
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2013 

Vehicle-to-grid (V2G) Reactive Power Operation Analysis of the Vehicle-to-grid (V2G) Reactive Power Operation Analysis of the 

EV/PHEV Bidirectional Battery Charger EV/PHEV Bidirectional Battery Charger 

Mithat Can Kisacikoglu 
mkisacik@utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Electrical and Electronics Commons, and the Power and Energy Commons 

Recommended Citation Recommended Citation 
Kisacikoglu, Mithat Can, "Vehicle-to-grid (V2G) Reactive Power Operation Analysis of the EV/PHEV 
Bidirectional Battery Charger. " PhD diss., University of Tennessee, 2013. 
https://trace.tennessee.edu/utk_graddiss/1749 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1749&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Mithat Can Kisacikoglu entitled "Vehicle-to-

grid (V2G) Reactive Power Operation Analysis of the EV/PHEV Bidirectional Battery Charger." I 

have examined the final electronic copy of this dissertation for form and content and 

recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor 

of Philosophy, with a major in Electrical Engineering. 

Leon M. Tolbert, Major Professor 

We have read this dissertation and recommend its acceptance: 

Burak Ozpineci, Fred Wang, Paul D. Frymier 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Vehicle-to-grid (V2G) Reactive

Power Operation Analysis of the

EV/PHEV Bidirectional Battery

Charger

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Mithat Can Kisacikoglu

May 2013



c© by Mithat Can Kisacikoglu, 2013

All Rights Reserved.

ii



to my wife Sevda and my father Ahmet Refik Kisacikoglu

iii



Acknowledgements

I would like to thank first and foremost to Dr. Leon Tolbert for supporting me at

all stages of this dissertation study and for being my mentor. I learnt a lot from his

professionalism and project management skills. Moreover, he supported the study

from the beginning to the end with his patience and guidance. I also would like

to thank Dr. Burak Ozpineci for his strong and sincere help and support, and for

providing me the opportunity to use the laboratory space at Oak Ridge National

Laboratory. I also would like to thank Dr. Fred Wang for very inspiring technical

discussions on the subject. Moreover, I thank Dr. Paul Frymier for accepting to be

in the committee and for his thought provoking questions throughout the study.

There are many people that I would like to thank in the lab. Each of them has

helped me. I would like to thank to Dr. Shengnan Li, Dr. Faete Filho, Lakshmi

Reddy, Ben Guo, Dr. Ming Li, Dr. Lijun Hang, Bailu Xiao, Dr. Dong Dong, Dr.

Sarina Adhikari, Fan Xu, Zhuxian Xu, Jing Xue, Brad Trento, Weimin Zhang, Zheyu

Zhang, Yalong Li, Xiaojie Shi, Dr. Wenjie Chen, Zhiqiang Wang, Jing Wang, Yutian

Cui, Kumaraguru Prabakar, Wenchao Cao, Liu Yang, Yang Xue, Yiwei Ma, Martin

Stempfle, and Edward Jones for providing their time and intellectual support with

discussions and help. They have always been supportive. I also want to thank to

our lab manager Bob Martin for making our job easier in the lab. I thank Dr. Omer

Onar, Dr. Yan Xu, and Dr. Aleksandar Dimitrovski from ORNL for their technical

discussions. I would also like to thank to the other people whom I could not remember

their names here for their help during my Ph.D. study.

iv



Last but certainly not the least, I want to thank my wife Sevda Kisacikoglu, my

mother Mine Kisacikoglu, and my sister Deniz Kisacikoglu for their love and support.

v



Abstract

More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles

(PHEVs) will be introduced to the market in 2013 and beyond. Since these vehicles

have large batteries that need to be charged from an external power source or directly

from the grid, their charging circuits and grid interconnection issues are garnering

more attention.

It is possible to incorporate more than one operation mode in a charger by allowing

the power to flow bidirectionally. Usually, the bidirectional power transfer stands for

two-way transfer of active power between the charger and the grid. The general term

of sending active power from the vehicle to the grid is called vehicle to grid (V2G).

While plug-in electric vehicles (PEVs) potentially have the capability to fulfill the

energy storage needs of the electric grid, the degradation on the battery during this

operation makes it less preferable by the auto manufacturers and consumers. On the

other hand, the on-board chargers can also supply energy storage system applications

such as reactive power compensation, voltage regulation, and power factor correction

without the need of engaging the battery with the grid and thereby preserving its

lifetime.

This study shows the effect of reactive power operation on the design and operation

of single-phase on-board chargers that are suitable for reactive power support. It

further introduces a classification of single-phase ac-dc converters that can be used in

on-board PEV chargers based on their power transfer capabilities in addition to the

currently available surveys.
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The cost of supplying reactive power is also important to effectively evaluate

reactive power operation using chargers. There are two major impacts: one is on the

converter design (incremental costs) and the other is on the operating electricity costs.

Their combination shows the total effect and cost of reactive power operation and

can be compared with other options of the utility grid to supply reactive power. Two

customer scenarios are investigated to have two options of reactive power support.

Level 1 and Level 2 reactive power support are evaluated separately.
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Chapter 1

Background on Grid Connection of

Electric Drive Vehicles and Vehicle

Battery Charging

1.1 Introduction

According to the international energy outlook report, the world transportation energy

usage is going to increase by 44% in 2035 (compared to 2008) [13]. Therefore,

technologies related to reducing oil consumption have one of the utmost challenges in

today’s vehicle research.

Alternative vehicle technologies to replace conventional vehicles include hybrid

electric vehicles (HEVs), PHEVs, and EVs (also known as battery electric vehicles

(BEVs)). The dichotomy between HEVs and EVs/PHEVs is the presence of a charger

in the latter group. PHEVs and EVs will be termed collectively as PEVs in this study.

The charger is a power conversion equipment that connects the vehicle battery

to the grid. Chargers for these vehicles have the ability to foster the interaction of

vehicle and the external power source, i.e. the utility grid. Chargers convert the ac

voltage to a dc magnitude for the specific battery needs of PEVs. In order for the
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utility to be spared by the impact of the large number of PEV connections, chargers

play an important role in the grid integration of these new technology vehicles.

It is possible to incorporate more than one operation mode in a charger by allowing

the power to flow bidirectionally. Usually, the bidirectional power transfer stands for

two-way transfer of active power between the charger and the grid. The general term

of sending active power from the vehicle to the grid is called V2G. The economic

benefits of this operation has been a research subject for more than a decade because

of the large energy reserve of an electric vehicle battery and the potential of thousands

of these connected to the grid [14–16].

While PEVs potentially have the capability to fulfill the energy storage needs of

the electric grid, the degradation on the battery during this operation makes it less

preferable by the auto manufacturers and consumers unless a properly structured

battery warranty and compensation model is implemented [17–20]. On the other

hand, the on-board chargers can also supply energy storage system applications

such as reactive power compensation, voltage regulation, and power factor correction

without the need of engaging the battery with the grid and thereby preserving their

lifetime.

Reactive power consumed at the load side is transmitted from the energy source

to the load through the transmission and distribution system. This causes increased

energy losses and decreases the system efficiency. For long distances, line reactance

for line “k” (Xk) becomes much larger than the line resistance (Rk). Because

reactive power losses are proportional with line susceptance (Bk = −Xk/(R
2
k +X2

k))

and real power losses are proportional with line conductance (Gk = Rk/(R
2
k +X2

k)),

the relative losses of reactive power become much greater than the relative losses of

active power on the transmission lines [21]. Therefore, reactive power is best utilized

when it is generated close to where it is needed. Moreover, residential appliances

such as microwaves, washing machines, air conditioners, dishwashers, and refrigerators

consume reactive power for which the residential costumers do not pay, but the utility
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Figure 1.1: Proposed reactive power support diagram using PEVs.

is responsible to deliver. PEVs can readily supply this reactive power need locally

without the need of remote VAR transmission.

Fig. 1.1 shows the proposed application of PEVs. Customers with a PEV that

carries an on-board charger can negotiate with the utility grid to allow the usage of

the charger for grid support. The charger compensates for the reactive current (ic)

that either the customer with the PEV or other customers without a PEV demand

from the utility grid. Generating reactive current at the point of common coupling

(PCC) provides increased efficiency of power transfer through transmission lines and

decreases transformer overloading.

A vehicle can provide reactive power irrespective of the battery state of charge

(SOC). The charger can supply reactive power at any time even during charging.

However, the selected topology and the effect of the reactive power on the operation of

the charger and the battery should be well analyzed. On-board single-phase charging

systems have been researched in terms of different power factor corrected (PFC)

rectifier topologies that can be used for unidirectional charging operation [22, 23].

Other studies have surveyed bidirectional single-phase ac-dc converter topologies that

are suitable for V2G applications [24–26]. Single-phase battery-powered renewable

energy systems have also been well researched in terms of ac-dc power transfer

calculations, second harmonic current ripple elimination, and reduction of electrolytic

dc-link capacitors [27, 28]. However, there is a need in the literature for technical
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analysis and survey of topologies suitable for V2G reactive power operation for single-

phase on-board PEV charging systems and its effect on both the charger design and

battery charging operation.

A charger is composed of two power conversion stages: a single/three-phase ac-dc

conversion stage, and a dc-dc conversion stage. This study focuses on single-phase

chargers that are mostly suited for on-board charging applications. The front-end

ac-dc conversion stage can have PFC unidirectional and four-quadrant bidirectional

power transfer options. The design of the charger changes considerably between

the different options and applications. Moreover, single-phase power conversion also

adversely affects the energy storage requirements during reactive power operation due

to increased ripple energy storage at the dc-link. Another concern is the limitation

of the ac line current harmonics either during charging the traction battery or when

the vehicle supplies power back to the grid. DC-DC conversion stage can either have

an isolated or non-isolated topology based on the mandated protection requirements

by the auto manufacturers. Another concern is the limitation of battery charging

current harmonics which adversely affect the lifetime of the battery.

1.2 PHEV and EV Technology

1.2.1 Definitions of HEV, PHEV, and EV

Today, there are three types of passenger vehicles available in the market operating

with an electric traction motor powered by a battery: HEVs, PHEVs, and EVs or

BEVs. HEVs have the smallest size battery pack, and therefore an electric motor is

used to drive at very low cruise speeds or to assist the internal combustion engine

(ICE) during higher power requirements. Therefore, HEVs offer customers a way to

increase gasoline mileage by having batteries and electric drive systems work with

the ICE. The most efficient hybrid vehicles reduce the gas consumption by around

40% compared to similar size conventional ICE vehicles. However, HEVs lack the

4



availability to go for more than just short distances at low speeds with only electric

power because the battery is not capable of storing enough energy to power the vehicle

for a daily commute.

PHEVs, however, provide an all-electric range up to a pre-specified distance with a

larger size battery pack, which is not inherent in HEVs. There are several definitions

on how a PHEV is defined. According to [29], the battery pack capacity should be at

least 4 kWh, and the PHEV must be rechargeable by an external source of electricity.

Another definition adds the ability to drive the vehicle at least 10 miles in electric-only

mode without consuming any gasoline as a requirement for a vehicle to be classified as

a PHEV. By definition, an EV has only an electric motor in the traction drive which

is powered by an on-board battery, and conventional vehicles have only combustion

engines. The 2010 Toyota Prius HEV has only 1.3 kWh on-board traction battery

capacity. As a comparison, the 2011 Chevrolet Volt PHEV has a 16 kWh battery

capacity [30], and 2011 Nissan Leaf EV has a capacity of 24 kWh on-board battery

energy storage [31].

PHEVs operate in charge-depleting (CD) mode when most/all of the energy comes

from the battery during the all-electric mode; hence, the battery is in the deep cycle

mode. If the battery reaches its minimum state of charge, the control system switches

to the charge-sustaining (CS) mode where the battery experiences only shallow cycles.

PHEVs are usually described as PHEV-X where X is the number of miles that a PHEV

can go just with the electric energy. The explanation of the different operation modes

in EV, HEV, and PHEV are demonstrated in Fig. 1.2.

1.2.2 The current status of PEVs

Light-duty passenger PEVs that have demonstrated successful market penetration

and that will be in mass market in upcoming years prove that the challenges regarding

the grid connection issues of these vehicles need to be taken very seriously. This
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Figure 1.2: Charge depleting and charge sustaining modes for the EV, HEV, and
PHEV [9].

section lists the market vehicles in terms of their grid-related features such as energy

storage and charging specifications.

Table 1.1 lists the important specifications of the surveyed vehicles. As shown

in this table, the battery pack voltage has an increasing trend compared to older

versions of the vehicles. Most of the vehicles have more than 330 V nominal pack

voltage. However, mechanical configuration of cells changes from vehicle to vehicle.

The on-board dedicated charger output power rating generally stays between 3 kW

to 7 kW.

Design of the charger of a vehicle traction battery includes different options in

terms of where to place the charger and how to design the charger. The circuit

topology, location, connection type to the vehicle, electrical waveform of the charging

coupler, and the direction of power flow can totally change the design of the charger

(more on this classification is explained in [32]). Although the surveyed market

vehicles employ different combinations of the above classification, most of the vehicles

carry its charger on-board for increased charging availability. Although carrying the
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charger on-board increases the availability of charging the vehicle, it also brings added

cost and weight to the vehicle. Also, the power rating of the charger is inversely

proportional to the charging time necessary to fully charge the vehicle battery.

Therefore, it is desired to have a high power charging rate to make the EV charging

experience comparable to the filling time of a gasoline tank. However, due to space

and weight limitations on a vehicle, the on-board charger must be restricted in power

rating. So, these two objectives contradict with each other and a compromise should

be made. The power rating is also related to the type of the vehicle. For instance,

EVs usually require a charger with a higher power rating compared to PHEVs due

to having a larger battery. As shown in Table 1.1, battery sizes of an EV in the U.S.

market change between 16 kWh - 53 kWh whereas a PHEV has its pack with 4.4 kWh

- 20.1 kWh energy capacity. Therefore, for comparable charging time, an EV usually

requires its charger to have a higher power rating. For instance, EVs with integrated

chargers∗ (BMW Mini E and Tesla Roadster) have higher on-board charging power

capability (> 11 kW).

1.3 Vehicular Traction Battery Technology Status

For years, the biggest hindrance of deployment of EVs has been the lack of a portable

high-energy storage device. With recent developments in battery technology, it has

been easier to overcome this obstacle. During this advancement of vehicle grade

batteries, the main categories that the vehicle battery research has focused on are:

energy, power, life span, safety, and cost [49].

The energy stored in a battery determines the electric drive range and is measured

in amp-hour (Ah) or watt-hour (Wh). The electric drive range of a PHEV is

proportional to the amount of stored energy, as more energy is required to drive

the vehicle in electric-only mode. Since the available space is limited in vehicles,

researchers usually focus on the energy density (watt-hour per liter (Wh/l)) or specific

∗The definition of integrated chargers are explained in chapter 2
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Table 1.1: Specifications for commercially available PHEV/EVs.

# Vehicle Make Type Battery Electric Battery Charger Level 2
and Model Size range voltage power charging

(kWh) (mi) (V) (kW) time(h)

1 BMW Mini E [33] EV 35 156 380 11.5 3 - 4.5
2 BMW Active E [34,35] EV 32 100 N/A 7.7 4 - 5
3 BYD F3DM [36] PHEV 16 40 - 60 N/A N/A 7
4 Coda Sedan EV 36 150 333 6.6 6
5 Fisker Karma [37] PHEV 20.1 50 336 3.3 6
6 Ford Focus EV 23 100 N/A 6.6 3-4

Electric [38]
7 Ford Transit EV 28.3 80 390 3.3 6-8

Connect EV [39,40]
8 GM Chevrolet PHEV 15 35 N/A 3.3 4

Volt [30]
9 GM EV1 EV 26.4 160 343 6.6 3

(NiMH version) [41]
10 Mitsubishi MiEV [42] EV 16 62 330 3.3 6.5
11 Nissan Leaf [31] EV 24 73 365 3.3 7
12 Renault Fluence EV 22 100 NA 3.7 6-8

Z.E. [43]
13 Renault Kangoo EV 22 100 NA 3.7 6-8

Z.E. [43]
14 Smart Fortwo EV 16.5 84 NA 3.3 8

ED
15 Tesla Roadster [44] EV 53 244 375 16.8 3-4
16 Tesla Model-S [44] EV 42,65, 160, 230, N/A N/A N/A

and 85 and 300
17 Think City [45] EV 24 100 N/A 3.3 8
18 Toyota Prius PHEV 4.4 15 346 2 4

Plug-in Hybrid [46]
19 Toyota RAV4 EV 27 130 288 6 N/A

EV- 1st Gen. [47]
20 Toyota RAV4 EV 37 96 N/A N/A 12

EV- 2nd Gen. [48]

energy (watt-hour per kilogram (Wh/kg)) of a battery. The amount of stored energy

is more of a concern for EVs compared to PHEVs, since EVs do not have a gasoline

tank to extend the driving range on a single charge.

The battery power is measured in watt (W); however, as in the energy and energy

density, battery researchers focus on power density (watt per liter (W/l)) or specific

power (watt per kilogram (W/kg)) in battery terminology. Higher battery power
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translates into higher motor torque or vehicle acceleration. The power rating is also

important to determine how fast a battery can be charged which is usually much

slower compared to discharging.

The battery life span includes two different cycle measurements; the first of which

is the minimum calendar life. A vehicle battery is expected to operate above a

specified capacity for the calendar life period of 15 years with limited degradation [49].

The next important item for the battery lifetime is the cycle life which relates to the

total number of charging-discharging cycles that the battery is exposed to during

its lifetime. A battery experiences both deep and shallow charge-discharge cycles

depending on its operation mode. A deep cycle means one complete charging and

discharging of the battery usually between 20% and 90% of the SOC†. A shallow cycle

usually occupies a very narrow SOC window, i.e. 40% - 60%. A shallow cycle is more

battery friendly compared to a deep cycle since a smaller SOC window is used. In

other words, a deep cycle affects the battery lifetime worse than a shallow cycle.

Safety should always be kept as the number one priority for all of the operating

conditions. Batteries require strict safety precautions, which are detailed in

section 1.4.4.

Batteries should meet the above requirements with an affordable cost goal. For

years, high battery costs have prevented the technology from being widespread.

However, with recent research and development advances, PEVs have been in

the market recently with the cost and performance characteristics comparable to

conventional vehicles in the market [30, 31].

There are three main battery technologies that stand out from the rest. These

are lead-acid, nickel metal hydride (NiMH), and Li-ion technologies. In this section,

these batteries are investigated and compared with respect to their weight, volume,

energy, charge and discharge power, operating temperature range, life span (cycle and

calendar), cost, safety-electrical abuse tolerance, and availability.

†The definition of SOC is given in section 1.4.1
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1.3.1 Previous battery technologies: lead-acid and NiMH

batteries

The lead-acid battery was the most preferred option to power early EVs; therefore,

it is readily available at a reasonable cost owing to the maturity of the technology

and manufacturing. Its good discharge power capacity makes it easier to respond

fast to load changes. In contrast, it has a low energy density and is heavy. Also,

lead-acid batteries have short life spans as a consequence of the deterioration from

deep discharges. The first EV released to the market General Motors (GM) EV1 used

a lead-acid battery to provide power to electrical drive motor.

A NiMH battery has simple charge and discharge reactions, and it does not have

soluble intermediates or complex phase changes as opposed to lead acid batteries [50].

Therefore, NiMH batteries have higher power and energy densities and a longer

intrinsic cycle life. Also, a NiMH battery is resistant to damage as it can tolerate

moderate overcharges and deep discharges. Due to the high energy density of NiMH

batteries, the range of a vehicle with a NiMH battery is doubled compared to a

vehicle with the same size and weight lead-acid battery [50]. Finally, due to low

internal resistance, a NiMH battery has a much higher charge acceptance capability

which results in higher charging efficiency.

One drawback of the NiMH batteries is the high self-discharge rate compared to

lead acid batteries, which causes batteries to lose charge when not used. The self-

discharge is 5-10% on the first day and averages around 0.5-1% per day at room

temperature [51].They also have higher cost compared to lead-acid, poor charge

acceptance capability at high temperatures that result in low cell charging efficiency

at these temperatures. Most of the HEVs currently in the market employ a NiMH

battery including Toyota Prius and Honda Insight.
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1.3.2 Li-ion battery technology for vehicular traction appli-

cation

Lithium-ion battery cells are expected to become viable energy storage devices for

coming generations of PEVs according to experts [52]. The superiority of Li-ion

batteries have been demonstrated over other type of batteries in supplying greater

discharge power for faster acceleration and higher energy density for increased all-

electric range. Furthermore, higher efficiency operation and lower weight make them

preferable for vehicular applications. However, some issues including cell life (calendar

and number of charge-discharge cycles), cost, and safety still need improvement and

are the main impediments to widely employ Li-ion batteries in PEVs [52, 53]. One

important issue with Li-ion batteries is the need to equalize each cell charge to balance

out the total charge among the cells in a more precise way compared to lead-acid and

NiMH chemistries. In addition, since lithium is more chemically reactive, it is more

intolerant to abusive conditions which require the battery management system to

protect it from overcharging and overheating. Poor cold temperature operation is

another drawback of Li-ion battery.

The term Li-ion does not specifically correspond to particular battery chemistry

as NiMH does. Rather, it includes several chemistries that can be classified

with respect to different cathode contenders. Some of the major cathode compo-

sitions are lithium-cobalt-dioxide (LCO), nickel-manganese-cobalt (NMC), nickel-

cobalt-aluminum (NCA), lithium-manganese oxide spinel (LMS), and lithium-iron-

phosphate (LFP). Although each type of Li-ion cell has some advantages, lithium-

iron-phosphate cathode is a new and promising cathode for PEV applications with

increased safety and stability features [52,54]. Its failure due to overcharging does not

emit too much heat. However, it has lower cell voltages compared to other cathodes,

and hence many of these have to be connected in series requiring more balancing

issues. To solve the low cell voltage problem, nanostructures are being used. This

new nanotechnology offers better power and longer life than earlier generations [52].
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A Li-ion cell with lithium titanate spinel anode rather than graphite is also

advantageous for a vehicle to charge/discharge faster. In addition, it has improved

cycle and calendar lifetime. In this case, energy density is compromised at the expense

of getting a much broader operation temperature range as well as a safer voltage

range [55].

Consequently, researchers agree that among batteries Li-ion batteries stand out

for their advantages of higher energy density and lighter weight [1–5, 52–56]. Life

cycle, abuse tolerance, and cost are the next barriers to overcome for this technology.

Most of the vehicle manufacturers that made publicly available EV/PHEV models in

the market use Li-ion batteries.

As a summary, battery technologies are compared with different performance and

cost characteristics in Table 1.2. This table is a result of a literature survey based on

both battery cell manufacturers data sheets and individual cell tests [1–5] . As it is

shown in Table 1.2, each different lithium-ion cathode composition cell has pros and

cons, and they are still under development.

Table 1.2: Different battery cell comparison [1–5].

Specific Specific Life
Battery type power energy Cost Safety Calendar Cycle Manufacturer

(W/kg) (Wh/kg) (deep)

Lead-acid Low Low Very low Proven Low Low Many
NiMH Moderate Moderate Moderate Proven Good Good Many
Li-ion LCO Good Good- High Low Low Poor Many, mostly

excellent consumer electr.
Li-ion LFP Good- Good Low Excellent Good Good A123, Valence,

excellent and Gaia.
Li-ion NCA Good- Good- Moderate Low Good Good Toyota, Johnson

excellent excellent Controls-Saft
Li-ion NMC Good Good- Moderate Moderate Moderate Poor Hitachi,

excellent Panasonic, Sanyo
Li-ion LMS Moderate Good Moderate Moderate Moderate Poor GS Yuasa, LG

Chem, Samsung
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1.4 Discussion and Definition of PEV Battery

Charging

This section describes the important battery, charger, and charging terminologies and

definitions that are used throughout this study.

1.4.1 Battery and charging definitions

State of charge

In order to predict how many driving miles are left for the electric mode in a PEV,

one needs to interpret the fuel gauge of the battery. SOC is the gauge that is used to

understand the amount of charge which is proportional to the amount of energy that

can propel the vehicle with only electric power. It is analogous to the fuel gauge that

is used to show how much gas is left in the tank in an ICE vehicle.

There are different methods used to determine the electrical energy that exists in

the chemical bonds of the battery. One simple and efficient method is to measure

the current, thereby charge, entering and leaving the battery which is called coulomb

counting. Based on this method, SOC can be found using Eq. 1.1:

SOC =
Q0 ±

∫
ibtdt

Qn

× 100 (1.1)

where Qo is the initial electric charge present before charging/discharging the battery

[C], Qn is the nominal electric charge capacity of the battery [C], and ibt is the battery

current [A]. ibt can be either negative or positive depending on the current direction.

If the current is entering the battery, SOC will increase and vice versa. As shown in

Eq. 1.1, SOC is a normalized value that is written in percentage for easier readability

of the battery gauge.
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State of discharge

Another definition is also used to measure the discharge state of the battery, state

of discharge (SOD). It stands for the complement to SOC, meaning that it describes

how much electricity has been taken out of the battery. Therefore SOC and SOD

always sum to one. Mathematically, it follows as:

SOD = 1− SOC (1.2)

SOD is also termed as depth of discharge (DOD) which corresponds to the same

definition.

State of health

A method of assessment to determine the condition of the battery cell is called

state of health (SOH). It measures the condition of the battery to determine if

battery operates above its factory guaranteed operating conditions. It is a relative

measurement to the brand new battery cell. However, there is no direct method of

assessing SOH like SOC. Rather, the history on the usage of battery is recorded in

battery management system (BMS) to derive representation of SOH. The function of

the BMS will be explained later.

Charging rate

Every individual battery cell has a charging current rate as a default manufacturer

value. This is often termed as “C-rate”. C stands for the rated charge current of the

battery cell that will fully charge the battery in one hour. All the charging currents

are often referred to the rated current using the C rate such that n × C is a charge

rate equal to the n times the rated charging current where n is a real number. For

instance, 0.1C charging rate means the charging current is 10% of the rated charging
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current of the battery cell. As n increases, the charging time required to fully charge

the battery cell decreases and vice versa.

1.4.2 Charging profiles

The common charging profiles used in the industry for lithium-ion (Li-ion) batteries

are constant current (CC) and constant voltage (CV) charging. During CC charging,

the current is regulated at a constant value until the battery cell voltage reaches

a certain voltage level. Then, the charging is switched to CV charging, and the

battery is charged with a trickle current applied by a constant voltage. Lithium-ion

batteries with a cathode composition being lithium-cobalt-oxide, which is mostly used

in consumer applications, (cell phone, camera, mp3 players, etc) have the following

charging profile shown in Fig. 1.3. These batteries have a maximum charging voltage

of 4.2 V. One observation from the charging profile is that the battery cell requires

around 50 min to finish CC charging phase starting from 0% SOC with 1C charging

current. At the instant when the battery reaches 75% SOC, the charger switches from

CC to CV charging. The CV charging takes around 2 h 40 min resulting in a total

charge time of 3.5 h [10]. Therefore the charge time required to charge the battery

cell up to 75% SOC is around 25% of the total charge time. In comparison, to cover

only 25% SOC, the charger needs to charge for 75% of total charge time during CV

charging. In comparison, Li-ion LFP batteries present a different charging profile

compared to Li-ion LCO batteries because of the difference in the chemical structure.

For LFP batteries, CC charging stage takes 75% of the total charging time whereas

CV charging occupies 25% of the total charging time as shown in Fig. 1.4.

1.4.3 Charging levels in the U.S.

There are three charging levels based on the voltage and current ratings used to charge

a vehicle battery: Level 1, Level 2, and dc fast charging. However, only Level 1 and

Level 2 have been standardized [57]. DC charging, or previously known as Level 3
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Figure 1.3: Li-ion LCO battery CC-CVcharging profile [10].

charging, is still under development [57]. Fig. 1.5 shows the map of the U.S. standard

outlet receptacle ratings. There are different chargers; most of them are introduced

in the next chapter, rated at Level 1, Level 2, or dc charging schemes.

Level 2 charging is much more preferred because of reduced charging time

compared to Level 1 charging. This method employs standard 208-240 V ac single

phase power outlet that has a continuous current rating less than 80 A [57]. For

example, Nissan Leaf EV has a total of 8 h charging time using its 3.3 kW on-board

charger to fully charge its 24 kWh depleted battery pack [31]. Also, it takes around

4 h to fully charge the depleted 16 kWh Chevrolet Volt PHEV battery [30].

Another charging method is fast charging or dc charging. At these charging

stations, ac voltage is converted to dc off the vehicle and the vehicle is dc coupled

to the charging station. Charging power can go up to higher values compared to the

on board charging.Therefore, it will help vehicles to be charged in shorter amount of

times. However, decreased battery lifetime is an issue because of the increased heat

generation of the batteries at higher rates of current charging. As an example to

decreased charging time for this type of station, Nissan Leaf EV will be charged with

an off-board quick charge station in 30 min from a depleted SOC to 80% SOC [31].
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Figure 1.4: Li-ion LFP battery CC-CV charging profile.

1.4.4 Battery charging security and charging power quality

For lithium-ion batteries, the precautions in handling a secure battery operation are

more important than other type of batteries. Since they are prone to failure in

harsh working conditions, it is mandatory to have the utmost protection in vehicle

applications both for customer and expensive battery safety point of views. Therefore,

battery manufacturers also sell battery management systems, BMS for short, with

added price to the battery cost. BMS is responsible for overseeing safety in charging

and discharging operation. The key protection goals for Li-ion batteries include

over-voltage, deep discharge, shutting-off in case of over temperature, shutting-off

in case of over-current, and individual cell charge balancing [52, 58]. Especially

for inrush current conditions, the BMS needs tight regulation not to allow any

overcharging current entering the battery cells. BMS should also perform SOC

and SOH determination, history (log book) function, and communication with other

system components such as charger, grid, and the motor drive.

Since the battery manufacturer is responsible for the BMS, the charger only sends

power to the battery pack where the BMS is also included. However, there is another

issue that can cause problem for the battery cells related to the operation of the

charger. This is the quality of the waveform of the dc voltage output of the battery
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Figure 1.5: Charging outlet circuit breaker map with respect to receptacle voltage
and current ratings [11].

charger. The chargers’ output voltage waveform must be well regulated. In other

words, the low/high frequency components present at the output voltage must be

less than the maximum allowed voltage ripple harmonics to protect the health, and

thereby the lifetime of the battery.

Currently, there is not much information about the effects of ripples on lifetime

of the Li-ion batteries in the literature. It is difficult to find direct impacts of the

ripple on the battery especially considering that each different Li-ion technology has

different structures. However, there is a mature experience about lead-acid batteries

in the literature and in the market [6, 59–67]. Hence, this experience can give the

designer of the charger an idea about the limits on voltage and also current ripples.

Battery manufacturers give ripple limits to which a battery can be exposed.

Table 1.3 summarizes the ripple limits taken from different manufacturers for lead-

acid valve-regulated lead-acid (VRLA) batteries. The design of the charger should

be optimized by selecting correct inductance, capacitance, switching frequency, and

feedback compensator values to meet these requirements.

In order to understand the adverse effects of ripple on batteries in general, one

needs to know how the ripple current converts to extra heat. A typical single-phase
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Table 1.3: Different battery manufacturer limits for charging current and voltage
ripple [6].

Manufacturer Battery type Voltage ripple Current ripple

Yuasa Lead-acid N/A C/10
Dynasty, Johnson Lead-acid 1.5% rms and N/A
Controls 4% peak-peak
C&D Tech Lead-acid N/A C/20

charger output voltage has two main ripple frequencies: one is at the second harmonic

with respect to grid frequency, and the other is at the converter switching frequency.

Assuming a simple battery model shown in Fig. 1.6, the extra ripple current will

convert into extra heat due to the internal resistance of the battery pack, Ri in

Fig. 1.6.

To calculate the total ripple current, the ripple output voltage of the charger at

the specified frequency must be known. For example, the ripple current at a specified

frequency can be related to the ripple voltage and the internal resistance by the

equation:

Ibt−ripple =
Vbt−ripple

Ri

(1.3)

where Ri is the equivalent internal resistance of the battery pack [Ω], Vbt−ripple is the

voltage ripple root mean square (rms) value present in the charger dc output voltage

[V], and Ibt−ripple is the ripple rms current value present in the battery charging current

Ri

Vbt

ibt
ibt

ibt

Figure 1.6: A simple equivalent circuit of the battery pack.
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[A]. However, the internal resistance is not constant in different frequencies, and it

decreases as the frequency of the ripple current increases. Assuming that each cell has

the same internal resistance, and this resistance is the worst case resistance measured

at the low frequency ripple current, the added dissipated power because of the total

ripple becomes equal to:

Ploss = I2bt−ripple−total ×Ri (1.4)

where Ibt−ripple−total is the rms sum of the ripple currents at different frequencies. It

is important to note that Ri also changes dynamically with different rms current

values and temperature. Temperature increase should be limited by controlling this

extra current. To show the effect of temperature increase on batteries, some of the

derived assumptions about lead-acid batteries in the literature are: 1) a temperature

increase of about 7-10 ◦C causes half of the lifetime of the battery to vanish [59, 61],

2) each degree C rise in battery temperature can decrease calendar life by 10% [6], 3)

maximum allowable temperature increase should be around 3-5 ◦C, and 4) corruption

and wear in the battery can also cause capacity loss [60].

In conclusion, the charger design procedure should include the battery ripple

restrictions into account to reduce the extra heat dissipation in the battery cell.

Therefore, the output voltage of the battery charger must be limited in its ripple

voltage magnitude both in second harmonic ripple and in converter switching

frequency ripple. Due to the electro-chemical process in the battery, the lower

frequency ripple current will cause more heat dissipation compared to a higher

frequency ripple current that has the same rms value.

1.4.5 Grid Connection Power Quality

One of the important requirements of an EV/PHEV charger is the amount of current

distortion that it draws from the grid. The harmonic currents need to be well

regulated not to cause excess heat which decreases the distribution transformer

lifetime. Therefore, if this distortion is not limited, it can pose a threat on the
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utility grid. There are two definitions to measure the harmonic content of the battery

charger current. The first parameter is THD is defined as follows.

THD =
Ic,h
Ic,1

(1.5)

where Ic,h is the rms sum of the harmonics (usually up to n=39) of the charger current

[A], i.e. Ic,h =
√∑39

n=2 Ic,n
2 and Ic,1 is the rms fundamental (60 Hz) component of the

charger current [A]. However, this definition is not enough to account for all charging

currents of a charger. When there is a need to control the charger input current

to help reduce the demand from the grid, the rms charger current may need to be

reduced to less than 50% of the rated current. As loading on the grid decreases,

the harmonic content of the charger current is not as disturbing to the grid as when

the loading is high. In such cases, total harmonic distortion (THD) does not reflect

the real impact of the harmonic content of the charger on the grid. Therefore, total

demand distortion (TDD) can be used to accurately evaluate the harmonic content

of the charger between 0 – 100% loading range. The definition of the TDD is shown

in (1.6).

TDD =
Ic,h

Ic,1,rated
(1.6)

where Ic,1,rated is the rated fundamental current of the charger [A]. The only difference

between TDD and THD is the change in the denominator. TDD is equal to THD

when charging occurs at the rated current, i.e. Ic,1 = Ic,1,rated. Table 1.4 lists the

limits for the harmonic content of the single-phase chargers operating either as a load

or as a distributed generator based on the limits shown in [7, 8]. It is important to

note that the charger should meet the individual harmonic limits as well as the TDD

limit which are calculated separately, i.e. Ic,3/Ic,1,rated <4.0%, Ic,13/Ic,1,rated <2.0%,

etc. and TDD<5% using (1.6).
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Table 1.4: Maximum Harmonic Current Distortion for Single-phase On-board
Bidirectional Chargers [7, 8].

Individual harmonic
Max. distortion in percent of Ic,1,rated

order Odd harmonics Even harmonicsa

h<11 4.0 1.0
11≤h<17 2.0 0.5
17≤h<23 1.5 0.375
23≤h<35 0.6 0.15
35≤h 0.3 0.075
TDD 5.0 1.25

aEven harmonic limits are 25% of the odd harmonics

1.5 Why V2G Reactive Power Support?

A potential benefit of PEVs is the ability to maintain the reliable operation of the

grid by coordination between the vehicle and the utility. There are various services

that PEVs can supply to the grid. Since every PEV has a charger that can convert

ac to dc, this charger can be developed so that it can also send power back to grid

for V2G operation. Based on the specific service provided, the utility can benefit

by using a considerable amount of energy storage at the distribution system level.

Coupled with this, the design of the charger can alleviate some of the problems that

the utility are concerned with the integration of PEVs. These issues are listed below.

First, reactive power consumed at the load side are transmitted from the energy

source to the load through the transmission and distribution system. This causes

increased energy losses and decreases the system efficiency. With on-site generation

of reactive power, the amount of reactive power that need to be transmitted from the

generation side will decrease.

A recent DOE report predicts that the annual sales of EVs and PHEVs combined

can reach up to 300 thousand vehicles by the year 2035 [13]. Another study claims

that the annual sales of EVs and PHEVs combined would reach up to 500 thousand

by the year 2020 with more than a cumulative of 2.5 million of them on the road [68].

The PEV charging is one of the primary concerns of smart grid applications due to its
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effect on power generation, transmission, and distribution when the large scale of PEV

load is considered. While the requirement for more power generation will be a concern

with an increased number of PEVs, the distribution system level issues raise more

questions. Several studies look at the effect of PEV charging at distribution system

level. Studies show that depending on the number of PEVs connected, the rating

of the chargers in those PEVs, size of the energy storage, rating of the distribution

transformer (25-100 kVA), harmonic content of the charging current, geographical

location, and if any charging management control is employed, the lifetime of the

distribution transformer may reduce down to its 30% of regular life expectancy [69,

70]. To prevent such problems on the distribution system, the utilities must build

infrastructure to enable smart grid incentives like variable rates, smart meters, grid

communications, and distributed energy management.

A regular microwave oven consumes up to 0.5 kVAR and a washing machine

consumes up to 0.8 kVAR of reactive power. Other loads of reactive power in a

residential house include air conditioner, dishwasher, and refrigerator, etc. Although

appliances consume reactive power, the customers are not billed for the reactive

power they use. Instead, utility pays for the reactive power for residential customers.

However, with increased number of PEV connection and the aforementioned issues

of transformers makes the on-site generation of reactive power an important add-on

value. Therefore, generating V2G reactive power will help the utility by providing

increased efficiency of power transfer through transmission lines and decreasing

overloading of transformers

Consequently, of utmost importance is the need to regulate PEV - grid interaction.

The design of the battery charger will be crucial in this effort to effectively control the

power flow and, as a result, maintain continuous service of efficient electrical energy

supply.

23



1.6 Proposed Study

This study first proposes an analysis and experimental verification of the effect of

reactive power operation on the design and operation of a single-phase on-board

bidirectional charger. The topology consists of two stages, an ac-dc converter and

a dc-dc converter. The operation modes that are of interest are PFC unidirectional

charging operation, charging and reactive power operation, and full-reactive power

operation. The main effect of the reactive power operation is observed on the

operation of dc-link capacitor. Its peak-peak voltage ripple, and low frequency current

ripple affects the selection of the electrolytic capacitors and operation of the charger.

Furthermore, the effect of reactive power operation on the battery charging operation

is also summarized.

Second, the study also proposes a novel control system for PQ command following

of the bidirectional charger. It contributes to the literature of the reactive power

support operation of on-board bidirectional chargers by proposing a variable dc-link

voltage control that helps to generate a reference dc current for battery charging. The

study experimentally shows the verification of the proposed controller.

Finally, the incremental and operating costs of reactive power are summarized

and compared with other options of reactive power supply. The net cost penalty of

the charger for two different customer cases are calculated.

1.7 Outline of the Dissertation

The dissertation is organized into seven chapters. The first chapter is background

information on alternative vehicles, their energy storage, and grid connected charging.

It elaborates on the vehicle types with grid chargeable batteries; namely, EVs

and PHEVs. Then it describes the battery technology that is used in current

grid-connected vehicles and presents the important definitions and subjects related

to vehicle battery charging. Chapter 2 is concerned with the classification and
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comparison of all the different battery charging devices that have been used in

the market. It highlights the power electronics topology structure of different

chargers. Chapter 3 presents the analysis of reactive power operation using single-

phase bidirectional chargers. It summarizes the effect of reactive power operation

on different components of the charger. Chapter 4 describes the simulation study

of the system. Chapter 5 describes the design of the system and implementation of

the controller. Chapter 6 evaluates the cost of reactive power operation for different

charger and customer profiles. Chapter 7 concludes the study.
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Chapter 2

Literature Survey of PHEV/EV

Battery Chargers and V2G Power

Transfer

2.1 Discussion and Classification of Battery Charg-

ers

Since the inception of the first EVs, there have been many different charging systems

proposed. The chargers can be classified based on the circuit topologies (dedicated

or integrated), location of the charger (either on or off the vehicle), connection

(conductive, inductive/wireless, and mechanical), electrical waveform (dc or ac), and

the direction of power flow (unidirectional or bidirectional) as listed in Table 2.1.

More on this classification can be found in [32].

There is not a single charging method that will fulfill all the customer expectations.

It will most likely be a combination of different methods that will maximize the

charging availability of a PEV. Among the noteworthy chargers of the industry

and literature which initially attracted the attention of several number of vehicle

manufacturers, are dedicated, on-board, conductive, ac, and unidirectional chargers.
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Table 2.1: Charger classification chart.

Classification type Options

Topology Dedicated or Integrated
Location On-board or Off-board
Connection type Conductive, Inductive, or Mechanical
Electrical waveform AC or DC
Direction of power flow Unidirectional or Bidirectional

However, there is a great potential to further develop the topologies and make the

charger design more advanced with functions for future smart grid applications such

as V2G support. In the next section, the literature will be presented in the framework

of V2G support.

2.2 PHEV/EV Charger Power Electronics and

Configurations

The focus of this section is to analyze the available topologies applicable for on-

board conductive bidirectional power transfer operation. Bidirectional power transfer

means that the active power can either be transferred from the utility to the vehicle

(charging) or from the vehicle battery to the grid (discharging). The charger

topologies investigated in this section are single-phase Level 1 and Level 2 compatible

bidirectional chargers. Some other charger topologies including unidirectional

topologies are also highlighted to compare with the surveyed bidirectional topologies.

There are basically two power conversion stages required to charge the battery

using grid electricity: one is the alternating current (ac)-direct current (dc)

rectification and the other is the dc-dc conversion as shown in Fig. 2.1. Each of these

stages can be formed with many different passive and active component combinations

(inductors, capacitors, and semiconductor switches). Any combination of the two

aforementioned stages will result in a different topology. Rather than giving different
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Figure 2.1: Schematic of an on-board charger with other charging components.

available ac-dc power conversion circuits, only the ones that are found promising in

the literature to be used with on-board Level 1 and Level 2 charging are listed here.

The discussion includes single-phase Level 1 and Level 2 chargers. Off-board dc

fast charging topologies can be analogous to the ones discussed here. However, this

charging level employs a three-phase system. Therefore, it will require increased

number of component and higher ratings for the devices.

As shown in chapter 1, the common nominal battery voltage levels in PHEVs and

EVs that are in the market, are in between 300 V- 400 V. The terminal voltage levels of

PHEVs/EVs are higher than HEVs mainly because of increased power requirement

from the battery. Higher terminal voltages will allow for smaller cabling size and

considerably decrease the current ratings of active and passive devices for a given

power level. Due to high battery voltage and a 120 V/240 V grid connection, a

boost rectification stage is preferred over a buck rectification stage to prevent an

unnecessarily high conversion ratio between the dc link and the battery terminals.

A charger can be configured in two different ways in terms of its active and reactive

power transfer capability with the utility grid as shown in Table 2.2. The first option

is the PFC unidirectional charger that is mostly in use in todays PHEVs and EVs.

Its operation boundary is shown in Fig. 2.2a as the red line on the positive power

axis of the P-Q power plane. This charger operates close to unity power factor
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Table 2.2: Different types of chargers based on power transfer operation.

Charger type Active power direction Reactive power direction

Power factor-corrected Grid-to-vehicle charging Zero
unidirectional
Four-quadrant Grid-to-vehicle charging or Inductive or capacitive
bidirectional Vehicle-to-grid discharging

and only allows controlling the active power used to charge the battery. Therefore,

it operates only on the positive x-axis of the P-Q power plane. Second, the four-

quadrant bidirectional charger operates in the full circle shown in Fig. 2.2b. All of

the charger types have a maximum power limitation marked as Pmax and Qmax, which

are defined by the charger apparent power rating and the outlet power rating that

the charger gets power from.

The following section will present an overview of the power electronics topology

of the charger types listed in Table 2.2. The topologies listed here in the next section

only include ac-dc rectification. The dc-dc conversion circuits are separately explained

later in this chapter in section 2.2.3

2.2.1 Power Factor-Corrected Unidirectional Chargers

PFC unidirectional chargers only transmit power from the utility to the vehicle

battery and operate with almost unity input power factor. In other words, they

are not designed to exchange reactive power with the grid. Today, all of the PHEV

and EV manufacturers that are in the market use this type of charger. Some of the

ac-dc rectification stages are highlighted in the next sections.

Conventional AC-DC Boost Converter

In this topology, a front-end diode bridge is used to rectify the input voltage, and it is

followed by a boost section as shown in Fig. 2.3. This topology is widespread for low

power applications. Due to conduction losses of the diode-bridge, it is not well suited

for power levels higher than 1 kW [22, 71]. Another problem is the design of the dc
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Figure 2.2: Operation regions of different chargers shown in red in P-Q power plane.
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Figure 2.3: Conventional ac-dc boost converter.

inductor at high power levels. As a solution to this problem, interleaving techniques

are proposed as shown in the next section.

Interleaved AC-DC Boost Converter

Interleaving the boost section of the conventional PFC is first introduced in [72] and

shown in Fig. 2.4. The main advantage of this topology is decreased high frequency

PWM rectifier input current ripple caused by the switching action. Reducing input

ripple decreases the required switching frequency to meet a current TDD limit

imposed by the utility. Reducing PWM input ripple current also decreases the
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ac ripple current supplied by the dc link capacitor, thereby reducing its stress.

Another advantage is the reduced current rating of the active switches as the

interleaving converter halves the input current. One disadvantage of the topology is

the high conduction losses of the input bridge rectifier as well as increased number of

semiconductor devices and associated gate control circuitry. This topology is preferred

by the industry for on-board charging applications and is used for 3.3 kW Level 2

chargers [73, 74].

Bridgeless AC-DC Boost Converters

This converter type eliminates the input diode-bridge to attain higher efficiencies at

increased power levels at the expense of using a higher number of active switches,

and increased control and sensing circuit complexity. The topology proposed in [75]

is called symmetrical bridgeless boost rectifier and is shown in Fig. 2.5. Another

topology called asymmetrical bridgeless boost rectifier is proposed in [76] and is shown

in Fig. 2.6.

Discussion

Although power factor-corrected unidirectional chargers are mostly suited for high

power factor applications, they can still be used for reactive power compensation with

certain limits. However, there are two main disadvantages of this operation. First,

reactive power operation can only be achieved by natural commutation of current

through the diodes. This poses a strict limit on the amount of phase difference
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Figure 2.4: Interleaved ac-dc boost converter.
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Figure 2.6: Asymmetrical bridgeless boost rectifier.

that can be introduced between the grid voltage and grid current depending on the

inductance value of the boost inductor. Otherwise, the current THD exceeds the

allowed limit by the utility. For instance, the application given in [77] has only a

maximum of 14% reactive power operation range compared to full power rating of

the charger. A second disadvantage is that the charger must always be charging the

battery in order to supply reactive power to the grid. In other words, if the battery has

full SOC, reactive power operation is not possible. Considering these two limitations,

power factor-corrected unidirectional chargers are not promising compared to other

type of topologies for reactive power operation. The following sections describe the

suitable topologies for this type of application.
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2.2.2 Four-quadrant Bidirectional Chargers

Dual-buck AC-DC Half Bridge Converter

A dual-buck ac-dc half bridge converter shown in Fig. 2.7 was first introduced

in [78] and also employed for a battery storage system to demonstrate four-quadrant

operation capability with increased efficiency [79]. By placing the two active

semiconductor switches in a diagonal structure rather than symmetrical/asymmetrical

structure, four-quadrant operation is achieved. The circuit does not need shoot

through protection as there are no active switches connected in series. The circuit

requires two split dc-link capacitors and two input inductors.

Conventional AC-DC Half Bridge Converter

This type of converter diagram is illustrated in Fig. 2.8. It includes two dc link

capacitors, two switches, two diodes, and a coupling inductor for grid interconnection.

Two sufficiently large capacitors share the dc link voltage equally. The switches Q1

and Q2 cannot be on at the same time to prevent any short circuit or shoot through.

This requires a dead time when the switches are operated sequentially. When the

switch Q1 is on, either Q1 or D1 conducts depending on the direction of the charger

current. Similarly, when the switch Q2 is on, either Q2 or D2 conducts depending on

the current direction. The topology is suitable to transfer power in four quadrants.
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A half bridge converter requires bipolar switching because there are only two possible

output voltage levels, +Vdc and −Vdc.

AC-DC Full Bridge Converter

The full bridge converter, shown in Fig. 2.9, is comprised of a dc link capacitor,

four transistors (either MOSFETs or IGBTs), four diodes, and a coupling inductor.

Voltage of the capacitor is doubled in this configuration. The topology is suitable for

four quadrant operation.

The full-bridge converter can operate in unipolar modulation and has three output

voltage levels; +Vdc, −Vdc, and zero. Since there are three output voltage levels for the

full bridge inverter, the number of switchings required for the same current THD level

is effectively reduced with the full-bridge converter compared to half-bridge converter.
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2.2.3 DC-DC Converter Stage

The fundamental bidirectional dc-dc converters are explained in this section. The

two dc-dc converters under discussion are half bridge bidirectional dc-dc converter

and dual active bridge bidirectional dc-dc converter.

Half Bridge Bidirectional DC-DC Converter

This converter has two transistors (IGBT or MOSFET), two diodes, a filtering

capacitor and an inductor as shown in Fig. 2.10. It can transfer power in both

directions. However, it can only operate as a buck converter in one direction and as

boost converter in the opposite direction as illustrated in Fig. 2.11.

Lf

Cf vbt

ibt

iconv

S5

S6

D5

D6

Inverter,
grid, and
filtering

Figure 2.10: Half bridge bidirectional dc-dc converter diagram.

The bidirectional operation of the charger requires a higher dc link voltage value

than the peak value of the line voltage to keep the modulation index of the inverter

less than one. This is also required for sinusoidal charger current. Therefore, the dc

link voltage is usually required to be higher than 350 V for a 240 V grid connection.

For increased control stability, the minimum dc link voltage should be selected to be

at least 400 V. This value is higher than the regular battery pack voltage which is at

200 V - 390 V level. Therefore, the operation of the dc-dc converter is one way buck

(from dc link to battery) and one way boost (from battery to the dc link).

Switches S5 and D6 operate during buck operation when the energy is transferred

from dc bus to battery, i.e. charging operation. During this operation, S6 is turned
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off. In contrast, when battery is being discharged switch S6 and D5 operate and S5

is turned off. One disadvantage of this converter is the lack of electrical isolation of

the battery from the dc link and the grid.
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(a) Buck mode with S5 operating.
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(b) Buck mode with D6 operating.
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(c) Boost mode with D5 operating.
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(d) Boost mode with S6 operating.

Figure 2.11: Buck and boost mode of operation for the bidirectional dc-dc converter.

Dual Active Bridge Bidirectional DC-DC Converter

A dual active bridge dc-dc converter has the merits of providing isolation and a

higher buck/boost ratio between the dc link voltage and the battery since it has a HF

transformer. The configuration of the converter is demonstrated in Fig. 2.12. This

converter requires much more increased number of components than the non-isolated

topology: eight transistors (IGBT or MOSFET), eight diodes, an inductor, and a

high frequency (HF) transformer. Therefore, it has a more complex control circuitry.

The first stage of the converter inverts the dc link voltage into ac voltage during

battery charging. Then, the ac voltage is electrically isolated through an HF

transformer. Last, the ac voltage again is rectified to appropriately charge the battery.

The process is reversed when the battery has to discharge back to the grid.
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Figure 2.12: Dual active-bridge bidirectional dc-dc converter diagram.

This topology is only used if a very high voltage ratio or isolation is required

between the dc link and the battery pack. Usually the conversion ratio between

the dc link and the battery is not selected to be very high for charger applications.

For increased safety of the users, auto manufacturers mandate the electrical isolation

requirement between the high voltage battery and charging outlets that are connected

to the grid.

2.2.4 Integrated Charger Topologies

The literature studies mostly focus on designing chargers with low volume, weight,

and cost. Therefore, researchers have looked at partly/completely integrating the

charger into the traction drive so that the size, cost, and volume of the charger can

be reduced [12, 80–85]. What is more, utilizing the already available high power

traction drive, the charging time can theoretically be reduced. While there are

different topologies proposed, only the ones used in electric vehicle applications and

published with enough technical details are discussed here.

ORNL Integrated Charger

One of the recent topologies developed at Oak Ridge National Laboratory (ORNL)

shows the performance of an integrated charger described in [12] and shown in

Fig. 2.13. Here, authors utilize two inverters that are already present in a Toyota

Prius HEV. The first inverter is an auxiliary inverter that is usually used for the air
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Figure 2.13: An integrated charger employing two inverters [12].

compressor drive motor, the water pump motor, or the generator in the vehicle. The

main inverter is used to drive the motor. The auxiliary inverter is usually 1/3 of the

main inverter in power rating size. Hence, only the main inverter is rated at high

power level. By selecting a leg from the auxiliary inverter and another leg from the

main inverter, and using the electrical machine inductance, the topology is converted

to a single-phase charging circuit as shown in Fig. 2.13. This topology can only be

realized using a Y-connected electrical machine.

Level 1 charging with 1.3 kW output charging power shows that the topology

is 92.1% efficient, the line current THD is close to 12%, and input power factor is

0.98 [12]. Level 2 charging with 14.5 kW output charging power recorded an efficiency

of 93.6%, and the current THD at that level is 6.60%.

Although this topology saves the extra charging circuit, it has several drawbacks.

Because of the fixed inductance of the system, the selected switching frequency

(15 kHz) is not enough to decrease the line current THD to acceptable levels (less

than 5%). To further decrease the current THD, higher switching frequency will be

required which will further increase the losses. Another disadvantage mentioned in

the paper is the rating of the auxiliary inverter is much lower than the rating of the

main inverter that would decrease the proposed fast charging time considerably. To

avoid this, an extra diode leg is needed so that the auxiliary inverter will be bypassed

as shown in Fig. 2.14. However, this solution will further decrease the equivalent
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Figure 2.14: Solution to bypass the auxiliary inverter [12].

inductance of the system that will counteract the THD of the line current. Therefore,

an external filter inductance is required for this topology to achieve acceptable line

current THD values.

Although not mentioned in the study, the dc-dc converter is necessary to meet

charging requirements of the battery. Without a dc-dc converter, due to the

conventional power equation of the single-phase inverter, the battery will see a large

voltage and current ripple. Therefore, to improve the safety and lifetime of the battery

pack, a dc-dc converter is needed. Generally, traction drives such as the one used in

the Toyota Prius HEV employ a dc-dc converter between the inverter and the battery.

That dc-dc converter can also be employed for battery charging voltage and current

regulation.

AC Propulsion Integrated Charger

Another topology that is used in the market is the integrated drive and charging

system manufactured by AC Propulsion and shown in Fig. 2.15 [85]. This charger

is rated from 200 W to 20 kW and can operate with either 120 V or 240 V outlets.

Efficiency of the system for 1.44 kW with Level 1 charging is around 85% and it

is around 95% for 14 kW input power with Level 2 charging [85]. The relays K1,

K2, and K2′ are used to switch from motoring to charging mode and vice versa. In

39



Battery C1

S1

S2

S3

S4

S5

S6

LS1

n

LS2 LS3

K1
K2

K2'

EMI
filter

AC
Recharge 

Port

Figure 2.15: AC propulsion integrated charger [66].

traction mode, relay K1 is closed and K2 and K2′ are open. In charging mode, relays

K2 and K2′ are closed and relay K1 is open. When charging, switches S1 and S2

are kept open, and switches S3-S6 operate to form a single phase full-bridge ac-dc

converter. This system design does not employ a dc-dc converter, but it can be added

if desired.

Partly Integrated Chargers

In addition to the above approaches, a charger can also partly share the circuitry with

the drive-train. Rather than fully embedding the charger into the motor drive, it can

only utilize the dc-dc converter already available in the drive-train. This approach is

shown in Fig. 2.16. The advantage of this usage is the elimination of one extra dc-dc

converter from the charger circuit. For example, Toyota Prius HEV uses a half bridge

bidirectional dc-dc converter. Since this boost dc-dc converter is already rated at high

power, it can also be used to charge the vehicle battery during charging operation.

Moreover, already available large electrolytic capacitor can also be used to filter out

second harmonic ripple due to the single-phase charging. The disadvantage of this

approach is that the traction dc-dc converter is designed to be non-isolated due to the
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Figure 2.16: Partly integrated charger into the traction-drive.

efficiency and cost concerns. Using the same converter as a charger will only provide

a non-isolated charging option.

2.3 Chapter Summary

This chapter presented a summary of power electronic circuit solutions for on-board

charging operation. The chargers are classified into two categories in terms of the

power transfer direction between the charger and the grid: PFC unidirectional charger

and four-quadrant bidirectional charger. The available topologies for each of the

categories are listed and their pros and cons are explained. Moreover, some of the

integrated charger topologies proposed in the literature are added at the end of the

chapter.
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Chapter 3

Mathematical Analysis of Reactive

Power Operation and its Effect on

the Charger

3.1 Introduction

The purpose of this chapter is to first show the parameters of PFC operation of a

charger to effectively fulfill the requirements of the charging operation that has been

explained in the previous chapters. Second, the effect of reactive power operation

(on a scale from full inductive operation to full capacitive operation) on different

system parameters will be found and the net difference from the PFC operation will

be summarized.

The system parameters that are under discussion are listed in Table 3.1 in page 52.

The first three parameters (S, Vs, and f) are constant during the analysis. The other

parameters (Lc, Vdc, ΔVdc, Cdc, and Icap) are selected as the basis of comparison for

evaluating the effect of the reactive power operation on the charger. The results

will show how the selection of these parameters changes while the charger goes into

reactive power operation.
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3.2 Analysis of single-phase power transfer be-

tween the utility grid and charger

The topology that is investigated in this chapter is a single-phase ac-dc converter for

front-end conversion of ac energy into dc. An example of this type of topology, a full

bridge bidirectional ac-dc converter is shown in Fig. 3.1. For a charger application it

should also be followed by a dc-dc conversion stage. Normally, the inverter output

voltage (the voltage difference between the points a and b shown in Fig. 3.1) has a

PWM waveform shape. However, for the purpose of understanding the power flow

operation in this single-phase system, initially we can ignore high frequency PWM

ripple components of the waveforms.

The analysis in this chapter starts with a simplified diagram of the grid and

the charger as shown in Fig. 3.2. The grid voltage, vs(t), is assumed to be purely

sinusoidal. Lc is the coupling inductor which includes the charger boost inductor

and the line inductance of the utility. For analysis purposes, the system has only

one frequency component, both of the voltage sources are sinusoidal, and the current

flow is designated positive for current flowing from the grid to the inverter, since the

primary function of the circuit is to charge the battery from the grid. Therefore,

positive power sign of active power (Ps), reactive power (Qs), and apparent power

(S) correspond to the power sent by the grid to the charger.

Since the system has only one frequency component, phasor analysis can be used

to solve for the charger (line) current, ic(t).

vs(t) =
√
2Vs sin(ωt)

=
√
2Vs cos(ωt− π

2
) (3.1)
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Figure 3.1: Full bridge bidirectional ac-dc converter.
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Figure 3.2: Equivalent circuit of the charger-grid connection.

Since, the default active power flow is from the grid to the charger, vc(t) is lagging

vs(t) by δ degrees.

vc(t) =
√
2Vc sin(ωt− δ)

=
√
2Vc cos(ωt− δ − π

2
) (3.2)

and

ω = 2πf (3.3)

where Vs and Vc are the rms of the grid voltage and charger output voltage,

respectively (V), f is the system frequency (Hz), and ω is the angular frequency
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(rad/s). Using the phasor notation, it can be written that:

Vs =
√
2Vs e

−j π
2 (3.4)

Vc =
√
2Vc e

−j(δ+π
2
) (3.5)

where Vs and Vc are phasor representation of the grid and charger voltage, respectively.

The definition of the inductor voltage in phasor representation is as follows:

VL = jω Lc Ic (3.6)

where Ic is the phasor representation of the charger current (A). Using Kirchhoff’s

voltage law (KVL) for the equivalent circuit shown in Fig. 3.2 yields the following

equation:

Vs = VL + Vc (3.7)

Therefore, plugging (3.4), (3.5), and (3.6) into (3.7) yields the following derivation:

Ic =
Vs − Vc

jωLc

=

√
2

jωLc

{Vs e
−j π

2 − Vc e
−j(δ+π

2
)}

=

√
2

jωLc

{−jVs − Vc cos(δ +
π

2
) + jVc sin(δ +

π

2
)}

=

√
2

jωLc

{−jVs + Vc sin(δ) + jVc cos(δ)}

=

√
2

jωLc

{Vc sin(δ) + j(Vc cos(δ)− Vs)}

=

√
2

ωLc

{Vc cos(δ)− Vs − jVc sin(δ)}
=

√
2Ic e

−jα (3.8)

45



where

Ic =
1

ωLc

√
Vc

2 + Vs
2 − 2Vc Vs cos(δ) (3.9)

and

α = tan−1

(
Vc sin(δ)

Vc cos(δ)− Vs

)
(3.10)

Therefore,

ic(t) =
√
2 Ic cos(ωt− α) (3.11)

Since the initial voltage waveforms are in the form of a sinusoid, the charger current

is written in sinusoidal form for consistency. Therefore:

ic(t) =
√
2 Ic sin(ωt− α +

π

2
) (3.12)

To make notation easier, the phase angle can be replaced as follows:

ic(t) =
√
2 Ic sin(ωt− θ) (3.13)

where

θ = tan−1

(
Vs − Vc cos(δ)

Vc sin(δ)

)
(3.14)

The definitions of active, reactive and apparent power formulas are defined as follows:

Ps = Vs Ic cos(θ) (3.15)

Qs = Vs Ic sin(θ) (3.16)

S = Vs Ic (3.17)

One can also derive another set of power definitions by replacing the current

magnitude and phase angle given in (3.15), (3.16), and (3.17) with the definitions

given in (3.9) and (3.14). By doing so, the following active, reactive, and apparent

46



power definitions are found:

Ps =
Vs Vc sin(δ)

ωLc

(3.18)

Qs =
Vs

ωLc

{Vs − Vc cos(δ)} (3.19)

S =
Vs

ωLc

√
Vc

2 + Vs
2 − 2Vc Vs cos(δ) (3.20)

3.3 Effect of single-phase ac-dc power transfer

on the stored ripple energy at the dc-link

capacitor

The definition of the instantaneous power drawn from the grid is as follows:

ps(t) = vs(t) ic(t) (3.21)

Using (3.1) and (3.13), the instantaneous input power can be written as:

ps(t) = 2Vs Ic sin(ωt) sin(ωt− θ)

= 2Vs Ic
1

2
{cos(θ)− cos(2ωt− θ)}

= Vs Ic cos(θ)− Vs Ic cos(2ωt− θ) (3.22)
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Using the definition of the voltage of an inductor (vL(t)), the instantaneous power of

the coupling inductor can be calculated:

pL(t) = vL(t) ic(t)

= Lc
dic(t)

dt
ic(t)

= Lc {
√
2 Ic ω cos(ωt− θ)} {

√
2 Ic sin(ωt− θ)}

= 2ω Lc Ic
2 sin(ωt− θ) cos(ωt− θ)

= wLc Ic
2 sin(2ωt− 2θ) (3.23)

The instantaneous power that the charger receives is equal to instantaneous grid

power minus the instantaneous power of the inductor. Therefore:

pc(t) = ps(t)− pL(t)

= Vs Ic cos(θ)− Vs Ic cos(2ωt− θ)− wLc Ic
2 sin(2ωt− 2θ) (3.24)

The instantaneous charger input power contains two components: the average power

and the ripple power component at twice the grid frequency.

Pave = Vs Ic cos(θ) (3.25)

Pripple(t) = −{Vs Ic cos(2ωt− θ) + ωLc Ic
2 sin(2ωt− 2θ)} (3.26)

The ripple component can be summed into a single sinusoidal function using phasor

addition since both of the sinusoidal components of (3.26) are at the same frequency.

Pripple(t) = −{Vs Ic cos(2ωt− θ) + ωLc Ic
2 cos(2ωt− 2θ − π

2
)} (3.27)

48



Pripple = −{Vs Ic e
−jθ + ωLc Ic

2 e−j(2θ+π
2
)}

= −Vs Ic cos(θ) + jVs Ic sin(θ)− ωLc Ic
2 cos(2θ +

π

2
) + jωLc Ic

2 sin(2θ +
π

2
)

= {−Vs Ic cos(θ) + ωLc Ic
2 sin(2θ)}+ j{Vs Ic sin(θ) + ωLc Ic

2 cos(2θ)}
= Pripple e

jβ (3.28)

where

Pripple =

√
(Vs Ic)

2 + (ωLc Ic
2)

2 − 2ωLc Vs Ic
3sin(θ) (3.29)

β = tan−1

(
Vs Ic sin(θ) + ωLc Ic

2 cos(2θ)

−Vs Ic cos(θ) + ωLc Ic
2 sin(2θ)

)
(3.30)

The magnitude of the ripple power, Pripple, can be defined in terms of the active

and reactive power that is sent to the charger by the grid. As stated before, the

positive sign for all the power variables stand for power transfer from the grid to the

charger. Plugging (3.15), (3.16), and (3.17) into (3.29) yields the ripple power in

terms of Ps, Qs, and S:

Pripple =

√
S 2 +

(
ωLc

S 2

Vs
2

)2

− 2ωLc
S 2

Vs
2Qs (3.31)

Finally, the instantaneous power that the charger receives from the grid is written

in time domain form. Note that, the ripple power is converted to time domain form

using (3.28).

pc(t) = Pave + pripple(t)

= Vs Ic cos(θ) + Pripple cos(2ωt+ β) (3.32)

The ripple power component of the instantaneous charger power is a result of

the single-phase conversion of ac power into dc power, and it is an oscillating power

between the grid and the charger. This oscillating ripple power is temporarily stored

in the dc-link capacitor of the charger. In other words, the dc-link capacitor is used
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to balance the power transfer between the grid and the charger to effectively charge

the vehicle battery.

As (3.31) suggests, when the charger is used to source/sink reactive power in

addition to providing active power, this oscillating ripple power component changes.

Therefore, the effect of reactive power transfer on the dc-link capacitor becomes an

issue when designing the charger for reactive power operation mode.

Equation (3.32) is plotted in Fig. 3.3 using the following system parameters: Vs =

240 V (Level 2 charging), Ps=3.3 kW, Qs=0 VAR, Lc=1 mH and f=60 Hz. The

dc-link capacitor should have the capacity to store the required energy to balance

the power transfer. As the capacitor is the energy storage method of the oscillatory

ripple power at the dc-link, the required energy capacity of the dc-link capacitor can

be found by integrating the ripple power waveform plotted in Fig. 3.3 between its

minimum and maximum values.
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Figure 3.3: Instantaneous charger input ripple power.
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This means that the dc-link capacitor should have the energy capacity to store

and then discharge the energy explained below.

Eripple =

tzero∫
tmin

∣∣pripple(t)∣∣dt+
tmax∫

tzero

∣∣pripple(t)∣∣dt

= 2

tmax∫
tzero

Pripple cos(2ωt+ β)dt

=
1

ω
Pripple sin(2ωt+ β)

∣∣∣∣
tmax

tzero

(3.33)

where based on Fig. 3.3, tzero occurs when 2ωt + β = 3π/2 and tmax occurs when

2ωt+ β = 2π. Therefore:

Eripple =
1

ω
Pripple sin(2ωt+ β)

∣∣∣∣
1
2ω

{2π−β}

1
2ω

{ 3π
2
−β}

=
1

ω
Pripple {sin(2π)− sin(

3π

2
)}

=
Pripple

ω
(3.34)

Plugging (3.31) into (3.34) gives:

Eripple =
1

ω

√
S 2 +

(
ωLc

S 2

Vs
2

)2

− 2ωLc
S 2

Vs
2Qs (3.35)

The relation of the ripple energy calculated in (3.35) to the reactive power transfer

is investigated here for two charger input power values: S = 3.3 kVA and S = 6.6 kVA.

The parameters used in the analysis are shown in Table 3.1. The base value for the

ripple energy is calculated when the charger operates at unity power factor which

means reactive power, Qs, is zero. This is to show the effect of the reactive power

operation on the required ripple energy compared to charging only operation. The

base value for the ripple energy is calculated using (3.35). It is 8.75 J for S = 3.3 kVA,

and it is 17.5 J for S = 6.6 kVA.
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Table 3.1: The base system parameters used in showing the analysis results.

Parameter Symbol Base value Base value
for system 1 for system 2

Charger apparent power S 3.3 kVA 6.6 kVA
Grid voltage Vs 240 V 240 V
Grid frequency f 60 Hz 60 Hz

Coupling inductance Lc 1.0 mH 1.0 mH
DC-link voltage Vdc 450 V 450 V
DC-link peak-peak ΔVdc 10% (45 V) 10% (45 V)
ripple voltage
DC-link capacitance Cdc 432.5 μF 865 μF
DC capacitor ripple Icap 5.2 A 10.4 A
rms current

Figure 3.4 illustrates the effect of reactive power (from rated inductive to rated

capacitive) operation for S=3.3 kVA on the required ripple energy storage. While

the reactive power changes from full inductive (pf is zero-lagging) to full capacitive

operation (pf is zero-leading), it shows that the required ripple energy storage at

the dc-link increases. The dc-link capacitor has to store the most ripple energy in a

charge/discharge cycle when the charger operates in full capacitive mode. Moreover,

as the input coupling impedance increases, the required ripple energy increases.

Similarly, Fig. 3.5 shows the same effect for S = 6.6 kVA charger.

The summary of the effect of the reactive power operation on the required dc-

link ripple storage energy is shown in Fig 3.6. It is shown that as the input power

increases, the effect of reactive power operation (compared to charging only operation)

on the required dc ripple storage becomes more obvious due to the reactive power

component of (3.35). In other words, the ripple energy increase issue becomes worse

as the charger input power increases, and therefore dc-link energy storage requirement

increases more on higher power levels. The following sections describe this effect in

terms of dc-link capacitance, dc-link ripple voltage, capacitor ripple current, and

minimum required dc link voltage.
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Figure 3.5: Change of the required ripple energy storage at the dc-link with different
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3.4 Effect of single-phase ac-dc power transfer on

the dc-link capacitor

As stated in [27], once the values for Vdc and ΔVdc are selected for a specific

application, the selection of a dc-link capacitor is done using two parameters: a

53



1 1.5 2

2

4

6

8

2.1

3.2

4.34.3

6.3

7.6

Coupling inductance, Lc, (mH)

%
in
cr
ea
se

fo
r
E

r
ip
p
le

S = 3.3 kVA S = 6.6 kVA
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required capacitance, and a required current rms value given in a frequency range.

For this analysis, Vdc is selected to be 450 V and ΔVdc is chosen to be 10% of Vdc.

This section first investigates the inherent ripple energy storage requirement in

single-phase ac-dc power conversion systems. Then, it calculates how the ripple energy

storage requirement translates into dc-link capacitance, dc-link ripple voltage, and

dc-link capacitor current. Consequently, it will provide how these parameters change

when the charger operates in reactive power mode.

3.4.1 Effect of reactive power on the dc-link capacitance and

dc-link ripple voltage

The instantaneous energy stored in a dc capacitor can be found using the following

equation:

Ecap(t) =
1

2
Cdc v

2
dc(t) (3.36)
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where Ecap(t) is the instantaneous energy (J) of the capacitor, Cdc is the dc-link

capacitance (F), and vdc(t) is the capacitor voltage (V). Figure 3.7 shows the

voltage ripple and current waveform of a capacitor using the capacitor voltage-current

equation shown below:

icap(t) = Cdc
dvdc,ripple(t)

dt
(3.37)

The dc offset of the capacitor voltage (Vdc) is not shown in order to show the two

waveforms on the same scale. The current flowing through the capacitor is leading the

voltage by 90◦ and charging the capacitor from its minimum voltage to the maximum

voltage. Therefore, the maximum energy (in joules) that a dc-link capacitor can store

in a charging cycle is calculated by the following:

ΔEmax =
1

2
Cdc {V 2

dc,max − V 2
dc,min} (3.38)

where Vdc,max and Vdc,min are maximum and minimum voltage levels as shown in

Fig. 3.7. The difference between the minimum and maximum voltage is ΔVdc =

Vdc,max − Vdc,min. The average value of the instantaneous dc-link voltage is Vdc.

Therefore, the energy stored in one cycle equals to:

ΔEmax =
1

2
Cdc {Vdc,max − Vdc,min} {Vdc,max + Vdc,min}

=
1

2
Cdc (ΔVdc) {Vdc,max + Vdc,min}

=
1

2
Cdc (ΔVdc) (2Vdc)

= Cdc ΔVdc Vdc (3.39)

The peak-to-peak ripple energy found in (3.35) that is a result of the ac-dc

power conversion is stored in the dc link capacitor. The peak-to-peak energy storage

capability of the dc link capacitor was found in (3.39), therefore, in a lossless system
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Figure 3.7: Capacitor voltage and current waveforms.

Eripple found in (3.35) is equal to ΔEmax in (3.39). This yields that:

Cdc =

√
S 2 +

(
ωLc

S 2

Vs
2

)2

− 2ωLc
S 2

Vs
2Qs

ωΔVdc Vdc

(3.40)

The dc link capacitance should be equal or greater than (3.40) to limit the

maximum value of the peak-to-peak voltage ripple (ΔVdc) at the dc link. If Cdc

is selected smaller than (3.40), then ΔVdc will increase. In other words, a higher Cdc

than (3.40) will result in a smaller ΔVdc. To keep the converter size smaller, the

dc-link capacitor should not be oversized, and ΔVdc should be kept at its allowable

maximum value.

Figures 3.8 and 3.9 show the effect of the reactive power operation on the minimum

required dc link capacitance such that ΔVdc,max = 10% and Qs changes from inductive

to capacitive. It is important to note that ΔVdc changes when Qs changes during the

operation of the circuit. However, it experiences a 10% ripple at the worst case which

is when Qs is fully capacitive. The charger input power is always kept at S = 3.3 kVA
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and S = 6.6 kVA for Figs. 3.8 and 3.9, respectively. Initially, the charger is assumed

to be in PFC operation with the base parameters given in Table 3.1. Then, the

required capacitance is calculated to get the same ΔVdc for different Qs levels.

For consistency throughout the analysis, the nominal increase in the required

capacitance is also calculated. Moreover, if the capacitor size is kept the same, then
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ΔVdc is going to increase at the same rate as the dc-link capacitor did. Both of these

results are presented in Fig.3.10.

The nominal percent increase on the required Cdc or ΔVdc is the same with the

required nominal ripple energy increase. This is an expected result because the ripple

on the dc-link is a result of the single-phase ac-dc conversion ripple energy. Again,

as expected, the increase on the required Cdc or ΔVdc increases with greater coupling

impedance and with greater charger input power.

3.4.2 Effect of reactive power on the required capacitor

ripple rms current

Since the PWM harmonic ripples are neglected, the dc-link voltage of the ac-dc

converter is comprised of an average and a second harmonic ripple component.

Therefore, it can be expressed with the following equation:

vdc(t) = Vdc +
ΔVdc

2
sin(2ωt) (3.41)
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Therefore, the second harmonic current can be found as:

icap(t) = Cdc
dvdc
dt

= ω Cdc ΔVdc cos(2ωt) (3.42)

Therefore, the rms value of the current is:

Icap =
1√
2
ω Cdc ΔVdc (3.43)

By using (3.40), it can also be written in terms of circuit parameters:

Icap =

√
S 2 +

(
ωLc

S 2

Vs
2

)2

− 2ωLc
S 2

Vs
2Qs

√
2Vdc

(3.44)

An important conclusion of (3.44) is that Icap does not depend on the capacitance,

Cdc. The required ripple current rating of the dc-link capacitor depends on Lc, Vdc,

and Qs for fixed ω, S, and Vs. The base value for the capacitor ripple current, Icap is

calculated using PFC operation and the base values given in Table 3.1. The results

are plotted in Figs. 3.11 and 3.12. Again, the required capacitor rms current increases

with capacitive reactive power, coupling inductance, and higher charger input power.

Figure 3.13 also summarizes the net percent increase of capacitor current for a reactive

power change from zero to fully capacitive mode.

3.4.3 Effect of reactive power on the required minimum dc-

link voltage

Using a single-phase ac-dc active rectifier, the dc voltage has a minimum limit to

satisfy the sinusoidal line current operation. If this minimum limit is not satisfied,

then the line current harmonics will increase above the utility allowed limits. For a
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full-bridge inverter, the requirement for sinusoidal operation is equal to:

Vdc ≥
√
2Vc (3.45)

In other words, the inverter always operates in the linear modulation index region.

If the dc link voltage drops below the minimum limit, then over-modulation occurs
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which distorts the output current waveform. In order to find the limit on the dc

voltage and how this limit changes with the power transfer, the charger voltage, Vc

will be derived in terms of reactive power. The steady state solution of Fig. 3.2 using

KVL yields:

Vc = Vs − VL

=
√
2Vs e

−j π
2 − jω Lc Ic

= −j
√
2Vs − jω Lc (

√
2 Ic e

−jα)

= −j
√
2Vs − jω Lc {

√
2 Ic (cos(α)− jsin(α))}

= −
√
2ω Lc Ic sin(α)− j{

√
2Vs +

√
2ω Lc Ic cos(α)}

= −
√
2ω Lc

(
S

Vs

) (
P

S

)
− j{

√
2Vs +

√
2ω Lc

(
S

Vs

) (−Q

S

)
}

= −
√
2ω Lc

P

Vs

− j
√
2

(
Vs − ω Lc

Q

Vs

)
(3.46)
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Using (3.2), it can be written that:

Vc =

√
Vs

2 + (ω Lc)
2

(
S

Vs

)2

− 2ωLc Q (3.47)

and,

δ = tan−1

⎛
⎜⎜⎝

ω Lc
P

Vs

Vs − ω Lc
Q

Vs

⎞
⎟⎟⎠ (3.48)

Using 3.45, the limit on the dc-link voltage can be written as:

Vdc ≥
√√√√2

(
Vs

2 + (ω Lc)
2

(
S

Vs

)2

− 2ωLc Q

)
(3.49)

The result of the analysis for S = 3.3 kVA and S = 6.6 kVA charger examples

are shown in Fig. 3.14 and Fig. 3.15, respectively. The analysis is applied for three

different coupling inductances: Lc=1.0, 1.5, and 2.0 mH. In both figures, the minimum

dc voltage limit is increasing as the charger supplies more capacitive power to the grid,

and the limit decreases as the charger sinks more reactive power from the grid.
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Figure 3.14: Change of the required minimum dc link voltage for different reactive
power values for S = 3.3 kVA.
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The net impact of reactive power change is summarized in Fig. 3.16. The

net reactive power change requires a 2.1% increase in the minimum Vdc to satisfy

sinusoidal operation with limited current THD present. This means that the required

minimum dc-link voltage increases by 2.1% when the charger supplies full reactive

power to the grid compared to PFC operation. During this operation S = 3.3 kVA,

Vs = 240 V, and Xc = 1.0 pu. If the charger is designed at S = 6.6 kVA, the

net increase for Vdc,min becomes 4.3%. The net change in the requirement increases

with increasing coupling inductor. Therefore, when a charger is designed to operate

at full-reactive power, the minimum dc-link voltage requirement increase should be

handled.

3.5 Conclusion

This chapter describes the effect of reactive power on the different system parameters

by evaluating this effect on only one parameter while the remaining parameters

are kept constant. In summary, all of the parameters (Vdc,min, Cdc, ΔVdc, and

Icap) experience a 2.1%-4.3% increase for 3.3 kVA charger system depending on the
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Figure 3.16: The net % change of required Vdc,min for a 100% capacitive reactive
power increase for different Lc values.

selected Lc for a reactive power change from zero to fully capacitive mode. The effect

increases to 4.3%-7.6% when the charger operates at 6.6 kVA. Therefore, the single-

phase charger design should handle the increased requirements for the reactive power

operation to be able to symmetrically operate at the four quadrants of the power

plane.
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Chapter 4

Simulation Verification of the

Effect of Reactive Power Operation

on the Charger

4.1 Introduction

This chapter presents the design stages of the unidirectional PFC charger for full

active power operation. The design involves the following stages: ac-dc converter

controller design, dc-dc converter controller design, total system controller design,

and modeling of the battery pack. The most important requirement of the charger

design is to effectively control the line current harmonics. The ac-dc converter input

current THD should be limited to 5%.

The objective of the system controller is to follow the charging power and reactive

power commands controlled by the grid operator. Three different charger designs are

simulated: A Level 1 1.4 kVA charger, a Level 2 3.3 kVA charger, and a Level 2

6.6 kVA charger.
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Figure 4.1: Full bridge bidirectional ac-dc converter.

4.2 Modeling and Controller Design of the AC-DC

Converter

The configuration of the selected ac-dc full bridge converter is shown in Fig. 4.1. The

following sections describe the control method and modulation strategies. Due to

inherent advantages to be used in single-phase systems, proportional resonant (PR)

current controller is selected for inner current loop control. The selected pulse width

modulation (PWM) is sinusoidal bipolar modulation. With this modulation, the

input voltage of the ac-dc converter (the voltage difference between points a and b in

Fig. 4.1) can have two positions +Vdc and −Vdc. The derivation of the controller is

explained below with the following steps: switching model, average model, and small

signal model.

Switching model

The switching model diagram is shown in Fig. 4.2. The dc-dc converter and the

battery are modeled as a dc voltage source in series with a equivalent resistor.

Therefore, the switching PWM components of the dc-dc converter are ignored and

will be treated separately during dc-dc converter modeling. Single-pole double-throw
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switches are used to represent a phase-leg shown in Fig. 4.1. When the switches S1

and S4 are on, and S2 and S3 are off, the charger current ic is equal to idc and vab

equals to Vdc. In this case sa = 1 and sb = 0. If the switches S1 and S4 are off and S2

and S3 are on, ic is equal to −idc and vab is equal to −Vdc. In this case, sa = 0 and

sb = 1. Therefore, following equations are true:

vab = va − vb

= (sa − sb)× vdc

= sab × Vdc (4.1)

idc = (sa − sb)× ic

= sab × ic (4.2)

where

sab = sa − sb (4.3)

Neglecting the ESR of the capacitor (Rc), the state-space equations resulting from

application of KVL and KCL in Fig. 4.2 are:

dis
dt

=
vs
Lg

− vcap
Lg

(4.4)
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dic
dt

=
vcap
Lc

− RL ic
Lc

− vab
Lc

(4.5)

dvcap
dt

=
is
Cac

− ic
Cac

(4.6)

where is is the grid current, vs is the grid voltage, vcap is the ac filter capacitor voltage,

Lg is the grid inductance, Lc is the coupling inductance, Cac is the ac filter capacitor,

RL is the equivalent series resistance of the coupling inductance.

Average model

The averaging operator over one switching period is applied to the switching model

to get the average model of the system. For a time-variant variable x, the averaging

operator is defined as:

x(t) =
1

T

t∫
t−T

x(τ) dτ (4.7)

The overline of a variable, x(t), stands for the averaged value. Therefore, applying

averaging operator to the above state-space equations (4.4)-(4.6), yields the following

equations:
dis
dt

=
vs
Lg

− vcap
Lg

(4.8)

dic
dt

=
vcap
Lc

− RL ic
Lc

− dabVdc

Lc

(4.9)

where

dab = sab (4.10)

dvcap
dt

=
is
Cac

− ic
Cac

(4.11)

where dab stands for the averaged value of sab, and Vdc is the average dc-link voltage.

Small-signal model

In order to construct the small signal model, the average model variables are composed

of the steady state values and superimposed small ac variations. The resulting small
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signal equations are:
d̃is
dt

=
ṽs
Lg

− ṽcap
Lg

(4.12)

d̃ic
dt

=
ṽcap
Lc

− RL ĩc
Lc

− d̃abVdc

Lc

(4.13)

dṽcap
dt

=
ĩs
Cac

− ĩc
Cac

(4.14)

To derive the relationship between d̃ab and ĩc, Laplace transform is used and then ĩc

is isolated. Finally, the following equation is found:

ĩc = ṽs × Lc

s3 Lg Lc Cac + s2 Lg Cac RL + s (Lc + Lg) +RL

−d̃ab × −Vdc (s
2 Lg Cac + 1)

s3 Lg Lc Cac + s2 Lg Cac RL + s (Lc + Lg) +RL

(4.15)

If the disturbance from the grid voltage is assumed to be zero, the final relationship

is found as follows:

ĩc =
−Vdc (s

2 Lg Cac + 1)

s3 Lg Lc Cac + s2 Lg Cac RL + s (Lc + Lg) +RL

× d̃ab (4.16)

At high frequencies, the transfer function approaches to:

ĩc =
−Vdc

sLc

× d̃ab (4.17)

Note that, due to negative sign, as dab increases ic decreases. Therefore, the transfer

function of the plant is:

Gid(s) =
Vdc

sLc

(4.18)

In this study, a PR controller is employed for current control of the ac-dc converter.

The transfer function of the PR controller is as follows:

Gc(s) = Kp +
Ki s

s2 + 2ωc s+ ω2
o

(4.19)
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Table 4.1: Parameters of the PR controller.

KP KI ωc ωo
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Figure 4.3: Bode diagram of current controller loop gain.

The parameters of the PR controller that satisfy stable operation of the converter is

shown in Table 4.1. The resulting closed loop gain of the current controller is:

T (s) = Gc(s)×Gid(s) (4.20)

The final bode diagram of closed loop gain (T(s)) is presented in Fig. 4.3.

4.3 Modeling of the Battery Pack

Due to its promising capability to be used in vehicular traction applications in the

future, a Li-ion battery with an LFP cathode material is selected to be the cell
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Table 4.2: Parameters of Li-ion battery cell with LFP cathode composition.

Parameter Value Unit

Nominal cell voltage 3.3 V
Nominal capacity 18, 000 mAh
Cut-off discharge voltage 2.10 V
Maximum charge voltage 3.65 V
Initial internal impedance < 4 mΩ

structure of the battery pack. The cell parameters of this type of battery are shown

in Table 4.2. In this design, the battery cell discharge cut-off voltage is selected to

be 2.95 V when the system has a SOC value of 20% of full charge. Similarly, the

maximum output voltage requirement of the charger occurs when the battery pack

voltage reaches its maximum SOC. Again, the highest voltage level of the cell in this

design is limited to 3.6 V when the SOC reaches 90% of full charge. These values

present a tighter charge-discharge window than the minimum and maximum values

shown in Table 4.2. The reason why the SOC values are kept in a narrower cycling

window compared to its manufacturer ratings is to increase the expected lifetime of

the battery pack as much as possible before its capacity decreases to 80% of their

original manufacturer ratings. This is a common method employed in the industry

to preserve the original EV-only mileage rating of the vehicle during the first 10

years/100,000 mi of the vehicle.

The literature and market survey shown in Chapter 1 illustrated that the trend

in the battery design pack is for higher battery pack voltages to decrease the

semiconductor, passive component, and cabling current ratings in the vehicle power

electronics circuits. Therefore, the design of the battery pack system employes a

360 V nominal battery pack voltage which is comparable to the battery pack of the

today’s EVs/PHEVs. Using the cells given in Table 4.2, the battery pack is designed.

To get 360 V nominal voltage, the number of required cells connected in series in

a string is 360/3.3 = 109.09. Therefore, the closest integer value corresponds to a
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voltage level of 363 V with 110 cells connected in series. The maximum pack voltage

is 3.6× 110 = 396 V. The minimum pack voltage is 2.95× 110 = 324.5 V.

One string in this design corresponds to a nominal energy capacity of 18 Ah×363 V

=6.53 kWh. According to the technical market survey in Chapter 1, the energy

capacity of the vehicles ranges between 4.4 - 20.1 kWh for PHEVs and between 16 -

53 kWh for EVs. Employing more than one string in parallel will increase the total

energy capacity of the battery pack to meet the electric-only mileage requirement of

the vehicle.

The charger design of this study is completed for one-string battery pack design.

Ideally, if the number of strings is more than one, ripple current per each string would

be divided by the number of strings. Therefore, output voltage ripple requirement of

the charger will not change.

The employed battery model for this study includes one SOC-mapped variable

dc voltage source in series with an equivalent series resistance as shown in Fig. 4.4.

Although more sophisticated battery cell models have been developed in the litera-

ture, the models are strictly dependent on the chemistry and require experimental

verification of the battery cell that is being used. ESR-based model neglects very

short time constant battery dynamics that can help the dc-dc converter to filter out

the unwanted high frequency PWM current ripple during charging. Therefore, this

model presents a worst-case scenario for very short time constant transient dynamics.

However, during the long term most of the models are condensed to an SOC dependent

voltage source and a series resistance.

The initial internal impedance of the cell is given in the manufacturer data sheet

to be less than 4 mΩ for a 1 kHz ac battery cell charging current. In this study, the

following assumptions are made for the battery model:

• Double layer capacitance of the battery pack is neglected

• The equivalent resistance selected is valid for the ripple seen during 10 A (0.55C)

charging of the battery cell. Usually, Li-ion battery cells exhibit more internal
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Figure 4.4: Equivalent model of the battery pack.

resistance during the charging of the battery cell proportional to the charging

current. Therefore, the internal resistance is selected to be 10 mΩ per cell

during the charging of the battery.

Since there are 110 cells connected in series, the total equivalent series resistance

(Req) of the battery pack can be simplified as 0.01× 110 = 1.1 Ω. The battery pack

open circuit voltage can be modeled as a dc voltage source that changes with the

SOC of the battery pack which is shown as voc(t) in Fig. 4.4.

4.4 Modeling of the DC-DC Converter

4.4.1 Topology description and operation principle

The selected topology of the dc-dc converter is a bidirectional half-bridge dc-dc

converter as explained in Chapter 2. As mentioned before, there are three different

charger designs. Here, only Level 2 3.3 kVA design will be explained as it is the most

common charger power rating in the market as presented in Chapter 1.

The rated output current of the charger for a 90% efficient system is 3, 300 ×
0.90/363 = 8.2 A. However, when the battery pack SOC is at its lowest value,

the maximum charging current occurs for a given charging power. That is 3, 300 ×
0.90/324.5 = 9.15 A. In this study, the rated dc-dc converter output current is selected

to be 10 A.
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Figure 4.5: Dc-dc converter buck operation during the ON stage.

The selection of the dc-link voltage is critical from the charger efficiency point of

view. The switching losses of a MOSFET/IGBT increase proportionally with their

operating voltage. Therefore, the dc-link voltage should be selected as low as possible

to decrease the switching losses.

The selected dc-link voltage is 425 V considering the minimum required output

voltage of the dc-dc converter which is 396 V. Considering the voltage drops in the

dc-dc converter, for reliable operation, the minimum voltage should be at least in the

range of 420 V to 430 V. The quiescent duty ratio of the converter is:

D =
Vbt

Vdc

=
363

425
= 0.85 (4.21)

When S5 in Fig. 4.5 turns on, the input current flows through the switch S5, filter

inductor (Lf ) and to the filter capacitor (Cf ) and Li-ion battery. The filter capacitor

and battery are charged in this stage. The following equation is valid during this time

interval:

ton =
ΔIL · Lf

Vdc − Vbt

(4.22)

where ton is the conduction time of the switch S5 (s), and ΔIL is the peak-to-peak

filter inductor ripple current as shown in Fig. 4.6.

When S5 turns-off, the inductor current circulates using the free wheeling diode

D6 as shown in Fig. 4.7. The filter capacitor discharges to the battery pack. The

following equation is valid at this stage:
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Figure 4.7: Dc-dc converter buck operation during the OFF stage.

toff =
ΔIL · Lf

Vbt

(4.23)

where toff is the blocking time of the switch S5.

Combining (4.22) and (4.23) yields the required Lf value for a given switching

frequency, and a ripple current value:

Lf =
(Vdc − Vbt)D

2 fsw ΔIL
(4.24)

where 1/fsw = ton + toff .

As a rule of thumb, the selected inductor peak-to-peak ripple current is 40% of

the load current. Therefore, ΔIL = 4 A. For a switching frequency of 40 kHz, the

calculated filter inductance value is 329 μH.
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The maximum allowed rms voltage ripple (at switching frequency) observed at

the battery terminals is calculated as follows:

ΔVbt = Req ΔIbt

= 1.1 (0.1× 18)

= 2.0 V peak − peak (4.25)

where Req is total series internal resistance of the battery pack (Ω), and ΔIbt is the

peak-peak battery ripple current (A). The selection of the filter capacitor should result

in a voltage ripple that has an rms value of less than 2.0 V at the nominal output

voltage (363 V). An aluminum capacitor of 100 μF with an effective equivalent series

resistance (RESR) of 0.6 Ω is selected. Assuming that all the ripple current is flowing

through the capacitor will present the worst case peak-to-peak voltage ripple seen at

the battery pack.

ΔVbt = ΔIL × (RESR +
D

fsw Cf

)

= 4× (0.6 +
0.85

40, 000× 100× 10−6
)

= 3.25 V peak − peak (4.26)

However, in reality, some of the ripple current flows into the battery pack further

decreasing this voltage ripple. This will decrease the voltage ripple seen in the

terminals of the battery pack. Therefore, the current design selection is suitable

for 0.1C peak-to-peak output current ripple. Also, the current supplying capability

of the capacitor is 2.3 A (rms) at 40 kHz which is much higher than the inductor

ripple current (4 A peak-peak, 1.15 A rms). Therefore, the filter capacitor will stay

in its operating temperature range.
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4.4.2 DC-DC converter controller design

The purpose of the dc-dc converter controller is to meet the goals below.

• High loop gain at twice the grid frequency to filter out second harmonic ripple

current at the output.

• One second transient response time for the battery current when a charging

command is received. Slower transient response will decrease the required dc-

link capacitance. However, it will not change the total charging time at all.

• For stability, a minimum phase margin of 30◦ is required.

The control signal to output voltage transfer function of the dc-dc converter during

unidirectional operation is:

Gvd(s) = Gd0
1

1 +
s

Q0 ω0

+ (
s

ω0

)
2 (4.27)

where ω0 = 2πf0, f0 is corner frequency, Q0 is Q-factor, and Gd0 is dc gain. Their

mathematical definitions are as follows:

Gd0 =
Vbt

D

=
363

0.85
= 425 V

= 20 log(425) = 52.5 dB (4.28)

f0 =
1

2π
√

Lf Cf

=
1

2π
√

(340× 10−6) (100× 10−6)

= 863 Hz (4.29)
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Figure 4.8: Dc-dc converter control diagram.

Q0 = Req

√
Cf

Lf

= 1.1

√
100× 10−6

340× 10−6

= 0.6 (4.30)

The open loop input voltage to output voltage transfer function is also important

to evaluate the effect of second harmonic voltage ripple at the dc-link on the battery

current.

Gvg(s) = Gg0
1

1 +
s

Q0 ω0

+ (
s

ω0

)
2 (4.31)

where Gvg(s) is the dc gain and equal to D. This transfer function has the same poles

with Gvd(s). The closed loop gain of the system is defined as:

T (s) =
H(s)Gc(s)Gvd(s)

VM

(4.32)

The loop gain magnitude, ‖T (s)‖, is a measure of how well the feedback system

works. We want loop gain to be high so that the output voltage follows the input

command without any steady state errors. A high loop gain also results in the

attenuation of input disturbances. The designed closed-loop system transfer function

Bode diagram is shown in Fig. 4.9.
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Figure 4.9: DC-DC converter control Bode diagram.

4.5 Total controller design

The total controller of the system should include various other controllers in addition

to the previously described current controllers for ac-dc converter and dc-dc converter.

The main goal of the controller is to follow active and reactive power commands that

are sent by the utility. Therefore, additional controller loops are required to make

sure that the charger always consumes the active power and reactive power levels

requested by the utility.

Fig. 4.10 shows the total system design. It is a novel design in the way that it only

receives two commands from the grid and adjusts the line current and battery current

correspondingly. There are one outer loop to calculate the reference reactive power

(Qref ) and two outer loops to calculate the reference active power (Pref ) as shown in

Fig. 4.10. The output of the active power controller has a minimum and a maximum

limit of 200 V and 300 V for Level 1 charging, respectively. If the charging command,

Pcmd increases, Vdc
∗ increases and vice versa. Therefore, the dc-link voltage changes
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during the transition periods (when a command arrives from the grid). This change

in the dc-link voltage helps to create a reference command for the battery charging

current. If the dc-link voltage increases above Vdcref =250 V, the battery charging

current increases to decrease the dc-link voltage back to 250 V. If the dc-link voltage

drops below Vdcref =250 V, the battery charging current decreases to increase the

dc-link voltage back to 250 V. Consequenly, when the dc-link voltage stays at Vdcref ,

it means that the system has input-output power balance.

Reference current calculation block uses the following equations in the given order

to generate the magnitude and phase angle of the reference charging current (ic
∗):

θ = tan−1

(
Pref

Qref

)
(4.33)

Ic =

(
Pref

Vs cos(θ)

)
(4.34)

ic
∗ =

√
2 Ic sin(ωt+ θ) (4.35)

Ac-dc converter has the following controllers:

• line current controller (PR)

• dc-voltage controller (PI)

• active power controller (PI)

• reactive power controller (PI)

Dc-dc converter has the following controllers:

• battery current controller (PI)

• power balance controller (PI)

Table 4.3 lists the values used for the associated PI parameters of the controllers for

Level 1 operation.
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Figure 4.10: Schematic of the total controller.

Table 4.3: Parameters of the PI controllers.

Controller KP KI

Dc voltage controller 0.10 100
Active power controller 0.01 2.0
Reactive power controller 0.10 10.0
Battery current controller 0.20 10.0
Power balance controller 0.01 0.1

A single-phase PLL is used to synchronize with the grid voltage phase angle and

instantaneous pq power theory is used to compute the average active and reactive

power value including their directions. To achieve both operations, a quadrature axis

is required. This axis is created by delaying the measured grid voltage and charger

current by one fourth of the grid cycle.
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Table 4.4: The system parameters used in Level 1 charger case.

Parameter Symbol Value

Charger apparent power S 1.4 kVA
Grid voltage Vs 120 V
Grid frequency f 60 Hz

Coupling inductance Lc 0.5 mH and 1.0mH
Switching frequency fsw 40 kHz
DC-link voltage Vdc 425 V
DC-link capacitance Cdc 432.5 μF
Battery side filter capacitor Cf 100 μF
Battery side filter inductance Lf 340 μH

4.6 Simulation Study

The simulation study serves two purposes: (1) to fulfill the closed-loop operation of

the system as descried in this chapter, and (2) to verify the results of the mathematical

analysis presented in Chapter 3, namely to investigate the effect of full reactive power

operation on the charger for three different cases:

a) Level 1, 1.4 kVA charger, b) Level 2, 3.3 kVA charger, and c) Level 2, 6.6 kVA

charger. Note that, a Level 1 charger is also evaluated in addition to two Level 2

chargers analyzed in Chapter 3. The analysis results are still valid for the Level 1

charger.

The effect of reactive power for a selected input coupling inductor values are

verified in the simulation study. Level 1 charger uses 0.5 mH and 1.0 mH coupling

inductors. Level 2 3.3 kVA charger uses 1.0 mH coupling inductors. Level 2 6.6 kVA

charger uses 1.5 mH coupling inductor. All other system parameters are calculated

based on the unidirectional charging operation and explained previously in this

chapter.

4.6.1 Level 1 (1.4 kVA) charger

The designed system parameters for unidirectional PFC operation is shown in

Table 4.4.
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Two scenarios were simulated to reveal the effect of reactive power operation:

• Ps=1.4 kW and Qs=0 kVAR charging-only operation for SOC=20% (CC

charging stage).

• Ps=0 kW and Qs=-1.4 kVAR full reactive power operation only.

The investigated system variables are:

• AC line current

• Battery charging current

• DC-link voltage ripple

• DC capacitor ripple current

The following sections describe each case and present the results.

Ps=1.4 kW and Qs=0 kVAR charging only operation

The charging command starts with a ramp function that takes the battery charging

current to its rated value (4.30 A) when the battery has 20% SOC. At this SOC

level, the battery voltage is 324.5 V. Therefore, the battery charging power equals to

324.5 × 4.30 = 1.4 kW. There are two different design cases for the Level 1 charger.

First is with 0.5 mH coupling inductor, and the second with 1.0 mH.

The ac line current during charging operation is shown in Fig. 4.11. The calculated

THD for the line current for this operation is 4.67% for Lc=0.5 mH design case and

2.36% for Lc=1.0 mH design case. Therefore, the simulation verifies the goal attaining

a less than 5% line current THD.

The dc-link voltage waveform is shown in Fig. 4.12. The greater second harmonic

voltage ripple that the dc-link capacitor exhibits, the more distorted the battery

charging current will be. Therefore, the dc-link voltage ripple must be limited to the

specified battery charging requirements. The calculated (using (3.40)) and simulated
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Figure 4.11: Line current for Level 1 Ps = 1.4 kW charging only operation
(Lc=0.5 mH).

second harmonic dc-link peak-peak voltage ripple are listed in Table 4.5. As shown,

the analysis and simulation results overlap very well.
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Figure 4.12: DC-link voltage for Level 1 Ps = 1.0 charging only operation
(Lc=0.5 mH).

Next, the dc-link capacitor second harmonic ripple current was investigated.

Fig. 4.13 shows the dc-link capacitor current during the charging operation. The
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Figure 4.13: DC-link capacitor current for Level 1 Ps = 1.0 charging only operation
(Lc=0.5 mH).

amount of rms second harmonic ripple current on the dc-link capacitor during steady-

state operation attained by the simulation is 2.56 A for Lc=0.5 mH and 2.50 A for

Lc=1.0 mH. The analytical values calculated using (3.44) are 2.26 A and 2.56 A,

respectively (Table 4.5).

Table 4.5: Result of charging only operation for Level 1 charger.

Parameter Analysis result Simulation result
Lc=0.5 mH Lc=1.0 mH Lc=0.5 mH Lc=1.0 mH

DC-link peak-peak 19.6 V 20 V 18.9 V 19.2 V
voltage ripple, ΔVdc

DC-link capacitor 2.26 A 2.30 A 2.56 A 2.50 A
ripple current, Icap

The last figure shows the battery charging current in Fig. 4.14. The battery

current harmonic components are listed in Table 4.6. The battery current meets the

goals set in the beginning of this chapter. The second harmonic ripple current is

less than 4%, and the rms sum of PWM ripple current is less than 10% of the rated

charging current which is 18 A for the selected Li-ion battery cell. Therefore, the

charger fulfills the goal of charging the battery by achieving the harmonic standards.
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Figure 4.14: Battery charging current for Level 1 Ps = 1.0 charging only operation
(Lc=0.5 mH).

Table 4.6: The battery charging current harmonic component summary for Level 1
charger.

Parameter Value Percentage of rated
charging current

Lc=0.5 mH Lc=1.0 mH Lc=0.5 mH Lc=1.0 mH

DC component 4.3 A 4.3 A 24% (0.24C) 24% (0.24C)
120 Hz component 0.16 A 0.17 A 0.89% 0.94%
RMS sum of PWM 0.28 A 0.31 1.5% 1.7%
ripple components

In the following section, the Level 1 charger will be operated in full capacitive

operation mode, and the same circuit variables will be investigated.

Ps=0 kW and Qs=-1.4 kVAR capacitive power only operation

The line current THD observed in this operation mode is 5.37% for a 0.5 mH inductor

and 3.93% for a 1.0 mH inductor. The battery charging current is zero for this case.

The dc-link variables are compared with the mathematical analysis results presented

by the equations in Chapter 3. The results are presented in Table 4.7.
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Table 4.7: Result of full-reactive power operation for Level 1 charger.

Parameter Analysis result Simulation result
Lc=0.5 mH Lc=1.0 mH Lc=0.5 mH Lc=1.0 mH

DC-link peak-peak 19.8 V 20.7 V 18.8 V 19.7 V
voltage ripple, ΔVdc

DC-link capacitor 2.28 A 2.39 A 2.40 A 2.52 A
ripple current, Icap

4.6.2 Summary of effect of reactive power operation on Level

1 1.44 kVA charger

The results of two design cases (0.5 mH and 1.0 mH) reveal that the reactive power

operation of the Level 1 charger does not affect ΔVdc and Icap even in the worst

case (full capacitive operation mode, Qs=-1.4 kVAR) at any considerable level. The

battery charging is safe at any point of the PQ power plane provided that the charger

power rating is not exceeded. Therefore, a Level 1 charger can be operated at any

point of its PQ plane as it is needed by the utility grid.

4.6.3 Level 2 (3.3 kVA) charger

The Level 2 charger input voltage is 240 V and its input power is 3.3 kVA. The

coupling inductance selected for this charger is 1.0 mH. All the other parameters are

the same with the Level 1 charger and are presented in Table 4.4.

Ps=3.3 kW and Qs=0 kVAR charging only operation

The ac line current is shown in Fig. 4.15 for this operation mode. The measured THD

is 5.3%. The dc link voltage during the operation is shown in Fig. 4.16. The rms

current ripple of the dc link capacitor is shown in Fig. 4.17. The results of dc-link

variables are listed in Table 4.8. The simulation results coincide with the analytical

results presented in Chapter 3. DC-link peak-to-peak ripple voltage and dc-link rms
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Figure 4.15: Line current for Level 2 3.3 kVA Ps = 1.0 charging only operation
(Lc=1.0 mH).

Table 4.8: Result of charging-only operation for Level 2 3.3 kVA charger.

Parameter Analysis result Simulation result

DC-link peak-peak 49.1 V 47.2 V
voltage ripple, ΔVdc

DC-link capacitor 5.66 A 5.64 A
ripple current, Icap

Table 4.9: The battery charging current harmonic component summary for Level 2
3.3 kVA charger.

Parameter Value Percentage of rated
charging current

DC component 10 A 55% (0.55C)
120 Hz component 0.48 A 2.7%
RMS sum of PWM 1.80 A 10%
ripple components

ripple current values measured in the simulation and calculated using (3.40) and

(3.44) are very close to each other.

The battery charging current is illustrated in Fig. 4.18. Its harmonic components

are summarized in Table 4.9. Using the battery model described before, the converter

fulfills the battery charging requirements set earlier.
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Figure 4.16: DC-link peak-peak voltage ripple for Level 2 3.3 kVA Ps = 1.0 charging
only operation (Lc=1.0 mH).
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Figure 4.17: DC-link capacitor current ripple for Level 2 3.3 kVA Ps = 1.0 charging
only operation (Lc=1.0 mH).

4.6.4 Summary and discussion of effect of reactive power

operation on Level 2 3.3 kVA charger

Comparing the results for charging-only operation and full capacitive operation, the

major changes in the operation of the circuit is the increase in the dc-link capacitor
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Figure 4.18: Battery charging current for Level 2 3.3 kVA Ps = 1.0 charging only
operation (Lc=1.0 mH).

second harmonic current ripple and increased voltage ripple at the dc-link. The net

changes overlap with the mathematical analysis results in Chapter 3. The dc-link

second harmonic current ripple and voltage ripple showed a net increase of 2.1% after

simulation analysis. This was calculated and shown in Fig. 3.10 for Lc=1 mH case in

Chapter 3.

The net effect of full-reactive power operation on the dc-link components is

concluded to be negligible using an Lc=1.0 mH coupling inductor design for 3.3 kVA

Level 2 charger. Furthermore, the maximum ripple seen on the dc-link satisfies the

battery charging requirements for the same battery output filter used for charging-

only operation. The input voltage to output voltage attenuation of the dc-dc converter

is enough to filter out increased second harmonic voltage ripple on the dc-link

satisfying safe charging operation of the battery. Therefore, if charging operation is

required at any point of the PQ power plane, even during a very high capacitive power

operation (i.e. Qs=-2.97 kVAR and Ps=1.42 kW), the charging current harmonics

will still stay below the requirements.
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Quantitatively, the second harmonic battery current ripple in this case is

ΔVbt = ΔVdc × (−32dB)

= 48× 0.0251

= 1.2 V p− p (4.36)

Note that -32 dB was calculated previously during the dc-dc converter design

parameters and ΔVdc is computed using (3.40) for Qs=-2.97 kVAR and Ps=1.42 kW.

Using the battery model developed previously, the above result corresponds to a

0.42 A rms second harmonic current ripple. This is 2.37% of the rated charging

current and below the maximum allowed ripple value.

4.6.5 Level 2 (6.6 kVA) charger

Level 2 charger input voltage is 240 V and its input power is 6.6 kVA. The coupling

inductance selected for this charger is 1.5 mH. The required dc-dc converter output

filter inductance is increased to 680 μH to reduce high frequency harmonics of the

battery charging current. The dc link capacitance is increased to 865 μF as explained

in the previous chapter.

Ps=6.6 kW and Qs=0 kVAR charging only operation

The ac line current is shown in Fig. 4.19 for this operation mode. The measured THD

is 2.80%. The dc link voltage during the operation is shown in Fig. 4.20. The current

ripple of the dc link capacitor is shown in Fig. 4.21. The simulation results of dc-link

variables are listed in Table 4.10 and compared with the analysis results.

The battery charging current is illustrated in Fig. 4.22. Its components are

summarized in Table 4.11.
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Figure 4.19: Line current for Level 2 6.6 kVA Ps = 1.0 charging only operation
(Lc=1.5 mH).

2.7 2.75 2.8 2.85 2.9 2.95 3
300

320

340

360

380

400

420

440

460

480

500

D
C

−l
in

k 
vo

lt
ag

e,
 (

V
d

c)

Time, (s)

Figure 4.20: DC-link voltage for Level 2 6.6 kVA Ps = 1.0 charging only operation
(Lc=1.5 mH).
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Figure 4.21: DC-link capacitor current for Level 2 6.6 kVA Ps = 1.0 charging only
operation (Lc=1.5 mH).

Table 4.10: Result of charging-only operation for Level 2 6.6 kVA charger.

Parameter Analysis result Simulation result

DC-link peak-peak 47.7 V 49.5 V
voltage ripple, ΔVdc

DC-link capacitor 12 A 11 A
ripple current, Icap

Table 4.11: The battery charging current harmonic component summary for Level
2 6.6 kVA charger.

Parameter Value Percentage of rated
charging current

DC component 20 A 110% (1.1C)
120 Hz component 0.47 A 2.7%
RMS sum of PWM negligible −
ripple components

4.6.6 Summary of effect of reactive power operation on Level

2 6.6 kVA charger

The 6.6 kVA charger with Lc=1.5 mH design case shows some change in dc-link

variables between charging only operation and full capacitive operation. Those are

listed below:
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Figure 4.22: Battery charging current for Level 2 6.6 kVA Ps = 1.0 charging only
operation (Lc=1.5 mH).

• DC-link second harmonic current ripple: Icap changes from 11 A to 11.7 A which

is a 6.3% increase.

• DC-link voltage ripple increase: Vdc displays a change from 47 V to 50.7 V

which is again a 6.3% increase.

• The attenuation of the effect of dc-link voltage ripple to the output of dc-

dc converter is -32 dB at 120 Hz. The worst case 120 Hz charging current

component is calculated using the highest peak-peak voltage ripple at the dc-

link as follows:

ΔVbt = ΔVdc × (−32dB)

= 50.7× 0.0251

= 1.27 V p− p (4.37)

This corresponds to a 0.45 A rms current ripple which is 2.47% of the rated current.

Even in this worst case condition, the battery charging could be achieved without

exceeding the limits.
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In conclusion, the 6.6 kVA charger can work in full symmetric four quadrant

operation in PQ plane with ripple current capacity increase in the dc link capacitor

using a 1.5 mH coupling inductor. If larger input inductances are used for the input

filter design of the charger, the current ripple requirement will increase according to

(3.44).

4.7 Summary and Conclusion of the Chapter

There are three different chargers under investigation in this chapter: Level 1 1.4 kVA

charger, Level 2 3.3 kVA charger, and Level 2 6.6 kVA charger. The chapter includes

the simulation of all of the chargers in full capacitive mode of operation. The results

show and verify the maximum amount of reactive power can be achieved with no

change in Level 1 1.4 kVA and Level 2 3.3 kVA chargers and minimal change in Level

2 6.6 kVA charger (6.3% increase in current requirement of system dc-link capacitor).

The battery charging is free of any disturbance for all three designs which means that

the initial charging requirements are satisfied. In other words, all of the three systems

operate while there is no compromise in charging and grid current quality.
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Chapter 5

Design and Experimental

Verification of Bidirectional

Charger with Reactive Power

Operation

5.1 Introduction to Experimental Set-up

The system is designed using a modular structure. The layout design starts with

configuring the placement of the semiconductors on the heat-sink. Each of the phase

leg unit is identical to each other. Fig. 5.1 shows the layout of the MOSFETs and

diodes. Each string corresponds to one phase-leg unit. The technical parameters of

the MOSFET and SiC diode are presented in Table 5.1. All of the boards are designed

using Altium Designer and fabricated in Sierra Proto Express, a printed circuit board

(PCB) manufacturer.

Each phase leg has the identical gate drive units. Each gate drive unit per phase

leg is mounted on the phase-leg MOSFETs mechanically using the SOT-227 package

outline of the MOSFETs. Then, the SiC Schottky diodes are soldered to each of the
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Figure 5.1: Lay-out of the MOSFETs and SiC Diodes.

Table 5.1: Specifications of APT34M120J Si MOSFET (by Microsemi) and
C2D20120D SiC Schottky Diode (by Cree) used in the design of the bidirectional
charger.

Diode Parameters
Symbol Parameter Value Unit Conditions

VRRM Repetitive peak reverse voltage 1200 V
IF Average forward current 20 A Tc = 150 ◦C

34 Tc = 125 ◦C
Rd Equivalent on resistance 93.75 mΩ Tc = 75 ◦C
Vfd Equivalent forward voltage drop 0.75 V Tc = 75 ◦C

Mosfet Parameters
Symbol Parameter Value Unit Conditions

ID Continuous drain current 22 A Tc = 25 ◦C
34 A Tc = 100 ◦C

VBR(DSS) Drain-source breakdown voltage 1200 V
RDS(on) Drain-source on resistance 0.30 Ω
tr Current rise time 60 ns
tf Curent fall time 90 ns

gate drive boards. The power board is mechanically mounted on the gate drive

boards which provided a strong connection. The digital signal processor (DSP)

interface board is mechanically mounted on the power board and the DSP is mounted

mechanically on the interface board.
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In this study, a floating point Texas Instruments (TI) C2000 F28335 DSP is used

for easy and fast code developing feature of floating-point coding. Code Composer

Studio V5.1 is used to compile and download the code to the DSP.

The modular structure of the charger provided flexibility in developing the system

by easily replacing the faulty modules. Each of the modular units are described in

the following sections.

5.2 Gate Drive Board

The gate drive board includes two units for upper and lower MOSFETs. Each unit

has the circuit configuration shown in Fig. 5.2. The PWM input to the unit comes

from the DSP interface board after protection processing. The PWM input shares

the same ground for low-power level logic circuits. The ADuM 5241 isolator is used to

isolate logic-level ground from the MOSFET source. Only one channel of the isolator

is used here. The on-chip isolated power output of the isolator is not used. The

logic-level output of the isolator is connected to the gate drive chip. Gate drive chip

is powered by a 12 V-to-15 V isolated dc-dc converter by Murata Power. It has 70 pF

isolation capacitance.

The gate resistance is selected to be 20 Ω to limit di/dt noise. The gate drive chip

has a maximum current output of 9 A and it is capable of supplying the required gate

current. However, it is important to mention that the capacitors connected to the

supply of the gate drive should have enough values to supply instantaneous current

at the switching instant to prevent any dips in the gate voltage. In this study, 47 μF,

10 μF, and 1 μF tantalum capacitors and 0.1 μF ceramic capacitor are used for each

gate drive chip. The loop that is shown with the red line in Fig. 5.2 is kept as short as

possible to reduce inductance introduced by the traces. Two back to back connected

zener diodes are used to protect MOSFET gate from any positive or negative spikes.

The first version of the gate drive board is shown in Fig. 5.3. In this version,

the ADuM 5241 isolator could not achieve isolation that is required by the upper
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Figure 5.2: Gate drive circuit.

Figure 5.3: First version of the gate drive circuit.

MOSFET. After rigorous testing, it is concluded that a layout problem during the

PCB design has occurred disrupting the isolation. Therefore, a second version of the

gate drive board is designed and tested. The revised version is shown in Fig. 5.4 and

it is installed on top of the SOT-227 MOSFET package.

5.3 Main Power Board

The main power board includes power circuit connections (ac-side, battery-side,

optional dc-source connection, and ac and dc inductors), protection fuses, bleeder

resistors for the electrolytic capacitors, voltage and current sensors, post-sensor signal

scaling and shifting circuits, connections to gate drive circuits, and DSP interface

board connection.
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Figure 5.4: Second version of the gate drive circuit.

The first version of the power board has been revised to reduce the sensor output

traces and included a shorter connection with the DSP interface board. Some of these

elements of the power board are described in the following sections.

5.3.1 Voltage measurements

The first choice for the voltage sensing equipment was an Analog Devices AD204

isolation amplifier. However, the performance of the AD204 was not as good as

expected to reduce the EMI noise during the operation of the charger especially,

at higher power levels. Therefore in the second version, a LEM LV-20P isolated

voltage transducer is used for the voltage measurements which are grid voltage, dc-

link voltage, and battery voltage.

Figure 5.5 shows the configuration of the voltage sensor used. The values used for

the voltage sensing circuitry is given in Table 5.2 for different voltage measurements.

The final scaling is done in the interface board just before the analog to digital

converter (ADC) of the DSP.

5.3.2 Current measurements

There are two current measurements in the circuit: one is the grid current and the

other is the battery current. The first current sensor used for the circuit was a LEM
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Figure 5.5: Voltage sensor circuit.

Table 5.2: The parameters of the voltage sensor circuit.

Parameter Grid voltage DC-link voltage Battery voltage
sensor param. sensor param. sensor param.

Sensor range −340 - 340 V 0 - 500 V 0 - 200 V
Primary resistance (Rp) 33k Ω 40k Ω 20k Ω
Secondary resistance (Rs) 300 Ω 300 Ω 300 Ω

lts25-np hall effect current sensor. However, the output voltage range of the sensor

was limited to 1.5 V for ±15 A instantaneous current measurement. The voltage

measurement rate is 0.05 V/A which made the sensor prone to noises. Therefore,

LEM HY15P current sensor is used for the revised design. This sensor has an output

voltage range of 8 V for ±17 A instantaneous current measurement. Therefore, it has

0.235 V/A measurement rate, almost five times the previous sensor. It can measure

±45 A of instantaneous current.

LEM HY15P provides galvanic isolation between primary power circuit and the

secondary signal circuit. The current sensor output does not have another stage at

the main board and directly connected to the interface board.
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Figure 5.6: DSP interface board circuit revision 1.

5.4 DSP Interface Board

The interface board serves two purposes. One is to filter, shift, and scale the analog

measurements so that they are suitable for 0-3 V analog input of the ADC. The

second purpose is to provide protection for the system if a faulty operation occurs.

The first version of the interface board was designed and shown in Fig. 5.6.

However, long analog traces caused increased noise on top of the analog measurement

signals. Therefore, a second revised version is designed and shown in Fig 5.7.

The following protections are embedded in this interface board:

• PWM shoot through protection: if two gate signals of the same phase leg turn

on at the same time, a PWM error signal is generated, and all of the six gate

signals turn off. A light emitting diode (LED) signal is generated to warn the

user that a PWM shoot through has happened.

• Grid over-current protection: if the line current goes above the maximum value

limited by the protection circuit either in a positive or in a negative cycle, an

over-current signal is generated, and all of the six gate signals turn off. An LED

signal is generated to warn the user that an over-current error has happened.
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Figure 5.7: DSP interface board circuit revision 2.

• DC-link over-voltage protection: if the dc-link voltage goes above the maximum

value set by the protection circuit, an over-voltage signal is generated and all of

the six gate signals turn off. A LED signal is generated to warn the user that

an over-voltage error has happened.

• Battery pack over-voltage protection: if the battery pack voltage goes above the

maximum value set by the protection circuit, an over-voltage signal is generated,

and all of the six gate signals goes off. A LED signal is generated to warn the

user that an over-voltage error has happened.

• Battery over-current protection: if the battery current goes above the maximum

value limited by the protection circuit either during charging or discharging, an

over-current signal is generated, and all of the six gate signals turn off. A LED

signal is generated to warn the user that an over-current error has happened.

• Emergency stop button: if for any reason the user wants to stop the operation of

the circuit, it can directly do so by pressing the emergency stop button shown
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as the red push button in Fig. 5.6. The emergency button opens all of the

switches instantly.

All of the protection items can be temporarily turned off for testing purposes

using the blue jumpers shown in Fig. 5.6. The orange reset button can be used to

reset all of the error signals after fixing the corresponding problem of the circuit. The

interface board also includes a start button shown with the green color in Fig. 5.6.

When the DSP receives the signal from the start button, it goes into soft start mode

to start the operation of the system.

5.5 Total System Integration

Fig. 5.8 shows the final configuration of the charger. As shown, the interface board

and the DSP are placed very close to the sensors providing shorter lengths for the

sensor-to-ADC traces. Fig. 5.9 also shows the side view of the charger. Fig. 5.10 also

provides a view of the charger from an angle.

Figure 5.8: Final configuration of the charger (top view).
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Figure 5.9: Final configuration of the charger (side view).

Figure 5.10: Final configuration of the charger (angle view).

5.6 Code development

Before going into the implementation stage, the controller code is first tested

and developed using PSIM. Fig. 5.11 shows the ac-dc converter and the c-code

development. The PSIM environment for code development helped with the following

items:
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• easy transfer of the controller code from simulation to hardware

• very similar behavior is possible to observe

• more efficient and less costly debugging process

Figure 5.11: Code development using PSIM.

The hardware interrupt is emulated as PwmPrd in Fig. 5.11. It calls for the

execution of the closed loop control at every period event, similar to the real DSP

execution. The main c code, definitions, all the modules and Run code is embedded

in the simulation using the c-code module of PSIM (shown as SRF block in Fig. 5.11).

5.7 Controller Implementation in the DSP

After the development of the C code, the code is transferred to the DSP. The C

code to control the system is downloaded to the DSP using Code Composer Studio

v5.1.The system clock frequency is defined to be 150 MHz. The system controller

flow diagram is shown in Fig. 5.12. Fig. 5.12 shows how the main code of the system

works. The system main code initializes the system, configures the DSP, and operates

in an infinite while loop until the start button is pushed. If the conditions of Fig. 5.12
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Figure 5.12: Controller C-code flow chart.

are met, the system enters into the closed loop function. The initialization code first

loads the header and c files for configuring the DSP and the definition of the functions

used by the code. The system is configured at a switching frequency of 24 kHz.

The system starts with pushing the start button and can be stopped with pushing

the start button again anytime. Three ePWM modules are used to drive the six

switches: ePWM1, ePWM2, and ePWM3. The dead-band generator module is used

to create dead-band between the upper and lower switches of the ac-dc converter.
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Table 5.3: The system parameters of the designed charger.

Parameter Symbol Value

Charger apparent power S 3.3 kVA
Grid voltage Vs 120/240 V
Grid frequency f 60 Hz

Coupling inductance Lc 1.0 mH
Switching frequency fsw 24 kHz
AC filter capacitance Cac 10 μF
DC-link voltage Vdc 250 V (Level 1)

400 V (Level 2)
DC-link capacitance Cdc 330 μF
Battery side filter capacitor Cf 200 μF
Battery side filter inductance Lf 0.4 μH

The third-leg used for the dc-dc converter is driven separately and only one switch

is active at a time and the other switch is off all the time. ePWM1 and ePWM2

use up-down counter and bipolar modulation is realized. When the maximum point

of the up-down counter is reached, it equals to 3125 counts. This corresponds to a

switching frequency of 24 kHz which is the ac-dc converter switching frequency.

5.8 Experimental Analysis

The experiment is completed for three different operation modes: a)charging

operation, b) charging and capacitive operation, and c) charging and inductive

operation.

The charger designed is Level 1 and Level 2 compatible and can accept either 120 V

or 240 V voltage input and rated at 13.75 A grid current rating. The maximum power

that it can accept is 3.3 kW. Other parameters of the charger are listed in Table 5.3.

Results show line voltage (vs(t)) in navy, charger current (ic) in light blue, dc-link

voltage (Vdc) in green, and battery current (ibt) in magenta.
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Figure 5.13: AC-DC converter operation with dc load.

5.8.1 Charging only operation

The system is tested at Level 1, 1.0 kW charging only operation. Fig. 5.13 shows

the ac-dc converter operation. As shown in Fig. 5.14, the line current is in line with

the utility voltage satisfying almost a unity displacement power factor. The THD

calculated for this current is less than 5%.

Fig. 5.14 shows the operation of the total charger including the dc-dc converter.

The controller for the whole system satisfies stable operation by converging to an

equilibrium point. Charging current stays around 5 A, dc link voltage is around

250 V, and line current settles around 8.5 A rms during Level 1 charging operation.

The total efficiency of the charger is 90%. The converter is run for more than five

minutes to make sure that it does not diverge from the equilibrium point.

5.8.2 Charging and capacitive operation

Fig. 5.15 shows the operation of the ac-dc converter for charging and capacitive

operation mode. The charging power command for the controller is Ps=1.1 kW,

and the reactive power command is Qs=-0.5 kVAR. The controller satisfies the stable
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Figure 5.14: Charging only operation of the total system.

Figure 5.15: Charging and capacitive reactive power operation of the ac-dc converter
for pf=0.91 leading.

operation of the system with line current THD is less than 5%. The total apparent

power is S=1.2 kVA.

Fig. 5.16 shows the same operation at Ps=0.9 kW and Qs=-1.0 kVAR. The total

apparent power is S=1.35 kVA.
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Figure 5.16: Charging and capacitive reactive power operation of the ac-dc converter
for pf=0.67 leading.

Figure 5.17: Charging and capacitive reactive power operation of the ac-dc converter
for pf=0.91 lagging.

5.8.3 Charging and inductive operation

Fig. 5.17 shows the operation of the ac-dc converter for charging and inductive

operation mode. The charging power command for the controller is Ps=1.1 kW,

and the reactive power command is Qs=0.5 kVAR. The controller satisfies the stable

operation of the system with line current THD is less than 5%. The total apparent

power is S=1.2 kVA.
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Figure 5.18: Start-up of the charger.

5.8.4 Charger dynamic control tests

In this section, the charger has been tested for its dynamic performance. First, start-

up of the system is tested. Then, the response of the charger is tested for the following

utility commands: 100% step-up of active power command, 100% step-down of active

power command, 100% step-up of capacitive power command, and 100% step-up of

inductive power command.

Start-up of the charger

Charger start-up performance is shown in Fig. 5.18. The color code for the variables

is the same as the previous experiments. The charger is connected to the grid when

the user plugs in to the grid. However, no current is drawn from the grid until the

start button is pushed. When the start button is pushed, the charger starts without

exceeding the over current limit and the load current gradually increases.

Dynamic performance of the charger

First, the charger input power command has a 100% step up change from 0.5 kW

to 1.0 kW. The charger responded to the command in nearly 850 ms (45 cycles) as

shown in Fig. 5.19. The second test included a 50% step down change from 1.0 kW
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Figure 5.19: 100% active power step-up response of the charger.

Figure 5.20: 50% active power step-down response of the charger.

to 0.5 kW. The charger responded to the command in nearly 500 ms (30 cycles) as

shown in Fig. 5.20.

Next, the reactive power response of the charger is tested. A 100% increase of

capacitive reactive power (0 kVAR to -1.0 kVAR) is shown in Fig. 5.21. The settling

time is 225 ms (13 cycles). In addition, a 100% increase of inductive reactive power

(0 kVAR to 1.0 kVAR) is shown in Fig. 5.22. The settling time is 260 ms (16 cycles).
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Figure 5.21: 100% capacitive reactive power step-up response of the charger.

Figure 5.22: 100% inductive reactive power step-up response of the charger.

5.9 Comparison of Experimental and Analysis Re-

sults

The comparison of experimental results and analysis results are presented in this

section. The following equation that describes the relation between dc-link capacitor

and reactive power is rewritten here:

Cdc =

√
S 2 +

(
ωLc

S 2

Vs
2

)2

− 2ωLc
S 2

Vs
2Qs

ωΔVdc Vdc

(5.1)
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5.9.1 Charging only operation

The system parameters are Vs=120 V, Lc=1 mH, Cdc=330 μF, and Vdc=250 V.

During the charging only operation, Ps=1 kW, and Qs=0 kVAR. Using (5.1), the

calculated ΔVdc=32.2 V. The second harmonic peak-to-peak voltage ripple measured

using oscilloscope during 1 kW charging only operation is 32.5 V. Therefore, the

measured and calculated values match very well providing further verification of the

calculated reactive power impact.

5.9.2 Charging and capacitive reactive power operation

Again, the system parameters are Vs=120 V, Lc=1 mH, Cdc=330 μF and Vdc=250 V.

During the operation, Ps=0.9 kW and Qs=-1.0 kVAR. Using (5.1), the calculated

ΔVdc=44.4 V. The second harmonic peak-to-peak voltage ripple measured using

oscilloscope during charging and capacitive reactive power operation is 44.1 V.

Therefore, the measured and calculated values match very well.

5.9.3 Charging and inductive reactive power operation

Again, the system parameters are Vs=120 V, Lc=1 mH, Cdc=330 μF and Vdc=250 V.

During the operation, Ps=1.1 kW and Qs=0.5 kVAR. Using (5.1), the calculated

ΔVdc=38.4 V. The second harmonic peak-to-peak voltage ripple measured using

oscilloscope during charging and capacitive reactive power operation is 36.5 V.

Therefore, the measured and calculated values match well.

5.10 Chapter Summary

This chapter explains the design of the charger hardware set-up. The charger is

designed with three different modules: gate drive board, main power board, and DSP

interface board. All of the boards have been designed in two versions because of the

further updates required to increase the system performance. The controller employed
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for the current control is single-phase PR control. The dynamic performance of the

system is tested and verified. The charger can operate in all four quadrants while

maintaining that the battery charging current and grid current THD is below the

required values. Experimental results are compared with the analysis results for

further verification. The results helped us to further interpret the reactive power

operation to evaluate the impact of supplying reactive power to the grid. Capital

impact is explained in the next section.
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Chapter 6

Cost Analysis of Reactive Power

Support Using Single-phase

On-board Bidirectional Chargers

This chapter describes the cost of providing reactive power using on-board single-

phase bidirectional chargers based on the mathematical analysis of reactive power

support (Chapters 3 and 4), and the experiments shown in Chapter 5.

Traditional PEV customers who are not interested in providing reactive power

support are excluded in the study. There are two types of customers investigated

in this study. The first customer profile is the one that is interested in providing

reactive power support to the grid but at the same time not willing to sacrifice from

the charging time promised over an agreement. This customer will select a charger

that comes with an increased kVA rating on top of the charging active power rating.

The charger can support maximum 0.8 power factor (pf) whenever requested by the

utility grid (leading or lagging). Customer 2 is willing to sacrifice the battery charging

time with reactive power support that is equal to charger’s kVA rating. This comes

with increased charging time but no kVA increase is required.
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Two types of cost analyses are investigated. The first calculation shows the annual

cost of reactive power support in dollar amount to get the net annual capital value

of the reactive power support. The second calculation shows $/kVAR-annual value

to compare with the other options of reactive power support of the utility that are

readily available in today’s grid [88]. This calculation gives a better idea of the cost

in terms of power system perspective. The following assumptions are made for the

cost calculations.

• communication cost with the utility grid to realize reactive power operation is

not included.

• total bulk cost of components are half of the total unit cost of the components.

• the increased cost of maintenance of the charger components due to reactive

power operation is not included.

• EVSE cost increase due to reactive power communication requirement is 5% of

the total EVSE cost.

• EVSE cost is 1,000 and charger cost is $250/kVA

6.1 Customer Profile 1

6.1.1 Incremental costs

The up front incremental costs can be found by comparing the currently used

unidirectional charger ac-dc converter and the full-bridge ac-dc converter that are

shown in Fig. 6.1. Table 6.1 lists the cost of the additional components required. The

total incremental component cost increase is $49 irrespective of kVA increase.

The kVA increase for customer 1 also adds more cost to the charger. Considering

a cost of $250/kVA for the charger, 0.8 pf reactive power support requires $75 more

incremental cost. Also, with bidirectional support capability, EVSE is assumed to
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Figure 6.1: Reqiured changes for V2G reactive power support capability.

Table 6.1: Incrimental cost of ac-dc converter for bidirectional charger.

Component Unidirectional Bidirectional Cost
charger charger increase

Slow diodes 4 0 −$12
Fast diodes (SiC) 2 4 $74
MOSFET (Si) 2 4 $17
MOSFET driver 2 4 $20

Total unit cost increase $98
Total bulk cost increase $49

have a 5% initial cost increase. For a $1,000 EVSE, this corresponds to $50. These

are listed in Table 6.2. Total initial incremental costs become $125+$49=$174.

6.1.2 Operating costs

The electricity cost due to the converter losses during reactive power operation will

be the operating cost of the charger.

The charger normally operates at 1.2 kW charging operation. If utility allocates

a 0.9 kVAR capacitive/inductive reactive power on top of the charging active power,

Table 6.2: Additional incremental cost of charger and EVSE.

Component Unidirectional Bidirectional Cost
charger charger increase

kVA increase for 1.2 kVA 1.5 kVA $75
0.8 pf support

EVSE cost increase (5%) $50
Total cost increase $125
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then the charger operates at 0.8 pf with 1.5 kVA apparent power. The experimental

studies showed that this adds a 70 W more as losses.

The grid operator can always allocate this 0.9 kVAR of reactive power support

from the customer 1 whenever needed. However, the minimum added losses are

70 W. Considering the price of electricity ($0.1/kWh), availability of the vehicle at

the residential outlet (6:00pm-8:00am, 14 hours/day), and including a capacity factor

of 0.25, the total annual cost of the electricity is calculated as follows:

C = 0.07kW × $0.1/kWh× 14h× 0.25× 365days = $8.95− annual (6.1)

The capacity factor was required for the calculation. Utility will not always ask

for 0.9 kVAR all the time, but as an assumption it demands one-fourth of the reactive

power capability on average during 14 hours of operation. Including a 3% inflation

over 10 years of usage, the annual cost becomes $10.25.

6.1.3 Net cost

Net annual cost of the reactive power operation for customer 1 is $174/10+$10.25=$27.65

for 0.9 kVAR of reactive power operation. Another way of calculating the cost of

reactive power is as follows:

$/kVAR =
Total annual VAR support cost

Total inductive and capacitive range

=
$(174/10 + 10.25)

1.8kVAR

= $15.3/kVAR-annual (6.2)

A similar calculation is also done for a charger rated at 3.3 kVA. Using the same

calculations above, the charger’s annual cost of providing 2.46 kVAR of reactive power

to the grid is $67.6. Using the second way of calculation, it costs $13.75/kVAR-annual

for total inductive and capacitive range.
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6.2 Customer Profile 2

6.2.1 Incremental costs

The total component cost increase is the same with customer 1 and $49. Since there

is no kVA increase required, only EVSE cost increase will be added. Therefore, the

total cost increase is $49+$50=$99.

6.2.2 Operating costs

The electricity cost due to the converter losses during reactive power operation will

be the operating cost of the charger. If utility allocates all the available power output

of the converter and demands -1.44 kVAR of reactive power, the experimental studies

showed that this causes a 200 W as losses.

The grid operator can always allocate this 1.44 kVAR of reactive power support

from the customer 2 whenever needed. However, the minimum added losses are

200 W. Considering the price of electricity ($0.1/kWh), availability of the vehicle at

the residential outlet (6:00pm-8:00am, 14 hours/day), and including a capacity factor

of 0.25, the total annual cost of the electricity is calculated as follows:

C = 0.2kW × $0.1/kWh× 14h× 0.25× 365days = $25.55− annual (6.3)

The capacity factor was required for the calculation. Utility will not always ask for

1.44 kVAR all the time, but as an assumption it demands one-fourth of the reactive

power capability on average during 14 hours of operation. Including a 3% inflation

over 10 years of usage, the annual cost becomes $30.1.

6.2.3 Net cost

Net annual cost of the reactive power operation for customer 2 is $99/10+$30.1=$40

for 1.44 kVAR of reactive power operation. Another way of calculating the cost of
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reactive power is as follows:

$/kVAR =
Total annual VAR support cost

Total inductive and capacitive range

=
$(99/10 + 30.1)

2.88kVAR

= $13.8/kVAR-annual (6.4)

A similar calculation is also done for a charger rated at 3.3 kVA. Using the same

calculations above, the charger’s annual cost of providing 3.3 kVAR of reactive power

to the grid is $55.1. Using the second way of calculation, it costs $8.4/kVAR-annual

for total inductive and capacitive range.

6.3 Summary and Conclusion of the Chapter

In this chapter, the cost of supplying reactive power using a single-phase on-

board bidirectional charger is analyzed for two different customer scenarios. The

experimental data of the previous chapter is used to compute the operating cost of

the charger. A power loss estimation is done for 3.3 kVA case to conclude the cost

results.

Today, the cost of supplying reactive power using distribution system capacitor

banks is $2.8/kVAR [88]. This amount is almost one-third of the reactive power

supplied by customer 2 using a Level 2 charger. However, the following benefits are

included using the on-board charger for reactive power support which are not readily

available with capacitor banks:

• dynamic compensation instead of stepped compensation.

• increased power quality with active harmonic filtering.

• inductive reactive power support is possible.

• elimination of residential reactive power consumption penalty in the future.
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Chapter 7

Conclusions and Future Study

7.1 Summary of the Study

This study focuses on reactive power operation analysis of single-phase on-board

bidirectional chargers. The first chapter described the alternative energy vehicles

and different battery technologies. Furthermore, the charging specific terms,

profiles, charging standards and grid connection codes were discussed. The second

chapter presented a review of available single-phase on-board charger topologies and

specifically focused on bidirectional operation. The discussion further extended to

dc-dc converters and integrated chargers.

In Chapter 3, a mathematical analysis of bidirectional operation was performed.

The relationship between reactive power operation, coupling inductance, dc-link

second harmonic ripple current and voltage have been quantified. The net effect

of reactive power operation has been a 2.1%-4.3% increase on dc ripple current and

capacitance depending on the charger power rating.

Chapter 4 discussed the MATLAB simulations developed to test system perfor-

mance and overall system control. Switching and average models of the system are

presented. Single-phase dq control was tested for the line current control.
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Chapter 5 is devoted to explain the hardware development to demonstrate the

bidirectional operation. Modular development of the system helped with debugging

of the faulty boards and easier changes/upgrades. While a MATLAB simulation is

developed with the control system blocks in Chapter 4, a PSIM simulation is used to

directly develop the hardware C code in Chapter 5. This helped with debugging of

the hardware. A TI F28335 floating point DSP is used to control the system. Three

different operation modes are tested: charging only operation, charging and capacitive

operation, and charging and inductive operation. The dynamic tests verified the

performance of the controller.

Chapter 6 showed the analysis of the net cost calculation of the reactive power

operation which includes incremental costs and operating costs. Two PEV customer

profiles were investigated. Customer 1 represents customers that do not want charging

time increase with added reactive power operation. Customer 2 is more flexible with

charging time and can supply more reactive power. The cost of reactive power drops

as the charger rating increases. Also, reactive power cost of customer 2 is cheaper

than customer 1 due to decreased incremental costs.

7.2 Contributions of the Dissertation

The contributions of this study can be summarized as follows:

• The available topologies for reactive power operation using on-board single-

phase chargers are analyzed. The pros and cons of each different ac-dc topology

are discussed to shed light on their suitability for reactive power support.

• The analysis of reactive power operation for single-phase ac-dc converter is

analyzed. The relationship between dc-link variables and reactive power is

quantified. Reactive power operation results in increased demand from the dc-

link capacitor (more charge/discharge cycles and increased second harmonic
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ripple current). However, battery SOC is spared from losses during reactive

power operation.

• A new controller for active and reactive power command following for EV/PHEV

bidirectional charger is designed and experimentally demonstrated. The

controller receives active and reactive power inputs from the utility grid and

adjusts the line current and battery current without any over-shoot or under-

shoot of DC-link voltage. DC-link voltage changes between its maximum and

minimum values based on the received power commands.

• Cost analysis of reactive power operation is achieved to quantify the real value

of reactive power support using bidirectional on-board chargers.

7.3 Future Study

There are two future studies that can be further investigated:

• The single-phase on-board charger can be reconfigured to a three-phase on-

board charger with minimal modification to the current charger. Using the

three phase-legs already available in the single-phase charger, it is possible to

skip the dc-dc converter and directly convert three-phase ac voltage into dc

voltage and charge the battery. This will increase the total efficiency, and

decrease the dc-link voltage ripple thanks to the three-phase system.

• Another future study is the reactive power analysis of the three-phase off-

board chargers. It is possible that these chargers will be available to the

public in shopping malls, big parking lots, or in fast charging stations. The

incremental cost analysis will be done between unidirectional off-board chargers

and bidirectional off-board chargers. It is expected that the annual cost of
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supplying reactive power (per kVAR) to the grid may be lower than the single-

phase on-board chargers. What is more, they are stationary making them more

valuable for grid support.
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