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ABSTRACT 

 

The Himalaya and Tibetan Plateau were built by a combination of south-directed thrusting, 

north-directed extension, and generally east-west-directed extension within the Himalaya and 

Tibetan Plateau all to accommodate convergence between the Indian and Eurasian plates that 

began in the Eocene. Normal-sense shear zones that accommodate roughly east-west-directed 

extension across the southern margin of the Himalaya have exhumed young metamorphic domes 

across the Himalayan front. These metamorphic domes contain high-grade metamorphic rocks 

bound by normal-sense shear zones. The purpose of this study is to evaluate how these normal-

sense shear zones develop and how they exhume metamorphic domes, which remains poorly 

understood and is critical for understanding the processes that accommodate extensional 

exhumation in this convergent setting. Two examples of metamorphic domes that were exhumed 

by east-west-directed normal-sense shear zones in the Himalaya are the Ama Drime Massif, 

southern Tibet, and the Leo Pargil dome, northwest India-Tibet. The Ama Drime Massif is a 30 

km-wide north-south-striking structure that thins toward the north. It is located ~50 km northeast 

of Mount Everest and is bound by the Nyönno Ri detachment on the eastern flank and the Ama 

Drime detachment on the western flank. The Leo Pargil dome, ~950 km west of Ama Drime, is a 

20 km-wide, northeast-southwest-striking structure composed of high-grade metamorphic rocks 

and leucogranite. It is bound on the east by the Qusum detachment and on the west by the Leo 

Pargil shear zone. Field mapping and sample collection were combined with kinematic, 

microstructural, thermobarometric, and geochronologic methods to constrain the metamorphic 

conditions, the kinematics of deformation during shearing, the amount of exhumation, and the 

timing of metamorphism and shear zone initiation. These data demonstrate the exhumation on 

these normal-sense shear zones in the Himalaya are controlled by an interplay between various 

processes including a regional kinematic setting that favored extension which led to strain 

partitioning, fault reactivation, decompression-driven melting, and the development of these 

deeply-rooted extensional systems.  
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INTRODUCTION  

 

Purpose of the Study  

 

The main objectives of this study are to: (1) characterize the spatial and temporal patterns 

of deformation on normal-sense shear zones that bound the Ama Drime Massif in southern Tibet 

and the Leo Pargil dome in northwest India, (2) characterize the pressure-temperature-time-

deformation (P-T-t-d) paths recorded in the rocks within the Leo Pargil dome, and (3) to 

constrain the processes that resulted in extensional exhumation of these young metamorphic 

domes along the southern margin of the Tibetan Plateau (Fig. 1). Kinematic, deformation 

temperature, vorticity, thermobarometry, and geochronology methods were applied to samples 

from the Ama Drime Massif and Leo Pargil dome. The resulting data from these domes allow 

evaluation of the processes responsible for exhumation of these domes, including the relationship 

between the generation of partial melt, tectonic setting, and strain localization with shear zone 

development and exhumation of these young metamorphic domes. 

 

Tectonic Setting 

 

The Himalayan front at the southern margin of the Tibetan Plateau extends for ~2500 km 

and has an average elevation of 5000 m (Gansser, 1980). From the Eocene to middle Miocene 

the Himalayan orogen has accommodated a significant amount of crustal shortening during the 

north-directed collision of the Eurasian and Indian plates. Since the Miocene, north-directed 

convergence (at a modern rate of ~35 mm/yr) (Bettinelli et al., 2006) has been accommodated by 

thrust faults in the foreland while strike-slip and normal faults and graben, such as the 

Karakoram fault and the Dinggyê graben (Fig. 1), accommodate east-west extension from the 

orogenic front into the interior of the plateau.  

The southern margin of the Tibetan Plateau is composed of three main litho-tectonic units 

separated by major fault systems. With increasing structural level these units include: the 

metasedimentary rocks of the Lesser Himalayan sequence, the upper-amphibolite facies 

metamorphic rocks of the Greater Himalayan sequence (GHS) that contains the anatectic core of 
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Figure 1. Geologic map of the Himalayan orogen with locations of the Ama Drime Massif and Leo Pargil dome. After Goscombe et 

al. (2006). 
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the Himalaya, and the low-grade to unmetamorphosed rocks of the Tibetan sedimentary  

Sequence (TSS) (Fig. 1). The Lesser Himalayan sequence is bound at the base by the Main 

Boundary thrust and the top by the Main Central thrust zone (MCTZ) (Fig. 1). The MCTZ 

bounds the bottom of the GHS and the low-angle, normal-displacement South Tibetan 

detachment system (STDS) bounds the top. The STDS separates the GHS from the overlying 

TSS (Fig. 1) (e.g., Grasemann et al., 1999; Hodges et al., 2001; Vannay and Grasemann, 2001). 

The southernmost thrust is the Main Frontal thrust which actively accommodates convergence 

today. The Main Frontal thrust, Main Boundary thrust, and the MCTZ sole into the Main 

Himalayan thrust below the Tibetan Plateau (Nelson et al., 1996). 

Normal faults and shear zone systems in the central Himalaya (such as those that bound the 

Ama Drime Massif) developed in the middle Miocene and cut or offset the older STDS (Fig. 1) 

(e.g., Murphy et al., 2002; Kapp and Guynn, 2004; Murphy and Copeland, 2005; Thiede et al., 

2006; Jessup et al., 2008). The Ama Drime Massif is a 30 km-wide north-south-striking 

antiformal structure located ~50 km northeast of Mount Everest that is bound by the north-south-

striking, east-dipping Nyönno Ri detachment on the eastern flank and the north-south-trending, 

west-dipping Ama Drime detachment (ADD) on the western flank (Fig. 1) (Jessup et al., 2008). 

To the north, the Nyönno Ri detachment transitions into the Dinggyê graben that extends into the 

interior of the plateau (Taylor et al., 2003). The ADD is composed of metapelitic rocks, 

leucogranite, calc-silicate, quartzite, and marble and the Nyönno Ri detachment is composed of 

metapelitic rocks, leucogranite, and quartzite. The Massif is composed of orthogneiss and 

paragneiss that contains mafic lenses and is cored by eclogite. The orthogneiss and paragneiss 

are intruded by leucogranite. The ADD offset the STDS during orogen-parallel extension (Jessup 

et al., 2008; Langille et al., 2010). Fault scarps on the east side of the Massif suggest that 

exhumation of the Ama Drime Massif related to extension on the Dinggyê graben into the 

interior of the plateau continues today. 

The Leo Pargil dome in northwest India, ~950 km west of Ama Drime, is located between 

major fault systems that accommodated north-directed convergence from the Eocene to middle 

Miocene (such as the MCTZ and STDS) and the Karakoram strike-slip fault system. The dome is 

bound by normal fault systems that are oriented perpendicular to the orogenic front and 

accommodate east-west-directed crustal extension. These faults continue north and intersect the 
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dextral Karakoram fault system (Fig. 1). The dome is a 20 km-wide, northeast-southwest-striking 

structure composed of high-grade metamorphic rocks and leucogranite (Thiede et al., 2006). 

These high-grade rocks and leucogranite within the dome are separated from the low-grade TSS 

and the Haimanta sequence (documented as the base of the TSS) to the west by the west-dipping, 

normal-displacement Leo Pargil shear zone (LPSZ). Few studies have been conducted on the 

east side of the dome (e.g., Zhang et al., 2000; Murphy et al., 2009) but suggest that it is bound 

by an east-dipping detachment that developed during orogen-parallel extension in the late 

Miocene (Murphy et al., 2009). Previous studies suggest that the onset of ductile exhumation 

began at a minimum of 16-14 Ma (Thiede et al., 2006). Fault scarps that offset the LPSZ suggest 

that brittle-faulting that initiated between 6 and 10 Ma (Thiede et al., 2006) continues to exhume 

the dome today. 

 

Overview of Methods 

 

Field mapping of the Ama Drime Massif was conducted over two field seasons as 

published by Jessup et al. (2008). This study includes kinematic, deformation temperature, and 

vorticity analyses conducted on samples collected over these field seasons to constrain the 

exhumation history of the ADD. Field work at the Leo Pargil dome was conducted over two field 

seasons in 2009 and 2011 and included geologic mapping and sample collection. 

Thermobarometry and geochronology methods were applied to samples from the Leo Pargil 

dome to evaluate the mechanisms responsible for exhumation of this dome. In addition, 

kinematic, deformation temperature, and vorticity analyses were conducted to constrain the 

kinematics during exhumation and to evaluate the tectonics in this region of the Himalaya. 

Details on these methods are included within each chapter. 

 

Deformation Temperatures, Kinematic Vorticity, and Strain 

Deformation temperatures can be assessed qualitatively and quantitatively using various 

methods that utilize deformed quartz or feldspar. These include evaluating (1) the 

recrystallization textures recorded in quartz and feldspar (Hirth and Tullis, 1992; Fitz Gerald and 

Stünitz, 1993; Stipp et al., 2002), (2) quartz slip systems determined from quartz lattice preferred 
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orientation (LPO) patterns (e.g., Mainprice et al., 1986), (3) the opening angle of quartz [c] axis 

LPO patterns (Law, 1990; Kruhl, 1998; Law et al., 2004), and (4) two-feldspar thermometry of 

asymmetric strain-induced myrmekite, all of which correspond to certain temperatures. These 

temperatures are critical to evaluating the depth in the crust where deformation occurred, to 

interpret exhumation mechanisms that occurred during shearing, and to estimate the amount of 

displacement that was necessary to exhume the rocks that are now exposed on the surface. 

Vorticity analyses were conducted to quantify the relative contribution of pure shear 

(flattening) and simple shear (shearing with no flattening) during ductile deformation and to 

characterize the spatial and temporal variability in flow during exhumation. A contribution of 

pure shear indicates a higher degree of thinning and strain relative to simple shear (Law et al., 

2004). Kinematic vorticity (Wk) is a measure of the relative contributions of pure (Wk = 0) and 

simple (Wk = 1) shear during steady-state (instantaneous) deformation.  In this nonlinear 

relationship, pure and simple shear components are equal when Wk = 0.71 (Tikoff and Fossen, 

1995; Law et al., 2004).  Spatial and temporal variability of deformation in naturally deformed 

rocks can be accounted for by using a time-averaged and assumed steady-state deformation 

history known as the mean kinematic vorticity number (Wm) (e.g., Fossen and Tikoff, 1997, 

1998; Jiang, 1998). Wm methods require that deformation progressed during plane strain 

conditions. Two methods for estimating Wm were applied to thin sections cut perpendicular to 

the foliation and parallel to the lineation (XZ section); the rigid-grain technique (Passchier, 1987; 

Wallis et al., 1993; Jessup et al., 2007) and the quartz grain shape foliation technique (Wallis, 

1995).  The rigid-grain technique involves measuring the aspect ratio (R) of rigid porphyroclasts, 

such as feldspar, and the acute angle (θ) between the clast long axis and the macroscopic 

foliation. Grains above a critical aspect ratio (Rc) define a stable orientation and will exhibit a 

small range in θ, whereas grains below will infinitely rotate and show a larger range of θ. From 

Rc, vorticity can be calculated as (Passchier, 1987): 

 

Wm = (Rc
2
 - 1) / (Rc

2
 + 1)                                                                        (1) 

 

Plotting the shape factor (B*), where 
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B*= (Mx
2
 - Mn

2
) / (Mx

2
+Mn

2
)                                         (2) 

 

and Mx is the long axis of the grain and Mn is the short axis, versus θ on the rigid-grain net  

(Jessup et al., 2007) is a graphical approach to calculating Wm. B* and Wm are scaled one-to-one 

so the rigid-grain net allows real time assessment of the data. Wm estimates derived from this 

method record the bulk shear. 

Quartz oblique fabrics can also be used to estimate vorticity. During deformation, newly 

recrystallized grains (e.g., quartz) are stretched parallel to the instantaneous stretching axis (ISA) 

(Wallis, 1995). The maximum angle (θ) between the quartz oblique grain-shape fabric (measured 

from the thin section) and the flow plane (measured as the perpendicular to the quartz [c] axis 

patterns) provides an approximate orientation of the ISA. The orientation of the ISA is related to 

Wm by the equation (Wallis, 1995): 

  

Wm = sin 2θ         (3) 

 

The strain ratio (Rxz) can be calculated from the geometry of quartz [c] axis LPO patterns 

and Wm using the following equation (Passchier, 1988; Xypolias, 2009). 

 

     
           

                
                        (4) 

 

where  

 

                       
                                (5) 

 

and β is the angle between the flow plane and foliation as measured from the quartz [c] axis 

fabric and δ is the angle between the quartz oblique fabric and the main foliation. Rxz and Wm 

can be used to calculate the percent shortening and extension by calculating the shortening value 

(S) using the following equation (Wallis et al., 1993):  
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                                      (6) 

 

Pressure-Temperature Estimates 

The P-T path recorded in a rock during burial, metamorphism, and exhumation is essential 

for characterizing the mechanisms associated with the onset of exhumation and the subsequent 

events leading to exhumation of the rocks. To estimate P-T conditions associated with 

metamorphism, thermobarometric analyses were performed on samples with suitable 

assemblages. Petrographic studies were used to evaluate the relationship between phases such as 

garnet, plagioclase, and biotite, which were used for P-T calculation. Mineral composition 

analyses were carried out here at the University of Tennessee on the Cameca SX-100 electron 

microprobe. X-ray maps of Mg, Mn, Ca and Fe were conducted on garnet porphyroblasts to 

determine zonation. Quantitative compositional line transects were conducted across the garnet 

porphyroblasts. These data, along with the X-ray maps, were used to interpret the conditions 

associated with garnet growth. Point analyses were conducted in other phases such as staurolite, 

biotite, plagioclase, and muscovite to demonstrate the compositional heterogeneities of each 

phase throughout the sample. P-T estimates at peak temperatures were calculated from the 

chemical data using the thermobarometric software THERMOCALC 3.33 (Powell and Holland, 

1994) using the average P-T mode. Activity coefficients for each phase were calculated using the 

software AX. 

In addition to P-T estimates at peak temperatures, P-T paths can be reconstructed from bulk 

chemical data for a sample by modeling the mineral assemblages that should exist at certain P-T 

conditions. The resulting data plotted in P-T space is called a pseudosection. Petrographic 

observation of the assemblages in equilibrium and the reactions recorded in the sample allow 

interpretation of the P-T path undergone by the sample. Pseudosections are calculated from the 

bulk composition of the sample of interest. The Perplex 6.6.6 software package (Connolly, 2009; 

updated in 2011) for calculation using the Holland and Powell (1998) thermodynamic data file 

(updated in 2004, hp04ver.dat).  
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U-Th-Pb Geochronology 

U-Th-Pb geochronology was applied to metamorphic rocks and granites from the Leo 

Pargil dome, the LPSZ, and the immediate hanging wall. Integrating these data with kinematic 

data and P-T estimates constrain the timing of prograde metamorphism and the onset of 

exhumation and decompression. U-Th-Pb geochronology analysis uses the radioactive decay of 

238
U, 

235
U, and 

232
Th to 

206
Pb, 

207
Pb, and 

208
Pb, respectively. This method is applied to minerals 

that contain an abundance of these isotopes, including zircon and monazite. Monazite accepts a 

large amount of U and Th, it has little tendency for loss of decay products, it has a relatively high 

closure temperature, and metamorphic monazite commonly grows below the closure 

temperature; thus it is useful in U-Th-Pb dating and was used for this study. The ratios of these 

isotopes were used to calculate the age at which the monazite crystallized using the following 

equations (Jaffey et al., 1971; Dicken, 2005): 

 

 
     

                                                   (7) 

 

 
     

                                                  (8) 

 

 
     

                                                    (9) 

 

where λ is a decay constant and t is the half-life of decay, assuming a closed system. Potential 

causes of discordance are the presence of common lead, lead loss during a thermal event, and/or 

age domain mixing during acquisition of the analyses. 

In-situ U-Th-Pb analysis on monazite grains within metamorphic samples used for P-T 

estimates will provide estimates of the timing of monazite growth during metamorphism. In-situ 

analysis of monazite is beneficial because it provides a means for relating monazite growth to 

metamorphic reactions and the growth of phases such as garnet which were used for 

thermobarometry. For example, the breakdown of garnet releases Y into the system and may be 

incorporated into monazite rims during monazite growth. The subsequent monazite rim will be 
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enriched in Y (e.g., Foster et al., 2002). This potentially allows an age to be placed on the P-T 

estimates. In-situ analysis also enables monazite grains associated with a deformational fabric to 

be analyzed and can be used to delimit the timing of deformation. In-situ U-Th-Pb analysis was 

conducted on the laser ablation inductively coupled mass spectrometer (LA-ICPMS) at the 

University of California, Santa Barbara. 

U-Th-Pb analysis of monazite grains in granites collected from the Leo Pargil dome were 

used to place an age on monazite growth during crystallization of igneous intrusions. U-Th-Pb 

analysis entailed obtaining monazite mineral separates. Monazite grains from each sample were 

then mounted in a grain mount. U-Th-Pb ages were calculated from isotopic data also obtained 

using the LA-ICPMS at the University of California, Santa Barbara.  
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CHAPTER I: 

KINEMATIC EVOLUTION OF THE AMA DRIME DETACHMENT: 

INSIGHTS INTO OROGEN-PARALLEL EXTENSION AND 

EXHUMATION OF THE AMA DRIME MASSIF, TIBET-NEPAL 
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of the Ama Drime detachment: Insights into orogen-parallel extension and exhumation of the 
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Abstract 

 

The Ama Drime Massif is a north-south trending antiformal structure located on the 

southern margin of the Tibetan Plateau that is bound by the Ama Drime and Nyönno Ri 

detachments on the western and eastern sides, respectively. Detailed kinematic and vorticity 

analyses were combined with deformation temperature estimates on rocks from the Ama Drime 

detachment to document spatial and temporal patterns of deformation. Deformation temperatures 

estimated from quartz and feldspar microstructures, quartz [c] axis fabrics, and two-feldspar 

geothermometry of asymmetric strain-induced myrmekite range between ~400 and 650 ° C. 

Micro- and macro-kinematic indicators suggest west-directed displacement dominated over this 

temperature range. Mean kinematic vorticity estimates record early pure shear dominated flow 

(49-66% pure shear) overprinted by later simple shear (1-57% pure shear), high-strain (36-50% 

shortening and 57-99% down-dip extension) dominated flow during the later increments of 

ductile deformation. Exhumation of the Massif was accommodated by at least ~21-42 km of 

displacement on the Ama Drime detachment. Samples from the Nyönno Ri detachment were 

exhumed from similar depths. This study suggests that exhumation on the Nyönno Ri 

detachment during initiation of orogen-parallel extension (11-13 Ma) resulted in a west-dipping 

structural weakness in the footwall that reactivated as the Ama Drime detachment.  
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Introduction 

 

Continental collision between the Indian and Asian plates from the Eocene to Holocene 

resulted in profound crustal shortening and thickening that produced the Himalaya and Tibetan 

Plateau. Previous studies (e.g., Hodges et al., 1992, 2001; Grujic et al., 1996, 2002; Vannay and 

Grasemann, 1998; Grasemann et al., 1999; Grujic, 2006) have largely focused on the southward 

propagation or extrusion of the Greater Himalayan Series (GHS) from the Eocene to middle 

Miocene during continental convergence (Fig. 1.1). Southward flow was accommodated by 

coeval movement on the South Tibetan detachment system (STDS) on top of the GHS and the 

Main Central thrust zone (MCTZ) at the bottom (Fig. 1.1) (Nelson et al., 1996; Searle et al., 

2006).  

After the middle Miocene, a transition from south-directed mid-crustal flow to orogen-

parallel extension occurred in the Himalaya that resulted in the formation of north-south striking 

normal faults, graben, and domes that often offset or reactivate the STDS and/or the MCTZ (Fig. 

1.2) (Murphy et al., 2002; Kapp and Guynn, 2004; Murphy and Copeland, 2005; Thiede et al.,  

 

Figure 1.1. Simplified interpretive block diagram of the Everest region. STDS, South Tibetan 

detachment system; MBT, Main Boundary thrust; MHT, Main Himalayan thrust; ADD, Ama 

Drime detachment; NRD, Nyönno Ri detachment. After Jessup et al. (2008a) and Searle et al. 

(2006). 
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2005, 2006; Jessup et al., 2008a; Jessup and Cottle, 2010). Structural, geochronologic, and 

thermochronometric data from the Leo Pargil dome, the Gurla Mandhata core complex, and the 

Ama Drime Massif (ADM) demonstrate that faults and shear zones that accommodated crustal 

shortening (i.e. the STDS and MCTZ) between the Eocene and early Miocene are now inactive 

and are therefore no longer capable of accommodating south-directed mid-crustal flow (Cottle et 

al., 2007; Murphy, 2007).  

The ADM is a ~30 km-wide north-south striking antiformal structure that narrows towards 

the north and is located ~50 km northeast of Mount Everest. It is bound by the north-south 

striking Nyönno Ri detachment (NRD) on the eastern flank and the north-south trending Ama 

Drime detachment (ADD) on the western flank (Figs. 1.1 and 1.2) (Jessup et al., 2008a). To the 

north, the NRD transitions into the Xainza-Dinggyê graben that offsets the STDS (Burchfiel et 

al., 1992; Zhang and Guo, 2007) and is kinematically linked to east-west extension in the interior 

of the plateau (Taylor et al., 2003). Structural, petrologic, and geochronologic data indicate that 

the antiformal structure of the ADM is the result of evolving mid-crustal flow along the southern 

margin of the Tibetan Plateau (Jessup et al., 2008a; Cottle et al., 2009a). This study presents new 

kinematic, microstructural, and vorticity data from three transects across the ADD on the western 

flank of the ADM along with one transect from the NRD on the eastern flank. These data provide 

new constraints on the role of strain partitioning and shear zone development associated with 

orogen-parallel extension in a convergent setting. These new data are integrated with existing 

data to propose a model for the evolution of the ADM.  

 

Geologic Setting 

 

Regional Geology 

The geology in the Mount Everest region, southwest of the ADM can be grouped into three 

main fault-bounded litho-tectonic units. In order of increasing structural position these include 

(from south to north); the Lesser Himalayan series (LHS), the GHS, and the Tibetan Sedimentary 

series (TSS). These units are separated by three north dipping fault systems; the Main Boundary 

thrust (MBT), the MCTZ, and the STDS (Fig. 1.1). The MCTZ and the MBT are inferred, based 
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Figure 1.2. (a) Geologic map of the Ama Drime Massif (Jessup et al., 2008c) and Mount Everest 

(Jessup et al., 2008b) including structural data and sample locations. Modified after Jessup et al. 

(2008a,b). Aside from the Nyӧnno Ri detachment (NRD), data from the eastern side is after 

Burchfiel et al. (1992). Structural data at the nose of the Massif, the NRD, and the Sangkar Fault 

after Kali et al. (2010). Everest data and map from Jessup et al. (2008b), Hubbard (1989), 

Murphy and Harrison (1999) and, Searle et al. (2003). Nyӧnno Ri Boundary after Kali et al. 

(2010). ADD, Ama Drime detachment. (b) Location map of the Yo Ri 1 and Yo Ri 2 transect 

samples. (c) Location map of the Sharka transect samples. (d) Location map of the Pung Chu 

transect samples. (e) Location map of Demon’s Lake and Dzong Tso transect samples. Arial 

imagery in (b) through (e) from Google. (f) Geologic cross section through the Ama Drime 

Massif. Cross section location shown in (a). Not the same scale as the map. Modified from 

Jessup et al. (2008a).   
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on geophysical data, to sole into the Main Himalayan thrust (MHT) to the north beneath the 

Tibetan Plateau (Nelson et al., 1996; Searle et al., 2006). Below the MHT (35-75 km) the lower 

crust is composed of Archean Indian shield granulite facies rocks (Searle et al., 2006).   

The 20 km-thick LHS, bound between the MBT below and the MCTZ above, consists of 

Paleo- to Mesoproterozoic metamorphosed clastic sediments and gneiss (Brookfield, 1993; 

Pognante and Benna, 1993; Goscombe et al., 2006). The Neoproterozoic to Cambrian GHS is 

bound at the base by the MCTZ and at the top by the STDS. The upper GHS is separated from 

the lower GHS by the High Himalayan thrust (HHT) (Goscombe et al., 2006). The lower GHS is 

bound between the HHT and the base of the MCTZ. The upper GHS structurally overlies 

metapelitic schists and the Ulleri and Num orthogneisses in the lower GHS (within the MCTZ) 

(Searle et al., 2008). In contrast, others (e.g., Goscombe et al., 2006) place the Ulleri orthogneiss 

in the LHS. The GHS is composed of a ~28 km-thick section of metapelitic rocks, augen gneiss, 

calc-silicates, and marble that was metamorphosed to amphibolites facies and intruded by 

Miocene sills and dikes (Hodges, 2000; Searle et al., 2003; Viscupic et al., 2005). 

South of Mount Everest, in the Dudh Kosi drainage, the maximum age for movement along 

the MCTZ is constrained by 
40

Ar/
39

Ar hornblende and 
208

Pb/
232

Th monazite geochronology and 

indicates that amphibolite-facies metamorphism of hanging wall rocks occurred at 22 ± 1 Ma 

(Hubbard and Harrison, 1989) and potentially as early as 24-29 Ma (Catlos et al., 2002). The 

GHS in the Everest region experienced an early kyanite-grade event (550-560° C and 0.8-1.0 

GPa) at 38.9 ± 0.9 Ma that is a record of crustal thickening (Cottle et al., 2009b). Kyanite-grade 

metamorphism was overprinted by a high-temperature low-moderate-pressure sillimanite-grade 

event (650-750° C and 0.4-0.7 GPa) associated with decompression melting and granite 

emplacement between 28.0 and 22.6 Ma (Pognante and Benna, 1993; Simpson et al., 2000; 

Viskupic et al., 2005; Jessup et al., 2008b; Cottle et al., 2009b). 
40

Ar/
39

Ar biotite ages from the 

GHS are <14 Ma, suggesting that metamorphism in the interior portion of the GHS had ceased 

by this time (Viskupic et al., 2005).  

Timing constraints on the STDS in the Mount Everest region suggest that the system was 

active from 20 Ma until 18-13 Ma (Hodges et al., 1992; Murphy and Harrison, 1999; Searle et 

al., 2003; Cottle et al., 2011). In the Dzakaa Chu section of the STDS (Figs. 1.1 and 1.2), U-Th-

Pb geochronology conducted on a leucogranite dike that crosscuts the mylonitic fabric within the 
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lower part of the STDS suggests that fabric development in this section of the shear zone 

occurred at <20 Ma (Cottle et al., 2007). In the Dinggyê graben, the ductile portion of the 

footwall rocks ~100 m below the STDS brittle detachment were active until ~15-16 Ma (Leloup 

et al., 2010). 

The structurally highest unit, the TSS, consists of Proterozoic to Jurassic pre-, syn-, and 

post-rift sedimentary rocks, a Jurassic to Cretaceous passive continental margin sedimentary 

sequence, and an upper Cretaceous to Eocene syn-collisional sedimentary sequence (Gansser, 

1964; Le Fort, 1975; Gaetani and Garzanti, 1991; Brookfield, 1993; Liu and Einsele, 1994; 

Garzanti, 1999).  Middle Miocene to Holocene north-south-striking normal faults cut these older 

structures forming a series of graben that are characteristic of the southern Tibetan Plateau (e.g., 

Armijo et al., 1986; Wu et al., 1998; Stockli et al., 2002; Taylor et al., 2003; Dewane et al., 2006; 

Hager et al., 2006; Zhang and Guo, 2007). 

 

Geology of the Ama Drime Massif 

The Ama Drime Massif (ADM) is a north-trending antiformal structure that is composed of 

the Ama Drime orthogneiss to the south and the Ama Drime paragneiss to the north (Fig. 1.2) 

(Kali et al., 2010) that are separated by the relatively unexplored Nyӧnno Ri Boundary (Fig. 1.2) 

(Kali et al., 2010). The western flank of the ADM is defined by the ~100-300 m-thick, west-

dipping ADD that is composed of schist, leucogranite, calc-silicate, quartzite, and marble that 

records solid-state fabric development (Jessup et al., 2008a). The shear zone separates 

migmatitic orthogneiss of the GHS in the hanging wall from the granulite facies (750° C and 0.7-

0.8 GPa), migmatitic Ama Drime orthogneiss in the footwall (Fig. 1.3a, b, and c) (Jessup et al., 

2008a; Cottle et al., 2009a). The shear zone rocks record polyphase folding of a pervasive 

foliation that is interpreted to record earlier deformation associated with movement on this 

contact (Jessup et al., 2008a).  Rocks within the shear zone preserve a well-developed S-C fabric 

with a down-dip stretching lineation and are locally folded.  Layers of ultra-mylonite are parallel 

to the main mylonitic fabric (Fig. 1.3d).  These ductile features are offset by at least one brittle 

detachment (Fig. 1.3e) filled with fault gouge. Veins of pseudotachylite truncate the mylonitic 

fabric at high angles and contain fragments of the host rock (Fig. 1.3f). 
40

Ar/
39

Ar biotite ages  
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Figure 1.3. Field photographs. (a) View of the Pung Chu and Sharka transects looking south. 

FW, footwall. (b) View of the Yo Ri transects looking northeast. (c) Exposure of the ADD shear 

zone exposed in the Pung Chu transect. Black lines represent the shear zone boundary and 

brittle faults. White lines represent lithologic contacts. (d) Example of a mylonitic calc-silicate 

exposed within the Pung Chu transect that records top-to-the-west sense of shear. (e) Brittle 

fault filled with fault gouge exposed within the Pung Chu transect. (f) Pseudotachylite within 

leucogranite near the Yo Ri 2 transect. (g) View of a fault scarp offsetting Quaternary deposits, 

looking north from Dzong Tso (Demon’s Lake) on the eastern flank of the ADM. (h) Augen 

gneiss on the eastern limb of the ADM exposed north of Demon’s Lake. Asymmetric tails indicate 

top-to-the-east sense of shear. (i) Mylonite containing feldspar porphyroclasts exposed along the 

NRD. 

 

from the mylonitic footwall suggest that the ADD was active between 10-6 Ma (Kali et al., 

2010). Toward the north, the ADD transitions into the Sangkar fault (~12 Ma 
40

Ar/
39

Ar 

muscovite age) and eventually to the nose of the ADM (the hinge of the antiform) where faults 

have a minimum displacement (Fig. 1.2) (Kali et al., 2010). 



22 

 

 The south-central portion of the ADM is composed of Ama Drime orthogneiss that is 

variably migmatized (12.8 ± 0.2 Ma) and dominated by melt-present deformation features 

(Cottle et al., 2009a; Kali et al., 2010). Protolith ages for the Ama Drime orthogneiss (1799 ± 9 

Ma) may correlate to the Ulleri orthogneiss that is interpreted to be at the base of GHS, below 

the HHT in the hanging wall of the MCTZ (Cottle et al., 2009a; Searle et al., 2008), or in the 

underlying LHS (e.g., Goscombe et al., 2006). Mafic lenses cored by granulitized eclogite are 

surrounded by orthogneiss that experienced muscovite dehydration melting (Lombardo et al., 

1998; Lombardo and Rolfo, 2000; Groppo et al., 2007; Guillot et al., 2008) and anatexis at <13.2 

 1.4 Ma (Cottle et al., 2009a).  Melt-filled fractures that break a boudinaged mafic lens were 

emplaced at 11.6  0.4 Ma and record top-to-the-west shearing during the initial stages of 

orogen-parallel extension (Jessup et al., 2008a; Cottle et al., 2009a). Other mafic layers are 

cross-cut by pegmatite dikes (9.8 ± 1.2 Ma) on the eastern side of the interior portion of the 

ADM (Kali et al., 2010). Exhumation rates of 2.2 ± 0.2 mm/yr from 0.7-0.8 GPa between ~13-2 

Ma (Cottle et al., 2009a) were accommodated by the development of the ADD and NRD during 

orogen-parallel extension. (U-Th)/He apatite ages from the central portion of the ADM define an 

exhumation rate of ~1 mm/yr between 1.4 and 4.2 Ma that records continued exhumation with 

movement on the ADD and NRD (Jessup et al., 2008a; Kali et al., 2010). 

The NRD is composed of a system of shear zones and faults that occur within the Ama 

Drime orthogneiss and paragneiss and defines the eastern limb of the ADM (Jessup et al., 

2008a). Hanging wall rocks have been removed by normal faulting in the Dinggyê graben. 1-km-

tall triangular facets extend above Dzong Tso where moraine deposits are offset by a fault scarp 

with ~5 m of throw and an apparent normal displacement (Jessup et al., 2008a) (Fig. 1.3g). A 

decrease in the height of the triangular facets toward the north is interpreted as evidence for 

decrease in displacement along the NRD towards the north (Kali et al., 2010). 

Footwall rocks record a steepening of the main foliation 25-45° towards the shear zone 

where they preserve a mylonite zone with a pervasive S-C fabric and down-dip stretching 

lineation that records top-to-the-east sense of shear (Burchfiel et al., 1992; Jessup et al., 2008a). 

Near Dzong Tso (Demon’s Lake), footwall rocks are well-exposed and contain a ~100-300-m-

thick mylonite zone that strikes north-south, dips ~45° east, and preserves a down-dip stretching 

lineation (Fig. 1.3g) (Jessup et al., 2008a). Migmatitic orthogneiss exposed at deeper structural 
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positions record melt-present high temperature fabric development. At structurally shallower 

positions, feldspar grains begin to act as semi-rigid bodies suggesting deformation at moderate 

temperatures (Fig. 1.3h). Rigid feldspar porphyroclasts suspended in a fine-grained matrix of 

aligned recrystallized quartz and phyllosilicates mark narrow zones of mylonite and 

ultramylonite that are subparallel to the main shear zone fabric (Fig. 1.3i).  An undeformed 

leucogranite dike (11 ± 0.4 Ma) that crosscuts the NRD footwall mylonites provides a minimum 

age for fabric development (Kali et al., 2010). 
40

Ar/
39

Ar muscovite and biotite ages of 10-13 Ma 

indicate the onset of east-west extension and exhumation after the cessation of movement on the 

STDS in this region (Zhang and Guo, 2007; Leloup et al., 2010; Kali et al., 2010; Jessup and 

Cottle, 2010).  

 

Shear Sense Indicators 

 

Oriented samples were collected from three transects across the ADD and one from the 

NRD.  Along the ADD, from north to south these transects include the Yo Ri (1 and 2), the 

Sharkha, and the Pung Chu transects (Fig. 1.2).  The Dzong Tso transect crosses the NRD on the 

eastern limb of the range (Fig. 1.2e). Samples were cut parallel to the lineation and perpendicular 

to the foliation (XZ section). C- and C’-type shear bands (Fig. 1.4a), mica fish (Fig. 1.4a), -and 

-type asymmetric tails on porphyroclasts (Fig. 1.4b and c), oblique quartz grain shape foliation 

(Fig. 1.4d), shear folds, and offset porphyroclasts (Fig. 1.4e) were used to determine the spatial 

distribution of shear sense in samples collected from three transects across the ADD and one  

across the NRD.  

 Electron backscatter diffraction (EBSD) analysis was used to generate quartz lattice-

preferred orientation (LPO) diagrams, from which the asymmetry of the [c] and <a> axes 

patterns with respect to the foliation and lineation was also used to determine shear sense (Fig. 

1.5a) (e.g., Lister and Hobbs, 1980; Law, 1990). Diffraction patterns were collected using an FEI 

Quanta 400 FEG scanning electron microscope coupled with a HKL Nordlys 2 EBSD camera at 

the University of California, Santa Barbara. CHANNEL 5 HKL software was used to index the 
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Figure 1.4. Photomicrographs of representative kinematic indicators from the ADD transects, 

(a) through (e), and quartz and feldspar deformation textures, (f) through (h). (a) Mica fish that 

record top-to-the-west sense of shear; cross polars. SA, main foliation; C, C-type shear bands; 

fsp, feldspar; ms, muscovite. (b) δ-type strain shadow on a feldspar porphyroclast indicating top-

to-the-west sense of shear; plane light. qtz, quartz; tur, tourmaline. (c) σ-type strain shadows on 

feldspar porphyroclasts indicating top-to-the-west sense of shear, cross polars. (d) Quartz grain 

shape foliation (SB) indicating top-to-the-west sense of shear; cross polars with gypsum plate 

inserted. (e) Offset feldspar porphyroclast suggesting top-to-the-west sense of shear; cross 

polars. (f) Quartz exhibiting bulging (BLG) recrystallization at quartz grain boundaries 

indicating deformation temperatures of 280-400° C overprinting a higher temperature fabric, 

cross polars. (g) Quartz exhibiting sub-grain rotation (SGR) recrystallization indicating 

deformation temperatures between 400-500° C. Flame perthite in a rigid feldspar porphyroclast 

also indicates deformation temperatures between 400-500° C; cross polars. (h) Quartz 

exhibiting grain-boundary migration (GBM) recrystallization indicating deformation 

temperatures of 500-650° C; cross polars. 
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Figure 1.5. Interpretation of quartz  lattice-preferred orientation (LPO) data. (a) Simplified 

stereonets showing the dependence of quartz LPOs and inferred slip systems on increasing 

temperature during noncoaxial deformation and plane strain (see text). [c] axes are shown in 

dark grey and <a> axes in light grey. Modified from Passchier and Trouw (2005). (b) 

Relationship between [c] axis opening angle and temperature. Grey line is the best fit line with ± 

50° C error. X, Y, and Z strain axes are shown. Boxes 1-15: from Kruhl (1998); 16: Law et al. 

(1992); 17: Nyman et al. (1995); 18: Okudaira et al. (1995); 19-20: Langille et al. (2010). Data 

from this study are shown. Modified from Law et al. (2004). 

 

quartz diffraction patterns that were obtained using a Hough resolution of 80, detecting 7-8 

bands with standard divergence, and a quartz structure file containing 60 reflectors. 

 

Results 

The Pung Chu transect is the southernmost transect across the ADD and contains marble, 

schist, calc-silicate, leucogranite, and quartzite (Fig. 1.2d). δ- and σ-type asymmetric tails on 

feldspar (Fig. 1.4b) and diopside porphyroclasts, mica fish, oblique quartz grain shape foliation 

(Fig. 1.4d), C- and C’-type shear bands, offset porphyroclasts (Fig. 1.4e), and quartz LPO 

patterns (Fig. 1.6a) preserved in samples from this transect (Figs. 1.2b and 1.4a) consistently 

record top-to-the-west shear sense (Table 1.1). Samples AD07-27 and MJAD-05 are exceptions 

to this trend and exhibit σ-type strain shadows, C’-type shear bands, mica fish, and quartz [c] and 

<a> axis LPO patterns which indicate top-to-the-east sense of shear (Fig. 1.6a; Table 1.1). 

MJAD-05 was collected ~1 km from the remainder of the Pung Chu samples in an ultra-mylonite 

zone that dips steeply to the east (355°, 72°E), contains a down dip stretching lineation, and 

records top-to-the-east displacement. This is the only steeply dipping mylonite zone that was  
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Figure 1.6. Quartz LPO data in order of increasing structural depth for the (a) Pung Chu, (b) 

Sharka, (c) Yo Ri 1, (d) Yo Ri 2, and (e) Dzong Tso transects. Upper hemisphere [c] and <a> 

axis stereonet plots shown. Opening angle and corresponding deformation temperature, quartz 

texture derived deformation temperature, flow plane (dashed line), quartz grain shape foliation 

(SB, solid line), angle between foliation (SA) and flow plane (β), angle between SA and SB (δ), 

shear sense, quartz slip systems, and number (n) of quartz grains measured noted. All plots 

oriented as indicated in the sample orientation box. Data are point-per grain; contouring based 

on mean uniform density (m.u.d.) with maximum (max) values indicated. 
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Table 1.1. Summary of Shear Sense, Vorticity, and Temperature Data.  

Sample Rock 
type 

  Shear 
  sense 

 Wm 
 RGN 

Wm 
 GSF 

Rxz Deformation 
temperature 

(° C) 

Temperature 
Indicator

d 

Pung Chu Transect      
KA-25

a qtz t-E
c — — — 324 ± 30, 354 ± 30, 

280–400 
o.a., s.s. 

KA-31 mbl — — — — 400–500 — 
KA-26

a sch t-W
c — — — 400–500 — 

KA-32 c.s. — — — — 400–500 — 
KA-17 mbl t-W

c 0.60–0.65 —       —                         400–500 — 
KA-20 qtz — 0.56–0.57 — — 400–500 — 
KA-22

a c.s. t-W
c 0.57–0.63 — — 400–500 — 

KA-23 mbl t-W
c 0.54–0.62 — — 400–500 — 

KA-14
a c.s. t-W

c 0.52–0.58 — — 400–500 — 
KA-13 c.s. t-W

c 0.56–0.59 — — 400–500 — 
KA-01

a qtz t-W
c 0.69–0.72 — — 400–500 s.s. 

KA-02
a qtz t-W

b
, t-W

c 0.52–0.55 — — 480 ± 30, 400–500 o.a., s.s. 
KA-12 qtz t-W

c 0.53–0.61 — — 400–500 — 
AD07-28

a qtz t-W
b
, t-W

c 0.57–0.59 0.93–0.99 10.6–24 400–500 — 
AD07-29a c.s. — — — — 400–500 — 
AD07-29b c.s. t-W

c — — — 400–500 — 
AD07-30

a qtz t-W
b
, t-W

c 0.54–0.61 0.62–0.84 6.4–19.2 400–500 — 
AD07-31 qtz t-W

c — — — 400–500 — 
AD07-27 c.s. t-E

c — — — 400–500 — 
MJAD-05 c.s. t-E

c —        — — 400–500 — 
Sharka Transect      
KA-44 c.s. t-W

c 0.50–0.58 — — 400–500 — 
KA-41

a c.s. t-W
b
, t-W

c 0.55–0.59 — — 400–500 — 
KA-43 qtz — — — — 400–500 — 
KA-39

a leuc t-W
b
, t-W

c —          — —      400–500 — 
KA-40

a c.s. t-W
c 0.57–0.61          — —    369–435, 400–500      f.g. 
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Table 1.1. Continued. 

Sample Rock 
type 

Shear 
sense 

Wm 
RGN 

Wm 
GSF 

Rxz Deformation 
temperature 

(° C) 

Temperature 
Indicator

d 

Yo Ri 1Transect      

AD07-20 qtz t-W
c — —       —  400–500   — 

AD07-21
a qtz t-W

b
, t-W

c 0.57–0.64 0.74–0.98   6.7–24 400–500 s.s. 
AD07-17a

a qtz t-W
b
, t-W

c — —       — 400–650 s.s. 
AD07-16 qv — — —       — 400–500 — 
AD07-15 qv t-E

c — —       — 400–500 — 
AD07-14 qv t-W

c — —       — 400–500 — 
AD07-13 qv t-W

c — —         — 400–500 — 
AD07-12b

a qv t-W
b
, t-W

c — —         — 400–650 s.s. 
AD07-10 qv t-W

c  — —         — 400–500 — 
AD07-11 qv t-W

c 0.52–0.55 —         — 500–650 — 
AD07-09 qv t-W

c  — —         — 400–500 — 
Yo Ri 2 Transect      
AD07-08

a qtz t-W
c 0.53–0.60 — — 500–650 s.s. 

AD07-07a c.s. — 0.61–0.65 — — 400–500 — 
AD07-05 c.s. t-W

c 0.57–0.63 — — 500–650 — 
AD07-06

a leuc t-W
c — — — 537 ± 30, 400–500 o.a., s.s. 

AD07-04
a qtz t-E

b
, t-E

c — — — 400–500 s.s. 
AD07-03

a qtz t-W
c — — — 400–650 s.s. 

AD07-02
a gns t-W

b
, t-W

c — — — 414 ± 30, 400–500 o.a., s.s. 
Dzong Tso Transect (east limb)     
MJAD-17

a c.s. t-E
c — — — 400–500 — 

MJAD-22 qtz t-E
c — — — 500–650 — 

MJAD-23
a qtz t-E

c — — — 500–650 s.s. 

     Note: See Appendix 1.1 for sample locations. qtz, quartzite; qv, quartz vein; mbl, marble; c.s., calc-silicate; sch, schist; leuc, leucogranites;  

gns, gneiss; t-E, top-to-the-east; t-W, top-to-the-west. Samples are in order of increasing structural depth per transect. 
a
Sample analyzed with EBSD  

b
Shear sense determined from EBSD-generated quartz LPO data 

c
Shear sense determined from microstructural geometries 

d
All samples utilized quartz and feldspar textures. o.a., opening angle; s.s., quartz LPO slip systems; f.g., feldspar geothermometry.
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documented in the more internal portion of the range. 

Samples along the Sharkha transect are composed of calc-silicate, quartzite, and deformed 

leucogranite that contain σ-type asymmetric tails on feldspar porphyroclasts and mica fish that 

record top-to-the-west sense of shear (Table 1.1). Quartz [c] and <a> LPO axes patterns from 

samples KA-39 and KA-41 (Fig. 1.6b) also confirm top-to-the-west sense of shear (Table 1.1). 

σ-type strain shadows on feldspar porphyroclasts and mica fish (Fig. 1.4a) within quartzite and 

vein quartz along the Yo Ri 1 transect (Fig. 1.2b and 1.3b) record top-to-the-west sense of shear; 

the exception being AD07-15, which contains σ-type strain shadows on feldspar porphyroclasts 

and mica fish that indicate top-to-the-east sense of shear (Table 1.1). Quartz [c] and <a> axis 

LPO patterns from samples AD07-21, AD07-17a, and AD07-12b consistently define top-to-the-

west sense of shear (Fig. 1.6c; Table 1.1).  

In the Yo Ri 2 transect (Figs. 1.2b and 1.3b), σ-type strain shadows on feldspar and 

diopside porphyroclasts (Fig. 1.4c), mica fish, C’-type shear bands, and drag folds within 

quartzite, calc-silicate, gneiss, and deformed leucogranite record top-to-the-west sense of shear. 

One exception is AD07-04, which has a poorly developed grain shape foliation, mica fish, and a 

quartz [c] and <a> axis LPO indicating top-to-the-east sense of shear (Fig. 1.6d; Table 1.1). 

Quartz [c] and <a> axis LPO patterns from sample AD07-02 suggest top-to-the-west sense of 

shear (Fig. 1.6d; Table 1.1).Within the NRD near Dzong Tso (Fig. 1.2e), σ-type tails on feldspar 

porphyroclasts, mica fish, quartz grain shape foliation, and drag folds within three samples, two 

quartzite and one calc-silicate, indicates top-to-the-east sense of shear (Table 1.1).  

 

Deformation Temperatures 

 

Deformation temperatures during the development of the kinematic indicators and quartz 

LPO fabrics mentioned above were estimated using: (1) recrystallized quartz and feldspar 

deformation microstructures (e.g., Jessell, 1987; Hirth and Tullis, 1992; Fitz Gerald and Stünitz, 

1993; Lloyd and Freeman, 1994; Hirth et al., 2001; Stipp et al., 2002a, b), (2) the opening angle 

of quartz [c] axis LPOs (Kruhl, 1998; Law et al., 2004), (3) quartz slip systems (e.g., Mainprice 

et al., 1986; Tullis and Yund, 1992), and (4) two-feldspar geothermometry (Stormer, 1975;  
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Whitney and Stormer, 1977; Simpson and Wintsch, 1989). 

 

Quartz and Feldspar Microstructures 

Quartz exhibits bulging recrystallization (BLG) at temperatures of 280-400° C (Stipp et al., 

2002a, b) (Fig. 1.4f), sub-grain rotation recrystallization (SGR) at temperatures of 400-500° C 

(Stipp et al., 2002a, b) (Fig. 1.4g), and grain boundary migration recrystallization (GBM) (Fig. 

1.4h) at temperatures >500° C (Stipp et al., 2002a, b). At deformation temperatures where quartz 

experiences BLG recrystallization, feldspar deforms by brittle fracturing. At temperatures where 

quartz experiences SGR recrystallization, feldspar deforms by internal microfracturing with 

minor dislocation glide (Pryer, 1993). Flame perthite is also common in albite porphyroclasts at 

these temperatures (Fig. 1.4g) (Pryer, 1993). At quartz GBM recrystallization conditions, 

feldspar deforms by microfracturing. However, dislocation glide and BLG recrystallization can 

occur in feldspar at higher temperatures (Tullis and Yund, 1991).  

 

Opening Angle and Quartz [c] Axis Lattice-Preferred Orientations 

The opening angle is defined as the angle between the girdles measured in the plane 

perpendicular to foliation and parallel to lineation (XZ section) (Fig. 1.5b) (Kruhl, 1998). 

Experimental studies (e.g., Tullis et al., 1973; Lister et al., 1978; Lister and Hobbs, 1980; Lister 

and Dornsiepen, 1982; Wenk et al., 1989) indicate that the opening angle of quartz [c] axis LPOs 

increases with increasing deformation temperature (Fig. 1.5b). The opening angle can be used to 

calculate the deformation temperature with an error of ± 50° C based on the standard deviation of 

the data from 280 to >650° C (Kruhl, 1998). The relationship between the opening angle and 

temperature changes at temperatures of >650° C, when quartz begins to deform by prism [c] slip. 

The standard deviation of the data below 650° C suggests an error ± 30° C for data between 280 

and 650° C. Other factors such as strain rate also play a role in the development of the opening 

angle (Tullis et al., 1973). Our deformation temperatures derived from quartz and feldspar 

recrystallization textures are plotted against the opening angle for samples KA-25, KA-02, 

AD07-06, and AD07-02 (Fig. 1.5b). In addition, deformation temperatures estimated from quartz 

and feldspar recrystallization textures from the Mabja Dome (Fig. 1.2) (Langille et al., 2010) are 
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also plotted against opening angle (boxes 19-20, Fig. 1.5b). These data provide an independent 

confirmation of the relationship between increasing opening angle and deformation temperature 

between ~300-700° C (Fig. 1.5b).  

Temperatures defining the transition from prism <a> slip to prism [c] slip, expressed as a 

maxima in the Y direction and maxima parallel to lineation (Fig. 1.5a), respectively, in quartz are 

well constrained (e.g., Kruhl, 1998). However, the transitions from mixed basal <a>, rhomb <a>, 

and prism <a> (type-I and II girdles) to dominantly rhomb <a> and prism <a> to purely prism 

<a> slip (Y axis maxima) are poorly constrained. To place temperature ranges on these quartz 

slip systems, quartz LPO opening angles (Fig. 1.6) along with the corresponding deformation 

temperatures estimated from quartz recrystallization textures from this study and from Langille 

et al. (2010) on samples from Mabja dome (Fig. 1.2) were compiled to constrain deformation 

temperatures expected for the quartz LPO patterns shown in Figure 1.5a.  With the exception of 

samples AD07-17a, AD07-12b, and AD07-03 from this study, samples that exhibit dominantly 

basal <a>, rhomb <a>, and prism <a> slip (Figs. 1.5a and 1.6) have quartz BLG recrystallization 

suggesting deformation temperatures of ~280-400° C. Opening angle derived temperatures from 

these samples fall within this temperature range. Samples which exhibit dominantly rhomb <a> 

and prism <a> slip along with minor basal <a> slip (Figs. 1.5a and 1.6) display quartz 

microstructures suggesting SGR recrystallization and opening angles indicating deformation 

temperatures of ~400-500° C. Samples that exhibit dominantly prism <a> slip with minor rhomb 

<a> and basal <a> slip (Figs. 1.5a and 1.6) have quartz suggesting GBM recrystallization and 

opening angles that indicate deformation temperatures of ~500-650° C. While temperatures of 

>650° C are not recorded in this study, other studies (i.e. Lister and Dornsiepen, 1982; Mainprice 

et al., 1986) show that at these temperatures quartz begins to show chessboard extinction and 

quartz LPOs exhibit prism [c] slip (Fig. 1.5a).  

 

Two-Feldspar Geothermometry 

Simpson and Wintsch (1989) suggest that myrmekite replaces K-feldspar porphyroclasts in 

areas of high-strain. During deformation the replacement occurs adjacent to foliation surfaces 

(C-surfaces) facing the maximum shortening direction (S-surfaces) (Fig. 1.7a and b). They 
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suggest that two-feldspar geothermometry of strain induced myrmekite replacement in K-

feldspar porphyroclasts can estimate deformation temperatures associated with an incremental 

shortening direction. 

Sample KA-40 (Sharkha transect) contains an asymmetric K-feldspar grain with blades of 

albite that contain a network of vermicular quartz that extends into the interior of the grain (Fig. 

1.7a). After initial identification, a second polished thin section was made using the same billet 

for microprobe analysis. The myrmekite is distributed asymmetrically on the K-feldspar grain 

and extends ~90° from the S-surfaces. S-C fabric and mica fish confirm top-to-the-west shear 

sense (Fig. 1.7a). This strain-induced myrmekite provides a rare opportunity to quantify 

deformation temperatures directly associated with the development of shear sense indicators that 

record top-to-the-west sense of shear in the ADD.   

Minimum and maximum temperatures of replacement are based on the analytical 

expressions of Whitney and Stormer (1977) where deformation temperature can be calculated 

using the equation: 

 

      
                                       

                                    
    

           
      
      

                                     
               

  
                                         

 

where Xab,AF is the molar fraction of albite in the K-feldspar porphyroclast, αab,PL is the activity 

coefficient of albite in the myrmekite, and P (bars) is an assumed pressure. This equation is 

modified from the original feldspar geothermometer presented by Stormer (1975).  

Compositional maps were made of portions of the myrmekite blades (Fig. 1.7c and d). In 

addition, orientation maps of portions of the myrmekite blades were created using EBSD at the 

University of California, Santa Barbara to test for the development of a crystal lattice and 

suggest that the myrmekite contains a lattice independent of the K-feldspar. Microprobe analyses 

were carried out on a Cameca SX-100 electron microprobe at the University of Tennessee. Na, 

K, and Si compositional maps of the entire grain as well as smaller areas were created to define 

mineral zoning and justify the locations for quantitative point analyses (Fig. 1.7b). Mapping was 

done at 15 keV, 20 nA, and a dwell time of 0.1 seconds. Mineral composition analyses along six 

transects (Fig. 1.7e; Table 1.2) within the K-feldspar porphyroclast containing strain-induced  
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Figure 1.7. (a) Asymmetric myrmekite in sample KA-40 from the Sharka transect. kfs, potassium 

feldspar; mym, myrmekite; ab, albite; ms, muscovite; tur, tourmaline; cross polars. (b) Sodium 

compositional map of the asymmetric myrmekite cut deeper to create a second thin section of the 

same clast. Locations of composition transects included: 1-3 in boxes c and d and 4-6 in (b). (c) 

and (d) are detailed sodium compositional maps of myrmekite lobes outlined in (b). Composition 

scale is the same as that in (b). (e) Compositional data for the six transects. 

 

myrmekite were conducted at 15 keV, 10 nA, and a 5 μm spot size. Activity coefficients (with an 

error of ± 3% propagated from the microprobe data) were calculated from electron microprobe 

data using the program AX (Holland and Powell, 2000) (Table 1.2).  

 

Results 

Samples at the top of the shear zone along the Pung Chu transect contain quartz that 

records BLG recrystallization (Fig. 1.4f) that overprints a higher temperature fabric. SGR 

recrystallization (Fig. 1.4g) within the shear zone rocks suggest an increase in deformation 
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Table 1.2. Rim Compositions of K-Feldspar and Myrmekite. 

Transect 1 2 3 4 5 6 

K-feldspar       
Xab,AF 0.05 0.06 0.04 0.05 0.05 0.06 
Xan,AF 0 0 0 0 0 0 
Xor,AF 0.95 0.94 0.96 0.95 0.95 0.94 
Total % 100 100 100 100 100 100 
       

Myrmekite       
Xab,PF 0.93 0.89 0.92 0.95 0.95 0.94 
Xan,PF 0.06 0.1 0.04 0.04 0.04 0.05 
Xor,PF 0.01 0.01 0.04 0.01 0.01 0.01 
Total % 100 100 100 100 100 100 
       
αab, PF 0.92 0.89 0.92 0.95 0.95 0.94 

Note: Refer to Fig. 1.7 for transect locations. Xab, molar fraction of albite; Xan, molar fraction of anorthite; 

Xor, molar fraction of orthoclase; AF, alkali feldspar; PF, plagioclase; αab, PF, activity coefficient of albite 

in myrmekite. 

  

temperature from ~280-400° C at the top of the shear zone to ~400-500° C structurally deeper 

within the shear zone (Fig. 1.8a, Table 1.1). Feldspar porphyroclasts within samples from this 

transect all deform by brittle fracturing. Flame perthite is present within some albite 

porphyroclasts (Fig. 1.4g) indicating deformation temperatures of 400-500° C. The quartz [c] 

axis opening angle indicates deformation temperatures of 324 ± 50° C and 354 ± 50° C (KA-25) 

at the top of the shear zone and 480 ± 50° C (KA-01) structurally deeper in the shear zone (Fig. 

1.6), which confirms estimates based on quartz and feldspar microstructures (Fig. 1.8a, Table 

1.1). Quartz [c] and <a> axis LPO patterns from this transect record a range from multiple slip 

systems to those that are dominated by prism <a> slip suggesting deformation temperatures of 

280-500° C (Fig. 1.6).  

Within samples from the Sharkha transect, quartz experienced SGR recrystallization and 

feldspar porphyroclasts that deform by brittle fracture indicating deformation temperatures of 

400-500° C (Fig. 1.8b, Table 1.1). Quartz [c] and <a> axis LPO patterns indicate mixed slip 

dominated by rhomb <a> and prism <a> slip suggesting deformation temperatures of 400-500° C 

(Fig. 1.6). Assuming 0.5 GPa, two-feldspar geothermometry of the strain induced myrmekite 

within sample KA-40 indicates that top-to-the-west shear occurred at deformation temperatures 

of 369-435° C, from calculations on six compositional transects (Fig. 1.9). Calculations were  
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Figure 1.8. Deformation temperatures and vorticity estimates for samples from the (a) Pung Chu 

transect, (b) Sharka transect, (c) Yo Ri 1, and (d)Yo Ri 2 transects. Multiple samples at or near 

the same structural depth represented as a single rectangle and/or ellipse. Vorticity and 

deformation temperature methods discussed in text.  

 

also made assuming a pressure of 0.8 GPa and demonstrate that the calculation is relatively 

insensitive to changes in assumed pressure and resulted in <40° C difference. These data were 

compared to temperatures derived using the Nekvasil and Burnham (1987) two-feldspar 

geothermometer with the program SOLVCALC (Wen and Nekvasil, 1994), which yielded 

temperatures within <25° C of estimates derived from the Whitney and Stormer (1977) method 

(Fig. 1.9). Other studies (i.e. Vernon, 1991; Hippert and Valarelli, 1998) dispute the formation of 

strain-induced myrmekite suggesting that there is no microstructural evidence for myrmekite  
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replacement of K-feldspar. However, our study shows 

that myrmekite often protrudes into the K-feldspar at 

~90° to the S-surfaces (Fig. 1.7a). Our estimate for 

deformation temperature derived from both the Whitney 

and Stormer (1977) and Nekvasil and Burnham (1987) 

models also agree with independent deformation 

temperatures derived from quartz and feldspar 

microstructures and quartz slip systems inferred from the 

LPO (Fig. 1.8b, Table 1.1).  

Quartz experienced SGR to GBM recrystallization 

within samples from the Yo Ri 1 transect indicating 

deformation temperatures ranging from 400-650° C (Fig. 

1.8c, Table 1.1). Sample AD07-12b contains sillimanite 

cored muscovite fish and GBM recrystallization overprinted by lower temperature SGR 

recrystallization. Sample AD07-17a also has GBM recrystallization overprinted by lower 

temperature SGR recrystallization. Feldspar porphyroclasts within this transect deform mainly 

by brittle fracturing with minor bulging recrystallization at grain boundaries indicating 

temperatures of 400-650° C (Fig. 1.8c, Table 1.1). Quartz [c] and <a> axis LPO patterns indicate 

slip dominated by rhomb <a> and prism <a> slip indicating deformation temperatures of 400-

500° C (Fig. 1.6). 

Quartz experienced SGR to GBM recrystallization within samples from the Yo Ri 2 

transect indicating deformation temperatures that range from 400° C to 650° C (Fig. 1.8d, Table 

1.1). Feldspar porphyroclasts within this transect deform mainly by brittle fracturing with smaller 

clasts deforming plastically indicating deformation temperatures of 400-650° C. Sample AD07-

03 contains GBM recrystallization overprinted by SGR recrystallization. The quartz [c] axis 

opening angle from sample AD07-06 indicates deformation temperatures of 536 ± 50° C and the 

angle from sample AD07-02 indicates temperatures of 414 ± 50° C, both similar to those based 

on quartz and feldspar textures (Figs. 1.6 and 1.8d, Table 1.1). Quartz [c] and <a> axis LPO 

patterns from this transect exhibit mixed <a> slip dominated by prism <a> slip indicating 

deformation temperatures ranging between 400-650° C (Fig. 1.6). 

Figure 1.9. Estimated deformation 

temperatures for all six transects 

through the asymmetric myrmekite. 

Refer to Figure 1.7 for transect 

locations. 
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Quartz experienced SGR and GBM recrystallization within the three samples from the 

NRD on the eastern limb indicating deformation temperatures that range from 400−650° C (Fig. 

1.8, Table 1.1). Feldspar porphyroclasts from these samples deform mainly by brittle fracturing 

with minor BLG recrystallization also indicating temperatures between 400-650° C (Tullis and 

Yund, 1991) (Table 1.1). Quartz [c] and <a> axis LPO patterns from MJAD-23 suggest 

dominantly prism <a> slip indicating deformation temperatures between 500-650° C (Fig. 1.6e). 

These deformation temperatures overlap with those from deformed rocks along the ADD. 

  

Vorticity 

 

Vorticity analyses were conducted to quantify the relative contribution of pure and simple 

shear during ductile deformation and to characterize the spatial and temporal variability in flow 

during exhumation along the ADD. Characterizing the proportions of pure and simple shear is 

important because a significant contribution of pure shear indicates significant thinning and 

extension, and an increase in strain and extrusion rates relative to simple shear (Law et al., 2004). 

Kinematic vorticity number (Wk) is a measure of the relative contributions of pure (Wk = 0) and 

simple (Wk = 1) shear during steady-state (instantaneous) deformation.  In this nonlinear 

relationship pure and simple shear components are equal when Wk = 0.71 (Tikoff and Fossen, 

1995; Law et al., 2004).  The potential for spatial and temporal variability of vorticity in 

naturally deformed rocks (e.g., Fossen and Tikoff, 1997, 1998; Jiang, 1998) can be accounted for 

by using a time-averaged and assumed steady-state deformation history known as the mean 

kinematic vorticity number (Wm). Wm methods require that deformation progressed during plane 

strain conditions.  

To estimate Wm, two methods were applied to thin sections cut perpendicular to the 

foliation and parallel to the lineation (XZ section); the rigid-grain technique (Passchier, 1987; 

Wallis et al., 1993; Jessup et al., 2007) and the quartz grain shape foliation technique (Wallis, 

1995). Measurements were made directly from photomicrographs of the entire thin section taken 

using a high definition Nikon DS-Fi1 camera. Aspect ratio and angle data was collected on-

screen using the semi-axis and angle measurement tools of the Nikon Imaging System-Elements 

2.3 imaging software (Laboratory Imaging, 2007) (Fig. 1.10a) and saved allowing for later 
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reference to measured grains. Grain quality was evaluated both from the photomicrographs and 

on the microscope. This method allows for efficient and more accurate measurement compared 

to standard optical measurement techniques. 

 

Rigid Grain Technique 

The rigid-grain technique (Wallis et al., 1993) was applied to 19 samples and involves 

measuring the aspect ratio (R) of a rigid porphyroclast such as feldspar and the acute angle (θ) 

between the clast long axis and the macroscopic foliation (Fig. 1.10a). Grains above a critical 

aspect ratio (Rc) define a stable orientation and will exhibit a small range in θ, whereas grains 

below infinitely rotate and will show a larger range of θ. From Rc, vorticity can be calculated as 

(Passchier, 1987): 

 

Wm = (Rc
2
 - 1) / (Rc

2
 + 1)                                                       (2) 

 

Plotting the shape factor (B*), where  

 

B* = (Mx
2
 - Mn

2
) / (Mx

2
 + Mn

2
)                     (3) 

 

and Mx = long axis and Mn = short axis of a clast, versus θ on the Rigid Grain Net (RGN) is a 

graphical approach to calculating Wm (Fig. 1.10b) (Jessup et al., 2007). Similar to Rc, the critical 

shape factor B*c separates grains that reached a stable orientation versus those that rotated freely. 

Wm can be determined directly from B* because B* and Wm are scaled one to one.   

 The following criteria must be met to apply the rigid-grain technique; (1) the 

porphyroclasts must predate the dominant deformation fabric, (2) the porphyroclasts are 

internally undeformed, (3) there is no mechanical interaction between adjacent clasts or the 

matrix, and (4) the porphyroclasts occur within a homogeneously deformed matrix (Jessup et al., 

2007). Uncertainties in vorticity values estimated using this technique can arise if (1) 

recrystallization-induced changes in the aspect ratio (R) during or after deformation, (2) high  
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aspect ratio rigid grains in low-strain rocks have not rotated into their stable orientations, (3) 

rigid grains with high-aspect ratios are fractured, or (4) the sectional radii of the porphyroclast in 

the thin section misrepresents the actual radii (Jessup et al., 2007; Iacopini et al., 2008). To limit 

potential inaccuracies, grains measured showed little to no sign of plastic deformation, 

mechanical interaction with other grains, recrystallization, or fracturing.  

 

Quartz grain Shape Foliation Technique 

During deformation, newly recrystallized grains (e.g., quartz) are stretched parallel to the 

instantaneous stretching axis (ISA) (Wallis, 1995). The maximum angle (θ) between the oblique 

grain shape fabric and the flow plane provides an approximate orientation of the ISA (Wallis, 

1995). The flow plane is defined as the perpendicular to the [c] axis girdle of the quartz LPO 

where β is the angle between the flow plane and the main foliation (SA) (Law et al., 1990; 

Wallis, 1995). The orientation of the ISA is related to Wm by the equation (e.g., when θ = 45, Wm 

= 1; Wallis, 1995): 

 

Wm = sin 2θ = sin [2(δ+β)]                                                                                                            (4) 

 

where δ is the angle between the quartz oblique grain shape fabric (SB) and SA (Fig. 12A).  

Figure 1.10. Example Rigid Grain Net (RGN) analysis. (a) Grain axis and angle measurement. 

(b) RGN of feldspar porphyroclasts corresponding to the sample in (a). n = number of grains 

measured. B* is the shape factor (refer to text) and the numbers in parenthesis are aspect ratios. 
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The long axis of the quartz grains from four samples were measured from the high-

resolution mosaic image of the thin section and the flow plane was measured from the quartz 

LPO patterns (Fig. 1.6). To accurately define the ISA, θ was measured on ~100 quartz grains per 

sample (Fig. 1.11b). Application of the grain shape foliation technique requires a well-developed 

quartz LPO and oblique grain shape fabric to accurately define both the flow plane and the ISA, 

and thus θ (Wallis, 1995; Xypolias and Koukouvelas, 2001; Xypolias, 2009). Histograms were 

used to define the range in θ used for the Wm estimate. The range in θ used for the Wm estimate 

was defined as where the frequency of θ on the histogram reaches its highest value to where it 

declines to a maximum measured angle (grey area in Figure 1.11b).
 

Uncertainties in vorticity values estimated using this technique can be attributed to; (1) 

heterogeneity of matrix material, (2) the presence of porphyroclasts, and (3) folding—which may 

all deflect or influence the orientation of the quartz fabric. To limit possible inaccuracies, 

measurements were made from quartz fabrics that were unaffected by these interferences. 

 

Results 

From the Pung Chu transect, Wm estimates using the rigid-grain technique on feldspar 

porphyroclasts range between 0.52 and 0.72 (49-65% pure shear) (n=11) (Table 1.1, see 

Appendix 1.2 for additional Rigid Grain Nets). Our vorticity estimates assume plane strain 

deformation which is supported by the development of quartz [c] axis single girdles, type-I 

cross-girdles, and prism <a> slip patterns in the Y-direction (refer to Figs. 1.5 and 1.6) which 

indicate plane strain (Lister and Hobbs, 1980). Two exceptions include samples AD07-28 and 

AD07-30 which have <a> axis patterns subparallel to the lineation suggesting flattening (Fig. 

1.6) (Lister and Hobbs, 1980; Barth et al., 2010). However, Tikoff and Fossen (1995) note that 

the percentage of pure shear measured in 2D on rocks that record a small proportion of non-plane 

strain is only overestimated by <0.05, which is minor compared to standard errors associated 

with Wm measurement. In addition, these samples yield Wm estimates consistent with the other 

samples in this study suggesting that these measurements are reliable (Fig. 1.8, Table 1.1). Wm 

estimates using the quartz grain shape foliation technique range from 0.62 to 0.99 (1-57% pure 

shear) (n = 2) within samples from the Pung Chu transect, suggesting dominantly simple shear to 

sub-equal amounts of pure and simple shear (Fig. 1.8a, Table 1.1).  
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Figure 1.11. Vorticity analysis from quartz grain shape fabrics. (a) Schematic diagram 

demonstrating the relationship between the main foliation (SA), the quartz fabric (SB), the flow 

plane, and the quartz [c] axis LPO. (b) Frequency diagrams used for vorticity (Wm) estimates 

using the quartz grain shape foliation technique. θ = the angle between SB and the flow plane. n 

= number of analyses. Shaded regions represent the range in θ used for Wm estimates. 

 

Wm estimates using the rigid-grain technique on rigid feldspar porphyroclasts were applied 

to three samples from the Sharkha transect and yield estimates that range from 0.50 to 0.61 (58-

66% pure shear) (Fig. 1.8b, Table 1.1), similar to those in the Pung Chu transect. The rigid-grain 

technique was applied to feldspar in two samples from the Yo Ri 1 transect and yielded values of 

0.52-0.64 (55-64% pure shear) suggesting a dominant pure shear component. These estimates are 

similar to those from the other transects. The quartz grain shape foliation technique was applied 

to AD07-21 from the Yo Ri 1 transect and yielded values of 0.74-0.98 (1-44% pure shear), 

suggesting a large simple shear component (Fig. 1.8c, Table 1.1). The rigid-grain technique was 

applied to feldspar in three samples from the Yo Ri 2 transect and yielded Wm estimates ranging 

from 0.53 to 0.65 (54-64% pure shear) suggesting a large pure shear component (Fig. 1.8d; Table 

1.1). 
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Shortening and Extension 

 

The strain ratio (Rxz) can be calculated from the following equation which utilizes the 

angular relationships between the quartz oblique grain shape fabrics and quartz [c] axis fabrics 

(Passchier, 1988; Xypolias, 2009): 

 

     
           

                
                        (5) 

 

where  

 

                       
                                (6) 

 

and β is the angle between the flow plane and SA as measured from the quartz [c] axis fabric and 

δ is the angle between the quartz oblique fabric (SB) and the main foliation (SA) (Fig. 1.11a). 

This equation was applied to three samples from the ADD and yields Rxz values of 6.4-24 (Table 

1.1). 

Using our Wm (0.74-0.98 from the quartz grain shape fabric technique) and Rxz estimates 

(6.7-24) from sample AD07-21(our only Wm estimate with evidence for plane strain 

deformation), percent shortening and extension was estimated by calculating the shortening 

value (S) using the following equation (Wallis et al., 1993):  

      

           
              

   
      

  

     
  

             
                                      (7) 

 

 Our data show that this sample experienced 36-50% shortening and 57-99% down-dip 

extension at the time that our vorticity estimates were recorded in the deformed quartz at 

temperatures of 400-500° C (deformation temperature estimate for sample AD07-21).  
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Discussion 

 

Implications for the Ama Drime and Nyӧnno Ri Detachments 

 The ADM records anatectic melting in the core of the range during the onset of orogen-

parallel extension (Cottle et al., 2009a). Exhumation (2.2 ± 0.2 mm/yr) was accommodated by 

two shear zones (ADD and NRD) that currently dip in opposite direction away from the core of 

the range (Cottle et al., 2009a). Shear zone nucleation occurred at high-temperatures as a 

distributed shear zone that was progressively overprinted by deformation mechanisms that were 

active at decreasing temperature and varying strain rates (Fig. 1.12). Pseudotachylite records 

high strain events that punctuated the exhumation history. Qualitative evidence for this range in 

deformation conditions that occurred at high temperature and presumably an earlier portion of 

the history is taken from footwall rocks whereas brittle detachments that occur within the section 

record the final stages of exhumation. Mylonitic samples from the ADD and NRD provide an 

opportunity to quantify the kinematic evolution of solid-state fabric development that link early 

and late stages of this exhumation history. 

Mean kinematic vorticity estimates from rocks within the ADD range between 0.50-0.72 

(49-66% pure shear) using the rigid-grain technique and 0.62-0.99 (1-57% pure shear) using the 

oblique quartz grain shape foliation technique (n = 3). Vorticity estimates derived from quartz 

fabrics record a higher component of simple shear than estimates derived from rigid 

porphyroclasts.  Assuming quartz is more sensitive to late stage changes in deformation than the 

rigid porphyroclasts, Wm estimates derived from the quartz fabrics can be interpreted as 

recording the last increment of deformation (Wallis, 1995; Xypolias, 2009). This interpretation 

was suggested for Rongbuk valley where quartz fabrics yield higher Wm estimates than those 

obtained using rigid porphyroclasts (Law et al., 2004). Johnson et al. (2009a and b) propose that 

increased mica content results in decoupling between the porphyroclast and matrix interface, 

which can potentially overestimate the pure shear component when rigid porphyroclasts are used 

for Wm estimates. Wm estimates are consistent between samples that contain a range in 

composition and mica content (i.e. marble, quartzite, leucogranite, etc.) suggesting that 

decoupling was either minimal or if present, the decoupling resulted in an error that was  
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Figure 1.12. Simplified geologic cross section through Mount Everest and the Ama Drime 

Massif with a schematic diagram overlay that depicts the kinematic evolution of the Ama Drime 

detachment (ADD) assuming a geothermal gradient of 25-35° C/km. Refer to Figure 1.2 for 

cross section location and legend. Blue on the shear zone demonstrates active systems present as 

the rocks were exhumed and narrowed into the ~300 m-thick shear zone. Shear zone thickness 

not to scale. Other possible depths for the deepest position of the ADD are dashed. QD, 

Qomalangma detachment; LD, Lhotse detachment; HHT, High Himalayan thrust. 

 

independent of mica content. In addition to  vorticity estimates, the asymmetry or lack of 

asymmetry of quartz LPO patterns (Fig. 1.6) suggests that some samples record noncoaxial 

deformation (e.g., KA-25 and AD07-04) while others suggest coaxial deformation (e.g., AD07-

12b, AD07-17a, AD07-03). As mentioned earlier, samples AD07-17a, AD07-12b, and AD07-03 

contain quartz GBM recrystallization overprinted by SGR recrystallization suggesting that earlier 

pure shear dominated flow may be associated with GBM (coaxial quartz LPO patterns and rigid-

grain technique vorticity estimates) at higher temperatures and was overprinted by noncoaxial 

flow (quartz grain shape foliation vorticity estimates) at lower temperatures. 

The rigid grain technique (49-66% pure shear) records an early part of the exhumation 

history when deformation transitioned from high-temperature distributed shear to mylonite 

development (Fig. 1.12). This was followed by Wm estimates from quartz fabrics (1-57% pure 
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shear) that record a later part of the exhumation history as these rocks were exhumed (Fig. 1.12). 

These data indicate a spatial and temporal variation in deformation that progressed from 

dominantly pure shear to dominantly simple shear deformation during exhumation between 

~400-650° C. These data indicate that the rocks exposed within the ADD experienced 36-50% 

shortening and 57-99% down-dip extension at the time that the vorticity estimates were recorded 

in the deformed quartz. This suggests a substantial amount of crustal thinning and strain during 

the later increments of deformation. Previous estimates yielded 10-30% shortening and 10-40% 

down-dip extension within the GHS near the STDS in the Mabja Dome and the Everest region 

(Law et al., 2004; Langille et al., 2010). This implies that the rocks exposed within the ADD 

experienced a significantly larger amount of shortening and extension than the GHS in the 

footwall of the STDS. 

Deformation temperatures derived from asymmetric quartz [c] axis LPO opening angles 

and two-feldspar thermometry of asymmetric myrmekite that are directly related to top-to-the-

west shear (369-587° C) were used to estimate the amount of top-to-the-west displacement on 

the ADD.  Assuming a geothermal gradient of ~25-35° C/km, deformation temperature estimates 

suggest that the rocks exposed within the ADD shear zone were exhumed from a minimum depth 

of 11-21 km (Fig. 1.12). Projecting this depth below the current surface expression of the ADD 

using a constant dip of ~30° for the ADD (based on structural data from Jessup et al., 2008a; Fig. 

3) yields a minimum of ~21-42 km of down-dip displacement (Fig. 1.12), similar to other 

estimates of ~30 km (Kali et al, 2010). Uncertainties are associated with the poorly constrained 

geothermal gradient. Estimates of deformation temperatures (400−650° C) experienced by rocks 

exposed within the NRD (Fig. 1.6, Table 1.1) indicate that it exhumed footwall rocks from 

similar depths as the ADD. The Gurla Mandhata core complex, ~650 km west of the ADM, is 

another feature that was exhumed during orogen-parallel extension. The core complex is bound 

on the west by the Gurla Mandhata-Humla extensional fault system that records 35-66 km of 

top-to-the-west displacement during extension after 15 Ma (Murphy et al., 2002, 2007), similar 

to the displacement estimate for the ADD. 
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Comparison with the North Himalayan Gneiss Domes 

Although the ADM is located just south of two of the North Himalayan gneiss domes, the 

Lhagoi Kangri and Mabja domes (Figs. 1.1 and 1.2a), data from this study suggests that these are 

very different types of migmatite-cored domes. North Himalayan gneiss domes expose middle 

crustal rocks belonging to an originally ~35-km-thick mid-crustal channel composed of the GHS 

(e.g., Burg and Chen, 1984; Chen et al., 1990; Lee et al., 2000, 2002, 2004, 2006; Zhang et al., 

2004; Aoya et al., 2005, 2006; Quigley et al., 2006, 2008; Lee and Whitehouse, 2007). Wm 

studies of the GHS (Grasemann et al., 1999; Law et al., 2004; Carosi et al., 2006, 2007; Jessup et 

al., 2006; Larson and Godin, 2009) suggest that the low-viscosity mid-channel deformed by 

general shear with an increasing component of pure shear towards the center. Langille et al. 

(2010) demonstrated that mid-crustal rocks exposed within the Mabja dome preserve mixed top-

to-the-north and top-to-the-south shear at the top of the channel and top-to-the-south shear at the 

bottom, an increasing pure shear component with structural depth, and increasing deformation 

temperatures towards the middle of the dome, patterns consistent with those predicted for the 

deformed mid-crustal channel. Lee et al. (2006) and Lee and Whitehouse (2007) suggest that 

these deformational patterns were developed between ~16 and 35 Ma, and correlate closely to 

ages estimated for metamorphism and anatexis of the GHS (Burg et al., 1984; Pognante and 

Benna, 1993; Simpson et al., 2000; Viskupic et al., 2005; Cottle et al., 2009b). Data from the 

Mabja and the Kangmar domes (Lee et al., 2000) suggest that the rocks exposed within the North 

Himalayan gneiss domes originated from within the mid-crustal channel and were later brought 

to the surface through thrust faulting along the Gyirong-Kangmar thrust fault during the middle 

Miocene (Burg and Chen, 1984; Burg et al., 1987; Lee et al., 2000).  

Structural and geochronologic data (i.e. Liu et al., 2007; Zhang and Gao, 2007; Jessup et 

al., 2008a; Cottle et al., 2009a; this study) suggest that the kinematic, metamorphic, and 

exhumation history of the ADM differs from that of the North Himalayan gneiss domes.  In 

contrast to the rocks exposed within Mabja Dome that record a spatial transition from 

dominantly simple shear to dominantly pure shear deformation with increasing structural depth 

across the dome, the rocks exposed within the ADD record a temporal transition with an early 

phase of movement that was dominated by pure shear deformation that is overprinted by 

predominantly simple shear deformation during the later stages of the exhumation history on the 
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shear zone (Fig. 1.12). In addition, the rocks exposed within the ADD were deformed at 

temperatures ranging between ~400-650° C and are exposed within a ~300-m-thick shear zone. 

In contrast, the rocks exposed within the Mabja Dome record deformation temperatures 

increasing from ~450° C to >700° C and are exposed within a 13-km-thick zone. Kinematic 

indicators within the ADD and NRD indicate opposite sense of shear on either side of the ADM 

that record orogen-parallel extension. Mabja is dominated by top-to-the-north shear sense that 

transitions to top-to-the-south shear sense with increasing structural depth related to south-

directed flow. 
40

Ar/
39

Ar  ages for muscovite and biotite from the NRD (Zhang and Guo, 2007) 

and U-Th-Pb ages from the ADM (Liu et al., 2007; Cottle et al., 2009a) suggest that east-west 

extension initiated at ~13 Ma, which post-dates south-directed flow recorded in the North 

Himalayan gneiss domes by ~3 Ma. Based on these characteristics, the structural and kinematic 

evolution of the ADM is more closely related to metamorphic domes developed during orogen-

parallel extension, such as the Gurla Mandhata core complex (Murphy et al., 2002) and Leo 

Pargil dome (Thiede et al., 2006), rather than the North Himalayan gneiss domes. 

 

Exhumation of the Ama Drime Massif 

Borghi et al. (2003) projected the MCTZ along the western side of the ADM while others 

(Lombardo and Rolfo, 2000; Groppo et al., 2007; Liu et al, 2007) projected the MCTZ around 

the ADM. Several possibilities exist for the structural positions juxtaposed by the ADD. 

Lombardo and Rolfo (2000) interpret the ADM orthogneiss to correspond to the Num 

orthogneiss (lower GHS) whereas the grt + bt + sil gneiss in the hanging wall of the ADD is 

equivalent to the Barun Gneiss (upper GHS) of the Sedua-Makalu section.  Based on this, they 

propose that the Kharta section is structurally lower relative to the MCTZ exposed in the Sedua-

Makalu section (HHT of Goscombe et al., 2006).  The protolith age for the Ama Drime 

orthogneiss is equivalent to Proterozoic gneisses in the foreland (e.g., Ulleri orthogneiss) 

(Goscombe et al., 2006; Searle et al., 2008; Cottle et al., 2009a).  

The map relationships between the ADD, the HHT (top of the MCTZ), and STDS are 

depicted on a cross section from the center of the ADM to the Khumbu glacier (Fig. 1.12). The 

ADD was projected ~10 km further south than the southernmost mapped contacts into the border 
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region between Tibet and Nepal to construct a cross section that is perpendicular to the ADD and 

that passes through a known location of the Qomolangma detachment (QD). This southern 

projection of the ADD is balanced by structural data from the footwall and hanging wall of the 

NRD from Burchfiel et al. (1992) that indicates that it extends to at least this position on the 

southern portion of the eastern side of the ADM (Fig. 1.2). The QD exposed on the summit of 

Mount Everest dips northeast and juxtaposes TSS in the hanging wall with the Yellow band in 

the uppermost section of the Everest Series schist and calc-silicate in the footwall (Burchfiel et 

al., 1992; Searle et al., 2003; Jessup et al., 2006; Jessup et al., 2008b). The base of the Everest 

Series is defined by the northeast-dipping Lhotse detachment (LD) (Searle, 1999). Using the 

structural distance between the QD and the top of the MCTZ (HHT), the GHS between the 

STDS and the MCTZ is estimated to be ~28 km thick below the QD on the summit of Mount 

Everest (Searle et al., 2006).  

Using an average dip of 30°, the ADD can be projected from the surface to deeper 

structural positions, through a minimum depth of ~11-21 km from the estimated deformation 

temperatures, where it presumably shallows out beneath the summit of Mount Everest. Based on 

these data, the ADD might sole into the HHT or a deeper structural position such as the base of 

the MCTZ or some other (lithologic, stratigraphic, or structural) boundary that is not exposed in 

the foreland (Fig. 1.12).  Assuming that the orientation for this contact was originally north 

dipping then it was potentially rotated to its current orientation and reactivated as the ADD to 

accommodate exhumation of the ADM.  

This study suggests that prior to the onset of orogen-parallel extension, the crustal profile 

of the Everest area included a 28 km-thick section of GHS. The section was juxtaposed with the 

TSS at the top by top-to-the-north displacement on the STDS and granulite facies rocks at the 

bottom by top-to-the-south displacement on the MCTZ (Searle et al., 2006).  Rocks that are 

currently exposed in the central section of the ADM (750° C and 0.7-0.8 GPa) were located at an 

unknown structural position between the upper GHS and the LHS. Here they experienced 

muscovite dehydration melting (11-13 Ma) in a kinematic setting that was dominated by orogen-

parallel extension.   

Exhumation of footwall rocks of the NRD by 10-13 Ma was kinematically linked to 

extension in the interior of the Tibetan Plateau (Zhang and Guo, 2007; Kali et al., 2010). 
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40
Ar/

39
Ar muscovite and biotite ages suggest that exhumation on the NRD (10-13 Ma) began 

prior to the ADD (6-10 Ma). One possible interpretation is that back-rotation of the NRD 

footwall toward the west during initial exhumation of the ADM resulted in a west-dipping 

lithologic or structural boundary. This weakness was reactivated during top-to-the-west shearing 

that produced at least 21-42 km of displacement along the portion between the Yo Ri and Pung 

Chu gorges. Deformed leucogranite dikes and undeformed dikes in the NRD that crosscut the 

main shear zone fabric indicate that ductile movement on the NRD ended by ~11 Ma (Kali et al., 

2010). Thus, the ADD outlasted the ductile history of the NRD (Kali et al., 2010).  Displacement 

on the NRD and ADD decreases toward the north where it is minimal at the north-plunging nose 

(Kali et al., 2010). Not only does this indicate that the southernmost transects record the deepest 

record of the fault in the study area, but also that the Ama Drime orthogneiss exposed between 

these represents the deepest structural position of the Massif. 

 

Conclusions 

 

New detailed microstructural and kinematic analyses, estimates of deformation 

temperatures, and vorticity analyses conducted on rocks from the western limb of the Ama 

Drime Massif suggests that these rocks record top-to-the-west shear sense between ~400-650° C. 

Mean kinematic vorticity estimates from within this temperature interval record an earlier pure 

shear dominated flow (49-66% pure shear, rigid grain technique) overprinted by a later simple 

shear (1-57% pure shear, quartz fabrics) dominated flow. These data suggest that the rocks 

exposed within the ADD experienced 36-50% shortening and 57-99% down-dip extension 

during the later increments of deformation. Deformation temperatures recorded during top-to-

the-west shear are combined with an assumed dip for the detachment of 30° to create a minimum 

estimate of 21-42 km of displacement for the Ama Drime detachment. Data from the eastern 

limb of the Ama Drime Massif indicate that the Nyönno Ri detachment may have experienced a 

similar magnitude of displacement during exhumation of the Ama Drime Massif. Exhumation of 

the Massif began during the initiation of orogen-parallel extension in the Dinggyê graben. Back-

rotation of the footwall block resulted in a west-dipping footwall block. During back-rotation, a 
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weakness in the footwall block was reactivated to accommodate top-to-the-west shear along the 

ADD during orogen-parallel extension. 
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Appendix 1.1 
 

Appendix 1.1. Sample Locations. 

Sample Latitude Longitude Sample Latitude Longitude 

KA-25 28.0961° 87.3668° KA-40 28.1480° 87.3713° 

KA-31 28.0951° 87.3669° AD07-20 28.2654° 87.3919° 

KA-26 28.0951° 87.3669° AD07-21 28.2654° 87.3919° 

KA-32 28.0951° 87.3669° AD07-17 28.2655° 87.3924° 

KA-17 28.0946° 87.3667° AD07-16 28.2655° 87.3924° 

KA-20 28.0946° 87.3667° AD07-15 28.2655° 87.3924° 

KA-22 28.0946° 87.3667° AD07-14 28.2655° 87.3924° 

KA-23 28.0946° 87.3667° AD07-13 28.2655° 87.3924° 

KA-14 28.0946° 87.3667° AD07-12 28.2655° 87.3924° 

KA-13 28.0946° 87.3667° AD07-10 28.2655° 87.3924° 

KA-01 28.0954° 87.3657° AD07-11 28.2655° 87.3924° 

KA-02 28.0952° 87.3659° AD07-09 28.2655° 87.3924° 

KA-12 28.0944° 87.3664° AD07-08 28.2639° 87.3961° 

AD07-28 28.0947° 87.3652° AD07-07 28.2665° 87.3937° 

AD07-29 28.0950° 87.3655° AD07-05 28.2665° 87.3937° 

AD07-30 28.0950° 87.3655° AD07-06 28.2665° 87.3937° 

AD07-31 28.0950° 87.3655° AD07-04 28.2662° 87.3939° 

AD07-27 28.0945° 28.0945° AD07-03 28.2662° 87.3946° 

MJAD-05 28.0872° 87.3707° AD07-02 28.2662° 87.3954° 

KA-44 28.1470° 87.3699° MJAD-17 28.1109° 87.6471° 

KA-41 28.1473° 87.3703° MJAD-22 28.1193° 87.6442° 

KA-43 28.1473° 87.3703° MJAD-23 28.1193° 87.6442° 

KA-39 28.1480° 87.3713°    
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Appendix 1.2 

 

Additional Rigid Grain Nets 

 

 

 

 



62 

 

 

 



63 

 

 

 
 

 

 

 

 

 

 



64 

 

CHAPTER II: 

TIMING OF METAMORPHISM, MELTING, AND EXHUMATION OF 

THE LEO PARGIL DOME, NORTHWEST INDIA 
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 A version of this chapter was originally submitted for publication by Jackie Langille, 

Micah Jessup, John Cottle, Graham Lederer, and Talat Ahmad: 

 

Langille, J., Jessup, M., Cottle, J., Lederer, G., and Ahmad, T., in review, Timing of 

metamorphism, melting, and exhumation of the Leo Pargil dome, northwest India: Journal of 

Metamorphic Geology.  

 

My major contributions to this paper include: (1) conducting the field mapping and sample 

collection, (2) conducting the metamorphic monazite geochronology and thermobarometry 

analyses that are included in the manuscript, (3) writing the manuscript, (4) creating the 

illustrations, and (5) submitting and revising the manuscript. 

 

Abstract 

 

The Leo Pargil dome, northwest India, is a 30 km-wide, northeast trending structure that is 

cored by gneiss and mantled by amphibolite-facies metamorphic rocks that are intruded by a 

leucogranite injection complex. Oppositely dipping, normal-sense shear zones that 

accommodated orogen-parallel extension within a convergent orogen bound the dome. The 

broadly distributed Leo Pargil shear zone defines the west flank of the dome and separates the 

dome from the metasedimentary and sedimentary rocks in the hanging wall to the west and 

south. Thermobarometry and in-situ monazite U-Th-Pb monazite geochronology were conducted 

on metamorphic rocks from within the dome and in the hanging wall. These data were combined 

with U-Th-Pb monazite geochronology of leucogranites from the injection complex to evaluate 

the relationship between metamorphism, crustal melting, and the onset of exhumation. Rocks 

within the dome and in the hanging wall contain garnet, kyanite, and staurolite porphyroblasts 

that record prograde Barrovian metamorphism during crustal thickening that reached ~530-630° 

C and ~7-8 kbar, ending by ~30 Ma. Cordierite and sillimanite overgrowths on Barrovian 

assemblages within the dome record top-down-to-the-west shearing and near-isothermal 

decompression of the footwall rocks to ~4 kbar by 23 Ma during an exhumation rate of 1.3 

mm/yr. Monazite growth accompanied Barrovian metamorphism and decompression. The 

leucogranite injection complex within the dome initiated at 23 Ma and continued to 18 Ma. 

These data show that orogen-parallel extension in this part of the Himalaya occurred earlier than 

previously documented (16 Ma). Contemporaneous onset of near-isothermal decompression, top-
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down-to-the-west shearing, and injection of the leucogranite injection complex suggests that 

early crustal melting may have created a weakened crust immediately proceeded by localization 

of strain that promoted shear zone development. Exhumation along the shear zone initiated 

decompression by 23 Ma in a kinematic setting that favored orogen-parallel extension potentially 

related to the Karakoram fault to the north, during a time of north-directed extension on the 

South Tibetan detachment system to the south.  

 

Introduction 

 

Metamorphic domes cored by migmatites and granites are exhumed as a result of various 

processes during orogenesis. These processes include but are not limited to crustal melting and 

strain localization in a melt-weakened mid-crust during extension (e.g., Teyssier and Whitney, 

2002; Kruckenberg et al., 2008) or oblique extension (e.g., D’Lemos et al., 1992; Whitney et al., 

2007; McFadden et al., 2010), doming of mid-crustal rocks triggered by underthrusting (Lee et 

al., 2000, 2004; Beaumont et al., 2001, 2004), and buoyancy-driven flow of melt-weakened mid-

crustal rocks into areas of extension (e.g., Beaumont et al., 2001; Teyssier and Whitney, 2002).  

Models for exhumation of gneiss domes in the Himalaya have involved south-directed mid-

crustal flow (e.g., Lee et al., 2000, 2004; Beaumont et al., 2001, 2004), orogen-parallel extension 

(e.g., Jessup et al., 2008), and rapid exhumation at the syntaxes (Zeitler et al., 2001). These 

domes provide an opportunity to investigate the processes of mid-crustal deformation, 

metamorphism, and melting that drive exhumation and also yield insights into the evolution of 

mid-crustal flow within a transitional zone between crustal shortening in the foreland and 

extension in the Tibetan plateau (e.g., Jessup and Cottle, 2010). 

The North Himalayan gneiss domes (e.g., Mabja, Malashan, Lhagoi Kangri, and Kangmar 

domes) in south-central Tibet (e.g., Aoya et al., 2006; Chen et al., 1990; Lee et al., 2000, 2004; 

Quigley et al., 2006; Larson et al., 2010), located between the South Tibetan detachment system 

(STDS) and the Indus-Yarlung suture zone, contain deformed mid-crustal rocks of the Greater 

Himalayan sequence (GHS). One interpretation is that they were exhumed and domed during 

underthrusting (Lee et al., 2000, 2004). In this model, doming followed middle Miocene mid-

crustal anatexis and flow of the GHS as a low-viscosity channel (Burg and Chen, 1984; 
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Ratschbacher et al., 1994; Wu et al., 1998; Lee et al., 2000, 2004; Lee and Whitehouse, 2007; 

Larson et al., 2010) between the north-directed STDS above and the south-directed Main Central 

thrust zone (MCTZ) below. Another interpretation is that the North Himalayan gneiss domes 

were formed during southward extrusion of the GHS by doming of the ductile mid-crustal 

channel within the GHS in the hinterland of the orogen (e.g., Grujic et al., 2002; Beaumont et al., 

2004; Hodges, 2006; Jamieson et al., 2006).  

In contrast to the North Himalayan gneiss domes, the Gurla Mandhata core complex 

(Murphy et al., 2002; Murphy, 2007) and the Ama Drime Massif (Jessup et al., 2008; Cottle et 

al., 2009a; Kali et al., 2010) on the southern margin of the Tibetan Plateau were exhumed during 

orogen-parallel extension since the middle to late Miocene. The Ama Drime Massif in the central 

Himalaya was exhumed along normal faults and shear zones that reactivated and/or offset the 

STDS and the MCTZ and post-dates southward extrusion of the GHS (Jessup et al., 2008; Jessup 

and Cottle, 2010; Langille et al., 2010). The normal faults that bound the Ama Drime Massif 

extend into the Tibetan Plateau where they are associated with conjugate sets of strike slip faults 

in the interior of the plateau (Taylor et al., 2003; Kali et al., 2010). The Gurla Mandhata core 

complex in the western Himalaya is bound by normal faults that accommodate a portion of the 

orogen-parallel extension in the western Himalaya. In contrast to the Ama Drime Massif, 

exhumation of the Gurla Mandhata core complex occurred in a zone of transtension associated 

with strike slip faulting on the Karakoram fault system (Murphy et al., 2000, 2002; Murphy and 

Burgess, 2006; Murphy, 2007). 

The Leo Pargil dome (LPD), located west of the Gurla Mandhata (Fig. 2.1a), is another 

example of a dome that was potentially exhumed by extension related to strike-slip faults in the 

Himalaya. Previous investigations of the LPD in northwest India and western Tibet (Fig. 2.1) 

have suggested alternative interpretations of the dome, either as a North Himalayan gneiss dome 

(Leech, 2008; Chambers et al., 2009) or as a dome that was exhumed during orogen-parallel 

extension associated with the Karakoram fault system (Thiede et al., 2006; Hintersberger et al., 

2010, 2011), in an analogous manner to the Gurla Mandhata core complex. Others describe the 

dome as being exhumed during extension of a pull-apart basin associated with the Karakoram 

fault system (Ni and Barazangi, 1985). 
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Figure 2.1. (a) Location of the Leo Pargil dome with focal mechanism solutions for select 

earthquakes. Modified after Thiede et al. (2006). (b) Geologic map and cross-sections through 

the Leo Pargil dome. Structural data for the Leo Pargil shear zone (LPSZ) plotted on an equal-

area stereonet. Kaurik-Chango normal fault and previous mapping from Thiede et al. (2006). 

The LPSZ on cross-section A-A’ modified from Thiede et al. (2006). Metamorphic isograds are 

from this study and Chambers et al. (2009). grt, garnet; st, staurolite; ky, kyanite; sil, 

sillimanite; crd, cordierite. 

 

The LPD is a 30 km-wide, northeast striking, elongate domal structure composed of 

amphibolite-facies metamorphic rocks that are cored by migmatites and leucogranites. The 
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metamorphic rocks in the dome are intruded by multiple generations of leucogranite dikes and 

sills. The west side of the LPD is defined by the northeast-trending Leo Pargil shear zone (LPSZ) 

that accommodated exhumation of the high-grade core during orogen-parallel extension (Thiede 

et al., 2006) that is potentially kinematically linked to the right-lateral Karakoram fault system to 

the north (Ni and Barazangi, 1985; Murphy et al., 2009; Saylor et al., 2010).  

Previous studies have focused on the regional structure and exhumation history of the LPD 

at temperatures of <350° C (Thiede et al., 2006), the timing of leucogranite injection (Leech, 

2008), and the neotectonic history during extension (Hintersberger et al., 2010, 2011). However, 

major gaps remain in the pressure-temperature-time-deformation (P-T-t-D) paths recorded in the 

metamorphic rocks exposed within the LPD, and immediately around the LPD. This paper 

contributes P-T and age constraints from metamorphic rocks and ages from leucogranites to 

constrain the P-T-t-D path at temperatures of >350° C. These provide a valuable test of the 

relationship between metamorphism, crustal melting, and the transition from melt-present to 

solid-state fabric development associated with exhumation of the LPD.  These data demonstrate 

that a complex relationship between early anatexis, strain-localization into melt-weakened crust, 

decompression-induced melting, and a kinematic setting that favored orogen-parallel extension 

in the western Himalaya contributed to exhumation of the LPD. These data suggests that orogen-

parallel extension in this part of the Himalaya occurred ~7 m.y. earlier than previously 

documented (e.g., Thiede et al., 2006). 

 

Geologic Setting 

 

Continental collision between the Indian and Eurasian plates since the Eocene resulted in 

crustal shortening and thickening in the Himalaya (e.g., Searle et al., 1987; Najman et al., 2010). 

The arc-parallel MCTZ and the STDS accommodated exhumation of the anatectic core of the 

Himalaya (the GHS) until the middle Miocene (e.g., Grujic et al., 1996, 2002; Grasemann et al., 

1999; Vannay and Grasemann, 2001; Vannay et al., 2004; Searle et al., 2006) and as young as 

~11 Ma in the eastern Himalaya (Kellett et al., 2009).  
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After the middle Miocene, movement on the STDS was overprinted by orogen-parallel 

extension resulting in the development of extensional shear zones and normal faults in southern 

Tibet (e.g., Ama Drime detachment, Dinggyê graben, Tingri graben, Thakkola graben) that 

dissect the southern margin of the Tibetan Plateau (e.g., Kapp and Guynn, 2004; Jessup et al., 

2008; Jessup and Cottle, 2010; Lee et al., 2011). These normal faults and graben are 

kinematically linked to strike-slip faults in the interior of the plateau (e.g., Armijo et al., 1986; 

Taylor et al., 2003; Kapp and Guynn, 2004; Jessup and Cottle, 2010). In the western Himalaya, 

the Gurla Mandhata detachment records middle Miocene orogen-parallel extension that is 

kinematically linked to graben formation and strike-slip fault displacement on the Karakoram 

fault system (e.g., Murphy et al., 2002). Active orogen-parallel extension is >3cm/year across the 

southern margin of the Himalaya and Tibetan Plateau measured from Global Positioning System 

geodetic velocity studies (Styron et al., 2011).  

The LPD in northwest India is defined on the southwest flank by the normal-sense LPSZ 

and brittle faults interpreted to accommodate orogen-parallel extension (Fig. 1) (Ni and 

Barazangi, 1985; Zhang et al., 2000; Thiede et al., 2006; Hintersberger et al., 2010). 

Amphibolite-facies rocks within the dome are separated from low- to moderate-grade 

metasedimentary rocks to the west by the LPSZ (Thiede et al., 2006). At the southern end of the 

dome, the shear zone is a west- to southwest-dipping zone that accommodated normal-

displacement during dominantly top-down-to-the-west shearing. The Kaurik-Chango brittle 

normal fault on the west side of the dome offsets the LPSZ (Singh et al., 1975; Molnar and Chen, 

1983; Thiede et al., 2006; Hintersberger et al., 2010). The dome extends northeast to the Ayi 

Shan that is bound by the Karakoram fault system (Valli et al., 2007; Sanchez et al., 2010) (Fig. 

1). The northeast-striking, southeast-dipping Qusum detachment fault (Zhang et al., 2000) 

separates the southeastern margin of the dome from the Zada basin (Murphy et al., 2009; Saylor 

et al., 2010). 
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Regional Geologic Setting 

 

In the southern Sutlej valley, the Main Boundary thrust (MBT) and Munsiari thrust are 

present in the footwall of the MCTZ (e.g., Vannay and Grasemann, 2001). To the north, the GHS 

is exposed between the MCTZ and the Sangla detachment (local equivalent to the STDS) (e.g., 

Vannay and Grasemann, 2001). The base of the Tethyan Sedimentary sequence (TSS) above the 

Sangla detachment in the northern Sutlej valley is comprised of the Lower Proterozoic to 

Cambrian metasediments of the Haimanta Group (e.g., Frank et al., 1995; Vannay and 

Grasemann, 2001; Weismayr and Grasemann, 2002; Chambers et al., 2009) that is intruded at the 

base by the 488 Ma Akpa (also termed ‘Kinnaur Kailas’) granite (e.g., Miller et al., 2001).  

North from the Akpa granite, metamorphic grade decreases up-section in the north-dipping 

Haimanta Group from the kyanite-isograd (~650° C, 6-7 kbar) exposed structurally above the 

Akpa granite to the biotite-isograd approximately 6 km up-section (Chambers et al., 2009). The 

Haimanta Group transitions to south-dipping at the southern end of the LPD (Fig. 2.1b). 

Chambers et al. (2009) demonstrated that prograde metamorphism in the Haimanta Group in the 

Sutlej valley began at >34 Ma with peak burial at 30 Ma and garnet growth ending by 28 Ma. 

The Haimanta Group contains original sedimentary bedding (seen at the uppermost structural 

positions as upright ripples and cross beds) that is deformed by recumbent folds. The Upper 

Haimanta Group is separated from the overlying Ordovician to Jurassic sedimentary rocks of the 

TSS associated with the former Indian passive margin (e.g., Shian, Pin, and Muth Formations) 

by an unconformity (Wiesmayr and Grasemann, 2002). 

 

Geology of the Leo Pargil Dome 

 

The southwest flank of the LPD is composed of amphibolite-facies schist that is intruded by 

several generations of deformed and undeformed leucogranite dikes and sills (e.g., Thiede et al., 

2006). From the village of Puh towards the LPD, metamorphic grade increases in the Haimanta 

Group from the biotite isograd, through the garnet and staurolite-isograds, to the kyanite-isograd 

adjacent to the dome (Fig. 2.1b). Here, a complex system of leucogranite dikes and sills begins 
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within the Haimanta Group that are generally undeformed (Fig. 2.2a and b). This system is 

referred to as the leucogranite injection complex. The dome in the Sutlej valley is defined by the 

first appearance of the injection complex within Haimanta Group. Rocks within the dome also 

contain deformed leucogranite that is cross cut by the injection complex thus they appear to 

predate the injection complex (Fig. 2.2c). In the Spiti valley, the dome is defined as the 

metamorphic rocks that record top-down-to-the-west shearing associated with the LPSZ. Pelitic 

host rock (Haimanta Group) near the margins of the dome that is intruded by the injection 

complex lacks evidence for in-situ partial melting. These rocks transition into gneiss in the core 

of the dome where leucosome development that was derived from segregated partial melting of 

the pelitic rocks is preserved (Fig. 2.2c and d). Here, leucogranites discordantly encompass 

blocks of migmatitic host rock that experienced in-situ partial melting (Fig. 2.2d). Based on the 

structure, it is presumed that the migmatite rocks in core correlates to the GHS but more data is 

necessary to evaluate this. 

Rocks within the dome are sheared by the top-down-to-the-west LPSZ on the southwest 

flank of the dome (Fig. 2.1) (Thiede et al., 2006). The uppermost structural level of the LPSZ on 

the southwest flank of the dome near the village of Chango (Fig. 2.1b, cross section A-A’) is 

marked by a steep metamorphic gradient between the upper Haimanta Group at the base of the 

TSS (within the LPSZ) and the weakly to unmetamorphosed sedimentary rocks (TSS) in the 

hanging wall (Thiede et al., 2006). Here, the Kaurik-Chango normal fault system offsets the 

broadly distributed LPSZ and juxtaposes the structurally higher LPSZ rocks in the hanging wall 

of the Kaurik-Chango normal fault with structurally deeper LPSZ rocks in the footwall (Thiede 

et al., 2006). The rocks in the footwall of the Kaurik-Chango normal fault system are composed 

of sheared schist (biotite ± garnet ± staurolite ± kyanite ± sillimanite) and leucogranites (Fig. 

2.2e). 

To the south, near the villages of Nako and Leo (Fig. 2.1b, cross section B-B’), the LPSZ within 

the Haimanta Group is composed of schist (biotite ± garnet ± staurolite ± kyanite ± sillimanite) 

and leucogranite with a several-hundred-meter-thick unit composed of sheared quartzite, marble, 

and leucogranite (Figs. 2.1b and 2.2f). The quartzite and marble unit contains a strong west-

directed stretching lineation that is defined by elongate quartz grains (average 21°→275°). 

Macroscopic shear sense indicators, viewed on surfaces that are perpendicular to the  
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Figure 2.2. Field photographs. (a) Leucogranite injection complex viewed toward the west, just 

south of the confluence of the Spiti and Sutlej Rivers. See Figure 2.1b. (b) Folded biotite schist 

within the Leo Pargil dome that is intruded by the leucogranite injection complex. (c) Migmatitic 

biotite gneiss exposed in the core of the dome. (d) Melt-present migmatite with mafic pods in the 

core of the dome. (e) Biotite schist within the LPSZ intruded by pre-kinematic and post-kinematic 

leucogranite. (f) Mylonitic quartzite and marble within the LPSZ with shear bands indicating 

top-down-to-the-west shear sense. 

 

foliation and parallel to the stretching lineation, such as shear bands, record top-down-to-the-

west shear sense (Fig. 2.2f). Preliminary investigations of quartz microstructures from the rocks 

exposed in the shear zone suggest top-down-to-the-west shear sense.  

White mica and biotite 
40

Ar/
39

Ar and apatite fission track ages (Thiede et al., 2006; 

Hintersberger et al., 2010) of samples from within the dome suggest that ductile deformation 

through ~350° C occurred at ~16 Ma and exhumation continued along the brittle, high-angle 

Kaurik-Chango normal fault began at ~10 Ma.  Saylor et al. (2010) document growth structures 

within lacustrine sediments filling the Zada basin to the east of the LPD, suggesting exhumation 

continued along the southeast flank of the dome between 9 and 1 Ma. 

The northeast-striking, southeast-dipping Qusum detachment fault (050°, 30°SE) on the 

east side of the LPD (Zhang et al., 2000) separates the eastern flank of the dome from the Zada 

basin in the hanging wall (Murphy et al., 2009; Saylor et al., 2010). A switch from top-down-to-
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the-west shear sense on the southwest flank of the dome to top-down-to-the-east shear sense in 

the migmatite core of the dome is observed (Figs. 2.1b and 2.2c) recorded by shear bands and 

tails on porphyroblasts. The central section of the dome exposed in the footwall of the Qusum 

detachment fault is composed of a leucogranite body that transitions into gneiss and biotite schist 

toward structurally shallower positions on the southeastern flank of the dome (Zhang et al., 

2000). The gneiss and biotite schist are intruded by leucogranite that is folded and boudinaged 

and records top-down-to-the-southeast displacement. Muscovite K-Ar data from the deformed 

leucogranite suggests that this shear zone was active at ~16 Ma (Zhang et al., 2000). 

 

Samples 

 

From >200 samples, pelitic schist and leucogranite samples that best represent the P-T-t-D 

history of these rocks were chosen for thermobarometric and geochronologic analyses. A pelitic 

sample from the Haimanta Group (LP09-10) in the hanging wall of the dome records Barrovian 

metamorphism and was selected for thermobarometric and geochronological analyses to 

constrain the P-T-t-D history recorded in rocks of the hanging wall. Two pelitic samples (LP09-

76, LP09-229) from the LPD between the villages of Nako and Chango were selected because 

they contain Barrovian porphyroblasts that are overprinted by top-down-to-the-west shearing. 

These samples were used to constrain the P-T-t-D history associated with Barrovian 

metamorphism followed by shearing on the LPSZ. One pelitic sample (LP09-162) and four 

leucogranite samples (LP09-157, LP09-158, LP09-166, and LP09-167) were selected from just 

north of the confluence of the Spiti and Sutlej Rivers within the LPD (Fig. 2.1b). Here, the host 

rock contains Barrovian porphyroblasts that are overprinted by cordierite and sillimanite 

associated with top-down-to-the-west shearing and is intruded by multiple generations of 

leucogranite. This outcrop is representative of Barrovian metamorphism followed by 

decompression, top-down-to-the-west shearing, and leucogranite intrusion within the LPD. 

 

Haimanta Group in the Hanging Wall of the Leo Pargil Dome (LP09-10) 

LP09-10 (31.7522°, 78.6196°) is pelitic schist with subhedral staurolite and garnet 

porphyroblasts that was collected within the staurolite-grade rocks of the Haimanta Group in the 
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hanging wall of the LPD (Fig. 2.1). Subhedral garnet porphyroblasts preserve a relict fabric (S1) 

and are in a foliated matrix (S3) (185°, 18° E and 15°→060°) of biotite and muscovite 

interlayered with quartz and albite (Fig. 2.3a). S2 is defined by biotite and muscovite that occurs 

at an angle to the S3 fabric. Ilmenite, apatite, and rare monazite and zircon occur throughout the 

matrix. Few xenotime grains are present. Garnet porphyroblasts contain ilmenite, apatite, quartz, 

biotite, and albite inclusions. Staurolite contains quartz, ilmenite, apatite, and rare monazite 

inclusions. Chlorite occurs throughout the sample as a retrograde replacement of biotite. Quartz 

exhibits undulose extinction and sub-grains. 

 

Leo Pargil Dome (LP09-76, 229, and 162) 

Sample LP09-76 (31.9462°, 78.6023°) was collected from the LPSZ that is exposed 

between the villages of Nako and Chango (Fig. 2.1). It is pelitic schist that contains subhedral 

garnet and staurolite porphyroblasts in a foliated matrix (Fig. 2.3b) (305°, 35° SW and 6°→300°) 

defined by biotite, muscovite, and chlorite interlayered with anhedral quartz and albite. Ilmenite, 

apatite, zircon, and monazite occur throughout the matrix. Kyanite is present but is rare. Garnet 

occurs as both subhedral and nodular grains. Garnet contains quartz, apatite, albite, ilmenite, and 

biotite inclusions. Small (<10 μm), rare zircon and monazite are also present as inclusions in the 

garnet. Xenotime is rare in the matrix. Staurolite contains quartz, apatite, albite, and rare 

xenotime inclusions. C’-type shear-bands record top-down-to-the-northwest shear sense (Fig. 

2.3b). Porphyroblasts are mantled by asymmetric strain shadows (quartz, biotite, muscovite, and 

albite) that record top-down-to-the-northwest shear sense. Chlorite occurs throughout the sample 

as a retrograde replacement of biotite. Quartz exhibits undulose extinction, subgrains, and lobate 

grain boundaries. 

Sample LP09-229 (31.9349°, 78.6027°) was collected from the LPSZ, within the shear 

zone just south of sample LP09-76 (Fig. 2.1). This sample is pelitic schist with subhedral 

staurolite and nodular garnet porphyroblasts in a foliated and lineated matrix (324°, 37° SW and 

20°→273°) defined by biotite and muscovite that also contains anhedral quartz, and albite. 

Ilmenite, apatite, zircon, monazite, and tourmaline occur throughout the matrix. There is no 

xenotime. Garnet and staurolite contain quartz, ilmenite, and rare monazite and apatite inclusions 

that define a curved relict fabric (S1) that the porphyroblasts overgrew (Fig. 2.3c). C’-type shear- 
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Figure 2.3. Photomicrographs of kinematic indicators. (a) Garnet and staurolite associated with 

Barrovian metamorphism in the Haimanta Group (hanging wall of the LPSZ) with inclusions 

recording an early fabric (S1) overprinted by S2 and S3. qtz, quartz; bt, biotite; ms, muscovite. (b) 

Shear bands in a sample from the LPSZ that suggests dominantly top-down-to-the-northwest 

shear. (c) Staurolite porphyroblast recording an early fabric (S1) overprinted by the LPSZ fabric 

that suggests top-down-to-the-west shear. (d) Garnet partially included in a staurolite 

porphyroblast bound by a shear band recording top-down-to-the-west shear sense. 

 

bands record top-down-to-the-west shear sense (Fig. 2.3c and d). Asymmetric strain shadows 

composed of quartz, biotite, muscovite, and plagioclase mantle porphyroblasts and record 

dominantly top-down-to-the-west shear sense (Fig. 2.3c and d). Subhedral to anhedral staurolite 

and garnet porphyroblasts indicate partial resorption. Some garnet is partially included in 

staurolite (Fig. 2.3d). Chlorite occurs as a retrograde replacement of biotite. Quartz exhibits 

undulose extinction, subgrains, and lobate grain boundaries. 

LP09-162 (31.8069°, 78.6332°) is a pelitic schist that was collected just north of the 

confluence of the Spiti and Sutlej rivers (Figs. 2.1 and 2.2b). It contains subhedral staurolite and 
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kyanite porphyroblasts in a foliated matrix (319°, 32° SW and 31°→255°) that is defined by 

biotite, albite, and cordierite. Minor amounts of muscovite, chlorite and quartz are present  (<2% 

of the sample). Shear bands and strain shadows on porphyroblasts record top-down-to-the-west 

shear sense (Fig. 2.4a). Rutile and tourmaline are abundant in the matrix. ~20-50 μm zircon and 

monazite are common within the matrix. Xenotime is absent. Kyanite and staurolite 

porphyroblasts contain biotite and monazite inclusions and are surrounded by cordierite rims 

(Fig. 2.4b and c). Kyanite occurs as inclusions in staurolite (Fig. 2.4b) and as intergrowths with 

staurolite. The porphyroblasts are boudinaged and the opening between the fragments is filled 

with fibrolitic sillimanite, cordierite, rutile, and tourmaline (Fig. 2.4c). Cordierite and sillimanite 

also occur in strain shadows of kyanite and  

staurolite porphyroblasts (Fig. 2.4c). These strain shadows suggest top-down-to-the-west shear 

sense during cordierite and sillimanite growth.  

 

Leucogranites (LP09-157, 158, 166, and 167) 

Samples LP09-157, 158, 166, and 167 (31.8069°, 78.6332°) are leucogranites collected 

from the same outcrop as LP09-162 (Figs. 2.1 and 2.2b). LP09-158 is an undeformed, course 

grained (3-10 mm) tourmaline-bearing leucogranite that cuts host rock and then cut by LP09-157 

and LP09-167. LP09-157 and LP09-167 are undeformed, medium grained (quartz and feldspar 

<3 mm) leucogranites that are both from the second generation of melt. Two samples were 

collected from this generation to evaluate the homogeneity of the age throughout this generation 

of leucogranite. LP09-166 was collected from a third generation of leucogranite that cuts LP09-

157 and LP09-167 and is undeformed. It is coarse grained (quartz and feldspar < 1.5 cm) and 

occurs as 5-10 cm-wide dikes. 

 

Methodology 

 

Pressure-Temperature Estimates 

Mineral composition analyses for thermobarometric estimates were obtained on a Cameca 

SX-100 electron microprobe at the University of Tennessee. A PGT Si (Li) detector energy-

dispersive spectrometer was used along with electron back-scatter imaging (BSE) for qualitative  
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Figure 2.4. Images of LP09-162.  (a) Field photo from the outcrop (Figure 2.2b) where sample 

LP09-162 was collected. Staurolite porphyroblast contains a cordierite rim. Shear bands and 

strain shadow on albite (ab) documents top-down-to-the-west shear sense. (b) Kyanite inclusion 

in staurolite. A cordierite rim is present on the staurolite and contains rutile (rt) and sillimanite. 

(c) Cordierite overgrowths on staurolite and kyanite. Kyanite is boudinaged and filled in by 

sillimanite and cordierite. tur, tourmaline. 

 

identification of phases during real time analysis. X-ray maps using wavelength-dispersive 

spectrometery of Mg, Mn, and Ca along with quantitative line transects were conducted across 

garnet porphyroblasts at 15 kV, 30 nA, 30 ms, and a 6 μm spot size to characterize compositional 

zonation. Point analyses at 15 kV, 20 nA, and a spot size of 1μm were conducted on phases to be 

used for P-T estimates such as staurolite, biotite, plagioclase, and muscovite to assess 

compositional heterogeneities of each phase throughout the sample. Plagioclase was analyzed at 

10 kV. Natural and synthetic compounds were used for standards and were checked prior to and 

following the analyses. Elemental abundances <300 ppm are considered below the detection 

limit for all elements except for Y which is ~400 ppm.  
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P-T estimates at peak temperatures were calculated from the chemical data using 

THERMOCALC v. 3.33 in the average P-T mode (Powell and Holland, 1998). Calculations 

were made using the updated Holland and Powell (1998) data set (tc-ds55.txt). Activity 

coefficients for each phase were calculated using the AX software.  

A pseudosection for a sample collected from the LPD (LP09-162) was calculated from the 

bulk composition obtained by combining compositional data collected from the electron 

microprobe with point counts across the entire thin section of the sample to quantify the 

proportions of the phases present (Table 2.1 and 2.2). Fe
3+

 was not measured, but its composition 

is assumed to be minor due to the absence of magnetite. Phases in this sample contained little to 

no compositional zonation so the average composition of each phase was used along with the 

mode to calculate the bulk composition.. The P-T pseudosection was calculated with the Perplex 

6.6.6 software package (Connolly, 2009; updated in 2011) using the Holland and Powell (1998) 

thermodynamic data file (updated in 2004, hp04ver.dat). The hp04ver.dat data file predicts a 

slight shift in the aluminum silicate triple point. The NCKFMASH system is generally 

considered as a representative system for metapelites. However, MnO and TiO2 are also 

important (White et al., 2000, 2001) so the 

MnNCKFMASTH system was used for the calculation. 

Gridded minimization was used with no saturated 

components or phases. The CORK equation of state for 

H2O was used (Holland and Powell, 1998). Holland 

and Powell solid solution models were used for 

chlorite, biotite, garnet, and staurolite (Holland et al., 

1998; Holland and Powell, 1998; Powell and Holland, 

1999).  The Fuhrman and Lindsley (1988) feldspar 

solution model was used. To produce rutile in the 

calculation, Ti-end members of biotite (mtbi, ftbi, and 

tbi) and ilmenite (oilm) were excluded. 

 

 

 

Table 2.1. Modal Analysis of LP09-162. 

Mineral Count Percent (%) 

albite 86 9.5 

cordierite 148 16.4 

biotite 438 48.5 

staurolite 85 9.4 

muscovite 1 0.1 

rutile 4 0.4 

tourmaline 23 2.5 

kyanite 77 8.5 

sillimanite 24 2.7 

quartz 13 1.4 

chlorite 4 0.4 

Total 903 100% 
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Table 2.2. Bulk Composition (in wt.%) of Sample LP09-162. 

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O H20 Total 

LP09-162 41.46 1.36 30.17 8.54 0.05 8.62 0.18 1.38 4.12 2.23 98.12 

 

Monazite Geochronology  

Monazite grains in the four metamorphic rock samples used for thermobarometry (LP09-

10, LP09-76, LP09-229, and LP09-162) were located using the methodology of Williams and 

Jercinovic (2002). Ce X-ray maps overlain on Al or Mg X-ray maps for reference were 

conducted for the full thin section and used to locate all monazite grains. Maps were collected 

using stage scan mapping at 20 keV, 35 μm steps, beam defocused to 35 μm, 150 nA, and 20 ms 

count time/pixel on the Cameca SX-100 electron microprobe at the University of Tennessee. 

These maps allow all  monazite grains larger than ~10 μm in the sample to be located and placed 

in a metamorphic and textural context. From the monazite grains located, ~20 grains per sample 

were selected as candidates for analysis. X-ray maps of Y, Th, Pb, and U were obtained for each 

of these grains at 25 kV, 40 nA, 90 ms, and a spot size of 0.255 μm. The compositional maps 

were used to interpret potential age domains and the relationship of monazite growth domains 

with the fabric and metamorphic reactions. Based on these criteria, locations for laser-ablation 

inductively coupled plasma-mass spectrometry (LA-ICPMS) analyses were determined from the 

compositional maps (Appendix 2.1). Th zonation was generally patchy and too small for analysis 

while Y and U exhibit discrete compositional domains (Appendix 2.1), so locations for LA-

ICPMS analyses were chosen to obtain analyses that were each completely (or as close to as 

possible) within each Y and/or U compositional domain. 

Igneous monazite grains were separated from the four leucogranite samples using standard 

crushing and separation techniques at the University of California, Santa Barbara (UCSB). 

Monazite grains were mounted in epoxy and polished. They were then evaluated from BSE 

images taken by the FEI Quanta scanning electron microscope (SEM) at UCSB to determine the 

grains suitable for U-Th-Pb analysis. 

U-Th-Pb ages were obtained using an AttoM single-collector LA-ICPMS (metamorphic 

monazite) or a Nu Plasma multi-collector ICPMS (igneous monazite) attached to a 193nm ArF 

laser ablation system (Photon Machines). Metamorphic monazite was analyzed for 30 s at 4-5 Hz 

and 2.6 J/cm
2
 with a spot size of 10 μm, 20 μm, or a line of 10x20 μm. Monazite grains from the 
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leucogranites were analyzed for 30 s at 3 Hz and 4.8 J/cm
2 

using a 7.2 μm spot. Analytical 

protocol is similar to that described by Cottle et al. (2009b, c) with the modification that the 

collector arrangement on the Nu Plasma at UCSB allows for simultaneous determination of 
232

Th 

and 
238

U on high-mass side Faraday cups equipped with 10
11

 ohm resistors and 
208

Pb, 
207

Pb, 

206
Pb and 

204
Pb on four low-mass side ETP discrete dynode secondary electron multipliers. 

An in-house primary reference monazite (512 ± 0.2 Ma) was employed to monitor and 

correct for mass bias as well as Pb/U and Pb/Th fractionation.  Three secondary reference 

monazites were used to monitor data accuracy: the moacyr monazite (474 Ma, Seydoux-

Guillaume et al., 2002), manangotry (554 Ma, Paquette et al., 1994), and FC1 (55.6 Ma, 

Horstwood et al., 2003). These reference monazite grains were analyzed concurrently (once 

every 5-7 unknowns) with the unknown monazites and were mass bias- and fractionation 

corrected on the basis of measured isotopic ratios of the primary reference material. 

Data reduction, including corrections for baseline, instrumental drift, mass bias and age 

calculations were carried out using in-house software. All uncertainties are quoted at the 95% 

confidence or 2 level and include contributions from the external reproducibility of the primary 

reference material for the
 206

Pb/
238

U and 
206

Pb/
232

Th ratios.  

Concordia diagrams were constructed using Isoplot 2.4 (Ludwig, 2000). 
208

Pb/
232

Th ages 

are insensitive to the effects of disequilibrium in the 
238

U decay chain and excess 
206

Pb that can 

occur in monazite grains (e.g., Schärer, 1984). Furthermore, Th concentrations in monazite are 

high resulting in high levels of 
208

Pb (Harrison et al., 1995) so 
208

Pb/
232

Th ages are used 

throughout this study. 

 

Pressure-Temperature Estimates 

 

Haimanta Group in the Hanging Wall of the Leo Pargil Dome (LP09-10) 

Garnets in sample LP09-10 exhibit a decrease in Xspess from core to near rim with a thin 

(~5μm) inflection at the rim (Fig. 2.5a) suggesting prograde growth followed by late stage 

retrograde net transfer at the rim (Kohn and Spear, 2000). Biotite, muscovite, and plagioclase 

near and away from the garnet exhibit little compositional variation. Staurolite also exhibits 

minor compositional variation. The near-rim composition of the garnet along with averaged data  
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Figure 2.5. Garnet compositions used to estimate pressure-temperature (P-T) estimates. Arrows 

indicate the data point used for P-T estimates. pl, plagioclase. 

 

from biotite near the garnets and muscovite, plagioclase, and staurolite data from throughout the 

sample were used to calculate metamorphic conditions (Table 2.3). These data yield 597 ± 84° C 

and 7.2± 1.3 kbar for staurolite grade rocks (Fig. 2.6; Table 2.4).  

 

Leo Pargil Dome (LP09-76, 229, and 162) 

Compositional X-ray maps (Fig. 2.5b) of a garnet in sample LP09-76 show that garnet in 

this sample exhibits a slight decrease in XSpess from core to near rim with a thin (~5-20 μm) 

inflection at the rim that records late stage retrograde net transfer (Kohn and Spear, 2000). The 

core of the garnet in Figure 2.5b contains quartz and albite inclusions that partially define a  



83 

 

        

 

Figure 2.6. Pressure-temperature data calculated using THERMOCALC overlain on 

petrogenetic grid from Holland and Powell (1998). AFM diagram inset shows compositions of 

phases from samples LP09-229, LP09-76, and LP09-10 projected from muscovite. Data shown 

in Table 2.4. As, aluminum silicate. 

 

sigmoidal inclusion pattern that can be interpreted as an overgrowth of a crenulation or as 

syntectonic rotation and growth. Larger quartz and albite inclusions in the garnet bound the core. 

The truncation of compositional zoning at the top and bottom of the garnet indicates partial 

removal of garnet has occurred in sites of higher strain. Because biotite located near garnet 

porphyroblasts and albite and muscovite at various distances from the garnet contained little 

compositional variation, data from these phases were averaged for thermobarometric 

calculations. Staurolite contained little compositional variation and was also averaged for 

thermobarometric calculations. Combinations of these phases along with the near rim 

composition of the garnet were used to calculate the P-T at peak metamorphic temperatures (Fig.  
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Table 2.3. Compositional Data (in wt. %) Used for Thermobarometric Analyses. 

 
Garnet  

near rim 
Biotite  Plagioclase  Muscovite  Staurolite  

LP09-10  (16) (26) (24) (11) 
SiO2 37.18 35.65 64.39 45.85 27.33 
TiO2 0.01 1.49 0 0.37 0.64 
Al2O3 21.10 19.05 22.38 35.66 53.06 
FeO 34.19 18.31 0.13 1.69 13.95 
MnO 3.66 0.10 0 0.01 0.28 
MgO 3.45 11.22 0 0.52 1.82 
CaO 1.35 0.02 3.19 0.01 0.00 
Na2O 0.02 0.35 9.62 1.78 0.02 
K2O 0 8.94 0.07 8.17 0.00 
∑ 100.96 99.08 99.78 98.53 99.25 
Si 2.97 5.39 2.84 6.13 3.83 
Ti 0.00 0.17 0 0.04 0.07 
Al 1.99 3.39 1.16 5.62 8.77 
Fe 2.29 2.31 0.01 0.19 1.64 
Mn 0.25 0.01 0 0.00 0.03 
Mg 0.41 2.53 0 0.10 0.38 
Ca 0.12 0.00 0.15 0.00 0.00 
Na 0.00 0.10 0.82 0.46 0.01 
K 0 1.72 0.00 1.39 0.00 
∑ 8.03 19.68 5.00 17.95 16.72 

LP09-76  (12) (22) (15) (9) 
SiO2 37.30 35.19 62.84 45.88 27.45 
TiO2 0.02 1.65 0 0.54 0.64 
Al2O3 21.16 19.10 23.24 35.43 53.74 
FeO 32.73 19.17 0.05 1.39 14.20 
MnO 3.57 0.15 0 0.02 0.37 
MgO 3.62 10.97 0 0.65 1.61 
CaO 2.16 0.00 4.38 0.01 0.00 
Na2O 0.02 0.31 9.36 1.48 0.01 
K2O 0 8.73 0.09 8.70 0.01 
∑ 100.58 99.20 99.96 98.59 98.03 
Si 2.98 5.34 2.78 6.14 3.81 
Ti 0.00 0.19 0 0.05 0.07 
Al 1.99 3.42 1.21 5.59 8.80 
Fe 2.19 2.43 0.00 0.16 1.65 
Mn 0.24 0.02 0 0.00 0.04 
Mg 0.43 2.48 0 0.13 0.33 
Ca 0.18 0.00 0.21 0.00 0.00 
Na 0.00 0.09 0.80 0.38 0.00 
K 0 1.69 0.01 1.49 0.00 
∑ 8.02 19.66 5.01 17.94 16.72 
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Table 2.3. Continued. 

 
Garnet 

near rim 
Biotite  Plagioclase  Muscovite  Staurolite  

LP09-229  (11) (30) (10) (14) 
SiO2 36.97 35.70 64.70 46.69 27.41 
TiO2 0.00 1.60 0 0.44 0.57 
Al2O3 21.27 19.57 22.64 35.69 53.70 
FeO 33.13 17.43 0.08 1.57 13.92 
MnO 3.51 0.13 0 0.02 0.33 
MgO 3.41 11.38 0 0.52 2.02 
CaO 2.27 0.03 3.38 0.02 0.00 
Na2O 0.00 0.36 9.75 1.51 0.00 
K2O 0 8.32 0.08 7.95 0.00 
∑ 100.56 98.49 100.32 98.44 100.13 
Si 2.96 5.39 2.83 6.19 3.81 
Ti 0.00 0.18 0 0.04 0.06 
Al 2.01 3.48 1.17 5.58 8.79 
Fe 2.22 2.20 0.00 0.17 1.62 
Mn 0.24 0.02 0 0.00 0.04 
Mg 0.41 2.56 0 0.10 0.42 
Ca 0.19 0.00 0.16 0.00 0.00 
Na 0.00 0.11 0.83 0.39 0.00 
K 0 1.60 0.00 1.35 0.00 
∑ 8.03 19.54 5.00 17.84 16.74 

Note: Numbers in parenthesis represent the number of data points averaged. Analyses  

of 0 indicate that the composition was not analyzed. 

 

 

Table 2.4. Pressure-Temperature Estimates for Barrovian Metamorphism. 

Sample 
THERMOCALC  Peak 

depth 

(km)
b T (° C) 

P 

(kbar) 
Assemblage Removed Cor. Fit 

No. 

rxn. 

LP09-10 597±84 7.2±1.3 grt+st+bt+ms+pl+qtz fcel, mst 0.66 0.75 5 27 

LP09-76 592±83 7.5±1.3 grt+st+bt+ms+pl+qtz+ky 
fcel, mst, 

cel 
0.72 0.66 4 28 

LP09-229 529±72 7.6±1.3 grt+st+bt+ms+pl+qtz mst 0.72 0.93 4 28 
LP09-162

a 630±30 6.6±0.8 — — — — — 25 

Note: THERMOCALC results calculated using the average PT mode. Assemblage, used for 

THERMOCALC estimate; Cor., correlation coefficient; no. rxn., number of reactions used for 

THERMOCALC calculation. 
a
Calculated from pseudosection modeling. These conditions were followed by a drop to 592±32° C and 

4.4±0.7 kbar during decompression. 
b
Calculated assuming a lithostatic pressure gradient of 3.7 km/kbar. 
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2.5b; Table 2.3). These data yielded a P-T estimate of 592 ± 83° C and 7.5 ± 1.3 kbar (Fig. 2.6; 

Table 2.4). 

Compositional X-ray maps (Fig. 2.5c) of garnets in sample LP09-229 record prograde 

zonation defined by a decrease in XSpess from core to near rim (Kohn and Spear, 2000). A thin 

resorption rind (~5 μm) at the garnet rim defined by a minor increase in XSpess is attributed to late 

stage retrograde metamorphism. The Y concentration decreases from the core to the rim. The 

near rim composition at the XSpess trough (Kohn and Spear, 2000) combined with averaged data 

from biotite near the garnet, muscovite, plagioclase, and staurolite (Table 2.3) was used for 

thermobarometry and yielded a P-T estimate of 529 ± 72° C and 7.6± 1.3 kbar (Fig. 2.6; Table 

2.4).  

A pseudosection was calculated for sample LP09-162 to model that P-T path for the growth 

of staurolite, kyanite, cordierite, and sillimanite that are present in this sample (Table 2.1 and 2.2; 

Fig. 2.7). Kyanite is included in and intergrown with staurolite suggesting an early stage of 

porphyroblast growth included kyanite growth that was followed by a second stage of 

porphyroblast growth that included synchronous staurolite and kyanite growth during Barrovian 

metamorphism. Kyanite and staurolite are stable together in the assemblage at peak temperatures 

of 630 ± 30° C and 6.6 ± 0.8 kbar, shown in white in Figure 2.7. The pseudosection shows garnet 

growth along with staurolite and kyanite at peak temperatures (Fig. 2.7). It is assumed that all the 

garnet  reacted out and is no longer preserved in this sample. Staurolite and kyanite are 

overgrown by cordierite, rutile, and sillimanite along with biotite and albite in the matrix that 

record near-isothermal decompression to 592±32° C and 4.4 ± 0.7 kbar (shown in white in 

Figure 2.7). Cordierite and sillimanite occur within the strain shadows of staurolite and kyanite 

suggesting that near-isothermal decompression occurred during top-down-to-the-west shearing 

following cessation of staurolite and kyanite growth. 
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Figure 2.7. Pseudosection for sample LP09-162. White represents the interpreted assemblages 

recorded in this sample. The P-T path is noted by the arrow. The aluminum-silicate triple point 

in bold. For simplification, fields containing andalusite (and) were not plotted. chl, chlorite; ilm, 

ilmenite; crn, corundum. Inset shows the assemblages in this sample projected from muscovite. 

 

In-Situ Monazite Geochronology from Metamorphic Rocks 

 

Haimanta Group in the Hanging Wall of the Leo Pargil Dome (LP09-10) 

Monazite grains in the matrix of sample LP09-10 contain patchy Th zonation (Appendix 

2.1). Y zonation defines three domains: low-Y cores (not seen in Fig. 2.8a, see Appendix 2.1), 

relatively high-Y mantles, and high-U rims that contain variable amounts of Y (Fig. 2.8a, 

Appendix 2.1). Monazite grains of sufficient size for analysis were not found as inclusions in the 

porphyroblasts.  Low-Y cores yield ages from 33.5 ± 3.6 to 32.3 ± 2.6 Ma (n=7), high-Y mantles  
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Figure 2.8. Examples of monazite age domains interpreted from Y and U compositional maps 

from the four samples used for in-situ monazite U-Th-Pb analysis. (a), (b), and (d) contain rims 

that grew along the matrix fabric. White circles and ellipses on compositional maps correspond 

to analysis location. S3 in (a) corresponds to that in Figure 2.3a.  

 

yield ages from 31.9 ± 2.8 to 23.6 ± 3.0 Ma (n=13), and two analyses from the high-U rims yield 

ages of 24.8 ± 3.5 Ma and 25.1 ± 3.6 Ma (Figs. 2.8a and 2.9a; Appendix 2.2). One of the 

analyses on the high-U rims is on a rim that grew along the matrix fabric (Fig. 2.8a), implying 

that the fabric (S3, Fig. 2.3a) was present at 25.1 ± 3.6 Ma. 

 

Leo Pargil Dome (LP09-76, 229, and 162) 

Matrix monazite grains in sample LP09-76 contain patchy Th zonation (Appendix 2.1). Y 

zonation defines low-Y cores and relatively high-Y rims (Fig. 2.8b; Appendix 2.1). No monazite 

grains of sufficient size were found as inclusions within the garnet and staurolite porphyroblasts.  

Monazite exhibits minor U zonation (Fig. 2.8b; Appendix 2.1). Some of the high-Y rims 

grew along the matrix fabric so the data have been divided into the following: low-Y cores, high-  
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Figure 2.9. Concordia diagrams of metamorphic in-situ monazite U-Th-Pb analyses. Colors 

correspond to those used in Figure 2.8.  

 

Y rims, and high-Y rims that grew along the matrix fabric (Figs. 2.8b, 2.9b, and 2.10b). Low-Y 

cores of the monazite grains in this sample yield ages from 36.5 ± 3.6 to 32.0 ± 2.6 Ma 

(n=20) and high-Y rims yield ages from 32.8 ± 3.4 to 27.7 ± 3.7 Ma (n=16) (Fig. 2.10b; 

Appendix 2.1 and 2.2). Two ages from the high-Y rims that grew along the matrix fabric have 

ages of 23.0 ± 3.8 Ma and 22.2 ± 3.9 Ma (Fig. 2.10b; Appendix 2.2).  

Monazite grains present in the matrix and as inclusions in staurolite porphyroblasts in 

sample LP09-229 were analyzed. These monazite grains contain patchy Th zonation (Appendix 

2.1). Y zonation defines low-Y cores, relatively high-Y mantles, and relatively low-Y rims in 

both matrix grains (Fig. 2.8c; Appendix 2.1) and inclusions. The boundary between the low-Y 

cores and the high-Y mantles is generally gradational. U exhibits minor zonation (Fig. 2.8c). In 

some monazite grains, the low-Y rims correlate with a high-U rim. However, the U zonation 

sometimes mimics the patchy Th zonation. Analyses on matrix monazite grains yields ages of 

33.6 ± 2.0 to 30.8 ± 1.7 Ma (n=3) for low-Y cores, 33.0 ± 2.2 to 28.5 ± 1.8 Ma for high-Y  
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Figure 2.10. Probability plots and interpretation of 
208

Pb/
232

Th ages from metamorphic monazite 

in four samples. The data are grouped according to the compositional domains in the monazite 

from which the analysis were taken. Due to small sample size in some of these domains, the 

probability plot is used only to demonstrate ages with their associated errors. Monazite grains 

were included in staurolite grains in LP09-229 and in staurolite and kyanite in LP09-162. See 

text for discussion on the timing of porphyroblast growth. Colors correspond to those used in 

Figures 2.8 and 2.9. 
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mantles (n=23), and 31.1 ± 1.8 to 27.3 ± 1.2 Ma (n=8) for the low-Y rims (Figs. 2.8c and 2.9c). 

Monazite inclusions in staurolite yield ages of 33.7 ± 2.0 Ma for low-Y cores (n=1), 32.4 ± 1.8 to 

30.2 ± 1.7 Ma for high-Y mantles (n=8), and two ages from low-Y rims of 31.0 ± 1.7 and 29.8 ± 

1.7 Ma (Figs. 2.8c and 2.9c; Appendix 2.2). Monazite grains included in staurolite and kyanite 

along with monazite in the matrix in sample LP09-162 (used for pseudosection calculation) 

generally exhibit patchy Th zonation (Appendix 2.1). Y zonation defines low-Y cores and thin  

 (~5-10 μm) relatively high-Y rims (Fig. 2.8d; Appendix 2.1). U zonation mimics the Y zonation. 

Some of the high-Y rims grew along the top-down-to-the-west matrix fabric (Fig. 2.8d). The age 

data have been separated into three groups: low-Y cores, high-Y rims, and high-Y rims that grew 

along the fabric. Monazite compositions from this sample dominantly plot above the concordia 

(Fig. 2.9d), suggesting excess 
206

Pb. The excess may be from accumulation of 
206

Pb
  
during

 238
U 

disequilibrium (e.g., Schärer, 1984) but 
208

Pb/
232

Th ages do not use 
206

Pb so these ages are 

unaffected. Analyses on matrix monazite grains yield ages of 33.8 ± 1.1 Ma to 29.7 ± 4.5 Ma for 

the low-Y cores (n=9), 29.2 ± 1.3 to 28.7 ± 4.6 Ma for the high-Y rims (n=3), and one age of 

23.0 ± 1.1 Ma from a high-Y rim that grew along the matrix fabric (Figs. 2.7d, 2.8d, and 2.9d; 

Appendix 2.1 and 2.2). Analyses on monazite inclusions in staurolite and kyanite yield ages of 

39.4 ± 1.3 to 34.7 ± 1.9 Ma for the low-Y cores (n=4) and two ages from the high-Y rims, 31.6 ±  

1.2 Ma and 29.6 ±  4.0 Ma (Figs. 2.8d and 2.9d; Appendix 2.1 and 2.2).  

 

Monazite Geochronology from Leucogranites 

 

Monazites in sample LP09-158, from the first generation of leucogranite, yielded ages 

ranging from 22.4 ± 0.4 Ma to 19.4 ± 0.3 Ma (n=33) (Fig. 2.11; Appendix 2.3). Samples LP09-

167 and LP09-157, both from the second generation of leucogranite, yielded ages ranging from 

24.7 ± 0.2 Ma to 18.4 ± 0.2 (n=69) and 23.1 ± 0.3 Ma to 18.8 ± 0.2 (n=48), respectively (Fig. 

2.11; Appendix 2.3). LP09-166 from the third and youngest generation of leucogranite yields 

ages ranging from 19.5 ± 0.2 Ma to 18.1 ± 0.2 (n=38) (Fig. 2.11; Appendix 2.3). 
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Figure 2.11. 
 208

Pb/
232

Th ages from leucogranites. (a) Photo of three generations of leucogranite 

within the injection complex in the Leo Pargil dome and the four leucogranite samples collected. 

Refer to Figure 2.2b. (b) Relative probability plots for the four leucogranite samples. 

 

Discussion 

 

Monazite Growth in Metamorphic Rocks 

Although U, Th, and Y in metamorphic monazite can relate to age domains in metamorphic 

monazite, they commonly exhibit complex zonation patterns that may not relate to age zoning 

alone, but also to reactions and processes that occurred in the rock during metamorphism (e.g.,   

DeWolf et al., 1993; Montel, 1993; Hawkins and Bowring, 1997; Williams et al., 1999; Foster et 

al., 2000; Williams and Jercinovic, 2002; Spear and Pyle, 2010). Metamorphic monazite from 

this study exhibits patchy Th compositional zonation, discrete Y compositional zones, and U 

zonation that generally mimics the Y zonation but sometimes also mimics the patchy Th 

zonation (Appendix 2.1) suggesting that these domains reflect processes other than age alone..  

Y zonation in monazite is sensitive to garnet and xenotime growth or breakdown. Modeling 

of monazite growth by Spear and Pyle (2010) demonstrates that at intermediate pressures, Y 

zonation is controlled by xenotime in the absence of garnet and by garnet in the absence of 

xenotime.  In rocks with minimal xenotime, garnet entrains most of the bulk Y within a rock 

during or after its growth. Low-Y domains can grow on monazite grains during and after garnet 

growth as the Y is partitioned into the garnet (e.g., Pyle and Spear, 1999; Foster et al., 2000, 
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2002; Pyle et al., 2001; Cottle et al., 2009b). Likewise, high-Y domains can grow on monazite 

grains after the breakdown of garnet as the bulk Y is released from the garnet (e.g., Pyle and 

Spear, 1999; Foster et al., 2000, 2002; Pyle et al., 2001; Cottle et al., 2009b). This allows the 

monazite composition and ages for the compositional domains, specifically the Y compositional 

zonation, to be related to garnet growth and P-T estimates (e.g., Foster et al., 2004), 

notwithstanding complications regarding concomitant xenotime growth and dissolution. 

Compositional zonation in monazite can also be controlled by dissolution monazite and later 

reprecipitation of this material onto rims of existing monazite grains (Seydoux-Guillaume et al., 

2002). 

Metamorphic monazite grains in samples from the LPD (LP09-76, LP09-229, and LP09-

162) and the Haimanta Group (LP09-10) in the hanging wall of the dome record an episode of 

semi-continuous growth from ~40 Ma to 25 Ma (Fig. 2.10) and a second episode of growth at 

~23 Ma (LP09-76 and LP09-162) with the grains growing along the shear zone fabric (Fig. 2.10b 

and d). These samples from within the dome and the Haimanta Group in the hanging wall record 

a change from low-Y growth (cores) to high-Y growth (rims or mantles) at ~33-32 Ma (Fig. 

2.10). High-Y growth continued through ~28 Ma and again at ~23 Ma in rocks within the dome, 

with the exception of LP09-229 which has monazite grains that contain low-Y rims following the 

growth of the high-Y domain. Due to the absence of xenotime anywhere in this sample, the 

change to low-Y rim growth in LP09-229 grains is likely related to the onset of garnet growth 

where the Y begins being partitioned into the garnet rather than the monazite at ~31 Ma. This 

implies that the Y incorporated into the high-Y domains that began at ~33 Ma was either sourced 

from an earlier garnet breakdown reaction, from the breakdown of xenotime, or from fluid driven 

dissolution of the low-Y monazite cores and subsequent reprecipitation into the high-Y monazite 

domains (Seydoux-Guillaume et al., 2002).    

Metamorphic monazite is produced through a variety of reactions at different metamorphic 

conditions (e.g., Kingsbury et al., 1993; Spear and Pyle, 2002, 2010; Kohn and Malloy, 2004). 

For example, it can form as a replacement of allanite at staurolite-grade conditions (~600° C) 

(Spear and Pyle, 2002), at garnet-grade conditions (~550° C) from REE rich clay in the parent 

rock (Kingsbury et al., 1993), at low-grade (<400 ºC) conditions as a breakdown product of 

allanite (Spear and Pyle, 2002), and from the breakdown of muscovite, chlorite, and garnet at the 
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staurolite-isograd in metapelitic rocks (Kohn and Malloy, 2004). Chambers et al. (2009) 

suggested that the breakdown of muscovite and chlorite at the garnet-isograd produced the P and 

LREE’s necessary for monazite growth in the Haimanta Group in the hanging wall of the LPD.  

This study suggests that the first episode of monazite growth in these samples (~40-25 Ma) 

occurred during prograde Barrovian metamorphism and that the second episode (~23 Ma) 

occurred concurrent with the initial stages of decompression and exhumation of the LPD 

following the end of prograde Barrovian metamorphism (see discussion in the following 

section). Ages for Barrovian metamorphism overlap with those from Chambers et al. (2009), 

who suggested that the Haimanta Group to the south of the field area records garnet growth 

beginning at >34 Ma, peak burial at 30 Ma at 610-620° C and 7-8 kbar, and the end of garnet 

growth at 28 Ma.  

Garnet porphyroblasts in the LPD samples contain few monazite inclusions, while 

staurolite and kyanite contain more abundant monazite inclusions. Garnet porphyroblasts in 

sample LP09-229 are included in staurolite suggesting that garnet growth predates staurolite 

growth (Fig. 2.3d). This implies that monazite growth began prior to garnet growth (>31 Ma) at 

or near the garnet-isograd (involving the garnet-isograd reaction) and the monazite was later 

incorporated into the garnet during growth, beginning soon before 31 Ma. More monazite grew 

following garnet growth involving the staurolite-isograd reaction, and was incorporated in 

staurolite porphyroblasts when they were growing. Monazite grains within the matrix that were 

not incorporated into the staurolite and kyanite in samples from within the dome continued to 

grow until ~28 Ma during Barrovian metamorphism, after the growth of staurolite and kyanite 

had ceased. This demonstrates that monazite grains in these samples grew as a result of multiple 

reactions associated with prograde Barrovian metamorphism. 

A second episode of monazite growth occurred at ~23 Ma during retrograde metamorphism 

associated with decompression and top-down-to-the-west shearing, after ~5 Ma of no growth 

following the end of Barrovian metamorphism. Decompression is associated with the breakdown 

of staurolite and kyanite and the growth of cordierite and sillimanite (Fig. 2.7). Mahan et al. 

(2006) documented monazite growth during decompression in samples from the Legs Lake shear 

zone system in the western Canadian Shield. They suggest that major silicate phases such as 

garnet can be the source of P needed for monazite growth. The breakdown of chlorite and garnet 
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has also been reported to source P and LREE’s for monazite (Kohn and Malloy, 2004; Chambers 

et al., 2009). This study suggests that retrograde monazite in sample LP09-162 may have formed 

by reactions that included the breakdown of garnet, kyanite, chlorite, and staurolite, based on the 

observed assemblages in this sample (Fig. 2.7).  

 

Barrovian Metamorphism 

P-T constraints from this study indicate that the rocks exposed within the LPD and the 

LPSZ experienced peak temperatures during metamorphic conditions of 530-630° C and ~7-8 

kbar during Barrovian metamorphism (Table 2.4). Barrovian metamorphism is attributed to 

crustal thickening following the initial collision (~50 Ma; Searle et al., 1987; Najman et al., 

2010) of the Indian and Eurasian plates. Monazite growth initiated at ~40 Ma during prograde 

metamorphism and continued until ~25 Ma. In sample LP09-229, low-Y rims on monazite 

inclusions in staurolite range from 31.0 ± 1.7 Ma to 29.8 ± 1.7 Ma and low-Y rims on monazite 

grains in the matrix range from 31.1 ± 1.8 to 27.3 ± 1.2 Ma (Fig. 2.10c). This suggests that low-

Y rims were growing on matrix monazites at ~31 Ma and some of the monazites were later 

included in staurolite grains. This was followed by the cessation of staurolite growth soon after 

~30 Ma, after which low-Y rims continued to grow on the monazite grains within the matrix 

until ~27 Ma. The transition from the growth of high-Y mantles (~33-29 Ma) to low-Y rims 

(~31-27 Ma) on the monazite grains could reflect the onset of xenotime and/or garnet growth as 

Y began to be partitioned into these phases rather than the monazite (e.g., Pyle and Spear, 1999; 

Foster et al., 2000, 2002; Pyle et al., 2001). However, since there is no evidence for xenotime in 

sample LP09-229, it is interpreted the Y zonation is related to garnet growth. This suggests that 

garnet growth potentially began by ~31 Ma in this sample (Fig. 2.10c), overlapping with 

estimates from Chambers et al. (2009). Garnet is sometimes partially included in staurolite grains 

(Fig. 2.3d). There is no evidence for garnet overgrowths on staurolite, suggesting that staurolite 

growth began after garnet growth had ceased. These data indicate that the transition from garnet 

growth to staurolite growth occurred at ~31-30 Ma. 

High-Y rims on monazite inclusions in staurolite and kyanite in sample LP09-162 are ~31 

Ma and high-Y rims on monazite grains in the matrix are younger, ~29 Ma (Fig. 2.10d). This 

suggests that staurolite and kyanite were growing at and before ~31 Ma and incorporating 
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monazite grains with high-Y rims. Porphyroblast growth ceased soon after and high-Y rims 

continued to grow on matrix monazite at ~29 Ma. This bracket for staurolite and kyanite growth 

overlaps with the data from sample LP09-229.  

 

Decompression 

Cordierite and sillimanite occur in rocks from within the dome in top-down-to-the-west 

strain shadows and as overgrowths on staurolite and kyanite porphyroblasts that grew during 

Barrovian metamorphism at >30 Ma. The cordierite and sillimanite record near-isothermal 

decompression to ~4 kbar during top-down-to-the-west shearing (Figs. 2.7 and 2.12). LP09-76 

contains a monazite with a rim that grew along the matrix fabric (22.2 ± 3.9 Ma and 23.0 ± 3.8 

Ma; Fig. 2.8b), placing a minimum age for the top-down-to-the-west fabric at ~23 Ma. The 23.0 

± 1.1 Ma age for the high-Y rim that grew along the matrix fabric in sample LP09-162 (Fig. 

2.8d) suggests that the fabric associated with decompression, which contains sillimanite and 

cordierite in the matrix and in strain shadows on staurolite and kyanite, was present by this time. 

These consistent data from two different portions of the LPSZ separated by 15 km demonstrate 

that top-down-to-the-west shearing and decompression associated with the cordierite + 

sillimanite occurred at >23 Ma. The cordierite + sillimanite assemblage is attributed to 

decompression (e.g., Brown and Earl, 1983; Norlander et al., 2002) during exhumation of the 

dome and temperature influx from leucogranite intrusion, maintaining near-isothermal conditions 

during the initial stages of exhumation.  

Peak pressure estimates of 6.6 kbar (LP09-162) suggest that the rocks within the dome 

were at a depth of ~25 km (assuming a lithostatic pressure gradient of 3.7 km/kbar) during 

Barrovian metamorphism and staurolite and kyanite growth, with kyanite and staurolite growth 

ending soon after 30 Ma. Lower pressures (4.5 kbar; depth of ~17 km) overprinted early 

Barrovian metamorphism during decompression by 23 Ma (Table 2.4). Using the P-T conditions 

of the host rocks between 29 Ma (end of Barrovian in this sample) and 23 Ma (minimum for 

onset of exhumation) and a lithostatic pressure gradient of 3.7 km/kbar yields a minimum 

exhumation rate of 1.3 mm/yr between 29 and 23 Ma (Fig. 2.13). This exhumation rate 

underestimates the true exhumation rate because the age for decompression is a minimum since 

the age is from a monazite rim that grew along the shear zone fabric, suggesting that the fabric  
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Figure 2.12. Pressure-temperature-time-deformation (P-T-t-D) path for exhumation of the Leo 

Pargil dome, dashed where inferred. Continued ductile exhumation at 16 Ma during top-down-

to-the-west shearing on the LPSZ after Thiede et al. (2006). Grey ellipses represent P-T 

estimates from the LPSZ and white polygons are from Figure 2.7. (1) and (2) are wet melting 

curves for two real pelites of differing compositions from Nepal (Patino-Douce and Harris, 

1998). Examples of isograd and cordierite reactions from Spear (1995). 

 

was there prior to growth of the rim. The exhumation rate is estimated from data for a sample 

collected near the confluence of the Spiti and Sutlej Rivers at the southernmost end of the dome. 

White mica 
40

Ar/
39

Ar ages record continued exhumation through ~350° C at ~16 Ma (Thiede et 

al., 2006), following the onset of shear zone development (Figs. 2.11 and 2.12). Apatite fission 

track ages suggest that exhumation into positions in the crust that were dominated by brittle 

deformation continued to exhume the LPD along the Kaurik-Chango normal fault at 10 Ma 

(Thiede et al., 2006; Hintersberger et al., 2010, 2011).  
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Figure 2.13. Temperature-time plot for the Leo Pargil dome rocks. Metamorphic monazite ages 

are plotted against peak temperatures calculated for these samples, with the exception of syn-

kinematic monazite. Temperatures for syn-kinematic monazite ages are from temperatures 

during decompression calculated from sample LP09-162 (see Figure 2.7). Syn-kinematic 

monazite ages are the minimum age for top-down-to-the-west to shearing and decompression. 

All other age data is plotted against closure temperature. See text for discussion about 

exhumation rates from 29 to 23 Ma. Cooling rates are calculated from a best fit line between 

syn-kinematic monazite and mica data and between the mica and apatite data. Corresponding 

exhumation rates following cessation of leucogranite intrusion are calculated from the cooling 

rate assuming a geothermal gradient of 25° C/km. 

 

A compilation of monazite U-Th-Pb ages from metamorphic rocks and leucogranites 

presented in this investigation, 
40

Ar/
39

Ar mica ages (Thiede et al., 2006; Hintersberger et al., 

2010), and apatite fission track ages (Thiede et al., 2006) show an increase in cooling rate of 26° 

C/Ma between 23-16 Ma and 38° C/Ma (1.5 mm/yr) between 16-10 Ma, after which exhumation 

transitioned to brittle faults (Fig. 2.13) (Thiede et al., 2006; Hintersberger et al., 2010). The 

temperature during decompression was controlled in part by a temperature influx during 

leucogranite intrusion until 18 Ma when leucogranite intrusion ceased. The transition from 

ductile exhumation to brittle faults is defined by a large decrease in the cooling rate beginning at 

~10 Ma (Thiede et al., 2006). 
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Tectonic Implications and Processes for Dome Formation 

The northward termination of the LPSZ and the Qusum detachment fault bounding the 

LPD with the Karakoram fault system suggests that extension along the flanks of the LPD is 

potentially kinematically linked to right-lateral slip on the Karakoram fault system. The onset 

age of the Karakoram fault system and its total amount of displacement is widely debated, but 

ages vary from ~13-15 Ma (e.g., Phillips et al., 2004; Searle et al. 2007) to >25 to 21 Ma (e.g., 

Lacassin et al., 2004; Valli et al., 2007). The older ages overlap with the age for the onset of 

orogen-parallel extension and exhumation of the LPD (>23 Ma), suggesting that there may be an 

early dextral movement on the Karakoram fault system that when combined with a weakened 

crust could have produced the kinematic setting that led to the development of the LPSZ and 

exhumation of the LPD. In contrast, younger ages for initiation of the Karakoram suggests that 

early (~23 Ma) exhumation of the LPD was decoupled from dextral displacement on the 

Karakoram fault. 

Hintersberger et al. (2010) suggests that the Karakoram fault accommodates a minimal 

amount of modern displacement, implying that east-west extension in this part of the Himalaya 

cannot all be transferred from the Karakoram fault. In this model, the Karakoram fault only 

accommodates a portion of the east-west displacement from within the Tibetan Plateau and the 

remainder of the deformation is transferred south, to a system of north-south trending brittle 

normal faults, including the brittle faults on the southwest flank of the LPD (Hintersberger et al., 

2010). Other studies suggest a large amount of total displacement (up to 120 km) has occurred 

along the Karakoram fault (Valli et al., 2007). This data suggests that orogen-parallel extension 

in this portion of the Himalaya began at >23 Ma, much earlier than previously recorded 

(minimum 16 Ma, Thiede et al., 2006) implying that at this time a tectonic regime existed that 

promoted orogen-parallel extension, whether it be transferred from the Karakoram fault or from 

the Tibetan Plateau. 

The Tso Morari dome (Fig. 2.1a) contains ultrahigh-pressure rocks that record eclogitic 

conditions at ~55 Ma that were exhumed by ~29 Ma (de Sigoyer et al., 2004). Portions of the 

Tso Morari dome were later overprinted by dextral shear associated with the Karakoram fault 

system suggesting that here the Karakoram fault is <29 Ma. If the LPD is kinematically linked to 

movement on the Karakoram fault, new ages from this investigation for the initiation of top-
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down-to-the-west shearing on the southwest flank of the LPD along with existing data from the 

Tso Morari Dome potentially bracket the timing of initiation of the Karakoram fault system 

along this portion of the fault to between <29 and 23 Ma.  However, further details about the 

kinematic evolution of the LPSZ and the potential links with the Karakoram fault must be 

evaluated before these links can be established.   

The onset of orogen-parallel extension and decompression by 23 Ma coincided with 

intrusion of the injection complex from 23 to 18 Ma suggesting a relationship exists between the 

onset of extension and crustal melting. Melt in thickened crust can result in and potentially 

enhance lateral or buoyant vertical crustal flow that will promote the development of extensional 

shear zones (e.g., Royden, 1996; Rey et al., 2001; Teyssier and Whitney, 2002). In contrast, 

melting could develop in response to crustal extension by decompression-driven melting (e.g., 

Hodges, 1998; Whitney et al., 2003).   

Aspects of this investigation that are most relevant to testing models for dome formation 

are the P-T conditions for Barrovian metamorphism, the timing and duration of leucogranite 

injection, and timing of the onset of isothermal decompression and deformation on the LPSZ. U-

Th-Pb ages from the leucogranite injection complex suggest that leucogranite intrusion occurred 

from 23-18 Ma in the southern portion of the dome (Figs. 2.10b and 2.12). U-Pb ages of zircons 

from LPD leucogranites from Leech (2008) range from 28-19 Ma. The host rocks within the 

dome contain sillimanite + cordierite overgrowths and strain shadows on assemblages that grew 

during Barrovian metamorphism at >30 Ma (e.g., staurolite and kyanite). Cordierite + sillimanite 

record the onset of near-isothermal decompression to 4.3 kbar and top-down-to-the-west 

shearing by 23 Ma (Figs. 2.6 and 2.12). These data can test the probability of several possible 

models to describe the exhumation of the LPD. 

Model 1: One model for exhumation of the dome invokes a mid-crust with partial melting 

(28-18 Ma) that developed during south-directed extrusion of the GHS between the MCTZ and 

STDS (Vannay and Grasemann, 2001). In this model, near-isothermal decompression that is 

recorded in rocks currently exposed in the dome was created by ductile movement on the STDS. 

The Kaurik-Chango normal fault system, potentially related to movement on the Karakoram 

fault, exhumed mid-crustal rocks that record melting and leucogranite injection that predate 

exhumation of the dome. This model predicts that all of the exhumation was accommodated on 
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the brittle Kaurik-Chango normal fault and therefore no ductile top-down-to-the-west shear zone 

develops.  

Model 2: An alternative model builds on the previous model where all of the P-T-t-D 

history of the dome formed during early ductile south-directed extrusion between the STDS and 

MCTZ.  However, instead of attributing all of the exhumation to a brittle normal fault, the LPSZ 

represents the sheared contact between the Haimanta Group and underlying GHS that was 

rotated and reactivated during top-down-to-the-west shear (Thiede et al., 2006). In this model, 

the ductile top-down-to-the-west LPSZ exhumes rocks that record a P-T-t-D history that predate 

exhumation of the dome by movement on the LPSZ. 

Model 3: Initial melt generation and leucogranite emplacement began at ~28 Ma (Leech, 

2008) and continued to 18 Ma as a protracted event that created a weakened crust by generating 

a hot ductile mid-crust (e.g., Hollister and Crawford, 1986; Beaumont et al., 2004). The initiation 

of extension on the broadly distributed LPSZ triggered decompression melting, ascent and 

intrusion of accumulated melt into the injection complex at 23 Ma. In this model, the 

decompression path recorded in rocks within the dome accompanied exhumation of the dome. 

Model 1 predicts exhumation of the LPD on only the brittle Kaurik-Chango normal fault 

system. This model  does not account for the presence of a broadly distributed LPSZ that records 

top-down-to-the-west deformation. Data from this investigation demonstrates that west-directed 

ductile extension resulted in the development of cordierite + sillimanite assemblages during 

decompression (>23 Ma) that was immediately followed by intrusion and crystallization of 

decompression-driven melts (23-18 Ma). This implies that melting and decompression recorded 

in the LPD are linked to movement on the LPSZ that accommodated exhumation, in contrast to 

Model 2. Predictions of Model 3 best explains the evolution of the LPD, where early partial 

melting weakened the mid-crust and east-west-directed exhumation that was trigged by some 

kinematic driver such as movement on the Karakoram fault lead to decompression melting.  

Previous studies suggested that ductile exhumation of the LPD began at a minimum of 16 

Ma (Thiede et al., 2006). Our data implies that orogen-parallel extension in this part of the 

Himalaya occurred ~7 Ma earlier (Thiede et al., 2006), potentially during a time of active 

exhumation along the STDS recorded to the south in Sutlej valley (e.g., Inger and Harris, 1993; 

Hodges, 2000; Harris and Massey, 1994; Vannay et al., 2004). Mitsuishi et al. (2012) document 
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east-west extension on the Kung Co rift (19 Ma) concurrently with north-south extension along 

the STDS in southern Tibet, suggesting that east-west extension in this portion of the Tibetan 

Plateau also potentially occurred during a time of active exhumation of the GHS. 

Competing models for melt-present flow and subsequent exhumation of gneiss domes in 

different kinematic settings (e.g., Teyssier and Whitney, 2002; Beaumont et al., 2004; Lee et al., 

2000, 2004) (including crustal melting and buoyancy driven flow, crustal extension, 

transpression, or thrusting) demonstrate the complexities of gneiss dome formation. Data from 

the LPD suggest that multiple mechanisms worked to exhume this dome including an interplay 

between a kinematic setting that favored orogen-parallel extension, protracted anatexis, strain 

partitioning, and decompression. These processes may pertain to models for gneiss dome 

formation in other settings where crustal melting and strain partitioning occur.  

 

Conclusions 

 

P-T-t-D constraints on the timing of metamorphism, melting, and onset of exhumation of 

the LPD indicate that the rocks within the dome experienced prograde Barrovian metamorphism 

associated with the growth of staurolite and kyanite at conditions of 530-630° C and ~7-8 kbar 

prior to 30 Ma. This was followed by top-down-to-the-west shearing and near-isothermal 

decompression of the LPD rocks to ~4 kbar by 23 Ma and emplacement of the leucogranite 

injection complex from 23 to 18 Ma. Competing models for the feedback between melt-present 

flow and subsequent exhumation of domes in different kinematic settings (e.g., Teyssier and 

Whitney, 2002; Beaumont et al., 2004; Lee et al., 2000, 2004) demonstrate the complexities of 

dome exhumation. Gneiss domes in orogenic settings can be exhumed through multiple 

processes including but not limited to crustal melting and buoyancy driven flow, crustal 

extension, transpression, or thrusting. Data from this investigation suggests that multiple 

processes worked to exhume the LPD. The processes that exhumed this dome were controlled by 

a relationship between a kinematic setting that favored orogen-parallel extension, protracted 

anatexis, strain partitioning, and decompression. Melt-weakening of the crust and strain 

localization promoted shear zone development, decompression of the footwall rocks by 23 Ma, 

and decompression melting in the core during exhumation of the dome from 23 to 18 Ma. 
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Appendix 2.1 

Compositional Maps of Metamorphic Monazite  
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Appendix 2.2 

 
Appendix 2.2. U-Th-Pb Isotopic Data From Monazite Grains in Metamorphic Rocks. 

Analysis 
204

Pb 
cps 

206
Pb 

cps 

207
Pb 

cps 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
Location

a 
206

Pb/
238

U 1σ % 208
Pb/

232
Th 1σ % 208

Pb/
232

Th 2σ abs 

LP09-10           

Low-Y Cores          
m4a 27 17214 1268 0.0055 5.4 0.00163 3.5 33.0 2.3 mx 
m8a 53 15322 1183 0.0047 5.1 0.00162 4.8 32.8 3.1 mx 
m15a 21 16950 1217 0.0043 5.0 0.00164 4.8 33.2 3.2 mx 
m15b 12 13920 1081 0.0059 5.0 0.00164 6.0 33.2 4.0 mx 
m15c 20 16671 1191 0.0040 5.5 0.00166 3.7 33.4 2.5 mx 
m16a 28 15586 1091 0.0043 4.8 0.00166 5.2 33.5 3.6 mx 
m17a 33 16802 1333 0.0050 4.6 0.00160 4.0 32.3 2.6 mx 
High-Y Mantles          
m1a 15 15730 1327 0.0050 5.7 0.00140 4.5 28.2 2.5 mx 
m1b 27 16946 1221 0.0052 4.6 0.00145 3.1 29.3 1.8 mx 
m4b 40 14933 1273 0.0047 5.2 0.00134 5.9 27.1 3.2 mx 
m8b 86 19711 1999 0.0037 6.6 0.00117 6.3 23.6 3.0 mx 
m10a 19 16190 1096 0.0040 4.2 0.00123 4.6 24.9 2.3 mx 
m10b 20 15265 1066 0.0047 6.2 0.00150 6.1 30.2 3.7 mx 
m12 13 23573 1710 0.0039 4.3 0.00158 4.4 31.9 2.8 mx 
m15d 44 13981 1453 0.0036 6.8 0.00137 7.0 27.7 3.9 mx 
m16b 28 15499 1105 0.0050 4.9 0.00158 3.6 31.8 2.3 mx 
m18a 33 14958 1185 0.0042 5.4 0.00140 6.0 28.2 3.4 mx 
m20a 33 17575 1363 0.0046 4.4 0.00135 6.4 27.2 3.5 mx 
m20b 189 18588 2881 0.0049 7.0 0.00158 4.3 31.9 2.7 mx 
m22 27 14872 1065 0.0036 6.0 0.00134 6.7 27.0 3.6 mx 
High-U Rims          
m17b 39 14128 1199 0.0041 5.9 0.00123 7.0 24.8 3.5 mx 
m18b 57 12750 1219 0.0041 5.8 0.00124 7.2 25.1 3.6 mx 
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Appendix 2.2. Continued.
     

Analysis 
204

Pb 
cps 

206
Pb 

cps 

207
Pb 

cps 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
Location

a 
206

Pb/
238

U 1σ % 208
Pb/

232
Th 1σ % 208

Pb/
232

Th 2σ abs 

LP09-76           
Low-Y Cores          
m1a 68 57992 3715 0.0050 1.0 0.00175 3.8 35.3 2.7 mx 
m1b 148 47980 4341 0.0048 0.9 0.00159 4.1 32.0 2.6 mx 
m1c 87 56309 3978 0.0051 1.1 0.00163 3.4 32.9 2.2 mx 
m3a 106 68688 4724 0.0050 0.9 0.00163 2.3 33.0 1.5 mx 
m3b 100 67141 4683 0.0055 0.8 0.00175 2.5 35.4 1.8 mx 
m5a 179 46983 4828 0.0052 1.2 0.00160 2.4 32.4 1.6 mx 
m7 125 58361 4685 0.0052 0.9 0.00169 2.3 34.1 1.6 mx 
m10a 127 65311 4834 0.0048 1.2 0.00165 2.4 33.3 1.6 mx 
m11 39 33946 2286 0.0052 5.0 0.00181 4.9 36.5 3.6 mx 
m13a 70 29770 2434 0.0053 1.4 0.00166 4.6 33.6 3.1 mx 
m14a 149 35435 4095 0.0052 1.4 0.00164 4.9 33.0 3.2 mx 
m15a 91 54191 3794 0.0051 2.6 0.00161 1.2 32.6 0.8 mx 
m15b 49 49221 3504 0.0052 2.6 0.00177 1.8 35.6 1.3 mx 
m15c 77 49190 3614 0.0049 2.6 0.00169 1.9 34.2 1.3 mx 
m21a 71 39952 3167 0.0052 4.3 0.00170 4.1 34.3 2.8 mx 
m22a 59 51450 3388 0.0052 2.6 0.00166 1.7 33.5 1.2 mx 
m22b 67 52260 3702 0.0052 2.7 0.00162 1.8 32.8 1.2 mx 
m22c 89 55026 4218 0.0053 2.7 0.00170 1.9 34.2 1.3 mx 
m23a 73 29240 2290 0.0055 5.5 0.00181 4.5 36.5 3.3 mx 
m27a 50 43594 3199 0.0056 2.6 0.00162 1.9 32.7 1.2 mx 
High-Y Rims         
m5b 47 31597 2842 0.0052 5.0 0.00144 5.2 29.0 3.0 mx 
m10b 51 38198 2724 0.0044 4.8 0.00156 5.9 31.4 3.7 mx 
m13b 103 30825 3449 0.0044 6.2 0.00154 4.2 31.1 2.6 mx 
m14b 82 36127 2877 0.0053 4.1 0.00154 3.0 31.2 1.8 mx 
m14c 90 37000 2895 0.0046 4.7 0.00159 3.7 32.2 2.4 mx 
m15d 90 32980 2618 0.0043 5.1 0.00142 4.8 28.6 2.8 mx 
m15e 125 19788 2971 0.0047 5.1 0.00157 6.1 31.7 3.8 mx 
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Appendix 2.2. Continued.
  

   

Analysis 
204

Pb 
cps 

206
Pb 

cps 

207
Pb 

cps 
Uncorrected isotopic ratios Uncorrected ages (Ma) Location

a 
206

Pb/
238

U 1σ % 208
Pb/

232
Th 1σ % 208

Pb/
232

Th 2σ abs 

m18 149 20918 3307 0.0051 4.1 0.00137 6.7 27.7 3.7 mx 
m19a 53 36141 2813 0.0052 3.9 0.00150 5.0 30.4 3.0 mx 
m19b 334 31022 6803 0.0061 5.3 0.00152 7.4 30.6 4.5 mx 
m22e 119 34179 3099 0.0050 6.2 0.00162 5.2 32.8 3.4 mx 
m22f 72 29537 2438 0.0047 4.7 0.00138 5.7 27.9 3.2 mx 
m23b 116 27859 3272 0.0058 4.8 0.00145 4.3 29.3 2.5 mx 
m25a 65 38093 2651 0.0041 3.8 0.00154 3.4 31.1 2.1 mx 
m25b 55 35254 2610 0.0045 4.5 0.00153 4.3 30.9 2.6 mx 
m27b 39 36659 2597 0.0045 4.3 0.00154 5.1 31.0 3.1 mx 
High-Y Rims parallel to fabric       
m21b 71 20473 2218 0.0031 7.2 0.00114 8.3 23.0 3.8 mx 
m21c 70 15967 1765 0.0042 6.4 0.00110 8.7 22.2 3.9 mx 
LP09-229           
Low-Y Cores         
m1a 16 12876 624 0.0047 4.1 0.00167 3.0 33.7 2.0 st 
m3a 0 11203 572 0.0048 2.6 0.00158 3.3 31.9 2.1 mx 
m12a 5 7095 516 0.0043 5.4 0.00166 3.0 33.6 2.0 mx 
m16a 5 12696 615 0.0054 4.2 0.00153 2.8 30.8 1.7 mx 
High-Y Mantles          
m1b 11 11423 583 0.0051 4.0 0.00157 2.9 31.7 1.8 st 
m1c 10 14271 691 0.0047 3.7 0.00157 2.7 31.7 1.7 st 
m3b 0 11645 602 0.0052 2.7 0.00148 3.2 29.9 1.9 mx 
m3c 1 12393 610 0.0050 4.7 0.00152 2.2 30.7 1.4 mx 
m5a 12 14979 701 0.0048 4.1 0.00150 3.1 30.3 1.9 mx 
m5b 8 14367 708 0.0044 3.9 0.00141 3.1 28.5 1.8 mx 
m8 15 12891 640 0.0046 4.2 0.00159 2.5 32.1 1.6 mx 
m9a 0 9133 519 0.0053 2.7 0.00159 3.4 32.2 2.2 mx 
m9b 4 11298 575 0.0047 2.6 0.00146 3.4 29.5 2.0 mx 
m9d 0 8617 463 0.0045 2.4 0.00158 3.5 31.9 2.3 mx 
m10a 5 10746 542 0.0044 2.8 0.00146 3.8 29.6 2.2 mx 
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Appendix 2.2. Continued.         

Analysis 
204

Pb 
cps

 

206
Pb 

cps
 

207
Pb 

cps
 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
Location

a 206
Pb/

238
U 1σ % 208

Pb/
232

Th 1σ % 208
Pb/

232
Th 2σ abs 

m11a 0 11506 581 0.0045 4.9 0.00155 1.9 31.3 1.2 mx 
m11b 5 11479 586 0.0043 4.5 0.00142 2.0 28.6 1.1 mx 
m12c 1 11700 543 0.0046 4.5 0.00154 2.3 31.0 1.5 mx 
m12d 0 9463 524 0.0043 5.0 0.00164 3.4 33.0 2.2 mx 
m13a 13 15502 816 0.0042 4.0 0.00157 2.8 31.6 1.7 mx 
m16b 7 13158 663 0.0052 3.9 0.00142 3.2 28.6 1.8 mx 
m20a 0 18199 966 0.0043 3.4 0.00150 2.8 30.3 1.7 st 
m20b 0 14022 683 0.0049 3.7 0.00158 2.9 31.9 1.9 st 
m20c 0 14336 700 0.0048 3.8 0.00157 3.1 31.7 1.9 st 
m23a 0 17778 864 0.0052 3.6 0.00150 2.8 30.2 1.7 st 
m23b 0 10056 523 0.0043 4.1 0.00152 3.1 30.6 1.9 st 
m24a 6 11509 601 0.0049 5.1 0.00151 2.2 30.4 1.3 mx 
m24b 0 12861 693 0.0044 4.6 0.00154 2.0 31.0 1.2 mx 
m24c 0 12123 613 0.0049 4.8 0.00154 2.4 29.7 1.4 mx 
m24d 6 11797 580 0.0054 4.6 0.00154 2.2 31.0 1.4 mx 
m24e 10 12014 687 0.0044 4.6 0.00147 2.4 31.1 1.5 mx 
m25a 14 13867 707 0.0047 3.9 0.00160 2.8 32.4 1.8 st 
m26 6 14282 738 0.0043 4.2 0.00149 2.9 30.2 1.8 mx 
m31a 0 11619 631 0.0046 4.1 0.00155 2.8 31.4 1.8 mx 
m31b 10 7557 553 0.0051 4.3 0.00155 3.0 31.3 1.9 mx 
Low-Y Rims          
m1d 3 12578 639 0.0040 4.1 0.00153 2.8 31.0 1.7 st 
m3d 0 10607 566 0.0050 4.7 0.00139 2.3 28.2 1.3 mx 
m10b 2 10258 520 0.0044 3.4 0.00145 3.5 29.2 2.1 mx 
m10c 8 10753 585 0.0043 2.5 0.00138 3.9 27.8 2.2 mx 
m12e 5 6782 465 0.0042 5.3 0.00154 2.9 31.1 1.8 mx 
m13b 2 11342 618 0.0044 4.1 0.00143 2.9 29.0 1.7 mx 
m24f 7 11764 580 0.0043 4.8 0.00139 2.6 28.0 1.5 mx 
m24g 0 11840 650 0.0047 4.7 0.00135 2.3 27.3 1.2 mx 
m24h 0 13655 647 0.0045 4.1 0.00151 2.9 30.6 1.8 mx 
m25b 10 14776 714 0.0046 4.2 0.00148 2.8 29.8 1.7 st 
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Appendix 2.2. Continued. 

Analysis 
204

Pb 
cps

 

206
Pb 

cps
 

207
Pb 

cps
 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
Location

a 206
Pb/

238
U 1σ % 208

Pb/
232

Th 1σ % 208
Pb/

232
Th 2σ abs 

LP09-162           
Low-Y Cores          
m4 30 10759 673 0.0054 5.4 0.00148 6.7 29.9 4.1 mx 
m15 8 9243 569 0.0060 5.6 0.00147 7.5 29.7 4.5 mx 
m20 25 10861 667 0.0064 5.9 0.00154 8.3 31.1 5.2 mx 
m22a 17 11171 747 0.0052 2.3 0.00164 1.4 33.0 0.9 mx 
m23a 0 9277 610 0.0066 5.3 0.00165 7.4 33.2 5.9 mx 
m23b 0 15502 918 0.0058 2.7 0.00167 1.6 33.8 1.1 mx 
m23c 0 10725 619 0.0070 2.8 0.00160 1.5 32.3 0.9 mx 
m25a 10 7514 457 0.0064 3.6 0.00181 1.8 36.6 1.3 st 
m27 16 13758 924 0.0060 3.8 0.00172 2.7 34.7 1.9 st 
m32a 46 8262 702 0.0062 2.4 0.00189 1.3 38.1 1.0 ky  
m32b 17 4235 320 0.0054 2.4 0.00195 1.7 39.4 1.3 ky 
m37a 24 8167 577 0.0063 4.7 0.00166 7.8 32.9 5.1 mx 
m38a 12 8198 525 0.0057 4.9 0.00150 8.8 29.8 5.3 mx 
High-Y Rims          
m33 5 7441 478 0.0058 6.4 0.00144 8.6 28.7 4.6 mx 
m28 0 11596 707 0.0051 4.4 0.00147 6.8 29.6 4.0 st 
m22b 23 13650 880 0.0042 2.5 0.00144 2.2 29.2 1.3 mx 
m25b 13 11719 765 0.0046 3.6 0.00156 2.0 31.6 1.2 st 
m38b 20 8434 632 0.0042 3.6 0.00145 2.2 29.2 1.3 mx 
High-Y Rims parallel to fabric      
m38c 21 9527 713 0.0034 3.6 0.00114 2.4 23.0 1.1 mx 
a
 st, staurolite inclusion; ky, kyanite inclusion; mx, matrix. 
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Appendix 2.3 

 
Appendix. 2.3. U-Th-Pb Isotopic Data from Monazite Grains in Granites. 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
206

Pb/
238

U     2σ% 208
Pb/

232
Th     2σ% 208

Pb/
232

Th 2σ abs 

LP09-157    
0.0033 1.2 0.00093 1.1 18.8 0.2 
0.0032 1.6 0.00094 1.1 18.9 0.3 
0.0031 1.6 0.00094 1.1 18.9 0.3 
0.0033 1.5 0.00095 1.1 19.1 0.2 
0.0034 1.5 0.00095 1.1 19.2 0.2 
0.0033 1.8 0.00096 1.0 19.4 0.3 
0.0034 1.5 0.00097 1.0 19.7 0.2 
0.0035 1.6 0.00098 1.0 19.8 0.3 
0.0034 1.5 0.00098 1.0 19.8 0.3 
0.0033 1.6 0.00098 1.1 19.8 0.3 
0.0033 1.5 0.00099 1.0 20.0 0.3 
0.0034 1.6 0.00100 1.0 20.2 0.3 
0.0035 1.4 0.00100 1.0 20.2 0.3 
0.0034 1.6 0.00100 1.0 20.2 0.2 
0.0034 1.5 0.00100 1.0 20.2 0.3 
0.0036 1.4 0.00100 1.0 20.2 0.2 
0.0034 1.6 0.00100 1.0 20.2 0.3 
0.0035 1.4 0.00100 1.0 20.3 0.2 
0.0035 1.6 0.00101 1.0 20.3 0.3 
0.0034 1.5 0.00101 1.0 20.4 0.3 
0.0034 1.6 0.00102 2.0 20.5 0.3 
0.0035 1.7 0.00102 1.0 20.6 0.3 
0.0035 1.6 0.00102 1.0 20.7 0.3 
0.0033 1.5 0.00103 1.0 20.8 0.3 
0.0033 1.5 0.00105 1.0 21.3 0.3 
0.0035 1.4 0.00106 0.9 21.4 0.3 
0.0035 1.1 0.00106 0.9 21.4 0.3 
0.0034 1.2 0.00106 0.9 21.4 0.2 
0.0035 1.6 0.00106 0.9 21.5 0.3 
0.0034 1.5 0.00107 0.9 21.6 0.3 
0.0035 1.6 0.00107 0.9 21.7 0.3 
0.0035 1.1 0.00108 0.9 21.8 0.3 
0.0035 1.6 0.00108 0.9 21.8 0.3 
0.0035 1.1 0.00108 0.9 21.8 0.3 
0.0035 1.1 0.00108 0.9 21.8 0.3 
0.0035 1.4 0.00108 1.9 21.9 0.3 
0.0036 1.6 0.00108 0.9 21.9 0.3 
0.0035 1.1 0.00108 0.9 21.9 0.3 
0.0035 1.1 0.00108 0.9 21.9 0.3 
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Appendix 2.3. Continued. 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
206

Pb/
238

U 2σ% 206
Pb/

238
U    2σ% 206

Pb/
238

U 2σ abs 

0.0035 1.4 0.00109 0.9 21.9 0.3 
0.0035 1.4 0.00109 0.9 22.1 0.3 
0.0035 1.4 0.00110 0.9 22.2 0.3 
0.0035 1.1 0.00110 0.9 22.3 0.3 
0.0035 1.1 0.00111 0.9 22.4 0.2 
0.0036 1.1 0.00112 0.9 22.6 0.3 
0.0036 1.1 0.00112 1.8 22.7 0.3 
0.0036 1.1 0.00113 0.9 22.9 0.3 
0.0036 1.1 0.00114 0.9 23.1 0.3 
LP09-158 

    0.0029 1.4 0.00096 1.0 19.4 0.3 
0.0032 0.9 0.00097 1.0 19.6 0.2 
0.0031 1.3 0.00097 1.0 19.7 0.2 
0.0032 1.4 0.00098 1.0 19.7 0.2 
0.0031 1.3 0.00098 1.0 19.8 0.2 
0.0030 1.3 0.00098 1.0 19.8 0.3 
0.0032 1.4 0.00099 1.0 20.0 0.2 
0.0032 0.9 0.00100 1.0 20.1 0.2 
0.0032 1.4 0.00100 1.0 20.2 0.2 
0.0032 1.3 0.00100 1.0 20.2 0.2 
0.0032 1.4 0.00100 1.0 20.3 0.2 
0.0031 1.3 0.00101 1.0 20.3 0.2 
0.0033 1.4 0.00101 1.0 20.3 0.2 
0.0031 1.3 0.00101 1.0 20.4 0.3 
0.0032 1.4 0.00101 1.0 20.4 0.2 
0.0032 1.3 0.00101 1.0 20.5 0.2 
0.0031 1.4 0.00101 1.0 20.5 0.2 
0.0032 0.9 0.00101 1.0 20.5 0.2 
0.0032 1.3 0.00101 1.0 20.5 0.2 
0.0031 1.3 0.00102 1.0 20.5 0.2 
0.0032 0.9 0.00102 1.0 20.5 0.2 
0.0031 1.3 0.00102 1.0 20.6 0.3 
0.0033 1.2 0.00102 1.0 20.6 0.3 
0.0031 1.3 0.00102 1.0 20.7 0.3 
0.0032 1.3 0.00103 1.0 20.8 0.3 
0.0032 1.4 0.00104 1.0 21.1 0.3 
0.0033 1.2 0.00105 1.9 21.2 0.3 
0.0032 1.4 0.00106 0.9 21.5 0.2 
0.0032 1.3 0.00108 0.9 21.8 0.3 
0.0032 1.4 0.00108 0.9 21.9 0.2 
0.0034 1.5 0.00109 1.8 22.1 0.3 
0.0034 1.2 0.00110 0.9 22.2 0.3 
0.0034 1.2 0.00111 1.8 22.4 0.4 
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Appendix 2.3. Continued. 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
206

Pb/
238

U 2σ% 206
Pb/

238
U 2σ% 206

Pb/
238

U 2σ abs 

LP09-166 
    0.0030 1.3 0.00089 1.1 18.1 0.2 

0.0030 1.0 0.00090 1.1 18.1 0.2 
0.0030 1.3 0.00090 1.1 18.2 0.2 
0.0030 1.3 0.00090 1.1 18.2 0.2 
0.0030 1.0 0.00090 1.1 18.2 0.2 
0.0030 1.0 0.00090 1.1 18.3 0.2 
0.0029 1.0 0.00090 1.1 18.3 0.2 
0.0030 1.3 0.00091 1.1 18.3 0.2 
0.0030 1.3 0.00091 1.1 18.3 0.2 
0.0030 1.0 0.00091 1.1 18.3 0.2 
0.0029 1.0 0.00091 1.1 18.4 0.2 
0.0030 1.3 0.00091 1.1 18.4 0.2 
0.0030 1.0 0.00091 1.1 18.4 0.2 
0.0029 1.0 0.00091 1.1 18.5 0.2 
0.0029 1.0 0.00091 1.1 18.5 0.2 
0.0030 1.0 0.00091 1.1 18.5 0.2 
0.0030 1.3 0.00092 1.1 18.5 0.2 
0.0030 1.3 0.00092 1.1 18.5 0.2 
0.0029 1.4 0.00092 1.1 18.5 0.2 
0.0030 1.3 0.00092 1.1 18.5 0.2 
0.0030 1.3 0.00092 1.1 18.5 0.3 
0.0030 1.3 0.00092 1.1 18.6 0.2 
0.0029 1.4 0.00092 1.1 18.6 0.2 
0.0029 1.4 0.00093 1.1 18.7 0.2 
0.0030 1.0 0.00093 1.1 18.7 0.2 
0.0030 1.0 0.00093 1.1 18.7 0.2 
0.0030 1.3 0.00093 1.1 18.8 0.2 
0.0030 1.3 0.00093 1.1 18.8 0.2 
0.0029 1.0 0.00093 1.1 18.9 0.2 
0.0030 1.3 0.00094 1.1 18.9 0.2 
0.0030 1.3 0.00094 1.1 18.9 0.2 
0.0031 1.0 0.00094 1.1 19.0 0.2 
0.0030 1.3 0.00094 1.1 19.0 0.3 
0.0030 1.3 0.00094 1.1 19.0 0.2 
0.0030 1.3 0.00094 1.1 19.1 0.2 
0.0030 1.3 0.00095 1.1 19.2 0.2 
0.0030 1.3 0.00095 1.1 19.2 0.2 
0.0032 0.9 0.00097 1.0 19.5 0.2 
LP09-167 

    0.0031 1.0 0.00091 1.1 18.4 0.2 
0.0031 1.0 0.00091 1.1 18.4 0.2 
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Appendix 2.3. Continued. 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
206

Pb/
238

U 2σ% 206
Pb/

238
U     2σ%    206

Pb/
238

U 2σ abs 

0.0030 1.0 0.00091 1.1 18.5 0.2 
0.0031 1.0 0.00092 1.1 18.6 0.2 
0.0032 1.3 0.00093 1.1 18.7 0.2 
0.0032 1.3 0.00094 1.1 19.1 0.2 
0.0033 0.9 0.00095 1.1 19.1 0.2 
0.0033 1.2 0.00095 1.1 19.1 0.2 
0.0032 1.6 0.00095 2.1 19.2 0.3 
0.0033 1.2 0.00095 1.1 19.3 0.2 
0.0033 0.9 0.00096 1.0 19.4 0.2 
0.0033 1.2 0.00097 1.0 19.6 0.2 
0.0035 2.3 0.00099 2.0 19.9 0.3 
0.0033 0.9 0.00099 1.0 19.9 0.2 
0.0033 0.9 0.00099 1.0 20.0 0.2 
0.0034 0.9 0.00101 1.0 20.3 0.2 
0.0034 1.2 0.00101 1.0 20.4 0.2 
0.0033 1.2 0.00101 1.0 20.4 0.2 
0.0034 1.2 0.00102 1.0 20.7 0.2 
0.0033 1.2 0.00102 1.0 20.7 0.2 
0.0034 0.9 0.00103 1.0 20.8 0.2 
0.0034 0.9 0.00104 1.0 20.9 0.2 
0.0034 0.9 0.00104 1.0 20.9 0.2 
0.0034 1.2 0.00104 1.0 20.9 0.3 
0.0033 0.9 0.00104 1.0 21.0 0.2 
0.0034 1.2 0.00104 1.0 21.0 0.3 
0.0034 1.2 0.00105 1.0 21.2 0.2 
0.0035 0.9 0.00105 1.0 21.2 0.2 
0.0035 1.1 0.00105 1.0 21.2 0.2 
0.0035 0.9 0.00105 1.0 21.2 0.2 
0.0034 0.9 0.00105 1.0 21.2 0.2 
0.0034 0.9 0.00105 1.0 21.3 0.2 
0.0035 0.9 0.00106 0.9 21.3 0.2 
0.0034 0.9 0.00106 0.9 21.4 0.2 
0.0035 0.9 0.00106 0.9 21.4 0.2 
0.0034 0.9 0.00106 0.9 21.4 0.2 
0.0035 0.9 0.00106 0.9 21.4 0.2 
0.0034 0.9 0.00106 0.9 21.4 0.2 
0.0036 1.1 0.00106 0.9 21.5 0.2 
0.0035 1.1 0.00106 0.9 21.5 0.2 
0.0034 1.2 0.00106 0.9 21.5 0.2 
0.0035 0.9 0.00107 0.9 21.6 0.2 
0.0034 0.9 0.00107 0.9 21.6 0.2 
0.0034 0.9 0.00107 0.9 21.6 0.2 
0.0034 0.9 0.00107 0.9 21.7 0.2 
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Appendix 2.3. Continued. 

Uncorrected isotopic ratios Uncorrected ages (Ma) 
206

Pb/
238

U      2σ% 206
Pb/

238
U       2σ% 206

Pb/
238

U 2σ abs 

0.0035 0.9 0.00107 0.9 21.7 0.2 
0.0034 1.2 0.00108 0.9 21.7 0.2 
0.0034 0.9 0.00108 0.9 21.8 0.2 
0.0035 1.1 0.00108 0.9 21.8 0.2 
0.0034 0.9 0.00108 0.9 21.9 0.2 
0.0034 0.9 0.00108 0.9 21.9 0.2 
0.0034 1.2 0.00109 0.9 21.9 0.2 
0.0034 0.9 0.00109 0.9 21.9 0.2 
0.0035 0.9 0.00109 0.9 22.0 0.2 
0.0034 1.2 0.00109 0.9 22.0 0.2 
0.0034 1.2 0.00109 0.9 22.0 0.2 
0.0034 1.2 0.00109 0.9 22.0 0.2 
0.0035 1.1 0.00109 0.9 22.1 0.2 
0.0034 1.2 0.00109 0.9 22.1 0.2 
0.0034 1.2 0.00110 0.9 22.2 0.2 
0.0034 1.2 0.00110 0.9 22.2 0.2 
0.0035 0.9 0.00111 0.9 22.3 0.2 
0.0035 1.1 0.00111 0.9 22.4 0.3 
0.0035 1.1 0.00111 0.9 22.4 0.3 
0.0036 1.1 0.00111 0.9 22.5 0.2 
0.0035 1.1 0.00112 0.9 22.7 0.3 
0.0036 1.4 0.00113 0.9 22.8 0.3 
0.0036 1.1 0.00118 0.8 23.8 0.2 
0.0039 1.0 0.00122 0.8 24.7 0.2 
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CHAPTER III: 

STRUCTURAL EVOLUTION OF THE LEO PARGIL DOME, 

NORTHWEST INDIA: IMPLICATIONS FOR THE TECTONICS OF THE 

WESTERN HIMALAYA 
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preparing the manuscript for publication. 

 

Abstract 

 

Building of the Himalaya and Tibetan Plateau since the Eocene involved an interplay 

between crustal thickening and extension that continues today. Early mountain building was 

dominated by thrusting, crustal thickening, and exhumation of the high-grade core of the 

Himalaya. Since the Miocene, crustal deformation in the Himalaya and Tibetan Plateau has been 

accommodated by south-directed thrusting at the Himalayan front and by east-west extension 

within the Himalaya and Tibetan Plateau along normal and strike-slip faults. The northwest 

Indian Himalaya contains north-south oriented normal faults and northeast oriented normal-sense 

shear zones (i.e. shear zones that bound the Leo Pargil dome), southwest of the dextral 

Karakoram strike-slip fault system. West-directed extension on the normal-displacement Leo 

Pargil shear zone, bounding the southwest flank of the Leo Pargil dome began by 23 Ma, earlier 

than documented anywhere else in the Himalaya. Deformation temperatures and mean kinematic 

vorticity estimates (Wm) during ductile shearing on the Leo Pargil shear zone are integrated with 

pressure-temperature estimates during crustal thickening prior to initiation of the extension to 

evaluate the kinematic evolution of the Leo Pargil shear zone. Kinematic vorticity analysis of 

quartz fabrics in rocks within the Leo Pargil shear zone suggest that these rocks were thinned by 

up to 63% during west-directed shearing. Deformation temperatures of 400-500° C at the 

uppermost structural depths within the shear zone to >650° C at the deepest levels suggest that 

the rocks within the shear zone were exhumed from depths of up to >26 km by ~28-35 km of 

ductile displacement on the Leo Pargil shear zone, assuming a geothermal gradient of 25°C/km. 

These data combined with age constraints on the Leo Pargil shear zone and the Karakoram fault 

from other studies suggest that extensional exhumation in the western Himalaya on the shear 

zones bounding the Leo Pargil dome, southwest of the Karakoram fault system, could explained 

as being controlled by southward propagation of the dextral strike-slip Karakoram fault system.  
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Introduction 

 

Continental collision between the Indian and Eurasian plates since the Eocene (e.g., Searle 

et al., 1987; Najman et al., 2010) resulted in the building of the largest mountain range on Earth, 

the Himalaya, and the Tibetan Plateau by a unique combination of north-south-directed crustal 

shortening and vertical thickening and east-west-directed extension. The arc-parallel Main 

Central thrust zone (MCTZ) and the South Tibetan detachment system (STDS) are major 

structures exposed across the Himalayan front that were active until the middle Miocene (e.g., 

Grujic et al., 1996; Grasemann et al., 1999; Vannay and Grasemann, 2001; Grujic et al., 2002; 

Vannay et al., 2004; Searle et al., 2006). The STDS was active as recent as ~11 Ma in the eastern 

Himalaya (Kellett et al., 2009). In the central Himalaya, displacement transitioned from the 

MCTZ and the STDS to orogen-parallel extension on normal faults that began at ~13 Ma (e.g., 

Jessup and Cottle, 2010; Kali et al., 2010).  

Crustal extension parallel to the Himalayan front is a fundamental process that is ongoing 

in the Himalaya and Tibetan Plateau to accommodate active deformation. Modern day 

convergence is accommodated along the Main Frontal thrust, strike-slip faults within and 

bounding the Tibetan Plateau, and approximately north-south trending normal faults within the 

Himalaya and Tibetan Plateau (Fig. 3.1) (e.g., Jouanne et al., 2004; Styron et al., 2011). The 

present geodetic convergence rate between the Indian and Eurasian plates is ~35 mm/yr (e.g., 

Bilham et al., 1997; Bettinelli et al., 2006). ~20 mm/yr (Holocene slip-rate) is accommodated by 

north-south shortening along the Main Frontal thrust (e.g., Wesnousky et al., 1999; Lavé and 

Avouac, 2000). The remainder is accommodated by orogen-parallel extension along strike-slip 

faults within the Tibetan Plateau and by the north-south oriented normal faults in the Himalaya 

and Tibetan Plateau (Styron et al., 2011). >3 mm/yr is accommodated by normal faults across the 

Himalayan front and the southern Tibetan Plateau (Styron et al., 2011).  

Crustal extension across the Himalaya and Tibetan Plateau is partitioned along left-lateral 

strike-slip faults throughout the northern Tibetan Plateau, on right-lateral strike slip faults 

throughout the southern Tibetan Plateau, and along normal faults and graben throughout the 

Himalayan front and the Tibetan Plateau (Fig. 3.1) (e.g., Taylor et al., 2003; Hintersberger et al., 
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Figure 3.1. (a) Active faults and suture zones in the Himalaya overlain on a digital elevation 

model (DEM) of the Himalaya and Tibetan Plateau. Faults modified after Taylor and Yin (2009). 

Numbers are ages (Ma) for normal or strike-slip fault initiation (Coleman and Hodges, 1995; 

Harrison et al., 1995; Murphy et al., 2000; Blisniuk et al., 2001; Murphy et al., 2002; de Sigoyer 

et al., 2004; Lacassin et al., 2004; Phillips et al., 2004; Phillips and Searle, 2007; Thiede et al., 

2006; Valli et al., 2007; Kali et al., 2010; Lee et al., 2011; Leloup et al., 2011; Mitsuishi et al., 

2012; Langille et al., in review). (b) Simplified geologic map of the western Himalaya with active 

structures in red (Vannay and Grasemann, 2001; Murphy et al., 2002; Thiede et al., 2006; Valli 

et al., 2007; Langille et al., in review). Focal mechanisms are included.  

 



140 

 

 

 



141 

 

2010; Hintersberger et al., 2011; Styron et al., 2011). These normal faults are roughly oriented 

north-south but can be separated into two sets: those that radiate from northwest to northeast 

from west to east throughout the Himalaya and Tibetan Plateau, and those that are oriented 

perpendicular to the orogenic front southwest of the Karakoram fault (Fig. 3.1) (e.g., the Leo 

Pargil shear zone, LPSZ). 

Many models have been proposed to explain orogen-parallel extension in the Himalaya and 

Tibetan Plateau (e.g., Tapponnier et al., 1982; Nelson et al., 1996; McCaffrey and Nabelek, 

1998; Kapp and Guynn, 2004; Hintersberger et al., 2010; Styron et al., 2011). Models that have 

been proposed include but are not limited to: (1) gravitational collapse of an overthickened crust 

(e.g., Molnar and Tapponnier, 1975; Mercier et al., 1987), (2) lateral flow of the mid-crust 

(Nelson et al., 1996), (3) oroclinal bending (e.g., Ratschbacher et al., 1994; Robinson et al., 

2007), (4) oblique convergence (e.g., McCaffrey and Nabelek, 1998; Styron et al., 2011), (5) 

extrusion of the Tibetan Plateau as a rigid block via large strike-slip faults (e.g., Tapponnier et 

al., 1982), and (6) collisional stresses localized along the southern portion of the Himalayan arc 

(Kapp and Guynn, 2004).  

East and west-directed normal faults and shear zones in the central Himalaya accommodate 

orogen-parallel extension (e.g., Ama Drime detachment, Dinggyê graben, Tingri graben, 

Thakkola graben) (e.g., Kapp & Guynn, 2004; Jessup et al., 2008; Jessup and Cottle, 2010; Lee 

et al., 2011). These normal faults and graben have been kinematically linked to strike-slip faults 

in the interior of the plateau (e.g., Armijo et al., 1986; Taylor et al., 2003; Kapp and Guynn, 

2004; Jessup and Cottle, 2010). Similarly, in the western Himalaya young metamorphic domes 

(e.g., the Leo Pargil and the Gurla Mandhata domes) were exhumed along normal sense shear 

zones (Fig.3.1) (Murphy et al., 2002; Thiede et al., 2006; Langille et al., in review). The normal 

sense shear zones that bound these domes extend north into the Karakoram fault system (Murphy 

et al., 2000). The Gurla Mandhata detachment records late Miocene orogen-parallel extension 

that is kinematically linked to strike-slip fault displacement on the Karakoram fault system (e.g., 

Murphy et al., 2002). Orogen-parallel extension on the LPSZ that bounds the southwest side of 

the Leo Pargil dome (LPD) began >23 Ma (Langille et al., in review). Previous studies have 

suggested that extension on the LPSZ is kinematically linked to the Karakoram fault system 

(e.g., Ni and Barazangi, 1985; Thiede et al., 2006; Hintersberger et al., 2010; Hintersberger et al., 
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2011) but this relationship remains poorly understood, due to a lack of kinematic constraints on 

the LPSZ and observations where the two systems intersect.  

Structural data and rock samples were collected from throughout the dome and the hanging 

wall of the LPSZ to constrain the kinematic evolution of the LPSZ and to understand the role of 

orogen-parallel extension in the western Himalaya. Thin sections of select deformed samples 

from the LPSZ were analyzed using quartz and feldspar recrystallization textures, kinematic 

vorticity, and pressure-temperature methods. These methods constrain the temperatures at which 

the samples were deformed, the kinematics during deformation, and the temperatures and 

pressures that were recorded in the rocks during prograde metamorphism.  

  

Regional Geology 

 

In the southern Sutlej valley, the Main Boundary thrust and Main Frontal thrust are present 

in the footwall of the MCTZ (e.g., Vannay and Grasemann, 2001). To the north, the Greater 

Himalayan sequence (GHS) is exposed between the MCTZ and the STDS (locally termed the 

Sangla detachment) (Fig. 3.1) (e.g., Vannay and Grasemann, 2001). The GHS is composed of 

Neoproterozoic to Cambrian rocks that record metamorphism and anatexis in the Miocene, 

during exhumation along the MCTZ and STDS (e.g., Law et al., 2004; Jessup et al., 2006; Searle 

et al., 2006). The Lesser Himalayan sequence underlies the GHS, structurally beneath the MCTZ 

(Fig. 3.1b). The Tethyan Sedimentary sequence (TSS) structurally overlies the GHS. The base of 

the TSS, above the Sangla detachment in the northern Sutlej valley, is comprised of the Lower 

Proterozoic to Cambrian metasediments of the Haimanta Group (e.g., Frank et al., 1995; Vannay 

and Grasemann, 2001; Wiesmayr and Grasemann, 2002; Chambers et al., 2009). The base of the 

Haimanta Group is intruded by the 488 Ma Akpa (also termed ‘Kinnaur Kailas’) granite (e.g., 

Miller et al., 2001).  

North from the Akpa granite, metamorphic grade decreases up-section in the north-dipping 

Haimanta Group from the kyanite-isograd exposed structurally above the Akpa granite to the 

biotite-isograd approximately 6 km up-section (Chambers et al., 2009). The Haimanta Group at 

the staurolite-isograd (Fig. 3.2), just south of the dome, reached peak conditions of ~600° C and 

7 kbar during Barrovian metamorphism (Chambers et al., 2009; Jessup et al., in prep; Langille et 
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al., in review). The Haimanta Group transitions to south-dipping at the southern end of the LPD 

(Fig. 3.2). Chambers et al. (2009) demonstrated that prograde metamorphism in the Haimanta 

Group in the Sutlej valley began at >34 Ma with peak burial at 30 Ma and garnet growth ending 

by 28 Ma. Staurolite and kyanite growth ceased at ~30 Ma (Langille et al., in review). The 

Haimanta Group in the Sutlej valley contains upright sedimentary bedding that is deformed by 

recumbent folds. The top of the Haimanta Group is separated from the overlying Ordovician to 

Jurassic sedimentary rocks of the TSS associated with the former Indian passive margin (e.g., 

Shian, Pin, and Muth Formations) by an unconformity (Wiesmayr & Grasemann, 2002). 

The arc-perpendicular normal faults and shear zones that bound the Leo Pargil and Gurla 

Mandhata domes (Murphy et al., 2002; Langille et al., in review) extend north to the dextral 

Karakoram fault system (Fig. 3.1b). From northwest, the Karakoram fault extends from the 

Pamirs to the southeast where it links to the Gurla Mandhata detachment. A portion of the strain 

at the southern extent of the Karakoram fault is interpreted to continue along the Indus-Yarlung 

suture (Lacassin et al., 2004) (Fig. 3.1a). Ages for the onset of the Karakoram fault system and 

the total amount of displacement are widely debated. Phillips et al. (2004) interpret ages from 

mylonitic and undeformed leucogranites in Ladakh, northwest of Tso Morari, to suggest that the 

Karakoram here initiated between 15.7-13.7 Ma. An age from synkinematic granite near Tso 

Morari (Fig. 3.1a) suggests that the Karakoram here initiated at >18.5 Ma (Leloup et al., 2011). 

29 Ma age rocks near Tso Morari are deformed by the Karakoram fault suggesting that here the 

fault initiated at <29 Ma (de Sigoyer et al., 2004). U-Th-Pb ages from mylonitic granites in the 

Ayi Shan, east of the LPD, (Fig. 3.1a) interpreted to be synkinematic range from 25-21 Ma 

suggesting that the Karakoram here initiated at >25 Ma (Lacassin et al., 2004). Near the Gurla 

Mandhata dome, the southern end of the Karakoram fault overprints the South Kailas thrust 

which was active at 13 Ma, suggesting that here the Karakoram is younger than 13 Ma (Murphy 

et al., 2000) (Fig. 3.1a). The discrepancy between initiation ages using variably deformed 

leucogranites (i.e. 15.7-13.7 Ma versus >25 Ma) stems from differing interpretations that the 

variably deformed leucogranites analyzed are either prekinematic or synkinematic leucogranites 

(Lacassin et al., 2004; Phillips et al., 2004; Searle and Phillips, 2007; Valli et al., 2007). Based 

on younging of ages toward the southeast along the southern segment of the Karakoram 
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Figure 3.2. Geologic map of the southern end of the Leo Pargil dome from Langille et al. (in 

review). Main foliation and stretching lineation data presented for each of the domains. See 

Figure 3.1b for location. Refer to Langille et al. (in review) for cross sections. n, number of data 

points; grt, garnet; st; staurolite; ky, kyanite; sil, sillimanite; crd, cordierite. 
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fault, Murphy et al. (2000) suggests that the Karakoram fault developed as a southward 

propagating system.  

The amount of offset accommodated along the Karakoram fault has been interpreted from 

recent studies of the correlation of offset suture zones, lithologic units, and the Indus River 

(Searle et al., 1998; Phillips et al., 2004; Lacassin et al., 2004; Searle and Phillips, 2007; 

Robinson, 2009). Maximum offsets of ≥400 km have been documented by correlation of the 

Bangong-Nujiang and Rushan-Pshart sutures (Lacassin et al., 2004). Searle and Phillips (2007) 

suggest that the Bangong-Nujiang suture correlates to the Shyok suture rather than the Rushan-

Pshart suture, suggesting ~120 km of offset rather than ≥400 km (Fig. 3.1a). The Karakoram 

fault has offset the 18 Ma Baltoro granite in Ladakh by a maximum of 150 km suggesting a slip-

rate of 8.4 mm/yr since 18 Ma on this segment of the Karakoram (Searle et al., 1998; Phillips et 

al., 2004; Searle and Phillips, 2007). Offset of the Aghil formation, just north of the Baltoro 

granite, suggests 149-167 km of displacement along the Karakoram fault (Robinson, 2009). 

Assuming initiation of the Karakoram fault at ~15 Ma (e.g., Phillips et al., 2004) or ~23 Ma 

(Lacassin et al., 2004), displacement of 149-167 km suggests a slip-rate of either ~11 mm/yr or 

~7 mm/yr, respectively (Robinson, 2007). The Indus River in Ladakh has been dextrally offset 

by 120 km. Lacassin et al. (2004) suggest that this offset began at 12 Ma yielding a long-term 

slip-rate of 10 mm/yr, similar to estimates using the offset Baltoro granite or the Aghil 

formation. The Gurla Mandhata detachment at the southern extent of the Karakoram fault 

exhumed rocks by up to 66 km of displacement (Murphy et al., 2000). Assuming all this slip was 

transferred from the Karakoram fault, a dip of 22° for the detachment (Murphy et al., 2000) 

suggests that the Karakoram fault here accommodated ~61 km of horizontal displacement 

(Murphy et al., 2000). 

Geodetic slip-rates for the northwest Himalaya suggest a modern slip-rate of ~10 mm/yr on 

the Karakoram (Banerjee and Bürgmann, 2002; Chevalier et al., 2005). The Holocene slip-rate 

determined from offset Quaternary glacial landforms along the Karakoram fault in the Ladakh 

region in India is ~4 mm/yr (Brown et al., 2002). Geodetic slip-rates on the Indus-Yarlung 

suture, at the southernmost end of the Karakoram suggest a modern rate of <1 cm/yr (Styron et 

al., 2011). Hintersberger et al. (2010) suggests that in the western Himalaya, the southern 

segment of the Karakoram fault only accommodates a portion of the modern east-west 
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displacement from within the Tibetan Plateau. The remainder of the deformation from the 

Tibetan Plateau is transferred south of the Karakoram fault to a system of north-south trending 

brittle normal faults, including the brittle faults on the southwest flank of the LPD (Fig. 3.1b) 

(Hintersberger et al., 2010; Hintersberger et al., 2011).  

 

Geology of the Leo Pargil Dome 

 

The LPD in northwest India is defined on the west flank by the northeast-trending normal-

sense LPSZ and brittle faults that extend northeast into the right-lateral Karakoram fault system 

and are interpreted to accommodate orogen-parallel extension (Figs. 3.1 and 3.2) (Ni and 

Barazangi, 1985; Zhang et al., 2000; Thiede et al., 2006; Hintersberger et al., 2010). On the 

southwest flank of the dome, the LPSZ is a dominantly west-dipping zone that accommodated 

normal-displacement (Figs. 3.2 and 3.3a) (Thiede et al., 2006). The southwest flank of the dome 

is composed of amphibolite-facies metamorphic rocks that are intruded by several generations of 

leucogranite (Fig. 3.3b). Toward the core, the rocks transition to gneiss and migmatite (Fig. 3.2). 

The rocks within the dome and the core are overprinted by distributed top-down-to-the-west 

shearing of the LPSZ (Fig. 3.3). Migmatites in the core record a transition to top-down-to-the-

east shear sense. The Kaurik-Chango brittle normal fault on the west side of the dome offsets the 

LPSZ (Fig. 3.2) (Thiede et al., 2006). The dome extends northeast to the Ayi Shan that is bound 

to the north by the Karakoram fault system (Valli et al., 2007; Sanchez et al., 2010) (Fig. 3.1). 

The northeast-striking, southeast- dipping Qusum detachment fault (Zhang et al., 2000) separates 

the southeastern margin of the dome from the Zada basin (Murphy et al., 2009; Saylor et al., 

2010). 

The amphibolite-facies rocks on the southwest side of the dome belong to the Haimanta 

Group and record peak Barrovian metamorphism at ~30 Ma at ~600° C and ~7-8 kbar (Langille 

et al., in review), overlapping with estimates from the Haimanta Group south of the dome 

(Chambers et al., 2009; Jessup et al., in prep). Based on the structure and lithology, the 

migmatite in the core of the dome presumably belongs to the GHS but this needs to be further 

evaluated. Barrovian metamorphism in the Haimanta Group rocks within the LPD is overprinted  
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Figure 3.3. Field photographs from the Leo Pargil dome. (a) A portion of the Leo Pargil shear 

zone (LPSZ; yellow and red) viewed toward the east. Red corresponds to the Haimanta Group 

intruded by leucogranite within the dome. Other colors correspond to Figure 3.2. (b) Deformed 

and undeformed leucogranites within the LPSZ. (c through e) Mylonitic quartzite and marble 

(yellow unit). (c) L-tectonite fabric. (d) LP09-16 is an undeformed leucogranite and LP09-17 is 

deformed. (e and f) Sheared marble within the quartzite demonstrates top-down-to-the-west 

shear sense. (g) Sheared leucogranite suggests top-down-to-the-west shear sense. 

 

by decompression and top-down-to-the-west shearing of the LPSZ that began by 23 Ma 

(Langille et al., in review). A quartzite and marble unit exposed within the LPSZ with deformed 

and undeformed leucogranites contains a strong foliation and stretching lineation, with an 

outcrop of quartzite with L-tectonite fabrics suggesting heterogeneous strain distribution in this 

portion of the shear zone (Fig. 3.3c and d). Macroscopic shear sense indicators record top-down-

to-the-west to northwest shear sense (Fig. 3.3e through g). Initiation of extension on the LPSZ 
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was followed by leucogranite generation in the migmatite core that was emplaced into schist and 

older leucogranites at structurally higher levels from 23 to 18 Ma (Fig. 3.3b and d) (Langille et 

al., in review).  

The dome is separated into five domains: the Chango and Sumdo transects and the south, 

central, and east domains (Fig. 3.2). The Chango and Sumdo transects include the Haimanta 

Group rocks that are within the uppermost structural positions of the LPSZ, in the hanging wall 

of the Kaurik-Chango normal fault near the villages of Chango and Sumdo (Fig. 3.2). Haimanta 

Group rocks within the LPSZ in the Chango and Sumdo transects are folded and define a gentle 

anticline (Fig. 3.2). The rocks within these transects were folded following the development of a 

stretching lineation, which now dip toward the east or west (Fig. 3.2). Microscopic shear sense 

indicators including strain shadows on porphyroclasts, shear bands, and mica fish are consistent 

with top-down-to-the-west shear sense (Fig. 3.4a and b; Table 3.1). In the hanging wall of the 

LPSZ within the Chango transect (green, Fig. 3.2), rocks transition from low-temperature 

metamorphic rocks with a weak fabric (Table 3.1) to undeformed, unmetamorphosed 

sedimentary rocks. The rocks in the hanging wall of the LPSZ in the Sumdo transect transition to 

low-temperature metasedimentary rocks with a weak lineation and foliation that record weakly 

developed top-to-the-east shearing (Table 3.1).  

 Rocks within the south and central domains dominantly contain a west dipping foliation that 

defines the LPSZ. These rocks dominantly contain a top-down-to-the-west stretching lineation 

(Fig. 3.2) and macroscopic shear sense indicators suggest top-down-to-the-west shear sense (Fig. 

3.3e through g). Microscopic shear sense indicators such as strain shadows on rigid 

porphyroclasts, quartz oblique fabrics, and shear bands suggest top-down-to-the-west shear sense 

(Fig. 3.4c through e; Table 3.1). Rocks within the east domain are the structurally deepest rocks 

in the dome and contain an east-directed stretching lineation (Fig. 3.2). Macroscopic shear bands 

in migmatitic gneiss suggest a transition to top-down-to-the-east shear sense (Langille et al., in 

review). Microscopic shear sense indicators including shear bands and strain shadows on garnet 

porphyroclasts are consistent with an east-directed shear sense (Fig. 3.4f; Table 3.1). 
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Figure 3.4. Photomicrographs of samples from the Leo Pargil dome. (a) Biotite (bt) fish and 

shear bands indicating top-down-to-the-northwest shear sense. qtz, quartz; ms, muscovite. (b) 

Strain shadow on garnet porphyroclast suggesting top-down-to-the-west shear sense. chl, 

chlorite. (c) Oblique quartz fabric exhibiting grains that preserve grain boundary migration 

recrystallization (GBM) suggesting top-down-to-the-west shear sense at temperatures of >500° 

C. (d) Quartz recording GBM and deformed feldspars (fsp) suggesting top-down-to-the-west 

shear sense and temperatures of >500° C. (e) Rotated feldspar and sillimanite suggest top-

down-to-the-west shear sense. (f) Strain shadow on garnet clasts indicate east-directed shear. 

(g)Quartz exhibiting GBM and a feldspar grain (outlined in black for clarity) with sub-grain 

rotation recrystallization suggesting temperatures of >600° C. (h) Checker board extinction in 

quartz indicating >650° C. (i) Type IV calcite (cal) twins surrounded by other calcite grains that 

have been completely recrystallized at temperatures of >300° C. 
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Table 3.1. Summary of Kinematic and Deformation Temperature Data. 

Sample Rock type 
Shear 

Sense 
Shear Sense 

Indicators 
Wm 

% 

pure 

shear 
Rxz 

% down-

dip 

extension 

% 

shortening
a 

Deformation 

Temperature 

(° C) 

Temperature 

Indicator 

Sumdo transect          

LP09-274 phyllite top-60 
mica fish, shear 

bands 
— — — — — <280 rigid quartz 

LP09-270 phyllite top-093 
mica fish, shear 

bands 
— — — — — ~280 

onset of BLG in 

quartz 
LP09-267 calc-silicate — — — — — — — 200-300 type II calcite twins 

LP11-08 schist top-300 
mica fish, shear 

bands 
— — — — — 400-500 quartz SGR 

LP09-264 schist top-230 shear bands — — — — — 400-450 
quartz SGR, rigid 

feldspar 
LP11-01 schist top-200 shear bands — — — — — 400-500 quartz SGR 

LP11-07 schist top-250 strain shadows — — — — — 400-450 
quartz SGR, rigid 

feldspar 

LP11-05 schist top-220 mica fish — — — — — 400-450 
quartz SGR, rigid 

feldspar 

LP11-06 schist top-255 strain shadows — — — — — 400-450 
quartz SGR, rigid 

feldspar 

Chango transect          
LP09-113 limestone — — — — — — — — — 
LP09-91 marble — — — — — — — 200-300 type II calcite twins 
LP09-94 schist top-260 shear bands — — — — — 400-500 quartz SGR 

LP09-102 schist top-270 shear bands — — — — — 400-450 
quartz SGR

c
, rigid 

feldspar 

LP09-98 schist top-225 shear bands — — — — — 400-450 
quartz SGR

c
, rigid 

feldspar 

LP09-253 schist top-278 
shear bands, 

strain shadows 
— — — — — 400-450 

quartz SGR
c
, rigid 

feldspar 

LP09-250 calc-silicate top-275 shear bands — — — — — 400-500 
quartz SGR

c
, calcite 

recrystallized 
LP09-246 schist top-250 mica fish — — — — — 400-500 quartz SGR

c 
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Table 3.1. Continued. 

Sample Rock type 
Shear 

Sense 
Shear Sense 

Indicators 
Wm 

% 

pure 

shear 
Rxz 

% down-

dip 

extension 

% 

shortening
a 

Deformation 

Temperature 

(° C) 

Temperature 

Indicator 

central domain          

LP09-191
 b quartzite top-286 

oblique fabric, 

mica fish, LPO 
0.83-0.98 36-11 11-30 66-118 40-54 500-650 

quartz GBM, prism 

<a> 

LP09-222
 b leucogranite top-210 

oblique fabric, 

strain shadows, 

LPO 
0.90-0.98 28-11 15-30 66-108 40-52 >650 

quartz checker 

board extinction, 

prism [c] 

LP09-24
b leucogranite top-281 

oblique fabric, 

tails, mica fish, 

LPO 
0.74-0.93 42-22 14-30 137-168 58-63 600-650 

quartz GBM, 

feldspar SGR, 

prism <a> 

LP09-21
b 

quartzite 
top-268 

oblique fabric, 

mica fish 
— — — — — 500-650 

quartz GBM, prism 

<a> 

LP09-18 
quartzite 

top-287 
oblique fabric, 

mica fish 
— — — — — >650 

quartz checker 

board extinction 

LP09-14
b quartzite top-265 

oblique fabric, 

strain shadows, 

mica fish, LPO  
0.84-0.97 35-12 5-11 43-64 30-38 

600-650,  
663 ± 30 

quartz GBM, 

feldspar SGR, 

opening angle 

LP09-76 
schist 

top-300 
shear bands, 

strain shadows 
— — — — — 500-650 quartz GBM 

LP09-229 
schist 

top-273 
shear bands, 

strain shadows 
— — — — — 500-650 quartz GBM 

LP09-79 
schist 

top-290 
shear bands, 

strain shadows 
— — — — — 500-650 quartz GBM 

LP09-263 schist top-270 shear bands — — — — — 500-650 quartz GBM 

south domain          

LP09-140 schist top-287 
shear bands, 

strain shadows 
— — — — — 600-650 

quartz GBM, 

feldspar SGR 

LP09-175 schist top-270 tails — — — — — 600-650 
quartz GBM, 

feldspar SGR 

LP09-159 schist top-230 
shear bands, 

strain shadows 
— — — — — 500-650 quartz GBM 
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Table 3.1. Continued.          

Sample Rock type 
Shear 

Sense 
Shear Sense 

Indicators 
Wm 

% 

pure 

shear 
Rxz 

% down-

dip 

extension 

% 

shortening
a 

Deformation 

Temperature 

(° C) 

Temperature 

Indicator 

LP09-161 schist top-260 strain shadows — — — — — 600-650 
quartz GBM, 

feldspar SGR 

east domain          
LP09-177 gneiss top-081 shear bands — — — — — 500-650 quartz GBM 

LP09-178 gneiss top-080 
shear bands, 

strain shadows 
— — — — — 500-650 quartz GBM 

LP09-187 gneiss top-075 strain shadows — — — — — >650 
quartz checker 

board extinction, 

myrmekite 

Note: SGR, subgrain rotation; GBM, grain boundary migration. Sample locations are in the Appendix 3.1. 
s
Shortening is normal to the down-dip direction. 

b
Analyzed with electron backscattered diffraction (EBSD). 

c
SGR in quartz is overprinted by BLG.



154 

 

Temperatures and Kinematics during Deformation 

 

Methodology for Estimating Deformation Temperatures 

Deformation temperatures during top-down-to-the-west shearing were estimated using (1) 

recrystallized quartz and feldspar microstructures (Hirth and Tullis, 1992; Fitz Gerald and 

Stünitz, 1993; Stipp et al., 2002a; Stipp et al., 2002b), (2) quartz slip systems determined from 

quartz lattice preferred orientation (LPO) patterns (e.g., Mainprice et al., 1986), (3) the opening 

angle of quartz [c] axis LPO patterns (Kruhl, 1998; Law et al., 2004), and (4) calcite twins (e.g., 

Weber et al., 2001; Ferrill et al., 2004). These temperatures were used to constrain the depth in 

the crust in which deformation occurred, from which the amount of exhumation on the LPSZ can 

be estimated. 

Quartz exhibits bulging recrystallization (BLG) at temperatures of 280-400° C, sub-grain 

rotation recrystallization (SGR) at temperatures of 400-500° C, and grain boundary migration 

recrystallization (GBM) at temperatures >500° C (Fig. 3.4c, d, and g) (Stipp et al., 2002a; Stipp 

et al., 2002b). At temperatures of >650° C, quartz begins to develop checker board extinction 

(Fig. 3.4h). At temperatures of <450° C, where quartz experiences BLG recrystallization, 

feldspar is rigid and deforms by brittle fracturing (Pryer, 1993). Dislocation glide (Fig. 3.4b) and 

BLG recrystallization is possible in feldspars at 450-600° C (Pryer, 1993). BLG and SGR 

recrystallization can occur in feldspar at temperatures of >600° C (Fig. 3.4g) (Tullis and Yund, 

1991).  

Deformation temperatures can also be inferred from the slip systems that accommodated 

recrystallization during deformation within quartz grains. The slip systems are determined from 

the LPOs of the quartz grains within a sample, viewed in the plane perpendicular to foliation and 

parallel to lineation (XZ section). The LPOs, when plotted on a stereonet, yield maxima 

indicative of the slip systems (Fig. 3.5) (e.g., Lister and Hobbs, 1980; Law, 1990). Quartz LPOs 

were obtained using electron backscattered diffraction patterns collected using an FEI Quanta 

400 FEG scanning electron microscope coupled with a HKL Nordlys 2 EBSD camera at the 

University of California, Santa Barbara. CHANNEL 5 HKL software was used to index the 

diffraction patterns with Hough resolution of 80, detecting 7-8 bands with standard divergence 

and a quartz structure file containing 60 reflectors. 
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Figure 3.5. (a) Quartz lattice-preferred orientation (LPO) patterns and slip systems expected for 

plane strain non-coaxial deformation with increasing temperature (modified from Passchier and 

Trouw, 2005; Langille et al., 2010a). (b) Correlation between opening angle and temperature. 

Dashed boxes represent data from quartz with prism [c] slip. Boxes 1-15: Kruhl, 1998; 16: Law 

et al., 1992; 17: Nyman et al., 1995; 18: Okudaira et al., 1995; 19-20: Langille et al., 2010b; 21-

24: Langille et al., 2010a. Opening angle from this study included, plotted against temperatures 

inferred from quartz and feldspar textures. Modified from Law et al. (2004). 

 

While basal <a>, prism <a>, and rhomb <a> slip can occur at a range of temperatures, 

basal <a> slip is dominant at temperatures of 280-400° C, prism <a> and rhomb <a> are 

dominant at temperatures of 400-500° C, and prism <a> is dominant at 500-650° C. At 

temperatures of >650° C, prism [c] becomes dominant (e.g., Lister and Dornsiepen, 1982; 

Mainprice et al., 1986; Kruhl, 1998) (Fig. 3.5a). LPO patterns that exhibit basal <a>, prism <a>, 

and rhomb <a> slip often contain a crossed girdle pattern (Fig. 3.5). The opening angle is defined 

as the angle between the girdles (Kruhl, 1998). Experimental studies (e.g., Tullis et al., 1973; 

Lister et al., 1978; Lister and Hobbs, 1980; Lister and Dornsiepen, 1982; Wenk et al., 1989) 

indicate that the opening angle of quartz [c] axis LPOs increases with increasing deformation 

temperature (Fig. 3.5b) so the opening angle can be used to calculate the deformation 

temperature (e.g., Kruhl, 1998). Previous studies attributed an error of ± 50° C to the temperature 

estimate using this method, based on the standard deviation of the data from temperatures of 

280° C to >650° C (e.g., Kruhl, 1998). However, the linear relationship between opening angle 

and temperature changes at conditions of >650° C, when prism [c] slip begins to develop in 

quartz (Fig. 3.5b). Recalculating the standard deviation of the data from temperatures between 
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280° C to 650° C yields an error of ± 30° C. Other factors such as strain rate also play a role in 

the development of the opening angle (Tullis et al., 1973). However, the compiled data (Fig. 

3.5b) are from samples of varying deformation state with varying measurement error and the 

correlation between temperature and opening angle is still expressed, implying that the effect of 

factors other than temperature are within error of the temperature estimate.  

In addition to quartz and feldspar, calcite twins can be indicative of deformation 

temperatures. Type I twins are characterized by thin lines that develop at temperatures of <200° 

C (e.g., Weber et al., 2001; Ferrill et al., 2004). At temperature of 200-300° C, wide bands (type 

II twins) develop in calcite during dislocation glide (e.g., Weber et al., 2001; Ferrill et al., 2004). 

With increasing temperature the calcite twins begin to obtain curvature (type III) and become 

patchy (type IV) with the onset of dynamic recrystallization (Fig. 3.4i). Complete dynamic 

recrystallization occurs at >300° C (e.g., Weber et al., 2001; Ferrill et al., 2004). 

 

Results 

Metamorphosed and deformed Haimanta Group rocks within the LPSZ in the Chango and 

Sumdo transects transition into weakly to undeformed, low-temperature metasedimentary rocks 

in the hanging wall of the LPSZ (Fig. 3.2). The rocks within the LPSZ in these transects (Fig. 

3.2) contain quartz that exhibits sub-grain rotation and feldspar that remained rigid suggesting 

temperatures of 400-450° C (Table 3.1). The quartz in some of the samples is overprinted by 

BLG recrystallization indicating continued recrystallization during exhumation through 280-

400° C (Table 3.1). LP09-250 contains calcite that has been completely dynamically 

recrystallized indicating temperatures of >300° C, overlapping with temperatures recorded by the 

quartz and feldspar (Table 3.1). The metasedimentary rocks in the hanging wall of the LPSZ, 

with decreasing structural depth above the LPSZ transition from containing quartz that records 

the onset of BLG recrystallization, to samples with type II calcite twins, to samples with quartz 

that have not been recrystallized (Fig. 3.2; Table 3.1).  

Deformed metamorphic rocks in the south and central domain within the dome contain 

quartz grains that exhibit GBM and feldspar grains that record SGR suggesting temperatures of 

500-650° C (Table 3.1). Checker board extinction of quartz occurs in some samples indicating 

temperatures of >650° C. Quartz LPO patterns from samples in the central domain dominantly 
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exhibit prism <a> to prism [c] slip suggesting temperatures of 500-650° C and >650° C, 

respectively (Fig. 3.6; Table 3.1). The LPO pattern of sample (LP09-14) forms a girdle and the 

opening angle of the girdle suggests temperatures of 663 ± 30° C (Fig. 3.6; Table 3.1). 

Samples from the eastern transect are migmatitic gneiss that are located structurally in the 

core of the dome. These samples contain myrmekite and quartz grains that record GBM and/or 

checker board extinction. These textures suggest temperatures of 500° C to >650° C (Table 3.1). 

 

Methodology for Estimating Vorticity and Results 

Vorticity analyses were conducted to quantify the relative contribution of pure shear 

(flattening) and simple shear (shearing with no flattening) during ductile deformation which 

yields insights into the amount of down-dip extension and thinning normal to extension that 

occurred during exhumation along the LPSZ. A contribution of pure shear suggests crustal 

thinning (assuming plane strain) of the deformed material and higher strain and extrusion rates 

relative to simple shear (Law et al., 2004). Kinematic vorticity number (Wk) is a measure of the 

contributions of pure (Wk = 0) and simple (Wk = 1) shear during steady-state deformation. Pure 

and simple shear components are equal when Wk = 0.71 (Tikoff and Fossen, 1995; Law et al., 

2004). The vorticity in naturally deformed rocks can have spatial and temporal variations which 

are accounted for by using a time-averaged estimate to calculate the bulk vorticity, known as the 

mean kinematic vorticity number (Wm) (e.g., Fossen and Tikoff, 1997, 1998; Jiang, 1998). A 

steady-state deformation history is assumed. Wm methods require that deformation progressed 

during plane strain conditions. However, a small deviation from plane strain may cause only a 

small error (Tikoff and Fossen, 1995) that is within the error associated with conducting vorticity 

methods. To avoid this small error, these methods were not applied to samples that exhibited L-

tectonite fabrics (constriction, Fig. 3.3c). Furthermore, quartz LPO data for samples in which 

these methods were applied suggest plane strain conditions (Figs. 3.5a and 3.6). The quartz grain 

shape foliation technique was applied (Fig. 3.7) (Wallis, 1995) to thin sections cut perpendicular 

to the foliation and parallel to the lineation (XZ section) to estimate Wm. Quartz grains that 

recrystallize during deformation are stretched parallel to the instantaneous stretching axis (ISA) 

(Wallis, 1995). During deformation, quartz rotates to a maximum angle relative to the flow 
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Figure 3.6. Quartz lattice-preferred orientation (LPO) patterns for deformed quartzite and 

leucogranite samples from the quartzite unit in the central domain. Dashed line represents the 

flow plane. Interpreted shear sense, dominant slip system, and temperatures determined from 

quartz and feldspar textures are included. m.u.d. mean uniform distribution; n = number of 

points; OA, opening angle. See Figure 3.7 for definition of β. 
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plane, which approximates the ISA (Fig. 3.7) (Wallis, 1995). θ is the angle between the oblique 

grain shape fabric (SB) (Fig. 3.4c) and the flow plane (Figs. 3.5, 3.6, and 3.7). The flow plane is 

defined as the perpendicular to the [c] axis girdle of the quartz LPO where β is the angle between 

the flow plane and the main foliation (SA) (Fig. 3.7) (Law, 1990; Wallis, 1995). The angle 

between the oblique grain shape fabric (SB) and the flow plane is related to Wm by the equation: 

 

Wm = sin 2θ = sin [2(δ+β)]         (1) 

 

where δ is the angle between the quartz oblique grain shape fabric (SB) and SA (Fig. 3.7) (Wallis, 

1995).  

The long axis of the quartz grains from four samples were measured from high-resolution 

mosaic image of the thin sections and the flow planes were measured from the quartz LPO 

patterns. To accurately define the ISA, θ was measured on >100 quartz grains per sample. 

Application of the grain shape foliation technique requires a well-developed quartz LPO and 

oblique grain shape fabric to accurately define both the flow plane and the ISA, and thus θ 

(Wallis, 1995; Xypolias and Koukouvelas, 2001; Xypolias, 2009, 2010). I suggest that θ at the 

peak of the histogram represents the angle to which the bulk of the quartz grains rotated to, 

which best represents the angle of the ISA. To merge this with the Wallis (1995) method for 

approximating the ISA, a range in θ defined as where the frequency of θ on the histogram 

reaches its highest value to where it declines to a maximum measured angle is used (methods 

utilized in Langille et al., 2010a).  

Uncertainties in vorticity values estimated using this technique can be attributed to: (1) 

heterogeneity of the matrix material, (2) the presence of porphyroclasts, and (3) folding—which 

Figure 3.7. Diagram depicting the aspects 

used in estimation of vorticity (Wm) from an 

oblique fabric defined by quartz. Modified 

from Xypolias (2009). 
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may all deflect or influence the orientation and/or development of the quartz fabric. To limit 

possible inaccuracies, measurements were made from quartz fabrics that were unaffected by 

these interferences.  

Quartz grains in four quartzite and quartz rich leucogranite samples from the quartzite unit 

in the central domain (Fig. 3.2) contained well developed oblique fabrics. LPO patterns from 

these samples exhibit well developed maxima from which the flow plane could be determined 

(Fig. 3.6), making these prime samples for Wm analysis using the quartz grain shape foliation 

technique. These methods yielded Wm estimates of 0.74 to 0.98 (42 to 11% pure shear) (Fig. 3.8; 

Table 3.1).  

 

Thermobarometry 

 

Methodology and Results 

Estimates of the P-T conditions at peak temperatures during metamorphism were obtained 

to evaluate the transition from crustal thickening to exhumation on the LPSZ. Chemical data for 

thermobarometric estimates were obtained on a Cameca SX-100 electron microprobe at the 

University of Tennessee. X-ray maps using wavelength-dispersive spectrometery of Mg, Mn, 

and Ca along with quantitative line transects were conducted across garnet porphyroblasts at 15 

kV, 30 nA, 30 ms, and a 6 μm spot size to characterize compositional zonation. Point analyses at 

15 kV, 20 nA, and a spot size of 1μm were conducted on biotite, plagioclase, and muscovite to 

assess compositional heterogeneities of each phase throughout the sample. Plagioclase was 

analyzed at 10 kV. Natural and synthetic compounds were used for standards and were checked 

prior to and following the analyses. Elemental abundances <300 ppm are considered below the 

detection limit for all elements except for Y which is ~400 ppm.  

Mn content in garnet decreases from core to rim, indicative of prograde zonation (Fig. 3.9). 

Garnet contains a thin (5-10 μm) rim with an increase in Mn as a result of retrograde net transfer 

reactions (Kohn and Spear, 2000). Compositions obtained from biotite, muscovite, and 

plagioclase varied little and were averaged for the P-T estimate (Table 3.2). These data were 

combined with the garnet near-rim composition with the lowest Mn value (Fig. 3.9; Table 3.2).  
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Figure 3.8. Histograms of quartz grain orientation data and Wm estimates. Refer to Figure 3.6 

for the angle between the flow plane and the main foliation (β). 

 

 

 

Figure 3.9. Compositional data from the garnet used for the pressure-temperature estimate. 

Arrow points to the rim composition used.  
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Figure 3.10. Pressure-temperature estimate overlain on a petrogenetic grid from Holland and 

Powell (1998). Inset shows AFM diagram of the assemblage projected from muscovite. 
 

 

Table 3.2. Compositional Data (in wt. %) for Near-Garnet-Rim  

Thermobarometric Analyses. 

 
Garnet 

near rim 
Biotite  Plagioclase  Muscovite  

LP09-253  (18) (21) (12) 
SiO2 37.16 35.62 65.87 46.35 
TiO2 0.01 1.64 0 0.32 
Al2O3 21.04 18.35 21.73 34.90 
FeO 34.00 19.20 0.11 2.21 
MnO 3.21 0.14 0 0.01 
MgO 2.72 9.80 0 0.62 
CaO 2.21 0.01 2.51 0.01 
Na2O 0.05 0.20 9.54 1.07 
K2O 0 9.14 0.08 9.09 
∑ 100.40 98.10 99.84 98.58 
Si 2.99 5.48 2.89 6.20 
Ti 0.00 0.19 0 0.03 
Al 2.00 3.33 1.12 5.50 
Fe 2.29 2.47 0.00 0.25 
Mn 0.22 0.02 0 0.00 
Mg 0.33 2.25 0 0.13 
Ca                   0.19              0.00 0.12 0.00 
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Table 3.2. Continued. 

Na 0.01 0.06 0.81 0.28 
K 0 1.80 0.01 1.55 
∑ 8.03 19.59 4.95 17.94 

Note: Numbers in parenthesis represent the number of data points averaged.  

Analyses of 0 indicate that the composition was not analyzed. 

 

P-T estimates at peak temperatures were calculated from the chemical data using 

THERMOCALC v. 3.33 in the average P-T mode (Powell et al., 1998). Calculations were made  

using the updated Holland & Powell (1998) data set (tc-ds55.txt). Activity coefficients for each 

phase were calculated using the AX software. No endmembers were excluded. These methods 

yield 570 ± 105° C and 8.0 ± 1.8 kbar (cor = 0.84 and fit = 0.19) (Fig. 3.10). 

 

Discussion 

 

Evolution of the Leo Pargil Shear Zone 

Rocks within the LPSZ in the Sumdo and Chango transects record west-directed shearing 

from temperatures of 400-500° C to 280-400° C. These rocks are overlain by low-grade (<300° 

C; Table 3.1) metasedimentary to sedimentary rocks in the hanging wall of the LPSZ that do not 

record west-directed shearing, rather those in the Sumdo transect record top-to-the-east shearing 

immediately structurally above the LPSZ (green, Fig. 3.2; Table 3.1). East-directed shearing in 

these rocks are interpreted as a record of deformation that is not associated with dome formation. 

Samples from the central and south domains all record temperatures during west-directed 

deformation of 500° C to >650° C, deeper structural depths than the rocks exposed in the Chango 

and Sumdo transects. The rocks in the quartzite/marble unit in the central domain experienced 42 

to 11% pure shear during deformation indicating that simple shear dominated but a component of 

thinning occurred during deformation in this portion of the shear zone. The strain ratio (Rxz) can 

be calculated from this data using the following equation which utilizes the angular relationships 

between the quartz oblique grain shape fabrics and quartz [c] axis fabrics (e.g., Xypolias, 2009): 

 

     
     θ    β

    β     θ    β
                                                (2) 
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where  

 

   θ        β  δ                   (3) 

 

β is the angle between the flow plane and SA as measured from the quartz [c] axis fabric and δ is 

the angle between the quartz oblique fabric (SB) and the main foliation (SA) (Fig. 3.7). This 

equation was applied to samples LP09-191, LP09-222, LP09-24, and LP09-14, all within the 

quartzite and marble unit (yellow, Fig. 3.2), and yielded Rxz values from 5 to 30 (Table 3.1). 

The percent down-dip extension and shortening normal to down-dip was calculated from 

the shortening value (S) using the following equation (Wallis et al., 1993):  

 

           
              

   
      

  

     
  

             
                                          (4) 

 

This yielded 43 to 168% down-dip extension and 30 to 63% shortening normal to extension 

(Table 3.1). The large range in Rxz and S for each sample is attributed to the large range in Wm 

values from each sample, calculated from the range of θ from the peak of the histogram to the 

maximum value (Fig. 3.8). The range of Rxz and S from sample to sample suggests that strain 

was partitioned heterogeneously throughout the quartzite/marble unit in this portion of the LPSZ, 

potentially due to heterogeneities in rheology between the quartzite, marble, and leucogranite 

lithologies. Some of the quartzite in this section record L-tectonite fabrics associated with 

constriction rather than plane strain (Fig. 3.3c), further demonstrating the heterogeneous strain 

distribution in this portion of the shear zone. 

Samples from the east domain contain quartz and feldspar textures recording similar 

deformation temperatures as those recorded in the central and south domains (500° C to >650° 

C), although textures indicating >650° C are more abundant (Table 3.1). The shear sense 

transitions from west-directed in the central and southern domains to east-directed in the east 

domain (Fig. 3.4f; Table 3.1). The high temperatures in the core of the dome, within the east 

domain, are a record of the deepest structural depths within the dome (>26 km, assuming a 

geothermal gradient of 25° C/km). The central and south domains are at shallower structural 
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positions. The similar high temperature in these domains is attributed to thermal influx from 

injection of leucogranite that followed initiation of deformation (23-18 Ma; Langille et al., in 

review). The deformation temperatures from within the central and south domains (500° C to 

>650° C) overlap with metamorphic temperatures for the south domain during decompression 

(~600° C) related to the onset of exhumation along the LPSZ and subsequent intrusion of 

leucogranite (Langille et al., in review). This supports decompression concurrently with west-

directed deformation on the LPSZ and the onset of leucogranite injection. 

The rocks at the uppermost structural positions within the LPSZ in the Chango and Sumdo 

transects are not intruded by leucogranite, so the temperatures of deformation (400-500° C 

overprinted by 280-400° C) correspond to the depth where deformation occurred (20-16 km 

through 16-11 km, assuming 25° C/km). Barrovian metamorphism, that predates initiation of the 

LPSZ (Barrovian ending at ~30 Ma, LPSZ beginning by 23 Ma; Langille et al., in review), in the 

Chango transect occurred at ~570° C (Table 3.1) (~23 km depth at peak temperatures). This 

suggests that rocks in the Chango transect were vertically exhumed from a maximum 23 km 

depth by deformation on the LPSZ following Barrovian metamorphism, with the rocks recording 

top-down-to-the-west deformation from 20-11 km depth. The remaining 11 km of vertical 

exhumation occurred at temperatures of <280° C via processes such as erosion and brittle normal 

displacement on the Kaurik-Chango normal fault system. Assuming an average dip of 25° for the 

LPSZ (from the footwall of the Kaurik-Chango normal fault) (Fig. 3.2),~28 km of ductile 

displacement exhumed these rocks from 23 km to 11 km depth following peak metamorphism. 

The brittle Kaurik-Chango normal fault system offsets the ductile LPSZ. The angle of these 

brittle faults and the amount of erosion is unconstrained so the amount of offset via brittle 

faulting was not calculated. Rocks now exposed in the central and south domains record peak 

Barrovian metamorphism at ~592° C (24 km depth) and ~630° C (25 km), respectively (Langille 

et al., in review). Assuming ductile top-down-to-the-west deformation exhumed these rocks from 

these depths to 11 km (280° C, end of ductile displacement), ~29 km and ~34 km of ductile top-

down-to-the-west displacement occurred in the central and southern domains respectively. Peak 

metamorphic temperatures are not documented for the rocks in the east domain, in the migmatite 

core of the dome, but top-down-to-the-west deformation occurred at >650° C (>26 km depth) in 
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these rocks. This suggests that >35 km of ductile displacement exhumed these rocks from >26 

km depth to 11 km depth.  

Initial depths of >26 km in the migmatitic core, immediately structurally underlying the 

base of the Haimanta Group, and 23 km depth at the uppermost structural positions of the 

Haimanta Group in the Sumdo and Chango transects suggests that the Haimanta Group now 

exposed in the LPD was initially >3 km thick. Rxz data suggest that 30 to 63% shortening parallel 

to down-dip extension occurred in the quartzite/marble unit within the LPSZ. Assuming that the 

rocks within the LPSZ outside of the quartzite/marble unit experienced similar strain ratios, the 

rocks within the dome were thinned from an initial thickness of >3 km to between >2.1 km (30% 

shortening) and >1.1 km (63% shortening).  

 

Implications for Orogen-Parallel Extension and the Tectonics in the Western Himalaya  

Kapp and Guynn (2004) show that most of the normal faults throughout the Himalaya and 

Tibetan Plateau are oriented in a radial pattern fanning from a northwest strike to a northeast 

strike from west to east (Fig. 3.1a). The axis of symmetry bisects the Himalayan arc at the 

southernmost arc of the Himalaya, subparallel to the present day convergence vector. Elastic 

modeling shows that collisional stresses localized along the southern part of the Himalayan arc 

can result in the orientation of normal faults observed and continued insertion of Indian crust into 

Tibet allows persistent extension and elevation increase of the Tibetan Plateau (Kapp and Guynn, 

2004). This model predicts the northwest to northeast radial orientation of normal faults and 

graben from west to east across the Himalaya and Tibetan Plateau. However, a second set of 

normal faults exist southwest of the Karakoram fault that are oriented perpendicular to the 

Himalayan front (e.g., faults bounding the Leo Pargil domes). This model does not explain the 

role of strike-slip faults and this second set of normal faults. This could suggest that a different 

process controls strike-slip fault development and normal faults southwest of the Karakoram 

fault, such as the LPSZ. 

Hintersberger et al. (2010) suggests that the Tibetan Plateau north of the Karakoram fault 

has an modern eastward extension direction that results in east-west extension accommodated 

along active north-south oriented brittle normal faults in the northwest Indian Himalaya, 

including faults that bound the west flank of the LPD. This suggests that modern displacement is 
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transferred to the south from the Tibetan Plateau, across the Karakoram fault system. This 

interpretation assumes the Karakoram fault only accommodates a small portion of modern 

displacement transferred from the Tibetan Plateau. Geodetic slip-rates support that the southern 

portion of the Karakoram fault has a low modern slip-rate, <1 cm/yr on the Indus-Yarlung suture 

at the southernmost end of the Karakoram (Styron et al., 2011) but the long-term and modern 

rates for the northern portion of the Karakoram are ~10 mm/yr (e.g., Banerjee and Bürgmann, 

2002; Lacassin et al., 2004; Phillips et al., 2004; Chevalier et al., 2005), suggesting that the 

northern portion of the fault has and still does accommodate deformation. This model does not 

explain the northeast trend of the LPD, initiation of the LPSZ at >23 Ma, or the variation in ages 

and slip-rates along the Karakoram fault in the western Himalaya. 

Data presented here combined with age constraints for the LPSZ from Langille et al. (in 

review) suggest that top-down-to-the-west displacement on the LPSZ began at >23 Ma at depths 

of >26 km in the crust. Soon after, these rocks were ductiley exhumed ~28-35 km along the 

LPSZ. Based on these data along with existing age constraints for the Karakoram fault (Fig. 

3.1a), three working models for extension in the western Himalaya can be proposed (Kapp and 

Guynn, 2004; Hintersberger et al., 2010).  

Model 1: The western initiation of the Karakoram fault occurred at >23 Ma (overlapping 

with older initiation ages for the Karakoram fault; e.g., Lacassin et al., 2004). By 23 Ma, the 

Karakoram fault had propagated south and terminated at the present day intersection location 

with the LPD. This termination induced a northwest-southeast extensional pull-apart regime in 

which the northeast oriented LPSZ initiated by 23 Ma (Fig. 3.11a). This occurred during a time 

of active deformation on the STDS and MCTZ to the south. This was followed by southward 

propagation of the Karakoram fault (Murphy et al., 2000) which extended this stress regime to 

the southeast, initiating the development of the Gurla Mandhata detachment at its termination at 

~11 Ma (Murphy et al., 2000) (Fig. 3.11a), in a similar manner to the LPD. Apatite fission track 

data from the LPD show a drop in exhumation rates at 10 Ma, when brittle faulting began on the 

north-south oriented normal faults on the southwest flank of the LPD (Thiede et al., 2006). 

Hintersberger et al. (2010) suggests that the modern day slip-rate on the Karakoram fault is low 

so the extensional stress regime resulting in the north-south oriented normal faults is dominated 

by eastward extension transferred from the Tibetan Plateau, suggesting that the slip-rate on the  
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Figure 3.11. Schematic diagrams depicting two models for the temporal evolution of the western 

Himalaya. Dashed black lines represent incipient faults, red are active faults, and grey are 

inactive faults. See text for discussion. 

  

Karakoram fault here would have decreased by ~10 Ma. This resulted in the formation of north 

trending brittle faults in the western Himalaya, including those on the southwest flank of the 

LPD (Fig. 3.11) (Kapp and Guynn, 2004; Hintersberger et al., 2010).  

This model predicts that: (1) the LPSZ records northwest-directed extension by 23 Ma, (2) 

it predates initiation of the Gurla Mandhata detachment (11 Ma), (3) both the LPSZ and Gurla 

Mandhata predate initiation of the north-south oriented normal faults, (4) slip on the Karakoram 

fault in this region would be active between 23 and 11 Ma and would essentially cease by ~10 

Ma, (5) slip-rates on the Karakoram fault between 23 and 11 Ma would decrease to the south as 

slip was transferred to the faults bounding the LPSZ and Gurla Mandhata, and (6) displacement 

on the north-south oriented brittle structures is transferred from north of the Karakoram fault. 
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Model 2: This model builds off the previous model where the Karakoram fault propagates 

southward, but invokes rotation of normal faults during dextral displacement on the Karakoram 

(Fig. 3.11b). At 23 Ma, the southern termination of the Karakoram fault was located somewhere 

between the LPD and the Gurla Mandhata. The LPSZ initiated at 45° to the Karakoram fault  

 (north-south oriented) during dextral movement at ~23 Ma. With progressive dextral 

displacement, the LPSZ was rotated toward the northeast and younger normal-faults developed 

at 45° to the Karakoram fault (the north-south oriented faults). These younger faults have yet to 

be rotated with progressive dextral-displacement on the Karakoram. 

Predictions for this model include: (1) the LPSZ would initially record west-directed shear 

sense beginning at 23 Ma that was later rotated to top-down-to-the-northwest, assuming no 

ductile overprinting occurred, (2) the LPD would record a larger degree of rotation than the 

younger Gurla Mandhata dome (11 Ma), (3) the youngest faults would be north-south oriented, 

and (4) the amount of total displacement and slip-rates on the Karakoram fault would decrease to 

the south as slip is transferred to the normal faults. 

Model 3: A third model for the kinematics in the western Himalaya is that the Karakoram 

fault was not the kinematic driver for the initial onset of west-directed shearing along the LPSZ. 

In this model, the onset of west-directed extension in this portion of the Himalaya may have 

begun prior to initiation of the Karakoram fault and was initially decoupled from strike-slip 

faulting. In this model, the LPSZ initiated perpendicular to the orogenic front (northeast-

trending). Initiation of the LPSZ was followed by initiation of the Karakoram fault (overlapping 

with younger ages for initiation of the Karakoram fault; e.g., Phillips et al., 2004; Searle et al., 

2007). Approximately north-south oriented normal faults develop either due to transfer of slip 

from the Karakoram fault or slip is transferred across the Karakoram from within the Tibetan 

Plateau. In this model the northeast oriented LPSZ would initiate during northwest directed 

shearing parallel to the orogenic front.  

Kinematics on the western flank of the dome, where the shear zone is oriented northeast is 

unconstrained. On the southwest flank where the shear zone changes strike, the LPSZ records 

dominantly top-down-to-the-west shear (Fig. 3.2). If the dome rotated according to model 2, the 

southern flank would have initially recorded top-down-to-the-southwest shear sense. Because of 

the lack of data to the north within the shear zone, the degree of rotation of the LPD relative to 
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the Gurla Mandhata dome cannot be addressed. The shear sense orientation for the southwest 

portion of the dome does not distinguish between any of the models.  

Geodetic slip-rates for the northwest Himalaya suggest a modern slip-rate of ~10 mm/yr on 

the Karakoram (Banerjee and Bürgmann, 2002; Chevalier et al., 2005). The Holocene slip-rate 

determined from offset Quaternary glacial landforms along the Karakoram fault in the Ladakh 

region in India is ~4 mm/yr (Brown et al., 2002). This rate may be lower because here the 

Karakoram fault splays into several strands and this rate may not accommodate the entire slip 

history along the fault. Geodetic slip-rates on the Indus-Yarlung suture, at the southernmost end 

of the Karakoram suggest a modern rate of <1 cm/yr (Styron et al., 2011). This suggests that 

while dextral displacement southeast of the Gurla Mandhata is low, the Karakoram fault is still 

actively transferring displacement and the slip-rate decreases to the south The decrease in slip-

rates toward the south could be due to transfer of slip to normal faults. These indicate that the 

Karakoram is actively accommodating displacement from within the Tibetan Plateau, in contrast 

to model 1.  Data from this study suggests that ~28-35 km of ductile down-dip displacement 

occurred on the LPSZ. An average dip of 25° for the shear zone implies 25-32 km of horizontal 

displacement occurred. Murphy et al. (2002) document 66 to 35 km of down-dip displacement 

on the 22° dipping Gurla Mandhata detachment, suggesting 61 to 33 km of horizontal 

displacement. If all of this displacement was transferred from the Karakoram fault system, this 

suggests a minimum total horizontal slip of 93 to 86 km on the Karakoram fault. This estimate 

does not factor in exhumation on the east side of the LPD, brittle exhumation of the southwest 

flank of the LPD, or east-west extension to the northwest of the dome which are all 

unconstrained. However, it does suggest that the amount of extension on these normal faults may 

be compatible with total displacement estimates calculated from the offset of the Indus River, 

Baltoro granites, and Aghil formation (120-167 km; Lacassin et al., 2004; Phillips et al., 2004; 

Searle and Phillips, 2007; Robinson, 2009)–compatible with models that the LPSZ initiated by 

transfer of displacement from the Karakoram fault.  
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Conclusions 

 

Data from the shear zone on the southwest flank of the LPD suggests that the rocks now 

exposed in the dome were thinned by up to 63% and exhumed from depths of up to >26 km by 

~28-35 km of ductile displacement on the LPSZ. The LPSZ developed as a widely-distributed 

zone that penetrated most of the Haimanta Group and potentially the upper portion of the GHS. 

Our data incorporated with other data from this portion of the Himalaya suggests that extensional 

exhumation in the western Himalaya on north to northeast oriented normal faults (including 

those that bound the Leo Pargil and Gurla Mandhata domes), southwest of the Karakoram fault 

system, may have been controlled by southward propagation of the dextral Karakoram fault 

system that initiated at >23 Ma. Assuming that slip is transferred from the Karakoram fault 

system to the northeast and north-trending normal faults, displacement estimates from the Leo 

Pargil shear zone and Gurla Mandhata detachment suggest a minimum of 93 to 86 km of slip on 

the Karakoram fault system. 
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Appendix 3.1 

 

Appendix 3.1. Sample Locations. 

Sample Latitude Longitude Sample Latitude Longitude 

LP09-274 32.0683° 78.5932° LP09-191 31.8735° 78.6303° 

LP09-270 32.0675° 78.5974° LP09-222 31.8943° 78.6013° 

LP09-267 32.0649° 78.6029° LP09-24 31.8741° 78.6024° 

LP11-08 32.0207° 78.5852° LP09-21 31.8634° 78.5980° 

LP09-264 32.0600° 78.6058° LP09-18 31.8622° 78.6062° 

LP11-01 32.0505° 78.6034° LP09-14 31.8736° 78.6043° 

LP11-07 32.0380° 78.5943° LP09-76 31.9462° 78.6023° 

LP11-05 32.0434° 78.5965° LP09-229 31.9349° 78.6027° 

LP11-06 32.0417° 78.5932° LP09-79 31.9772° 78.6220° 

LP09-113 31.9954° 78.5761° LP09-263 31.9587° 78.6298° 

LP09-91 31.9950° 78.5740° LP09-140 31.8495° 78.6019° 

LP09-94 31.9930° 78.5753° LP09-175 31.8337° 78.6322° 

LP09-102 31.9844° 78.5928° LP09-159 31.8069° 78.6332° 

LP09-98 31.9909° 78.5809° LP09-161 31.8069° 78.6332° 

LP09-253 31.9650° 78.5924° LP09-177 31.8432° 78.6829° 

LP09-250 31.9610° 78.5946° LP09-178 31.8432° 78.6829° 

LP09-246 31.9582° 78.6018° LP09-187 31.8432° 78.6830° 
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CONCLUSION 

 

East-west directed extension on normal faults and shear zones occur across the Himalayan 

front and the Tibetan Plateau, including the faults that bound the Ama Drime Massif and Leo 

Pargil dome. Field mapping and sample collection combined with kinematic, microstructural, 

thermobarometric, and geochronologic methods on samples from the Ama Drime detachment 

and Leo Pargil shear zone constrain the metamorphic conditions recorded in the samples, the 

kinematics of deformation during shearing, the amount of exhumation, and the timing of 

metamorphism and shear zone initiation. These data demonstrate the extension on these normal-

sense shear zones in the Himalaya is deeply rooted and exhumed rocks from mid-crustal depths 

(~24 to >26 km). A regional kinematic setting that favored extension combined with a ductile 

mid-crust led to strain partitioning and shear zone initiation, reactivation of older fault systems, 

and decompression-driven melting in the Leo Pargil dome. Approximately north-south oriented 

extensional systems across the Himalayan front are kinematically linked to strike-slip faults 

within the Tibetan Plateau that accommodate eastward displacement of the Tibetan Plateau, 

some of which initiated during a time of active north-directed extension along the South Tibetan 

detachment system. In the western Himalaya, oblique collision potentially controlled the 

development of strike-slip faults that transfer displacement to the normal-sense faults and shear 

zones that accommodate orogen-parallel extension. 

 

 

 

 

 

 

 

 

 



181 

 

VITA 

 

Jackie Langille was born in Phoenix, Arizona and raised in Pocatello, Idaho. She attended 

Idaho State University and earned a Bachelor of Science degree in geology with a minor in 

geotechnologies in 2006. While at Idaho State, she worked as a Geographic Information Systems 

and Remote Sensing Technician for the Bureau of Land Management in collaboration with Idaho 

State University. She left Idaho to attend Central Washington University in Ellensburg, 

Washington where she earned a Master of Science degree in geology in 2008. Her thesis was 

titled “Middle Crustal Ductile Deformation Patterns in Southern Tibet: Insights from Vorticity 

Studies in Mabja Dome” conducted under Dr. Jeffrey Lee. After completion of her Masters 

degree, she began work toward a Doctor of Philosophy degree in geology at the University of 

Tennessee, Knoxville with a concentration on constraining extensional exhumation in the 

Himalaya. Following completion of this degree, she will begin a position at the University of 

North Carolina–Asheville as an Assistant Professor. 


	Dome Formation During Crustal Extension in the Himalaya: Kinematic and Pressure-Temperature-Time-Deformation Constraints on Extensional Exhumation Along the Southern Margin of the Tibetan Plateau
	Recommended Citation

	Langille_dissertation_Intro
	Langille_dissertation_v3

