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   ABSTRACT 

 

Contact resonance force microscopy (CR-FM) is a valuable technique for evaluating the 

interphase of natural fiber-reinforced polymer composites and for characterizing the elastic 

properties of cell wall layers of natural fibers. The nanoscale spatial resolution of CR-FM, 

combined with its ability to provide quantitative modulus images, makes it possible to investigate 

the mechanical properties of interphases as narrow as 30 nm in NFRPCs and thin cell wall layers 

in natural fibers. The nanoscale characterization of interphase and its effects on the bulk 

mechanical properties in this study shows that an increased interphase thickness is very essential 

for the improved tensile strength in lyocell/polypropylene (PP)/maleic anhydride grafted 

polypropylene (MAPP) composites. An optimum amount of MAPP increase the interphase 

thickness to the maximum of 100 nm and further addition only decreased the interphase thickness 

and adversely affected the strength properties. The average impact strength was found to decrease 

with the increasing concentration of MAPP and our results showed that matrix properties were 

also a determinant factor on the impact strength. After comparing the results obtained from CR-

FM, tensile testing, and dynamic mechanical analysis (DMA), it was quite clear that β transition 

was not a strong indicator of the filler –matrix interaction within these composites. For 

lyocell/PP/maleic anhydride grafted styrene-ethylene/butylene-styrene (MA-SEBS) composites, 

tensile strength was not a direct reflection of interfacial bonding. The impact strength was found 

to increase with addition of MA-SEBS. Interphase region showed gradient of modulus values that 

ranged between the modulus values of the fiber and the matrix for both lyocell/PP/MAPP and 

lyocell/PP/MA-SEBS composites. The interphase region showed a gradient in modulus that could 

be described to first order by a linear fit, with a gradual decrease in modulus from fiber to 



 

vi 

matrix. Also, it was quite evident that the interphase thickness accounts for the majority of 

property variations within the interphase for different treatments.  This result defies the earlier 

perception of a flexible interphase with low modulus than the matrix formed by the elastomers in 

composites.  
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CHAPTER 1.  INTRODUCTION 
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1.1 Brief Background 

 Natural fiber reinforced polymer composites (NFRPC) have attracted great interest, both 

in industry and academia. The market for NFRPC has the greatest growth potential in automotive 

and building industries, especially in areas where biocompatibility and environmentally 

responsible design and construction are required. Compared to other reinforcing fibers such as 

carbon or glass fibers, natural fibers have various advantages such as low cost, low density for an 

acceptable specific strength, low energy consumption, high toughness, high sound attenuation, 

nonabrasiveness, undergo little damage during processing, high degree of flexibility, renewable 

nature and biodegradability. 

The performance of NFRPC as a structural material mainly depends on the quality of 

stress transfer in the interphase. The interphase formation depends on the property of 

components in use such as the natural fiber and the polymer matrix and modifications made on 

the components. Extending over lengths from nanometers to micrometers, a “well engineered” 

interphase is critical for desirable mechanical properties of fiber-reinforced polymer composites.  

In the past two decades, researchers have focused on characterizing various interphases, 

and its effect on the bulk properties of composites. The interphase widths of less than 100 nm 

with quantitative mechanical measurements at each position have rarely been reported in 

literature. The main reason for this is a lack of techniques that can measure the properties with 

such nanoscale spatial resolution. Although various methods which posses the spatial resolution 

to characterize narrow interphases in NFRPCs have been developed, they lack the ability to 

provide quantitative measurements at each position of the interphase. In addition to 

characterization of the composite interphase, a better understanding of the mechanical properties 
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of different  fiber layers is necessary for the utilization of natural fibers as reinforcements in 

composites.  

 

1.2. Research Objectives 

There were three objectives of the dissertation study: 1) Nanoscale characterization of 

interphase in NFRPCs and different cell wall layers of natural fiber; 2) Define the effect of 

various treatments on the interphase of NFRPC; 3) Estimate the correlation between the 

interfacial properties and the macroscale performance of the whole composite. The dissertation is 

organized as follows. 

In addition to the Introduction Chapter, three key chapters summarize the study results. 

Chapter 6 is the final chapter of conclusions and recommendations. 

Chapter 3 described the use of contact resonance force microscopy (CR-FM) technique 

for evaluating the interphase of natural fiber-reinforced polymer composites and for 

characterizing the elastic properties of cell wall layers of natural fibers. This technique, which 

has previously been used to characterize various micro and nano structures, is used in this 

dissertation for the first time in the field of natural fibers. Chapter 4 describes property variation 

within the interphase region as well as the variation in interphase thickness with maleic 

anhydride grafted polypropylene (MAPP) concentration by quantitative imaging using CR-FM 

and qualitative images obtained by noncontact AFM phase imaging.    Chapter 5 describes the 

effect of various coupling agents such as MAPP and maleic anhydride grafted styrene-

ethylene/butylene-styrene (MA-SEBS) on the NFRPCs and finally correlated the interfacial 

effects created by these coupling agents on the macroscale performance of the composites. 
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1.3. Rational and Significance 

Extending over lengths from nanometers to micrometers, a well-constructed interphase 

can significantly improve the composite strength, toughness, and environmental resistance. The 

performance of fiber reinforced polymer composites as a structural material mainly depends on 

the quality of stress transfer in the interphase between fiber and polymer in the composite. 

Therefore, a better understanding of the interphase mechanical properties and other essential 

characteristics is necessary for the optimum design of fiber reinforced polymer composites. Until 

now, the limitations in characterizing the mechanical properties within the interphase have been 

a major drawback, primarily due to the lack of appropriate techniques and the experimental 

difficulties for the accurate property measurement with nanoscale spatial resolution. 

Also, growing environmental awareness, stringent legistalative measures for greener 

technologies for promoting the preservation and protection of the quality of environment, 

depleting resources have always stressed the need for bio-based composites. NFRPCs have a 

great potential for dramatic growth in coming years especially in automotive and building 

industries. The knowledge of interphase and mechanical properties within the interphase is very 

essential for the optimum use of NFRPC in various structural applications. Prior to this 

dissertation, researchers have not been able to measure the exact thickness and the mechanical 

properties of interphase in NFRPC which is a major drawback. The purpose of this dissertation 

was to characterize the interphase thickness and measure the mechanical properties of the 

interphase for first time using different advanced atomic force microscopic techniques in 

cellulose fiber-reinforced polypropylene composites also determining the mechanical properties 

of different cell wall layers of natural fibers. The influence of different treatments on interphase 

were analyzed and correlated to the bulk properties of composites. The results from this 
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research will enable scientists to get much more information about the nanoscale properties of 

the interphase and fibers.  This work provides an interesting direction for future research, which 

is very important for optimum design of final NFRPC products.  
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2.1. Abstract 

 
Natural fiber-reinforce polymer composites (NFRPCs) represent one of the fastest 

growing industries. While manmade fibers can be produced with a definite range of properties, 

the efficiency of natural fibers as reinforcements in composites depends on inherent factors such 

as structure, degree of crystallinity, polymerization, and orientation of cellulose chains. The 

structural integrity of a composite mainly depends on the quality of stress transfer in the 

interphase region between the reinforcing fiber and the bulk polymer. The major disadvantage of 

NFRPCs is the incompatibility between the hydrophilic natural fiber and the hydrophobic 

polymer, which can be improved only by either physical or chemical modification of the fiber or 

polymer. This chapter reviews natural fibers, their composition and structure, various researches 

done to characterize natural fibers, modifications of fiber/matrix interphase, and the various 

efforts to characterize these interphases in NFRPCs. The interphase and its impact on the 

macroscale performance of the composites were also discussed here. 

 

Keywords: Natural fiber, microfibrils, interphase, atomic force microscopy, mechanical property 

 

2.2. Introduction 

Natural fibers have various advantages like low cost, sustainable, high toughness, low 

density for an acceptable specific strength, reduced machine wear, reduced dermal and 

respiratory irritation, high degree of flexibility, acoustic insulation, and biodegradability, 

compared to conventional reinforcing fibers like glass, aramid and carbon fibers (Bledzki et al., 

2005; Franco and Gonzalez, 2003; Lee and Wang, 2006; Mathew and Joseph, 2003). Natural 

fiber reinforced polymer composites are more recyclable compared with glass or carbon fiber-
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reinforced ones (Karnani et al., 1997; Mohanty et al., 2000; Terenzi et al., 2007). Growing 

environmental awareness has also increased the use of natural fibers as reinforcing agents which 

are more compatible with the environment with respect to disposability (George et al., 2001; 

Mohanty et al., 2001).  Combination of all these results has prompted a number of industrial 

sectors, especially the automotive industry, to consider natural fibers as substitute to 

conventional fibers in various products. While conventional fibers can be produced with a 

definite range of properties, the efficiency of natural fibers as reinforcements in composites 

depends on inherent factors such as structure, degree of crystallinity, polymerization, and 

orientation of cellulose chains. However, the major disadvantage of NFRPCs is the 

incompatibility between the hydrophilic natural fiber and the hydrophobic polymer leading to 

formation of narrow and weak interphase. This could also lead to the non-uniform dispersion of 

fibers within the matrix (Pickering et al., 2003; Tingaut et al., 2008; Valadez-Gonzalez et al., 

1999). Also the processing temperatures of NFRPC are restricted to low temperatures due to the 

degradability of natural fibers at higher temperatures. The hydrophilic nature of natural fibers 

leads to high moisture uptake which can lead to low mechanical properties of the composites 

(Cantero et al., 2003; Paunikallio et al., 2004). 

The interphase region between the reinforcing fiber and the bulk polymer matrix plays an 

important role in the performance of fiber-reinforced polymer composites. The structural 

integrity of a composite mainly depends on the quality of stress transfer in the interphase. 

Interphase by definition, starts from some point on the fiber where the local properties as a result 

of various surface treatments or reaction with the matrix, begins to change from the bulk fiber 

properties and extends till the local properties again equal to the bulk matrix properties (Terenzi 

et al., 2007).  The response of this region to various forces acting on the composites affects the 
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mode of failure between the fiber and the matrix. Therefore it is very important to determine the 

size and properties of interphase of various natural fiber reinforced composites and its effect on 

the bulk mechanical properties of the composites. Interphases formed in NFRPC are relatively 

weak compared to conventional composites made of glass, carbon or aramid due to the inherent 

polar and non polar nature of fiber and polymer respectively. This can be improved only by 

either physical or chemical modification of the fiber or polymer. Various surface modifications 

have been developed in order to improve the compatibility of wood-polymer composites i.e., the 

natural fibers made less hydrophilic and more miscible with the oleophilic matrices. 

Esterifications and the silanations are the most common modifications used in NFRPC. 

Treatment with maleic-anhydride modified polyolefin (Borja et al., 2006; Ganster et al., 2006; 

Paunikallio et al., 2003; Paunikallio et al., 2004), silane based chemicals (Franco and Gonzalez, 

2005; Kokta et al., 1990; Maldas et al., 1989; Valadez-Gonzalez  et al.,1999), Isocyanate 

compounds (Lee and Wang, 2006; Maldas et al., 1989), alkaline solution (Franco and Valadez-

Gonzalez , 2005; Valadez-Gonzalez  et al.,1999) are most frequently used for modification. 

This chapter reviews natural fibers, their composition and structure, various researches 

done to characterize natural fibers, modifications of fiber/matrix interphase, and the various 

efforts to characterize these interphases in NFRPCs. The interphase and its impact on the 

macroscale performance of the composites were also discussed here. 

 

 

 

 

 



 

10 

2.3. Natural Fibers  

2.3.1. Composition and structure 

The natural fibers can be broadly classified into those of plant, and animal origin. Natural 

fibers from plant origin mainly contain cellulose, which includes bast fibers, leaf fibers, seed, 

fruit, straw, grass and wood fibers.  Natural fibers from animal origin contain protein. Examples 

of animal based natural fiber include wool and silk fibers (Mohanty et al., 2005). Figure 2.1  

shows broad classification of natural fibers 

 

 

 

Figure 2.1. Classification of natural fibers 
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Plant fiber consists of different layers (Figure 2.2). Outermost layer is the primary wall, 

which is bound to the middle lamellae. Primary cell walls of adjoining fibers, together with the 

middle lamellae in between, form the compound middle lamellae (CML). The secondary wall 

has three layers such as S1, S2 and S3. The cell walls are formed from oriented semicrystalline 

cellulose microfibrils embedded in hemicelluloses/lignin matrix. The orientation of the cellulose 

microfibrils is nearly perpendicular or a flat helix with respect to the fiber axis in the S1 and S3 

layers, while it is almost parallel or a steep helix to the fiber axis in the S2 layer (Brandstrom,  

2001; Donaldson  and Xu, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Schematic representation of cell wall layers 
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The primary components, which establish the chemical and physical nature of the cell 

wall and constitute the bulk of material of the wood cell wall, include cellulose (40-50%), 

hemicellulose (20-35%) and lignin (15-35%). Cellulose is a linear organic macromolecule 

consisting of several hundred to over ten thousand β(1-4) linked D-anhydroglucose units. Figure 

 2.3 shows the structure of cellulose. Each repeating units have hydroxyl groups which has the 

ability to form hydrogen bonding between cellulose molecules. The hydrogen bonding plays a 

major role in forming the crystalline structure of cellulose in plant cell wall (Fengel and 

Wegener, 1984).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Structure of cellulose 
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According to “fringe micellar model”, the crystalline regions in cellulose molecules, 

which, without any distinctive boundary, change into disordered or amorphous regions (Astbury, 

1933). Hemicellulose forms the supportive matrix for cellulose microfibrils. Hemicelluloses are 

composed of shorter chains, contain pendants groups, branched and are therefore noncrystalline 

in nature. Lignin gives rigidity to plants. They are polymers based on phenyl propane units. 

Exact chemical nature of lignin still remains unclear, but most of the functional groups and 

building units have been identified through isolated lignin preparations (Mohanty et al., 2005).  

 

2.3.2. Characterization of natural fibers 

It is critical to understand the mechanical properties of natural fiber to use it as 

reinforcement in composite materials. The knowledge of different cell wall layers of natural 

fibers is very critical to isolate single cellulose fibrils without degradation and use it in 

composites (Zhang et al., 2010). A better understanding of the mechanical properties such as 

hardness, yield stress and strength of different fiber layers is necessary to improve the use of 

natural fibers as reinforcements in composites. The arrangement of polymers such as cellulose, 

hemicelluloses and lignin influence the stiffness of the cell wall layers. Properties of cell wall 

were investigated using theoretically analyzed cell wall models (Bergander and Salmen, 2002; 

Watanabe and Norimoto, 2000; Yamamoto and Kojima, 2002). Cellulose was found to dominate 

the properties in the longitudinal direction of cell wall layers, while the properties of 

hemicelluloses was more pronounced in the transverse direction. Orientation of the cellulose 

microfibrils within each cell wall layer have great influence on the mechanical properties of 

natural fibers particularly in the longitudinal direction (Bergander and Salmen, 2002). Several 

researchers have shown (Tze et al., 2007; Watanabe and Norimoto, 2000) that the longitudinal 
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modulus of the S2 layer decreased as the microfibril angle with respect to the fiber axis 

increased. Nanoindentation has been used to investigate the mechanical properties of S2 layer in 

annual rings (Tze et al., 2007), lignifications (Gindl et al., 2002), melamine modified wood 

(Gindl and Gupta, 2002), and early or late wood (Wimmer et al., 1997). The elastic modulus 

values and hardness for the S2 layer varied between 12-22 GPa and 0.2-0.55 GPa respectively 

from these experiments. Nanoindentation was found to less effective in characterizing 

mechanical properties of other layers due to the limits of its spatial resolution. Wimmer and 

Lucas (1997) conducted nano-indentation on the S2 layer and CML and obtained an average 

value of 16 GPa for the longitudinal modulus of the S2 layer, double the value for the CML. 

Their indentation test on the CML was confined to the cell corner middle lamellae due to the 

narrowness of the CML layer. Clair et al. (2003) used advanced AFM method to obtain 

qualitative images of elastic contrast and quantitative values for middle lamellae, S1 and S3 

layers for holm oak and boco wood specimens.  Zhang et al. (2010) investigated the strength and 

fracture behavior of wood cell wall S2 layer through a uniaxial micro-compression test and 

obtained the value of 125 MPa for the compression strength of loblolly pine. Attempts to 

characterize fiber layers such as S1 and S3 with various microscopic methods such as scanning 

electron microscopy (SEM) (Abe and Funada, 2005), AFM have yielded only qualitative results 

(Fahlen and Salmen, 2002; Fahlen and Salmen, 2003).  Most recently Nair et al., (2010) used 

CR-FM for the first time to evaluate the mechanical properties of the cell wall layers of natural 

fibers. Using this technique, the average values of indentation modulus obtained for different cell 

wall layers within a fiber were 22.5–28.0 GPa, 17.9–20.2 GPa, and 15.0–15.5 GPa for the S2 and 

S1 layers and the compound middle lamellae, respectively. This technique provided an image of 

the spatial distribution of quantitative modulus values within each layers in contrast to many 
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other AFM methods (Clair et al., 2002) which gives quantitative values only at certain points in 

each layer.  

 

2.4. Interphase 

By definition, Interphase starts from some point on the fiber were the physical, chemical, 

and mechanical properties begin to change from the bulk fiber as a result of various surface 

treatments or reaction with the matrix and extend until the properties equal to the bulk matrix 

properties. Therefore, interphase depends on the physical and chemical properties of constituents 

such as fiber and matrix as well as various treatments done on them. Figure 2.4 shows the 

schematic diagram of the fiber/matrix interphase. Extending over lengths from nanometers to 

micrometers, a „„well engineered” interphase is essential for desirable mechanical properties of 

fiber-reinforced polymer composites (Mohanty et al., 2001). The structural integrity of a 

composite mainly depends on the quality of stress transfer in the interphase. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Schematic representation of interphase between fiber and matrix (Drzal et al., 1983) 
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2.4.1. Mechanisms at the interphase 

The nature of adhesion between the fiber and matrix is not only dependent on the atomic 

and molecular arrangement of the fiber and matrix, but also on the morphological properties of 

fiber and diffusivity of elements in each constituent. Therefore, the interphase is unique to each 

fiber-matrix system (Kim and Mai, 1991).  Cellulose, the most abundant component in the 

natural fibers has large number of hydroxyl group which gives natural fiber hydrophilic 

properties when used to reinforce hydrophobic polymer matrices. Hemicellulose has an open 

structure containing many hydroxyl and acetyl groups. This makes it partly soluble in water and 

hygroscopic in nature. Lignin which is the polymers of phenylpropane units has the least water 

sorption in natural fiber components. Cellulose (40-50%), hemicellulose (20-35%) contributes 

the bulk properties of natural fibers. So this contributes to the very weak and least resistant 

interphase in natural fiber reinforced polymer composites. This weak interphase reduces the 

potential of natural fibers as reinforcing agents (Li et al., 2007). These reinforcing fibers can be 

modified by physical and chemical methods for a better interphase or better adhesion between 

fiber and matrix.  

Physical methods like surface fibrillation, and electric discharge (Belgacem et al., 1994; 

Wakida and Tokino, 1996) can change the structural and surface properties of fiber and thereby 

helps in the mechanical bonding with the matrix. Various processes such as low temperature 

plasma improves the surface characteristics of fibers using electrons, ions, radical and excited 

molecules produced bye electric discharge causing chemical implantation, polymerization, free 

radical formation, crystallization while process like sputter etching brings physical changes on 

the fibers like surface roughness which leads better interaction with the matrix (Wakida and 

Tokino, 1996). Corona treatment can cause surface oxidation activation which changes the 
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surface energy of the cellulosic fibers affecting the melt viscosity of the composites (Belgacem et 

al., 1994).  

Chemical modifications of natural fibers or polymer matrix aimed at improving the 

adhesion between the fiber and matrix were investigated by a number of researchers. Coupling 

agents are substances that are used in small quantities to treat the fiber and matrix, so that 

bonding occurs between them. They act as bridges that link fibers and matrix by one or more of 

the following processes such as covalent bonding, polymer chain entanglement, and strong 

secondary interactions such as hydrogen bonding (Lu et al., 2000). The most important coupling 

agents are maleated coupling agents, silane coupling agents, and isocynate compounds. 

MAPP coupling agent creates a better adhesion between the matrix and the fiber and 

improves the interfacial bond, which facilitates a much higher stress transfer from the matrix to 

the fiber and improves final mechanical properties in the resultant composites. The anhydride 

group of MAPP forms covalent bonding through esterification process and hydrogen bonding 

with cellulose fibers while the PP in MAPP due to the similarity to the bulk PP permits the 

segmental crystallization and, thus the cohesive coupling between them through entanglement of 

their macromolecular chains (Borja et al., 2006; Ganster et al., 2006; Paunikallio et al., 2003; 

Paunikallio et al., 2004). The bifunctional silane molecules act as a link between the resin and 

the cellulose by forming a chemical bond through a siloxane bridge while its organofunctional 

group bonds to the polymer resin. So this reactivity on both fiber and matrix forms covalent 

bonds which help promote adhesion and therefore mechanical properties (Franco and Gonzalez, 

2005; Kokta et al., 1990; Maldas et al., 1989; Valadez-Gonzalez et al., 1999). Isocynates, 

especially poly(methylene) poly(phenyl) isocynate (PMPPIC) is chemically linked to the 

cellulose molecules by strong covalent bonds. The urethane group results from the reaction 
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between isocynate and hydroxyl compound (Lee and Wang, 2006; Maldas et al., 1989). Other 

major chemical treatments include alkaline treatment (Franco and Gonzalez, 2005; Valadez-

Gonzalez et al., 1999), acetylation (Mwaikambo and Ansell, 1999), benzoylation (Nair et al., 

2001), and peroxide treatment (Paul et al., 1997).  

 

2.4.2. Characterization of interphase 

Although various researchers have focused on the effect of interphase on the bulk 

properties of composites, very little research has been done to characterize and provide 

quantitative measurements in the interphase. Interphase widths of less than 100 nm with 

quantitative mechanical measurements at each position have rarely been reported in literature. 

The main reason for this is the lack of techniques that can measure the properties with such 

nanoscale spatial resolution (Nair et al., 2010).  

Previous NFRPC research on interphase characterization has consisted mostly of 

examining the fracture surfaces of broken composite samples with scanning electron microscopy 

(SEM). Because these studies examined the interaction between the fibers and the matrix based 

on the nature of fracture surface, the results only gave an indirect inference of interphase (Felix 

and Gatenholm, 1991; Oksman and Clemons, 1997). Several other techniques such as single 

fiber pull out tests (Stamboulis et al., 1999), single fiber fragmentation test (Joffe et al., 2003; 

Torres and Cubillas, 2005) were also used to determine the average interfacial shear strength at 

the interface. 

With the advent of scanning probe microscopy (AFM), nanoindentation, and 

nanoscratching which has the ability to probe materials in the nanoscale, more research has been 

focused on interphase. Lee et al. (2007) investigated the interphase properties of a natural fiber-



 

19 

reinforced polypropylene composite by nanoindentation and finite element analysis and showed 

that the interphase width was less than 1 μm. Lee et al. (2009) investigated the interfacial zone of 

a lyocell/polypropylene composite modified by maleated polypropylene (MAPP) using atomic 

force microscopy phase imaging (AFM-PI) and the results indicated that the interphase transition 

zone ranged from approximately 113 nm to 128 nm. Since measurements involving SPM 

involves complex geometric considerations, it has been proved very difficult to obtain 

quantitative data on areas of different mechanical properties (Munz et al., 1998). Spectroscopic 

techniques such as XPS, NMR (Pickering et al., 2003) for characterization of various elements 

on the fiber or polymer surface, or FTIR (Harper and Wolcott, 2006; Tingaut et al., 2008; 

Valadez-Gonzalez  et al., 1999) for looking on to various bonds have also been shown to be 

successful in interphase characterization.                                                                                                                    

Nanoindentation and AFM have been widely used to determine the property gradient 

such as the reduced elastic modulus within the interphase. It has been used in the epoxy/fiber 

glass system (Kumar et al., 2004), epoxy/aluminum joints (Li et al., 2002) to determine the fiber 

bias effect on the interphase, both nanoindentation and AFM-PI has been used (Downing et al., 

2000; Griswold et al., 2005) to determine the interphase in epoxy/glass system. Interphase 

thickness was found to increase with the increasing silane concentration (Griswold et al., 2005). 

AFM phase imaging on the samples indicted a softer interphase than the bulk polymer matrix 

(Downing et al., 2000). Williams et al. (2005) showed that polishing the sample surface often 

resulted in formation of ridges and troughs near the interphase which resulted in artifacts which 

can be misinterpreted as softer interphase. Hodzic et al. (2000) conducted nanoindentation and 

nanoscratching on polymer/glass composite systems and determined the interphase thickness. 

Recently Nair et al (Nair et al., 2010) used contact resonance force microscopy (CR-FM), an 
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extended form of AFM for evaluating the interphase of natural fiber-reinforced polymer 

composites. The nanoscale spatial resolution of CR-FM, combined with its ability to provide 

quantitative modulus images, made it possible to investigate the mechanical properties of 

interphases as narrow as 50 nm.   

 

2.4.3. Interphase impact on the macroscale performance of the composites 

Fiber modification and usage of various coupling agents creates a better adhesion 

between the matrix and the fiber and improves the interfacial bond, which facilitates a much 

higher stress transfer from the matrix to the fiber and improves final mechanical properties in the 

resultant composites. With no coupling agent or modification, the bond between the fiber and 

matrix will be poor which will lead inferior mechanical properties. Use of maleated 

polypropylene as a modifier in NFRPC (Felix and Gatenholm, 1991; Ganster et al., 2008; 

Oksman and Clemons, 1997; Sanchez et al., 2008) has proved to have a substantial effect on the 

final composite mechanical properties. Tensile strength (Felix and Gatenholm, 1991; Oksman 

and Clemons, 1997) and elongation (Karnani et al., 1997; Paunikallio et al., 2004) had a positive 

impact by these modifications, in some researches the elongation showed negative impact too 

(Oksman and Clemons, 1997). Silane coupling agents (Franco and Gonzalez, 2005; Kokta et al., 

1990; Maldas et al., 1989; Valadez-Gonzalez et al., 1999) have been widely used in NFRPC to 

improve the adhesion between the fiber and polymer.  The most favored mechanical property 

was the strength (Franco and Gonzalez, 2005; Kokta et al., 1990; Maldas et al., 1989; Valadez-

Gonzalez et al., 1999), while some works have shown positive impacts on elongation (Karnani et 

al., 1997), modulus and impact strength (Coutinha et al., 1997; Karnani et al., 1997) too.  Some 

researchers have shown the use of impact modifiers such as ethylene/propylene/diene terpolymer 
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and styrene-ethylene/butylenes-styrene triblock copolymer (Oksman and Clemons, 1997; Wu et 

al., 1999) to improve adhesion between the fiber and matrix and their results have shown that 

these modifiers create a ductile interphase which helps in improving the impact strength property 

of the final composite. Several researches have been done on the interphase effect on the creep 

behavior of polymer composites. The increased adhesion between the fiber and matrix by the use 

of compatibilizer substantially reduced the creep formation (Acha et al., 2007; Romero-

Balderrama et al., 2008). However, the presence of softer interphase was found to reduce the 

creep strength (Li and Weng, 1995).                

 Dynamic mechanical analysis (DMA) is an important tool which helps in the 

determination of viscoelastic behavior of the polymers and the influence of the interfacial agent 

on the final composite properties. Several researchers have used DMA to determine the influence 

of MAPP (Azizi and Ghasemi, 2009; Harper et al., 2004; Harper et al., 2009; Hristov et al., 

2003; Nunez et al., 2002) and silane coupling agents (Jacob et al., 2006) on the composite 

properties.  Better adhesion between the fiber and matrix was shown by an increase in complex 

viscosity (Azizi and Ghasemi, 2009), increase in storage modulus at low temperatures (Azizi and 

Ghasemi, 2009; Hristov et al., 2003;  Jacob et al., 2006; Nunez et al., 2002), increase in loss 

modulus (Azizi and Ghasemi, 2009; Jacob et al., 2006), decrease in damping factor (Hristov et 

al., 2003; Jacob et al., 2006), and decrease in glass transition temperature (Jacob et al., 2006). 

Researchers have shown that, a “well engineered” interphase is very important for 

desirable mechanical properties of fiber-reinforced polymer composites (Mohanty et al., 2001). 

An interphase which has lower modulus than the surrounding polymer results in low composite 

stiffness and strength, but greater resistance to fracture (Drzal, 1986; Williams et al., 1990). On 

the other hand, an interphase with higher modulus than the surrounding polymer results in lower 
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fracture resistance but greater strength (Drzal, 1983). Ciprari et al. (2006) investigated the 

interphase of alumina and magnetite nanoparticles embedded in polymethyl methacrylate and 

polystyrene samples with the help of thermal gravimetric analysis (TGA), and transmission 

electron microscopy (TEM) and showed the formation of a low density interphase which resulted 

in compliant composites. 

 

2.5. Conclusions 

The major disadvantage of NFRPCs is the incompatibility between the hydrophilic 

natural fiber and the hydrophobic polymer leading to formation of narrow and weak interphase. 

Although various researchers have focused on the effect of interphase on the bulk properties of 

composites, very little research has been done to characterize and provide quantitative 

measurements in the interphase. The main reason for this is the lack of techniques that can 

measure the properties with such nanoscale spatial resolution.  Interphase widths of less than 100 

nm with quantitative mechanical measurements at each position have rarely been reported in 

literature. In addition to characterization of interphase, a better understanding of the mechanical 

properties such as hardness, yield stress and strength of different fiber layers is necessary to 

improve the use of natural fibers as reinforcements in composites.  Due to the limits of its spatial 

resolution, most of the studies have been confined to the S2 layer. 
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of experimental data, (vi) pulling various contributions to single paper, (vii) most of the writing. 

 

3.1. Abstract 

Contact resonance force microscopy (CR-FM) has been used for the first time to evaluate 

the mechanical properties of the interphase in natural fiber-reinforced composites and of cell 

wall layers of natural fibers. With CR-FM, quantitative images of the elastic properties with 

nanoscale spatial resolution were acquired. The images were calibrated with nanoindentation 

values. From the modulus images, the average interphase width was found to be (49 ± 5) nm for 

composite without any treatment, and (139 ± 21) nm for one with a maleic anhydride 

polypropylene treatment. There was a gradient of modulus across the interphase that ranged 

between the values of fiber and the polymer. The average values of indentation modulus 

obtained for different cell wall layers within a fiber were 22.5 GPa to 28.0 GPa, 17.9 GPa to 20.2 

GPa, and 15.0 GPa to 15.5 GPa for the S2 and S1 layers and the compound middle lamellae, 

respectively. 
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3.2. Introduction 

Natural fiber-reinforced polymer composites (NFRPCs) represent one of today‟s fastest 

growing industries. Possessing mechanical properties comparable to those of manmade fibers 

such as carbon, glass or aramid, natural fibers are a potential alternative in reinforced composites 

because of growing environmental awareness and legislated requirements. Natural fibers also 

have various advantages compared to conventional reinforcing fibers like glass and carbon fibers 

such as low cost, low density for an acceptable specific strength, low energy consumption, high 

toughness, high sound attenuation, nonabrasiveness, undergo little damage during processing, 

high degree of flexibility, less dermal and respiratory irritation, relatively reactive surface, ease 

of separation, renewable nature and biodegradability (Coutinha et al., 1997; Lee and Wang, 

2006; Mathew et al., 2007; Mohanty et al., 2000). The combination of all these factors has 

prompted a number of industrial sectors, especially the automotive industry, to consider natural 

fibers as a substitute for conventional fibers in various products (Mohanty et al., 2001).  

The interphase region between the reinforcing fiber and the bulk polymer matrix plays an 

important role in the performance of fiber-reinforced polymer composites. The structural 

integrity of a composite mainly depends on the quality of stress transfer in the interphase. The 

interphase formation depends on the properties of components in use and modifications made on 

the components (Drzal, 1986). Extending over lengths from nanometers to micrometers, a “well 

engineered” interphase is critical for desirable mechanical properties of fiber-reinforced polymer 

composites (Mohanty et al., 2001). An interphase which has lower modulus than the surrounding 

polymer results in low composite stiffness and strength, but greater resistance to fracture 
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(Drzal, 1986; Williams et al., 1990). On the other hand, an interphase with higher modulus than 

the surrounding polymer results in lower fracture resistance but greater strength (Drzal et al., 

1983).While conventional fibers can be produced with a definite range of properties, the 

efficiency of natural fibers as reinforcements in composites depends on inherent factors such as 

structure, degree of crystallinity, polymerization, and orientation of cellulose chains. The major 

disadvantage of NFRPCs is the incompatibility between the hydrophilic natural fiber and the 

hydrophobic polymer, which can be improved only by either physical or chemical modification 

of the fiber or polymer (Gassan and Bledzki, 1997; Lee and Wang, 2006). Although various 

researchers have studied the effect of interphase on the bulk properties of composites (Coutinha 

et al., 1997; Gassan and Bledzki, 1997; Lee and Wang, 2006), very little research has been done 

to characterize and provide quantitative measurements in the interphase. Previous NFRPC 

research on interphase characterization has consisted mostly of examining the fracture surfaces 

of broken composite samples with scanning electron microscopy (SEM). Because these studies 

examined the interaction between the fibers and the matrix based on the nature of fracture 

surface, the results only gave an indirect inference of interphase (Felix and Gateholm, 1991; 

Oksman and Clemons, 1997). Nanoindentation and nanoscratching have also been used to 

quantify interphase mechanical properties on micrometer or submicrometer length scales. Lee et 

al. (2007) evaluated the interphase properties of a natural fiber-reinforced polypropylene 

composite by nanoindentation and finite element analysis. Although they could not measure the 

interphase directly, their results indicated that the interphase width was less than 1 µm. More 

recently, researchers have used scanning probe microscopy (SPM) methods to get qualitative 

images and evaluate the extent of the interphase in various composites. Lee et al. (2009) 

investigated the interfacial zone of a lyocell/polypropylene composite modified by maleated 
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polypropylene (MAPP) using atomic force microscopy phase imaging (AFM-PI). Phase imaging 

records the phase lag when the AFM tip interacts with areas of different mechanical properties. 

They showed that the interphase transition zone ranged from approximately 113 nm to 128 nm. 

Since the measurements involving SPM involves complex geometric considerations, it has 

proved very difficult to obtain quantitative data on areas of different mechanical properties 

(Munz et al., 1998). 

In NFRPCs, the plastic material which serves as the matrix is tough but relatively weak. 

These plastics are reinforced by stronger stiffer natural fibers. It is critical to understand the 

mechanical properties of natural fiber to use it as reinforcement in composite materials. The 

knowledge of different cell wall layers of natural fibers is very critical to isolate single cellulose 

fibrils without degradation and use it composites (Zhang et al., 2010). Therefore, in addition to 

characterization of the composite interphase, a better understanding of the mechanical properties 

(modulus, hardness, yield stress and strength) of different fiber layers is necessary to improve the 

utilization of natural fibers as reinforcements in composites. The mechanical properties of the 

wall depend on the amount of constitutive polymers, their spatial organization, and also on the 

way they are bound to each other (Watanabe and Norimoto, 2000). Each wood fiber consists of 

different layers, as shown in Figure 2.2. The primary wall of the fiber is the outermost layer, 

which is bound to the middle lamellae, which acts as a cementing agent between fibers. The 

primary cell walls of adjoining fibers, together with the middle lamellae in between, form the 

compound middle lamellae (CML). The secondary wall is divided into the S1, S2 and S3 layers. 

The orientation of the cellulose microfibrils within each cell wall layer strongly influences the 

mechanical properties of natural fibers in their longitudinal direction (Bergander and Salmen, 

2002). The orientation of the cellulose microfibrils is nearly perpendicular (flat helix) to the fiber 
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axis in the S1 and S3 layers, while it is almost parallel (steep helix) to the fiber axis in the S2 layer 

(Brandstrom, 2001; Donaldson and Xu, 2005). Using theoretical cell wall unit models, Watanabe 

et al. (2000) showed that the longitudinal modulus of the S2 layer decreased as the microfibril 

angle with respect to the fiber axis increased. Several researchers have studied the mechanical 

properties of single wood fibers, mainly with nanoindentation, atomic force microscopy or a 

combination of both. However, most of these studies were conducted on refined natural fibers 

(Xing et al., 2009) or isolated single cellulose fibrils (Cheng and Wang, 2008), both of which are 

prone to mechanical or chemical modification. Nanoindentation is currently one of the most-used 

methods to quantify the mechanical properties of cell wall layers of natural fibers. Due to the 

limits of its spatial resolution, most nanoindentation studies have been confined to the S2 layer. 

These studies have considered annual rings (Tze et al., 2007), lignifications (Gindl et al., 2002), 

comparisons with middle lamellae, melamine modified wood (Gindl and Gupta, 2002), and early 

or late wood (Wimmer et al., 1997). Wimmer et al. (1997) conducted nanoindentation on the S2 

layer and CML and obtained an average value of 16 GPa for the longitudinal modulus of the S2 

layer, double the value for the CML. Their indentation test on the CML was confined to the cell 

corner middle lamellae due to the narrowness of the CML layer. Since the average thickness of 

the S1 layer is approximately 0.4 µm and that of the CML layer is around 0.1 µm, the mechanical 

properties of these layers have rarely been studied. Zhang et al. (2010) investigated the strength 

and fracture behavior of wood cell wall S2 layer through an uniaxial micro-compression test and 

obtained the 125 MPa compression strength for loblolly pine. Attempts to characterize fiber 

layers such as S1 and S3 with various microscopic methods have yielded only qualitative results 

(Fahlen and Salmen, 2002).  

The above discussion highlights the need for a measurement method capable of providing 
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quantitative information about mechanical properties with nanoscale spatial resolution, while at 

the same time providing images of the spatial distribution in properties. Such a method would 

prove invaluable for studies of the interphase region in NFRPCs as well as of cell wall layers. 

Here we show how contact resonance force microscopy (CR-FM) methods (Hurley, 2009) can be 

used to meet this need. CR-FM has the imaging capability of AFM, combined with the ability to 

determine quantitative modulus values. In this way, it is possible to image or visualize the 

nanoscale spatial distribution of properties, rather than relying on a single average value or a 

point by point estimation of quantitative values. 

 

3.3. Experimental 

3.3.1. Materials and sample preparation 

 
For the NFRPC experiments, isotactic polypropylene (PP) (Exxon Mobil Corporation, 

Irving, TX) with a melt flow index of 35 and maleated polypropylene (MAPP) (Epolene G-3003, 

Eastman Chemicals, Kingsport, TN) were used. Dry solid states of PP and MAPP were mixed 

with a HAAKA MiniLab extruder (Thermo Fischer Scientific, Karlsruhe, Germany). The 

temperature, rotation speed, and processing period were 180
0
C, 100 rpm, and 10 min, 

respectively. One mixture contained 10 wt % of MAPP, while the other contained 0 % MAPP. 

The dry mixtures were compression molded into films approximately 0.25 mm thick. Lyocell 

fibers (Lenzing AG, Lenzing, Austria) approximately 10 µm in diameter and 30 mm long were 

unidirectionally placed on top of the PP-MAPP films. The films were then stacked and 

compression molded at 200
0
C for 10 min and then cold water was used to cool down the mold 

temperature to 32
0
C under pressure in order to obtain unidirectional lyocell fiber-reinforced 

composites (Nair et al., 2008). The cell wall layer experiments involved samples collected 
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from a 45-year-old red oak. A latewood portion of the 45
th 

annual ring was cut with dimensions 

of 2 mm X 5 mm X 5 mm in the radial, tangential and longitudinal directions, respectively. 

The NFRPC and cell wall samples were embedded in an epoxy medium under vacuum 

and cured by heating and drying for 8 h at 70
0
C (Spur, 1969). A cross section of the sample was 

prepared by use of an ultramicrotome with a diamond knife. The microtome process yielded 

sufficiently smooth surfaces for the CR-FM experiments.  

 

3.3.2. Nanoindentation techniques 

Modulus values for the lyocell fiber and PP matrix for the composites and the S2 layer of 

the wood sample were obtained by displacement-controlled nanoindentation (Triboindenter, 

Hysitron, Eden Prairie, MN). The Berkovich indenter tip was loaded to a maximum displacement 

of 250 nm. The indentation modulus of the sample is inferred from the initial unloading contact 

stiffness S, i.e., the slope dP/dh of the tangent to the initial unloading curve in the load-

displacement curve, where P is the indentation force and h is the displacement. The sample 

reduced indentation modulus ( rE ) is then calculated from (Oliver and Pharr, 1997). 
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where   is a constant that depends on the geometry of the indenter (  = 1.034 for a Berkovich 

indenter) and  is the contact area. The indentation modulus sM  of the sample is then obtained 
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where Mtip is the indentation modulus of the diamond indenter tip. The value Mtip = 1146 GPa 

was used (Kopycinska-Muller et al., 2005). The average value of M for the S2 layer obtained by 

nanoindentation was 24.6 GPa. The average indentation modulus reference values for the 

composites obtained by nanoindentation on the fiber and matrix were Mfiber = 12.4 ± 0.3 GPa and 

Mmatrix = 3.2 ± 0.3 GPa, respectively.  

 

3.3.3. CR-FM techniques 

Contact-resonance force microscopy (CR-FM) (Hurley, 2009) was used for quantitative 

imaging of the nanoscale elastic properties of the samples. CR-FM is based on the atomic force 

acoustic microscopy (AFAM) method (Hurley et al., 2003; Rabe et al., 2000), which determines 

elastic properties at a fixed sample position. The basic measurement procedure involves 

measuring the resonant frequencies of the vibrating AFM cantilever in free space and contact 

resonance frequencies when the tip is in contact with the sample. CR-FM consists of acquiring 

contact resonance frequencies for two samples in alteration: the test (unknown) sample and a 

reference sample whose elastic properties are known. The elastic properties of the reference 

samples were obtained using nanoindentation. In our composite samples, we used lyocell fiber 

and PP matrix as the reference samples to determine the elastic properties of interphase and for 

the cell wall experiments; we used S2 layer as the reference sample to determine the properties of 

different cell wall layers. Data analysis consisted of two different steps, each a separate model. 

First, the measured frequencies were related to the tip-sample interaction force by means of a 

model for the dynamic motion of the cantilever. Next the interaction force which is the contact 

stiffness (k*) was used to determine the elastic properties of the sample using a model for the 

contact mechanics between the tip and the sample (Hurley, 2009; Hurley et al., 2003; Rabe et al., 
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2000). An extension of AFAM for quantitative imaging, CR-FM techniques have been described 

in detail elsewhere (Hurley, 2009; Hurley, 2010; Hurley et al., 2007). The imaging experiments 

were performed with custom electronics that interface with a commercial AFM instrument (Kos 

and Hurley, 2008). A conceptual schematic of the experimental apparatus is shown in Figure 3.1. 

The sample under investigation is bonded to a piezoelectric actuator (ultrasonic transducer) 

affixed to the positioning stage of the AFM instrument. The transducer is driven by a swept sine 

wave voltage, and the resulting vibrations excite the resonant modes of the cantilever. The signal 

from the AFM position-sensitive photodiode is used as input to the custom electronics in order to 

determine the contact resonance frequency at a given image position. Through the use of an 

auxiliary AFM input channel, an image of these frequencies is acquired in parallel with the 

topographic image.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Schematic representation of CR-FM 
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The AFM cantilevers used in these experiments had nominal dimensions of length L = 225 

± 10 µm, width w = 30 ± 8 µm, and thickness t = 3 ± 1 µm, and nominal spring constant kc = 2.8 

N/m. The applied static force FN = kcd, where d is the deflection, was approximately 50 nN to 80 

nN.  To avoid registration difficulties and artifacts due to scanner drift and hysteresis in scanning 

the same area twice, frequency images were acquired for only one resonant mode, namely the 

second flexural mode (Hurley, 2010). The second mode is the most sensitive mode for the 

experimental conditions used here, that is, it exhibits the greatest change in resonant frequency 

for a given change in contact stiffness (Hurley, 2009). Images of the normalized contact stiffness 

k*/kc for a sample (“test”) region were calculated from the frequency images assuming a fixed 

value for the relative tip position L1/L = 0.97, where L1 is the position of tip relative to the total 

length L of the cantilever. This approach was feasible due to the relatively small variation in 

contact stiffness with L1/L for the second flexural mode (Hurley, 2009). The contact stiffness 

images were transformed into images of the reduced modulus E
*
test by use of the nanoindentation 

measurements on a reference specimen. It is necessary to convert the reduced modulus value Er 

obtained by nanoindentation with a diamond tip into a reduced modulus E
*
ref corresponding to 

contact with the AFM tip. A relation identical to Eq. (3.2) is used, except that Mtip = 165 GPa for 

the <001> silicon tip. Values of the reduced modulus E
*
test for the sample region were then 

calculated with (Hurley, 2009; Hurley et al., 2003; Rabe et al., 2000). 
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where testk*  and refk*  are the contact stiffness values for the test sample and reference sample, 

respectively. The value n = 3/2 was used, corresponding to Hertzian contact. Finally, the reduced 

modulus images were converted to images of the indentation modulus Mtest using Eq. (3.2).  
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This approach was used to calculate indentation modulus values for the images of the cell 

wall layers. Er and hence Mref and E
*
ref were obtained by nanoindentation for the S2 layer. For 

each experimental image, the mean value of the contact stiffness was determined for a region 

containing the S2 layer and was used as k*ref in Eq. (3). For images of the composite interphase, a 

dual reference approach was used.  Nanoindentation values for both the fiber (Mfiber) and the 

matrix (Mmatrix) were obtained and used in (Stan and Price, 2006). 

In this case, two reference values of the contact stiffness were determined for each image. 

One value was the average value k*fiber for an image region that contained only the fiber, and one 

was the average value k*matrix for a region that contained only the matrix. 

 

3.4. Results and Discussion 

3.4.1. Evaluation of interphase in fiber reinforced composites 

Contact resonance frequency images were obtained at the boundary region between the 

fiber and the matrix. In order to avoid signal artifacts due to topographical effects, regions as flat 

as possible were selected (height ~20 nm or less) for imaging. Figures 3.2 and 3.3 show 

topography and indentation modulus images for two composite samples with different 

treatments. Differences in modulus values for the fiber, fiber-matrix boundary zone, and matrix 

regions are clearly visible in the images. 
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Figure 3.2. Topography (top) and indentation modulus image (bottom) of lyocell/PP composites 

without treatment 
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Figure 3.3. Topography (top) and indentation modulus image (bottom) of lyocell/PP composites 

with MAPP treatment 
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The interphase zone properties were analyzed with commercial image processing 

software. Mean indentation modulus values for regions consisting entirely of fiber and matrix 

were obtained from the area enclosed within the box plots shown in Figure 3.3(a). Figure 3.3(b) 

shows the line profile corresponding to the radial line segment in Figure 3.3(a) across the fiber-

matrix boundary region.  The left pointer in Figure 3.3(b) corresponds to the mean indentation 

value for the fiber (12.4 GPa), while the right pointer indicates that of the matrix (3.2 GPa). In 

Figure 3.3(b), the distance between the two pointers, where the properties differ from those of 

the bulk fiber and matrix corresponds to the interphase thickness (in this case was about 135 

nm). By definition, the interphase starts from some point on the fiber where the local properties 

as a result of various surface treatments or reaction with the matrix, begin to change from those 

of the bulk fiber and extends until the local properties equal the bulk matrix properties (Drzal 

1986). In order to minimize any morphological variations near the fiber or the matrix surface, 

this approach was applied to 15 radial lines across the fiber-matrix boundary. The width of 

interphase obtained by averaging these line scans was found to be (49 ± 5) nm for the composite 

without MAPP treatment, and (139 ± 21) nm for the one with 10 % MAPP treatment. Figure 3.4 

shows the line profiles obtained by averaging 15 radial line scans across the fiber-matrix 

boundary region for both composites. The average line profile for each composite exhibited a 

gradient of modulus across the interphase region that ranged between the modulus values of fiber 

and the polymer.  
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Figure 3.4. Analysis of the modulus (top), and line profile image (bottom) showing the size of 

interphase based on the gradient in modulus 
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Figure 3.5. Average modulus across interphase region (between the vertical dotted lines) 

between the fiber and matrix for (a) lyocell/PP composites without any treatment and (b) with 

MAPP treatment 
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As mentioned above, chemical modification of the hydrophilic fiber and/or the 

hydrophobic matrix is necessary for a strong fiber-matrix bond. These results indicate that the 

MAPP treatment has substantially increased the interphase transition zone. This is consistent 

with previous results in the literature. For instance, Lee et al. (2009) showed that the use of 

MAPP as a compatibilizer in lyocell/polypropylene composite increased the interphase transition 

zone. Also, they have shown that the combined use of MAPP and γ-amino propyltrimethoxy 

silane (γ-APS) have further increased the interphase transition zone.  

Interphase widths of less than 100 nm with quantitative mechanical measurements at each 

position have rarely been reported in literature. The main reason for this is the lack of techniques 

that can measure the properties with such nanoscale spatial resolution. Griswold et al. (2005) 

examined the interphase region of an epoxy/glass composite with atomic force microscopy phase 

imaging (AFM-PI) and nanoindentation and showed that interphase thickness varied between 

110 nm and 888 nm for different silane concentrations. Although they used SPM methods such 

as AFM-PI which possess the spatial resolution needed to characterize such narrow interphases, 

the lack of ability to provide quantitative measurements at each position in the interphase was a 

major drawback. In AFM-PI techniques, the tips are either at large distance from the surface as 

in non contact mode (Lee et al., 2009) or very low force is applied to the tip as in light tapping 

mode (Griswold et al., 2005). Therefore, in addition to surface elastic properties, adhesion, 

viscoelasticity, and hydrophilicity/hydrophobicity also contribute to the phase lag (Gao and 

Mader, 2002). Whereas in CR-FM, sufficient force is applied on the tip which ensures that the 

scanning is in contact with the surface and proper contact area is obtained, which means that the 

tip sample interactions are more influenced by the surface elastic properties.  But care has to be 

taken to protect the test sample and reference sample from the formation of any oxides or 



 

50 

adsorbed water on the surface. These can prevent the tip from pure elastic contact with sample 

(Hurley, 2009). Hodzic et al. (2000) conducted nanoindentation and nanoscratching on 

polymer/glass composite systems and reported that the interphase varied between 2 µm and 6 

µm. Kim et al. (2001) found that the interphase width measured by nanoscratching for a 

polymer/glass system varied from 0.8 µm to 1.5 µm, and that the width increased with silane 

concentration.  

All of these values are much larger than the values obtained in this study. One explanation 

is that the limited spatial resolution of nanoindentation prevents accurate measurements of 

narrow interphases. In addition to the limit imposed by the size of the indenter tip, the lateral 

resolution is reduced by other effects.  The spacing of indents made by nanoindentation should 

be sufficiently wide enough to avoid the overlapping of the zone associated by plastic 

deformation. For instance, finite element analysis has shown that the interphase thickness 

measured by nanoindentation can appear larger than the true value due to the effect of 

neighboring materials (Lee et al., 2007). In this study involving the CR-FM technique, we have 

demonstrated the ability to measure interphase zones as narrow as 50 nm in 

lyocell/polypropylene composites. The extremely small tip radius (25 nm to 35 nm) and low 

forces (50 nN to 80 nN) involved in these CR-FM experiments mean that the deformation of the 

sample surface is very small and is elastic. This feature is quite valuable for characterizing the 

narrow interphase widths in NFRPCs. One of the major limitations of CR-FM is that the elastic 

properties of the reference samples were obtained using nanoindentation. These reference values 

were used to obtain the modulus values of unknown sample in Eq. (3.3) and Eq. (3.4). The AFM 

tips used in CR-FM experiments uses low forces, so that the tip-sample contact is predominantly 

elastic. In nanoindentation, the Berkovich indenter tip was loaded to a maximum displacement of 
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250 nm which means that the tip sample contact creates plastic deformation. So the indentation 

modulus obtained by these methods can be different. One way to avoid this is to obtain the 

reference values using nanoindentation techniques using AFM tips having similar tip radius and 

using low forces similar to those used in CR-FM technique. However, experimental uncertainties 

such as depth of penetration, tip wear and tear, piezo creep, and hysteresis effects limit the utility 

of AFM based nanoindentation measurements (Li et al., 2009).  

 

3.4.2. Evaluation of mechanical properties of cell wall layers 

Contact resonance frequency images were obtained at the boundary region between two 

fibers within the growth ring. Modulus maps were calculated from the frequency images using 

the procedure described above. Figure 3.5 shows images for the topography and indentation 

modulus. Contrasts in modulus between the CML and S1 and S2 layers are clearly visible.  Mean 

values of the indentation modulus for the CML and S1 and S2 layers were obtained from the area 

enclosed within the box plots, as shown in Figure 3.5.  To avoid signal artifacts due to 

topographical effects, regions as flat as possible were selected for the box plot analysis. The 

values of indentation modulus were 22.5 GPa to 28.0 GPa, 17.9 GPa to 20.2 GPa, and 15.0 GPa 

to 15.5 GPa for the S2, S1, and CML layers, respectively. The higher values of the S2 layer 

compared to other layers are consistent with previous results in the literature (Clair et al., 2003; 

Wimmer and Lucas, 1997). Although the S2 layer has a steeper helix and the S1 layer has a flatter 

helix of microfibril orientation with respect to the fiber axis, various studies have shown that 

there is a shift of microfibril orientation from the outer S1 layer to the inner S2 layer and from the 

outer S2 layer to the inner S3 layer. Abe et al. (1991) reported that the cellulose microfibril 

orientation in the secondary cell wall layers of Sakhalin fir, as seen from the lumen side, 
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gradually changed in a clockwise direction from the outermost S1 to the middle of the S2 and then 

to counterclockwise to the innermost S3. Xing et al. (2008) examined the cell wall layers of 

refined fibers of loblolly pine by use of nanoindentation and showed that there exists a clear 

interphase between S2 and S1 and between S2 and S3. The wider range of indentation modulus 

values obtained in this study for each of the secondary layers can be explained partly by 

differences in the cellulose microfibril angle within each layer (Bergander and Salmen, 2002; 

Watanabe and Norimoto, 2000).  
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Figure 3.6. Images of (a) topography and (b) box plot analysis of indentation modulus image of 

various cell wall layers 
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The images in Figure 3.5 also show a thin region between the S1 and S2 layers with 

apparently lower modulus than that of other secondary layers. Line profile analysis of these 

regions, as shown in Figure 3.6 indicates that signal artifacts due to topography are the most 

likely cause of the effect. In CR-FM experiments, the measured resonant frequency depends not 

only on the local contact stiffness, but also on the contact area between the tip and sample. For a 

perfectly flat sample, the contact area remains the same during scanning, and frequency changes 

correspond only to contact stiffness variations. However, as indicated in Figure 3.7 sharp or 

significant changes in topography will affect the contact area. The resulting change in frequency 

leads to false changes in modulus. Finally, the innermost layer of the fiber, the S3 layer, could not 

be reliably identified in the CR-FM modulus maps. Because it is adjacent to the lumen and is the 

thinnest layer, the distinction of this layer might have been lost- when the lumen region was 

replaced with epoxy during sample preparation. Improved sample preparation methods are 

required in order to better characterize this layer with CR-FM techniques. 
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Figure 3.7. (a) Topographical change between S1 and S2 and (b) corresponding line profile 
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Figure 3.8. (a) Schematics for contact mechanics for Hertzian contact on flat surface (left) and on 

a steep slope (right) 

 

CR-FM methods present a number of advantages over other methods for studying the 

elastic properties of cell walls. Because it is the thickest cell wall layer, the S2 layer has been the 

subject of earlier studies. The presence of various adjacent layers in fibers can alter the 

deformation fields surrounding indents made by nanoindentation, potentially leading to incorrect 

estimates of the indentation modulus. Jakes et al. (2008) showed that the structural compliance 

observed in nanoindentation experiments on the S2 layer was mainly due to the effect of the 

nearby free edge of the lumen. In CR-FM technique, the fact that the deformation is much 

smaller and elastic largely solves this problem. The improvement in lateral spatial resolution 

afforded by CR-FM methods using a smaller tip and lower applied forces opens the door to 
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detailed studies of cell wall structure. CR-FM also provides an image of quantitative modulus 

values, in contrast to many other AFM methods. For instance, the AFM methods used by Clair et 

al. (2003) to investigate holm oak and boco wood specimens provide only qualitative images of 

elastic contrast and quantitative values at only a handful of sample positions. The ability of 

contact- resonance methods to provide quantitative images of nanoscale mechanical properties 

has not been demonstrated in any of the previously conducted cell wall studies. 

 

3.5. Conclusion 

Study results in this chapter demonstrate that contact resonance force microscopy is a 

valuable technique for evaluating the interphase of natural fiber-reinforced polymer composites 

and for characterizing the elastic properties of cell wall layers of natural fibers. The nanoscale 

spatial resolution of CR-FM, combined with its ability to provide quantitative modulus images, 

makes it possible to investigate the mechanical properties of interphases as narrow as 50 nm in 

NFRPCs and thin cell wall layers in natural fibers. This technique, which has previously been 

used to characterize various micro-nano structures, is used here for the first time in the field of 

natural fibers. The extremely low loads and small tip radius characteristic of CR-FM enable in-

situ elastic property information with significantly higher spatial resolution than other, 

destructive methods like nanoindentation. The use of a reference material with similar modulus 

values removes much of the uncertainty arising in the final modulus values from tip wear and 

tear, which is very common with other AFM methods. One of the major limitations of CR-FM 

technique used here is that the elastic properties of the reference samples were obtained using 

nanoindentation. The indentation modulus obtained by these methods can be different. One way 

to avoid this is to obtain the reference values using nanoindentation techniques using AFM tips 
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having similar tip radius and using low forces similar to those used in CR-FM technique. 

However, experimental uncertainties such as depth of penetration, tip wear and tear, piezo creep, 

and hysteresis effects limit the utility of AFM based nanoindentation measurements. Also, proper 

care has to be taken to protect the test sample and reference sample from the formation of any 

oxides or adsorbed water on the surface. These can prevent the tip from pure elastic contact with 

sample. These results suggest that this method will enable researchers to get much more 

information about the nanoscale properties of interphase and fibers, and correlate these 

information to macroscale performance provides an interesting direction for future work, which 

is very important for optimum design of final NFRPC products. 
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CHAPTER 4. CHARATERIZATION OF INTERPHASE NANOSCALE 

PROPERTY VARIATIONS IN MALEATED POLYPROPYLENE 

TREATED NATURAL FIBER REINFORCED POLYMER COMPOSITES 
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This chapter is a revised version of a paper by Sandeep Sudhakaran Nair and Donna C 

Hurley et al submitted to a journal article and is in review now: 

Nair SS, Hurley DC, Wang S, Young TM. Nanoscale characterization of interphase 

properties in maleated polypropylene-treated natural–fiber reinforced polymer composites. 

Polym. Eng. Sci (In revision). 

My primary contributions to this paper includes (i) development of the problem into a 

work, (ii) identification of the study areas and objectives, (iii) design and conducting of the 

experiments, (iv) gathering and reviewing literature, (v) processing, analyzing and interpretation 

of experimental data, (vi) pulling various contributions to single paper, (vii) most of the writing. 

 

4.1. Abstract 

Contact resonance force microscopy (CR-FM) has been used to evaluate the effect of 

MAPP (maleated polypropylene) concentration on interphase thickness as well as the spatial 

distribution of mechanical properties within the interphase of cellulose fiber reinforced PP 

(polypropylene) composites. The average interphase thickness thus obtained was (25 ± 10) nm, 

(44 ± 11) nm, (54 ± 23) nm, and (104 ± 22) nm for composite specimens prepared with 0 %, 2.5 

%, 5 %, and 10 % MAPP, respectively. The interphase region showed a gradient in elastic 

modulus, with a gradual decrease in modulus from fiber to matrix. The interphase region in the 

specimen containing 0 % MAPP showed a narrow interphase with steep gradient in modulus 

from fiber to matrix, while use of MAPP significantly increased the interphase thickness, 

resulting in a more gradual change in modulus from fiber to matrix.  
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Keywords: Interphase, coupling agent, modulus, modulus image, phase image 

 

4.2. Introduction 

 
The structural integrity of a composite mainly depends on the quality of stress transfer 

across the interphase. Extending over lengths from nanometers to micrometers, a well-

engineered interphase is essential to obtain fiber-reinforced polymer composites with the desired 

mechanical properties (Mohanty et al., 2001). Although many researchers have studied the effect 

of interphase on the bulk properties of composites, very little research has been done on the 

nanoscale properties of the interphase. Previous research on interphase characterization has 

consisted mostly of fiber pull-out tests (Stambolis et al., 1999), fragmentation tests (Joffe et al., 

2003; Torres and Cubillas, 2005), nanoindentation (NI) (Lee et al., 2007), and nanoscratching 

(Hodzic et al., 2000), but all of these were either single-fiber microcomposite tests or on 

micrometer length scales.  The advent of scanning probe microscopy (SPM), which has the 

ability to probe materials with nanoscale spatial resolution, has allowed more research focused 

directly on the interphase. Because SPM measurements can involve complex geometric 

considerations, it has proven difficult to obtain quantitative data (Munz et al., 1998). Few reports 

exist in the literature concerning interphases with sub-100 nm widths, especially with 

quantitative mechanical information. This lack of quantitative data for interphase mechanical 

properties is a major barrier to success for natural fiber reinforced polymer composites 

(NFRPCs), where the incompatibility between the hydrophilic natural fiber and the hydrophobic 

polymer results in a narrow interphase (Nair et al., 2010).  Growing environmental awareness 

has increased the use of natural fibers as reinforcing agents to produce polymer composites that 

are more environmentally friendly with respect to recyclability (George et al., 2001).  Natural 
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fibers have various other advantages compared to conventional reinforcing fibers like glass, 

aramid, and carbon, including: low cost, ready availability, low density, high toughness, 

acceptable specific strength, reduced machine wear, reduced dermal and respiratory irritation, 

high degree of flexibility, improved acoustic insulation, and biodegradability (Karnani et al., 

1997; Lee et al., 2006; Terenzi et al., 2007).  In combination, all these factors have prompted a 

number of industrial sectors, especially the automotive industry, to consider natural fibers as a 

substitute for synthetic fibers in various products. Natural fiber-reinforced polymer composites 

(NFRPCs) therefore represent one of today‟s fastest-growing industries.  

An interphase with lower modulus than the surrounding polymer results in low composite 

strength but greater resistance to fracture (Drzal, 1986; Williams et al., 1990). On the other hand, 

an interphase with higher modulus than the surrounding polymer results in lower fracture 

resistance but greater strength (Drzal et al., 1983). A stiffer interphase is more effective for strain 

development within the fiber and improves reinforcement. At the same time, a brittle interphase 

can fail catastrophically, because there is no barrier for crack propagation and hence no means of 

stress relief. A ductile interphase can yield and protect the fiber from crack propagation in the 

matrix, thereby saving the composite from premature fracture. Therefore a proper balance 

between interphase stiffness and ductility is critical for optimizing the design of composites with 

the desired mechanical properties (Lane et al., 1999). Furthermore, the interphase thickness plays 

a major role in the rate of stress transfer from the matrix to the fiber (Haynes et al., 2001). All 

these factors emphasize the importance of quantifying the interphase properties in order to 

optimize the final design of composites. 

A variety of coupling agents have been used in NFRPCs to enhance the adhesion between 

the natural fiber and the matrix. Maleated polypropylene (MAPP) and silane coupling agents 
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have been widely used in NFRPC to enhance the tensile properties (Karnani et al., 1997). The 

use of coupling agents such as maleic anhydride grafted styrene-ethylene-butylene-styrene (MA-

SEBS) and ethylene propylene diene terpolymer (EPDM) has very little effect on composite 

tensile properties but substantially improves impact toughness (Wu et al., 1999). However, 

earlier research did not quantify the spatial distribution of mechanical properties within the 

interphase, which ultimately affects the macroscale properties.  Many studies have used 

nanoindentation (Gao and Mader, 2002) and nanoscratching (Hodzic et al., 2000) techniques to 

characterize the interphase and to measure interphase mechanical properties in various synthetic 

fiber reinforced thermoset matrix composites. These methods were found to be ineffective in 

NFRPCs due to the narrow width of the interphase (Lee et al., 2007).  

In this chapter, we investigate the effect of MAPP concentration on the spatial 

distribution of mechanical properties within the interphase of natural fiber reinforced composites. 

We also study the effect of MAPP concentration on interphase thickness.  Measurements are 

performed with contact resonance force microscopy (CR-FM) (Hurley, 2009; Hurley et al., 

2007), a dynamic atomic force microscopy (AFM) approach. CR-FM enables quantitative 

imaging or mapping of the spatial distribution in mechanical properties with nanoscale spatial 

resolution. AFM phase imaging (AFM-PI) was also used to qualitatively evaluate the variation of 

properties within the interphase region.   
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4.3. Experimental 

4.3.1. Materials and sample preparation 

Isotactic polypropylene (PP) (Exxon Mobil Corporation, Irving, TX) with a melt flow 

index of 35 and maleated polypropylene (MAPP) (Epolene G-3003, Eastman Chemicals, 

Kingsport, TN) were used. Quantities of PP and MAPP were mixed in the dry solid state with an 

extruder (HAAKA MiniLab, Thermo Fischer Scientific, Karlsruhe, Germany). The temperature, 

rotation speed, and processing period were 180
0
C, 100 rpm, and 10 min, respectively. Mixtures 

containing 0 %, 2.5 %, 5 %, and 10 % MAPP by weight were obtained. The dry mixtures were 

compression molded into films approximately 0.25 mm thick. Commercial regenerated cellulose 

fibers (Lyocell, Lenzing AG, Lenzing, Austria) approximately 10 µm in diameter and 30 mm 

long were placed unidirectionally on top of the PP-MAPP films. The fibers were placed in 

between the polymer films one on top and one on bottom and were then stacked and compression 

molded at 200
0
C for 10 min and then cold water was used to cool down the mold temperature to 

32
0
C under pressure in order to obtain unidirectional lyocell fiber-reinforced composites (Nair et 

al., 2008). The samples were embedded in an epoxy medium under vacuum and cured by heating 

and drying for 8 h at 70
0
C (Spur, 1969). A cross section of each sample was prepared with an 

ultramicrotome with a diamond knife. The ultramicrotome process yielded sufficiently smooth 

surfaces for AFM and CR-FM experiments (Kim et al., 2001). 

 

4.3.2. Nanoindentation techniques 

Displacement-controlled nanoindentation (Triboindenter, Hysitron, Eden Prairie, MN) was 

used to determine values for the indentation modulus of the lyocell fibers and the PP matrix. The 

indenter tip was loaded to a maximum displacement hmax = 250 nm. The indentation modulus 
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of the sample was then inferred from the initial unloading contact stiffness S (i.e., the slope 

dP/dh of the tangent to the initial unloading curve in the load-displacement curve, where P is the 

indentation force and h is the displacement). The sample reduced indentation modulus rE  was 

then calculated from Eq (3.1) (Oliver and Pharr, 1997). 

 Finally, the plane strain or indentation modulus Ms of the sample was obtained from Eq 

(3.2). The average indentation modulus reference values for the composites obtained across all 

samples by nanoindentation on the fiber and matrix were Mfiber = (13.1 ± 0.8) GPa and Mmatrix = 

(3.2 ± 0.2) GPa, respectively.  

 

4.3.3. CR-FM techniques 

Contact resonance force microscopy (CR-FM) is based on the atomic force acoustic 

microscopy (AFAM) method (Hurley et al., 2003; Rabe et al., 2000) and is used for quantitative 

imaging of nanoscale elastic properties (Hurley, 2009; Hurley et al., 2007). A schematic of the 

experimental apparatus is shown in Figure 3.1. CR-FM experiments involve measuring the 

resonance frequency of the vibrating AFM cantilever in free space and when the tip is contact 

with the sample. The contact stiffness k* that describes the elastic interaction between the tip and 

the sample is then determined from the resonance frequencies. Finally, the indentation modulus 

Ms of the sample is determined from the contact stiffness with use of a model for the tip-sample 

contact mechanics (Hurley, 2009; Hurley et al., 2003). Detailed descriptions of the theoretical 

and experimental methods for determining the elastic properties are available elsewhere (Hurley, 

2009; Hurley et al., 2007). 

The AFM cantilevers used in these CR-FM experiments had nominal dimensions of 
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length L = 225 µm, width w = 30 µm, and thickness t = 3 µm, and a nominal spring constant kc = 

2.8 N/m. The applied static force FN was approximately 50 nN to 80 nN.  Frequency images 

were acquired for the second flexural eigenmode of the cantilever, because it is the most 

sensitive mode for these experimental conditions (i.e., showing the greatest change in contact 

resonance frequency for a given change in contact stiffness) (Hurley, 2009). Images of the 

normalized contact stiffness k = k*/kc for the sample were calculated from the contact resonance 

frequency images, and mean values were determined for the normalized contact stiffness kfiber of 

the fiber and kmatrix of the matrix in each image. Finally, the contact stiffness images were used to 

calculate images of the indentation modulus Mtest with use of a dual reference approach (Stan and 

Price, 2006) using Eq (3.4). 

 

4.3.4. AFM-PI techniques 

Phase images were obtained with True Noncontact AFM mode (XE-100, Park 

Systems, Suwon Korea). Noncontact AFM (NC-AFM) is one of several AFM methods in which 

the cantilever is oscillated near the surface of a sample. In NC-AFM, the spacing between the tip 

and the sample is on the order of one to ten nanometers. NC-AFM monitors the phase shift data 

obtained from the images. Phase shift is defined as the phase lag between the sinusoidal 

excitation signal and the resulting cantilever oscillation signal. Changes in phase angle reveal 

differences in the surface properties of the material (Lee et al., 2009). The AFM cantilevers used 

in these experiments had nominal dimensions L = 225 µm and w = 40 µm, tip radius of curvature 

10 nm or less, and kc = 48 N/m. The resonant frequency of the cantilever was approximately 190 

kHz. 
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4.4. Results and Discussion    
 

Figure 4.1 shows the AFM topography image of a lyocell fiber reinforced polypropylene 

composite sample. Contact resonance frequency images were obtained at the interfacial region 

between the fiber and matrix. In order to minimize topography effects, regions between the fiber 

and matrix approximately 1 mm x 1 mm that were as flat as possible (height differences of ~20 

nm or less) were selected for imaging.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Example of AFM topography image of cellulose fiber reinforced polypropylene 

composite sample 
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Figure 4.2. CR-FM images of indentation modulus for cellulose/PP composites with (a) 0 %, (b) 

2.5 %, (c) 5 %, and (d) 10 % MAPP treatment 
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Figure 4.2 shows CR-FM modulus maps for each of the four composite samples with 

different treatments. The images clearly show that a region with intermediate modulus exists 

between the matrix and the fiber. This region between the matrix and the fiber, where the local 

properties are different from those of the bulk fiber and the matrix, is defined as the interphase 

(Drzal 1986). The average interphase thickness around the fiber was determined by a statistical 

analysis of the CR-FM modulus maps with use of image processing XEP software (Park 

Systems, Suwon, South Korea). Radial lines were drawn across the fiber-matrix boundary for 

each image. Each line showed a gradient of modulus across the interphase region that ranged 

between the modulus values of the fiber and the matrix. Figure 4.3 shows an example profile for 

a radial line across the fiber-matrix boundary. The mean µ, standard deviation σ, and the control 

limits 3σ for the fiber and matrix were obtained for each line profile. The control limits were 

extended until they intersected the data in order to define an interphase region where the 

indentation modulus value ranged from µm + 3σm to µf – 3σf. The subscripts “m” and “f” refer to 

the polymer matrix and the fiber, respectively. This approach was applied to 15 radial lines 

across the fiber-matrix boundary for each image to determine the average interphase thickness. 
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Figure 4.3. Example of radial line profile across the fiber-matrix boundary obtained from a CR-

FM modulus map. The modulus profiles showing the fiber (µf - 3σf) and matrix (µm + 3σm) 

regions between the dashed lines and the interphase region between the vertical lines (between 

the fiber and matrix regions) 

 

 

 

 

 

Table 4.1. Percentage of MAPP treatment and corresponding interphase thickness determined 

from CR-FM modulus maps for cellulose fiber polypropylene composites 

 

 

 

 

 

 

 

 

 

 

 

 

 

wt. % MAPP Average interphase thickness (nm) 

0 25 ± 10 

2.5 44 ± 11 

5 54 ± 23 

10 104 ± 22 
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Table 4.1 shows values for the average and uncertainty in interphase thickness for each 

treatment. The uncertainty represents one standard deviation in the individual measurements. 

The values ranged from 25 nm to 104 nm or different concentrations of MAPP.  The average 

interphase thickness was found to increase with increasing MAPP concentration. This is not 

entirely surprising; a number of previous studies have observed interphase thickness to vary with 

the concentration of coupling agents such as MAPP. Lee et al. (2009) used AFM-PI to show 

qualitatively that MAPP as a compatibilizer in a lyocell/polypropylene composite increased the 

interphase thickness. Combined use of MAPP and γ-amino propyltrimethoxy silane (γ-APS) 

further increased the thickness. With AFM nanoindentation, Gao et al. (2002) showed that an 

epoxy polymer matrix did not form a measurable interphase around unsized glass fibers, while 

use of γ-APS/polyurethane as a coupling agent yielded an interphase with measurable thickness. 

Kim et al. (2001) used AFM-PI and Griswold et al. (2005) used nanoscratching in other studies 

on glass fiber composites. Both found that the interphase thickness increased with increasing 

concentration of silane as a coupling agent. 

In order to further characterize the interphase, representative modulus profiles were 

obtained by averaging the 15 individual line scans. Figure 4.4 shows these profiles for each 

sample. The line profiles within the vertical dotted lines correspond to the average modulus 

profiles of the interphase region for each treatment. The vertical dotted lines indicate the location 

of the control limits µm + 3σm and µf – 3σf. Values for the slope and coefficient of determination 

R
2
 for a linear fit across the interphase region are also indicated. In the profile in Fig. 4.4 (a) for 

the 0 % MAPP sample, the interphase thickness is quite small. As a consequence, there is a sharp 

spatial gradient in modulus (steeper slope) between the fiber and the matrix that can easily cause 

the fiber to debond from the matrix under stress, resulting in poor overall mechanical properties. 
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Use of MAPP was found to significantly increase the interphase thickness, resulting in a more 

gradual gradient in modulus from fiber to matrix. This behavior was most prominent in the 

sample containing 10 % MAPP, which had the widest interphase. From the average profiles, it is 

quite evident that the interphase region accounts for the entire modulus gradient from fiber to 

matrix. The interphase region showed a gradient in modulus that could be described to first order 

by a linear fit, with a gradual decrease in modulus from fiber to matrix. Also, it is quite evident 

that the interphase thickness accounts for the majority of property variations within the 

interphase for different treatments.  

Use of small AFM tips (estimated tip radius of curvature 25 nm to 35 nm after use) and 

low forces (50 nN to 80 nN) in the CR-FM experiments ensured that the deformation of the 

sample surface was very small and elastic, which prevented or at least minimized the so-called 

boundary effect. Indentation on a material creates a corresponding stress field, i.e., a zone 

associated with plastic deformation. The presence of a fiber or a successive indent in close  
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Figure 4.4. Average modulus profiles obtained for cellulose/PP composites with (a) 0 %,  

(b) 2.5 % , (c) 5 % , and (d) 10 % MAPP treatment 
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proximity to the first indent without proper spacing to avoid overlapping of the plastic zone of 

neighboring indent results in increasing the resistance to indentation. This is known as boundary 

effect.  Methods such as nanoindentation (Lee et al., 2007) and nanoscratching (Hodzic et al., 

2000) to characterize the interphase often exhibit such boundary effects and can lead not only to 

false modulus values within the interphase but also to overestimates of the interphase width. By 

using CR-FM methods that operate in the elastic regime, we were able to characterize 

interphases as narrow as 25 nm.                                               

          The distribution of modulus within the interphase obtained by CR-FM was qualitatively 

confirmed by AFM-PI. Figure 4.5 shows phase images and representative line profiles for the 

composite samples without MAPP treatment and with 10 % MAPP. The phase shift images 

clearly differentiate the fiber, interphase, and matrix regions. Phase shifts are obtained due to 

changes in the tip-sample force caused by differing mechanical properties of the sample surface 

and are a particularly sensitive way to detect qualitative local stiffness variations in the surface 

(Lee et al., 2009). In addition to surface elastic properties, adhesion, viscoelasticity, and 

hydrophilicity/hydrophobicity also contribute to the phase lag. In Figure 4.5 matrix regions 

showed the greatest phase shifts relative to fiber and interphase and appeared brighter in the 

images, while fiber regions showed the least relative phase shift and appeared darker in the 

images. The region between the cursors corresponds to the interphase. Interphase regions showed 

relative phase shifts between those of matrix and fiber, suggesting that the interphase showed 

surface properties different from that of fiber and matrix. The variation of properties across the 

interphase region was qualitatively similar to that of the modulus variations observed in the CR-

FM images. 
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Figure 4.5.  Phase images and average phase shift profiles for composite samples with 0 % 

MAPP [(a) and (c)] and 10 % MAPP [(b) and (d)] treatment 
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The interphase thickness was analyzed with XEP software. The statistical method used to 

calculate the interphase thickness for the CR-FM image was found to be ineffective for phase 

images due to increased scatter in the phase shift images. This is thought to be due primarily to 

the increased sensitivity of noncontact phase imaging to surface roughness compared to contact 

methods such as CR-FM (Lee et al., 2009). Mean phase shifts for the fiber and matrix regions 

were obtained from areas consisting entirely of fiber and matrix away from the fiber–matrix 

interface area. Fifteen radial lines were drawn across the fiber- matrix boundary for each image. 

Each line showed a gradient of phase shifts across the interphase region that ranged between the 

mean values for pure fiber and pure matrix.  For each line, the interphase starts from some point 

next to the fiber, where the phase shift value changes from that of the bulk fiber value, and 

extends until the phase shift value equal the bulk matrix value. The average interphase thickness 

was obtained by averaging these line scans. The average thickness was (34 ± 15) nm and (157 ± 

35) nm for the composites made with 0 % and 10 % MAPP, respectively.  These thickness 

values are not as accurate as the values obtained from the CR-FM images, mainly due to 

differences in the statistical analysis approach. However, the trends of increasing interphase 

thickness with increasing MAPP concentration and property variations with the interphase region 

are clearly evident.       

MAPP lowers the surface tension of natural fibers such as lyocell, making the surface 

tension closer to that of molten polymer. This results in better wetting and adhesion of the fiber 

to the matrix via mechanisms such as chemical bonding, interdiffusion, and mechanical 

interlocking (Arbelaiz, 2005). The anhydride group of MAPP forms covalent bonding through 

esterification and hydrogen bonding with cellulose fibers. Due to its similarity to bulk polymer 

matrix, the grafted PP in MAPP permits segmental crystallization and thus cohesive coupling 
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through entanglement of its macromolecular chains (Felix and Gateholm, 1993). Image J 

(Rasband, 1997) processing software was used to obtain the outline of the interphase. With the 

software, an outline was made that included all the pixels in the image with modulus values 

different from those of both the bulk fiber and the matrix. Figure 4.6 shows images with the 

outline of the interphase for samples with varying amounts of MAPP. It is quite clear that the 

interphase increased with the addition of MAPP. For the treated samples, the edge of the 

interphase that bordered the fiber was much more irregular than the edge next to the matrix. This 

could be due to differences in the reaction processes with MAPP that occur on the fibers and 

matrix. Chemical linkages on the fiber surface could contribute to a stiffer region of the 

interphase close to the fiber, and more physical entanglements or physisorbed regions close to 

the matrix could be the reason for a softer region there. Attempts to characterize the interphase in 

glass/polymer composites have also shown that the occurrence of chemically reacted sites close 

to the fiber forms stiffer regions, and that the stiffness decreases as the distance from the fiber 

increases due to physisorbed regions (Hodzic et al., 2001).  

The mechanical properties of the interphase are very important for the final performance 

of composite. Figure 4.2 shows that the interphase region is stiffer than the matrix. Hayes et al., 

2001 used finite element analysis to show that at low applied strains in the elastic limit, the strain 

transfer depended on the properties of both the matrix and the interphase. It was found that for 

stiff interphases, increasing the interphase width increased the strain rate. At higher applied 

strains, the yield was not restricted to the interphase but extended to the more compliant matrix 

in the presence of stiffer interphase, which further proceed the fragmentation process. This effect 

was found to increase with interphase thickness. Thus, an increase in MAPP concentration can 

enhance the strength by increasing the interphase thickness. However, use of MAPP has shown a  
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Figure 4.6.  Interphase outlines as described in the text for cellulose/PP composites with (a) 0 %, 

(b) 2.5 %, (c) 5 %, and (d) 10 % MAPP treatment 
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negative effect on impact toughness in comparison to other elastomer coupling agents like MA-

SEBS and EPDM. These elastomers form a more ductile interphase that improves toughness 

(Oksman and Clemons, 1997). Composites in which the interphase and matrix have sufficient 

ductility and modulus can yield during the deformation process due to increased stress 

concentration, resulting in a tougher composite (Goh et al., 2004; Wu et al., 1998).  

 

4.5. Conclusions 

Understanding the mechanical properties of the fiber-matrix interphase is critical for the 

manufacture of composites with desired properties.  A significant issue with many AFM methods 

is their lack of ability to obtain quantitative information about mechanical properties within the 

nanoscale interphase. In this work, we used CR-FM, a dynamic mode of contact AFM, to obtain 

quantitative modulus maps of the composite interphase region with nanoscale spatial resolution. 

We investigated the effect of maleated polypropylene (MAPP) concentration on the interphase 

characteristics of cellulose fiber-PP fiber composites.  From the CR-FM modulus maps, values 

for the average interphase thickness as well as the spatial distribution of elastic modulus values 

within interphase were determined. The average interphase thickness was found to increase from 

25 nm to 104 nm as the MAPP concentration increased from 0 % to 10 %. The interphase region 

showed a gradient in modulus that could be described to first order by a linear fit, with a gradual 

decrease in modulus from fiber to matrix. The modulus distribution within the interphase region 

as well as the variation in interphase thickness with MAPP concentration was confirmed by 

qualitative images obtained by noncontact AFM phase imaging. The results of this study provide 

valuable information to improve the design of NFRPC products that use MAPP as coupling 

agent.    
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CHAPTER 5.  EFFECTS OF MAPP AND MA-SEBS MODIFICATIONS ON 

THE MACROSCALE PERFORMANCE OF NATURAL FIBER 

REINFORCED POLYMER COMPOSITES 
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5.1. Abstract 

Contact-resonance force microscopy (CR-FM) modulus images were obtained at the 

interphase regions of natural fiber reinforced polymer composites made with different 

concentrations of maleic anhydride grafted polypropylene (MAPP) and maleic anhydride grafted 

styrene-ethylene/butylene-styrene (MA-SEBS) coupling agents. The images clearly showed the 

difference in modulus values for fiber, fiber-matrix boundary zone, and matrix regions. The 

interphase thickness was found to be 30.5 ± 2.6 nm, 100 ± 12.4 nm, and 70.3 ± 20.6 nm for the 

composites made with 0 %, 2.5 %, and 10 % MAPP, respectively and 79.1 ± 15.2 and 100.1 ± 

34.7 for composites made with 5% and 10% MA-SEBS, respectively. The interphase thickness 

was found to increase with increasing the MAPP concentration from 0 % to 2.5 %, but further 

addition of MAPP did not have any effect on the average interphase thickness. The interphase 

thickness was found to increase with the increasing MA-SEBS concentration. The interphase 

region showed a gradient in modulus that could be described to first order by a linear fit, with a 

gradual decrease in modulus from fiber to matrix. Also, it is quite evident that the interphase 

thickness accounts for the majority of property variations within the interphase for different 

treatments. Composites made without any coupling agent showed a very thin interfacial zone 

with an abrupt change in modulus from fiber to matrix. These composites had the least 

interaction between the fiber and matrix. There was significant increase of tensile strength with 

the addition 2.5 wt% of MAPP. The average interphase thickness increased with the addition of 

2.5 % MAPP and further addition to 10% MAPP decreased the average interphase thickness of 

the composites. There was a strong correlation between the tensile strength and interphase 

thickness for lyocell/PP/MAPP composites.  Multivariate analysis using FTIR indicated the 

presence of ester bonds in the interphase use of MAPP and MA-SEBS. From the CR-FM and 
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FTIR results, it was quite clear that the excess amount of MAPP was on the PP matrix than on 

interphase for 10% MAPP composites. The average interphase thickness increased with the 

addition of 5 % MA-SEBS and further addition to 10% MAPP increased the average interphase 

thickness of the composites. However, the tensile strength was not a direct reflection of 

interphase thickness in MA-SEBS treated composites. The use of MA-SEBS leads to the 

formation of separate domains on the polypropylene matrix. 

 

Keywords: Interphase, Contact-resonance force microscopy, Indentation modulus, Nano 

characterization, Tensile strength, Impact strength 

 

5.2. Introduction 

The structural integrity of a composite mainly depends on the quality of stress transfer in 

the interphase. Although various researchers have focused on the effect of interphase on the bulk 

properties of composites, very little research has been done to characterize and provide 

quantitative measurements in the interphase. Previous research on interphase characterization has 

consisted mostly of fiber pull out tests (Stamboulis et al., 1999), fragmentation test (Joffe et al., 

2003; Torres and Cubillas, 2005), nanoindentation (NI), and nanoscratching (Hodzic et al., 

2000), but all of them were either single fiber tests or on micrometer or submicrometer length 

scales. With the advent of scanning probe microscopy (SPM), which has the ability to probe 

materials in the nanoscale, more researches have been focused on interphase. Since 

measurements using SPM involve complex geometric considerations, it has proved very difficult 

to obtain quantitative data (Munz et al., 1998). Interphase of less than 100 nm width with 

quantitative mechanical measurements at each position has rarely been reported in literatures. 
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This is a major limiting factor for interphase research in the case of natural fiber reinforced 

polymer composites (NFRPC‟s), where the incompatibility between the hydrophilic natural fiber 

and the hydrophobic polymer forms a narrow interphase.  Recently, we (Nair et al., 2010; Nair et 

al., 2011) have used contact resonance force microscopy (CR-FM) for evaluating the interphase 

of NFRPCs. The nanoscale resolution of CR-FM, combined with its ability to provide 

quantitative modulus images, made it possible to investigate the mechanical properties of 

interphases as narrow as 50 nm.    

An interphase that has lower modulus than the surrounding polymer results in low 

composite strength, but greater resistance to fracture (Drzal, 1986, William et al., 1990). On the 

other hand, an interphase with higher modulus than the surrounding polymer results in lower 

fracture resistance but greater strength (Drzal, 1983). A stiffer interphase shows more 

effectiveness of strain development within the fiber and can have better reinforcement efficiency 

than a ductile interphase and better mechanical properties. But at the same time, a brittle 

interphase can fail catastrophically as there is no barrier for crack propagation and hence unable 

to release the stress. However a ductile interphase can yield and protect the fiber form crack 

propagation in the matrix and thereby save the composite from an early fracture (Lane et al. 

1999). Doubts still exist on the exact nature of interphase for the desirable properties. Also there 

is a need for understanding the influence of various interphase widths on the final composite 

properties.  Maleated polypropylenes (MAPP) and silane coupling agents have been widely used 

in NFRPC to enhance the tensile and impact strength (Karnani et al., 1997). Use of coupling 

agents like maleic anhydride grafted styrene-ethylene-butylene-styrene (MA-SEBS) has very 

little effect on tensile properties while it substantially improved the impact strength (Wu et al., 

1999).  
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Many questions need to be addressed here. How does the interphase mechanical property 

change for different coupling agents such as MAPP, and MA-SEBS? Does the interphase 

property vary for stiffer coupling agent like MAPP compared to ductile MA-SEBS? How does 

the spatial distribution of properties within the interphase vary for different coupling agents? 

Does the interphase width change with different concentrations of coupling agents? What are the 

effects of the interphase property on the final composite properties? What are the interphase 

properties needed for the optimum mechanical properties?       

The above questions highlights the need for a measurement technique capable of 

providing quantitative information about mechanical properties with nanoscale spatial resolution, 

while at the same time providing images of the spatial distribution in properties. Such a 

technique would prove invaluable for studies of the interphase region in NFRPCs. The nanoscale 

resolution of CR-FM, combined with its ability to provide quantitative modulus images, made it 

possible to investigate the mechanical properties of interphases as narrow as 31 nm. In this study, 

our goal was to characterize the interphase formed of different concentrations of coupling agent 

and to compare its effect on the bulk mechanical properties. 

 

 

5.3. Experimental 

 
5.3.1. Materials and sample preparation 

 

Lyocell fibers (Lenzing AG, Lenzing, Austria) approximately 10 µm in diameter and 3 

mm, Isotactic PP (PP) (HGX-030-01, Phillips Chemical Company, Woodlands, TX)) with melt 

flow of 3.5, MAPP (Honeywell A-C 950P, Honeywell, Morristown NJ) were used. The fiber 

loading was kept at constant weight of 30% for every experiment. Different quantities of MAPP 
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used in this experiment was 0, 2.5, 5, 7.5, 10 wt % based on the weight of PP. The quantities of 

MA-SEBS are 5 and 10 % based on the weight of PP. Manually mixed dry solid states of PP and 

MAPP/MA-SEBS were mixed with fibers in a co-rotating twin screw extruder (Leistriz Extruder 

Corp). The temperature profile ranged from 180-190
0
C, and the screw speed set at 70 RPM. The 

compounded material was immediately cooled in a water bath and pelletized. The obtained 

pellets were used to make injection molded tensile test specimens and impact resistance 

specimens defined with ASTM 638 Type IV and ASTM D 256, respectively. The barrel and 

mold temperatures of the pneumatic injection molder were 200
0
C and 140

0
C, respectively.  

The samples were embedded in an epoxy medium under vacuum and cured by heating 

and drying for 8 h at 70
0
C (Nair et al., 2010; Nair et al., 2011). A cross section of the sample was 

prepared by using an ultramicrotome with a diamond knife. The microtome process yielded 

sufficiently smooth surfaces for the CR-FM experiments. 

 

5.3.2 Nanoindentation techniques 

Displacement-controlled nanoindentation (Triboindenter, Hysitron, Eden Prairie, MN) 

was used to determine the indentation modulus of lyocell fiber and PP. The indenter tip was 

loaded to a maximum displacement of 250 nm. The indentation modulus of the sample was then 

inferred from the initial unloading contact stiffness S, i.e., the slope dP/dh of the tangent to the 

initial unloading curve in the load-displacement curve, where P is the indentation force and h is 

the displacement. The sample reduced indentation modulus ( rE ) is then calculated from Eq (3.1) 

(Oliver and Pharr 1997), where  is a constant that depends on the geometry of the indenter ( = 

1.034 for a Berkovich indenter) and  is the contact area. The indentation modulus sM  of the 

sample is then obtained from Eq (3.2), where Mtip is the indentation modulus of the diamond 
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indenter tip. The value Mtip = 1146 GPa was used (Kopycinska et al 2005). The average 

indentation modulus reference values for the composites obtained by nanoindentation on the 

fiber and matrix were Mfiber = 14.0 ± 0.9 GPa and Mmatrix = 3.6 ± 0.2 GPa, respectively.  

 

5.3.3 CR-FM techniques 

Contact-resonance force microscopy (CR-FM) (Rabe et al., 2000, Hurley et al., 2003) is 

based on the atomic force acoustic microscopy (AFAM) method. This technique has been used 

for quantitative imaging of the nanoscale elastic properties of the samples (Hurley, 2009). 

Schematic of the experimental apparatus is shown in Figure 3.1. The measurement procedure 

involves measuring the free and contact resonant frequencies of the vibrating AFM cantilever. 

The contact stiffness k* are then determined from these resonant frequencies, describing the 

elastic interaction between the tip and the sample. Finally, the indentation modulus is determined 

from the contact stiffness with a model for the tip-sample contact mechanics. Detailed 

description of the theoretical and experimental methods for determining the elastic properties 

have been explained in detail elsewhere (Hurley, 2007; Hurley, 2009). 

The AFM cantilevers used in these experiments had nominal dimensions of length L = 

225 ± 10 µm, width w = 30 ± 8 µm, and thickness t = 3 ± 1 µm, and nominal spring constant kc = 

2.8 N/m. The applied static force FN = kcd, where d is the deflection, was approximately 50 nN to 

80 nN.  Frequency images were acquired for only one resonant mode, namely the second mode. 

This was to avoid the registration difficulties and artifacts due to scanner drift and hysteresis in 

scanning the same area twice. The second mode is the most sensitive mode for the experimental 

condition here. It shows the greatest change in resonant frequency for a given change in contact 

stiffness (Hurley, 2009). Images of the normalized contact stiffness k = k*/kc for the sample were 
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calculated from the frequency images. Mean values for the normalized contact stiffness of the 

fiber (k*fiber) and matrix (k*matrix) regions in each image were determined. The average 

indentation modulus reference values for both the fiber (Mfiber) and the matrix (Mmatrix) were 

determined from the reduced indentation modulus ( rE ) obtained from the nanoindentaion and 

used in Eq (3.4). 

                 

5.3.4 FTIR and multivariate analysis  

Infrared absorption spectra of samples were recorded using a Perkin-Elmer Spectrum 

One Fourier transform infrared spectroscopy (FTIR) spectrometer.  40 µm thick samples were 

prepared using sliding microtome. The samples were carefully placed on a 2 mm thick KBr 

window. For each sample, the diamond crystal of an ATR accessory was brought into contact 

with the area to be analyzed. All spectra were recorded between 4000 and 650 cm
-1

, at a wave 

number resolution of 4 cm
-1

, with 16 scans per sample. Multivariate analysis was performed on 

the samples to analyze the uniqueness of the information in the infrared spectral dataset. Two 

samples per treatment were analyzed, with three measurements per sample. All data were 

imported into the Hyperview software (PerkinElmer version 1, Irvine, CA, USA). Principal 

component analysis (PCA) was then used to isolate spectral variables (wavelength) that can be 

associated with differences between the surface chemistry of the samples. 

                                                                                                                             

5.3.5 Tensile testing 

The tensile testing and modulus were measured using a universal testing machine (model 

5567, Instron, Inc., Canton, MA) in accordance with ASTM D 638. Ten replicates were used for 
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each type of treatment. The impact testing was done in accordance with ASTM D 256 using 

Impact Tester (Tinius Olsen ® Model 899, Horsham, PA, USA). 

 

5.3.6 Dynamic mechanical analysis (DMA) 

The injection molded tensile specimens were cut and machined to dimensions of 3.5 mm 

x 7.7 mm x 20 mm to fit a Diamond dynamic mechanical analyzer (PerkinElmer, Waltham, MA) 

operated in single cantilever bending mode. DMA conducted at a heating rate of 3
0
C/ min from -

50
0
C to 100

0
C with a wide range of frequencies (1, 2, 4, 10, and 20 Hz) under a nitrogen flow. 

Viscoelastic properties were measured as a function of temperature and frequency. Three 

replicates were taken for each treatment. 

 

5.4. Results and Discussion 

5.4.1. MAPP 

5.4.1.1. Interphase characterization 

5.4.1.1.1. CR-FM 

Contact resonance frequency images were obtained at the interfacial region between the 

fiber and matrix for composites made with 0 %, 2.5 %, and 10 % MAPP. In order to minimize 

topography effects, regions between the fiber and matrix approximately that were as flat as 

possible (height differences of ~20 nm or less) were selected for imaging. Figure 5.1 shows CR-

FM modulus maps for each of the composite samples and corresponding line profile with 

different treatments.  
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Figure 5.1. CR-FM modulus maps for each of the composite samples (left) and corresponding 

line profile (right) with different treatments 
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The images clearly show that a region with intermediate modulus exists between the 

matrix and the fiber. This region between the matrix and the fiber, where the local properties are 

different from those of the bulk fiber and the matrix, is defined as the interphase (Drzal, 1986). 

The average interphase thickness around the fiber was determined by a statistical analysis of the 

CR-FM modulus maps with use of image processing XEP software (Park Systems, Suwon, 

South Korea). Ten radial lines were drawn across the fiber-matrix boundary for each image. This 

method was applied to 3 different fibers within a sample to determine the average thickness. 

Each line showed a gradient of modulus across the interphase region that ranged between the 

modulus values of the fiber and the matrix. Figure 5.1 shows an example profile for a radial line 

across the fiber-matrix boundary. Table 5.1 shows values for the average and uncertainty in 

interphase thickness for each treatment.  

 

 

Table 5.1. Average interphase thickness for each treatment 

Composite type Estimated average interphase width (nm) 

Lyocell/PP/0% MAPP 30.5 ± 2.6 

Lyocell/PP/2.5% MAPP 100 ± 12.4 

Lyocell/PP/10% MAPP 70.3 ± 20.6 
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The uncertainty represents one standard deviation in the individual measurements. The 

values ranged from 30 nm to 100 nm for different concentrations of MAPP. The average 

interphase thickness was found to increase with use of MAPP. This is not entirely surprising; a 

number of previous studies have observed interphase thickness to vary with the concentration of 

coupling agents such as MAPP. MAPP coupling agent creates a better adhesion between the 

matrix and the fiber and improves the interfacial bond, which facilitates a much higher stress 

transfer from the matrix to the fiber and improves final mechanical properties in the resultant 

composites. Lee et al. (2009) with the help of atomic force microscopy phase imaging (AFM-PI) 

have showed that the use of MAPP as a compatibilizer in lyocell/polypropylene composite 

increased the interphase thickness and the combined use of MAPP and γ-amino 

propyltrimethoxy silane (γ-APS) have further increased the thickness. Kim et al. (2001) and 

Griswold et al. (2005) have found that the interphase thickness increased with the increasing 

silane coupling agent concentration for glass fiber composites. 

Very little research has been done on direct characterization of interphase in NFRPCs. 

This is mainly due to the lack of technique that can measure the properties of interphase widths 

of less than 100 nm. The reason for formation of such small interphase widths in NFRPCs is due 

to the incompatibility between the hydrophilic natural fiber and the hydrophobic polymer. Use of 

extremely small tip radius (25 nm to 35 nm) and low forces (50 nN to 80 nN) used in CR-FM 

technique have been very valuable for the determination of interphase properties in NFRPCs 

with such nanoscale spatial resolution. 

From the results, the interphase thickness was found to increase with increasing the 

MAPP concentration from 0 % to 2.5 %, but further addition of MAPP did not have any effect 

on the average interphase thickness. Instead of being concentrated on the interphase, MAPP can 
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act as nucleating agent and can accelerate the nucleation of PP and can affect nucleation rate and 

size of spherulites (Duvall et al., 1994; Seo et al., 1999). This can change the morphology of the 

matrix polymer and the whole composite.  Also, the existence of too much coupling agent can 

enlarge the gap between the fiber and matrix and weaken the interphase (Lu et al., 2005). 

However, in our experiments using CR-FM, the addition of excessive MAPP, i.e., from 2.5 % to 

10 %, did not widen the interphase between the fiber and matrix. However, the results obtained 

for the interphase widths for different treatments were totally different from the results obtained 

from Chapter 4.  In Chapter 4, the interphase width increased with the increasing use of MAPP 

i.e., the average interphase thickness obtained were (25 ± 10) nm, (44 ± 11) nm, (54 ± 23) nm, 

and (104 ± 22) nm for composite specimens prepared with 0 %, 2.5 %, 5 %, and 10 % MAPP, 

respectively. The reason for this could be attributed the difference in processing of composites. 

In Chapter 4, the samples were compression molded at 200
0
C for 10 min and then cold water 

was used to cool down the mold temperature to 32
0
C under pressure in order to obtain 

unidirectional lyocell fiber-reinforced composites. Here, the samples were fed into a heated 

barrel at 200
0
C and then forced into a mold cavity where it cools to 140

0
C for 5 minutes. 

Different research have proved that process parameters like difference in cooling rates 

substantially affect the crystallization kinetics of polymer composites, affecting the morphology 

and the final mechanical properties (Grozdanov et al., 2007; Klien et al., 1995). 

In order to further characterize the interphase, slope and coefficient of determination R
2
 

for each radial line scans were determined. Table 5.2 shows the average values for the slope and 

R
2 

for the different radial lines drawn across the interphase for each treatment.   
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Table 5.2. Average values for the slope and R
2 

for each treatment 

Composite type Coefficient of determination (R
2
) Slope 

Lyocell/PP/0% MAPP 0.95 ± 0.05 0.40 ± 0.10 

Lyocell/PP/2.5% MAPP 0.90 ± 0.06 0.09 ± 0.04 

Lyocell/PP/10% MAPP 0.91 ± 0.06 0.17 ± 0.05 

 

In the Figure 5.1 for the 0 % MAPP sample, the interphase thickness is quite small. As a 

consequence, there is a sharp spatial gradient in modulus (steeper slope) between the fiber and 

the matrix that can easily cause the fiber to debond from the matrix under stress, resulting in poor 

overall mechanical properties. Addition of MAPP was found to significantly increase the 

interphase thickness, resulting in a more gradual gradient in modulus from fiber to matrix. This 

behavior was most prominent in the sample containing 2.5 % MAPP, which had the widest 

interphase. The anhydride group of MAPP forms covalent bonding through esterification process 

and hydrogen bonding with cellulose fibers while the grafted PP in MAPP due to the similarity 

to the bulk PP permits the segmental crystallization and, thus the cohesive coupling between 

them through entanglement of their macromolecular chains (Felix and Gateholm 1993). It is 

quite clear that MAPP is not deposited on the interphase with further addition of MAPP from 

2.5% to 10 %. The interphase region showed a gradient in modulus that could be described to 

first order by a linear fit, with a gradual decrease in modulus from fiber to matrix. Also, it is 

quite evident that the interphase thickness accounts for the majority of property variations within 

the interphase for different treatments.   
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5.4.1.1.2. FTIR 

 

Figure 5.2 shows the first three PCs or factors which contribute for major variations of 

0% MAPP composites. The bands in the 3500-3100 cm
-1

 region are due to various hydroxyl 

(OH) stretching vibrations. The bands in the region between 3100-2600 cm
-1

 are due to CH 

stretching of methlene and methyl (CH2 and /or CH3) stretching vibrations. The bands in the 

region of 1400-1300 cm
-1

 are due to CH deformation of CH2 and CH3 stretching vibrations. Also, 

the bands between 1300-1000 cm
-1 

are due to C-O, C-O-C stretching and OH deformation 

vibrations (Kazayawoko et al 1997). 

Figure 5.3 shows the first three PC or factors which contribute major variations for 

samples containing 2.5% MAPP composites. The PC1 or factor one contributes to 94% of the 

total variation. The PC1 did not show any wavelength corresponding to maleic anhydride.  The 

absence of vibrations corresponding to maleic anhydride may be explained due to the fact that 

composite contained only 2.5 % of MAPP.  However, PC2 or factor two showed bands in the 

region 1870-1770 cm-1. These are associated with the anhydride carbonyl (C=O) symmetric and 

asymmetric stretching vibrations. PC3 or factor three (1% of total variation) showed bands in the 

region of 1740 cm-1, the confirmation of esterification between the lyocell fiber and MAPP.  

Figure 5.4 shows the first three PC or factors which contribute major variations for samples 

containing 10% MAPP composites. The PC1 or factor one contributes to 89% of the total 

variation. Compared to 0% and 2.5% MAPP, PC1 of 10% MAPP showed sharp and strong bands 

at 1775 cm-1 and 1707 cm
-1

, which are due to anhydride carbonyl symmetric and asymmetric 

stretching vibrations and carbonyl stretching vibrations of carboxyl groups in maleated 

polypropylene (Kazayawoko et al., 1997), respectively. From the CR-FM results, it was evident 

that the interphase width formed from 2.5% MAPP was greater than that of 10% MAPP. So it is 
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quite clear that the strong bands at 1775 cm-1 and 1707 cm
-1 

were due to excess amount of 

MAPP on the PP matrix than on interphase for 10% MAPP composites. Also, PC3 (2% of total 

variation) of 10% MAPP showed very weak bands in the region of 1730-1740 cm
-1

 showing very 

little esterification occurred between the fiber and MAPP (Kazayawoko et al., 1997). The rest of 

PCs did not show any signs on maleic anhydride bands.  
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Figure 5.2. First three PCs or factors which contribute for major variations of 0% MAPP 

composites
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Figure 5.3. First three PCs or factors which contribute for major variations of 2.5% MAPP 

composites
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Figure 5.4. First three PCs or factors which contribute for major variations of 10% MAPP 

composites 
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The point spectra method of identifying specific functional group of a particular constituent such 

as fiber, matrix, and the interphase was almost impossible due to more or less band overlapping 

in fiber and matrix. Figure 5.5 shows AFM image showing the spacing of the fibers. The fibers 

were so close that it was impossible to identify specific functional group due to the limited 

resolution of FTIR imaging. The spatial resolution of FTIR imaging is 6.25 µm. The diameter of 

the fiber used in this experiment is 10 µm. So it was hard to distinguish between the fiber and 

matrix chemical groups. The results showed that the multivariate methods gave more 

satisfactory, interpretable results and were conclusive in showing that they can discriminate and 

classify differences between the functional groups of fiber, matrix and interphase. 

 

Figure 5.5. AFM image showing the spacing of the MAPP treated fibers 
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5.4.1.2. Bulk mechanical properties 

5.4.1.2.1. Tensile and impact properties 

Table 5.3 summarizes the mean and standard deviation of the mechanical properties of 

lyocell/PP composites with different MAPP concentration. The results are also presented in 

separate Figure 5.7 below. The average tensile modulus was found to increase with the addition 

of MAPP, but not statistically significant (one way analysis of variance at P<0.05). The addition 

of high modulus fillers to a polymer always increases the composite modulus. Coupling agent 

helps better disperse of high modulus fillers in the polymer, thus increasing the composite tensile 

modulus. However, the adhesion between the filler and polymer has little impact on the modulus 

(Borja, 2006). There was little increase in the average tensile modulus with the addition of 2.5 % 

MAPP. But with further addition, the modulus remained constant without much increase. Also, 

there was significant decrease in modulus with the addition of 10% MAPP compared to 2.5% 

MAPP (one way analysis of variance followed by Tukey‟s multiple comparison tests at P<0.05).   

 

Table 5.3. Mean and standard deviation of the mechanical properties of lyocell/PP composites 

with different MAPP concentration 

MAPP 

(%) 

Tensile modulus (GPa) Tensile strength (MPa) Impact strength 

(kJ/m
2
) 

Average Std Dev Average Std Dev Average Std Dev 

0 4.05 0.58 40.96 1.58 3.94 0.16 

2.5 4.67 0.36 54.46 1.65 3.26 0.30 

5 4.62 0.55 50.76 2.54 2.82 0.24 

7.5 4.60 0.29 49.41 1.26 2.80 0.29 

10 3.57 0.60 47.19 2.05 2.70 0.22 
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Figure 5.6. Effect of MAPP concentration on the tensile modulus (top) and tensile strength 

(bottom) 
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The decrease can be due to the change in the molecular morphology of the polymer near 

the fiber surface or due to the effect on the bulk polymer phase (Harper et al, 2009). Structural 

difference between MAPP and PP can cause chain interaction such as hydrogen bonding 

between the hydrolyzed maleic anhydride groups. This means that a small amount of MAPP can 

effect the crystallization of PP matrix and thereby affect the morphology of matrix and the final 

mechanical properties. From the CR-FM results, it is quite evident that addition of MAPP from 

2.5% to 10% did not increase the interphase thickness. This means that more amount of MAPP is 

concentrated on the PP matrix for 10% MAPP composites than 2.5% composites. This was also 

confirmed from the FTIR results.  

There was significant increase of tensile strength with the use of MAPP (one way 

analysis of variance at P<0.05).  However, with further addition of MAPP from 2.5 % to 5%, 

7.5% and 10 % showed a gradual decrease in tensile strength. The addition of coupling agents 

helps in better adhesion between the matrix and the fiber and thereby increases the tensile 

strength in the resultant composites. High tensile strength is a direct reflection of interfacial 

bonding resulting in better stress transfer between fiber and polymer in the composite (Figure 

5.7). The tensile results can be compared to the CR-FM results. The average interphase thickness 

increased with the addition of 2.5 % MAPP and further addition to 10% MAPP decreased the 

average interphase thickness of the lyocell/PP composites. Thus an optimum amount of MAPP 

increase the interphase thickness to the maximum and further addition only decreased the 

interphase thickness. Figure 5.8 shows the strong correlation between the tensile strength and 

interphase width.  
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Figure 5.7. Correlation of interphase width with tensile strength 
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Figure 5.8. SEM images of the fracture surfaces of (top) lyocell/PP composites without MAPP, 

(middle) 2.5 % MAPP, (bottom) 10 % MAPP treatment 
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Figure 5.6 (top) and (bottom) shows cavities and easy fiber pull out, indicating weak adhesion 

while Figure 5.6 (middle) shows stronger bonding, evident from the short broken fiber ends and 

less number of cavities.  

The impact strength significantly decreased with the addition of MAPP (one way analysis 

of variance at P<0.05). The average impact strength was found to decrease with the increasing 

concentration of MAPP (Figure 5.9). While for a continuous fiber reinforced composite, the 

fracture mode mainly depends on the interphase, the failure for a short fiber reinforced 

composite is mainly dependent on the fracture mode of matrix material, volume fraction of fiber, 

fiber aspect ratio and fiber orientation (Kim and Mai, 1998). Figure 5.9 shows the impact 

strength for different MAPP concentrations. The presence of fiber ends within the matrix can 

create considerable stress concentrations near the fiber ends where microcracks form and this can 

cause debonding of the fiber even from a ductile matrix (Sato et al., 1983). 
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Figure 5.9. Effect of MAPP concentration on impact strength 

 

In our samples, the composite with 2.5% MAPP showed the best adhesion with better 

interphase properties while the samples without MAPP showed the least adhesion. The highest 

impact strength of 0% MAPP composites indicates that impact strength was not highly 

dependent on the interphase. Also, the decrease in impact strength with increasing MAPP 

concentration can be due to the increased amount on maleic anhydride in the matrix polymer 

affecting the crystalline structure. The studies from other group (Myers et al., 1991a and b) have 

shown the positive effect of MAPP on tensile properties and the negative effect on the impact 

strength. They believed that the loss of impact strength was due to increased filler reinforcement 
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and filler brittleness. From our results we could conclude that the matrix properties were also a 

determinant factor on the impact strength.  

 

5.4.1.2.2. Dynamic mechanical response 

The storage modulus was found to decrease with the addition of MAPP (Figure 5.10). 

This could be due to the change in morphology of the bulk matrix caused by the MAPP, which 

was quite evident from the CR-FM and FTIR results. The tan δ curve of polypropylene is 

characterized by two relaxations. The α-relaxation around 100
0
C is related to the relaxation of 

bound or restricted PP chains in the crystalline phase and the β-relaxation around 10
0
C which is 

the unrestricted relaxation of the fully amorphous phase. Around the β transition the molecules in 

the amorphous component of the matrix begin to relax (Harper et al., 2009).  Figure 5.11 and 

Table 5.4 Shows the temperature depends of damping (tan δ) and the glass transition temperature 

(Tg) for the Lyocell/PP composites with different MAPP concentration. The tan δ peak values 

were fairly consistent for all the treatments. However, the results clearly showed that Tg 

decreased with use of coupling agent. Poor packing density and blends with plasticizers can 

cause increased molecular mobility within the amorphous matrix. All of these can lead to 

decrease in Tg. (Harper et al., 2004). 
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Figure 5.10. Dependence of storage modulus at different temperature for different MAPP 

concentration measured at 1 Hz
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Figure 5.11. Temperature depends of damping (tan δ) and the glass transition temperature (Tg) 

for  different MAPP concentration measured at 1 Hz 
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Table 5.4. Temperature depends of damping (tan δ) and the glass transition temperature (Tg) for 

different MAPP concentration measured at 1 Hz 

 

5.4.2. SEBS 

5.4.2.1. Interphase characterization 

5.4.2.1.1 CR-FM 

 

Contact resonance frequency images were obtained at the interfacial region between the 

fiber and matrix for composites made with 5 % and 10 % SEBS. Figure 5.12 shows CR-FM 

modulus maps for each of the composite samples and corresponding line profile with different 

treatments.  

 

 

Composite type Tg(
0
C) Tan δ 

 
Lyocell/PP/0% MAPP -14.3 0.043 

  Lyocell/PP/2.5% MAPP -18.0 0.044 

Lyocell/PP/5% MAPP -17.9 0.045 

 Lyocell/PP/7.5% MAPP -17.9 0.046 

Lyocell/PP/10% MAPP -18.6 0.045 
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Figure 5.12. CR-FM modulus maps for each of the composite samples (left) and corresponding 

line profile (right) with different treatments 
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The images clearly show the interphase region with intermediate modulus exists between the 

matrix and the fiber. The average interphase thickness was obtained in the same statistical way as 

MAPP. Table 5.5 shows values for the average and uncertainty in interphase thickness for each 

treatment. 

Table 5.5. Average and uncertainty in interphase thickness for each treatment 

 

 

 

 

 

 

From the results, the interphase thickness was found to increase with use of SEBS and with 

increasing SEBS concentration from 5 % to 10 %. In order to further characterize the interphase, 

slope and coefficient of determination R
2
 for each radial line scans were determined. Table 5.6 

shows the average values for the slope and R
2 

for each treatment.   

 

Table 5.6. The average values for the slope and R
2 

for each treatment 

Composite type Coefficient of determination (R
2
) Slope 

Lyocell/PP/0% SEBS 0.95 ± 0.05 0.40 ± 0.10 

Lyocell/PP/5% SEBS 0.89 ± 0.07 0.13 ± 0.06 

Lyocell/PP/10% SEBS 0.85 ± 0.05 0.16± 0.05 

Composite type Estimated average interphase 

width (nm) 

Lyocell/PP/0% SEBS 30.5 ± 2.6 

Lyocell/PP/5% SEBS 79.1 ± 15.2 

Lyocell/PP/10% SEBS 100.1 ± 34.7 
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The R
2
 value for 5% SEBS was slightly lower than 2.5% MAPP and the slope was 

slightly higher than 2.5% MAPP. But 5% SEBS has higher interphase width than 2.5% MAPP. It 

was the same trend in the case of 10% SEBS and 10% MAPP. This could be due to presence of 

different blocks such as styrene on both sides of ethylene-co-butylenes blocks and maleic 

anhydride grafted to butylene block within the interphase of SEBS treated composites. While 

MAPP has only maleic anhydride grafted to polypropylene chains.  PP in MAPP due to the 

similarity to the bulk PP permits the segmental crystallization and, thus the cohesive coupling 

happens between them. For SEBS, each line showed a gradient of modulus across the interphase 

region that ranged between the modulus values of the fiber and the matrix. 

 

5.4.2.1.2 FTIR 

Figure 5.13 shows the first three PC or factors which contribute major variations for samples 

containing 5% SEBS composites. The PC1 (94%), PC2, and PC3 showed very weak signals of 

ester bonds at 1744 cm
-1 

of the total variation.  The rest of PCs did not show any signs on maleic 

anhydride bands. However, for 10% SEBS (Figure 5.14), PC1 (93%) and PC3 showed weak 

bands at 1744 cm
-1 

showing that esterification occurred between fiber and SEBS (Kazayawoko et 

al., 1997). 
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Figure 5.13. PC or factors which contribute major variations for samples containing 5% SEBS 

composites 
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Figure 5.14. PC or factors which contribute major variations for samples containing 10% SEBS 

composites 
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5.4.2.2. Mechanical properties 

5.4.2.2.1 Tensile and impact properties 

Table 5.7 summarizes the mean and standard deviation of the mechanical properties of 

lyocell/PP composites with different MA-SEBS concentrations. The results are also summarized 

in Figure 5.17. The average tensile modulus was found to decrease with addition of MA-SEBS. 

This was expected because the low E-modulus of elastomers in the impact modifiers always 

decreases the stiffness of the composites. The average tensile modulus was found to significantly 

decrease with addition of 5 % MA-SEBS (one way analysis of variance at P<0.05). However, 

with further addition of MA-SEBS to 10% increased the modulus.  

 

Table 5.7. Mean and standard deviation of the mechanical properties of composites with 

different  

MA-SEBS concentrations 

 

 

 

 

 

 

SEBS 

(%) 

Tensile modulus (GPa) Tensile strength (MPa) Impact strength 

(kJ/m
2
) 

Average Std Dev Average Std Dev Average Std Dev 

0 4.05 0.58 40.96 1.58 3.94 0.16 

5 3.24 0.35 51.03 1.93 4.73 0.50 

10 3.79 0.29 47.09 3.82 5.61 0.36 
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Figure 5.15. Effect of different MA-SEBS concentrations on the tensile modulus (top) and 

tensile strength (bottom) 
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From our CR-FM, FTIR and SEM results, it is quite evident that MA-SEBS forms an 

interphase around the fibers. At the same, the elastomers also exist as separate domains in the 

matrix. Several studies have proved that the formation of interphase around fibers can cause a 

greater reduction in modulus than a morphology where elastomers exist as separate domains in 

the matrix (Oksman and Clemons, 1997).  

There was significant increase in the tensile strength with the use of MA-SEBS (one way 

analysis of variance at P<0.05). However, with the further addition of coupling agent from 5% to 

10% decreased the strength. We have found from the CR-FM results that 10% MA-SEBS had 

the best adhesion properties with the highest average interphase thickness. So, we can say that in 

these composites tensile strength is not a direct reflection of interfacial bonding. One of the 

reasons could be the matrix effect, due to the formation of separate morphology where 

elastomers exists as separate domains in the matrix. Thus with the addition of MA-SEBS helps in 

better adhesion between the matrix and the fiber and thereby increases the tensile strength in the 

resultant composites.  

 

 

     

 

 

 

 

Figure 5.16. SEM images of the fracture surfaces of (left) 5 % SEBS, (right) 10 % SEBS 

treatment 
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Figure 5.17. SEM images of the matrix fracture surfaces of (left) 5 % SEBS, (right) 10 % SEBS 

treatment 

 

Compared to 0% SEBS composites, addition of 5% SEBS showed better adhesion 

properties (Figure 5.16). This is quite evident from the presence of polymer on the fiber surface 

on the fracture surfaces. However with the addition of SEBS, there was a separate dispersion of 

elastomer on the matrix (Figure 5.17).  

Figure 5.18 shows the dependence of impact strength with the MA-SEBS concentration. 

The impact strength was found to increase with addition of MA-SEBS (one way analysis of 

variance at P<0.05). Also there was a significant increase with further addition of MA-SEBS 

from 5% to 10% (one way analysis of variance followed by Tukey‟s multiple comparison tests at 

P<0.05). The encapsulation of MA-SEBS around the fiber reduces the stress concentrations at 

the fiber-polymer interphase, leading to a better impact performance (Oksman and Clemons, 

1997).   
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Figure 5.18. Effect of different MA-SEBS concentrations on the impact strength 

 

5.4.2.2.2 Dynamic mechanical response 

The storage modulus was found to decrease with the addition of MA-SEBS (5.19). This 

was expected because the low E-modulus of elastomers in the impact modifiers always decreases 

the stiffness of the composites. Figure 5.20 and Table 5.9 shows the temperature depends of 

damping (tan δ) and the glass transition temperature (Tg) for the Lyocell/PP composites with 

different SEBS concentration. The tan δ peak values were fairly consistent for all the treatments. 

However, the results clearly showed that Tg increased with use of coupling agent. These results 

are fairly consistent with the CR-FM results because the addition SEBS forms better adhesion 

properties with increase interphase width around the fillers. However the activation energies 

showed that β transition is not a strong indicator of filler–matrix interaction because the highest 

energy does not occur in composite with the highest matrix-filler interaction (Table 5.10). 
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Figure 5.19. Dependence of storage modulus on different concentrations of MA-SEBS measured 

at 1 Hz 

 

Figure 5.20. Temperature depends of damping (tan δ) and the glass transition temperature (Tg) 

for different MA-SEBS concentration 
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Table 5.8. Temperature depends of damping (tan δ) and the glass transition temperature (Tg) for 

different MA-SEBS concentration measured at 1 Hz 

 

 

 

 

 

 

5.5. Conclusions 
 

Contact-resonance force microscopy proved to be a valuable technique for evaluating the 

interphase of NFRPCs. We were able to investigate the mechanical properties of interphases as 

narrow as 30.5 nm. Multivariate analysis using FTIR gave more satisfactory, interpretable results 

and was conclusive in showing that they can discriminate and classify differences between the 

functional groups of fiber, matrix and interphase. The nanoscale characterization of interphase 

and its effects on the bulk mechanical properties in this study shows that an increased interphase 

thickness is very essential for the improved tensile strength in lyocell/PP/MAPP composites. A 

very thin interfacial zone with an abrupt change in the modulus from pure fiber to pure matrix 

can easily debond the fiber from matrix under a little amount of stress and can have an adverse 

effect on the final mechanical properties of the composite. Care should be taken to avoid the 

overuse of MAPP in composites. An optimum amount of MAPP increase the interphase 

thickness to the maximum and further addition only decreased the interphase thickness and can 

adverse effect on the strength properties. The average impact strength was found to decrease 

with the increasing concentration of MAPP and our results showed that matrix properties were 

Composite type Tg(
0
C) Tan δ 

 

Lyocell/PP/0% SEBS -14.3 0.043 

  Lyocell/PP/5% SEBS -9.22 0.42 

Lyocell/PP/10% SEBS -8.28 0.43 
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also a determinant factor on the impact strength. For lyocell/PP/MA-SEBS composites, tensile 

strength was not a direct reflection of interfacial bonding. One of the reasons could be the matrix 

effect, due to the formation of separate morphology where elastomers exists as separate domains 

in the matrix. The impact strength was found to increase with addition of MA-SEBS. Interphase 

region showed gradient of modulus values that ranged between the modulus values of the fiber 

and the matrix for both lyocell/PP/MAPP and lyocell/PP/MA-SEBS composites. The interphase 

region showed a gradient in modulus that could be described to first order by a linear fit, with a 

gradual decrease in modulus from fiber to matrix. Also, it is quite evident that the interphase 

thickness accounts for the majority of property variations within the interphase for different 

treatments.  This result defies the earlier perception of a flexible interphase with low modulus 

than the matrix formed by the elastomers in composites.  
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CHAPTER 6.  CONCLUSIONS AND RECOMMENDATIONS 
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6.1. Conclusions 

This dissertation was focused on the nanoscale characterization of fiber/matrix interphase 

and its impact on the performance of natural fiber reinforced polymer composites.  

The results of the first experiment in the research demonstrated that contact resonance 

force microscopy is a valuable technique for evaluating the interphase of natural fiber-reinforced 

polymer composites and for characterizing the elastic properties of cell wall layers of natural 

fibers. The nanoscale spatial resolution of CR-FM, combined with its ability to provide 

quantitative modulus images, makes it possible to investigate the mechanical properties of 

interphases as narrow as 50 nm in NFRPCs and thin cell wall layers in natural fibers. The use of 

extremely low loads and small tip radius characteristic of CR-FM enables in-situ elastic property 

information with significantly higher spatial resolution than other, destructive methods like 

nanoindentation. The use of a reference material with similar modulus values removes much of 

the uncertainty arising in the final modulus values from tip wear and tear, which is very common 

with other AFM methods. One of the major limitations of CR-FM technique used here is that the 

elastic properties of the reference samples were obtained using nanoindentation. The indentation 

modulus obtained by these methods can be different. One way to avoid this is to obtain the 

reference values using nanoindentation techniques using AFM tips having similar tip radius and 

using low forces similar to those used in CR-FM technique. However, experimental uncertainties 

such as depth of penetration, tip wear and tear, piezo creep, and hysteresis effects limit the utility 

of AFM based nanoindentation measurements. Also, proper care has to be taken to protect the 

test sample and reference sample from the formation of any oxides or adsorbed water on the 

surface. These can prevent the tip from pure elastic contact with sample. 
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The results of second experiment described property variation within the interphase 

region as well as the variation in interphase thickness with maleic anhydride grafted 

polypropylene (MAPP) concentration by quantitative imaging using CR-FM and qualitative 

images obtained by noncontact AFM phase imaging.   The modulus distribution within the 

interphase region as well as the variation in interphase thickness with MAPP concentration was 

confirmed by these advanced AFM techniques. The average interphase thickness was found to 

increase with increasing MAPP concentration. The interphase region showed a gradient in 

modulus that could be described to first order by a linear fit, with a gradual decrease in modulus 

from fiber to matrix. The results of this study provide valuable information to improve the design 

of NFRPC products that use MAPP as coupling agent.    

The final experiment evaluated the effect of various coupling agents such as MAPP and 

MA-SEBS on the NFRPCs and finally correlated the interfacial effects created by these coupling 

agents on the macroscale performance of the composites. The nanoscale characterization of 

interphase and its effects on the bulk mechanical properties in this study shows that an increased 

interphase thickness is very essential for the improved tensile strength in lyocell/PP/MAPP 

composites. An optimum amount of MAPP increase the interphase thickness to the maximum 

and further addition only decreased the interphase thickness and can adverse effect on the 

strength properties. The average impact strength was found to decrease with the increasing 

concentration of MAPP and our results showed that matrix properties were also a determinant 

factor on the impact strength. For lyocell/PP/MA-SEBS composites, tensile strength was not a 

direct reflection of interfacial bonding. One of the reasons could be the matrix effect, due to the 

formation of separate morphology where elastomers exists as separate domains in the matrix. 

The impact strength was found to increase with addition of MA-SEBS. Interphase region showed 
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gradient of modulus values that ranged between the modulus values of the fiber and the matrix 

for both lyocell/PP/MAPP and lyocell/PP/MA-SEBS composites. The study of the interphase 

region showed a gradient in modulus that could be described by a first order linear model, with a 

gradual decrease in modulus from fiber to matrix. Also, it is quite evident that the interphase 

thickness accounted for the majority of property variations within the interphase for different 

treatments.  This result contradicts earlier perceptions of a flexible interphase with low modulus 

than the matrix formed by the elastomers in composites.  

 

6.2. Recommendations for Future Work 

One of the major limitations of CR-FM technique used here is that the elastic properties of 

the reference samples were obtained using nanoindentation. The indentation modulus obtained 

by these methods is different from that obtained using CR-FM mainly due to difference in tip 

and forces used to create indentation on the sample. In future, we have to come up with a 

technique to obtain the reference values using indentation techniques using tips having similar 

tip radius and using low forces similar to those used in CR-FM technique. This would avoid any 

disagreement in final quantitative modulus values obtained using CR-FM and would help in 

establishing more confidence in CR-FM methods.  In all our experiments, we tried to treat the 

coupling agents with the matrix, so one of the interesting things to look in future is to see how 

these different concentrations of coupling agents affect the interphase when they are directly 

treated to the fiber and then mixed with the polymer matrix. Also, we had only limited access to 

the CR-FM. So we had to choose the samples with treatments which showed the extreme 

mechanical properties.   If we have more time and more access to CR-FM, we could have done 

quantitative imaging on all samples. This research has shown for the first time to characterize 
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mechanical properties within narrow interphases with nanoscale spatial resolution. So this 

technique should be used for characterizing interphase for different types of fiber/matrix 

composites. This will enable researchers to get much more information about the nanoscale 

properties of interphase and fibers, and correlate these information to macroscale performance 

provides an interesting direction for future work, which is very important for optimum design of 

final composite products. 
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APPENDIX  B. Qualitative Imaging of Natural Fiber Cell Walls Using 

Advanced AFM Based Techniques 

 

B.1. Abstract  

Advanced atomic force techniques such as noncontact mode phase imaging, and scanning 

thermal microscopy have been used to characterize different cell wall layers in natural fiber. Non 

contact phase images showed difference in phase shifts between the different layers showing the 

difference in mechanical properties among cell wall layers. This was further confirmed with the 

thermal conductivity image. It was clear that S2 layer showed a clear difference from other 

layers, while the other layers did not show much variation among themselves. This is mainly due 

to the difference in mechanical properties of S2 layer compared other layers. Also the thermal 

conductivity images showed a wide range of conductivities within S2 layer. The S2 layer showed 

lower conductivities towards the outer edges of the S2 layer.  

 

Keywords:  atomic force microscopy, phase image, thermal conductivity, modulus 

 

  B.2. Introduction 

 
Characterization of different fiber layers is necessary to improve the utilization of natural 

fibers as reinforcements in composites. Each wood fiber consists of different layers. The primary 

cell walls of adjoining fibers, together with the middle lamellae in between, form the compound 

middle lamellae (CML). The secondary wall is divided into the S1, S2 and S3 layers. The 

orientation of the cellulose microfibrils within each cell wall layer strongly influences the 
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mechanical properties of natural fibers in their longitudinal direction (Bergander and Salmen, 

2002). The orientation of the cellulose microfibrils is nearly perpendicular (flat helix) to the fiber 

axis in the S1 and S3 layers, while it is almost parallel (steep helix) to the fiber axis in the S2 layer 

(Brandstrom, 2001; Donaldson and Xu, 2005). Characterization of mechanical properties within 

different layers of cell wall is very important to improve the utilization of natural fibers as 

reinforcements in composites. Due to limitation of proper technique with nanoscale resolution, 

much of the studies have been confined to the S2 layer which is the largest layer within cell wall 

(Nair et al., 2010).  

With the advent of scanning probe microscopy techniques, particularly atomic force 

microscopy (AFM), it became possible to probe materials with nanoscale spatial resolution. In 

the present study, we used different advanced AFM techniques such as noncontact mode phase 

imaging (AFM-PI), and scanning thermal microscopy (SThM) to characterize different cell wall 

layers in natural fiber.  

 

B.3. Experimental  

B.3.1. Materials and sample preparation 

The experiments involved samples collected from a 14-year-old loblolly pine. A 

latewood portion of the 14
th 

annual ring was cut with dimensions of 2 mm X 5 mm X 5 mm in 

the radial, tangential and longitudinal directions, respectively. The samples were embedded in an 

epoxy medium under vacuum and cured by heating and drying for 8 h at 70
0
C (Spur, 1969). A 

cross section of the sample was prepared by use of an ultramicrotome with a diamond knife. The 

microtome process yielded sufficiently smooth surfaces for the AFM-PI and SThM experiments.  
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B.3.2. AFM-PI  

Phase images were obtained with True Noncontact AFM mode (XE-100, Park Systems, 

Suwon, Korea). Noncontact AFM (NC-AFM) is one of several AFM methods in which the 

cantilever is oscillated near the surface of a sample. In NC-AFM, the spacing between the tip and 

the sample is on the order of one to ten nanometers. NC-AFM monitors the phase shift data 

obtained from the images. Phase shift is defined as the phase lag between the sinusoidal 

excitation signal and the resulting cantilever oscillation signal. Changes in phase angle reveal 

differences in the surface properties of the material (Lee et al., 2009). The AFM cantilevers used 

in these experiments had nominal dimensions L = 225 µm and w = 40 µm, tip radius of curvature 

10 nm or less, and kc = 48 N/m. The resonant frequency of the cantilever was approximately 190 

kHz. 

 

B.3.3. SThM 

Scanning Thermal Microscopy is operated with a nanofabricated thermoprobe with tip of 

radius of curvature 100 nm. SThM uses the CCM (conductivity contrast mode) for getting the 

thermal images. During scanning the thermal tip is at first equilibrium with the sample surface. 

When tip starts scanning, heat flows from tip to sample due to change in thermal conductibility 

of the sample. This causes the change in equilibrium. The feedback circuit senses the change in 

equilibrium and then increases or decreases the energy supplied to the tip in order to maintain a 

constant temperature.     
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B.4. Results and Discussion 

Noncontact phase images were obtained for different fibers within the growth ring. 

Figure B.1 shows the phase images of cell walls. Contrasts in phase shifts between the different 

layers are clearly visible. It is quite clear that S2 layer showed lower phase shifts when compared 

to other layers. Phase shifts are obtained due to changes in the tip-sample force caused by 

differing mechanical properties of the sample surface and are a particularly sensitive way to 

detect qualitative local stiffness variations in the surface (Lee et al., 2009). The higher modulus 

values of S2 layer might have contributed to these lower phase shifts. The higher modulus values 

of the S2 layer compared to other layers are consistent with previous results in the literature 

(Clair et al., 2003; Nair et al., 2010; Wimmer and Lucas, 1997).  
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Figure B.1. Phase image of different cell wall layers 
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Figure B.2. Thermal conductivity image of cell wall layers 

 

 

 

Table B.1 Average phase shift and thermal conductivity for different cell wall layers 

Different cell wall 

layers 

Average phase shift (deg) Average Thermal 

conductivity (mA) 

S1 -9.1 51.3 

S2 -11.1 51.8 

S3 -9.0 51.5 

CML -9.5 51.4 
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This was further confirmed with the thermal conductivity image obtained from SThM (Figure 

B.2). S2 layer showed higher thermal conductivity compared to other layers.  Lee et al. (2009) 

has shown with his experiments with SThM that higher modulus region show high thermal 

conductivity than the lesser modulus regions.  Thus the higher modulus values of S2 layer might 

have contributed to these higher thermal conductivities.  

Average phase shifts and thermal conductivities for different layers were obtained using 

similar method used in Chapter 3, from the area enclosed within box plots for different layers.  

Table B.1 shows the average phase shifts and thermal conductivities. It is quite clear from the 

figures and table that S2 layer showed a clear difference from other layers, while the other layers 

did not show much variation among themselves. This is mainly due to the high modulus of S2 

layer compared other layers (Nair et al., 2010).  Also, the thermal conductivity images showed a 

wide range of conductivities within S2 layer (Figure B.3). The corresponding line profile of the 

selected region in the S2 layer shows that the conductivity decreases towards the outer edges of 

the S2 layer.  

 

 

Figure B.3. Thermal conductivity image (left) and the line profile (right) of the selected 

region 
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Although the S2 layer has a steeper helix and the S1 layer has a flatter helix of microfibril 

orientation with respect to the fiber axis, various studies have shown that there is a shift of 

microfibril orientation from the outer S1 layer to the inner S2 layer and from the outer S2 layer to 

the inner S3 layer. Xing et al. (2008) examined the cell wall layers of refined fibers of loblolly 

pine by use of nanoindentation and showed that there exists a clear interphase between S2 and S1 

and between S2 and S3. The wider range of indentation modulus values obtained in this study for 

each of the secondary layers can be explained partly by differences in the cellulose microfibril 

angle within each layer (Bergander and Salmen, 2002; Watanabe and Norimoto, 2000).  

 

B.5. Conclusions 

The results of our experiments prove that advanced AFM-based tools such as AFM-PI 

and SThM are valuable techniques for characterizing the cell wall layers of natural fibers. While 

AFM noncontact mode characterizes the cell wall layers based on the phase shifts between the 

components, SThM uses the thermal conductivity to characterize the layers.  
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APPENDIX C. Score Maps for Different Treatments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1. Score maps for PC1 (top), PC2 (middle), PC3 (bottom) for 0% MAPP 

composites 
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Figure C.2. Score maps for PC1 (top), PC2 (middle), PC3 (bottom) for 2.5% MAPP 

composites 
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Figure C.3. Score maps for PC1 (top), PC2 (middle), PC3 (bottom) for 10% MAPP 

composites 
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Figure C.4. Score maps for PC1 (top), PC2 (middle), PC3 (bottom) for 5% SEBS 

composites 
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Figure C.5. Score maps for PC1 (top), PC2 (middle), PC3 (bottom) for 10% SEBS composites 
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