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Abstract

Circle packings are configurations of circle with prescribed patterns of tangency. They relate to a
surprisingly diverse array of topics. Connections to Riemann surfaces, Apollonian packings, random
walks, Brownian motion, and many other topics have been discovered. Of these none has garnered
more interest than circle packings’ relationship to analytical functions. With a high degree of
faithfulness, maps between circle packings exhibit essentially the same geometric properties as seen
in classical analytical functions. With this as motivation, an entire theory of discrete analytic
function theory has been developed. However limitations in this theory due to the discreteness of
circle packings are shown to be unavoidable. This thesis explores methods to introduce continuous
parameters for the purpose of overcoming these difficulties. Our topics include, packings with deep
overlaps, fractional branching, and shift-points. Using the software package CirclePack, examples
of some previously non-realizable discrete functions in circle packing are shown to computational
exist using these techniques. Some necessary theory is developed including a generalization for
overlapping packings and some results for expressing singularities associated with faces.
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Chapter 1

Introduction

1.1 Background

Questions involving mutually tangent circles date back to the origins of mathematics and are among
some of the most elegant of the classical theorems. The Circles of Apollonius, Descartes’s kissing
circles, Sangaku puzzles helped give birth to mathematics. Though the golden age of geometry
rose and set with Hellenistic culture, geometry held a prominent place in mathematics deep into
the nineteenth century. Modern mathematics saw an explosion of diversity with its efforts split
between application in the natural world and deep generalizations. Geometry’s use in the applied
sciences had mostly been tapped, and so interest in the field fell as questions about connectedness
and boundary replaced those of length and angle. Thus it is somewhat ironic that first Topology
and then computational modeling has helped redirect mathematics to geometry.

Motivated in his search to solve the Poincaré Conjecture, Thurston employed hyperbolic
geometry, a product of the nineteenth century, to classify 3-manifolds. Thurston’s notes relate
the topology of 3-manifolds to the surfaces they support. The Geometrization Conjecture which
followed was the directing force of geometric topology for over three decades. Even after its proof
by Perelman, albeit by methods foreign to Thurston’s original insight, it continues to be a paragon
of geometric methods.

Along the way Thurston independently proved what is now known as the Koebe-Andreev-
Thurston Theorem (Theorem 1.3) as a crucial ingredient of his Geometrization program. This
seminal theorem along with other ideas foundational to circle packing were included in the infamous
Chapter 13 of his notes. However circle packing still did not garner much interest until a 1985
Purdue University conference [46] when Thurston suggested that circle packings could be used to
approximate Riemann maps from the plane to the unit disc (this was later proved by Rodin and
Sullivan [37]).

A burst of activity followed, and Circle packing has since gathered contributors from analysis,
topology, combinatorics, and geometry. Taken collectively it has been noted that their work gives
form to two distinct but not disparate veins. There are the analytic and combinatorial circle packers
who were born from Thurston’s talk. Connections to classical complex analysis exemplified through
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developing discrete analogues has been their focus. The other vein is more geometric and topological
in their aim. Finding inspiration in the pure aesthetics of the relationship between circles, their
topology, and combinatorics. Of these two groups this thesis clearly falls in the former, however a
fair amount of overlap will occur. For an excellent exposition of circle packing and its history, the
interested reader should see [10].

Examples of circle packings are shown in Figure 1.1 using circle packing’s unofficial mascot, Ken
Stephenon’s “Owl”. The circles in the figure are placed so that they are externally tangent. If
not stated otherwise, it is usually assumed that tangencies are fixed in this way. Indeed external
tangencies have become the standard even though substantial work has been done using overlaps.
The preference may be owing to the fact with overlaps similar results hold at a greater computational
cost. Additionally, sans a computer, they are more difficult to draw. Yet packings with overlaps are
very appealing and questions regarding them are still of much interest.

“Tangencies” can also be kept between non-intersecting circles. The distance being determined
by a more general idea called inversive distance which includes both overlapping and separated
circle packings, e.g., Figure 1.2. This idea was introduced by Philip Bowers and Stephenson as a
generalization of the K-A-T theorem in [13]; what has been called the Bowers-Stephenson conjecture.
They proposed that inversive circle packings of closed triangulations are (globally) rigid, i.e., radii
for circle packings are determined up to Möbius transformation by their triangulations. Using a
variational principle Ren Guo has recently shown local rigidity for inversive circle packings [24],
and Luo has used this result to prove the Bowers-Stephenson conjecture in the positive for closed
hyperbolic and Euclidean surfaces [32]. Even more recently Jiming Ma and Jean-Marc Schlenker
claimed to have found a counterexample for the conjecture on the sphere [33].

1.2 Overview

Circle packings here are configurations of circles in one of the standard geometries G = P, D, or C.
Traditionally, circles in a circle packing are placed according to an abstract simplicial 2-complex.
A desired angle sum is associated with each interior vertex, and a set of radii, a label, is computed
such that the sum of angles at each flower (see Figure 1.3) meets the target value. Typically it is
also assumed that a circle will be placed such that it is externally tangent to all of its neighbors.
Questions involving the computation of a label: Does there exist a label for this complex and targeted
angles? Is it unique? Can the associated circles be consistently placed in a geometry G?

When the complex is simply connected, all the above have been answered in the affirmative (see
[44] for details). Together these qualities allow simply connected circle packings to be used as the
foundation for a theory of discrete analytic functions. We follow a similar path with two additions.

First, in addendum to the target angles, radii are computed such that edges between circles have
prescribed inversive distances which include deep overlaps. The collection of inversive distances
for edges is called the edge assignment, denoted I; together with the angles A these two sets
of assignments are called the complex’s decorations. This raises issues about existence and
monotonicity, and it also imposes local constraints which translate to global constraints. Conditions
for a unique label to exist for target angles and edge values are investigated in Chapter 2.

2



Figure 1.1: Circle packings in C, D, and P. Each packing uses Stephenson’s “Owl” complex.

Figure 1.2: The Owl packing with three different set of edge assignments. These three packings have
identical complexes and border radii, but have different edge assignments of 0, 1, and 3/2 from left to right.

3



Circle

Tangent pair

Face

Flower

Packing (coherent motif)

Petal

Figure 1.3: Hierarchy of circle packing structures in a tangency packing.

Second, non-simply connected complexes are a major focus. Because radii have been found
meeting the prescriptions of a complex does not mean there is any consistent way to place the circles
in a geometry, i.e., for the radii to be realized as a circle packing. For simply connected complexes,
the radii form a circle packing when they do so locally. However this condition does not suffice for
non-simply connected complexes. This is covered in Chapter 3.

A label meeting the assignments of its complex may be a circle packing, or it may be nothing
more than an amorphous structure having no consistent layout. This is a motif. The inherent
discreteness of circle packing precludes creating analogues of certain classical functions (as seen in
Chapter 4). The use of motifs allow the description of structures which fail to be circle packings
within localized areas, yet they are circle packings elsewhere. These areas of ambiguity, to be called
generalized branching in Chapter 5, are like black holes where their interiors may be nonsense, but
when traveling safely around the outside, everything else appears like a normal circle packing.

Types of generalized branching are introduced in Chapters 6 and 7. The shift-points from Chapter
7 allow for continuous parameterization while preserving rigidity. In Chapter 8 generalized branch
points are used to manipulate inconsistent motifs into “circle packings” with confined sub-complexes
of generalized branching.

1.3 Fundamentals

Definition 1.1. Following this topic’s conventions (see [44]), the pattern of these circles will be
encoded in an abstract simplicial 2-complex, shortened to complex, which is (simplicially equivalent
to) a triangulation of an oriented topological surface. It is thus composed of vertices, edges, and
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oriented faces. It will be assumed that every complex is face connected and finite. The notation K
will be used to denote both a complex and its realization as a topological surface.

A complex is just an abstract combinatorial object. It is a set of instructions telling us how the
circles for a structure (like the one shown in Figure 1.3) are suppose to be placed in a geometric
setting. As such, complexes possess no geometric or metric information. This comes when actual
circles are associated with the complex and placed according to its pattern.

The collection of faces in a complex at a common vertex v is called the flower with nexus v. The
vertices neighboring this flower’s nexus are its petals. We will use ∼ to denote when vertices are
neighbors or when faces share edges. For example, vi ∼ {vj , vk} means that the vertices vj and vk
both neighbor the vertex vi.

In general we will use possession to indicate when a structure is an element of another structure,
e.g., v is the flower’s nexus. The names of these structures will be applied to both the abstract
complex and the circle configurations once they have been realized in a geometric setting (see Figure
1.3).

Given a complex K, denote its collection of vertices, edges, and faces with V , E, and F ,
respectively. Prefixes of “∂” and “int” will denote border and interior subsets of these collections,
respectively, e.g., ∂V and intV . Border edges are defined as those composed strictly of border
vertices; else they are called interior. Border faces are those composed of at least one border vertex,
otherwise they are called interior.

Inversive distance is a number encoding a relationship between circles; invariant to geometry,
this number specifies where a circle is to be placed relative to its neighbor. Details are provided
in Section 2.1 for now we write Dij for this distance. In C one might like to consider circles with
infinite radii, bounding hyperplanes. Though easy to draw, the added complication of dealing with
these special cases is cumbersome, and thus avoided here.

A label provides circles, a complex instructs which circles are neighbors, and the edge assignment
provides the inversive distance between neighboring circles. Let C(vi) and C(vj) be two circles in a
geometry with radii ri and rj given by a label R for two neighboring vertices vi ∼ vj in a complex K.
If the circles of C(vi) and C(vj) have a specified inversive distance then we say that the two circles
are contiguous. If a circle is placed (in a geometry) such that it is contiguous to each of its neighbors
we say that it has been placed contiguously. Contiguousness is meant to be a generalization of
tangency, which implies external tangencies.

Definition 1.2. A collection P = {C(vi)} of circles in G is said to be a circle packing for a complex
K with edge assignment I if

1. P has one and only one circle C(vi) associated with each vertex vi in K.

2. C(vi) and C(vj) are contiguous whenever vi ∼ vj in K.

3. Three circles C(vi), C(vj), C(vk) form a positively oriented triple in G whenever vi, vj , vk
form a positively oriented face of K.

A key result in circle packing is the already mentioned Koebe-Andreev-Thurston theorem:
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Theorem 1.3. K-A-T. Let K be a combinatorial sphere with edge assignment I ≡ 1. Then there
exists an essentially unique circle packing P for K in P.

By essentially unique it is meant that a packing is unique up to Möbius transformations. For
a proof see [44]. The existence and uniqueness of labels (with some assumptions on edge and
angle assignments) is the subject of Chapter 2. Most of Chapter 2 deals with basic results for
inversive packings with branch points, which have long been understood but have yet to appear in
the literature. Small generalizations are also made which will find use in Chapters 6 and 8, and
allow the concept to fit in nicely with the our overall theme. Along the way we hope to illuminate
some of the potential of these types of packings, why they present unique difficulties, and hopefully
allow some insight into further development.

1.4 Discrete Analytical Functions and Branching

Definition 1.4. A discrete analytic function is a map f : Q → P between circle packings that
preserves edge assignments and orientation.

Discrete analytic functions relate circle packings to classical functions in two important ways: as
analogues and approximations. Years of effort have shown that both can be done remarkably well.
For a summary see [43, 44]. The list of analogues is long and ever growing.

The following quote best summarizes the behavior of the approximations. “Classical analytic
functions map infinitesimal circles to infinitesimal circles; discrete analytical functions map real
circle to real circles [44].” This was the basic intuition behind Thurston’s conjecture. With a
discrete analogue formulated for a class of functions, increasingly fine combinatorics converge to
their classical counterpart, e.g., discrete polynomials converge to polynomials.

Combined these two connections allow circle packing to serve as a study of discrete analytic
functions. However it is more than an analogy. The K-A-T theorem has been shown to actually
imply the Riemann mapping theorem [26]. So circle packings can be seen to be fundamentally linked
to classical analysis.

If limited to using only locally univalent packings, like the ones seen in Figure 1.1, our discrete
analogues would be limited to locally univalent functions. Thus we need a version of branching.

Definition 1.5. A branch point of order n ∈ Z+ is an interior vertex v in a circle packing with an
angle sum of 2πn (see Figures 1.4 and 1.5).

Modeling discrete analytical functions via circle packings was first extended to non-locally
univalent packings by Tomasz Dubejko and Stephenson when they introduced branching using a
similar definition [18, 19, 12, 21, 20]. Classically a branch point of a multi-valued function is a point
of singularity wrapped with an arbitrarily small circuit. Branching is where key differences between
the classical and discrete setting quickly manifest, and here it can be seen right away.

Circuits in motifs will necessarily be chains of the motif’s discrete elements, i.e., vertices, edges,
or faces. Furthermore traditional circle packings have no analogue for discontinuity. Later a sort
of discontinuity will be inserted at “branch areas” using generalized branching, but this will be
for special cases of an already rich library of discrete branched analogues. Additionally branching
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Figure 1.4: A branched flower.

Figure 1.5: Branched circle packings of the Owl (from Figure 1.1). The branch point is colored in blue.
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exposes compatibility issues with given angle assignment; a problem resulting from discreteness (see
Definition 2.7).

Using circle packings one may consider the structures resulting from pasting together two-
dimensional triangular faces as if they were pieces of cardboard. As long as the angle sums are
fixed such structures are unique in R3 up to isomorphisms regardless of the angle sums’ value [23].
Similar triangulations using circle patterns have been used to describe non-Euclidean surfaces, see
[30]. However all angle assignments equaling integer multiples of 2π is a necessary condition for a
circle packing to exist (see Chapter 2). Thus for our purposes avoiding a more general definition
makes sense.

1.5 Software Acknowledgments

Computation of all labels and creation of all circle images were produced using the JavaTMprogram
CirclePack. CirclePack is a free, open source software available under the GNU Public License;
it is written, maintained, and copyrighted by Ken Stephenson. It requires only JavaTM1.6+, and
can be run on any platform which supports Java. CirclePack can be downloaded from http:

//www.math.utk.edu/~kens/CirclePack/downloads/.
Special software extensions for computing and creating shift-points and fractional branchings in

CirclePack were written by Stephenson and the author. These extensions are slated to be included
in later versions of CirclePack but can also be made available upon request.

Many images seen throughout this work were modified using the free software InkScape and
GIMP. This document was prepared in LATEX with the aide of LYX. All these excellent programs are
licensed under GNU public license, as is CirclePack. The equations in Chapter 2 and Figure 6.7
were produced using MapleTM. Figures 6.8, 8.12, and 8.16 were created off-line with MATLABTM7.10

using data processed by CirclePack.
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Chapter 2

Motifs

A pattern of circles with overlaps is a collection of circles where the distance between two vertices
is made rigid by specifying an angle for which their corresponding circles must overlap. Angle of
overlap is measured at the tangents where the overlapping circles intersect (see Figures 2.1 and 2.2).
Thurston was apparently the first to consider such packings. He modeled convex polyhedron formed
by sets of intersecting hyperplanes. These hyperplanes intersect the boundary as circles forming
circles on the sphere with overlaps related to the polyhedron’s dihedral angles. This then allowed
Thurston to reproduce results by E.M.Andreev ([2, 3]) on 3-dimensional finite volume polyhedra.

Thurston’s proof of the existence and uniqueness of these motifs turned out to be a rediscovery
and generalization of a forgotten 1936 result of Paul Koebe’s [31], what has come to be called the
Koebe-Andreev-Thurston Theorem. The K-A-T theorem played a role in Thurston’s classification
of 3-manifolds for which he was awarded the Fields Medal in 1982.

In 1985 Thurston conjectured that circle packings could provide a computational method for
approximating Riemann mappings [46]. This lecture, not the above mentioned results, kindled an
interest in circle packings. Early developments using circle packings as discrete analytic functions
included packings with overlaps, and using overlaps has been essential to some important results
such as in the K-A-T theorem or Oded Schramm’s square grid packing [40]. However the general
practice has been to focus on external tangencies and treat overlaps as a special case.

This preference is probably due to the fact that overlaps are an added complication which often
comes without benefit. Additionally there is the issue of aesthetics. Problems involving externally
tangent circles sprinkle the history of mathematics all the way to its origins, e.g., Descartes, Sangaku
problems, Apollonius etc. Externally tangent circles are easier to compute, draw, and arguably make
better pictures.

Inversive distance is a generalization of the notion of overlapping circles. Inversive distances were
introduced by H. S.M.Coxster as an inversion invariant means to relate non-intersecting circles[16].
Let ra and rb be the radii of two concentric circles which are the (circle) inversion images of two non-
intersecting circles. Coxster defined the inversive distance (in the plane) as the natural logarithm
of the ratio of ra and rb (larger over the smaller). It since has been extended for hyperbolic and
spherical geometry and to include intersecting circles.
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Ken Stephenson and Phil Bowers [44] applied inversive distance towards circle packings as a
generalization of Koebe-Andreev-Thurston’s overlapping circle packings. Allowing circle packings
to include inversive distances greater than 1 (separated circles) or less than 0 (circles with deep
overlaps) introduces complications about the existence and monotonicity of faces. Ren Guo [24]
used a variational approach to show that packings with separated circles are locally rigid in C and
D, however convexity was lost when applied to the global case. Rivin extended the K-A-T theorem
for packings which include deep overlaps by identifying an additional geometric constraint which
avoids incompatibilities [36].

2.1 Packings with Overlaps

The inversive distance between two neighboring vertices in a complex, say vi and vj , will be denoted
σij = σ(i, j). A collection of inversive distances will be assigned to each of a complex’s edges.
In collaboration with the target angles sums, these edge assignment will determine the radii of a
packing’s circles. The distances and the complex’s tangency pattern will be used to locate circles in
a geometry.

When two circles associated with a complex K are said to be contiguous it is to be assumed
that their location agrees with their edge assignment. Contiguousness is used in place of tangency
in order to emphasize that it is a generalization of external tangencies. For intersecting circles the
relation between σij and an overlapping angle ϕij is cos(ϕij) = σij (see Figure 2.1 and 2.2). This
is for both the Euclidean and hyperbolic cases, and can be verified using their respective Law of
Cosines.

Figure 2.1: Overlapping circles. ϕij + ϕ′ij = π for the edge e(i, j).
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Inversive distances are Möbius invariant; more specifically they are independent of geometry
and constant under projections [11]. We will write DG(vx, vy) for the distance in a geometry G
between the circles for two vertices vx and vy, or just write Dxy when G is understood. In a triangle
determined by circles, the length DG(vi, vj) is determined as the side opposite the obtuse angle ϕij
in a triangle with one side from radii R(vi) = ri and R(vj) = rj (see Figure 2.1). So then by applying
the appropriate Law of Cosines we can find the inversive distance in a given geometry. The inversive
distance in C between vertices vi and vj is given by

σij =
DC(vi, vj)

2 − (r2
i + r2

j )

2rirj
, (2.1)

and in D the inversive distance is

σij =
coshDD(vi, vj)− cosh ri cosh rj

sinh ri sinh rj
(2.2)

where DG(vi, vj) is the distance between the two vertices.
These two formulas are related by stereographic projection. Model hyperbolic two-space as the

surface of a hemisphere in H3 intersecting C perpendicularly. Send circles and lines from H onto C
by projecting from the point (0, 0,−1), see Figure 2.3. If one or both of the circles are horocycles
the inversive distance can be found using the projection on the plane (on the plane we assume all
circles are finite).

Figure 2.2: Deep overlapping circles.
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Figure 2.3: Projection of overlapping circles from H to C.

Definition 2.1. An angle (sum) assignment is a collection of angles

A = {A(v1), . . . , A(vm) |A(vi) ∈ (0,∞)},

one associated with each interior vertex vj of K. An edge assignment is a collection of inversive
distances

I = {σij ∈ [−1,∞) | vi ∼ vj and σij = σji},

one associated with each edge vi ∼ vj of K. Collectively the angle and edge assignments are called
decorations for K. A decorated complex is a complex with attached decorations, denoted K(I, A).
A label R for K in C, D, or ,P is a set R = {r1, r2, . . . } of radii paired with vertices in K. Each radii
is a real number (0,∞) when in C, (0,∞] when in D, and (0, π] when in P.

The most familiar type of packing is when every edge assignment is an external tangency, i.e.,
I = 1 for every edge in K or equivalently I ≡ 1. Call this special case a tangency packing (later
a tangency motif ). The radii of tangency packings are typically computed by assigning angle sums
to a complex and applying the Circle Packing Algorithm [14]. The monotonicity of triangles with
overlaps (shown below) will allow decorated complexes to be similarly computed. This broadens the
type of packings under consideration, but it will be seen that it also places further limitations on
which packings can be computed.

As one might imagine, attaching just any label to a complex does not produce a circle packing.
For simply connected complexes the theory’s elegance renders the classification of labels which are
not circle packings somewhat pointless. However this work includes non-simply connected complexes
that have a greater variety of decorations, and it will behoove us to make the distinction. Hence we
introduce the definition motif below; A label meeting the criteria of a complex’s decorations which
has not been actually placed into a geometry.
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LetK be a decorated complex. Assuming that the three edge assignments and radii for a face form
a triangle then the angle at each center can be computed using the Law of Cosines appropriate for the
radii’s geometry and Equation 2.1 or 2.2. For the face {vi, vj , vk} and circles {C(vi), C(vj), C(vk)}
call the angle at the center of C(vi) the face angle at vi, denoted θ(ri; rj , rk). The sum of all face
angles at vi is the angle sum at vi, denoted θ(ri). Because the curvature in each of the geometries
is constant this angle is not dependent on the location of the circles, and can thus be measured
without placing any actual circles.

Definition 2.2. Let R be a label such that θ(ri) = A(vi) for each interior vertex in a decorated
complex K(I, A). Then K(R, I,A) is called a motif. A sub-motif is a motif K ′(R, I,A) on the
sub-complex K ′ ⊂ K with decorations and radii restricted to components of K ′. A motif in D such
that each border radius is ∞ is called a maximal motif.

Inversive distances can describe externally tangent, overlapping, and separated motifs. However
it is common practice to only refer to inversive distances if the motif has separated circles. Here the
term will generally refer to the edges of all motifs. The language will be kept as general as possible,
but for existence reasons most of our results will require motifs to have no separated circles, i.e.,
σij ≤ 1 for all σ ∈ I.

The traditional restriction on overlaps is that the angle must be between 0 and π
2 ; corresponding

to inversive distances in [0, 1]. Edge assignments in [−1, 0) and in (1,∞) may give lengths that are
not realizable as triangles (see Figure 2.4). For this reason we will (in general) use inversive distances
from 0 to 1 (overlaps from 0 to π

2 ), and require additional special conditions for distances from -1
to 1 (see Lemma 2.3).

To extend discrete versions of analytical functions beyond locally univalent functions the idea of
branching was introduced by Tomasz Dubejko and Stephenson [18]. A branch point is a flower with
petals that circumnavigate the nexus more than once (see Definition 1.5). Given our geometries
this necessarily means that a branch point can be realized in a circle packing if and only if its
angle sum is an integral multiple of 2π there. While the typical existence and uniqueness results for
overlapping locally univalent packings has been developed, to the best of our knowledge this is the

Figure 2.4: Sets of radii and edge assignments which cannot form triangles. On the left, σij > 1 and
σik = σkj = 1. On the right, σij = 1 and σik = σjk = −1. For both set of circles, the dashed blue paths
indicate possible locations for Ck. If the radii and edge assignments could be realized as a triangle then
these blue paths would intersect.
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first formal investigation of branched overlap packings. Although they are not found in the literature
these results for branched motifs (such that σij ∈ [0, 1]) are understood to have been established. A
special case allowing for deep overlaps is developed here.

2.2 Monotonicity and Existence of Triangles with Deep Over-

laps

Packings are composed of faces. As such, key to building packings is first establishing the existence
and monotonicity of these basic building blocks. For this section assume that {vi, vj , vk} is a face
of K with edge assignments I = {σij , σik, σjk} and label R = {R(vi), R(vj), R(vk)} in C or D.

Lemma 2.3. (Existence) For any label R there exists a triangle if one of the following sets of
conditions is met.

1. σij , σik, σjk ∈ [0, 1] (overlaps are all between 0 and π
2 ).

2. cos−1(σij) + cos−1(σik) + cos−1(σjk) ≤ π.

Proof. The length Dxy is defined as the length of the edge opposite the obtuse angle ϕ′xy in a triangle
with sides formed by radii rx and ry see (Figure 2.1). From Equations 2.1 and 2.2 we get,

Dxy =

for C, DC(vx, vy) =
√
r2
x + r2

y + 2σxyrxry

for D, DD(vx, vy) = cosh−1(cosh(rx) cosh(ry) + σxy sinh(rx) sinh(ry))
(2.3)

Realization of a triangle can now be reduced to confirming the triangle inequality among the
edge lengths.

Part 1. If 0 ≤ σxy ≤ 1 then in C we have,

rx + ry ≥ Dxy ≥
√
r2
x + r2

y ≥ max{rx, ry}

and with finite radii in D we have,

rx + ry ≥ Dxy ≥ cosh−1(cosh(rx) cosh(ry)) ≥ max{rx, ry}

since cosh (x) ≥ 1.
Both cases imply that

Dij +Dik ≥ max{ri, rj}+ max{ri, rk}

≥ rj + rk ≥ Djk.

Now we treat the case in D when one or more of the circles are horocycles. Equation 2.2 is only
defined for finite radii (Dij < ∞), but we can use the angle overlap ϕij = cos(σij) in an explicit
construction. First assume that there is at least one finite radius, say ri. Place Ci at the origin of
the disc and then place the horocycle Cj contiguous to Ci (according to its edge assignment σij).
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Now place the remaining circle Ck contiguous to Ci, and rotate this circle counter-clockwise around
Ci (while preserving σik). This rotation is centered at the origin and thus preserves the Euclidean
radii of Ck in the projection map. So by the Euclidean part above, there must be a rotation such
that Djk = σjk (Note this could have been done for finite radii in place of a direct computation).

Now suppose that all three circles are horocycles. Place any triple of Euclidean circles
{C(ri), C(rj), C(rk)} in C according to the edge assignments. There is a circle D(rd) such that C(ri)

and C(rj) are both internally tangent to Dd. By the Euclidean part above, rk can be increased or
decreased such that C(rk) is also internally tangent to D(rd). Scale all four circles so that rd = 1

and then project to D making D(rd) the unit circle making the three scaled circles are the desired
horocycles.

Part 2. First we show that the triangle inequality holds for the special case when σij , σik = 1

and σjk ∈ [−1, 0).
In C this gives

Dij +Djk = ri + rj +
√
r2
j + r2

k + 2σjkrjrk

≥ ri + rj +
√

(rj + rk)2

= ri + rj + |rj − rk|

≥ ri + rk = Dik.

The case for D can be shown using the Euclidean case as remarked above.
Now suppose that

∑
cos−1(σ) < π. The supplementary angles in such an assignment will sum

to less than 2π meaning that they can define an interstice with positive area. A circle can be placed
externally tangent to the three circles, and a flower with the edge assignments can be built by part
1.

Now suppose that cos−1(σij)+cos−1(σik)+cos−1(σjk) = π. Then it can be shown that the three
circles pass through a common point, say p, since

π − ϕij + π − ϕik + π − ϕjk = 2π.

Consider this point a circle of zero radius with center p. By part 1, placing p externally tangent to
Ci, Cj , and Ck a flower with nexus p can be built such that the edge assignments (σij , σik, σjk) are
met on the petal edges.

Monotonicity for these faces is the next step. Parts 1 and 2 of Lemma 2.3 are two cases
distinguished by the difference in how the length of edges change with respect to a radius. When
the inversive distance between two circles is 0 or greater this change is positive, but this is not
necessarily the case if it is less than 0.

Lemma 2.4. (Monotonicity) Let I satisfies the conditions of Lemma 2.3. Then for any label R
the following hold:
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1. The face angle θ(ri; rj , rk) is a decreasing continuous function with respect to ri, and

lim
ri→0+

θ(ri; rj , rk) = π − cos−1(σjk).

2. The face angles θ(rj ; ri, rk) and θ(rk; ri, rj) are increasing continuous functions with respect to
ri, and

lim
ri→0+

θ(rj ; ri, rk) =


cos−1

(
rj+σjkrk√

r2j+r2k+2σjkr2j r
2
k

)
in C

cos−1

(
− cosh(rj)+σjk cosh(rk) sinh(rj ) sinh(rk )+cosh(rj )

2 cosh(rk )

sinh(rj)
√

(σjk sinh(rj) sinh(rk)+cosh(rj) cosh(rk))2−1

)
in D.

If each edge assignment is in [0, 1] then parts 1 and 2 are strictly decreasing and increasing,
respectively.

Proof. Continuity follows from using Equations 2.3 in the Euclidean or hyperbolic Law of Cosines.
It is then not difficult to obtain the limits. Suppose two circles Cx and Cy have an edge assignment
σxy ∈ (0, 1) then there exists a point pxy = Cx ∩ Cy. Call κxy = ∠CxCypxy the kite angle, i.e., the
angle formed by the overlap (see Figure 2.1 and 2.2). There will actually be two such points, but
because of symmetry the resulting triangles will be similar.

Using the appropriate Law of Cosines we find the kite angle and its derivative with respect to rx
and ry. For the Euclidean angles let E(σxy) = r2

x + r2
y + 2σxyrxry.

κxy = cos−1

(
rx + σxyry√
E(σxy)

)

d

drx
κxy =

−ry
√

1− σ2
xy

E(σxy)
< 0 (2.4)

d

dry
κxy =

ry(1− σ2
xy)

E(σxy)3/2
√

(1− σ2
xy)E(σxy)−1

> 0 (2.5)

It only needs to be verified that E(σxy) > 0. For this, note that E(−1) = (rx − ry)2 ≥ 0 and
that d

dσxy
E > 0.

For the hyperbolic angles let, H(σxy) = σxy sinh(rx) sinh(ry) + cosh(rx) cosh(ry), we have

κxy = cos−1

(
− cosh(ry) + cosh(rx)σxy sinh(rx ) sinh(ry) + cosh(rx )2 cosh(ry)

sinh(rx)
√
H(σxy)2 − 1

)
(2.6)

d

drx
κxy =

− sinh(ry)H(σxy)(1− σ2
xy)

(H(σxy)− 1)3/2(H(σxy) + 1)3/2

√
1−σ2

xy

(H(σxy)−1)(H(σxy+1)

(2.7)
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d

dry
κxy =

sinh(rx)(1− σ2
xy)

(H(σxy)− 1)3/2(H(σxy) + 1)3/2

√
1−σ2

xy

(H(σxy)−1)(H(σxy+1)

(2.8)

in D. H(−1) − 1 = cosh(rx − ry) − 1 ≥ 0 and d
dσxy

H = sinh(rx) sinh(ry) > 0 together imply that
d
drx

κxy < 0 and d
dry

κxy > 0 as well. If Cy is a horocycle then the kite angle is the limit of Equation
2.6 as ry →∞,

κxy = cos−1

(
σxy cosh(rx) + sinh(rx)

σxy sinh(rx) + cosh(rx)

)
, and

d

drx
κxy = −

√
1−

(
σxy cosh(rx) + sinh(rx)

σxy sinh(rx) + cosh(rx)

)2

< 0. (2.9)

Like all angles at the boundary the opposite kite angle will be 0 when Cy is a horocycle. So the kite
angle is a decreasing function of rx.

When cos−1(σij) + cos−1(σik) + cos−1(σjk) = π all three circles meet at a common point of
intersection. Referring to Figure 2.1 it can be seen that this happens because 3π−

∑
cos−1(σ) = 2π.

Choose the points of intersection such that pij = pik = pjk. The monotonicity of the kite angles then
proves the lemma when

∑
cos−1(σ) = π since then θ(ri; rj , rk) = κij+κik and θ(rj ; ri, rk) = κji+κjk.

It is left to extend this argument for edge assignments such that
∑

cos−1(σ) < π. In this case
the points of intersection are not identical, but they can be chosen such that they form an interstice.
Let the auxiliary circle C` be defined by the vertices of this interstice. C` lies over the interstice
passing through pij , pik, and pjk. This creates an auxiliary flower composed of three faces; use C`’s
placement to provide edge assignments. So

∑
cos−1(σ) = π for each of the flowers faces. Referring

to Figure 2.5, the first part of this lemma implies that increasing ri decreases the auxiliary angle
at vi (in the auxiliary flower) and increases the auxiliary angles at vj and vk. It also increases the
angle sum of the flower at v`.

The auxiliary flower must have an angle sum of 2π to represent our original triangle, but this
angle sum has been increased to some value over 2π. Again applying the monotonicity shown above,
increasing r` will decrease its angle sum while further increasing the angles at vj and vk. However
this also increases the angle at vi. In the Euclidean case the angles at vi, vj , and vk must sum to
π. The fact that the increase of ri and r` both increase the angles at vj and vk imply that the total
effect must sum to a decrease in the angle at vi.

For the hyperbolic case move the flower via a Möbius map so that Ci is centered at the origin (if
no radius is finite then the angle cannot change). Increasing ri increases θ(r`) > 2π. Just as above,
r` must be increased which cannot decrease the angles at vj and vk (either angle will increase if
their circles are not horocycles), but this also increases the angle at vi. The distances Dij and Dik

have not changed due to r` so neither have the Euclidean radii of rj and rk. By the Euclidean part
above, the Euclidean angle at vi increases, and thus the hyperbolic angle at vi does as well.

The second part of this lemma has been shown before most famously by Thurston in the infamous
Chapter 13 of the Notes [45]. A somewhat more direct albeit less elegant proof is provided here for
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Figure 2.5: The auxiliary circle is used to describe the triangle. The auxiliary circle C` is colored blue on
the left. The picture on the right illustrates how the angles change if the circle at i is increased.

completeness. The change in edge length is a key difference in this case. In C,

d
dri
θ(ri; rj , rk)

= −

r3
i (r

2
j (1− σ2

ij) + 2rkrj(σjk + σik) + r2
k(1− σ2

ik))

+3rjrkr
2
i (rj(σik + σjkσij) + rk(σij + σjkσik))

+r2
j r

2
k(rj(σij + σjkσik) + rk(σik + σijσjk))

+rirjrk(r2
j (σjk + σijσik) + rjrk(2 + 4σijσjkσik + σ2

ij + σ2
ik) + r2

k(σjk + σijσik))

E(σij)E(σik)


r2
i (r

2
j (1− σ2

ij) + r2
k(1− σ2

ik) + 2rjrk(σjk + σikσij))

+2rirjrk(rj(σik + σijσjk) + rk(σij + σikσjk))

+r2
j r

2
k(1− σ2

jk)


1/2

,
(2.10)

and
d
dri
θ(rj ; ri, rk)

=
(rir

2
j−σijrir

2
j )+σikr

2
j rk+σijσikrirjrk+σjkrirjrk+σijσjkr

2
j rk

E(σij)


(r2
i r

2
j − r2

i r
2
jσ

2
ij) + (r2

i r
2
k − r2

i r
2
kσ

2
ik) + (r2

j r
2
k − r2

j r
2
kσ

2
jk)

+2rirjr
2
kσij + 2r2

i rjrkσjk + 2rir
2
j rkσik

+2r2
i rjrkσijσik + 2rir

2
j rkσijσjk + 2rirjr

2
kσijσjk


1/2

.
(2.11)

Which we can see is negative and positive, respectively, when σij , σik, and σjk ∈ [0, 1].
Use Cx to denote the hyperbolic circle Cx in C. Map the triangle via Möbius transformation so

that Ci is centered at the origin.

d

drx
Dxy =

σxy cosh(rx) sinh(ry) + sinh(rx) cosh(ry)√
H(σxy)2 − 1

≥ 0

and real when σxy ≥ 0. So increasing Ci will not only increase Ci, but will also move Cj and Ck
towards the boundary. If one or both are horocycles they will already be on the boundary, but
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their Euclidean radius must decrease as Ci is at the origin and increasing. The fact that Cj and
Ck decrease while Ci increases imply by Equations 2.10 and 2.11 that the Euclidean angle θ(ri)
decreases; thus the hyperbolic angle θ(ri) decreases since Ci is at the origin. A similar argument
can be made to show that θ(rj ; ri, rk) decreases with respect to ri in D.

Lemma 2.5. Suppose a triangle exists with label R and edge assignments I = {σij , σik, σjk}. If
{σij , σik, σjk ± ε} meets the conditions for Lemma 2.3 for some ε > 0 then

d

dσjk
θ(ri; rj , rk) > 0.

Proof. From Equation 2.3 we find that for σxy ≥ −1.

d

dσxy
Dxy =

rxry√
r2
x + r2

y + 2σxyrxry
> 0

since r2
x + r2

y ≥ 2rxry. For the hyperbolic case (H(σxy) is as defined in Lemma 2.4),

d

dσxy
Dxy =

sinh(rx) sinh(ry)√
H(σxy)2 − 1

> 0.

Now by the Euclidean Law of Cosines

d

dDjk
cos−1

(
D2
ij +D2

ik −D2
jk

2DijDik

)
=

2Djk

DijDik

√
4− (D2

ij+D2
ik−D

2
jk)2

D2
ijD

2
ik

> 0,

and the hyperbolic Law of Cosines

d

dDjk
cos−1

(
cosh(Dij) cosh(Dik)− cosh(Djk)

sinh(Dij) sinh(Dik)

)
=

sinh(Djk)

sinh(Dij) sinh(Dik)

√
1−

(
cosh(Dij) cosh(Dik)−cosh(Djk)

sinh(Dij) sinh(Dik)

)2
> 0.

The values in both radicals above are positive because of the assumption that the triangle inequality
holds.

Lemma 2.5 means that as a parameter, inversive distance on the petal edges can monotonically
increase the angle sum of a flower. However unlike the circle radii, the effects on the other triangle
angles are not consistent. Figure 2.6 shows how increasing an edge length can cause adjacent angles
to either increase or decrease depending on edge length. Using edge assignments as a parameter thus
comes at the cost of monotonicity, an important characteristic for showing existence, uniqueness,
and other results.
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Figure 2.6: Non-monotonicity of triangles when using inversive distance as a parameter. The blue edge
indicates where the inversive distance has been increased. In both case the angle across from the increasing
edge changes positively, however the adjacent angle changes positively on the left and negatively on the
right.

2.3 Admissibility

Transferring ideas and concepts from the continuous setting to the discrete has a discretization
effect, a consequence in difference of behavior. Branching significantly elevates the discretization
effect, and as such will be an important concept in this thesis.

The introduction of admissibility outlines how discretization limits conditions for existence
locally. What is not immediately clear is that it also encapsulates global conditions. Try to construct,
for example, a coherent simply connected motif with only two finite border circles, or a branched
motif with only three border circles. Like a bike chain without enough links, it is easy to see how
the border chain is limited by the lack of flexibility. This is a combinatorial restriction born by the
boundary. Below is how this restriction is stated in [44] for tangency packings.

Definition 2.6. Given a combinatorial closed or open disc K with a set of interior vertices β(K) =

{v1, v2, ...} including possible repetitions, K is said to be a branch structure for β(K) if the following
condition holds: for each simple, closed, positively oriented edge-path γ = {e(1,2), e(2,3), ..., e(k−1,k)}
in K the inequality |γ| > (2N+2) holds, where N is the number of points of β(K) inside γ, counting
repetitions.

Call β(K) the branch set and |β(K)| the branch order ; note that β(K) can be empty. This
definition was an important step in the original studies of branched packings. It was independently
formulated by Dubejko and Bowers who both showed that it is a necessary and sufficient condition
for the existence of externally tangent circle packings with interior angle sums of θ(vi) = 2π + 2πni

where ni is the number of times vi occurs in β(K), i.e., a branched circle packing of degree |β(K)|
[18, 9].

The inclusion of edge assignments as a decoration augments the restrictions described by
Definition 2.6. A tangency n-flower (edge assignments all 1) must have at least n petals if its
face angles are to sum to 2π(n − 1). The face angles are bounded by π so obtainable angles are
restrained by combinatorics. For example, If you were to set edge assignments to 1

2π on the border
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edges of the same flower, you would bound every face angle by 1
2π, and so the minimum number

of faces you would need goes up by a factor of two. These are local restrictions, but there are also
global restrictions.

Imagine we have a circle packing with three border circles, as one might have from the projection
of a sphere packing with a punctured face. Restricting circles to finite radii, it is easy to see that this
packing could not do with any fewer border circles. Now assign an angle sum of 4π to any interior
vertex. We will only have a circle packing if the border circles can circumnavigate the complex twice,
however this is not possible with just three border circles (this will be justified in Chapter 3). Even
though the complex is locally compatible with its curvature assignment, it fails to be compatible
globally. How local and global properties interact is a recurring theme in circle packing and will
be a major theme in this thesis. Global properties are investigated in Chapters 3 and 4, but first
sufficient conditions for a label to exist on a decorated complex are established.

Since I is injectively paired with E the three edges in a face f ∈ F each have an associated edge
assignment σij ∈ I. Identify the assignment for this face’s edge h = 1, 2, 3 with f(σh).

Definition 2.7. A decorated complex K(I, A) in C or D is admissible if it has the following
properties:

1. σij ∈ [−1, 1] for each σij ∈ I.

2. For every face f ∈ F either
∑
j=1...3 cos−1(f(σj)) ≤ π or f(σj) ≥ 0 for j = 1, 2, 3.

3. For any simply connected sub-complex K ′ ⊆ K with edges, faces, and vertices E, F , V we
have ∑

v∈intV
A(v) < π |F | −

∑
f∈F

∑
j=1...3

cos−1(f(σj)) ≤ π |F | .

Furthermore, π |intF | <
∑
v∈intV A(v) in C where intF is the set of strictly interior faces.

In the next section it will be shown that admissibility implies a label exists such that the criteria
of the decorated complex are satisfied. To be clear, there are decorated complexes that fail to meet
parts 1 or 2 of Definition 2.7, yet still have labels. Examples for separated and deeply overlapping
motifs abound. One might toss a collection of circles randomly onto a G and make assignments
retroactively based on how the circles happen to have fallen. However allowing for unrestrained edge
assignments creates an equally wild label space. Consider a complex where each edge assignment is
−1. If all radii are identical then the circles can be placed in C so they satisfy their edge assignments.
Change one of these radii infinitesimally and this is no longer the case. Thus admissibility does not
characterize all labels which exist for decorated complexes; rather it restricts our investigation to
cases better suited for our applications.

Theorem 2.8. Let K(I, A) be simply connected with I ≡ 1 and A(v) an integral multiple of 2π for
every interior vertex v. Then K(I, A) is a branch structure if and only if it is admissible.

Proof. K is simply connected so any simple closed edge path is the border of a simply connected
sub-complex. Hence it suffices to show the result for a closed disc K. First, two quick equalities.∑
A(v) = 2π(intV + n) for some n ∈ Z+ such that n ≤ N by assumption. Secondly, there are 3
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edges per face. Excluding the border edges, this double counts the number of edges. Noting that
∂V = ∂E this gives,

E =
1

2
(3F − ∂V ) + ∂V =

3

2
F +

1

2
∂V .

Together with the Euler characteristic, λ(K) = 1, this implies that

V − 3

2
F − 1

2
∂V + F = 1

⇒ 2intV + ∂V − 2 = F . (2.12)

Suppose that K is a branch structure. N < ∂V−2
2 implies that,

∑
A(v) = 2π(intV +N) < 2πintV + 2π

(
∂V − 2

2

)
< π(2intV + ∂V − 2)

< πF .

It is left to show that |intF |π <
∑
vi∈intV A(vi) in C. Each f ∈ ∂F has at most one border edge,

but each v ∈ ∂V is in one or more faces so ∂F ≥ ∂V . Together with the assumption N ≥ 1 and
Equation 2.12 this implies,

intF + ∂F = 2intV + ∂V − 2

intF + 2 ≤ 2intV .

Because each Euclidean face must have angles summing to π this gives,

⇒ πintF < 2πintV + 2πN =
∑

A(v).

So K is admissible.
Conversely, suppose that K is admissible.

∑
A(v) = 2π(intV +N) < πF implies that,

2intV + 2N < F

⇒ 2 + 2N < F − 2intV + 2

< (2intV + ∂V − 2)− 2intV + 2

< ∂V .

Definition 2.7 allows for broader assumptions about a complex’s edge and angle assignments,
and so is a generalization of branch structure. The machinery and setting have been put into place.
Now we can begin showing that a set of unique radii can be found meeting the requirements of a
decorated complex. So a motif can actually exist.

22



2.4 Existence and Uniqueness of Labels for Decorated Com-

plexes

In this section we will be assuming that all complexes have at least one boundary vertex and are
admissible with their respective decorations. We use ∂K to denote the set of boundary vertices of
K, and λ(K) for the Euler number. For the following statements recall that radii are assumed to
be finite in C.

Lemma 2.9. Let K(I, A) be an admissible flower with nexus v0 and petals of fixed radii
{R(v1), R(v2), . . . , R(vn)}. There exists a unique nexus radius r0 such that θ(r0) = A(v0).

Proof. By Lemma 2.4,

lim
r0→0+

θ(r0) = |F |π −
∑
Fi∈F

∑
j=1..3

cos−1(Fi(σj)) and 0 = lim
r0→∞

θ(r0).

Because K (I,A) is admissible

lim
r0→∞

θ(r0) < A(v0) < lim
r0→0+

θ(r0).

Monotonicity then guarantees that there exists an r0 such that θ(r0) = A(v0), and that it is unique.

Definition 2.10. Given a label R, define a relaxation operator R as a function that assigns the
radius R(R(vi)) to each vi ∈ intK with petals {C(v0), C(v1), . . . , C(vn)} as follows:

R(R(v)) =

r ≥ 0 such that θ(r;R(v0), . . . , R(vn)) = A(v) if v ∈ intK

R(v) if v ∈ ∂K,

i.e., R assigns the unique radius from Lemma 2.9 to each flower’s nexus such that the angle sum meets
its prescribed angle assignment (assuming its petals are unchanged). Denote repeated applications
of the operator with Rk+1(R) = R(Rk(R)) for a positive integer k ≥ 1.

This type of numerical relaxing algorithm has often been used for finding circle packings. Charles
Collins and Stephenson used a similar method in [14]. The method here follows most closely that
of Brett Garret [23]. Both are based on concepts of William Thurston. The basic idea being that
local impact of radii changes will outweigh the global impact. By repeatedly adjusting radii to meet
their local requirements the label will converge towards its global aims as well.

Lemma 2.11. If R′ and R are two labels for an admissible K(I, A) such that R′ ≤ R then R(R′) ≤
R(R).

Proof. Recall that by R′ ≤ R we mean that R′(vi) ≤ R(vi) for every vi ∈ K. Suppose we have
two labels R′ and R such that R′ ≤ R but R(R′(v)) > R(R(v)) for some v ∈ K. If v ∈ ∂K then
its radius is fixed so we can assume that v is an interior vertex with a flower. Let {a0, . . . , an} and
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{b0, . . . , bn} be v’s petal radii given by labels R′ and R, respectively. By assumption ai ≤ bi and
R(R′(v)) > R(R(v)). A flower is the sum of its face angles so by Lemma 2.4

A(v) = θ(R(R′(v)); a0, . . . , an) ≤ θ(R(R′(v)); b0, . . . , bn) < θ(R(R(v)); b0, . . . , bn) = A(v),

but this is a contradiction.

Lemma 2.12. Given a label R and flower {v; v0, . . . , vn} on an admissible K(I, A) the following
are equivalent.

1. R(R) ≤ R.

2. Rk+1(R) ≤ Rk(R) for each k ≥ 0.

3. For v ∈ intK, θ(R(v);R(v0), . . . , R(vn)) ≥ A(v).

4. For v ∈ intK, θ(Rk(R(v));Rk(R(v0)), . . . ,Rk(R(vn))) ≥ A(v).

Proof. (1) ⇐⇒ (2). This follows by applying Lemma 2.11 k times. (1) ⇐⇒ (3) follows from
Lemma 2.4, R decreases the radius if and only if v’s angle sum is too small. (2) ⇐⇒ (4) follows
similarly.

Theorem 2.13. Suppose that K(I, A) is a decorated complex with at least one border vertex, and
let B be a set of radii bijectively assigned to the border vertices of K. Then if K is admissible there
exists a label R such that θ(R(vi)) = A(vi) for each vi ∈ intK and {R(vi) : vi ∈ ∂K} = B.

Recall that I ≤ 1 means σij ≤ 1 for every edge assignment σij ∈ I. This theorem shows that
admissibility is a sufficient condition for the existence of labels.

Proof. By Lemma 2.9 R is well defined for K(I, A). There exists a label, say R∞, with sufficiently
large radii such that R(R∞) < R∞. Since for any interior vertex vi neighboring a border circle,

lim
R(vi)→∞

θ(R∞(vi)) = min θ(vi).

By Lemma 2.12, Rk+1(R∞) ≤ Rk(R∞); each radius is assigned a real radius so then Rk(R∞) is
a non-increasing sequence bounded below. Hence Rk(R∞) converges to some label S ≥ 0 with
θ(S(vi)) = A(vi) for each vi ∈ intK. Now we must show that this label is not degenerate, i.e., that
S(vi) 6= 0 for any vi ∈ intV .

Suppose that V0 = {vi ∈ intV |S(vi) = 0} 6= ∅. If V0 is not a simply connected sub-complex of
K then choose some subset of V0 such that it is, and call this subset V0. As none of the boundary
vertices can be 0 we can further assume that V0 is a subset of the interior vertices. Following [34],
we classify angles at each vi ∈ V0 into one of three types. Each angle at vi is in a face that has either
1, 2, or 3 vertices in V0. Denote vertices not in V0 with x and y.

Case 1: Suppose the face has 1 vertex in V0, say vi. This angle is of the type

θ(Rk(R∞(vi));R
k(R∞(x)),Rk(R∞(y))).
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By monotonicity, Lemma 2.4, this angle tends to π− cos−1(σxy) as k →∞ (and Rk(R∞(vi))→ 0+)
in both C and D.

Case 2: Suppose the face has 2 vertices in V0, say vi and vj . The angle at x in the triangle
{vi, vj , x} tends to 0 as vi, vj → ∞. In C the sum of the angles at vi and vj then must be π. The
area of the triangle must also vanish. A hyperbolic triangle’s area is the difference between π and
the sum of its angles. So then these angles must sum to π in D as well.

Case 3: Suppose that the face has 3 vertices in V0. In D as k →∞ the area of this face tends to
0 so then the sum of the three angles must tend to π. In C the sum is always π. In D an area of 0
implies that the sum of the angles is π.

The sum of angles on all of these faces from cases 2 and 3 will be π |intF |. The sum of angles
from faces in case 1 will be

π(|F | − |intF |)−
∑

Fi∈F\intF

 ∑
j=1...3

cos−1(Fi(σj))

 .

So from these three cases we can see that as k →∞,∑
θ(Rk(R′(vi))) =

∑
θ(S(vi)) > π |F | −

∑
Fi∈F

∑
j=1...3

cos−1(Fi(σj)),

for the sub-complexK0 ⊂ K. K(I, A) is admissible and thus so isK0(I, A); so this is a contradiction.
It follows that V0 = ∅.

This theorem shows that admissibility is a sufficient condition for a motif to exist. Part 1 of
admissibility ensures that any computed label can form triangles for the given edge assignments.
Part 2 guarantees that monotonicity holds for these labels. Together they allow the relaxation
operator to converge.

The third part of admissibility is in fact a necessary condition. A motif is defined to have angle
sums matching its angle assignments, and the angle sums will lie in the bounds of part 3. Next we
show that the label for K(I, A) is unique using a standard maximal argument.

Theorem 2.14. Let K(I, A) be an admissible decorated complex. If K(R, I,A) and K(R′, I, A) are
both motifs in C or D with identical border radii then R′ = R.

Proof. First the Euclidean case. If R 6= R′ then without loss of generality we can assume that
there exists an interior vertex vM = {vi : R(vj)

R′(vj) ≤
R(vi)
R′(vi)

= m ∀ vj ∈ intV }. Scale all the circles of
vM ’s flower in K(R′, I, A) by m so that R(vm) = mR′(vm). By similar triangles this also means
that θ(R(vM )) = θ(mR′(vM )). Now we must have R(vj)

R′(vj) = m for each of vM ’s petals. Else
R(vj) < mR′(vj) for one of vM ’s petals, and by monotonicity

A(vM ) = θ(R(vM );R(v1), . . . , R(vn)) > θ(mR′(vM );mR′(v1), . . . ,mR′(vn))

which is a contradiction. So then R(vj)
R′(vj) = m for each vj tangent to vi and each of their petals as

well. We can repeat this argument until eventually we reach a vertex neighboring a border circle
where the labels must agree implying that R = R′.
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Now the hyperbolic case. Hyperbolic points in the disc can be located by complex numbers on
or inside the unit disc. The formula

DD(z, w) = 2 tanh−1

∣∣∣∣ z − w1− zw̄

∣∣∣∣
relates the Euclidean distance of z from w (for |z|, |w| < 1) to its hyperbolic distance in the disc [5].

Let zC, and rC represent the Euclidean center location and Euclidean radius, respectively, of a
hyperbolic circle C(z). Apply a Möbius transformation which rotates the circle such that zC is a
real number. This also makes the point on C(z) furtherest from the origin equal to rC.

d

drC
DD(zC, rC) =

2

1− r2
C
> 1 (2.13)

since 0 < rC < 1. This means that changing the associated Euclidean radius of a hyperbolic circle
has a greater effect on the hyperbolic radius.

Use a Möbius transformation to map vM ’s flower in both K(R, I,A) and K(R′, I, A) such
that vM is at the origin. Scale the Euclidean circles of vM ’s flower by a value m? such that
2 tanh−1(m?R′(vM )C) = R(vM ). Because the flower was scaled Euclideanly the angle sum will
not be changed, however this is not a hyperbolic scaling. The hyperbolic radii of vM ’s flower have
been increased too much by Equation 2.13. For this to be a hyperbolic scaling the petals must now
be decreased. However by monotonicity, decreasing the hyperbolic radii of the petals also decreases
the angle sum at vM , which is a contradiction.
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Chapter 3

Coherence

A motif’s label is made from a recipe of specified patterns, inversive distances, and angle sums.
Placing circles for these radii onto one of the standard geometries according to the motif’s decorated
complex creates a geometric structure. This structure will be called a layout, the properties of which
are not necessarily independent of the construction method. Consider the structures in Figure 3.1.
Here we have two different pictures created from the same set of radii and pattern of contiguousness.
Even after a normalization there are multiple ways to place these circles in C according to its
complex, i.e., well-defined locations for the circles do not exist.

We will call this sort of motif incoherent and say that it is coherent only when it can be
“consistently laid out” (formal definitions are provided below) or equivalently when it defines a
circle packing. Notice that the flower at v1 fails to be coherent as a sub-motif; so this motif also
lacks coherence at a local level. The label R1 provided by Theorem 2.13 computationally meets
the prescribed angle and edge assignments, but being able to realize them while embedded in G is
another matter.

Figure 3.1: Two different layouts of the same motif, K(R1, I, A1).
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It is not difficult to see that a single flower is coherent in G if and only if the angle sum of that
flower is an integer multiple of 2π (Lemma 3.4); this is commonly known as the packing condition.
It is a happy consequence of monodromy that a simply connected motif is coherent if only if each of
its flowers is coherent. Hence the packing condition is well named. However this is most certainly
not the case for more general complexes. The partnership between local and global coherence works
so seamlessly for discs and spheres that the need for distinction when the complexes are non-simply
connected can easily be overlooked. Accordingly we will carefully separate our investigation of the
global and local properties of labels.

This chapter will first establish some basic language and facts so that a motif can be placed into
one of the geometries. Then we give formal definitions for coherent motifs. The rest of the chapter
provides some conditions for a motif to be coherent.

3.1 Chains and the Fundamental Group

Paths and loops are key concepts in Topology. As a circle packing analogue, edge paths might seem
like the natural choice. However circle packing is about the dance of local geometry with global
combinatorics. Using edges ignores too much of the latter; the location of a sequential circle in an
edge chain is only restricted by its distance from the last circle. Its placement has a wide range of
freedom, and no memory of the geometry from earlier flowers gets carried over and expressed.

Instead we use face chains or just chains. A chain is a sequence of faces, for example Γ =

{f0, . . . fn}, where each successive face, fi+1 ∈ Γ, shares an edge with its predecessor, fi ∈ Γ. If
f0 = fn then we say that the face chain is closed. Once fi is placed, local geometry (and orientation)
then determines the location for fi+1. The location of the first face, called the base face, thus
determines the location of every face in the chain.

Definition 3.1. Chains of faces can be modified by a finite succession of local modifications called
homotopies. Take a (face) chain Γ = {f0 . . . , fi, . . . , fj , . . . , fn} and a subchain γ = {fi, . . . , fj}. A
new chain Γ′ can be created by replacing γ with some other chain beginning with fi and ending with
fj . If by performing a finite number of such modifications a chain Γ1 can be obtained from another
chain Γ0 then we say that that they are homotopic, denoted Γ0 ∼ Γ1.

See Figure 3.2. This example shows two homotopic chains in a circle packing. Chains and
homotopies of chains can be considered on the abstract complex, but they come into force on the
actual circle configurations. There they will be used to layout motifs into geometries and demonstrate
key results about their behavior.

A boundary element is a collection of boundary vertices connected by boundary edges. A border
chain ∂Γ = {f0, . . . , fn} for the boundary vertex b is the closed chain of faces such that each face
fi ∈ ∂Γ contains at least one border vertex in b’s boundary element. Let B = {∂Γi} be the set of
border chains.

Our use of chains is analogous to the use of paths in continuous surfaces. These chains can be
modified in a number of different ways:

{. . . , f, f, . . . } ↔ {. . . , f, . . . },

28



Figure 3.2: Two homotopic face chains. Γ0 is in white, and Γ1 is blue; Γ0 can be obtained from Γ1 by
removing the additional faces (those darkened).

{. . . , f, g, f, . . . } ↔ {. . . , f, . . . },

or {. . . , f1, f2, f7, f8, . . . } ↔ {. . . , f1, f2, f3, f4, f5, f6, f7, f8, . . . };

a modification that changes the direction in which the chain passes around a vertex (see Figure 3.2).
The collection of closed chains that share a base face f0 on K forms a group. The elements

are the sets of homotopic chains, and the group action is the concatenation of face strings, e.g., if
Γ1 = {f, . . . , f1, f2, . . . , f0} and Γ2 = {f0, . . . , g1, g2, . . . , f0} then

Γ2 ◦ Γ1 = {f0, . . . , f1, f2, . . . , f0, . . . , g1, g2, . . . , f0}.

The group identity is the null chain Γ0 = {f0}, a single face. If a chain is homotopic to the null
chain we say that it is null homotopic.

Denote this group as π1(f0,K) or just π(K); called the fundamental group of K. Our complexes
will always be assumed to be chain connected; so while the fundamental group depends on the choice
of base face, up to isomorphism, this choice makes no difference.

Definition 3.2. Call a collection of closed chains that is a minimal set of generators a set of
generating chains for K, denoted G(K) = {Γ1, . . . ,Γ2}. Call a chain Γ ∈ G(K) a generator.

Any closed chain in a complex or motif will either be homotopic to a generator chain in G(K),
or it will be homotopic to a concatenation of generator chains in G(K). The fundamental groups
of the disc and sphere are trivial so a (closed) chain in either is null homotopic. The fundamental
group of the annulus is Z meaning every chain is null homotopic or circumnavigates the annulus an
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integral number of times. A chain wrapping itself n-times around the annulus is an n-concatenation
of a chain going around once as Z’s (group) generator is 1. The torus has fundamental group Z×Z,
and so has two fundamental chain homotopy classes.

3.2 Chain Developments and Layouts

Saying that a motif exists assumes that a label also exists for the given inversive distance and angle
sum assignments. Without such a label in hand there is no motif. Once a label has been found we
can then investigate the structure of its layouts in one of the geometries. This begins by placing
circles from the label contiguously in G with the aim of constructing circle packings; what we will
call coherent motifs. Chapter 2 provides methods for finding a motif in C and D. Below we will
assume that the motif has first been found for one of these metrics and use projection to find and
place motifs in P.

A motif K(R, I,A) provides a radius for each vertex. Once a circle C(v0) = C0 has been placed
(in G) Equation 2.3 can be used to place one of its neighboring circles, say C1, such that the distance
between them matches their edge assignment. R is assumed to be the label found in Theorem 2.13.
Thus a mutual neighbor of C0 and C1, say C2, can be uniquely placed using Equation 2.3, the
appropriate Law of Cosines, and orientation.

Whether it is a circle, edge, or face we call an object placed in such a manner as having been
laid, and the result a layout. Laying a face f0 also lays two circles of any neighboring face, say f1,
and f1’s third circle can be similarly located. The same is true for any faces sharing an edge with
f1. In this way we can use a face chain Γ = {f0, . . . , fn} (closed or non-closed) to lay the circles
for fn once the base face f0 has been laid. We say that the location of fn, denoted Γf0(fn), was
obtained by a development along Γ from f0.

Once a motif has been found, developments along a chain can be used to layout all the circles in
the chain’s faces. Complexes are assumed to be face connected. Thus after the initial triangle has
been laid there is a way to sequentially layout every face in the motif.

3.3 Coherence

Layouts will produce circle configurations from motifs, but are these layouts consistence? Meaning
will two different layouts of the same motif be identical up to Möbius transformations? Recall Figure
3.1. Such a configuration will not be of much use in the service of creating discrete functions or
conformal maps. Motifs are laid in their geometry with chains, and so layouts will be consistent if
the developments along chains are consistent.

Let Γ1 = {f0, . . . , fn} be a closed chain (f0 = fn), and let Γ0 be the null chain. Γ0(f0) and
Γ1(fn) are placed using the same label and orientation and are thus similar triangles. Using the
location of corresponding edges in both triangles, a Möbius map φΓ1

∈ Aut(C) (also written φ(Γ1))
can be found such that φΓ1

(Γ0(f0)) = Γ1(f0). φ will always be trivial if its motif is coherent. In
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which case the associated φΓ will be the identity transformation[
1 0

0 1

]
= φid.

These developments are how motifs are placed in their geometry. Furthermore using local
modifications we can see that for locally coherent motifs φΓ depends only on the homotopy class of
Γ (by monodromy, see Theorem 3.9 below). Thus a necessary and sufficient condition for coherence
is that φΓ = φid for every generator chain Γ ∈ G(K) [44]. Call the map φΓ the holonomy of Γ, and
we say that Γ has trivial holonomy if φΓ = φid.

Holonomies will come into use in Chapter 4 to demonstrate incoherence, in Chapter 8 as a tool
for measuring and optimizing motifs, and here as a basic tool for proving results about motifs.

Definition 3.3. K(R, I,A) is locally coherent at an interior vertex v if any two layouts of the flower
of v are Möbius images of one another.

Lemma 3.4. A motif K(R, I,A) in G is locally coherent at an interior vertex v if and only if
θ(v) = 2πn for n ∈ Z+.

Proof. Let Γ be the closed chain of faces that is v’s flower. Γ fixes v so then φ(Γf ) is rotation, and
Γ is null homotopic if and only if this rotation is an integer multiple of 2π. The total rotation is
determined by the sum of angles at v which is its angle sum, θ(v).

Maybe expectedly, this is the first criteria for having coherence for the entire motif. Requiring
angle sums to be set to integral multiples of 2π is commonly known as the packing condition. A
name which was first applied here [7], and motivates the following definition.

Definition 3.5. A motif that is locally coherent at every vertex is a branched motif.

Observe that the branch set from Definition 2.6 may be empty. The term “branching” has
traditionally been reserved for circle packings with a non-empty branch set, however in this thesis
the term is used more generally.

Definition 3.6. If any two layouts of the same motif K(R, I,A) are Möbius images of one another
then the motif is called globally coherent or coherent.

Remark 3.7. By homotopy, a motif K(R, I,A) will be coherent if and only if the holonomy of φ(Γ)

is trivial for every Γ ∈ G(K).

Theorem 3.8. A layout of a coherent motif is a circle packing.

Proof. (⇒) From Definition 1.2, parts 1 and 3 follow immediately from the definition of a layout.
The fact that any two layouts are isomorphic ensures that each circle is properly contiguous to all
its neighbors, not just the ones used to place it. Otherwise a development based at the face with
the non-contiguous circles would immediately yield a non-isomorphic layout.

(⇐) By definition every circle and thus every face is laid such that their assignments are met.
So the development along any closed chain Γ = {f0, f1, . . . , fn, f0} is identical to how the faces are
laid in P . This includes fn and f0 as located from fn.
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IfK(R, I,A) is a coherent motif denote its layout with PK(R,I,A) or just PK whenK’s decorations
are understood. We now state an important theorem regarding simply connected complexes.

Theorem 3.9. (Monodromy Theorem) Let K be a simply connected complex. K(R, I,A) is a
branched motif if and only if K(R, I,A) is coherent.

Proof. If K(R, I,A) is coherent then it also must be locally coherent since any layout that begins
with an incoherent flower will not be unique (up to isomorphisms).

It needs to be shown that a layout will be independent of the developments used to locate its
circles. The complex is connected, so any order of placement can be traced back to an arbitrary
placement of f0. Any two developments with base face f0 used to place a face g, say Γ′ = {f0, . . . , g}
and Γ′′ = {f0, . . . , g}, can be merged into

Γ = (Γ′′)−1 ◦ Γ′ = {f0, . . . , g, . . . , f0}

(where (Γ′)−1 is the reverse ordering of Γ′) by translating and rotating Γ′ as necessary. Γ′ and Γ′′

will find identical placements for g if and only if φ(Γ(f0)) is the identity. Thus we need only prove
that all closed chains with base face f0 have trivial holonomy.

Let Γ′, Γ′′, and Γ be as described above. Because K is simply connected Γ is null homotopic.
Consider a flower F ∈ K such that F shares faces with Γ. Because F is locally coherent, local
modifications of Γ ⊂ K ′ using sub-chains from F will not affect the development Γ(fn). By
repeatedly using sub-chains from neighboring flowers, Γ can be modified down to its base face
without affecting the development, where it is clear that φ(Γ(f0)) is the identity.

The statement and proof are for the most part as they appear in [44].

Remark 3.10. If a motif is coherent then it is a branched motif regardless of the complex, i.e., local
coherence is always necessary for global coherence.

Proof. If a motif is coherent then it is the disjoint union of simply connected sub-motifs. Each of
which is coherent and thus locally coherent at each vertex by Theorem 3.9.

All closed chains in simply connected complexes are null homotopic. This is not true for non-
simply connected complexes, and thus it should not be expected that Theorem 3.9 would hold.
Consider the simple example shown in Figure 3.3; the pictured layout of a motif is locally coherent
at every vertex. A development that walks around the inside (or outside border) clearly has non-
trivial holonomy. Another example is shown in Figure 3.4. This motif also is locally coherent, and
a branch point has been added. These examples demonstrate the sometimes overlooked fact: local
coherence does not imply global coherence.

Definition 3.11. Let K(R, I,A) be a motif and ∂Γ ∈ B(K) with boundary element {b1, . . . , bn, b1}
denoted ∂Γ. Then the turning angle at the vertex bi ∈ ∂Γ is

t(bi) = π − θ(bi) for bi ∈ ∂Γ.
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Figure 3.3: A locally coherent but globally incoherent motif. The complex K for an annulus is on the left.
The two border edges are colored yellow and green; the red is an interior edge. On the right is a layout of a
locally coherent but globally incoherent motif for the same K.

The turning angle of a border chain ∂Γ is

T (∂Γ) =

n∑
i=1

t(bi),

where each bi ∈ ∂Γ. Finally we say that K(R, I,A) has (total) turning angle
∑
∂Γi∈B T (∂Γi) where

all angles are measured Euclideanly.

Turning angle will be measured in the plane where angle is invariant under isometries. (see
Figure 3.5). Möbius transformations take circles to circles and preserve inversive distances. So
motifs are coherent/incoherent if and only if they are coherent/incoherent in all three geometries.
Results evaluating coherence in the plane can then be carried over to the other geometries. If G = D
then turning angle can be measured by using the associated Euclidean circles, and if G = P then
the motif can be projected to the disc and then measured using the associated Euclidean circles.

Theorem 3.12. Suppose we have a branched motif K(R, I,A) in D or C with branch set β(K) (see
Definition 2.6) and at least one boundary element. Let λ(K) = 2−|B| where B is the set of boundary
elements in K.

∑
A(v) = 2π(intV + |B|) if and only if the total turning angle of K(R, I,A) is∑

∂Γ∈B

T (∂Γ) = 2π(|β(K)|+ λ(K)).

Note that a development with trivial holonomy must have a turning angle that is a multiple of
2π.

Proof. Recall that int and ∂ denote interior and border subsets of F , E, and V . Let vi ∈ intV .
There are 3 edges per face. Excluding the border edges, this double counts the number of edges.
Noting that ∂V = ∂E this gives,

E =
1

2
(3F − ∂V ) + ∂V =

3

2
F +

1

2
∂V .
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Figure 3.4: Another locally coherent but globally incoherent annulus. On the bottom is a layout of the
motif. It has been rendered from the circle packing above by setting A(v) = 4π. A development for the
darkened face is laid out twice on the bottom-right.
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Figure 3.5: Turning angle of a non-simple polygon. Turning angle is in red with a selection of interior
angles colored blue. Note the negative turning angle at b7. On the right, this angle is colored red on the
translation of the turning angles.

Substituting this value into the Euler characteristic, we derive that πF = 2π(intV −λ(K))+π∂V ;
πF is the total amount of (Euclidean) angle on K so then the sum of the border angles, θ(b) for
b ∈ ∂V is the difference between this and the sum of the interior angles:∑

θ(b) = πF − 2π(intV + |β(K)|)

= π(∂V − 2 |β(K)| − 2λ(K))

which implies that the turning angle is then

π∂V −
∑

θ(b) = π∂V − π(∂V − 2 |β(K)| − 2λ)

= 2π(|β(K)|+ λ(K)).

The other direction follows similarly.

Admissibility serves as a generalization for branch structure (Definition 2.6) in our setting, but
as mentioned before there are non-admissible decorated complexes for which labels do exist. For
these labels turning angle provides another necessary condition for coherence. Coherent motifs must
have turning angles that are non-zero integral multiples of 2π. This can easily be seen by replacing
the interior of coherent motif’s border chain with an exterior face.

The turning angle at a border vertex is the difference of π and the petal angle. So then by
Lemma 2.4,

π − π |F | ≤ π −
∑
e∈Ei

ψe < t(vi) < π

where Ei is the set of border edges of vi’s flower, and ψe = π − cos−1(σe). Using this fact we get
the following corollary.
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Corollary 3.13. Suppose that K(R, I,A) is a coherent motif in C. Let |∂V | be the number of border
vertices in a border chain ∂Γ. If T (∂Γ) = 2πn then |∂V | > 1 + 2n. Furthermore, if K is simply
connected then |∂V | > 2 + 2 |β(K)|.

Proof. Following the above remarks, the first part is clear. To see the second part puncture all the
branch circles of a coherent motif. Each branch circle’s flower is replaced by a border chain with
negative turning angle. The sum of which will be −2π |β(K)|. So then ∂Γi must having a turning
angle of ±2π |β(K)|.

Theorem 3.14. Let K(I, A) be an admissible combinatorial sphere with half of the branching at a
single externally tangent flower. That is, there is a single vertex v∞ such that

A(v∞) =
∑

vj∈v∞\V

A(vi)− 2π |V − 1| ,

and σ∞,i = 1 for every petal in v∞’s flower. Then there exists an essentially unique PK(R,I,A) in P.

Proof. Essentially unique means that if K(R, I,A) and K(R′, I, A) are coherent motifs on the unit
sphere then there is a Möbius map ϕ such that ϕ(PK(R,I,A)) = PK(R′,I,A).

Let B = {v1, ..., vn} be v∞’s petals. Remove v∞ from K creating the sub-complex K ′. By
Theorem 2.13 and 3.9 there exists a coherent motif K ′(RD, I, A) on the disc such that each vi ∈ B
is a horocycle, i.e., it is a branched maximal packing. By Theorem 3.12 the boundary chain of the
motif has a turning angle of ∑

vj∈v∞\V

A(vi)− 2π |V − 1| ,

or equivalently the boundary circles wrap around the boundary of the disc 1
2πA(v∞) times.

Via stereographic projection, take PK′(RD,I,A) to the sphere. The boundary is mapped to a
hemisphere. Calling this circle C(v∞) gives us a spherical label R for the motif K(R, I,A). Since
K ′(RD, I, A) was coherent so is its projection. Local coherence of v∞’s flower then gives us coherence
of K(R, I,A). Essential uniqueness then follows by standard arguments from the uniqueness of
PK′(RD,I,A).

The incoherence in Figures 3.3 and 3.4 can most easily be seen in the holonomy of their border
chains. It is clear that a motif is coherent only if the holonomy of every generator chain is trivial,
however the converse is not true. An interesting example of such a motif is Figure 3.6. The lower
half of the figure is an example of a fractional branched motif, the subject of Chapter 6. The two
motifs differ only in their angle assignments and resulting labels. Visually it is easy to check that the
border chain (Γ0) has trivial holonomy, but a closer inspection reveals that the three interior vertices
fail to be locally coherent. A chain passing (Γ1) through the interior face will have a non-trivial
holonomy.

Though the interior vertices are each locally incoherent, the cumulative effect of their rotational
holonomy causes the border chain to have no holonomy. Non-locally coherent angle sums would
generally not “correct” the holonomy on the exterior chain, so this is not typical. A notable feature
of this example (Figure 3.6) is that the interior incoherence can be ignored if it is avoided. Such
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Figure 3.6: Chains passing through and around an incoherent sub-motif. Γ0 and Γ1 are closed chains
with similar base face f0 (in blue) in layouts of the coherent motif K(R, I,A) and the incoherent motif
K(R′, I, A′).
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configurations within larger motifs can allow coherence outside singular type areas of incoherence. If
the boundary element of an incoherent sub-motif has trivial holonomy than the sub-motif can behave
like a singular structure bringing rigidity to the super-motif. We formalize this idea in Chapter 5
where it is called generalized branching.
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Chapter 4

Discretization Issues

Developing discrete analogues of classical functions has been a central focus of circle packing.
Thurston conjectured that the Riemann mapping function from a simply connected region onto the
unit disk can be approximated by a regular hexagonal pattern (flowers with six petals) [46]. First
proved by Burt Rodin and Dennis Sullivan [37] it has since been much generalized and improved
(see [6, 42, 27, 28, 25] and others). For instance the hexagonal requirement turned out to be a mere
convenience not a crucial assumption. The fundamental property can be summed up by the often
repeated adage: an analytic function is one which maps infinitesimal circles to infinitesimal circles.
So circle packings dense with vertices should be expected to behave like their classical counterparts.
What may be surprising is how well the geometric properties of the classical functions are replicated
regardless of refinement.

This suggests that the properties of the classical are inherited from the discrete. Since its
emergence circle packing has embraced this perspective. Not just as a tool for modeling, circle
packing has evolved into a deep and rich independent theory. However circle packing’s connection
to classical theory is not perfect. This is particularly so when multi-connected decorated complexes
are introduced which fail to have coherent motifs. These failures provide evidence of inherent
fundamental differences between the discrete and the continuous. Thus refinement may overwhelm
these differences, but it should not be expected to extinguish them.

In this chapter we explore some important classical examples which exhibit these failures. As
prime specimens we have the Ahlfors function on an annulus and the Weierstrass function on
the torus. Both are branched functions from multi-connected surfaces, the annulus and torus,
respectively. Specific examples below fail to allow a coherent label to exist, and help justify our
exploration of alternative circle packing methods in the following chapter. We also discuss a discrete
quadratic polynomial, a simpler example on the plane which fails to exhibit the key behavior of the
classical version.
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4.1 A Measure of Incoherence

Recall from Section 3.3 that non-trivial Möbius maps defined by a closed chain Γ can be used to
demonstrate a motif’s incoherence. Here they will also as be used to measure incoherence. Something
that will be of more importance in Chapter 8.

A Möbius transformation, f(z) = az+b
cz+d , can be associated with an invertible 2 by 2 matrix

φ =

(
a b

c d

)
where det(φ) = ad− bc and tr(φ) = a+ d.

Without loss of generality it be will assumed that φ has been normalized such that det(φ) = 1. Both
the determinant and trace of φ are conjugate invariants, i.e., for any other Möbius transformation
ϕ, det(ϕφϕ−1) = det(φ) and tr(ϕφϕ−1) = tr(φ). It can be shown that these conjugates form classes
which geometrically result in different types of transformations, and a transformation’s class can be
identified by the square of its trace function [41]. These classes are commonly labeled as parabolic,
elliptic, hyperbolic, and loxodromic.

Given a φΓ (the Möbius transformation defined by Γ) we can find its Frobenius norm. The
Frobenius norm (or Euclidean norm) is a matrix norm,

‖φΓ‖F =
√
a2 + b2 + c2 + d2, where a, b, c, dare the entries of φΓ. (4.1)

It is the square root of the sum of the squares of its elements. Alternatively it can be written as,√
tr(φHΓ φΓ), where φHΓ is the Hermitian transpose.

Recall that φid =

[
1 0

0 1

]
and that G(K) is a set of fundamental chains K (see Definition 3.2).

Call the following function the total holonomy error:

EK(R,I,A) = EK =
∑

Γ∈G(K)

‖φΓ − φid‖F . (4.2)

When comparing the total (holonomy) error of two motifs K(R, I,A) and K ′(R′, I, A) it will be
assumed the same G(K) and layout order are being used. As a matter of convenience border chains
will be used when available. It has been shown in Chapter 3 that a motif K(R, I,A) is coherent if
and only if its total error is zero. φΓ is invariant with respect to homotopy; so EK provides a reliable
measure of incoherence for the Ahlfors and Weierstrass functions below.

4.2 Methods

All our experiments, examples, and pictures are conducted or created using an extended version
of the open source program CirclePack. This free Java software has been created, copyrighted,
and maintained by Ken Stephenson. Now in its sixteenth year of development its ease of use and
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versatility are ideal for these type of experiments. Not only does CirclePack allow us to compute
the labels; it brings the packings to life with vivid and beautiful pictures.

The extended version we work with includes methods for computing fractional branched motifs,
coherent shift-points, and experiments implementing these ideas. The source code for the extended
version is not yet available with the main CirclePack package, but will be provided upon request
from Stephenson or the author.

4.3 A Quadratic Polynomial

The ratio function serves as our discrete analogue for the modulus of the derivative in the continuous
setting. Suppose that K is a simply connected complex such that K(I, A′) and K(I, A) are
admissible. Let K(R′, I, A′) and K(R, I,A) be two motifs where the border radii of R are set
by the ratio function f#(v) = R(v)

R′(v) .
By Monodromy, we need only choose an A and A′ so that both motifs are branched to ensure

that they are coherent. A map f : PK(R′,I,A′) → PK(R,I,A) between the layouts is then a discrete
analytic function. Like many discrete analogues in circle packing the main interest is the behavior
of the motif’s border.

Consider the function g(z) = (z − 1
4 )2 which has a branch point at 1

4 . Manipulating f# gives us
a method to emulate this classical function. Let K(R, I, A′) = KM be the maximal motif and R′

the Euclidean label for KM when the boundary is the unit disc. By setting f#(v) = |g′| for a border
vertex v we control boundary adjustments of f to mimic those of g. As g(z) has a branch point at
1
4 we also need to mimic this behavior. However discreteness provides limited options; so we choose
the circle center in PK(R′,I,A′) closest to 1

4 .
Figure 4.1 shows an example of a circle packing with a circle close to the desired point. The blue

circle’s center (on the left) is at about 0.2551. The blue path on the right indicates the image of the
unit circle under g, (e2πit − 1

4 )2 for t ∈ [0, 1]. We can see that the boundary of the discrete result
follows the classical quite well. A shift via the Möbius transformation z+ 1

16 is the only adjustment
which has been made to the image packing. It should be noted that this analogue is not quite as
nice on the interior. While the branch circle is very nearly mapped to 0, the vertex v138 (marked in
pink) has a difference of |g(v138)− f(v138)| ≈ 0.628.

A more coarse example does not fair as well. See Figure 4.2. The circle center at 0 is our best
choice to locate the branching. As can be seen, the border circles in the image packing are not
anywhere close to where they need to be.

4.4 The Ahlfors Function

The Ahlfors mapping of an annulus is a proper multi-sheeted analytical map onto D. Thus it serves
the role of the Riemann map for non-simply connected surfaces. In this section we demonstrate
that traditional circle packings cannot provide a fitting discrete analogue of this important class
of complex functions. The discrete analogue of the Riemann map, the Maximal packing, was one

41



Figure 4.1: A discrete quadratic polynomial. The border circles have been shaded and the branch circle
has been colored blue. Because it has become so small the branch circle is not easy to see in f(KM ), but it
is very close to the origin.

Figure 4.2: A coarse discrete polynomial. The border circles have been shaded and the branch circle has
been colored blue. One of the mapped circles has been striped.
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of the founding results in circle packing. Its existence and uniqueness are a result of the Discrete
Uniformization Theorem as proved by Alan Beardon and Stephenson [6].

First the classical Ahlfors function is defined and discussed. A proof of its existence is outlined
below using normal families and Montel’s Theorem.

Theorem 4.1. (Montel’s Theorem) Let F (or F (Ω)) be the family of analytic functions on
a plane domain Ω. F is uniformly bounded on each compact subset of Ω if and only if every
subsequence in F has a subsequence that converges uniformly on each compact subset of Ω, i.e., F

is a normal family.

For a proof see [15]. One can apply Montel’s theorem to guarantee the existence of extremal
functions for extremal problems. For instance, consider the problem of maximizing the derivative at
a prescribed point over a family F of (analytic) functions f(z) on a domain Ω such that |f(z)| ≤ 1

in Ω. Now fix a point, say z0, in Ω and determine the maximum |f ′(z)| over all functions in F . The
extremal value or analytic capacity of F is

A = sup{|f ′(z0)| : f ∈ F , |f(z)| ≤ 1, f(z0) = 0}.

Functions f ∈ F are uniformly bounded. So their derivatives are also uniformly bounded at z0,
and thus so is A . A function A ∈ F such that |A′(z0)| = A is an extremal function. A sequence
{fn(z)} of functions in F such that |f ′n(z0)| → A must have a subsequence that converges normally
on Ω to a function A(z) by Montel’s theorem. The convergence is normal so then |A(z)| ≤ 1 and
|A′(z0)| = A .

The function A(z) is called the Ahlfors function, named after Lars Ahlfors who showed the
existence and uniqueness of such functions when he first introduced the concept; with some modesty
he later described this honor as undeserving [22, 1]. When Ω is simply connected the Ahlfors function
is a conformal map onto the unit disc. Analytic capacity is a generalization of Schwarz’s Lemma for
multiply connected domains. This is exactly what motivated Ahlfors to study the notion [22].

Recall that the ratio function is the analog of the modulus of the derivative for discrete analytic
functions.

Lemma 4.2. Discrete Schwarz Lemma. Let K(R, I,A) be the motif in D for an admissible
decorated closed disc. If K(R, I, A) is the maximal motif then R(v) ≤ R(v) for every vertex v in K;
equality for any interior v implies R ≡ R.

For a proof when I ≡ 1 see [44]. Because Monotonicity holds the proof can easily be adapted for
admissible decorated complexes.

Thus by the discrete Schwarz Lemma for simply connected complexes, the image of a discrete
Ahlfors function (DAF) is the Maximal packing of a decorated complex. Existence and uniqueness
of this function comes by the Discrete Uniformization Theorem. The only limitations introduced
by discretization can be easily avoided by introducing some combinatorial prerequisites. These
requirements, what we call admissibility, ensure that a label will exist for its decorated complex.
They are however not particular to the maximal packing.

The situation is much different for an annulus. In the classical case, for an n-connected planar
domain Ω, the Ahlfors function is a branched analytic function mapping K, n-to-one, and onto
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the unit disc with f(z0) = 0. If the boundary curves are Jordan curve, the function will extend
continuously to the boundary of Ω. The natural analogue is to find a circle packing such that each
boundary circle is a horocycle. We will see that generally discretization prevents this from being
possible with circle packing. Why this occurs and how we might obtain a discrete version of the
Ahlfors function is the subject of this section.

In the classical setting the branch points of an Ahlfors function are uniquely determined by the
point z0. However a complex supplies us with only a finite selection of vertices for branch points.
The geometry created in the dance between combinatorics and radii determines their locations, and
on the annulus generally one would not expect to be so lucky that any pair would coincide with
their needed location. Indeed we will need to rely on symmetry to construct a simple example that
is coherent.

Let K(I, A) be an admissible decorated complex such that K is a topological annulus. If A ≡ 2π

then K(I,A) has an (essentially) unique label filling some round annulus A(rinn, rout), where rinn ≤
rout ≤ ∞. Typically rout = 1, so it equivalently can be thought of as the boundary of D. Call this
label RA and this branched motif the nested annulus K(RA, I, A). By simply attaching a vertex to
one of K’s border elements it can be made into a disc. The existence and uniqueness of the nested
annulus follows directly from the existence and uniqueness of the Maximal packing, and PK(RA,I,A)

is a circle packing.
Figure 4.3 shows a nested annulus (with C(rout) removed) on the right. The left is the same

complex with different border radii. Identified borders have been marked green and blue. The
“dashed” pink circles are identified with the “non-dashed” pink circles.

Figure 4.3 currently has no branching. By Theorem 3.12 the sum of its turning angle must be 0.
It has two border elements; on the right one with turning angle of positive 2π and the other with
negative 2π, and on the left turning angles are both 0.

Definition 4.3. Let K(R, I, A′) be a branched maximal motif. If K(R, I, A′) is coherent then
f : PK(RA,I,A) → PK(R,I,A′) is a discrete Ahlfors function (DAF). PK(R,I,A′) is called an Ahlfors
packing of K(I).

The boundary of D has an extrinsic curvature of −1, but it can be embedded in C. So if a border
chain is tangent to the boundary and has trivial holonomy we can conclude that it’s turning angle
is a positive multiple of 2π. Furthermore, to preserve the proper analogy we need each border chain
of an Ahlfors packing to wrap around the boundary only once. Thus each border chain in the image
needs to have a turning angle of 2π. Theorem 3.12 then necessitates that an Ahlfors packing must
have two branch points.

As mentioned, discreteness generally prevents such packings from being realizable, and to create
a concrete example we must use symmetry. Returning to the example in Figure 4.3 we have such
a packing. We set the angle assignments to 4π at each shaded circle, 2π elsewhere in the interior,
and the border radii to ∞; CirclePack then applies a standard circle packing algorithm and finds
the label. The result is shown in Figure 4.4. Do not worry; no circles were harmed in this packing.
Because of the symmetry each trivial branch circle has been mapped precisely onto its symmetric
partner —border to border circles and interior to interior circles.

44



Figure 4.3: Two different motifs and layouts of an annulus. The border elements’ edges are marked as
green and blue. The gray circles are where the branching will occur in the Ahlfors function.

Figure 4.4: The Ahlfors Packing of the example from Figure 4.3. Branching occurs at the shaded circles.
The blue and green edged borders have been identically mapped.
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We slightly modify the example from Figure 4.3 by applying a Whitehead move. As illustrated in
Figure 4.5 a Whitehead move replaces one interior edge with another in the union of two edge-sharing
faces. Such a modification does not change the global number of faces, edges, or vertices. It only
changes the combinatorics locally. These local changes invoke global geometric changes (differing
Whitehead moves from edge flips which are done strictly in the context of fixed geometric vertices).

We now try to find the DAF of this modified complex. Call the layout of the motif K(R, I, A′),
LK(R,I,A′). If K(R, I, A′) is incoherent then the map f : PK(RA,I,A) → LK(R,I,A′) will be multi-
valued. However there are maps of sub-motifs of the nested annulus that are well defined. K(R, I, A′)
is a branched motif; so for example, any map of a flower in K(RA, I, A) will be coherent. Call a
map with a coherent image a function element, denoted (M,f) where M is a motif. Let (M1, f1)

and (M2, f2) be two function elements. If f1 ≡ f2 on M1 ∩M2 6= ∅ then (M1, f1) is an analytic
continuation of (M2, f2), written (M1, f1) ∼ (M2, f2). In the case that K(R, I, A′) is not coherent,
repeated continuation of a single-valued function element can produce a multi-valued function.

As above, the motif must have a branch order of two. This is where discreteness creates an
impasse. Because our selection of branch points is limited to the number of interior vertices, 21

in this case ( 6!
2·4! for choosing 2 out of 6 vertices and then +6 for the possibility of placing all the

branching at one vertex). The labels for all these possibilities are easily computed with CirclePack.
Let ∂Γ be the border chain which contains the blue edge illustrated in Figure 4.3. Using

CirclePack we first compute the labels and then the error EK for each possible branch set. Figure
4.6 illustrates the incoherence of the motif for the case with branching at vertices 9 and 12. Two
different paths Γ1 and Γ2 are used to locate the same face (with vertices 4, 10, and 16). Here it can
be seen how incoherence is a discrete analogue of an ambiguously defined map.

This label is the unique set of radii which satisfies all the edge and angle sum requirements of
the complex, however different layouts result in different locations for these circles. The layout of
each of these chains is a function element, and together they form an analytic continuation which
gives rise to a multi-valued function, i.e., a layout of an incoherent motif. The EK for each possible
branch pair are easily computed and seen not to produce a coherent label. Each resulting motif
lacks well defined circle locations, similar to that illustrated in Figure 4.6.

4.5 The Weierstrass Function

The surface of the three-dimensional torus is a closed (compact and without boundary) 2-manifold
of genus 1. So in this sense it is the simplest non-simply connected closed surface, and it plays the
progressive role for the sphere that the annulus does for the disc. Perhaps expectedly, attempts to
discretize classical branched functions related to this surface encountered similar difficulties.

A standard geometric representation of a two-dimensional torus T is found by opening the torus
along any two non-homotopic fundamental curves from some base point. The resulting simply
connected sheet can be embedded in C as a Euclidean parallelogram Ω with identified opposite
edges (see Figure 4.7).
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Figure 4.5: The complex is modified with a Whitehead move. The packing before and after the move is
illustrated on the left and right, respectively. The solid red edge is replaced with the dashed red edge.
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Figure 4.6: Function elements layout the incoherent motif. Using the same label, two different chains, Γ1

and Γ2 are used to locate the same three circle (in pink). The label places branching of order 1 at vertices
9 and 12 on the complex from Figure 4.4.

Figure 4.7: The torus “unwrapped”.
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Repeatedly translating Ω’s edges so that edges are identified generates a lattice group

Λ = {φ : z 7→ z +mω1 + nω2 : m,n ∈ Z+} ⊂ Aut (C) ,

and copies of Ω tile the plane (see Figure 4.8).
The fundamental group of the torus is the direct product of the fundamental group of the circle

with itself, π1(T ) ∼= π1(S1)×π1(S1) (π1(X,x0) or π1(X) denotes the fundamental group of X formed
by the set of all homotopy classes of loops with base point x0). The two parts of this product are
fundamental groups formed by loops, and the curves we used to open the torus are each homotopic
to a different one of these loops. So then the parallelogram Ω is T ’s fundamental region, and for
every orbit, Oz = {φ(z) : φ ∈ Λ}, on C there is a unique associated point on T . The collection of
these orbits form a topological surface which is equivalent to T , i.e., T = C/Λ.

This representation of T provides a geometric structure more accessible than its three-dimensional
form. Furthermore, C/Λ inherits the conformal and metric structures of C, and the algebraic
properties of an Abelian group. The former properties allow curves on T to be lifted to C and
measured Euclideanly. Thus an angle between curves on T is the angle between the lifted curves.
So T = C/Λ is a conformal torus.

It is the lifted torus (of T to C/Λ) that we use to create discrete versions of tori. Loops in circle
packing are closed chains of faces. Given a triangulation of a torus, Kt, we can find two simple
closed chains that are neither homotopic to each other or the null chain. Every other closed chain
will be an element in the group generated by these chains. So Kt can be opened similarly to above
using these two fundamental chains, and the resulting complex with opposite edges identified, say
KF , is the fundamental region.

Now provide decorations for Kt and compute a label. Will the resulting motif be coherent in
C? It would need to be locally coherent at every vertex. Treat KF as a simply connected disc
by assigning identical radii to identically mapped circles. If KF is admissible then Theorem 2.13

Figure 4.8: The lattice Λ generated by the fundamental region Ω.
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guarantees a label, and this label will be coherent as long as each angle sum assignment is locally
coherent. However this does not give local coherence at the vertices along the generating chains, all
interior vertices of T . If KF is to be coherent as a fundamental region of T these vertices must have
angle sums that are also integral multiples of 2π.

Though it appears we have the necessary tools, a generalization for admissible edge assignments
will have to wait. As our primary interested is in branched functions, the univalent case will suffice
as a domain. Using this proposition, a circle packing for the universal cover (Λ) of any triangulation
of the torus can always be found. It is the functions from these circle packings on the torus to the
Riemann sphere (P) which we want to investigate.

Definition 4.4. A meromorphic function f : C → P is elliptic with respect to a lattice Λ ⊆ C if f
is doubly periodic with respect to Λ.

Periodicity is a characteristic that applies equally well to chains as it does for curves. So this
classical definition needs no modification for our discrete setting, and from figure 4.9 we easily see
that the lattice of T is doubly periodic. Elliptic functions were in fact named for ellipses; albeit the
relation is somewhat indirect. Gauss is credited with first discovering (but not publishing) that the
length of an ellipse’s arc can be expressed as an integral of an elliptic function [29].

Our interest in elliptic functions is a bit more vogue. Elliptic functions are to the torus what
rational functions are to the sphere. These functions are by definition doubly periodic. Conversely
any doubly periodic function on C will generate an associated fundamental parallelogram, and so is
a function on a torus.

An elliptic function is bounded, so if it has no poles then it is known to be constant by Liouville’s
Theorem. It also turns out that no elliptic function can have only a single pole. So interesting
functions on the torus are meromorphic with at least two poles. Construction of an elliptic function
with only two poles is not trivial. The Weierstrass function (℘-function),

℘(z) =
1

z2
+
∑
ω\0∈Λ

(
1

(z − ω)
2 −

1

ω2

)
, z ∈ C, z /∈ Λ,

(associated with Λ) is such a function. The ℘-function is a doubly-periodic meromorphic function,
and we can see that the poles of order two at its lattice points determine the function.

It is important not only as an example, but because ℘-functions can be used to construct all
elliptic functions. Every elliptic function f associated with Λ can be written as

f = R1(℘) + ℘′R2(℘),

where R1 and R2 are rational functions. C(℘, ℘′) ⊂ E(Λ) where E(Λ) is the field of all elliptic
functions on Λ and C(℘, ℘′) is the field of rational functions of ℘ and ℘′. So then E(Λ) = C(℘, ℘′)

[29].
The function f is thus a degree two branched covering map of the sphere. Any degree two cover

of P branched over four points is the image of an elliptic function and thus can be represented with
a ℘-function up to some Möbius function of P. Edward Crane has constructed a discrete ℘-function
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Figure 4.9: A lattice generated by a circle packing of a fundamental region.
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using the following method. Using any triangulation of the torus, find the circle packing of its
universal cover. Now mark a circle, say b, to be branched, and pull back by z 7→ 2z to obtain a
circle packing with a fundamental region that has four times as many circle. The pull back has four
copies of b, say {b1, b2, b3, b4}, all in the same orbit of the original fundamental region.

Now puncture one of the branch circles, say b1, and find the maximal (branched) packing on
D (for this reason we need to assume that the motif has no overlaps on the branch circle b1) with
angle sums of 4π at the remaining three branch vertices. A hyperbolic label for such a packing is
guaranteed to exist and be unique. The question is whether it will be coherent.

If the punctured motif is coherent, then a projection onto P will also be coherent. When projected
to the sphere the max-packed punctured torus is a non-bordered multi-connected surface of genus
two, and projection preserves coherence. It will be seen that having two non-homotopic fundamental
chains with trivial holonomy is a necessary and sufficient condition for this motif to be coherent
(Remark 5.2), regardless of whether its geometry is P or D. Note that this is not a polynomial
branched packing which would need to have half its branching at a single vertex (see [12]).

Experimentally, this appears to work. The pull back action creates a symmetry that, similar to
what we saw above with the DAF, prevents the combinatorics from getting in the way (exactly why
this is so is still unclear). The first example is a simple triangulation with only 16 vertices. It is
a pull-back of a 4 vertex torus; 2 vertices have degree 5 and the other 2 have degree 7. Following
Crane’s method described above an approximate solution is produced (see Figure 4.10).

By approximate solution we mean a coherent motif with an acceptably small holonomy error
computed with CirclePack. Using a pair of fundamental chains we find that this example has an
error of EK ≈ 0.0. The resulting branched packing of degree 2 on the sphere has a S2×S2 of Möbius
symmetries. The branch points are on a single orbit of the 2-torsion, (Λ/2)/Λ; thus the four branch
vertices in each orbit can be mapped to have equal spherical radii [17].

Figure 4.10: The fundamental region of a symmetric 16 vertex torus. On the right is its branched image
on the sphere.
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Another example is shown in Figure 4.11. A pull-back of a 12 vertex hex torus. Again symmetry
provides a coherent branched spherical motif. As in Figure 4.4, trivial branch circles are mapped
precisely onto their symmetric partner.

Flipping a single edge in either of these examples breaks the symmetry and we lose the coherence.
This can be easily checked by measuring the error of the punctured torus on the disc. It is also
easily checked that no other choice of branch circles gives a solution. See Figure 4.12 and 4.13 for
illustrations of how the flips break symmetry and cause incoherence. For each example, repeated
developments of a face using the same closed chain were laid out. Each successive development finds
a different location for the face, demonstrating the incoherence of the different motifs.

Figure 4.11: The fundamental region of a symmetric 48 hex packed torus. On the right is its branched
image on the sphere.
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Figure 4.12: Breaking the symmetry of the symmetric 16 vertex torus. The edge created by the flip is
colored blue; the dashed edge is removed. For simplicity only the faces of the chain are shown, and the base
face is colored blue.

Figure 4.13: Breaking the symmetry of the symmetric 48 hex packed torus. Components are colored as in
Figure 4.12.
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Chapter 5

Generalized Branching

Chapter 4 demonstrates an intrinsic failure of circle packing to properly model classical functions.
These problems are congenital to the discrete characteristics of circle packing, and thus unavoidable
without the introduction of some type of flexibility. It would be desirable for such a method to
have a controllable parameter. For predictability it should be monotone, and the range of its effect
should be broad enough to provide sufficient flexibility. Seasoned circle packers will attest that these
properties are also desirable for proving existence and uniqueness results.

Consider the angle sum of a flower parameterized by it’s central radius. It is monotone
(actually convex); increasing or decreasing the radius always causes the angle sum to decrease or
increase, respectively. Furthermore, the end behaviors give the angle sum (with some combinatoric
prerequisites) enough scope to guarantee that it can obtain a targeted value (usually some multiple
of 2π).

The decorations presented in Chapter 2 are likely candidates for being adjustable parameters.
However angle sums are too restrictive because of local coherence conditions, and inversive distance
is not monotone (recall Figure 2.6). Another idea is to puncture branch points and manipulate
the created border chain. This idea will be explored in Chapter 8, but predictability and retaining
admissibility proves difficult.

Chapters 6 and 7 develop some promising alternative methods for inducing branching. Their
successes and failures will be demonstrated in Chapter 8. The basic idea is to insert non-traditional
structures contained within a sub-complex that is viewed as the branch point. If a closed chain
encircling this sub-complex has trivial holonomy and the motif is coherent elsewhere then the
compliment is coherent, i.e., it is a circle packing with limited areas that are ambiguous. Formalizing
this idea is the subject of this chapter.

Definition 5.1. Let K(I, A) be a decorated complex and R a label for K. A simply connected
sub-complex with at least one interior vertex is a generalized branch point for the label R if its
border chain has trivial holonomy.

A motif will be called a generalized (branched) motif if it satisfies conditions for a (branched)
motif outside the generalized branch point(s). The nexus and petals of a flower form a border chain
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so a coherent flower is a generalized branch point. If additionally the flower is admissible then it fits
the mold of our previous definition branch points; call it a traditional branch point.

For the border chain to have trivial holonomy it must have a turning angle (with Euclidean data)
which is 2πn for some integer n by Theorem 3.12. This means that generalized branch points express
similar geometric characteristics to those of a traditional branch point with the exception that n can
be negative. Hence a generalized branch point will coherently express branching regardless of whether
its interior is coherent or not. For this reason generalized branch points can be used to “quarantine”
areas of incoherence so that the super-motif can elsewhere be treated like a circle packing. Laying
out generalized motifs will be done as described in Section 3.2 except that generalized branch points
only have their border chains laid –the interiors of the generalized branch points are ignored.

Let Γ be the border chain of a generalized branch point. As φ(Γ) is assumed to be trivial, laying
out Γ uniquely places (up to isomorphisms) every face in the chain. The neighboring faces not in
the generalized branch point then have their positions determined as well. The generalized branch
point provides structural properties similar to those given by locally coherent flowers.

Laying out a generalized branch point from a motif can thus be seen as no different than laying a
face, and so they can be used in the same way that faces are used for developments and modifications
(see Figure 5.2). So the concepts employed in the proof of the Monodromy Theorem (Theorem 3.9)
can seamlessly be applied to a generalized motif. It follows that a generalized branched motif with
a simply connected complex will be coherent.

Remark 5.2. Faces and generalized branch points can be laid with developments via closed chains
that include branch points. A chain can be written as a concatenation using a subchain from the
branch point’s border chain. So chains can be modified using the border chains of generalized branch
points just as if they were traditional branch flowers. Furthermore the minimal set of generating
chains in the generalized branched motif can be assumed to be identical to the set for G(K).

5.1

Figure 5.1: A generalized branched point. The interior of the generalized branch point, G, does not get
used in the layout of the generalized branched motif.
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Figure 5.2: Laying out a generalized branched motif. The modifications on the right illustrate how the
border of G behaves similarly to a face.

Definition 5.3. If any two layouts of a generalized branched motif are Möbius images of one another
it is called a branched circle packing.

Henceforth branched circle packings and motifs will be assumed to possibly include generalized
branch points. The notion of branch set (see Definition 2.6) will be extended to include generalized
branch point; its elements will now be vertices and sub-motifs. To distinguish when strictly
traditional branch points are being used, the packing or motif will be called traditional.
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Chapter 6

Fractional Branching

Circle packings have an inherent rigidity beyond their classical counterparts. Their discreteness
introduces further restrictions like those illustrated in Chapter 4. These limitations have been
known hurdles from the beginning, especially for multi-connected complexes. In particular many
open and difficult questions involve branched meromorphic functions. Just recently Edward Crane
demonstrated the non-uniqueness of branched spheres [17], and there is still no direct method for
computing labels on the sphere (branched or unbranched).

As a means to overcome the limitations of discreteness, Ken Stephenson suggested the use of
“fractional branching” as a potential method to circumvent these problems [44]. The idea was that
a collection of neighbors could represent the branching by sharing the extra angle sum, and that the
distribution of this extra 2π might be adjusted to eliminate holonomy and obtain global coherence.

When conceived, Stephenson had meromorphic functions particularly in mind. Elias Wegert
and David Bauer have also suggested that fractional branching might be an approach to overcoming
issues in discrete Riemann-Hilbert problems [48]. Owing to an evolution via personal communication
this concept has also been called “fractured branching”.

Traditional branched circle packings are locally coherent and thus each branched flower is on
its own a circle packing. However angle preservation is lost at classical branch points in classical
maps. Therefore a reasonable discrete analogue of a multi-sheeted function could (or maybe should)
include structures which fail to be coherent at a vertex or at a sub-complex.

This is what fractional branching seeks to do; partitioning the extra angle on a chain of vertices
instead of a single circle. Setting angle assignments to non-integer values causes the motif to be
locally incoherent and thus globally incoherent. However, as discussed in Chapter 5, if a holonomy
containing these points is trivial the complementing motif will be globally coherent.

When this happens one can consider the branching to occur on the face or connected faces
enclosed by the vertices. In this way the “singularity” can be expressed not on a single vertex as per
usual but instead on a sub-motif. The sub-motif will then be a generalized branch point, and the
parent motif a branched circle packing.

Fractional branching is an interesting and aesthetically pleasing alternative to traditional
branching. In service of introducing flexibility, it will be seen that fractional branching’s spectrum
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of behavior varies from bad to good. It would be preferable to have an adjustable parameter which
has a unique generalized branched circle packing for each value. As seen in Section 6.2, Fractional
branching on tangency motifs lack flexibility while potentially lacking uniqueness. Adjusting the
edge assignments on the sub-motif allows flexibility but the problem with uniqueness persists. The
good news, Theorem 6.8 demonstrates that uniqueness holds when additional assumptions are placed
on the edge assignments.

This chapter will explore fractional branching on closed chains of three and four vertices, i.e.,
singularities expressed on a single or pair of connected faces. A special case of fractional branching
on three mutually tangent vertices was studied by the author in [4].

Definition 6.1. Let MB be a simply connected sub-motif of K(R, I,A) and B the set of interior
vertices of MB ’s border chain. If

∑
A(v) = 2πn and

∑
A(v) mod 2π 6= 0 for v ∈ B and n ∈ Z+

then K(R, I,A) is a fractured motif on B; call B the fractured points. (see Figure 6.1).

Alternatively we can start with the fractured points B, and let B define MB . The requirement
that

∑
A(vi) mod 2π 6= 0 means that K(R, I,A) is not locally coherent, making a fractured motif

distinct from a branched motif. Following the protocol of Chapter 5, if a fractured motif satisfies the
conditions for a generalized branched motif outside of M then it will be called a fractured branched
motif.

IfM ’s border chain has trivial holonomy thenM is a generalized branch point. Moreover,M is a
disc so the turning angle of the border chain will be 2πn. Fractional branching is thus an alternative
form of branching with which branched circle packings can be constructed. Though a fractured
motif is necessarily incoherent this sub-complex may still be coherent, in which case it will be a
suitably rigid structure. For example, if K(R, I,A) is a fractured branched motif, M a generalized
branch point, and K a simply connected disc then K(R, I,A) is a branched circle packing.

Figure 6.1: Complex of a fractured motif. On the left M is shaded, and the vertices in B are highlighted.
On the right the interior of M has been removed leaving its border chain, ∂Γ.
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Definition 6.2. Call a branched circle packing that is fractured on B a fractured branched circle
packing on B.

Below, M will be a single face or a pair of faces sharing an edge. Possible applications abound,
but in keeping with the overall theme of this work we keep the alterations confined to small areas.

6.1 Fractional Branching on Three Vertices

Recall that for a motif K(R, I,A) we denote the angle sum at an interior vertex v with θ(R(v)) =

θ(v). Below we use the floor function, bxc = max{n ∈ Z : n ≤ x} for x ∈ R.

Theorem 6.3. Let K be a simply connected complex with a strictly interior face f = {v1, v2, v3}.
Then a fractured branched motif K(R, I,A) is a fractured branched circle packing on f if and only
if for each bijection {1, 2, 3} → {i, j, k}.

θ(vi) = 2πni + 2θ(vi; vj , vk), (6.1)

where
⌊
A(vi)

2π

⌋
= ni.

The following lemma will be needed.

Lemma 6.4. In Theorem 6.3, K(R, I,A) is not a fractured branched circle packing if A(v) = 2πn

for any v ∈ f and n ∈ Z+.

Proof. Let Γ be the border chain for the fractured points’ sub-motif (M in Figure 6.1). R and I

define a triangle for f in its geometry, say T , associated with f . K(R, I,A) is a branched circle
packing if and only if Γ has trivial holonomy, and φ(Γ) will be trivial if and only if any development
using Γ fixes T .

The flowers for v1, v2, and v3 are each closed chains in K, and as developments of T in K(R, I,A)

each flower is a rotation. Coherent flowers are trivial rotations, and incoherent flowers are non-trivial
rotations. The turning angles of ∂Γ are precisely these flowers minus the angles at T . So then Γ

will place the edges of T emanating from a vertex identically to developments of T at that vertex’s
flower.

If K(R, I,A) is locally coherent at say v1 or v2, but not v3 then Γ fixes T at the first two vertices
and then rotates it non-trivially. Now suppose that K(R, I,A) is coherent at only one vertex, say
v1. The rotation at v2 rotates the edge e(v2, v3) repositioning v3. At v3 the edge is then rotated
repositioning v2, but then there are no rotations left to return v2 to its original location (see Figure
6.2).

Now we begin the proof of Theorem 6.3.

Proof. Let T and Γ be defined as in the previous lemma. Assume that K(R, I,A) is a fractured
branched circle packing on {v1, v2, v3}. By assumption K(R, I,A) is not locally coherent at all three
vertices, and by the lemma it cannot be locally coherent at just 1 or 2 vertices. So Γ has nontrivial
rotations at each of f ’s vertices.
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Figure 6.2: Three fractured points are needed. The rotations are done at the blue then the green vertex.

Starting at v1 we can rotate T around each of its vertices in sequence such that only the third
and final rotation returns T to its original position. Each rotation produces a copy of T , say Ti
for i = 1, 2, 3, each connected at the shared vertex of rotation (see Figure 6.3). The edges of their
shared vertices enclose a new triangle T ′. Each Ti shares an edge with T ′; e(v1, v2) from the first
rotation, e(v2, v3) from the second rotation, and e(v3, v1) from the third. So T ′ is a reflection of T ,
and they have similar angles. Thus the angle of the rotation at vertex vi is

θT (vi; vj , vk) + θT ′(vi; vk, vj) = 2θT (vi; vj , vk) (6.2)

where vj and vk are the other two vertices. Conversely the rotation of T by 2θ(vx; vy, vz) + 2πnx at
each vertex x will return T to its original location.

Equation 6.1 implies that f ’s sub-motif is a generalized branch point. Monodromy and Remark
5.2 then imply that K(R, I,A) is a branched circle packing.

The next theorem shows that given a branched motif K(R, I,A) (with some admissibility
assumptions), there exists an angle assignment A′ such that K(R′, I, A′) is a coherent fractured
motif on f = {v1, v2, v3}. In other words, we show that a label meeting the criteria of Theorem 6.3
exists.

Theorem 6.5. Suppose K is a simply connected complex with a strictly interior face f = {v1, v2, v3}
and that K(I, A) is admissible with each A(v) an integral multiple of 2π. Furthermore, suppose
admissibility holds if the assignment A(v) is replaced by A(v) + 2π for v = v1, v2, or v3. Then
there exists an angle assignment A′ such that K(I, A′) has a fractured branched circle packing on
{v1, v2, v3} and A(v) = A′(v) elsewhere.

Also, the border chain of K(R, I,A) will have trivial holonomy with turning angle T (∂Γ) =

2π(2 +
∑

(ni − 1)).

Proof. The notation will be the same as in Theorem 6.3. By the same theorem, if such an R exists
then θ(ri) = 2θ(ri; rj , rk) + 2πni for each bijection {1, 2, 3} → {i, j, k}. Let Λ be a tetrahedron in
R3 with three edges each of length 2π meeting orthogonally at the origin.
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Figure 6.3: The “frac-branch property”. T and its copies for each rotation are shaded gray; the rotations
are done in the order of the green, red, and then blue vertex. T ′ is the enclosed white triangle.

Let Â be the collection of angle assignments for K such that for each A′ ∈ Â,

2πni ≤ A′(vi) ≤ 2π(ni + 1) for i = 1, 2, 3,

and A′(v) = A(v) is an integral multiple of 2π elsewhere. K(I, A′) is admissible for every A′ ∈ Â
because K(I, A) is admissible.

By Theorem 2.13, a unique label exists for each K(I, A′), and the angles in K(R, I,A′) are a
continuous function of A′. Now let A′ ∈ Â and G : Λθ → Λα be a map from

Λθ = {A′(v1)− 2πn1, A
′(v2)− 2πn2, A(′v3)− 2πn3}

onto
Λα = {2θ(r1; r2, r3), 2θ(r2; r1, r3), 2θ(r3; r1, r2)}

2θ(ri; rj , rk) ∈ [0, 2π] so G is a continuous function from the closed compact space Λ onto itself. By
Brouwer’s fixed point theorem this function must have a fixed point.

A fixed point at one of Λ’s vertices would imply that one of f ’s interior angles would be 0 or π,
but this would require R to have a degenerate or infinite radius, something which cannot happen by
Theorem 2.13 and assumption, respectively. A fixed point along one of Λ’s edges would imply that
one of f ’s vertices was locally coherent which contradicts Lemma 6.4. So the fixed point must be
on the interior of Λ, call this angle assignment A?.

The motif K(R, I,A?) is a branched circle packing by Theorem 6.3. As Euclidean angles
(projecting to C) if necessary,

∑
i=1...3A

?(vi) = 2π(n1 + n2 + n3 + 1) and A?(v) = 2πn for some
n ∈ Z+ elsewhere. So then T (∂Γ) = 2π(2 +

∑
(ni − 1)) on K(R, I,A?) by Theorem 3.12 which

completes the proof.
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Figures 6.4 and 6.5 are examples of coherent fractional branched motifs. Figure 6.6 is the same
complex used in Figure 6.4.

Any simply connected coherent motif where all border circles are horocycles (a maximal fractured
branched circle packing) can be projected onto the sphere. The border becomes a traditional
branched circle in the spherical image, and as result of its turning angle will have a sum of
2π(n1 +n2 +n3− 2). This places exactly half the branching at a single vertex; a characterization of
polynomial rational maps. So a fractured version of the discrete polynomial functions as seen here
[12] can be constructed.

The assumption of K(R, I,A)’s incoherence necessitates that it is locally incoherent at each
vertex of f , and thus rules out the case when K is a normal branched or unbranched motif. There
is one special case that bears mentioning here. If one edge of f has an inversive distance assignment
of −1 then T is degenerate giving T two face angles that are 0. If such a motif is a branched circle
packing then Theorem 6.3 tells us that it is actually coherent at each vertex of f , and is thus by
definition not a fractional branching. Structurally though it can still be thought of as one. If the
inversive distance assignment is adjusted continuously as a parameter then a fractional branching
could be produced from this special case.

6.2 Uniqueness of Fractional Branchings

A fractured branched circle packing could equivalently be treated like an annulus by puncturing the
fractured points’ face. Equation 6.1 better illustrates the result from the perspective of its original
motivation, distributing branching among a collection of vertices. However this equation can be
rewritten in terms of turning angle on the boundary of the punctured face.

t(vi) = −θ(vi; vj , vk)− π(2ni − 1)

The angle assignment condition then becomes a turning angle condition. Instead of a simply
connected branched circle packing, the motif is treated as a coherent annulus.

Look closely at Figure 6.5; the orientation of f has simply been flipped. For coherence to hold,
the face angle at f ’s vertices must be exactly twice its angle sum in excess of the packing condition.
The excess is accounted for half in the positive direction and half in the negative (as faces are laid
out). As a rigid structure in R3 this could be viewed as a fold.

One could say this motif is coherent in three-space, or relax the orientation requirement in the
definition of a circle packing and say it is coherent. Call a flower with this property quasi-coherent.
Implementing these types of “folds” throughout a motif would allow multiple labels to exist for the
same decorated disc K(I, A), and allow for a greater menagerie of packing types. While interesting
these folds do not mimic classical analytical behavior, and so are not pursued here.

Given an admissible decorated complex Theorem 2.13 provides a unique label. For simply
connected complexes with fixed border radii, this label is also coherent as long as the angle
assignments are locally coherent. A meaningful uniqueness result for fractured branched circle
packings would be that there is only one way to distribute an additional 2π on an interior face of a
coherent motif such that the resulting motif is a fractured branched circle packing.
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Figure 6.4: Fractured branched circle packings in C and D. On the bottom-left is a fractured branched
circle packing in C, and on the bottom-right is a maximal fractured branched circle packing using the same
complex and edge assignments.
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Figure 6.5: Detail of a simple fractured branched circle packing. The upper left is an unbranched circle
packing. The upper-right is a fractured branched circle packing using the same complex and border radii.
The branching has been distributed on the three colored circles. Note how the face where the fractured
branching occurs has its orientation reversed.
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Figure 6.6: Fractured branched circle packing on P. Two different views of the hyperbolic branched circle
packing from Figure 6.4 projected to the sphere.

It would be desirable to either have this kind of rigidity, or have a fractured branched label
for every distribution in some connected set of distributions. The former would be pleasing to a
mathematician’s sensibilities, but the latter would be useful for introducing flexibility into branched
packings as originally conceived by Stephenson.

In regard to the flower at a fractured point, say v1 ∈ f = {v1, v2, v3} in K(R, I,A) from Theorem
6.5, this orientation flip causes the angle at θ(r1; r2, r3) to act antipodally to that of the rest of the
v1’s petal angles. Monotonicity dictates that the change in face angles of v1’s flower with respect
to the nexus radius, r1, will be opposite of the change in r1, e.g., decreasing r1 will increase θ(r1).
This is still true for θ(r1; r2, r3), but because the orientation of f is reversed so is the angle’s effect
on the flower. So while decreasing r1 will increase θ(r1; r2, r3) the flip means that the Möbius map
associated with the flower will have its rotation decreased; other face angles in the flower will increase
the rotation.

The net effect on the flower is generally uncertain, and dependent on the geometry at the
petals. Specifically the number of petals and the ratio of each petal radius to its neighbors. Values
which can be quite dynamic inside a motif. Contrast this with the monotonicity of flowers when
petal orientation is homogeneous. This property makes these so called quasi-coherent flowers quite
different.

In a traditional motif the angle sums are negatively monotone as a function of the central radius.
So every flower is also a monotone function of its respective central radius. However because of the
flip, local monotonicity of angle sums can be lost where fractional branching occurs. Uniqueness
can be shown to hold in some special situations, but unfortunately we can also construct examples
where uniqueness appears (computationally) to fail. Consider the following single closed Euclidean
flower which illustrates the non-monotonicity of quasi-coherent flowers.
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Example 6.6. Let F (v) = F{v; 1a, 1b, 10−4, H, 10−2, 102, H, 102, 10−2, H, 10−4, 1a} be an externally
tangent Euclidean lower with center radius r, and with angle sum

θF (r) = θ(r; 1a, 1b, 10−4, H, 10−2, 102, H, 102, 10−2, H, 10−4, 1a).

All other petals have fixed radii; H indicates half-planes, i.e., circles of infinite radius.

This flower will be quasi-coherent precisely when,

Q(r) = θF (r)− θ(r; 1a, 1b)− 2π = 0.

Figure 6.7 (on the left) graphs Q(r). The other graph is of F (r) = θF (r) − 2π; F (r) is zero when
the flower is locally coherent in the traditional sense (i.e., the packing condition is met). F (r) is
actually convex, however monotonicity is the key behavior in the proofs of existence, uniqueness,
and convergence of traditional circle packings. The loss of this monotonicity whether in fractional
branchings, shift-points (Chapter 7), deep overlaps (Chapter 2), or inversive packings is a major
hurdle in the attainment of general results, because it introduces unpredictable local characteristics
which can be dependent upon specific local combinatorial and geometric conditions.

For Example 6.6, there are at least two values of r for which θ(r) is quasi-coherent. It is the
total rate of change with respect to r that allows multiple solutions to exist. At a single face this
derivative is dependent on the ratio of neighboring petals’ radii. We amplify the effect of the flip
by using very large and small circles. Using hyperplanes is not necessary, but their extremity helps
illustrate the point. A similar albeit less visually impactive example can be found using sufficiently
large circles.

Example 6.7. Construct a tangency motif with a single interior face and fixed border radii by
gluing together three copies of the flower in Example 6.6, F (v1), F (v2) and F (v3), as follows. Make

Figure 6.7: Non-uniqueness of a quasi-coherent flower. Q(r) is pictured on the left. For comparison the
same flower without a flipped face is pictured on the right.
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v1, v2, and v3 the interior face by setting F (v1; v2, v3, . . . }, F (v2; v3, v1, . . . }, and F (v3; v1, v2). The
two petals of radii 10−4 in each flower will then be shared by two interior vertices. The result is a
combinatorially closed disc with three interior circles (r, 1a, and 1b from one flower) and 24 border
circles with fixed radii.

The symmetry of our construction appears to allow the non-monotonicity of Example 6.6 to
carry over. Call this complex K with three interior vertices {v1, v2, v3}. There is a unique label
for K when interior angle sum assignments are 2π, and this is the only trivially branched label for
which this motif is coherent. The situation appears to be quite different for fractional branching.
Randomly distributing an extra 2π among the three interior vertices, there is (computationally) to
a total of 7 different angle assignments which give solutions (see Figure 6.8; error is measured as
|θ(vi)− 2πni + 2θ(vi; vj , vk)|).

Figure 6.8 plots the data with the angle distribution on two vertices represented by the x and
y-axis and the error on the z-axis. The error is measured using Equation 6.1. These are Euclidean
motifs so the third angle distribution is dependent on the other two.

It appears that additional conditions need to be assumed to get uniqueness, e.g., some sort of
local univalence or border conditions. For the case when K = f ∪ ∂Γ, uniqueness can be shown
when some of the border radii are sufficiently large [4], or by using lemma 2.3 from [14] when the
border radii are equal. Theorem 6.8 shows the uniqueness of fractional branched motifs with an
extra assumption on the edge assignments f . Constructing similar auxiliary motifs as done in the
proof here might lead to more general uniqueness results.

Theorem 6.8. Let K be a simply connected complex with a strictly interior face f = {v1, v2, v3}.
Suppose that K(I, A) is admissible with each A(v) an integral multiple of 2π and cos−1(σ12) +

cos−1(σ13) + cos−1(σ23) = π. Furthermore, suppose admissibility holds if the assignment A(v) is
replaced by A(v) + 2π for v = v1, v2, or v3. Then there exists one and only one angle assignment A′

such that K(I, A′) has a fractured branched circle packing on {v1, v2, v3} and
∑
A′(v)−

∑
A(v) = 2π.

Proof. An angle assignment exists by Theorem 6.5; call it A. The K(R, I,A) is coherent so it has a
unique layout. First we construct and layout an auxiliary motif for K(R, I,A). The purpose of this
motif will be to temporarily realize K(R, I,A) as a traditional branched packing (at least at f), and
obtain uniqueness through a typical maximal argument.

Recall from Section 2.2 that because cos−1(σ12) + cos−1(σ13) + cos−1(σ23) = π, the three circles
of f will intersect at a point. Add an interior vertex at this point, say v0, tangent to v1, v2, and
v3. Call the three vertices in faces sharing an edge with f : v12, v23, and v31 where vxy is tangent
to vx and vy. Now add shepherd vertices s12, s23, and s31 to the edges e(1, 2), e(2, 3), and e(3, 1),
respectively making each sxy contiguous to v0, vx, vy, and vxy. Call this the auxiliary complex K ′v0 ;
see Figure 6.9.

Using the existing motif K(R, I,A) we make a new motif M ′ as follows. Using the points v0,
C(vx) ∩C(vxy), and C(vy) ∩C(vxy) in K(R, I,A) (if either of the last two pairs overlap there is an
obvious choice of the two available points) define the circle C(sxy). For example, s31 passes through
v0, the intersection of v3 and v13, and the intersection of v1 and v13.
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Figure 6.8: Error for different angle assignments on Example 6.6. The images on the right are truncated
details of the images on the left. The x are y-axis reflect angle sums A(vi)−2π

2π
for v1 and v2, respectively.

The angle at v3 determined by the remains of the extra 2π. The z-axis is an error value; the sum of Equation
6.1 for each vertex (a necessary condition for coherency).
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Figure 6.9: A fractured branched circle packing with an auxiliary motif and shepherd circles.

Because the newly created faces

{C(sxy), C(vx), C(vxy)}, {C(sxy), C(vy), C(vyx)}, {C(sxy), C(vx), C(v0)},
and {C(sxy), C(vy), C(v0)}

have no interstice their overlaps must sum to π. This uniquely determines the inversive distances
for the edges of each shepherd circle.

Look closely at Figure 6.9. The orientation of f in K(R, I,A) has been flipped. Consider
the point v0 a circle of zero radius with petals {v1, s12, v2, s21, v3, s32, v1}. Adding the shepherd
circles replaces f with a flower having the proper orientation. The contiguousness for circles of f in
K(R, I,A) has become circumstantial placements of this flower.

Let I ′ have the edge assignments from the construction above for the new edges, let A′ be 2π at
the shepherd circles, and elsewhere let M ′ adopt assignments from M . M ′ was constructed from M

so Theorem 2.13 is not used, and the zero circle C(v0) does not cause any existence issues for M ′.
Also the edge assignments of v0’s flower necessitate that r0 is zero regardless of its petal radii.

M ′ has been constructed so that it is coherent. By Monodromy, M ′ must be locally coherent,
and since it is admissible R′ is uniquely determined by M ’s decorated complex (Theorem 2.14).
The complex of M ′ was created independently of M ’s angle assignment. So the angle assignment
determined by R′ and I ′ then must be identical to A everywhere other than the shepherd vertices.
Otherwise the label for K(I ′, A′) would not be unique.

Global monotonicity of circle packing flowers has been exploited for proving existence and
uniqueness of labels using geometric (Garrett [23]), Perron (Stephenson [44]), and variational
methods (Alexander Bobenko and Boris Springborn [8]). Different approaches will be required
here as we do not enjoy this characteristic. When viewed as an annulus this should not be surprising
as the additional border element introduces flexibility. Global coherence no longer automatically
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follows from local coherence. The proof of Theorem 2.13 builds on existing labels; we then had to
show that one of these would be coherent.

Figures 6.4, 6.5, and 6.6 illustrate coherent fractional branched motifs. These motifs can be
generated using CirclePack by setting the target angle sum of vertices in f to some non-integer
multiple of 2π if the correct distribution of the branching is known. We have a working algorithm
for finding this distribution; its method is outlined in [4]. It uses a recursive method, and in practice
converges. However it is only proved for a special case. It remains open as to whether this algorithm
works in general.

Another open question is whether the angle assignments resulting in a coherent maximal fractured
branched circle packing in D are unique. An affirmative answer would mean fractional branching
could provide a pleasingly rigid structure for fractional versions of many marque discrete analogues;
discrete Blaschke products and polynomial functions for example. Any condition which ensures
that the change in a vertex’s angle sum at its non-fractured neighbors outweighs the change at its
fractured neighbors will preserve monotonicity. A branched version of the Burt Rodin and Dennis
Sullivan’s Ring Lemma (see [37, 42, 47]) might be just such a condition for proper mappings. These
issues remain to be investigated.

6.3 Fractional Branching on Four Vertices

Call the angle assignments at the fractured points of a fractured motif the distribution. Under certain
conditions we have seen that a face may support fractional branching with a unique distribution of
excess angle. If multiple coherent distributions do exist in the more general case, the experience of
experimentation leads us to expect that they are not path connected in the space of distributions.
Meaning that there is not enough flexibility to make them of use as an adjustable parameter.
Extending the same idea to two adjacent faces is the natural next step.

As a means of introducing flexibility one might try adjusting the distribution of an additional 2π

over four vertices on two adjacent faces. However a particular distribution could easily require the
two circles in the shared edge to be separated, and it has been seen that such configurations could
fail to form triangles.

Whether a separation would occur depends on the label which in turns depends on the decorated
complex. This is not easily predicted (perhaps intractable); using angle distribution thus makes
existence of the labels problematic. Instead the edge assignment on the shared edge will be used
as a parameter on (−1, 1). This allows the decorated complex to be manipulated while always
remaining admissible.

We illustrate this with one elementary example. Take a simply connected complex, say K, with
two strictly interior faces, f0 = {v0, v1, v2} and f1 = {v1, v2, v3}, sharing the edge e(v1, v2). Let K
be admissible for angle assignments of 4π at either of these vertices. Assign an inversive distance,
σ12 ∈ (−1, 1), to the shared edge. For simplicity we will assume that all other edge assignments
on these two faces are 1, i.e., external tangencies. By Theorem 6.5 there exists a distribution of an
extra 2π among the vertices of f0 such that K(R, I,A) is a fractured branched circle packing in C.
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K(R, I,A) is a fractured packing on three vertices. Using this existing label and layout we will
create a fractured branched circle packing on f0 ∪ f1. Let I ′ = I except for the assignment at
e(v1, v2) which we set to σ′12 = 1. Now let the angle assignments A′ be determined by R and I ′. By
this we mean compute the angle sums resulting from using I ′ and R with Equation 2.3 and the Law
of Cosines, and then set A′ equal to these found angle sums. The result is a new motif K(R, I ′, A′).

Claim 6.9. K(R, I ′, A′) is a fractured branched (circle) packing on the four vertices {v0, v1, v2, v3}.

Proof. Let K ′ = K \ {f0 ∪ f1} be an annular complex. K(R, I,A) is assumed to be a fractured
packing on f0 = {v0, v1, v2}, and K a combinatorially closed disc. Thus K ′(R, I ′, A′) is a coherent
annular sub-motif. The turning angle of K(R, I ′, A′) must then be an integer multiple of 2π, and
all interior vertices not in f0 ∪ f1 are locally coherent. Then by Theorem 3.12 the sum of angles on
f0 ∪ f1 must also sum to a multiple of 2π.

So we need only show that each vertex in f0 ∪ f1 is locally incoherent in K(R, I ′, A′). v3 is by
assumption locally coherent in K(R, I,A) with an inversive distance of σ12 at {v1, v2}. Changing
σ12 to 1 in K(R, I ′, A′) but keeping the current layout shows that both v0 and v3 must be locally
incoherent in K(R, I ′, A′). Using an argument similar to Lemma 6.4 it can then be shown that v1

and v2 must also be locally incoherent.

A simple recipe to create a branched circle packing on f0 ∪ f1 for a simply connected complex
K:

1. Find a distribution such that K(R, I,A) is a branched circle packing on f0 and f0, f1’s shared
edge has assignment σ12 ∈ (−1, 1).

2. Compute the angle sums, {θ(v)} for K(R, I,A) assuming that σ12 = 1.

3. Set A′(v) = θ(v) for every v ∈ K, and set I ′ = I except at e(v1, v2) where σ′12 = 1. Now
K(R, I ′, A′) is a branched circle packing on f0 ∪ f1.

We begin assuming that σ12 6= 1,−1 to avoid a fracturing over four vertices where one vertex in
f0∪f1 is locally coherent. If we allow σ12 ∈ [−1, 1] then this edge assignment can be used to transfer
branching from f0 to f1.

Let f0 and f1 be two faces as in Figure 6.10. Suppose K has external tangencies everywhere
except at e(v1, v3), and that σ13 = −1. Then the fractured branched packing over f0 = {v0, v1, v3}
will be identical to the one over f1 = {v2, v3, v1}. The angle ∠v0v1v3 = ∠v2v3v1 = 0 so this comes
by Theorem 6.3. Thus by continuously decreasing σ13 from 1 to −1 and then back to 1, branching
can be transferred continuously from the face f0 to f1. See Figure 6.11.

One last note. The choice of pink and blue circles in the last few figures was no accident. The
shift-point in Chapter 7 can be viewed as a coherent fractional motif over three vertices. To see this
one needs only apply the right edge assignments to a coherent shift-point and adjust the shift-point’s
flower complex to look like the one seen in Figure 6.10. Conversely any fractured packing might be
thought of as a shift-point with overlapping sister circles (see Chapter 7).
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Figure 6.10: Creating a fractured branched packing over four vertices form one with three. Two
fractured packings using the same label R. I0 and I1 differ only in the one overlapping edge at
e(v1, v3). K(R, I0, A

′
0) is fractional branching over 3 vertices with distribution (approximately) A′0 =

{2π, 2.8π, 2.41π, 2.8π} for {A(v0), A(v1), A(v2), A(v3)}, and K(R, I1, A
′
1) has a distribution on 4 vertices

A′1 = {2.07π, 2.72π, 2.5π, 2.72π}.
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Figure 6.11: The fractional branching is transferred to another face. This is done by continuously adjusting
σ13 and switching faces at σ13 = −1.
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Chapter 7

Shift-Branching

This simple yet elegant idea was generously introduced by Edward Crane via conversation during
the 2010 Barrett Lectures at the University of Tennessee. Place a smaller circle, what will be called
a sister circle, internally tangent to a branch circle, the two creating a looped curve called a shift-
circle (see Figure 7.1). Normally the singularity is considered to be at the vertex of the branch
circle. Instead consider it to be inside of this smaller circle. The desired branching is created by
placing the n-petal circles along the looped curve creating a structure which we call a shift-point
(see Figure 7.2).

If the petals to the shift-circle can be placed in a consistent manner then the shift-point has the
characteristics of a coherent flower. The winding number of a path around this loop is the same as
a traditional branch point, a behavior which then is expressed globally via homotopy.

Figure 7.1: The shift-circle, and the direction of its path on the right.
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Figure 7.2: A traditional branch point and shift-point. The petals (in gray) are identical in both structures.
The little and big sister circles are colored pink and blue, respectively.

Thus shift-points are an alternative method to create branching. It will be shown that shift-points
can be classified as generalized branch points. In the service of introducing continuous variables into
our discrete setting, shift-points have some nice advantages.

Definition 7.1. Let F = {v0, ..., vn} where v0 = vn be a flower with nexus vertex v. Replace C(v)

with two sister circles S(r`) = S` and S(rb) = Sb; v’s little sister and big sister circle, respectively,
with r` = x ·rb for shift-ratio x ∈ (0, 1]. For normalized position, center Sb at the origin and join the
two circles so that the little circle is internally tangent to the big circle at a point p on the positive
x-axis. Define a path which starts at p and has trace Sa ∪ Sb:

γ(ϑ) =

rbeiϑ for ϑ ∈ [0, 2π)

r`e
iϑ + (rb − r`) for ϑ ∈ [2π,∞).

Call this structure a shift-point and the curve itself a shift-circle denoted C(rb, x). The parameter,
x, is the shift-point’s decoration. For both a shift-point and shift-circle we may write C when it is
understood which is being referenced.

In constructing a shift-point we know the radii r0, . . . , rn−1 of the n petals. So there are n petal
circles Ci = C(ri) which need to be laid out in G. An additional copy Cn = C(r0) of the first petal
is made; our goal is a coherent shift-point, meaning that this last circle Cn is placed precisely on C0.

The petals will be laid on the shift-circle at C as follows: The lead-petal C0 is placed externally
tangent to C at p = γ(0). Each succeeding petal, say Ck, is then placed (externally) tangent to the
preceding petal, Ck−1, and to one of the sister circles. Denote the location of a petal Ck’s tangency
point on a shift-circle with γ(ϑk).
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If ϑk−1 < 2π ≤ ϑk, Ck transitions from being placed tangent to Sb to being placed tangent to S`
(see Figure 7.3). Call this transition a jump, the petal Ck the jump-petal, and γ(2π) the jump-point.
Placing petals around a shift-circle in this manner is called a layout and the layout a shift-flower.
If a layout positions the last petal such that Cn ≡ C0 then the shift-point is said to be (locally)
coherent.

Less formally, we place petals around a sister circle until we would bypass the jump-point. Then
we switch, and place petals around the other sister circle. For simplicity, all petal contingencies in a
shift-flower are assumed to be external tangencies. Figures 7.2 and 7.3 have examples of a coherent
shift-point.

Definition 7.2. The angle at a shift-point C between two petals C(rk) and C(rk+1) at γ(ϑk) and
γ(ϑk+1), respectively, is

θ(C; rk, rk+1) = ϑk+1 − ϑk.

If {C(r0), . . . , C(rm)} is a string of m+ 1-consecutive petals then the angle from C0 to Cm is

θ(C;C0, . . . , Cm) =

m∑
k=0

θ(C; rk, rk+1).

If the case that m = n (the chain of circles is closed) then we call this sum the angle sum of C
and write θ(C(rb, x)) or just θ(C).

Lemma 7.3. The layout of a shift-point C(rb, x) ∈ K(R, I,A) is well defined.

Proof. From Definition 7.1, if C(rj−1) = Cj−1 is on one of the shift-point’s sister circles and Cj is
also to be placed on the same sister circle then its location is easily determined by the appropriate
Law of Cosines and orientation. So the result is only in question for a jump-petal.

Figure 7.3: Laying out a shift-point. After the lead-petal C0 is placed, petals are laid sequentially tangent
to Sb until the jump-petal C6 would be placed beyond p. C6 and the remaining petals are then placed on
S`.
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Suppose that Cj is a jump-petal which is placed tangent to the sister circle S` and the petal
Cj−1 ∼ Sb. We can assume that the positions of S`, Sb, and Cj−1 are all fixed. The distance between
Cj−1 and S` gives an inversive distance, say σ, using Equations 2.1 or 2.2. Let the edge between
Cj−1 and S` with distance σ between their centers be the auxiliary edge eσ(Cj−1, S`).

Cj ’s position is then uniquely determined if the two edges e(Cj , S`) and e(Cj , Cj−1) from the
shift-point’s layout and the auxiliary edge eσ(Cj−1, S`) form a triangle T . Because Cj−1 ∼ Sb,
σ ≥ 1. Let rmin = min{rj ≥ 0: C(rj) ∩ p} (see the left side of Figure 7.4; recall that p denotes the
jump-point). rmin exists and rmin ≤ rj or else Cj would not be a jump-petal.

T exists using the e(C(rmin), Cj−1) in place of e(Cj , Cj−1) as C(rmin) is now tangent to both
sister circles. When σ > 1 the triangle inequality can only fail if

e(Cj , Cj−1) + e(Cj , S`) < eσ(Cj−1, S`).

This can only happen when Cj is too small to be simultaneously tangent to both Cj−1 and S`, but
this cannot happen since rj > rmin.

Later in this chapter we modify the definition of shift-points to include cases when the jump-petal
“jumps” from the little sister to the big sister circle. The above result still holds in this situation as
then −1 ≤ σ ≤ 1, and the triangle T will exist by Lemma 2.3.

7.1 Monotonicity in Shift-Points

The idea is to have shift-points replace traditional branch points. Most important is that shift-points
offer an alternative method which expresses branching while allowing for greater flexibility. However

A jump from the big to the 
small sister circle  

A jump from the small
to the big sister circle  

Figure 7.4: Placement of the jump-petal on a shift-circle. The little and big sister circles are colored pink
and blue, respectively. The auxiliary edge eσ(Cj−1, S2) is colored in red. On the right, C(rmin), is the gray
dashed circle.
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in order to replace branch points seamlessly, that is without losing any depth of theory, shift-points
need to have the key qualities of monotonicity and existence possessed by traditional flowers.

For this section, let C(rb, x) be a shift-circle with petals F = {C(r0), C(r1), . . . , C(rn)}, and the
location of a petal Ck ∈ F on C will be denoted γ(ϑk). Recall that θ(C) is the angle sum of the
shift-point; it depends on r0, . . . , rn−1, x, and rb.

Theorem 7.4. Monotonicity of shift-points. For 0 ≤ k < n we have the following:

1. d
dϑk

ϑm > 0 when k < m ≤ n

2. d
drk

θ(C) > 0

3. d
dxθ(C) > 0 for fixed r`, and d

dxθ(C) < 0 for fixed rb (x = r`
rb
).

4. d
drb
θ(C) < 0 and d

dr`
θ(C) < 0 for fixed x.

Normally we will be assuming rb = x · r`. However part 3 treats x not as fixed, but as a function
dependent on the big or little sister radius. Part 4 keeps the little circle dependent on the big circle
and fixes the shift-ratio x.

Proof. All these claims are fairly clear when the petals are all on the same sister circle. The focus
will be on what occurs at the jump-petal.

Part 1. If ϑk increases and {Ck, . . . , Cn} are all on the same sister circle the result is clear. So we
need only show the result at a jump-petal, say θ(Ci; rj−1, rj). Let Cj−1 be the petal with ϑj−1 < p

such that its neighbor Cj is placed on the jump-point, i.e., ϑj = p. Lemma 7.3 still holds if circles
are placed in the reverse order. That is, Cj−1 not only uniquely places Cj , but first placing Cj also
uniquely places Cj−1. Infinitesimally increasing ϑj−1 thus requires a new position for Cj , and it
cannot be p. Neither can it be less than p because then it has reverted to the case when both petals
share the same sister circle. Proceeding inductively the result follows.

Part 2. Increasing a petal Ck’s radii rk can simultaneously affect its “face” angle (a jump-petal
also has a sort of face angle analogous to a normal face angle), the position of itself, and all other
petals. We handle this by examining each effect separately. First only increase rk, keeping both
its position and all other petal positions fixed. Now assign new edge assignments to the edges
e(vk, vk+1) and e(vk, vk−1) (if Ck is the lead-petal the latter edge can be ignored as its positions is
fixed) according to this new layout; call these assignments σk,k+1 and σk,k−1, respectively. Let the
flower temporarily adopt these assignments, but remain tangent elsewhere, see Figure 7.5. These
new edge assignments are overlaps, and all other tangencies are external. So by Lemma 2.3 all
triangles of concern will exist.

This allows us to increase the assignments in I and obtain the result through part 1. For non-
jump-petals we can use Lemma 2.5. When jump-petals are involved the jump-petal’s predecessor,
say Cj−1, will be tangent to a different sister circle, but its distance from the jump-petal’s sister
circle, say S, is fixed. Using this fixed distance, assign an inversive distance to the auxiliary edge
from Cj−1 to S. Existence of this auxiliary triangle is not an issue, and we can use Lemma 2.5 just
as above.
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Figure 7.5: Increasing a petal on a shift-point. Cj−1 is increased and then succeeding petals are moved.
Dashed circles indicate petals before a change.

Part 3. We will only show that d
dxθ(C; r0, ..., rm) > 0 for fixed r` as the other part can be done

similarly. r` is fixed so then increasing x means rb must decrease. We have two motions with which
to contend, and we employ the same method as above. Keep the positions of each petal fixed,
and assign inversive distances accordingly. Beginning with the lead-petal, sequentially decrease the
inversive distances back to their original assignment. Again the result follows from Lemma 2.5.

Part 4. This time x is fixed. So increasing rb also increases r`, and vise-versa. We can thus use
Part 3 first for one sister circle and then again for the other one.

Recall that Monotonicity at both the flower’s center and its petal angles was necessary for us to
show the existence and uniqueness of motifs. The relaxation operator used in Theorem 2.13 needed
both to converge, and Theorem 2.14 needed both to use a maximality argument.

For traditional flowers, the monotonicity seen in their nexus angle is mirrored in the angles of
their petals. The neighbors of traditional flowers are also flowers built from faces; this similarity
of construction translates into a similarity of behavior. However shift-points fail to share this
characteristic at the jump-point where petals transition from the big to the little sister. Fortunately,
the monotonicity of a shift-point’s neighboring flowers is retained, but only because our construction
eliminates complications with the jump. This issue will be revisited in Section 7.3.

Measure the petal angle at a shift-point’s petal Ck as θ(Ck) = ∠vkvk−1vk+1 where vk−1, vk, vk+1

are the centers of sequential petals on a shift-flower. The angle sum of vk, θ(rk), will now be the
sum of θ(Ck) and its other face angles.

Theorem 7.5. For 0 ≤ k < n we have the following:

1. d
dϑk

θ(rk) ≤ 0

2. d
dri
θ(rk) ≤ 0 for Ci ∈ F (including Ci = Ck).

3. d
dxθ(rk) < 0 for fixed r`, and d

dxθ(rk) > 0 for fixed rb (x = r`
rb
).

4. d
drb
θ(rk) > 0 and d

dr`
θ(rk) > 0 for fixed x.
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Proof. We mean for θ(rk) to represent the sum of face angles at vertices both on the boundary and
the interior of K. In either case, only the face shared with the shift-point will be affected. As in
Theorem 7.4, there is only anything to prove at C’s jump-petal, call it Cj . So for all parts we will
be assuming that Ck = Cj or Ck = Cj−1, and we need only show the results for each pair of angles
at these two circles. The following claim is needed.

Claim. If Ck = Cj or Cj−1 with center vk, and S is the sister circle with center vS not tangent to
Ck then d

dϑdC(vk, vS) ≤ 0.

Proof. Refer to Figure 7.6. For Ck = Cj , we have (after normalization)

dC(vj , vb) =
∣∣(rj + r`)e

iϑj + (rb − r`)− 0
∣∣ ,

and

d

dϑj
dC(vj , vb) =

− sin(ϑj)(rb − r`)(rj + r`)√
(r` + rb + (rj + r`) cos(ϑj))2 + (rj + r`)2 sin2(ϑj)

< 0

as ϑj ∈ (2π, 3π) because ϑj−1 < p.
For Ck = Cj−1 we have

dC(vj−1, v`) =
∣∣(rj−1 + rb)e

iϑj−1 − (rb − r`)
∣∣

and

d

dϑj−1
dC(vj−1, v`) =

sin(ϑj−1)(rb − r`)(rj−1 + rb)√
(r` − rb + (rj−1 + rb) cos(ϑj−1))2 + (rj−1 + rb)2 sin2(ϑj−1)

≤ 0

as ϑj−1 ∈ (π, 2π] because ϑj−1 ≤ p. This concludes the proof of the claim.

Now we continue the proof of Corollary 7.5. Part 1. If ϑk changes positively then so must every
petal thereafter by Theorem 7.5. There is only the one jump-petal, moving from the big sister circle
to the little one. If ϑj−1 < p and ϑj−1 is increased then dC(vj−1, v`) decreases or is unchanged
by the claim (see Figure 7.6). By the Law of Cosines a non-increase in dC(vj−1, v`) implies a non-
increase in the angle ∠j = ∠vjvj−1v`. In D we can use a Möbius transformation to map vj−1 to
the origin and apply the Euclidean result. The neighboring petal Cj+1 in the other angle at vj , say
∠j′ = ∠vjvj+1v`, shares the same sister circle as Cj and is thus unaffected. So then θ(Cj) = ∠j+∠j′

and thus θ(rj) does not increase The case for θ(rj−1) can be shown similarly.
Using Part 1, Parts 2, 3, and 4 can now be shown similarly to Parts 2, 3, and 4 of Theorem 7.4

which concludes the proof.
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Figure 7.6: Change of the shift-point petal angles. The angles at Cj−1 and Cj are shown on the left and
right, respectively. Black edges are fixed; non-increasing edges are in red.

7.2 Existence and Uniqueness of Motifs with Shift-Points

The preceding lemmas show that computationally, shift-points behave much like traditional branched
flowers. This will allow shift-points to be used similarly to traditional branched flowers. Placing
coherent shift-points into a packing will create a structure which is a circle packing except within the
shift-flowers. This is exactly how generalized branched points were described in Chapter 5. Showing
that a shift-point is in fact a generalized branch point is our next step.

Theorem 7.6. A coherent shift-point is equivalent to a generalized branch point.

Proof. Let C be a coherent shift-point, and K the complex of this flower. Every petal Cj ∼ C is
either externally tangent to C’s smaller sister circle C`, or it is separated from C` by a distance
D`j > r` + rj (D`j is the distance from the center of C` to Cj). Each D`j determines an inversive
distance σ`j using Equation 2.1 or 2.2. Now consider K(I,A) a separated flower with nexus v`,
I = {σ`k, σk,,k+1 = 1: Cj ∼ C}, and A(v`) = 4π (see Figure 7.7).

Using the label R = {r`}, K(R, I,A) is a motif. Because C is coherent and the edge assignments
were chosen according to C’s layout, K(R, I,A) will also be coherent. K(R, I,A) is thus a generalized
branch point, and any layout of K(R, I,A) can have the petals isomorphically mapped to the petals
of any layout of C.

In Chapter 2, admissibility was a prerequisite to existence, and a similar assumption is needed
here. There are three parts to admissibility. The first two are requirements for the edge assignments
less than 1. Only the third part applies, as all edge assignments on shift-points are assumed to
external tangencies. For a single flower, part 3 simply states that the angle assignment cannot
exceed the flower’s maximum angle sum (when r → 0).
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Figure 7.7: Realizing a shift-point as a generalized branch point. The shift-point is converted to a flower
with edge assignments I ≥ 1 using the little sister circle as the nexus.

Lemma 7.7. If a flower at v is admissible for I ≡ 1 and A(v) = 4π then for any set of petal radii
there exists an rb such that C(rb, x) is a coherent shift-point.

Proof. I ≡ 1 for shift-points so admissibility is equivalent to Definition 2.6, i.e., the flower is a
branch structure meaning that it has at least 5 petals. As in the proof of Theorem, 7.6 realize the
shift-flower as a flower with nexus r` and edges determined by inversive distances greater than or
equal to 1. Dynamically assign these edges according to the layout and changes of C. Call the angle
sum of this flower θσ(r`).

By Theorem 7.4 decreasing rb increases θ(C(rb, x)) and thus increases θσ(r`). So both these angle
sums share the same end behavior, as rb, r` → 0, θ(C), θσ → nπ where n ≥ 5. So there exists a rb
such that θ(C(rb, x)) = 4π.

Definition 7.8. Let {C} = {Ci(ri,b, xi)} be a collection of decorated shift-points on a complex K
for interior vertices vi, and let Fi be the set of petals for a Ci. We say that K is adjusted with {C}
to indicate that shift-points are being placed at the vertices vi. Placing a {C} on K will preserve
all decorations except for each vi’s flower edge assignments which will all be set to 1 (external
tangencies).

To avoid some hairy special cases it will be assumed that Fi ∩ Fj = ∅ and vi ∈ intK for all
Ci,Cj ∈ {C}. Further assume that a complex will be admissible for A(vi) = 4π if Ci ∈ {C}. This is
so that admissible complexes will be “admissible for shift-points” by Lemma 7.7 after placing {C}.

Theorem 7.9. Let K(I, A) be an admissible decorated complex that has been adjusted with a {C}.
Then there exists a unique generalized branched motif K(R, I,A) with shift-points at {C}.

Proof. Theorem 2.13 and 2.14 prove the statement above for complexes without Shift-points. By
assumption K(I, A) is admissible for A(vi) = 4π for each Ci ∈ {C}, and so Lemma 7.7 guarantees
that the relaxation operator (definition 2.10) can be applied to shift-points.
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Surveying the proofs of Theorems 2.13 and 2.14 one finds that the monotone behavior of the
traditional flowers and their petal angles is the key behavior (Lemma 2.4). The fact that the
center of the flowers are circles plays no other role. The same can be said of Theorem 2.13’s
other supporting lemmas. Theorem 7.4 provides monotonicity at the shift-points, and Corollary 7.5
provides monotonicity on its petal angles. So the result then follows similarly to Theorem 2.13.

To the global structure, shift-points provide the same branching qualities of a traditional branch
point. Additionally the shift-ratio is a continuous parameter with which the motif can be adjusted
(Section 7.3 will introduce another parameter). Just like the fractional branching of Chapter 6,
puncturing the sister circles creates a border element with a total turning angle. If the resulting
motif is coherent it will necessarily have a total sum that is an integral multiple of 2π. This punctured
motif is in every way a traditional circle packing. Yet the local differences at the shift-points express
themselves globally creating distinct motifs.

Theorem 7.10. Let K(R, I,A) be a simply connected motif with {C}. If K(R, I,A) is a generalized
branched motif then it is a branched circle packing.

Proof. The motif exists by Theorem 7.9 and then so does the layout. Since every shift-point is
coherent, the holonomy of the closed chain around each shift-point is also coherent. Puncture each
of the shift-points in {C} so that these chains are now border chains of K. Now the result follows
by Remark 5.2.

By Theorem 7.9 the radius rb in a coherent C is determined by its label and ratio x. As such it
makes sense to exclude rb in the notation except when referring to it as a variable, e.g., as in Lemma
2.4. This cleans up the notation nicely for a shift-point; we now just write C(x).

7.3 Modified Shift-Points

Definition 7.11. A modified shift-circle is a shift-circle defined by the closed path in the normalized
position as follows:

γ(ϑ) =

rbeiϑ for ϑ mod 4π ∈ [0, 2π)

r`e
iϑ + (rb − r`) for ϑ mod 4π ∈ [2π, 4π).

The modified shift-point at an interior vertex v will be the shift-point C(rb, x, ϕ) where the lead-petal
C0 is placed at γ(ϕ) > 0 in the layout of the shift-flower. ϕ is called the phase angle.

For the remaining of the thesis all shift-points will be modified; the notation will not change
except for the additional decoration, ϕ.

This type of generalized branching creates two degrees of freedom both of which can be adjusted
continuously. These are the sister circle’s radii ratio, x, and the lead-petal placement, ϕ. The former
is easier to visualize. Change the ratio and the curve is made longer or shorter. One would expect
this to decrease or increase the petal wrapping, respectively. How the latter parameter effects the
branching is a little more subtle and less predictable.
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Unlike circles, shift-circles do not have constant curvature (as planar curves). Thus a shift-point’s
angle sum will not only be dependent upon the label but the phase angle. Theorem 7.4 still applies.
So monotonicity at the shift-point is unaffected by this additional parameter. However it is not so
for the petal angles.

That is, while decreasing rb will increase θ(C), the angle sums of neighboring flowers may decrease
(as normal) or increase. This occurs because changing rb can change the positions of neighboring
flowers in relation to the jump-point. To summarize, this structure behaves very much like a
traditional branch point from its perspective, but not so for its neighbors. This effect can be seen
at Cj−1 in the right side of Figure 7.4. In the previous sections this issue was avoided by fixing the
lead-petal at p.

Refer to the example shown in Figure 7.8. The labels are identical; only the layout method
was changed. The petals were laid out counter-clockwise both beginning with the same petal, but
differing in the starting location of the the lead-petal (as indicated in the figure). Even though the
same label is used, one layout is coherent and the other is not.

The difference in the two layouts was caused by the placement at the jump-point, where the curve
transitions from the big to the little sister circle. So unlike a traditional flower where a flower’s angle
sum is invariant to the petal layout, it matters very much here. This lack of continuity in the
curvature opens the possibility for somewhat unpredictable angle changes.

It is the transition between sister circles that creates this issue. Specifically, a decrease of the
center circle (r` and rb together with x fixed) tends to increase angle, however it may also move
a petal onto the larger circle. The petal thus has one of its neighbors increase; a change which
can possibly increase its angle sum. For this reason, the phase angle variable was waived so that
Theorem 7.9 could be obtained.

Figure 7.8: How the phase angle changes the layout of a shift-point. On the left is C(1, 1
2
, 4
5
π), and on the

right is C(1, 1
2
, 0). C0 and Cn, outlined in red, are both associated with the same vertex.
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The labeling of the petals is arbitrary, and selection of the lead-petal will discretely effect a non-
modified shift-point in a manner similar to changing the phase angle. The lead-petal is suppressed
as a decoration because it is not a continuous parameter, however it does have the advantage of
preserving petal monotonicity.

Remark 7.12. Let C be C′ be two shift-points with petals {C0, C1, . . . , Cn} where C has lead-petal
C0 and C′ has lead-petal Ck for 0 < k ≤ n. That is, C and C′ are identical except that their petals
are laid in different orders. If C(rb, x, ϕ) is coherent then

C′(rb, x, ϕ+ ϕ′) = C(rb, x, ϕ),

for ϕ′ = θ(C;C0, Cn); see Figure 7.9.

Existence and uniqueness came rather easily once monotonicity was established. However it is
not unfathomable that Theorems 7.9 and thus 7.10 might be extended to include modified shift-
points. Oded Schramm was able to generalize the KAT Theorem for a much broader class of shapes
[38, 39]. The convex disks Schramm used should suffer from some of the same monotonicity problems.
Although Schramm’s results have yet to be generalized to any type of branched packings, methods
similar to his might succeed where we have decided to bow out.

For illustration, inspiration, and just plain fun the chapter ends with some pictures. The first
set of pictures, Figure 7.10, is an example of a single shift-point with fixed petal radii. The ratio x
has been incrementally decreased from x = 1 (when the shift-point is a traditional branch circle) to
x ≈ 0.0001. Figures 7.11 and 7.12 are a menagerie of various examples. Included are motifs in C
and D with multiple shift-points.

Figure 7.9: The choice of the lead-petal is arbitrary in a modified shift-point. The layout in the picture is
of both C(rb, x, ϕ) using lead-petal C0 and C(rb, x, ϕ+ ϕ′) using lead-petal C2.
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Figure 7.10: Incremental changes of the shift-ratio on a shift-point. The little circle is pink and the border
edges are blue.
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Figure 7.11: Various branched circle packings with shift-points.
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Figure 7.12: More branched circle packings with shift-points.
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Chapter 8

Experiments

The geometric behavior of maps between simply connected circle packings parallels that of classical
analytic functions quite well, even in the most coarse complexes. Discrete analogies such as the
Schwarz lemma, Blaschke products, polynomials, rational functions and others are pleasingly similar
to their classical cousins in most aspects (save the methods of their proofs). It has been demonstrated
how this parallel deteriorates when multi-connected complexes are considered. The purpose of this
chapter is to explore, through illustrative examples, techniques which might reestablish these links.

We have seen that obtaining analogies of the same quality with traditional circle packings is
unfortunately not possible. The dance between a motif’s combinatorics and its radii creates a
geometry which in turn determines the location of vertices. Having a finite number of vertices limits
where branching can be induced, the selection of which will be too small in all but the most fortunate
of cases. This is the key problem with which we are confronted, and which we saw illustrated in
Chapter 4.

Inserting some sort of flexibility will be necessary, and we will do this in a number of ways,
all of which will involve a relaxation of the circle packing structure according to some continuous
parameter(s). These continuous modifications will be restricted to small localized areas such as a
single flower or chain of edges; they will be realizable as the generalized branch points described in
Chapter 5. In this way our motifs will be circle packings except in isolated sub-complexes. The goal
is to find such parameters with sufficient flexibility to achieve coherence without trading too much
global rigidity.

Consider the flower with fixed petal radii. If we treat the radius of the center circle as a continuous
parameter it has the qualities we desire. The flower can always achieve coherence, an angle sum
of 2π, i.e., its range of effect is sufficient; monotonicity makes it predictable, and the result is
unique. Furthermore it does not introduce any unnecessary degrees of freedom. An angle sum of 2π

guarantees coherence, a target which is dependent on this single parameter, the central radius. Of
course it is also much too restrictive for our purposes as local coherence is necessary but not sufficient
for global coherence. However, in toto its behavior is an archetype of what we seek: sufficient scope,
predictable behavior, and rigidity.
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The nature of circle packings is that the effects seen globally do not exceed the local effects
where a change occurred. So the range of an adjustment’s effect is inherently somewhat limited.
Additionally, independence of parameters is an issue. The endless variety of complexes means that
the minimum number of parameters needed may not necessarily be constant. On the positive side,
circle packing is ideally suited for computer experimentation and we have the powerful software
package CirclePack with which to conduct experiments.

There is no ceiling on the number of experiments to try. The variety of different complexes,
branch points, and boundary conditions is endless. For the purpose of illustrating key advantages
and limitations of different parameters, each section will use a single complex appropriate to its
setting. The three examples from Chapter 4 will be examined in turn. Generalized branch points
are inserted in an attempt to resolve the issues illustrated in Chapter 4 with varying degrees of
success. The different continuous parameters will not be mixed, which admittedly excludes some
promising approaches.

8.1 Methods

The underlying mechanics of our methods have been developed in Chapters 2, 5, 6, and 7. Any
modification that falls outside the traditional definition of circle packing (Definition 1.2) will be
generally referred to as an adjustment. Additionally, selective changes of edge assignments will also
be called an adjustment. An adjusted motif is a motif to which an adjustment has been applied.

Overlapping and separated circles are certainly part of the traditional circle packing catalog,
however their place has been as a fixed characteristic which determines the label, i.e., as decorations.
The role here will be more like the circles. Rather than finding the radii to fit the decorations
(inversive distances, angle sums, and complex), inversive distances are used to help the radii fit the
decorations.

This is the viewpoint to be taken with all the adjustments in this chapter. Below, three examples
are adjusted in a series of experiments using collections of (modified) shift-points and inversive
distances. The former two will be applied at or near a desired branch vertex as described in
their respective chapters of introduction. The latter will be applied by increasing or decreasing
the inversive assignments of edges emanating from a targeted branch vertex. Call this an edge
adjustment.

The possibilities for how edge adjustments might be applied are quite broad. We will limit its
use to a single flower which then can be viewed as a generalized branch point. In comparison to the
endless possibilities, our approach may seem constrained. How global behavior is effected by local
modifications can be rather unpredictable due to the variety of complexes. So expansive methods
dependent on particular motifs should not be expected to have their results translate well to a more
general setting.

The additional parameters afforded by using modified shift-points (as opposed to non-modified
shift-points) adds a great deal of flexibility. As of now there is no certainty about the existence and
uniqueness of motifs with these types of shift-points (work underway by Edward Crane and Ken
Stephenson may answer this). The experiments below begin with an already existing motif. The
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adjusted motifs were found with the Circle Packing Algorithm using CirclePack (see [14]) which in
most cases found a label with very good accuracy.

Admissibility is not being considered with these experiments, however is appears that each
decoration parameter in these motifs has a reasonably sized neighborhood of values which can
be realized as an adjusted motif. The experiments were not plagued by degenerate or unrealizable
labels. Though such problems were encountered they appeared in the most extreme situations, e.g.,
when shift-ratios were very small.

The shift-point will be treated as dependent upon the shift-ratio x and phase angle ϕ. In
accordance with Remark 7.12 and the note following Theorem 7.10, we write just Ci(x, ϕ) for a
shift-point at an interior vertex vi. Computationally the labels appeared to exist when shift-points
were inserted. Moreover it is expected that the labels were unique. Although Example 6.6 should
be taken as caution against believing that this is in fact true.

Once a motif with shift-points is found, the larger sister circle can be removed. By Theorem 7.6
the smaller sister circle can then be made into a generalized branched flower by simply using the
shift-point’s layout to assign inversive distances to all of the flower’s edges (see Figure 8.1). Call
this simple step converting the shift-point to a separated flower. This creates a bridge between the
shift-point and packings with edge adjustments. Packings with separated circles have a developed
and developing theory, e.g., [32, 24]; and some of our unaddressed questions about shift-points may
be answered in this way.

For Sections 8.3 and 8.4, the goal will be coherence, the desired classical behavior being already
inherent in the decorations. For Section 8.2 this is not the case. Instead a coherent motif will be
adjusted with the desired classical behavior being the goal. In each section the different adjustment
methods manifest advantages and disadvantages. No clear champion emerges. Rather each method
comes with a compromise between outcome and flexibility.

Because modified shift-points and non-admissible decorated complexes are used, coherence is
numerically obtained, but not proven. Questions involving existence, uniqueness, and coherence of
the labels used in this chapter remain open.

Figure 8.1: A shift-point converted to a generalized branch point. The middle uses the smaller sister circle,
and the right uses an arbitrarily small circle.
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8.2 Experiments on a Quadratic Polynomial

Let f#(v) = |g′| where g(z) = (z − 1
4 )2 and f#(v) is the ratio function. As described in Section

4.3, a discrete function f : PK(R′,I,A′) → PK(R,I,A) between Euclidean motifs (R′ is the Euclidean
label for KM). K is a simply connected disc so coherence is not an issue. As a discrete analogue we
would like f to mimic the key behavior of its classical counterpart, that is, to have the layout of the
motif place the border circles along the curve g(z) and place the branch point at g( 1

4 ) = 0.
The border radii of finite motifs in C provide a natural and effective means to manipulate the

image, however these radii are determined by the function. Neither can the branching be changed,
since the location of the branch vertex is one of the target qualities. So traditional means of inserting
flexibility are unavailable, and we turn to our toolbox of adjustments.

Shift-points are well suited for this function. Create a branch cut in g’s image from the branch
point to (−15/16, 0). The two sheets naturally attach themselves to a different sister circle via chains
from the border. The consequence of adjusting the shift-ratio x for C(x, ϕ) (at the branch point v1)
in our example is that the sister circles pull or push their “closest” border depending on whether
they are relatively shrunk or increased, respectively.

It seems to be a general tendency of circle packings that local changes have a greater impact
locally, and that this impact lessens moving away (by vertices) from the origin of change. This idea
may be somewhat vague, but it is a frequently seen phenomenon when experimenting with circle
packings. When applied to how a single radius change affects angle sums, this idea is borne out
in the proof of Theorem 2.13. A similar concept was the intuitive inspiration behind Thurston’s
conjecture that circle packings could approximate classical functions [45]

For reference see Figure 4.2 from Chapter 4. Our goal is to have the discrete version of the
function place its border circles in a manner that better imitates its classical version. The result is
convincing enough that relying on a formal (and somewhat messy) estimate of error is not necessary.

The image is normalized by placing f(v1) on the x-axis at (1/16, 0) and v2 at (1/16 + r2, 0) (call v2

the lead-petal; the striped circle in Figure 4.2). We adjust the image of f(z) by inserting a shift-point
C(x, ϕ) at vertex v1 with lead-petal v2. The image motif is then adjusted using the parameters x
and ϕ. When x = 1 both sister circles have equal radii, so C(1, π) is just a traditional branch circle.
Figure 8.2 begins with ϕ = π and x = 1. The ratio x is decreased towards 0. The result shows
the shift-point pulling the different segments of f ’s border; a clear effect, but not in the desired
direction.

Next we try ϕ = 3π. This layout begins by placing the lead-petal on the “little” sister circle.
Again, we start with x = 1 and then decrease the ratio. (Alternatively the definition for shift-points
could be amended to allow x > 1; meaning for x > 1 the “little” sister would in fact be larger than
the “big” sister circle.) The basic shape of the layout’s border begins having the sought after shape.
Figure 8.3 shows the progression. The two sheets can be seen being pushed and pulled by the sister
circles.

There has been unintentional translation due to our choice to identify the shift-point’s vertex
location with the “big” sister circle. This is easily fixed with one last adjustment. The generalized
branched packing pictured on the bottom-left in Figure 8.3 has been adjusted with C(1/30, 3π). Figure
8.4 shows the same motif after a translation has been applied, fitting its border circles more closely
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Figure 8.2: Quadratic polynomial adjusted with shift-point C (x, π) using parameter x. From top-left to
bottom-right, the values are x = 1.0, 0.75, 0.5, 0.25, 0.125, and 0.0001.

Figure 8.3: Quadratic polynomial adjusted with shift-point C (x, 3π) using parameter x. From top-left to
bottom-right the values are x = 1.0, 0.75, 0.5, 0.25, 0.125, and 0.0333.
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Figure 8.4: The generalized packing from Figure 8.3 adjusted with a separated flower. Using a point inside
of C and separated edges, the center is fixed at f( 1

4
) = 0.

to the path. The shift-point can be converted to a separated branched flower using a sufficiently
small circle centered at g( 1

4 ) = 0, and this circle lies inside the generalized branch point C.

8.3 The Ahlfors Function

In simplest terms we want to find a coherent maximal packing of an annulus in the unit disc. The
notation will be the same as used in Section 4.4; RA and R are labels for a nested annulus and
maximal motif, respectively.

In our experiments the domain packing will be the nested annulus K(RA, I, A), and we seek
a discrete map f : K(RA, I, A) → K(R, I, A′) such that the border circles of the image motif are
horocycles and K(R, I, A′) = KM is a branched circle packing. Furthermore we want to preserve as
much of K(RA, I, A)’s characteristics as possible. To this end KM’s angle and edge assignments will
be set identical to those in K(RA, I, A) except where the adjustments are made.

We seek to minimize the holonomy error, EK (Equation 4.2 as described in Section 4.1), of
K’s border chains. An annulus is 2-connected so KM is coherent if and only if either of its border
holonomies is trivial. However better results, probably due to computational accuracy, were found
by using both rather than just one chain.

Our thanks to Edward Crane for providing the annulus in Figure 8.5. It is an annulus with
reflexive and translation symmetry. The complex’s fundamental domain is on the left; the right has
the annulus laid on the sphere. The two selected vertices to be branched (colored gray) are fixed
by reflection and swapped by translation. Because of the symmetries, branching at these vertices
results in a discrete Ahlfors function motif (a DAF motif; see definition 4.3).
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Figure 8.5: An annulus with reflexive and translational symmetry. The two layouts are of the same motif
in different geometries. The border edges are colored green and yellow. Circles where branching is to be
placed are colored gray. The two red edges on the left identify the same edge.

All the examples in this section are annuli. When branched they will have two branch points and
horocycles on the boundaries. All motifs will be branched or generalized branched motifs. For the
most part the methods seen here will be applicable to all admissible edge assignments. However for
simplicity and clarity (especially concerning pictures) we work with tangency packings, restricting
the use of non-tangent edge assignments to generalized branch points.

8.3.1 Example 1: Annulus with Reflexive Symmetry

We break the translational symmetry of Figure 8.5 (but preserve the reflexive symmetry) by
conducting a Whitehead move at two symmetric edges as shown in Figure 8.6; call this Example 1.
The computed branched motif for this decorated complex is not coherent. To better visualize how
this flip effects the motif a discrete polynomial construction (see [12]) is used. Briefly we describe
how this is done.

Definition 8.1. Given a boundary element, a new vertex called the ideal vertex can be added which
neighbors all vertices of the boundary element. All the vertices in the boundary element and the
ideal vertex become interior vertices.

Let M be the layout of a maximal motif with n > 0 border elements. M can be projected to the
P where ideal circles can be added to each boundary element; call the image of this projection P(M).
Identify one of the branch vertices in P(M), as v∞, and apply a Möbius transformation mapping it
to the outside of D. Then P(M) can be projected back onto D with v∞ as the boundary and its
petals as horocycles. Call this last image Dv(M).

In order for this map to be proper it is necessary that the interior of v∞’s circle does not intersect
any other circle. For externally tangent packings this condition is guaranteed by the fact that half
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Figure 8.6: Example 1: an annulus with reflexive symmetry. Example 1 (on the right) is derived from the
annulus in Figure 8.5 by applying Whitehead moves to the blue edges (on the left), breaking the translational
symmetry but retaining the reflexive symmetry.

the branching is at a single branch point. This method allows interior circles to be swapped with
the boundary. Call this construction converting v (into a boundary), and call the resulting image a
conversion.

The value of this construction is that Dv(M) is a simply connected disc with the decorations
carried over from M . So the unique label which exists for Dv(M) creates a coherent motif.
Furthermore this motif can be projected back onto P providing a coherent spherical motif. From
here forward it will be assumed that Dv(M) has this hyperbolic label attached (as opposed to the
radii from the image). The ideal circles in Dv(M) will be mapped such that they coincide if and only
if M is coherent. For our example below this will not be the case. Instead we attempt to identically
place the ideal circles by adjusting Dv(M). If this is done then the above steps can be reversed to
realize an adjusted Discrete Ahlfors function (DAF) for K(I, A).

Returning to Example 1, swap one of the branch points with the boundary. The two ideal circles
are interior circles, but will no longer be identically mapped since the original branched motif was
incoherent (see Figure 8.7). Incoherence has been exchanged for an inconsistent border. The two
border edges are colored green and yellow, and their associated ideal circles are colored to match.

The two ideal circles represent a single boundary; call one of these circles t. To eliminate the
holonomy induced by a DAF map, these two circles must be identically placed in Dv(M). Any
adjustment that reduces the differences of these circles will bring the motif closer to coherence. The
shift-point’s effect on the boundary in Section 8.2 indicates that it would be a good adjustment
candidate, and this is how we shall proceed.

Treating one branch circle as v∞ leaves the other branch location where an adjustment can be
applied, call it v. This vertex was made a shift-point, C(x, ϕ). A computational solution was found
using CirclePack to conduct an exhaustive search over this 2-dimensional parameter space. By a
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(a)

(b)

(c)

Figure 8.7: A conversion applied to Example 1. (a) is an unbranched Dv(M), (b) is Dv(M), and (c) is
a detail of the blue box in (b). The ideal circles are colored yellow and green. If the ideal circles were
identically mapped then Dt(Dv(M)) = Dt(Dv(M)) would be a coherent DAF (t and u are the vertices of the
ideal circles).
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solution, we mean values for x and ϕ such that the holonomy error in Dt(Dv(M)) is approximately
0. Recall from Remark 7.12 that the selection of the lead-petal is arbitrary, however for simplicity
it makes sense to select the lead-petal along the translational axis of symmetry in the image motif.

The motif still has translational symmetry; so it should be expected that the error might be
eliminated by adjusting a single parameter. With ϕ = π, the decreasing x had the general effect of
transferring the translation error from the ideal circles to the sister circles of C(x, ϕ). A selection
of pictures demonstrating this transition (on the conversion Dt(Dv(M)) is shown in Figure 8.8. A
computational solution was found for x ≈ 0.854; meaning that this motif is a generalized branched
packing, and it is the image of a DAF. Lesser ratio values increased the error. So it appears this
shift-point’s scope of effect easily encompasses the solution.

8.3.2 Example 2: A Non-Symmetric Annulus

By conducting another Whitehead move, the reflexive symmetry of Example 1 can be broken, albeit
slightly. The result of such an edge flip is shown in Figure 8.9; call this complex Example 2.

As in Example 1, shift-points are used to correct the holonomy (under a DAF map). Unlike
Example 1 it was necessary to replace both branch points with shift-points. In the image of the
conversion, the ideal circles’ center and radii had to match. So in general it would be expected that
at least three parameters are required. We needed four to eliminate the holonomy of Example 2; a
shift-ratio and phase angle on each shift-point. Improvements were seen when using three, two, and
just one of these; but their scope appeared too limited.

Example 2 was modified by replacing the branch points (labeled v1 and v2 in Figure 8.9) with
C1(x1, ϕ1) and C2(x2, ϕ2). The extra shift-point prevents us from using a conversion. As in Figure
4.6, two chains serving as function elements layout the motif. The edges of identified circles from
each element are colored red.

A single computational solution was found with values x1 ≈ 1.736 ϕ1 ≈ 0.713 and x2 ≈ 1.38

ϕ2 ≈ 0.858. The coherent motif and adjustments leading up to it are shown in Figure 8.10. Red
edges from the function elements clearly indicate the transformation of the map from a multi-valued
function to a DAF. Figure 8.11 shows the image, a generalized branched packing, projected to the
sphere.

Figure 8.12 graphs Example 2 with a single shift-point. The graph suggests that the error space
is not convex, and makes it seem possible that this solution is not unique. However if another
solution does exist it was not to be found after thousands of experiments. It can also be seen how
small changes in the parameters can have drastic effects on the holonomy error. It is expected that
the apparent discontinuity is actually rapid change, and the jaggedness is likely due to roundoff and
computational error.

8.3.3 Example 3: A Coarse Non-symmetric Annulus

Now we return to the annulus from Figure 4.3 in Chapter 4. Call this annulus Example 3. Attempting
to proceed as in Example 2 only succeeds in illustrating the scope limitations of shift-points.
Regardless of where they were placed, we were unable to find a shift-point solution.
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Figure 8.8: Details of the conversion of Example 1. C(x, ϕ) on Dv(M) is shown for varying values of the
shift-ratio x.
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Figure 8.9: Example 2: an annulus with no combinatorial symmetry is created from Example 1. The
reflexive symmetry is broken by flipping an edge (blue) in the complex from Figure 8.6 (on the left) creating
a non-symmetric annulus, Example 2 (on the right).

We were able to reduce the holonomy error, sometimes substantially. With such coarse
combinatorics small adjustments can have an unpredictably disproportionate global effect on the
motif, e.g., Figure 8.12. So perhaps a computational solution could be found with greater persistence
or improved computational methods. However considering the classical case, it should be expected
to have complexes which call for singularities placed between vertices, perhaps on an edge or face,
just out of reach of any shift-point’s scope.

So we present another adjustment method. Using the same branch points as those highlighted in
Figure 4.3, say v1 and v2, we adjust the edge assignments of the edges emanating from the branch
vertex. Equivalently, we puncture the branch vertices and adjust the border radii along the newly
created border edge. This allows a great deal of flexibility at the cost of introducing too many
parameters.

We will refer to this adjustment as an edge assignment adjustment. There are advantages as
viewing the approach both as adjustments on edge assignments and border radii. Both views were
used to conduct experiments and construct a computational solution for Example 3. The steps to
how this was done are described below.

We converted v1 to the boundary as in Example 2 with a small alteration. After finding the
coherent label for the conversion it was placed in C. This is done by letting all the circles take their
Euclidean values and removing the unit circle; call this puncturing the boundary. Denote converting
and puncturing an interior vertex v in a motif M as Cv(M). The petals of v ∈M are the boundary
radii of Cv(M), and Cv(M) will be a disc so these boundary radii determine this motif’s coherent
label.
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Figure 8.10: Progressive adjustments of Example 2 using shift-points.
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Figure 8.11: Two views of the adjusted solution for Example 2 on P. The views present C1 and C2 on the
left and right, respectively. v1 was the branch point nearest to the flip in Figure 8.9.

Figure 8.12: The error for Example 2 with a single shift-point. For C(x, ϕ): x, ϕ, EK are the x, y, and
z-axis, respectively.
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Let M be the motif for Example 3. We found Cv1(M), and via a random search sought to
minimalism the differences between the ideal circles in Cv1(M) (the same goal of adjustments in
Example 2). A computational solution was not found, but the situation had improved. Then an
arbitrary circle was placed in C such that it encloses Cv1(M). Projecting to P, this circle is made
the circle C(v1). The edge assignments of M (all greater than or equal to 1) were then adjusted so
they matched this image (see Figure 8.13).

Next this process was repeated for v2. Continuing like this, making adjustments by “ping-
ponging” back and forth between v1 and v2, refined the motif until a computational solution was
found (Figure 8.14). This method has two notable advantages. First, is the greater amount of
flexibility over shift-points evidenced by this solution. Second, the computations are much faster.
Adjusting border radii allows us to use a packing algorithm which has benefited from years of
development. Relatively, our algorithm for finding shift-point labels is rather primitive and slow.

However there is one considerable disadvantage. Using flowers with separated petals, means that
the decorated complex is inadmissible, i.e., a label may not exits for the prescribed assignments.
Experimentally, this was not a problem, and it is conceivable that existence issues might be avoided
by placing reasonable restrictions on the adjustments. The experiment is included in this thesis to
highlight the versatility of edge assignments and illustrate the limitations of shift-points.

8.4 The Weierstrass Function

Next we present experiments on the 12-vertex hex torus shown below in Figure 8.15 (also Figure
4.13); call this Example 4. This complex was created by conducting flips on the symmetric 12-vertex
hex torus from Figure 4.11. Recall from Section 4.5 that a Weierstrass function for Example 4 will
require four branch points.

There exists no method for directly computing the labels for a spherical motif. A flower nexus
of the spherical complex must be converted to the border (as described in the above section) so
that the motif can be computed and laid out in D. Then it can be projected to P where it will be
coherent if and only if it was coherent in D.

If a flower nexus is to be converted to the border it must be a nexus circle whose interior is
disjoint from all the other circles in the layout. This means it must be on of the branch circles,
adjusting with shift-points is then limited to the three remaining branch circles. Example 4 was
rendered from a complex with two translational symmetries by breaking one of them with flips. In
light of Examples 1 and 2, one might reasonably assume that three shift-points with a total of six
parameters would provide sufficient flexibility.

However the experiments had mixed results. As in the above section, we sought to minimize the
holonomy error, EK . Two non-homotopic generating chains on the torus will be needed, plus the
border chain we introduced. The latter chain essentially checks the “local coherence” of the converted
vertex’s flower the conversion put in D, and CirclePack computes the radii for the remaining circles
according to their assignments. However, the resulting motif will not in general have a consistent
layout.
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(1) (2)

(3)
(4)

Figure 8.13: The conversion used to adjust the edge assignments for Example 3. (1) The unbranched and
(2) branched conversions of v2. The ideal circles shown in the details are colored green and yellow. (3) The
Euclidean border radii have been changed, and C(v2) has been added as an outer circle. (4) Projection to
the sphere, M ′ is M with v2’s edge assignments (pink circle) set according to their placement on the sphere.
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Figure 8.14: Example 3 made coherent via adjusted edge assignments. The generalized branch points are
separated branch flowers with center circles colored blue and pink.

Figure 8.15: The torus used in Example 4. The branch points are colored in blue. On the right is a
conversion of v; its petals are colored gray (they are horocycles in the conversion).
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By following the steps above, a motif using every possible selection of four traditional branch
circles was computed and had its EK measured. The highlighted circles in Figure 8.15 were the four
with the lowest EK of any set. Next, the conversion of Example 4 was adjusted with (modified)
shift-points at the remaining three branch points. Using varying methods to optimize EK with the
six parameters, we were able to significantly reduce the holonomy error (from approximately 3.089

to approximately 0.027).
However we were unable to further improve on this error, and we were unable to achieve the

computational or visual success of the previous examples. Progress seems to be impeded by the
confluence of several factors. Using more chains and shift-points has a two fold cost in time
and accumulative computational error. Small local errors snowball into noticeable amounts; these
naturally get expressed in our method of measuring holonomy. Additionally EK can be very sensitive
to relatively small changes in the parameter, and its surface appears to be discontinuous. Figure
8.16 illustrates this behavior when a single shift-point has been inserted.

That a solution exists seems quite possible, but our current methods have met a limiting
threshold. An advancement in computational methods or even hardware might yield better results.
In regards to the former, applying techniques recently developed by Gerald Orick might resolve the
above mentioned cumulative error [35]. However while it is believed that six parameters should
suffice, it is unclear exactly why the symmetry of the torus in Section 4.5 actually works.
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(a)

(d)

(c)(b)

Figure 8.16: Different views of EK for Example 4 adjusted at a single shift-point. Traditional branching
has been placed at the other two branch points. (a) and (b) are a top and isometric view, respectively, (c)
is a detail of (b), and (d) is a two-dimensional slice from (b) at ϕ = 1.
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