
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2012

Coalition Formation and Execution in Multi-robot Tasks Coalition Formation and Execution in Multi-robot Tasks

Yu Zhang
yzhang51@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Robotics Commons

Recommended Citation Recommended Citation
Zhang, Yu, "Coalition Formation and Execution in Multi-robot Tasks. " PhD diss., University of Tennessee,
2012.
https://trace.tennessee.edu/utk_graddiss/1442

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1442&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Yu Zhang entitled "Coalition Formation and

Execution in Multi-robot Tasks." I have examined the final electronic copy of this dissertation for

form and content and recommend that it be accepted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy, with a major in Computer Science.

Lynne E. Parker, Major Professor

We have read this dissertation and recommend its acceptance:

Michael W. Berry, Bruce MacLennan, Peiling Wang

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Yu Zhang entitled “Coalition formation and
execution in multi-robot tasks”. I have examined the final paper copy of this dissertation for form
and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Computer Science.

Lynne E. Parker, Major Professor

We have read this dissertation
and recommend its acceptance:

Michael W. Berry

Bruce MacLennan

Peiling Wang

Accepted for the Council:

Vice Chancellor and Dean of
Graduate Studies

Coalition Formation and Execution in

Multi-robot Tasks

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Yu Zhang

August 2012

Copyright c© 2012 by Yu Zhang.

All rights reserved.

ii

Dedication

This dissertation is dedicated to my parents, Wenxiang Zhang and Lanqiong Yu, who have always

been there to support me. They encouraged me when I felt most depressed and embraced my

happiness when I succeeded. Without their support and understanding, I could not have made

solid progresses towards achieving my life goals. I also want to dedicate this dissertation to my

grandparents, Gaoyou Zhang, Shiguang Qian and Zuorun Yu, Shuzhen Qian, and other members

in my family. Finally, I want to dedicate this dissertation to my girl friend, Kai Sha, who provided

tremendous encouragement and support to me to complete this work.

iii

Acknowledgments

This dissertation could not have been completed without inspiration and help from many people.

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Lynne E.

Parker. It was her great inspiration and guidance that the work in this dissertation was based on.

Her professionalism and willingness to guide students to become good researchers led to important

progresses for me towards achieving my academic goals, which are indispensable to the completion

of this dissertation. I would also like to thank the rest of my committee, Dr. Michael W. Berry,

Dr. Bruce MacLennan and Dr. Peiling Wang, for their willingness and dedication to serve on my

committee, and for their advices and support in improving and accomplishing this work.

I additionally would like to thank other faculties and staff in the Center for Intelligent Systems

and Machine Learning (CISML) and in the Electrical Engineering and Computer Science (EECS)

department for their great support. In particularly, I would like to thank Dr. Hairong Qi, Dr.

Itamar Arel, Dr. Husheng Li, Mr. Scott Wells, Ms. Dana Bryson, Ms. Julia Elkins and Ms.

Tiffany Harmon.

I would also like to thank my fellow graduate students, Xiangyan Li, Yuanyuan Li, Dwi Sianto

Mansjur, Richard Edwards, John Hoare, Hao Zhang, Sudarshan Srinivasan, Mike Franklin, Chris

Reardon, Robert Lowe and Nick Overfield, for their heartily support during my study towards this

dissertation. I also enjoyed working with the robots in the Distributed Intelligence Laboratory

(DILab), including Arno, Blitz, Cappy and Duke, although it often required serious efforts to have

them cooperate.

iv

Finally, I must express my appreciation to many other friends who have accompanied me during

these years. They have made the intense life of graduate studies much more enjoyable and relaxing,

which is definitely a determinant factor to accomplish anything that demands such extreme energy

and efforts. I would like to thank Tabitha Samuel, Liangcheng Yang, Yulu Jia, Teng Ma, Xiaolan

Chen, Xia Huang, Hao Tang, Zhiqiang Li, Hui Lin, Zhi Han, Cherry Xu, and many others who

have always been there for me whenever needed most.

v

Abstract

In this research, I explore several related problems in distributed robot systems that must be

addressed in order to achieve multi-robot tasks, in which individual robots may not possess all

the required capabilities. While most previous research work on multi-robot cooperation mainly

concentrates on loosely-coupled multi-robot tasks, a more challenging problem is to also address

tightly-coupled multi- robot tasks involving close robot interactions, which often require capability

sharing. Three related topics towards addressing these tasks are discussed, as follows:

Forming coalitions, which determines how robots should form into subgroups (i.e., coalitions)

to address individual tasks. To achieve system autonomy, the ability to identify the feasibility of

potential solutions is critical for forming coalitions. A general IQ-ASyMTRe architecture, which

is formally proven to be sound and complete in this research, is introduced to incorporate this

capability based on the ASyMTRe architecture.

Executing coalitions, which coordinates different robots within the same coalition during physi-

cal execution to accomplish individual tasks. For executing coalitions, the IQ-ASyMTRe+ approach

is presented. An information quality measure is introduced to control the robots to maintain the

required constraints for task execution in dynamic environment. Redundancies at sensory and com-

putational levels are utilized to enable execution that is robust to internal and external influences.

Task allocation, which optimizes the overall performance of the system when multiple tasks

need to be addressed. In this research, this problem is analyzed and the formulation is extended. A

vi

new greedy heuristic is introduced, which considers inter-task resource constraints to approximate

the influence between different assignments in task allocation.

Through combining the above approaches, a framework that achieves system autonomy can be

created for addressing multi-robot tasks.

vii

Contents

1 Introduction 1

1.1 Forming coalitions . 2

1.2 Executing coalitions . 3

1.3 Task allocation . 4

1.4 Task allocation with executable coalitions . 6

1.5 Contributions . 7

2 Literature review 10

2.1 Architectures for coalition formation . 10

2.2 Approaches for coalition execution . 13

2.3 Algorithms for task allocation . 15

2.4 Task allocation with executable coalitions . 18

3 IQ-ASyMTRe for coalition formation 20

3.1 ASyMTRe . 20

3.2 The IQ-ASyMTRe architecture . 22

3.2.1 Information type and information instance 23

3.2.2 Information conversion . 25

3.2.3 Solution space and potential solution . 28

3.2.4 Coalition and coalition solution . 32

viii

3.2.5 The completeness of solution space . 35

3.2.6 Forming executable coalitions . 39

3.2.7 The algorithms and properties . 41

3.2.8 Complexity analysis . 43

4 IQ-ASyMTRe+ for coalition execution 45

4.1 The IQ-ASyMTRe+ approach . 45

4.1.1 Maintaining Sensor Constraints using Formation Control 47

4.1.2 Assessing the Utility of Pjk . 49

4.1.3 Maintaining Sensor Constraints with the IQ Measure 54

4.1.4 Expressivity of Information for Constraint Relaxation 57

4.1.5 Minimum Information Requirement . 60

4.1.6 Constraint Relaxation . 64

4.2 IQ-ASyMTRe+: The Algorithms . 65

5 Task allocation 68

5.1 Problem formulation . 68

5.2 Natural greedy heuristics . 70

5.2.1 AverageUtility . 71

5.2.2 MaxUtility . 74

5.3 The new greedy heuristic . 75

5.3.1 A motivating example . 75

5.3.2 Inter-task resource constraints . 75

5.3.3 ResourceCentric . 76

5.3.4 The algorithm of ResourceCentric . 83

5.3.5 ResourceCentricApprox . 84

5.3.6 The algorithm of ResourceCentricApprox . 87

5.4 Extended formulation . 87

ix

5.4.1 Adding task dependencies . 89

5.4.2 Problem analysis . 90

5.4.3 Allocation with task dependencies . 92

5.4.4 The algorithm for task allocation with task dependencies 93

6 Task allocation with executable coalitions 96

6.1 Task allocation with IQ-ASyMTRe . 97

6.1.1 Layering IQ-ASyMTRe with task allocation 97

6.1.2 Tasks with no executable coalitions . 99

6.2 Algorithms for task allocation . 101

7 Experimental results 103

7.1 Results for IQ-ASyMTRe . 103

7.1.1 Simulations . 104

7.1.2 Physical experiments . 114

7.2 Results for IQ-ASyMTRe+ . 119

7.2.1 Simulations . 119

7.2.2 Physical Experiments . 132

7.3 Simulation results for ST-MR-IA . 135

7.3.1 Comparison with limited capability resources 136

7.3.2 Comparison with random configurations . 137

7.3.3 Comparison with different robot capability levels 138

7.3.4 Comparison with varying coalition sizes . 139

7.3.5 Comparison with random Cost function . 139

7.3.6 Key findings from ST-MR-IA results . 141

7.4 Simulation results for ST-MR-IA-TD . 143

7.4.1 Task dependencies with random configurations 143

7.4.2 Task dependencies with varying coalition sizes 143

x

7.4.3 Task dependencies with random Cost function 145

7.4.4 Varying maximum vp
D values of task dependencies 145

7.4.5 Time analysis . 147

7.4.6 Key findings from ST-MR-IA-TD results . 148

7.5 Results for task allocation with executable coalitions 150

7.5.1 IQ-ASyMTRe with coalition quality . 150

7.5.2 Executable vs. feasible coalitions . 151

7.5.3 Tasks with no executable coalitions . 156

8 Conclusions 159

Bibliography 162

Vita 173

xi

List of Tables

3.1 Examples of RPS’s . 26

5.1 Summary of discussed methods with maximum coalition size k 87

7.1 Information required in the navigation task . 104

7.2 Potential solutions of the navigation task . 105

7.3 Information used by previous approaches . 106

7.4 Coalitions with two robots in Figure 7.1 . 108

7.5 MinIIS and independence of information instance . 122

7.6 RPS’s for push-box-in-line . 129

7.7 Performance comparison of IQ-ASyMTRe+ and VFH approach 133

7.8 Outcome from t-tests for data points in Figure 7.20 139

7.9 Outcome from t-tests for data points in Figure 7.21(a) 139

7.10 Outcome from t-tests for data points in Figure 7.21(b) 139

7.11 Outcome from t-tests for data points in Figure 7.22 141

7.12 Outcome from t-tests for data points in Figure 7.23 141

7.13 Outcome from t-tests for data points in Figure 7.24 144

7.14 Outcome from t-tests for data points in Figure 7.25 146

7.15 Outcome from t-tests for data points in Figure 7.26 146

7.16 Outcome from t-tests for data points in Figure 7.27 148

xii

7.17 Executable vs. feasible coalitions . 155

xiii

List of Figures

3.1 An example of schema connections in ASyMTRe . 21

3.2 Schema connections in ASyMTRe for the same information 22

3.3 A solution space for a robot to obtain its global position with only a camera sensor . 31

3.4 A solution space for two robots to push a box in a given direction 31

3.5 A possible coalition solution . 35

3.6 An illustration for Lemma 3.2.4 . 40

4.1 Environment sampling using laser sensor with uncertainty sampling and computation

of the probability of risk . 53

4.2 A potential solution with the incorporated IQ measure 55

6.1 The new extended solution space . 100

7.1 Forming executable coalitions in the robot navigation task 107

7.2 A scenario for the dynamic monitoring task with mobile robots 110

7.3 Distributed search of the solution space in difficult-to-search scenarios 113

7.4 The solution space that encodes the potential solutions used in the cooperative robot

box pushing task in simulation. 115

7.5 Robots performing a cooperative box pushing task in a general scenario 116

7.6 Coalition solution with the robot that can localize in the back 117

7.7 Pioneer robots in a navigation task, scenario 1. 118

xiv

7.8 Pioneer robots in a navigation task, scenario 2 . 118

7.9 A cooperative box pushing task . 120

7.10 Illustration of information flow for scenarios shown in Figure 7.9 121

7.11 Three scenarios for the robot navigation task in which robots demonstrate different

behaviors . 124

7.12 Four robots in a formation task using a leader-reference strategy 126

7.13 A robot navigation task with constraint relaxation 128

7.14 A solution space for two robots to cooperatively push a box in a given direction . . . 130

7.15 The execution of the push-box-in-line MS class with two robots in three different

configurations . 131

7.16 Comparison of IQ-ASyMTRe+ and the VFH approach in a tracking task 134

7.17 Scenarios in a box pushing task . 135

7.18 The schema connections and sensor constraints for the scenarios shown in Figure 7.17136

7.19 Task allocation with limited capability resources . 137

7.20 Task allocation with random configurations . 138

7.21 Task allocation with different robot capability levels 140

7.22 Task allocation with varying coalition sizes . 140

7.23 Task allocation with a random cost function . 142

7.24 Task allocation with task dependencies with random configurations 144

7.25 Task allocation with task dependences with varying coalition sizes. 145

7.26 Task allocation with task dependences with a random cost function 146

7.27 Task allocation with task dependences with varying maximum value for vp
D 147

7.28 Time analysis for all methods except ResourceCentric 149

7.29 Time analysis for RC and RCA . 149

7.30 A configuration of a line of followers with one leader at the front 151

7.31 Time and coalition quality measures . 152

7.32 A configuration with four groups of robots spatially separated 154

xv

7.33 Random robot configurations . 154

7.34 A scenario created for task allocation with 3 tasks 158

xvi

Chapter 1

Introduction

Gerkey [Gerkey and Mataric, 2004] categorizes robot problems based on the robots (single-task

(ST) vs. multi-task (MT)), the tasks (single-robot (SR) and multi-robot (MR)) and the assign-

ments (instantaneous (IA) and time-extended (TA)). In this dissertation, although the discussions

are concentrated on addressing multi-robot tasks with single-task robots and instantaneous assign-

ments, they are also immediately applicable to addressing single-robot tasks with single-task robots.

The introduced approaches can also be used in problems involving time extended assignments. In

this research, it is not assumed that individual robots have all the required capabilities, and hence

robots need to form subgroups or coalitions in order to accomplish the tasks. When close coordi-

nations between the robots are required, the tasks are referred to as tightly-coupled multi-robot

tasks. Whether a task is loosely or tightly coupled is dependent on the task requirements, robot

capabilities, and the current environmental situation. Since these factors can vary significantly

across different applications, it is desirable to enable both loosely and tightly coupled tasks, in

order to fully use the capabilities of the systems. In tightly-coupled multi-robot tasks, the robots

are required to share their capabilities via constant information sharing. This research is aimed to

provide a complete solution to achieve system autonomy for addressing various multi-robot tasks,

whether loosely or tightly-coupled.

1

1.1 Forming coalitions

For accomplishing multi-robot tasks, robots are required to cooperate by forming subgroups (i.e.,

coalitions). An intuitive approach for reasoning about forming coalitions to address multi-robot

tasks1 is to divide them into subtasks or roles that individual robots can perform using domain

knowledge. For example, in a robot insertion task [Sujan and Dubowsky, 2005], a supervisor robot

provides visual information to guide the implementor robot to execute the insertion. An issue

with this approach is that subtasks or roles have to be predefined, as it is not practical to define

all of them for arbitrary tasks. It is desirable, and sometimes even required, for the reasoning to

be dependent dynamically on the capabilities (whether sensory, motor, or computational) of the

available robots, such that coalitions can be formed at a more fine-grained scale. Moreover, when

individual robots do not have all the capabilities desired, they must reason autonomously to share

them. This is desirable when it is either impractical or uneconomical to install the required sensors

on all (potentially heterogeneous) robots, or when using sensors positioned on different robots is

more suitable in the current situation. Forming coalitions based on subtasks or roles is often not

informative enough for capability sharing.

The representation of robot capabilities clearly has a critical influence on the design of such

desired systems. First, the capabilities should be defined independently of the robots and tasks so

that the implemented systems are general and can be applied to various tasks. Modularity is also

important to make the systems easily extendable to different problem domains requiring dissimilar

capabilities, such as extending the robot insertion task to a robot box pushing task. Finally, it is

necessary to define a uniform interface between these capabilities in order to autonomously reason

about the required interactions among the robots and the environment.

General methods satisfying the independence and modularity requirements greatly increase

system capability. Approaches that also enable autonomous reasoning with capability sharing

have been shown in [Parker and Tang, 2006, Shiroma and Campos, 2009] to further improve the

1In this context, forming coalitions for individual multi-robot tasks is considered.

2

system flexibility in tightly-coupled multi-robot tasks. However, an important issue that remains

unaddressed is that the satisfaction of the constraints (introduced by the interactions) are not

considered; these constraints determine the feasibility of the potential coalitions. For example, in

a navigation task, a robot without a localization capability may need help from another robot in

order to navigate. This, in turn, requires the robots to interact in close proximity since the relative

position between the robots has to be retrieved using sensors of limited range (e.g., cameras). A

coalition with robots that are not in each other’s sensor field of view (FOV) is infeasible. It is clear

that the feasibility of the coalitions for execution is not only influenced by the capabilities of the

robots, but also by the configurations of the robots and the environment. Previous approaches for

forming coalitions do not consider this issue and thus cannot easily identify whether or not the

formed coalitions are feasible for execution.

1.2 Executing coalitions

The second step to address a multi-robot task2, is to address the problem of coalition execution.

However, general methods for coalition execution do not yet exist, especially for tightly-coupled

multi-robot tasks, in which close coordination with information sharing between the robots is

required. The difficulty lies in the fact that the close robot coordination for task execution sets up

interaction constraints among robots and the environment; these interaction constraints can in turn

be expressed as sensor constraints that must be maintained by the robots during task execution.

These constraints must be determined dynamically in the current situation. For example, in most

cases, it is impractical for spatially distant robots to be assigned the same task when there are

sensor constraints between them. In a navigation task, a robot without a localization capability

can request another robot to constantly share its global position during execution; combining this

global position with relative position between the robots can allow the first robot to calculate its

own global position. However, the robots need to be in close proximity of each other for this to

2In this context, execution for individual tasks is considered.

3

work, since the relative position between the robots has to be retrieved using sensors with limited

sensing ranges (e.g., fiducial sensors). To solve this problem in a general manner, a method is

needed for modeling and dynamically identifying the required interactions in the multi-robot task.

These interactions, in turn, determine the physical robot configurations required to satisfy the

sensor constraints in the current situation.

To cope with dynamic and environmental influences while maintaining the required robot con-

figurations, a measure is needed that assesses the utility of a multi-robot configuration for satisfying

these sensor constraints, subject to these influences. Robots can use this measure to adjust their

current configurations locally for maintaining these constraints when necessary. For cases when

certain sensor constraints become unsatisfied, robots can search for alternative interactions to relax

the unsatisfied constraints, without reallocating the task. This new approach can discover these

new solutions using redundancies at the sensory and computational levels, thus providing more

robustness during execution. Such a process is referred to as constraint relaxation, since it is the

process of replacing the original sensor constraints with alternatives.

1.3 Task allocation

When there are multiple multi-robot tasks to be assigned, the optimization problem is referred to

as the ST-MR-IA problem. The ST-MR-IA problem requires assigning a set of tasks to a set of

robot coalitions, with the constraint that each robot and task can be assigned to no more than one

coalition in the chosen assignments (i.e., coalition-task pairs). One effect of this constraint is that

the capabilities on the robots are not sharable between different chosen assignments. The goal is

to maximize the sum of the utilities of the chosen assignments.

The ST-MR-IA problem is closely related to the coalition formation problem in multi-agent

systems. In the coalition formation problem, a set of agents replaces the set of robots and there

is a function that maps a coalition of agents to a real nonnegative utility value [Sandholm et al.,

1999]. The goal is to find a partition of this set of agents (i.e., referred to as a coalition structure

4

in [Sandholm et al., 1999]) to maximize the sum of the utilities of the coalitions in the partition.

Compared to the coalition formation problem, the ST-MR-IA problem is slightly different in that

it also requires a notion of task and incorporates an extra constraint on the tasks. Furthermore,

it is not necessary to assign every robot to some task, since there may not be suitable or sufficient

tasks to be assigned3. Moreover, the utilities of assignments in the ST-MR-IA problem are not

only dependent on the coalitions, but also on the tasks. As a result, different assignments with

the same coalition can have different utilities. Due to these differences, most algorithms from the

agent-based coalition formation problem cannot be directly applied to the ST-MR-IA problem.

The ST-MR-IA problem can be easily shown to be NP-hard via a reduction from the coalition

formation problem4, which is known to be NP-hard [Sandholm et al., 1999]. In [Gerkey and Mataric,

2004], the ST-MR-IA problem is further shown to be strongly NP-hard [Garey and Johnson, 1978]

by a similar reduction from the set partitioning problem. As a result, fully polynomial approxi-

mation algorithms for ST-MR-IA are unlikely to exist (unless P ≡ NP). Due to this complexity,

few approximation algorithms with good solution guarantees have been provided. In this research,

a new heuristic is presented that considers inter-task resource constraints in task allocation. This

heuristic takes into account the influence between different assignments while still maintaining poly-

nomial running time. A formal analysis is provided for this new heuristic, which reveals that the

solution quality is bounded by two different factors. Algorithms based on this heuristic are easy to

implement and simulation results show that they indeed improve the performance.

Although scheduling is not addressed in ST-MR-IA5, for more complicated situations involving

task dependencies, the formulation of ST-MR-IA is insufficient. For example, in a disaster response

scenario [Jones et al., 2011], in order for truck agents to address fires in buildings, bulldozer robots

must be assigned along with the truck agents to clear city roads leading to these buildings that

are blocked by impassable debris. The task to clear city roads makes the task of addressing fires

3In ST-MR-IA, it is also not necessary for every task to be assigned to some robot(s), since there may not be
suitable or sufficient robots to assign.

4The reduction creates a special task for each coalition and assigns the utility value of the assignment according
to the utility function, while assigning the utility values of assignments with other coalitions for the task as zeros.

5Scheduling is typically considered in time extended assignment (TA).

5

possible. On the other hand, when there are alternative blocked roads that lead to the same

buildings, the bulldozer robots only need to clear one of them. In this situation, the task to clear

one road makes the other alternatives unnecessary (so that more bulldozer robots remain available

for other tasks). It is clear that disregarding these task dependencies can significantly reduce

the efficiency of the overall system. In this research, the formulation of the ST-MR-IA problem

is extended to incorporate general task dependencies and provide an analysis of the complexity

for the extended formulation. An algorithm that utilizes the discussed methods for ST-MR-IA is

provided to address this extended formulation of the problem.

1.4 Task allocation with executable coalitions

The ST-MR-IA problem is very difficult to solve for several reasons. For one, the number of

possible coalitions grows exponentially with the number of robots. Furthermore, given a set of

possible coalitions (C), one needs to check every possible set of assignments of coalitions to tasks

(T) in order to determine the optimal solution; the number of such sets is O(|T ||C|). As the

number of coalitions increases, the problem quickly becomes intractable. Even when the size of

the coalitions is restricted as in [Shehory and Kraus, 1998], finding the optimal solution is still of

high-order polynomial computational complexity.

Although efficient approximation algorithms or heuristics exist for addressing the ST-MR-IA

problem, to enable these methods to run more efficiently, it is desirable to reduce the number of

possible coalitions. Given a task, the most obvious way to reduce the number of coalitions is to

consider the ones that satisfy the capability requirement of the task. However, the number of

feasible6 coalitions can still be large. For environments that are not guaranteed to be non-super-

additive, the situation becomes even worse.

6For discussions of task allocation in this research, feasible coalitions represent the coalitions that satisfy the task
requirements, which differ from the definition in previous discussions of forming and executing coalitions (in which
they refer to coalitions that are feasible for execution). Executable coalitions are used in the latter case when there is
ambiguity.

6

One observation is that, often, not all feasible coalitions are necessarily executable by the robots.

This is due to the fact that a large portion of feasible coalitions may not be in an executable state

(i.e., certain preconditions, or the required information of the tasks is not satisfied), such that the

robots do not know how to execute them. These coalitions can be ignored for task allocation until

ways to satisfy their preconditions are found and evaluated. Meanwhile, if the related tasks can be

accomplished by executable (alternative) coalitions with reasonable costs, the satisfaction of the

preconditions to enable these coalitions is likely to be unnecessary. To achieve this, the approach for

forming coalitions in this research is used, which returns solutions in which the required interactions

are satisfied.

For task allocation, each executable coalition is associated with a cost measure, which is eval-

uated to approximate the overall costs incurred for contributing to a task. Costs of the allocated

capabilities (e.g., sensors), communication, and coordination between robots are all considered.

A reward is also associated with each task and there are dependencies (e.g., precedence orders)

between different tasks that must be satisfied. Meanwhile, for tasks with no executable coalitions,

instead of only directly planning on the unsatisfied preconditions7, the reasoning process for form-

ing coalition is also used to autonomously decompose them into satisfiable components and create

partial order plans [Russell and Norvig, 2003] to satisfy them accordingly (implemented using task

dependencies).

1.5 Contributions

This dissertation makes contributions in several areas for addressing multi-robot tasks. The specific

contributions for these areas are listed below. In the IQ-ASyMTRe architecture [Zhang and Parker,

2010b,Zhang and Parker, 2012c] for forming coalitions, we:

7Directly planning on these unsatisfied preconditions is only helpful if specific behaviors are implemented to satisfy
these preconditions.

7

1. Associate referents with information types. This association completes the definition of infor-

mation type, which is essential for identifying coalitions for which the required interactions

are satisfied.

2. Introduce information conversions. Such an approach introduces a structured method for

autonomously reasoning about the conversions between different information systems and

hence avoids application specific software design.

In the IQ-ASyMTRe+ approach [Zhang and Parker, 2010a, Zhang and Parker, 2011, Zhang and

Parker, 2012b] for executing coalitions, we:

1. Introduce environment sampling. This method introduces a flexible way to incorporate envi-

ronmental influence.

2. Introduce and incorporate the information quality measure. During execution, this measure

is used to satisfy and maintain sensor constraints in tightly-coupled multi-robot tasks.

3. Apply IQ-ASyMTRe during coalition execution for constraint relaxation. Flexible and robust

coalition execution to internal and external influences is achieved by using redundancies at

the sensory and computational levels.

For task allocation [Zhang and Parker, 2012a], we:

1. Provide a formal analysis on two natural heuristics. This analysis shows that the natural

heuristics can produce poor solutions when inter-task resource constraints are present.

2. Introduce a new approximation algorithm and provide efficient ways to implement it. A new

approximation algorithm with solution quality bounded by two different factors is presented,

which has been shown to improve the average performance.

3. Extend the formulation of the problem and provide results on the hardness of this new formu-

lation. This analysis proves that this extended problem is NP-hard to approximate.

8

Through combining these approaches [Zhang and Parker, 2012d], we:

1. Introduce task allocation with executable coalitions. This method can greatly reduce the

complexity for task allocation.

2. Present a method to satisfy preconditions for tasks that have no executable coalitions, by break-

ing unsatisfied preconditions into satisfiable components. Such an approach enables robots to

autonomously create task plans to accomplish the tasks.

3. Provide a framework to combine previous aspects to achieve system autonomy for addressing

multi-robot tasks. An initial framework is presented, which combines the previous important

aspects to achieve multi-robot tasks.

The combined framework enables autonomous task planning and execution that exploits the

capability of the current system for various tasks, which represents an important step towards

achieving full autonomy in distributed robot systems. Given task specifications, robots using this

framework can reason about coalition solutions dynamically based on the current configuration of

robot teammates and the environment. The task allocation method can then be used to optimize

the performance. During execution, robots can autonomously share capabilities in the formed

coalitions and can adapt to dynamic and environmental changes in a flexible way.

The remainder of this dissertation is organized as follows. Related works are reviewed in Chapter

2. Chapter 3 presents the IQ-ASyMTRe architecture for forming coalitions. Chapter 4 presents the

IQ-ASyMTRe+ approach for executing coalitions, while task allocation methods are discussed in

Chapter 5. A brief discussion of task allocation with executable coalitions is provided in Chapter

6 to demonstrate how these different aspects can be combined to achieve system autonomy for

addressing multi-robot tasks. Results for these approaches are presented jointly in Chapter 7.

Finally, conclusions are made in Chapter 8.

9

Chapter 2

Literature review

Research related to this dissertation includes the topics of multi-robot cooperation, task execution

and coalition formation in multi-agent systems. This chapter provides a review of some of the most

relevant work. First, existing architectures for forming coalitions are reviewed in Section 2.1. Then

in Section 2.2, related approaches on executing coalitions are discussed. A review of algorithms

for task allocation is provided in Section 2.3, while related work on task allocation with executable

coalitions is discussed in Section 2.4.

2.1 Architectures for coalition formation

An extensive amount of work [Botelho and Alami, 1999,Dias and Stentz, 2000,Fua and Ge, 2005,

Gerkey and Mataric, 2001,Werger and Mataric, 2000,Zlot and Stentz, 2005,Zlot et al., 2002,Parker,

1998,Gerkey and Mataric, 2000] has been proposed to address multi-robot cooperation with single-

robot tasks, in which tasks are independent. Compared to this problem, addressing multi-robot

tasks is considered to be more complex. Approaches that divide multi-robot tasks into subtasks

or roles using domain knowledge [Das et al., 2002, Sujan and Dubowsky, 2005] effectively reduce

them to single-robot tasks so that the previous work can easily apply. Variants of the Contract Net

Protocol [Smith, 1980] are often used to coordinate the cooperation between multiple robots [Gerkey

10

and Mataric, 2001,Gerkey and Mataric, 2000]. However, these approaches can severely limit the

capability of the systems when robots are required to share capabilities.

To reason about forming coalitions at a more fine-grained scale, researchers working on the

task allocation problem often adopt a numeric representation [Shehory and Kraus, 1998, Shehory

and Kraus, 1999,Klusch and Gerber, 2002,Sandholm et al., 1999,Sandholm and Lesser, 1995] for

robot capabilities. The advantage is that this representation is general and more conveniently

subject to theoretic analysis. The disadvantage, however, is that it does not facilitate capability

sharing. Meanwhile, a behavior-based representation, such as schema theory [Lyons and Arbib,

1989,Arkin, 1989], is designed for modularity and provides an interface (i.e., inputs and outputs)

for describing the interactions between different modules, although the unstructured interface is

too generic to enable autonomous reasoning of potential coalition solutions. An advantage of this

approach is that more complex behaviors can be achieved using the basic ones so that high-level

decision-making architectures [Fikes and Nilsson, 1971, Parker, 1998, Saffiotti, 1997, Estlin et al.,

2001] can be applied.

Although schema theory cannot be directly applied to facilitate autonomous reasoning, it is a

promising method to build upon. In light of this, the ASyMTRe [Parker and Tang, 2006] architec-

ture was introduced for addressing tightly-coupled multi-robot tasks; it is also the first architecture

to enable autonomous capability sharing at the sensory and computational levels. For more struc-

tured inputs and outputs, ASyMTRe uses information type1 as labels for attaching information

with semantic meanings. Schemas (i.e., function modules) can only be activated when their input

information types are satisfied, and can produce specified output information types. In this way,

ASyMTRe is able to autonomously reason about the required interactions for potential coalition so-

lutions based on how information should flow within the distributed systems to where it is required.

Capability sharing is implicitly achieved through the communication of information. Unlike the

1While data type refers to the format of the data (i.e., integer), information type defines the semantic meaning of
the data (e.g., global or relative position).

11

sensor fusion architectures [Murphy, 1998, Stroupe et al., 2001] that address the problem of com-

bining sensory information from different robots, ASyMTRe is designed to model the information

flow between very different modules (e.g., motors and sensors).

While other approaches for addressing tightly-coupled multi-robot tasks exist, some of them do

not enable autonomous reasoning, due to the lack of a uniform interface between the capabilities. As

a result, these approaches cannot be easily extended to various problem domains. For example, the

work of [Kalra et al., 2005] introduces a market-based framework for tight coordination in a security

sweep task domain. Passive coordination is used to quickly produce solutions for local robots, while

active coordination is used to produce complex solutions via coordination between teammates.

Other approaches that enable autonomous reasoning, however, do not facilitate capability sharing.

Unlike in the multi-agent domain, sensory capabilities are located on different robots and cannot

be easily transferred. Vig [Vig and Adams, 2006] first noted this, and addresses it by restricting

coalitions to the ones that satisfy the location constraints of the sensors. A better solution is for

the robots to autonomously share capabilities as enabled in [Parker and Tang, 2006,Shiroma and

Campos, 2009].

Meanwhile, although application-specific methods [Parker et al., 2009, Spletzer and Taylor,

2002,Das et al., 2002] can often be used, such approaches do not generalize, even in the same task

domain, to scenarios that require complex information sharing, due to the large number of possible

interactions. Hence, a general architecture is required, and a schema-based design, coupled with a

structured interface based on information types, satisfies the requirements for addressing tightly-

coupled multi-robot tasks. However, while this approach enables autonomous reasoning about the

required interactions for potential coalition solutions, it cannot determine which ones are feasible

in the current situation, since the introduced constraints are not considered. The information type

(for specifying the interactions) is statically defined with respect to the capabilities of the schemas

and does not include information on how the coalition solutions are currently being instantiated.

12

2.2 Approaches for coalition execution

While many approaches have been provided for forming coalitions [Botelho and Alami, 1999,Dias

and Stentz, 2000,Das et al., 2002,Fua and Ge, 2005,Gerkey and Mataric, 2001,Zlot and Stentz, 2005,

Shehory and Kraus, 1998,Vig and Adams, 2006,Kalra et al., 2005,Parker and Tang, 2006, Zhang

and Parker, 2010b], no general approaches have been provided to execute them. Coalition execution

is especially important when addressing tightly-coupled multi-robot tasks, since such tasks require

robots to interact in a constrained manner with each other, and/or with the environment. In

particular, the required interactions introduce sensor constraints that must be maintained during

execution. These sensor constraints in turn impose restrictions on the robot configurations during

coalition execution. While previous work often uses application-specific methods [Howard et al.,

2006, Sujan and Dubowsky, 2005] to maintain the required robot configurations, general methods

for related problems can also be applied. One approach is to employ planning techniques [Ayanian

and Kumar, 2010,Ogren and Leonard, 2003] to plan paths that ensure the maintenance of the robot

configurations. The planned paths can then be used to feed back commands to control the robots.

However, this approach is computationally expensive. Furthermore, dynamic influence is difficult

to incorporate.

A more suitable approach is to use formation control techniques to maintain the required robot

configurations. Formation control in dynamic environments has been classified into three categories

based on the control strategy [Michaud et al., 2002]. The first category uses linear or non-linear

control [Das et al., 2002,Desai et al., 2001,Antonelli and Chiaverini, 2006,De la cruz and Carelli,

2008,Monteiro and Bicho, 2010], in which dynamic and environmental influences are often incorpo-

rated by creating virtual robots on obstacle surfaces. However, these methods often do not consider

sensor limitations (e.g., field of view) and assume visibility of at least the neighboring robots. Al-

though a few methods in this category consider these limitations [Gustavi and Hu, 2005], the typical

approach is to simply control sensor-constrained robots to be close enough to the sensor. The sec-

ond category of methods uses a behavior-based approach [Balch and Arkin, 1998]. These methods

13

can often be implemented to rely only on local sensors [Fredslund and Mataric, 2002,Lemay et al.,

2004,Ren and Sorensen, 2008,Barnes et al., 2009]; dynamic and environmental influences are often

incorporated using potential fields [Fredslund and Mataric, 2002, Barnes et al., 2009]. The third

category is a hybrid of the previous two categories. For methods in all three categories, sensors are

not modeled to consider dynamic and environmental influences. As a result, these methods may

lead to undesirable behaviors while maintaining the required sensor constraints for the task.

To address this issue, a measure is introduced to assess the utility of a multi-robot configura-

tion for satisfying sensor constraints. This measure is based on the use of sensor models. Although

other researchers have investigated similar measures, they do not explicitly consider dynamic and

environmental influences. As a result, these previous measures can also lead to undesirable be-

haviors while maintaining sensor constraints. For example, in prior work for a target observation

task [Stroupe and Balch, 2003], the robots compute a utility measure based on information gain

to consider the observational contributions of teammates at each step; the robots then choose

their motions to maximize this utility measure. However, dynamic and environmental influences

are not considered. In [Spletzer and Taylor, 2002], a utility measure is computed by a function

that is based on a multi-variant model (defined for multiple observing robots), given the current

robot positions. The robots are controlled to maximize this utility measure, which can be defined

differently for achieving various tasks. However, dynamic and environmental influences are only

incorporated using potential fields. In this research, these influences are considered explicitly with

an approximated geometric representation of the environment, which is then used by the sensor

models to compute the desired measure.

Nevertheless, this desired measure cannot guarantee the maintenance of the required sensor

constraints in all situations, due to unadaptable dynamic and environmental influences or sensor

failures. When certain sensor constraints introduced by the required interactions for the task

are no longer satisfied, the execution cannot continue. Previous methods often achieve robust

solutions by using redundancies at the robot level [Parker, 1998,Fua and Ge, 2005,Michaud et al.,

2002]. These methods require other available robots to be allocated, which may be inefficient or

14

impractical. For example, it may be expensive to bring new robot coalitions together. In this

research, it is demonstrated how more robustness can be achieved by using redundancies at the

sensory and computational levels via constraint relaxation. This relaxation process often results

in significant changes of the robot configurations, similar to formation switching. In formation

control, however, this process is often hard-coded or manually controlled [Fierro et al., 2001,Das

et al., 2002,Desai et al., 2001]. In contrast, the new approach allows robots to flexibly change the

required task interactions; this approach relaxes the unsatisfied constraints autonomously, based

solely on whether the desired information flow can be maintained in the current situation.

2.3 Algorithms for task allocation

The coalition formation problem (similar to ST-MR-IA) has been studied extensively as charac-

teristic function games in multi-agent systems (e.g., [Abdallah and Lesser, 2004, Rahwan et al.,

2009,Sandholm et al., 1999]), which concentrate on generating optimal coalition structures. Sand-

holm et al. [Sandholm et al., 1999] show that for any algorithms to obtain solution guarantees, the

search process is required to visit an exponential number of coalition structures in the number of

agents. Sandholm et al. [Sandholm et al., 2002] also show that it is difficult to approximate the

problem using techniques from combinatorial auctions. Nevertheless, researchers have proposed

efficient algorithms for this problem. In [Abdallah and Lesser, 2004], a novel distributed algorithm

is presented that returns a solution in polynomial time, given an underlying hierarchical organiza-

tion. Reinforcement learning techniques are used to increase the solution quality as the agents gain

more experience. In [Rahwan et al., 2009], an efficient anytime algorithm is provided that uses a

novel representation of the search space to partition the solution space and remove unpromising

sub-spaces. The branch-and-bound technique is then applied to reduce the search of the remain-

ing sub-spaces. A similar problem is the set partitioning problem, for which many algorithms have

been provided (e.g., [Atamturk et al., 1995,Hoffman and Padberg, 1993]). However, these discussed

15

approaches cannot be used to address the ST-MR-IA problem due to the fact that the notion of

task is absent.

The problem of coalition formation for task allocation has been studied in [Dang and Jennings,

2006, Lau and Zhang, 2003, Service and Adams, 2011, Shehory and Kraus, 1998,Tosic and Agha,

2004]. Lau and Zhang [Lau and Zhang, 2003] have introduced a taxonomy for this problem based

on three factors: demands, resources and profit objectives. They have investigated five distinct

classes of the problem and have provided analyses and algorithms for each class. In their formu-

lation, coalitions are allowed to overlap so that the same robots can potentially be assigned to

multiple tasks. This approach assumes that the capabilities on the robots are sharable between

different coalitions, which does not apply to multi-robot systems [Vig and Adams, 2007]. Note

that since task locations are often geographically distant, physical robots cannot execute different

tasks simultaneously. As a result, these algorithms are not suitable for addressing the ST-MR-IA

problem. Dang and Jennings [Dang and Jennings, 2006] studied the coalition formation problem in

a task-based setting. They have provided an anytime algorithm that has bounded solution quality

with a minimal search. Their formulation of the problem is in fact more general than ST-MR-IA,

since multiple tasks are allowed to be assigned to any coalitions. However, they did not study the

influence of the size of the coalitions on the solution quality.

Meanwhile, the formulations of the problem studied in [Service and Adams, 2011,Shehory and

Kraus, 1998, Tosic and Agha, 2004] match more with that of the ST-MR-IA problem. In [Tosic

and Agha, 2004], a fully distributed algorithm is presented, in which a maximal clique approach

is applied for ensuring the high degree of communication connectivity of the candidate coalitions,

thus providing more robustness. Task allocation is then achieved by selecting from these candidate

coalitions based on utilities. However, the algorithm does not provide any solution guarantees.

Shehory and Kraus [Shehory and Kraus, 1998] have adapted a greedy heuristic [Chvatal, 1979]

from the set covering problem to address the task allocation problem via coalition formation in

both multi-agent and multi-robot systems. They have studied two cases of the problem with non-

overlapping and overlapping coalitions, in which the non-overlapping case is almost identical to

16

the ST-MR-IA problem, except that a cost measure is used instead of a utility measure. A non-

super-additive environment is assumed so that they can bound the size of the coalitions. With

this assumption, they have shown that the greedy algorithm produces a solution that is within a

logarithmic factor of the optimal.

However, in the most recent work of [Service and Adams, 2011], Service and Adams point

out that changing the optimization problem from a cost (as in [Shehory and Kraus, 1998]) to a

utility measure has a great impact on the performance of the algorithm. They have studied two

models of the problem in which the resource model is exactly the ST-MR-IA problem. It is proven

in [Service and Adams, 2011] that it is NP-hard to approximate the solution within O(|T |1−ǫ)

without restricting the size of the coalitions. In addition, it is NP-hard to obtain an approximation

ratio that is asymptotically no worse than k/ log(k) when the maximum size of the coalitions is

restricted to k, using the results reported in [Zuckerman, 2007]. Service and Adams have also

provided a greedy heuristic and reported an approximation ratio of θ = k + 1 in the worst case.

This same heuristic is presented in this research as one of the natural heuristics (i.e., MaxUtility).

Another natural heuristic is also analyzed and a new heuristic is presented.

In the research of multi-robot systems, the task allocation problem has also been studied exten-

sively [Fanelli et al., 2006,Fua and Ge, 2005,Parker and Tang, 2006,Sariel, 2005,Vig and Adams,

2006, Zlot, 2006] (some of these are not necessarily restricted to the ST-MR-IA problem [Fanelli

et al., 2006,Sariel, 2005,Zlot, 2006]). Some approaches are designed to achieve specific objectives or

tasks [Fua and Ge, 2005,Sariel, 2005,Zlot, 2006]. In [Fua and Ge, 2005], a backoff adaptive scheme

is employed to enable fault-tolerant task allocation with uncertain task specifications. In [Sariel,

2005], a framework for a cooperative exploration task in dynamic environments is proposed. During

execution, costs are re-evaluted in the current situation based on a cost function and robots can

dynamically change targets to minimize the total costs. In [Zlot, 2006], a way to generalize task

descriptions as task trees is provided, which is implemented in a distributed solution for allocating

complex tasks (i.e., involving task scheduling and decomposition) using a market-based approach.

17

For approaches that provide techniques to address the general optimization problem, anytime algo-

rithms are applied in [Fanelli et al., 2006,Parker and Tang, 2006] and heuristics are used to return

potentially good solutions first. In [Vig and Adams, 2006], Vig and Adams adapt the approach

in [Shehory and Kraus, 1998] to multi-robot systems. To address the location constraints of capa-

bilities (e.g., in a tracking task, a camera must be mounted on a robot that is also mobile), they

have designed a process to check the satisfaction of these constraints and remove assignments that

violate them. As an alternative, Vig and Adams have introduced the service model (also studied

in [Service and Adams, 2011]) to avoid this process. However, such an approach requires the ser-

vices to be predefined for various tasks, which can potentially be dependent on the capabilities of

the robots that are unknown.

2.4 Task allocation with executable coalitions

To provide a solution that can combine the previous aspects to achieve multi-robot tasks, a layering

technique that allows different task allocation methods to be easily incorporated is adopted. A

similar approach is presented in [Tang and Parker, 2007] for the ASyMTRe architecture [Parker

and Tang, 2006]. However, as discussed prior in this research, ASyMTRe suffers from several issues

which are addressed by IQ-ASyMTRe to enable coalition execution. As a result, some techniques

used in [Tang and Parker, 2007] to improve performance (e.g., considering robots having the same

capabilities for a task to be equivalent) reduces system autonomy, as the influence of dynamic

factors and environment settings for execution cannot be considered. To provide a new aspect, the

issue with a large number of coalitions is addressed in this research by allocating tasks to executable

coalitions.

Finally, the issue is addressed when no executable coalitions exist for tasks. One approach is

to use AI planning techniques separately as in [Lundh et al., 2007]. However, this approach is only

applicable for sequencing executable behaviors, with the previous behaviors satisfying preconditions

18

of the following ones. The method presented in this research is able to find ways to satisfy these

preconditions even no task behaviors are directly provided to satisfy them.

19

Chapter 3

IQ-ASyMTRe for coalition formation

For forming coalitions, IQ-ASyMTRe [Zhang and Parker, 2010b,Zhang and Parker, 2012c] is built

based on the ASyMTRe architecture [Parker and Tang, 2006], which is the first architecture that

enables autonomous capability sharing. The reasons for choosing ASyMTRe are discussed and

its advantages and limitations are investigated. IQ-ASyMTRe is introduced specifically to address

several limitations of ASyMTRe for forming coalitions. To the best of our knowledge, IQ-ASyMTRe

is the first attempt to form coalitions that are executable. Note that this approach can also be

used in coalition execution to identify situations when the feasibility of the coalitions changes

dynamically, so that the robots can adjust their behaviors. More detailed discussions on this aspect

can be found in Chapter 4. After some background knowledge about ASyMTRe in Section 3.1, the

new IQ-ASyMTRe architecture is explained in detail in Section 3.2. Simulations and experimental

results are presented in Section 7.1, and conclusions are made in Chapter 8.

3.1 ASyMTRe

Based on schema theory [Lyons and Arbib, 1989,Arkin, 1989], the ASyMTRe architecture [Parker

and Tang, 2006] defines basic building blocks of robot capabilities to be collections of environmen-

tal sensors (ESs), perceptual schemas (PSs), motor schemas (MSs), and communication schemas

20

Figure 3.1: An example of how schemas are connected in ASyMTRe [Parker and Tang, 2006].

(CSs). A set of information types (F s) is introduced to label the inputs and outputs of schemas.

Connections between schemas can be made when the output label of one matches the input label

of another. To reason about coalition solutions, ASyMTRe searches through all possible ways to

connect different schemas in order to activate the required MSs on the robots to achieve a task. The

activation of each schema is associated with a cost. For task allocation, ASyMTRe uses an anytime

algorithm, with heuristics for returning good solutions earlier. Figure 3.1 illustrates an example of

schema connections. While solid lines represent an AND condition, dashed lines represent OR. For

example, the figure shows that the requirement of information type F2 can be provided by either

PS3 or CS2. Refer to [Parker and Tang, 2006] for more details.

While ASyMTRe and other architectures (e.g., [Shiroma and Campos, 2009]) that use similar

approaches have been shown to improve the flexibility of multi-robot systems, they all suffer from

several issues. First of all, the definition of information type is not complete, which limits the

referenced information to only be statically dependent on the capabilities of the schemas, instead of

dynamically dependent on the actual information retrieved. This can cause problems when sensors

capable of producing an information type cannot retrieve the required information in the current

situation. For example, in a navigation task, a robot without a localization capability, and a robot

with this capability, may not always be within each other’s FOV. In such cases, these architectures

may choose to form infeasible coalitions. To address this issue, schemas must be activated in

the planning phase when necessary. The incorporation of such a process is missing in ASyMTRe

21

Figure 3.2: Retrieving the same information in different ways in ASyMTRe [Parker and Tang,
2006].

and other previous approaches for forming coalitions. Furthermore, perceptual schemas (or actions

in [Shiroma and Campos, 2009]) can be dependent on how the input information is retrieved, which

requires application-specific code to be designed. Figure 3.2 shows two scenarios for how robots

without a localization capability (R4 and R1 in the figure) retrieve their global position information

with help from another robot. In the top scenario, position information relative to R3 is retrieved

by R4 using a camera, whereas in the bottom scenario, the relative information is retrieved by

robot R7 with a laser-based localization capability.

3.2 The IQ-ASyMTRe architecture

In this section, the representation of information is first extended to introduce a complete definition

of information type and a new type of PS, called Reduction PS, to model the conversions between

information. Such a representation is needed in order to dynamically reason about the feasibility of

the coalitions. The new solution space and potential solutions are then presented and discussions

are provided on how they relate to the coalition solution. Finally, the IQ-ASyMTRe algorithm for

forming executable coalitions is presented and its properties are discussed and proven afterwards.

22

3.2.1 Information type and information instance

The incompleteness of information type, as originally defined in [Parker and Tang, 2006], is due

to the fact that the relationships between entities1 and information are not explicitly captured.

Intuitively, information must be specified with a set of referents. For example, the information of

rA’s global position is not useful without specifying rA. IQ-ASyMTRe uses both information type

and information instance for a complete definition.

Definition 3.2.1. Information Type – An information type in IQ-ASyMTRe is specified by a pair,

(Fi, Ni), where Fi is a label for the semantic meaning of the information that defines the specific

sensing or computational data of a schema or a sensor. Fi is consistent with the definition of

information type in ASyMTRe, while Ni is the number of referents that should be associated with

Fi.

For example, the information type of global position can be specified by (FG, 1). This infor-

mation type has only 1 referent since it always refers to an entity’s global position. In order to

describe the complete semantic meaning, information type alone is not sufficient. As an example,

(FG, 1) does not inform us about whose global position it is. To address this issue, the definition

of information instance is introduced.

Definition 3.2.2. Information Instance – An information instance in IQ-ASyMTRe not only con-

tains the semantic meaning expressed in its information type, but it also captures information

about the related entities. An information instance of a particular information type, (Fi, Ni), can

be represented as Fi(Ref1:Ni
), where Refj is used to refer to the jth referent for the information

instance.

Each referent, Refj , can be instantiated to a particular entity or remain uninstantiated for future

instantiations. Fully instantiated information instances represent actual information that can be

used. Partially instantiated information instances represent a class of information. For example,

1Entities can be locations, robots, agents, or objects that can be identified in the environment.

23

FG(X) can be the global position information of any entity that X is instantiated to. The use of

information instance creates a complete reference of information. For example, after instantiating

the two referents of an information instance of the relative position information type, (FR, 2), to

robots rA and rB respectively, the reference of information FR(rA, rB) has a unique meaning (i.e.,

rA’s position relative to rB), no matter how the information is retrieved or used.

The definition of a complete specification of information enables IQ-ASyMTRe to dynamically

reason about coalition solutions based on how capabilities or information is shared, such that

infeasible coalitions can be identified. To achieve this dynamism, statically labeling the schemas

(with information types) as in ASyMTRe is insufficient; instead, in IQ-ASyMTRe, the semantic

labels (information instances) are also encoded in the information flowing through. For example,

for sensory information retrieved by an ES, an associated PS extracts the semantic information to

dynamically instantiate the referents of its label and pass the new label along with the actual data

to the output. In such a way, IQ-ASyMTRe can use actual sensory or communicated information

for forming coalitions, which makes it different from other approaches.

The concept of generality for information instances is introduced for later use. In the following

discussions, for conciseness, referents for information instances are not shown unless necessary.

Definition 3.2.3. Generality of Information Instance – For two information instances (F x and

F y) of the same information type (F , N), F x is more general than F y (denoted by F x ≻ F y), if

and only if the following two statements are true:

(i) ∃ Refk ∈ Ref1:N in F y that is instantiated while the corresponding referent (Refk) in F x is

not.

(ii) ∀ Refk ∈ Ref1:N in F x that is instantiated, the corresponding referent (Refk) in F y is also

instantiated.

Also, F x is as general, or has the same generality, as F y (denoted by F x = F y), if and only if

the following two statements are true:

24

(i) ∀ Refk ∈ Ref1:N in F y that is instantiated, the corresponding referent (Refk) in F x is also

instantiated.

(ii) ∀ Refk ∈ Ref1:N in F x that is not instantiated, the corresponding referent (Refk) in F y is also

not instantiated.

Note that Definition 3.2.3 only specifies partial orders for information instances of the same

information type in IQ-ASyMTRe, since two information instances of the same information type

may or may not be comparable. For example, given that F x ⊁ F y and F x 6= F y, it is not necessarily

true that F y ≻ F x.

3.2.2 Information conversion

The Reduction PS (denoted by RPS henceforth) is introduced in IQ-ASyMTRe for expressing infor-

mation conversions. The idea is to provide a constructive way for reasoning about the relationships

between different information systems, as first introduced in information invariants theory [Donald

et al., 1997]. This capability is desirable for reasoning about forming coalitions, since potential

coalition solutions represent ways to connect different components (i.e., schemas) to form equiva-

lent information systems (i.e., to retrieve the required information). The benefit is that information

conversions are general, so that no application-specific code needs to be designed for the reasoning

process.

Furthermore, combined with a complete reference of information, IQ-ASyMTRe can express

information conversions in which multiple information instances of the same type are used; such

flexibility is not accessible to architectures based solely on information types. For example, from

the relative position of robot rB to robot rA and robot rC to robot rA, one can compute the relative

position of rB to rC .

Information conversions expressed in IQ-ASyMTRe can be specified in the Backus-Naur Form

(BNF) as follows.

25

Table 3.1: Examples of RPS’s

RPS Description

FG(X) + FR(Y,X) ⇒ FG(Y) global + relative ⇒ global

FR(Y,X) ⇒ FR(X,Y) relative ⇒ relative

FR(X,Z) + FR(Y,Z) ⇒ FR(X,Y) relative + relative ⇒ relative

FG(X) + FG(Y) ⇒ FR(Y,X) global + global ⇒ relative

Definition 3.2.4. Information Conversion – Information conversions in IQ-ASyMTRe express

relationships between composite information instances (abbreviated as comp inst in the BNF speci-

fications).

A composite information instance is constructed from connected information instances using

logic operators {iAND, iOR}, which are similar to {AND, OR} in propositional logic, except that

iOR is more strict in that it specifies either one but not both. It is not difficult to conclude that

the distributive property holds for {iAND, iOR} as with their counterparts in propositional logic.

Information conversions convert the composite information instance on the left hand side to the

one on the right:

< info conversion >::= < l-comp inst >⇒< r-comp inst >

The BNF of a composite information instance is given as follows, in which information instance

is abbreviated as info inst. Since iOR operators on the right hand side are not well defined2, the

definitions for the two sides are different:

< l-comp inst >::=(< l-comp inst > iAND < l-comp inst >)

| (< l-comp inst > iOR < l-comp inst >)

| < info inst >

2For example, saying that the information instance of A can either be converted to B or C, but not both, turns
the use of this information conversion into a random process.

26

< r-comp inst >::=(< r-comp inst > iAND < r-comp inst >)

| < info inst >

Lemma 3.2.1. Information conversions in IQ-ASyMTRe can always be defined with only iAND

operators connecting multiple information instances on the left hand side and a single converted

information instance on the right.

Proof. First, since information instances on the right are connected with only iAND operators,

one can easily divide any information conversions in Definition 3.2.4 into multiple conversions with

a single information instance on the right by creating a separate conversion for each information

instance on the right with the left hand side unchanged. Afterwards, by using the distributive

property, one can transform the composite information instances on the left into their respective

disjunctive normal forms (DNFs). Finally, one simply needs to divide each of the transformed infor-

mation conversions into multiple conversions by introducing a new conversion for each conjunctive

clause on the left hand side.

As an example, for an information conversion having the form, (A iOR B) iAND C ⇒ D iAND

E, first, it can be divided into two information conversions for each information instance on the

right hand side. The two conversions are (A iOR B) iAND C ⇒ D, and (A iOR B) iAND C ⇒

E. Next, apply the distributive rule to the first conversion to get: (A iAND C) iOR (B iAND C)

⇒ D. The second one can be transformed similarly. Finally, by introducing a conversion for each

conjunctive clause, one has A iAND C ⇒ D, and B iAND C ⇒ D.

Definition 3.2.5. IQ Information Conversion – Lemma 3.2.1 allows us to express any valid in-

formation conversion in the following form (called the ‘IQ form’ henceforth):

< info conversion >::= < l-comp inst >⇒< r-comp inst >

27

< l-comp inst >::=(< l-comp inst > iAND < l-comp inst >)

| < info inst >

< r-comp inst >::=< info inst >

The advantage of defining information conversions in the IQ form is that the reasoning process

for creating the solution spaces is significantly simplified. In the following discussions, it is assumed

that all information conversions are defined in the IQ form; the iAND operator is also denoted by

‘+’, for conciseness. Table 3.1 shows several RPSs that can be used in IQ-ASyMTRe. They are

general since the referents can be instantiated to different entities, as long as the same referent

labels are instantiated to the same entities.

3.2.3 Solution space and potential solution

While potential coalition solutions or potential solutions represent the possible alternative ways that

schemas can be connected, a solution space in IQ-ASyMTRe encodes all such potential solutions.

Although the introduction of information instance and RPS significantly changes the solution space

and potential solutions in IQ-ASyMTRe, the reasoning process for creating them remains similar

to [Parker and Tang, 2006]. To create the solution space, the reasoning algorithm checks all

schemas that can output the required information instances, and then checks recursively for the

inputs of those schemas until the path either ends in a conflict with the referent instantiation

constraint3 or in a terminal state (i.e., CS or ES-EPS pair4 that can be the source of the required

3The referent instantiation constraint requires the same labels to be instantiated to the same entities in the inputs
and outputs of the same schemas. Validation of this constraint occurs in both of the algorithms presented in Section
3.2.7. In the algorithm for creating the solution space, it is used to remove invalid potential solutions, while it is used
in the second algorithm to determine the feasibility of the coalitions.

4Sensory information instances are extracted from raw sensor data using PSs designed for the specific environmental
sensors (ESs). PSs of this kind are denoted by EPSs in the following discussions.

28

information instance). Note that while the reasoning for creating the solution space is similar to

STRIPS [Fikes and Nilsson, 1971] planning (considering sets of information instances as states

and RPSs as reduction rules), IQ-ASyMTRe provides a more manageable reasoning system for the

problems that this research is addressing, by restricting the forms of states and RPSs.

A solution space can be represented in a directed graph representation as an and-or tree (e.g.,

see Figure 3.3). Each node in the solution space represents a schema or an ES-EPS pair. Each edge

represents an information instance that constantly flows from the output of one node into the input

of another (except for the edges connecting ESs and EPSs). The root of the and-or tree, which

specifies the required information instances, can either be a MS or CS (for providing information

to other robots) and acts as a sink node that information flows into. As it is assumed that RPSs

are defined in the IQ form, every node has one or more incoming edges and a single outgoing edge.

Every leaf node (i.e., the information source) is either a CS, representing information communicated

from others, or an ES-EPS pair, representing information retrieved using sensors. Nodes that are

closer to the sink node (i.e., the root) are said to be downstream of the nodes further away on

the same branching path5, as information flows from the leaves to the root. Figure 3.3 shows a

solution space for the cooperative robot navigation task. The tOR node is introduced to manage

multiple options of connection. Another example involving different information types is provided

in Figure 7.14 for the box pushing task presented in [Donald et al., 1997] using force feedback,

infrared, bumper, and position sensors, which shows the applicability of IQ-ASyMTRe to varying

task domains.

After the solution space is created, potential solutions can be extracted from the root to the

leaves by making decisions on which schema node to use at each tOR node; the rest of the nodes

are trimmed. Note that after the selections for the nodes are made, the tOR nodes are no longer

necessary and can be removed for a clearer representation. The cost to use a potential solution can

5A branching path is the path that starts from any leaf node and follows the information flow until the root node
(i.e., the sink node) is reached.

29

be computed as the sum of the costs of all schemas in the solution. Clearly, potential solutions also

have and-or tree representations.

However, one issue with IQ-ASyMTRe is that the solution space can be of infinite size without

restricting the use of RPSs. This is due to the fact that the same RPSs can potentially be used an

unlimited number of times. To address this issue, the Generality Imposition constraint is introduced

as follows:

• Generality Imposition constraint – For each RPS, prohibit the use of the same RPS for

converting information instances of the same type having less or equal generality upstream

on the same branching path.

Lemma 3.2.2. The Generality Imposition constraint ensures that solution spaces and potential

solutions have finite graphical representations.

Proof. The representation of a solution space can become infinite when loops occur, where infor-

mation instances of the same type and having the same generality appear more than once on the

same branching path of the solution space. The Generality Imposition constraint directly prohibits

the occurrences of loops. Otherwise, as the numbers of RPSs, information types, referents associ-

ated with information types, and entities are finite, in the worst case, every branching path would

terminate after information instances for all information types reach the most general forms (i.e.,

have no instantiated referents). Hence, solution spaces have finite representations. Furthermore,

as potential solutions are trimmed solution spaces, the conclusion is straight-forward.

An immediate additional conclusion is that the sizes of solution spaces (i.e., number of potential

solutions) are also finite. To further reduce their sizes, two more constraints are introduced.

30

Figure 3.3: A solution space for a robot to obtain its global position with only a camera sensor. The
referent local refers to the robot itself. This solution space encodes two solutions. One solution is to
have another robot send over its global position (CS: FG(X) ⇒ FG(X)) and use the camera sensor
to sense the relative position (EPS: Camera ⇒ FR(X, local)). A RPS (PS: FR(Y,X) ⇒ FR(X,Y))
is used to convert FR(X,R1) to FR(R1,X). The other solution (tOR) is to have both information
instances (CS: FG(X) ⇒ FG(X) and CS: FR(R1,X) ⇒ FR(R1,X)) sent over by another robot.

Figure 3.4: A solution space that represents one of the protocols presented in [Donald et al., 1997]
for two robots to cooperatively push a box in a given direction. For the robots to coordinate actions,
they must estimate the net torque on the box based on the torque information (FT), and use the
bumper information (FB) to determine whether the robots are in contact with the box. The torque
for each robot is computed from its exerted force on the box and its relative position to the box.
Other protocols presented in [Donald et al., 1997] (e.g., using the positions of the robots relative
to the box) can be similarly represented.

31

• Localness in Reasoning constraint – No schema connection except for CS should be created if

none of the referents6 for the information instance to be provided is instantiated to the local

entity (except for those with all referents instantiated to non-robot entities).

Given this constraint, for example, rA would not directly provide FR(rB , rC), even though

rA can compute it from FR(rB , rA) and FR(rC , rA). However, the information required for the

computation is available upon request.

• External Communication constraint – CSs are used only when some referents are not instan-

tiated to the local entity.

For example, if rA needs FG(rA), it cannot request it directly. Instead, it must first seek other

ways to obtain the information (e.g., computing it from FG(X) and FR(X, rA)). In this manner,

computation load is also distributed. Note that rA may request information from itself.

3.2.4 Coalition and coalition solution

In IQ-ASyMTRe, potential solutions only specify how the local robot7, rL, directly interacts with

others. To make this difference for later discussions, local coalitions are defined differently from

traditional coalitions [Gerkey and Mataric, 2004].

Definition 3.2.6. Local Coalition – A local coalition defined in IQ-ASyMTRe consists of rL and

the robot teammates that directly feed information to rL for activating a MS or a CS.

To search for local coalitions, IQ-ASyMTRe checks potential solutions in the solution space

in a non-descending order based on the costs. For each potential solution, IQ-ASyMTRe either

activates the ES-EPS pairs to retrieve sensory information, or CSs to send out information requests,

as specified in the potential solution. ES-EPS pairs are only activated temporarily to retrieve the

6For a robot to reason about information for helping others, when there is no referent instantiated to the local
entity but there are uninstantiated referents, the robot checks all possible ways to instantiate one of them to the local
entity.

7The local robot refers to the specific robot that initiates the coalition.

32

available sensory information and the information requests are sent only once (or a few times when

communication links are unreliable). Robots receiving the information requests create a solution

space for the required information and follow the same process. If the information is retrievable,

these robots keep sending the information until the temporary activations of the schemas expire.

IQ-ASyMTRe uses the collected information to instantiate the required information instances in

the potential solution and perform validation of the referent instantiation constraints. The resulting

local coalition is feasible only if all such constraints are satisifed. A chosen feasible local coalition

can then be set up, by sending coalition requests to the relevant robot members. The instantiated

potential solution is referred to as a local coalition solution, defined as follows.

Definition 3.2.7. Local Coalition Solution – A local coalition solution (LCS) for a local coalition is

the potential solution (selected by rL) after the full instantiations of all information instances.

Note that a potential solution can be instantiated to different LCSs. The left part of Figure 3.5

shows the LCS for a valid instantiation of a potential solution in Figure 3.3. To define coalitions,

note that robots in the local coalition may often be interacting with others in order to maintain

the desired interactions. For example, in Figure 3.3, FG(X) may be retrieved by X through help

from another robot.

Definition 3.2.8. Coalition – A coalition includes all robots in the local coalition and the robot

teammates that indirectly support rL.

A robot in the local coalition that uses CSs to directly feed information to rL must also be using

a local coalition to retrieve the necessary information, which may involve yet other robots. Such

local coalitions introduce coalitions (which could be of size 1) for these other robots in the local

coalition for rL. In other words, a coalition can recursively include multiple coalitions. Thus, the

feasibility of a coalition can only be determined when the feasibility of all the required coalitions is

determined; a coalition is set up only after all these required coalitions are set up. Note that while

the cost of a local coalition is that of the corresponding potential solution, the coalition may incur

more cost due to these additional required coalitions; this is referred to as the coalition cost.

33

Definition 3.2.9. Coalition solution – The coalition solution for a coalition includes the LCS, as

well as solutions for fulfilling the other required coalitions.

Coalition solutions also have and-or tree representations since they are created by connecting

LCSs, which are and-or trees. One characteristic of the coalition solutions, which differs from LCSs,

is that the leaves always represent the ultimate information sources, i.e., ES-EPS nodes. Note that

dummy sensors can be created for providing any prior information when necessary. Figure 3.5

shows a valid coalition solution that instantiates a potential solution in Figure 3.3.

Although the Generality Imposition constraint introduced in the previous section prevents loops

in the potential solutions (and hence in the LCSs) on rL, it does not prevent loops in the coalition

solutions. For example, while rA is requesting some information from rB , rB may in turn request

necessary information from rA to retrieve the requested information, which can lead to rA requesting

the same information from rB again. To address this issue, the Distinct Requests constraint is

introduced as follows.

• Distinct Requests constraint – For any robot, prohibit the use of CS if the robot has already

used CSs for requesting the same information instance.

Lemma 3.2.3. Given the Generality Imposition and the Distinct Requests constraints, LCSs and

coalition solutions have finite graphical representations.

Proof. As LCSs are instantiations of potential solutions, given Lemma 3.2.2, the conclusion for

LCSs is straight-forward. The representation of coalition solutions can become infinite when loops

occur; this occurs only when one robot is requesting an information instance, which ultimately

leads to itself requesting the same information again. The Distinct Requests constraint directly

prevents loops from occurring. Hence, coalition solutions also have finite representations.

Lemma 3.2.3 implies that any information request is populated only a finite number of times

in the distributed system, although the information requested during the population may not

necessarily be the same as in the initial request.

34

Figure 3.5: A possible coalition solution for a potential solution in Figure 3.3, in which the left
part corresponds to the LCS.

3.2.5 The completeness of solution space

An important question is whether the solution spaces are influenced by the introduced constraints.

Interestingly, the following lemma shows that the solution spaces are still complete in IQ-ASyMTRe.

Lemma 3.2.4. The combination of the following four constraints does not influence the complete-

ness of the solution space for the distributed system:

(i) The Generality Imposition (GI) constraint;

(ii) The Localness in Reasoning (LR) constraint;

(iii) The External Communication (EC) constraint.

(iv) The Distinct Requests (DR) constraint;

Proof. By definition, a coalition solution has an and-or tree representation. Furthermore, the leaf

nodes, located on robots within the coalition, are ES-EPS nodes for retrieving the required sensory

information instances, which flow within and across robots through schemas to the root (i.e., the

sink node) of the coalition solution.

Without any constraints, the simplest solution is to have sensory information instances from

other robots sent directly to rL (i.e., where the root is located) and move RPSs for processing them

35

to rL. Since no constraints are imposed here, self-communicating CSs on rL are unnecessary and

can be easily removed. Note that all information instances are fully instantiated in the solution

just created. The goal is to show how this simple solution can be reconstructed equivalently (via

pruning and grafting) on the robots so that the potential solutions before the instantiations satisfy

all constraints.

Start thinking in a reverse order; that is, given the created simple coalition solution, what could

the potential solutions have looked like? First of all, note that potential solutions are LCSs before

the instantiations and the LCSs are part of the coalition solutions. Hence, any referent that is not

instantiated statically (i.e., referents with instantiations specified a priori by the task or the EPSs)

would not be instantiated in the potential solutions. After removing all non-static instantiations,

it is shown next how to reconstruct the uninstantiated coalition solution to resolve all possible

violations.

First, for the ES-EPS nodes remaining on other robots, observe that for most sensors, the

retrievable information instances are always related to the robots on which the sensors are located.

Based on this observation, these information instances must have a referent instantiated to the

respective local robot entities. Hence, the schema connections do not violate the LR constraint and

it is easy to verify that they also do not violate the other constraints.

Now one can concentrate on the LCS for rL. Start the process in a reverse breadth search

fashion (i.e., from deeper to shallower nodes), until a violation at a node v is encountered. In the

following, Down(x) is used to denote downstream nodes of x on the same branching path and Fx

to denote the information instance produced by node x. Subtree(x) is used to denote the upstream

subtree rooted at x and CS(F) to denote a CS for requesting information instance F . There are

four possible situations:

(a) In the case of a violation of the DR constraint, without changing anything, the communi-

cation module can simply be implemented in such a way that for all CSs on a robot for requesting

the same information instance, only the first CS created may send the request. The intuition is

simple: there is no need for making duplicate requests.

36

(b) It can be argued that the case of a violation of the EC constraint would not occur. If it

does occur, one knows that v is a CS and the only referent in Fv is statically instantiated to rL,

since instantiating two or more referents of an information instance to the same entity would not

be informative by definition. Hence, Fv must not be communicated from other robots based on our

previous observation (or there should be instantiations with other robot entities). Consequently,

v should be an ES-EPS or a RPS node instead of a CS node according to the construction of the

simple coalition solution. Note also that the resolution process for the violations of other constraints

does not introduce this type of violation.

(c) In the case of a violation of the GI constraint, one knows that ∃u ∈ Down(v), for which

Fu ≻ Fv or Fu = Fv . Furthermore, given the search order, it is also known that Subtree(v) does

not contain any violations on rL.

c.1) If there exists a referent in Fv that is instantiated to a robot entity in the coalition, denoted

by rE (rE 6= rL), Subtree(v) can be trimmed off and replaced with CS(Fv). The creation of the CS

does not violate any constraints; furthermore, Subtree(v) can be moved to rE for reasoning about

Fv without incurring any violations, by using the following process:

For leaf nodes that are ES-EPS nodes in Subtree(v), they can be replaced with CSs after moving

Subtree(v) to rE for requesting the sensory information instances from rL. For the rest of the leaf

nodes (CSs), if the transferred information is not from rE, there is no need to do anything; otherwise,

the process is more complicated. In the following, denote the information transferred from rE by

FE and the node that is immediately upstream of CS(FE) on rE by E. If FE has more than one

referent and one of them is instantiated to rE, there is no need to do anything. Otherwise, there

are two cases:

c.1.1) FE has only one referent: if the only referent is not instantiated to rE , the situation falls

into the second case (i.e., c.1.2); else if the only referent is not statically instantiated to rE , nothing

needs to be done; else, the only referent is statically instantiated to rE. Since instantiations are

only inherited upstream until reaching the ES-EPS leaf nodes, Fv must have a referent statically

instantiated to rE as well.

37

If Fv has only one referent, following the same referent inheritance property, Fu, too, has a

referent statically instantiated to rE. According to the definition of the GI constraint, it must

be that Fv and Fu represent the same information. As a result, one can move Subtree(v) back

to rL to replace Subtree(u). Otherwise, Fv has more than one referent: if E is an ES-EPS node,

one can remove the leaf node CS(FE) from Subtree(v) and concatenate it with Subtree(E) on rE ;

else, it holds that Subtree(E) must have violated the LR constraint before being moved from rL to

rE , since it clearly did not violate the EC constraint. Furthermore, it must not have violated the

GI constraint, since otherwise Subtree(E) should have been used to replace the node in violation

on rL (assuming that the resolution of the GI constraint takes precedence over that of the LR

constraint). In such a case, one can remove the leaf node CS(FE) from Subtree(v) and concatenate

it with Subtree(E) without a problem.

c.1.2) No referent of FE is instantiated to rE : it can be argued that this case would not occur.

First, E cannot be an ES-EPS node, otherwise rE should be present. Meanwhile, FE must not

have been reasoned out either, since otherwise Subtree(E) should not have been moved to rE due

to a violation with the LR constraint.

c.2) Following c.1, if such a referent does not exist, there are three cases: 1) Fv has more than

one referent and one of them is instantiated to rL: in such a case, Subtree(v) can be replaced by a

self-communicating CS for Fv; 2) Fv has only one referent: if the only referent is not instantiated to

rL, the situation falls into the third case; else, if the only referent is not statically instantiated to rL,

Subtree(v) can be replaced by a self-communicating CS for Fv; else, the only referent is statically

instantiated to rL. It follows that Fv and Fu are the same, so that one can replace Subtree(u) with

Subtree(v). 3) no referent of Fv is instantiated to rL. In such a case, it holds that all referents in Fv

are instantiated to non-robot entities. Since fully instantiated information instances of the same

type with the same set of entities are almost always equivalent (i.e., there exists a RPS that can

convert one to the other), such a RPS can be used to convert Fv to Fu and then replace Subtree(u)

with the modified Subtree(v). New GI violations introduced on the modified subtree can be resolved

in a similar manner.

38

(d) In the case of a violation of the LR constraint, it holds that none of the referents of Fv

is statically instantiated to rL. A similar process as in (c) can be applied, given that information

types are defined to have distinct semantic meanings.

Iterate the above process until all violations are resolved. On termination, an equivalent coali-

tion solution has been created, in which the potential solutions before the instantiations satisfy all

of our constraints. Hence, the conclusion holds.

An example scenario for the navigation task is given in Figure 3.6(a) in which four robots must

activate the same MS to go to the same global position. The robots are positioned in a column

formation, as shown in the figure. The simple coalition solution for the example scenario is shown

in Figure 3.6(b) for the bottom robot. Figure 3.6(c) shows the LCS before instantiations. Note a

violation of the GI constraint from two information instances is shown in red. Figure 3.6(d) shows

the uninstantiated LCS after the resolution, with the red block in Figure 3.6(c) replaced by the

blue block in Figure 3.6(d). However, a violation of the LR constraint is still present in Figure

3.6(e) due to the information instance shown in red. Figure 3.6(f) shows the potential solution

after resolving all violations and Figure 3.6(g) shows a possible coalition solution.

3.2.6 Forming executable coalitions

For searching and setting up coalitions, is is assumed that all robots are always within communi-

cation range, such that every robot can communicate with any other robot when necessary. Given

a MS to activate, the robot first creates a solution space and searches for coalitions as discussed.

Coalitions are feasible when all the required coalitions are feasible, and hence can be executed.

No coalitions are set up in this phase. Among all executable coalitions found so far (after the

given search time has elapsed), IQ-ASyMTRe chooses the one with the least coalition cost to set

up. The coalition is only set up when all the required coalitions are also set up. For setting up

coalitions, the same request-and-wait negotiation protocol is used as used in the distributed version

of ASyMTRe [Tang and Parker, 2005].

39

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.6: (a) A scenario for the navigation task in which only the red robot (at the top) has
a GPS for global positioning. The other robots only have a camera for relative positioning, and
each can only see the robot immediately in front of it, since they are in a column formation. (b)
The simple coalition solution for the scenario in (a). (c) The LCS before instantiations. (d) After
resolving the violation of the GI constraint. (e) A violation of the LR constraint. (f) After resolving
the violation of the LR constraint. (g) A possible coalition solution after applying the potential
solution in Figure 3.6(f).

40

3.2.7 The algorithms and properties

The recursive algorithm for generating the solution space is shown in Algorithm 1. It checks all

possible schemas to retrieve the required information and recursively checks these schemas. Each

reasoning path terminates either in a conflict with the referent instantiation constraint or in a

terminal state.

Algorithm 1 A recursive algorithm for the solution space

for all input information instances of the current node do
if LR is satisfied then

for all EPSs that can retrieve the instance do
if no conflict occurs between the information label and the EPS label then

Create an ES-EPS node to expand the tree.
end if

end for
for all RPSs that can produce the instance and satisfy the GI constraint do

Populate the instantiations in the RPS based on the information label.
Create a RPS node to expand the tree and pass on the new labels to recursively invoke
the algorithm on the new node.

end for
end if
if EC is satisfied then

Create a CS node with the information label to expand the tree.
end if

end for
return The current node after the expansions.

The overall algorithm for the reasoning of forming coalitions in IQ-ASyMTRe is shown in Al-

gorithm 2, which returns the solution with the least cost found in a given time. For searching the

coalitions, the algorithm sequentially checks the potential solutions in a non-descending order based

on the cost. It activates the required ES-EPS pairs or CSs temporarily to retrieve the informa-

tion, as specified in the potential solutions. The algorithm then uses the collected information to

dynamically determine the feasibility of the coalitions and sets up the one with the least coalition

cost.

41

Algorithm 2 The algorithm for IQ-ASyMTRe

Invoke Algorithm 1 on a MS or CS with the required inputs.
Extract and order potential solutions (PoSs) in a list based on predefined costs for schemas.
while true do

if not all PoSs are checked then
Retrieve the next PoS on the ordered list.
Activate the required ES-EPS nodes temporarily in the PoS to collect sensory information.
Activate CS nodes in the PoS to send information requests for the attached information
labels.

end if
Collect information communicated by other robots.
Process requests and share information.
for all checked PoSs do

if the required information is available and no conflict with the referent instantiation con-
straints occurs then

Compute the coalition cost and record the coalition.
end if

end for
if the given search time has elapsed then

Negotiate to set up the coalition (with other robots) with the least coalition cost.
return The generated coalition.

end if
end while

42

Theorem 3.2.5. If the set of RPSs expresses all valid information conversions, given sufficient

search time, the IQ-ASyMTRe algorithm is complete.

Proof. If the set of RPSs expresses all valid information conversions for a given application, then

since Algorithm 1 explores all possible ways to retrieve information in a recursive manner, all

potential solutions satisfying the constraints in Lemma 3.2.4 will be checked. Given that these

constraints do not influence the completeness of the solution space, the IQ-ASyMTRe algorithm is

complete given sufficient search time.

Theorem 3.2.6. The IQ-ASyMTRe algorithm is sound.

Proof. First, since the inputs and outputs of connections are always required to have matching

information types, solution spaces are created using only valid schema connections, as are the

extracted potential solutions. Furthermore, since connections are made until the leaf nodes, which

are always information sources, the required constant information flow can be maintained. For

potential solutions, since one (and only one) branch remains at each tOR node, all inputs of the

downstream nodes are still satisfied. Hence, all necessary connections are present in the potential

solutions to maintain the information flow. Thus, the IQ-ASyMTRe algorithm is sound.

3.2.8 Complexity analysis

The computational and space complexity of Algorithm 1 is linear in the number of input information

instances to be reasoned about. For a single information instance, given the constraints in Lemma

3.2.4, it is not difficult to conclude that the worst case complexity of both computational and space

complexity8 is O(Nt2
NrNc

Nt2Nr
), given:

• Nc: the maximum number of RPSs producing the same information type.

• Nt: the number of information types related to the information instance to be reasoned about.

8The maximum length of any branching path, subject to all constraints, is Nt2
Nr . The number of all possible

distinct branching paths is Nc
Nt2

Nr

.

43

• Nr: the maximum number of referents associated with information instances for all related

information types.

Given a specific domain, these numbers are fixed, so that the size of the solution space for each

different information instance is bounded by O(Nc
Nc

Nt2
Nr

). Meanwhile, the size grows exponentially

with the number of information instances to be reasoned about. However, most practical problems

are still small enough to be computed in reasonable time in practice. For applications in which

the size of the solution space is large, the method in [Zhang and Parker, 2011] can be applied

to achieve online performance by significantly reducing the size of the search spaces for certain

problem instances.

In Algorithm 2, the communication complexity for sending information requests to search the

entire solution space is bounded by the number of distinct information instances in the solution

space, which is bounded by the maximum length of any branching path (i.e., Nt2
Nr). However,

the complexity is significantly influenced by how the referents of the information instances in the

requests are instantiated. If the information instances do not have any instantiated referents, the

complexity is only linear in Nt, based on the Distinct Request constraint. For example, if a request

for FG(X) has been sent, no requests need to be sent for FG(r1) or FG(r2). As the coalitions are

setting up, the communication in the distributed system drops gradually until becoming stable,

since only a constant information flow is required for maintaining the coalitions.

44

Chapter 4

IQ-ASyMTRe+ for coalition execution

In this chapter, the previous method of IQ-ASyMTRe for forming coalitions is used to model and

provide information of the interactions among the robots and the environment. When dynamic fac-

tors and environment settings do not influence the task execution, robots use a localized formation

control method to maintain the required robot configuration to satisfy the sensor constraints; other-

wise, robots use an introduced measure to improve the utilities of these sensor constraints. Finally,

the constraint relaxation process for flexible execution is presented, which is robust to internal and

external influences. The new IQ-ASyMTRe+ architecture [Zhang and Parker, 2010a, Zhang and

Parker, 2011,Zhang and Parker, 2012b] for coalition execution is discussed in Section 4.1, with the

key algorithms in Section 4.2. Simulations and experimental results are presented in Section 7.2.

4.1 The IQ-ASyMTRe+ approach

The interactions among robots and the environment required for the task are modeled uniformly in

IQ-ASyMTRe as information flows: CSs represent constant communication of information between

robots; certain ES-EPS pairs (i.e., a sensor with the sensory data processing PS) represent the

interactions that introduce sensor constraints, which must be satisfied to maintain these interactions

(e.g., using fiducial sensors to retrieve the relative position). In IQ-ASyMTRe, these interactions

45

are dynamically determined by the capabilities and the current configurations (e.g., positions) of

the robots, and the environmental situation. Presuming that inter-robot communication is not an

issue, robots need to maintain the introduced sensor constraints during execution.

For forming coalitions, IQ-ASyMTRe ensures that the sensor constraints are satisfied in the

initial robot configurations for the returned coalitions, by taking advantage of the complete reference

of information (see [Zhang and Parker, 2010b] for details). During execution, the restrictions on

the robot configurations imposed by these sensor constraints must be maintained. For example,

in the navigation task, the sensor constraint is for the robots to keep each other in sight of the

fiducial sensors; in a formation task that requires robots (with a ring of bumper sensors) to be in

contact with others, the sensor constraint is for the robots to keep the bumper sensors activated.

The required robot configurations for satisfying the sensor constraints (embedded in the initial

configurations) can be considered as a formation constraint. Unlike a rigid formation, robots have

some flexibility to adjust their configurations as long as the sensor constraints are maintained. In

the navigation task, robots can adjust their relative positions, given that one robot remains in the

other’s sight. This gives robots more flexibility.

Let us denote the robot configurations for a robot coalition Rj as Pj (referred to as a coalition

configuration). Techniques introduced in this research can be summarized as follows:

Given initial Pj .
while task not accomplished do

if dynamic factors and environment settings do not influence the sensor constraints then
Maintain formation specified by Pj. {Section 4.1.1}

else
Find and switch to P′

j that satisfies the sensor constraints; set Pj to be P′
j . {Sections 4.1.2

to 4.1.6}
end if

end while

46

4.1.1 Maintaining Sensor Constraints using Formation Control

To accomplish a given task, a set of MSs, M = {MS1, MS2, ...}, must be activated on different

robots. In a tightly-coupled multi-robot task, each of these MSs may require information that

must be cooperatively obtained by a coalition of robots; for each coalition Rj (for MSj), only one

robot (denoted by rL
j ∈ Rj) needs to execute MSj , while others provide help by sharing necessary

information. Also, for each Rj, the required interactions for this coalition introduce a set of sensor

constraints, Cj = {Cj1, Cj2, ...}, which must be satisfied during coalition execution. The subset

of robots in Rj that are involved in Cjk is denoted by Rjk, and the robot with the sensor that

introduces Cjk is denoted by rS
jk. Only one constrained sensor is associated with each Cjk.

When dynamic factors and environment settings do not influence the sensor constraints, the

required coalition configuration for satisfying these constraints is maintained by using a localized

formation control method, similar to [Fredslund and Mataric, 2002] but without assuming that

cameras can pan. Each Rjk acts locally to maintain the respective sub-configuration Pjk (a multi-

robot configuration for satisfying sensor constraint Cjk) by using the related sensory information.

Denote this information by Fjk(Ref1:Njk
), in which (Fjk, Njk) represents the information type. A

special MS, denoted by MS∆, implements this formation control for individual robots given such

information. When all Rjk are successful in maintaining the respective sub-configurations, the

sensor constraints for maintaining the required interactions for coalition execution are satisfied.

For each coalition Rj , this process can be implemented using Algorithm 3. The algorithm first

activates MSj on rL
j . It then activates MS∆ on robots that appear together with (or are linked

to) rL
j in any sensor constraints in Cj . The same process is performed on the robots with a newly

activated MS, until all such robots are managed. For robots involved in any sensor constraints in

Cj that are not directly or indirectly linked to rL
j (denote these robots by RN

j), MS∆ only needs to

be activated when one of the associated referents in the related sensory information is instantiated

47

to a non-robot mobile entity (e.g., a moving target).1 This algorithm is executed in IQ-ASyMTRe+

for each coalition in a distributed manner, which runs in O(|Rj |
2|Cj |).

Algorithm 3 Maintain Constraints with Formation Control

Create a queue Q and add rL
j to Q.

Activate MSj on rL
j .

while Q is not empty do
Remove the first element, r, from Q.
for all sensor constraints in Cj, denoted by Cjk do

if r ∈ Rjk then
for all r′ ∈ Rjk (r′ 6= r) do

if r′ does not have any activated MS then
Have rS

jk send Fjk(Ref1:Njk
) to r′ if r′ cannot retrieve Fjk(Ref1:Njk

).

Activate MS∆ on r′ and add r′ to Q.
end if

end for
end if

end for
end while
Activate MS∆ on RN

j if one referent of the related information instance is instantiated to a
non-robot mobile entity.

Proposition 4.1.1. For each coalition Rj , given that all sensor constraints are initially satisfied,

Algorithm 3 activates MS∆ on all necessary robots to maintain the sensor constraints for activating

MSj.

Proof. For any Cjk that is associated with Rj: 1) If there exists a referent in Fjk(Ref1:Njk
) that is

instantiated to a robot or a non-robot mobile entity, the algorithm activates MS∆ on all robots in

Rjk (except for rL
j) to maintain Pjk. In such cases, since there is at most one robot (i.e., rL

j) in Cjk

that does not have MS∆ activated or at most one non-robot mobile entity, no conflicts in motion

are incurred. When any robot in Rjk is involved in another sensor constraint Cjk′ (k 6= k′), since

Pjk and Pjk′ are consistent initially (both are a sub-configuration of Pj) and are maintained, they

1One note is that since the motions of non-robot mobile entities are not always predictable, it is required for
robots (including rL

j) in any sensor constraints to only be (directly or indirectly) linked to other robots (assuming all
robots are mobile) if they are linked to rL

j , or to only one entity when this entity is a non-robot mobile entity. For
more parallelism, exceptions may be considered in an application-specific manner.

48

must also be consistent during execution. Hence Cjk is maintained. 2) Otherwise, Cjk is trivially

maintained.

When two different coalitions Rj and Rj′ in the given task must share a specific robot that is

directly or indirectly linked to rL
j and rL

j′ respectively, unless the current configurations of rL
j and

rL
j′ are maintained during execution, these tasks must be considered as two separate tasks. (Note

that separate tasks can be handled by applying IQ-ASyMTRe+ on each one sequentially.) For

example, in a navigation task with two MSs to be activated on two robots without a localization

capability, these robots must maintain the relative position to be able to execute simultaneously

when sharing the same helping robot.

Meanwhile, to cope with dynamic and environmental influences for Rj , two questions must be

answered: 1) How should the robots adjust the coalition configuration Pj to maintain the affected

sensor constraints? 2) What if the robots cannot adapt to these influences or the sensors fail, so

that certain sensor constraints cannot be maintained? Sections 4.1.2 and 4.1.3 answer the first

question, while Sections 4.1.4 to 4.1.6 answer the second.

4.1.2 Assessing the Utility of Pjk

Since each sensor constraint Cjk is only associated with a subset of robots in Rj (i.e., Rjk), it

is natural to employ a localized approach. For maintaining Cjk, robots in Rjk use the related

information instance Fjk(Ref1:Njk
). To consider dynamic and environmental influences, a measure

is needed to quantify the utility of the multi-robot configuration Pjk for satisfying Cjk, which

can also be interpreted as a quality measure of Fjk(Ref1:Njk
). This measure is referred to as the

information quality measure (IQ measure). The ith robot’s configuration in Pjk is referred to as

Pi
jk. Without loss of generality, it is assumed that ri

jk is used to instantiate Refi in Fjk(Ref1:Njk
),

in which ri
jk is the ith robot in Rjk.

The IQ measure given the multi-robot configuration Pjk for r1:N
jk is denoted as Qual(F (r1:N

jk) |

PEnv), or abbreviated as Qual(F | PEnv), in which PEnv represents the current local dynamic and

49

environmental situation. This measure is computed in two parts: the sensor quality measure i(F)

and the weight w(F | PEnv). Qual(F | PEnv) is then computed as i(F) · w(F | PEnv).

Sensor Model

The sensor quality measure i(F) is computed using a given sensor model for a given Pjk for

r1:N
jk . Two essential submodels are explicitly identified – the sensor quality model and the sensor

uncertainty model.

Sensor Quality Model The sensor quality model i(F) is given as a function I: P → [0, 1], in

which P is the configuration space for Rjk. This function computes a mapping from Pjk to scores

within [0, 1]. The scores are assigned according to how favorable the configuration is for retrieving

F (r1:N
jk) based on non-noise sensor characteristics (e.g., sensing range). A value of 1 indicates the

most favorable configuration. Note that the influence of rS
jk can be ignored, since the sensor is

located on rS
jk.

Sensor quality models can be defined for laser and camera sensors in a 2D Euclidean space

(consistent with [Murphy, 1998]) for the relative position information FR(r1, r2), given by:

I([l, θ]r1
) = a ·

lmax − l

lmax
+ (1.0 − a) ·

θmax − |θ|

θmax
(4.1)

in which [l, θ]r1
is the relative position vector from r1 to r2 (assuming the sensor is located on r2)

in a polar coordinate system and lmax, θmax are the sensor distance and angle ranges, respectively.

Here, a is a weighting factor. Informally, this model prefers locations that are closer to the sensor,

and to the midline of sight of the sensor. The sensor quality model for wireless positioning systems

can be created similarly, although the angle parameter (θ) may no longer be necessary.

Sensor Uncertainty Model This model captures the noise characteristics of the sensor, defined

as a density function of sensor readings, U : (P | P) → ℜ, given the actual Pjk. The model is defined

as a linear normal distribution for laser and camera sensors (consistent with [Murphy, 1998] when

50

assuming Gaussian noise), given by:

U([l′, θ′]r1
| [l, θ]r1

) ∼ N([l, θ]r1
, MΣMT) (4.2)

in which M is the scaling matrix and Σ is the covariance matrix (for noise characteristics) for laser

or camera,

|l − l′| 0

0 |θ − θ′|

By separating these two models, it is implicitly assumed that the sensor quality model is con-

ditionally independent of the sensor noise given the sensor uncertainty model. Relaxing this as-

sumption is left for future work.

Environment & Uncertainty Sampling

The weight w(F | PEnv) of the sensor quality measure reflects how dynamic factors and environ-

ment settings influence the information quality. To achieve this, a sampling method is used. First,

different objects in the environment are represented by considering them as composed of samples.

Next, the influence of these samples on the IQ measure are independently computed and then the

influences are combined. One advantage of using a sampling method is that geometric reason-

ing is implicitly incorporated based on the approximated geometric representation created by the

samples. By using this approach, it is assumed that each sample exerts influence independently.

This assumption is generally true unless geometric structures have to be specifically modeled (e.g.,

finding triangle-shaped objects).

For sampling the environment, a k-means clustering algorithm is applied to range sensor read-

ings, such that readings corresponding to different objects are more likely to fall into different

clusters. Based on the environment’s complexity with respect to the robots, a granularity (i.e.,

51

density of particles) is then chosen for sample creation. Finally, IQ-ASyMTR+ samples again on

these environment samples based on the sensor uncertainty model using the Metropolis-Hastings

algorithm [Chib and Greenberg, 1995]. For each range sensor scan, environment sampling yields a

set of N samples, S : {s1, s2, ..., sN}. For each environment sample sz, after uncertainty sampling,

a new set of samples is created, Sz : {s1
z, s2

z, ..., sM
z }, for constant M . Figure 4.1(a) shows a scenario

with M = 3.

Computing the Weight

Since environmental samples from r1:N
jk usually have no impact on the information quality (since

these samples are part of the information itself), they are considered separately. For each en-

vironment sample sz, the likelihood of the sample being ri
jk is computed, for all i = 1..N , as

ηi
z =

U(sz |Pi
jk)

Z
, in which sz is also used to represent the position of sz in rS

jk’s frame. Z is

a normalization constant. Then, the likelihood of sz being one of the robots is computed as

ηz = 1.0 −
∏

i (1.0 − ηi
z). For retrieving FR(r1, r2), this likelihood is ηz = η1

z =
U(sz |p1

jk)

Z
(η2

z = 0

when rS
jk = r2). When assuming that samples within a short distance (e.g., 0.2m) from ri

jk are

samples from ri
jk, Z can be specified as Z = U(Pi

jk ± c |Pi
jk), where c = [0.2, 0.2]T when Pi

jk ∈ ℜ2.

For sm
z ∈ Sz, compute hm

z = H(sm
z |Pjk), where H is an application-specific function that

captures the probability of risk from the uncertainty samples given Pjk. The probability of risk for

the associated environment sample sz is then combined as τz = C(h1
z, h2

z, ... hM
z), where C can also

be implemented in an application-specific manner. A scenario for retrieving FR(r1, r2) is shown

in Figure 4.1(b) where the probability of risk is computed as the ratio of the uncertainty samples

falling in the risk range. In such a way, when there is an obstacle that is close to r1, the samples

of the obstacle increase the probability of risk towards the obstacle’s direction.

The probability of risk for each sample sz is weighted by 1.0−ηz . The weight for i(F) is computed

as the joint probability of no risk considering all environment samples. Since independent samples

are assumed, it holds that w(F |PEnv) =
∏

z (1.0 − τz · (1.0 − ηz)). This measure maintains in

[0, 1].

52

O rx

ry

s1

s3
7

(a)

O rx

ry

h1

1
= 0.0

τ2 = 1/3

Risk Range

h1

2
= 1.0

(b)

Figure 4.1: (a) Environment sampling using laser sensor with uncertainty sampling. Dark red
(dark gray) particles are environment samples and bright red (light gray) particles at the bottom
of the figure are uncertainty samples for one of the environment samples. (b) The probability of
risk considering each environment sample is determined by the proportion of uncertainty samples
falling in the risk range. The IQ measures are shown graphically for several velocity vectors. The
higher the resulting information quality, the whiter the resulting configuration is drawn. Notice
that although the sensor quality model would prefer the velocity vector leading straightly to the
target, combined with the weight from environmental influence, the best choice is to curve a little
to reduce the blocking risk from the nearest uncertainty sample.

53

4.1.3 Maintaining Sensor Constraints with the IQ Measure

During execution, the IQ measures for the sensor constraints are monitored. When this measure

drops below a threshold (denoted by ρ1) for any sensor constraint Cjk, a process described as

follows is triggered on rS
jk to increase the measure. Given the localized nature of this approach,

note that this approach cannot be proven stable, and hence is subject to local minima2. However,

the sensor constraint relaxation process in Sections 4.1.4 to 4.1.6 can bump the execution out of a

local minimum by establishing alternative sensor constraints.

Motion Model & Motion Sampling

The motion model is used to predict the resulting robot position given the current position and a

command vector. This model can be specified as a function, Fm : (Pos, V) → Pos, in which Pos

is the position space (e.g., ℜ3) and V is the space of command vectors for the given motion model.

In our implementations, the common differential drive motion model in a 2D space is used, which

has the form r = v/ω, where r is the radius of movement, v is the velocity and ω is the angular

velocity. Both velocities are a linear function of the command vector.

V is sampled into command vectors {v1, v2, ... vD} (consistent with [Simmons, 1996]), compute

the corresponding velocity vectors, and choose v∗ with the best predicted IQ measure. Figure 4.1(b)

explains this process in a simple scenario. This process is executed by rS
jk when the IQ measure

drops below ρ1.

The Algorithm

The algorithm for computing the desired command vector v∗ for improving the IQ measure for

F (r1:N
jk) is given in Algorithm 4. The algorithm starts with environment sampling. Then, for

each command vector, the algorithm predicts the resulting IQ measure. The algorithm returns

the command vector resulting in the best IQ measure in the current situation. The computation

2For example, robots in a coalition involving different sensor constraints may simultaneously choose to improve
the IQ measure in different manners, which may negatively influence other robots during execution.

54

Figure 4.2: An instantiated potential solution from Figure 3.3 with the IQ measure.

of the algorithm is dominated by the nested for loops for computing the IQ measure, yielding a

computation complexity of O(M |V ||S|).

Incorporation of the IQ Measure

Figure 4.2 provides an example of the incorporation of the IQ measure. By assuming independence

between different information instances, one can compute the IQ measure for information instances

that are converted using RPSs as follows (in which Qual(Fc |PEnv) is abbreviated as Qual(Fc)):

Definition 4.1.1. Information Quality for Converted Information – For any RPS, F1 + ...+FN ⇒

Fc, it is defined that Qual(Fc) = ΠN
i=1Qual(Fi).

This definition follows the intuition that the more dependencies there are, the less reliability

there is. One can also scale down (using a fixed scalar or dynamically determined parameter) the

measure when information is transferred, to account for the unreliability of communication. Note

that when the same information is used multiple times in RPSs (either directly or indirectly), the

measure of this information should be included in the computation only once.

55

Algorithm 4 Compute v∗ to improve the IQ measure

Sample the environment, S : {s1, s2, ...}.
Sample V into command vectors {v1, v2, ... vD}.
Retrieve the current Pjk for F (r1:N

jk).
for all sz in S do

Compute the likelihood ηz = 1.0 −
∏

i (1.0 − ηi
z).

Sample using the sensor uncertainty model of the range sensor, Sz : {s1
z, ... sM

z }.
end for
for all vq in V do

Predict (Pjk)
q after executing vq given Pjk using Fm.

Compute i(F)q = I((Pjk)
q).

for all sz in S do
for all sm

z in Sz do
Compute (hm

z)q = H(sm
z | (Pjk)

q).
end for
Compute τ q

z = C((h1
z)

q, (h2
i)

q, ...(hM
i)q).

end for
Compute w(F |PEnv)

q =
∏

z (1.0 − τ q
z · (1.0 − ηz)).

Compute Qual(F |PEnv)
q = i(F)q · w(F |PEnv)

q.
end for
Compute Qual(F |PEnv)

∗ = maxD
i=1(Qual(F |PEnv)

q).
return v∗ that leads to Qual(F |PEnv)

∗.

56

4.1.4 Expressivity of Information for Constraint Relaxation

In this and the following two subsections, the second question from Section 4.1.1 is answered:

What if the robots cannot adapt to dynamic and environmental influences or the sensors fail, so

that certain sensor constraints cannot be maintained? In IQ-ASyMTRe+, these situations can be

identified in a uniform manner by checking whether the IQ measure for any sensor constraint drops

below a threshold ρ2, for ρ2 ∈ [0, ρ1). In such cases, it is investigated that how the unsatisfied

constraints can be relaxed by using redundancies at sensory and computational levels to achieve

more robustness during execution. The motivation is that the required information can often be

retrieved in different ways by the robots in the original coalitions assigned to the task, since it may

be converted from other available information. While a more intuitive and simpler approach is to re-

allocate the task to new coalitions, such a process can be computationally expensive. Furthermore,

it is often difficult to bring new robot coalitions together, since robots in these coalitions may be

physically distant from each other. Moreover, there may not always be other robots available.

In IQ-ASyMTRe+, constraint relaxation is achieved by using IQ-ASyMTRe [Zhang and Parker,

2010b] locally to search for alternative interactions using robots in the current coalitions for the

task. Instead of running IQ-ASyMTRe on all available robots in the system to reallocate the task,

IQ-ASyMTRe+ works only with robots in the current coalitions. This results in more efficiency for

processes that run exponentially in the number of robots.

As with forming initial formations, constraint relaxation is applied to the inputs of the required

MSs. However, note that the capability of such a process can be limited by how the MSs are

implemented. In different applications, MSs that achieve the same behavior are often implemented

to require different inputs. These implementations take advantage of prior knowledge about the

task or the capabilities of the robots, while suffering generality. These MSs demonstrate the same

motor behavior, which is referred as their MS class. A process is introduced that can autonomously

exploit the available MSs of the same class for more generality, which can be proven to provide

more flexibility and robustness. The process is based on the idea that all MSs in the same MS

57

class should be associated with one common notation – the minimum information requirement. The

notion of information requirement is first introduced, which specifies the required input information

for any process. In IQ-ASyMTRe+, the information requirement for any MS is specified as an IIS

defined as follows:

Definition 4.1.2. Information Instance Set (IIS) – An IIS is a set of information instances, and

can be represented as {F1, F2, F3, ...}. All information instances within the set are connected with

the AND condition.

Assuming that information instances have unique semantic meanings3, it can be shown that

the semantic meaning of any information requirement can be expressed using IISs. Let us first

define the notion of information configuration. An information configuration differs from a physical

robot configuration that is used previously; it refers to a configuration that is specified solely by

the semantic meaning of the given information. For example, FG(r1) refers to the global position

of r1 but it does not specify where exactly r1 is at.

Lemma 4.1.2. The semantic meaning (the information configuration) expressed by any informa-

tion requirement can be expressed using IISs connected with OR.

Proof. Note that by definition, an information instance is a complete reference of information.

Hence, fully instantiated information instances express the most specific information configurations

of the related entities in the environment, given the above assumption. Consider any IIS as de-

scribing the joint information configuration of the entities in the environment, and consider IISs

connected with OR as an union of these joint information configurations.

Furthermore, any information requirement can be considered as a black box that checks the

joint information configuration of entities and outputs whether the configuration satisfies the re-

quirement. Given the related information types and number of information instances for each type

3The uniqueness requires that the semantic meaning expressed by one information instance cannot be fully ex-
pressed by another information instance, unless they are semantically equivalent (i.e., convertible from each other).

58

necessary for expressing the information requirement (i.e., from domain knowledge), the informa-

tion requirement can be constructed as follows.

For every possible way to fully instantiate the related information instances, an IIS can be

created. Input this IIS to the black box which returns whether it satisfies the requirement. Since

these joint information configurations represent the most specific configurations given the related

information instances (each information instance imposes an additional specification on the joint

information configuration, since they are connected with AND), and given that every information

instance is also the most specific based on the previous conclusion, all possible joint information

configurations that satisfy the information requirement would be checked. Finally, the IISs that

satisfy the information requirement only need to be connected with OR to create the representation.

For example, for an information requirement that requires the global position of the local

robot or the relative position between the local robot and robot R1, from domain knowledge, it

holds that the related information instances are FG and FR. For simplicity, it is also assumed

that there are only three entities in the environment – the local robot, R1, and R2. Based

on the process in the proof, the output is {FG(local), FR(R1, R2)} OR {FG(local), FR(R2, R1)}

OR {FG(local), FR(R1, local)} OR {FG(local), FR(local,R1)} OR {FG(local), FR(R2, local)} OR

{FG(local), FR(local,R2)} OR {FG(R1), FR(R1, local)} OR {FG(R1), FR(local,R1)} OR {FG(R2),

FR(R1, local)} OR {FG(R2), FR(local,R1)}, which is equivalent to the information requirement,

given that there are only three entities in the environment. Furthermore, the following property

holds regarding the use of IIS to express information requirements.

Lemma 4.1.3. Given that the entity set can be countably infinite, if an information requirement

can be specified with a finite representation that uses IISs connected with OR, the representation is

unique.

Proof. The proof is a constructive one. Once the representation for the information requirement is

obtained using the previous process, the IISs using uninstantiated referents can simply be combined

59

(assuming that one can check whether the entire entity set is covered or not). The newly created

IISs join the combination process immediately. When there are no more distinct combinations

possible, the process terminates and any IISs that have been used at least once in the combinations

can be simply removed. Note that the same IIS can be used multiple times. Finally, each IIS can

be simplified to remove information instances that have no instantiated referents and no referent

instantiation constraints (i.e., such information instances would not be informative). As the process

performs all possible distinct combinations, the result must be the most concise representation

and hence the representation must be finite. Note that at any state prior to termination, the

representation would be infinite if the entity set is countably infinite. Furthermore, as the process

only terminates when there are no more distinct combinations, and as the input is unique, the final

representation must also be unique.

In the example above, the first six IISs can be combined as {FG(local), FR(X,Y)}; {FG(local),

FR(R1, local)}, {FG(local), FR(local,R1)}, and the last four IISs can be combined as {FG(X),

FR(local,R1)} OR {FG(X), FR(R1, local)}. After removing information instances that have no

instantiated referents and no referent instantiation constraints, the final representation becomes

{FG(local)} OR {FR(local,R1)} OR {FR(R1, local)}. This representation is much more concise

compared to the input.

4.1.5 Minimum Information Requirement

Generally, the more information a MS requires, the more difficult it is to activate it. Nevertheless,

different MSs are often implemented to work with specific systems, which results in extra specifica-

tions imposed on the information requirements. For example, to satisfy the MS class of navigating

to a relative position (referred to as goto-relative), one MS for a system in which robots can localize

may conveniently use {FG(local), FG(goal)}, while a MS working with an overhead camera system

may require {FR(X, local), FR(X, goal)} (i.e., X can be any camera).

60

To achieve more generality, it is necessary to identify and remove extra specifications so that

the information requirements become minimally sufficient for the MS classes. First, a definition of

minimum information requirement is provided.

Definition 4.1.3. Minimum Information Requirement – A minimum information requirement is

an information requirement for a MS class that satisfies:

• Removing any specification from the information configuration specified by the requirement

makes it insufficient.

• Imposing more specification on the information configuration specified by the requirement does

not influence its sufficiency.

For example, suppose that a minimum information requirement can be specified as E = {FR(R2,

R1), FG(R1)}. While removing FR(R2, R1) would make E insufficient, adding FG(R2) to it does not

influence its sufficiency. However, note that the definition does not imply the sufficiency of E , after

simultaneously removing FR(R2, R1) and adding FG(R2). Furthermore, one should also require

that any forms that represent a minimum information requirement of a MS class are semantically

equivalent. This requirement ensures that the minimum information requirement for any MS class

is unambiguously defined, such that the systems that are capable of satisfying the MS class are

equivalent information systems [Donald et al., 1997] for the class. As an example, using IISs,

suppose that {FG(X)} is the information requirement for a MS class. Although {FG(R1)} satisfies

the requirements in the definition, it is not a minimum information requirement, as {FG(R2)} is

not semantically equivalent to {FG(R1)}.

In the following, the effects of this definition is investigated for using IISs in IQ-ASyMTRe+.

First, semantic equivalence needs to be defined for IISs. Based on the definition, if one can infer

the information configuration of entities specified by some information from other information and

vice versa, they are semantically equivalent. In our approach, the inference between information is

performed using information conversions. Hence, semantic equivalence is defined accordingly.

61

Definition 4.1.4. Reduction of IIS – For any two IISs, s1 is reducible to s2 (denoted by s1 ≻ s2)

if the following condition is satisfied: any information instance in s2 is present or can be converted

(i.e., using information conversions) using information instances in s1.

Definition 4.1.5. Semantic Equivalence of IIS – Two IISs (s1 and s2) are semantically equivalent

if they satisfy the following conditions: s1 ≻ s2 and s2 ≻ s1.

For example, {FG(rA), FR(rB , rA)} is semantically equivalent to {FG(rA), FG(rB)} given this

definition. The ≻ operator defines a partial ordering for IISs. The following definitions are further

introduced.

Definition 4.1.6. Power Set of IIS – The power set of any IIS s, (denoted by P (s)), includes

s and all information instances that can be converted from s. An IIS that cannot produce new

information instances using information conversions is called a maximum IIS (MaxIIS).

For example, for one MS of the goto-relative class, it holds that P ({FG(local), FG(goal)})

= {FG(local), FG(goal), FR(local, goal), FR(goal, local)}, and P ({FR(X, local), FR(X, goal)}) =

{FR(X, local), FR(local,X), FR(X, goal), FR(goal,X), FR(local, goal), FR(goal, local)}. Notice

that the power set of any IIS is also a MaxIIS accordingly.

Definition 4.1.7. Kernel IIS – For any IIS s, the kernel IIS (denoted by K(s)), can be any

subset of P (s), such that: any information instance in K(s) cannot be converted from any other

information instances in K(s), and K(s) ≻ s.

One kernel IIS for {FG(robot), FG(goal), FR(goal, robot), FR(robot, goal)} is {FG(robot), FG(goal)}.

Definition 4.1.8. Minimum IIS – The minimum IIS (MinIIS) (denoted as smin) for a MS class is

a MaxIIS which satisfies: for any IIS s that satisfies the information requirement of the MS class,

it holds that smin ⊆ P (s) and smin satisfies it as well.

The following theorem shows the relationships between the minimum information requirement

and the MinIIS.

62

Theorem 4.1.4. For any MS class, the MinIIS exists; when it has a finite representation, the

representation is unique.

Proof. From Lemma 4.1.2, given a MS class, it holds that a representation in the form of {∪kIISk}

can be used to express the information requirement that includes all information configurations

specified by any minimum information requirements and only these configurations, in which ∪

represents the OR condition. It is straight-forward to conclude that any minimum information

requirement is included in an IIS in {∪kIISk} as OR conditions are naturally absent. In other

words, any IIS in {∪kIISk} includes one or more minimum information requirements for the class.

From Definition 4.1.3, one can infer that all IISs in {∪kIISk} are semantically equivalent and hence

their power sets are the same. This power set is the MinIIS for the class since any IIS that satisfies

the information requirement must at least include one of the minimum information requirements.

From Lemma 4.1.3, when this MinIIS has a finite representation, it is unique.

Since MinIIS represents the information that is commonly available in all IISs for satisfying

the MS class, it can be easily approximated using Algorithm 5. The computational complexity is

given as follows. Among all IISs for the implemented MSs of the MS class, denote the maximum

number of related information types as Nt, the maximum number of distinct entities as Ne, the

maximum number of referents for the related information types as Nr, the maximum number of

RPSs producing the same information type as Nc, the maximum number of information instances

in any RPSs as Ni, and the number of the implemented MSs as NMS . The number of distinct

information instances for any IIS is bounded by NtN
Nr
e ; the complexity to check each information

instance is bounded by NcN
NrNi
e . Hence, the complexity of Algorithm 5 is O(NMSNcNtN

Nr(Ni+1)
e).

Algorithm 5 Approx. the MinIIS using IISs for MSs

for all IISi ∈ IISs for the implemented MSs do
Compute Si = P (IISi).

end for
return S = ∩i(Si).

63

For the goto-relative MS class, the algorithm would output {FR(goal, local), FR(local, goal)}.

When applying constraint relaxation on the MinIIS for the MS class, more alternative ways to

satisfy the information requirement can be found:

Corollary 4.1.5. Expressing the information requirement using any kernel set of the MinIIS for

a MS class maximizes the number of distinct potential solutions.

Proof. First, it is easy to see that any kernel IISs of the MinIIS are semantically equivalent. Hence,

any IIS that satisfies one would also satisfy the others. Furthermore, for any IIS s satisfying the

information requirement, according to Definition 4.1.8, it holds that s̃ ⊆ P (s) (s̃ is any kernel IIS

of the MinIIS). Hence, any IIS that satisfies s would also satisfy s̃. Thus, the number of potential

solutions with s̃ cannot be less than with any IIS for the MS class.

4.1.6 Constraint Relaxation

More flexible and robust execution can be achieved by performing constraint relaxation on any

kernel set of the approximated MinIIS for the MS class. The tradeoff, however, is that the time

to process the potential solutions also increases. While the size of the solution space for reasoning

about an IIS with a single information instance is restricted to be exponential in some constants

given the problem domain, the size is exponential in the size of the IISs (i.e., the number of

information instances) [Zhang and Parker, 2012d]. The reason is due to the constraint that requires

referents with the same labels to be instantiated to the same entities. For example, when the input

is {FG(X), FR(X, local)}, any solution for retrieving FG(X) must be checked with any solution for

retrieving FR(X, local).

An intuitive method to address this issue is inspired by the idea that independencies among

random variables are used to restrict the exponential growth of the joint probability tables. Similar

independence relationships between information instances are identified in the following definition.

Definition 4.1.9. Independence of Information Instance – An information instance is independent

of another if there are no uninstantiated referents labeled the same.

64

The advantage for two information instances that are independent is that they can be reasoned

about separately, since the instantiation of either one would not conflict with the other. The notion

of independence of information instances can be easily extended to IISs and can be used to divide

any IIS into mutually independent IISs. For example, {FR(R1,X), FR(R2,X), FG(local)} can be

divided into {FR(R1,X), FR(R2,X)} and {FG(local)}. In such a way, the size of the solution space

can be significantly reduced. Suppose that all information instances in the original IIS are mutually

independent so that every one becomes an IIS. Then, the size of the solution space can be reduced

from Πk∈[1:K]Nk to
∑

k∈[1:K] Nk, in which Nk represents the size of the solution space for each

information instance.

Given an IIS to reason about, it can first be divided into multiple mutually independent IISs

when applicable. Note that for the IIS of {FR(R1, local), FR(R2, local)}, the independence triv-

ially holds since there are no uninstantiated referents. In most applications, since the required

information instances are almost always fully instantiated, the solution spaces can be reduced from

exponential to linear.

4.2 IQ-ASyMTRe+: The Algorithms

The IQ-ASyMTRe+ architecture uses IQ-ASyMTRe to model and identify the interactions be-

tween the robots and incorporates the approaches discussed in this research to achieve flexible and

robust execution for a tightly-coupled multi-robot task. Algorithm 6 reasons about the required

interactions; this algorithm is used both for initially forming the coalitions and for relaxing sensor

constraints during execution. To distinguish the differences from IQ-ASyMTRe, the parts of the

algorithm introduced by IQ-ASyMTRe+ is italicized. This algorithm is quadratic in the size of the

solution space for a full search of the space.

Algorithm 7 is the main algorithm. At the very beginning, every robot that is assigned a

MS class to execute invokes the IQ-ASyMTRe+ reasoning algorithm to form an initial coalition.

During the execution, the IQ measure of the required information for these coalitions is continuously

65

Algorithm 6 IQ-ASyMTRe+: The Reasoning Algorithm

(Text in italics are major differences compared to [Zhang and Parker, 2010b].)
Approximate MinIIS from the available MSs using Alg. 5.
Choose a kernel set of the approximated MinIIS as the input.
Divide the inputs into mutually independent sets.
For each set, reason about the required information to create the solution spaces using IQ-
ASyMTRe.
For each set, extract and order potential solutions (PoSs) in a list based on predefined costs for
schemas.
while not all independent sets are satisfied or the given search time has not elapsed do

for all unsatisfied independent sets do
if not all PoSs are checked then

Retrieve the next PoS on the ordered list.
Activate the required ES-EPS nodes temporarily in the PoS to collect sensory information.
Activate CS nodes in the PoS to send information requests for the information instances.

end if
Collect information communicated by other robots.
Process requests and share information.
for all checked PoSs do

if the required information is available then
Compute the cost and record the coalition.

end if
end for

end for
end while
For each set, set up the coalition with the least cost, and with information of the best IQ measure.
return The coalition.

66

monitored. Whenever the measure is good enough (i.e., above ρ1), the robots execute the command

vector of the MS class; otherwise, they compute and execute v∗ using Algorithm 4 (when the

information is retrieved using local sensors), or request robots with the sensors to improve the IQ

measure. Whenever the robots have difficulties to adapt to dynamic and environmental influences

using Algorithm 4 (i.e., the IQ measure drops below ρ2) or the information becomes unavailable

due to sensor failures (i.e., the IQ measure becomes 0), the reasoning process is re-triggered locally

for constraint relaxation.

Algorithm 7 IQ-ASyMTRe+: The Main Algorithm

Invoke Alg. 6 to form a coalition for the MS class.
Invoke Alg. 3 to coordinate robots to maintain constraints.
while true do

Obtain IQ measure for the required sensor constraints.
if an IQ measure is below ρ2 then

Invoke Alg. 6 to search alternative solutions.
else if an IQ measure is below ρ1 then

Request or invoke Alg. 4 to improve the IQ measure.
else

Execute the command vector of the MS class.
end if

end while

67

Chapter 5

Task allocation

When there are multiple tasks to be assigned, the assignment of one task may influence other tasks.

Task allocation addresses the problem of how to assign tasks to robots to achieve better overall

system performance. This chapter for task allocation contains the following discussions [Zhang

and Parker, 2012a]. After presenting a general formulation of the ST-MR-IA problem in Section

5.1, a formal analysis of two natural greedy heuristics for ST-MR-IA is provided in Section 5.2.

A new greedy heuristic and the algorithms for implementing it are discussed in Section 5.3. The

extended formulation of the ST-MR-IA problem (referred to as ST-MR-IA-TD) and the result

on the hardness of approximating it are presented in Section 5.4. An algorithm that utilizes the

discussed methods for ST-MR-IA to address the ST-MR-IA-TD problem is provided in the same

section. Simulation results for these two formulations of the problem are presented in Sections 7.3

and 7.4, respectively.

5.1 Problem formulation

First, a general formulation of the ST-MR-IA problem is provided. This problem is often con-

structed similarly [Service and Adams, 2011, Shehory and Kraus, 1998,Vig and Adams, 2006] as

follows:

68

Given:

• a set of robots, R = {r1, r2, ...}. Each robot ri is associated with a vector Bi of H real

non-negative capabilities, in which H is assumed to be a constant.

• a set of coalitions, C = {c1, c2, ...}. Each coalition cj satisfies cj ⊆ R.

• a set of tasks to be assigned, T = {t1, t2, ...}. Each task tl requires a vector Pl of H real

non-negative capabilities.

• a vector W of real non-negative costs for capabilities: the use of the capability indexed by h

incurs W[h] cost per unit.

• a vector V of real positive rewards for tasks: accomplishing task tl receives V[l] reward.

• a function Cost : C × T → ℜ0 that computes real non-negative communication and coordi-

nation costs for assignments based on the coalition-task pair.

• a utility function U for assignments, defined as:

U(mjl) =





V[l] −
∑

h Pl[h]W[h] − Cost(cj , tl) if ∀h :
∑

ri∈cj
Bi[h] ≥ Pl[h],

0 otherwise.

in which mjl denotes the assignment of cj → tl. Note that although mathematically, V[l] and

∑
h Pl[h]W[h] can be combined for each task tl as a single measure, they are often independent in

robotic applications, and hence are specifically modeled for more generality1.

Then the problem is to maximize:

∑

j

∑

l

U(mjl)βjl (5.1)

1Although not investigated in this research, the costs of the capabilities may be dependent on the robots. For
example, if the cost is related to the time spent to perform a computation, a robot with a faster processor should
incur a lower cost.

69

subject to the constraints:

∑

j

∑

l

αijβjl ≤ 1 ∀ri ∈ R

∑

j

βjl ≤ 1 ∀tl ∈ T (5.2)

in which βjl is 1 if mjl is in the chosen assignments or 0 otherwise, and αij is 1 if ri ∈ cj or 0

otherwise. Note that the first constraint also implies that a coalition can be assigned to no more

than one task in the chosen assignments.

Any assignment mjl that satisfies ∀h :
∑

ri∈cj
Bi[h] ≥ Pl[h] is referred to as a feasible assign-

ment. In this research, it is assumed that the utility function U always returns positive values for

feasible assignments (to distinguish from infeasible assignments). Note that one can simply ignore

feasible assignments for which the overall costs are no less than the rewards of the tasks, and for

which U(mjl) is non-positive, since they would not increase the solution quality. Henceforth, when

referring to assignments, it always refers to feasible assignments. For example, when stating that

no assignments exist, it really means that no feasible assignments exist. Another note is that while

|C| can be exponential in the number robots (i.e., 2|R|−1), which also leads to an exponential space

complexity for Cost, reasonable assumptions are often utilized (e.g., [Shehory and Kraus, 1998]) to

restrict |C|.

5.2 Natural greedy heuristics

In this section, two natural greedy heuristics are presented for addressing the ST-MR-IA prob-

lem and an analysis of their performances is provided. Before continuing, a formal definition of

worst case ratio (similar to the definition of approximation factor in [Service and Adams, 2011]

or ratio bound in [Shehory and Kraus, 1998]) is provided, which is used to describe the quality of

approximations. In the definition, f is used to denote any computable function.

70

Definition 5.2.1. Given a maximization problem with solutions having positive values, an approx-

imation algorithm has a worst case ratio θ = f(I) (θ ≥ 1), if it satisfies S∗(I) ≤ θ · S(I) for any

problem instance of I, in which S∗(I) is the value of the optimal solution and S(I) is the value

of the solution produced by the algorithm. When f is a polynomial time computable function, the

worst case ratio is also referred to as a poly-time worst case ratio.

5.2.1 AverageUtility

The AverageUtility heuristic at each step chooses the assignment that maximizes the average utility

per robot, until no more assignments that satisfy the constraints in Equation 5.2 exist. More

formally, at step λ, denote the previously chosen set of assignments as Gλ−1. AverageUtility chooses

the assignment mpq that satisfies the problem constraints (given that ∀mjl ∈ Gλ−1 : βjl = 1) while

maximizing
U(mpq)

|cp|
. The following theorem establishes the worst case ratios of this heuristic.

Theorem 5.2.1. Applying AverageUtility to the ST-MR-IA problem yields a worst case ratio θ =

|R| without restricting the size of the coalitions. Furthermore, restricting the maximum size of the

coalitions to be k gives a worst case ratio θ = 2k.

Proof. At the beginning of any greedy step λ, denote the remaining set of robots as Rλ, the

remaining set of tasks as Tλ, and the assignment to be chosen by AverageUtility as mλ = (cλ → tλ).

According to the greedy criterion, mλ has the maximum utility per robot in the remaining problem

of (Rλ, Tλ). As a result, the optimal solution for (Rλ, Tλ) yields an overall utility of no more than

|Rλ|
U(mλ)
|cλ|

. This upper bound is reached when all assignments in the optimal solution for solving

(Rλ, Tλ) have a utility per robot of no less than2 U(mλ)
|cλ|

and every robot in Rλ is assigned to a task.

Hence, the worst case ratio for solving (Rλ, Tλ) is |Rλ|
|cλ|

. As this is true for every step, it holds true

in particular for (R1, C1) = (R,T). Consequently, the worst case ratio for AverageUtility can be no

worse than |R|, given that |c1| ≥ 1.

2They cannot have more due to the greedy criterion.

71

When the maximum size of the coalitions is restricted to be k, an induction process can be

applied on the sizes of the robot and task sets. Suppose that the worst case ratio 2k holds for

solving (R′, T ′) in which R′ ⊆ R, T ′ ⊆ T and the equalities do not hold simultaneously. For solving

(R,T), denote the first assignment made by AverageUtility as m1, which has the maximum utility

per robot. Denote the set of overlapping assignments3 with m1 in the optimal solution for solving

(R,T) as M∗ and the set of tasks in M∗ as T ∗. As each robot can be assigned to at most one task,

the following holds:

|M∗| ≤ |c1| (5.3)

Use R∗ to denote all robots in M∗, and R+ to denote all robots in M∗ or c1. (Note that a

robot in c1 may not be in M∗, since the robot may not be used in the optimal solution.) Given the

monotonicity of the optimal solution4, the following must hold:

S∗(R − R+, T − T ∗) ≤ S∗(R − c1, T) (5.4)

recall that S∗(I) represents the optimal solution for I.

From the assumption of the induction, it holds that:

S∗(R − c1, T − t1) ≤ 2k · SAU (R − c1, T − t1) (5.5)

in which SAU(I) is used to denote the solution returned by AverageUtility for I. Also note that

(R−R∗, T − T ∗) is a subproblem for (R,T) (so is (R∗, T ∗)), in that if the set of assignments using

R−R∗ and involving T −T ∗ in the optimal solution for (R,T) yields a lesser or equal overall utility,

it can be directly substituted by the set of assignments in the optimal solution for (R−R∗, T −T ∗)

3For two assignments mjl and mpq, mjl overlaps with mpq (or vice versa) if cj ∩ cp 6= ∅.
4Given (R1, T1) and (R2, T2), if R1 ⊆ R2 and T1 ⊆ T2, it must hold that the overall utility of the optimal solution

for (R2, T2) is no less than for (R1, T1). In fact, choosing the same set of assignments for (R2, T2) as in the optimal
solution for (R1, T1) would yield the same overall utility for (R1, T1) and (R2, T2).

72

to create a better or equivalent solution5. Since robots in R+ − R∗ are not present in the optimal

solution for (R,T), it must hold that S∗(R−R+, T − T ∗) = S∗(R −R∗, T − T ∗). Furthermore, for

solving (R∗, T ∗), the optimal solution obtains a utility no more than k · |M∗| · U(m1)
|c1|

, which happens

only when every task in T ∗ is assigned with utility per robot no less than U(m1)
|c1| and is assigned to

a coalition with exactly k robots. Hence, the following holds:

S∗(R,T) ≤ k · |M∗| ·
U(m1)

|c1|
+ S∗(R − R+, T − T ∗) (5.6)

From the above equations, it can be concluded that:

S∗(R,T) ≤ k · U(m1) + S∗(R − c1, T)

≤ k · U(m1) + k ·
U(m1)

|c1|
+ S∗(R − c1, T − t1)

≤ 2k · U(m1) + 2k · SAU (R − c1, T − t1)

≤ 2k · SAU (R,T) (5.7)

Finally, as the induction assumption holds trivially when |R′| ≤ 1 and |T ′| ≤ 1, the conclusion

holds.

Note that when k is relatively close to |R|, the worst case ratio for the restricted case is in fact

better than 2k. This is due to the fact that the inequalities in the proof can be further tightened

in these situations. For example, when k = |R| (equivalent to the unrestricted case), the worst

case ratio for the restricted case is |R| instead of 2|R|. Similar effects can also be discerned in the

analysis for the following heuristic.

5This substitution does not influence the assignments involving T ∗ in the optimal solution for (R, T), since all
robots involving T ∗ are in R∗.

73

5.2.2 MaxUtility

The MaxUtility heuristic at each step chooses the assignment with the maximum utility, until no

more assignments that satisfy the constraints in Equation 5.2 exist. More formally, at step λ,

denote the previously chosen set of assignments as Gλ−1. MaxUtility chooses the assignment mpq

that satisfies the problem constraints (given that ∀mjl ∈ Gλ−1 : βjl = 1) while maximizing U(mpq).

Theorem 5.2.2. Applying MaxUtility to the ST-MR-IA problem yields a worst case ratio θ = |R|

without restricting the size of the coalitions. Furthermore, restricting the maximum size of the

coalitions to be k gives a worst case ratio of θ = k + 1 [Service and Adams, 2011].

Proof. Service and Adams [Service and Adams, 2011] have proven these worst case ratios for MaxU-

tility. It is also not difficult to conclude the same using a similar induction process as shown in the

previous proof.

First of all, it is important to note that algorithms for implementing both heuristics are expo-

nential in the number of robots (i.e., |R|) when the maximum size of the coalitions is not restricted

and are polynomial in the order of O(|R|k) when it is restricted to k. Furthermore, it may appear

at first that AverageUtility should yield a better worst case ratio than MaxUtility in the restricted

case, although the theoretical results turn out to be quite to the contrary. Another note is that the

worst cases in the above proofs can actually occur, such that all these proven worst case ratios are

in fact tight bounds. Although it is shown that approximation algorithms with a worst case ratio

asymptotically no worse than k/ log(k) (which is already close to the worst case ratios of the two

natural heuristics) are unlikely to exist unless P ≡ NP , it does not imply that algorithms with

better average performance, or with better worst case ratios for certain problem instances, cannot

be found.

74

5.3 The new greedy heuristic

The inspiration to create a new heuristic with better average performance comes from the two

natural heuristics. Although MaxUtility has a better worst case ratio than AverageUtility in the

restricted case, as the result sections show, the two heuristics actually perform similarly empirically.

Our explanation for this phenomenon can be understood in the proofs of their worst case ratios. To

achieve the worst case ratio for AverageUtility, the problem instance has to be more constrained than

for MaxUtility. In other words, it is less likely for a worst case scenario to occur for AverageUtility

than for MaxUtility. Keeping this in mind, a new heuristic is presented that considers inter-task

resource constraints to address the ST-MR-IA problem. Instead of making greedy choices based

solely on the assignment, the new greedy heuristic also considers the influence between different

assignments for task allocation.

5.3.1 A motivating example

As a motivating example, consider the case when there are four tasks T = {t1, t2, t3, t4} with

capability requirements P1 = (1, 1, 1, 0, 0), P2 = (1, 0, 0, 1, 1), P3 = (0, 1, 0, 1, 1), P4 = (0, 0, 1, 1, 1).

Suppose that each robot has one and only one capability with a non-zero value (i.e., 1). Further-

more, suppose that there are sufficient robots for the last two capabilities and there is only one

robot capable for each of the first three. Let the costs for the capabilities be the same and let

Cost return zeros for all assignments. In this scenario, when t1 has a slightly higher reward than

any other task, both AverageUtility and MaxUtility produce a solution in which only t1 is assigned,

hence giving a solution with poor quality. A better solution is to assign each of the three robots to

tasks t2, t3 and t4, respectively, which collectively yield a greater utility.

5.3.2 Inter-task resource constraints

From the previous example, it can be concluded that one problem with the natural heuristics is that

a task with a slightly higher reward may be assigned to robots that are essential for other tasks,

75

which in turn sabotages the assignments of these other tasks. In light of this, following definition

is provided.

Definition 5.3.1. For any two assignments mjl and mpq, mjl conflicts with mpq (or vice versa)

if cj ∩ cp 6= ∅ or tl ≡ tq. Note that based on this definition, an assignment always conflicts with

itself.

This definition captures the influence of making an assignment on other assignments. In the

following discussions, this influence is referred to as inter-task resource constraints, which are intro-

duced by the constraints in Equation 5.2. Note that not only robots, but also tasks, are considered

as resources in this definition, since once a task is assigned, it cannot be re-assigned. As with

Shehory [Shehory and Kraus, 1998], non-super-additive environments are assumed so that one can

restrict the maximum size of the coalitions to be k. For each assignment, a measure is computed

to reflect the potential loss of utility due to conflicts with other assignments. This measure is then

used to offset the utility of the assignment in consideration to produce the measure used at every

greedy step.

5.3.3 ResourceCentric

At the beginning of any greedy step λ, Rλ and Tλ are used to represent the remaining sets of robots

and tasks, respectively. The new heuristic, called ResourceCentric, chooses the assignment mxy in

(Rλ, Tλ)6 to maximize ρxy (defined as follows), until no more assignments in (Rλ, Tλ) exist:

ρxy = U(mxy) −
∑

mjl∈Mxy(λ)

1

|Mjl(λ)|
· U(mjl) (5.8)

in which Mjl(λ) represents the set of assignments conflicting with mjl in (Rλ, Tλ) (note that mjl ∈

Mjl(λ), given that mjl ∈ (Rλ, Tλ)). Working on (Rλ, Tλ) instead of (R,T) ensures that new

assignments do not conflict with ones that are previously chosen.

6An assignment mxy is in (Rλ, Tλ) if cx ⊆ Rλ and ty ∈ Tλ, denoted by mxy ∈ (Rλ, Tλ).

76

First of all, at greedy step λ, since previous assignments are already made, optimization can

only be performed on (Rλ, Tλ) by assuming it as a subproblem for (R,T). For any assignment mpq

in (Rλ, Tλ), it is not difficult to conclude that at least one assignment would be chosen in Mpq(λ)

in S∗(Rλ, Tλ)7. This is because if no assignment in Mpq(λ) is chosen in S∗(Rλ, Tλ), it must hold

that mpq does not conflict with any assignments in S∗(Rλ, Tλ), since all conflicting assignments are

in Mpq(λ). As a result, mpq can be chosen to increase the overall utility for (Rλ, Tλ), which leads

to a contradiction as mpq ∈ Mpq(λ). Without prior knowledge of the optimal solution and hence

assuming that all assignments are equally likely to be chosen, every assignment in Mpq(λ) at least

has a probability of 1
|Mpq(λ)| to be in S∗(Rλ, Tλ). This holds in particular for mpq ∈ Mpq(λ). As

choosing mxy would exclude all assignments in Mxy(λ) from further consideration, hence comes the

subtraction term in Equation 5.8.

Lemma 5.3.1. For two steps λ and γ (λ, γ ∈ Z+) in the greedy process, given any assignment

mjl and that λ ≤ γ, it holds that |Mjl(λ)| ≥ |Mjl(γ)|.

Proof. First of all, given that λ ≤ γ, it holds that Rγ ⊆ Rλ and Tγ ⊆ Tλ. As a result, for any

assignment, the number of conflicting assignments with it in step γ cannot be greater than that in

step λ. This is due to the fact that any assignment in (Rγ , Tγ) would also be in (Rλ, Tλ). Hence,

it holds that |Mjl(λ)| ≥ |Mjl(γ)|.

Lemma 5.3.1 establishes the relationships between the scalars (i.e., |Mjl(λ)|) in Equation 5.8 in

different steps of the greedy process. The following lemma provides a way to connect the solution

returned by the greedy process to the optimal solution.

Lemma 5.3.2. Let G represent the set of assignments returned by ResourceCentric, mλ represent

the assignment chosen at step λ, and M represent all assignments. The following holds:

∑

mλ∈G

∑

mjl∈Mλ(λ)

f(mjl) =
∑

mjl∈M

f(mjl) (5.9)

7S∗(I) is overloaded henceforth to also denote the set of chosen assignments in the optimal solution for I when
there is no ambiguity.

77

in which Mλ(λ) represents the set of assignments conflicting with mλ in (Rλ, Tλ), and f(mjl)

represents any function that is only dependent on mjl given the problem instance.

Proof. At any step λ, first note that since Mλ(λ) includes all assignments that conflict with mλ

in the remaining problem of (Rλ, Tλ), assignments in Mλ(λ) are removed from consideration after

mλ is chosen. Furthermore, ResourceCentric terminates when no more assignments that do not

conflict with the previously chosen assignments exist. As a result, ResourceCentric has to remove

all assignments in M when it terminates, since otherwise it can at least add one of the remaining

assignments to the chosen set. Moreover, once an assignment is removed from consideration at λ,

it would not appear again in the later steps since it conflicts with mλ. Hence, every term appearing

on the right hand side also appears exactly once on the left so that the conclusion holds.

Finally, the worst case ratio for ResourceCentric is established in the following theorem.

Theorem 5.3.3. Applying ResourceCentric to the ST-MR-IA problem while restricting the max-

imum coalition size to be k yields a worst case ratio of θ = min(2k + 2,maxmjl∈S∗(|Mjl(1)|)), in

which S∗ is an abbreviated notation for S∗(R,T).

Proof. Let us first prove the maxmjl∈S∗(|Mjl(1)|) part. At any greedy step λ, ResourceCentric

needs to check all remaining assignments (i.e., assignments in (Rλ, Tλ), denoted by M (λ)) and

chooses the one with the maximum ρ value. The property of ρ can be analyzed by summing it over

M (λ):

∑

mxy∈M (λ)

ρxy =
∑

mxy∈M (λ)

U(mxy)

−
∑

mxy∈M (λ)

∑

mjl∈Mxy(λ)

1

|Mjl(λ)|
· U(mjl) (5.10)

in which
∑

mxy∈M (λ) U(mxy) is simply the sum of the utilities of all remaining assignments. In

∑
mxy∈M (λ)

∑
mjl∈Mxy(λ)

1
|Mjl(λ)| · U(mjl), for any assignment mpq ∈ M (λ), U(mpq) appears only

78

when mxy ∈ Mpq(λ). Hence, U(mpq) appears |Mpq(λ)| times and the total utility contributed to

Equation 5.10 is the negation of the following:

|Mpq(λ)| ·
1

|Mpq(λ)|
· U(mpq) = U(mpq) (5.11)

As Equation 5.11 is true for every assignment in M (λ), it can be concluded that
∑

mxy∈M (λ) ρxy

= 0 in Equation 5.10. As a result, in any greedy step, it can be inferred that at least one of the

remaining assignments has a non-negative ρ value and consequently, the assignment that is chosen

by ResourceCentric has a non-negative ρ value as it maximizes ρ. Based on this conclusion, it holds

that ∀λ:

U(mλ) ≥
∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl) (5.12)

The solution returned by ResourceCentric (denoted by SRC(R,T)), is simply the summation of

all greedy assignments in G:

SRC(R,T) =
∑

mλ∈G

U(mλ)

≥
∑

mλ∈G

∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl) (Equation 5.12)

≥
∑

mλ∈G

∑

mjl∈Mλ(λ)

1

|Mjl(1)|
· U(mjl) (Lemma 5.3.1)

=
∑

mjl∈M

1

|Mjl(1)|
· U(mjl) (Lemma 5.3.2)

≥
∑

mjl∈S∗

1

|Mjl(1)|
· U(mjl)

≥
1

maxmjl∈S∗(|Mjl(1)|)
· S∗(R,T) (5.13)

79

Let us now prove the 2k + 2 part. At step λ, M∗(λ) is used to denote the set of assignments of

{m | m ∈ S∗, m ∈ M (λ) and m conflicts with mλ}. As the size of any coalition is bounded by k,

the following holds:

|M∗(λ)| ≤ k + 1 (5.14)

Furthermore, according to the greedy criterion, it holds that ∀λ ∀mpq ∈ M∗(λ):

U(mλ) −
∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl)

≥ U(mpq) −
∑

mjl∈Mpq(λ)

1

|Mjl(λ)|
· U(mjl) (5.15)

Summing over all assignments in M∗(λ) and then summing over all greedy steps λ on the right

hand side, it holds that:

∑

λ

|M∗(λ)| · (U(mλ) −
∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl))

≥
∑

λ

∑

mpq∈M∗(λ)

(U(mpq) −
∑

mjl∈Mpq(λ)

1

|Mjl(λ)|
· U(mjl)) (5.16)

First of all, based on the definition of M∗(λ), it holds that any assignment in the optimal solution

must appear exactly once as mpq in
∑

λ

∑
mpq∈M∗(λ), since every assignment in the optimal solution

must conflict with the chosen assignment at some step during the greedy process in order to be

removed from further consideration (whether it is chosen as the greedy choice or not). Hence, it is

straight forward to conclude that:

80

∑

λ

∑

mpq∈M∗(λ)

U(mpq) = S∗(R,T) (5.17)

Furthermore, since any assignment can at most conflict with k + 1 assignments in the opti-

mal solution, it can be concluded that any assignment can appear at most k + 1 times as mjl

in
∑

λ

∑
mpq∈M∗(λ)

∑
mjl∈Mpq(λ). Moreover, it holds that any assignment conflicting with mγ

does not appear after mγ is chosen at greedy step γ. To conclude from the above, an indica-

tor function, φ, is introduced for comparing two assignments, which returns 1 only when the two

are the same (0 otherwise). For any assignment mxy that conflicts with mγ , its contribution to

∑
λ

∑
mpq∈M∗(λ)

∑
mjl∈Mpq(λ)

1
|Mjl(λ)| · U(mjl) can be computed as follows:

∑

λ

∑

mpq∈M∗(λ)

∑

mjl∈Mpq(λ)

1

|Mjl(λ)|
· U(mjl) · φ(mjl,mxy)

=
∑

λ≤γ

∑

mpq∈M∗(λ)

∑

mjl∈Mpq(λ)

1

|Mxy(λ)|
· U(mxy) · φ(mjl,mxy)

≤
∑

λ≤γ

∑

mpq∈M∗(λ)

∑

mjl∈Mpq(λ)

1

|Mxy(γ)|
· U(mxy) · φ(mjl,mxy) (Lemma 5.3.1)

=
1

|Mxy(γ)|
· U(mxy) ·

∑

λ≤γ

∑

mpq∈M∗(λ)

∑

mjl∈Mpq(λ)

φ(mjl,mxy)

≤ (k + 1) ·
1

|Mxy(γ)|
· U(mxy) (5.18)

Summing over all assignments removed at step γ and then summing over all steps γ on the right

hand side (in such a way, all assignments in M are included exactly once, so that the indicator

function on the left can be removed) gives:

81

∑

λ

∑

mpq∈M∗(λ)

∑

mjl∈Mpq(λ)

1

|Mjl(λ)|
· U(mjl)

≤ (k + 1) ·
∑

γ

∑

mxy∈Mγ(γ)

1

|Mxy(γ)|
· U(mxy)

= (k + 1) ·
∑

λ

∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl) (5.19)

Incorporating Equations 5.17 and 5.19 into Equation 5.16, it holds that:

∑

λ

|M∗(λ)| · (U(mλ) −
∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl))

≥ S∗(R,T) − (k + 1) ·
∑

λ

∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl) (5.20)

Given that |M∗(λ)| ≥ 0 and Equation 5.14, it can also be concluded that:

∑

λ

|M∗(λ)| · (U(mλ) −
∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl))

≤
∑

λ

|M∗(λ)| · U(mλ)

≤ (k + 1) · SRC(R,T) (5.21)

82

Combining Equations 5.20 and 5.21, it can be concluded that:

(k + 1) · SRC(R,T)

≥ S∗(R,T) − (k + 1) ·
∑

λ

∑

mjl∈Mλ(λ)

1

|Mjl(λ)|
· U(mjl)

≥ S∗(R,T) − (k + 1) · SRC(R,T) (First inequality in Equation 5.13)

And finally, it can be concluded that:

S∗(R,T) ≤ (2k + 2) · SRC(R,T) (5.22)

Hence the conclusion holds.

For problem instances in which assignments in the optimal solution conflict less with other

assignments, the maxmjl∈S∗(|Mjl(1)|) ratio guarantees a good quality solution. This is especially

true in multi-robot systems with heterogeneous robots, since different robots can only handle specific

tasks. Otherwise, the solution quality is bounded by 2k + 2. Although this worst case ratio is

slightly worse than AverageUtility, it is more difficult to satisfy the boundary conditions (i.e., all

inequalities in the proof hold as equalities simultaneously), which may suggest that ResourceCentric

would perform well on average even when maxmjl∈S∗(|Mjl(1)|) is large.

5.3.4 The algorithm of ResourceCentric

Algorithm 8 presents an implementation of ResourceCentric using a graph structure. The algorithm

starts with building the graph, which has a node for each assignment and an edge between two

nodes if they conflict with each other. Then the algorithm proceeds with the greedy iterations and

assigns a task at each step. For every assignment made, the assignment node and all assignments

83

connecting with it, as well as all connecting edges8, are removed from the graph. This process

continues until all assignments are removed (i.e., the graph becomes empty).

The complexity for creating the graph is bounded by O(|T ||C||M |). Each greedy step is bounded

by O(|M |2)9. As there can at most be min(|R|, |T |) assignments, the complexity for the entire

process is bounded by O(min(|R|, |T |) · |T |2|C|2) (note that |M | is bounded by |T ||C|).

5.3.5 ResourceCentricApprox

One problem with ResourceCentric, however, is the computational complexity. Although Resource-

Centric runs in polynomial time with respect to |C|, as discussed, |C| can grow exponentially with

|R|. When the number of robots in the distributed system is large, ResourceCentric can be signif-

icantly slower than AverageUtility and MaxUtility, which run in O(min(|R|, |T |) · |T ||C|). Instead

of computing ρ exactly, the following approximation can be used at greedy step λ:

ρ̂xy = U(mxy) −
∑

mjl∈Mxy(λ)

1

|Mjl(λ)|
· U(mjl)

≈ U(mxy) −
∑

ri∈cx

∑

mjl∈Mi(λ)

1

|Mjl(λ)|
· U(mjl) (Break onto each robot)

= U(mxy) −
∑

ri∈cx

|Mi(λ)|

|Mjl(λ)|
· U(mjl)

mjl∈Mi(λ)

≈ U(mxy) −
∑

ri∈cx

|Mi,l(λ)|

|Ml(λ)|
· U(mjl)

mjl∈Mi(λ)

(Remove dependency on j)

= U(mxy) −
∑

ri∈cx

θil(λ) · U(mjl)mjl∈Mi(λ) (5.23)

in which the bars over the formulas represent averaging operations, Mi(λ) represents the set of

assignments in (Rλ, Tλ) that rely on ri (i.e., ri is in the coalitions for the assignments), Mi,l(λ)

8In our implementation of ResourceCentric, the edge information is not kept in the node structure in order to
reduce the space complexity.

9Note that computing 1

|Mu|
in the inner loop requires only constant time in our algorithm. For each node, this

count is computed when the graph is initially created and kept updated when a chosen assignment and its neighbors
are removed from the graph.

84

Algorithm 8 ResourceCentric

Generate the set of coalitions C, with maximum size k.
Create an undirected graph G : (V,E).
for all tl in T do

for all cj in C do
if cj satisfies tl then

Create a node mjl.
Compute U(mjl).
for all v ∈ V do

if v conflicts with mjl then
Connect v and mjl.

end if
end for

end if
end for

end for
while G is not empty do

for all v in V do
for all u: u and v are connected do

Compute 1
|Mu|

· U(u)
end for
Compute ρv.

end for
Choose vRC that maximizes ρ.
Remove vRC , its neighbors and edges connecting these nodes with the remaining nodes from
G.

end while
return The chosen nodes (i.e., assignments).

85

represents the set of assignments in (Rλ, Tλ) for task tl relying on ri, and Ml(λ) represents the set

of assignments in (Rλ, Tλ) for task tl. The ≈ sign in the above formula should be interpreted as “is

approximated by”. Note that in the first approximation, the same assignments may appear more

than once in
∑

ri∈cx

∑
mjl∈Mi(λ). The second approximation is introduced to avoid nested loops

for iterating through all coalitions (each loop is on the order of O(|C|)), so that the computational

complexity can be reduced.

At each step λ, for each remaining task tl, compute θil(λ) for each remaining ri, which is a

measure that reflects how much tl relies on ri. When choosing an assignment mxy, for each robot

ri ∈ cx, first, compute the expected loss of utility due to the assignment of ri as:

Eλ(ri) = θil(λ) · U(mjl)mjl∈Mi(λ) (5.24)

Afterwards, compute ρ̂xy = U(mxy)−
∑

ri∈cx
Eλ(ri) and choose the assignment that maximizes

it. This heuristic is referred to as ResourceCentricApprox.

Now let’s trace back to our motivational example at the beginning of this section. Suppose that

the only three robots that have the first three capabilities are r1, r2, r3 with capability vectors B1 =

(1, 0, 0, 0, 0), B2 = (0, 1, 0, 0, 0), B3 = (0, 0, 1, 0, 0). In this case, it holds that θ12 = θ23 = θ34 = 1.0,

since robot r1, r2 and r3 are prerequisites for tasks t2, t3 and t4, respectively. As a result, when

assigning t1 with a slightly higher reward, the value of ρ̂ for the assignment of {r1, r2, r3} → t1

would still be lower than for the other tasks and hence t1 would not be chosen. Although this

may seem to be an arbitrary example, it is shown in the result sections that ResourceCentric and

ResourceCentricApprox actually perform better, which indicates that similar situations often occur

in random configurations.

86

Table 5.1: Summary of discussed methods with maximum coalition size k
Name Formulation Worst Case Ratio Amort. Worst Case Time

AverageUtility Theorem 5.2.1 2k O(min(|R|, |T |) · |T ||C|)
MaxUtility Theorem 5.2.2 k + 1 O(min(|R|, |T |) · |T ||C|)

ResourceCentric Equation 5.8
min(2k + 2,

O(min(|R|, |T |) · |T |2|C|2)
maxmjl∈S∗(|Mjl(1)|))

ResourceCentricApprox Equation 5.23 Not Determined O(min(|R|, |T |)·|R||T |2|C|)

5.3.6 The algorithm of ResourceCentricApprox

One way to implement ResourceCentricApprox is presented in Algorithm 9. The algorithm starts

with creating a hash table for each task and a hash table for each robot and task pair. After it fills

the hash tables, the algorithm proceeds with the greedy iterations to make assignments.

The complexity for creating the hash tables is bounded by O(|R||T |). The complexity for filling

the hash tables is O(|T ||C|). Each greedy choice requires O(|R||T |2|C|) computations in the worst

case. Hence, the computational complexity for this implementation is bounded by O(min(|R|,

|T |)·|R||T |2|C|). Hence, it can be concluded that this algorithm performs almost as well as Av-

erageUtility and MaxUtility in terms of worst case running time.

Table 5.1 provides a summary of all methods that have been discussed in this research, including

their formulations, worst case ratios, and amortized worst case running times.

5.4 Extended formulation

One issue with the formulation of ST-MR-IA is that it is insufficient for complicated scenarios.

Hence, in this section, the formulation of the ST-MR-IA problem is extended to incorporate general

task dependencies. This extended formulation is referred to as the ST-MR-IA-TD problem. A result

on the hardness of approximating ST-MR-IA-TD is provided afterwards. An algorithm that utilizes

the discussed methods for ST-MR-IA to address this extended formulation of the problem is also

provided.

87

Algorithm 9 ResourceCentricApprox

Generate the set of coalitions C, with maximum size k
for all tl in T do

Create a hash table Hl

for all i in R do
Create a hash table Hi,l

end for
end for
for all tl in T do

for all cj in C do
if cj satisfies tl then

Add cj into Hl

for all ri in cj do
Add cj into Hi,l.

end for
end if

end for
end for
while H tables are not all empty do

for all ri in remaining R do
for all tl in remaining T do

for all cj : ri ∈ cj do

Compute
|Hi,l|
|Hl|

· U(mjl).
end for

end for
Compute E(ri).

end for
for all mxy remaining do

Compute ρ̂xy = U(mxy) −
∑

ri∈cx
E(ri).

end for
Choose mRCA that maximizes ρ̂.
for all ri in cRCA do

for all tl in T do
for all c in Hi,l do

Remove c from all tables.
end for

end for
end for
Clear tables involving tRCA.

end while

88

5.4.1 Adding task dependencies

As discussed, one issue with the formulation of ST-MR-IA is that it does not incorporate task

dependencies, which can be critical for real world applications. Previous approaches (e.g., [Shehory

and Kraus, 1998]) have studied precedence ordering between tasks, in which one task can only be

assigned when other tasks in its precedence order are also assigned. For example, in the disaster

response scenario that is presented earlier, the task for addressing the fires in buildings is not

possible if the roads to the buildings are not cleared. However, the definition of precedence order

should be extended to incorporate scenarios in which assigning other tasks facilitates the execution

of one task, instead of being a prerequisite for the task. For example, although there might exist

an alternative road that is not blocked, taking this alternative route can potentially be less optimal

than clearing the blocked road first and using it to reach the buildings (e.g., it may take longer

to reach the buildings via the alternative route). Note that the precedence order in [Shehory and

Kraus, 1998] can then be considered as a special case of this extended formulation (i.e., a task

yields a very small utility if the tasks in its precedence order are not satisfied, essentially making

the task be ignored until its precedence order is satisfied). Also note that the precedence order

does not necessarily have to specify a complete ordering of task execution (i.e., some tasks have

to be completed before starting the execution of some others). A task and tasks in its precedence

order may or may not be able to be executed simultaneously. To avoid the scheduling issue that

may arise from this complexity, in this work, a similar approach as in [Shehory and Kraus, 1998] is

utilized, such that resources are pre-allocated to the task and tasks in its precedence order at the

same time.

Another aspect in task dependencies that has not been considered occurs when there are alter-

native tasks, such that the assignment of any one of them makes the others unnecessary. In the

same example, when there are alternative roads that are all blocked leading to the same buildings,

only one of them needs to be cleared. Correspondingly, these other tasks may still be beneficial

even though one of them is assigned. For example, to achieve more efficiency, several alternative

89

roads may need to be cleared (i.e., for other traffic coming in and out without interfering with

the truck agents). To incorporate these considerations, the following component is added into the

formulation of ST-MR-IA:

• a set of task dependencies Γ. Each dependency for a task t is defined as a pair τ = (T ,ℜ+),

in which T ⊆ {T − t} and T 6= ∅. The real positive value (denoted by vD) is the updated

reward of t when this dependency is satisfied.

For example, for specifying a linear ordering between t1, t2 and t3 such that t1 must be satisfied

before t2 and t2 must be satisfied before t3, a task dependency ({t1}, vD) for t2 and a task depen-

dency ({t2}, v
′
D) for t3 need to be defined. This extended formulation of the ST-MR-IA problem is

denoted as ST-MR-IA-TD. Given a task tl, precedence orders can then be implemented by requiring

that vD ≥ V[l]; alternative tasks can be implemented by requiring that vD < V[l]. Dependencies

of these two aspects are considered separately in the algorithm that is presented at the end of this

section. This is due to the fact that when vD ≥ V[l], tasks in the dependency are desirable; on the

other hand, when vD < V[l], tasks in the dependency should generally be avoided (when vD for the

task is so small such that the utility for any assignment is non-positive, the task would effectively

be ignored). In cases when a task has multiple dependencies, rules should be defined for cases when

multiple dependencies are satisfied simultaneously. This aspect will be addressed in more depth in

our future work.

5.4.2 Problem analysis

In this section, the result on the hardness of approximating the ST-MR-IA-TD problem is provided.

Theorem 5.4.1. It is NP-hard to approximate the ST-MR-IA-TD problem with a poly-time worst

case ratio that is independent of vD values in task dependencies.1

1Recall that a poly-time worst case ratio is a worst case ratio that can be computed in polynomial time given the
problem instance.

90

Proof. The proof is by contradiction. Let’s suppose that a polynomial time approximation al-

gorithm, TD Approx, does exist with a poly-time worst case ratio of θ. Next, it can be shown

that algorithm TD Approx can be utilized to solve the 3-Partition problem, which is strongly

NP-complete. Any instance of the 3-Partition problem can be represented as 3-Partition(S,M :

S = {e1, e2, ..., e3M}, ej ∈ Z+). Let the sum of all elements in S be M ·B. The problem is to deter-

mine whether or not the set S can be divided into M sets such that the sum of the elements in each

set is B. The problem remains NP-complete even when one requires that ∀ej ∈ S : B
4 < ej < B

2 .

These constraints imply that if a solution exists for the 3-Partition problem, each set would have

exactly 3 elements.

Next, it is shown that an instance of ST-MR-IA-TD(R, C, T, W, V, Cost, Γ) can be con-

structed from an instance of 3-Partition(S,M). First of all, for each element ej ∈ S, construct a

robot rj which has a 1-D (i.e., H = 1) capability vector with value equal to the integer value of the

element ej . Then, the set C of coalitions can be created by including all coalitions with exactly 3

robots. Note the size of |C| is
(3M

3

)
, which is polynomial in M . This is important for guaranteeing

the validity of the transformation. On the other hand, this does not influence the determination of

the existence of a solution, as each set would have exactly 3 elements anyway.

Create M tasks to be accomplished, so that T = {t1, t2, ..., tM}. Each tl has a capability

requirement of exactly B. Since H = 1, the cost vector W reduces to a scalar w, which is set

to 0 for simplicity. The initial rewards for all tasks are assigned to be 1. Assume that there

is no communication cost so that the function Cost invariably returns 0. Finally, for Γ, a task

dependency is defined, ({T − tM}, vD), for tM . Since θ is assumed to be computable in polynomial

time and independent of vD values, θ can be computed and assign vD to be M · θ − (M − 1).

An instance of the ST-MR-IA-TD problem is thus constructed from an instance of the 3-Partition

problem.

Now the 3-Partition problem can be solved using TD Approx as follows.

91

3 -Partition =





1 if TD Approx ≥ M

0 if otherwise
(5.25)

Whenever TD Approx returns an overall utility of no less than M , it holds that all M tasks

must be in the solution. This is because accomplishing less than M would receive an overall utility

no more than M − 1. Hence, it holds that there exists a way in the ST-MR-IA-TD problem to

allocate exactly 3 robots to each task. This solution is clearly also a solution for the 3-Partition

problem. On the other hand, if TD Approx returns an overall utility of less than M , it can be

concluded that the optimal solution must achieve an overall utility of less than M · θ, according to

the definition of worst case ratio. If there exists a solution for the 3-Partition problem, one can

apply the solution to the ST-MR-IA-TD problem so that all tasks are included. The corresponding

overall utility received is then M ·θ− (M −1)+(M −1) = M ·θ. This contradicts with the previous

conclusion that the optimal solution must achieve an overall utility of no more than M · θ. Hence,

there could not exist a solution for the 3-Partition problem. In such a way, the 3-Partition problem

can be solved. Unless P ≡ NP , the conclusion holds.

5.4.3 Allocation with task dependencies

For addressing the ST-MR-IA-TD problem, the greedy approach used in [Shehory and Kraus, 1998]

is adapted for task allocation with precedence orders. However, since task dependencies can either

increase or decrease the reward, the two cases are considered separately. For any task tl with a set

of dependencies Γl ⊆ Γ, Γl can be separated into two disjoint sets:

• Γp: the set of dependencies that satisfies vD ≥ V[l].

• Γr: the set of dependencies that satisfies vD < V[l].

Γp can be considered as the set of precedence orders in [Shehory and Kraus, 1998]. As in

[Shehory and Kraus, 1998], at each greedy step, instead of making a single assignment at a time,

the algorithm checks each task with tasks in each of its precedence orders (i.e., dependencies in Γp for

92

the task). For each set of tasks, a set of assignments are made using one of the previously discussed

methods for the ST-MR-IA problem. The algorithm then chooses the set of assignments that gives

the best quality measure2 (similar to p-value in [Shehory and Kraus, 1998]). The difference from

[Shehory and Kraus, 1998] is that task dependencies in Γr are also considered in the computation of

the quality measure for each set of assignments to incorporate their influences. Note that although

one cannot directly compare this approach with [Shehory and Kraus, 1998] due to the different

measures used (i.e., cost measures in [Shehory and Kraus, 1998] rather than utility measures in our

work) and that Γr is also considered, the algorithm in Section 5.4.4 using AverageUtility is in fact

very similar to that in [Shehory and Kraus, 1998] when ignoring these differences.

To simplify the rules when multiple dependencies are satisfied simultaneously, for each task

tl, let all dependencies in Γp assume the same value vp
D and all dependencies in Γr assume vr

D.

When only dependencies in Γp are satisfied, the reward of the task is updated to be vp
D; when

only dependencies in Γr are satisfied, the reward is updated to be vr
D; when there are satisfied

dependencies in both sets, the reward is updated to be vr
D. This set of rules is reasonable when

tasks tend to have few dependencies (i.e., at most 1 in either set) or dependencies from the same

set have similar effects on the task. More complicated rules can be designed without influencing

the following discussions. The influences of task dependencies on the task rewards are computed

according to these rules.

5.4.4 The algorithm for task allocation with task dependencies

The algorithm to address the ST-MR-IA-TD problem is shown in Algorithm 10. At every step, for

every remaining task, for every task dependency in Γp for the task, the algorithm creates a set of

tasks that includes the task along with all other tasks in the dependency. This set of tasks is fed

to one of the methods for addressing the ST-MR-IA problem. After the assignments are made, the

2The quality measure for a set of assignments is computed as the combination of the measures, used by the
chosen method for making these assignments (e.g., ρ for ResourceCentric), while incorporating the influences of task
dependencies. For example, when using MaxUtility, the quality measure is computed as the summation of the utility
measures for these assignments, considering the change of task rewards due to the satisfied task dependencies.

93

quality measure for this set of assignments is evaluated. Note that all dependencies (i.e., both Γp

and Γr) of the previously chosen tasks and tasks in these assignments are checked to compute the

influence (i.e., due to the updates of task rewards) on the quality measure due to newly satisfied

dependencies. The set of assignments with the best quality measure is then chosen.

94

Algorithm 10 Task allocation with task dependencies

while remaining tasks can still be assigned do
for all tl in T do

for all τ in Γp for tl do
Create the set of tasks to include tl and tasks in τ .
Invoke a method (e.g., AverageUtility, ...) to choose assignments for this set of tasks.
Record the chosen assignments as Mlτ .
if Mlτ 6= ∅ then

for all mjl ∈ Mlτ do
Compute the measure for the greedy choice based on the chosen method.
Compute the influence of newly satisfied dependencies (based on Γp and Γr of tasks
in the chosen assignments, including tl) as a result of choosing mjl.
Incorporate the influence into the measure for the greedy choice.
Assume that mjl is chosen for the next iteration.

end for
Combine the measures for all mjl ∈ Mlτ as the quality measure.

end if
end for

end for
Choose the M∗

lτ with the maximum quality measure.
Remove the assigned robots and tasks in M∗

lτ from R and T .
end while

95

Chapter 6

Task allocation with executable

coalitions

In this chapter, a framework [Zhang and Parker, 2012d] for combining the previous approaches

is presented, in which a layering technique is used. For achieving multi-robot tasks, furthermore,

several additional issues must also be considered, including reducing the complexity of task allo-

cation and addressing the situations when no executable coalitions exist for tasks. To the best of

our knowledge, this is the first work that addresses the task allocation problem with executable

coalitions to reduce the problem complexity with multi-robot tasks. Furthermore, a new approach

is introduced that can search for different ways to satisfy preconditions of the required tasks based

on the current situations and autonomously create partial order plans. The implementation of this

approach uses the reasoning process of IQ-ASyMTRe and is integrated with it in a natural way. In

the following, how to layer task allocation with IQ-ASyMTRe is first discussed, and then the pro-

cess to address tasks with no executable coalitions is presented. Simulation results are presented in

Section 7.5. The method in this chapter aims at providing a starting point to integrate the previous

aspects (discussed in this research) in one framework to achieve system autonomy for multi-robot

tasks.

96

6.1 Task allocation with IQ-ASyMTRe

Next, the layering technique is discussed, as well as addressing tasks with no executable coalitions

using a market-based approach. Specific algorithms are presented afterwards.

6.1.1 Layering IQ-ASyMTRe with task allocation

Tasks can be represented as the required behaviors (i.e., MSs) to be activated. IQ-ASyMTRe

creates coalitions for tasks when the required information for the behaviors can be retrieved. Since

the reference of information is complete, IQ-ASyMTRe guarantees forming executable coalitions.

Task allocation can be implemented similarly as in [Tang and Parker, 2007] based on a marker-

based approach. An auctioneer (i.e., the central task allocation process) announces tasks to the

robots, while the robots (running IQ-ASyMTRe algorithms) reason about possible coalitions and

submit bids for tasks. The auctioneer (also running a task allocation algorithm) then determines

the winner coalitions for the tasks and assigns them to these coalitions. A coalition (and a robot)

can only win one bid at a time. Robustness can be achieved by setting timers for certain events

(e.g., when no bids for a task are received after a period of time, the task can be re-announced).

Interface with task allocation

To interface with the task allocation methods, information about the robots in the coalitions, the

costs of coalitions, rewards for the tasks, and precedence orders between tasks must be included

in the bids. One assumption made is that capabilities are not shared between different coalitions.

This is almost always true in multi-robot systems (unlike in multi-agent systems), since capabilities

are not transferable. As a result, information regarding the capabilities allocated by the coalitions

does not need to be provided. This reduces the complexity of the central task allocation process.

In IQ-ASyMTRe, coalition members include robots that provide the necessary information and

the robots that execute the required behaviors. For example, in Figure 4.2, while R1 is the robot

that executes the behavior (i.e., the MS), R2 provides the required information to R1. Hence, both

97

R1 and R2 are in the coalition. Coalitions with a single robot can be created when individual robots

can execute the desired behaviors without help. Rewards of tasks and precedence orders between

tasks are often specified a priori. Next, how the costs of coalitions are computed is discussed.

Coalition cost

The cost of a coalition should be computed to approximate the actual cost for the coalition to

accomplish the task. In IQ-ASyMTRe, the costs of the (sensory and computational) capabilities

can be computed as the summation of the costs of the MSs, PSs and ESs activated; similarly,

communication and coordination costs can be computed based on the costs of the CSs used. When

execution times can be estimated, they can be incorporated by defining the costs of schemas to be

unit-time costs. Furthermore, to consider the influence of information quality, the coalition quality

measure1 is associated with the success ratio (θ) of the coalition using a task-specific function,

F : [0, 1] × T → [0, 1], in which [0, 1] is the space of all possible values of coalition quality and T is

the space of all possible types of tasks.

Note that coalition quality is computed to reflect the utility for using the information required

by the coalition. While certain tasks are not influenced much by the utility of the information,

others can be significantly affected. For example, in the robot navigation task, the success ratio

is not influenced much by whether the follower robot is in a desirable configuration relative to the

leader (e.g., close to the leader), since the robots can communicate to coordinate their actions.

On the other hand, in a robot tracking task, whether the robot can successfully track the target

is highly dependent on their relative configuration, since the target can move out of sight easily

when the configuration is undesirable. Given that the coalition is committed to accomplish the

task once assigned, the expected cost can be computed for a coalition c and task t as cost(c, t) =

E(ĉost(c, t)) = ĉost(c, t)/F (Qc, Yt), in which ĉost(c, t) represents the summation of the costs of all

activated schemas in the coalition for the task, Qc and Yt represent the coalition quality of c and

1IQ-ASyMTRe computes the coalition quality measure by simply multiplying the related information quality
measures.

98

the task type of t, respectively. When the expected costs of all executable coalitions for a task

are greater than the reward of the task (i.e., all coalitions are very likely to fail given the current

situation, so that executing the task would not be beneficial), the task would be handled as if no

executable coalitions exist according to the process in the following section.

6.1.2 Tasks with no executable coalitions

One obvious advantage with forming executable coalitions is that robots actually know how to

execute them to accomplish the tasks. Furthermore, since the number of executable coalitions often

are much smaller than the number of feasible coalitions in the current situation, the complexity for

task allocation can be significantly reduced. Consequently, however, IQ-ASyMTRe cannot address

tasks for which no executable coalitions exist.

Extending MS

First of all, in IQ-ASyMTRe, it is noticed that the preconditions of behaviors are input information

instances of the required MSs for the tasks (e.g., FG(local) in Figure 3.3). A task is not executable

if the required information cannot be retrieved by any coalitions in the environment. In order to

introduce executable coalitions, the robots must have the capability to obtain information that is

initially not retrievable. To incorporate this capability into the general framework of schema theory,

the definition of MS can be extended so that it can not only output commands for actuators, but

also output information. In such a way, the IQ-ASyMTRe algorithms can remain almost unchanged.

Although the introduction of this new kind of MS does not influence how MSs are used, it is referred

to as IMS (Information MS) when there is necessity to distinguish it.

To use this capability, all that needs to be done is to create and assign new tasks for IMSs.

However, it is unlikely that IMSs always exist to directly retrieve the required information. To

address this issue, the capability of IQ-ASyMTRe can be used to reason about alternative ways to

retrieve the information. An illustration example is presented in Figure 6.1 for the robot navigation

task. When no potential leader is in the FOV of the follower (R1), no executable coalition exists.

99

Figure 6.1: An illustration example for using IMS in the robot navigation task.

Suppose that an IMS (i.e., find-entity) is implemented on both R2 (a potential leader) and R1 to

search for entities within the communication range in the environment. Given that R1 knows that

R2 can localize (from CS: FG(R2) ⇒ FG(R2) in blue), R1 either needs to find a way to retrieve

FR(R1, R2) or FR(R2, R1) (in red). While the first can be more conveniently retrieved by R2

executing find-entity, the latter is more convenient for R1.

Information task request

Task allocation is performed in two phases. In the first phase, called the Easy Auction phase,

robots search for executable coalitions for the broadcasted tasks and submit bids to the auctioneer.

The auctioneer assigns tasks based on all submitted bids. For tasks that no bids are submitted, an

additional auctioning step is initiated for IMS tasks. In this second phase (called the IMS Auction

phase), the robots reason about the alternative ways to retrieve the input information instances

as demonstrated in Figure 6.1. The robots then submit information task requests for requesting

IMS tasks to the auctioneer. The auctioneer then considers these new tasks as preconditions2 for

2Here, preconditions refer to execution orders specified for partial order plans, which differ from our previous men-
tioning of preconditions as input information for behaviors. References of preconditions in the remaining discussions
should be unambiguous given the context.

100

the initiating tasks in the partial order plan. These new tasks are then auctioned using the Easy

Auction phase. Note that these new tasks are handled in the same way and the two-phase process

may apply recursively.

In this way, partial order plans can be autonomously generated. Since these IMSs are created

to provide input information for the required MSs, once the new tasks are accomplished, the input

information of the required MSs would be satisfied and the initiating tasks can be executed. How-

ever, caution must be taken to avoid IMS tasks removing the already satisfied input information.

Detail discussion is out of the scope of this research and the issue will be addressed in future work.

Note that the creation of partial order plans unavoidably introduces scheduling issues, which

greatly increase the complexity of the task allocation problem. In our current approach, these

scheduling issues are ignored. For each task allocation process, tasks are considered only when all

preconditions in their partial order plan are satisfied.

6.2 Algorithms for task allocation

Algorithm 11 Auctioneer process

Create empty new task and announced task lists.
while true do

Receive new tasks and put them on the new task list.
for all tasks in announced list that are initiating tasks for the new IMS tasks received do

Update the task’s preconditions.
Move the task from announced list to new list.

end for
IMS Auction: announce tasks in announced list.
Easy Auction: announce tasks in new task list for which preconditions are satisfied.
Move the announced tasks to announced list.
Wait a while for bids.
Collect bids from robots.
Invoke task allocation algorithms to determine the task assignments.
Remove tasks that are assigned from new task list.
Move tasks for which no bids are submitted or no bids are beneficial to announced list.

end while

101

Algorithm 12 Robot process

while true do
if the robot has a winning bid then

Set up the coalition and execute the task.
end if
Receive new task announcements.
for all received tasks do

if task announced for Easy Auction then
Invoke IQ-ASyMTRe to search for executable coalitions and submit bids.

else if task announced for IMS Auction then
Invoke IQ-ASyMTRe to submit information task requests.

end if
end for

end while

The algorithms for the auctioneer and robot processes are provided in Algorithms 11 and 12,

respectively. The auctioneer maintains a list of new tasks and a list of announced tasks. In each task

allocation process, the auctioneer announces tasks for which all preconditions in the partial order

plan are satisfied. It then receives bids and allocates tasks to winner coalitions. Tasks for which no

bids are submitted or no bids are beneficial are moved to the list of announced tasks. Tasks in the

list of announced tasks are announced in the IMS Auction phase. Whenever the auctioneer receives

information task requests (IMS tasks), the auctioneer updates the preconditions of the initiating

tasks in the list of announced tasks and moves them to the list of new tasks. Note that new tasks

are not announced until all preconditions in the partial order plan are satisfied. For the robots,

when there is a winning bid, they set up coalitions to accomplish the task; otherwise, they reason

about the solutions for the announced tasks.

102

Chapter 7

Experimental results

Simulations and experimental results for the approaches discussed in this dissertation are presented

in this chapter, which demonstrate the novelty of these approaches. First, results for forming coali-

tions using IQ-ASyMTRe are presented in Section 7.1. Then, results for executing coalitions using

IQ-ASyMTRe+ are presented in Section 7.2. Finally, results for task allocation, task allocation

with the extended formulation, and for combining the previous aspects are presented in Sections

7.3, 7.4 and 7.5, respectively.

7.1 Results for IQ-ASyMTRe

In this section, simulations and experimental results are provided to demonstrate the capabilities

of IQ-ASyMTRe for various applications. All simulations are implemented in Player/Stage [Gerkey

et al., 2003], and are run on a 2.4GHz Core 2 Duo laptop with 2GB memory; wall-clock times are

reported.

103

Table 7.1: Information required in the navigation task

FG(local) Global position information of the local robot

FG(goal) Global position information of the goal

FA(local) Range information (i.e., for obstacle avoidance)

FM Global map information (i.e., for path planning)

7.1.1 Simulations

Solution space and potential solutions

First, the solution spaces produced by IQ-ASyMTRe are shown for the navigation task, in which

the goal is to activate a MS for navigation on different robots. The information instances required

are listed in Table 7.1 along with brief descriptions. The potential solutions are ordered based

on the costs of schemas they use, which are currently statically defined as follows: cost(RPS) =

0.5, cost(ES-EPS) = 1.0, cost(CS) = 2.0 and cost(MS) = 4.0. FG(goal) and FM are provided a

priori, which incur no costs. Since FA(local) can only be retrieved using the local laser sensor,

it is also ignored for conciseness. Table 7.2 lists the potential solutions for robots equipped with

a fiducial, a laser and a GPS sensor; RPSs are not shown for brevity. Encoding entity informa-

tion into information enables IQ-ASyMTRe to find solutions (i.e., 6-11) that are not discernible

by architectures that use only information types1. Hence, more flexibility and completeness are

achieved. Note that potential solutions requiring the same set of information instances with higher

costs can be removed to reduce the search space without affecting the completeness (e.g., using a

post-processing algorithm).

Forming executable coalitions

In this simulation, a scenario of the navigation task is presented to demonstrate the intuition

behind forming executable coalitions. It is assumed that there are 3 robots without a localization

1Architectures that use only information types (such as ASyMTRe) cannot distinguish between different informa-
tion of the same type.

104

Table 7.2: Potential solutions of the navigation task

Potential Solutions for FG(local) Cost

1. EPS:FG(local) 5

2. CS:FG(X), EPS:FG(X, local) 8

3. CS:FG(X), CS:FG(local,X) 8.5

4. CS:FG(X), CS:FG(X, local) 9

5. CS:FG(X), CS:FR(local,X) 9.5

6. CS:FG(X), EPS:FR(Z, local), CS:FR(X,Z) 10.5

7. CS:FG(X), CS:FR(local, Z), CS:FR(X,Z) 11.0

8. CS:FG(X), CS:FR(local, Z), CS:FR(X,Z) 11.5

9. CS:FG(X), CS:FR(Z, local), CS:FR(X,Z) 11.5

10. CS:FG(X), CS:FR(local, Z), CS:FR(X,Z) 12.0

11. CS:FG(X), CS:FR(local, Z), CS:FR(X,Z) 12.0

105

Table 7.3: Information used by previous approaches

Type Capabilities Count

1 Fiducial, Laser, Motor 3

2 Fiducial, Laser, Motor, Localization 6

capability that need to navigate to certain goal positions, and there are 6 other robots that can

localize. Fiducial sensors on all robots can be used to retrieve relative position information between

robots. Previous approaches for forming coalitions use only information in Table 7.3, for which any

type 2 robots would be considered equivalently by type 1 robots for forming coalitions, since there

is no way to distinguish between them.

However, although the use of laser or localization sensors does not introduce constraints (i.e.,

with only 1 associated referent), a constraint on the relative position of the robots must be satisfied

in order to use the fiducial sensor. Previous approaches do not consider this constraint and thus

cannot form executable coalitions. IQ-ASyMTRe, on the other hand, considers it by using the

available information to dynamically instantiate the potential solutions (shown in Table 7.2 in this

case). For any robot X that can provide FG(X), the robots also check to see if FR(X, local) or

FR(local,X) can be retrieved.

For example, when the robots happen to be grouped into three clusters that are relatively

distant from each other (but still within the communication range as shown in Figure 7.1(a), it

is clear that the consideration of the relative positions is important. The three type 1 robots are

shown in red, green and yellow in Figure 7.1(a) (labeled ‘R’, ‘G’, ‘Y ’) with the goals shown in their

respective colors (labeled ‘r’, ‘g’, ‘y’) as small square beacons. Type 2 robots are labeled from 1 to

6. The FOVs of the fiducial sensors are restricted to be 180-degree facing forward with a maximum

range of 4 meters (shown as semicircles). When a robot can see another robot, an arrow is drawn

between the two. Table 7.4 summarizes this scenario for coalitions, along with the overall costs

for two robots. See Figures 3.5 and 7.6 for how the costs are computed2. Figure 7.1(b) shows the

2Note that how FA is retrieved is not shown in Figure 3.5. In addition to the costs of the coalitions shown, there
is also a cost to activate a necessary MS (to maintain the relative position) on the robot that is chosen to help, which

106

(a) (b)

Figure 7.1: Forming executable coalitions in the robot navigation task. (a) IQ-ASyMTRe considers
the satisfaction of the relative configurations. (b) The formed coalitions are feasible and can be
executed.

107

Table 7.4: Coalitions with two robots in Figure 7.1

Robot No. Possible Coalitions No. Executable Coalitions

rR 6 2 (with cost 16 and 17.5)

rG 6 1 (with cost 16)

rY 6 2 (both with cost 16)

coalitions that are set up, indicated by ellipses. It can be concluded that IQ-ASyMTRe considers

the current configurations of the robots for forming coalitions.

Note that the two potential coalitions for the red robot (‘R’) correspond to potential solutions 2

and 3 in Table 7.2. The coalition with a lower cost (i.e., with the red robot in the back) is preferred.

For the green robot (‘G’), only one executable coalition is found, although the coalition with robot

5 is close to an executable state and may be beneficial when no executable coalitions are found. In

such cases, the proximity information can be used by a task planner to create an executable plan

for the task. However, discussions about such scenarios are outside the scope of this research.

The dynamic monitoring task

Next, a scenario of a monitoring task is shown in simulation involving more complicated interactions

in complex environments, in which the topology of a connected sensor network3 of robots is dynamic.

In this task, 8 mobile robots are to monitor the environment while keeping a connected sensor

network with fiducial sensors. When targets enter the environment (shown as black squares in

Figure 7.2(a)), the robots are to provide global positions of the targets. The robots in this simulation

are heterogeneous with different capabilities. The fiducial sensors on robots 1 and 2 have longer

ranges with 360-degree FOVs. Only robot 4 can localize. For exploration, the robots simply use

the local sensor information to search the space while maintaining a connected sensor network.

Figure 7.2(b) shows a scenario of the current connected network of the robots (i.e., with network

edges shown as red (narrower) arrows) and two targets (T1 and T2) entering the environment. In

is the same (i.e., 6) in this simulation. Finally, note that each pair of CSs connected by arrows (between the robots)
in the figures is considered as one CS usage.

3Two robots are connected if one of them is in the other’s sensor FOV.

108

order to provide the target positions, two coalitions are dynamically formed. Members in each

coalition and the respective target are connected using different line segments in Figure 7.2(a) with

their interactions shown in Figure 7.2(b) as blue (wider) arrows, labeled with the communicated

information instances.

One can see from this simulation that IQ-ASyMTRe can form coalitions with complicated

interactions between the robots. The completeness of the solution space guarantees that a solution,

when it exists, will be found given sufficient time. When the interactions must be determined

dynamically based on the robot capabilities and the current configurations of the robots and the

environment, it becomes impractical to always design application-specific methods; thus, general

techniques such as that provided by IQ-ASyMTRe can be powerful. Another interesting aspect is

that the same robots can appear in different coalitions (such as robots 1 and 4 in this simulation),

such that synergy between coalitions can be achieved.

Distributed search of the solution space

In this simulation, an analysis on how fast IQ-ASyMTRe finds solutions distributively in difficult-

to-search scenarios. A formulation of the search time is provided in general scenarios. The search

process always starts with the local robot rL. Denote RL as the set of robots from which rL requests

help. For any robot ri1 ∈ RL, it may recursively request information from another set of robots,

denoted by Ri1 ; for any ri2 ∈ Ri1 , recursively denote this set as Ri1,i2 and the process continues.

Assuming that the maximum recursive step for the search is N and that there is no message loss,

the time required to find the coalition is bounded by:

T = max
i1:iN

N∑

k=1

P (rik) · S(rik) · TG + 2 · N · TC

+ max
i1:iN

N−1∑

k=1

(TD(rik , rik+1
) + TD(rik+1

, rik)) (7.1)

109

(a)

(b)

Figure 7.2: A scenario for the dynamic monitoring task with mobile robots. (a) The configuration
when targets enter the environment. (b) Connections of the network and the interactions among
the robots and the environment.

110

in which i1 : iN are robots in a communication path, P (rik) represents the index of the potential

solution (after ordering) used by rik and S(rik) represents the number of solution spaces created

by rik during the search. TG is a constant time gap inserted between checking two consecutive

potential solutions; the message queue sends received messages for processing every TC seconds.

TD(t1, t2) is the communication delay for sending (from t1) and receiving a message (by t2).

To create a concrete example, a scenario is created in which all robots are aligned in a column

formation and there is only one robot with a localization capability (i.e., the one in the front). All

robots are assumed to be facing the front and have a fiducial to detect position information relative

to nearby robots in the front. It is interesting to determine how long the robot in the back takes to

find a coalition solution. Note that since the view of any robot is blocked by the one immediately

in front of it, the localization capability of the front-most robot is shared in a sequential order from

the nearest to the farthest robot4.

Figure 7.3 shows the time used by the farthest robot to find the coalition solution (which must

include all robots) as the number of robots increases, averaged over 5 runs. As the number of robots

(i.e., equal to N in Equation 7.1) increases, the number of hops that the information must travel

also increases. Although the joint search space is exponential in the number of robots, one can see

that the algorithm of IQ-ASyMTRe is able to distributively find the coalition involving 10 robots

in about 30 seconds, when TG and TC are set to be 0.2s. In this simulation, TD is implemented to

follow a normal distribution, N(µ, σ), in which µ = 3.85ms and σ = 5.05ms. (These communication

parameters are based on physical experiments with the Pioneer robots in our lab, which use the

802.11n wireless standard.) P (rik) is bounded by 11 (Table 7.2) and S(rik) is bounded by 10, since

only global and relative position information (relative to the other 9 robots) is involved. One can

see that the empirical results in Figure 7.3 are consistent with Equation 7.1.

Figure 7.3 also illustrates (in the lower two figures) the messages sent and received for the

scenario with 10 robots in one of the runs. Peaks in the plots for the sent messages (the figure

4E.g., any robot (except the front-most one) can only provide its localization information to the robot behind it
after it localizes itself, which is achieved from retrieving its relative position to the robot immediately in front and
the robot’s global position.

111

in the center) are created when robots share the retrieved information instances with others. The

farthest robot finds the coalition solution at the 28th second, which corresponds to the black peak

(with circle data point) in the figure. One can also see the phase delay of the peaks while moving

away from the front-most robot, which reflects the hops of information discussed earlier. Compared

to the plots for the sent messages, the plots for the received messages are more in phase with each

other. This is due to the fact that information requests are often addressed to all robots (whenever

there are uninstantiated referents).

A 60-second gap is manually inserted to clearly separate the searching phase from the main-

taining phase (after setting up a coalition). In Figure 7.3, one can also see that the numbers of

sent or received messages become stable after the coalition is set up (after the 90th second), which

represents the constant information flows (between different robots) required for maintaining the

coalitions. One can see from this simulation that IQ-ASyMTRe can quickly provide solutions even

for scenarios that are difficult to search in distributed systems.

The cooperative robot box pushing task

Next, how executable solutions can be used is presented to solve a cooperative robot box pushing

task in a general scenario. Instead of pushing in a given direction as discussed in [Donald et al.,

1997], the robots are more often required to push boxes to specified locations. For oversized boxes,

it is more efficient for robots to push cooperatively, since the pushing direction of the box may need

to be re-aligned frequently through rotations. The solution space for this cooperative box pushing

task with two robots is presented in Figure 7.4. The bumper information is shared and used to

determine whether the robot teammate is ready to push so as to synchronize their behaviors.

The initial configuration is shown in Figure 7.5(a), in which the purple box (labeled ‘1’) needs

to be pushed to the position of the blue box (labeled ‘2’). There are 5 robots of 3 different types

in the environment. Robots from the first type (labeled ‘R’) are equipped with a bumper sensor

for pushing the box; robots from the second type (labeled ‘L’) are equipped with a GPS sensor

for localization; the last type (labeled ‘G’) has both sensors. All robots are also equipped with

112

Figure 7.3: Distributed search of the solution space in difficult-to-search scenarios. The top figure
shows the time to find the coalition solution as the number of robots increases. The bottom two
figures show the messages sent and received (that are addressed to individual robots) for four of
the robots in the 10-robot scenario.

113

a fiducial and a laser sensor. Since box ‘2’ is in the way of box ‘1’, another MS for box pushing

(with a single robot) must be activated on a robot to push ‘2’ out of the way. As a result, three

robots with a bumper sensor need to be assigned (in this case, two ‘R’s and one ‘G’ are assigned).

However, directly executing the MSs for box pushing in the initial configuration is not possible due

to the unavailability of the required information FG(box). To obtain the missing information, three

MSs for navigation must be activated first on these three robots to find the boxes. Since two of

the three robots cannot localize (two ‘R’s) , they set up a coalition with two robots that can (two

‘L’s), respectively. Once the boxes are found, the MSs for box pushing can be activated. Figure

7.5 shows snapshots from this simulation. A supplemental video file is attached that includes the

entire execution.

To use IQ-ASyMTRe for various tasks, one only needs to implement the behaviors (MSs)

and specify the required information. IQ-ASyMTRe is then able to reason about possible ways

to retrieve the information in the current situation. In cases when certain information is not

retrievable, higher level task planning may be required, which is manually implemented in this

simulation. Creating task plans autonomously based on the missing information from IQ-ASyMTRe

will be addressed in our future work.

7.1.2 Physical experiments

The cooperative robot navigation task

To demonstrate the flexibility of IQ-ASyMTRe, two scenarios are created for the navigation task

with physical robots as shown in Figures 7.7 and 7.8. Instead of working with fiducial sensors,

the robots are equipped with camera sensors pointing forward (with a 60-degree FOV) to retrieve

the relative positions of nearby robots. The robot with a localization capability (labeled ‘2’) is

in front of the robot without it (labeled ‘1’) in one scenario and is behind it in the other. The

coalition solution for the first scenario is similar to that shown in Figure 3.5; the coalition solution

for the second scenario is shown in Figure 7.6. One can compare these solutions with Figure 3.2

114

Figure 7.4: The solution space that encodes the potential solutions used in the cooperative robot
box pushing task in simulation.

115

(a) 0s (b) 40s (c) 80s

(d) 305s (e) 635s

Figure 7.5: Robots performing a cooperative box pushing task in a general scenario, in which the
goal is to push the purple box (‘1’) to the blue box (‘2’). (a) Initial configuration in which robots
are distributed in two distant clusters. Two robots with a bumper need to be assigned to activate
the MS for cooperative box pushing while one is needed to push box ‘2’ out of the way. (b) The
robots (‘L’) with a localization capability help two of the robots assigned for box pushing to localize
to find the boxes. (c) The robots are in positions ready to push. (d) The robots start pushing
the boxes; two of them are being helped to achieve localization via constant information sharing;
the bumper information between the two robots assigned for the cooperative box pushing is also
constantly shared. (e) The task is completed.

116

Figure 7.6: Coalition solution with the robot that can localize in the back.

to see the differences from the ASyMTRe architecture. Both robots are assigned to activate the

MS for navigation to go to the same position. For both scenarios, the robot with the localization

capability starts execution first since it is self-sufficient for the MS. This experiment shows that

the IQ-ASyMTRe architecture can distinguish among different robot configurations in the current

situations and form executable coalitions accordingly.

The cooperative robot box pushing task

Finally, with physical robots, it is shown that IQ-ASyMTRe can provide flexible and robust solu-

tions. Several scenarios are used to illustrate in the cooperative box pushing task with different

robot capabilities and environmental settings, in which IQ-ASyMTRe provides different solutions.

Unlike in the simulations, it is assumed that the robots can localize and have bumpers, so that the

only information that is unavailable is FG(goal). Note that here, dynamic goal positions are as-

sumed (e.g., pushing a box while following a person) instead of static ones. The bumper information

is approximated using the sonar sensors.

Start with the simplest scenario as shown in Figure 7.9(a), in which both robots (referred to

as robot L and R) assigned to activate the MS can see the goal marker. In Figure 7.9(b), a view

blocker is added to block R from viewing the goal marker. Both robots are blocked from viewing

117

(a) (b) (c)

Figure 7.7: Robots in a navigation task, with the robot with a localization capability (labeled ‘2’)
in front. (a) Initial configurations with robot ‘2’ in the front. (b) Robot ‘2’ goes to the goal while
the other robot without the localization capability (labeled ‘1’) is trying to set up a coalition with
it. (c) The coalition is set up and the robots navigate through the environment.

(a) (b) (c)

Figure 7.8: Robots in a navigation task, with the robot with a localization capability (labeled ‘2’)
in back. (a) Initial configurations with robot ‘2’ at the back. (b) Robot ‘2’ starts first while robot
‘1’ is trying to set up a coalition with it. (c) The coalition is set up and the robots start navigation.

118

the goal marker in the third scenario as shown in Figure 7.9(c). Meanwhile, an intermediate robot

(I) is added, which can localize itself and can see the goal marker. The last scenario, shown in

Figure 7.9(d), is the most interesting case: the localization capability is removed from robot I.

In this last scenario, robot L obtains FG(goal) by first helping robot I to localize by providing

FR(I, L) and FG(L). Robot I then starts helping robot L in retrieving FG(goal), which, in turn,

helps R. In this scenario, the helper also needs to be helped in order to accomplish the task. Figure

7.18 illustrates the various ways that information flows among the robots for these four scenarios.

7.2 Results for IQ-ASyMTRe+

Simulations and experimental results are provided to demonstrate various aspects of IQ-ASyMTRe+.

All reported times are wall-clock times. For simulations, the Player/Stage platform [Gerkey et al.,

2003] is used; the simulations are based on a 2.4GHz Core 2 Duo laptop with 2GB memory. In

these experiments, ρ2 is set to 0.05, while ρ1 is chosen to be a small value (0.3). The sensor quality

model is implemented as lmax−l
lmax

× θmax−|θ|
θmax

for both laser and camera to ensure that configurations

on the sensing boundaries receive a IQ measure of 0. M in the sensor uncertainty model is set

to add more perturbation; for cameras, M is set to be [0.1, 0; 0, 0.1]; for lasers, M is set to be

[0.01, 0; 0, 0.01], since lasers are more accurate. It is noted that the sensitivity of these parameters

is not high, in terms of their influences on robot behaviors.

7.2.1 Simulations

Efficient Search of the Solution Space

Let us first look at the how the approach influences the size of the solution space and how the space

is searched efficiently in IQ-ASyMTRe+. From Corollary 4.1.5, it holds that using the MinIIS

for the MS classes can increase the number of distinct potential solutions (PoSs), hence providing

more flexibility for the robots to interact with each other. Although this outcome is favorable for

119

(a) (b)

(c) (d)

Figure 7.9: A cooperative box pushing task. (a) A simple box pushing scenario where the robots
assigned to activate the MS can see the goal marker. (b) The right robot’s view is blocked. (c)
Both robots’ views are blocked, while the intermediate robot can localize and can see the goal. (d)
Both robots are blocked and the intermediate robot can see the goal but cannot localize. In all
scenarios, the barcode markers are used to extract the relative position information using cameras.

120

Figure 7.10: Illustration of information flow for scenarios shown in Figure 7.9.

121

Table 7.5: MinIIS and independence of information instance

goto-relative # PoSs # Dist. PoSs Use Ind.

FG(local), FG(goal) 18 10 7

FR(goal, local) 31 15 15

push-box-to-goal

FG(local), FG(box), FG(goal) 36 20 9

FR(box, local), FR(goal, local) 961 185 30

Time for a full search (s) 15.1 2.9 0.02

forming coalitions and for relaxing sensor constraints, its impact on the search performance must

be analyzed. In this analysis, all RPSs in Table 3.1 are used.

This impact is analyzed for the goto-relative and push-box-to-goal MS classes and show that the

independence of information instance significantly reduces the search space for IQ-ASyMTRe+. For

the goto-relative MS class, the number of PoSs is compared for one of the two MSs (i.e., requiring

{FG(local), FG(goal)}) and for the approximated MinIIS (i.e., requiring {FR(goal, local), FR(local,

goal)}), computed using Algorithm 5 for these two MSs. For the cooperative push-box-to-goal MS

class with two robots, the most intuitive MS can use {FG(local), FG(box), FG(goal), FB(box, local),

FB(box,X)}, in which FB represents the bumper information that determines whether the robot

is in contact with the box, and X represents the other robot assigned the MS class. Another MS

with a less stringent information requirement is {FR(box, local), FR(goal, local), FB(box, local),

FB(box,X)}, since the required IIS can be reduced from the IIS of the first MS. In this case, the

approximated MinIIS computed is also the power set of the second IIS. Since FB here can only be

retrieved using the bumper sensors, it is not shown in the following analysis.

Table 7.5 shows the results of the number of PoSs, the number of distinct PoSs, and the number

of PoSs searched when using Definition 4.1.9 for the two MS classes. The first observation is that

the results reflect the conclusion of Corollary 4.1.5. As it is demonstrated later in this section, using

MinIIS provides more flexibility, which is especially useful when the capabilities of the robots are

dynamic, or the environment changes. On the other hand, it is also clear that the number of PoSs

122

grows exponentially with the size of the IIS for the first two columns. On the other hand, when the

information instances in these IISs are independent, the number of PoSs that must be searched can

be significantly reduced. In such a way, IQ-ASyMTRe+ achieves a much more manageable search

space.

Incorporation of the IQ Measure

This simulation demonstrates how IQ-ASyMTRe+ achieves environmental reasoning via the incor-

poration of the IQ measure. Using such a measure, IQ-ASyMTRe+ is able to exclude coalitions of

very low IQ measure from consideration. In Algorithm 7, these coalitions are identified when the

IQ measure for certain required sensor constraints is below ρ2. Three scenarios are created for a

navigation task in Figure 7.11.

It is assumed in this simulation that three robots need to navigate to the same goal position but

only one of them has a localization capability (i.e., each robot is assigned a goto-global MS class).

The two robots without the localization capability are located to the left in Figure 7.11(a). To be

able to navigate, both robots require the third robot to share its capability. In the first scenario, the

robots start in a configuration as shown in Figure 7.11(a). In the second scenario (Figure 7.11(c)),

an obstacle is added in the environment that partially blocks the view of one robot in the back

(to the left in the figure). In the third scenario (Figure 7.11(e)), one robot in the back starts in a

different position. From Figures 7.11(b) - 7.11(f), one can see that the robots are able to identify

these different situations and form the desirable coalitions accordingly.

Execution Robust to Sensor Failures

This simulation demonstrates execution that is robust to sensor failures in a robot formation task.

Robustness is achieved during execution by exploiting redundancies of robot capabilities at a more

fine-grained level. The formation that is implemented is a diamond formation with four robots using

a leader-reference [Balch and Arkin, 1998] strategy. One robot is assigned a goto-global MS class

and the others are each assigned a maintain-formation MS class, similar to MS∆. The simulation

123

(a) t = 0.0s for scenario 1 (b) t = 70.0s for scenario 1

(c) t = 0.0s for scenario 2 (d) t = 70.0s for scenario 2

(e) t = 0.0s for scenario 3 (f) t = 70.0s for scenario 3

Figure 7.11: Three scenarios for the robot navigation task in which robots demonstrate different
behaviors. (a) Initial configuration for the first scenario. (b) Initial configuration for the second
scenario, in which an obstacle is added. (c) Initial configuration for the third scenario, in which one
of the robots starts in a different position. (d) Both robots in the back (to the left of the figure) set
up a coalition with the robot in the front and navigate in a triangle formation. (e) The yellow robot
ignores the coalition with the robot in the front due to the obstacle and sets up a coalition with
the other robot in the back after the robot achieves localization. (f) The left most robot prefers
the coalition with the robot in the middle and the robots navigate in a line formation.

124

results are presented in Figure 7.12, in which position 1 is the leader position and other robots

need to maintain their relative positions. The entire execution can be divided into 3 stages as

shown in the figure. The internal connections between schemas are shown as white arrows. The

sensor constraints are shown as red arrows. The communication of information between robots (or

CSs) are shown as blue arrows. For clarity, RPSs and EPSs are not shown. At the bottom of the

figure is the number of messages sent during the execution. In the first stage, the robots form into

initial coalitions; each coalition includes only a single robot. The robot at position 1 uses a GPS

sensor to navigate, while the other robots use a laser fiducial sensor to retrieve the relative position

information.

In the second stage (i.e., at the 75th second), the laser fiducial sensor on the robot at posi-

tion 2 fails. The constraint relaxation process is dynamically triggered as the required information

becomes unavailable. The constraint is relaxed at the 78th second and interactions between the

robots are changed accordingly, in which the robot at position 4 communicates two pieces of relative

position information to the robot at position 2. In such a way, the robot at position 2 is able to com-

pute its own relative position to the leader. The coalition composition for this robot is expanded to

include the robot at position 4. A similar process occurs at the 125th second when the laser fiducial

sensor on the robot at position 3 fails. The robots again automatically reconfigure themselves. As

one can see from the figure, after the new coalitions are established, the communication becomes

stable, which reflects the constant information sharing between the robots.

Execution Robust to External Influence

The constraint relaxation process can be used similarly for achieving execution that is robust to

external influence. In this simulation of the robot navigation task, three robots are to navigate

to the same goal position, as shown in Figure 7.13. Among them, only the robot in the front (to

the right in Figure 7.13(a)) can localize using a GPS sensor. The other two robots have a laser

fiducial sensor to sense the relative positions to nearby robots. Figure 7.13 shows snapshots from

the experiment with the execution time. The robots start with an initial configuration similar to

125

Figure 7.12: Four robots in a formation task using a leader-reference strategy. The execution can
be divided into three stages. The figure shows how the interactions between the robots change as
sensor failures occur during the execution.

126

that in Figure 7.13(a). Since both robots without the localization capability can sense the relative

position to the robot in the front, they both set up a coalition with that robot. The coalitions

navigate through the environment in a triangle formation as shown in Figure 7.13(a).

When the environment becomes narrower due to obstacles on both sides of the corridor (Figure

7.13(a)), there is risk of collision for the robot at the bottom to navigate through without adjusting

its moving direction. The other following robot goes through first as the obstacles are further

away. The robot at the bottom, on the other hand, first tries to improve the information quality

while avoiding obstacles. However, as the quality deteriorates due to the other following robot and

obstacles, the robot breaks the original coalition and triggers the constraint relaxation process. It

then realizes that the other following robot can localize (with help from the robot in the front) and

it is in that robot’s field of view (FOV). Thus, this robot sets up a new coalition, as Figure 7.13(b)

shows. Figure 7.13(c) shows that the robot coalitions navigate through the environment in a line

formation and reach the goal position successfully. A supplementary video file for this entire task

execution is also available for downloading.

Flexible Execution

This simulation shows flexible execution is achieved in IQ-ASyMTRe+ in a cooperative robot box

pushing task. Unlike push-box-to-goal, the push-box-in-line MS class is implemented with two robots

as in [Donald et al., 1997]. Figure 7.14 provides a solution space for a protocol in [Donald et al.,

1997] to implement the MS class. The goal for this protocol is to retrieve the instantaneous torque

information of the box and use the bumper sensor to determine whether the robot and the box are

in contact. Since force sensing is not available, another protocol in [Donald et al., 1997] is used

that is derived for quasi-static systems, in which the torque can be estimated from the position

information. The IIS required by this MS is {FG(box), FG(local), FB(box, local), FB(box,X)}. The

relationships between these two protocols can be summarized using the first two RPSs in Table

7.6, in which FI is the instantaneous (net) torque information.

127

(a) t = 25.5s (b) t = 35.5s

(c) t = 65.5s

Figure 7.13: (a) Both robots without a localization capability set up a coalition with the robot in
the front and robots navigate in a triangle formation. (b) The environment becomes narrower due
to obstacles, influencing one of the following robots. The following robot breaks the coalition with
the robot in the front and sets up a coalition with the other following robot. (c) Robots navigate
through the environment in a line formation to reach the goal position.

128

Table 7.6: RPS’s for push-box-in-line

RPS

FT (Z,X) + FT (Z, Y) ⇒ FI(Z)

FG(X) + FG(Y) + FB(Z,X) + FB(Z, Y) ⇒ FI(Z)

FR(X,Y) + FO(X) + FO(Y) ⇒ FB(X,Y)

Applying Algorithm 5 on these two protocols with the first two RPSs in Table 7.6, the approxi-

mated MinIIS for this MS class is {FI(box), FB(box, local), FB(box,X)}. The benefit is that instead

of requiring either the force or position information, any method that can obtain or approximate

the instantaneous torque can be used to satisfy the MinIIS, such as when an instantaneous torque

sensor is installed on the box. One can see that by using MinIIS, more flexibility can be achieved

for robots with varying capabilities.

A limitation of these two protocols, though, is that both require bumper sensors. To remove

this reliance on particular sensors, one may use available information to approximate the sensory

information through the introduction of various RPSs in IQ-ASyMTRe+. For example, when the

geometry (FO) of the robots and the box are known, one can use the relative position information

to determine whether the robots and the box are in contact by using the third RPS in Table 7.6.

The push-box-in-line MS class is tested with three different robot capability configurations to

push the box in a given direction for 4 meters. Both robots are assigned this MS class to execute.

In the first case, both robots have a bumper sensor, while only one of them has a bumper in the

second case, and neither has a bumper in the third. The execution results for these three cases

are presented in Figure 7.15. Note that while the task is accomplished in all cases, the cases when

using the approximation are less efficient. Since approximations often require extra computation

(thus incuring more costs), IQ-ASyMTRe+ prefers solutions for which the required sensors are

available. An interesting topic for future work is to study how RPSs influence the quality of the

task execution.

129

Figure 7.14: A solution space that is similar to one of the protocols presented in [Donald et al.,
1997] for two robots to cooperatively push a box in a given direction. In order for the robots
to coordinate actions, they estimate the net (i.e., instantaneous) torque on the box based on the
torque (FT) and use the bumper (FB) to determine if they are in contact with the box. The torque
for each robot is computed from the exerted force and the relative position to the box.

130

Figure 7.15: The execution of the push-box-in-line MS class by two robots with three different
capability configurations. The goal is to push the box in a straight line for 4 meters. The angle
error and distance error (perpendicular to the line of pushing) are shown for these three cases
respectively.

131

7.2.2 Physical Experiments

Maintaining Sensor Constraints

To demonstrate IQ-ASyMTRe+ for maintaining sensor constraints with physical robots, a robot

tracking task is implemented. The robot simply needs to continuously execute the command vector

output by Algorithm 4 to track the target, which is marked by a fiducial. For fiducial detection,

the technique presented in [Parker et al., 2004] with cameras is used. This task is much more

challenging with physical robots due to the FOV of the cameras, which is limited to 60 degrees in

the front. To show the effectiveness of IQ-ASyMTRe+, a baseline (reactive) approach is constructed

that minimizes the distance and angle errors to the target while avoiding obstacles using potential

fields; this baseline approach uses the vector field histogram method (VFH) [Borenstein and Koren,

1991] in Player/Stage. A similar method for considering environmental influence is used in [Das

et al., 2002]. Robots in both approaches are also implemented to go to the last seen target position

when the target is out of the FOV.

The robot tracking task is ran using both approaches in five different initial configurations.

Table 7.7 shows the statistics for the five runs, while Figure 7.16 shows robot behaviors in one of

the configurations. The blue lines represent the approximate paths taken by the tracking robots.

Results that show comparable performance of IQ-ASyMTRe+ with more advanced tracking ap-

proaches are presented in [Zhang and Parker, 2010a]. While the VFH approach relies on tweaking

parameters (e.g., safe range) to optimize performance, IQ-ASyMTRe+ uses measurable parameters

for the sensors, providing a more informed solution.

One interesting note is that IQ-ASyMTRe+ can be easily adapted to track multiple targets

by simply averaging the IQ measures for the targets. However, when multiple tracking becomes

impossible due to path divergence of the targets or environmental influence, decisions must be made

in an application-specific way to choose which target to track. For example, if at least one target

has to be tracked, IQ-ASyMTRe+ can choose the target that is currently in the best configuration

132

Table 7.7: Performance comparison of IQ-ASyMTRe+ and VFH approach

Initial IQ-ASyMTRe+ VFH Approach

Config. Track Time Time in Track To Goal Track Time Time in Track To Goal

Config. 1 30.1 20.2 (67%) YES 29.7 5.3 (18%) NO

Config. 2 30.4 19.2 (63%) YES 26.5 9.9 (37%) YES

Config. 3 30.0 17.9 (60%) YES 26.6 2.4 (9%) NO

Config. 4 26.9 13.4 (50%) YES 18.7 4.1 (22%) NO

Config. 5 27.5 18.8 (68%) YES 27.2 7.1 (26%) YES

for tracking. Another possible approach is to incorporate a learning approach as in [Parker, L.E.,

2002].

The Cooperative Box Pushing Task

For the cooperative robot box pushing task with physical robots, both MSs for the push-box-to-goal

MS class are implemented. Different scenarios are created and compared to reflect how the MinIIS

provides more flexibility in different situations. In this experiment, the relative position from the

robot to the box is retrieved using laser scan matching; the bumper information is approximated

using the laser range readings. Two cases are compared in which one uses Algorithm 5 to approx-

imate the MinIIS while the other simply selects the first MS (referred to as Select-one). In the

first case, the robots need to consider {FR(box, local), FR(goal, local)} and for the latter case, the

robots need to consider {FG(local), FG(box), FG(goal)}.

Let us start with the simplest scenario (shown in Figure 7.17(a)), in which the robots know

where the global goal position is and can localize themselves. For the Select-one approach, the

global positions are directly known or can be sensed, while for IQ-ASyMTRe+, FR(goal, local) can

be computed based on the global positions using the 4th RPS in Table 3.1.

Now let us start imposing more constraints. If the global position is not known and must be

observed (Figure 7.17(b)), robots using both approaches can still obtain the required information.

133

(a) (b) (c)

Figure 7.16: (a) An initial configuration for both approaches. (b) VFH approach: robot turns too
widely when the obstacle is near; robot keeps going straight to target when the obstacle is relatively
far. (c) IQ-ASyMTRe+: robot keeps turning just enough to maintain tracking; robot swings aside
to decrease future risk even when the obstacle is relatively far.

The global position of the goal can be computed using its relative position to the robot for the Select-

one approach, while FR(goal, local) is directly retrievable using the camera for the IQ-ASyMTRe+

approach. However, what if the robots cannot localize themselves? No solution for Select-one

is feasible (i.e., neither FG(local) nor FG(local) can be retrieved) while IQ-ASyMTRe+ is still

successful.

In the next scenario (Figure 7.17(c)), the view of the goal from one of the robots is further

blocked. However, the blocked robot can see an intermediate robot (Int.) that can detect the goal.

If the robot teammate can localize itself, then both approaches can request information from Int..

(Note that the constraint between Int. and the goal does not require a MS∆ to be activated on

Int., since the goal does not move in this simulation.) However, Int. may not have a localization

capability. Select-one again would not be able to find any feasible solutions; for IQ-ASyMTRe+,

the blocked robot reasons out that FR(goal, local) can be obtained by using FR(goal, Int.) and

FR(local, Int.) and applying the 3rd RPS in Table 3.1. In this scenario, a MS∆ needs to be activated

on Int. to keep it in the sight of the pushing robot. Figure 7.18 shows the schema connections and

sensor constraints for these scenarios. In this experiment, one can see the importance of choosing

the proper inputs for the MSs in various situations, as it leads to the discovering of viable coalitions

134

(a) (b) (c)

Figure 7.17: (a) A box pushing scenario where the global position of the goal is known. (b) A box
pushing scenario in which the goal must be observed. (c) A box pushing scenario in which the
visibility of the goal is blocked. In all scenarios, the barcode markers can be detected to extract
the relative position information using cameras.

that otherwise would not be found. More flexible execution is important for task execution with

systems having different robot capabilities and in dynamic environments.

7.3 Simulation results for ST-MR-IA

In this section, simulation results for ST-MR-IA are provided. First, cases when the natural

heuristics can produce poor quality solutions are first illustrated. Afterwards, the performance of

the natural heuristics with ResourceCentric and ResourceCentricApprox in random configurations

are compared. Then, simulation results with different robot capability levels for tasks are provided.

Finally, results with varying maximum coalitions sizes and results with a random cost function for

communication and coordination are presented. In all simulations except for the first one, or when

specified otherwise, the costs of capabilities (i.e., W) are randomly generated from [0.0, 1.0]; each

robot or task has a 50% chance to have or require any capability and the capability values are

randomly generated from [0, 8]; task rewards are randomly generated from [100, 200] and Cost is

assumed to be a linear function of the number of robots (i.e., 4n). All statistics are collected over

100 runs.

135

Figure 7.18: The schema connections and sensor constraints for the scenarios shown in Figure
7.17 for IQ-ASyMTRe+. Illustrations from left to right correspond to Figures 7.17(a) - 7.17(c),
respectively.

7.3.1 Comparison with limited capability resources

Based on the previous discussions, one can see that the limitation of capability resources is the

key influential factor causing AverageUtility and MaxUtility to produce bad solutions. Hence in

this simulation, two types of tasks are created and two limited capabilities are defined. The first

type of task requires both limited capabilities and has a slightly higher reward, while the other

task type requires only one of the limited capabilities. Beside the limited capabilities, two common

capabilities are also defined that many robots have and most of the tasks require. It is also assumed

that every robot has only one capability. For each of the two limited capabilities, only two robots

are created with that capability while varying the number of robots with common capabilities. A

sufficient number of tasks are generated for both types. The maximum size of the coalitions is

restricted to be 3 in this simulation.

Figure 7.19 shows the results. While Figure 7.19(a) shows the average performance ratios

(i.e., compared to the optimal solution), Figure 7.19(b) shows the average performance ratios with

standard deviations and the worst performance ratios out of all 100 runs, separately for all four

methods. One can see that as the number of robots with common capabilities increases (so that

more tasks can be assigned), the ratios of AverageUtility and MaxUtility decrease drastically. This

136

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Robots with Limited Resources / Other Robots (per capability)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf
o
rm

a
n
ce
 R
a
ti
o

Performance Comparison with Limited Resources

AU
MU
RC
RCA

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

AverageUtility (AU)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

MaxUtility (MU)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Robots with Limited Resources / Other Robots (per capability)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf

o
rm

a
n

ce
 R

a
ti

o
 &

 W
o

rs
t

Pe
rf

o
rm

a
n

ce
 R

a
ti

o

ResourceCentric (RC)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

ResourceCentrixApprox (RCA)

Performance Comparison with Limited Resources

(b)

Figure 7.19: Task allocation with limited capability resources. (a) Average performance ratios.
(b) Separate and more detailed results with standard deviations. The green data points in each
subgraph represent the worst performance ratios for that respective method.

is because both heuristics tend to choose tasks of the first type with higher rewards, although these

tasks consume more of the limited capabilities such that other tasks can be significantly influenced.

ResourceCentric and ResourceCentricApprox, on the other hand, consider the influence of the

consumption of these limited capabilities when choosing assignments. From Figure 7.19, one can see

that the performances of AverageUtility and MaxUtility keep decreasing (i.e., to around 60%) as the

number of robots with common capabilities increases. Another note is that ResourceCentricApprox

performs better than ResourceCentric. This is due to the fact that the measure for the greedy

choice in ResourceCentricApprox (i.e., ρ̂) directly optimizes on the limited capabilities (i.e., robots)

in this simulation.

7.3.2 Comparison with random configurations

However, performances in random configurations are more interesting. In this simulation, the

number of capabilities is increased to 7. In the remainder of this and the next sections, unless

specified otherwise, the maximum coalition size is set to be 5. The number of robots varies while

137

7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf
o
rm
a
n
ce
 R
a
ti
o

Performance Comparison

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(a)

7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

AverageUtility (AU)

7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

MaxUtility (MU)

7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf
o
rm

a
n
ce

 R
a
ti
o
 &
 W

o
rs
t
Pe

rf
o
rm

a
n
ce

 R
a
ti
o

ResourceCentric (RC)

7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

ResourceCentrixApprox (RCA)

Performance Comparison

(b)

Figure 7.20: Task allocation with random configurations. (a) Average performance ratios. (b) Sep-
arate and more detailed results with standard deviations. The green data points in each subgraph
represent the worst performance ratios for that respective method.

the number of tasks is fixed. Figure 7.20 shows the results. Table 7.8 shows the outcome from

t-tests that are run to determine the statistical significance of the results in Figure 7.20. For

each pair of the discussed methods, for each data point in the figure, a ‘y’ (yes) or ‘n’ (no) is

used to indicate whether the results of the two methods being compared are significantly different.

One can see good performances for AverageUtility and MaxUtility. However, ResourceCentric and

ResourceCentricApprox still perform better. Another observation is that the new methods almost

always have smaller standard deviations.

7.3.3 Comparison with different robot capability levels

In this simulation, results for random configurations are presented with robots of different capability

levels compared to the tasks (i.e., determined by the maximum values for randomly generating the

capability values). Figures 7.21(a) and 7.21(b) show the results for less and more capable robots,

with maximum values of 4 and 12 respectively, while the results for the statistical significance are

shown in Tables 7.9 and 7.10. Again, the number of robots varies while the number of tasks is

138

Table 7.8: Outcome from t-tests for data points (each has 100 runs) in Figure 7.20 (left to right)
with α = 0.05. Second row indicates, for each pair of methods, for each data point, whether the
results are significantly different (see text for more explanation).

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyyyyy yyyyyyyy yyyyyyyy yyyyyyyy nnnnynyy yyynnnnn

Table 7.9: Outcome from t-tests for data points (each has 100 runs) in Figure 7.21(a) (left to right)
with α = 0.05. (See text in Section 7.3.2 for explanation of the second row.)

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyyyyy yyyyyyyy yyyyyyyy ynnyyyyy ynynyyyy nnnnnnnn

Table 7.10: Outcome from t-tests for data points (each has 100 runs) in Figure 7.21(b) (left to
right) with α = 0.05. (See text in Section 7.3.2 for explanation of the second row.)

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyyyyy yyyyyyyy yyyyyyyy yyyyyyyy nnnynyyy nnyyyynn

fixed. These results show that ResourceCentric performs the best in all cases, although not always

significantly different from ResourceCentricApprox.

7.3.4 Comparison with varying coalition sizes

In this simulation, the maximum size of the coalitions varies from 3 to 11 while keeping all other

settings similar to the previous simulations. Figure 7.22 and Table 7.11 show the results, which

illustrate similar conclusions. While ResourceCentric and ResourceCentricApprox still perform

significantly better than the other two methods, ResourceCentric performs only slightly better

than ResourceCentricApprox.

7.3.5 Comparison with random Cost function

In this simulation, the influence of the Cost function is investigated. Instead of defining the

communication and coordination cost to be linear in the number of robots in the coalition (i.e.,

4n), Cost returns a random value from [0, 4n]. Figure 7.23 and Table 7.12 present the results.

139

7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf

o
rm

a
n

ce
 R

a
ti

o

Performance Comparison with Less Capable Robots

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(a)

7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf
o
rm
a
n
ce
 R
a
ti
o

Performance Comparison with More Capable Robots

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(b)

Figure 7.21: Task allocation with different robot capability levels. (a) Average performance ratios
with less capable robots for tasks. (b) Average performance ratios with more capable robots for
tasks.

2 4 6 8 10 12
Maximum Coalition Size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf
o
rm

a
n
ce
 R
a
ti
o

Performance Comparison with Varying Coalition Sizes

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(a)

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

AverageUtility (AU)

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

MaxUtility (MU)

2 4 6 8 10 12
Maximum Coalition Size

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf
o
rm

a
n
ce

 R
a
ti
o
 &

 W
o
rs

t
Pe

rf
o
rm

a
n
ce

 R
a
ti
o

ResourceCentric (RC)

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

ResourceCentrixApprox (RCA)

Performance Comparison with Varying Coalition Sizes

(b)

Figure 7.22: Task allocation with varying coalition sizes. (a) Average performance ratios. (b) Sep-
arate and more detailed results with standard deviations. The green data points in each subgraph
represent the worst performance ratios for that respective method.

140

Table 7.11: Outcome from t-tests for data points (each has 100 runs) in Figure 7.22 (left to right)
with α = 0.05. (See text in Section 7.3.2 for explanation of the second row.)

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyy yyyyy yyyyy yyyyy yynnn nnynn

Table 7.12: Outcome from t-tests for data points (each has 100 runs) in Figure 7.23 (left to right)
with α = 0.05. (See text in Section 7.3.2 for explanation of the second row.)

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyy yyyyy yyyyy yyyyy nnynn yyyyy

While the conclusions regarding ResourceCentric and ResourceCentricApprox do not change, one

obvious difference from the previous simulations is that the performance of MaxUtility significantly

drops. This shows that MaxUtility is more sensitive to the change of the Cost function than the

other methods. For the previous Cost function, a coalition with more robots is less likely to be

chosen by all methods. However, when Cost returns a random number, MaxUtility cannot recognize

that a coalition with fewer robots is often a better choice. For example, suppose that a task t1 can

be accomplished by {r1, r2}. As a result, {r1, r2, r3} can also accomplish the task. When the Cost

function is linear in the number of robots in the coalitions, the coalition of {r1, r2} would always

be chosen by MaxUtility. However, when the function is random, MaxUtility cannot identify that

{r1, r2} may often be a better choice, since r3 is then made available to other tasks.

7.3.6 Key findings from ST-MR-IA results

In this section, simulation results are provided for comparing the performances of the previously

discussed methods for addressing the ST-MR-IA problem. First of all, simple scenarios are pre-

sented in which AverageUtility and MaxUtility can perform badly. Furthermore, it is shown that

ResourceCentric and ResourceCentricApprox, while considering inter-task resource constraints, not

only perform better in these special scenarios, but also in random configurations. This suggests

141

7 8 9 10 11 12 13
No. Robots (with 10 Tasks)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf
o
rm

a
n
ce

 R
a
ti
o

Performance Comparison with Random Cost Function

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(a)

7 8 9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

1.0

AverageUtility (AU)

7 8 9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

1.0

MaxUtility (MU)

7 8 9 10 11 12 13
No. Robots (with 10 Tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf

o
rm

a
n

ce
 R

a
ti

o
 &

 W
o

rs
t

Pe
rf

o
rm

a
n

ce
 R

a
ti

o

ResourceCentric (RC)

7 8 9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

1.0

ResourceCentrixApprox (RCA)

Performance Comparison with Random Cost Function

(b)

Figure 7.23: Task allocation with a random cost function. (a) Average performance ratios. (b) Sep-
arate and more detailed results with standard deviations. The green data points in each subgraph
represent the worst performance ratios for that respective method.

142

that these constraints are indeed commonly present in arbitrary configurations. Moreover, statisti-

cal testing shows that ResourceCentric and ResourceCentricApprox perform better than the other

two methods with significant differences.

7.4 Simulation results for ST-MR-IA-TD

To generate dependencies for each task, in these simulations, it is assumed that the numbers of

task dependencies in Γp and Γr are randomly chosen from {0, 1, 2}. Furthermore, for each task

dependency, every other task has a probability of 0.2 to be included. Unless specified otherwise,

vr
D values for tasks are randomly generated from [0, 100] and vp

D values are from [200, 400]. After

presenting simulation results with random configurations, results with varying maximum coalition

sizes are shown. Results with a random cost function for communication and coordination are

presented afterwards. Finally, results illustrating the influence of vD are provided and time analyses

for all methods are given.

7.4.1 Task dependencies with random configurations

First of all, results for the ST-MR-IA-TD problem are shown with random configurations in Figure

7.24 and Table 7.13. Compared to the performance ratios of simulation results for the ST-MR-IA

problem, the performance ratios are slightly worse (approximately 5% lower), which reveals that

the ST-MR-IA-TD problem is indeed more difficult. Furthermore, the performances gradually

decrease for all methods as the number of robots increases, such that more tasks are assigned and

the influence of task dependencies becomes more prominent. Otherwise, one can still see that

ResourceCentric and ResourceCentricApprox perform better than AverageUtility and MaxUtility.

7.4.2 Task dependencies with varying coalition sizes

Next, comparison results are shown with varying maximum coalition sizes in Figure 7.25 and Table

7.14. All methods perform similarly as for the ST-MR-IA problem (Figure 7.22), although their

143

7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf
o
rm

a
n
ce

 R
a
ti
o

Performance Comparison with Task Dependencies

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(a)

7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

AverageUtility (AU)

7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

MaxUtility (MU)

7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf
o
rm

a
n
ce
 R
a
ti
o
 &
 W
o
rs
t
Pe
rf
o
rm

a
n
ce
 R
a
ti
o

ResourceCentric (RC)

7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

ResourceCentrixApprox (RCA)

Performance Comparison with Task Dependencies

(b)

Figure 7.24: Task allocation with task dependencies with random configurations. (a) Average
performance ratios. (b) Separate and more detailed average performance ratios with standard
deviations. The green data points in each subgraph represent the worst performance ratios for that
respective method.

Table 7.13: Outcome from t-tests for data points (each has 100 runs) in Figure 7.24 (left to right)
with α = 0.05. (See text in Section 7.3.2 for explanation of the second row.)

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyyyyy yyyyyyyy yyyyyyyy yyyyyyyy nynnnnnn nnnnnnyy

144

2 4 6 8 10 12
Maximum Coalition Size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf
o
rm

a
n
ce
 R
a
ti
o

Performance Comparison with Varying Coalition Sizes

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(a)

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

AverageUtility (AU)

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

MaxUtility (MU)

2 4 6 8 10 12
Maximum Coalition Size

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf
o
rm

a
n
ce

 R
a
ti
o
 &

 W
o
rs

t
Pe

rf
o
rm

a
n
ce

 R
a
ti
o

ResourceCentric (RC)

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

ResourceCentrixApprox (RCA)

Performance Comparison with Varying Coalition Sizes

(b)

Figure 7.25: Task allocation with task dependences with varying coalition sizes. (a) Average
performance ratios. (b) Separate and more detailed average performance ratios with standard
deviations. The green data points in each subgraph represent the worst performance ratios for that
respective method.

performances also decrease slightly for the new formulation of the problem. Again, one can see

that the maximum coalition size does not influence the performance very much.

7.4.3 Task dependencies with random Cost function

In this simulation, the Cost function is defined similarly as in the corresponding simulation for

the ST-MR-IA problem. The results are shown in Figure 7.26 and Table 7.15. Again, one can

see that MaxUtility is the most sensitive to the change of the Cost function. ResourceCentric and

ResourceCentricApprox still perform better than AverageUtility and MaxUtility with significant

differences, while AverageUtility performs better than MaxUtility with significant differences.

7.4.4 Varying maximum v
p
D values of task dependencies

One can see from our previous analysis of the ST-MR-IA-TD problem that none of the methods

can provide any solution guarantees that are independent of vD values. To show this effect in this

145

Table 7.14: Outcome from t-tests for data points (each has 100 runs) in Figure 7.25 (left to right)
with α = 0.05. (See text in Section 7.3.2 for explanation of the second row.)

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyy yyyyy yyyyy yyyyy nnnnn nnynn

7 8 9 10 11 12 13
No. Robots (with 10 Tasks)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf
o
rm

a
n
ce

 R
a
ti
o

Performance Comparison with Random Cost Function

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(a)

7 8 9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

1.0

AverageUtility (AU)

7 8 9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

1.0

MaxUtility (MU)

7 8 9 10 11 12 13
No. Robots (with 10 Tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf

o
rm

a
n

ce
 R

a
ti

o
 &

 W
o

rs
t

Pe
rf

o
rm

a
n

ce
 R

a
ti

o

ResourceCentric (RC)

7 8 9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

1.0

ResourceCentrixApprox (RCA)

Performance Comparison with Random Cost Function

(b)

Figure 7.26: Task allocation with task dependences with a random cost function. (a) Average
performance ratios. (b) Separate and more detailed average performance ratios with standard
deviations. The green data points in each subgraph represent the worst performance ratios for that
respective method.

Table 7.15: Outcome from t-tests for data points (each has 100 runs) in Figure 7.26 (left to right)
with α = 0.05. (See text in Section 7.3.2 for explanation of the second row.)

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyy yyyyy yyyyy yyyyy nnnnn yyyyy

146

0 500 1000 1500 2000 2500 3000 3500 4000
Maximum Value for Task Dependencies

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf
o
rm
a
n
ce
 R
a
ti
o

Varying Maximum Value for Task Dependencies

AverageUtility (AU)
MaxUtility (MU)
ResourceCentric (RC)
ResourceCentrixApprox (RCA)

(a)

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

AverageUtility (AU)

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

MaxUtility (MU)

0 1000 2000 3000 4000
Maximum Value for Task Dependencies

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf
o
rm
a
n
ce
 R
a
ti
o
 &
 W
o
rs
t
Pe
rf
o
rm
a
n
ce
 R
a
ti
o

ResourceCentric (RC)

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

ResourceCentrixApprox (RCA)

Performance Comparison with Varying Maximum Value for Task Dep.

(b)

Figure 7.27: Task allocation with task dependences with varying maximum value for vp
D. (a)

Average performance ratios. (b) Separate and more detailed average performance ratios with
standard deviations. The green data points in each subgraph represent the worst performance
ratios for that respective method.

simulation, the maximum value for vp
D vary in Γp for tasks. For tasks without dependencies, the

maximum reward value is set to be 200. Figure 7.27 and Table 7.16 show the results as the maximum

value for vp
D gradually increases from 400 to 4000. While the average performance ratios remain

high (with much larger standard deviations), the worst performance ratios for all four methods

drop significantly as Figure 7.27(b) shows, which complies with our theoretical results. However,

one can see that ResourceCentric and ResourceCentricApprox perform notably better in terms of

the worst performance ratios in this simulation, especially as the maximum value for vp
D increases.

7.4.5 Time analysis

Finally, time analysis is provided for AverageUtility, MaxUtility and ResourceCentricApprox while

gradually increasing the number of robots. The statistics are collected on our lab machines

(2.67GHz) and the implementation is written in Java. As the time complexity of ResourceCentric

147

Table 7.16: Outcome from t-tests for data points (each has 100 runs) in Figure 7.27 (left to right)
with α = 0.05. (See text in Section 7.3.2 for explanation of the second row.)

paired-sample RC,AU RC,MU RCA,AU RCA,MU RC,RCA AU,MU

sig. different? yyyyy yyyyy yyyyy yyyyy nnnnn nnnnn

is quadratic in |C|, its performance is eliminated from this first comparison for a clearer demon-

stration. While Figure 7.28(a) shows the results for ST-MR-IA, Figure 7.28(b) shows the results

for ST-MR-IA-TD. Notice that the figures are scaled differently in this simulation. The running

times of ResourceCentricApprox in both simulations are coarsely 100 times that of AverageUtility

and MaxUtility. However, considering that |R||T | is about 100 in these simulations, the results

also comply with our theoretical analysis of the complexity for these methods. This suggests that

ResourceCentricApprox indeed can be applied to problem instances of moderate sizes (e.g, 10 to

20 robots with 10 to 20 tasks to assign) within reasonable time limits (i.e., a few seconds), which

is sufficient for most practical distributed robot systems.

A similar analysis is performed with ResourceCentric and ResourceCentricApprox to compare

their performances. The results are shown in Figure 7.29. One can see the effect that multiplying

another |C| has on the time performance.

7.4.6 Key findings from ST-MR-IA-TD results

In this section, simulation results are provided for addressing the ST-MR-IA-TD problem. First

of all, the results, along with our previous discussions, clearly demonstrate both theoretically and

empirically that ST-MR-IA-TD is a more difficult problem. The result on the hardness of ap-

proximating the ST-MR-IA-TD problem is also confirmed. Furthermore, one can see that in both

problem formulations, ResourceCentric and ResourceCentricApprox, which consider inter-task re-

source constraints, perform better than AverageUtility and MaxUtility with significant differences.

Thus, when one is working with relatively small problem instances (e.g., with < 10 robots and < 10

tasks), the ResourceCentric heuristic is recommended, due to its solution guarantees. On the other

148

7 8 9 10 11 12 13 14 15 16
No. Robots

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m
e
 (
s)

Performance Comparison

AverageUtility (AU)
MaxUtility (MU)
ResourceCentricApprox (RCA)

(a)

7 8 9 10 11 12 13 14 15 16
No. Robots

0

1

2

3

4

5

6

7

8

Ti
m
e
 (
s)

Performance Comparison with Task Dependencies

AverageUtility (AU)
MaxUtility (MU)
ResourceCentricApprox (RCA)

(b)

Figure 7.28: Time analysis for all methods except ResourceCentric. (a) For ST-MR-IA. (b) For
ST-MR-IA-TD. (Note that different scales are used for (a) and (b).)

7 8 9 10 11 12 13 14 15 16
No. Robots

0

100

200

300

400

500

600

700

800

Ti
m

e
 (
s)

Performance Comparison

ResourceCentric (RC)
ResourceCentricApprox (RCA)

(a)

7 8 9 10 11 12 13 14 15 16
No. Robots

0

100

200

300

400

500

600

700

800

Ti
m
e
 (
s)

Performance Comparison with Task Dependencies

ResourceCentric (RC)
ResourceCentricApprox (RCA)

(b)

Figure 7.29: Time analysis for RC and RCA. (a) For ST-MR-IA. (b) For ST-MR-IA-TD.

149

hand, for problem instances of moderate sizes (i.e., with 10 to 20 robots and 10 to 20 tasks), and

when the time performance is more important, ResourceCentricApprox is recommended.

7.5 Results for task allocation with executable coalitions

In this section, results for task allocation with executable coalitions and for when no executable

coalitions exist are presented. In all simulations, blue robots are leader robots that have a localiza-

tion capability, while red robots are follower robots. Robots in the simulations are running the same

program with different configurations (e.g., communication ports) as separate processes. All data

is collected based on a 2.4GHz Core 2 Duo laptop with 2GB memory and all robot processes are

running on the same machine. Every robot has a laser fiducial sensor to detect other teammates.

The range of these sensors is restricted to 4 meters, and the angle is restricted to 180 degrees in

front of the robot.

7.5.1 IQ-ASyMTRe with coalition quality

First of all, different scenarios are provided in which the difficulty for finding executable coalitions

gradually increases (similar to a simulation presented in Section 7.2, except that a slightly different

implementation is used). As shown in Figure 7.30, the goal is for the last follower robot to achieve a

localization capability. Since there is only one leader, given the configurations of the other followers,

the only possible coalition is for the last follower to set up a grand coalition (in which all robots

are included). Since the robots initially have only local information, the last follower must request

information from others until it discovers the situation and the only coalition solution.

Figure 7.31 shows the time requirements and coalition quality measures when the number of

followers is gradually increased from 1 to 9. The blue line shows the times (in seconds) that

the last follower uses to find the only coalition from initially receiving the task. The coalition

quality computed by the follower is also shown in red. To make the results easier to interpret, the

information transferred in this simulation is not scaled down and a fixed distance for all adjacent

150

Figure 7.30: A configuration of a line of followers with one leader at the front (the right). Each
robot blocks the view of the robot immediately behind it.

robots is maintained. It is also assumed that the information quality of the localization information

retrieved by the leader is 1. When the last follower is the only follower (i.e., corresponding to the

point with only 1 follower in Figure 7.31), the coalition quality is only influenced by the information

quality of the relative position information retrieved using the fiducial sensor, which has a measure

of 0.75 in this setting using the sensor models discussed in Chapter 3. When there are two followers,

the coalition quality is influenced by the quality measures of both relative positions (of the same

value). One can then easily induce the coalition quality with N followers.

One can clearly see from Figure 7.31 that the time required to find the coalition increases as

the number of followers increase. In real applications, however, the coalitions with many robots

involving in such tight coordination would most likely be ignored, since the expected cost of such

coalitions can easily get higher than the reward of the task (see the computation of the expected

cost in Section 6.1.1). One can see from this simulation the flexibility of the IQ-ASyMTRe for

finding executable coalitions and how the measure of coalition quality can help in making coalition

decisions.

7.5.2 Executable vs. feasible coalitions

In this simulation, the advantage of task allocation with executable coalitions is demonstrated with

(naturally) limited sensing capabilities (i.e., the range and angle restrictions of fiducial sensors).

One observation is that robots in the multi-robot systems may often be divided into local groups

151

Figure 7.31: Time and coalition quality measures for the scenarios in Figure 7.30.

152

that are spatially separated (e.g., see Figure 7.32). Although robots in different groups may still be

able to communicate, spatial separation (and other kinds of spatial restrictions) can make a large

portion of the feasible coalitions not executable for the robots in many situations.

It is assumed in this simulation that there are 4 followers and 8 leaders in the environment.

The task is to achieve a localization capability for all of the followers. From the given information,

it is not difficult to conclude that the number of possible feasible coalitions is 3824, since any

coalition that includes any leader and any follower is feasible. Furthermore, when a non-super-

additive environment is assumed, the number drops to 192. This number is still not small for task

allocation algorithms.

As discussed, although the number of feasible coalitions can be large, the number of executable

coalitions may be limited. It is desirable to use IQ-ASyMTRe to search for executable coalitions

based on the current configurations of the robots and environment. To show this, generate 10

random configurations of the robots are generated and IQ-ASyMTRe is ran to find the executable

coalitions. Figure 7.33 shows 2 random configurations out of the 10 and Table 7.17 shows the

results. The table shows the number of followers that can find a coalition to help it localize (i.e.,

Foll. Enab.), as well as the number of executable (Exec.) and feasible (Feas.) coalitions for any

environments and non-super-additive (n.s.a) environments with maximum coalition size of 3.

It is obvious to see the reduction of the number of coalitions for all random configurations. One

can see from this simulation that the limitation of sensing capabilities can restrict the number of

coalitions that need to be considered. By using such a ‘disadvantage’, one can make task allocation

much more efficient. One important note is that to find the executable coalitions, IQ-ASyMTRe

checks only from the feasible ones. The feasibility of coalitions is automatically guaranteed by the

reasoning process (by requiring necessary information to be retrieved). Furthermore, the search

process for checking all feasible coalitions is naturally distributed. By trading off computation that

is linear in the number of feasible coalitions, the magnitude of the possible exponential growth is

reduced.

153

Figure 7.32: A configuration with four groups of robots spatially separated. Each group has one
follower and two leaders. The range and angle restrictions of the fiducial sensors separate each one
from the others.

(a) (b)

Figure 7.33: (a) A random configuration corresponding to the entry 8 in Table 7.17. (b) A random
configuration corresponding to the entry 10 in Table 7.17.

154

Table 7.17: Executable vs. feasible coalitions

Conf. Foll. Enab. Exec. Feas. Exec. n.s.a Feas. n.s.a

Fig. 7.32 4/4 12 3824 12 192

1 4/4 33 3824 17 192

2 3/4 13 3824 9 192

3 2/4 3 3824 3 192

4 2/4 5 3824 3 192

5 2/4 6 3824 5 192

6 1/4 3 3824 3 192

7 2/4 15 3824 9 192

8 4/4 4 3824 4 192

9 4/4 11 3824 9 192

10 4/4 12 3824 11 192

155

7.5.3 Tasks with no executable coalitions

However, one obvious issue of task allocation with IQ-ASyMTRe is that tasks may not have ex-

ecutable coalitions. An approach is used that enables the robots to autonomously decompose

unsatisfied preconditions of the required task behaviors into satisfiable components to create par-

tial order plans. In this experiment, an example is provided that illustrates how such an approach

works.

In this simulation (see Figure 7.34(a)), there are three tasks to be allocated and each one is for

one follower to achieve a localization capability and navigate to the goal. The challenge is that one

of the followers (the follower at the bottom) does not have a leader in its sight. Figure 7.34 shows

the snapshots from an execution of task allocation and execution. The process can be summarized

as follows:

Figure 7.34(a) Tasks are announced in the Easy Auction phase and the followers invoke the IQ-

ASyMTRe algorithms to search for executable coalitions and submit bids for tasks. The bottom

follower robot cannot find an executable coalition and hence submits no bids.

Figure 7.34(b) Two task assignments are made and two followers start navigating with the

leaders. The auctioneer notices that no bids are submitted for a task, so it initiates the IMS

Auction phase for the task. Since other followers are executing tasks, they ignore the new auction.

The bottom follower receives (again) the task in the IMS Auction phase and submits information

task requests to the auctioneer (i.e., find-entity).

Figure 7.34(c) The auctioneer receives the requests and announces the new task and both the

bottom follower and leader submit bids. The auctioneer assigns the task to the bottom follower

and it starts executing find-entity. (For simplicity, the potential leader is configured to be easily

156

found.) Once a potential leader is found, the follower notifies the auctioneer and the auctioneer re-

announces the initiating task in the Easy Auction phase, which is put on hold due to its unsatisfied

precondition in the partial order plan.

Figure 7.34(d) The bottom follower submits a bid for the task since it now has a leader in

its sight, followed by the auctioneer assigning the task to it. Finally, the bottom follower starts

navigating.

The novelty of this approach is that robots can autonomously decompose unsatisfied precon-

ditions (i.e., input information) of the required behaviors into satisfiable components to create

partial order plans, depending on the current situations. Such an approach uses the capability of

IQ-ASyMTRe to reason about alternative ways to satisfy these preconditions even when no IMSs

are implemented to directly satisfy them.

157

(a) 0s

(b) 20s

(c) 50s

(d) 90s

Figure 7.34: A scenario created for task allocation with 3 tasks (for the three followers to achieve a
localization capability), out of which one task has no executable coalitions. The labels under each
subfigure show the execution time in seconds.

158

Chapter 8

Conclusions

In this dissertation, three related problems for achieving multi-robot tasks have been discussed:

First, the IQ-ASyMTRe architecture was presented, which aims at forming executable coalitions

for multi-robot tasks in which robots can also share sensory and computational capabilities. This

approach significantly extends the previous ASyMTRe architecture and returns coalition solutions

in which the required interactions are satisfied. The soundness and completeness of the approach

were proven. Hence, IQ-ASyMTRe can be used to dynamically and flexibly form coalitions that

are readily executable for different multi-robot tasks. To the best of our knowledge, this is the

first attempt to create a general solution for forming executable coalitions for multi-robot tasks.

Simulations and experimental results were provided to show the validity of this approach in various

multi-robot tasks.

For executing coalitions, the IQ-ASyMTRe+ approach for achieving flexible and robust coali-

tion execution was presented. The IQ-ASyMTRe architecture is used to provide information of

the required interactions; this information is used to coordinate the behaviors of the robots. When

dynamic factors and environmental settings do not influence the execution, an established local-

ized formation control method is used to maintain the required robot configurations; otherwise, a

measure is introduced that can guide the robots to adjust their current configurations to maintain

159

the required interactions. A constraint relaxation process is designed to provide more robust exe-

cution when certain sensor constraints become unsatisfied, without reallocating the task. Results

are provided to show the validity of our approach in various multi-robot tasks. To our knowledge,

this is the first approach that provides a general method for executing coalitions in tightly-coupled

multi-robot tasks.

For task allocation, an analysis of two natural heuristics for the ST-MR-IA problem was pro-

vided. A new heuristic was then presented for the problem with solution guarantees. Results show

that the solution quality of this heuristic is bounded by two factors – one relates to a restricting

parameter on the problem instance, while the other is influenced by how assignments in the opti-

mal solution interact with other assignments. Note that these two factors are not bounded by each

other, in the sense that while one can be greater than the other in one problem instance, it can be

smaller in another. An algorithm was designed to approximate this new heuristic for performance

improvement. For more complicated scenarios, the ST-MR-IA problem was extended to incorporate

general task dependencies. A result on the hardness of approximating this extended formulation

of the problem was given. An algorithm that utilized the methods for ST-MR-IA to address the

extended problem was provided. Simulation results were presented for both formulations, which

showed that these new methods indeed improved performance.

Finally, a method that combined the previous aspects for task allocation with executable coali-

tion was presented, which serves as a starting point of a general framework to achieve system

autonomy for addressing multi-robot tasks. First, how to layer the IQ-ASyMTRe architecture

with task allocation was presented. Furthermore, the advantage of task allocation with executable

coalitions was demonstrated in a navigation task. The reduction of the number of coalitions is the

result of the limited sensing capabilities. IQ-ASyMTRe takes advantage of this ‘disadvantage’ and

searches for executable coalitions on which task allocation is based. For tasks with no executable

coalitions, a new type of MS was introduced and a process was provided that could autonomously

create partial order plans to satisfy the preconditions of the required behaviors. Simulations were

provided to demonstrate these techniques.

160

The research described in this dissertation enables autonomous task planning and execution, in

which the capability of the current system is exploited for various tasks. This research represents

an important step towards achieving full autonomy in distributed robot systems.

161

Bibliography

162

Bibliography

[Abdallah and Lesser, 2004] Abdallah, S. and Lesser, V. (2004). Organization-Based Cooperative

Coalition Formation. In Proceedings of the IEEE/WIC/ACM International Conference on In-

telligent Agent Techonology, pages 162–168, China.

[Antonelli and Chiaverini, 2006] Antonelli, G. and Chiaverini, S. (2006). Kinematic control of pla-

toons of autonomous vehicles. IEEE Transactions on Robotics, 22(6):1285–1292.

[Arkin, 1989] Arkin, R. C. (1989). Motor Schema – Based Mobile Robot Navigation. International

Journal of Robotics Research, 8(4):92–112.

[Atamturk et al., 1995] Atamturk, A., Nemhauser, G. L., and Savelsbergh, M. W. P. (1995). A

combined lagrangian, linear programming and implication heuristic for large-scale set partitioning

problems. Journal of Heuristics, 1:247–259.

[Ayanian and Kumar, 2010] Ayanian, N. and Kumar, V. (2010). Decentralized feedback controllers

for multiagent teams in environments with obstacles. IEEE Transactions on Robotics, 26(5):878–

887.

[Balch and Arkin, 1998] Balch, T. and Arkin, R. C. (1998). Behavior-based formation control for

multirobot teams. IEEE Transactions on Robotics and Automation, 14(6):926–939.

163

[Barnes et al., 2009] Barnes, L., Fields, M., and Valavanis, K. (2009). Swarm formation control

utilizing elliptical surfaces and limiting functions. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, 39(6):1434–1445.

[Borenstein and Koren, 1991] Borenstein, J. and Koren, Y. (1991). The vector field histogram-fast

obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278–

288.

[Botelho and Alami, 1999] Botelho, S. C. and Alami, R. (1999). M+: a scheme for multi-robot

cooperation through negotiated task allocation and achievement. In Proceedings of the IEEE

International Conference on Robotics and Automation, volume 2, pages 1234–1239.

[Chib and Greenberg, 1995] Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-

Hastings algorithm. The American Statistician, 49(4):327–335.

[Chvatal, 1979] Chvatal, V. (1979). A Greedy Heuristic for the Set-Covering Problem. Mathematics

of Operations Research, 4(3):233–235.

[Dang and Jennings, 2006] Dang, V. D. and Jennings, N. R. (2006). Coalition structure generation

in task-based settings. In Proceedings of the 17th European Conference on Artificial Intelligence,

pages 210–214.

[Das et al., 2002] Das, A. K., Fierro, R., Kumar, V., Ostrowski, J. P., Spletzer, J., and Taylor,

C. J. (2002). A vision-based formation control framework. IEEE Transactions on Robotics and

Automation, 18:813–825.

[De la cruz and Carelli, 2008] De la cruz, C. and Carelli, R. (2008). Dynamic model based forma-

tion control and obstacle avoidance of multi-robot systems. Robotica, 26(3):345–356.

[Desai et al., 2001] Desai, J., Ostrowski, J., and Kumar, V. (2001). Modeling and control of

formations of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,

17(6):905–908.

164

[Dias and Stentz, 2000] Dias, M. B. and Stentz, A. (2000). A free market architecture for dis-

tributed control of a multirobot system. In Proceedings of the 6th International Conference on

Intelligent Autonomous Systems, pages 115–122.

[Donald et al., 1997] Donald, B. R., Jennings, J., and Rus, D. (1997). Information invariants for

distributed manipulation. The International Journal of Robotics Research, 16(5):673–702.

[Estlin et al., 2001] Estlin, T., Volpe, R., Nesnas, I., Mutz, D., Fisher, F., Engelhardt, B., and

Chien, S. (2001). Decision-making in a robotic architecture for autonomy. In Proceedings of the

International Symposium on Artificial Intelligence, Robotics, and Automation in Space.

[Fanelli et al., 2006] Fanelli, L., Farinelli, A., Iocchi, L., Nardi, D., and Settembre, G. P. (2006).

Ontology-based coalition formation in heterogeneous mrs. In Proceedings of the 2006 interna-

tional symposium on Practical cognitive agents and robots, pages 105–116, New York, NY, USA.

ACM.

[Fierro et al., 2001] Fierro, R., Das, A., Kumar, V., and Ostrowski, J. (2001). Hybrid control

of formations of robots. In Proceedings of the IEEE International Conference on Robotics and

Automation, volume 1, pages 157–162.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the

application of theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208.

[Fredslund and Mataric, 2002] Fredslund, J. and Mataric, M. (2002). A general algorithm for robot

formations using local sensing and minimal communication. IEEE Transactions on Robotics and

Automation, 18(5):837–846.

[Fua and Ge, 2005] Fua, C. H. and Ge, S. S. (2005). COBOS: Cooperative backoff adaptive scheme

for multirobot task allocation. IEEE Transactions on Robotics, 21(6):1168–1178.

[Garey and Johnson, 1978] Garey, M. R. and Johnson, D. S. (1978). “Strong” NP-completeness

results: Motivation, examples, and implications. J. ACM, 25(3):499–508.

165

[Gerkey and Mataric, 2000] Gerkey, B. P. and Mataric, M. J. (2000). MURDOCH: Pub-

lish/subscribe task allocation for heterogeneous agents. In Proceedings of the 4th International

Conference on Autonomous Agents, pages 203–204. ACM Press.

[Gerkey and Mataric, 2001] Gerkey, B. P. and Mataric, M. J. (2001). Sold!: Auction methods for

multi-robot coordination. IEEE Transactions on Robotics and Automation, Special Issue on

Multi-robot Systems.

[Gerkey and Mataric, 2004] Gerkey, B. P. and Mataric, M. J. (2004). A formal analysis and tax-

onomy of task allocation in multi-robot systems. International Journal of Robotics Research,

23(9):939–954.

[Gerkey et al., 2003] Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003). The player/stage

project: Tools for multi-robot and distributed sensor systems. In Proceedings of the 11th Inter-

national Conference on Advanced Robotics, pages 317–323.

[Gustavi and Hu, 2005] Gustavi, T. and Hu, X. (2005). Formation control for mobile robots with

limited sensor information. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 1791–1796.

[Hoffman and Padberg, 1993] Hoffman, K. L. and Padberg, M. (1993). Solving airline crew schedul-

ing problems by branch-and-cut. Manage. Sci., 39:657–682.

[Howard et al., 2006] Howard, A., Parker, L. E., and Sukhatme, G. (2006). Experiments with

a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection.

International Journal of Robotics Research, 25:431–447.

[Jones et al., 2011] Jones, E., Dias, M., and Stentz, A. (2011). Time-extended multi-robot coordi-

nation for domains with intra-path constraints. Autonomous Robots, 30:41–56.

166

[Kalra et al., 2005] Kalra, N., Ferguson, D., and Stentz, A. (2005). Hoplites: A market-based

framework for planned tight coordination in multirobot teams. In Proceedings of the IEEE

International Conference on Robotics and Automation.

[Klusch and Gerber, 2002] Klusch, M. and Gerber, A. (2002). Dynamic coalition formation among

rational agents. IEEE Intelligent Systems, 17.

[Lau and Zhang, 2003] Lau, H. C. and Zhang, L. (2003). Task allocation via multi-agent coalition

formation: taxonomy, algorithms and complexity. In 15th IEEE International Conference on

Tools with Artificial Intelligence, pages 346–350.

[Lemay et al., 2004] Lemay, M., Michaud, F., Letourneau, D., and Valin, J.-M. (2004). Au-

tonomous initialization of robot formations. In Proceedings of the IEEE International Conference

on Robotics and Automation, volume 3, pages 3018–3023.

[Lundh et al., 2007] Lundh, R., Karlsson, L., and Saffiotti, A. (2007). Plan-Based Configuration

of an Ecology of Robots. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 64–70, Rome, Italy.

[Lyons and Arbib, 1989] Lyons, D. M. and Arbib, M. A. (1989). A formal model of computation

for sensory-based robotics. IEEE Transactions on Robotics and Automation, 5(3):280–293.

[Michaud et al., 2002] Michaud, F., Letourneau, D., Guilbert, M., and Valin, J. (2002). Dynamic

robot formations using directional visual perception. In Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, volume 3, pages 2740–2745.

[Monteiro and Bicho, 2010] Monteiro, S. and Bicho, E. (2010). Attractor dynamics approach to

formation control: theory and application. Autonomous Robots, 29(3-4):331–355.

[Murphy, 1998] Murphy, R. R. (1998). Dempster-Shafer theory for sensor fusion in autonomous

mobile robots. IEEE Transactions on Robotics and Automation, 14(2):197–206.

167

[Ogren and Leonard, 2003] Ogren, P. and Leonard, N. (2003). Obstacle avoidance in formation. In

Proceedings of the IEEE International Conference on Robotics and Automation, volume 2, pages

2492–2497.

[Parker, 1998] Parker, L. E. (1998). ALLIANCE: an architecture for fault tolerant multirobot

cooperation. IEEE Transactions on Robotics and Automation, 14(2):220–240.

[Parker et al., 2004] Parker, L. E., Kannan, B., Tang, F., and Bailey, M. (2004). Tightly-coupled

navigation assistance in heterogeneous multi-robot teams. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, volume 1, pages 1016–1022.

[Parker et al., 2009] Parker, L. E., Reardon, C. M., Choxi, H., and Bolden, C. (2009). Using

critical junctures and environmentally-dependent information for management of tightly-coupled

cooperation in heterogeneous robot teams. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 2729–2736.

[Parker and Tang, 2006] Parker, L. E. and Tang, F. (2006). Building multirobot coalitions through

automated task solution synthesis. Proceedings of the IEEE, 94(7):1289–1305.

[Parker, L.E., 2002] Parker, L.E. (2002). Distributed algorithms for multi-robot observation of

multiple moving targets. Autonomous Robots, 12:231–255.

[Rahwan et al., 2009] Rahwan, T., Ramchurn, S. D., Jennings, N. R., and Giovannucci, A. (2009).

An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence

Research, pages 521–567.

[Ren and Sorensen, 2008] Ren, W. and Sorensen, N. (2008). Distributed coordination architecture

for multi-robot formation control. Robotics and Autonomous Systems, 56(4):324–333.

[Russell and Norvig, 2003] Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern

Approach. Pearson Education.

168

[Saffiotti, 1997] Saffiotti, A. (1997). Fuzzy logic in autonomous robotics: behavior coordination.

In Proceedings of the 6th IEEE International Conference on Fuzzy Systems, pages 573–578,

Barcelona, Spain.

[Sandholm et al., 1999] Sandholm, T., Larson, K., Andersson, M., Shehory, O., and Tohme, F.

(1999). Coalition structure generation with worst case guarantees. Artificial Intelligence, 111(1-

2):209–238.

[Sandholm and Lesser, 1995] Sandholm, T. and Lesser, V. (1995). Coalition formation among

bounded rational agents. 14th International Joint Conference on Artificial Intelligence, pages

662–669.

[Sandholm et al., 2002] Sandholm, T., Suri, S., Gilpin, A., and Levine, D. (2002). Winner deter-

mination in combinatorial auction generalizations. In Proceedings of the first international joint

conference on Autonomous agents and multiagent systems: part 1, pages 69–76, New York, NY,

USA. ACM.

[Sariel, 2005] Sariel, S. (2005). Real time auction based allocation of tasks for multi-robot explo-

ration problem in dynamic environments. In Integrating Planning into Scheduling: Papers from

the 2005 AAAI Workshop, pages 27–33.

[Service and Adams, 2011] Service, T. and Adams, J. (2011). Coalition formation for task alloca-

tion: theory and algorithms. Autonomous Agents and Multi-Agent Systems, 22:225–248.

[Shehory and Kraus, 1998] Shehory, O. and Kraus, S. (1998). Methods for task allocation via agent

coalition formation. Artificial Intelligence, 101(1-2):165–200.

[Shehory and Kraus, 1999] Shehory, O. and Kraus, T. (1999). Feasible formation of coalitions

among autonomous agents in non-super-additive environments. Computational Intelligence,

15(1).

169

[Shiroma and Campos, 2009] Shiroma, P. M. and Campos, M. F. M. (2009). CoMutaR: A frame-

work for multi-robot coordination and task allocation. In Proceedings of the IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 4817–4824.

[Simmons, 1996] Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance.

In Proceedings of the IEEE International Conference on Robotics and Automation, volume 4,

pages 3375–3382.

[Smith, 1980] Smith, R. G. (1980). The contract net protocol: High-level communication and

control in a distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113.

[Spletzer and Taylor, 2002] Spletzer, J. R. and Taylor, C. J. (2002). Sensor planning and control in

a dynamic environment. In Proceedings of the IEEE International Conference on Robotics and

Automation, volume 1, pages 676–681.

[Stroupe and Balch, 2003] Stroupe, A. and Balch, T. (2003). Value-based observation with robot

teams (VBORT) using probabilistic techniques. In Proceedings of the International Conference

on Advanced Robotics.

[Stroupe et al., 2001] Stroupe, A. W., Martin, M. C., and Balch, T. (2001). Distributed sensor

fusion for object position estimation by multi-robot systems. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, volume 2, pages 1092–1098.

[Sujan and Dubowsky, 2005] Sujan, V. and Dubowsky, S. (2005). Visually guided cooperative robot

actions based on information quality. Autonomous Robots, 19(1):89–110.

[Tang and Parker, 2005] Tang, F. and Parker, L. E. (2005). ASyMTRe: Automated synthesis of

multi-robot task solutions through software reconfiguration. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 1513–1520.

170

[Tang and Parker, 2007] Tang, F. and Parker, L. E. (2007). A complete methodology for generating

multi-robot task solutions using ASyMTRe-D and market-based task allocation. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 3351–3358.

[Tosic and Agha, 2004] Tosic, P. T. and Agha, G. A. (2004). Maximal clique based distributed

coalition formation for task allocation in large-scale multi-agent systems. In Massively Multi-

Agent Systems, pages 104–120.

[Vig and Adams, 2006] Vig, L. and Adams, J. A. (2006). Multi-robot coalition formation. IEEE

Transactions on Robotics, 22(4):637–649.

[Vig and Adams, 2007] Vig, L. and Adams, J. A. (2007). Coalition formation: From software

agents to robots. Journal of Intelligent and Robotic Systems, pages 85–118.

[Werger and Mataric, 2000] Werger, B. B. and Mataric, M. J. (2000). Broadcast of local eligibility

for multi-target observation. In Proceedings of the 5th International Conference on Distributed

Autonomous Robotic Systems, pages 347–356. Springer-Verlag.

[Zhang and Parker, 2010a] Zhang, Y. and Parker, L. E. (2010a). A general information quality

based approach for satisfying sensor constraints in multirobot tasks. In Proceedings of the IEEE

International Conference on Robotics and Automation.

[Zhang and Parker, 2010b] Zhang, Y. and Parker, L. E. (2010b). IQ-ASyMTRe: Synthesizing

coalition formation and execution for tightly-coupled multirobot tasks. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems.

[Zhang and Parker, 2011] Zhang, Y. and Parker, L. E. (2011). Solution space reasoning to improve

IQ-ASyMTRe in tightly-coupled multirobot tasks. In Proceedings of the IEEE International

Conference on Robotics and Automation.

[Zhang and Parker, 2012a] Zhang, Y. and Parker, L. E. (2012a). Considering inter-task resource

constraints in task allocation. Autonomous Agents and Multi-Agent Systems.

171

[Zhang and Parker, 2012b] Zhang, Y. and Parker, L. E. (2012b). IQ-ASyMTRe+: Achieving flex-

ible execution for tightly-coupled multirobot tasks. submitted and under revision for journal

publication.

[Zhang and Parker, 2012c] Zhang, Y. and Parker, L. E. (2012c). IQ-ASyMTRe: Forming exe-

cutable coalitions for tightly-coupled multi-robot tasks. submitted and under revision for journal

publication.

[Zhang and Parker, 2012d] Zhang, Y. and Parker, L. E. (2012d). Task allocation with executable

coalitions in multirobot tasks. In Proceedings of the IEEE International Conference on Robotics

and Automation.

[Zlot and Stentz, 2005] Zlot, R. and Stentz, A. (2005). Complex task allocation for multiple robots.

In Proceedings of the IEEE International Conference on Robotics and Automation, pages 1515–

1522.

[Zlot et al., 2002] Zlot, R., Stentz, A., Dias, M. B., and Thayer, S. (2002). Multi-robot exploration

controlled by a market economy. In Proceedings of the IEEE International Conference on Robotics

and Automation, volume 3, pages 3016–3023.

[Zlot, 2006] Zlot, R. M. (2006). An auction-based approach to complex task allocation for multirobot

teams. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA. AAI3250901.

[Zuckerman, 2007] Zuckerman, D. (2007). Linear degree extractors and the inapproximability of

max clique and chromatic number. Theory of Computing, 3(1):103–128.

172

Vita

Yu Zhang (Student Member, IEEE) received the B.S. degree in software engineering from Huazhong

University of Science and Technology, Wuhan, China, in 2006 and the M.S. degree in computer

science from the University of Tennessee, Knoxville (UTK), in 2009. He joined the Department

of Electrical Engineering and Computer Science at UTK as a Graduate Student in August 2007.

He started conducting research in the Distributed Intelligence Laboratory at UTK since 2008,

working on a project funded by NSF. His research was on multi-robot cooperation and multi-

agent systems. His research focuses on distributed robot systems, particularly on investigating

how heterogeneous robots can reason about forming coalitions based on the current robot team

configurations and environment settings, and then how robot coalitions can autonomously and

flexibly execute the assigned tasks. His research interests also include multi-agent systems, planning

algorithms, machine learning and sensor fusion.

173

	Coalition Formation and Execution in Multi-robot Tasks
	Recommended Citation

	page-thesis.dvi

