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Abstract 

The use of loose spoil on steep slopes for surface coal mining reclamation sites has been 

promoted by the US Department of Interior, Office of Surface Mining for the establishment of 

native forest. Although low-compaction spoils improve tree survival and growth, the erodibility 

and hydrology of steep slopes may change due to this practice. The purpose of this study was to 

quantify the erodibility (K factor), and the Curve Number (CN) value for low compaction, steep-

sloped (> 20%) reclaimed mine lands in the Appalachian region, USA. This study also 

investigated the performance of the SEDCAD model in estimating erosion and sediment delivery 

from these slopes, and tried to estimate the potential change in rainfall erosivity due to climate 

change in the study region.   

Three active coal mining sites in the Appalachian region of East Tennessee were 

monitored for rainfall, runoff, and sediment yields. The estimated time-varying K factor ranged 

between 0.03 and 0.5 t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

, with the highest values immediately following 

reclamation site construction. Rill development greatly influenced sediment yields. A fining of 

delivered sediment size was observed from the period of rill development to relatively stable rill 

morphology, with the D84 changed from 17.3 mm to 1.7 mm. Meanwhile, different methods were 

used to identify CN values of these new reclaimed surfaces as they are vital for design of runoff 

and sediment control structures. In contrast to previous studies, CN estimation methods utilized 

in this study propose a narrower, more practical CN value range of 58.5 ~ 60.0,  based on 

standard asymptotic behavior, for low-compaction steep-sloped reclaimed surfaces.  

This study also investigated the performance of SEDCAD in estimating erosion and 

sediment delivery. Model input parameters were assessed with respect their impacts on 

SEDCAD outputs. In general, SEDCAD appeared to overestimate sediment yield compared to 
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what was measured from study sites, and modeled sediment yields were found to be sensitive to 

CN selection. Finally, this study showed that for all future greenhouse gas emission scenarios the 

overall annual rainfall erosivity will increase in the study area, though the distribution of 

erosivity throughout the year will be similar to the present.  
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Chapter 1 

Introduction  

1.1 Scope and Justification 

Modern life depends on different sources of energy, with coal playing a vital role in 

energy generation worldwide. The US, as one of the biggest consumers of energy on the planet, 

to a great extent relies on coal for generating its energy, with coal used to create almost half of 

all electricity generated in the United States (IEA 2010). Coal mining, particularly surface 

mining, requires large areas of land to be temporarily disturbed. This raises a number of 

environmental issues, including soil erosion and sediment delivery, which can affect the aquatic 

resources, streams, and habitats. Reclamation has been used to reduce the environmental effects 

of the coal mining.  Reclamation is defined as rehabilitation of disturbed areas resulting from 

surface or underground mining. The basic objective of surface mining reclamation is to 

reestablish vegetative cover, soil stability, and water quality conditions. A better understanding 

of the hydrology and erosional geomorphology of reclaimed areas is needed in order to assess 

the effectiveness of reclamation efforts. 

The Appalachian Regional Reforestation Initiative (ARRI) is a cooperative effort 

between the Appalachian states and the Office of Surface Mining (OSM) (Angel et al. 2005). 

The ARRI goals are to plant more high quality hardwoods on reclaimed mine lands, increase 

their survival rates, and expedite the establishment of quality forest habitat, through the 

encouragement and promotion of the Forestry Reclamation Approach (FRA). One of the most 

critical aspects of the FRA is the use of low compaction grading techniques to assure that a zone 

of “loose” material remains at the surface to encourage tree survival and growth (Sweigard et al. 

2007). OSM needs to understand the hydrology and erosional geomorphology of steep slopes 
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reclaimed after mining activity utilizing this new technique of low level of compaction, in order 

to be able to assess effectiveness of reclamation and quality of surface water that leaves these 

areas. Also, the hydrologic conditions and sediment delivery immediately following hillslope 

construction must be understood in order to engineer adequate runoff retention and erosion 

control structures. This new information will also support reforestation research efforts to 

improve native tree regeneration using the FRA.  

This research will address these needs by: 1) estimating the erodibility (Universal Soil 

Loss Equation, USLE, K-factor) of low-compacted reclaimed material, which include a wide 

range of material size and texture, on steep slopes; 2) estimating the curve number value (CN) 

for steep-slope, loose spoil land surface in order to predict direct runoff from rainfall excess; 3) 

evaluating the performance of the SEDCAD model on reclaimed surfaces; and 4) estimating 

potential effects of future climate change on the rainfall erosivity (USLE R-factor) using the 

New River basin of East Tennessee as case study.  Results from this study will support future 

efforts to evaluate effects of erosivity changes on watershed-scale water quality while 

implementing the estimated K and CN values obtained from the first two parts of this research. 

1.2 Hydrology, Erosion and Climate Interactions on Reclaimed Surfaces 

The Surface Mining Control and Reclamation Act of 1977 (SMCRA) is the federal law 

regulating the environmental effects of coal mining in the United States. It requires that after 

completion of active surface mining, all disturbed areas from the mining operation must be 

reclaimed (U.S. Dept. of Interior, 1977). It also mandates that hydrologic impacts from coal 

surface mining operations must be assessed and mitigated (Tolbert et al. 1994; Graves et al. 

2000). Conventional reclamation of disturbed surfaces during mining activities, as practiced 

from 1970‟s until now, has been traditionally successful in reducing erosion, especially in areas 

http://en.wikipedia.org/wiki/Surface_runoff
http://en.wikipedia.org/wiki/Rain
http://en.wikipedia.org/wiki/Surface_Mining_Control_and_Reclamation_Act_of_1977
http://en.wikipedia.org/wiki/Coal_mining
http://en.wikipedia.org/wiki/United_States
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where the slopes are low to moderate. Establishment of forest cover in the reclaimed areas has 

been less successful, primarily due to construction techniques which focus on slope stability and 

erosion control using high levels of compaction and aggressive grass covers. Research has 

established that over-compaction of the reclaimed surface soils impedes the establishment of 

healthy fast-growing forests (Swiegard et al. 2007). Unfortunately, the mass stability of steep 

slopes is dependent on greater compaction levels, while rapid establishment of ground cover is 

needed to control erosion and sediment yields.  

Establishment of native forest covers on reclaimed surfaces has recently become a 

priority and OSM directive focus of interest, which has led to advocating the use of loose-

dumped spoils and low compaction grading to enhance reforestation success, in a process known 

as FRA (Angel et al., 2005; Sweigard et al., 2007). This new approach directs mine operators to 

employ lower levels of compaction to prepare a better medium for trees survival by increasing 

the chance of root penetration. Although this technique is advocated for all slopes including 

steep slopes, there is a critical need to understand the erosional geomorphology of steep sites.  

Furthermore, pre-mining assessments termed probable hydrological consequences (PHC) 

in the Surface Mining Control and Reclamation Act (SMCRA) are conducted using the runoff 

CN method to generate runoff volume and hydrograph peaks for the study sites, and potential 

impacts are addressed through the design of on-site detention ponds.  SMCRA requires post-

mining runoff to match pre-mining runoff for a 10-year, 24-hour storm event. So estimating CN 

value for low-compacted steep-sloped reclaimed areas is key for investigating the hydrological 

properties of these reclaimed surfaces and it is vital for design of runoff and sediment control 

structures. This information provides regulators with the tools to assess probable future 

hydrologic/environmental consequences of these surface mining sites.  
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It is possible that climate change will affect soil erosion rates by changing future rainfall 

characteristics, but no study of the Appalachian coal region has been conducted to assess these 

potential effects. For all of North America except the south-western part of continent, future 

precipitation events are expected to be more extreme in terms of amount and frequency (IPCC, 

2007). The increase in rainfall intensity will increase rainfall erosivity and as a result the erosion 

of and sediment delivery from disturbed areas. Estimating changes in rainfall erosivity is vital to 

assessing the future effectiveness of current best management practices (BMP) in reducing soil 

erosion and sediment delivery from coal mining sites. 

1.3 Curve Number, CN 

A common tool for investigating the hydrology of reclaimed areas has been the runoff-

curve number (CN) method. The CN is an index used to indicate the runoff potential from a 

specific −generally ungagged− watershed. The runoff CN method developed by the US 

Department of Agriculture, Soil Conservation Service (now the Natural Resources Conservation 

Service, NRCS) is widely accepted for estimating runoff from rainfall on reclaimed mine lands 

due to ease of use and its general acceptance (Elhakeem et al. 2009). It was originally developed 

for agricultural lands (Barfield et al. 1981; Ritter et al. 1991; Schroeder 1994; Camorani et al. 

2005; Taylor et al. 2008).  The NRCS runoff method is fully described in the National 

Engineering Handbook (NEH), Section 4 on Hydrology, and updated in NEH Part 630 (SCS 

1972; NRCS 2004). Design CNs can be determined from the tabulated values as a function of 

Hydrologic Soil Group (HSG), land use, and antecedent moisture condition (AMC).  

CN selection for watersheds is typically based on: (1) curve number values using pre-

mine soil classification and post mine land treatment and use; (2) calibrated curve number values 

based on rainfall-runoff data from watersheds disturbed by surface mining and reclamation; or (3) 
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simulated curve number values from rainfall infiltrometer tests on reclaimed-mine soils.  A 

major problem associated with using the CN method for surface-mine permitting and 

reclamation design is the limited data available for adequate calibration of CNs from watersheds 

disturbed by surface mining, which is primarily due to inadequate record of data from disturbed 

mined watersheds and/or the lack of generally accepted procedure for CN value determination 

from mixed or limited land use data (Ritter et al. 1991).  

To address the above issues, this study monitored a full calendar year of runoff events on 

three different active mine sites at East Tennessee reclaimed by the low-compaction FRA 

method. This research provided an opportunity to evaluate the potential impact of the FRA 

method on the hydrology of the study sites and to evaluate CN values for each site. A unique CN 

value for FRA-reclaimed sites was estimated, which can be used by mining engineer 

professionals for other FRA sites, if recommended standard procedures are followed. The results 

of this research can also help engineers in designing retention basins and BMPs for managing 

runoff and sediment leaving mine sites. It also aids regulators in predicting PHCs. Furthermore, 

SMCRA demands minimal variation from the pre-mining hydrological condition of area, which 

requires knowledge of the pre- and post-mining hydrologic conditions of these areas. 

1.4 Erodibility, USLE K-factor 

Soil erodibility reflects the susceptibility of a soil to erosion based on its physical and 

chemical properties. Soil erodibility depends on the organic matter and texture of the soil, its 

permeability, and profile structure (Wischmeier and Smith 1965; Renard et al. 2000).  

Low compaction grading techniques in reclamation of disturbed areas are relatively well 

recognized, but the desire to maintain low levels of compaction is in direct conflict with 

traditional practice regarding the structural stability of slopes and their resistance to erosion. For 
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a given slope to be stable, soil must have sufficient strength to resist the gravitational and 

seepage forces acting on the soil mass. In general, soil strength will decrease as the density 

decreases. This is recognized in most discussions of low compaction grading techniques, as 

emphasized by Sweigard et al. (2007) in saying that if compaction is required for stability, the 

underlying compacted materials should be left in a rough configuration to assure a high strength 

interface with the weaker un-compacted material. At the same time, increasing the slope 

steepness increases the velocity of rill flow on the hillslope, resulting in an increase in the 

turbulent energy of eddies and the shear stress that develops between water and soil surface, in 

turn increasing the erosion rate. Steep slopes are defined in SMCRA refer as those that exceed 20 

degrees, or 36%.  The FRA reclamation technique tries to use both a steep slope gradient and a 

low level of compaction.  

While FRA reclamation with low levels of compaction is reported to be effective in 

growing native forest species on reclaimed sites (Torbert and Burger 1994; Thomas et al. 1999; 

Angel et al. 2006), there is a lack of scientific information about its effect on erosion and 

sediment delivery in watersheds reclaimed by this method, especially on steep slopes. Steep-

slope reclamation often causes reconstructed slopes to approach the angle of repose of the spoil 

material. Since establishment of protective vegetation or forest is a long-term process, the steep 

slope, back-to-contour surface mining is a long-term source of sediment (Dickens et al. 1985). 

Constructing slopes with low levels of compaction may increase erosion rate by increasing spoil 

erodibility, but it can also reduce sediment delivery by increasing infiltration rates and as a result 

reducing runoff volume. Decreasing the level of compaction may effect erosion on the slopes. 

Lower soil compaction may result in the creation of fewer and less stable soil aggregates. Soils 

with isles aggregation are more vulnerable to erosive forces. Although lower levels of 
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compaction increases infiltration and reduces the amount of runoff, it is possible that the 

reduction in soil aggregation may ultimately increase erosion and sediment delivery. 

 One of the main factors in estimating soil loss is the property of soil erodibility, known 

as the K factor in the Revised Universal Soil Loss Equation (RUSLE). RUSLE is a revised 

version of Universal Soil Loss Equation (USLE) (Wischmeier and Smith 1965; 1978), which 

served as the most commonly used soil loss estimation model worldwide for 30 years (Toy et al. 

1999). Soil-erodibility factors are best obtained from direct measurements on natural runoff plots 

(22.13m length and 9% slope) (Renard et al. 2000). Rainfall simulation studies are less accurate, 

and predictive relationships are the least accurate means of obtaining K values (Romkens 1985).  

To investigate the potential effects of lower compaction and increasing slope steepness 

on the erosion rate of hillslopes built by coal mining waste material, and to trace its change 

during different seasons, three active coal mining sites in East Tennessee reclaimed under FRA 

guidelines were monitored for a 14-month period. This research will provide a unique 

opportunity to estimate the erodibility (K) of low compacted waste material in coal mining sites 

for the worst case scenario (a bare material) as a key parameter for estimating erosion and 

sediment delivery from disturbed areas.  

1.5 Evaluating Performance of SEDCAD Model 

SEDCAD is a comprehensive hydrology, sediment, and erosion modeling package which 

has been widely used in designing runoff and sediment control structures, primarily in the 

surface mining industry. SEDCAD has been used primarily on low- to moderate-sloped surfaces, 

so there is no estimate on its performance for low-compacted FRA-reclaimed steep slopes. To 

address this issue, this study investigated the use of SEDCAD in estimating erosion and sediment 

delivery from low compacted steep sloped reclaimed areas, and evaluated the sensitivity of 
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SEDCAD outputs with respect to curve number values (CN) and erodibility factors of reclaimed 

material (K), using real data obtained from monitoring three different coal mining sites in the 

southern Appalachian region for more than a year period. The results of this study can give a 

better understanding in interpretation of SEDCAD outputs and will be highly useful in designing 

runoff and sediment control structures and selection of best management practices (BMPs) in the 

mining industry. 

1.6 Climate Change and Watershed Hydrology 

Climate change will affect soil erosion by changing the amount, pattern, and erosivity of 

future rainfall events. From a broader perspective, it will influence soil erosion by causing shifts 

in land use necessary to maintain productivity under a new climatic system, and by changing 

plant biomass production, residue decomposition rates, soil microbial activity, evapotranspiration 

rates, and soil surface sealing and crusting (Williams et al., 1996). Variations in rainfall erosivity 

can have more significant impact on ecosystems than the general global warming due to its wide 

domain of influence (Sauerborn et al., 1999; Allen and Ingram, 2002; Diodato et al. 2009). Based 

on the historical weather records, over the last century the number of rainfall events and 

intensities are both increasing across most of the U.S. (IPCC 2007; Nearing 2001). In a warmer 

climate, extreme precipitations and temperatures will increase more significantly than their 

related means (Hegerl et al. 2004). Studies using erosion models indicate that erosion response is 

much more sensitive to changes in the rainfall amount and intensity than to runoff (Nearing et al. 

1990; Zhang et al. 2010). The global average soil erosion is projected to increase approximately 

9% by 2090 due to climate changes (Yang et al. 2003). 

While data from most Global Circulation Models (GCMs) can provide scenarios of 

monthly and annual changes in total precipitation around the world (Nearing et al. 1990), they do 
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not have enough precipitation detail at specific locations in order to directly enable computation 

of erosivities for physically based erosion models like RUSLE, which uses the R factor as a 

measure of erosivity (McFarlane et al. 1992; Johns et al.1997; Nearing M.A, 2001; Zhang et al. 

2010). Even GCMs that provide daily values at their grid scales still require spatial downscaling 

to generate climate data for a specific location of interest.  If monthly projections from GCMs 

are to be used in erosion modeling, which is the case in most erosion studies, then both spatial 

and temporal downscaling are required (Zhang 2007). Daily weather series generated by 

different downscaling methods usually are statistically different and result in different soil 

erosion and runoff predictions for a specific climate change scenario (Zhang 2007).  

Statistical downscaling methods have been used as a tool to investigate the change in R 

factor caused by changes in monthly and annual precipitation amounts obtained from GCM 

outputs, and the resulting effect on soil erosion (Zhang et al. 2010; Nearing, 2001; Renard and 

Freidmund, 1994). However, these relationships have limitations, primarily with regard to snow 

dominated areas, and do not consider the impact of large changes in the storm intensity or 

duration on rainfall erosivity (Zhang et al. 2010). A new approach by Zhang et al. (2010) 

combines the earlier method developed by Zhang et al. (2005, 2007) for downscaling monthly 

precipitation products at time scale meaningful for modeling erosion processes, and the validated 

method developed by Yu (2002, 2003) for using a weather generator (CLIGEN) (Nicks and 

Gander, 1994) to generate accurate RUSLE erosivity factors (Zhang et al. 2010).  This new 

approach was used in this study to estimate climate-change changes in R-factor values in the 

New River Basin at East Tennessee.  

Stochastic weather generators are common tools in generating daily climate data from 

monthly data obtained from GCMs (Mearns et al. 1997; Wilks 1999; Pruski and Nearing 2002; 
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Zhang 2005, Zhang et al. 2010). Previous studies showed that R factors generated by CLIGEN 

are highly correlated with the measured R factors (Yu 2002, 2003; Zhang et al. 2010). Thus, a 

method using CLIGEN together with calibration formulas to adjust the generated R factor is able 

to adequately generate R-factor for RUSLE (Zhang et al. 2010). 

1.7 Research Questions 

1.7.1 Curve Number Hydrology for Low-Compacted Steep-Sloped Reclaimed Surface 

Mine Lands in the Southern Appalachian Region 

The first part of this research focused on estimating a CN that can be used for runoff 

prediction from steep-sloped low-compaction spoil materials in the Appalachian coal-mining 

region.  This information supports the regulatory agencies charged with the reclamation of 

natural hillslope topography and native forests under the FRA.  The hydrological conditions 

immediately following hillslope construction must be understood in order to model and design 

adequate runoff retention and erosion control structures. In this study, runoff was measured using 

the flow divider buckets described by Pinson et al. (2003), and analyzed using the Asymptotic 

method as described by Hawkins (1993).   

Question 1: What is the range of CN value for mine spoils on low-compacted steep-sloped 

reclaimed surfaces, and is it possible to estimate a unique CN value for those surfaces? 

 

Task 1.1: Estimate a range for CN values for several coal mining sites which employed low 

level of compaction method for reclamation, using measured rainfall and runoff data. 

Task 1.2: Investigate the relationship between the CN values, rainfall depth, and the 30-

minute rainfall intensity.  
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Task 1.3: Estimate a unique CN value that will be useful for estimating the runoff leaving 

low compaction reclaimed sites, in order to help engineers in designing retention 

basins and BMPs for managing runoff and sediment leaving mine sites. 

1.7.2 Evaluating the Erodibility of Low-Compacted Steep-Sloped Reclaimed Surface 

Mine Lands in the Southern Appalachian Region 

The second part of this research focused on the erosional geomorphology of steep (>20%) 

reclaimed areas on which low levels of compaction method was employed during their 

construction, particularly in the Southern Appalachian Region of the USA. This includes 

estimation of erosion rate, calculation of the erodibility of the reclaimed material, and 

investigating the change in particle size distribution of eroded materials leaving study sites. The 

result of this study is significant as it provides valuable erosion data, for designing BMPs, and 

reclamation management input to the coal mining industry and regulatory agencies. This helps 

them to adequately design BMPs as required by the SMCRA. 

 

Question 2:  What is the erodibility for mine spoils on low-compacted steep slopes, and does it 

change with time? 

Task 2.1: Estimate the range of erosion rates (t∙ha
-1

) for low-compacted steep-sloped 

reclaimed mine lands during the total 14-month period of the study. 

Task 2.2: Determine soil erodibility (the RUSLE K-factor) for low-compacted steep-sloped 

reclaimed surfaces, and investigate the potential influence of rill development on the 

RUSLE K factor over time. 

Task 2.3: Investigate the change in particle size distribution of eroded material leaving low-

compaction steep-sloped reclaimed surfaces during the 14-month monitoring period. 
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1.7.3 Evaluating the Performance of the SEDCAD Model  

The third part of this research focused on evaluating the performance of SEDCAD model 

on reclaimed mining surfaces. This study investigated the performance of SEDCAD in 

estimating erosion and sediment delivery from low-compaction, steep-sloped mine lands 

reclaimed using the FRA. In addition, SEDCAD model input parameters were assessed with 

respect their sensitivity to SEDCAD outputs. The input parameters included CN value and 

erodibility (K) factor of reclaimed spoil material. Model outputs were compared to measured 

sediment yields from three mine study sites in East Tennessee. The results of this study can give 

a better understanding of the interpretation of SEDCAD outputs and will be useful in designing 

runoff and sediment control structures and selection of best management practices (BMPs) in the 

mining industry. 

 

Question 3: How well does the SEDCAD model perform in predicting runoff and sediment 

delivery from reclaimed surfaces? 

Task 3.1: Use estimated values of mine spoil erodibility (RUSLE K factor) and curve number 

(CN) obtained from previous parts of the study on reclaimed surfaces as input data 

for the SEDCAD model in order to estimate erosion and sediment yield from study 

plots and to compare results with measured data from the monitoring period. 

1.7.4 Climate Change and Hydrology 

The fourth and final part of this research focused on assessing potential changes in 

projected future rainfall erosivity due to climate change using as a case study the New River 

basin of East Tennessee, during the period 2010-2099 and for multiple greenhouse gas emission 

scenarios. To perform this assessment, a new approach was used which combines the methods 
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developed by Zhang (2005, 2007) for downscaling monthly precipitation products at time scales 

meaningful for modeling erosion processes, and the validated method developed by Yu (2002, 

2003) for using a weather generator (CLIGEN) to generate accurate RUSLE erosivity factors. 

The results from this study can widely be used to assess potential future change in soil erosion in 

this area, and to evaluate the future effectiveness for current best management practices (BMP) 

in reducing soil erosion and sediment delivery from coal mining sites. The same method and 

technique is applicable for other regions of interest, in order to investigate the potential future 

change in rainfall erosivity. 

 

Question 4: Will the future rainfall erosivity and its distribution throughout the year in the New 

River basin change due to climate change? 

Task 4.1: Utilize a statistical downscaling method to produce enough precipitation details 

from a global circulation model to directly enable computation of R-factor values for 

the New River basin at East Tennessee. 

Task 4.2: Assess potential changes in projected future rainfall erosivity due to climate 

change in New River basin in the Southern Appalachian region of East Tennessee. 

1.8 Presentation of this Research 

This dissertation is presented in seven chapters. Chapter 2 provides a literature review 

and background on erosion, erodibility, runoff generation, CN estimation, SEDCAD model 

usage, and climate change effect on erosion of reclaimed mine sites as they relate to the research  

completed within this dissertation. Chapter 3 describes the study area, site construction, 

monitoring equipment, and field data collection. Chapter 4 is devoted to runoff and CN 

estimation for low-compaction steep reclaimed slopes. Chapter 5 is devoted to erosion and 
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sediment delivery of low-compaction steep reclaimed slopes. Chapter 6 discusses performance of 

SEDACD model on reclaimed surfaces. Chapter 7 discusses climate change effect on future 

rainfall erosivity of study area. Conclusions and recommendations are included at the end of 

each chapter. 
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Chapter 2 

Literature Review and Background  

2.1 Runoff Generation & CN Estimation for Reclaimed Mine Surfaces 

The runoff CN method developed by the US Department of Agriculture, Soil 

Conservation Service (now the Natural Resources Conservation Service, NRCS) is widely 

accepted for estimating runoff from rainfall on reclaimed mine lands, although its original 

development was for agricultural lands (Barfield et al. 1981; Ritter et al. 1991; Schroeder 1994; 

Camorani et al. 2005; Taylor et al. 2008).  The NRCS runoff method is fully described in the 

National Engineering Handbook (NEH), Section 4 on Hydrology, and updated in NEH Part 630 

(SCS 1972; NRCS 2004).  In addition, Hawkins et al. (2009) recently completed a technical 

review on curve number hydrology.   

Several studies have generated CN values for use on reclaimed surface coal mine lands, 

but none provide CN validated through field studies on steep-sloped reclaimed mine lands with 

loose spoils supporting the FRA.  Also, estimated CN values from precipitation–runoff depth 

pairs obtained from the monitoring study sites are dependent on the precipitation depth, with CN 

value tending to decline as precipitation depth increases. Estimating a precipitation-independent 

CN value (P-independent CN) is important as it can be highly useful in practice to estimate 

runoff leaving low compacted reclaimed sites and also in designing retention basins and BMPs 

for managing runoff and sediment leaving mine sites. The widely recognized asymptotic method 

described by Hawkins (1993) was developed for estimating curve numbers from rainfall-runoff 

data sets and has the potential advantage of estimating unique CN value for watersheds. This 

method determines CN as an asymptotic limit to the CN values calculated from ranked data pairs 

as precipitation depth approaches infinity (Hawkins, 1993).  The SCS (1985) National 
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Engineering Handbook, Section 4, suggests that soil-based tables be used as a guide to estimate 

CN, but if local rainfall-runoff values are available, they are to serve as the primary source of 

reference. For design flood estimation use of measured CN data is preferred, but the standard 

tabulated CN values are generally used when there are no or limited runoff measurement data. It 

would be expected that CN values for reclaimed mine lands with compacted soils are greater 

than values on loose spoils, inferring a greater initial abstraction with increased infiltration for 

the loose spoils. NEH Section 4 reports CN values for reclaimed mines lands in the range of 74 – 

77. Ritter and Gardner (1991) found CN values to range from 83 to 88 for an initial abstraction 

of 0.2 for three watersheds in Central Pennsylvania.  The three sites were 3.1 ha, 11.6 ha and 

32.2 ha in area, but slope steepnesses were not provided.  This study represented post-mined 

lands fully vegetated with trees and grasses, so these CN values do not represent estimates for 

recently disturbed mine lands.  Barfield et al. (1984) also concluded that CN values reported by 

NEH Section 4 tables were too low for reclaimed mine lands with compacted spoils.  They 

simulated rainfall on erosion plots in western Kentucky consisting of three treatments, including 

mine spoils, top soil, and subsoil. On compacted mine spoils Barfield et al. (1984) reported a CN 

of 91, a similar value for compacted gravel or dirt roads, and a Hydrologic Soil Group (HSG) 

classification of D representing a surface condition with little or no infiltration.  

Bonta et al. (1997) investigated the effect of mining and reclamation on three small 

watersheds in East-Central Ohio by monitoring hydrological conditions for the pre-mining 

(Phase 1), mining and reclamation (Phase 2), and post-reclamation (Phase 3) periods.  

Reclamation construction used a high level of compaction on 9% slopes.  By using rainfall 

simulation, they showed that CN values increased due to mining and reclamation activities 

(Phase 2) with the range 83 to 91, while during Phase 3, CN values remained approximately the 
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same as for Phase 2, within the range of 87 to 91.  Interestingly, CN values were not significantly 

different between Phases 2 and 3, though land cover for Phase 3 post-mining period included 

grass and trees.   

Other studies have reported CN values for compacted soils. Meadows and Blandford 

(1983) used rainfall simulators on un-mined and reclaimed coal mine sites in Wyoming.  In this 

semi-arid region, average annual precipitation is approximately 38 cm, with high-intensity 

rainfall events from local thunderstorms. CN values ranged from 91.7 to 92.8 for un-mined sites 

and 88.4 to 97.5 for the reclaimed mine sites. In a similar study by Schroeder et al. (1987) in 

West-central North Dakota using simulated rainfall on 40 plots with fine-textured reclaimed 

mine spoils, CN values ranged from 88 to 97 for an initial abstraction of 0.20.   

It is evident that compaction of spoil materials on reclaimed mine lands can increase CN 

values above 87 from pre-mining to post-mining surface conditions.  Applying the FRA utilizing 

loose-dumped spoils in eastern Kentucky, Taylor et al. (2009) found CN values in the range of 

60 to 92 for an initial abstraction of 0.2, and a range of 35 to 88 for an initial abstraction of 0.05.  

In this study, loose spoils were dumped on a longitudinal grade of 2% for drainage, with 3-10% 

lateral side-slopes, and an under-drain perforated PVC pipe was installed. Low slope steepness, 

very low level of compaction by single pass of a dozer, a very rough surface topography, the 

presence of large rocks which created big gaps for rapid infiltration, and occurrence of relatively 

moderate intensity rainfall events provided a situation for which surface runoff was not observed 

in the study, thus CN values represent interflow contributions only.  No difference in CN values 

were found among the three spoil treatments, consisting of weathered brown sandstone, un-

weathered grey sandstone, and a mixture.  In addition, precipitation-independent CN values were 

not estimated from their dataset. Although their study duration was two years, their CN 
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investigation for loosed-dumped spoil material covered only one mine site and was limited to 12 

data points. In the Appalachian Coal Belt (ACB) region, the pre-mining land use is 

predominantly steeply sloped, and since FRA requires that reclamation of mine sites follows the 

natural hillsope topography, study on reclaimed areas will better match reality for study sites 

constructed with steep slopes. Limitations in Taylor et al. (2009) make it difficult to extend their 

findings to steep-sloped mine sites. 

2.2 Erosion, and Erodibility of Reclaimed Mine Surfaces 

Steep slope generally have higher erosion rates. Zhang et al. (2009) showed that sediment 

transport capacity increases as a power function with slope gradient. Meyer and Harmon (1989) 

showed that slope steepness affects erosion for the more erodible soils, while rills are under 

formation. Rills are considered as the first signs of major soil erosion. Rills begin to form when 

the runoff shear stress−which is the ability of surface runoff to detach soil particles−overcomes 

the soil‟s shear strength, which is the ability of soil to resist forces working parallel to the soil‟s 

surface. This begins the erosion process, as water breaks the soil particles free and carries them 

downslope (Torri et al. 1987). The slope steepness controls the depth of the rills, while the length 

of slope controls their number. After rills begin forming, they are subjected to a variety of other 

erosional forces which may increase their size and output volume. Up to 37% of erosion in a rill-

driven area may originate from mass movement, or collapse, of rill sidewalls. As water flows 

through a rill, it will undercut the channel walls, triggering collapse. Also, as water seeps into the 

soil of the walls they weaken, amplifying the chance of wall collapse. The erosion created by 

these forces increases the size of the rill while also swelling its output volume (Govers 1987).  

A high level of compaction provides slope stability and reduces the amount of erosion 

and sediment delivery from disturbed surfaces. However, a lower level of compaction produces a 
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better medium for tree survival. The low compaction technique has been reported to be effective 

on low to moderate gradient slopes (Torbert and Burger 1994; Thomas et al. 1999; Angel et al. 

2006). Torbert and Burger (1994) studied survival of different species of trees (white pine, 

Virginia pine, sugar maple, sycamore, red oak and black walnut) on compacted and un-

compacted reclaimed sites. After 2 years, 42% survival of seedling plants on compacted sites 

was reported, while 70% of plants on un-compacted sites survived. Also, trees on un-compacted 

sites were taller. Thomas et al. (1999) performed a field study on surface mine lands in eastern 

Kentucky to investigate effects of two levels of compaction on white ash (Fraxinus americana), 

yellow poplar (Liriodendron tulipifera), and northern red oak (Quercus rubra) growth. They 

concluded that low compaction of spoils result in higher vigor and survival of plants. Angel et al. 

(2006) studied survival of white oak (Quercus alba), white ash, eastern white pine (Pinus 

strobus), northern red oak, black walnut (Juglans nigra), and yellow-poplar under compacted, 

lightly compacted, and uncompacted mine spoil. All species with the exception of white ash, 

showed increased survivability as compaction was decreased. 

 Sweigard et al. (2007) proposed techniques for constructing low-compaction spoils in 

order to maximize reforestation success on reclaimed coal mine surfaces. Their technique 

focused on leaving spoil loose, leveling with the lightest equipment available with the fewest 

passes possible during dry conditions, and permanently removing all equipment from the area 

after leveling. Fields-Johnson et al. (2009) assessed the effects of grading and groundcover 

treatments on reforestation and successful growth of mixed hardwoods and American chestnut 

trees in active coal-mining sites in Virginia. The result of their study showed that compaction 

had no significant impact on survival of mixed hardwood trees and Chestnuts growth, but loose 

grading reduced soil loss compared to smooth high compaction grading. 
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 Erodibility of naturally formed agricultural soils has been studied extensively over the 

past years (Mcintosh et al. 1993), but there is limited information about the erodibility of both 

reclaimed and un-reclaimed surface mined lands, especially those constructed by low 

compaction techniques on steep slopes. Most research evaluates erodibility and/or soil loss from 

areas using rainfall simulation methods rather than in-situ field approaches. An erosion study 

under natural rainfall conditions is labor intensive, time consuming, and costly (Carroll et al. 

2000). At the same time, researchers studying erosion of mine spoil have been more focused on 

low to moderate over-compacted reclaimed slopes.  

Gilley et al. (1977) used rainfall simulations to compare runoff and sediment yield of 

native rangeland sites (sandy loam texture and 9.0 percent slope) with surface mined sites, 

representing pre-mined and mined conditions, respectively. Study plots were constructed in 

western North Dakota using bare spoil materials with slope gradients of 4.6 and 17.0 percent on 

a sandy clay loam material. Also, plots with 10.0 and 12.9 percent slope gradient were 

constructed on clay loam and silty clay loam spoils. Average sediment delivery of 74,000 kg∙ha
-1

 

for the bare topsoil, 18,000 kg∙ha
-1

 for bare spoil, and 200 kg∙ha
-1

 for rangeland were reported.  

Hartley (1982) ran rainfall simulations on four loam-texture spoil study plots to 

investigate runoff and soil loss from different reclaimed treatments. Their study was conducted 

on plots with slopes ranging from 6% to 15%, which were located on a coal mine site in 

northwestern Colorado. The four plots included one straw mulch plot, one standing grain mulch 

plot, and a pair of rototilled fallow plots (bare and recently disturbed spoils). The test plots were 

reported to be hydrologically similar. The rototilled plots yielded four and ten times as much soil 

loss per unit of runoff as what the standing grain mulch and straw mulch plots showed, 

respectively. The standing grain mulch plot yielded about 2.5 times as much sediment per unit of 
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runoff as the straw mulch plot. A soil loss between 2.39 to 3.53 t∙ ha
-1

 was reported for the 

rototilled plots, 0.31 t∙ ha
-1

 was reported for the straw mulch, and 0.01 to 0.71 t∙ ha
-1

 was reported 

for standing grain mulch. 

 Mitchell et al. (1983) studied erodibility of un-mined soil (Clinton silt loam soil on 2 to 

18% slope) and reclaimed material (mixture of Keomah silt loam, Hickory loam, and Clinton silt 

loam on 5% slope), for two sites in western Illinois and one in southern Indiana. For each 

condition at each mine, six plots were constructed with a high compaction level. Rainfall 

simulations with 64 mm∙hr
-1

 intensity were performed. Their experimental procedure consisted 

of a 60-min dry run, and then within an hour, 30 min of wet run, followed by a 15- to 20-min 

pause before conducting 30 min of very wet run. Reclaimed soil plots were determined to have 

lower K factors than those for the corresponding un-mined soil for the same mine. The estimated 

K factor for the reclaimed sites was on the average 74% of what was estimated for corresponding 

un-mined sites. They reported K factor values in the range of 0.21 to 0.65 t∙ ha∙ h∙ ha
-1

∙ MJ
-1

∙mm
-

1
 for compacted reclaimed sites. 

 Barfield et al. (1983), investigated the effects of placement technique and density on 

erosion rate of mine spoil and reconstructed topsoil by using standard erosion plots (4.6 m by 

22.1 m on 9 percent slope) in western Kentucky. Plots were constructed with shale spoil material, 

topsoil (A horizon) and subsoil (B and C horizon mixture) under two compaction conditions. 

Rainfall simulations with a rate of 63.5 mm∙h
-1

 in dry, field capacity, and very wet conditions 

were used to study erosion on the plots. Average erosion rates of 0.35, 0.94, and 1.013 t∙ha
-1

 

were reported for the spoil, subsoil, and topsoil plots, respectively. They found lower erosion 

rates on slopes as the level of compaction decreased. 
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 Researchers who used natural rainfall events have generally studied erosion on low slope 

gradients with a high level of compaction. McIntosh et al. (1993) studied erodibility and 

sediment yield of reconstructed compacted mine soils (topsoil, subsoil, and mine spoil) using 

natural rainfall events and low gradient (9%) standard study plots in Kentucky. The subsoil and 

topsoil were Sadler silt loam (Glossic Fragiudalf, fine-silty, mixed, mesic) and spoil was from 

overburden above the coal bed, consisted of a mixture of shale, siltstone, and sandstone. K 

factors of 0.046 for topsoil, 0.067 for subsoil, and 0.051 for mine spoil with units of t∙ ha∙ h∙ ha
-1

∙ 

MJ
-1

∙mm
-1

 were reported. Significant rill development was observed. Rill formation followed by 

greater erosion rate due to change in the runoff patterns from sheet to that of more concentrated 

flow patterns, where erosive energy from overland flow is greater. Their study showed that the 

erodibility of a given material can be quite variable through the year (McIntosh et al. 1993). 

They concluded that K factors will increase slightly in the winter due to higher antecedent soil 

moisture levels and to temperature fluctuations that result in freeze-thaw cycles that cause further 

instability in spoil material. Equal erodibility of topsoil and spoil was observed and assumed to 

be associated with an armoring effect imposed by the coarse fragments of spoil. They found a 

good prediction for erodibility of each reconstructed material by using the Wischmeier et al. 

(1971) nomograph.  

Bonta (2000) tried to quantify the effects of coal surface mining and reclamation on 

suspended sediment concentrations and yields leaving three small study watersheds in Ohio. The 

study watersheds were monitored during three different phases: 1) undisturbed natural condition, 

2) under mining and/or reclamation activities, and 3) completely reclaimed condition. The 

predominant land use for the undisturbed natural condition (Phase 1) was pasture and forest. For 

Phase 3 (reclaimed condition), grasses and legumes were used as cover. Area-average USLE K-
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factors of 0.33 and 0.43 t∙ ha∙ h∙ ha
-1

∙ MJ
-1

∙mm
-1

 were used for Phase 1 and Phase 3, respectively. 

Also, CN values ranging from 71-81 for Phase 1 and 88-91 for Phase 3 were determined. 

Erodibility was not estimated during phase 2, but a linear regression model was built between 

suspended-sediment concentration and corresponding flow rates.   

In southeastern Ohio, McKenzie and Studlick (1979) used natural rainfall events to find 

the erodibility of un-vegetated, un-reclaimed spoils, and didn‟t follow reclamation techniques as 

mentioned by SMCRA. The calculated K-factor value for the spoil material was found to differ 

from values obtained from soil-size texture analysis, “possibly due too gully erosion which is not 

predicted by Universal Soil Loss Equation” (Dickens et al. 1985).  

Curtis and Superfesky (1977) investigated erosion and sediment delivery of steep-sloped 

surface mining spoil in Campbell County, Tennessee. Over 20 months, 33 mm (526,000 kg/ha) 

average total soil loss (including slope failure) from a 0.73 ha site was reported. Almost 90% of 

the reported erosion occurred during the first year after mining. Lots of rill and gully erosion, as 

well as slope failure were observed. Dickens et al. (1985) studied erosion and sediment yield 

from compacted steep-slope surface mine spoil in the New River Basin of Tennessee. Two study 

plots were constructed on a newly reclaimed surface mining spoil. Protective mulch and soil 

stabilizing material were used at reclamation. Average suspended sediment yields per storm were 

reported to be 0.06 kg∙ha
-1

.  The major sources for sediment were reported to be sheet and rill 

erosion on the mining spoil. Between the deterioration of mulch and vegetation establishment, 

progressive armoring effect was observed on the spoil surface. About 81% of sediment was 

delivered during the first the 204 days of monitoring. It was concluded that “slope stability, in 

addition to erosion, must be considered in the approximate original contour reclamation of steep-
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slope surface mines” (Dickens et al. 1985). Curtis (1971) also observed an armoring effect after 

strip mining in disturbed watersheds within Kentucky. 

 Carroll et al. (2000) investigated the effect of slope steepness on erosion, runoff, and 

sediment yield from three coal mine sites located in Queensland, Australia. Study plots with low 

(10%), moderate (20%) and steep (30%) slopes were constructed on soil and spoil material. Also, 

different treatments (pasture and tree) on slopes along with bare conditions were studied to 

understand the effect of vegetative cover on the erosion of mine spoils. Formation of rills 

(particularly on the steep slopes) was reported: “Once [rills] formed they persisted until a dense 

sward of grass colonized and stabilized rills” (Carroll et al. 2000). Little difference in soil 

erosion rates due to slope gradients were observed once dense vegetation was established on the 

plots. Runoff from the spoils was reported to be almost double that observed from the soil plots. 

Average annual sediment loss of 78 -280 t∙ha
-1

 for bare mine spoil was reported. 

Zhang et al. (2009) showed that sediment transport capacity increases as a power function 

with slope gradient in natural soils. Hahn et al. (1985) reported a strong positive linear 

relationship between soil loss and slope steepness for reclaimed spoil, but no significant 

correlation was seen between slope steepness and flow velocity for reclaimed material in their 

study. Increased rill frequency was observed for increased slope steepness, and a positive linear 

correlation was reported between length of rills and slope steepness. They concluded that since a 

positive linear relationship also exists between soil loss and slope steepness, soil loss and rill 

formations were strongly related and dependent on slope steepness. Meyer and Harmon (1989) 

showed that slope steepness affects erosion for erodible soils, at least while rills are under 

formation. Berger et al. (2010) used laboratory rainfall experiments to investigate initiation and 

evolution of rill networks under different rainfall intensity and slope (10, 20, and 30%) 
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treatments. An increase in either slope or rainfall intensity increased soil loss due to rill erosion, 

but the effect of rainfall intensity was larger. Increased rill formation was observed in the lower 

part of the slope. Rill density was similar for the different slope steepness treatments under 

constant rainfall intensity, but total sediment delivery increased considerably for higher slope 

steepness. “The developed rill systems were therefore comparable, but more soil was lost at steep 

slopes” (Berger et al. 2010). Rill depth increased for larger slopes, while the rill cross-section 

width got narrower. Rill stabilization was reported after almost an hour of rainfall simulation for 

all rainfall intensities and slopes. 

 Nicolau (2002) showed that grass cover and soil moisture are controlling factors for 

runoff generation, routing, and sediment delivery on topsoil slopes, while on compacted mine 

spoil slopes, rill network density is the dominant factor. Runoff connectivity (runoff rates 

recorded at the rill-network scale over runoff rates recorded at the interrill-area scale) of rilled 

spoil material was reported higher than on the corresponding topsoil slope. A higher rill density 

was observed on mine spoil than topsoil, and it was reported as related to low infiltration 

capacity in the compacted mine spoil. Hancock et al. (2002) studied rill development on a newly 

constructed homogeneous bare mine spoil, at a slope equal to the angle of repose. The observed 

rills initiated near the top of slope and ran linearly down the slope as regularly-spaced distinct 

drainage lines with triangular cross-section.  

2.3 SEDCAD Usage for Reclaimed Mine Surfaces 

Design of the sediment control basins and stormwater best management practices (BMPs) 

is sometimes performed with the support of computer software such as SEDCAD program. 

SEDCAD is a suite of curve number-based watershed rainfall-runoff models, RUSLE-based 

sediment yield analysis, and channel and hydraulic structure design utilities (Warner et al. 1998). 
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SEDCAD is primarily used by OSM, state mining programs, industry, and engineering 

consultant firms for hydrologic, erosion and sediment control designs (OSM, 2010). OSM 

provides SEDCAD to the 24 states with primacy under the SMCRA for use in permit review and 

in design of abandoned mine lands (AML) reclamation projects and remediation plans for bond 

forfeiture sites. OSM also uses SEDCAD to review permit applications from industry, and in 

preparation of Cumulative Hydrologic Impact Assessments (CHIA) to determine the cumulative 

hydrologic effects of multiple mining operations on adjacent lands and watersheds during and 

after mining (SEDCAD 2007). SEDCAD includes hydrology and hydraulics design and can be 

used to evaluate the effectiveness of both individual and integrated systems of surface water, 

erosion, and sediment control measures with respect to sediment trap efficiency and prediction of 

effluent sediment concentration (Warner et al. 1998).  

Specifically,  SEDCAD has been used by engineers, geologists, hydrologists, and soil 

scientists to: 1) model hydrologic mine systems including channels, ponds, and sediment control 

structures; 2) evaluate the effectiveness of sediment ponds and other sediment control structures 

such as check dams, grass filters, and silt fences for a  mining reclamation plan; 3) evaluate 

diversion channel designs, including riprap, grass-lined, and bar soil conditions; 4) evaluate 

culvert and plunge pool designs, and recommend changes for permits under review; and 5) 

analyze the impact of the addition or removal of a hydrologic structure - sediment pond, 

permanent impoundment, plunge pool, etc. under permit review (US Dept. of Interior, 2008).  

SEDCAD‟s input parameters are basin size, stream and land slope, time of concentration, 

curve number, soil erodibility (RUSLE K factor), hydrologic soil group, hydrograph response, 

storm frequency, and particle size distribution of eroded material. SEDCAD allows division of 

the watershed into relatively homogenous sub-basins with respect to expected hydrologic and 
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sediment erosion responses. Hydrologic and sediment data are tabulated at a model position that 

SEDCAD refers to as a “structure.” A “structure” can be a physical or non-physical entity and is 

simply a position in the model where hydrographs and sediment-graphs are generated. While 

SEDCAD has been used extensively as a tool in hydrologic, erosion, and sediment control 

designs, there is limited information on its performance estimating erosion and sediment yield 

from disturbed mine lands. Also, sensitivity of the software‟s results to its hydrologic and 

sedimentologic input parameters has never been investigated. 

The overall objective of this part of research is to evaluate performance of SEDCAD in 

predicting runoff, erosion, and sediment yield from three coal mining study sites in the southern 

Appalachian region for a 14-month period. In addition, the sensitivity of SEDCAD to the main 

hydrologic and sedimentologic input parameters–curve number value (CN) and erodibility of 

reclaimed material (K)–was investigated with respect to the model‟s output, and the outputs were 

compared with measured data. Results of this study allows for a better  interpretation of 

SEDCAD output, which will be useful to practitioners in the mining industry  designing runoff 

and sediment control structures and selecting stormwater BMPs. 

2.4 Climate Change and Erosivity 

The potential effects of climate change on erosion have been studied using different 

approaches. Favis-Mortlock and Boardman (1995) investigated changes in erosion rates due to 

the effect of climate change by using the Erosion Productivity Impact Calculator (EPIC) model 

at the South Downs, United Kingdom. Their model, EPIC, was limited in its ability to model the 

complicated interactions in the erosional system as the climate changes (Pruski et al. 2002). The 

Water Erosion Prediction Project (WEPP) model was used by Favis-Mortlock and Savabi (1996) 

to determine the effects of change in CO2 concentrations on water balances and crop biomass 
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production rates. Sensitivity of erosion to changes in CO2 concentration and temperature was 

investigated by Savabi et al. (2001), but no further evaluation was performed on potential impact 

of precipitation changes on erosion. Using three different GCMs, soil erosion changes due to 

climate change effect in Mato Grosso State of Brazil was investigated by using a CO2-sensitive 

version of WEPP, which showed 27% to 55% increase in soil erosion (Savabi et al. 2001). 

Nearing (2001) used results of climate change scenarios from two GCMs to study potential 

changes in rainfall erosivity due to climate change across the United States for the 21st century. 

Study results showed a potential for erosivity change across much of the U.S. during the 21
st
 

century, from 16-58% change (positive or negative). Based on this study, using the U.K. 

Meteorological Office‟s Hadley Centre HadCM3 coupled GCM, a 25-50% average increase in 

rainfall erosivity was projected for East Tennessee over the 80 years from 2000-2019 to 2080-

2099. Pruski and Nearing (2002) used simulated climate data from the HadCM3 GCM to study 

potential impacts of climate change on soil erosion by water. They modeled erosion at eight 

locations within the U.S. using a modified version of WEPP model to consider the effects of 

changes in CO2 concentrations on plant growth. Their investigation showed an increase in 

erosion rate when there is a significant increase in precipitation amount/intensity, while for 

decreases in precipitation amount/intensity either increases or decreases in overall erosion can be 

expected, depending on the interactions between plant biomass, runoff, and erosion. Also, 

changes in rainfall intensity have a more significant impact on erosion rates than do changes in 

the number of rainy days, but the study found that erosional studies under climate change should 

incorporate both factors. Finally, the study revealed that each 1% change in precipitation would 

result in a 2% change in runoff and approximately 1.7% change in erosion, if other 

environmental factors (CO2 concentration, temperature, etc.) remained constant. 
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Stochastic weather generators have been widely used to statistically downscale regional 

climate models, RCMs, or GCMs projections to the location of interest (Wilks 1992; Semenov 

and Barrow 1997; Katz 1996; Mearns et al. 1997; Mavromatis and Jones 1998; Hansen and Ines 

2005; Tisseuil et al. 2010; Zhang et al. 2010). In this method present-date climate parameters are 

adjusted to GCM-projected relative climate changes, then future climate series are generated 

using perturbed parameter values (Zhang 2007). The CLIGEN model (Nicks and Gander 1994) 

is a stochastic daily weather generator that uses a first-order two-state Markov chain to produce 

daily precipitation occurrence. The Markov chain is constructed per transition probabilities of a 

wet day following a wet day (Pw/w) and a wet day following a dry day (Pw/d). The daily mean 

precipitation is generated using a transformed skewed normal distribution, while the daily 

maximum and minimum temperatures are generated using normal distributions (Zhang 2007). 

Zhang et al. (2010) investigated rainfall erosivity changes under climate change using six GCM 

models under three emissions scenarios (A2, A1B, and B1). They computed downscaled mean 

annual precipitation and USLE rainfall erosivity (R factor) for time periods 2030 through 2059 

and 2070 through 2099 for northeast China. They established a new approach that combines the 

methods developed by Zhang (2005, 2007) to downscale monthly precipitation data from GCMs 

at time scales meaningful for modeling erosion processes, and the method developed by Yu 

(2002, 2003) that uses a weather generator (CLI GEN) to generate accurate RUSLE erosivity 

factors. Their study revealed that changes in rainfall erosivity under the higher greenhouse gas 

(GHG) emissions scenarios, A1B and A2, show the highest projected changes, and changes in 

erosivity do not uniformly correspond spatially to changes in total annual rainfall depths. The 

same approach by Zhang et al. (2010) is utilized in this study to estimate R factor trends caused 

by climate change for the New River Basin at East Tennessee.  
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Chapter 3 

Low-Compaction Steep-Sloped Reclaimed Surface Mine Lands in the 

Southern Appalachian Region  

3.1 Study Area 

The three study sites were located in the Appalachian Plateau physiographic region, 

locally referred to as the Cumberland Plateau and extending in a north-south direction through 

Kentucky, Tennessee, and Alabama (USGS 2003). The Cumberland Plateau consists of 

Mississippian and Pennsylvanian geological formations holding coal, shale, sandstone, and 

limestone (NPS 2007). Soils in this mountainous region consist of moderately deep clay sub-

soils and silty clay topsoils on ridge tops, and well-drained silty clay loam soils lower in the 

valley (Overton 1980). In undisturbed forested areas, the surface soil horizon is rich in organic 

matter. Native forest cover is classified as Appalachian Mixed Mesophytic Forest, dominated by 

oaks (Quercus spp), hickories (Carya spp), maples (Acer spp), ashes (Fraxinus spp), and elms 

(Ulmus spp). However, the study sites were devoid of trees and the spoils on the reclaimed 

slopes were predominately silty clay soils mixed with larger gray shale and brown sandstone 

rocks. 

The three sites are in East Tennessee north of the city of Knoxville, and all sites were 

active with surface coal mining operations (Figure 1). Named in this report based on mine 

operator, the three sites were: 1) Premium, located in Anderson County at N 36
o
 6‟ 36”, W 84

o
 

19‟ 30”; 2) National, located in Campbell County at N 36
o
 30‟ 30”, W 84

o
 16‟ 12”, and 3) 

Mountainside, located in Claiborne County at N 36
o
 31‟ 30”, W 83

o
 57‟ 23”. A humid 

subtropical climate prevails in this region, where July is the warmest month and January the 

coldest. Average annual precipitation at the Premium site is 129.2 cm, with typical temperature 
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ranges between -17 and 33
o
C (NOAA webpage). The National site has an average annual 

precipitation of 136.9 cm, and the temperature ranges between -15 and 33
o
C, whereas the 

Mountainside site has an average annual precipitation of 129.5 cm and a temperature range 

between -14.5 and 33.2
o
C. During the study period the annual precipitation, averaged among all 

three sites, was 136.5 cm. In East Tennessee, long-term average precipitation for the months of 

May, June, July and August are 12.8 cm, 12.3 cm, 13.7 cm, and 10.7 cm, respectively (NOAA 

webpage). During the initial four months of the monitoring period for this study (May through 

August 2009), the monthly precipitation measurements averaged across study sites were 14.6 cm, 

13.4 cm, 28.6 cm, and 19.3 cm, respectively, or a total of about 53% over the normal. As will be 

seen later, this was also the period of most active rill formation.  

3.2 Site Construction and Monitoring Equipment 

 The study sites were constructed in late 2008 and early 2009 based on FRA techniques, 

employing low-compaction grading practices. Various reclamation methods to restore hillslopes 

to their original topography are used by coal mining operators, but the “contour haul back” is the 

most widely used method in the Appalachian region (Burger et al., 2005; Sweigard and Kumar, 

2010). In this method a ramp is constructed on the contour bench, where soil is hauled and 

dumped over the ramp edge. Compaction levels are achieved by the number of grading 

equipment passes during construction, creating dense spoils at the slope core. In the upper 1 to 2 

meters, loose spoils and stock-piled topsoils and subsoils are deposited as the final surface with 

no or limited grading passes.  

Premium, National, and Mountainside study sites were designed and constructed in 

March 2009 with four plots separated by earthen berms approximately 0.5 m in height serving as 

physical barriers to isolate runoff and sediment (Figure 2). Cover crops were not established  
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Figure 1. Location of study sites at Premium, National, and Mountainside surface coal mining 

sites in East Tennessee, USA. 

during the first year after construction, so this research represents the worst-case scenario for 

runoff and sediment yield from these reclaimed mine sites. Plot sizes were approximately 45 m 

long by 25 m wide, with slopes ranging from 19
o
 to 3

o
 (Table 1). Unit weights were measured by 

a Nuclear Density Gauge (NDG) device (Troxler 3411 B) between June and August 2009, and 

ranged from 16.2 to 20.4 KN۰m
-3

 (Jeldes et al., 2010). 

At the bottom of each plot, earthen berms and paved chevrons with a rubber mat liner 

directed runoff and sediment to a ¾ -ft (0.23 m) standard USDA H-type flume (Figure 3). Each 

H flume was equipped to measure flow depth utilizing the Tennessee fluid level indicator (TFLI) 

as developed by Yoder et al. (1999). Downstream of each H-flume, runoff and sediment were 

directed into a 0.378 m
3
 (100-gal) pre-sedimentation tank, and then into a collection system of 

three flow divider buckets and a terminal collection bucket, all of which were 5-gal (18.9 L) in 

size (Hoomehr et al., 2010).  
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Figure 2. Photo of the study site construction on the National Coal Company property. 

 

Table 1. Study site and field plot constructed characteristics.  

Site Plot 

Angle of 

Slope, 

Degrees 

Length 

(m) 

Width (m)  
Unit Weight 

(KN/m
3
) 

Top Bottom  Type Mean SD 

Mountainside 

1 27 48.8 21.5 21.5  
Dry 18.9     2.2 

2 29 46.0 21.5 25.0  

3 28 44.6 25.1 22.4  
Wet 20.4     2.2 

4 27 42.3 25.7 23.3  

National 

1 21 47.6 23.1 19.7  
Dry 18.5     1.0 

2 20 48.4 22.1 25.3  

3 19 49.2 23.5 28.4  
Wet 20.3     1.0 

4 21 48.2 20.8 28.2  

Premium 

1 28 33.5 24.8 21.7  
Dry 16.2 1.3 

2 28 33.3 28.8 27.2  

3 28 33.3 27.7 25.3  
Wet 18.5 1.3 

4 30 28.5 31.0 25.7  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Field plot set up and instrumentation for measurement of water runoff and sediment erosion. 



Based on Pinson et al. (2003), the flow dividers consisted of a stainless-steel circular 

crown containing 22.5
o 
V-notch weirs, with the crown screwed onto the bucket (Figure 3). The 

first divider consisted of 12 V-notches in order to handle the high initial flow rate, whereas the 

2
nd

 and 3
rd

 dividers had 24 notches. Once the bucket completely filled, water and sediment 

overflow was evenly divided among the V-notches, and flow from a single notch was directed to 

the next bucket. A triangular leveling device constructed of angle iron and stainless steel 

adjustment bolts at each corner was used to ensure that the flow divider was level so outlet flow 

from the buckets was evenly divided. The first flow divider limits the maximum peak runoff rate 

that can be handled with this arrangement, which for a 12-weir divider is about 30 L∙s
-1

. The 

corresponding peak runoff rate for this size of plot is 27.5 L∙s
-1

, corresponding to a 76 mm∙h
-1

 

runoff intensity. The maximum measurable runoff volume for this system was 136.52 m
3
 (36,065 

gal) corresponding to a 10.5 cm runoff depth over a study plot (Hoomehr et al., 2010). Estimates 

of measured runoff and sediment yield from these devices are explained in the next section. 

Each study site was equipped with a Campbell Scientific Inc. (CSI) CM10 full weather 

station consisting of: 1) CSI 21X data logger; 2) Vaisala HMP-45C temperature/relative 

humidity sensor in a UT12VA gill radiation shield; 3) Texas Electronics TE525 tipping bucket 

rain gauge; 4) Li-Cor model LI-200sz solar radiation pyranometer, 5) RM Young 03001 wind 

sentry for wind speed and direction, 6) CSI MSX20R solar panel; and 7) 115 amp-hour deep 

cycle marine battery. The devices were tested and calibrated before use. Measurement accuracy 

for rainfall rates less than 25.4 mm∙h
-1

 (1 in∙h
-1

) was ± 1%, and for rates greater than 25.4 mm∙h
-1

 

was not greater than 3%. Weather sensor data was measured every minute, including air 

temperature, relative humidity, wind speed and direction, and solar radiation. Each hour, the CSI 

data logger computed and recorded averages for air temperature, relative humidity, wind speed 
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Figure 4. Typical weather stations and data logger used at study sites. 

 

 

Figure 5. Typical sediment and runoff collection systems at study sites. 
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and direction, and a total for solar radiation. A total for precipitation and an average flume stage 

was recoded every five minutes. Daily values of maximum and minimum air temperature, totals 

of precipitation and solar radiation, and averages of air temperature, relative humidity, and wind 

speed and direction were also recorded. 
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Chapter 4 

Curve Numbers for Hydrology on Reclaimed Mine Lands 

Hoomehr S., J.S. Schwartz, S.C. Yoder, W.C. Wright, and E.C. Drumm. “Curve numbers for  

hydrology on low-compaction, steep-sloped reclaimed mine lands in southern Appalachian  

region.” ASCE Journal of Hydrologic Engineering. Under Review 

4.1 Introduction 

Under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), hydrologic 

impacts of coal surface mining operations must be assessed and mitigated (Tolbert et al. 1994; 

Graves et al. 2000).  Pre-mining assessments − termed probable hydrological consequences 

(PHC) in SMCRA − are conducted using the runoff CN method to generate estimates of runoff 

volume and hydrograph peaks for the mine sites, and potential offsite runoff  impacts are 

addressed with on-site detention ponds.  SMCRA requires post-mining runoff to not exceed pre-

mining runoff for a 10-year 24 hour storm event.  Recent advancements in surface mining 

reclamation advocates the use of loose spoils and low compaction grading to enhance 

reforestation success, in a process known as the Forest Reclamation Approach (FRA).  Swiegard 

et al. (2007) describes grading practices under the FRA on steep slopes where spoils are 

compacted for slope stability in terraced layers following the natural topography, and surface 

finished with 1 to 2 meters of a loose spoils and top soil with minimal grading.  Currently, CN 

values for conducting PHCs in the Appalachian region are limited to highly-compacted non-FRA 

mine lands and mild-sloped FRA sites with a 2% grade (Taylor et al. 2009).  Better CN values 

are needed in order to adequately design detention ponds and other runoff controls for slopes in 

the 25% to 35% range on loose spoils constructed in the Appalachian region for FRA.   

The runoff CN method developed by the US Department of Agriculture, Soil 

Conservation Service (now the Natural Resources Conservation Service [NRCS]) is widely 
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accepted for estimating runoff from rainfall on reclaimed mine lands, although its original 

development was for agricultural lands (Barfield et al. 1981; Ritter et al. 1991; Schroeder 1994; 

Camorani et al. 2005; Taylor et al. 2008).  The NRCS runoff method is fully described in the 

National Engineering Handbook (NEH) Section 4 on Hydrology, and updated in NEH Part 630 

(SCS 1972; NRCS 2004).  In addition, Hawkins et al. (2009) recently completed a technical 

review on curve number hydrology.  In the Appalachian coal mining region, design professionals 

commonly use the SEDCAD model to estimate runoff volumes and peaks and soil erosion for 

detention pond design in order to meet SMCRA requirements (Taylor 1995).  SEDCAD also 

needs CN inputs as it employs the curve number method for runoff volume prediction, although 

other rainfall-runoff models could be effectively utilized as well.   

Several studies have generated CN values for use on reclaimed surface coal mine lands, 

but none provide CN values validated through field studies on steep-sloped reclaimed mine lands 

with loose spoils supporting the FRA.  It would be expected that CN values for reclaimed mine 

lands with compacted soils are greater than values on loose spoils, inferring greater initial 

abstraction with increased infiltration for the loose spoils.  NEH Section 4 reports CN values for 

reclaimed mines lands in the range of 74 – 77.  Ritter and Gardner (1991) found CN values to 

range from 83 to 88 using an initial abstraction coefficient λ = 0.2 for three watersheds in Central 

Pennsylvania.  The three watersheds were 3.1 ha, 11.6 ha and 32.2 ha in area, but average slope 

values were not provided.  This study represented post-mined lands fully vegetated with trees 

and grasses, so these CN values do not represent estimates for recently disturbed mine lands.  

Barfield et al. (1984) also concluded that CN values reported by NEH Section 4 tables were too 

low for reclaimed mine lands with compacted spoils.  They simulated rainfall on erosion plots in 

western Kentucky consisting of three treatments including mine spoils, top-soil, and subsoil.  On 
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compacted mine spoils Barfield et al. (1984) reported a CN of 91, a similar value for compacted 

gravel or dirt roads, and a hydrological soil group (HSG) classification of D representing a 

surface condition with little or no infiltration.  

Bonta et al. (1997) investigated the effect of mining and reclamation on three small 

watersheds in East-central Ohio, monitoring hydrological conditions for pre-mining (Phase 1), 

mining and reclamation (Phase 2), and post-reclamation (Phase 3) periods.  Reclamation 

construction used a high level of compaction on 9% slopes.  By using rainfall simulation, they 

showed that CN values increased due to mining and reclamation activities, resulting in a CN 

grange of from 83 to 91. During Phase 3, curve numbers remained approximately unchanged 

from the values for Phase 2, with a range of 87 to 91.  Interestingly, CN values were not 

significantly different from this for Phase 3, though land cover for the Phase 3 post-mining 

period included grass and trees.   

Other studies have reported CN values for compacted soils. Meadows and Blandford 

(1983) used rainfall simulators on un-mined and reclaimed coal mine sites in Wyoming.  In this 

semi-arid region, average annual precipitation is approximately 380 mm, with high intensity 

rainfall events from local thunderstorms. CN values ranged from 91.7 to 92.8 for un-mined sites 

and from 88.4 to 97.5 for the reclaimed mine sites. In a similar study by Schroeder et al. (1987) 

in West-central North Dakota using simulated rainfall on 40 plots with fine-textured reclaimed 

mine spoils, CN values ranged from 88 to 97 for an initial abstraction of 0.20.   

It is evident from these studies that compaction of spoil materials on reclaimed mine 

lands can increase CN values above 87 from pre-mining to post-mining surface conditions.  

Applying the FRA utilizing loose-dumped spoils in eastern Kentucky, Taylor et al. (2009) found 

CN values ranged from 60 to 90 (λ = 0.2), with a mean CN of 82 based on 11 storms and 64 
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sampled events.  For λ = 0.05, CN values ranged from 32 to 87 with a mean of 67. In the Taylor 

et al. (2009) study, loose spoils were dumped on a 2% profile grade with 3-10% lateral side-

slopes, and a perforated PVC pipe was installed as an under drain. Three spoil treatments were 

used in the study, consisting of weathered brown sandstone, unweathered grey sandstone, and a 

mixture. They found no statistical differences in CN values among the treatments. Surface runoff 

was not observed in this study, so CN values represent interflow contributions only. The lack of 

surface runoff was attributed to the low steepness and low compaction, the rough surface 

comprised of large rocks and crevices, and occurrences of relatively moderate intensity rainfall 

events during the two-year study period.  In addition, precipitation-independent CN values (as 

described below) were not estimated for their dataset.   

Hawkins et al. (2009) recommends computing a precipitation-independent CN by the 

asymptotic method.  In contrast to a range of CN values or a mean based on skewed measured 

rainfall-runoff data, Hawkins (1993) developed the asymptotic method, which can estimate a 

unique CN value for a land condition.  It also reduces variation in calculated CN values.  CN 

values are determined by taking the asymptotic limit of calculated CN values from ranked data 

pairs as precipitation depth approaches infinity.  Use of a precipitation-independent CN provides 

a better solution for estimating runoff, especially when runoff estimates are used in 

detention/retention basin design for stormwater management. 

The objective of this study was to estimate CN values for use in runoff prediction from 

steep-sloped, loose spoil materials in the Appalachian coal mining region.  This information will 

support the regulatory agencies charged with the reclamation of natural hillslope topography and 

native forests under the FRA, as understanding the hydrological conditions immediately 

following hillslope construction is necessary in order to engineer adequate runoff retention and 
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erosion control structures.  In addition, this new information supports reforestation research 

efforts to improve native tree regeneration using the FRA.  In this study, runoff was measured by 

the method described by Pinson et al. (2003) using flow divider buckets, and the hydrological 

analysis was completed using the Asymptotic method as described by Hawkins (1993).  It should 

also be noted that during the monitoring period rill development occurred on the study sites, as 

commonly occurs on steeply-sloped reclaimed mine lands without adequate surface cover. 

4.2 Materials and Methods 

4.2.1 Rainfall and runoff measurement 

Rainfall and runoff measurements began in June 2009 and continued through July 2010 

for the Premium, National, and Mountainside sites. Site monitoring was temporally halted in 

January and February 2010 because during these winter months the locations remained below 

freezing temperatures with no runoff.  In addition, access to the monitoring sites was impossible 

due to poor road conditions. Downloads for CSI data loggers occurred on approximately a 

weekly basis, which was necessary with a 5-min (on rainfall − but hourly on weather data) 

recording interval from the weather stations and 5-min interval from the TFLIs.  In addition, site 

equipment was inspected on these routine visits, and maintenance performed as required.  

Although the sites were equipped with H-flumes, runoff volume was measured using the 

Pinson et al. (2003) flow dividers. Data from the H-flume was not usable due to sediment 

deposition in the flume channel. Also, the 5-minute recording interval for flow stage was not 

adequate to accurately estimate runoff volumes.  In addition, this interval was inadequate to 

estimate time of concentration.  Limitations on memory storage capacity prevented reducing the 

recording interval from the TFLIs.  
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4.2.2 CN Computations 

The Curve Number method developed by the USDA Soil Conservation Service (SCS), 

presently the National Resource Conservation Service (NRCS) provides a means to estimate 

runoff volumes from rainfall event depths.  This method is defined in Section 4 of the National 

Engineering Handbook, NEH-4 (SCS 1985).  Briefly, the fundamental rainfall-runoff 

relationships are as follows:   

SIP

IP
Q

a

a






)(

)( 2

   for   aIP   …………………..……………………………… (1) 

0Q   for aIP   …………………………………..………………………….. (2) 

/aIS   ……………………………..…………………...…………………… (3) 

where Q is direct storm runoff, P is rainfall event depth, Ia is the initial abstraction, S is the 

maximum retention or storage, and λ is the initial abstraction coefficient. The values of Q, P, Ia, 

and S are in units of mm, and λ is dimensionless. Estimation of CN for a particular area depends 

on the maximum storage, S, which is in turn the function of initial abstraction, Ia, (Eq. 3). Initial 

abstraction is the amount of rainfall that falls before runoff begins, so it includes interception, 

filling of surface storage elements, and initial infiltration. This means that estimation of the 

maximum storage, S, requires an assumption for the initial abstraction coefficient, λ, if P and Q 

already exist. Although λ can take any value between 0.01 and 0.2 (Schneider and McCuen 

2005), the 0.2 value is commonly used for CN calculations, while a λ of 0.05 was recommended 

by Hawkins (1993) and Hawkins et al. (2002) for general application. In this study values for λ 

of both 0.05 and 0.2 were used in CN computations to investigate the effect of this assumption 

on computed runoff values. 
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CN estimation for a specific area can be done either by using tabulated values as shown 

in NEH-4 Part 630, or by direct investigation using measured rainfall-runoff data from that area. 

NEH classifies soils into one of four Hydrologic Soil Groups (HSG) −A, B, C, or D, in order of 

increasing runoff − according to expected infiltration rates. Based on the cover type, hydrologic 

condition, % impervious area, and soil HSG, CN values are suggested by NEH. Because low- 

compaction mine spoils cannot be classified by one of the HSGs, direct estimation for CN was 

performed in this study by two methods. The first approach utilized the raw rainfall-runoff data 

following the method of Hawkins (1973), and the second performed a CN computation utilizing 

the asymptotic method, proposed by Hawkins (1993).  The asymptotic method recombines 

rainfall and runoff data based on frequency matching to back-calculate CN values. Fitting of data 

was based on the least squares method, performed using SAS 9.3 and JMP 9.0 statistical 

software packages.  

 By having measured data for P and Q, the variable S can be determined by (Hawkins 

1973). Equation (4) was used to calculate storage (S) values from different P- Q data pairs 

obtained by monitoring study plots. Using Eq. (5), the storage (S) values were converted to CN 

values for each study plot. The CN values can vary from 0 to 100, while S varies from 0 to ∞. A 

CN value of 100 shows maximum possible runoff potential.  

])54(2[ 5.02 PQQQPS   ……………………….………………………… (4) 

254
25400


CN

S  …………………………………...………..………………….. (5) 

The asymptotic method (Hawkins et al. 1993), a frequency matching method, is based on 

equating the return periods of rainfall and runoff events.  It assumes that the data do not show a 

constant CN −which is true in most cases − but that a trend toward steady-state is recognizable, 

in which case using asymptotic least squares fitting can extend that trend to a constant value. As 
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the first step in this process, all precipitation events and runoff amounts are sorted separately in 

descending order. Each rainfall depth is then paired with its corresponding runoff amount in 

ranked position, a process called frequency matching, which does not necessarily associate the 

rainfall amount with its produced runoff (Hawkins 1993). This method causes a secondary 

relationship between CN and rainfall depth to emerge. Watersheds can be categorized into three 

groups based on these secondary relationships. These categories are (i) watersheds with 

Complacent Behavior, (ii) watersheds with Standard Response and (iii) watersheds with violent 

responses. Detailed description for each category can be found in Hawkins et al, 1993.  

Watersheds with standard response behavior are those whose CN values tend to decline 

and then approach a constant value with increasing P; that constant value defines the P-

independent CN. Equation (6) has been found to fit P-CN data sets, where = constant value 

approached as P → ∞, and K = fitting constant. This approach has been found to work well for a 

variety of watershed data sets (Hawkins et al, 1993). 

………….………………………. (6) 

The asymptotic method may be enhanced by incorporating the effect of rainfall 

distribution on the CN value, or in other words by using a measure of rainfall intensity instead of 

precipitation depth. The traditional asymptotic method assumes that rainfall amount is evenly 

distributed over the event duration and uses P to match frequencies. Rainfall intensity 

simultaneously represents both rainfall depth and its time variation, so can provide a more 

meaningful relationship.  

Because CN method runoff estimations are usually for the purpose of sediment transport 

modeling or design of detention basins, the 30-minute rainfall intensity (I30) as defined by the 

Universal Soil Loss Equation (USLE) (Wischmeier and Smith 1965; 1978) or its more modern 
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offspring the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997), may be a 

good candidate for an intensity value to replace the rainfall depth in an enhanced asymptotic 

method. For each rainfall event, using the 5-min rainfall depths that were recorded by the tipping 

bucket raingages and an energy-intensity relationship from Renard et al. (1997), the storm 

erosivity (I30) can be computed. To incorporate the effect of rainfall distribution over time in 

estimating an independent CN, the same asymptotic frequency match method can be used, but 

with storm erosivity (I30) instead of storm rainfall depth. This method was conducted in two 

ways: 1) replacing sorted P measurements as used in the original method with their 

corresponding I30; and 2) sorting rainfall I30 and runoff depths separately and then realigning the 

pairs on a ranked-order basis to form I30-Q pairs of equal return periods. The individual runoffs 

were not necessarily associated with the original causative rainfall I30. 

The Antecedent Moisture Condition (AMC) is defined as the soil moisture prior to a 

precipitation event, and affects runoff generation and as a result the estimated CN for that event. 

Typically, there are three defined AMC conditions: dry (AMC I), average (AMC II), and wet 

(AMC III). Based on NEH-4 (1964), the median CN that divides the rainfall-runoff plot into two 

roughly equal portions is associated with AMC II, while AMC I and AMC III are defined based 

on the lower enveloping CN and upper enveloping CN, respectively. Plotting AMC curves on a 

rainfall-runoff graph is a trial and error process. An initial value for CN is assumed and that 

value is used with Equations (1), (2), and (5) to construct a CN curve on a rainfall-runoff plot for 

different initial P values. This process continues until a desirable curve is achieved (Figure 6). 

Based on the location of data points in relation to AMC curves, the related AMC for each of the 

computed CNs can be determined. Points are then given the AMC label of the nearest AMC 

curve. The AMCs provide an insight about average moisture condition of loose-dumped spoil 
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before rainfall events occur. CN values in this study were not adjusted based on the AMC 

condition, but the AMC conditions were reported for reference (Table 3). 
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Figure 6. Observed rainfall – runoff data points in relation to median AMC II CN (CN=70) and 

enveloping CN curves (AMC I and III). 

4.3 Results and Discussion 

4.3.1 Hydrologic Data 

A total of 60 sampling measurements were obtained from June 2009 through July 2010, 

in which six measurements were deemed to be outliers, falling three standard deviations [σ] or 

more from the mean. Table 2 summarizes the remaining 54 rainfall-runoff events from the three 

study sites that were used to estimate a CN.  The cumulative rainfall duration for a sampling 

event varied from 3.6 to 104.4 hr, the cumulative rainfall depth varied from 14.6 mm to 242.6 

mm with an average of 75.34 mm, and the 5-minute rainfall intensity varied from 7.5 mm/hr to 

133.1 mm/hr, with an average of 54.0 mm/hr.  Because high intensity and short duration storms 

were typical during the summer months at the study sites, rainfall intensities during a 5-min 
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window were calculated to better illustrate event intensity.  As shown in Table 2, study sites 

experienced storm events with a variety of rainfall depths, durations, and intensities during the 

one-year monitoring period, providing sufficient data for estimating a representative CN for 

steep-sloped, low compaction reclaimed surfaces for which ground cover was not yet been 

established. 

4.3.2 CN and Initial Abstraction coefficient 

Using λ = 0.2, single-storm CN values for the Premium site ranged from 30.7 to 98.8 

with a mean of 76.3 and σ of 19.5 (Table 3).  CN values for the National site ranged from 40.5 to 

97.8 with a mean of 76.0 and σ of 19.0; and for the Mountainside site they ranged from 34.0 to 

89.5 with a mean of 70.6 and σ of 13.5.  CN values using a λ = 0.05, also presented in Table 3, 

were generally observed to be lower and more variable than those based on  λ = 0.2.  Hawkins et 

al. (2002) also note that CN estimates based on λ = 0.05 will be lower than for λ = 0.2.  Results 

from this study indicate a λ = 0.2 provides a better fit to the data and appears to be more 

appropriate for use in hydrology computations for steep, low-compaction reclaimed mine lands.   

The resulting CN values in Table 3 can be compared to CN values listed in NEH Part 630, 

for different Hydrologic soil groups. For fallow bare soil and λ = 0.2, NEH CN values are 77, 86, 

91, and 94 for soils with respective HSG A, B, C, and D. The mean CN values calculated based 

on Equations (4) and (5) for different sites suggest that the loose-dumped waste material from 

steep-sloped reclaimed mine sites has hydrologic properties most similar to HSG A. Comparison 

with HSG D that Meadows and Blandford (1983) reported for low-gradient highly-compacted 

reclaimed sites, shows a 19% reduction in CN value for low compaction slopes due to a decrease 

in compaction level and the resulting increase in infiltration rate. While previous studies reported  
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Table 2. Rainfall event data summarized for the Premium, National, and Mountainside study 

sites by collection date, and cumulative depth in mm, cumulative duration in hr, and maximum 

5-min intensity (mm/hr). 

No. Site Sampling Date 
Cum. Rainfall 

Depth, (mm) 

Cum. Rainfall 

Duration,(hr) 

Max 5 min. 

Intensity, (mm/hr) 

1 

P
re

m
iu

m
 

June 24, 2009 38.1 17.5 31.5 

2 July 17, 2009 127.3 44.9 75.0 

3 August 3, 2009 106.1 48.0 39.0 

4 August 13, 2009 20.8 5.6 37.5 

5 August 24, 2009 75.9 28.0 82.5 

6 September 22, 2009 162.9 99.0 67.5 

7 October 1, 2009 96.0 25.0 79.5 

8 October 13, 2009 60.3 51.8 40.5 

9 October 20, 2009 73.4 48.2 19.5 

10 October 27, 2009 37.3 21.5 18.0 

11 November 3, 2009 14.6 17.8 9.0 

12 November 24, 2009 49.8 43.8 10.5 

13 December 3, 2009 39.3 30.8 27.0 

14 December 17, 2009 139.8 31.3 42.0 

15 March 24, 2010 50.625 32.3 22.5 

16 May 7, 2010 131.5 64.4 105.0 

17 May 18, 2010 27.375 4.4 43.5 

18 June 8, 2010 60.625 14.2 54.0 

19 June 25, 2010 29.125 5.4 31.5 

20 July 20, 2010 79.125 17.8 52.5 

21 

N
at

io
n
al

 

June 25, 2009 96.1 12.8 114.0 

22 July 15, 2009 72.6 11.0 100.4 

23 August 14, 2009 47.6 11.0 111.0 

24 September 25, 2009 138.8 104.4 43.5 

25 September 29, 2009 49.5 14.9 36.0 

26 October 8, 2009 41.3 33.5 45.0 

27 October 22, 2009 106.3 94.6 81.0 

28 October 29, 2009 22.1 15.3 9.0 

29 November 5, 22009 31.3 16.8 21.0 

30 November 12, 2009 16.9 13.6 7.5 

31 December 1, 2009 44.9 35.6 16.5 

32 December 14, 2009 130.6 52.7 33.0 

33 March 19, 2010 42.75 21.1 19.5 

34 April 13, 2010 72.25 26.1 52.5 

35 May 7, 2010 193 59.7 49.5 

36 May 19, 2010 41 5.8 111.0 

37 June 23, 2010 79.5 14.5 87.0 

38 June 29, 2010 28.5 4.3 72.0 

39 

 
July 16, 2010 93.245 10.4 109.4 

40 

M
o
u
n
ta

in
 S

id
e 

July 2, 2009 132.8 3.6 54.4 

41 July 14, 2009 62.6 21.9 75.6 

42 July 27, 2009 214.0 28.8 101.3 

43 September 22, 2009 120.7 75.8 86.2 

44 October 13, 2009 59.6 33.8 65.0 

45 October 20, 2009 51.7 70.6 33.3 

46 November 3, 2009 36.0 21.3 13.6 

47 December 1, 2009 18.1 14.6 10.6 

48 December 10, 2009 99.3 35.3 24.2 

49 December 14, 2009 35.0 8.8 10.6 

50 March 26, 2010  77.1 37.1 54.4 

51 May 13, 2010  242.6 57.3 66.5 

52 May 18, 2010  47.5 7.3 98.3 

53 June 8, 2010  52.7 7.8 83.2 

54 June 25, 2010  50.5 6.8 133.1 
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Table 3. Curve number computations summarized for the Premium, National, and Mountainside 

study sites by collection date, AMC, and λ.  Per collection date, measured rainfall and runoff 

depths (mm) and maximum I30 (mm/hr) are also reported for reference. 

Site Date 
D 

(mm) 

I30, max 

(mm/hr) 

Q 

(mm) 
AMC 

CN CN 

λ = 0.2 λ = 0.05 

P
re

m
iu

m
 

June 24, 2009 38.1 13.5 34.8 III 98.8 98.6 

July 17, 2009 127.3 51.5 28.8 II 57.4 44.3 

August 3, 2009 106.1 21.5 46.7 II 75.5 68.8 

August 13, 2009 20.8 10.0 11.1 III 95.5 94.1 

August 24, 2009 75.9 34.2 16.5 II 68.7 56.2 

September 22, 2009 162.9 31.0 3.8 I 30.7 13.4 

October 1, 2009 96.0 44.5 53.3 II 83.0 78.8 

October 13, 2009 60.3 23.2 24.6 II 83.1 77.5 

October 20, 2009 73.4 11.2 12.9 I 66.4 52.0 

October 27, 2009 37.3 8.7 0.6 II 64.9 38.1 

November 3, 2009 14.6 5.7 3.6 III 92.6 88.4 

November 24, 2009 49.8 5.5 1.8 III 96.3 37.6 

December 3, 2009 39.3 8.2 2.7 II 70.7 50.9 

December 17, 2009 139.8 19.7 14.1 I 44.0 27.1 

March 24, 2010 50.625 16.0 42.5 III 97.1 96.5 

May 7, 2010 131.5 22.7 24.6 I 53.4 39.1 

May 18, 2010 27.375 20.0 14.0 III 93.7 91.8 

June 8, 2010 60.625 32.5 53.4 III 97.5 97.0 

June 25, 2010 29.125 13.2 6.6 II 85.5 77.7 

July 20, 2010 79.125 23.0 21.0 II 71.0 60.3 

N
a
ti

o
n
a
l 

June 25, 2009 96.1 40.5 19.7 II 62.5 48.9 

July 15, 2009 72.6 51.5 16.0 II 69.8 57.6 

August 14, 2009 47.6 37.0 34.0 III 94.7 93.5 

September 25, 2009 138.8 30.2 21.0 I 48.9 33.6 

September 29, 2009 49.5 17.5 32.7 III 93.3 91.7 

October 8, 2009 41.3 20.2 14.3 II 85.7 80.1 

October 22, 2009 106.3 37.5 15.1 II 54.8 38.6 

October 29, 2009 22.1 4.2 1.2 II 79.8 61.6 

November 5, 2009 31.3 10.5 4.2 II 80.1 67.3 

November 12, 2009 16.9 6.5 1.84 II 87.0 76.4 

December 1, 2009 44.9 11.7 1.81 II 64.4 41.0 

December 14, 2009 130.6 12.0 7.3 I 40.5 21.8 

March 19, 2010 42.75 12.2 33.5 III 96.5 95.8 

April 13, 2010 72.25 21.7 46.4 III 89.8 87.4 

May 7, 2010 193 24.0 36.9 I 44.2 30.9 

May 19, 2010 41 41.2 34.8 III 97.8 97.4 

June 23, 2010 79.5 20.2 16.7 II 67.1 54.2 

June 29, 2010 28.5 17.2 11.8 III 91.4 88.2 

July 16, 2010 93.245 33.5 82.0 III 96.1 95.5 

M
o
u
n
ta

in
 S

id
e 

July 2, 2009 132.8 16.4 64.8 II 74.0 67.7 

July 14, 2009 62.6 48.1 13.5 II 72.5 60.7 

July 27, 2009 214.0 62.0 21.8 I 34.0 19.6 

September 22, 2009 120.7 35.3 39.3 II 65.8 55.8 

October 13, 2009 59.6 33.0 4.3 II 61.8 41.3 

October 20, 2009 51.7 13.4 1.9 II 60.7 36.8 

November 3, 2009 36.0 9.3 11.8 III 86.6 81.0 

December 1, 2009 18.1 7.3 0.8 II 82.3 64.8 

December 10, 2009 99.3 11.6 48.5 II 79.2 73.7 

December 14, 2009 35.0 9.3 6.2 II 80.7 69.8 

March 26, 2010 77.1 15.9 22.3 II 72.9 63.1 

May 13, 2010 242.6 36.8 125.3 II 63.1 56.0 

May 18, 2010 47.5 40.6 4.6 II 69.5 51.7 

June 8, 2010 52.7 39.3 28.5 III 89.5 86.6 

June 25, 2010 50.5 40.8 3.7 II 65.7 69.8 
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CN ranging from 83 to 97.5 for highly-compacted low-gradient reclaimed sites (Meadows and 

Blandford 1983; Schroeder et al. 1987; Ritter and Gardner 1991; Bonta et al. 1997), this study  

found the average CN to be in the range of 70.6 -76.3, with at least a 15% reduction in CN 

values, perhaps due to the lower level of compaction in this study. This study reflects runoff 

estimates from high-gradient slopes with intense rainfalls events, where a wide range of runoff 

events were generated (0.6 -125.3 mm).  In contrast to the study of Taylor et al. (2008), it 

appears that in this study the steep-sloped reclaimed sites with loose spoils considerably 

increased infiltration rates, causing less runoff. 

4.3.3 CN and Precipitation Depth 

The CN distribution in relation to precipitation depth for each study site was investigated, 

with results shown in Figures 7 and 8. All three sites had similar runoff responses to rainfall 

events. The Mountainside site reported a lower R squared due to one extreme data point (P = 

242.6 mm and CN = 63.1) related to the 09/13/2010 sampling event. Although this data point 

was not an outlier (2.37 σ from the mean), its high rainfall depth increased variation in the 

regression model. So, if two σ from mean are considered as the lower bound for outliers, then 

this point would be excluded and the R
2
 for Mountainside site would be 49% (λ = 0.2), close to 

what was computed for the other two study sites. Four out of the six total outliers were measured 

at the Mountainside site, and they were related to the early monitoring period in June 2009 

during high-intensity storm events (P= 150-200 mm). During that period, the sediment and 

runoff collection system at Mountainside site failed to capture the generated runoff from one of 

the events, but the monitoring system was reconstructed for that site, explaining the gap in 

Mountainside‟s data in Figures 7 and 8.  
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Figure 7. Curve numbers for each of the three sites in relation to precipitation amounts for λ = 

0.2. 
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Figure 8. Curve numbers for each three sites in relation to precipitation amounts for λ = 0.05. 



53 

λ = 0.2, R2 = 0.5459

λ = 0.05, R2 = 0.3823

0

20

40

60

80

100

0 25 50 75 100 125 150 175 200 225 250 275

Precipitation (mm)

C
u

rv
e

 N
u

m
b

e
r

λ = 0.2

λ = 0.05

λ = 0.2

λ = 0.05

 

Figure 9. Curve numbers for the combined three sites in relation to precipitation amounts for λ = 

0.2 and 0.05. 

Using a t-test, the hypothesis that the CN means for the three study sites are statistically 

different was rejected at the 5% significance level, so the CN values from the three sites were 

combined and compared against their corresponding precipitation depths (Figure 9). Using λ = 

0.2, CN calculation result in less variation than did λ = 0.05, which suggests that using 0.2 for 

initial abstraction may give a better estimates for low compaction spoils on steep slopes. 

CN and precipitation depth were inversely correlated, with higher CN estimates for 

smaller precipitation depths (r = 0.77, p = 0.05), as shown in Figures 7 and 8. This phenomenon 

was first observed by Sneller (1985) and then noted by Hawkins (1993) and Hjelmfelt (1996). 

They attribute this phenomenon to several factors, including data censoring, hydrologic partial 

area effects, and basic error in the model or data. Data censoring results from excluding all 

rainfall events without direct runoff from the data sets to assure P ≥ 0.2S, and to meet the 
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requirements that100 / (1+P/2) < CN < 100. On the other hand, Hawkins (1993) states“to the 

extent that any CN is manifested at low rainfalls, for which there are many storms, they would 

by definition predict high CNs”.  

Frequency distributions of CN estimates were compared for λ values of 0.2 and 0.05, 

utilizing data summarized from all three sites and categorized within 14 sub-groups (Figure 10). 

The CN frequency distribution for λ = 0.2 showed a near uniform distribution except for lower 

CN values below 40, while the distribution for λ of 0.05 showed a higher tendency toward mid 

and high CN values.  To note, 78% of the CN values were higher than 51 for λ = 0.2, while 81% 

of CN values were higher than 61 for λ = 0.05, with the maximum occurrence between 61 and 65. 

Based on Hawkins‟ (1993) contention that a λ = 0.05 produces greater consistency for practical 

runoff estimation applications, a CN value for the low-compaction steep-sloped reclaimed spoils 

should be approximately 61-65 (Figure 10). 
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Figure 10. Frequency distribution of curve numbers for combined data from all study sites, 

comparing CNs for λ = 0.2 and 0.05. 
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4.3.4 CN Asymptotic Method  

In Figure 11, CN estimates obtained from original rainfall-runoff data were compared 

with CN estimates calculated using frequency matched rainfall-runoff data.  The size of each 

data point‟s bubble was scaled based on its corresponding rainfall intensity, where a larger 

bubble size represents higher storm rainfall intensity. The plot displays a standard asymptotic 

response using frequency matched rainfall-runoff data.  CN estimates calculated using frequency 

matched data were more strongly correlated to precipitation depth (R
2
 = 0.88), than were CN 

values obtained from the original data (R
2
 = 0.52).  The frequency match method considerably 

reduces CN estimate variation. 

 

R
2
 = 0.5219

R
2
 = 0.8757

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200 225 250 275

Precipitation(mm)

C
N

Unmatched Freq.

Matched Freq

 

Figure 11. Original CN compared with ones obtained from matched frequency methods. 
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4.3.4.1 CN and P-Q Freq. Match 

The best-fit exponential curve to the CN estimates for λ = 0.2 obtained from frequency 

matched rainfall-runoff data is shown in Figure 12 (R
2
 = 0.80). The equation for the fitted curve 

follows: 

 ……………………….. (7) 

The CN∞ was equal to 58.5, which is thus the P-independent CN value for steep-sloped low 

compaction reclaimed mine lands.  This result was consistent with CN frequency distributions as 

shown in Figure 10, which suggests that CN estimates should be above 50 with an expected 

value of about 60. 

For steep-sloped low-compaction reclaimed mine lands, the P-independent CN value was 

compared to CN values listed in NEH Part 630 for different HSGs. This comparison suggests 

that low-compaction spoils have hydrologic properties better than a soil of HSG A with the bare 

conditions (CN = 77).   

 

Figure 12. Best fit exponential curve for P-Q matched frequency pairs and λ = 0.2. 
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Previous studies on highly-compacted, low-gradient reclaimed sites reported CN values 

ranging from 83 to 97.5 (Meadows and Blandford 1983; Schroeder et al. 1987; Ritter and 

Gardner 1991; Bonta et al. 1997), so the simultaneous effect of increased slope gradient and 

reduced compaction appears to have resulted in at least a 29.5% reduction in CN value. The 

asymptotic method using the P-Q Frequency Match appears to provide a reasonable estimate for 

a CN value on low-compaction steep-sloped material (CN∞ = 58.5). 

4.3.4.2 CN and I30 -Q Freq. Match 

Estimating CN values based on the I30 frequency match was done in two ways, 1) 

replacing the sorted rainfall depths (P) used in the original method with their corresponding I30 

values, and 2) the rainfall I30 values and the runoff depths are sorted separately and then 

realigned on a ranked-order basis to form I30-Q pairs of equal return periods. The individual 

runoffs are not necessarily associated with the original causative rainfall I30 values. Results of 

these new approaches and also the fitted curve to the CNs obtained from rainfall and the runoff 

depths sorted separately and then realigned on a ranked-order basis to form I30-Q pairs of equal 

return periods are shown in Figure 13. Of the two methods, Method 2 resulted in less variation in 

calculated CN values than method 1, so the curve fitting was completed for CNs plotted from 

Method 2 (Figure 13). The curve fitting was accomplished with the same mathematical format as 

that of Eq. 6. The equation for the fitted curve is as follows: 

…………………………………. (8) 

The  was equal to 60 (R
2 
= 0.79). This CN value was 1.025 times that obtained from curve 

fitting the CNs calculated based on the P-Q frequency match data. Both frequency match 

methods cause reduction in CN variation. The asymptotic method that used rainfall I30 described 

the variation within observed data as well as the traditional asymptotic method described earlier.  
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Figure 13. Best fit exponential curve for I30–Q matched frequency pairs and λ = 0.2. 

In this study, incorporating rainfall distribution in the asymptotic method didn‟t affect estimation 

of the P-independent CN value. This result was not conclusive and further investigations on 

watersheds with different rainfall distribution, land use, and level of compaction may lead to a 

better understanding of this new approach. Both frequency match methods suggest a CN value of 

around 58.5 ~ 60 for low-compaction reclaimed mine spoils on steep slopes. 

The question then arises as to how the CN values found for this study should be adjusted 

to fit other locations of interest also using the FRA approach, but perhaps with greatly different 

soils. It is suggested that a correction factor be calculated using a standard infiltration test (e.g., 

ASTM D3385) on a series of oven-dried undisturbed samples to estimate surface water storage 

(S) for the waste material on reclaimed surface of interest. Using the following formula, a 

correction factor (α) can be calculated for a CN in the suggested range of 58.5 ~ 60: 
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If the estimated storage for location of interest is lower than what is estimated from this study, 

then α < 1 and a lower CN value should be used; α > 1 indicates that a higher CN value is 

required for the location of interest; and α = 1 indicates that the suggested range of CN value is 

valid for the location of interest.  

4.4 Conclusions 

While the CN method is traditionally used to predict runoff from ungaged watersheds, the 

lack of CN values for low-compaction steep-sloped reclaimed mine surfaces has been an issue 

for mine operators and regulatory agencies. This study estimated CN values for low-compaction 

steep-sloped reclaimed surfaces in the Appalachian coal mining region by using natural 

precipitation-runoff data and utilizing both standard techniques and the asymptotic method as 

described by Hawkins (1993). Results showed that the differences due to spatial variation in 

rainfall and use of different reclaimed material between the original CN means estimated for 

three different study sites were not statistically significant. Both asymptotic methods – that based 

on Hawkins (1993) and its modified version which uses I30 instead of P − suggest a standard 

asymptotic behavior for the study sites, with P-independent CN values around 58.5~60. 

Determining a CN value for low compaction reclaimed surfaces is important, as it can be used to 

estimate runoff for adequate design of on-site retention basins and other BMPs for sediment 

erosion control. The US department of interior, Office of Surface Mining, OSM, and mining 

consultants use CN value for their SEDCAD designs of detention ponds and other practices, so 

the results from this study provide SEDCAD users better model input data. Furthermore, this 

new information supports re-vegetation efforts of the surface mined lands. Growth of vegetation 

on reclaimed slopes reduces runoff speed and increases chance of infiltration, which in turn 

reduces the runoff production on slopes and may decrease the estimated CN values. 
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Chapter 5 

Erosion and Sediment Delivery of Low-Compacted Reclaimed Slopes 

Hoomehr S., J.S. Schwartz, S.C. Yoder, E.C. Drumm, W.C. Wright. “Erodibility of low-

compaction steep-sloped reclaimed surface mine lands in southern Appalachian region, USA.” 

Journal of Hydrological Processes. Under Review. 

5.1 Introduction 

Improving reclamation approaches on surface coal mining sites is essential in order to 

reduce environmental impacts from excessive erosion in mountainous regions (Carroll et al., 

2000; Harms and Chanasyk, 2000; Nicolau, 2002; Espigares et al., 2011; Fox, 2009). 

Improvements have occurred over time through an integration of science and policy, utilizing 

valuable information from studies relating spoil erodibility with physical site conditions. In the 

US, surface mining reclamation is mandated by the Surface Mining Control and Reclamation Act 

of 1977 (SMCRA), and regulated by the US Department of Interior, Office of Surface Mining 

(OSM). From the 1980s through 1990s, reclamation on coal mining sites in the Appalachian 

region consisted of back-to-contour compacted spoil placement to create stable steep slopes, 

which were then vegetated with moisture competitive grasses and tolerant black locus (Robinia 

pseudoacacia) trees (Dickens et al., 1985). Studies showed it was difficult to regenerate forests 

with a diversity of native species when spoils and top soil placement on reclaimed mine sites 

were compacted (Torbert and Burger, 1994; Thomas et al., 1999; Angel et al., 2006). In order to 

mitigate these impacts, more recently OSM has promoted the Forest Reclamation Approach 

(FRA) for constructing back-to-contour placement, utilizing minimally-compacted spoils in 

order to enhance reforestation success and improve long-term forest ecosystem health (Angel et 

al., 2005; Sweigard et al., 2007). This technique focuses on leaving a surface layer of about 1.5 

m thick of loose spoil, leveling with the lightest equipment available with as few passes as 
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possible under dry conditions. SMCRA also mandates back-to-contour spoil placement to 

approximate natural slopes, which in the Appalachian region exceed 20% in many locations, and 

typically are on the order of 30 to 35%. Without achieving vegetative cover immediately 

following loose spoil placement on steep slopes, there is great potential for excessive erosion and 

reduced slope stability (Jeldes et al., 2010). Assessing whether FRA can be successfully applied 

on steep slopes is a critical research need, as is quantifying sediment yields from FRA sites. Such 

information on sediment yields will support improved designs of best management practices 

(BMPs) for mining site erosion control. 

The susceptibility of surface mining reclamation sites to soil erosion has often been 

quantified in terms of erodibility, defined by the K factor in the Revised Universal Soil Loss 

Equation (RUSLE) (Mitchell et al., 1983; Barfield et al., 1983; McIntosh et al., 1993; Bonta, 

2000). Developed originally from agricultural plots, RUSLE is the revised version of Universal 

Soil Loss Equation (Wischmeier and Smith, 1965, 1978) and has widespread use in predicting 

long-term average annual soil loss per unit area (Renard et al., 1997). RUSLE has the utility to 

estimate soil loss for varying soil properties, land condition, and management practices. Toy et al. 

(1999) indicated that RUSLE is applicable for surface mining reclamation sites, although K 

factor estimates deviate from the original studies and equation development due to the presence 

of large rock fragments and dynamic consolidation. Nonetheless, the K factor has been 

commonly used to characterize erodibility of reclamation site spoils, and the SEDCAD™ model 

which incorporates RUSLE is commonly used to predict sediment yields from proposed surface 

mining sites (Warner et al., 1998).  

Previous studies estimating K factors for reclamation site soils have included both small-

scale rainfall simulation plots and large-scale field sites under natural rainfall conditions. 
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Mitchell et al. (1983) studied erodibility on reclaimed material consisting of compacted loam and 

silt loam for two field plots in western Illinois and one in southern Indiana with 5% slopes. 

Rainfall simulations used an intensity of 64 mm۰h
-1

, and resulting K factors were reported in the 

range of 0.21 to 0.65 t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

. Under natural rainfall, McIntosh and Barnhisel 

(1993) estimated erodibility of reclaimed mine soils on 9% slopes in eastern Kentucky. 

Consisting of silt loam topsoil and subsoil, and overburden spoils of a mixture of shale, siltstone, 

and sandstone, K factors for these mine soils were estimated as 0.046, 0.067, and 0.051 

t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

, respectively. Hartley (1982) found reclaimed compacted soils under 

natural rainfall condition to have a K factor of 0.43 t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

. In general, soil 

erosion as a function of erodibility appears to be highly variable depending on particle size 

composition, organic matter, and clay content (Wischmeier and Mannering, 1969; Torri et al., 

1997; West and Wali, 1999). Also, soil erodibility varies with antecedent moisture and with 

freezing and thawing cycle (Mutchler and Carter, 1983). Previous studies have not investigated 

erodibility on steep-sloped, loose spoil conditions, but they do provide useful information in 

order to generally compare with results from this study.  

Although a focus of this research was on determining erodibility, a general understanding 

of erosion behavior and sediment yields from low-compaction steep-sloped reclaimed sites was 

needed. Several studies reported erosion rates on surface mining reclamation sites, providing a 

means to compare differences in soil and land conditions per site. In contrast to erosion rates, 

which often cannot be compared across sites because of variable rainfall applications, 

erodibilities of different sites can be compared as they contain both soil medium and experienced 

rainfall erosivity effects (Gilley et al., 1977; Hartley, 1982; Barfield et al., 1983; Carroll et al., 

2000). Two studies found that bare mine spoils eroded less than bare topsoil and subsoil. Gilley 
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et al. (1977) used rainfall simulators on varying slopes from 4.6% to 17.0% in western North 

Dakota, in which mine spoils yielded 18 t۰ha
-1

 and loam topsoil yielded 74 t۰ha
-1

. In eastern 

Kentucky, Barfield et al. (1983) investigated sediment yields on field plots with rainfall 

simulators for topsoil, subsoil, and shale mine spoils, and the effects of compaction on erosion 

rates. They found average erosion rates of 0.92, 0.85, and 0.32 t۰ha
-1

 for topsoil, subsoil, and 

shale mine spoils, respectively. In addition, they found higher erosion rates for compacted 

topsoils and spoils compared with tilled surfaces, although rate differences were small for shale 

spoils in contrast to topsoil (Barfield et al., 1988). Expressed as soil loss per unit of erosivity 

(which is the definition of K), erosion rates for compacted spoils were 1.28 times larger than 

those for tilled soils, whereas for compacted topsoil the erosion rate was found to be 2.5 times 

greater than tilled. Relevant to this study, Curtis and Superfesky (1977) estimated an erosion rate 

on compacted spoils from a steep-sloped coal surface mine site in East Tennessee as 526 t۰ha
-1

 

over a 20 month period, with 90% of the soil loss occurring in the first year. They observed that 

rill development was a major source of soil loss from the mine site.  

Others have also reported that rill development greatly influences soil loss from 

reclaimed surface mining sites, and as a result possibly the erodibility of material under the same 

erosivity, and they report that several factors control rill development, including: slope steepness, 

spoil size characteristics and bulk density, soil moisture, infiltration and runoff, surface hydraulic 

roughness, and vegetative cover (McKenzie and Studlick, 1979; Dickens et al., 1985; Hahn et al., 

1985; Nearing et al., 1997; Carroll et al., 2000; Sheridan et al., 2000; Hancock et al., 2008; 

Smets et al., 2008; Taylor et al., 2009; Zhang et al., 2009; Espigares et al., 2011). Increases in rill 

erosion appear to be greatly influenced by increases in slope and rainfall intensity (Yao et al., 

2008), although Berger et al. (2010) suggests that rainfall intensity has a greater influence than 
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does slope steepness. Precipitation volume and overland flow depth have also been suggested as 

key factors in rill development, exerting more influence than precipitation intensity (Nearing et 

al., 1997; Foltz et al., 2008). Spoil size characteristics indirectly influence overland flow depth 

by influencing infiltration, while percent of rock fragments also becomes a factor controlling rill 

development. Jean et al. (2000) found that surface runoff decreases with increased % rock 

fragments on slopes less than 9%, whereas runoff increased with increased % rock fragments on 

slopes of about 20%. Sediment yields from sites with large rock fragments appear to be greatly 

increased by steeper slopes, concentrating flow and forming rills (Hancock and Willgoose, 2004; 

Hancock et al., 2008). In general, rill control measures are more difficult to apply on steep slopes, 

where mulches and grass seed may be transported offsite prior to seed germination and root 

establishment (Dickens et al., 1985; Smets et al., 2008).  

Objectives of this chapter were to estimate the soil erodibility K factor, and to estimate 

sediment yields and characterize erosion behavior for steep-sloped, low-compaction reclaimed 

surface mine lands. With the FRA emphasis promoted by OSM, understanding how to manage 

these mine lands immediately following reclamation construction is critical because bare soils 

represent the most vulnerable period prior to establishment of grass cover. In this part of study, 

erodibility was measured for bare soil conditions, and particle size distributions of transported 

sediment were characterized. K factors were determined over time as rills developed, and rill 

development was qualitatively noted during the study. Results from this study provide necessary 

input data for erosion and sediment delivery models, and generally support reclamation practices 

on surface coal mines. 

 

 



65 

5.2 Methods 

5.2.1 Measurements for Runoff, Sediment Yield, and Rill Morphology 

Runoff and sediment in each collection system were measured regularly based on rainfall 

event frequency and magnitude and system capacity. Measurements were taken on 

approximately every 10 days for each site from May 2009 through July 2010. Site monitoring 

was not possible during the winter months (mid-December to mid-March), when continuous 

temperatures below freezing caused ice formation in the sampling buckets. In addition, mountain 

road closures are common during winter conditions in the high-altitude areas of the Appalachian 

region.  

Runoff volumes in each plot were estimated by measuring total depth of water and 

sediment in each bucket (Pinson et al., 2003). If the bucket was full, the total depth was 

considered as runoff depth for runoff volume calculation, while if the bucket was partially full, 

the depth of sediment was deducted from the total depth. For the partially-full bucket, the depth 

of rainfall that occurred since the previous sampling was deducted from the depth of water, 

because the buckets were not covered so part of water in the bucket was from direct precipitation. 

Evaporation from buckets was assumed negligible, as the samples were generally measured and 

collected soon after each event. 

Sediment yield was measured by collecting coarse and fine sediment from the chevrons, 

100-gal pre-sedimentation tank, and flow divider buckets. While most of the coarse sediment 

deposition occurred in the pre-sedimentation tank, there was also some deposition within the 

chevrons and flume. Sediment collected within the chevrons and flume was added to the amount 

from the pre-sedimentation tank. The coarse materials deposited within the tank, flume, and 

chevrons were completely mixed by shovel and a 5-gallon bucket of mixed material was taken as 
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a representative sample. The total amount of material was estimated by counting the number of 

5-gallon buckets required to remove all the material. For the flow divider buckets, if coarse 

sediment was found within the bucket, the whole material was brought back to laboratory, dried 

using industrial ovens and then weighed. If the captured material within the bucket was fine 

sediment (clay or silt), each bucket was agitated for 45 sec. and immediate sub-sampling 

performed with 500 ml bottles moved from bottom to top of the bucket. The 500 ml bottles were 

also dried and then weighed to determine the amount of sediment in each bottle, and based on 

that the total weight of sediment in the bucket was estimated.  

In order to document rill development that occurred on each of the study sites, six lateral 

cross-sections were surveyed across the four plots per study site. Rills were surveyed once with a 

GTS 800A robotic total station during September 2009, after the initial development period 

occurring through July 2009.  

 

Figure 14. Rill development in Plot 4 at Mountainside study site, September 2009. 
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Figure 15. Illustration of rill morphology from survey of field plots at Mountainside study site, 

September 2009. 

 

 

Figure 16. Surface elevations for three cross-sections illustrating rill morphology at 

Mountainside study site. Cross-section positions shown in Figure 15. 
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This study only presents results from the Mountainside study site because this effort was 

only to characterize the rills and document their presence (Figures 14, 15, and 16); no analysis 

was conducted with this data because the hypothesis regarding rill development was not part of 

the original study design. 

5.2.2 Soil Loss Equation 

RUSLE was used to estimate erodibility of reclaimed spoils without cover for each plot 

and averaged per study site (Wischmeier and Smith, 1978; SWCS, 1993, Renard et al., 1997). 

RUSLE estimates average annual erosion by the following equation: 

A = R۰K۰LS۰C۰ P……………………………………………………… (1) 

where, 

A = amount of soil loss occurred (kg/m
2
); R = rainfall and runoff erosivity factor; K = soil 

erodibility factor, soil loss rate per erosion index unit for a specified soil as measured on a 

standard plot (22.13 m length and 9% slope) under Unit Plot management conditions; LS = 

combined length-slope factor; C= cover management factor; and P = erosion control practice 

factor. 

5.2.2.1 R Factor 

Soil loss (A) is directly proportional to rainfall erosivity factor (R), based on the total 

storm energy (E) and the maximum 30-min intensity (I30). The relationship between soil loss and 

EI30 is assumed to be linear, and individual storm parameter values are directly additive. 

Summation of EI30 values for a period shows the rainfall erosive potential during that period. 

Brown and Foster (1987) equations were used to compute rainfall energy (em) in this study as 

follows:  
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…………………………...….…….…………………….….. (2) 
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)]05.0exp(72.01[29.0 mm ie   ..……………….…………………....…. (4) 

where,  

em has units of MJ∙ha
-1

∙mm
-1

of rain; im is rainfall intensity with units of mm∙ h
-1

; dj is rainfall 

depth in millimeters; and N is number of storms.  

Rainfall amount and intensity data from each event were used to calculate R factors, as 

outlined in USDA Agricultural Handbook Number 703 (Renard et al., 1997). Storms with less 

than 13 mm (0.5 in.) of rainfall were ignored during analysis, with the exception of rainfall 

depths greater than 6 mm in any15–minute period (Wischmeier and Smith, 1978). Individual 

rainfall events were distinguished by a 6-hour dry period.  

For each rainfall event, the five-minute rainfall depths that were recorded by the tipping 

buckets were used to compute 30-minute rainfall intensities (I30). The maximum 30-minute 

rainfall intensity (I30, Max) was used with total storm energy (E) to estimate erosivity of each 

rainfall event (Equations 2, 3, and 4). Summing all erosivities of rainfall events that occurred 

between two sampling events yielded total erosivity for that period. 

5.2.2.2 K Factor 

Per Equation 1, estimates for the soil erodibility K factor were based on measured soil 

loss (A) and computed R factors from measured precipitation data. The soil loss was averaged 

between four plots for each site at each sampling event. LS factors were computed based on the 

tabulated values in the USDA Agricultural Handbook Number 703 (Renard et al., 1997), and 
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were averaged among the four plots per study site. In this study, C was assumed to be 1 because 

there was no vegetative cover, though this study deviated somewhat from Unit Plot conditions 

because there was no tillage. Also, P = 1 because no erosion control practice was utilized.  

5.2.3 Particle Size Distribution 

The particle size distribution (PSD) analysis was performed on oven-dried materials from 

the buckets (combination of coarse and fine material) and 500 ml bottles (fine sediments). For 

buckets, ASTM- D6913 was followed to determine particle size distribution of coarse eroded 

material using sieve analysis. ASTM sieve numbers 3/4", 1/2", 3/8", No. 4, No. 8, No. 16, No. 30, 

No. 50, No. 100 and No. 200 were used. For fine sediments (material passed a No. 200 [0.074-

mm] sieve), the standard hydrometer test method D422-63 was followed.  

Using the percentage of flow division at each divider, the weight of remaining material 

on each sieve, and the results from hydrometer test, the particle size distribution of eroded 

material for each sampling event can be determined. For flow divider buckets, weight of material 

that remained on each sieve was scaled up by the percentage of flow division (1/12 or 1/24) 

related to the flow divider in the series of flow dividers. Then weights of material on the sieves 

with the same number (size) were added. The results of hydrometer tests were also scaled up 

based on the percentage of flow division (1/12 or 1/24) in the former flow divider. Then the sieve 

portion and hydrometer portion of the particle size distribution were combined. The sieve portion 

and hydrometer portion of the tests may not exactly line up, so correction of values from the 

hydrometer test was performed to match the two portions with each other, following the 

procedure found in Holtz and Kovacs (1981). 
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5.2.4 Data Analysis 

Data analysis consisted of estimating measured sediment yields (erosion rates) per unit 

erosivity and the slope factors (R۰L۰S) in order to observe the influence of rainfall intensity and 

sediment yields for different sub-periods within the entire monitoring period June 2009 through 

July 2010. Particular attention was given to the first three-month monitoring period (June, July, 

August 2009), in which rill development was rapid (Figures 14 to 16). In addition, the computed 

sampling period erodibility (time-varying K factor) was examined over different sub-periods 

within the entire monitoring period. Erodibility was also examined in comparison to the 

combined R۰L۰S factors to observe the influence of rainfall intensity and sediment yields and its 

relationship with cumulative erosivity.  

To identify outliers, the first quantile (Q1), third quantile (Q3), and Inter Quartile Range 

(IQR) − the difference between first and third quantiles − for the measured sediment yield were 

computed. The Q1 - 1.5 × (IQR) and Q3 + 1.5 × (IQR) were used as the lower and upper 

thresholds, respectively. JMP 9.0 statistical software packages was used to test if mean erosion 

rates differed among study sites, and to perform linear regression. 

5.3 Results 

Rainfall depth and duration, and erosion estimates per study site and sampling date are 

summarized in Table 4. A total of 59 data points were compiled among the three study sites. 

From the 59 sampling data, 7 of them turned out to be outliers based on the test described above. 

The remaining 52 data points were used to compute rainfall erosivity (R) and erodibility (K), and 

to complete the analysis to characterize measured erosion per erosivity, and erodibility.  

  

 



Table 4. Sampling Date, Cumulative rainfall depth and duration, Maximum 5-minute rainfall intensity, measured erosion, calculated erosivity, and erodibility. 

Site Sampling Date 
Cum. Rainfall 

Depth, (mm) 

Cum. Rainfall 

Duration, (h.) 

Max 5 min. 

Intensity, (mm∙h
-1

) 

R 

MJ ∙ mm ∙ (ha ∙ h)
-1

 

Erosion 

(t∙ ha
-1

) 

K factor* 

Mg. ha. h. (ha MJ mm)
-1

 

N
at

io
n
al

 

June 25, 2009 96.1 12.8 114 587.12 261.79 0.496 

July 7, 2009 60.7 35.5 58.5 

 

266.64 112.54 0.469 

July 15, 2009 72.6 11.0 100.4 897.92 201.21 0.249 

August 3, 2009 198.4 86.4 76.5 765.86 78.80 0.283 

August 14, 2009 47.6 11.0 111.0 281.78 25.91 0.253 

September 25, 2009 138.8 104.4 43.5 480.29 11.21 0.064 

September 29, 2009 49.5 14.9 36.0 127.01 3.46 0.075 

October 8, 2009 41.3 33.5 45.0 115.66 3.17 0.075 

October 22, 2009 106.3 94.6 81.0 423.94 9.36 0.061 

October 29, 2009 22.1 15.3 9.0 10.09 0.21 0.058 

November 5, 2009 31.3 16.8 21.0 47.95 0.59 0.033 

November 12, 2009 16.9 13.6 7.5 12.62 0.17 0.038 

December 1, 2009 44.9 35.6 16.5 63.51 0.79 0.034 

December 14, 2009 130.6 52.7 33.0 184.21 2.69 0.040 

April 13, 2010 72.25 26.1 52.5 205.24 7.97 0.107 

May 7, 2010 193 59.7 49.5 621.61 21.26 0.094 

May 19, 2010 41 5.8 111.0 294.40 9.96 0.093 

June 23, 2010 79.5 14.5 87.0 168.65 5.89 0.096 

June 29, 2010 28.5 4.3 72.0 95.05 3.69 0.107 

July 16, 2010 93.245 10.4 109.4 554.74 16.48 0.082 

P
re

m
iu

m
 

June 24, 2009 38.1 

 

17.5 31.5 727.17 48.98 0.102 

July 17, 2009 127.3 44.9 75.0 986.24 66.26 0.101 

August 3, 2009 106.1 48.0 39.0 268.75 4.38 0.06 

August 13, 2009 20.8 5.6 37.5 111.03 1.72 0.06 

August 24, 2009 75.9 28.0 82.5 458.42 34.94 0.115 

September 22, 2009 162.9 99.0 67.5 584.60 12.22 0.08 

October 1, 2009 96.0 25.0 79.5 783.53 20.23 0.10 

October 20, 2009 73.4 48.2 19.5 102.20 1.61 0.06 

October 27, 2009 37.3 21.5 18.0 35.75 0.43 0.04 

November 3, 2009 14.6 17.8 9.0 10.09 0.18 0.07 

November 24, 2009 49.8 43.8 10.5 29.44 0.41 0.05 

December 3, 2009 39.3 30.8 27.0 40.80 0.49 0.04 

December 17, 2009 139.8 31.3 42.0 450.43 7.93 0.07 

May 7, 2010 131.5 64.4 105.0 496.70 7.33 0.05 

May 18, 2010 27.375 4.4 43.5 93.79 1.11 0.04 

June 8, 2010 60.625 14.2 54.0 256.97 2.51 0.04 

July 20, 2010 79.125 17.8 52.5 224.59 3.77 0.06 
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Table 4. Continued  
M

o
u
n
ta

in
si

d
e 

July 2, 2009 132.8 3.6 54.4 33.65 (+1225.35**) 3.19 0.313 

July 14, 2009 62.6 21.9 75.6 454.22 118.20 0.347 

September 22, 2009 120.7 75.8 86.2 527.40 9.46 0.059 

October 1, 2009 98.5 37.9 13.6 683.01 18.97 0.091 

October 13, 2009 59.6 33.8 65.0 210.71 4.48 0.070 

October 20, 2009 51.7 70.6 33.3 79.07 1.82 0.076 

November 3, 2009 36.0 21.3 13.6 44.16 0.67 0.050 

December 1, 2009 18.1 14.6 10.6 16.40 0.21 0.043 

December 10, 2009 99.3 35.3 24.2 145.52 1.60 0.036 

December 14, 2009 35.0 8.8 10.6 45.84 0.67 0.048 

March 26, 2010 77.1 37.1 54.4 146.36 2.28 0.051 

May 13, 2010 242.6 57.3 66.5 612.35 8.66 0.047 

May 18, 2010 47.5 7.3 98.3 315.43 4.46 0.047 

June 8, 2010 52.7 7.8 83.2 303.65 3.81 0.041 

June 25, 2010 50.5 6.8 133.1 264.12 3.56 0.044 

        *USLE K factor as defined by Mitchell and Bubenzer (1980) where A= 0.224  RKLSCP, for each sampling date 

        ** Cumulative erosivity that study site experienced before this date (previouse sampling events are not reported due to outlier sediment yileds) 

 

Table 5. Constructed characteristics of field plots per Mountainside, National,  

and Premium study sites including length and width, slope, and spoil unit weights. 

 D50 (mm)  D84 (mm) 

Site a
*
 b

**
 c 

+
 d 

++
  a

*
 b

**
 c 

+
 d 

++
 

Premium 4 0.05 0.22 2.5  18 0.4 5 14 

Mountainside 2 0.06 0.08 0.75  17 0.7 3 11 

National 2 0.08 0.15 0.55  17 4 3 10 

Avg. 2.67 0.06 0.15 1.27  17.33 1.70 3.67 11.67 

*   June, July, and August 2009                       +   March, April, and May 2010 

** September through Dec. 2009                    ++ June, July 2010 



 

Figure 17. Erosivity (R) in MJ۰mm۰(ha۰h)
-1

 related to each sampling event, for the Premium, 

National, and Mountainside sites, with the x-axis representing days from beginning of the 

monitoring period. 

5.3.1 Measured Erosion per Erosivity 

Rainfall erosivity experienced at the study sites (the cumulative rainfall erosivity between 

two sampling events) during the monitoring period from June 2009 through July 2010 ranged 

widely from 10.09 to 986.2 MJ۰mm۰(ha۰h)
-1

 (Figure 17, Table 4). The rainfall erosivity (R 

factor) for the entire monitoring period averaged over all three sites was 5249 MJ۰mm۰(ha۰h)
-1

. 

The measured erosion rates for each sampling period were paired with the corresponding 

calculated rainfall erosivity (R factor), and these data were used in the sediment yield analysis 

(Table 4). According to t-test calculations, there were no significant differences between erosion 

rates on the three sties (p = 0.1 > α = 0.05, H0: differences exist among means). Combining data 

from all three sites, the average total erosion rate was 391 t۰ha
-1

 during the entire monitoring 
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period. The distribution of sampling period erosion rates is slightly right skewed, with the 90% 

percentile at 75 t۰ha
-1

. Based on 52 sampling points, the average erosion rate per sampling event 

was 22.6 t۰ha
-1

. The average erosion rate for the first three months of the study (during rill 

development) was 116 t۰ha
-1

, while for the remaining period from July 2009- July 2010, it was 

8.0 t∙ha
-1

. 

Measured erosion rates were plotted versus the product of rainfall erosivity and slope-

steepness factor (R۰L۰S) for all three study sites and the 14-month monitoring period June 2009 

through July 2010 (Figure 18). Erosion rates during the period June, July, and August 2009 were 

much greater than other sub-periods in the entire monitoring period, and 4.4 times greater than 

the erosion rates estimated for the remaining portion of monitoring period, September 2009 

through July 2010. About 75% of the total eroded material was delivered during this initial three 

months. Rill development was rapid during this period, with relatively uniformly spaced rills 

across the study plots, deeper at the slope bottom (Figures 14 to 16). Erosion rates for the first 

three months were seven times the rates for the same months in the following year (June, July, 

and August 2010) (Figure 19). Though not significant at the chosen α = 0.05, during the first 

three months of monitoring, erosion rates from the National site were generally greater than the 

Premium and Mountainside sites. Erosion rates were highly variable among the three sites during 

the first three-month monitoring period (R
2
 = 0.40; p < 0.001).  
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Figure 18. Observed erosion rates (t۰ha
-1

) related to each sampling event, for each study site 

from June 2009 through July 2010 (N = National, P = Premium, and M = Mountainside). 

 

Figure 19. Observed erosion rates (t۰ha
-1

) related to each sampling event, for each site during 

two periods: June to August 2009 and June to August 2010. The regression line fits just 2009 

data. 
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After September 2009, once rill development apparently stabilized, erosion rates were 

strongly correlated with rainfall erosivity and slope-length factors (R۰L۰S) for all three study 

sites (R
2
 = 0.85; p = 0.03) (Figure 20). Variation of erosion rates with rainfall erosivity for this 

period September 2009 through July 2010 was much less than the period prior to September 

2009.  Again, though not significant at the chosen α = 0.05, the National site had slightly more 

erosion than the other sites across similar ranges of rainfall erosivity.  

 

Figure 20. Observed erosion rates (t۰ha
-1

) related to each sampling event, for each study site (N 

= National, P = Premium, and M = Mountainside) for different monitoring periods (September 

through December 2009; and March through July 2010). 

5.3.2 Erodibility 

Calculated erodibility (K factors) based on the measured erosion and erosivity ranged 

from 0.03-0.50 t۰ha۰h۰(ha۰MJ۰mm)
-1

 during the entire monitoring period June 2009 through 

July 2010 (Figure 21, Table 4). The general pattern of erodibility per unit of erosivity in Figure 
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21 is similar to the patterns of erosion rates observed in Figure 18. Erodibility was greatest 

during the first three months of the monitoring period (June, July and August 2009), a period in 

which rill development was rapid. During June to August 2009, erodibility was not correlated 

with erosivity, and each study site appeared to have its general response (Figure 22). As shown 

in Figure 22, K factors ranged from about 0.25 to 0.50 t۰ha۰h۰(ha۰MJ۰mm)
-1

 for National and 

Mountainside sites, whereas Premium site ranged from 0.05 to 0.12 t۰ha۰h۰(ha۰MJ۰mm)
-1

.  

After September 2009, erodibility (K factors) for all study sites were below 0.12 

t۰ha۰h۰(ha۰MJ۰mm)
-1

, with a median of 0.06 t۰ha۰h۰(ha۰MJ۰mm)
-1

 (Table 4). In general, 

lower intensity storm events occurred between August and December 2009, and K factors appear 

to cluster about 0.065 t۰ha۰h۰(ha۰MJ۰mm)
-1

 (Figure 23). While Premium and Mountainside  

 

 

Figure 21. Erodibility (K factors) (t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

) related to each sampling event, for 

each study site (N = National, P = Premium, and M = Mountainside) for the entire monitoring 

period from June 2009 to July 2010. 
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Figure 22. Erodibility (K-factors) (t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

) related to each sampling event, for 

Premium, National, and Mountainside study sites from June to August 2009. 

 

 

Figure 23. Erodibility (K-factors) (t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

) related to each sampling event, for 

each study site (N = National, P = Premium, and M = Mountainside) from September 2009 to 

July 2010. 
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sites retained this K factor into the next year (March to July 2010), the National site exhibited a 

greater K factor between 0.08 and 0.11 t۰ha۰h۰(ha۰MJ۰mm)
-1

 during this period. 

Apparently due to rapid rill development, the K factor declined from values of  >0.3 to 

values < 0.1 t۰ha۰h۰(ha۰MJ۰mm)
-1

 over the first three months of the monitoring period for the 

National and Mountainside study sites, with this period representing approximately 2,500 to 

3,500 MJ۰mm۰(ha۰h)
-1

 of cumulative erosivity (Figure 24). This shows that K values dropped 

significantly but ultimately reached almost steady state, settling near 0.06 t۰ha۰h۰(ha۰MJ۰mm)
-

1
 at the end of monitoring period (Figure 24). Erodibility of the National site at the end of the 

monitoring period was 17% of the initial value, and the Mountainside site was 13%. The K factor 

on the Premium site was 60% of the initial value.  

 

 

Figure 24. Erodibility (K-factors) (t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

) related to each sampling event 

versus cumulative erosivity (R-factor) (MJ۰mm۰(ha۰h)
-1

) over the 14-month monitoring period 

from June 2009 through July 2010 for Premium, National, and Mountainside study sites. 
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5.3.3 Particle Size Distribution 

Particle size distributions for all three sites were generally similar during the entire 

monitoring period (June 2009 to July 2010), although Premium had slightly more coarse eroded 

material (Figure 25 and Table 5). The results show that from September till December 2009, 

between 50% and 60% of eroded material was silt and clay. This is the period during which 

rainfall events had low intensities. For the rest of monitoring period, between 15% and 40% of 

the eroded material was silt and clay. During June, July, and August 2009, the eroded material 

was coarser (D50= 2.7 mm; D84= 17.3 mm) than the rest of monitoring period (D50< 1.3 mm; 

D84< 11.7 mm). Particle size of eroded material got finer as time passed, with June 2009 - May 

2010 having D50: 2.7 mm to 0.15 mm; D84: 17.3 mm to 3.7 mm, but near the end of monitoring 

period (June and July 2010) there was a trend toward more coarse material (D50: 0.15 mm to 1.3 

mm; D84: 3.7 mm to 11.7 mm) (Table 5 and Figure 25). 

 

Figure 25. Typical particle size distributions of eroded material for a) June, July, and August 

2009; b) September through Dec. 2009; c) March, April, and May 2010; and d) June, July 2010. 
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5.4 Discussion 

This study estimated the erodibility K factor for low-compaction, steep-sloped reclaimed 

mine lands without vegetative cover. K factors were quantified as a function of rainfall erosivity, 

and observed periods of rapid rill development were followed by rill stabilization. Several 

studies have illustrated the importance of quantifying K in terms of erosivity as a surrogate 

measure for rainfall intensity, and rill formation (Nearing et al., 1997; Foltz et al., 2008; Yao et 

al., 2008; Berger et al., 2010). As a point of reference, the average annual erosivity for these 

study sites was 1.5 times greater than the long-term regional annual average of 3,404 

MJ۰mm۰ha
-1

۰h
-1

۰year
-1

 reported by Renard et al. (1997). The highest rainfall intensities and 

erosivities occurred during the initial project period from June 2009 through August 2009. About 

45% of the total erosivity measured in this study was during these first three months, 

immediately following reclamation site construction. Similarly, Berger et al. (2010) observed rill 

development on steep-sloped mine lands immediately following construction, indicating rainfall 

intensity was a driving factor in their rapid development on bare spoils.  

During the period June through August 2009, in which rill formation and development 

occurred in this study, sediment yields from surface erosion averaged 116 t۰ha
-1

.Total sediment 

yields for the entire period averaged 391 t۰ha
-1

, which compared to that reported by Carroll et al. 

(2000) for spoils on 20% slope with annual erosion rates of 314, 318, and 1,120 t۰ha
-1

. Curtis 

and Superfesky (1977) estimated yield to be 526 t۰ha
-
1 for a 20-month period. Both studies by 

Curtis and Superfesky (1977) and Carroll et al. (2000) experienced initial rill development 

similar to that found in this study. Noting a smaller erosivity of 2,160 MJ۰mm۰(ha۰h۰year)
-1

 

and a smaller slope steepness of 9% compared with this study, McIntosh and Barnhisel (1993) 

measured sediment yields on mine spoils of 91.5 t۰ha
-1

, illustrating the potential influence of 
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reduced rainfall intensity and slope steepness on erosion. During this study‟s period when rills 

were developing rapidly, sediment particle sizes consisted of more coarse material (D84 = 17.3 

mm) compared to following periods in which rills stabilized (D84 < 11.7 mm). As illustrated in 

Figures 18 through 20, sediment yields dropped by 93 percent for the three study sites for the 

period after July 2009, when rills apparently stabilized, though total rainfall erosivities were 

approximately the same. Other studies have observed rill development immediately following 

construction of the reclaimed slopes and the stabilization of the rills within one year (Dickens et 

al., 1985; Hahn et al., 1985; Nicolau, 2002; Hancock et al., 2008).  

In this study of loose spoils, and as observed by others, runoff generation on slopes 

indicates that overland flow govern hydrologically over infiltration for steep slopes over 20% 

(Sheridan et al., 2000; Cerda, 2001; Guebert and Gardner, 2001; Smets et al., 2008). Taylor et al. 

(2009) reported no overland flow in an experiment utilizing loose spoils on slopes ranging from 

2 to 10% in eastern Kentucky. Sufficient hydraulic shear stress initiates erosion from overland 

flow, and over a rapid period of time, flows will concentrate in channels and accelerate rill 

development (Nearing et al., 1997; Govers et al., 1987; Foltz et al., 2008; Yao et al., 2008). On 

steep slopes, other key factors promoting overland flow include percent rock fragments and soil 

moisture (Jean et al., 2000; Nicolau, 2002). Harms and Chanasyk (2000) note overland flow 

from infiltration excess is highly dependent on the spoil compaction and sorting during the 

reclamation process. Studies vary with regard to percent rock fragments, where in some cases a 

high percentage of rock fragments (> 10% by area) promotes infiltration, and in other cases it 

does not. The Premium study site produced lower sediment yields compared to the National and 

Mountainside sites, although it wasn‟t statistically significant at α = 0.05. Premium experienced 

similar erosivities as the other sites, but had a lower (wet) bulk density of 18.5 KN۰m
-3
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compared to 20.3 KN۰m
-3

, and had more large rock fragments on the surface. The use of lower 

bulk density for steep-sloped reclaimed mine lands for engineering specifications may be 

valuable, if this finding is confirmed with additional research.  

The K factor ranged between 0.03 and 0.5 t۰ha۰h۰(ha۰MJ۰mm)
-1

 for low compaction 

steep-sloped reclaimed mine lands. During the rill development period, the K factor averaged 

0.34 t۰ha۰h۰(ha۰MJ۰mm)
-1

 for the National and Mountainside sites. Once the rills stabilized, 

the K factor averaged 0.062 t۰ha۰h۰(ha۰MJ۰mm)
-1 

for the study sites. Uniquely, this study 

quantified the change in erodibility over time through rill development to a more stable 

morphology (Figure 24). The K factor for the Premium site for the entire monitoring period was 

below 0.12 t۰ha۰h۰(ha۰MJ۰mm)
-1

, and this result may be due to compaction that was slightly 

less than the other two sites as measured by the bulk densities. In general, the K factors measured 

in this study compared well with other studies on low to moderately compacted spoils, ranging 

from 0.04 to 0.65 t۰ha۰h۰(ha۰MJ۰mm)
-1

 (Mitchell et al. 1983; McIntosh and Barnhisel, 1993; 

Torri et al., 1997). McIntosh and Barnhisel (1993) reported a K factor for mine spoils of 0.051 

t۰ha۰h۰(ha۰MJ۰mm)
-1

 less than 0.067 for subsoils, and attributed it to physical weathering. This 

study did find median particle size (D50) to decrease from about 2.67 mm to less than 1.27 mm 

after rill development, indicating the possible effect of armoring, as the K factor decreased over 

time concurrently with the fining of the spoil materials.  

It is possible that the fining of particle sizes over time is a result of surface armoring and 

of rill stabilization. Armoring appears to reduce erosion and sediment yields on bare mine spoil 

material in the first year after reclamation (Curtis, 1971; Dickens et al., 1985). In considering rill 

stabilization, Foster and Lane (1983) proposed a model describing hydrogeomorphic processes 

associated with rill stabilization. Based on the Foster and Lane (1983) model, shear stress is not 
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evenly distributed across the channel, but rather tends to be concentrated in high velocity areas. 

The maximum shear stress is at the bottom center of the channel, so the maximum erosion tends 

at that location, ultimately forming a triangular cross section. This process continues until the 

shear stress on the sidewalls is not enough to cause soil detachment, caused partly by the 

hydraulic radius of the rill decreasing as the rill becomes deep and narrow. The Manning‟s n may 

increase during rill formation as well, as a higher percentage of large rocks in the spoils would 

increase hydraulic roughness, potentially accelerating rill stabilization. This combination of 

decreasing hydraulic radius and increasing roughness cause a substantial decrease in Manning‟s 

velocity, decreasing shear stress on the soil in the rill. After rills stabilize such that they can carry 

runoff generated from the sites, the main source of sediment yield will be sheet erosion between 

the rills (Haan et al., 1994). On land surfaces with stable rill morphology, erodibility and erosion 

is a function of soil susceptibility to the rainfall impact and erosivity.  

In this study, the assumption that the management factor equals one (C = 1) is consistent 

with other studies computing erodibility (K factor) on bare mine spoils (Hartley, 1982; Mitchell 

et al., 1983; McIntosh and Barnhistel, 1993; Torri et al., 1997; Toy et al., 1999), though this does 

not meet the strict definition of Unit Plot conditions, which requires no cover and repeated tillage 

(Renard et. al., 1997). Although our study plots had no effective cover, the repeated tillage 

requirement was not met. Barfield et al. (1988) computed C factors for different mining surface 

treatments on experimental spoil plots with rainfall simulators where a K factor was estimated 

per the RUSLE standard procedure. C factors were then computed by A / (R • K). Without 

regular tillage, surface roughness diminishes fairly quickly, reducing the Surface Roughness 

subfactor (SR), where the C factor becomes less than 1. On mild slopes, roughness slows runoff 

velocities and increases ponding, thereby reducing the erosion rate potential (Haan et al., 1994). 
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Among experimental plots by Wu (2001), when 45% of the surface is covered with rock 

fragments (gravel), the C factor was approximately equal to 0.5. Because the experimental plots 

in this study were on reclaimed mines lands regular tillage was not reasonable, so it is not 

completely clear where the impact of rill stabilization and surface armoring should reside. 

Should this dynamic property be taken as an inherent soil property and seen as a change in K, or 

should it be taken as a management effect different from Unit Plot management conditions and 

included in the C factor? The K factor derived in this study and other similar on-site 

experimental designs generally assume a C factor of 1, suggesting that the change is included in 

K, but the estimated K factor in this study is actually a KC factor. To develop a “real” K factor 

that would allow a “real” C factor development for other managements, long-term studies (using 

either real study plots or rainfall simulator) under Unit Plot conditions are required. The study 

plots in future studies should be tilled repeatedly and cover management should be placed soon 

enough to have the expected effect in reducing erosion. This is important for estimating the C 

factor because in this study it is not clear how much C factor exists just by not disturbing the 

plots.  If “real” K values were quantified as described above, tests could be run to determine the 

C factor for lack of disturbance, and that part of C factor could be separated from the C effect 

from other practices.  Without that “real” K factor, this separation is simply not possible. 

Practitioners estimating sediment yields with RUSLE or SEDCAD™ apply the K factor 

assuming a C factor of 1 for bare spoils. Vegetative cover will reduce erosion and sediment yield, 

and a C factor for these conditions must be applied accordingly. 

Establishing vegetative cover immediately following reclamation construction of steep-

sloped mine lands is critical in reducing erosion and sediment yields, and in ensuring ground 

cover growth and tree survival (Espigares et al., 2011). The success of OSM‟s FRA is dependent 
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on this establishment (Sweigard et al., 2007). As observed with this study and others on steep-

sloped reclaimed mine lands, seed for ground cover not properly applied will be washed from the 

surface during high intensity storms (Dickens et al., 1985; Carroll et al., 2000; Smets et al., 2008). 

Espigares et al. (2011) report rill erosion rates of 17 t۰ha
-1

۰yr
-1

 when plant cover is less than 

30%. These studies note that rill development severely hinders ground cover establishment. Rill 

development not only removes seeds but affects soil moisture and ultimately plant survival and 

growth. Ground cover is especially necessary at the upper slope areas to prevent rill initiation 

because unprotected bare spoils on long slopes over 11 m are prone to rill development (Smet et 

al., 2008). Because ground cover is critical for erosion control, timing of seeding for best 

germination and growth based on seasons per regional specifications should be followed for 

successful application of FRA. 

Design of erosion control BMPs for low compaction steep-sloped (> 20%) mining 

reclamation sites are supported by the data generated in this study. Data include K factors for 

different physical conditions associated with rills, and the particle size distributions. In addition, 

Hoomehr et al. (2012) generated runoff curve numbers in the range of 58.5 to 60.0. The 

SEDCAD™ model utilized all these data for design of erosion control BMPs, which is standard 

in surface coal mining practice.  

5.5 Conclusion 

Erodibility on bare, loose spoils on steep slopes greater than 20% is highly susceptible to 

rill development, where during periods of rill development K factors were estimated to range 

between 0.2 to 0.5 t۰ha۰h۰(ha۰MJ۰mm)
-1

. Development of rills immediately following site 

slope construction coincided with intense rainfall events, with erosivity estimates as high as 986 

MJ۰mm۰(ha۰h)
-1

. Once rills apparently stabilized on these sites, estimated K factors were below 
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0.12 t۰ha۰h۰(ha۰MJ۰mm)
-1

, with a median of 0.06 t۰ha۰h۰(ha۰MJ۰mm)
-1

. Sediment yields 

from erosion were similarly impacted by rill development, averaging 391 t۰ha
-1

 during the entire 

monitoring period for all three sites. The average erosion rate per sampling event was 22.6 t۰ha
-1

. 

In contrast to other studies that measured little or no runoff on low-gradient slopes with loose 

spoils, this study measured runoff easily sufficient to form rills. Both coarse and fine sediments 

erode from these sites, and the D50 estimates ranged from 0.06 to 2.67 mm during the study 

period. The above information provides valuable model input data for SEDCAD™, the model 

commonly used in the United States to plan BMPs to mitigate impacts from probable 

hydrological consequences, and generally supports surface coal mining reclamation practices. 
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Chapter 6 

SEDCAD Performance on Reclaimed Mine Lands 

Hoomehr S., J.S. Schwartz. “Evaluating SEDCAD model performance on reclaimed coal mine 

lands in East Tennessee.” ASCE Journal of Irrigation and Drainage Engineering. Under Review. 

6.1 Introduction 

In the surface coal mining industry, the Sediment, Erosion, Discharge by Computer 

Aided Design (SEDCAD) program is extensively used for developing engineered plans with best 

management practices (BMPs) for erosion control (USDI 2010).  As required by the Surface 

Mining Control and Reclamation Act of 1977 (SMCRA), mining permit applications consist of 

site layout designs that embrace reclamation practices where back-to-contour spoil placement 

approximates natural slopes.  In addition to slope reclamation, BMPs for erosion control are 

designed into layout plans to minimize environmental impacts from probable hydrological 

consequences.  Mining and consulting engineers submit SEDCAD program outputs with their 

mining permits, and outputs are reviewed by US Office of Surface Mining (OSM) engineers.  

OSM provides SEDCAD to the 24 states with primacy under SMCRA for use with permit 

review and remediation project design at bond forfeiture sites.  Although SEDCAD is the 

primary BMP design tool used in this industry, very limited published information is available 

on its performance in estimating site runoff and sediment yields.   

SEDCAD is an event-based distributed hydrology model using curve number (CN) 

rainfall-runoff relationships, and integrates runoff routing with the Revised Universal Soil Loss 

Equation (RUSLE) to estimate sediment yields (Warner et al. 1998).  It was developed at the 

University of Kentucky, Lexington, and is now maintained by Civil Software Design©, Ames, 

Iowa. Specifically, SEDCAD evaluates: 1) hydrologic capacity of a system of drainage channels, 

and hydraulic and sediment control structures; 2) channel stability for designs using riprap and 
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grassy vegetation; and 3) effectiveness of sediment control structures, i.e., detention ponds, 

check dams, grassy swales, and silt fences, with respect to sediment trap efficiency and effluent 

sediment concentration prediction.   

The study objective was to evaluate SEDCAD performance predicting runoff and 

sediment yield from a hillslope by comparing model outputs with measured values at active 

surface coal mining sites.  In addition, a sensitivity analysis was conducted for SEDCAD‟s 

hydrologic CN and erodibility K factor input parameters.  Understanding confidence ranges with 

SEDCAD model predictions is important so that BMPs can adequately protect surface waters 

from sediment impairment, where in the Appalachian Coal Region more than 600,000 ha have 

been surface mined and currently about 10,000 ha are mined each year (Zipper et al. 2011).  This 

study also assesses SEDCAD performance on mine sites that use the Forest Reclamation 

Approach (FRA) for natural contour reconstructions where spoils remain loose for enhancing 

tree regeneration (Angel et al. 2006; Sweigard et al. 2007; Taylor et al. 2009). OSM is currently 

promoting FRA at mine sites. Natural slopes in the Appalachia can exceed 20%, and commonly 

are in the order of 30 to 35%, and loose spoils are more prone to erosion (Hoomehr et al. 

2012a,b).  SEDCAD performance has not been evaluated for FRA site conditions. 

6.2 Methods and Material 

6.2.1 Study Design 

In order to compare measured versus model estimates for runoff and sediment yield, three 

active coal mining sites north of the city of Knoxville in East Tennessee were selected for study.  

Named per mining company ownership, the three study sites were: 1) Premium, located in 

Anderson County at N 36
o
 6‟ 36”, W 84

o
 19‟ 30”; 2) National, located in Campbell County at N 

36
o
 30‟ 30”, W 84

o
 16‟ 12”; and 3) Mountainside, located in Claiborne County at N 36

o
 31‟ 30”, 
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W 83
o
 57‟ 23”. In general, mine spoils consisted of silty-clay soils mixed with larger gray shale 

and brown sandstone rocks.  Specific CN and K factor values were generated for these sites over 

a 14-month monitoring period from June 2009 through July 2010, which during this period the 

sites were essentially devoid of vegetation (Hoomehr et al. 2010, 2012a,b).  Rill development 

was most active during the first three months of this period.  It was this 3-month period that was 

used in this study because of the active site erosion.  In order to meet the study objectives, the 

following tasks were conducted: 

1. Rainfall depths, basin hydrology (CN) , and erodibility (K) parameters based on the site 

monitoring data were entered as SEDCAD inputs; other hydrologic and RUSLE model 

input parameters were estimated using standard methodologies, or they were 

automatically computed in SEDCAD; 

2. Per study site, sediment yields were computed for a series of model runs by varying 

rainfall depths to get erosivity values (R) from SEDCAD that matches the range of 

observed R values.  Based on a computed erosivity by SEDCAD, sediment yields 

grouped by R classes (782.9, 548.0, 479.8, 286.4, and 128.8 MJ∙mm∙h
-1

∙ha
-1

), and 

measured sediment yields within these R classes were compiled in order to compare 

measured and modeled yields with similar erosivities; and  

3. SEDCAD model output, sediment yield, was assessed as to its sensitivity to CN and 

RUSLE K factor input values. Estimated values for these two parameters, which are 

based on monitoring data, were used as a baseline for input parameters, and then change 

in model outputs due to deviation from this baseline was recorded. 
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6.2.2  SEDCAD Model Setup 

To estimate sediment yields at a designated catchment outlet, SEDCAD input parameters 

include catchment size, slope length and gradient, channel slopes and roughness, storm 

frequency, catchment hydrology, erodibility, and type of control practices (Warner et al. 1998).  

The catchment area used in modeling for this study was the average of four field plots per site 

(Table 6).  The NRCS Storm Type II with 241 point distribution was used for this study, and the 

design storm frequency (years) and duration (hours) was chosen by setting rainfall depth and 

hyetograph duration equal to observed values for the range observed during site monitoring. 

6.2.2.1 Catchment Hydrology 

Runoff volume and peak flow are calculated by the curve number methodology using the 

Soil Conservation Service TR-55 Emulator.  SEDCAD is event-based and limited to the 

production of a 50-hour hydrograph, which is sufficient for catchments of less than 100 ha.  The 

hydrology module in SEDCAD requires the following parameters: CN, time of concentration, 

and selection of a dimensionless unit hydrograph shape.  A CN of 59 was used for the SEDCAD 

model input to test performance (Table 6), based on a study by Hoomehr et al. (2012a) that 

estimated CN values between 58.5 and 60 for low-compaction, steep sloped reclaimed surfaces 

using the rainfall-runoff depth (P-Q) frequency match approach.  SECAD assumes an initial 

abstraction coefficient of 0.20 (λ = 0.2).  SEDCAD calculates time of concentration using the 

input values for land cover, slope steepness, and length of catchment. For this study “Nearly bare 

and untilled” condition was selected from the list of default Land Flow Conditions within 

SEDCAD. Average slope steepness and plot length for the four plots per study site were used as 

input values (Table 6). The selected dimensionless unit hydrograph shape was fast hydrograph 

response. 
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6.2.2.2 Soil Erodibility 

SEDCAD estimates sediment yields by surface erosion using RUSLE by:  

A = R ∙ K ∙ LS ∙ C ∙ P 

where, A = amount of soil loss or yield (kg/m
2
); R = rainfall and runoff erosivity factor; K = soil 

erodibility factor, which is a soil loss rate per erosivity index unit for a specified soil as measured 

on a standard plot (22.13 m length and 9% slope) under annual tilled management conditions; LS 

= combined length-slope factor; C= cover management factor; and P = erosion control practice 

factor (Wischmeier and Smith 1978, SWCS 1993).  SEDCAD automatically calculates rainfall-

runoff erosivity factor (R) based on the hydrological inputs.  R factors were also computed from 

measured precipitation data, where they ranged between 10.09 and 986.2 MJ۰mm۰(ha۰h)
-1

 

(Hoomehr et al. 2012a).  The site average K-factor values for the first 3-months of the 

monitoring periods were used, which were 0.10, 0.33, and 0.35 Mg۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

 for 

Premium, Mountainside and National sites, respectively (Table 6).  The model computes LS 

factors based on tabulated values in the USDA Agricultural Handbook Number 703 (Renard et 

al., 1997). Slopes‟ length and steepness are reported per site in Table 6.   

 

Table 6. SEDCAD input values for erodibility (K) factor, CN, average slope steepness and 

length for National, Premium, and Mountainside study sites and Basin area. 
 

* K unit is Mg. ha. h. (ha MJ mm)
-1

; For National and Mountainside K = 0.34 (avg. of both sites) were used for 

simulation in Figure 26. 

  Study Sites     

         National   Premium                Mountainside    

K* CN 

Avg. 

Slope 

Length 

(m) 

Avg. 

Slope 

(Degree) 

Area 

(m
2
) 

 K* CN 

Avg. 

Slope 

Length 

(m) 

Avg. 

Slope 

(Degree) 

Area 

(m
2
) 

 K* CN 

Avg. 

Slope 

Length 

(m) 

Avg. 

Slope 

(Degree) 

  
Area 

(m
2
) 

0.35 59 48.35 20.3 1156  0.1 59 32.15 28.5 850 0.33 59 45.4 27.8 1054   
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Because there was no vegetative cover on the study plots and no erosion control practices, C and 

P were set equal to 1 in the SEDCAD model runs. 

6.3 Results and Discussion 

Based on condition specific CN and K factors developed in Hoomehr et al. (2012a,b) for 

loose companion steep-sloped reclaimed surface mining sites, sediment yields generated by 

SEDCAD increased with increase in erosivity relative to measured yields (Figure 26).  SEDCAD 

tended to overestimate sediment yields compared with all measured values, although those 

varied greatly among the three study sites.  For example, within the 548 MJ∙mm∙h
-1

∙ha
-1

 R class, 

the SEDCAD sediment delivery estimate was 2.5 times that seen on the National site, 1.6 times 

that measured on the Premium site, and 1.4 times that measured on the Mountainside site.  

Although the K factors used in the SEDCAD model runs included the effect of rill development 

on erodibility, the variability of measured sediment yields among the three study sites was likely 

due to various factors that influence rill development (Yao et al. 2008, Zhang et al. 2009, Berger 

et al. 2010). These factors include spoil bulk density and % surface exposed large rock, soil 

moisture, and hydraulic roughness.  Selection of the K factor affects computed sediment yields 

linearly, therefore percent differences between computed and measured are directly proportional.   

Traditionally, the K factor would be constant per soil type and standard RUSLE unit plot 

conditions, and the C factor would be adjusted (Barfield et al. 1988; Haan et al. 1994).  However, 

in the mining industry K has been used to reflect site erodibility before establishment of 

vegetative cover (McIntosh and Banhisel 1993, Toy et al. 1999).  Hoomehr et al. (2012b) 

observed erodibility reductions over a 14-month period from a period of rill development to rill 

stabilization, where K dropped from about 0.35 to 0.1 t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

.  This study 
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focused on the period of rill development since it is the period that would generate the largest 

sediment yields needed for BMP design. 
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Figure 26. Sediment yields in t∙ha

-1
 from measured amounts at National, Premium, and 

Mountainside study sites, and SEDCAD calculated amounts, grouped by erosivity (R) classes: 

782.9, 548.0, 479.8, 286.4, and 128.8 MJ∙mm∙h
-1

∙ha
-1

. 
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Sensitivity of CN selection on sediment yields computed from SEDCAD was 

investigated using a base CN of 59, with deviations from this used for this analysis. A CN of 59 

is the best estimate for the surface mining reclamation sites consisting of loose spoils on steep 

slopes (Hoomehr et al. 2012a).  The percent change in sediment yields computed by SEDCAD 

due to the departure from a CN of 59 was estimated, and results are shown in Figure 27. 

SEDCAD appears to be sensitive to CN selection, where small changes in CN selection generate 

large changes in sediment yield.  For example, a 40% deviation in selecting a CN will double the 

computed sediment yield.  In order to examine the level of uncertainty for CN selection, 

complimentary curves for +/- 5% confidence intervals are also shown in Figure 27.  Table 7 

summarizes values used to construct Figure 27.  The range in CN selection was determined by 

considering the range of CN values obtained from monitoring study sites, and the SEDCAD 

ability to reflect that change in its outputs. 

Table 7.  Percent difference in estimated sediment yields from the SEDCAD model relative to 

CN selection deviating from an average estimate of 59. 

  * The CN of 59 was estimated from site measurements using the asymptotic method (Hoomehr et al. 2012a) 

  ** + 5% increase in estimating value of CN from 59. 

  *** - 5% increase in estimating value of CN from 59. 

CN 
Sed. Yield 

t/ha 

 CN Deviation  % Difference in Sediment Yields 

 CN = 59 * + 5% ** - 5% ***  CN=59 * + 5% ** - 5% *** 

40 1.1  -0.33 -0.38 -0.27  -0.92 -0.94 -0.88 

45 3.5  -0.25 -0.31 -0.18  -0.74 -0.81 -0.63 

50 6.2  -0.17 -0.23 -0.09  -0.54 -0.66 -0.34 

55 9.4  -0.08 -0.15 0.00  -0.31 -0.48 0.00 

59 13.6  0.00 -0.08 0.09  0.00 -0.25 0.45 

65 18.2  0.08 0.00 0.18  0.34 0.00 0.94 

70 23.2  0.17 0.08 0.27  0.71 0.27 1.47 

75 28.6  0.25 0.15 0.36  1.10 0.57 2.04 

80 34.2  0.33 0.23 0.45  1.51 0.88 2.64 

85 40.1  0.42 0.31 0.55  1.95 1.20 3.27 

90 46  0.50 0.38 0.64  2.38 1.53 3.89 

95 51.6  0.58 0.46 0.73  2.79 1.84 4.49 

100 56.2  0.67 0.54 0.82  3.13 2.09 4.98 
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Figure 27. Percent difference in amount of estimated sediment yields (t∙ha
-1

) relative to a percent 

deviation in CN selection from the measured estimate of 59 for loose compaction spoils on 

reclaimed surface coal mining sites. 

6.4 Conclusions  

SEDCAD performed reasonably in predicting sediment yield, but it should be noted that 

this test used just the hillslope erosion portion of SEDCAD and not the channel transport and the 

sediment basin settling routines, which are likely to add greater uncertainty.  In spite of that 

limitation, the results are reasonable for low-compaction reclaimed surface coal mining sites 

considering the general predictive capabilities of sediment yield models based on RUSLE.  This 

paper illustrates the importance of selecting CN and K factors that reflect site conditions.  

Specific to this study, reclaimed surface mining sites reflected FRA, loose compaction spoils on 

steep slopes, where a CN of 59 is reasonable, and a K factor of 0.35 t۰ha۰h۰ha
-1

۰MJ
-1

۰mm
-1

 is 

acceptable during rill development (Hoomehr et al. 2012a.b).  SEDCAD tended to overestimate 

sediment yields, up to 57% greater than the maximally measured yields as a function of erosivity. 
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It was also relatively sensitive to CN selection when CN increased from 59.  This study provides 

SEDCAD users critical information of interpretation of model outputs for designing runoff and 

sediment control structures on reclaimed surface mining sites. 
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Chapter 7 

Climate Change and Erosivity  

7.1 Introduction 

Climate change will effect soil erosion by changing the amount, pattern and erosivity of 

future rainfall events. In a broader perspective, it will influence soil erosion by causing shifts in 

land use necessary to meet the limitations of cropping under a new climatic system, and by 

changing plant biomass production, residue decomposition rates, soil microbial activity, 

evapotranspiration rates, and soil surface sealing and crusting (Williams et al., 1996). Variations 

in rainfall erosivity can have more significant impact on ecosystems than will the general global 

warming due to its wide domain of influence (Sauerborn et al., 1999; Allen and Ingram, 2002; 

Diodato et al. 2009). Based on the historical weather records, over the last century, the number of 

rainfall events and the event intensities are both increasing across U.S. (IPCC 2007; Nearing 

2001). In a warmer climate, extreme precipitations and temperatures will increase more 

significantly than their related means (Hegerl et al. 2004). The global average soil erosion is 

projected to increase approximately 9% by 2090 due to climate changes (Yang et al. 2003). 

The potential effects of climate change on erosion have been studied by scientists using 

different approaches. Favis-Mortlock and Boardman (1995) investigated changes in erosion rates 

due to the effect of climate change by using Erosion Productivity Impact Calculator (EPIC) 

model at the South Downs, United Kingdom. Their model, EPIC, was limited in its ability to 

model the complicated interactions in the erosional system as the climate changes (Pruski and 

Nearing 2002). The Water Erosion Prediction Project (WEPP) model was used by Favis-

Mortlock and Savabi (1996) to determine the effects of change in CO2 concentrations on water 
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balances, and crop biomass production rates. Sensitivity of erosion to changes in CO2 

concentration and temperature was investigated by Savabi and Stockle (2001), but no further 

evaluation was performed on the potential impact of precipitation changes on erosion. Using 

three different GCMs, soil erosion changes due to climate change effect in Mato Grosso State of 

Brazil were investigated using a CO2-sensitive version of WEPP, which showed 27% to 55% 

increase in soil erosion (Savabi and Stockle 2001). Nearing (2001) used results of climate change 

scenarios from two GCMs to study potential changes in rainfall erosivity due to climate change 

across the United States for the 21st century. Study results showed a potential for erosivity 

change across much of the U.S. during 21st century, with a magnitude of change in the range of 

16-58% (positive or negative). Based on Nearing‟s study, using the U.K. Meteorological Office‟s 

Hadley Centre HadCM3 coupled GCM, a 25-50% average increase in rainfall erosivity was 

projected for East Tennessee from 2000-2019 to 2080-2099. Pruski and Nearing (2002) used 

simulated climate data from the HadCM3 GCM to study potential impacts of climate change on 

soil erosion by water. They modeled erosion at eight locations within the U.S. using a modified 

version of the WEPP model to consider the effects of change in CO2 concentrations on plant 

growth. Their investigation showed an increase in erosion rate when there is a significant 

increase in precipitation amount/intensity, while for decreases in precipitation amount/intensity 

the overall erosion can either increase or decrease, due to interactions between plant biomass, 

runoff, and erosion. Also, changes in rainfall intensity have a more significant impact on erosion 

rates than do changes in the number of rainy days, but this study concluded that future erosional 

studies under climate change should incorporate both factors. Finally, the study revealed that 

each 1% change in precipitation would result in a 2% change in runoff and approximately 1.7% 
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change in erosion, assuming that other environmental factors (CO2 concentration, temperature, 

etc.) remain constant in future. 

Data from most GCMs can provide scenarios of monthly and annual changes in total 

precipitation around the world (Nearing et al. 1990), but they do not have enough precipitation 

details (such as daily climate data at specific locations) in order to directly enable computation of 

the R factor for physically-based erosion models like RUSLE (McFarlane et al. 1992; Johns et 

al.1997; Nearing M.A, 2001; Zhang et al. 2010). Even GCMs that provide daily values at their 

grid scales still require spatial downscaling to generate climate data for a specific location of 

interest. If monthly projections from GCMs are to be used in erosion modeling–which is the case 

in most erosion studies–then both spatial and temporal downscaling are required (Zhang 

2007).Generally, downscaling refers to techniques that have been used to fill the information gap 

between what the climate modeling community can provide and the information need by the 

impact research community (Wilby and Wigley, 1997).  

Downscaling is generally divided into spatial and temporal techniques. Spatial 

downscaling derives finer resolution climate information from coarser resolution GCM outputs, 

as GCM resolution does not represent factors like topography and land cover that affect local 

climate. Spatial downscaling assumes that there are significant statistical relationships between 

local and large-scale climate that will remain valid under future climate conditions. Temporal 

downscaling derives fine-scale temporal data from coarser-scale temporal information, like 

derivation of daily data from monthly or seasonal information. The popular way of generating 

daily weather data from monthly information is through use of stochastic weather generator. The 

stochastic weather generator is a statistical model that generates time series of artificial weather 

data with the same statistical characteristics as the observations for the study region (Wilks and 
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Wilby, 1999). Daily weather series generated by different downscaling methods usually are 

statistically different and result in different soil erosion and runoff predictions for a specific 

climate change scenario (Zhang 2007).  

Statistical downscaling methods have been used as a tool to investigate the effect of 

change in R factor (by change in monthly and annual precipitation amounts obtained from GCM 

outputs), on soil erosion (Zhang et al. 2010; Nearing, 2001; Renard and Freidmund, 1994), but 

these relationships have limitations, primarily with regard to snow dominated areas, and do not 

consider the impact of large changes in the storm intensity or duration on rainfall erosivity 

(Zhang et al. 2010). Because of these limitations to statistical downscaling, stochastic weather 

generators have been widely used to statistically downscale Regional Climate Models (RCMs), 

or GCMs projections to the location of interest (Wilks 1992; Semenov and Barrow 1997; Katz 

1996; Mearns et al. 1997; Mavromatis and Jones 1998; Hansen and Ines 2005; Tisseuil et al. 

2010; Zhang et al. 2010). In this method, present-date stochastic climate parameters are adjusted 

for GCM projected relative climate changes, then future climate series are generated using those 

perturbed parameter values (Zhang 2007). This method utilizes two spatial downscaling methods, 

termed implicit and explicit methods. More information can be found in Zhang (2007). The 

CLIGEN model (Nicks and Gander 1994) is a stochastic daily weather generator that uses a first-

order two-state Markov chain to produce daily precipitation occurrence. The Markov chain is 

constructed per transition probabilities of a wet day following a wet day (Pw/w) and a wet day 

following a dry day (Pw/d). The daily mean precipitation is generated using a transformed, 

skewed, normal distribution while the daily maximum and minimum temperatures are generated 

using normal distributions (Zhang 2007).  Previous studies showed that generated R-factors by 

CLIGEN are highly correlated with the measured R-factors (Yu 2002, 2003; Zhang et al. 2010). 
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Thus CLIGEN–together with the calibration formulas to adjust the generated R factor–is able to 

adequately generate R-factor values for RUSLE (Zhang et al. 2010). 

Zhang et al. (2010) investigated rainfall erosivity changes under climate change using six 

GCM models under three emissions scenarios (A2, A1B, and B1). They computed downscaled 

mean annual precipitation and USLE rainfall erosivity (R factor) for the time periods 2030 

through 2059 and 2070 through 2099 for northeast China. They established a new approach that 

combines the methods developed by Zhang (2005, 2007) to downscale monthly precipitation 

data from GCMs at time scales meaningful for modeling erosion processes, and the method 

developed by Yu (2002, 2003) that uses a weather generator (CLI GEN) to generate accurate 

RUSLE erosivity factors. Their study revealed that changes in rainfall erosivity under the higher 

greenhouse gas emissions scenarios (A1B and A2) show the highest projected changes, and those 

changes in erosivity do not spatially correspond to changes in total annual rainfall depths.  

The objectives of this study were to assess potential future changes in rainfall erosivity 

under climate change in New River basin of East Tennessee, to correspond these changes to 

geographic location, and to match projected erosivity with historic erosivity at other parts of US. 

The Zhang et al. (2010) approach was utilized in this study to estimate future R-factor values for 

the New River basin at East Tennessee. Results from this study can widely be used to assess 

future soil erosion in this area, and to determine how effective current best management practices 

(BMPs) may be in reducing soil erosion and sediment delivery. The same method and technique 

is also applicable for other regions of interest. 
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7.2 Study area  

The study area is located in the mountainous Cumberland Plateau region of Tennessee, 

within the New River basin. It covers a drainage area of 1026 km
2
 and is contained in Anderson, 

Campbell, Morgan, and Scott counties of Tennessee (Carey, 1984) (Figures 28, 29, and 30). The 

New River basin has gone through a long history of logging and coal mining since the late 

1800‟s (Gardner, 2006). Disturbances from coal mining and timber harvest on steep sloped 

terrain are still problematic in terms of erosion and sediment delivery (Massey 2008). 

The New River basin originates near the Frozen Head State Park of Tennessee, north of 

Oliver Springs and east of Wartburg, and its intersection with the Clear Fork stream forms the 

basin‟s outlet (Figures 29 and 30). At the New River and Clear Fork confluence, the South Fork 

Cumberland River begins near the 497 km
2
 (192 mi

2
) Big South Fork National River and 

Recreation Area. It is a subbasin of the South Fork Cumberland Basin (HUC 05130104), which  

 

Figure 28. Overlooking the New River Basin. 
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Figure 29. Location map of the New River Basin, TN (Massey 2008). 

is part of the Ohio Water Resource Region (HUC 05). It contains a rugged terrain ranging in 

elevation from 335 m to 1006 m with an average hillslope of 25% (Overton, 1980, Massey 2008). 

The New River Basin is located in the humid climatic regions and has a moderate average annual 

temperature of 12.3°C (54.2 °F) and an abundant 1358 mm (53.4 inches) of annual rainfall. The 

area‟s climate tends to be the warmest in the  
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Figure 30. New River Basin, TN (Massey 2008). 
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month of July with an average temperature of 23.3°C (73.9 °F), while the coldest time of the 

year occurs in January with an average temperature of 1.0°C (33.8 °F) (NOAA, 2002). Therefore, 

this area observes warm to hot summers and mild winters (Massey 2008). The most rainfall 

occurs in March with nearly 133.35 mm (5.25 inches) of rain, but the rain continues throughout 

the summer months with monthly precipitation values near 127.0 mm (5.0 inches). The autumn 

season of September through October usually contains the least rainfall, with only 76.2 mm (3.0 

inches) of rain during that period. Usually this area will see about an annual average of 1,270 

mm (50 inches) of rainfall and 432 mm (17 inches) of snowfall in the mountains (Overton, 1980; 

Massey 2008). 

7.3 Method 

7.3.1 Climate change scenarios 

The IPCC AR4 (IPCC 2007) coupled ocean-atmosphere GCM-CCSM simulation was 

used to estimate potential future change for erosivity (R-factor). To consider the different 

greenhouse gas (GHG) emission scenarios, three non-mitigated IPCC Special Report on 

Emission Scenarios (B1, A1B, and A1FI) were selected (IPCC 2007). To calibrate the GCM 

results, the observed historic data for New River Basin was gathered from National Ocean and 

Atmospheric Administration (NOAA), for the Oneida, TN weather station (Lat/Lon: 36°30'N / 

84°32'W) for 1959-1999, and these data were used as the baseline period. In order to meet the 

study objectives, the following tasks were conducted: 

1- A special-temporal downscaling method developed by Zhang (2005, 2007) was used to 

downscale the monthly precipitation data of GCM-projections from GCM-grid scale to 

the scale of the Oneida weather station. 
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2- Using observed daily weather data from Oneida local station, for 1959-1999, the baseline 

CLIGEN input parameters (Rd, σ
2
d, Pw/d, Pw/w) were determined. 

3- Linear relationships between Pw/w and mean monthly precipitation (Rm) and between Pw/d 

and Rm were developed. Future conditional transition probabilities of precipitation were 

estimated from these linear relationships. Adjusted mean daily precipitation per wet day, 

Rd, and new daily precipitation variance related to monthly precipitation variance at the 

station, σ
2
d, were calculated using future conditional transition probabilities.  

4- Using adjusted parameters (Rd and σ
2
d) along with future conditional transition 

probabilities as input parameters for CLIGEN, 100 years of daily series data, 2010-2099, 

were generated for the station for each climate change scenario. 

5- Outputs for 100 years of daily series at each station from CLIGEN were used to calculate 

storm energy (E) and 30-minute maximum rainfall intensity (I30) for each future storm, 

and R-factors were calculated based on them for each GHG scenario. 

6- In order to correspond future change in rainfall erosivity in New River basin with 

geographic location and to match projected erosivity with historic erosivity for other parts 

of US, the erosivity map of the Eastern United States developed by Renard et al. (1993) 

was used as a frame of reference, and related erosivities were compared to that.  

 

7.3.2 Downscaling and R-factor calculations 

The special-temporal downscaling method developed by Zhang (2005, 2007) was used to 

downscale the monthly precipitation data of GCM-projections from GCM-grid scale to scale of 

Oneida weather station. 
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Spatial downscaling 

Q-Q plots of the observed monthly precipitation from local gage and CCSM model data, 

were produced for the time period 1959-1999, with each dataset ranked first, in order of 

magnitude. For each month, both linear and non-linear regression functions between the two sets 

of ranked values were developed. To downscale GCM-projected future monthly precipitations, 

for the values within the data range for which the regression function was built, a nonlinear 

function was used, while in order to generate a conservative first-order approximation the linear 

function was used for the values outside of the initial range. For each month, 2010-2099 

downscaled monthly precipitation values (with their means and variance) were obtained for the 

station. 

Temporal downscaling 

To estimate CLIGEN input parameters, temporal downscaling followed the Zhang (2005, 

2007) method, so a brief description of that procedure is included here. More details and 

complete description can be found in the original literature. Basically, CLIGEN was used as a 

tool to generate daily weather series representing the future climates. To begin, using observed 

daily weather data from Oneida local station for 1959-1999, the baseline CLIGEN input 

parameters were determined. CLIGEN requires four precipitation parameters in order to generate 

weather series, which are the following: Rd, daily mean precipitation; σ
2
d, variance of daily 

precipitation for wet years (days with non-zero precipitation); Pw/d, Markov chain‟s conditional 

transition probabilities of a wet day following a dry day; Pw/w, Markov chain‟s conditional 

transition probabilities of a wet day following a wet day. 

 Based on the daily precipitation amounts of observed data (1959-1999), Pw/w and Pw/d 

were computed and used to develop a linear relationship between Pw/w and mean monthly 
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precipitation (Rm), as well as relationships between Pw/d and Rm. Future conditional transition 

probabilities of precipitation were estimated from these linear relationships (Zhang et al. 2010), 

as  

π = (Pw/d)/ (1+ Pw/d - Pw/w)……………………………………..……………………… (15) 

r = Pw/w - Pw/d ……………………………………...…………………...……………... (16) 

Rd = Rm / (Nd π)……………………………………………………………………….. (17) 

σ
2

d = σ
2

m / (Nd π) – (1- π) ∙ (1+ r) Rd
2
 / (1-r)………………………….……………... (18) 

where Rd is adjusted mean daily precipitation per wet day, Nd is the number of days in the month, 

and σ
2

d is the new daily precipitation variance related to monthly precipitation variance at the 

station. Using these adjusted parameters as input parameters for CLIGEN, 100 years of daily 

series data was generated for station for each climate change scenario. 

R-factor calculation  

The outputs of 100 years of daily series at each station from CLIGEN were used to extract 

precipitation depth P (mm), storm duration D (h), time to peak as a fraction of storm duration tp, 

and the ratio of peak intensity over the average intensity ip, in order to calculate R factors (Nicks 

and Gander, 1994). A fuller description of the algorithm and steps in the calculations can be 

found in Yu (2002, 2003). 

All storms on wet days that had a mean air temperature greater than zero were used. The 

peak I30 for each storm was calculated using Eqs. 19 and 20:  

I30 = 2P for D ≤ 30 min……………………………………… …                   (19) 

 …………………..…………..……………     … (20) 

where b is a parameter describing the storm pattern (more details are in Zhang et al. 2010). 
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The storm energy (E) for each chosen storm was calculated as the integration of unit energy 

(e) over the double exponential storm pattern in CLIGEN: 

………...……...….….……………...      (21) 

where Ip is peak intensity (mm∙h
-1

) and e is the unit energy calculated using the erosivity 

equation in RUSLE (Renard et al., 1997): 

e(i) = e0(1-αe
-I/I

0)……………………….……………….……….……..……… (22) 

where e0 = 0.29 MJ ha
-1

 mm
-1

, α = 0.72, and I0 = 20 mm∙h
-1

 (Brown and Foster, 1987). Storm 

rainfall erosivity (EI), defined as the product of I30 and E, was calculated for each storm and then 

the monthly mean EI values were obtained to compute the R factor, which is the sum of monthly 

mean EI values (Zhang et al. 2010). 

7.4 Results and Discussion 

Values for the four main parameters Rd, σ
2
d, Pw/d, and  Pw/w were calculated based on the 40 

years of observed data (1959-1999), and used to establish linear and nonlinear relationships 

between Pw/w and mean monthly precipitation (Rm), as well as relationships between Pw/d and Rm 

(Table 8 and Figure 31). Monthly distribution of the historic-Pw/w shows higher probability 

during summer and early winter, with the maximum probability in June (Figure 31). 

As anticipated, the monthly distribution of the historic-Pw/d followed a nearly symmetric 

pattern to Pw/w, with an axis of symmetry around P= 0.38. The historic-Pw/w and -Pw/d almost 

converged on the same value during October, P= 0.38, which represents the minimum value for 

Pw/w and the maximum value for Pw/d. Both distributions, Pw/w and Pw/d, show a cosine pattern 

throughout the year, and conform (inversely for Pw/d) to the historic (1959-1999) average 

monthly rainfall distribution for the study region (see Rm in Table 8). 
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Table 8. Monthly values for Pw|w, Pw|d, Rm, Rd, and бd obtained from observed data, 1959-1999, 

at Oneida station.  

Observed Data (Oneida), 1959-1999 

Month Pw|w Pw|d Rm Rd бd 

   mm/month mm/day (rainy) 
for precipitation. 

mm/month 

Jan. 0.41 0.31 117.2 10.6 8.4 
Feb. 0.40 0.33 110.5 10.9 8.4 
Mar. 0.43 0.33 136.9 11.9 9.4 
Apr. 0.44 0.29 113.6 11.1 8.1 
May 0.48 0.28 128.5 11.4 8.9 
Jun. 0.49 0.26 122.6 11.9 8.9 
Jul. 0.43 0.31 136.9 12.4 9.6 

Aug. 0.41 0.32 106.6 12.4 8.6 
Sep. 0.40 0.32 97.50 12.1 8.4 
Oct. 0.38 0.34 94.90 11.9 7.9 
Nov. 0.45 0.30 109.0 11.2 8.4 
Dec. 0.45 0.30 120.6 11.1 8.9 

 

 

 

 

Table 9. CLIGEN input parameters from GCM-CCSM. 

CCSM Data 2010-2099 

 B1 A1FI A1B 

Month Pw|w Pw|d Rd бd Pw|w Pw|d Rd бd Pw|w Pw|d Rd бd 

   mm/d mm/d   mm/d mm/d   mm/d mm/d 

Jan. 0.46 0.30 11.90 13.96 0.48 0.28 12.01 15.15 0.46 0.30 12.20 17.98 
Feb. 0.41 0.35 12.56 9.75 0.43 0.33 12.80 15.04 0.42 0.34 12.65 14.93 
Mar. 0.45 0.31 12.07 11.24 0.49 0.27 12.20 13.48 0.47 0.29 11.97 13.02 
Apr. 0.44 0.32 11.95 7.50 0.45 0.31 12.42 11.09 0.45 0.31 12.04 8.81 
May 0.47 0.29 11.73 11.64 0.50 0.26 12.23 10.79 0.49 0.27 11.68 10.25 
Jun. 0.52 0.24 12.01 8.64 0.58 0.18 12.50 14.55 0.54 0.22 12.16 10.67 
Jul. 0.46 0.30 13.11 9.14 0.49 0.27 13.80 17.18 0.49 0.27 13.29 12.95 

Aug. 0.45 0.31 13.20 5.08 0.46 0.30 13.61 10.82 0.47 0.29 13.31 8.89 
Sep. 0.44 0.32 13.12 13.18 0.43 0.33 13.39 15.75 0.44 0.32 13.01 12.27 
Oct. 0.40 0.36 12.70 8.64 0.38 0.38 12.85 7.80 0.39 0.37 12.51 7.91 
Nov. 0.44 0.32 11.97 12.55 0.44 0.32 12.49 20.19 0.44 0.32 11.88 14.54 
Dec. 0.45 0.31 11.84 12.77 0.47 0.29 12.21 17.87 0.49 0.27 11.89 18.59 
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The CLIGEN input parameters were computed for the period 2010-2099 for each GHG 

emission scenario and calendar month, based on the CCSM model output data (Table 9). These 

values were obtained using the linear and nonlinear relationships developed from the observed 

and historic data between Pw/w, Pw/d, and Rm (Table 8), and it was assumed that those 

relationships remain the same for all future years. The monthly patterns of projected Pw/w and 

Pw/d for each emission scenario are almost symmetric. Generally, the A1FI has the highest and 

B1 has the lowest Pw/w value within a month. All the scenarios show equal or higher projected 

Pw/w compared to historic values within a month (Figure 31). A higher projected Pw/w value 

indicates a higher chance of rainfall and thus implicitly indicates higher future rainfall. 

Adjusted mean daily precipitations per wet day, Rd, for the observed and projected period 

are shown in Figure 32. Generally, most emission scenarios show higher adjusted mean daily 

precipitation value in the future, compared to the historic data. A1B and B1 scenarios produce 

almost the same results, while A1FI looks more different than the other scenarios. Average 

changes in mean annual precipitation during the projection period (2010-2099) relative to the 

historic period (1959-1999) show 20%, 14%, and 9% increases in mean annual precipitation 

under the A1FI, A1B, and B1 scenarios, respectively (Figure 33).  

Incorporating calculated values for input parameters into CLIGEN and using Eqs. (19) 

through (22),  projected rainfall erosivity for the 2010-2099 period were estimated. Projected 

average monthly erosivities for the New River Basin, TN are tabulated in Table 10 and are 

shown in Figure 34. The average annual rainfall erosivity for New River Basin, TN during 1959-

1999 period was 4085 MJ mm·h
-1

·ha
-1

 (240   ). The results of this study 

predict increases in monthly and annual rainfall erosivity at the New River Basin, for future  



114 

 

Figure 31. Pw/w and Pw/d calculated based on the 40 years of observed data, 1959-1999, and their 

projection for different GHG emission scenarios plotted against different months of year. 

 

Figure 32. Adjusted mean daily precipitation per wet day, Rd, distributed during months of year 

for the observed, 1959-1999, and projected period, 2010-2099, under three GHG scenarios. 
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years (2010 – 2099) based on all three GHG emission scenarios. The average annual rainfall 

erosivity for the B1 scenario is 4525.5 MJ∙mm∙h
-1

∙ha
-1

, for the A1B scenario is 5376.2 MJ∙mm∙h
-

1
∙ha

-1
, and for the A1FI scenario is 6281.3 MJ∙mm∙h

-1
∙ha

-1
. All three scenarios produce similar 

rainfall erosivity distributions during the projection period. Although the average projected 

rainfall erosivity reaches its maximum value with A1FI scenario and its minimum with B1, while 

the A1B is in between, this trend was not followed for each month. For instance, during 

September and October the B1 scenario shows higher values than the same period in the A1B 

scenario. This may indicate that as GHG concentration in atmosphere increases, these months of 

year will face lower precipitation. Projected mean annual erosivity (R factor) values show 49%, 

28%, and 7% increases in comparison to the historic period (1959-1999), under A1FI, A1B, and 

B1 scenarios, respectively (Figure 35). Nearing (2001) results are consistent with the  

0%

5%

10%

15%

20%

25%

A1FI A1B B1

Scenarios

%
 C

h
a
n

g
e
 i

n
 m

e
a
n

 a
n

n
u

a
l 

p
re

c
ip

it
a
ti

o
n

 r
e
la

ti
v

e

to
 t

h
e
 o

b
se

rv
e
d

 v
a
lu

e
 d

u
ri

n
g

 1
9

5
9

-1
9

9
9

 .

2010-2099

 

Figure 33. Average change in mean annual precipitation during projection period, 2010-2099, 

relative to the historic data, 1959-1999, presented in percentage (%). 
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Table 10. Monthly and yearly average rainfall erosivity values for 2010-2099. 

GHG* JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Yr. R
**

 

MJ mm h
-1

 ha
-1

 

A1FI 229 341 398 527 631 921 1182 570 507 207 424 342 6281 

A1B 319 303 329 456 563 810 992 522 361 182 277 262 5376 

B1 139 142 310 357 550 702 880 477 429 201 200 138 4525 

* Greenhouse gas emission scenarios 

**Yearly rainfall erosivity (divide by factor 17.02 to convert into (  )) 

 

 

 

Figure 34. Rainfall erosivity for period 2010 – 2099 (New River Basin, TN). 
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Figure 35. Changes in mean annual R-factor relative to the observed value during 1959-1999. 
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Figure 36. Rainfall erosivity (MJ∙mm∙h
-1

∙ha
-1

) distribution for B1 greenhouse gas emission 

scenario during projection period (2010~2099) and for different months. 
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Figure 37. Rainfall erosivity (MJ∙mm∙h

-1
∙ha

-1
) distribution for A1B greenhouse gas emission 

scenario during projection period (2010~2099) and for different months. 
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Figure 38. Rainfall erosivity (MJ∙mm∙h
-1

∙ha
-1

) distribution for A1FI greenhouse gas emission 

scenario during projection period (2010~2099) and for different months. 
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findings of this study. 

To better investigate future potential changes in rainfall erosivity, computed erosivities 

for 2010 through 2099 were grouped and averaged over 10-year periods (Figures 36, 37, and 38). 

Generally, erosivity increases within each month throughout the projection period (2010 ~2099), 

except for September and November for the B1 and A1FI scenarios. In general, increases in 

erosivity for January through July are greater after 2050. May, June, and July show more 

sensitivity to climate change, and at least a 60% increase in erosivity is projected for each of 

these months by end of 2099.  

 

7.4.1 Projected erosivities and U.S. erosivity map 

To correspond change in future rainfall erosivity with geographic location and match 

projected erosivity for New River basin with current erosivity at other parts of US,  the erosivity 

(R factor) map of Eastern United States developed by Renard et al., (1993) was used as a frame 

of reference. Average annual rainfall erosivities for 10-year periods and for each GHG scenario 

were plotted on the map (Figures 39, 40, and 41). Paths that represent increases in erosivity were 

plotted in a way that always remain perpendicular to erosivity isolines. 

The erosivity map that developed by Renard et al., (1993) represents erosivity at Eastern 

United States for about 1990. The historic data at Oneida station, 1959-1999, shows about a 20% 

increase in erosivity by the beginning of 21
st
 century, gaining erosivity like what Chattanooga, 

TN experienced by about 1990. Projected erosivity for all three GHG emission scenarios almost 

follow the same path on the erosivity map toward Alabama, while for A1B and A1FI scenarios 

study area will ultimately gain erosivity like what central to Southern Alabama experienced in 

about 1990. For B1 scenario, by the end of projection period at 2099, erosivity at the study area  
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Figure 39. Historic rainfall erosivity (1959-1999) and projected erosivity for the B1 scenario 

(2010 ~2099) plotted on erosivity map of Eastern US. Isolines of annual erosivity (R factor) for 

the Eastern United States were developed by Renard et al., (1993); R factors are in ft∙tonsf∙in / 

(acre∙hr∙yr). Multiply by 17.02 to convert into MJ∙mm∙h
-1

∙ha
-1

. The red point shows the location 

of the study area. 
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Figure 40. Historic rainfall erosivity (1959-1999) and projected erosivity for the A1B scenario 

(2010 ~2099) plotted on erosivity map of Eastern US. Isolines of annual erosivity (R factor) for 

the Eastern United States were developed by Renard et al., (1993); R factors are in ft∙tonsf∙in / 

(acre∙hr∙yr). Multiply by 17.02 to convert into MJ∙mm∙h
-1

∙ha
-1

. The red point shows the location 

of the study area. 
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Figure 41. Historic rainfall erosivity (1959-1999) and projected erosivity for the A1FI scenario 

(2010 ~2099) plotted on erosivity map of Eastern US. Isolines of annual erosivity (R factor) for 

the Eastern United States were developed by Renard et al., (1993); R factors are in ft∙tonsf∙in / 

(acre∙hr∙yr). Multiply by 17.02 to convert into MJ∙mm∙h
-1

∙ha
-1

. The red point shows the location 

of the study area. 
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will be almost the same as what Gadsden, AL experienced by about 1990. For A1B scenario 

projected erosivity at study area will be the same as Brent, AL for about 1990, and for A1FI 

erosivity will be like what experienced by Thomasville, AL for about 1990. These results show 

that rainfall erosivity at New River basin will increase between 10 to 50% by the end of 21
st
 

century, which will result in 10 to 50% increase in sediment yield, based on the linear 

relationship between erosivity and erosion rate in RUSLE, so current BMPs used in the study 

region will not adequately mitigate the effects of sediment yield from disturbed areas. This has 

been said, the requirements by the state of Alabama in designing and implementing the BMPs 

can be utilized for the study region in future years, as they were adequate enough about 1990 to 

control erosion and sediment yield within the state of Alabama.  

Performance of BMPs may be affected by change in climatic variables over time. While 

increase in rainfall depth may result in shorter residence time and high runoff volume that can 

bypass a BMP, increases in temperature and CO2 concentrations may accelerate vegetation 

growth and as a result increase the effectiveness of BMPs like vegetative filter strips. On the 

other hand, an increase in rainfall and runoff intensity may produce higher sediment loads that 

existing BMPs may not be able to mitigate. Assessing changes in BMP effectiveness and water 

quality due to climate change are significant issues that regulators, watershed managers, and 

stakeholders are facing. As rainfall erosivity is a key driving factor in erosion and sediment yield, 

quantifying potential future change in rainfall erosivity enable designers to adequately design 

BMPs for sediment yield as a non-point source pollutant. For example, structures like sediment 

ponds with minimal sediment inflow should continue to function effectively for years without 

any significant maintenance, but excessive sediment yield due to increase in rainfall erosivity 

may exceed their capacity or substantially decrease their effective operating lifetime. 
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7.5 Conclusion 

This study investigated potential changes in future rainfall erosivity due to climate change in 

the new River basin of the southern Appalachian region for the time period 2010-2099 and for 

greenhouse gas emission scenarios B1, A1B, and A1FI of the CCSM model. Results showed that 

for all three scenarios, the rainfall erosivity will increase with similar monthly distribution within 

a year. The greatest increase in R-factor is related to the A1FI and the least is from the B1 

scenario. A study by Nearing (2001) projected a 25-50% average increase in annual rainfall 

erosivity for East Tennessee from 2000-2019 to 2080-2099, and results from this study are 

consistent with his findings, suggesting a 7-49 % increase in annual rainfall erosivity from 2010 

to 2099 based on different emission scenarios. The projected mean annual erosivity (R factor) 

shows a 49%, 28%, and 7% increase in comparison to the historic period (1959-1999), under the 

A1FI, A1B, and B1 scenarios, respectively.  

Projected erosivities found by this study suggest that by about 1990 the annual rainfall 

erosivity in the study region was about the same as what is currently experienced by northern to 

central Alabama. The results from this study can widely be used to assess the potential future 

change in soil erosion in this area, and to evaluate the extent of future effectiveness of current 

BMP in reducing soil erosion and sediment delivery from coal mining sites located at the study 

area. The same method and technique is applicable for other regions of interest. 
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Summary 

The primary focus of this research entails surface-water hydrology, erosion, and sediment 

transport on low-compaction steep sloped reclaimed surface coal surfaces, and the interaction of 

those processes with climate change. Establishment of native forest covers on these reclaimed slopes 

has recently become a priority and a US Department of Interior Office of Surface Mining directive 

focus of interest. The traditional method of using excessive compaction to achieve a more stable 

slope with a lower rate of erosion has previously been an obstacle to this native forest growth, due to 

low chance of root penetration. Consequently, a lower level of compaction in Forestry Reclamation 

Approach (FRA) has been introduced in the reclamation process, but there is not much information 

about the effect of this approach on the hydrology, erosion and sediment yield from the sites 

reclaimed using this method. To address this problem, three different active coal mine sites in the 

Appalachian region of East Tennessee were monitored during a 14-month period for hydrograph 

parameters, erosion rate, and sediment delivery. 

The first study (Chapter 4) in this research addressed a significant lack of scientific information 

about the effects of FRA technique on the hydrology of steep sloped reclaimed surfaces, specifically 

addressing lack of a good representative curve number (CN) value. This study estimated CN 

values for low-compaction steep-sloped reclaimed surfaces by using natural precipitation-runoff 

data and utilizing both a standard technique and the asymptotic method as described by Hawkins 

(1993). Results showed that the differences due to spatial variation in rainfall and use of different 

reclaimed material between the original CN average values estimated for three different study 

sites were not statistically significant. Both asymptotic methods – that based on Hawkins (1993) 

and its modified version which uses I30 instead of P − suggest a standard asymptotic behavior for 

the study sites, with P-independent CN values around 58.5~60. Determining a CN value for low 
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compaction reclaimed surfaces is important, as it can be used to estimate runoff for adequate 

design of on-site retention basins and other BMPs for sediment erosion control.  

The second study (Chapter 5) focused on erosion and sediment delivery on low-compaction 

reclaimed sites. This study found that erodibility on bare, loose spoils on steep slopes greater than 

20% is highly susceptible to rill development, where during periods of rill development 

erodibilities (K factors) were estimated to range between 0.2 to 0.5 t۰ha۰h۰(ha۰MJ۰mm)
-1

. Once 

rills apparently stabilized on these sites, estimated K factors were below 0.12 

t۰ha۰h۰(ha۰MJ۰mm)
-1

, with a median of 0.06 t۰ha۰h۰(ha۰MJ۰mm)
-1

. Sediment yields from 

erosion were similarly impacted by rill development, averaging 391 t۰ha
-1

 during the entire 

monitoring period for all three sites. In contrast to other studies that measured little or no runoff 

on low-gradient slopes with loose spoils, this study measured runoff sufficient to form rills. 

Coarse and fine sediments both erode from these steep sites, and the D50 estimates ranged from 

0.06 to 2.67 mm during the study period. The above information provides valuable model input 

data for SEDCAD™, the model commonly used in the United States to plan BMPs to mitigate 

impacts from probable hydrological consequences, and generally supports surface coal mining 

reclamation practices. 

The third study (Chapter 6) in this research investigated performance of the SEDCAD model on 

reclaimed mine lands. This study illustrated the importance of selecting CN and K factors that reflect 

site conditions. SEDCAD performed reasonably well for reclaimed surface coal mining sites 

considering the general predictive capabilities of sediment yield models based on RUSLE, but it 

tended to overestimate sediment yields.  It was also relatively sensitive to CN selection. This study 

provided SEDCAD users critical information of interpretation of model outputs for designing runoff 

and sediment control structures on reclaimed surface mining sites.   
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The fourth study (Chapter 7) in this research investigated potential changes in future rainfall 

erosivity due to climate change in the New River basin of the southern Appalachian region for 

the time period 2010-2099 and for the greenhouse gas emission scenarios B1, A1B, and A1FI of 

the CCSM model. Results showed that for all three scenarios, the rainfall erosivity will increase 

with almost the same monthly distribution within a year. The largest increase was related to 

A1FI and the smallest was from the B1 scenario. Consistent with previous studies that projected 

a 25-50% average increase in annual rainfall erosivity for East Tennessee from 2000-2019 to 

2080-2099, this study found a 7 – 49 % increase in annual rainfall erosivity from 2010 to 2099 

based on the different emission scenarios. The projected mean annual erosivity (R factor) 

showed 49%, 28%, and 7% increases in comparison to the historic period (1959-1999), under 

A1FI, A1B, and B1 scenarios, respectively. Erosivities projected by this study suggest that by the 

late 2080‟s  or early 2090‟s the annual rainfall erosivity at study region will probably be the 

same as what is currently experienced by southern to central regions in the state of Alabama. The 

results from this study can widely be used to assess potential future change in erosion and 

sediment yield from this area, and to evaluate future effectiveness of current BMPs in reducing 

soil erosion and sediment delivery from coal mining sites located at study region. The same 

method and technique is applicable for other regions of interest. 
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Curve Number  

The Matched Pairs report shows a Tukey mean-difference plot, summary statistics, and the 

results of the paired t-test. The Difference plot shows differences by means for CNs estimated at 

study sites. The mean difference is shown as the horizontal line, with the 95% confidence 

interval above and below shown as dotted lines. If the confidence region includes zero, then the 

means are not significantly different at the 0.05 level. In this study the difference were not 

significant.  
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Erosion Rates   

The Matched Pairs report shows a Tukey mean-difference plot, summary statistics, and the 

results of the paired t-test. The Difference plot shows differences by means for erosion rates 

estimated for study sites. The mean difference is shown as the horizontal line, with the 95% 

confidence interval above and below shown as dotted lines. If the confidence region includes 

zero, then the means are not significantly different at the 0.05 level. In this study the difference 

were not significant.  
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