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ABSTRACT 

Accurate interpretation of saw marks on human bone is an 

essential part of tool mark examination in the forensic sciences, 

but appears neglected in practice and in the forensic sciences 

literature. With a basic understanding of saws and principles of 

cutting action, residual saw characteristics remaining on human 

bone can be recognized and interpreted. 

Two basic areas of saw cut bones are examined. Kerf floors 

can be examined in false starts and break away spurs. This area 

of a cut potentially reveals kerf size, striae patterns, and 

contour differences. Kerf walls, or the cut cross section of 

bones, reveal striae specifics such as contour, direction of 

stroke, and patterns of cutting action. These areas of cut bone 

potentially reveal observable and quantifiable characteristics 

that can be related to predictable saw actions. These 

characteristics may indicate distances between saw teeth, type 

and amount of tooth set, tooth and blade shape, manner in which a 

saw is powered, and direction of saw cut. 
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These characteristics, utilized individually or in 

combination, narrow the number of possible saws that potentially 

create a particular cut. This narrowing of the field of saws 

allows the examiner to assess the class, subclass, or type of saw 

utilized in a cut. Ultimately, examination of human bone remains 

will allow anthropologists to go beyond the descriptive level of 

analysis to confront modified bone with an appreciation for its 

potential forensic value. 
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PREFACE 

Interest in tool marks on bone was initiated in 1987 when 

three human dismemberment cases were investigated by Dr. 

Charles Harlan and this author for the Metropolitan Nashville, 

Davidson County Medical Examiner's Office. This interest 

continued in 1988 when this author became employed by the 

Department of Pathology, University of Tennessee, Memphis, and 

began to work closely with Drs. Hugh Berryman and O. C. Smith. It 

soon became apparent that the topic of tool marks and the 

biomechanics of fracture production on human bone was a 

common interest for this mixed group of two anthropologists and 

a pathologist. This collaboration of interests and efforts 

resulted in the origination of the S.O.B. team (Steven ,Symes, Q. C. 

Smith and Hugh lierryman). 

While this author takes full responsibility for this project, 

the S. O. B. collaboration initiated much of the groundwork for 

saw mark research by outlining the scope of such a project, and 
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defining the basic components of a saw mark on bone. Many of 

these original definitions are included in this work. 
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CHAPTER I 

INTRODUCTION 

History of Saw Mark Analysis 

Introduction 

Criminalistic comparisons of tool marks have evolved into 

highly technical procedures that contribute to numerous areas of 

the forensic sciences (Thomas 1967). The area of saw marks on 

bone appears to show less technological sophistication and 

successes than other tool mark areas of criminalistics. This 

deficiency of saw mark analysis is evident in the criminalistics 

approach to saw marks, and in the volume and quality of research 

that has occurred in the last 20 years. 

Past criminalistics hypotheses concerning saw marks have 

abided by the notion that saw teeth destroy characteristics with 

consecutive marks as the tool progresses in the cut (Bonte 

1975:318). The value of saw marks for the identification of type 
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characteristics specific to saws has been described as "limited" 

and "rare" (California Department of Justice Firearms/Toolmark 

Identification Training Syllabus 1991 :582) and apparently 

restricted to used and damaged saw blades (Bonte 1975). 

Existing research in the examination of class characteristics 

of saw marks on bone is not only lacking, but also falls prey to 

inadequate knowledge of the tool and its cutting action, poor 

comprehension of saw cut characteristics, and a deficiency of 

comparable characteristics essential for the process of 

narrowing the field of possible tools utilized in a homicide. 

Early German criminalistic studies represent initial 

attempts of saw mark classifications, although all analyses are 

limited to cuts in wood (see summaries in Bonte 1975 and 

Guilbeau 1989). Bonte (1975) is quick to point out that the 

publication of his analysis of German human dismemberment 

cases, is the first article of its kind in American literature. This 

research represents the first concentrated effort to closely 

examine saw mark striae in human bone. Bonte recognizes saw 

striae differences distinguishing the deep furrow of the return 
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stroke to the parallel rills of the forward cutting stroke. Still, 

the two attempts to quantify saw tooth size, lack accuracy and 

comparable techniques to validate these estimations. Bonte 

(1975:318) calculates what is projected as two thirds of the 

teeth in a saw blade by doubling the number of rills. Bonte also 

examines vertical scratches of the sawed surface that are 

produced by removing a jammed saw from the cut. While these 

scratches represent a specific distance between teeth, there is 

no assurance that this measurement accurately represents 

distance of two teeth. 

Andahl (1978) describes numerous saw cut characteristics in 

metal and animal bone, and even describes how these 

characteristics can be applied to a medicolegal case of human 

dismemberment. Andahl examines shapes of false starts, 

patterns of striae in the bottom of saw cuts created by three 

differing saw sets, and wave striae patterns that represent the 

distance between teeth. 

These interpretations of blade and tooth patterns represent 

an awareness of differences in saw tooth design expressed in 
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cuts. Andahl does take saw cut analysis further than previous 

investigators, but interpretations of cuts with no reference to 

the principles of sawing actions make these techniques difficult 

for the untrained observer. 

Recent forensic anthropological treatment of this research 

problem is limited. Symes et al. (1988) examined two human 

mutilation cases and made comparisons of these case studies to 

experimental cuts in human bone. All analysis concentrated on 

the cut surface of the bone, and on the "break away SpUr." The 

break away spur is a projection or spur of uncut bone at the 

terminal side of the cut that remains after the saw breaks the 

remaining tissue. This research also attempted to examine 

individual sawing skill by comparing cut mark characteristics of 

experimental cuts in human bone by individuals experienced with 

saws, novices, and the those totally inexperienced with using a 

hand saw. These results appeared inconclusive to the features 

compared even though cutting efficiency greatly varied (Symes et 

al 1988). 

4 



Symes and Berryman (1989a) build on many of these 

c h a racte ristics to successfully demo nstrate sta tis tical 

separation of saw classes, hand versus power saws. Explanation 

of saw class cutting action differences and the characteristics 

separating these were minimally treated. 

Guilbeau (1989) closely examined the early German literature 

detailing criminalistic analysiS of saw marks in wood and goes 

on to examine hand saw marks on pig bones. The topic of 

individual skill influencing saw cuts was tested, this time with 

an emphasis on handedness of the individual. Once again, no 

conclusive results were reported. Five discrete characteristics 

were tallied for each saw cut but little interpretation of these 

characteristics was offered. 

Two other researchers have recently detailed descriptions of 

medical legal dismemberment cases in which characteristics of a 

hand saw (Blake 1985) and a power saw cut (Symes et al 1990) 

were traced to a subclass of saw in each case, but little 

standardized information of technique or accuracy was offered. 
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While each of these saw mark examiners have contributed to the 

overall value of saw mark tool comparisons, there appears to be a 

need for an improved understanding of the tool creating the 

characteristics, the principles of tool action in a cut, and the 

value and potential of residual characteristics remaining after a 

cut. Even though criminalistics have determined that there is 

limited potential for positive identification of a saw from 

comparisons of saw marks, the value of class characteristics of 

saw marks has been recognized. 

This research attempts to develop an increased awareness of 

a variety of characteristics on cut bone while data gleaned from 

these cut characteristics are applied to saw blade and tooth 

characteristics of size, set, shape, and power. This information 

will be used to indicate saw class, subclass, or type. It is this 

narrowing of the field of possible tools potentially utilized in a 

crime that makes saw mark characteristics a valuable "tool" for 

the forensic examiner. 
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Crimina lis tics Approach to Tool Marks 

Criminalistics has defined tool mark identification as the 

discipline in forensic science concerned with matching a tool 

with a particular mark (AFTE Criteria for Identification 

Committee Report 1990:278). The question forensic examiners 

must ask is, how are saw cuts on bone classified in 

criminalistics, and what is the range of possible conclusions to 

be made from saw marks? 

The Association of Firearm and Tool Mark Examiners (AFTE 

Criteria for Identification Committee Report 1990) has recently 

established and revised standards and definitions of tool mark 

examination and comparison. They classify saw marks as 

striated tool marks, or marks produced when pressure is applied 

from one object to another producing a striated mark. These 

marks can be described as friction, abrasion, and scratch marks. 

The ultimate goal of tool mark analysis, and in this case 

examination of saw cut marks, is positive identification of a tool 

from tool mark comparisons. Positive identification of tool 

marks involves the comparison of unique characteristics 
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resulting in "sufficient agreement." Agreement is significant 

when, "it exceeds the best agreement demonstrated between tool 

marks known to have been produced by different tools" (AFTE 

Criteria for Identification Committee Report 1990:276). 

Since positive identification is a rare occurrence with saw 

mark comparisons, other conclusions must be considered. Tool 

mark comparisons allow three other conclusions. A second 

conclusion besides identification is inconclusive results, where 

there is insufficient agreement of individual characteristics, a 

lack of ability to reproduce the characteristic, or insufficient 

agreement for elimination. Significant disagreement can result 

in a third conclusion, elimination of a tool mark; and finally there 

is always a possibility of tool mark comparisons being unsuitable 

for comparison (AFTE Criteria for Identification Committee 

Report 1990:276-277). 

This research proposes that these four conclusions are 

appropriate only in certain comparisons where specifics of a saw 

are determined initially, then all saws fitting these descriptions 

are tested. With a standardized and improved analysis of saw 
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marks, class characteristics such as saw size, set, shape and 

power can be identified. Class characteristics facilitate a 

narrowing of potential saw possibilities. This narrowed field of 

tools can aid in the search for an appropriate tool utilized in a 

crime, and may even allow the individual characteristics 

produced by the questioned saw to be compared with those 

produced by a suspect saw. It is these individual characteristics 

that are subject to the interpretations of positive identification, 

elimination, insufficient results, or unsuitable for comparison. 

Anthropologist's Taphonomic Approach to Tool Marks 

While involvement of anthropologists in criminalistic 

investigations is rare in this country I anthropological 

examination of tool marks on bone is not a new topic to 

anthropology. A major concern of paleoanthropology is detecting 

and understanding early butchering and carcass processing 

practices by hominids as a means of interpreting diet and 

subsistence activities. These interpretations weigh heavily on 

the examination and evaluation of bone cut marks. 
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· .. Cutmarks do constitute a signature for hominid 
involvement with carcasses, regardless of the intent of 
that involvement. This observation, in turn raises a new 
major issue: can cutmarks be recognized reliably without 
being confused with other like marks? If techniques 
cannot be devised that enable the positive identification 
of cutmarks, then this new criterion represents no 
substantive advance over the co-occurrence of bones and 
artifacts as a means of identifying butchery or other 
types of sites (Shipman and Rose 1983:62). 

Walker and Long (1977:606), with a criminalistics-like 

approach, outline the potential of anthropological tool mark 

analysis on bone: 

Butchering and skinning marks and grooves left on 
bone . .. record the function of specific tools. They may, 
therefore, yield information concerning the association 
of different classes of tools with specific tasks and 
they might also provide information on force, work 
angle, and direction of movement during a tool's use . 

An appreciation of the value of cutmark analysis coupled 

with the call for clarity of interpretation has been addressed 

rigorously in the literature (Binford 1981; Bunn 1981; Potts and 

Srlipman 1981; Shipman 1981 a, 1981 b; Shipman and Rose 1983; 

Shipman and Rose 1984; and Walker and Long 1977). These 
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analyses emphasize a basic taphonomic approach to the problem 

of understanding of causal mechanisms, where certain events 

manifest particular effects (for information on taphonomy, its 

history, and applications, see Efremov 1940; Olson 1980; and 

Shipman 1981 a, to mention just a very few). 

Anthropologist's Changing "Role" 

Recent emphasis on taphonomic examination of cutmarks on 

bone in the last 15 to 20 years has taken anthropologists 

everywhere from the East African Rift System, where data of two 

million year old human butchering sites are indicated from 

simple stone tool cuts on animal bone (Bunn 1981); to historic 

American back yard privies, where numerous saw marks on 

amputated human limbs indicate a scenario for surgical 

"practice" (Mann et al 1990). The "role" of the applied 

anthropologist may be expanding still as public awareness of the 

forensic sciences increases, and as the experts in the forensic 

sciences's demonstrate their new awareness of the diagnostic 
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value of human bone trauma (Smith et al. 1990). These new 

interests involve anthropologists, especially those familiar with 

and active in skeletal biology. This interest in skeletons of the 

"recently dead" has stimulated an increasing number of 

researchers to focus their investigations on topics in forensic 

anthropology. 

This dissertation concentrates on saw mark dismemberment 

in the forensic setting; more specifically, saw markings on bone. 

Efforts will be made to first understand saws, their 

construction, their history and especially the fundamental 

principles behind saw blade and tooth cutting action. 

Combinations of sawing characteristics indicating blade and 

tooth size, set, and shape, can be assimilated to determine saw 

class, subclass, or type. Only then will this information allow 

the forensic examiner to test the range of conclusions 

criminalists have established for tool mark analysis. 

12 



CHAPTER II 

SAW DESIGN 

Saws Defined 

A saw by definition, is a strip of metal with teeth cut into 

one edge of the blade {Blackburn 1974:193; Salaman 1975:405}. 

From a novice point of view, saws differ only in outward 

appearances, while all blades produce the same results since 

each cuts with teeth. From the forensic scientist's point of view, 

saw blades and teeth are more numerous and unstandardized than 

bullet types. Saws must be considered by their major 

components, size. set, shape, and power. 

Saw Typology 

Since it is not possible in this study to investigate all saws 

that potentially have forensic value, attempts were made to 
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examine representative samples of all saws. However, saws have 

no universal classification. Generally, the only information about 

a saw that consumers are allowed to scrutinize is size (saw 

length and teeth per inch) and occasionally shape (rip versus 

crosscut). 

The types of saws selected for this study were chosen on the 

basis of those that are most commonly used by the public. Table 

11-1 represents all major saw classes, subclasses, and types. 

Classes are sorted by saw power, subclasses are sorted by saw 

utility and design, and types are sorted by saw blade and tooth 

size, set, and shape. 

History 

Hand saws have been in existence for more than four 

millennia. The earliest saws were predisposed to bending and 

binding. Original saws were exclusively made of copper but this 

eventually changed when iron became plentiful in the 8th Century 

B.C. Iron allowed the saw to become a commonly used tool 
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Table 11-1. Master classification of saws. This outline 
represents a classification of all major saws into classes, 
subclasses, and types. Classes are sorted by power, subclasses 
by utility and design, and types by size, shape, and set. 

Average* 
Saw Class, Subclass, and Type Saw Length 

Average 
Tooth Size 

1. Hand Powered (Three quality levels: standard. premium or professional) 
(Consumer Guide Editors 1978) 
A. Open saws 

1. Crosscut 
2. Rip 
3. Backed 
4. Tenon (European name) 

16 to 18 
26 
10 to 30 

5. Miter box 26 

PPIH 5 to 12 (7 to 9) 
PPI 3-1/2 to 7 (5 to 6) 
PPI 10 to 15 

6. Dove tail/Cabinet: file type handle 10 PPI 15 to 21 
7. Flooring/Inside start 1 2 -112 

(Curved blade with teeth on 2 sides) 
B. Pruning and Log saws 10 to 24 

(includes open and frame saws) 
1. Pole tree trimmer/Brashing 
2. Folding pruner 
3. Double edged pruner (for tight spots or different sizes of limbs) 
4. Buck 24 to 30 PPI 

(cut both directions with chipper teeth around a raker tooth and deep 
gullets) (Salam an 1975: 536) 

5. Bow 18 to 26 PPI 6 to 8 
6. Scroll bow PPI 8 to 16 

C. Fine Toothed Saws and Fine Toothed Bow Saw (FTBS) 
1. Coping (FTBS) 6-1/2 to 12 TPI >10 

(Blade mounted to cut either direction, never sharpened) 
a. Jig/Scroll 
b. Fret 6-1/2 TPI >10 
c. Deep-throat 
d. Jeweler's 
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Table 11-1 (continued). 

Average· Average* 
Saw Class, Subclass, and Type Saw Length Tooth Size 

2. Hack TPI 18 to 32 
(FTBS cut on push stroke. Set: alternating, raker, and wavy) 

3. Compass/Key Hole Saws (Pistol grip, cuts in arch, tapers at the end) 
a. Compass PPI 8 to 10 
b. Key hole PPI 10 to 14 
c. Wallboard/Drywall 
d. Pad (English) 10 PPI 8 
e. Panelling 
f. Mini-hack 
g. Nest (Includes many blades that fit a single handle. Power 

reciprocating saw manufacturers make handles to fit power saw 
blades.) 

D. Kitchen (butcher/Hunting) saws 
1. Chef/Meat 1 4 PPI 11 
2. Kitchen/Hunting (specialty saws designed to cut meat and bone) 
3. Serrated knife 

E. Specialty saws 
1. Japanese saws (Noko giri) all saws cut with a pull stroke 

a. Ryoba (crosscut and rip) 6 to 16 PPI variable-6 to 20 
b. Dozuki (tenon or backed) 8 to 11 TPI 18 to 28 
c. Sokomawashi (compass) and Hikimawashi (keyhole) PPI 12 to 15 
d. Silky Gomboy (folding arched saw) 
e. Razor saw(American term for Japanese saws) 

E. Specialty saws (continued) 
2. Flexible saws 

a. Chain 
b. Gigli/Pocket 
c. Rod /Abrasive saw: grit edge attached to hack saw frame, flexible 

3. Medical saws 
a.Bone 
b. Metacarpal 
c. Plaster 
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Table 11-1 (continued). 

Saw Class, Subclass, and Type 
Average* 

Saw Length 
Average* 

Tooth Size 

II. Mechanical Powered 

. . 

A. Continuous Action Saws 
1. Circular/utility/Skilsaw: includes portable, table, bench, radial arm. 

(Circular saw blade types 5·1/2 to 8, 9 to 10, 12, 14 to 16.) 
(Portable saws usually have 5-1/2 to 7-1/4 inch blades.) 
(Cunningham and Holtrop 1974) 
a. Tungsten carbide and non carbide 
b. Planer: hollow ground blade with no set-blade thins from teeth to mid 

blade. 
c. Plywood blade: high number of teeth per inch 
d. Combination: crosscut and rip with wide set 
e. Crosscut: many small teeth with narrow set 
f. Rip: larger teeth with chisel shape 
g. Framer: very fine teeth 
h. Masonry: "fiber discs impregnated with abrasive particles" 
(Consumer Guide Editors 1978:63) 

2. Band saw (teeth are usually regular, skip, or hooked) 
3. Chain saws 8 to 20 

a. Crosscut and Rip 
b. Gasoline and Electric powered 

B. Reciprocating Action Saws 
1. Reciprocating/Bayonet saw 3 to 12 Numerous blade types 

(related to compass saw. stroke is commonly 3/4 to 1·1/4) 
(Consumer Guide Editors 1978) 

2. Autopsy/Cast (specialty/medical) TPI 16 to 23 

All measurements in inches and are reproduced from sources below. 
PPI refers to points per inch. 

Note: This outline is the product of this author's research facilitated by numerous 
sources (Blackburn 1974; Blake 1991; Consumer Guide Editors 1978; Cunningham 
and Holtrop 1974; Drake 1975; Jackson and Day 1978; Lanz 1985; Salam an 1975; 
Stanley Tools, Division of the Stanley Works No Date). 
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Table 11-1 (continued). 

Sources: 

Blackburn, Graham 
1974 The Illustrated Encyclopedia of Woodworking Handtools, Instruments, and 

Devices. Simon and Schuster, New York, NY. 

Blake, Cleland C. 
1 991 Personal Interview, May 26, Morristown, TN. 

Consumer Guide Editors 
1978 The Tool Catalog: An Expert Selection of the World's Finest Tools. By the 

editors of Consumer Guide. Beekman House, New York, NY 

Cunningham, Beryl M. and William F. Holtrop 
1974 Woodshop Tool Maintenance. Chas. A. Bennett Co., Inc., Peoria, IL. 

Drake, George R. 
1975 The Complete Handbook of Power Tools. Teston Publishing Company, Inc., 

Reston, VA. 

Jackson, Albert and David Day 
1978 Tools and How to Use Them. Alfred A. Knopf, New York, NY. 

Lanz, Henry 
1985 Japanese Woodworking Tools. Sterling Publishing Co., Inc, New York, NY. 

Salaman, R. A. 
1975 Dictionary of Tools Used in the Woodworking and Allied Trades. c. 1700-

1970. Charles Scribner's Sons, New York, NY. 

Stanley Tools, Division of the Stanley Works, 
No Date The Stanley Tool Guide. New Britain, CT. 
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(Jackson and Day 1978:74; Salaman 1975:406). These prototypes 

were designed to cut on the pull stroke while the more powerful 

and accurate push stroke was utilized only after the advent of 

wood frame saws and the innovation of tooth set. This newly 

created form had a frame suspending and supporting a blade with 

teeth that were designed with an alternate lateral bending of 

each tooth. These blades produced a wider kerf (sawed groove), 

reducing binding. The frame saw appeared about the time of the 

Roman Empire and was not altered to any great extent until the 

middle 1600s. The process of rolling wide strips of metal, made 

it possible to manufacture "open" saws, thus reducing dependence 

on wood frames. English hand (carpenter) saws and backed saws, 

typically made of Shef'field steel, were taking their modern form 

by the 1700s (Salaman 1975:406; Jackson and Day 1978:74). 

Variations in handsaw designs have been introduced 

throughout history to improve sawing performance and general 

appearance. 

Henry Disston, the British immigrant who was to found 
one of the largest handsaw firms of the 19th Century, 
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designed many varieties of the open-frame handsaw. The 
"Skewback" was introduced in 1874 and became one of 
the most popular variants of this handsaw shape. In this 
case the back of the saw has been slightly hollowed out. 
This serves to lighten the saw while improving its 
balance, imparting at the same time a very graceful 
appearance (Consumer Guide Editors 1978:27). 

Traditional saws appeared in the New World as imports from 

England, but with time this trend changed. 

Pioneers brought their own tool kits with them to the 
New World and early ship's manifests show a heavy 
importation of tools and the material with which to 
make them. Later, as forges and iron works were 
established in the colonies, men created their own tools 
or had it done for them by the village smith. Nineteenth 
Century tradesmen ordered their tools from the Sheffield 
catalog or traveling salesmen who carried their wares 
around on pack animals. By the middle 1800's, companies 
like Stanley Rule and Level were established in North 
America; industries whose output would swiftly outrun 
that of England. The domestic market came first, then 
the final success at capturing the world market [came] 
after the First World War (Consumer Guide Editors 
1978:31 ). 

At a time when hand saws were reaching their peak in 

efficiency and design, power saws were first introduced. While 

the earliest saw mills were driven by wind power, the first 
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water-wheel saws begin to appear in the 13th century in Central 

Europe, and the early decades of the 17th century in North 

America. These earliest mills are the precursor to gang-saws, or 

the enlistment of a number of blades cutting in unison used to cut 

logs into boards (Henry Disston & Sons Promotion Pamphlet 1922; 

Peterson 1973). 

. . .Ever since the first settlement of the American 
colonies, the grand demand for boards, planks, rafters, 
etc., was supplied by another apparatus which had been 
doing the same work in Europe before the discovery of 
America, namely THE SAW MILL in which a frame saw, 
with one or more blades, was worked vertically up and 
down by a crank revolving on the end of the horizontal 
axle of a water wheel (Mercer 1929). 

Although the date of origin of the circular saw is still 

debated, there are different references to this saw in the mid to 

late 1700s (Ball 1975). Band saws probably came into existence 

soon after. The advent of these new types of power saws and the 

value attributed to them is recognized by the rapid change in the 

efficiency of lumbering industries of North America in the early 

1800s (Curtis 1973; Peterson 1973). 
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Handsaw Components 

In order to understand and diagnose saw mark 

characteristics, it is first important to understand the saw that 

creates these characteristics. While there are certain standards 

that are followed by saw manufacturers world wide, there are 

also discrepancies in the basic styles of saw manufacturing. 

Figure 11-1 examines the basic components of a handsaw 

while closely comparing and contrasting two basic types of 

carpenter saws, the rip and crosscut. The rip saw is designed to 

"rip" wood with chisel shaped teeth. Crosscut saws are designed 

to "cut" fibers across the wood grain. 

An illustration of points and teeth per inch is furnished since 

all saws are measured by the frequency of their teeth. There is 

generally one more point than tooth per inch. Cunningham and 

Holtrop (1974:75) classify rip saws as having three and one half 

to seven points per inch while crosscut saws have smaller teeth 

in the range of five to twelve points per inch. 

22 



Back 
( Rip saw) 

Blade 

(Point) 

4 (PPI) + 
3 T_th Pw Inch (TPI) \ 

Rip teeth Sharpened Flat 
on the CuttIng Surface Rip Teeth Cut at 
(Each Tooth Chlse'. Right (90 ) Angle. 

Instead Cuts) 

(crosscut saw) 

Crosscut Teeth Cut 
at a 70 0 Angle 

Crosscut Flied 
at an Angle (Each Tooth 

In a Point) 

Front 

Point 
(Edge) 

T.". Ho',., I 
Point (Edge) 

Figu re 11-1. Illustration of common carpenter saws, rip and 
crosscut. Each is displayed with blades and teeth enlarged to 
demonstrate the number of teeth per inch, tooth shape, 
sharpening angles and features of a tooth. 
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While all saws have teeth, there are differences in design. 

Teeth in most saws have a front and back. The front of the tooth 

is designed to do the majority of the cutting since it bites into 

the material. Reciprocating saws are generally designed to saw 

with a cutting stroke and a passive stroke. The front side of the 

tooth bites during the cutting stroke while the back side of the 

tooth slides on the passive stroke. Enlarged sections of two saw 

blades in Figure 11-1 each have arrows indicating one of two 

possible directions of motion. The rip saw is shown in a forward 

motion exemplifying a push stroke. The push stroke is a cutting 

stroke, since this direction of motion engages the front edge of 

the teeth. The crosscut saw is shown in a backward motion, 

exemplifying a pull stroke. The pull stroke is the passive stroke 

since this direction of motion engages the back side of the teeth. 

Both the rip and crosscut saws are designed with the cutting 

stroke on the push, and the passive stroke on the pull. 

Differences between crosscut and rip teeth are illustrated in 

Figure 11-1 by (1) filing (sharpening) angle, (2) angle of bite, and 

(3) size. Rip saws have a flat chiseling tooth that is designed to 
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cut along the grain of the wood, whereas crosscut saws have 

consecutive teeth Wed at opposing angles (usually 70 degrees). 

This filing creates a tooth that terminates in a point and 

essentially takes on the shape of a sharpened blade and cuts 

material rather than chisels. The angle of bite to the plane of the 

blade is usually 90 degrees in rip and approximately 70 degrees 

in crosscut saws (Figure 11-1). The angle formed by the front and 

back of the tooth is approximately the same for most saws (60 

degrees). Finally, Rip saw teeth are commonly larger than those 

of crosscut saws. Cunningham and Holtrop (1974:75) give the 

largest ranges of tooth size, referencing rip and crosscut saw 

paints per inch at 3-1/2 to 7 and 5 to 12 respectively. 
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CHAPTER III 

METHODS 

Saws Utilized 

Table 11-1 provides a population from which a sample of 

saws can be extracted for analysis. Table '"-1 describes 38 

saws utilized in this study. This sample only consists of those 

saws considered practical, affordable, or obtainable in forensic 

settings. All saws analyzed in this study have bone cutting 

capabilities although some saws perform better than others. All 

descriptions, photographs, and measurements are generated from 

the sample of saws listed in Table 111-1 unless specifically 

noted. These saws are classified in outline form, with each type 

of saw described in terms of set, size and shape. 

Medical saws, including surgical bone, metacarpal, Gigli, and 

electric autopsy saws, have been included into this study. The 

examination of medical saws or saws utilized for medical 
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Table "1~1. Listing of all saws utilized in this study with information concerning set, size, and 
shape. All measurements are recorded to the nearest 0.01 of an inch. 

ail! &!l &biUl! 
I.u.1h ~gIDl~ B!tW!!D Blgd! ~ .f.lliuUl I.2.21b. Pir!cUgn 

Saw Class, Subclass And Type Per Inch Per Inch Teeth Length Height Diameter Type Type Of Cut 

Hand Powered 
Open saws 

"Crosscut" (standard) 6.0/7.0 7.0/8.0 0.14 26.0 5.50 Alternating Chisel Push 
"Crosscut" (premium) 6.0 7.0 0.17 24.0 6.00 Alternating Chisel Push 
Rip 4.5 5.5 0.22 26.0 5.50 Altern ating Chisel Push 

I'\) Backed (premium) 11.0 12.0 0.09 10.0 3.00 Alternating Chisel Push 
-....,J Dove tail (premium) 14.0 15.0 0.07 10.0 2.00 Alternating Chisel Push/Pull 

Pruning saws 
Arched pruner 7.0 8.0 0.14 13.0 1.50 Alternating Cut Pull 
Arched Folding pruner 6.0 7.0 0.17 7.0 0.07 Alternating Cut Pull 

Frame saws 
Buck (peg toothed) 4.0 5.0 0.25/0.33 21.5 0.70 Alternating Cut Push/Pull 
Buck (lance tooth) 4.0 5.0 0.25 20.0 0.07 Raker Cut Push/Pull 

Fine toothed bow saws (FTBS) and fine toothed open saws 
Coping (FTBS) 16.0 17.0 0.06 6.4 0.10 Alternating Chisel Push/Pull 
Hack saws (FTBS) 
Hack 18.0 19.0 0.06 10.0 0.50 Alternating Chisel Push 
Hack 18.0 19.0 0.06 10.0 0.50 Raker Chisel Push 
Hack 24.0 25.0 0.04 10.0 0.50 Wavy Chisel Push 
Hack 32.0 33.0 0.03 10.0 0.50 Wavy Chisel Push 



Table 111-1. (continued) 

Size ~ Shaj;!e 
Teeth f2i!.l1§ aetwe~Ul BliJde Blade ~ I.2.9!b Direction 

Saw Class, Subclass And Type Per Inch Per Inch Teeth Length Height Diameter Type Type Of Cut 

Key hole 
Key hole alternating 10.0 11.0 0.10 7.5 0.80 Alternating Chisel Push 
Key hole wavy (FTBS) 25.0 26.0 0.04 7.0 0.70 Wavy Chisel Push 
Wall board 6.0 7.0 0.17 6.3 0.80 Altern ating Chisel Push 

Kitchen (butcher/hunting) saws 
Chef (standard) 10.0 11.0 0.10 14.0 0.06 Alternating Chisel Push 
Meat (premium) 10.0 11.0 0.10 14.0 0.39 Alternating Chisel Push 

I\) Serrated (steak) knife 
(X) 

8.0 9.0 0.13 5.0 0.75 None Cut Push/Pull 

Specialty saws 
Japanese saws include: 

Ryoba crosscut (Japanese) 15.0 16.0 0.07 9.0 3.50 Alternating Cut Pull 
Ryoba rip (Japanese) 6 to 8 7.0/9.0 0.12/0.17 9.0 3.50 Alternating Chisel Pull 

Flexible saws (no measureable teeth) include: 
Gigli (wrapped wire) 18.0 Push/Pull 
Rod (grit edge) 10.0 Push/Pull 

Medical saws include: 
Bone 8.0 9.0 0.13 8.0 2.00 Alternating Chisel Push 
Metacarpal 30.0 31.0 0.03 4.5 0.30 Alternating Cut Push 



Table 111-1. (continued) 

~ize ~ SbsHU! 
Iu.1h fQiDi§ aet!le~m aliU.l~ §WI.! ~ I2Q!h DjrectjQn 

Saw Class, Subclass And Type Per Inch Per Inch Teeth Length Height Diameter Type Type Of Cut 

Mechanical Powered 
Continuous Action 

Circular saw blades (all blades used were 7-1/4 inch diameter) 
Piranha (tungsten carbide) O.B 2.26 7.25 Alternating Chisel 
Framer (tungsten carbide) O.B 2.22 7.25 None Chisel 
Plywood blade 7.0 0.16 7.25 Alternating Chisel 
Combination (crosscut & ri~ 1.B 0.56 7.25 Alternating Chisel 
Masonry (abrasive particles 0.0 0.00 7.25 

N 
<.0 

Band saw (skip tooth) (premium) 4.0 5.0 0.25 0.60 Alternating Chisel 

Chain saw 
Electric powered crosscut 0.7 1.50 10.0 3.10 Alternating Cut Pull 

Reciprocating Action 
Reciprocating/bayonet saws 

Reciprocating 7.0 B.O 0.14 5.0 0.50 Alternating Chisel Pull 
Reciprocating 10.0 11.0 0.10 5.0 0.70 Alternating Chisel Pull 
Reciprocating 1 B.O 19.0 0.06 5.0 0.62 Wavy Chisel Pull 

Autopsy (Stryker) 
Round blade 23.0 34.0 0.04 2.67 Alternating Chisel Push/Pull 
Large sectioning blade 16.0 17.0 0.06 2.67 Alternating Chisel Push/Pull 



purposes has obvious forensic significance. Human remains 

exhibiting cuts from medica! saws may well turn up in a legal 

setting due to legal or illegal exhumations, improper disposal, 

theft and other unusual situations. 

Human Bone Processing 

All experimentation has been done on fresh human bone which 

most closely replicates potential legal cases and condition of 

cuts. Human long bone shafts were procured from the Tennessee 

Donor Service of Nashville, Tennessee. These bones are donated 

femora and tibiae shafts primarily from young to middle aged 

Caucasoid adults. Bone shafts are procured in a defleshed, fresh 

state. Each bone was immersed in a diluted bleach (sodium 

hypochlorite) solution at approximately 3% for 25 minutes then 

simmered over low heat in a solution of water and degreaser for 

one to two hours. This process disinfects and degreases bone and 

assumes that visible evidence or elastic properties of the bone 

are not seriously compromised. 
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Saws and Saw Marks on Bone 

Technique 

Every blade in Table 111-1 was used to make 10 consecutive 

cuts on a bone shaft. Each saw blade utilized in this research is 

new and unused except for the chain saw blade which was 

commercially resharpened. Bones were supported on one end by a 

vise, and consecutive cuts from single blade made by the same 

individual. Each cut was accompanied by two false starts. False 

starts serve as indicators of the initial cut, while specifics of 

direction of the cutting stroke, passive stroke, order of 

consecutive cuts, and location of initial cuts were inscribed on 

bone. 

The cutting and cleaning process is designed to deviate as 

little as possible from natural taphonomic processes. After the 

cuts were made, each specimen was again simmered in water and 

degreaser. Cut surfaces were lightly scrubbed with a soft 

bristled brush to facilitate close examination of the bone without 

oils and dust obstructing features. This process closely 
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simulates typical cleaning practices applied to specimens by 

forensic examiners. 

All cuts were produced consecutively for each blade in initial 

stages of this study. Saw marks on bone were examined for 

diagnostic features only after experimental cuts were completed. 

In no instance were cuts made in bone in attempts to replicate or 

create characteristics. Saw marks in chalk and bone were 

occasionally attempted during initial experimentation or for 

illustrative purposes but were not used for data collection. 

Cut Bone Examination 

Examination of all saw marks was performed on cleaned bone 

using a Wild Heerbrugs model operating microscope magnifying at 

powers 6, 10, 16, 25, and 40. A Nikon MKII fiber optic light 

source provided angled lighting to enhance features. 

Photography of saws and cuts were taken with two Canon 

T70 35 millimeter cameras focused through the operating scope. 

All bone cross sections illustrated in this study are oriented 

with the initial cut at the top and terminal cuts at the bottom of 
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the picture. All scales in photographs represent 0.1 or 0.01 of an 

inch. Measurements were taken by Starrett metal rules accurate 

to 0.01 of an inch, and an American Optical stage micrometer 

accurate to 0.001 of an inch. Measurements were taken at 25 or 

40 power magnification and rounded to 0.01 of an inch. All 

drawings and tables were computer generated by the author. 

Saws and saw marks were measured for size and assessed 

for set and shape. Size includes blade and tooth dimensions, 

tooth spacing, set width and minimum and maximum kerf (groove 

or trough cut by the action of saw teeth) widths. Set width 

measurements were obtained by placing two metal straight edges 

along each outer limit of the teeth points (edge). The distance 

between straight edges is considered the set width. The 

exception to this involves the subclass of circular saws, where 

no accurate means of measuring the set of these large teeth on a 

curved axis was attempted. 
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Residual Characteristics 

Saw cuts or attempted saw cuts on bone create standard cuts 

and characteristics of cuts that will be referred to in this 

research. There are basically three types of cuts to bone, the 

false start cut. where the saw teeth have established a kerf or 

definable cut in the bone, but have not cut completely through the 

bone. This is not to be confused with false start scratches where 

saw teeth cut or chisel the bone but do not establish a definable 

kerf, where the total blade width is reflected in the defect on the 

bone. A second type is a snapped false start cut. This is a deep 

false start in bone that has had leverage applied to the bone 

resulting in a fractured bone. This pressure is assumed to be 

greater than force applied by the typical act of sawing alone. The 

final type of cut in bone is a completely sectioned bone. This 

type of cut bone will still have a residual kerf floor in the form 

of a break away spur. Opposite the break away spur is a section 

of the bone which has the corresponding break away notch. Keep 

in mind that reconstruction of completely sectioned bone 

recreates the kerf. 
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As a cut initially strikes a bone and forms a kerf, the two 

corners formed in bone are called initial corners of the kerf 

(Figure 111-1). These corners develop into kerf walls and the kerf 

floor as the cut progresses. The area where the walls meet the 

floor is called the kerf floor corners. Completely sectioned bones 

have the same features with a break away notch and break away 

spur replacing the floor. 

Saw mark analysis basically must examine two areas of a cut 

bone, the walls and the floor of the kerf. The floor is expressed 

in all false starts, and partially expressed in break away spurs, 

therefore kerf floors, when present, offer the most information 

about the points of each tooth and the relation of the points of 

the blade. Break away spurs offer less reliable information than 

false start kerfs, but occur more commonly than false starts. 

Kerf walls offer information about the sides of the teeth. Wall 

striae often represent only those teeth set to one side. 

35 



Direction of 
Saw Progress 

(Bone False Start Ker~ 
Kerf Floor 

Initial Corners of the Kerf 

/1 
Tubular Bone 

Floor Corners 

(Bone Cross section) 

Initial Corners of the Kerf 

1\ 
Tubular Bone 

Breakaway Spur and Notch 
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Kerf Walls 

Figure 111-1. Illustration of sawed tubular bone labeling the basic 
components of a false start and cross sectioned bone. 
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CHAPTER IV 

PRINCIPLES OF CUTTING ACTION 

Introduction 

To understand the residual characteristics of saw cuts, it is 

necessary to examine saw blade action. This action includes the 

individual knife or chisel tooth that slices or shaves through the 

material, as well as actions of banks of teeth working in unison 

as a blade. The act of sawing is essentially pushing, pulling or 

rotating these teeth in such a manner as to cut (needle point 

teeth designed like a knife) or chisel (teeth designed similar to a 

flat bottomed wedge) through material. Since saw teeth do the 

cutting, actions of each tooth and combinations of teeth on a 

blade, will be examined. Saw actions will be examined in terms 

of size, set, shape, and power. 
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Blade and Tooth Size 

Blade and tooth size is another important factor in the design 

of the saw. Tooth size is universally classified by the number of 

teeth per inch represented on a blade. This is represented in two 

ways, points per inch (PPI) or teeth per inch (TPI). The number of 

points per inch generally being one greater than the number of 

teeth per inch (see Figure 11-1). Fine toothed bow saws are 

classified by TPI while larger toothed saws are classified by PPI 

(Jackson and Day 1978:74). It is important to note here that 

quantifiable characteristics of saw cuts to be considered below 

most easily reflect the number of teeth per inch as opposed to 

points per inch. All reference to the size of teeth will 

universally be in terms of TPI. Circular saw blades are generally 

classified by blade diameter and number of teeth per blade. 

More teeth per inch increases the smoothness of cutting 

characteristics while slowing the speed of cut. Fewer, larger 

teeth are designed to efficiently saw softer materials. A wide 

alternating set with narrow width teeth is common in larger 
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toothed saws. If this combination produces a cut that is similar 

in width to two teeth side by side, islands of uncut material may 

be evident in the middle of the kerf. Therefore the combination 

of tooth width, set, and distance between teeth essentially 

dictates the speed and amount of material cut with each stroke 

or rotation of the blade. 

Three saws in this study are not classified by teeth or pOints 

per inch. These include the power circular masonry blade and the 

flexible saws, Gigli and rod. These blades do not have teeth cut 

out of a blade like other saws, rather the teeth are formed by grit 

impregnated blades, or by wrapped wire. While each has teeth 

that are negligeable for size or shape, these blades still fit the 

definition of a saw by having "teeth." 

Blade and Tooth Set 

Even though the above definition of a saw implies nothing of 

set, the altering of teeth to reduce binding is an integral and age 

tested part of saw design that has existed for 2000 years. While 
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set is essential to the effectiveness of most saws, set is not 

required. Only four saws in this study have no definable set, the 

serrated knife, the metacarpal saw, and both flexible saws, rod 

and Gigli. 

Lateral bending of the top half of saw teeth (or blade) to 

create a kerf wider than the blade of the saw allows the back of 

the saw to follow the teeth without binding. Teeth are generally 

set according to their size. The amount of tooth set is generally 

between 0.003 to 0.005 of an inch with saws that fall into 4 to 

16 points per inch. As a rule, the kerf does not exceed 1.5 times 

the thickness of the blade (Cunningham and Holtrop 1974:84; 

Jackson and Day 1978:75-76). If the set is greater. the teeth 

bend laterally to the extent that the material will be untouched 

in the midline as the tooth reaches its greatest flare. The ranker 

the set, the more lateral bending of the teeth, and the wider the 

kerf. A ranker set is defined as more bending of the tooth and is 

designed for softer material (Salaman 1975:405). 
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Alternating Set 

There are certain actions that all alternating set blades 

follow, even though alternating set applies to many shapes and 

sizes of teeth. In order to understand this motion, it is important 

to first examine the actions of a single tooth, then combine this 

with actions of consecutive teeth. Saw teeth are set so that the 

cut produced is wider than the saw blade. As a set single tooth 

first enters the material, the tooth seeks an orientation parallel 

to the direction of the blade and midline in the material. This 

midline orientation is compromised as the next tooth enters the 

material. The second tooth is alternately set and therefore 

enters the material from a position opposite the previous tooth 

and seeks a different midline from the original tooth, actually 

attempting to cross the path left by the original tooth. This pull 

to the midline by the latter tooth sends the initial tooth in a 

direction parallel to the second tooth until a compromise is 

reached. This parallel drift is reversed every time a new tooth 

enters the material, with new teeth essentially entering the 

same two patterns by approximately the same grooves. Thus a 
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very predictable pattern is established since there are 

essentially two rows of teeth set in an alternating pattern. This 

pattern of teeth drifting across the kerf floor is defined here as 

tooth drift. Once the blade is immersed in the material, most 

drift is suppressed. Drift pattern is most noticeable at the 

beginning or end of a cut in a tubular bone since there is little 

material to offer resistance or trap the blade's motion. 

Raker Set 

The introduction of a different design in the cutting edge of a 

saw creates a more complicated picture of residual kerfs. These 

complications in the raker set occur for two reasons. First of 

all, as the term implies, rakers are specialized teeth designed to 

rake sawdust or imperfections from the kerf floor rather than 

consistently cut or chisel, so they are essentially cleaning up 

after the other teeth and modifying the kerf. The second reason 

rakers complicate saw striation examination is that rakers are 

not placed symmetrically between every tooth. Rakers appear in 

series to teeth, most commonly every third, fourth, or fifth tooth. 
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This design alters kerf floor shape, harmonics of the cut (peak 

and valley patterning on the bone cross section). and the 

predictable drift of an otherwise alternating set blade. 

Raker sets are generally seen in two major types of saws. 

pruning and fine toothed bow saws (FTBS). Saws with raker teeth 

analyzed in this study include buck saws and hacksaws. Pruning 

saws, by design, use large teeth combined with rakers and gullets 

(large space between large teeth) to clear the soft wood debris 

cut by the teeth. Rakers are generally shorter than the regular 

teeth since they are designed to rake and clean the kerf. Jackson 

and Day (1978:77) describe the lance tooth set that has 4 teeth 

bordered by rakers with a large gullet on each side of the raker. 

This set is designed for cutting unseasoned wood. Variations of 

this set are found in common hand pruning saws. 

Fine toothed bow saws are designed to cut through harder 

materials, and rakers are designed to smooth the kerf floor and 

clear the debris from these cuts. FTBS rakers are identical to the 

other teeth, only they have no lateral bending (set). 
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Raker teeth inhibit the side to side movement of the blade, 

referred to here as tooth drift. The raker tooth enters the 

material on its central path since it is not set to one side. The 

raker chiseling midline inhibits the set teeth from diverting into 

their side to side movement, especially in FTBS. It is also 

conceivable that saw blades with shortened raker teeth (like 

pruning saws) could be diverted from their central path by falling 

into a deeper groove created by a previous alternating tooth, 

therefore creating a unique kerf floor or an unsymmetrical floor 

contour. Keep in mind that rakers in pruning saws generally occur 

at the rate of one out of five teeth or less and they are shorter 

than the cutting or chipping teeth. With this design, raker 

influence on blade drift is likely minimal. 

Wavy Set 

While the wavy set is quite unique to the other types of set, 

it still cuts on the same principle as alternating set blades. 

These blades generally have very small teeth which would make 

setting each tooth difficult. Rather than set each tooth, groups 
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of teeth, blade and all, are alternately bent side to side. The 

blade forms a wavy pattern when examined on edge. Each wave 

functions like a single tooth comprised of many smaller teeth. 

Blade and Tooth Shape 

Saws are further described by their shape. Shape applies to 

the contour of the blade, the tooth as it is cut out of the saw 

blade, and the angle in which teeth are filed. The most common 

classification of saws in terms of tooth shape is the rip and 

crosscut saw, as was discussed in the introduction and 

illustrated in Figure 11-1. These styles are important in that 

each function in a different manner to effectively cut different 

types of material. 

Rip saws are designed to cut in a chiseling fashion, where 

each tooth chisels a bite and ejects it at the end of the stroke. 

Rip saw teeth are filed at a flat angle to form a flat chiseled 

face. Large toothed saws with rip teeth are designed for cutting 

with the grain of wood (Cunningham and Holtrop 1974:82, Lance 

45 



1985). The front of rip teeth project from the blade to form a 

raker angle of 90 degrees (perpendicular to the plane of the 

teeth). then trail off on the back side of the tooth, forming a 

gullet angle of about 60 degrees with the front of the next tooth. 

This design cuts material quickly and roughly. For a smoother rip 

cut the teeth may be tilted back as much as 8 degrees, but this 

design cuts less material with each stroke. Most saws used in 

this study have rip filed teeth. 

Crosscut saws, as the name implies, are designed for cutting 

across the grain of wood. Crosscut teeth are smaller and bite 

less material with teeth rotated back 15 degrees. Therefore 

crosscut teeth are often the same shape as rip teeth, but the 

front side of the tooth is noticeably sloped back (actually 

rotated) on the blade rather than aligned perpendicularly to the 

blade like rip teeth (Figure 1/-1). Crosscut teeth are filed on the 

cutting edge at about a 60 to 75 degree angle making the front of 

each tooth a knife edge right down to a needle point, rather than a 

chisel (Jackson and Day 1978:76). Each tooth progresses through 
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wood fibers with a sharp edge, slicing wood rather than chiseling 

blocks of wood (Figure 11-1). 

As mentioned above, there are variations in tooth raker 

angles. rip saws have a near 90 degree bite while the crosscut 

generally has a tooth biting at 60 to 75 degrees. One other 

variation that is common is the peg toothed design where the 

tooth is sloped at 45 degrees. This means that the gullet angle 

must also be 45 degrees or simply, the tooth is designed to bite 

identically in either direction. This design is termed "push/pull" 

in Table 111-1. 

Different shaped teeth are sometimes placed on the same 

blade to enhance a particular type of cut. For example, many 

pruning saws have raker teeth inserted into a bank of crosscut 

teeth. Since this saw is designed to cut quickly through soft 

wood logs. the teeth and gullets are large to accommodate the 

sawdust. Raker teeth rake the kerf while crosscut teeth cut. 

Raker teeth in large saws are generally rip filed and shorter so 

they chisel only the high points of the kerf floor while the 

crosscut teeth are cutting. 
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Tooth shape also determines whether a saw is cutting on the 

push or pull stroke (Figure 11-1). This cutting stroke can occur on 

the push or pull stroke, depending on the blade and tooth shape. 

Worldwide, the typical hand saw uses the more powerful push 

stroke, similar to those illustrated in Figure 11-1. Continuous 

cutting (not reciprocating) power saws have teeth designed to cut 

only on the front side of the tooth. 

The major exception to the push designed saw is the 

Japanese pull saw. The Japanese have retained and perfected 

designs of pull saws to the pOint of producing a saw quite 

different than Western saws. Because of the force being exerted 

on the pul" tension can be maintained even on very thin blades. 

This design is similar to a pull stroke frame saw without the 

frame. Japanese saws utilize a more hardened metal (Rockwell 

Hardness Rc 54) than their Western counterparts since they do 

not need to be ductile on the push stroke. Thus, these saws are 

more brittle and likely to break teeth or blades rather than bend. 

The narrower blade with minimal set of hardened teeth creates a 
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narrower kerf and therefore the pull saw wastes less wood and 

demands less effort for the same job (Lanz 1985:13-17). 

Other exceptions to push stroke saws are some pruning saws 

(it is easier to pull than push when in awkward positions), buck 

saws (may have a push and pull stroke for a person on each end of 

the saw), and power reciprocating saw blades (cuts on the pull 

stroke to avoid binding during high speed reciprocating motions). 

Flexible saws generally cut in either direction. 

Chain saws represent another type of tooth shape design. 

Chain saws are designed to cut soft material at high speeds. 

When cutting hard material like bone, these saws create wavy 

edged walls as the blade moves at high speeds but the teeth bite 

very little. This action appears to "melt" through the bone. 

Saw blade shape or the shape of the delivery of the teeth is 

also an identifying feature of saws. While most blades are 

designed to propel teeth in a straight line, some saw blades are 

arched or flexible. How teeth are introduced into the material 

may influence residual characteristics by leaving striae 

resembling blade shape. 
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Saw Power 

There are obvious differences in how a saw is powered. 

Through most of the history of saws, power has been supplied 

physically by the person or persons using the saw. Human power 

varies in speed and strength, as well as handedness and skill. 

Mechanically powered saws refer mainly to gas, electric motor, 

or pneumatic powered tools that all but eliminate human 

variation from the sawed byproduct, while adding speed and 

uniformity. These saws are designed to be reciprocating or 

continuous cutting and may be supported by a frame or hand held. 

In the forensic setting, powered saws are more common than in 

the past due to mass production of lower quality and lower priced 

power saws for use in the home. 

Differences occur in the design of saws that are 

mechanically powered as opposed to hand powered. The power 

source has a great influence on the saw and the sawed 

by-product. Principles of sawing rely on blade and tooth design 
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and manner in which energy is transferred to the blade and 

material. Increased speed and torque of power saws dictate their 

tooth design. High cutting speed combined with potential 

pressures applied by the operator requires a design of short and 

wide teeth. Therefore power saws commonly cut faster but 

waste more material. 

51 



CHAPTER V 

RESIDUAL CHARACTERISTICS ON SAWED BONE 

Introduction 

Up to this point. saws have been described in terms of design 

and construction. These basic designs were then examined for 

their sawing potential and blade action. With these premises it 

is now possible to work in reverse. Characteristics on cut bone 

will now be examined in an attempt to diagnose features as the 

product of specific blade actions. Preferably. these will indicate 

saw characteristics such as saw size. set. shape and power. The 

goal of this research is to use these class characteristics on cut 

bone to narrow the range of saws that could have possibly been 

used to make the cut. An ultimate goal would be to match saw 

mark characteristics with a specific class, subclass, or type of 

saw. Saw cut characteristics are arranged by observable or 

quantifiable characteristics found on the two major areas of a 
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cut, false starts and break away spurs (kerf floor), or cross 

sections of cut bone (kerf walls). 

Observable Features: False Starts and Break Away Spurs 

The value of false starts in sawed bone analysis is 

immediate. While false starts do not always exist, the presence 

of a kerf is analogous to a completely sectioned bone 

reconstructed. The false start kerf diagramed in Figure 111-1 is 

composed of two initial corners, two walls, two floor corners, 

and a floor. While these features may not instantly appear to 

reflect saw blade design, it is important to recognize that they 

are indicative of the total cutting mechanism of a saw. 

This concept is best understood by comparing the signature 

of a knife and a saw used on bone. Knives cut grooves that mimic 

dimensions of a blade's cutting edge. A saw is simply a set of 

miniature knife blades called teeth. This simplified picture is 

somewhat more complex when these teeth are bent laterally, or 

set. Kerfs reflect tooth actions rather than the dimensions of a 
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single tooth. This can be visualized by comparing kerf cross 

sections to the edge of a saw examined from heel to toe. A saw 

kerf does not reflect the image of a single tooth, like a groove 

carved by a knife blade, rather, saw kerfs reflect the combined 

cutting actions of blade teeth. 

False start kerf examination can be approached in two ways. 

The first technique is to examine cuts on end. This allows you to 

view down the cut and examine profiles of walls and floors. A 

second method is to examine initial cuts with the floor as the 

primary surface of interest. These techniques examine even the 

most superficial cuts in a standardized manner allowing 

comparisons and classifications. 

False start analysis techniques also apply to break away 

spurs and reconstructed bone cuts, although they generally 

contribute less information since a spur is created by the action 

of a blade sliding out of the material as it breaks. This type of 

exit may alter or disguise cutting characteristics of kerf floors. 
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Kerf Cross Section Shape 

Cross sections of kerfs are placed into four major 

classifications, A, B, C and D. Each classification is illustrated 

with common variants of this class. Each variant is illustrated 

in Figure V-1, and represents common variation that may occur, 

but is not exclusively representative. 

Class A represents a narrow kerf with a rounded floor corner 

or corners. Class A is illustrated with eleven common variants 

(Figure V-1). This is associated with narrow blades and small 

teeth. The presence of a Class A kerf cross section represents 

two basic types of saws, fine toothed bow saws (FTBS) and 

serrated edge knives. 

In general, fine toothed bow and open saws create cross 

sections similar to larger saws; major exceptions to this rule are 

the common occurrence of a single or double rounded kerf floor 

corner. This appears to be related to the small size of the teeth 

and blade drift of a fine toothed saw. Rounding occurs when 

blades or teeth drift away from one corner while chiseling out 
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Kerf False start 
CIIIS 

R Fine Toothed 
(Bow) Saws and 
Serrated Knives 

CI .. aified by: 
-Rounded lIoor corner,a, 
-Average minimum 

kerf width 
0.030 10 0.040 Inchea 

B Rip (Chisel) 
Saws 

Claaailied by: 
-Flat or concave lloor 
-Average minimum 

kerf width 
0.045 10 0.090 Inch.a 

C Crosscut Saws 

CI.uilled by: 
-Convex Of truncated 

lIoor 
-Average minimum 

kerf width 
0.045 to 0.011 Inch .. 

o Power Chain 
Saws 

Cla .. ili.d by: 
-Wide COIIYU 1I00f 
.Average minimum 

kerf width 
0.25 to 0.33 Inch •• 

Darlant of false start 
Class (Not to Scale) 

UULJ 

Figure V-1. Four major classes of kerf cross section shape. 
Classes include fine toothed bow saws and serrated knives, rip 
saws, crosscut saws, and power chain saws. Each class is 
accompanied by common variants of each class. Variants are not 
exclusive or to scale. 
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the other. This is why it is common to see a square corner paired 

with a round corner. Serrated knives (also classified as a saw 

due to the presence of teeth), produce narrow kerfs with rounded 

floor corners. Since there is no set to the teeth, cross sections 

of the kerf are a reflection of knife blade edge. Class A variants 

1 through 3 illustrate chiseling teeth with no rakers (alternating 

set). These variants indicate fine toothed bow saws rather than 

all larger toothed chisel saws since they are narrower and 

generally have one rounded corner. Variant 1 is typical of a kerf 

exhibiting asymmetrical sets of the teeth. Figure V-2 illustrates 

a Class A, alternating kerf cross section. 

Raker variants 4 through 6 are discretely different than the 

alternating set in that the walls are very straight, there are no 

bone islands, and the kerf floor has a noticeable slope or 

concavity (Figure V-3). 

This is indicative of a blade with no blade drift and teeth 

chiseling out the floor midline. This pattern describes a fine 

toothed bow saw with a raker set where every third tooth rakes 
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Figure V-2. Photograph of a rather straight walled and flat 
floored kerf formed by an alternating set hacksaw (18 teeth 
per inch). 
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Figure V-3. Photograph of a straight walled and concave floored 
kerf formed by a raker set hacksaw (18 teeth per inch). 
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the bottom of the kerf. Keep in mind that a fine toothed bow saw 

raker tooth is identical in shape to other teeth in the blade and 

therefore it forms the deepest cut since the other teeth are 

deviated out of midline. Uniformly set blades create smooth and 

rounded floors similar to variants 5 and 6. Nonuniformity of set, 

usually associated with cheaper grades of hack saw blades, 

creates a variant 4 type of stepped or multiple cornered kerf 

floor that is often not symmetrical. 

Walls of variants 7 through 9 do not appear straight or 

parallel. They seem to expand as they form their initial kerf 

corners. Adding to this non-symmetrical appearance is the 

tendency for these walls to meander producing cross sections 

with walls that are somewhat uneven. Floors of wavy set blades 

are very flat in appearance to the unaided eye but actually exhibit 

gradual rounding (concavity). Kerf cross sections with bending or 

ballooning walls and slightly rounded floors, are indicative of 

wavy set fine toothed saw blades (Figure V-4 and V-S). 
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Figure V-4. Photograph of a kerf formed · by a wavy set hack saw 
(24 teeth per inch). Note the wavy walls that appear to expand or 
bend as the kerf ascends into the bone, and a floor with gradual 
bending (concavity). 
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Figure V-5. Photograph of a kerf formed by a wavy set keyhole 
saw (25 teeth per inch). Notice that the walls appear to expand 
as the kerf ascends into the bone, and a floor with gradual 
bending (concavity). 
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Serrated knives also produce a narrow kerf with a rounded 

floor corner, and therefore have been included in Class A under 

variants 10 and 11. Serrated knives generally have one straight 

kerf wall, while the other has a rounded, accentuated (almost 

shouldered) floor corner. There are numerous variations in design 

of serrated blades. Tapering can occur on one (variant 10) or both 

sides of the cutting edge (variant 11) and can extend variable 

distances up the blade, but kerf cross sections of serrated blades 

reliably reflect blade size since there is no set to the teeth. 

Class B kerf cross sections are the result of larger teeth 

with enough set to potentially create islands of bone (variant 2) 

and a chiseling form that may create a 'floor that is flat 

(attributed to identical overlapping teeth), stepped (due to non­

identical teeth), or concave in the midline (attributed to teeth 

bent laterally; this may involve the formation of a bone island). 

Walls are generally straight or stepped. This class is indicative 

of non-raker chisel saws, where hand saws usually resemble 

variants 1 or 2. Many power saws, such as circular saws, produce 

variant 3. 
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Class C differs from B mainly in the convex shape of the kerf 

floor (Figure V-6). This shape indicates angled filing of teeth 

which is characteristic of crosscut saws. These kerfs always 

have a convex floor, and therefore create a need for specialty 

(raker) teeth. Specialized teeth are indicated by truncated kerf 

floors, as in variant 2. Since raker teeth are generally designed 

to clear kerfs of soft wood, they may not function properly in 

hard material and therefore may produce asymmetrical 

truncations as illustrated in variant 3. 

Class 0 is unique in size and undulating wall shape and the by­

product of unique teeth. Figure V-1, variant 1 illustrates the 

IImeltingll appearance of a crosscut chain cut in bone (see Figure 

V-7). Also depicted here is variant 2, the kerf created by rip 

chain saws. While rip chain saws are not a common household 

saw and therefore not formally examined for this study, it does 

appear to create a tidy kerf as compared to crosscut chain saws. 

For this reason variant 2 was included in this Figure V-1 to show 

that chain saws can create a kerf similar in width, but with 
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Figure V-6. Photograph of a kerf created by a ryoba Japanese 
crosscut pull saw (16 points per inch). Notice the convexity of 
the floor created by saw teeth filed at an angle.straight edges 
and nearly square floor corners. There is still a slight arch 
(convex) to the kerf floor. 
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Figure V-7. Photograph of a kerf created by a crosscut power 
chainsaw (10 inch). Notice the "melting walls" and the wide, 
slightly convex floor. 
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straighter edges and nearly square floor corners. There is still a 

light arch (convex) to the kerf floor. 

Fine Toothed Bow Saw Kerf Floor Characteristics 

The second aspect of examining false starts concentrates on 

differences in floor striae of differently set blades. Andahl 

(1978) discusses differences of floor striae with different set 

saws but does not consider how the mechanisms of blade drift 

affect blade and tooth cutting characteristics. 

This method does little to separate subtypes of saws with 

alternating set and chiseling teeth, two characteristics that 

apply to most household and professional saws. However, 

identification of alternating set teeth is important when 

considering fine toothed bow saws since this type of set appears 

to be no more common than raker and wavy set saw blades. 

Excluding differences in set, these saws are designed 

similarly in that all have small teeth and are often designed for 

materials other than wood. Teeth per inch commonly lie within 

18 to 32 and tooth width ranges in studied saws range from 0.02 
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to 0.03 of an inch. Differences in set for this subclass of saws 

can be identified using floor striae. 

Primary set differences in fine toothed bow saws are 

illustrated in Figure V-B. Alternating set has each consecutive 

tooth bent alternately. Raker set has the same pattern, but with 

the addition of a raker (identical tooth with no set) placed every 

third tooth. Wavy set is simply a bend in the blade instead of the 

tooth, so groups of teeth bend alternately from side to side. 

[Alternating set) 

~ I j 1 11 1 
[ Raker Set) 

il1tl11J:jll 
[Wavy set) J 

Figure V-B. Points up images of three types of set for fine bow 
saws, each enlarged. 
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Fine toothed bow saws receive exceptional consideration in 

this study because they are generally inexpensive, readily 

available, simple to use, and designed to cut through most 

materials. This research assumes that fine toothed bow saws are 

one of the most frequently found saws in average households, and 

therefore are likely candidates of forensic scrutiny. Fine toothed 

saws studied in this project include four kinds of hack saw 

blades, a coping saw and a fine toothed key hole saw. The key 

hole saw is not a bow saw by design but the blade itself is 

constructed similar to FT8S so this study is actually examining 

kerf floor characteristics of fine toothed bow and open saws. 

Kerf floor characteristics are most easily observed when viewing 

a shallow false start from above with tangential light. 

Figure V-9 displays three drawings of kerf floors A, 8, and C, 

as seen by observing false starts in bone from initial cuts of fine 

toothed saws. Floor A is characteristic of a kerf with bending 

walls and sharp floor striae. These striae appear to represent 
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Kerf Floor B 
Raker Set 

.. . .. -. . .. .. .. , 
If" 

I 

;, \ 
\, 

Kerf Floor C 
Wavy Set 

r 

I .~ 

-Narrow and Wide 
Aspect of Kerf 

-Straight Walls -Necking in Middle 

-Bone Islands Possible 
-Striae Commonly 

Arranged in Thirds 
-Parallel Striae 

-Fine striae 
-Few Striae in 

Kerf Midline 

Figure V-9. Three false start floors from fine toothed bow saws. 
These represent alternating, raker, and wavy sets. Major unique 
characteristics are listed below each figure. 
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images of a single tooth at the narrow aspect, and two teeth side 

by side at the wide aspect (Figure V-g, Kerf Floor A). Bone 

islands can be present with this type of pattern. Striae curve 

repeatedly in a regular formation to create this wide to narrow 

undulating pattern (Figure V-10). This floor is indicative of 

alternating set teeth that combine to create blade action. Figure 

V-g, Kerf Floor A is not only characteristic of alternating set 

fine toothed bow saws, it is also characteristic of most hand 

powered chisel toothed saws available today. 

Floor B is characterized by sharp striae and extremely 

straight walls (Figure V-11). Striae are commonly oriented in 

thirds (three teeth wide). There is overlap of consecutive teeth 

but a majority of striae are still oriented to either side of kerf 

midline. This orientation can be appreciated by examining teeth 

of a raker blade. Figure V-12 is a photograph of a new 18 teeth 

per inch hack saw blade (top blade) used to make a single cut on a 

bone. This blade retains its original painted appearance in all 

areas except where the tooth has encountered the most friction 
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Figure V-10. Photograph of a false start produced by an 
alternating set hacksaw (18 teeth per inch), illustrating blade 
drift and bone islands. 
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Figure V-11. Photograph of false start of a raker set hacksaw 
(18 teeth per inch) illustrating straight, parallel walls and no 
blade drift. 
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Figure V-12. Photograph of two new hacksaw blades after one 
pass through a bone. The top blade is a raker set, the bottom is a 
wavy set. Notice the missing paint indicates the area of 
increased friction (cutting) of the teeth. 
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from the bone walls or floor. Notice that every tooth is either 

worn free of paint, half painted, or untouched. This pattern 

represents the cutting action of one side of a blade, where teeth 

set to the right are abraded while shaving the kerf wall, teeth set 

to the left do not touch the right wall, while rakers cut down kerf 

midline. Friction from the bone is removing either all paint, no 

paint, or paint from the tooth tip. The opposite side of the blade 

shows the identical pattern, demonstrating that each tooth in 

this blade has a very specialized cutting action, while cutting an 

overlapping third of the kerf. 

Since raker teeth in fine toothed bow saws occur at a rate of 

one in three, it is not surprising that these specialized teeth 

alter blade drift in a predictable manner. Raker teeth keep blades 

on a central path, therefore reducing (and for all purposes 

eliminating) blade drift. This is evident in false start walls, in 

that they are very straight and do not exhibit wide to narrow 

bending like other alternating set blades. Striae are frequent 

across the floor, but remain parallel, not bending. These striae 
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are prominent and deep, similar to striae of alternating set 

blades. 

Long and numerous parallel striae on kerf floors are 

indicative of wavy set blades, shown by Kerf Floor C, Figure V-9. 

A reliable characteristic of wavy set blades is "necking" of the 

kerf, where shallow cuts of Floor C taper to the middle of the cut 

bone and flair at the edge. Andahl (1978:39) refers to this as the 

"dumb bell" shape. 

Changes in striation patterns are also observable. Striae are 

fine in construction and concentrated toward the walls, leaving 

fewer striae at kerf midline (Figure V-13). This pattern gives 

floors a more polished appearance. These characteristics are 

indicative of a wavy set blade. This can be conceptualized with 

the aid of Figure V-12. The bottom blade in this figure is a 24 

tooth per inch wavy set blade used for only one cut in bone. 

Notice the wear on sets of teeth (about three) where the blade 

bends into the kerf side. 
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Figure V-13. Photograph of false start of a wavy set hacksaw 
(32 teeth per inch). Kerf shows straight walls that neck in 
shallow cuts. Striae are concentrated laterally in the kerf. 
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Wavy set fine toothed bow saws blades have been shown to 

exhibit blade drift resultant of waves of teeth rather than 

individual teeth seeking midline. This gradual bending of striae 

is difficult to observe on round bone. Measurement of wide to 

narrow blade drift patterns in wavy set blades is difficult. 

Necking is the obvious narrow aspect of blade drift but 

identifying wide aspects of kerfs is often futile because human 

bone is commonly too small and rounded for this aspect to be 

established. Since there is blade bending and no set to individual 

teeth, groups of teeth have similar angulation and parallel striae 

are shallow, creating a polished appearance on the floor. 

Increased frequency of striae at the walls indicates more 

angulation of the tooth as it deviates from midline. This 

increased angulation forces corners rather than the flat end of 

the tooth to cut. 
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Quantifiable Features: False Starts and Break Away 

Spurs 

Blade Drift 

Material is altered by the entrance of each successive tooth 

of all alternating set saw blades, where the forward motion of 

the blade is complicated by lateral forces. Figure V-14 

demonstrates that alternating blade teeth cutting material in 

differe nt directions, creates a different pattern. Figure V -15 

illustrates blade drift with consecutive cuts in chalk, where each 

cut allows more teeth to saw chalk. The ensuing kerfs slowly 

create (left to right) distinctive kerf characteristics. Patterns 

produced involving the forward motion combined with lateral 

motion of a blade are called blade drift. Blade drift is important 

to this research because it potentially reflects distance between 

teeth or numbers of teeth per inch. 

When the first tooth encounters bone, it seeks to align itself 

with the plane of the blade as it travels over bone seeking 
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Figure V-14. Two experimental cuts in common chalk with an 
alternating set blade. Note that the shape of the shallow kerf 
created is dependent upon the direction of the cutting stroke. 
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Figure V-1S. Experimental cuts in common chalk where each cut 
(moving left to right) allows more teeth to interact with the 
chalk. Note the formation of the wide to narrow and bone islands. 
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midline by the entrance of the second tooth (Figure V-16, Cut 2). 

The second tooth is set in the opposite direction and is also 

attempting to seek midline. Forces on the saw blade change with 

each consecutive entrance of a tooth (Figure V-16, Cut 1). This 

tooth is diverted in direction forces and their compromise 

produce blade drift that is indicative of tooth spacing (Figure 

V-16, Cut 3). The more set to the teeth, the more the blade is 

forced to drift. Maximum set produces bone islands in the kerf 

where consecutive teeth drift to the extreme of missing material 

in the midline of kerfs. 

As consecutive teeth seek midline or are pushed to 

compromise, the direction of forward progress of each tooth is 

affected. Each direction change of a tooth is caused by the . 

introduction of a new tooth, thus the distance from direction 

change to direction change (two direction changes) in false starts 

is the distance of one tooth (Figure V-16, Cut 3). It is often less 
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Direction of 
Saw Progress 

\Indlcates active cut 

\Indicates previous cut 

(cut 1 ) 

[cut 2 ) 

W../)J Represents a Tooth 
Set to the Right 

_ Represents a Tooth 
Set to the Left 

[cut 3 ) 

Wide to Wide 
(Distance of 
2 teeth) 

Narrow to Narrow 
(Distance of 
2 teeth) 

Direction Change 
To Direction Change 
(Distance of 
1 Tooth) 

Figure V-16. Graphic illustration demonstrating the action of 
three initial saw cuts on a kerf floor by alternating set saw 
teeth. Cut 1 is so superficial that only one tooth set to the right 
has grazed the surface. Cut 2 is a longer cut allowing teeth set 
to the left to also enter the material, pushing the original tooth 
to compromise then allowing it to come to midline again. Cut 3 
allows visualization of a saw cut that is producing a wide to 
narrow pattern that is indicative of distance between one or two 
saw teeth. 
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complicated to measure the distance from narrow to narrow (kerf 

midline), or wide to wide (kerf flare). This is equivalent to three 

direction changes and represents the distance of two teeth. 

This rule also applies to islands of bone since islands 

represent the widest point of blade drift; where mid-island to 

mid-island represents three direction changes and therefore the 

distance of 2 teeth (Figure V-17). Figure V-18 illustrates that 

even fast moving power blades like those used with Stryker 

autopsy saws, create blade drift. This feature makes it possible 

to examine false starts and break away spur kerfs to initially 

determine saw set, and indicates teeth per inch of the blade used 

in a particular cut of an alternating set blade. 

Blade drift is most noticeable at the beginning or end of a cut 

in a tubular bone since there is little material to offer resistance 

or trap the blade's motion. Once the blade is immersed in the 

material, much of the side to side movement is suppressed until 

the kerf length tapers down making the kerf less restrictive. 
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Figure V-17. Photograph of blade drift in a false start kerf 
created by a dove tail saw (15 points per inch). Note drift 
produces wide to narrow (0.07 of an inch) aspects of the kerf 
with bone islands (0.14 of an inch from islandi to island). Large 
arrow indicates direction of cutting stroke. 
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Figure V-18. Photograph of autopsy saw blade (17 points per 
inch) and false start kerf illustrating blade drift. Note the wide 
to narrow aspects of the kerf match the distance between each 
saw tooth. 
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Rakers inhibit the lateral movement of blades and therefore 

make it all but impossible to measure blade drift. Wavy set does 

not appear to create blade drift relating to each individual tooth. 

Rather, each wave (sets of teeth) appears to react in material 

like individual teeth. Therefore blade drift is present but at the 

frequency of a wave rather than a tooth. Estimation of tooth bank 

set (wave) distance has been accomplished experimentally, where 

measurements of wide to narrow indicate distance between 

waves. This distance is large and has limited utility (except as a 

class characteristic) when examining dismembered human bone. 

Calculations of this sort are also considered an estimation and of 

diminished value compared to accurate teeth per inch 

calculations of alternating set blades. 

Kerf Width 

Bonte (1975:319, 321) mentions the correlation of the kerf 

"groove" to the saw "setting." Original mention of this 

correlation of saw cuts in wood occurs in Mezger, et al (1927), 

Mayer (1933). and Pelz (1956). Blake (1985) utilizes the 
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correlation of kerf width and saw blade total width to describe 

dimensions of a saw used in a serial murder case that involved a 

human mutilation in Tennessee. 

Table V-1 lists saws utilized in this study with 

measurements of TPI, distance between teeth, tooth dimensions, 

set width, and average minimum and maximum kerf (false start) 

width cut in human bone. All measurements, except for TPI have 

been rounded to the nearest 0.01 of an inch due to the variability 

of the features measured and the difficulty involved with 

calculating accurate measurements under magnification. 

Measurements of minimum kerf width can be compared with 

set width measurements to determine the close correspondence 

in each case. Maximum kerf width has been included in Table V-1 

to demonstrate the variability of this measurement. Variability 

that can creep into these tool marks is remarkable, especially 

when created by saws that are hand held or hand powered. 
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Table V-1. Listing of saws utilized in this study with measurements of saw teeth and 
kerfs in human bone. Measurements in inches. 

Tooth ~ Kerf** 
Blade (Saw Type) Name Class Per Inch Distance Width Height Width Minimum Maximum 

"Crosscut" saw (standard)·" Hand 6.0 to 7.0 0.14 0.03 0.10 0.06 0.06 0.07 
"Crosscut" saw (premium) Hand 6.0 0.17 0.03 0.10 0.06 0.06 0.08 
Rip saw Hand 4.5 0.22 0.04 0.16 0.07 0.05 0.08 
Backed saw (premium) Hand 11.0 0.09 0.03 0.04 0.06 0.06 0.06 
Dove tail saw (premium) Hand 14.0 0.07 0.02 0.06 0.04 0.04 0.05 
Arched Pruning (peg toothed) Hand 7.0 0.14 0.06 0.13 0.08 0.08 0.08 
Arched Pruning (folding) Hand 6.0 0.17 0.04 0.13 0.08 0.08 0.09 
Buck (peg toothed) Hand 4.0 0.25 to 0.33 0.03 0.20 0.05 0.05 to 0.10 0.14 

OJ Buck (lance tooth) Hand 4.0 0.25 0.03 0.24 0.05 0.04 0.08 
(0 Coping Hand 16.0 0.06 0.02 0.03 0.03 0.03 0.04 

Hack (alternating) Hand 18.0 0.06 0.02 0.03 0.04 0.03 0.04 
Hack (raker) Hand 18.0 0.06 0.03 0.02 0.04 0.04 0.04 
Hack (wavy) Hand 24.0 0.04 0.02 0.02 0.04 0.03 0.04 
Hack (wavy) Hand 32.0 0.03 0.03 0.01 0.04 0.03 0.04 
Key Hole (alternating) Hand 10.0 0.10 0.03 0.05 0.06 0.06 0.07 
Key Hole (wavy) Hand 25.0 0.04 0.03 0.02 0.06 0.05 0.06 
Wallboard Hand 6.0 0.17 0.06 0.15 0.10 0.09 0.12 
Chef (standard) Hand 10.0 0.10 0.02 0.06 0.05 0.05 0.07 
Meat (premium) Hand 10.0 0.10 0.02 0.05 0.04 0.04 0.04 
Serrated Steak Knife Hand 8.0 0.13 0.02 0.03 to 0.05 0.03 0.03 0.03 



Table V-1. (continued) 

Tooth ~ Kerf** 
Blade (Saw Type) Name Class Per Inch Distance Width Height Width Minimum Maximum 

Japanese Ryoba (crosscut) Hand 15.0 0.07 0.03 0.15 0.04 0.05 0.05 
Japanese Ryoba (rip) Hand 6.0 to 8.0 0.12 to 0.17 0.02 0.13 to 0.20 0.04 0.05 0.07 
Gigli Hand 0.05 0.05 0.05 
Rod Hand 0.10 0.10 0.10 
Bone Hand 8.0 0.13 0.03 0.06 0.05 0.05 0.05 
Metacarpal Hand 30.0 0.03 0.07 0.04 0.07 0.06 0.07 
Circular (Piranha carbide) Power 0.8 2.26 0.08 0.30 0.11 0.12 
Circular (Framer carbide) Power 1.0 2.22 0.09 0.50 0.09 0.11 
Circular (Plywood) Power 6.0 0.16 0.04 0.10 0.08 0.09 

<..0 Circular (Combination) Power 1.6 0.56 0.06 0.35 0.11 0.12 
a Circular (Masonry) Power 0.14 0.14 0.14 0.16 

Band (skip tooth) Power 4.0 0.25 0.02 0.05 0.04 0.04 0.04 
Chain (electric) Power 0.7 1.50 0.14 0.14 0.23 0.25 0.32 
Reciprocal (alternating) Power 7.0 0.14 0.05 0.08 0.08 0.08 0.09 
Reciprocal (alternating) Power 10.0 0.10 0.03 0.05 0.07 0.06 0.07 
Reciprocal (wavy) Power 18.0 0.06 0.03 0.03 0.05 0.05 0.05 
Autopsy (round) Power 16.0 0.06 0.02 0.05 0.04 0.04 0.05 
Autopsy (large sectioning) Power 23.0 0.04 0.02 0.03 0.05 0.04 0.05 

* Set width is the total set width of the saw blade at the level of the tooth point (edge). 
** Kerf measurements are taken on false starts cut in human tubular bone. 
***Three quality levels of saws: standard, premium or professional (Consumer Guide Editors 1978) 
Source: 
Consumer Guide Editors, 1978 The Tool Catalog: An Expert Selection of the World's Finest Tools. 

By the editors of Consumer Guide. Beekman House, New York, NY. 



Minimum kerf width appears to be an excellent reflection of the 

cutting width of the saw since each blade used in this study 

(excluding circular saws) measures to within 0.02 of an inch of 

minimum kerf width. 

Tooth Trough Width 

Another measurable feature of the false start or break away 

spur is tooth trough width. Saw tooth width can be calculated in 

two ways, measurement of floor patterns and measurement of 

residual tooth trough. Floor patterns give an average estimation 

of saw tooth width while the residual tooth image, if properly 

interpreted, produces an accurate image of an actual tooth. 

Difficulties arise commonly when teeth overlap and create 

overlapping striae. 

Measurement of residual tooth image simply utilizes kerf 

floors with islands to estimate tooth width. Islands occur in 

alternating set blades and appear when the total tooth set 

combined with blade drift produces a kerf width greater than two 
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times the width of a single tooth. Tooth width from floor 

patterns can be calculated using these formulae: 

kerf width - greatest island width = tooth width or 

2 

kerf width (with islands) > tooth width 

2 

for kerfs with no islands, use 

greatest kerf width s tooth width 

2 

One must be careful to measure at the floor of the kerf for 

greatest accuracy_ Crosscut teeth (those filed at approximately 

70 degrees to the plane of the blade) may create a pseudo-island 

as this type of blade has teeth that are filed to points (see again 

Figure V-1, Class C). This point does not represent the tooth 

width. Calculating tooth width on crosscut saws appears to be 
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tentative at best but separating angle filed teeth from chiseling 

teeth should be relatively straightforward. 

Measurement of residual tooth mark is the most accurate 

appraisal of saw tooth width, and may be the most misleading. 

This technique requires the examination of the kerf floor under 

magnification. In theory, the last tooth sliding off of the kerf 

floor should leave an imprint (square cornered trough) of a Single 

tooth. Measurements of this imprint reveal exact tooth width. 

Problems arise when attempting to confirm that this imprint is 

not the combination of more than one tooth. Teeth sliding over 

other teeth marks create an altered image that reflects a tooth 

width measuring less than one tooth. 

Saw tooth width should be calculated with each of the above 

methods, measurement of floor patterns and measurement of 

residual tooth trough image. Figure V-19 demonstrates each 

method. Floor patterns produce a ball park measurement 

confirming the more accurate residual trough image method. This 
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Figure V-19. Two false starts in bone produced by a Japanese 
ryoba rip saw (7 to 9 points per inch). The cutting stroke and pull 
stroke is from top to bottom of photograph. Tooth width can be 
calculated from floor features (A). or from individual tooth 
trough width (8). 
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technique avoids miscalculation of tooth width, where errors of 

0.01 of an inch are substantial when trying to sort saws by tooth 

size. 

Floor Dip 

Saw teeth combine actions to cut a kerf floor. When the 

floor of the kerf is examined longitudinally at an angle, the 

seemingly flat bottomed kerf may actually be wavy. Andahl 

(1978:36-37) demonstrates this wave formation in experimental 

cuts in metal. This pattern of waves is the result of consecutive 

teeth entering the bone and hopping across the floor. This 

hopping is created every time a new tooth attempts to engage the 

entrance edge of the material. The introduction of each tooth 

forces the blade to jump. Since this jump is tooth induced, these 

features should be indicative of tooth spacing. Figures V-20 and 

V-21 are photographs of a false start and a break away spur 

exhibiting wavy 'floors. Each peak or dip corresponds with a new 
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Figure V-20. Photograph of a false start exhibiting wavy kerf 
floors created by a carpenter saw. Each -peak or dip corresponds 
with a new tooth engaging the material and therefore the 
distance between each peak or dip is the distance of one tooth. 
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Figure V-21. Photograph of a break away spur (bottom) exhibiting 
a wavy floor produced by a power reciprocating saw with a wavy 
set blade. Each peak or dip corresponds with a new tooth entering 
the material and therefore the distance between each peak or dip 
is the distance of one tooth. 

97 



tooth entering the material and therefore the distance between 

each peak or dip is the distance of one tooth. 

Floor dip combined with blade drift adds a third dimension to 

actions of a blade in a kerf. Calculating floor dip is similar to 

calculating blade drift, except that the distance from floor dip to 

dip, or peak to peak, is indicative of a single tooth. Remember 

that in blade drift, the distance of wide to wide or narrow to 

narrow, is indicative of two teeth due to the alternating set. 

Tooth Imprints 

Tooth imprints are similar to floor dip. in that residual 

imprints from tooth points in the kerf floor may remain after a 

saw is interrupted in the cutting or passive stroke. Consecutive 

tooth imprint features, like floor dip, can be measured in false 

starts and break away spurs to represent the distance between 

teeth, These features have been recognized in medical examiner 

cases (Blake 1985) and mentioned in research (Guilbeau 1989). 

Problems arise in calculations of floor dip and tooth imprint 

distances with certain variations of tooth shape. Irregularities 
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in tooth shape can easily interrupt the dip patterning or disguise 

the tooth imprint. These irregularities usually arise with the 

introduction of specialty teeth. An example of this would be 

floor dip created by a pruning saw that has a short raker tooth 

inserted between groups of crosscut teeth. This shorter tooth 

may not leave an imprint, therefore giving the appearance of 

twice the distance between teeth. 

Observable Features of Cross Sections 

Residual Kerf Shape: Tooth and Stroke Striae 

Bonte indirectly addresses stroke and tooth striae: 

During-and only during-the unpowered return stroke of 
the saw blade do all the saw teeth lie on approximately 
one level, which produces a rather crude and deep furrow. 
During the forward stroke [of a push stroke saw], 
however during which the actual sawing is done, the saw 
blade at the same time shifts deeper in a movement 
diagonal to the axis of the blade. At this each tooth 
leaves a fine mark which is slightly inclined towards the 
rougher furrow. Thus between two rough grooves there 
develop several very thin parallel rills (Bonte 1975:318). 
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Cutting actions of a single tooth combined with actions of all 

teeth create predictable and measurable characteristics. Cross 

sections of a sawed surface of a bone always grossly exhibit one 

type of residual kerf while most reciprocating saws produce two 

types of residual kerfs: tooth and stroke striae. Even though 

motions of sawing involve teeth following teeth, individual tooth 

striae, or Bonte's thin parallel rills, are evident on all cuts. A 

reciprocating action produces "rough grooves" or stroke striae 

that consist of combined tooth striae. Figure V-22 illustrates a 

bone with tooth and stroke striae. 

Stroke striae are evident in most hand powered saws and 

many mechanically powered saws. Saws that produce no stroke 

striae include power saws that cut in a continuous rather than 

reciprocating motion. Continuous motion saws studied in this 

research include circular, band, and chain saws. It should be 
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Figure V-22. Photograph of a cut bone created by a hack saw 
(with 32 teeth per inch). These blade creates tooth (fine) and 
stroke (coarse) striae. 
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noted that even continuous cutting saws can create what appear 

to be stroke striae. These occur in the band saw, as the splice in 

the blade rotates through the material, creating a stria every 

rotation of the blade. This pattern exhibited on the cross 

sectioned bone can be mistaken for strokes. 

Large toothed saws also leave characteristic patterning of 

residual kerfs. This patterning, at first appearance, is a confused 

shuffle of striae. Closer examination reveals predictable 

patterns, where cuts of large filed teeth leave prominent striae 

on the bone. 

The shape of striae change as the saw progresses through 

tubular bone. The initial aspect of the cut reveals wavy tooth 

striations characteristic of large toothed saws. As the cut 

progresses to level of the marrow cavity, the saw encounters two 

narrow pillars of bone (the bone bordering the marrow cavity) 

instead of teeth riding over a long flat kerf. This bone is often 

narrower than the distance of two saw teeth, thus the teeth are 

raking this material as they bounce over the pillars. Therefore 

large toothed saws (large in the height and the distance between 
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teeth) create striae that are wavy but essentially straight at the 

top and bottom of the cuts on tubular bone, but hopping at the 

level of the marrow cavity. 

Residual Kerf Shape: Striae Contour 

Residual kerf shape also refers to the contour of saw striae. 

Straight versus curved residual kerfs is an excellent 

characteristic to indicate certain saw types. Curvature in striae 

can take two forms, curvature with fixed or unfixed radius. 

Curvature with a fixed radius implies a round, rigid blade. The 

most common example of this is the circular saw (Figure V-23). 

This author omitted circular saws from initial saw mark 

research due to the unlikelihood of this type of saw being utilized 

in a forensic setting. This strategy was recently revised when a 

hand held circular saw was shown to be the tool of choice in a 

recent case of mutilation and body disposal on the state line of 

Georgia and Tennessee (Symes et al 1990). 
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Figure V-23. Photograph of a circular saw cut in bone with 
curved line overlay. Notice the bending striae with a fixed radius 
forming concave striae. 
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Circular saws have different types and sizes of rigid blades 

producing striae with fixed radius curvature. Cunningham and 

Holtrop (1974:174) list common circular saw blade diameter 

sizes as 6 to 8, 9 to 10, 12, and 14 to 16 inch blades. Figure 

V-24 demonstrates a method utilized to estimate the diameter of 

striae of the cross section of a bone. By drawing these different 

diameters on an acetate overlay, exposed striae can be compared 

to these measured arcs. This is used to verify a fixed radius 

curve, and the approximate diameter distance. While this 

technique has limited accuracy when sorting blades of similar 

diameters, it is successful in sorting common blade size 

differences, such as the difference between hand held circular 

saws and table saws. 

Hand held circular saws commonly use blades six to eight 

inches and table saws generally start at ten inches in diameter. 

These blades are easily sorted in the laboratory when using the 

overlay on cuts exhibited in large bones. 
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Figure V-24. Photograph of a circular saw cut in bone with a 7-
1/4 inch curved line overlay. Notice the better fit than the 8-1/2 
inch diameter arch. 
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Another fixed curvature blade is the autopsy saw with 

sectioning or round blades. These saw residual kerfs show a 

slight bending in cross section (Figure V-2S), although detection 

of this curvature is difficult without magnification. Power chain 

saws can also create curved striae, but only in the event that the 

toe of the saw is doing the cutting. 

Non-fixed radius curvature occurs from various types of 

flexible saws, such as the Gigli saw (Figure V-26). This saw is 

commonly utilized in surgery and therefore must be considered a 

saw with forensic potential. Gigli saw cuts are easily diagnostic 

and reveal direction of cut and even handedness of the individual 

sawing by detecting the direction of the cutting stroke due to 

more powerful pulling of the dominant hand. 

Pruning and rod saws are two other types of saws producing 

slight curvature in striae. Pruning saws have such a gradual 

curve that this researcher has not been able to readily verify 
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Figure V-2S. Photograph of initial stages of a cut on sectioned 
bone. Note the concave bending at the level of the ruler produced 
by a power autopsy saw with a round blade. 
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Figure V-26. Curvature of Striae in cross sectioned bone created 
from a Gigli (flexible) saw. Notice the non-fixed radius with 
striae bending convexly around the break away spur. 
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striation bending on human bone samples, however, a rod (grit 

embedded blade fitted into a hacksaw frame) saw was found to 

bend, especially at the initial and terminal stages of the cut 

where a false start and break away spur reveal definite arching 

in cross section. Keep in mind that the Gigli, pruning, and rod 

saw bend around material while the circular, power chain, and 

autopsy saw arch away from material being cut, as determined by 

the curvature of striae around the break away spur (Figure V-27). 

Like many identifying characteristics on cut bone, bending 

striae are sometimes deceiving. If a hand saw is rocked 

repeatedly while cutting, a pattern similar to curved striae may 

be detected. Figure V-28, Photograph A, represents striae that 

appear concave at the initial entrance of the cut. However, 

Photog raph B is the opposite side of this sectioned bone and 

examination of this surface reveals no curving, simply striae 

oriented at different angles. This cut is produced by a straight 

bladed hacksaw. 

110 



Direction of 
Saw Progress 

- Break -Away Spur 

Cross Section Illustrating 
Convex Striae 

-Striae bend around bone 
-Forms convex (arched) false start 
-Formed by flexible (e.g. Gigli 

and rod saws) and arched saws 
(e.g. pruning) 

Cross Section Illustrating 
Fixed Radius Concave Striae 

-Striae bend Into bone 
-Forms concave false start 
-Formed by circular and 

autopsy saws 

Figure V-27. Illustration of cross sectioned bone demonstrating 
two types of curved residual kerfs. Also listed are saws 
commonly responsible for these diagnostic features. 
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Photograph A 

Photograph 8 

Figure V-28. Photograph A and 8 represent the two sides of a 
single cut with a hacksaw. Photograph A gives the false 
impression of residual kerf "curving," while 8 is obviously 
straight edged striae. Close examination of A reveals a 
combination of straight striae combined to form a false "curved" 
appearance. 
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Close examination reveals that this "curved" pattern in 

Photograph A is actually a series of short, straight stria linked 

into a curved pattern. Close examination of striae utilizing a 

straight edge should eliminate false curves. Thus residual kerf 

contour is an excellent indicator of blade shape and therefore an 

essential part of residual kerf examination. 

Cut Surface Drift 

Cut surface drift is a fluctuation in the plane of cutting 

progress where the surface of the sawed cross section of bone is 

not flat, but irregular or wavy (Figure V-29). These 

irregularities are produced by saw blades that progress through 

the material drifting one way then another into the material. 

Initial research in this area presumed that saws with reduced 

blade height dimensions were most likely to drift. This was 

immediately disproved when all carpenter saws exhibited surface 

drift while raker set hacksaws cut extremely straight sided 

kerfs. 
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Sawed 
Tubular Bone 

Direction of 
Saw Progress 

Sawed Bone 
Example 2 

Cross Section Illustrating 
Unremarkable Cut Surface Drift 

Sawed Bone 
Example 1 

Illustrating 
Surface Drift 

Figure V-29. Two illustrations of variation in sawed tubular 
bone. Example 1 has been sectioned by a saw that drifts as it 
progressed through the cut. Example 2 shows little cut surface 
drift. 
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Cut surface drift has proven a difficult quality to recognize, 

and at this point, impossible to accurately quantify. Visually, 

this feature was first recognized in kerf cross sections of wavy 

set fine toothed bow saws. As mentioned above, these kerf walls 

seldom progress into the material in a straight fashion, and may 

flare or change directions as the cut progresses (again see 

Figures V-4 and V-5) so it seems logical that cut surface drift is 

accentuated in wavy set saws. Hand powered saws with file type 

handles and all saws with short blades are suspected of 

producing surface drift. These designs inhibit long, consistent 

strokes and may contribute to more variability in the shape of the 

cut bone (Figure V-3~). 

Finally, it is not unusual to see cut surface drift in saws 

designed to cut soft materials, like carpenter, pruning, and chain 

saws. Surface drift does appear to be less apparent in raker set 

saws, and power saws designed to cut hard materials since the 

movement of the blade through the material is more easily 

controlled. 
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Figure V-30. Photograph of cut human bone with accentuated cut 
surface drift. This drift is at least partially attributed to the 
file-type handle of the backed saw that cut this particular bone. 
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QuanUfiable Features of Cross Sections 

Tooth Hop 

Tooth hop is the cross section signature of floor dip. Striae 

across the face of the bone generally progress in a straight 

pattern. With close observation, these straight residual kerfs 

occasionally begin patterned hopping or as Andahl (1978:39) 

points out, create predictable waves. Hopping is created as teeth 

begin to enter the kerf and each successive tooth strikes bone, 

producing movement of the whole blade. Figures V-31, V-32, and 

V-33 illustrate striae hopping in human femur shafts cut with 

different saws. Tooth hopping is the likely product of a slight 

direction change in the stroke. Guilbeau (1989:45) alludes to 

these wave patterns in meat and hacksaws, and even suggests a 

correlation between the number of teeth and measurements 

between wave "crests." These features were observed in at least 

one cut in all reciprocating saws with rigid blades, with the 

exception of autopsy saws. 
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Figure V-31. Bone cross section exhibiting tooth hop (jumping 
striae), indicating distance between teeth of a blade 8 teeth per 
inch. This blade is from a power reciprocating saw, attached to a 
handle and hand powered. 
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Figure V-32. Bone cross section exhibiting tooth hop (jumping 
striae), indicating distance between teeth of a blade 18 teeth per 
inch. This blade was removed from a power reciprocating saw, 
attached to a handle and powered by hand. 
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Figure V-33. Bone cross section exhibiting tooth hop (jumping 
striae). indicating the distance between even the smallest saw 
teeth. Numerous consecutive hops is recommended for improved 
accuracy. Cut made by a hacksaw with wavy set (32 teeth per 
inch). 
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Tooth Scratch 

Tooth scratch is simply the presence of striae on the cut 

surface of the bone created when the saw is withdrawn from the 

kerf. This has been documented by Bonte (1975:319) as they 

appear "vertical to the sawing level which extend[s] over several 

saw marks ... corresponds, with normally set saws, to twice the 

distance between the teeth." The term "normal" can be a 

misleading one. Figure V-34 illustrates tooth scratch found on 

one of the research bone cross sections. This patterned 

scratching is not twice the distance of a tooth but is the distance 

of three teeth since this saw is a raker set. Tooth scratch is a 

characteristic that should not stand alone, and should be used to 

corroborate other more reliable estimations of tooth distance. 

Experimental cuts with serrated knives produced numerous 

scratches as the knife jumped out of the kerf etching the bone 

surface. These scratches, when measured parallel to the cutting 
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Figure V-34. Initial cut in bone with tooth scratch subtlely 
evident. Note that Raker hacksaw blade creating scratches 
retains two teeth between scratches rather than the assumed 
single tooth. This illustrates the weakness of tooth scratch as 
an accurate diagnostic characteristic for saw determination. 
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stroke appear to accurately represent the distance between a 

single tooth or the distance between the longest teeth in saws 

with variable length sets of teeth. 

Harmonics 

Saw mark harmonics are described in Figure V-35 as peaks 

and valleys exhibited on bone cross sections. Harmonics were 

initially described as "patterned oscillations" of high speed 

power saws, not necessarily found parallel to the direction of 

stroke (see power saw harmonics in Figure V-36). It was 

suggested that harmonics are created by defective saws or blades 

straying from the designed path, or essentially a by-product of 

blade wobble (Symes and Berryman 1989a). Closer examination 

of numerous cross sections of nearly 100 types of saws 

demonstrates that these early assessments are in error on two 

cou nts; harmonic oscillations are found to exist in nearly all 

blades with alternating set teeth, and are the direct result of 

normal cutting action in hand and mechanically powered saws. 
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Initial Cut 

Sawed Bone 
Cross Section 

Distance 01 2 Teeth 
(Peak to Peak) 

I I 

Bone I 

Direction 
Progress 

Dlet.nca 01 1 Tooth 

Direction of Blade 
Progress 

Cross Section Enlarged 
with Harmonics 
(Peaks and Valleys) 

Direction of Blade 
(Cutting) Stroke 

Blade 

Figure V-35. Three images of a sawed bone. Cross sections 
identify typical features of saw tool marks and the enlarged 
cross section illustrates peaks and valleys of harmonics. The 
latter images demonstrate two types of saw cut direction, blade 
stroke and blade progress. 
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Figure V-36. This photograph illustrates accentuated 
harmonics on sectioned human tibia bone created by a power 
reciprocating saw blade (10 teeth per inch). Note how the 
harmonics are oblique to the direction of cutting stroke (left to 
right) and the direction of blade progress (top to bottom). 

125 



Harmonics are simply the expression of blade drift progress. 

This characteristic has been associated with certain saws in the 

literature, but little consideration has been given to the cause of 

this pattern: 

Band saws, like any other power saw, have certain 
pecu liar traits that are characteristic of the saw and its 
method of operation. One of these is known as 
"washboarding," meaning that the blade leaves a 
characteristic mark in the surface of any wood it cuts. 
This may be slight or heavily pronounced, but a wavy 
pattern will be there no matter what is done. Some 
control over the amount of washboarding can be obtained 
through a choice of blades. The smoothest cuts are made 
possible by choosing a blade with minimum set, which 
will cut down on the washboard effect (Consumer Guide 
Editors 1978:105). 

The editors's statement alludes to the cause of harmonics by 

stating that minimum set create reduced harmonics. This is a 

correct assumption since they are reflections of blade drift on 

the kerf floor, and wide to narrow aspects of blade drift are 

directly related to tooth set. 

Up to now, blade drift has only been considered when 

examining false start noors, but tl1e development of these 
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features cannot be ignored as the blade progresses through the 

bone. It is the wide to narrow aspects of horizontal blade drift in 

kerf floors that form the peaks and valleys (washboarding) in 

cross section, where a peak in cross section corresponds to a 

wide aspect (or islands if present), and a valley corresponds to a 

narrow aspect of a floor. Since harmonics are a by-product of 

blade drift, they must also be directly related to the distance 

between teeth. Measurements of harmonics are identical to 

measurements of blade drift. Distance between peaks and valleys 

is equivalent to distance of two teeth (again see Figure V-35). 

Distance between direction changes, or in this case, between a 

peak and a valley, is the distance of one tooth. It is exceedingly 

important that these measurements are taken parallel to the 

direction of stroke, or on the same plane as the residual kerfs. 

Figure V-37 is a photograph of a human tibia sawed by a chef 

saw. This saw is classified as 11 pOints per inch or 10 teeth per 

inch. The rule in the photograph measures 0.2 of an inch from 

valley to valley, or 0.10 from valley to peak. This corresponds 

exactly to the distance of the saw teeth. 
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Figure V-37. Photograph of a human tibia sawed by a chef saw. 
This saw is classified as 11 points per inch or 10 teeth per inch. 
The rule in the photograph measures 0.2 of an inch from valley to 
valley, or 0.10 from valley to peak. This corresponds exactly to 
the distance of the saw teeth. Note that the direction of the 
cutting stroke is right to left. 
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Remember that blade drift is defined as occurring most 

frequently at initial or terminal aspect of the cut. This was 

attributed to the blade cutting little bone at this point, which 

allows the blade to drift. This is evident when examining 

numerous false starts made by the same saw but at different 

depths. In some instances, bone islands cease to be created 

because of the restriction put on the blade as it becomes 

immersed in material. This same principle applies to harmonics, 

in that they can usually be measured only at the initial cut or 

terminal cut. The widest portion of bone cross section generally 

has no harmonics, with a few exceptions. 

Direction of Saw Cut 

Establishing direction of cut on bones is feasible and 

contributory to crime scene investigation. However, "direction," 

when pertaining to saw marks, may be misleading unless clearly 

defined. Direction of cut indicates two separate saw actions, the 

direction of blade progress, and the direction of blade stroke 
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(Figure V-35). Direction of blade progress is the plane of 

advancement from the initial contact to the terminal cut. 

Direction of blade stroke is the direction of each stroke, whether 

it is passive or cutting. So direction of cut refers to the (1) 

direction that saws progressed to create kerfs or residual kerfs 

or (2) direction that continuous or reciprocating saw blades must 

take for a tooth to cut or chisel. Therefore the direction of 

stroke produces residual kerfs, while direction of cut is the saw 

progress, advancing perpendicular to residual kerfs. 

Direction of Blade Progress 

The most difficult aspect of determining accurate direction 

of saw cut, is allowing for all variables that influence saw 

actions. Indicators of direction of saw progress center on the 

false start and break away spur. Initial cuts are seldom 

perfectly devoid of stray striae (false starts), where individual 

teeth strike and incise material, or where actual kerfs are 

abandoned for another cut. The plane formed between the false 

start and the break away spur or notch gives the precise direction 
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of saw progress. Direction of blade progress is perpendicular to 

stroke and tooth striae (See Figure V-35, middle figure, where 

the arrow indicating "Direction of Blade Progress" begins at the 

false start, or initial cut, and ends at the break away spur, or 

terminal cut. 

Direction of Blade Stroke 

Cutting stroke is defined as a continuous action or a single 

direction of a reciprocating action that produces a majority of 

the cut. If an equal force is applied to a reciprocating blade, the 

direction of stroke cutting or chiseling the most bone is the 

direction of the cutting stroke. Cutting stroke is determined by 

two variables. The primary variable (as discussed with Figure V-

1) is tooth design. Most teeth are designed to bite material when 

moving in a particular direction. A secondary factor is sawing 

technique, which becomes evident when tooth design allows 

cutting in either direction, called here push/pull. Push/pull 

designed saw teeth are essentially peg teeth designed to take the 

same bite on the push or pull. Exit chipping may occur more 
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frequently on one surface over another due to sawing technique, 

where the emphasis is placed on the push or pull. 

Direction of cutting stroke may be indicated by numerous 

factors. The most universal, and easily qualified is entrance 

shaving and exit chipping. (Keep in mind here that the terms 

entrance and exit refer to blade stroke. Initial and terminal refer 

to blade progress). As the saw enters the side of the bone, the 

blade many times shaves the bone entrance to give it an almost 

polished and scalloped appearance. This shaving can be due to 

twisting of the saw such that the blade is not allowed a direct 

path into the kerf, but more often it is simply due to the tooth 

set being wider than the blade. forcing each tooth to cut a kerf. 

Seldom is there chipping as the tooth enters the bone, and if 

present, it is difficult to observe. 

Exit chipping is variable in saw cuts, but is present with few 

exceptions. Even in saws designed with no front or back to the 

teeth (e.g. peg toothed pruning saw). exit chipping will occur on 

the side of the stroke emphasized by the individual sawing. In 

other words, if an individual is accustomed to using Western 
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saws that generally cut on the more powerful push stroke, the 

push will be emphasized and chipping will be produced on the 

push stroke. Power circular saws appear to complicate these 

features somewhat by creating chipping on the initial aspect, the 

blade entrance edge and the exit edge. Again, the largest chips of 

bone are consistently removed on blade exit. 

The autopsy saw will have exit chipping if the saw is being 

pushed along an edge of bone. If little pushing occurs and the saw 

is allowed to progress straight into the bone as it cuts, miniature 

chipping can occur on all edges. 

Examination of bone on each end of the striae will reveal 

entrance shaving versus exit chipping and indicates direction of 

blade cutting stroke. Difficulties arise in the interpretation of 

these features. It is not possible to separate saw user 

preference versus the design of the saw. Since most saws do 

have a tooth designed to cut in a certain direction, pronounced 

chipping generally does indicate the direction of teeth exiting on 

the cutting stroke. 
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While the direction of the cutting stroke is detectable, it is 

still not possible for the examiner to determine positively that 

this occurs on the push stroke. Even though most Western saws 

historically have been designed to cut on the push stroke, saws 

exist that cut on the pull or that can be assembled to cut on the 

pull stroke. These primarily include pruning, Japanese, and any 

saw that allows the blade to be attached in either direction. 

Even though the cutting stroke can be separated from the 

passive stroke, it is still not possible to indicate positively 

which stroke is the push or pull. The only exceptions to this may 

result from extenuating circumstances. Bonte (1975) discusses 

the diagnostic value of the handle hitting the material at the end 

of a stroke. While no evidence of saw handle impact was 

detected in this study, this would readily indicate the side the 

saw handle is located. 

Examination of kerf floors also may give clues to cutting 

stroke direction. As teeth drift in the kerf, certain blade designs 

allow the formation of bone islands at the widest portion of 

drift. These islands, while quite symmetrical in appearance, do 
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tend to begin abruptly on the formative edge, and are more 

tapered at the terminal end. This subtle pattern can be seen in 

Figure V-17 with close examination, where the islands form at 

the top and trail off at the bottom. 

Harmonics have been discussed as the peak and valley by­

product of blade drift. These features are not parallel to the 

direction of stroke or progress. Rather they can be visualized as 

a feature dependent on the direction of stroke and progress. 

Harmonics are oblique to each, but always progress from the 

initial to the terminal aspect of the cut, in the direction of the 

cutting stroke, as opposed to the passive stroke (see Figure V-37 

where the direction of progress is top to bottom and cutting 

stroke direction is right to left). 

Separating Hand from Power Saws 

Introduction 

Separating classes of saws by saw cut characteristics was 

attempted by Symes and Berryman (1989a). They used 12 
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characteristics coded present or absent and tested correlation 

between the groups with a single-linkage cluster analysis. The 

characteristics used in this study are listed in Table V-2. The 

results, duplicated in Figure V-38, indicated that power and hand 

saws, shared fewer characteristics between groups than within 

groups, suggesting that saw classes do differ in class 

characteristics of saw cuts. 

Differences between hand and power saws can be examined in 

two ways. The first and most obvious differences occur because 

of manufacturer's design. Power saw blades are manufactured to 

accommodate added stress of torque, leverage and high speed. 

Therefore power saw blades are short in length and usually 

thicker with short teeth and smaller gullets. Since this design 

inhibits the creation of bone islands, no power saws in this study 

reliably created this feature except band and autopsy saws. 

These power saws are designed to efficiently saw hard material 

with the rare combination of thin blades with wide sets. Except 

for these two saws, power saws create no bone islands and can 
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Table V-2. Saw mark characteristic codes used to test 
differences between hand and mechanical powered saws in 1989. 

Cut Characteristic Coding With Brief Explanations 

1. IMPACTED BONE DUST: 
O=absent 
1 =present--Particles of bone deeply seated into cortical spaces or 

pores of lamellar bone. 

2. RESIDUAL KERF DIRECTIONAL CHANGES 
O=multiple directions 
1 =uniform direction 

3. RESIDUAL KERF SPACING 
O=nonuniform--irregular spacing, frequently characterized by abrupt 

changes in kerf space across the cut surface 
1 =uniform spacing--appear regularly spaced across the cut surface, 

or progressively increase or decrease 
NOTE: if there is any doubt in uniformity, it must be nonuniform. 

4. RESIDUAL KERF SHAPE 
O=straight 
1 =curved--implies a radius 
NOTE: unless it is obviously curved with a consistent radius, it must be 

considered straight 

5. ENTRANCE OF CUT 
O=straight--no angulation from the sectioning plane 
1 =beveled--distinct angulation from the sectioning plane at the pOint 

of entry, and distinguished from chipping by eburnation, i.e. 
"angled and eburnated" 

NOTE: if not obviously beveled with eburnation, it must be considered 
straight 

6. UNDULATION OF CUT SURFACE (HARMONICS) 
O=non-undulating or non-uniform undulations 
1 =uniform undulations in a parallel pattern 
NOTE: if patterning is questionable, it must be considered non-uniform 
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Table V-2. (continued). 

Cut Characteristic Coding With Brief Explanations 

7. EBURNATION 
O=absent 
1 =present 
NOTE: If eburnation is not obvious and predominant, it is considered 

absent 

8. CORTICAL SURFACE CHIPPING 
O=absent 
1 =present--repetitive confluent, adjacent chips removed 

9. LIPPING 
O=absent 
1 =present 
NOTE: lipping is absent if not obvious 

10. KERF FLOOR 
O=flat 
1 =curved or stepped 

11. PAINT CHIPS 
O=no paint 
1 =paint flakes 

12. CURVATURE OF BONE ALONG THE PLANE OF THE SAW 
O=no curvature (flat cut) 
1 =noticeable curvature on cut surface (not flat under straight edge) 

Source: Symes, Steven A. and Hugh E. Berryman, 1989a, Dismemberment and 
mutilation: General saw type determination from cut surfaces of bone. 
Paper presented to the 41 st Annual Meeting of the American Academy of 
Forensic Sciences, Las Vegas, NV. 
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SINGLE-LINKAGE CLUSTER ANALYSIS OF SAWS 
USING SAW MARK CHARACTERISTICS 

0.6 0.7 0.8 0.9 1.0 

BAND ANATOMY (14 ppi) 

BAND COMPASS (23 ppi) 

BAND COMPASS (8 ppi) 

BAND PRUNING (4 ppi) 

... ---... ~ .... - BAND PRUNING (6 ppi) 

BAND ARCHED PRUNING (8 ppi) 

BAND CROSS CUT (10 ppi) 

.... -- BAND MEAT (11 ppi) 

... -- BAND BACK (11 ppi) 

1----...---- BAND HACI[ (19 ppi) 
_____ BAND COPING (15 ppi) 

I-----r--- POWER. RECIPROCATING (14 ppi) 

POWER RECIPROCATING (7 ppi) 

... ---- POWER CIRCUIAR (CARBIDE) 

.... --.... ---- POWER CIRCULAR (NON-CARBIDE) 

.... ---- POWER BAND (5 ppi) 

... ---- POWER AUTOPSY (23 ppi) 

.... --L ____ POWER. CHAIN (SMALL CHAIN) 

Figure V-38. Duplicated handout from Symes and Berryman 
(1989) illustrating attempts to classify hand versus powered 
saws based on 12 discrete characteristics. 

Source: Symes, Steven A. and Hugh E. Berryman, 1989a, 
Dismemberment and mutilation: General saw type determination 
from cut surfaces of bone. Paper presented to the 41 st Annual 
Meeting of the American Academy of Forensic Sciences, Las 
Vegas, NV. 
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be expected to cut a wide kerf with a Class B or 0 shape (Figure 

V -1), and are limited in reach. 

A more valuable method of separating power from hand saws, 

other than by examining kerf size and shape, is by the 

examination of blade action. Power saw blade action is evaluated 

by consistency of cut, elevated energy transfer, and an increase 

in material waste. 

Consistency Of Cut 

Consistency of cut is anticipated in continuous cut power 

saws, where the blade continuously cuts material at high speeds. 

However, this consistency is evident in all power saws, even 

those with reciprocating actions. Consistency of cut is difficult 

to describe or measure, but easily illustrated. Figure V-39 is a 

cut created by a power reciprocating saw with a wavy set blade. 

This photograph illustrates the patterned effect to the cut and an 

increase in polish. The bone in Figure V-40 is a power 

reciprocating saw cut with an alternating set blade, 7 teeth per 
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Figure V-39. Cross section of human femur cut with a power 
reciprocating saw with a wavy set blade (18 teeth per inch). 
Notice the striae patterning and accentuated polish typical of 
wavy set blades and power saws. 
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Figure V-40. Cross section of human femur cut with a power 
reciprocating saw with an alternating set blade (7 teeth per 
inch). Notice the tooth hop striae patterning and harmonics. 
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inch. Close examination reveals a patterned tooth hop striae and 

patterned harmonics across the face of the bone. Stroke 

striations are essentially missing in power reciprocating saws 

since the length of stroke is just over an inch, and may not be 

long enough for the saw to establish a recognizable pattern 

before the direction is reversed. Figure V-36 is another example 

of a power reciprocating saw cut. While each is unique, all 

demonstrate a remarkable consistency of cut. This consistency 

is established and retained across the face of a cut. Any changes 

in patterns should be gradual except where the progress of the 

cut is stopped, then resumed. 

Increased Energy Transfer 

Increased energy transfer of power saws is due to increased 

tooth speed, saw weight, and torque. Initial cut areas on bone are 

commonly marred by scratches where the saw is working at high 

speeds but not actually getting a big enough bite on the material 

to create a kerf. High speeds also create an increased frequency 

of false starts. It is common to inadvertently jump out of the 
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kerf while sawing. If this occurs with a handsaw, it is a natural 

reaction to attempt to reinsert into the established kerf and 

continue cutting. However, when cutting with power saws, so 

little energy is expended by the individual sawing, it may be 

easier to create a new cut rather than attempt to find the 

original kerf. 

Despite the number of false starts, the direction of progress 

of cut appears uniform in power saws. These saws continue to 

cut as long as pressure is applied. Hand saws require pressure 

and reciprocating motion, all supplied by the user. Power saws 

should reveal more uniform cuts since pressure is easily applied 

without combining reciprocating motion. 

Increased weight and leverage in cut bone may be indicative 

of power saws. Weight of a hand held circular saw, or leverage 

that can be applied with a chain or a power reciprocating saw 

blade that is 8 to 20 inches in length, is often reflected by large 

exit chipping (produced when the front of a tooth exits the 

material), and large break away spurs. Increased weight and 

leverage also produce larger break away spurs and notches. This 
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occurs as the bone structurally gives away to pressure rather 

than allow teeth to cut the bone completely. Break away spurs 

and notches appear large in chain saw cuts. 

Another indicator of energy transfer is torque. Torque is 

responsible for bone eburnation; accentuated polish and burning 

of material through friction. Polish is created by obliterating 

residual characteristics of the original cut through extended 

contact of the blade to the bone. This contact may be due to a 

lack of set, high speed blade movement, blade bending in the kerf, 

blade binding, or any combination of these. Power saws, with 

increased speed and torque can eburnate bone if any of these 

factors occur for an extended time. 

Material Waste 

Power saws are generally characterized as wasteful of 

material. This may be accredited to the stout blade design or the 

"ease" of producing a cut. If power saw cuts are produced with 

little energy expended, it is likely that more cuts are produced 

and more material is wasted. 

145 



Criminalistics also consider sawdust comparisons a valuable 

diagnostic characteristic of saw mark analysis (see Bonte 

1975:318; Guilbeau 1991). While sawdust was not compared or 

analyzed in this study, greatest obvious differences in dust 

appears when comparing hand to power saws. 

greatly influences sawdust production since 

Increased speed 

teeth bite less 

material for the same amount of pressure applied, but more often. 

Therefore, in general, high speeds create finer sawdust. 

Type Characteristics of Saw Marks 

This research has dealt exclusively with class 

characteristics of saws expressed on cut marks. Type 

characteristics are considered rare and of limited value 

(California Department of Justice Firearms/Toolmark 

Identification Training Syllabus 1991 :582). Positive 

identification of saw marks involves the comparison of unique 

features resulting in sufficient agreement. Positive 

identification of a particular saw from tool marks is difficult for 
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a number of reasons. Saws by definition have teeth or 

interruptions in a blade. Saw marks are classified as striated 

tool marks where one object rubs over another object (AFTE 

Criteria for Identification 1990:276). A saw blade creates tool 

marks similar to many miniature tools rubbing over the same 

area where each proceeds to destroy previous features. 

Unique characteristics of saw cuts have been suggested to be 

limited to damaged or extremely worn saws, creating unusual and 

unique characteristics (Bonte 1975). Examinations of new saw 

blade cuts on bone revealed few patterns that could be classified 

as unique. Most unusual features generally were related to 

improper manufacturing techniques and therefore were not 

considered a type characteristic. 

Andahl (1978) also examines the possibility of matching 

paint residues left on the material from new blades. Paint found 

on a cut bone is indicative of a new blade while the color may 

enable the observer to narrow the possibilities of what saw blade 

was used. Figure V-41 is a sectioned bone cut with a new 
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Figure V-41. Sectioned bone cut by a new painted power circular 
saw blade. Large arrow indicates direction of saw progress 
while the small arrow indicates cutting stroke direction. Note 
the gray paint residue retained on the bone from the saw blade. 
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circular saw blade painted gray. While paint residue does limit 

the possibilities of saw subclass or types, it is still considered a 

class rather than a type characteristic. 
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CHAPTER VI 

INTERPRETATION 

Introduction 

Saws selected for this study are essentially a sample of saw 

subclasses and types. These saws fit at least one of two 

catagories, those that are readily available and affordable to the 

general public, and those that have potential to be used in a 

forensic setting, i.e. for cutting tissue and bone. 

This chapter will build on earlier chapters by applying 

principles of sawing action (Chapter IV) and examining the 

classifying characteristics (Chapter V) of individual saws in this 

study. This should allow the reader to apply much of this 

information to similar types of saws not specifically examined in 

this research. Tables 111-1 and V-1 contain specifics on saws and 

saw cuts examined in this study. Specific information from each 

of these will be summarized at the beginning of each subclass or 
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type of saw, along with unique or unusual information (in italics) 

that specifically applies to that saw. These abbreviated saw 

action specifications and saw cut characteristics will serve as a 

quick cross reference to the examiner attempting to obtain 

information on a specific saw. Saws are listed similarly to the 

overall saw classification outline in Table 11-1 and follow the 

same order as Table 111-1. Cross reference data will be followed 

by a brief summary of information that may make that specific 

saw unique or unusual. Kerf width refers to minimum kerf width 

and all teeth sizes listed below (unless otherwise stated) are in 

teeth per inch for consistency. All measurements listed are in 

inches. 

Open Saws 

"Crosscut" Carpenter Saws 

Saw Speci'fics Saw Cut Specifics 

Set: alternating Kerf Class: B L.I 
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TPI: 6.0 & 7.0 Minimum Kerf Width: 0.06 

Tooth Distance: 0.14 & 0.17 Blade Drift in Kerf: yes 

Tooth Type: chisel Cut Surface Drift: yes 

Cut Direction: push 

Power: hand 

Exit Chipping: 

Harmonics: 

yes 

occasionally 

The two saws examined in this study are similar in 

construction, differing only in quality, where one saw is standard 

quality and the other is premium quality, signified by differences 

in wood and steel quality and craftsmanship. 

The primary distinction of crosscut saws in definition (see 

Figure 11-1) is that the teeth are sharpened at an angle (see for 

example Cunningham and Holtrop 1974:73-75, Jackson and Day 

1978:76; Stanley Tool Guide, No date). This sharpening creates a 

distinctive Class C (Figure V-1) kerf cross section and makes 

this type of saw quite diagnostic from rip saws. Other 

identifying characteristics of crosscut saws include size (7 to 8 

PPI) and tooth shape (reduced rake angle). 
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The "crosscut" saws examined here fit the appropriate tooth 

size and raker angle for crosscut saws. but each lack angled 

filing on the front of the teeth (Figure VI-1). Each produce a kerf 

cross section of Class B, typical of rip sharpened saws. 

case, these saws are classified as crosscut by 

In any 

their 

manufacturers. This discrepancy should be recognized and this 

should be a reminder to examiners that saw cuts exhibiting rip 

saw features may still be identified as crosscut by 

manufacturers. "Crosscut" saws are characterized by deep 

striae in cross section with recognizable stroke and tooth striae. 

Problems may arise with these saws using floor dip as a 

measurable feature for determining tooth distance. Figure VI-2 

illustrates what appears to be two separate patterns of dip in the 

kerf, where the larger pattern is the actual representation of the 

tooth points digging into the material. No conclusive explanation 

of this discrepancy can be given. It is possible that these large 

teeth are also cutting on the return stroke, creating dips on the 

return stroke. These theoretical "return stroke dips" are shallow 

153 



Figure VI-1. Photograph of three saw blades with blade A being a 
rip saw (5.5 points per inch), B is a premium quality "crosscut" (7 
points per inch), and C is a standard quality "crosscut" (6 to 7 
points per inch). While Band C differ from the top rip saw in 
tooth size and shape, all saws have 90 degree filing on the 'front 
of the tooth. 
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Figure VI-2. Photograph of kerf floor dip patterns created by a 
carpenter saw, 6 teeth per inch. The right (black) arrows point to 
all dip characteristics along the border of this kerf. The outlined 
arrows on the left point to the actual floor dip registering 
distance between teeth (0.17 of an inch). This demonstrates the 
potential error that can occur when attempting to assess 
distance between teeth with floor dip. 
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and do not obliterate the existing dips, but rather blend in or 

double the number of dips per inch. The teeth may also be hopping 

out of the kerf prematurely where the blade is essentially 

skipping across the bone surface or biting the bone at an angle. 

Floor dip, especially with this type of saw needs to be regarded 

with caution, and should be used with other measurable features 

to corroborate the distance between teeth. 

There is the possibility of black paint from a labeled saw 

being retained on a cut surface. 

Rip Saw 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: B L.II 

TPI: 4.5 Minimum Kerf Width: 0.05 

Tooth Distance: 0.22 

Tooth Type: chisel 

Cut Direction: Push 

Power: hand 

Blade Drift in Kerf: yes 

Cut Surface Drift: yes 

Exit Chipping: 

Harmonics: 
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Bone islands appear on kerf floors although determination of 

direction of cutting stroke by looking at bone islands is difficult. 

This saw is characterized by large teeth producing large exit 

chips. Blade drift and harmonics are recognizable, even in this 

large toothed saw. 

Since manufacturer's "crosscut" saws have been shown to 

actually have rip shaped teeth, caution must be used in attempts 

to separate rip from crosscut saws. There is the possibility of 

black paint from a labeled saw being retained on a cut surface. 

Backed Saw 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: B L.II 

TPI: 11.0 Minimum Kerf Width: 0.06 

Tooth Distance: 0.09 

Tooth Type: chisel 

Cut Direction: push 

Power: hand 

Blade Drift in Kerf: yes 

Cut Surface Drift: accentuated 

Exit Chipping: 

Harmonics: 
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There is remarkable surface drift. This may be attributed to 

the design of the saw, where file handled saws in this study 

appeared to show more surface drift. This backed saw also 

exhibits deceptive floor dip. Once again, floor dip measurements 

indicate a tooth distance of half the real measurement, requiring 

caution for this characteristic. 

There is the possibility of black paint from a labeled saw 

being retained on a cut surface. 

Dove Tail 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: B L.I 

TPI: 14.0 Minimum Kerf Width: 0.04 

Tooth Distance: 0.07 Blade Drift in Kerf: yes 

Tooth Type: chisel Cut Surface Drift: accentuated 

Cut Direction: push/pull Exit Chipping: yes 

Power: hand Harmonics: yes 

This speCialty saw is designed for detailed cabinet work. 

Because of this emphasis, it cuts equally well on the push or pull 
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stroke. In other words, these teeth are peg shaped and are not 

designed or sharpened to cut more efficiently in either direction. 

Even with this design, bone sawed with this instrument exhibit 

entrance shaving and exit chipping. As mentioned above, this is 

an example of exit chipping due to individual sawing technique, 

where the person sawing prefers to emphasize, in this case, the 

push stroke. 

The dove tail saw analyzed in this research is on the large 

end of the scale for this type of saw (14 TPI) where Table 11-1 

lists saws of this type as falling in the range of 15 to 21 points 

per inch. Dove tails with smaller teeth will likely behave 

similarly to fine toothed bow saws. This has been confirmed by 

the observation of an occasional rounded kerf floor corner. 

While no dove tail saws were witnessed to have painted 

labels on the blade, it is likely that some brands of this saw can 

leave black paint on a cut surface. 
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Pruning Saws 

Arched Pruning Saws 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: C ... 

TP I: 6.0 & 7.0 Minimum Kerf Width: 0.08 

Tooth Distance: 0.17 & 0.14 Blade Drift in Kerf: yes 

Tooth Type: cut Cut Surface Drift: yes 

Cut Direction: pull Exit Chipping: yes 

Power: hand Harmonics: occasionally 

Typical of large toothed saws is the common occurrence of 

numerous false start striations where there is difficulty in 

getting a kerf started. Kerf floors immediately indicate Class C 

(crosscut) shape with a wide to narrow pattern indicating 

distance between teeth (Figure VI-3). There is the possibility of 

black paint from a labeled saw being retained on a cut surface. 
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Figure VI-3. Photograph of false start in human bone created by 
arched pruning saw (7 teeth per inch). Note the Class C (convex 
floor cross section) indicating crosscut filing of saw teeth. 
Arrows indicate wide to narrow to wide aspects of kerf allowing 
accurate determination of distance between teeth (0.14 of an 
inch). 
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These large toothed saws also leave characteristic 

patterning of tooth striae. These striae may produce a slightly 

bending contour due to the arched shape of the blade, but this is 

so gradual that it is difficult to see, much less quantify. 

These residual kerfs, at first appearance, are a confused 

shuffle of striae, with seemingly no definable pattern. But closer 

examination reveals a somewhat predictable configuration, where 

the shape of striae change as the saw progresses through tubular 

bone. The initial aspects of this large toothed saw as it cuts 

through tubular bone revel wavy striations characteristic of 

large toothed saws. As the cut progresses into the marrow 

cavity, the saw encounters two narrow pillars of bone, so instead 

of teeth traveling through a long flat kerf, these large teeth 

encounter these individual pillars of bone. This bone is often 

narrower than the distance of two saw teeth, thus the teeth are 

raking this material as they bounce over the pillars. This 

bouncing or patterned shuffle is visible in Figure VI-4 where the 

162 



Figure VI-4. Illustration of sawed bone cross section created by 
an arched pruning saw (7 teeth per inch). Large arrow indicates 
direction of cut progress. Notice the patterned shuffling 
appearance at the level of the marrow cavity as the large teeth 
hop over these narrow aspects of bone. Striae are straight or 
wavy at the initial (top) and terminal (bottom) aspects of the 
saw cut. 
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striae are wavy at the top and bottom, but hop at the level of the 

marrow cavity. Keep in mind that this raking pattern is quite 

unpredictable since there are two pillars of bone at this level of 

cut for these large teeth to encounter. Accentuated raking at the 

level of the marrow cavity may also produce increased exit 

chipping as the saw seems to require more power to continue the 

progress through the bone. Guilbeau (1989:21) suggests that this 

chipping will be evident on the inner marrow cavity as well as 

the exit area of the cortex. 

Frame Saws 

Buck Saw: Peg and Lance Toothed 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: C .... 

TPI: 4.0 Minimum Kerf Width:0.04 & 0.10 

Tooth Distance: 0.25 & 0.33 Blade Drift in Kerf: yes 

Tooth Type: cut Cut Surface Drift: accentuated 
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Cut Direction: push/pull 

Power: hand 

Exit Chipping: 

Harmonics: 

yes 

yes 

These frame saws are designed for cutting green logs. Frame 

saws are designed to put tension on the blade to allow a narrower 

blade. Note that these frame saws are consistently 0.03 of an 

inch thinner than pruning saws. Therefore, minimum kerf widths 

range as narrow as 0.04, but because of these teeth being long 

and thin, they can distort to form a kerf 0.10 of an inch. 

The lanced tooth saw is essentially identical to the peg 

toothed saw except for every fifth tooth is a raker tooth. Each 

saw has a Class C kerf cross section but the lance toothed saw 

may exhibit the truncated forms of kerf floor (see Figure V-1, 

Class C, variants 2 and 3). 

Note that these teeth are even larger than those of pruning 

saws mentioned above. Therefore the patterned shuffle discussed 

for arched pruning saws also applies to these bow saws, where a 

different shape of striae appears at the level of the marrow 

cavity as opposed to the initial and terminal aspects. 
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There is the possibility of black paint from a labeled saw 

being retained on a cut surface. 

Fine Toothed Bow and Open Saws 

Coping Saw (FTBS) 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: A'" 

TPI: 16.0 Minimum Kerf Width: 0.04 

Tooth Distance: 0.06 Blade Drift in Kerf: yes 

Tooth Type: chisel Cut Surface Drift: minimal 

Cut Direction: push or pull Exit Chipping: yes 

Power: hand Harmonics: yes 

Alternating set blades in FTBS react in bone similarly to 

larger saws, only on a smaller scale. Crosscut shape and filing is 

not present in these saws since they have such small teeth. 

Coping saws are designed to cut around corners and are 

therefore used for various small carpentry projects and to cut 

scrolling and fretwork on instrument sounding boards (Consumer 
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Guide Editors 1978:39). This blade can be mounted to cut on the 

push or pull, depending on the project. 

Even though the coping saw is designed to cut on the curve, 

this saw produced 10 cuts in this study that had very little cut 

surface drift. Potentially this saw should be able to change 

directions in mid cut. 

Label markings are evident on the bone when using a new 

blade. 

Hack Saw (Alternating Set) 

Saw Cyt Specifics Saw Specifics 

Set: alternating Kerf Class: A'" 

TPI: 18.0 Minimum Kerf Width: 0.03 

Tooth Distance: 0.06 

Tooth Type: chisel 

Cut Direction: push 

Power: hand 

Blade Drift in Kerf: yes 

Cut Surface Drift: minimal 

Exit Chipping: yes 

Harmonics: no 

Alternating set hacksaws of all sizes exhibit tooth drift in 

the kerf. When viewing the surface entrance of the kerf, there is 
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patterned bending of the entrance edge to form the wide to 

narrow pattern as described for larger saws. Cross sections are 

again similar to alternating saws with larger teeth, exhibiting 

stroke and tooth striae. Fine toothed bow saw patterning is 

miniaturized due to the small teeth. The pattern produced in the 

floor of a kerf by a hack saw, for example, is metrically less than 

half the size of a typical crosscut carpenter handsaw. 

The key to alternating hacksaw identification is features 

that are small yet identical to larger alternating saws. 

Hacksaws are found with different colors of paint and black 

labels. This coloring can possibly be retained on a cut surface. 

Hack Saw (Raker Set) 

Saw Specifics 

Set: raker 

TPI: 18.0 

Tooth Distance: 0.06 

Tooth Type: chisel 

Saw Cyt Specifics 

Kerf Class: 

Minimum Kerf Width: 0.04 

Blade Drift in Kerf: no 

Cut Surface Drift: minimal 
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Cut Direction: push 

Power: hand 

Exit Chipping: 

Harmonics: 

yes 

no 

The initial entrance of the false starts when viewed 

superiorly is extremely straight. Kerf corners are similar to 

alternating set hack saws. Wide to narrow patterns of the kerf 

are all but invisible. There may be an occasional bend in the 

entrance edge but it does not appear symmetrically patterned. 

This creates an extremely straight sided kerf. Kerf cross section 

shape appears to be more concave than that of any other fine 

toothed saw, although this is difficult to measure. Cross section 

patterns consist primarily of stroke striae with tooth striae 

difficult to visualize. 

Hacksaws are found with different colors of paint and black 

labels. This coloring can possibly be retained on a cut surface. 

Hack Saw (Wavy Set) 

Saw Specifics 

Set: wavy 

Saw Cut Specifics 

Kerf Class: A'" 
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TPI: 24.0 & 32.0 Minimum Kerf Width: 0.03 

Tooth Distance: 0.04 & 0.03 Blade Drift in Kerf: minimal 

Tooth Type: chisel 

Cut Direction: push 

Power: hand 

Cut Surface Drift: accentuated 

Exit Chipping: yes 

Harmonics: no 

Wavy set FTBS are similar to raker set saws with a few 

exceptions. The initial entrance in false starts when viewed 

superiorly, is very straight edged like the raker, but close 

examination does reveal necking (narrowing of the kerf) in the 

middle of the length of a shallow false start (see Figure V-g, 

Kerf Floor C). This wide to narrow to wide pattern is similar to 

the alternating set blade drift, only this pattern is created by a 

series of teeth set to the right and left. This creates an 

observable necking of the kerf. 

False start cross sections are unique to the above saws in 

that the kerf seems to expand as it goes deeper into the bone. 

The initial entrance into the bone is often narrower than the rest 

of the cut. Kerf floors are flat (actually flat with a slight arch) 

and highly polished. Kerf floors also lack the halves or thirds 
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orientation of striae in alternating set blades. Rather, there 

appears to be fewer striae in the middle of the kerf with most 

occurring near the kerf corners. 

Cut surface cross section of bone has two major differences 

from alternating and raker sets. Cut surface drift is noticeable, 

where fluctuations occur as the blade progresses through the 

bone. These fluctuations may be the result of the blade design, 

where most blades are set in such a manner that every other or 

every third tooth is following in the cut trough of another tooth 

or literally following in each other's track. Wavy set teeth do not 

have this readily repeating pattern, rather the blade create a 

repeating pattern of groups of teeth following in the cut trough 

of groups of teeth. It is hypothesized by this author that this 

design does not allow the teeth to produce straight sided cuts 

like the alternating and raker sets. 

The second feature outstanding to wavy set cuts in bone is 

the polish of the bone. There is more polish on the cut surface 

using wavy set blades since there is no set administered to the 

teeth, rather the "set" is the bending of the blade and it is this 
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bending of the blade that smooths the material as the saw 

progresses through it. 

Hacksaws are found with different colors of paint and black 

-labels. This coloring can possibly be retained on a cut surface. 

Key Hole (Alternating Set) 

Saw Specifics Saw Cyt Specifics 

Set: alternating Kerf Class: B .... 

TPI: 10.0 Minimum Kerf Width: 0.06 

Tooth Distance: 0.10 

Tooth Type: chisel 

Cut Direction: push 

Power: hand 

Blade Drift in Kerf: yes 

Cut Surface Drift: accentuated 

Exit Chipping: 

Harmonics: 

yes 

accentuated 

This saw is identical to larger alternating set saws, with the 

exception of a short blade and a rather wide set for the width of 

the teeth. Since wide set produces remarkable harmonics, cut 

surface drift is noticeable in cuts made witl1 t~lis saw. This may 

be attributed to the short length of the blade necessitating a high 

number of strokes for each bone cut. It seems likely that an 
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increasing number of strokes In a hand powered saw allows for 

more variation in cuts. 

Paint or dark metal treatment markings are evident on the 

bone when using new blades. 

Key Hole (Wavy) 

Saw Specifics 

Set: wavy 

TPI: 25.0 

Tooth Distance: 0.04 

Tooth Type: chisel 

Cut Direction: push 

Power: hand 

Saw Cut Specifics 

Kerf Class: A'" 

Minimum Kerf Width: 0.05 

Blade Drift in Kerf: yes 

Cut Surface Drift: accentuated 

Exit Chipping: yes 

Harmonics: no 

Kerf cross sections, false starts, kerf floors, and cut cross 

sections of key hole saws are similar to other wavy set FTBS. 

Again, blade drift reflects distance of sets of teeth rather than 

individua.l teeth, and tooth width measurements generated from 

impressions chiseled into the kerf floor are difficult to calculate 

due to overlapping teeth distorting floor features. 
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Cut surface drift is again accentuated. This is attributed to 

the wavy set of the teeth and possibly the short length of the 

blade combined with a file type handle. 

Paint or dark metal treatment markings are evident on the 

bone when using a new blade. 

Wallboard, Drywall 

Saw Specifics Saw Cut Spec ifics 

Set: 

TPI: 

alternating Kerf Class: B U 

6.0 Minimum Kerf Width: 0.09 

Tooth Distance: 0.19 

Tooth Type: chisel 

Cut Direction: push 

Power: hand 

Blade Drift in Kerf: yes 

Cut Surface Drift: accentuated 

Exit Chipping: 

Harmonics: 

yes 

yes 

Wallboard saws have remarkably wide teeth for a small hand 

saw. Using blade drift to calculate distance between teeth is 

difficult on small rounded surfaces like tubular bone. Cut cross 

sections show stroke and tooth striae with a shuffling pattern in 

mid cut similar (but smaller) to the large pruning saws. The 
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wallboard saw produces the widest consistent kerf of all 

handsaws examined with the set width of this saw being 0.10 of 

an inch wide. This glaring feature must not be confused for 

power circular saw features since kerf cross sections and 

minimum kerf widths are similar in shape and size. 

The wallboard saw is not well adapted to sawing hard 

material although cuts on bone were accomplished for this study. 

This saw shows cut surface drift which may be attributed to the 

short blade and file type handle. 

Nest Saws 

Power reciprocating saw manufacturers design handles to 

attach to their power reciprocating blades. This universal handle 

adapted to numerous blades produce what is called nest saws. 

These blades are stout and cut on the pull stroke since they are 

designed for powered saws. These blades were analyzed in this 

study, since they are easily affordable and efficiently cut bone. 

However, results of this type of saw have been omitted since the 
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same mechanical properties appears to apply to these saws as to 

other alternating and wavy set hand saws of similar tooth size. 

It is important to remember that these blades differ only in the 

direction of cutting stroke (pull instead of push) and in increased 

thickness of the blades. 

New reciprocating blades often have a dark colored metal 

treatment on the blade, as well as painted labels, that may be 

rubbed onto a cut surface. 

Hand Specialty Saws 

Kitchen Chefl Meat Saws 

Saw Specifics Saw Cut Specifics 

Set: alternati ng Kerf Class: B 1..1 

TPI: 10.0 Minimum Kerf Width: 0.04 & 0.05 

Tooth Distance: 0.10 

Tooth Type: Chisel 

Cut Direction: push 

Blade Drift in Kerf: accentuated 

Cut Surface Drift: no 

Exit Chipping: accentuated 
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Power: hand Harmonics: yes 

The chef/meat saw appears to efficiently do what it is 

designed to do, cut meat, gristle and bone. While designed like a 

large hacksaw with 10 teeth per inch, this blade chisels the 

material clear and cuts very efficiently. The set is wide enough 

to avoid binding and there are often islands of bone created in the 

kerf. 

Blade drift for these saws is remarkable making tooth 

distance assessments uncomplicated. Harmonics, the cross 

section expression of blade drift, is also easily recognized and 

measured. Other features notable include large exit chipping, 

1:loor dip and measurable tooth width characteristics. 

Serrated Kitchen Knife 

Saw Specifics 

Set: none 

TPI: 8.0 

Tooth Distance: 0.13 

Saw Cyt Specifics 

Kerf Class: A II 

Minimum Kerf Width: 0.03 

Blade Drift in Kerf: no 
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Tooth Type: cut Cut Surface Drift: possible 

Cut Direction: push/pull Exit Chipping: minimal 

no Power: hand Harmonics: 

Serrated blades saw bone amazingly well in shallow cuts, 

having teeth that are filed on only one side of the blade. This 

design, combined with no set, makes binding inevitable as the 

blade saws deeper into the bone. Serrated saw teeth show little 

emphasis on exit chipping on the push or pull stroke. 

Knife blades taper from the back to the sharp edge. Most 

tapering appears to occur on the side of the blade that has tooth 

filing. Since there is no set, false starts are quite diagnostic 

because kerf cross sections mimic blade dimensions (see Figure 

V-1 Serrated). Blade drift is not observable. 

While borders appear to have minimal chipping, there is no 

obvious exit chipping. There is unusual chipping at initial corners 

of the kerf corresponding to the flat edge (as opposed to the 

tapered edge) of the blade (Figure VI-5). It is assumed here 
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Figure VI-5. Photograph of false starts in bone created by a 
serrated knife. Outlined arrows indicating tooth scratch, as a 
blade slid from the kerf. Small arrows point to initial entrance 
chipping that occurs on the bone edge associated with the flat 
edge of the knife. Large arrows point to subtle lipping of bone 
created on the initial edge of bone corresponding to the tapered 
edge of the blade. 
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that the tapered edge wedges the knife into the material forcing 

pressure flakes of bone. This appears mainly on the side of the 

bone corresponding with the straight (non-tapered) edge of the 

blade (Figure VI-5, small arrows). Similar to this is lipping of 

the initial kerf corners, where bone is compressed as the blade is 

wedged into the material forming a lip on the outer surface of 

bone. This appears to correspond with the edge of bone cut by the 

tapered edge of the knife (Figure VI-5, large arrow). Therefore, 

this sma" sample of serrated knife cuts produce initial aspects 

of cut chipping and lipping, with the chipping corresponding to 

the flat edge, and the lipping corresponding to the tapered edge of 

the knife blade. On many experimental cuts, the knife slid 

sideways out of the kerf and the teeth created scratches 

corresponding to distance between the most prominent projecting 

teeth. Pressure flaking, lipping, and tooth scratches can each be 

seen in Figure VI-5. 

Another type of scratch is evident at one end of the kerf 

(Figure VI-6). Trailing scratches represent the knife blade being 
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Figure VI-S. Cross section false start view of serrated knife (8 
teeth per inch) saw cut on bone. Arrows mark three trailing 
scratches where the blade is rotated around the shaft or the 
blade tip slipped completely out of the kerf. 

181 



pulled out of the end of the kerf at the peak of the pulling stroke 

(Figure VI-S) and trailing down the side of the bone. This trailing 

scratch indicates the side from which the person is doing the 

sawing since it occurs on the side of the individual sawing. This 

feature can be confused for sawing marks on the bone if the knife 

is rotated half way around the bone while sawing, but these 

always appear in a straight line with the kerf, unlike the striae 

in Figure VI-S. 

Ryoba (Crosscut) Pull Saw 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: C .... 

TPI: 15.0 Minimum Kerf Width: 0.05 

Tooth Distance: 0.07 

Tooth Type: cut 

Cut Direction: pull 

Power: hand 

Blade Drift in Kerf: yes 

Cut Surface Drift: no 

Exit Chipping: yes 

Harmonics: yes 

This is a combination saw with two cutting edges, one edge 

has crosscut filed teeth and one side is rip filed (see below for 
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rip description). The blade between these two edges is thinly 

tapered to the middle to avoid binding. Japanese saws differ 

from other saws in numerous ways (Lanz 1985:13-17). The most 

noticeable difference is that these saws cut on the pull stroke as 

opposed to the push. It must be remembered that exit chipping 

will occur on the side of the person sawing. Japanese saws are 

manufactured harder since they do not need to be ductile on the 

push stroke, making these saws more brittle and more likely to 

break teeth or blades rather than bend. 

The narrower blade with minimal set of hardened teeth 

creates a narrower kerf that wastes less wood and demands less 

effort from the person sawing (Lanz 1985:13-17). Even the low 

quality Japanese blades cut bone with ease. 

Tooth and stroke striae are emphasized on bone due to the 

sharpness of the teeth and steep raker angle. 
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Ryoba (Crosscut) Pull Saw) 

Saw Specifics 

Set: 

TPI: 

Saw Cut Specifics 

alternating Kerf Class: B U 

6.0 & 8.0 Minimum Kerf Width: 0.05 

Tooth Distance: 0.12 & 0.17 Blade Drift in Kerf: yes 

Tooth Type: chisel Cut Surface Drift: no 

Cut Direction: pull 

Power: hand 

Exit Chipping: 

Harmonics: 

yes 

yes 

Refer to the Japanese Crosscut saw above for differences 

between Western and Japanese saws. 

Japanese rip saws have tall teeth with their size increasing 

from toe to heel (handle to far edge in Japanese saws). These 

large teeth create a patterned shuffle similar to the large 

pruning and buck saws, where tooth striae begin to jump mid cut 

in the area of the marrow cavity. 
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Gig Ii 

Saw Specifics 

Set: 

TPI: 

Tooth Distance: 

Flexible Saws 

Saw Cut Specifics 

Kerf Class: unclassified 

Minimum Kerf Width:O. 05 

Blade Drift in Kerf: no 

Tooth Type: Cut Surface Drift: accentuated 

Cut Direction: push/pull Exit Chipping: minimal 

Power: hand Harmonics: no 

Since this saw cuts with wrapped wire teeth, cuts are quite 

distinctive as illustrated in Figure V-2S. As these wrapped 

wires cut or abrade bone, movements in the wire create 

irregularities in the striae to give an occasional wavy appearance 

in the longitudinal axis. While these irregularities are very 

subtle and difficult to see, they are unique to other saws. 

Overall, striae from this saw are remarkably uniform. 

Stroke striae bend themselves around the break away spur leaving 

a non-fixed radius curvature, convex in shape. Cut surface drift 
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is limited only by the individual holding the saw. Flexible saws 

go in any direction pulled, so surface drift is remarkable with 

this saw. This unique saw has very few of the features discussed 

in Chapter V but is so unusual it is not difficult to interpret. 

Kerf floors are extremely concave and uniform. Gigli saw kerf 

cross sections have not been compared or classified like other 

saws since determinations of tooth size and shape are all but 

impossible. 

Rod Saw 

Saw Specifics 

Saw Set: 

Saw Cut Specifics 

Kerf Class: unclassified 

TPI: Minimum Kerf Width: 0.10 

Tooth Distance: Blade Drift in Kerf: no 

Tooth Type: Cut Surface Drift: accentuated 

Cut Direction: pu sh/pu II Exit Chipping: yes 

Power: hand Harmonics: no 

This grit impregnated blade inserted into a hacksaw frame 

creates a wide, smooth kerf with bending striae that could easily 
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be confused for a power saw to the untrained eye. Distinctive 

characteristics include an often scalloped entrance or exit edge. 

False start scratches do not look like teeth etching, and when 

impressions in the kerf floor are measured, no uniform tooth size 

can be calculated. Lipping at the initial cut surface (similar to 

the serrated knife) is present. Kerf cross sections are large with 

a concave floor, although no comparisons or classifications were 

made since tooth size and shape assessments are impossible. 

Striae have non-fixed radius curvature and bend slightly around 

the break away kerf leaving it convex shaped. Like the Gigli, this 

saw is likely to have noticeable surface drift. 

Medical Saw: Bone 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: B L.I 

TPI: 8.0 Minimum Kerf Width: 0.05 

Tooth Distance: 0.13 

Tooth Type: chisel 

Blade Drift in Kerf: yes 

Cut Surface Drift: yes 
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Cut Direction: push 

Power: hand 

Exit Chipping: 

Harmonics: 

yes 

yes 

There is slight polishing of cut surfaces from this saw 

suggesting that the blade is dragging and binding due to a lack of 

set. Bone edges appear to be abraded suggesting that this saw 

does a poor job of chiseling material it was designed to chisel. It 

would seem unlikely that all medical saws are designed to create 

such a crude cut. 

This bone saw cuts with actions similar to non-medical saws 

with comparable dimensions and shape. 

Medical Saw: Metacarpal 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: C .... 

TPI: 30.0 Minimum Kerf Width: 0.06 

Tooth Distance: 0.03 Blade Drift in Kerf: no 

Tooth Type: cut Cut Surface Drift: accentuated 

Cut Direction: push Exit Chipping: no 
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Power: hand Harmonics: no 

This is an unusual saw due to its tooth set, size, and shape. 

This wide blade essentially has staggered points erupting into an 

alternating pattern with no set. This blade is not adapted to 

large bones or deep cuts due to its limited set, and therefore 

exhibits no blade drift or harmonics. 

Power Circular Saws 

Tungsten Carbide Teeth/Piranha and Framer Blades 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: B U 

TPI: 0.8 Minimum Kerf Width: 0.11 & 0.09 

Tooth Distance: 2.26 & 2.22 Blade Drift in Kerf: no 

Tooth Type: chisel Cut Surface Drift: minimal 

Cut Direction: push Exit Chipping: yes 

Power: mechanical Harmonics: no 

These blades are very similar in design, as the above 

descriptions reveal. Tungsten carbide teeth possess an 
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undeniable hardness that allows teeth to be designed with a wide 

cutting edge. This overlapping cutting edge creates a smooth cut 

and eliminates the need for tooth set. The tip of the points of the 

Piranha blade are designed with a slight slope, alternating 

between each tooth. This slope gives the kerf cross section a 

somewhat convex shaped floor. Close examination reveals this 

floor shape is not due to angled filing of the teeth, and therefore 

does not make this a crosscut filed blade. Exit chipping is 

present in all circular saw blades but interestingly enough, there 

is also minimal chipping in the entrance and initial cut aspects of 

the kerf. This is likely the by-product of high energy transfer of 

t~lis fast moving circular blade. Blade drift and harmonics are 

not present due to the large spacing of the teeth and also the high 

blade speeds. Cut surface drift is minimal in circular saws. 

The most characteristic feature of circular saw cuts is the fixed 

radius curvature in striae. This bending occurs in the opposite 

direction of flexible saws forming a concave break away kerf. 

Tungsten carbide teeth on circular blades are unique in that 

they form extremely smooth cut characteristics. This is 
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sometimes disguised when the observer views bulky features, 

such as large exit chipping or the occurrence of occasional 

interruption striae (reflecting hesitation in the progress of the 

cut). However, with these features aside, tungsten carbide teeth 

create a cut that is unparalleled in cross section surface 

uniformity. 

Non Tungsten Carbide Teeth/Plywood and Combination 

Blades 

Saw Speci'fics Saw Cut Specifics 

Set: alternati ng Kerf Class: B U 

TPI: 7.0 & 1.8 Minimum Kerf Width: 0.08 & 0.11 

Tooth Distance: 0.16 & 0.56 Blade Drift in Kerf: no 

Tooth Type: chisel Cut Surface Drift: minimal 

Cut Direction: push Exit Chipping: yes 

Power: mechanical Harmonics: no 

Designs of non-tungsten carbide teeth are limitless, but they 

differ from tungsten carbide teeth in one major aspect. Tungsten 

carbide teeth are extremely hard and are able to maintain a sharp 
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edge for an extended period of time. Non-tungsten carbide teeth 

lack this hardness and are designed with a narrow cutting edge. 

This narrow tooth requires a wider set to prevent the blade 'from 

binding. Finally, this wider set produces a more variable cross 

section cut, in that individual tooth striae are observable to form 

a less uniform cut. Cut surface drift is minimal in circular saws. 

Again, the most characteristic feature of circular saw cuts is the 

fixed radius curvature in striae. These striae have a predictable 

bend that can be measured. This bending occurs in the opposite 

direction of flexible saws such that the break away kerf has 

concave contours. 

These saws also have exit chipping coupled with minor 

entrance and initial cut chipping. All non-tungsten carbide blades 

tested appeared to dull rapidly when cutting hard material. A 

reduced efficiency was noticed with each of these blades before 

10 cuts in bone could be made. 
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Abrasive Masonry Blade 

Saw Specifics 

Set: 

TPI: 

Tooth Distance: 

Tooth Type: 

Cut Direction: push 

Saw Cyt Specifics 

Kerf Class: 

Minimum Kerf Width: 0.14 

Blade Drift in Kerf: 

Cut Surface Drift: no 

Exit Chipping: accentuated 

Power: mechanical Harmonics: no 

This unique saw blade cannot be examined in terms of tooth 

size and shape and therefore was not compared or classified in 

terms of other saws. This blade did create a wide concave kerf 

floor with longitudinal striae that continue across the floor and 

up the walls. All striae, however, lack uniformity in spacing and 

dimensions. Bone eburnation is sometimes present due to the 

increased temperatures of this type of cutting. 
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Skip Tooth 

Saw Specifics 

Set: 

TPI: 

Power Band Saw 

Saw Cut Specifics 

alternating Kerf Class: B L.I 

4.0 Minimum Kerf Width: 0.04 

Tooth Distance: 0.25 Blade Drift in Kerf: yes 

Tooth Type: chisel Cut Surface Drift: minimal 

Cut Direction: push Exit Chipping: 

Power: mechanical Harmonics: 

yes 

yes 

This is a very versatile saw that combines high speed with a 

high tension thin blade to produce a saw that will cut most 

materials efficiently. Common blade types for band saws include 

the typical alternating. raker and wavy set with skip tooth or 

saber (hook tooth) designs. The particular blade examined here is 

a "skip tooth" alternating blade which essentially means that it 

has half the number of teeth per inch than most other blades 

fitting these specifications. Take special note the unusual 

features of these cuts, where this extremely narrow kerf 
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combined with power saw characteristics and a wide to narrow 

blade drift that indicates only 4 teeth per inch. 

False starts created with this band saw appear similar to 

fine toothed saw kerfs with very straight edges and necking in 

the middle of the length of kerf (Figure VI-7). This appearance is 

due to the skip tooth design of the blade. Close examination 

reveals a "stretched" alternating set pattern of wide to narrow 

with bone islands (very long and narrow) evident. 

Cross section patterns are very regular with patterns that 

can mimic stroke striae. By definition, stroke striae could not 

occur since this is a continuous cutting saw, but hesitations in 

forward progress, flaws in the blade support, or irregularities in 

the blade splice may create a patterned unevenness. 
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Figure VI-7. False starts in human bone created by an electric 
band saw with a skip tooth blade (4 teeth per inch). Notice the 
very straight orientation of the cut and the subtle blade drift 
creating the wide to narrow pattern with the right kerf narrow at 
0.25 and 0.75, and wide at 0.0 and 0.5 of an inch. This indicates a 
distance between saw teeth of 0.25 of an inch. 
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Electric Crosscut 

Saw Specifics 

Power Chain Saw 

Saw Cut Specifics 

Set: 

TPI: 

alternating Kerf Class: D ... 

0.7 Minimum Kerf Width: 0.25 

Tooth Distance: 1.50 Blade Drift in Kerf: no 

Tooth Type: cut Cut Surface Drift: accentuated 

Cut Direction: push Exit Chipping: 

Power: mechanical Harmonics: 

yes 

no 

This saw is obviously designed for soft materials, and 

therefore is not a well adapted saw for human bone. This poor 

adaptation is evident in the frequent false start striae where 

saw teeth slide over the bone surface until a kerf can be created. 

This large power saw with large liLli-shaped teeth transfers a 

tremendous amount of energy to the bone. This is displayed by 

the large exit chipping and break away spur or notch. 

There is no blade drift or harmonics but cut surface drift can 

be pronounced since teeth are sliding across the material at such 
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a high rate of speed but biting little. The kerf is very wide (kerf 

measu rements from six different set and size chain saws fell 

within the range of 0.25 to 0.32 of an inch) with a convex floor in 

crosscut designs. 

Power Reciprocating Saws 

Alternating Set Reciprocating 

Saw Specifics Saw Cut Specifics 

Set: alternating Kerf Class: B U 

TPI: 7.0 & 10 Minimum Kerf Width: 0.08 & 0.06 

Tooth Distance: 0.14 & 0.10 Blade Drift in Kerf: yes 

Tooth Type: chisel Cut Surface Drift: minimal 

Cut Direction: pull Exit Chipping: 

Power: mechanica.l Harmonics: 

yes 

accentuated 

Power reciprocating saws, as the name implies, cut with a 

reciprocating action. The length of blade stroke in most saws of 

this design is just over one inch. The Mikita saw utilized in this 

study had a length of stroke of 1.19 inches. Three different sizes 
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of blades were examined in this study to test for differences in 

tooth size and set. All reciprocating blades have similar shape 

with wide sharp teeth designed to cut on the pull stroke. This 

indicates that exit chipping occurs on the side of the bone closest 

to the individual holding the saw. This blade design also suggests 

that bone islands are rare due the stout nature of the blade. 

Basic cutting action of this power saw is similar to hand 

saws with similar blades. The obvious differences occur due to 

the powering of the blade. This high speed reciprocating action is 

quite diagnostic. Each of these blades create their own 

diagnostic features on the bone cross section. Figure V-40 

illustrates the striae from the largest of the blades examined 

here. The striae appear to be aligned in small arches across the 

bone. Figure V-36 shows the smaller toothed alternating set 

blade that produces incredible harmonics. This may be due to the 

length of the reciprocating stroke and the size of the teeth. The 

blade moves through a cycle of harmonics (drift) then 

reciprocates. Each of these saws exhibit blade drift. Stroke 

striae are not emphasized, but tooth striae are. 
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New reciprocating blades often have a dark colored metal 

treatment on the blade as well as painted labels that may rub 

onto a cut surface. 

Wavy Set Reciprocating 

Saw Specifics 

Set: wavy 

TPI: 18.0 

Tooth Distance: 0.06 

Tooth Type: chisel 

Cut Direction: pull 

Saw Cut Specifics 

Kerf Class: A'" 

Minimum Kerf Width: 0 .05 

Blade Drift in Kerf: minimal 

Cut Surface Drift: yes 

Exit Chipping: minimal 

Power: mechanical Harmonics: no 

Wavy set power reciprocating blades produce a predictably 

different pattern of cut than the alternating blades mentioned 

above. Wavy set blades are characterized as lacking harmonics 

and noticeable blade drift with accentuated polish. Figure V-39 

illustrates the polish and fine tooth striae produced by this saw. 
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New reciprocating blades often have a dark colored metal 

treatment on the blade as well as painted labels that may be 

rubbed onto a cut surface. 

Power Specialty Saws 

Autopsy Saws (Round and Large Sectioning Blades) 

Saw Specifics Saw Cut Specifics 

Set: alternati ng Kerf Class: B L.I 

TPI: 16.0 & 23.0 Minimum Kerf Width: 0.04 

Tooth Distance: 0.04 & 0.06 Blade Drift in Kerf: yes 

Tooth Type: chisel Cut Surface Drift: minimal 

Cut Direction: push/pull Exit Ch ipping: yes 

Power: mechanical Harmonics: yes 

Autopsy or cast saws are common tools in the medical field. 

They are designed to cut hard tissue without damaging soft 

tissue with a very quick motion and a short reciprocating action 

that extends only a fraction of an inch. 
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A Stryker autopsy saw with a "large sectioning blade" 

creates a smooth but complicated saw pattern (Figure VI-8). The 

cut is multidirectional, especially in large bones. This is due to 

the small cutting radius of the blade that cannot cut completely 

through the whole bone. Since the saw is designed to be held in 

the palm of the hand, direction changes are also enhanced. 

Harmonics are present which suggest that there is side to side 

movement of the blade in the kerf, even at these high speeds with 

minimal stroke lengths (see Figure V-18). The autopsy saw will 

have exit chipping if little pushing occurs and the saw is allowed 

to progress straight into the bone as it cuts, miniature chipping 

can occur on all edges. Cut surface drift occurs but it is usually 

a function of the blade being moved around the shaft of the bone. 

This saw exhibits the finest stroke and tooth striations of 

all saws studied. Close examination also reveals the short 

reciprocating action of the saw (Figure VI-8). 
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Figure VI-S. Sectioned human bone using a Stryker autopsy saw. 
Note the polish and short reciprocating motion features. 
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CHAPTER VII 

CONCLUSION 

Introduction 

Existing research in the examination of class characteristics 

of saw marks on bone is vague in terms of evaluating saw size, 

set, shape, or power source (see Bonte 1975; Guilbeau 1989; 

Symes and Berryman 1989a). This research has identified saw 

cut characteristics that distinguish basic class characteristics 

on bone. Information gleaned from these cut characteristics is 

applied to saw blade and tooth characteristics of size, set, shape, 

and power. These characteristics can be used individually or in 

combination, to narrow the number of possible saws that could 

potentially create a particular cut. This narrowing of the field of 

saws, allows the examiner to assess the class, subclass, or even 

the type of saw utilized in the cut. 
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This information permits the examiner to predict the 

suspected weapon or tool used in a crime. The ultimate potential 

of bone saw mark comparisons is the narrowing of the range of 

possible conclusions. 

Saw Blade and Tooth Size 

Saw blade and tooth size can often be predicted from 

numerous saw mark features. Individual saw tooth width can be 

calculated in many saws 'from kerf features or from the actual 

measurement of a trough carved by a saw tooth in the kerf floor. 

Blade set width (width of the set teeth) has been shown to be 

similar to minimum kerf width. This measurement can be 

calculated from false starts and occasionally break away spurs. 

Teeth per inch or the distance between teeth is an important 

saw characteristic since most saws are classified by 

manufacturers in terms of teeth or points per inch. Blade drift is 

one of the most common and easily identified features found in 

the false starts or break away spurs that indicate tooth distance. 

The wide to narrow pattern of blade drift in kerf width indicates 
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two striae direction changes, thus the distance of a single tooth. 

Three direction changes, or the measurement of wide to wide, 

narrow to narrow, or island to island, is the equivalent of the 

distance of two teeth. Bone islands are also important for 

indicating direction of blade stroke, where the islands appear to 

taper or trail off in the direction of the cutting stroke. 

Floor dip and tooth imprint are two other tooth per inch 

indicators in the false start or break away spur area. These 

features essentially re'nect the location of tooth points as they 

cut or are interrupted in mid-cut. Dip to dip or peak to peak 

measurements indicate the distance of one tooth in a saw blade. 

This feature is treated with caution in this study since 

overlapping cuts in the kerf may complicate these features. 

A similar feature in the cross section of a bone cut is tooth 

hop. This feature appears on the cut surface with some 

regularity. This feature is likely related to the blade hopping in 

the kerf as the teeth consecutively strike the bone edge. Tooth 

hop accurately reflects the distance of a single tooth, if 

measurements are made from peak to peak or dip to dip. 

206 



Tooth scratch is the product of a saw drawn from the kerf, 

allowing the teeth to scratch the bone surface. These features 

have been suggest to accurately represent the distance between 

teeth (Bonte 1975; Guilbeau 1989). This feature has been treated 

with caution in this research since differences in saw blade set 

in'fluence the interpretation of the number of teeth between the 

scratches. This feature accurately indicates the distance 

between teeth of a saw, but not the number of teeth. 

Harmonics is the name given to the vertical expression of 

blade drift. These features have been recognized in the 

literature, but have been largely misunderstood or ignored. An 

example of this is illustrated in Bonte's (1975:320, Figure 4) 

photograph of a saw cut surface with the blade positioned on the 

cut. While discussing the correspondence of tooth scratches to 

every other saw tooth, harmonic features are easily visible in the 

photograph. Each peak and valley line Lip perfectly with each 

tooth. Harmonics, like blade drift, are interpreted by direction 

change. Peak to valley or valley to peak represents the distance 

(two direction changes) of one tooth while measurement of peak 
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to peak or valley to valley corresponds with the distance of two 

teeth. All measurements must be parallel to tooth striae or the 

direction of stroke. 

Harmonics are also important as cut characteristics due to 

their durability. The specimens examined for this research were 

subjected only to simmering in degreaser. Specimens recovered 

by the forensic scientists can be subjected to endless numbers of 

taphonomic factors that deteriorate the bone, much less frail 

saw cut characteristics. A simple test of water and gravel 

action on saw mark features was attempted using a rock tumbler 

filled with water and gravel. Bones sectioned with a meat saw 

were subjected to differing amounts of time in the tumbler. 

Figure VII-1 shows a rather smoothed cross section of bone that 

has been allowed to tumble for 7.5 hours. While most features 

have been "smoothed," harmonics are still quite obvious and 

measurable. 
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Figure VII-1. Sectioned human bone subjected to 7.5 hours of 
tumbling in a rock tumbler intended to simulate river tumbling. 
Note the rather smoothed features along with the stili prominent 
harmonic ridges and valleys. 
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Tooth size is also indicated by tooth striae. Large toothed 

saws commonly exhibit a changing striae pattern in cuts of 

tubular bone. These striae are described as straight or bending in 

the initial and terminal aspects of a cut. Striae at the level of 

the marrow cavity begin to create a patterned shuffle as the 

teeth hop over the two sides of bone. This is a subjective 

observation but this pattern is indicative of teeth that are widely 

spread. 

Saw Tooth Set 

Saw tooth set is basically indicated by variations in kerf 

cross section, blade drift, and polish. Kerf cross sections have 

been classified into four major groups (Figure V-1). These groups 

are essentially dependent on tooth set and shape. Tooth set 

basically takes the forms of alternating, raker, and wavy, with 

raker sets varying on different forms in large buck saws than 

fine toothed bow and open saws. Alternating set is the most 

commonly found design in saws and is characterized by 

predictable blade drift in false starts and break away kerfs. Bone 
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islands are sometimes created in the wide aspects of this drift. 

The existence of blade drift with bone islands is a good indicator 

of alternating set. Raker patterns in larger saws may have 

remnant islands but they are generally modified by a shorter 

raker tooth. Usually wavy sets chisel out a polished concave kerf 

floor devoid of any features. These three types of set in fine 

toothed bow saws create a definable floor pattern (Figure V-9). 

Alternating set has the wide to narrow pattern. Raker set (where 

the raker is one out of every three teeth) produces very straight 

walls and parallel striae due to the lack of drift. Wavy set 

produces necking (rather than wide to narrow pattern) mid-way 

in a false start kerf, with a polished floor seemingly devoid of 

striae in the middle with most parallel striae occurring closer to 

the floor corners. 

Cut bone cross sections often times exhibit harmonics. 

These, like blade drift, are indicative of alternating set blades. 

Bone polish and cut surface drift characteristics are difficult to 

observe or measure and are attributed to many factors, usually 

related to the design of the saw and how the saw is powered. 
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Polish and cut surface drift are commonly present in wavy set 

saw cuts. 

Saw Blade and Tooth Shape 

Saw blade and tooth shape take many forms. These are 

indicated by numerous saw cut characteristics, The false start 

and break away spur cross sections reveal the type of filing on 

the front of saw teeth, where crosscut filing has a Class C or D 

shape and rip sharpened saws have a shape resembling Class A or 

B (Figure V-1). 

Cut surface drift, is likely the result of certain saw deSigns 

(listed here as shape). Surface drift may be increased due to the 

design of the saw handle, wavy set blades (where the bending of 

the blade instead of setting the teeth increases the change of 

progress of the saw), and saws adapted to cutting soft material. 

If wavy set characteristics are not in evidence, accentuated cut 

surface drift may suggest a large toothed saw designed for soft 

wood logs. Cut surface drift is usually reduced in power saws. 
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Hand Versus Mechanical Power 

Power saw blades are stout in design. These blades exhibit 

consistency of cut, elevated energy transfer, and an increased 

material waste. These features are present when examining cut 

bone false starts, break away spurs, and cut cross sections. Most 

power saws cut a wide kerf with a Class B shape. They show 

little cut surface drift, extremely smooth crosscut surfaces, 

large exit chipping and large break away spurs. The major 

exceptions to this are the band and autopsy saws, where each of 

these saws have small toothed blades with very subtle features. 

All power saws create tooth striae but seldom form stroke 

striae. This is due to the design of continuous cutting saws or 

reciprocating saws that have a very short stroke. Pseudo-stroke 

features are created by interruptions of cuts (hesitation marks 

within a cut), and defects or splices on continuous cut blades. 

High frequencies of initial cut scratches or false starts with 

increased polish and eburnation may also indicate a high speed 

cutting tool. Hand powered saws typically cut narrower kerfs 

with less exit chipping and less uniformity overall. Hand saws 
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exhibit stroke as well as tooth striae and readily change 

direction of stroke. 

Tooth striae contour with fixed radius curvature forming a 

concave break away spur is indicative of circular, autopsy and 

possibly chain power saws. Fixed radius striae producing 

convexly shaped break away spurs are created by arched hand 

saws, such as pruning saws. Non-fixed radius striae are typical 

of flexible saws like the Gigli or rod saw. 

Saw Cut Direction 

Certain features are indicative of how a bone was cut. The 

path from initial cut (false start) to terminal cut (break away 

spur) indicates the direction of blade progress. Direction of 

blade stroke is indicated by tooth and stroke striae. which are 

perpendicular to direction of progress. The direction of the 

cutting stroke (cutting with the front side of the teeth) is 

indicated by exit chipping. Passive strokes generally produce 

little chipping although circular saws did appear to create some 

entrance chipping. Most Western saws cut on the push stroke 
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while Japanese. pruning. and power reciprocating saws commonly 

cut on the pull stroke. Peg toothed saws (those with teeth 

designed to cut on the push or pull stroke) can exhibit exit 

chipping due to the technique of the individual using the saw. 

Determination of saw cut direction can be useful in different 

ways, but must be approached with extreme caution. Andahl 

(1978:45-46) examines a case in which human bones were 

severed using a hacksaw. Andahl describes not only the position 

of the body as it was mutilated, but also the order in which limbs 

were removed. While this information is of interest to 

investigators, its value is limited by its accuracy. There has 

been no method devised to positively indicate if a saw's cutting 

stroke is on the push or pull. There is no doubt that hacksaws are 

designed to cut on the push stroke, but the blades are 

interchangeable and can be mounted to cut on the pull stroke. 

Secondly, body position is always a difficult variable to assess 

since limbs can be manipulated into different positions, 

especially arms. 
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Saw cut direction also becomes complicated when dealing 

with unpredictable behaviors. Figure VII-2 is a photograph of a 

right femur from a medical examiner's case in which an adult 

White female was dismembered and deposited in a river. This 

bone at first glance reveals numerous diagnostic features. 

High frequencies of prominent striae at the bottom of the 

photograph show fixed radius curvature that bends into the bone, 

suggesting this was cut with a power circular saw, using a non­

tungsten carbide blade. This cut progressed from medial to 

lateral aspects of the bone. Since circular saws have a 

predictable blade action (the cutting stroke can only progress in 

one direction) and pronounced exit chipping, it is tempting to 

predict certain variables relating to the crime scene. The 

direction of striae curvature, location of the break away spur, 

and exit chipping suggest that the saw operator must have been 

standing on the medial side of femur with the body lying face 

down. 
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Figure VII-2. Photograph of a dismembered right femur belonging 
to an adult White female. Note the prominent bending striae at 
the right of the photograph indicating a power circular saw cut 
progressing from the medial to the lateral aspect of the bone. 
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However, close examination with angled light reveals striae 

that indicate numerous directions of cuts. Figure VII~3 is a 

duplicate of the hand drawing submitted in the descriptive 

analysis of this case. Note that there are numerous cuts on the 

bone demonstrating an unusual and unpredictable behavior with a 

saw. An examiner, viewing all evidence, should refrain from 

making concrete conclusions on body position and saw operator 

location since saw cuts on this bone indicate many directions, 

and possibly more than one saw (Symes and Berryman 1989b). 

Indicating Saw Features Through Cut Characteristics 

Numerous cut bone features have been shown to be direct or 

indirect indicators of some aspect of saw class, subclass, or type 

used in the cut. Just how important each feature is as an 

indicator of some dimension of the saw, is variable and dependent 

upon numerous factors. These factors may even include 

unpredictable variables, such as sawing technique. 
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Figure VII-3. Duplication of hand drawing from descriptive 
report on dismembered human remains. Note the numerous 
directions of cuts attributed to a single bone. (Drawing courtesy 
of Hugh E. Berryman). 

Source: Symes, Steven A. and Hugh E. Berryman, 1989b, 
Examination of tool markings on bone from a white female from 
Hamilton County, TN., Case Number FA89-49. Unpublished 
manuscript on file at the Shelby County Medical Examiners Office, 
Memphis TN. 
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Table VII-1 attempts to indicate the diagnostic value of each 

cut characteristic examined, in terms of saw blade and 

tooth size, set, shape, power, and cut direction. This table is 

useful as an indicator of cut characteristics and may be useful 

for the determination of a particular saw feature. It is 

interesting to note that numerous characteristics indicate saw 

size, a feature that is most valuable when comparing saws. 

Summary 

One would assume by the lack of literature on the subject 

that human dismemberment and mutilation with saws is rare, or 

that the topic generates little interest in the forensic 

community. However, this author's ongoing saw mark research, 

has resulted in the consultation or the examination of a total of 

nine dismemberment cases in the past four years. In each case, 

the forensic examiner requested a means of narrowing the range 
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Table VII-1. Evaluation of saw cut characteristics that contribute to saw blade size, set, 
shape, power, and saw cut direction. 

SIW 
Cut Characteristic Size Set Shape Power Cut Direction 

False Starts and Break Away Spurs ( X) ( X) X 

Kerf Cross Section Shape X ( X) X ( X) 

Kerf Floor Examination of FTBS" X 

Blade Drift X X X 

I'\) Kerf Width X X 
I'\) 
...... 

Tooth Trough Width X X ( X) 

Floor Dip X ( X) ( X) 

Tooth Imprints X ( X) ( X) 

Bone Islands X 

Cross Sections 

Tooth and Stroke Striae X (X) X 

Patterned Striae Shuffle ( X) 

Stria Contour X X 



Table VII-1. (continued.) 

Saw 
Cut Feature Size Set Shape Power Cut Direction 

Cut Surface Drift X X X 

Tooth Hop X 

Tooth Scratch (X) (X) 

Harmonics X ( X) X 

I\) 
Entrance Shaving 

I\) 
I\) Exit Chipping ( X) ( X) X 

Consistency of Cut X 

Energy Transfer X 

Material Waste (X) (X) 

Polish (X) ( X) 

" Fine toothed bow saws 
X Commonly contributory 

( X) Sometimes contributory 



of tools that could have possibly been used in the 

dismemberment. In every case, the forensic examiner requested 

added insight into criminal behavior. 

It is this author's opinion that the lack of literature in saw 

mark research is due to preconceived notions of the "limited" 

value of saw marks on bone as previously stated by 

criminalistics experts. The lack of substantial accomplishments 

in this area is likely related to difficulty in interpreting saw 

marks for class characteristics, and near impossibility of 

identifying a specific saw. The lack of positive results has likely 

been a deterrent of past research. 

Finally, Bonte (1975:323) identifies tool mark examinations, 

especially when applied to bone and cartilage, as a primary 

interest of the forensic physician since explanations of unnatural 

deaths include the determination of criminal action. It is this 

author's opinion that saw mark research in the applied field of 

Forensic Anthropology can produce researchers that are prepared 

to go beyond the descriptive level of collaboration with medical 

examiners, and confront all modified bone with an appreciation 
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for its potential forensic value, while contributing to an overall 

knowledge of bone as living tissue. 
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