Th

h0
) (3.26)

From Eq. 3.26 the characteristic dewetting length scale in the presence of thermocapillary effects, ΛLSA
TC ,

can be expressed as:

ΛLSA
TC =

2π
k

=
�
− 16π3γ

A+3π | γT | h3
oTh

�1/2

h2
o (3.27)
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where the superscript TC denotes thermocapillary.
Next we evaluate the length scale using the TH approach based on evaluating the the total viscous

dissipation per unit area Ė for the liquid film. First, the dissipation per unit volume expressed in terms of
the thermocapillary boundary condition is:

ėTC = η(
dv
dz

)2 =
∇P2

η
(z−ho)2−2∇P

| γT | Thh�

η
(z−ho)+

(| γT | Thh�)2

η
(3.28)

The total viscous dissipation per unit area Ė for the liquid film is now:

ĖTC =
h0ˆ

0

ėTCdz =
∇P2

3η
h3

o +∇P
| γT | Thh�

η
h2

o +
(| γT | Thh�)2

η
ho (3.29)

Again, the next step in evaluating this integral is to relate the pressure gradient to the film height through
volume conservation arguments, as done for the classical case.

J (x) = ho < v >= ho.(
1
ho

ˆ ho

0
vdz) =−∇P

3η
h3

o−
| γT | Thh�ho

2η
(3.30)

from which we can express the volume conservation equation as:

∂h
∂ t

=−∇.J =
∇2P
3η

h3
o +

| γT | Thh��h2
o

2η
(3.31)

By rearranging terms and substituting the height perturbation, Eq. 3.7, into above we get:

∇2P =
3η
h3

o
εeσt−ikx +

3 | γT | Thk2

2ho
εeσt−ikx (3.32)

The pressure gradient along the x-direction can now be obtained by integrating Eq. 3.32 as follows:

∇P =
ˆ

∇2Pdx =
i
k
(
3ησ
h3

o
+

3 | γT | Thk2

2ho
)εeσt−ikx (3.33)

Then, on substituting the above relation for pressure gradient into Eq. 3.29, we get the total viscous dissipa-
tion:

ĖTC =
�
−

�
3η

h3
0k2 σ2 +

3 | γT | Th

h0
σ +

3(| γT | Th)2k2h0

4η

�

+
�

3η | γT | Th

h3
0

σ +
3(| γT | Th)2k2

2h0

�
h2

0
η
− h0

η
(| γT | Th)2k2

�
ε2e2(σt−ikx) (3.34)

Finally, equating Eq. 3.34 with the rate of decrease of free energy, Eq. 3.9 and rearranging the equation
in terms of σ we get an analytical dispersion expression for thermocapillary dewetting as:
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σ2 +
h3

0k2

3η
(γk2 +

A
2πh4

0
)σ +(

h3
0k2

3η
)
(| γT | Th)2k2h0

4η
= 0 (3.35)

It is important to note that Eq. 3.35, which comes from the thermodynamic approach, differs from the
LSA result, Eq. 3.26. One can note that there is substantial difference between the two solutions. The TH
approach is quadratic in σ as well as | γT | Th (Eq. 3.35), while, in the LSA case (Eq. 3.26) it is linear in
both quantities. Consequently, the TH approach does not directly lead to the linear dependence on | γT | Th

as evident from LSA (Eq. 3.26). This is especially important since, as noted earlier, the thermal gradients
generated by pulsed laser heating can have positive or negative signs and hence lead to fundamentally
different dewetting behaviors [12, 44]. Since the TH dispersion is a quadratic function of the thermal
gradient, its behavior will be independent of the sign of the thermal gradient and so does not agree with
LSA. As we show next, it is necessary to evaluate the characteristics of dissipation in order to get the correct
behavior from TH.

3.4.2.1 Dispersion using minimum viscous dissipation

In the classical case, the total viscous dissipation is uniquely defined by the magnitude of the pressure
gradient for any given film thickness, as evident from Eq. 3.15. On the other hand, the total dissipation for
thermocapillary dewetting is not unique, and, in fact, varies with the magnitude of the thermal gradient for
any given pressure gradient, as evident from Eq. 3.29. It is this behavior that is responsible for the above
discrepancy between LSA and TH and can be resolved by evaluating the minimum viscous dissipation.

The minimum viscous dissipation for the fluid being subjected to pressure gradients can be estimated
from the differential condition dė/d∇P = 0. Using Eq. 3.28, this leads to the condition ∇P(z−h0) =| γT |
Thh�. The general solutions satisfying the above equality can be evaluated for various values of height z in
relation to the thickness ho. First, the condition z = h0 does not yield a unique relation between ∇P and
| γh | h� and is therefore not a useful solution in the context of the dissipation. On the other hand, the choice
of z = 0, yields the case of ∇P =− |γT |Thh�

h0
. By utilizing Eq. 3.4, one can see that the physical interpretation

of this condition is that the tangential stress at the film-substrate interface at z = 0 is zero. The resulting
viscous dissipation for thermocapillary dewetting will now be (from Eq. 3.28):

ėm
TC =

(∇Pz)2

η
(3.36)

where the superscript m signifies a minimum. One can verify that this is a minima by noting that the second
derivative d2ėv/d2∇P is positive. Therefore, the minimum dissipation per unit area of the film Ėm

TC can be
obtained as:

Ėm
TC =

hoˆ
o

ėm
TCdz =

(∇P)2h3
0

3η
(3.37)

Using the form of ∇P from Eq. 3.33, the relevant form of Ėm
TC is:

44



Ėm
TC =−

�
3η

h3
0k2 σ2 +

3 | γh |
h0

σ +
3(| γh |)2k2h0

4η

�
ε2e2(σt−ikx) (3.38)

Finally, by equating the rate of free energy change ∆̇F (Eq. 3.9) and the minimum viscous dissipation
rate Ėm

TC (Eq. 3.38), we obtain an analytical form of the dispersion relation as:

σ2 +
h3

0k2

3η
(γk2 +

A
2πh4

0
+

3 | γT | Th

ho
)σ +

h3
0k2

3η
3

4η
(| γT | Th)2h0k2 = 0 (3.39)

This result is clearly different from Eq. 3.35 because now, the linear behavior with | γT | Th is also
present. Next, we evaluate this quadratic equation in σ for various magnitudes of the thermal gradients and
show that it is identical to the LSA results for large thermal gradients. By defining f = γk2 + A/2πh4

0 and
g = (3 | γT | Th)/h0, the roots of the dispersion relation are:

σ± =−
h3

0k2

6η
( f +g)±

h3
0k2

6η

�
( f +g)2−g2 (3.40)

1. Minimum dissipation approach for classical case (i.e. Th = 0)

By substituting Th = g = 0 in Eq. 3.40, the resulting relevant root is:

σ− =−
h3

0k2

3η
(γk2 +

A
2πh4

0
) (3.41)

As expected, this result is identical to the result for the classical dewetting instability.

2. Minimum dissipation approach for strong thermal gradients

In the case when the magnitudes of the thermal gradients are larger then the attractive dispersion
forces, i.e. for example when 3 | γT Th |≥| A/2πh3

o |, then we have | g |>| f |. This is the condition
found in the experimental cases reported earlier [12, 44], and we can obtain an approximate solution
from Eq. 3.40 as follows:
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From Eq. 3.43, the characteristic wavelength ΛT H
TC obtained from the maxima in the dispersion given

by dσ/dk = 0 is:
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Comparing with the LSA result, Eq. 3.27 , the only difference is in the factor of two multiplying the
thermal gradient term. More importantly, the functional dependence on ho, A, γ and | γT | Th remains
the same, confirming that the minimum dissipation approach gives similar physical characteristics
for the dewetting instability. An important benefit of utilizing the thermodynamic approach is also
evident here. From the above dissipation analysis it is clear that there are multiple choices for the
dewetting pathway in regards to the rate of dissipation. However the instability clearly picks the path
which minimizes the rate of this dissipation, or in other words, minimizes the overall rate at which
energy is lost in the dewetting process. We have also plotted the behavior of the dispersion relation,
Eq. 3.43 for Co films on SiO2 substrates with the various materials parameter values being: Hamaker
coefficient A = −1.41× 10−18 J, γ = 1.88 J/m2 and γT = −4.8× 10−3 J/m2−K. Fig. 3.1(a) plots
the growth rate σ versus wave number k for the dispersion relation Eq. 3.43. The data was evaluated
for Co film of thickness 8 nm and various values of the gradient Th, including Th = 0, Th > 0 and
Th < 0, as indicated on the plot. In Fig. 3.1(b) ) we have plotted the characteristic length scale ΛT H

TC

for Co films on SiO2 as a function of varying thickness and various Th. The decrease in length scale
with increase in the magnitude of Th < 0 is evident. In Fig. 3.1(c) the cut-off wavelengthΛT H

cut−o f f as
a function of varying thickness and various Th is plotted. The cut-off wavelength corresponds to the
intersection of the growth rate with the wave number axis in Fig. 3.1(a).

3. Minimum dissipation approach for weak thermal gradients

In the case when the magnitudes of the thermal gradients are smaller then the attractive dispersion
forces, i.e. for example when 3 | γT Th |<| A/2πh3

o |, then we have | g |<| f |. In this situation, we can
approximate Eq. 3.40 as follows:
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where we have used the binomial approximation (1− (g/ f )2)1/2 ∼ (1− g2/2 f 2). Here we find again that
the dispersion is considerably different from the LSA result of Eq. 3.26.

3.5 Conclusion

We have theoretically evaluated the classical and thermocapillary dewetting instability in thin fluid films
via a thermodynamic approach. In this, the rate of change of free energy is equated to the viscous dissipation
in the thin film. The thermodynamic approach leads to an analytical expression for the dispersion without
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(a) (b) (c)

Figure 3.1: (a) Plot of the growth rate versus wave number for the dispersion relation obtained from the
dissipation approach for strong thermal gradients. The data was evaluated for Co film of thickness 8 nm and
various values of the gradient Th, as indicated on the plot. (b) Plot of the characteristic length scale ΛT H

TC
for Co films on SiO2 as a function of various Th. (c) Plot of the cut-off wavelengthΛCutt−o f f for Co films on
SiO2 as a function of various Th. The cut-off wave number corresponds to the intersection of the rate with
the wave number axis in Fig. (a).

the need for explicit solution of the height evolution dynamical equation from NS within the lubrication
approximation. We have compared results from this approach to existing results obtained by linearization
of the fluid dynamics of the thin film. For the case of classical dewetting in the presence of surface ten-
sion and long range attractive forces, the thermodynamic approach predicts identical behavior to that from
linear analysis. We have also evaluated dewetting in the presence of film-thickness dependent temperature
variations. Such a situation can be found during dewetting of thin metallic films melted by a nanosecond
ultraviolet pulsed laser. In this condition, a film thickness dependent reflection and absorption leads to ther-
mocapillary forces along the plane of the film In this scenario we found that the thermodynamic approach
agrees with linear analysis provided the minimum viscous dissipation is evaluated. The fluid flow condi-
tion that gives minimum viscous dissipation is one where the film-substrate tangential stress is zero. In the
context of dewetting in the presence of film thickness dependent thermocapillary forces, the thermodynamic
approach clearly illustrates that the instability chooses a pathway which minimizes the rate of energy loss in
the system. This results shows that the thermodynamic approach based on evaluating the rates of free energy
change and energy loss is a simple but potentially powerful way to gain physically meaningful insight into
such spontaneous pattern formation processes.
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Chapter 4

Implementation and testing of surface

magneto-optical Kerr effect (SMOKE)

system

(Reported to Proc. SPIE, 7767, 77670Q (2010))

Magnetic measurement of pulsed laser-induced nanomagnetic arrays using Surface Magneto-Optic Kerr
effect

4.1 Summary

Efficient and dependable characterization methods of magnetic-plasmonic nanostructures are essential to-
wards the implementation of new nanoscale materials in magneto-optical applications. Surface magneto-
optic Kerr effect (SMOKE) is a powerful characterization technique, because of its simplicity and high
sensitivity to even monolayer thick magnetic materials. It relies on the measurement of polarization and
absorption changes of reflected light in the presence of a magnetic field. A homebuilt SMOKE system was
successfully installed and tested on plasmonic-ferromagnetic (PF) composites to characterize their mag-
netization properties. The system allows SMOKE measurements in various configurations (i.e. polar and
longitudinal) in a magnetic field of up to 0.7 T. Here we have measured the magneto-optical Kerr rotation
in multimetal systems comprised of Ag and Co arranged in various geometries and shapes. Specifically,
thin film structures in bilayer and single layer composite geometry (with various compositions), as well as
nanoparticles of Ag-Co, were investigated for Kerr rotation at 635 nm wavelength. The co-deposited film
with 67% Co showed Kerr rotation of 6×10−3 degrees, which was higher then that from bilayer structures
with same effective amount of Co and Ag. Furthermore, nanoparticles showed a factor of 2 or higher Kerr
rotation compared to composite films of similar Co composition ranging between 35 to 100%. Systematic
differences in saturation and coercivity were observed for the different samples. These results demonstrated
that SMOKE is a reliable technique to rapidly characterize the magnetic behavior of nanoparticle arrays.
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4.2 Introduction

Accurate and simple characterization of the functional behavior of nanomaterials is an important task. Mag-
netic materials are used in a variety of basic and technological fields, including as chemical sensors, probes
of transport behavior of materials, and in information processing. The magnetization behavior of nanostruc-
tured materials with complex shapes, crystalline states, and internal state of strain, are of ongoing interest
in the continuing drive to improve and advance the science and technology of materials behavior. For that
reason, particular attention has been given to surface magneto-optic Kerr effect (SMOKE) as a tool to inves-
tigate magnetism of nanostructures. SMOKE is a relatively straightforward characterization technique, and
provides a reliable means of probing magnetic ultra thin films and nanostructures. SMOKE offers some im-
portant advantages suited for nanostructures, including its high sensitivity and the ability to locally probe the
surface [89, 164]. SMOKE is more sensitive than superconducting quantum interference devices (SQUID)
magnetometry [165] for studying nanoscopic volume of magnetic materials. In addition, the experimental
SMOKE setup is relatively simple and cost-effective and is therefore accessible to a wide variety of re-
searchers. Essentially, SMOKE operates on the principle of a complex rotation of the plane of polarization
of linearly polarized incident light upon reflection from the surface of magnetic material [79, 166]. The
rotation is linearly proportional to the magnetization of the material within the probing region of the light
[79, 166]. Hence, the measured rotation values as a function of applied magnetic field yields the magnetic
hysteresis loop.

One of the advantages of the SMOKE system is that the probing mechanism is based on magneto-optical
(MO) effects. In the long term our groups research is interested in investigating new materials for high M-O
effects, which have applications in chemical and biomelcular sensing applications. One candidate material
is a plasmonic-ferromagnetic (PF) material which simultaneously shows ferromagnetism, SPR (which is the
collective resonant oscillation of free electrons), and magneto-optical (MO) response. Investigators have
shown that PF material shows enhanced M-O effect at the plasmon resonance frequency. Hence, the PF
material can utilize the power of SPR sensing with the added benefit of improved sensitivity and detection
limits based on measuring the relatively enhanced MO response at the resonance condition. According
to previous studies, in order to design PF materials, SPR materials (Au, Ag, Cu) and M-O materials (Co,
Fe, Ni, Fe2O3, YIG) need to be combined together as composites, i.e. without chemical binding to form
alloys or compounds [74, 75, 80, 81]. One potential combination to get such PF materials is a mixture of a
ferromagnetic metal like Co, with a plasmonic material like Ag. From the binary phase diagram, Co and Ag
is an immiscible system, both in their liquid phase as well as solid phase. Therefore combining Co with Ag
in various concentrations can potentially lead to MO materials with variable SPR frequencies.

In this study, the SMOKE system was built in house with components purchased from various vendors.
The system was integrated with a computer interface via LabVIEW™ and was tested. Co-deposited and
bilayered Co-Ag films were prepared on SiO2/Si substrates. The magneto-optical (MO) signals, specifically
Kerr signals were measured with varying film type (bilayer vs composite) and composition using SMOKE
at 635 nm wavelength. Furthermore, the Kerr signal dependence on the shape of PF materials was also
studied by comparing response from the film and nanoparticles. The functionality of the SMOKE system
was verified by measuring Kerr rotation hysteresis loop of the samples.
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4.3 SMOKE system

Details of the automated surface magneto-optical Kerr effect (SMOKE) system operating at room tempera-
ture are discussed, with specifics of the hardware software.

4.3.1 Theory

Before going through the details of SMOKE system, a brief history and mechanism of magneto-optical (M-
O) effects is discussed. In general, the M-O effects are interactions between light and matter when the matter
is under a magnetic field. There are several types of M-O effects including Faraday, Kerr, Cotton-Mouton
and Voigt effects.

4.3.1.1 Faraday effect / Cotton-Mouton effect

In 1845 Michael Faraday discovered that when linearly polarized light passes through a glass in a direction
parallel to an applied magnetic field, the plane of polarization is rotated [167]. The angle of rotation, θ , is
proportional to the magnitude of the magnetic field, H and the distance t, which is the distance travelled by
light in the medium. The rotation was given by:

θ = V Ht

where V is the Verdet constant and varies between 0.1 to 10 minute/Oe cm [79]. Since glass is a diamagnetic
material, its Verdet constant is relatively small, of the order of 1×10−4 degree/A [79]. For a ferromagnetic
material, the angle of rotation is proportional to the magnetization M as follows:

θ = KMt

where K is the Kundt constant, and is typically around 350 degrees/gauss-cm. Similarly, the Cotton-Mouton
effect (or Voigt effect) is the observation of magnetic birefringence when a magnetic field is applied perpen-
dicular to the path of light. In comparison to the Faraday effect it is a much weaker effect, and is proportional
to the square of the field.

4.3.1.2 Kerr effect

John Kerr discovered the change of polarization state of reflected light from a polished electromagnet pole in
1877 [168]. In the Kerr effect, linearly polarized light is incident upon the magnetic sample, and the reflected
light is elliptically polarized and rotated with respect to the initial angle of linearly polarized incident light.
There are three types of magneto-optical Kerr effect depending on the orientation of the magnetization
vector relative to the plane of incidence and the surface. When the magnetization vector is normal to the
surface, it is called the polar effect. When the magnetization vector is parallel to the reflective surface and
parallel or perpendicular to the plane of incidence, it is the longitudinal or transverse effect, respectively.
All Kerr effect configurations are shown in Fig. 4.1.
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In general, magneto-optical Kerr effect (MOKE) technique has been used widely for the study of bulk
magnetic nanostructures. The bulk scale magnetic samples can be characterized by the MOKE technique,
which measures change in the state of polarization of polarized light from a surface of the samples. On the
other hand, SMOKE technique applies to the case when the sample thickness is less than the skin depth,
typically ranging from a few monolayers to few tens of nanometers. This is because when the sample
film becomes extremely thin, the Faraday effect for transmitted beams reflected from the substrate, and the
associated interference, becomes important. Several works have been done to formulate SMOKE system,
which include the traditional Kerr and Faraday effects [89, 169, 170]. A general expression for the Kerr
signal, which was developed by Zak et al. can be found here [169].

4.3.2 Experimental setup

In Fig. 4.2(a) and (b) are the experimental schematics of the SMOKE apparatus. The basic set-up consists
of a vibration free table which houses the electromagnet, electronics [consisting of two lock-in amplifiers,
photoelastic modulator (PEM), and detector] and the optical components (the monochromatic 635 nm diode
laser light source, lenses, and glan-thompson polarizers). The randomly polarized monochromatic light
passes sequentially through a linear polarizer inclined at a desired angle and an objective lens to decrease
beam spot size to 80 µm). The polarizer angle is set to produce p-polarized light. A sample holder is located
at the center of two adjustable pole pieces of the electromagnet, and the sample orientation with respect
to the external magnetic field direction can be freely adjusted. Fig. 4.2(a) describes the polar geometry,
where the external magnetic field direction is perpendicular to the sample plane. Fig. 4.2(b) describes the
longitudinal geometry, where the external magnetic field direction is parallel to the sample plane. The plane
of incidence is parallel to the field in both orientations. The reflected light, after interacting with the sample
surface, passes through the PEM and another linear polarizer, which functions as an analyzer. The analyzer
angle is set to 45°. The PEM at 50 kHz provides a reference signal (1f = 50 kHz and 2f = 100 kHz) for
each lock-in amplifier. The light is detected by a biased high speed silicon detector and the output AC
signal is sent to the lock-in amplifier (Stanford Research Systems, SR-830 & SR-530) to filter out unwanted
noise. The DC signal from the lock-in amplifier goes to a computer through GPIB bus. The bipolar power
supply for the electromagnet is remotely controlled by the computer. The digital interface card makes it
possible to control the power supply output by means of digital input signals via the GPIB bus using SCPI
commands from the computer. Therefore, the final output is a plot of the intensity of light versus the strength
of the magnetic field. This SMOKE system is remotely and automatically controlled through a LabVIEW™
driver. Typically, multiple magnetic field loops were made for the measurements in order to improve the
signal-to-noise ratio.

In Table 4.1, all the hardware used in the SMOKE system is listed. The hardware with IEEE-488 port
was connected through GPIB cables with the PC.

4.3.2.1 The Kerr rotation and ellipticity from experimental data

Here, we explain how the raw experimental data is converted into Kerr rotation and ellipticity [171]. In order
to measure the Kerr rotation and Kerr ellipticity directly from the reflected light intensity, I, we employed a
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Table 4.1: List of hardware used in the SMOKE system.

Name Manufacture / Model Specs

Electromagnet GMW/ 5403 Pole diam: 76 mm, Max continuos power:
50A/25V

Power Supply
& GPIB digital
interface card

Kepco / BOP 20-20M & BIT
4886

Pow. Supply:: DC output range: ±20 V & ±20
A

GPIB card:: Resolution: 15 bits, Rise/Fall time:
< 100 µ sec

Diode Laser Thorlabs / LDM635 λ = 635 nm, 4 mW, Short-term stability (30 min):
0.01 dB, Long-term stability (24 hrs): 0.1 dB

Glan-Thompson
polarizer

Thorlabs / GTH10M Extinction Ratio: 100,000:1, Calcite

Biased Si
detector

Thorlabs / DET100A Peak Response: 0.65 A/W, Rise/Fall Time: 43ns

Lock-in
Amplifier

Stanford Research Systems /
SRS830 digital lock-in amplifier

Dynamic Reserve: > 100 dB, Input Noise: 6
nV/

√
Hz@1 kHz, 60/120 Hz notch filters

Lock-in
Amplifier

Stanford Research Systems /
SRS530 analog lock-in amplifier

Dynamic Receive: > 100 dB, Input Noise: 6
nV/

√
Hz@1 kHz, 60/120 Hz notch filters

Photo elastic
modulator

Hinds Instruments / I/FS50
(optical head) & PEM-100

(controller)

Fused silica, Nominal frequency: 50 kHz, RS232
interface

GPIB controller National Instruments /
GPIB-USB-HS

IEEE 488.1 transfer rates: Up to 1.8 Mbps,
Buffer size: 64 bits

CCD TV
Camera

ELMO / TEB4404

30X close focus
microscope
with CCD

adapter

Magnification (30x), Working distance (80 mm)

photo-elastic modulator (PEM). The complex Kerr signal is given from the Kerr angle, θK , and the ellipticity,
εK , which are both contained in the light intensity detected by the detector, which can be expressed as [171]:

I f (t)/I0−1 = 2J1(A0)εK sinωt +2J2(A0)θK cosωt

where, Jn’s are Bessel function of nth order, I0 represents DC light intensity, ω is the angular frequency of
the PEM, and A0 is the retardation amplitude of the PEM. Hence, by measuring three voltages Vdc, Vf and
V2 f , the Kerr rotation and ellipticity can be obtained as [171]:

θK =
√

2
4J2

V2 f

V0

and

εK =
√

2
4J1

V1 f

V0
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4.3.2.2 Software: Interfacing SMOKE system with PC using LabVIEW

The main front panel of the LabVIEW™ program is shown in Fig. 4.3(a) and (b). The front panel is a GUI
that can input all hysteresis measurement parameters and obtain output of the measurement by plotting the
hysteresis in real time [Fig. 4.3(a)]. Several measurement parameters, number of hysteresis loops, points per
hysteresis loop, iterations per point and range of magnetic field need to be defined before the measurement.
Hardware setting parameters, SMOKE setting parameters and sample descriptions can be also saved in an
output file [Fig. 4.3(b)]. Following the SMOKE measurement, output data and parameters are saved in the
output file.

Fig. 4.5 shows the block diagram of the program, which consists of functional-nodes, hardware drivers
and connection wires. All processes of the LabVIEW program including hardware control, dataflow, plotting
and data saving are designed and written in the block diagram. For example, the electromagnet power supply
and two lock-in amplifiers are controlled by the program through the LabVIEW™ driver. The data in the
output file can be automatically imported and analyzed by MATLAB™ GUI. MATLAB™ code performs
several data adjustments, such as linear drift adjustment, Kerr signal adjustment and magnetic field vs.
voltage curve adjustment. For example, an issue that often arises during SMOKE measurement is a linear
shift in the data. This is because of a number of nearly untraceable instabilities in the system such as
mechanical vibration, light source instability and electric noise. The linear shift adjustment accurately
aligns the data to clarify the hysteresis loops, as demonstrated in Fig. 4.6.

Fig. 4.4(a) shows the static plot of the hysteresis loops from magnetic filed vs. the Kerr rotation, θK , and
ellipticity, εK , respectively. Fig. 4.4(b) shows the hysteresis loop after averaged multiple loop measurements.

4.4 Sample preparations and testing

Co and Ag films were deposited using electron beam evaporation technique on commercially available
optically smooth SiO2/Si substrates. The thickness of thermally grown SiO2 layer was 400 nm. Before film
deposition, the substrates were ultrasonically cleaned. Three different types of Co-Ag bimetallic structures
were deposited. For Co/Ag/SiO2 and Ag/Co/SiO2 structures, the thickness of Co and Ag films were fixed at
6 nm and 3 nm, respectively. For co-deposited Co-Ag structure, thickness of Co film was varied from 4 to 6
nm, and Ag film was varied from 0 to 4 nm. The deposition rate of the e-beam was obtained by performing
step height measurement using atomic force microscope (AFM). Following deposition, the samples were
irradiated at normal incidence with a pulsed laser beam. The Q-switched Nd:YAG pulsed laser with 266 nm
wavelength, 9 ns pulse width and 50 Hz repetition rate was used. The laser energy density of 100 mJ/cm2

was used, so that all three different film structures could be completely melted. Approximately 10,000
laser pulses were irradiated on the films to form hemispherical nanoparticles which are in the final state of
spontaneous self-organized structures. A scanning electron microscope (SEM, Zeiss Merlin) was used to
characterize the nanoparticles.

Surface magneto-optic Kerr effect (SMOKE) technique was employed to measure Kerr rotation from
the Co-Ag films and nanoparticles. The longitudinal geometry with 17.6o incident angle and p-polarized
incident light was utilized for all the measurements [164, 89].
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4.5 Results and discussion

In tables 4.2, 4.3, and 4.4, the results of Kerr rotation (θk) measurement for three different experimental com-
parisons are summarized. In Table 4.2, the variation in θk for a composite film with Co volume composition
varying from 67 to 100 % is shown. In table 4.3, the bilayer arrangement is compared to a composite film
with the same overall ratio of Co to Ag. In Table 4.4, the composite film is compared to the nanoparticles
with composition varying between 35 to 100%.

4.5.1 Co-deposited Co-Ag films

In Fig. 4.7, the Kerr rotation in degrees is shown for the composite film as a function of increasing Co
volume composition between from 67% to 100%. From SMOKE measurements, we observed the rotation
angle, θk, increases with increasing Co concentration.

Table 4.2: Table of co-deposited Co-Ag films parameters on SiO2/Si substrates, including Co weight per-
centage and amount of Co and Ag in terms of film thickness. Experimentally measured Kerr rotation, θk,
values are included.

Sample Co (wt. %) Co (nm) Ag (nm) θk (degree)

Codep-100 100 6 0 10×10−3

Codep-75 75 6 2 9×10−3

Codep-67 67 6 3 6×10−3

4.5.2 Bilayer vs co-deposited Co-Ag

A list of the different Co-Ag film structures and Kerr signal, θk, values are given in Table 4.3. By comparing
Kerr signals in terms of structure difference, co-deposited Co-Ag film exhibits highest θk value among three
samples. Ag/Co/SiO2 sample shows second highest θk value.

Table 4.3: Table of Co-Ag films with same sample parameters but different film structures: Co/Ag/SiO2,
Ag/Co/SiO2 and co-deposited Co-Ag films. Experimentally measured Kerr rotation, θk, values of each
sample are presented.

Sample Co (wt. %) Co (nm) Ag (nm) θk (degree)

Co/Ag/SiO2 67 6 3 3×10−3

Ag/Co/SiO2 67 6 3 5×10−3

Co-deposited/SiO2 67 6 3 6×10−3
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4.5.3 Film vs nanoparticles

In Fig. 4.9(a) and (b), SEM image of the nanoparticles and histogram of the particle size distribution are
presented. Average particle diameter is 40±10 nm, 147±25 nm and 178±35 nm. In order to identify the
distribution of Co and Ag in each nanoparticle, x-ray mapping analysis in the SEM was performed. In
Figs. 4.10(a)-(c), the spatial map of (a) combined Co and Ag, (b) only Co and (c) only Ag in the arrays
are shown. From the analysis, the presence of both Co and Ag in each particle was confirmed. In Fig. 4.8,
the Kerr rotation in degrees is shown for the co-deposited Co-Ag films and nanoparticles as a function of
increasing Co volume composition between from 35% to 100%. From SMOKE measurements, we observed
the rotation angle, θk, increases with increasing Co concentration for both films and nanoparticles cases.
Interestingly, the trend indicates the magnitude of the Kerr rotation is larger for the particles compared to
the films. Also, we confirmed that the SMOKE system is capable of detecting the Kerr signal of the Co-Ag
composite with Co weight percentage as low as 35%.

Table 4.4: Table of co-deposited Co-Ag films and Co-Ag nanoparticle arrays with different composition.
Each nanoparticle array was synthesized from the Co-Ag film with same composition. Measured Kerr
rotation, θk, values are listed.

Sample Co (wt. %) Co
(nm)

Ag
(nm)

Diameter (nm) θk (degree)

Film100 100 4 0 - 2.5×10−3

Film50 50 4 4 - 1×10−3

Film35 35 4 7.5 - 1×10−3

Particle100 100 - - 40±10 5×10−3

Particle50 50 - - 147±25 2.7×10−3

Particle35 35 - - 178±35 2×10−3

4.6 Conclusion

We have successfully installed a homebuilt SMOKE system. Automated SMOKE measurement system
was designed and built using LabVIEW and MATLAB GUI. The system can be operated for both polar
and longitudinal geometries, and it has capability to detect both the Kerr rotation, θk, and ellipticity, εk,
simultaneously. The system can perform multiple hysteresis loops measurement and is capable of real time
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data analysis. Following the installation, we have measured the magneto-optical Kerr signal on plasmonic-
ferromagnetic (PF) composites by using the SMOKE system. Co-Ag composites films and nanoparticles
with different composition, structure and shape were synthesized. The co-deposited films showed increase
in Kerr rotation with increasing Co volume composition. We found that the co-deposited film showed the
highest Kerr rotation values among co-deposited and bilayer structures with same effective amount of Co
and Ag. Further, arrays of Co-Ag hemispherical nanoparticles were prepared by using pulsed laser synthesis
technique. SEM micrographs and x-ray mapping analysis confirmed that nanoarrays have well defined
monomodal nanoparticles, and each nanoparticle is made of both Co and Ag elements. The nanoparticle
showed a factor of 2 or higher Kerr rotation compared to composite films of same Co composition. These
results demonstrated that SMOKE is a reliable technique to rapidly characterize the magnetic behavior of
nanoparticle arrays.
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Figure 4.1: Magneto-optical Kerr effects taking place when light reflected from surface of a magnetized
material: (left) polar, (center) longitudinal and (right) transverse effects. Ei, Er and Pplane denote incident
and reflected electric fields and plane of incidence, respectively [15].

(a) (b)

Figure 4.2: Schematic of the SMOKE system in (a) polar and (b) longitudinal geometries.
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(a)

(b)

Figure 4.3: Front panel of LabVIEW GUI. (a) Main control and (b) measurement parameters input (indi-
cated with red boxes) panels.
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(a) (b)

(c) (d)

Figure 4.4: Raw SMOKE hysteresis loops of (a) Kerr rotation and (b) ellipticity, respectively. Averaged
SMOKE hysteresis loops of (c) Kerr rotation and (d) ellipticity.
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Figure 4.5: The block diagram of the LabVIEW GUI. Each red box indicates sub-diagram: hysteresis sweep
control, dataflow control and output file control diagrams.
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Figure 4.6: Processes of linear drift adjustment. (top-left) Raw data of Kerr signal vs. applied field hystere-
sis loops with linear drift. (top-right) Converting the plot to Kerr signal vs. time, and finding the slope value
from linear fit. (bottom-right) The linear slope is adjusted. (bottom-left) Re-plotted Kerr signal vs. applied
field hysteresis loops.

Figure 4.7: The measured Kerr signal of co-deposited Co-Ag films on SiO2/Si with respect to Co weight
percentage.
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Figure 4.8: The measured Kerr signal of co-deposited Co-Ag films and nanoparticles as a function of Co
weight percentage.

(a) (b) (c)

(d) (e) (f)

Figure 4.9: SEM micrograph of arrays of Co-Ag nanoparticles with different Co weight percentage: (a) 100
%, (b) 50 % and (c) 35 %. The corresponding size distribution of nanoarrays obtained: (d) [from image
(a)], (e) [from (b)] and (f) [from (c)].
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(a) (b) (c)

Figure 4.10: Energy-dispersive X-ray mapping taken in SEM on the arrays of nanoparticles obtained from
dewetting of co-deposited Co-Ag film. The image (a) is combined elemental maps of Co and Ag; (b) is the
elemental maps of Co; (c) is the elemental maps of Ag. The size of images is 600 nm x 600 nm. The array of
nanoparticles obtained from the thickness combinations of Co : Ag = 6 : 2 nm.
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Chapter 5

Magnetic properties of Co nanowires and

nanoparticle arrays synthesized by pulsed

laser melting

5.1 Summary

Nanosecond pulsed laser irradiation of thin films can induce formation of various nanostructures. Here,
we have used the technique to fabricate nanostructures of ferromagnetic materials such as Co and Ni hemi-
spherical nanoparticles and arrays of Co nanowires, nanorods and nanoparticles. In order to study the
magnetic hysteresis behavior of the nanostructures, surface magneto-optic Kerr effect (SMOKE) charac-
terization technique was utilized. While SMOKE has been applied in the past to investigate the magnetic
information of continuous films, there is little work on applying it to characterize arrays of nanostructures
with variable shape and size. First, arrays of magnetic nanoparticles of hemispherical shape and varying
average size and size-dependent magnetic orientation was synthesized by the pulsed laser dewetting of Co
and Ni material on SiO2 substrates. SMOKE measurements were performed for a variety of different par-
ticle sizes and material. Systematic differences in saturation and coercivity were observed as a function of
size and material. Next, periodic arrays of Co nanowires, nanorods and nanoparticles were fabricated by
pulsed laser interference irradiation technique. In addition to SMOKE, magnetic force microscope (MFM)
was used to investigate the magnetic domain properties. Magnetic domain orientation was found to depend
on the in-plane aspect ratio of the nanostructure. We determined that the magnetic orientation was out-of-
plane for shapes with aspect ratio ranging from 1 to 1.4 and transitioned to an in-plane orientation for aspect
ratios greater than 1.4 (such as in nanorods and nanowires). Our results also showed that polycrystalline Co
nanowires showed much higher coercivity and remanence as compared to bulk and thin film materials, as
well as shapes with smaller aspect ratio. This result was attributed mainly to the shape anisotropy. These
results demonstrated that nanosecond pulsed laser synthesis is capable of fabricating various nanostructures
in a simple, robust and rapid manner and that SMOKE is a reliable technique to rapidly characterize the
magnetic behavior of nanostructures.

64



5.2 Introduction

As discussed in Ch 1 (Sec. 2.2), when the size of magnetic material is reduced to length scales com-
parable with the magnetic domain wall or exchange force distance, the material starts exhibiting unusual
magnetic behaviors. In addition to the size, other factors such as shape, crystalline state, and internal state of
strain, influence magnetism, and hence their study is of continuing interest towards improving and advancing
the science and technology of magnetic materials behavior. Specifically, the control of nanoscale magnetic
anisotropy, which prompts the magnetization to point in desired directions, can be viewed as a fundamental
requirement towards realizing functional nanomagnetic materials. This is because anisotropy determines
properties such as superparamagnetism (the thermally activated switching of single-domain magnetization),
the single-domain magnet size, and hard versus soft magnetic behavior. For instance, a magnetic nanowire
with comparable width to the domain wall and micron size length presents large coercivity, large anisotropy
and high remanence due to the shape and the magnetocrystalline anisotropy [172]. Similarly, arrays of
hemispherical magnetic nanoparticles exhibit size dependent magnetization due to the large size dependent
magnetostriction strain and the microstructure [5]. These properties in turn determine the choice of materi-
als in a variety of applications, such as perpendicular or longitudinal high density magnetic storage [173],
non-volatile and high speed magnetic memories (MRAM) [174, 175], opto-electronics [176] and biological
applications [177, 178, 179, 180]. As has been well appreciated for many decades, magnetic anisotropy has
contributions from magnetocrystallinity, shape, and magnetoelastic effects, which, either independently or
through coupling with each other, determine the stable magnetic state.

In this study we have used surface magneto-optic Kerr effect (SMOKE) [89] and magnetic force mi-
croscopy (MFM) to characterize magnetic properties and anisotropy of ferromagnetic nanostructures. Ar-
rays of hemispherical ferromagnetic nanoparticles and Co nanowires of various lengths were prepared by a
nanosecond laser dewetting and interference techniques, respectively [43, 9, 5, 105]. SMOKE is a relatively
straightforward characterization technique, and provides a reliable means of probing magnetic ultra thin
films and nanostructures. SMOKE offers some important advantages suited for nanostructures, including
its high sensitivity and the ability to locally probe the surface [89]. SMOKE is more sensitive than super-
conducting quantum interference devices (SQUID) magnetometry [165] for studying nanoscopic volume of
magnetic materials. In addition, the experimental SMOKE setup is relatively simple and cost-effective and
is therefore accessible to a wide variety of researchers. Essentially, SMOKE operates on the principle of
a complex rotation of the plane of polarization of linearly polarized incident light upon reflection from the
surface of magnetic material [79, 166]. The rotation is directly related to the magnetization of the material
within the probing region of the light [79, 166]. We have used a home built SMOKE set-up to measure the
magnetic behavior of arrays of Co and Ni nanostructures [As detailed in Ch 4]. The hysteresis loop was
measured from the behavior of the Kerr signal vs. applied field (H), and was measured for the polar and
longitudinal geometries to provide average magnetization direction of the probed area of the array.

The magnetic behavior study of various Co nanostructures, including thin films, and periodic arrays
of wires, rods and particles, showed large dependence on the type (i.e. shape) of nanostructure. For in-
stance, magnetization reversal measurements by SMOKE for Co arrays of nanowires with different average
nanowire lengths showed that coercivity and remanence fields depend on aspect ratio of nanowires. MFM
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studies revealed that the magnetic domains are oriented along the wire direction, and the SMOKE analy-
sis indicated a large coercivity and high remanence when the external field was applied parallel to the wire.
Over all, these results demonstrated that SMOKE is a reliable technique to rapidly characterize the magnetic
behavior of nanostructures. Besides, the pulsed laser synthesis is able to fabricate various nanostructures in
a robust and cost-effective manner.

5.3 Experimental Details

5.3.1 Synthesis of nanoparticle arrays by nanosecond pulsed laser dewetting

Nanosecond pulsed laser irradiation of ultrathin metal films on dewetting substrates, such as SiO2, result
in self-organized patterns, ultimately leading to an array of nanoparticles with well defined size and inter-
particle spacing and a polycrystalline nanostructure [104, 43]. In the case of ferromagnets like Co and Fe,
we have previously seen by MFM measurements that the particles are hemispherical in shape and are single
domain in the size range of 40 to 200 nm [181, 5]. In the experimental approach, ultrathin films of the metal,
typically between 1 to 10 nm in thickness, are deposited by electron beam or pulsed laser deposition in high
vacuum conditions onto commercially obtained, optical quality, SiO2/Si wafers consisting of 400 nm thick
thermally grown oxide layer on polished Si(100) wafers [112, 5]. Following the deposition, the films are
irradiated in vacuum with approximately 10,000 pulses from a 266 nm ultraviolet laser having a pulse length
τp of 9 ns at energies sufficient to melt the metal film. For this irradiation condition, the heating and cooling
rate of the metal film is of the order of 1010 K/s. As a result of this rapid cooling, the metal nanoparticles are
quenched in and retain some residual in-plane biaxial strain due to the thermal expansion mismatch between
the metal and underlying SiO2 substrate. Consequently, as was quantitatively shown earlier [5, 113], the
magnetization direction of single domain particles show a variety of orientations ranging from in-plane for
small particles (40 to 75 nm for Co) and out-of-plane for larger particles (75 to 150 nm for Co). While
magnetic energy based on shape anisotropy arguments would predict in-plane orientation for hemispherical
particles, out-of-plane orientation was also observed. This was attributed to large magnetostrictive contri-
bution due to the residual in-plane strains, which could explain the out-of-plane orientation. Furthermore,
the size-dependence was attributed to a size-dependent nanostructure of the particle, i.e. smaller particles
had smaller grains. A competition among the various magnetic anisotropy energies (magnetocrystalline,
shape, and magnetostrictive),which is dependent on the grain size and number of grains in the nanoparticles,
resulted in an effective in-plane anisotropy direction for the smaller particles and out-of-plane orientation
for the larger particles. Here, we have investigated arrays of Co and Ni prepared by the above approach
through the SMOKE technique. For the case of Co, arrays with average particle diameters of 43±31 nm
(labelled NP1) and 66±25 nm (labelled NP2) have been investigated by SMOKE. Ni arrays with average
particle diameter of 70±24 nm (labelled NP3) was also investigated.

The morphology was characterized by scanning electron microscopy (SEM) in a Hitachi S4300N, and by
atomic force microscopy (AFM) in a Nanonics MultiView 1000. The magnetic properties were characterized
by physical properties measurement system (PPMS) and Surface Magneto-optic Kerr effect (SMOKE). The
details of the MFM and PPMS measurements have been published elsewhere [5].
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5.3.2 Synthesis of 1-D nanowire arrays by two beam interference irradiation

Two beam interference irradiation on nanometer thick metal films induces sine-wave like thermal profile
across the film plane [9, 123]. This leads to extrinsically induced thermocapillary flow and eventually to a
pattern of periodic nanowires. Further laser irradiation of the nanowires ultimately leads to break up into
nanoparticles with well defined interparticle spacing due to the Rayleigh instability [9]. In the experiment,
6 nm thick Co films (labelled TF) were deposited on commercially available and optically smooth 400 nm
SiO2 on Si(100) wafers by using the electron-beam evaporation technique under ultra-high vacuum (UHV)
conditions. The substrates were ultrasonically cleaned with acetone and isopropanol before deposition. The
film was deposited through a periodic array of contact masks made with nylon with square openings of 280
µm by 280 µm size and spaced at a distance of 400 µm. By this step, a patterned surface comprising of a
large of number of film islands were created. The film thickness was calibrated by performing step-height
measurements with atomic force microscopy (AFM). Following the deposition, two beam laser interference
irradiation was performed under ambient conditions. The irradiation was performed with 266 nm ultraviolet
(UV) laser having a 9 ns pulse and laser energy density sufficient to melt the Co film. A single laser beam
was split into two equal energy density beams using a 50-50 beam splitter and was incident on the film at an
inclusive angle of 45.7° in a plane perpendicular to the substrate plane. The resulting theoretical interference
spacing for this geometry was 343 nm. As shown from our previous study of the nanostructures formation as
a function of the number of laser pulses n, the film starts rupturing with spatially periodic structures at length
scales comparable to the interference spacing. Longer irradiation yields the formation of a periodic array of
nanowires. Continued irradiation results in the break-up of these nanowires into a mixture of nanoparticles
and nanorods, and then into a spatially ordered arrangement of nanoparticles in the final stage [9, 123].
Here, the number of laser pulses was varied between 25 < n < 150 to create arrays of nanowires, nanorods,
and nanoparticles. This process can be explained on the basis of the various mechanisms of fluid motion.
When irradiating the metal film with a two-beam interference pattern, the resulting periodic laser intensity
induces a transient and periodic sinusoidal-like thermal gradient along the plane of the film which creates a
surface tension gradient. Consequently, thermocapillary (Marangoni) convection of the molten Co resulting
in the formation of long, cylindrical-like, nanowires. Further irradiation causes the Rayleigh instability, in
which cylinders are unstable to certain wavelengths, and the nanowires break up into nanoparticles [9].

The various nanostructure morphologies were characterized by scanning electron microscopy (SEM) in
a Hitachi S4300N and a Zeiss Merlin, and by atomic force microscopy (AFM) in a Asylum MFP-3D. The
magnetic switching behavior of the nanostructure arrays were characterized by SMOKE system, and the
magnetic domain orientation with respect to the substrate was determined from the bright and dark contrast
of the magnetic force microscopy (MFM) in a Asylum MFP-3D.
5.3.2.1 SMOKE measurements

Surface magneto-optic Kerr effect (SMOKE) technique was employed to analyze the magnetic anisotropy
of the various Co nanostructure arrays [89]. A monochromatic 635 nm diode laser light passed through a
glan-thompson polarizer, an aperture and finally, an objective lens to decrease the beam size to approxi-
mately 80 µm. The incident angles, θi, for polar and longitudinal geometries were θi = 72.4° and 17.6°,
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: (a), (b), and (c) SEM images of Co arrays S1, Co array S2 and Ni array S3, respectively. (d), (e),
and (f) The particle size distribution of corresponding to S1, S2, and S3 respectively. The average particle
size Davg estimated from the histograms are 53 nm (S1), 71 nm (S2) and 74 nm (S3).

respectively [Fig. 4.2(a) & (b) (subsec. 4.3.2)]. For arrays of hemispherical Co and Ni nanoparticles (NP1,
NP2 and NP3), the laser spot size was appropriate to cover an array of the nanoparticles. SMOKE mea-
surements were performed on the samples in two different geometries, polar and longitudinal. For arrays of
nanowires, similarly, SMOKE measurements were performed in polar and longitudinal geometries. In the
longitudinal geometry, the external magnetic field was applied parallel and perpendicular to the wire direc-
tion in order to determine preferential magnetization direction. Details of the technique have been detailed
elsewhere [164, 89].

5.4 Results

5.4.1 SEM, AFM and MFM

The SEM images of arrays of hemispherical small diameter Co (NP1, 43±31 nm), large diameter Co
(NP2, 66±25 nm) and Ni (NP3, 70±24 nm) nanoparticles are shown in Fig. 5.1. This and similar SEM
images were used to analyze the size distribution of the particles in the array. The histograms on the right
side of each SEM image represent the particle size distribution with the average particle size Davg of 43, 66
and 70 nm in diameter, respectively for the three samples. Krishna et al. revealed using MFM measurements
that Co nanomagnets are single domain and have in-plane magnetization till 75 nm and then out-of-plane up
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to 180 nm in diameter [5]. Similarly the Ni nanomagnets are single domain and have in-plane magnetization
till 140 nm and out-of-plane up to 220 nm in diameter. Beyond those sizes, the particles are multi-domain
in nature.

The SEM images of 6 nm thick Co film (TF), arrays of Co nanowires, nanorods/nanoparticles (labelled
NRNP), and ordered nanoparticles (labelled ONP) are shown in Figs. 5.2(a)-(e). The Co film was irradiated
by the number of laser pulses n to fabricate nanowires (n = 5 to 25), NRNP (n = 25 to 150) and ONP (n
< 150). Two different types of nanowires are shown in Figs. 5.2(b) and (c). One has two thinner parallel
wires with a groove connecting both wires, which was named “grooved-wire” (labelled GW) [Fig. 5.2(b)]
while the other one, was named “single-wire” (labelled SW) [Fig. 5.2(c)]. Thermocapillary convection
generates flow of the melted Co towards each interference minima, hence GW structure appears prior to the
final formation of the SW at the minima.

(a) (b) (c) (d)

Figure 5.2: SEM images of Co arrays of (a) grooved-wire, (b) single-wire, (c) rods/particles and (d) parti-
cles, respectively. (Co rich and SiO2 rich regions correspond to bright and dark contrasts)

For Co nanowires (GW & SW), nanorods/nanoparticles (NRNP), and ordered nanoparticles (ONP), the
SEM images were used to analyze the shape and size distribution of the nanostructures in each array. In Figs.
5.3(a) and (b) , each histogram represents the size distribution of single-wire, nanorods and nanoparticles
width and length. From Fig. 5.3(a), the average width of the single-wire and nanorod are similar size,
only [~9 % difference, however the average width (= diameter) of nanoparticles is ~29 % larger than other
two. From Fig. 5.3(b), the average length of the single-wire is 78 % and 92 % larger than the nanorod and
nanoparticle, respectively. The arrays of both nanowires had an average spacing of 377±27 nm. The array
of the single-wire and grooved-wire had 92±6 nm and 35±5 nm (width of thin elongated part but not width
of the groove) average width, respectively. From Fig. 5.2(d), the average spacing of ordered nanostructures
along perpendicular to the nanowire direction was measured to be 369±23 nm. Also, the average length and
width of nanorods was estimated to be 351 nm and 82±8 nm, while the average diameter of the particles
was estimated to be 132±24 nm, respectively. From Fig. 5.2(e), the array of ordered nanoparticles (ONP)
had an average diameter of 130±21 nm.

The AFM height profile of Co nanostructures are shown in Figs. 5.4(a) - (d). From the AFM image
contrast in Fig. 5.4(a), the groove-like morphology at the center of the each wire can be observed, however
due to the comparable tip size (R = 50 nm) to the groove width and depth, 50 and 60 nm, the AFM image
could not resolve the groove height profile clearly. Additionally, the MFM domain image of Co nanowires
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(a) (b)

Figure 5.3: The nanostructure size distribution of (a) width and (b) length of Co single-wire, nanorod and
nanoparticle arrays. The average width and length of wires and rods and diameter of particles estimated
from the histograms are W = 92, L = 1600 nm (single-wire), W = 82 nm, L = 357 nm (rods) and D = 132
nm (particles), respectively.

and nanoparticles are shown in Figs. 5.4. The domain structures of the single-wire indicates the parallel
domain orientations along the wire direction, which is not consistent with the results of Henry et al. [6]. On
the other hand, from Fig. 5.4(d), Co nanoparticles have out-of-plane magnetization and independent from
the ordered direction.

(a) (b) (c) (d)

Figure 5.4: AFM (left) and MFM (right) images of Co (a) grooved-wire, (b) single-wire, (c) rods/particles
and (d) particles arrays, respectively.
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5.4.2 SMOKE

The primary goal of our SMOKE measurements was to confirm the large area magnetic anisotropy
behavior of each of the three arrays. From SMOKE, the Kerr signal vs magnetic field H hysteresis loop
can be generated, which in turn provides the average saturation field HS and coercivity HC of the arrays
over the region probed by the optical beam. When this measurement is done in the polar and longitudinal
geometries, it is possible to differentiate between ease of domain rotation along the out-of-plane direction
versus in-plane orientations. In other words, when the array has smaller magnetic saturation field in polar
geometry versus longitudinal, it would indicate easier out-of-plane magnetization axis. Similarly, an easier
in-plane axis would result if the smaller saturation field was found for the longitudinal geometry. In fact,
when SMOKE measurements are done as a function of angle, the exact orientation of the magnetic axis
could, in principle, be determined.
5.4.2.1 Co and Ni nanoparticles (NP1, NP2 and NP3)

Fig. 5.5(a) shows a Kerr signal vs H hysteresis loop of Co array NP1 for two different SMOKE geome-
tries. The solid lines represent the data for polar geometry, and the dashed lines for longitudinal geometry.
The overall characteristics of the SMOKE hysteresis loops indicates the array of particles in NP1 has pre-
dominantly in-plane magnetization properties, consistent with the average particle size of the array of 53
nm. HS values in polar and longitudinal geometries are 3870 and 920 G, and their relative difference is
76 %. This area averaged behavior is consistent with previous MFM results, which showed that for Co,
particles with diameter < 75 nm shown preferential in-plane orientation.

(a) (b)

Figure 5.5: Kerr signal - H hysteresis loops for arrays of Co hemispherical nanoparticles on SiO2 (sample
S1). The solid lines represent the data for polar geometry and the dashed lines for longitudinal geometry.
The average diameter of the particle was 53 nm in diameter. (b) Hysteresis loop for arrays of Co hemi-
spherical nanoparticles on SiO2 (sample S2). The solid lines represent the data for polar geometry and the
dashed lines for longitudinal geometry. The average diameter of the particle was 71 nm in diameter.

Next, Co array NP2, with larger average particle diameter of 71 nm was studied. Fig. 5.5(b) shows a Kerr
signal vs H hysteresis loop of sample NP2 in two different geometries. HS values in polar and longitudinal
geometries are 5900 and 2140 G, and their relative difference is 64%. This hysteresis curves behavior
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indicates that the sample NP2 has an in-plane magnetic shape anisotropy with the easy magnetization axis
in-plane direction. Coercivity field HC in polar and longitudinal are 385 and 200 G, and their relative
difference is 48 %. This result is also consistent with previous MFM results which indicate that particles with
average diameter < 75 nm should be preferentially in-plane. Also, we compared the difference in saturation
fields for the two Co arrays having different average particle sizes. Fig. 5.6 compares the hysteresis for the
two Co arrays. The smaller size array, NP1 has smaller in-plane saturation field then NP2, as seen in the
longitudinal measurement [Fig. 5.6(b)]. This supports the previous MFM observations that as size increases,
the magnetization tends to rotate towards the out-of-plane direction [5]. In addition, from figure 5.6 one can
see that the coercivity and saturation field is larger for NP2 than NP1 in both orientations. It indicates that
for S1, almost all particles are oriented in-plane, whereas for S2, some particles (presumably smaller) have
easy axis in-plane, while the others (bigger) have out-of-plane orientation. The SMOKE signal for S2 is a
mixture of both components, while for S1 it is dominated by one component only.

(a) (b)

Figure 5.6: Hysteresis loops for the arrays of Co particles (sample S1 and S2) in (a) polar and (b) longitu-
dinal geometries. The solid lines represent the data for S1 and the dashed lines for S2.

Lastly, we studied the magnetic behavior of Ni (NP3) arrays with similar average particle diameter as
the Co (NP2) array. The Kerr signal hysteresis loops of sample NP3 in two different geometries are shown
in Fig. 5.7(a). From these measurements, the array shows lower saturation field for the in-plane orientation
measurement suggesting that the easy-axis of magnetization lies preferentially along the in-plane direction.
Again, this is consistent with MFM observations. The HS values in polar and longitudinal geometries are
2870 and 1160 G, and their relative difference is 60 %. Coercivity field HC in polar and longitudinal are 190
and 360 G, and their relative difference is 47 %. In Fig. 5.7(b) and (c), Kerr signal vs H hysteresis loops of
sample NP2 (Co, 71 nm) and NP3 (Ni, 74 nm) for the two θH values are presented. This comparison revealed
the dependence of hard and soft ferromagnetic materials on magnetization properties of nanoparticles. The
presence of the easy magnetization axis along the in-plane direction in both arrays, NP2 and NP3 is evident.
However, quantitatively, HS and HC values of two samples in each geometry are different due to the intrinsic
material property difference. By comparing relative difference of HS at polar and longitudinal geometries
between sample NP2 and NP3, we get 64 and 60 % respectively. NP2 gives larger relative difference
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(a) (b) (c)

Figure 5.7: (a) Hysteresis loop for arrays of Ni hemispherical nanoparticles on SiO2 (sample S3). The solid
lines represent the data for polar geometry and the dashed lines for longitudinal geometry. The average
diameter of the particle was 74 nm in diameter. (b) Comparison of hysteresis loops for the arrays of Co and
Ni particles (sample S2 and S3) in polar and (c) longitudinal geometries. The dashed line represents S2 and
the solid line represents the data for S3. The arrows mark the saturation points on the hysteresis curves.

compared to NP3 likely due to hard and soft ferromagnet property difference. The cobalt array NP2 quite
evidently, is harder to switch then the Ni array NP3, which is consistent with Ni being softer then Co.

5.4.2.2 Co nanostructures (TF, SW, NRNP, ONP and GW)

Magnetic anisotropy behavior of Co nanostructure arrays was also measured by SMOKE to obtain the
average saturation field HS and coercivity HC of the arrays over the region probed by the optical beam. The
focused laser beam has approximately 60 µm spot size, therefore SMOKE probed around 200 nanowires at
once. By comparing results from the two different orientations of nanostructures with respect to the external
magnetic field direction in the longitudinal geometry, information of preferential magnetization direction
and domain orientation was also obtained.

Fig. 5.8(a) shows a Kerr signal - H hysteresis loops of Co grooved-wire (GW) [Fig. 5.2(a)] array for two
different SMOKE geometries. The red lines represent the data for the parallel magnetic field with respect to
the wire direction in the longitudinal geometry (L�) and the blue lines for the field perpendicular to the wires
in the longitudinal geometry (L⊥). The overall characteristics of the SMOKE hysteresis loops indicates
the array of GW has predominantly parallel magnetization to the wire direction, which is consistent with
domain orientations from MFM image. Coercivity fields in the L� and L⊥ geometries are H�

c = 1000 Oe and
H⊥

c = 432 Oe, and saturation fields are H�
s = 2.1 and H⊥

s = 2.2 kOe, respectively. The larger coercivity and
the lower saturation when the field is applied � to the nanowire compared to ⊥ case indicates Co GW has
a preferential magnetic orientation along the wire axis. This magnetic behavior is consistent with previous
studies [6, 71, 182].

Fig. 5.8(b) shows hysteresis loop of ordered Co particles array [Fig. 5.2(d)] for three different geome-
tries. The inset plot shows the hysteresis loops of the L�, L⊥ and polar geometries. Coercivity values in the
L� and L⊥ are negligible, and saturation fields are H�

s = 4.2 kOe and H⊥
s = 4.1 kOe, respectively. Almost

identical hysteresis loops in the L� and L⊥ geometries suggest that the nanoparticle array no longer has the
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(a) (b)

Figure 5.8: Hysteresis loops for the arrays of Co (a) nanowire and (b) particles. (a) Comparison between
hysteresis loops for the nanowire array in the L� and L⊥ geometries. (b) Comparison between hysteresis
loops for the particle array in the L� and L⊥ geometries.

shape anisotropy along the sample plane due to the hemispherical shapes. Also the Kerr signals are stronger
in the polar geometry compared to the longitudinal one.

Fig. 5.9(a) shows hysteresis loops of each nanostructure array including the grooved-wire, single-wire
and rods/particles in the L� geometry. The hysteresis indicates that the coercivity value decreases when
going from wires to rods, or as as the aspect ratio decreases. The inset plot shows the hysteresis loops of
the nanostructures including the particles. The grooved-wire (H�

c = 1000 Oe), which has different shape and
geometry with the single-wire has higher coercivity than the single-wire (H�

c = 670 Oe). Also, the single-
wire, which has the larger aspect ratio than the rod (H�

c = 340 Oe) has higher coercivity. From the inset plot,
the hysteresis indicates that the relative Kerr signal value among different nanostructures is not different in
the longitudinal geometry. Fig. 5.9(b) shows the hysteresis loops of the grooved-wire, rods/particles and
particles arrays in the polar geometry. The hysteresis indicates that the Kerr signal value increases when the
morphology changes from wires to particles.

5.5 Discussion

5.5.1 Co and Ni nanoparticle arrays

The primary goal of this portion of the study was to further investigate the magnetic anisotropy behav-
ior of arrays of Co and Ni nanoparticles prepared by pulsed laser synthesis using the SMOKE technique.
Previous measurements by our group primarily focused on the use of MFM to ascertain the size-dependent
anisotropy of hemispherical shaped particles ranging in size from 20 to 200 nm [181, 5, 113]. Those results
clearly showed that particles which were single domain had a size-dependent magnetization direction. In
the case of Co, the particles had in-plane orientation up to 75 nm diameter, and then were preferentially out-
of-plane above that. Here, for the first time, the SMOKE technique was used to investigate this anisotropy.
We confirmed for the case of Co nanoparticles (NP1 and NP2), with average diameters of 43 and 66 nm
respectively, that the area averaged behavior was consistent with MFM results in that the particles with di-
ameter < 75 nm shown preferential in-plane orientation. Also, the array NP1, had a larger saturation field
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(a) (b)

Figure 5.9: Hysteresis loops for the arrays of Co nanowires (single- and grooved-wire), rods/particles and
particles. (a) Comparison between hysteresis loops for the four different nanostructure arrays in the L�

geometry. (b) Comparison between hysteresis loops for grooved-wire, rods/particles and particles arrays in
the polar geometry. In both (a) and (b), the red lines represent the data for grooved-wire, the green lines for
single-wire, the blue lines for rods/particles and the violet lines for only particles.

in the out-of-plane or polar direction then the larger array NP2 [Fig. 5.6(a)]. Likewise, NP1 had smaller
in-plane saturation field then NP2, as seen in the longitudinal measurement [Fig. 5.6(b)]. This observation
also supported the previous MFM observations that as size increases, the magnetization tended to rotate
towards the out-of-plane direction [5]. The comparison of the behavior of Co (NP2) and a similarly sized Ni
array (NP3) revealed the dependence of hard and soft ferromagnetic materials on magnetization properties
of the nanoparticles. The presence of the easy magnetization axis along the in-plane direction in both array
NP2 and NP3 was evident. However, quantitatively, HS and HC values of two samples in each geometry
were different due to the intrinsic material property difference. As would be predicted, the Co array was
harder to switch then the Ni array, consistent with Ni being softer then Co.
5.5.2 Dependence of magnetic domain properties on aspect ratio

The relation between the in-plane aspect ratio (AR) value and the magnetic domain property of each
nanostructure was studied. The in-plane AR is defined as the ratio of the width of a nanostructure to its
length. From AFM and MFM image, the AR of a nanostructure and corresponding magnetic domain and
magnetization orientation can be obtained. In Fig. 5.10, the histogram represents the AR distribution of
nanostructures with its magnetic domain and magnetization orientation. First, the histogram indicates that
the single domain and multi-domain nanostructure exists in the range of 1 < AR < 3 and AR≥ 3, respectively.
Secondly, the histogram shows the locations of out-of-plane and in-plane magnetizations. The the single
domain and out-of-plane (OP) magnetization is in the range of 1 < AR < 1.4, the single-domain with in-
plane magnetization is observed for 1.4≤ AR < 3, while the multi-domain in-plane magnetization exists for
AR≥ 3.
5.5.3 The chain of spheres model

In order to understand the relation between coercivity values and average length of the nanostructure, we
employed the chain of spheres model developed by Jacobs and Bean [16, 70]. In the model, it is assumed that
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Figure 5.10: Histogram of the in-plane aspect ratio (AR) distribution of nanostructures along with the
nature of magnetic domain (single- vs multi-domain) and their magnetization orientation. The histogram
indicates that the single domain and multi-domain nanostructure exists in the range of 1 < AR < 3 and
AR ≥ 3, respectively. The AR values for out-of-plane and in-plane magnetization, as well as multi-domain
magnetization are also shown

each nanowire and rod are made of continuous single domain spheres, the chain of spheres, where only point
contact occurs between the spheres and hence, the exchange force can be treated as being discontinuous at
the boundary. Therefore, magnetization reversal can be assumed to occur independently for each particle
in the chain of spheres [16, 71]. According to the model, the coercivity can be obtained from the below
expressions:

Hn =
� µ

a3

�
(6Kn−4Ln) (5.1)

Ln =
1
2 (n−1)≤ j� 1

2 (n+1)

∑
j=1

[n− (2 j−1)]
n(2 j−1)3 , (5.2)
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n j

∑
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n j3 , (5.3)

µ = Ms(
4π
3

)(
a
2
)3 (5.4)

where µ is the dipole moment of a sphere; a is the sphere diameter, n is the number of spheres in the
nanowire or rod, i and j are integers from 1 to n, and Ms is the saturation magnetization of Co.

From the histograms in Fig. 5.3, the single-wire, nanorod, and nanoparticle had average aspect ratio of
1.1, 4.2 and 17 (aspect ratio = length / width), respectively. In this calculation, the number of spheres, n, is
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Figure 5.11: Measured values of the in-plane coercivity of Co nanowire, nanorod, and nanoparticle arrays
(open circles) compared to the theoretical trend in coercivity obtained by the chain-of-spheres model [16].

equivalent to the aspect ratio. From the histogram, both the single-wire and nanorod have comparable width
(~6 % difference), hence n ≈ aspect ratio. In Fig. 5.11, experimentally measured coercivity values of nanos-
tructures with respect to the aspect ratio are plotted. Then, the experimental coercivity were compared to the
theoretical values calculated from the model. The solid line represents the best fit line of the experimental
data points with respect to the aspect ratio based on the model. The trend of the experimental data points
and the model calculation result agree well. In addition, the intrinsic coercivity value, Hci (= µ/a3), can be
calculated from the fitted data. Interestingly, Hci, f it = 250 (Oe) is three times smaller than the previously
reported value [183, 16]. One explanation can be the difference in width of our structures compared with
the previous study. The average width of our samples are approximately 85% smaller then the width of
nanowires of the previous study, and could be the reason for this mismatch [71].

5.6 Conclusion

In conclusion, we successfully fabricated various nanostructures of ferromagnetic materials (Co and Ni)
like arrays of nanowires, nanorods and nanoparticles using nanosecond pulsed laser synthesis technique.
The magnetic switching behavior and domain property of the arrays of ferromagnetic nanomaterials were
studied using SMOKE and MFM characterization techniques. The study of hemispherical shaped Co and
Ni nanoparticles with varying average size showed that systematic differences in saturation and coercivity
were observed as a function of size and material. Second, the study of periodic arrays of Co nanowires,
nanorods and nanoparticles showed that magnetic domain properties depends on the aspect ratio. We found
that the magnetization direction was out-of-plane for the aspect ratio, 1 < AR < 1.4 and transitioned to an
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in-plane orientation for the aspect ratios greater than 1.4. From the hysteresis loop measurements of Co
nanostructure arrays using SMOKE, large in-plane magnetic anisotropy was observed for Co nanowires
along the wire direction. On the other hand, no large in-plane magnetic anisotropy was observed for Co
nanoparticles. This result was mainly attributed to the shape anisotropy. Besides, the relation between the
nanostructure coercivity and the aspect ratio was predicted by the chain of spheres model.
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Chapter 6

Summary and Future work

6.1 Summary

This chapter first summarizes the key findings of this thesis and outlines some future directions of research
based on results that were obtained during the research (sec. 6.2). The scientific and technological mo-
tivation of this research was presented in the introductory message in chapter 1. Primarily, synthesis of
nanostructures by pulsed laser melting, both under two-beam interference irradiation as well as single beam
irradiation, and the subsequent characterization of their structure and physical properties was undertaken.

• One of the materials focused upon was SnO2 (Ch 2) and the formation of 1D periodic arrays of sur-
face height modulation was investigated with the goal of forming nanowires for hydrogen sensing.
We successfully detailed the mechanisms of surface structure formation by comparing experimental
results pertaining to the variation in nanostructure characteristics such as height and width and its
dependence on laser energy density and film thickness. One of the primary findings was that evapo-
ration of SnO2 was the most significant contributor to the pattern formation as compared to surface
or bulk mass transport in the solid or liquid phase. As a result of the non-monotonic dependence of
temperature on local film height, the synthesis process was self-limiting since it stopped as soon as
the local film height reached a lower thickness value, that corresponded to the film going below its
evaporation regime. This finding was confirmed by performing numerical modeling of the thermal
behavior of the pulsed laser interference heating of the films.

• In Ch 3, we adapted the viscous dissipation approach for fluid flow, as developed by de Gennes and
others [158, 159] and specifically applied it to the process of spontaneous thin film spinodal dewetting
for pulsed laser heating, which can introduce novel non-isothermal behavior [12]. The motivation
for this work was to realize a more physically insightful, but at the same time, a simple route to
understand the behavior of fluids during the spinodal dewetting process. The central concept was
that by equating the rate of free energy decrease to the rate of frictional loss via viscous dissipation
can give information on the characteristic spinodal dewetting length and time scales as well as other
attributes of the flow. Here we successfully applied it to the case of nanosecond pulsed laser melting
for situations in which a film-thickness- (h) dependent thermocapillary force arises. The results of
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this modeling agreed with those from linear theory as well as experimental observations provided the
minimum dissipation was equated to the rate of free energy decrease. We found that the flow boundary
condition that produces this minimum dissipation was when the film-substrate tangential stress was
zero. The physical implication of this finding was that the spontaneous dewetting instability follows
the path of minimum rate of energy loss. Subsequently, this model was utilized by a member of
our group to describe the first experimental study of spinodal dewetting in multilayer metallic liquids
[184].

• In Ch 4, we detailed the successful implementation of a home-built SMOKE system, inside a mag-
netic field of 0.7 T, for measurement of magnetic and magneto-optical properties of surfaces and
nanostructures with various magnetic field orientations. We successfully measured the Kerr rotation
from Co-Ag thin films and nanoparticles as a function of composition. Films made by co-deposition
of Co and Ag showed higher Kerr rotation then bilayer film structures with same effective amount of
Co and Ag. Furthermore, nanoparticles showed a factor of 2 or higher Kerr rotation then composite
films of similar Co composition ranging between 35 to 100%.

• FInally, in Ch 5, we studied the magnetic properties of nanostructures of Co and Ni, specifically
hemispherical nanoparticles and arrays of Co nanowires, nanorods and nanoparticles, prepared by the
pulsed laser process. Magnetic hysteresis was studied by SMOKE. While SMOKE has been applied
in the past to investigate the magnetic information of continuous films, there was little work, prior
to this investigation, on applying it to characterize arrays of nanostructures with variable shape and
size. SMOKE measurements as a function of different particle size and material, showed systematic
differences in saturation and coercivity. The key result was a confirmation of the single-domain orien-
tation anisotropy as a function of size, which was previously discovered via MFM measurements by a
previous member of the group [5, 113]. Periodic arrays of Co nanowires, nanorods and nanoparticles
were fabricated by pulsed laser interference irradiation, and, in addition to SMOKE, MFM was used
to investigate the magnetic domain properties. The key result here was that domain orientation was
found to depend on the in-plane aspect ratio of the nanostructure. It was determined that the magnetic
orientation was out-of-plane for shapes with in-plane aspect ratio ranging from 1 to 1.3 and transi-
tioned to an in-plane orientation for aspect ratios greater then 1.4 (such as in nanorods and nanowires).
These results also demonstrated that nanosecond pulsed laser synthesis is capable of fabricating var-
ious nanostructures in a simple, robust and rapid manner and that SMOKE is a reliable technique to
rapidly characterize the magnetic behavior of nanostructures.

6.2 Future directions

6.2.1 In2O3-doped SnO2 NSA based hydrogen sensor

In the previous chapter (Ch. 2), we discussed in details of synthesis of 1-D SnO2 nanostructured arrays
(NSA) and H2 gas sensing evaluations. In the near future, we will also incorporate Indium-oxide (In2O3) as
a dopant into SnO2 NSA to enhance even further the sensitivity to hydrogen gas detection. In fact, Shukla
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et al. showed hydrogen gas sensing with the concetration of 100 ppm at low operating temperature (25 ◦C)
using In2O3-doped SnO2 thin film sensor [56]. Doping SnO2 with oxides having tri- or di-valent metal ions
will increase oxygen-ion vacancy concentration to keep the charge-balance. This increase of the vacancy
enhances adsorption of oxygen-ions (O−) on the surface. Hence increasing depletion layer thickness leads
to maximize hydrogen gas sensitivity.

6.2.2 Wavelength-dependent SMOKE of plasmonic-ferromagnetic (PF) composites

A group in Spain has shown that nanostructures made by combining strongly plasmonic materials like
Au and Ag along with the ferromagnetic elements (Co. Fe or Ni) can show resonant magneto-optical
phenomenon, such as the Kerr effect [83]. One of the primary findings of these studies has been that the
proximity of the plasmonic and ferromagnetic metal leads to energy transfer between the two and can be
rin the field on literature on this topic has primarily focused on making layered structures (thin films) or
patterned dots of these layered structures, made by lithography. In our groups research, we have been
working extensively on the Ag-Co system, both from the perspective of understanding self-organization
in multi-metal systems as well as determining the physical structure of the nanomaterials. Recently, work
in collaboration with Western Kentucky University has shown that Ag-Co nanoparticles fabricated by the
multilayer laser dewetting process can have unique structures, including stacked, core-shell and embedded
states [185]. Ongoing experimental work by one of the collaborators has shown by transmission electron
microscopy investigations that indeed, many different types of nanoparticle structures might be forming,
as shown in Fig. 6.1 [17, 186]. Furthermore, our group has already published results that show that the
localized plasmon resonance of such particles is a function of composition [187]. Therefore, it will be of
tremendous interest to study the incident light wavelength-dependent Kerr rotation of such nanostructures
in the future.

Figure 6.1: (left) Cross-sectional TEM image of a Ag-Co nanoparticle made from Co-Ag bilayer films
showing contrast variation indicating polycrystallinity within the particle. (center) Co and (right) Ag EELS
elemental maps of the enclosed region shown in left image, exhibiting the immiscibility of Co and Ag in each
other. The contrast bar shows the variation of atom % of Ag and Co individually in different locations. The
size of elemental map image is 5.9 nm x 5.9 nm [17].

In order to perform wavelength-dependent MOKE measurements, broadband optical spectroscopy will
be employed to identify the LSPR wavelength (λp) of the PF nanoparticles. Standard UV-Vis spectroscopy
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techniques can be used for measurement of transmission and reflection spectra, from which the LSPR in-
formation can be obtained. Subsequently, the Kerr rotation of the PF nanoparticles can be quantified by the
SMOKE measurements performed with different light wavelengths. In this technique, light of a fixed po-
larization is incident on the nanoparticle array, and the changes in the reflected light, including polarization
rotation, absorption or an intensity change, is measured under varying magnetic field strength and orienta-
tion. By measurements at different light wavelength, including the LSPR wavelength (λp) it will be possible
to generate the wavelength-dependent reflectivity and determine if large magnitudes of Kerr rotation, which
is important for sensing applications. SMOKE measurements will also yield the hysteresis behavior of the
PF material.
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