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Abstract

The energy spectrum of the baryons is determined by treating each of them as a three-body system with the

interacting forces coming from a set of two-body potentials that depend on both the distance between the

quarks and the spin and orbital angular momentum coupling terms. Constraint dynamics is �rst reviewed

for a relativistic two-body system in order to assemble the necessary two body framework for the three-body

problem and then we review the di¤erent types of covariant two-body interactions involved in constraint

dynamics, including vector and scalar, and solve the problem of energy eigenstates using constraint dynamics.

The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the

quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-

body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically

covariant three body equation for the bound state energies. The results are analyzed and compared to

experiment using a best �t method and several di¤erent algorithms, including a gradient approach, and

Monte Carlo method.
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1 Introduction

Recent quark model calculations done by Crater et al. [1, 2, 3] using covariant two-body Dirac equations

in a relativistic constraint dynamics formalism have given a good description of the meson masses for both

light and heavy quarks, using world scalar and vector potentials that depend on merely one or two para-

meters. The good quality of the �t has been attributed to the exact two-body kinematics merged with

a QCD interaction potential based on vector and scalar potentials that uses a minimal number of variable

parameters. These non-perturbative, i.e. numerical results hold up well when compared to other methods

for meson spectroscopy. The vector potentials, in turn, have a structure originally derived from the classical

electrodynamics of Wheeler and Feynman.[4] This structure can also be obtained from quantum electro-

dynamics by using a covariant three dimensional truncation of the Bethe-Salpeter equation based on the

Todorov quasipotential, which is then compared to the Two-Body Dirac equations.[4] The comparison is

done in order to identify the appropriate invariant potential functions that will be used in the potential

model.

A usual common ground for a two-body bound state problem (almost regardless of which approach is

taken) is the Bethe-Salpeter equation, which is generally not used in its full (in other words, four dimensional)

form due to di¢ culties with the relative time coordinate. The Two-Body Dirac equations of constraint

dynamics give a covariant, three-dimensional version of the Bethe-Salpeter equation that solves the problem

of relative time and relative coordinates. Originally, the Two-Body Dirac equations of constraint dynamics

arose from a supersymmetric treatment of two pseudoclassical constraints (with Grassmann variables in place

of gamma matrices) for scalar interactions, which were then quantized. Later work led to the development of

the form of the Two-Body Dirac equations that were not limited to scalar interactions. Covariant constraint

dynamics, at its core, is a method which allows connections between non-independent operators to be built

in a system that has more variables than it has observables, such as occurs with the mass shell constraint

p2 +m2 = 0. It is inherently four-dimensional, but only three of the momentum variables are independent.

[4]

In this work, we review the Hamiltonian constraint dynamics formalism for the two-body system and

apply it to the three-body quark problem for baryon spectroscopy. The derivations of the Two-Body Dirac

equations are reviewed along with their potentials for a relativistic, spin-dependent formalism. In taking

the two-body equations to a three-body system we still regard the system as the naive quark model in

that each interaction is between each pair of quarks and there is no over-arching three-body interaction

to be considered, but the system now has three sets of interactions instead of just one. Thus, all of our

interactions are still two-body interactions, but for three sets of quarks. This works out relatively simply for
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some of the interacting potential but has required extensive reworking for others, such as the spin-spin and

spin-orbit interactions. Not surprisingly then, a large portion of this work is devoted to the development of

the two-body theory as this provides both the tools for working the three-body case along with the possible

drawbacks to consider as we the formalism is extended to larger systems (e.g. compatibility of the constraint

equations). The end result of this, as will be seen later, is that the theoretical considerations that must

be applied in order to go to the three-body system are relatively simple, but the actual mechanics of doing

so are not and multiple methods that are concise and rigorous (such as separation of variables and relative

coordinates) in the two-body case cannot be applied to the three-body one, at least not without a substantial

adaptation of the two-body formalism.

The Hamiltonian Constraint Dynamics formalism [5] allows for a relativistic method of accounting for

two-body e¤ects. In addition, Constraint Dynamics as developed by Crater and Van Alstine [4] provides

not only the usual spin interaction dependence seen in the Dirac equation but also additional terms needed

to make the approach mathematically consistent. It is correct and useful in both a classical and a quantum

mechanical formalism and as such we show how it is derived and applied for a two-body system. Furthermore,

we show how the world scalar and vector interactions come about in this formalism and how they are used.

All of the interacting potentials that are used in this work (and the two-body system as well) are dependent

on these vector and scalar potentials.

The variational principle is used with a Gaussian basis wavefunction of total JM to solve our eigenvalue

equation. We show how the Gaussian basis can be expanded in a variational theory in order to achieve an

eigenvalue closer to the true ground state. The matrix must be truncated after a reasonable limit is reached,

but in theory an in�nitely large variational matrix would give the exact ground state. Since the potentials

are dependent on the energy eigenvalue, the standard approach to using the variational principle does not

readily apply. A recursion algorithm is therefore used so that the e¤ective Hamiltonian H has an embedded

E dependence; but this E will change as we approach convergence. The program then is designed to

iteratively solve these equations until a desired level of convergence is reached. As in the two-body case, the

solution to our Hamiltonian can be done exactly for the kinematics but including the interacting potentials

requires a numerical treatment. Also as in the two-body case, these interacting potentials depend only on

one or two parameters. The numerical �tting routine uses a chi-squared minimization Monte Carlo routine

combined with a simpli�ed gradient approach to acquire a best �t for the spectrum of known baryons. We

have compared our numerical results to both experimental data and to other theories, most notably the

approach of Capstick and Isgur([6]), while also comparing the quark masses and potential parameters we

obtained in our �t with those found in two-body results by Crater et al. [1] [2] [3]. Ideally, since this model

uses the same basic model for the three-body system as has been used for the two-body system, one would

2



expect the parameters to be similar. The actual baryon masses are, of course, not compared to the meson

results, but the masses of the quarks and values for other shared parameters are.

1.1 Quarks and the Quark Model for the Baryons

This section contains a brief review of relevant de�nitions of quarks and baryons as well as references

to recent work on the baryon three-body problem. Quarks were introduced in the beginning of 1964 by

Gell-Mann and Zweig[7] as an idea evolving from considerations of unitary symmetry. Quarks are considered

to be the fundamental building blocks of hadronic matter and each hadron is a bound state of quarks and/or

antiquarks. Quarks are considered to be fermions in that they have odd half-integer spins.

The baryons are three-quark bound states having an odd half-integer total angular momentum j: They

experience the strong nuclear force, and are described by Fermi-Dirac statistics. The lowest-lying baryon

states are three-quark states with orbital angular momentum l = 0; of which there are 8 states with total

j = 1
2 (the octet). This work begins with a focus on the octet, but quickly proceeds to a much larger number

of baryons, such as the decuplet, which consists of l = 0 three-quark states with total j of 32 [7], as well as

most of the other baryon radial and orbital excitations (see Appendix B for the complete listing).

Quantum �eld theory, from which the Bethe-Salpeter equation is directly derived, originated in the 1920s

from the problem of combining a quantum mechanical theory with an electromagnetic �eld[8]. The theory

was constructed by expressing the �eld�s internal degrees of freedom as an in�nite set of harmonic oscillators

and applying a canonical quantization to them. The theory, of course, needed to combine relativity and

quantum mechanics for the electrons as well, which is the reason for the importance of the Dirac equation.

Quantum chromodynamics (QCD), which plays an important role in this work, is the theory of the strong

interaction. The strong interaction is the force responsible for describing the interactions of quarks and

gluons inside of a hadron and QCD itself possesses the properties of both asymptotic freedom and linear

con�nement.[8] Asymptotic freedom, which in our model comes from the vector potential term, allows for

quarks and gluons to interact very weakly in high energy interactions where the force is approximately

independent of r: However, quarks also exhibit linear con�nement and it would take an in�nite amount of

energy to separate two quarks, which is modeled in our scalar potential term.

As far as work done with 3-body systems similar to this work, Capstick and Isgur have studied the

three-quark system in a relativized quark potential model with chromodynamics. Toward that end, they

have developed a model that supports the phenomenology of nonrelativistic calculations. It excludes the

spin-orbit interactions in baryons and leads to spectra and internal compositions similar to those of the

nonrelativistic model [6]. In a similar fashion to our work, they use a set of two-body potentials that have
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been previously derived and tested for the meson spectrum, as we do here with the meson model created

by Crater et al.([1, 2, 3]). It still does follow similar qualitative (for spectra and internal compositions)

properties as the nonrelativistic quark model, since the goal of that work was to overcome the shortfalls

of the nonrelativistic approach, such as the nonrelativistic treatment of both the quark motion and quark

dynamics. Isgur and Karl have also studied the ground state baryon octet in a quark model with �avor-

independent con�nement and color hyper�ne interactions in an even earlier study using a similar model to

the later model of Capstick and Isgur, with good results for the octet [9]. Neither of these methods, however,

use the relativistic constraint dynamics formalism used here, which allows us to create a completely covariant

formalism. Capstick and Isgur also use basis functions that are always antisymmetric under exchange of

quarks 1 and 2, which is a simplifying approximation we do not use, though it is worth noting it is useful

for the vast majority of the spectrum (most have 2 quarks that are the same �avor).

Löring et. al. have written a series of three papers treating light baryon resonances within a relativistically

covariant quark model based on the Bethe-Salpeter equation and demonstrate how to solve the Bethe-

Salpeter by reduction to the Salpeter equation [10]. Again, this is a signi�cantly di¤erent formalism from

our approach, but as we stated above, the Bethe-Salpeter equation tends to be a common point in most

approaches to this problem.

By contrast to those approaches, Sazdjian uses the manifestly covariant formalism with constraints for

the construction of relativistic wave equations which describe the dynamics of N interacting spin 0 or spin

1
2 particles with N � 2. The system is governed by a single dynamical wave equation that determines the

eigenvalue of the total mass squared of the system. For N = 2 his equations are essentially the same as

presented below and his notation has been adapted accordingly. The interactions in the general N case are

introduced through two-body potentials, but many body potentials can also be incorporated [11]. Sazdjian�s

N body eigenvalue equations provide a useful starting point for work on the manifestly covariant relativistic

three-body problem.

In this work, some of the simplifying substitutions derived by Isgur have been used [9] and the interaction

potentials have been treated as separate two-body interactions. The constraint dynamics formalism that

has been successful for the two-body problem applications to meson spectroscopy is reviewed and used, [12]

with a focus on how to extend this to the relativistic three-body formalism for the baryons. In addition

to not assuming that two quarks are the same mass as Isgur does, we also do not consider full three-body

interactions, choosing instead to split our problem into just three two-body interactions.
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1.2 History of Dirac�s Equation and its Two-Body Counterpart

As with any good discussion of things quantum, we begin with the non-relativistic Schrödinger equation

for a single particle

p2

2m
	(r; t) + V (r)	(r; t) = i~

@

@t
	(r; t): (1)

This equation, developed in 1926, forms the foundation for modern quantum mechanics, where p = �i~r.

Natural units will be used, setting ~ = c = 1. This equation is not relativistically covariant (meaning that

it does not treat r and t equally), but there are very well-established methods to solve this equation. Thus,

if whichever wave equation is used can be modi�ed to �t this form, then the solution is essentially known.

The ability to put an equation into a Schrödinger-like form will prove to be invaluable in solving far more

complicated systems.

Since the Schrödinger equation is non-relativistic, the next obvious step comes in relativizing it. By

taking the standard relativistic equation for total energy, E2 = p2c2 +m2c4 = p2 +m2(in natural units),

and substituting the quantum analogs of p and E; one arrives at the Klein-Gordon equation for particles

without spin[14]

(p2 +m2)	 = 0; (2)

1where p2 = �(r2 � @2

@t2 )(the d�Alembert operator). This equation looks promising in that it treats x

and t symmetrically, however, it has di¢ culties with negative energy states and the interaction form did not

include a spin term, which is a necessity for this work.

After seeing the issues with the Klein-Gordon equation, Dirac then set himself upon �xing the problems

it had, namely the negative probability densities due to the lack of �rst-order derivatives in time, not to

mention negative energies. This lead to the development of his equation in 1928, which is

(�p� +m)	 = 0; (3)

where � are the Dirac matrices. This equation is fully relativistic, consistent with the principles of

quantum mechanics (including positive probability densities), and designed for spin- 12 [15] particles. It does

not, however, remove the issue of negative energy solutions, but it does provide an explanation for them in

1Our metric ��� is de�ned as

8>><>>:
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

9>>=>>; :
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quantum �eld theory, in which the solution for a negative energy electron is interpreted as a solution for

a positive energy positron. Thus, it is a �rst-order equation in time (like the Schrödinger equation) and

accounts for the existence of antiparticles. In the presence of world scalar (S) and four-vector interactions

(A), these equations become

�
(p�A)2 + (m+ S)2

�
 = 0| {z }

Klein-Gordon

�
� (p�A)� + (m+ S)

�
 = 0| {z }

Dirac

: (4)

The next logical step is then to create a two-body equation for spin- 12 particles since there now existed

a one-body equation. Breit was the �rst to develop a 2-body Dirac equation in 1929, formed by summing

two free-particle Dirac Hamiltonians with a spin dependent interaction obtained by substituting Dirac �

matrices for velocities in the semi-relativistic electrodynamic interactions of Darwin[16; 17; 18]; given by

E	 = f�1 � p1 + �1m1 +�2 � p2 + �2m2 �
�

r
[1� 1

2
(�1 ��2 +�1 � r̂ �2 � r̂)]g	 : (5)

While this equation was useful for the perturbative calculation of the electromagnetic bound-state spectrum

of multi-electron atoms, which is what Breit designed it for, it was not a well-de�ned wave equation, meaning

(for terms beyond Coulomb) it could only be used perturbatively, and it was also not relativistically covariant.

In an attempt to reproduce results from the Breit equation in weak-coupling perturbation theory, Bethe

and Salpeter derived a two-body wave equation[19] from quantum �eld theory. While their equation is

in agreement with quantum electrodynamics, its use as a relativistic bound-state equation has di¢ culties.

Nakanishi[20] discovered that the Bethe-Salpeter equation would give negative-norm solutions as a result of

relative time, a relativistic degree of freedom.

Todorov created an e¤ective potential method for the two-body system[21; 22] by generalizing the Ein-

stein condition E2 = p2+m2 to an e¤ective particle of relative motion. He attempted to solve the problem

that the Bethe-Salpeter equation had with relative energy and relative time by creating an equation for a

particle of relative motion relativistically, but three-dimensional. He introduced the relative momentum,

an energy, and a mass of the particle of relative motion that satis�ed the relation of the Einstein condition

between mass, energy, and momentum.

In order to address the problem of relative time and energy, Todorov, Kalb, Van Alstine, and others[23]

derived covariant, canonical mechanics for the two-body system from Dirac�s Hamiltonian constraint dynam-

ics. In such a system the dynamics are given by a set of constraints that act both to constrain the motion

in phase-space and to generate the Hamiltonian. The development of Dirac�s constrained Hamiltonian for-

malism for the two-body problem to include spin with scalar, vector, tensor, pseudoscalar, and pseudovector
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interactions for spin - 12 particles has been established by Crater and Van Alstine[24; 25; 4; 26; 27; 28] and

used extensively in this work.

2 Hamiltonian Constraint Dynamics

This section begins our review of the Hamiltonian constraint dynamics formalism. We begin with

the two-body system in order to fully develop the set of tools that are used in the three-body system,

but it will become apparent that the two-body methods require extensive reworking in order to use the

same basic formalism for the three-body problem. This formalism is useful because it provides a method

of accounting for two-body relativistic e¤ects that incorporate the automatic spin interaction dependence

that the Dirac methodology provides and also provides a covariant, three dimensional truncation of the

Bethe-Salpeter equation. We review constraint dynamics �rst for a classical system and then for a quantum

mechanical system. We derive the constraints that arise from mass shell conditions and provide a review of

the interacting potentials. We �rst derive the entire system of constraints and interacting potentials for a

classical system and then we show how it is quantized. In this section we describe how the constraints arise

in the context of relativistic classical mechanics. The Lagrangian for a free particle

L = �m
p
� _x2; (6)

has canonical four-momentum

p =
@L

@ _x
=

m _xp
� _x2

; (7)

and Legendre Hamiltonian

HL = p� _x
� � L = m _x2p

� _x2
+m

p
� _x2 = 0: (8)

From p2 = m2 _x2

� _x2 = �m
2, one arrives at the mass shell constraint with (p =(";p))

H0 = p2 +m2 = �"2 + p2 � 0; (9)

with the weak equality sign � indicating that the equality can only be imposed once equations of motion have

been evaluated. When one has constraints, the Hamiltonian, called the Dirac Hamiltonian, is HD= HL +

��constraints. Note that when the Legendre Hamiltonian vanishes, the constraint itself serves as the

7



Hamiltonian, H =p2 +m2. In this context we can introduce interactions by using a generalized mass shell

constraint

p2 +m2 +� � 0; (10)

where � is some interacting potential to be determined later. These equations provide the necessary

de�nitions for discussing the two-body Hamiltonians which form the basis for most of our work.

2.1 Two-Body Hamiltonians for Relativistic Constraint Dynamics

In order to understand the relativistic three-body problem one must �rst be very familiar with the

relativistic two-body one, since the three-body formalism we use is based on two-body interactions (our

three-body problem is essentially written as three two-body problems). This section therefore describes the

methods used to set up two-body Hamiltonians. In the two-body case, in analogy with what occurs in the

1-body case, we start with a 2-body Lagrangian that would lead not to one but to two mass shell constraints:

H10 = p21 +m
2
1 � 0;

H20 = p22 +m
2
2 � 0; (11)

and as in the one-body case interactions would be introduced by mass shell constraints of the form

H1 = p21 +m
2
1 +�1(x; P ) � 0;

H2 = p22 +m
2
2 +�2(x; P ) � 0; (12)

where x is the relative coordinate and P is the total momentum, de�ned as

x = x1 � x2; (13)

P = p1 + p2:

The invariants �i(x; P ) are called quasipotentials due to having center of momentum (c.m.) energy

dependent potentials that describe deviations from the free mass shell constraint. Here again, the weak

equality sign means that these constraints are only to be applied after the Poisson brackets (see e.g. Eq.(15)

below) have been evaluated. The Hamiltonian in terms of the constraints only is[29]
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H = �1H1 + �2H2; (14)

where �i are unknown Lagrange multipliers. The constraints are constant in time, meaning that fHi;Hg = 0;

provided that

fH1;H2g � 0; (15)

which is known as the compatibility condition. If we explicitly work out these Poisson brackets, we arrive

at the equation

2p1 � fp1;�2g+ 2p1 � f�1; p2g+ f�1;�2g � 0: (16)

One assumes that the invariant functions are dependent on two coordinates and the total energy of the

system, as given by

�i = �i(
x2?
2
;
x2jj

2
; w); (17)

in which w is the total c.m. energy,

w2 = �P 2;

xjj = �x � P
w2

P = x � P̂ P̂ ;

P̂ =
P

w
;

P̂ 2 = �1;

x? = x� xjj;

P � x? = 0;

fx�?; p
�g = (��� � P̂�P̂ �) : (18)

Here, xjj and x? are the components parallel and perpendicular to the total momentum, respectively. Thus,

the compatibility condition becomes

� 4p1 � x?
@�2
@x2?

� 4p1 � xjj
@�2
@x2jj

� 4p2 � x?
@�1
@x2?

� 4p2 � xjj
@�1
@x2jj

+ f�1;�2g � 0; (19)
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for which the solution is (in the simplest case)

�1 = �2 = �(
x2?
2
; w); (20)

which gives

fH1;H2g = �4P � x?
@�(

x2?
2 ; w)

@x2?
= 0: (21)

Since the non-relativistic relative momentum is de�ned by

p =
m2p1 �m1p2
m1 +m2

=
m1m2

m1 +m2
(v1 � v2) = �v ; (22)

it is natural to take as its relativistic counterpart

p � 1

w
("2p1 � "1p2) ; (23)

where "1 and "2 are the center of momentum energies of particles 1 and 2, respectively, de�ned so that

"1 + "2 = w: (24)

Then Eq.(13) and Eq.(23) imply

p1 =
"1P

w
+ p � "1P̂ + p and p2 =

"2P

w
� p � "2P̂ � p; (25)

which leads to

H1 �H2 = p21 � p22 +m2
1 �m2

2 =
�
"22 � "21

�
+
2

w
("1 + "2)P � p+m2

1 �m2
2 � 0 : (26)

Since the "i are the c.m. energies, this implies

"1 =
�p1 � P
w

=
�p21 � (p1 � p2)

w
=
�P 2 � p21 + p22

2w
� w2 +m2

1 �m2
2

2w
;

"2 =
�p2 � P
w

=
�p22 � (p2 � p1)

w
=
�P 2 � p22 + p21

2w
� w2 +m2

2 �m2
1

2w
; (27)

which in turn gives

"1 � "2 �
m2
1 �m2

2

w
: (28)
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If instead one de�nes

"1 � "2 �
m2
1 �m2

2

w
; (29)

then

"21 � "22 = m2
1 �m2

2; (30)

and (26) is a derived constraint2 with the simple form

P � p � 0: (31)

For the remaining constraint one may use any combination

H=~�1H1 + ~�2H2 ; (32)

of the constraints. The same constraint is obtained provided that ~�1 + ~�2 = 1. The reason is that the

constraint H1 �H2 = 2P � p � 0. Thus,

H1 = p21 +m
2
1 +� = 2"1p � P̂ + p2 � "21 +m2

1 +� (33)

� p2 � b2 +�

� H2 = �2"2p � P̂ + p2 � "22 +m2
2 +�

� p2 � b2 +�;

where

b2 = "21 �m2
1 = "22 �m2

2 = �(w2;m2
1;m

2
2)=4w

2; (34)

with the triangle function � is de�ned as

�(w2;m2
1;m

2
2) = w4 +m4

1 +m
4
2 � 2w2m2

1 � 2w2m2
2 � 2m2

1m
2
2: (35)

Thus we have

H1 � H2 � H �p2 � b2 +�; (36)

as (weakly) equivalent constraint forms. Without interactions, the solution to Eq.(33) becomes

2The condition Eq.(20) is known as the relativistic version of Newton�s third law. As stated there it is a strong equality.
It can be relaxed to the weak form �1 � �2 = p � P�(x?) � 0 and still lead to compatible constraints.
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w =
q
p2 +m2

1 +
q
p2 +m2

2; (37)

indicating exact relativistic two-body kinematics in the center of momentum system (in the c.m.. frame,

p = (0;p)). Thus, we now have a classical two-body Hamiltonian with exact relativistic two-body kinematics

and interacting potentials, though the potentials are still in a general form. Therefore, we must now

determine the speci�c form of the interacting potentials �; �rst for world scalar and vector interactions.

2.2 World Scalar Interactions

This section discusses the world scalar interaction, beginning with a single, spinless particle[25]. We

�rst derive the scalar interaction for a one-body Hamiltonian and then use that result to derive the two-body

analog of said Hamiltonian. In addition, we use knowledge of the Klein-Gordon equation (and thus what

the equations must reduce down to given certain conditions) to derive the exact form in which the scalar

potential appears. The substitution m ! m+ S, de�ned as M , is used for a particle in an external scalar

�eld. The Lagrangian, the momentum, and Legendre Hamiltonian are then

L = �(m+ S)
p
� _x2; (38)

p =
M _xp
� _x2

; (39)

HL =
M _x2p
� _x2

+M
p
� _x2 = 0: (40)

The momentum equation then directly leads to the constraint for the one-body case

p2 +M2 = p2 + (m+ S)2 � 0: (41)

For the two-body system, one begins with the free constraints of Eq.(11). The fact that these constraints

need to reduce down to a Klein-Gordon form in the case of one mass being much greater than the other

mass implies that scalar interactions should be introduced by mi !Mi;
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H10 ! H1 = p21 +M
2
1 = p21 +m

2
1 +�1(x?; P ) � 0;

H20 ! H2 = p22 +M
2
2 = p22 +m

2
2 +�2(x?; P ) � 0: (42)

where

Mi = mi + Si: (43)

From the compatibility condition Eq.(15) and Eq.(20)

�1 = �2 � �S ;

�1 = M2
1 �m2

1 = 2m1S1 + S
2
1 ;

�2 = M2
2 �m2

2 = 2m2S2 + S
2
2 ; (44)

resulting in

M2
1 �M2

2 = m2
1 �m2

2 ; (45)

the solution of which is

M1 = m1 coshL+m2 sinhL ; (46)

M2 = m2 coshL+m1 sinhL ;

where L, S1;and S2 are functions of x? in terms of a single underlying invariant function governing the scalar

interaction which will be called S(x?):

In order to determine L; S1; S2; and thus �S one constructs a mass shell condition for a single particle

of relative motion analogous to

p2 + (m+ S)2 � 0: (47)

This single-particle Klein-Gordon equation has the form

p2 +� � "2 �m2; (48)
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where

� = 2mS + S2: (49)

To continue further, there need to be analogous equations for the two-body case. For a two-body system

one has (from Eq.(33))

p2 +� � b2: (50)

To parallel what is found in the one-body Klein-Gordon case, one uses the energy and mass for the e¤ective

particle of relative motion introduced by Todorov. These are de�ned by

"w =
w2 �m2

1 �m2
2

2w
;

mw =
m1m2

w
; (51)

which satisfy the Einstein condition

b2 = "2w �m2
w: (52)

Thus

p2 +�S � "2w �m2
w; (53)

which is directly analogous to the one-body case Eq.(48)

Let us de�ne the four vector momentum analogous to the single particle p�

p� � p� +
"w
w
P� : (54)

In the c.m. system this is

p� � (0;p) + "w
w
(w; 0) = ("w;p) : (55)
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Since

p2 = p2 � "2w + 2
"w
w
p � P;

� p2 � "2w;

b2 = "2w �m2
w; (56)

the Hamiltonian Eq.(33)

H = p2 � b2 +�S � 0; (57)

then assumes the Klein-Gordon form

H = p2 +m2
w +�S : (58)

By looking at the single particle Klein-Gordon equations Eq.(48), Eq.(47), and Eq.(49) one can see that the

proper choice of �S to bring it to the form required is

�S = 2mwS + S
2; (59)

which �nally gives us a Hamiltonian of

H = p2 + (mw + S)
2 = p2 � "2w + (mw + S)

2 � 0: (60)

Note that this constraint can be obtained from its free form H0 = p
2 +mw

2 by replacing mw with mw + S:

This structure for the interaction is supported by two independent �eld-theoretic arguments, one classical

and one quantum-mechanical[30, 31, 32]. In addition, the forms given in Eq.(51) are con�rmed in both

classical and quantum �eld theory3 .[48]This formalism is still classical, but we will derive the quantum

analog of it and the other potentials.

2.3 World Vector Interactions

This section describes the methods of treating the world vector (A�) interaction, which will include

time-like and electromagnetic-like vector interactions as well. In a similar manner to our treatment of the

scalar potential, we derive a modi�ed mass-shell constraint with a vanishing Legendre Hamiltonian. Unlike

3This [11] structure and these kinematical forms for the e¤ective mass and energy arise from eikonal approximate sums of
ladder and cross ladder diagrams arising from a scalar �eld theory. [28]
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the scalar potential, there are multiple types of vector interactions and we will review the time-like and

electromagnetic-like vector interactions in addition to deriving the basic form of the potential. Lastly, we

will combine the electromagnetic-like vector interaction with the scalar interaction.

With the choice [4; 26]

L = �m
p
� _x2 +A� _x ; (61)

one de�nes the interaction for a single particle with a vector �eld. The conjugate momentum is

p =
@L

@ _x
=

m _xp
� _x2

+A; (62)

which is rewritten as

� = p�A = �m _xp
� _x2

: (63)

This equation leads us to the mass shell constraint of

H =(p�A)2 +m2 � 0 ; (64)

which from Eq.(63) becomes

H =
�
�2 +m2

�
� 0; (65)

and now, as before, the Legendre Hamiltonian is zero.

HL =
X

p _x� L = �m _x2p
� _x2

�A _x�m
p
� _x2 +A _x = 0 : (66)

Similarly to what was done for the two-body scalar case, one writes in four vector notation the classical

minimal substitution

p�i ! p�i �A
�
i = ��i ; (67)

which causes the free particle constraints to become the interacting ones below
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H1 = �21 +m
2
1 t 0; (68)

H2 = �22 +m
2
2 t 0:

Assuming translational invariance so that the potentials depend on coordinates only through the relative

coordinate x, these have the form

H1 = p21 +m
2
1 +�1(x; p1; p2) t 0 ; (69)

H2 = p22 +m
2
2 +�2(x; p1; p2) t 0 : (70)

Now that the basic form has been derived, we continue to the speci�c time-like and electromagnetic-like

vector interactions.

2.3.1 Time-like Vector Interactions

For time-like vector interactions one sets[4; 26]

A�1 = P̂�V1;

A�2 = P̂�V2;

��1 = E1P̂
� + p�;

��2 = E2P̂
� � p�; (71)

which, using the above de�nition (Eq.(69)) for the Hamiltonian with a vector potential, leads to

H1 = �21 +m
2
1 = p21 +m

2
1 +�1 � 0:

H2 = �22 +m
2
2 = p22 +m

2
2 +�2 � 0: (72)

where
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�1 = �21 � p21 = �E21 + "21 + 2E1p � P̂ = �2p1 �A1 +A21 = 2"1V1 � V21 ;

�2 = �22 � p22 = �E22 + "22 � 2E2p � P̂ = �2p2 �A2 +A22 = 2"2V2 � V22 : (73)

Note that these are the vector equivalents to Eq.(42), Eq.(43), and Eq.(44), respectively.

The compatibility condition, here in weak form (see above footnote), is

�1 � �E21 + "21 � �2 � �E22 + "22 � �V(x?); (74)

where �V(x?) is de�ned by

�V(x?) = �E21 + "21 = �E22 + "22; (75)

or

E21 � E22 = "21 � "22. (76)

The solution for Eq.(76) is

E1 = "1 coshJ + "2 sinhJ ; (77)

E2 = "2 coshJ + "1 sinhJ ;

where J , V1; and V2 are functions of x? in terms of a single underlying invariant function governing the

scalar interaction which will be called V(x?):

Now we want to �nd the analogy of Eq.(60) for time-like vector interactions. The one-body Klein-Gordon

equation for this is

p2 � (E � V)2 +m2 t 0; (78)

which can also be written as

p2 +� t E2 �m2; (79)
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with

� = 2EV � V2: (80)

The two-body constraint of Eq.(33)

H1 � H2 � H = p2 � b2 +�V(x?); (81)

assumes a Klein-Gordon form

H = p2 +m2
w +�V = p2 � "2w +m2

w +�V � 0: (82)

By looking at Eq.(78), Eq.(79), and Eq.(80) one can see that

�V = 2"wV � V2;

H = p2 +m2
w + 2"wV � V2 = p2 +m2

w � ("w � V)
2 � 0: (83)

Note that this constraint can be obtained from its free form H0 = p
2 +mw

2 by replacing p with p� VP̂ or

"w with "w � V.

2.3.2 Electromagnetic-like Interactions

For spinless particles, there are four independent vectors : x1 ; x2 ; p1 ; and p2 : This means the A
�
i can be

written as[26]

A�1 = �1(x?)p
�
1 + �1(x?)p

�
2 ;

A�2 = �2(x?)p
�
2 + �2(x?)p

�
1 : (84)

Four vector terms that would produce unobservable gauge changes proportional to x� or require the absolute

position x�i of particles have been omitted. Such interactions include both space- and time-like four vector

interactions, and under special relations between the �0s and �0s are called electromagnetic-like interactions

due to how the potentials share similarities with the related time and space components of vector potentials

in classical electromagnetism. Using the variables P̂� and p�; these can be incorporated into �i = pi � Ai
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as

��1 = E1P̂
� +G1p

� ;

��2 = E2P̂
� �G2p� ; (85)

Thus

�1 � p1 = �A1 = (E1 � "1)P̂ + (G1 � 1)p ;

A1 = ("1 � E1)P̂ � (G1 � 1)p ;

�2 � p2 = �A2 = (E2 � "2)P̂ � (G2 � 1)p ;

A2 = ("2 � E2)P̂ + (G2 � 1)p . (86)

When Ai is time-like (parallel to P̂ ), G1 � 1 = G2 � 1 = 0 and

G1 = G2 = GTL = 1 : (87)

One assumes that

G1 = G2 = G � exp(G) (88)

for general vector interaction. This implies that E1 ; E2 ;and G depend on two invariant functions, which will

be called A and V. A is rede�ned instead of G as a basic unit in the potential by choosing G = G(A): The

most general choice for Ei is then Ei = Ei(A;V), so

��1 = E1(A;V)P̂� +G(A)p� ;

��2 = E2(A;V)P̂� �G(A)p� ; (89)

which modi�es the free expressions

p�1 = "1P̂
� + p�;

p�2 = "2P̂
� � p�; (90)
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the case of pure time like invariant V = 0 and

Ei(A) � G(A)("i �A); (91)

with

G2 =
1

1� 2A=w ; (92)

corresponds to what will be called the electromagnetic-like vector interaction. With this choice the Hamil-

tonian is then

H1 = �21 +m
2
1 = �E21 +m2

1 +G
2p2 + 2E1Gp � P̂ � �E21 +m2

1 +G
2p2

� H2 = �22 +m
2
2 = �E22 +m2

2 +G
2p2 � 2E2Gp � P̂ � �E22 +m2

2 +G
2p2

� H � p2 � b2 +�A

= G2(p2 � ("1 �A)2 +m2
1=G

2) = G2(p2 � ("2 �A)2 +m2
2=G

2)

= G2(p2 + 2"wA�A2 � b2) (93)

where Eqs.(91) and (92) have been used to obtain the result in the last line above. Thus one arrives at

�A = (G
2 � 1)(p2 � b2) +G2(2"wA�A2) (94)

so that similar to Eq.(83)

H =G2(p2 +m2
w � ("w �A)

2
): (95)

Note that since "21 � E21 = "22 � E22 one still has the hyperbolic Eq.(77), but now Eq.(91) implies that

J = �G: (96)
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2.3.3 Scalar and Electromagnetic-like Combination

If one combines both scalar- and electromagnetic-like interactions, one has

H1 = �21 +M
2
1 = �E21 +M2

1 +G
2p2 + 2E1Gp � P̂ � �E21 +M2

1 +G
2p2

� H2 = �22 +M
2
2 = �E22 +M2

2 +G
2p2 � 2E2Gp � P̂ � �E22 +M2

2 +G
2p2

� H = p2 � b2 +�A +�S :

= G2(p2 � ("1 �A)2 +M2
1 =G

2) = G2(p2 � ("2 �A)2 +M2
2 =G

2): (97)

Following the analogy between Eqs.(83) and (95) it is plausible, in light of Eq.(60), to take

H = G2(p2 + (mw + S)
2 � ("w �A)2)

= G2(p2 � b2 + 2mwS + S
2 + 2"wA�A2): (98)

If one takes �A as given in Eq.(94) then

�S = (G2 � 1)(p2 � b2) +G2(p2 � b2 + 2mwS + S
2 + 2"wA�A2)

= G2
�
2mwS + S

2
�
; (99)

which, unlike Eq.(59) depends on the invariant A responsible for vector interactions. This equation and the

last line of Eq.(97) imply

M2
1 = m2

1 +G
2
�
2mwS + S

2
�
;

M2
2 = m2

1 +G
2
�
2mwS + S

2
�
; (100)

and so

M2
1 �M2

2 = m2
1 �m2

2: (101)

This again gives the hyperbolic solution of Eq.(46). We have derived the general form of the vector potential

and then shown how it specializes to the time-like and electromagnetic-like forms for a one-body Hamiltonian

and then continued to the derivation of the two-body Hamiltonian equations. In addition, we have then

shown the combination of the scalar and electromagnetic-like vector interactions.

What we have shown so far is entirely classical, so now that the potentials are completely de�ned in a

classical formalism, we will quantize this system.

22



2.3.4 Quantum Constraint Dynamics for the Two-Body Relativistic System

Now that we have described all of the relevant interactions relating to the two-body Hamiltonians classically,

it becomes pertinent to review Dirac�s method of conversion to quantum mechanics from classical mechanics.

First, the constraints derived above now become conditions on the wave function, i.e. H � 0 ! H � 0:

Secondly, Poisson brackets are now commutators. In the quantum case one must use

[x�?; p
� ] = i(��� � P�P �

P 2
) ; (102)

as a check to verify that the commutator [H1;H2] (the quantum compatibility condition, equivalent to the

classical fH1;H2g) on the wave function vanishes. This ensures that the quantum versions of the constraints

H1 = 0 ; (103)

H2 = 0;

are compatible wave function conditions, and

P � p � 0! P � p = 0 : (104)

Now we see how this applies to each of the interacting potentials.

2.3.5 Quantum Constraint Dynamics for World Scalar Interaction

This is a brief review of the methods for adapting the above section of the scalar interaction into the quantum

realm. By setting �S = 2mwS + S
2(the scalar potential), the condition

P � p � 0; (105)

gives

P � p � 0! P � p = 0 ; (106)

and the quantized Hamiltonian is

H = p2 +m2
w +�S � 0! (p2 + (mw + S)

2) = 0: (107)

The eigenvalue form of the Hamiltonian above is, in the center of momentum system,
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(p2 + 2mwS + S
2) = b2(w) : (108)

Comparing this to the nonrelativistic energy expression

p2 (r) + 2mU (r) (r) = 2mE (r) ; (109)

one can see that 2mwS + S2 and b2(w) are analogous to 2mU (r) and 2mE, respectively. The scalar

interaction has then been properly de�ned in the quantum realm, so we continue to a description of the

vector interaction in a quantum formalism.

2.3.6 Quantum Constraint Dynamics for World Vector Interactions

To construct the quantum versions of the Hi�s we must maintain the minimal substitution form of ��i :

Classically, the underlying scalars (S; V; A) may depend on x2?; x? �p; p2;and w2 or x2?; l2; p2; and w2 where

l2 = x2?p
2 � (x? � p)2;

= (r� p)2; (in center of momentum system) (110)

is the invariant square of the relative angular momentum. A scale transformation on the wavefunction can

eliminate linear dependence on x? �p. The system variables p and P̂ are well de�ned if the space is restricted

so that P 2 has only time-like eigenvalues. Assuming that the Ei [= G("i�Ai)] are Hermitian, then starting

with the classical expression equation

��1 = E1(A)P̂
� +G(A)p�; (111)

the quantum Hermitian version of which is

(��1 )H =
��1 + �

�y
1

2
= E1(A)P̂

� +
G(A)p� + p�G(A)

2

= E1(A)P̂
� +

G(A)p� +G(A)p� + [p�; G(A)]

2

= E1(A)P̂
� +G(A)p� +

1

2i
r�G(A) : (112)

These equations combined with
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E1(A) = G("1 �A1);

E2(A) = G("2 �A2) ; (113)

give us the Hermitian forms

��1 = G

�
P̂�("1 �A) + p� +

1

2i
r�G

�
;

��2 = G

�
P̂�("2 �A)� p� �

1

2i
r�G

�
; (114)

where G = lnG: Using the quantum brackets

[x�?; p
� ] = i(��� � P�P �

P 2
) = i(��� + P̂�P̂ �) ; (115)

One veri�es that the commutator [H1;H2] on the wavefunction vanishes and that the quantum analogs of

the classical constraints (Hi = 0) become conditions on the wave function

H1 = (�21 +m
2
1) = 0 ;

H2 = (�22 +m
2
2) = 0 : (116)

Due to the two-body system being an isolated one and  being an eigenfunction of the total momentum, P�

becomes a constant of the motion. The di¤erence constraint

(H1 �H2) = 0; (117)

then gives

P � p = 0 ; (118)

which is now a di¤erential equation as p� = �i@=@x� in the coordinate representation. The quantum

counterpart to the remaining independent constraint (H � 0) is H = 0 for the system wave function. In

the c.m. system this yields
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H = G2[p2 � ("w �A)2 +m2
w +

2

i
rG � p� 1

2
r2G � 3

4
(rG)2] = 0 : (119)

When separate time and electromagnetic-like vectors and the world scalar interaction are used then our

quantum constraint equation can be written as [4]

G2[p2 � ("w �A)2 + 2"wV � V2 + (mw + S)
2 +

2

i
rG � p� 1

2
r2G � 3

4
(rG)2] = 0 : (120)

If one lets � = G ; the above equations become

�
p2 � ("w �A)2 +

1

2
r2G + 1

4
(rG)2

�
� = 0; (121)

and[4]

�
p2 � ("w �A)2 + 2"wV � V2 + (mw + S)

2 +
1

2
r2G + 1

4
(rG)2

�
� = 0 ; (122)

respectively[25], which is the general Klein-Gordon form for two spinless particles. The terms with G can

be regarded as quantum recoil corrections. That is, they would vanish if one of the particles becomes

very massive. This completes the review of the relativistic quantum mechanical fundamentals of constraint

dynamics for spinless particles, so we will now continue on to the relativistic forms for spin-one-half particles

(i.e. the Dirac equation and how we arrive at the two-body Dirac equations).

2.4 One Body Dirac Equation

Since the potential framework that is used to extend the above wave equation for the two-body Klein-Gordon

equations to the two-body Dirac equations in the constraint formalism has been assembled, it is helpful to

brie�y review the one-body Dirac equation in order to see how spin dependence comes into play. De�ning

the operator S as4

S =5( � p�E� +M); (123)

the Dirac equation can be written in the form

S = 5( � p�E� +M) (124)

= (��� � p+E�5 +M5) = 0;

4The 5 here does not a¤ect the physics but simpli�es the compatibility conditions in the two-body case.
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where E = "�V; andM = m+S; accounting for the scalar and vector interactions to be de�ned later. The

4� 4 matrices are[14]

� =

0B@� 0

0 �

1CA ; (125)

 =

0B@ 0 �

�� 0

1CA ; (126)

� =

0B@1 0

0 �1

1CA : (127)

With the 5 matrix

5 =

0B@0 1

1 0

1CA ; (128)

and the four component spinor written in terms of two component subspinors

 =

0B@ 1
 2

1CA : (129)

Then the Dirac equation becomes

(�� � p) 1 + (E +M) 2 = 0;

(�� � p) 2 + (E +M) 1 = 0; (130)

by "splitting" the matrix equation into two linear ones. If one solves the second equation for  2 and

substitutes into the �rst, one obtains

[p2 � E2 +M2 + i(� �r ln (E +M))� � p] 1 = 0; (131)

and similarly solving for  2 from the �rst and substituting into the second

[p2 � E2 +M2 � i(� �r ln (E �M))� � p] 2 = 0: (132)

If one expands using an identity of Pauli � matrices (�i�j = �ij + i"ijk�k) and take r ln(X) = ln0(X)r̂,

one arrives at
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[p2 � E2 +M2 + i ln0 (E +M)r̂ � p� ln
0 (E +M)

r
L � �] 1 = 0;

[p2 � E2 +M2 � i ln0 (E �M)r̂ � p+ln
0 (E �M)

r
L � �] 2 = 0; (133)

and thus we can see how the reduced Dirac formalism reveals the familiar spin dependence with the L
r term

and Darwin interactions, which together give the correct spectral results for all orbital angular momentum

for Hydrogen[33]. This well-known result is explicitly displayed here to demonstrate in a simple form what

the more complex two-body Dirac formalism does later.

Now that the familiar formalism[14] for one-body Dirac equations has been reviewed, we can discuss

two-body Dirac equations.

2.5 Two-Body Dirac Equations

This section presents a review of two-body Dirac equations[25, 26]. The Dirac equations for two free particles

can be written in the form

S10 = (�1 � p1 +m1�51) = 51i

r
1

2
(�1p

�
1 +m1) = 0 ; (134)

S20 = (�2 � p2 +m2�52) = 52i

r
1

2
(�2p

�
2 +m2) = 0 :

The theta matrices are de�ned as[35]

��i � i

r
1

2
5i

�
i ; � = 0; 1; 2; 3 ; i = 1; 2;

�5i � i

r
1

2
5i; (135)

and these satisfy the anti-commutation and commutation relations
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[��i ; �
�
i ]+ = ���� ;

[�5i; �
�
i ]+ = 0;

[�5i; �5i]+ = �1; (136)

[��i ; �
�
j ]� = 0; i 6= j;

[�5i; �5j ]� = 0; i 6= j;

[��i ; �5j ]� = 0; i 6= j;

In terms of variables de�ned earlier

p1 = "1P̂ + p; p2 = "2P̂ � p; (137)

where P̂ = P=w; Eq.(134) can now be written as

S10 = (�1 � p+ "1�1 � P̂ +m1�51) = 0 ;

S20 = (��2 � p+ "2�2 � P̂ +m2�52) = 0: (138)

Using Eq.(136) one can show that

[S10; S20] = 0: (139)

The projections of these theta matrices satisfy

[�i � P̂ ; �i � P̂ ]+ = 1;

[�i � P̂ ; ��i?]+ = 0; (140)

with ��i? = �i�(�
�� + P̂�P̂ �): These theta matrices are Dirac matrices modi�ed in such a way as to ensure

that the operators S10 and S20 are the square root operators of the corresponding mass-shell operators, that

is S210 = � 1
2 (p

2
1 +m

2
1) and S

2
20 =� 1

2 (p
2
2 +m

2
2)
5 :

The di¤erence
5 In the ordinary Dirac matrix formalism, the Klein-Gordon operator (p21 +m

2
1) is obtained not from the direct square of

Dirac operator 1 � p1 +m1 but from multiplications by the related operator �1 � p1 +m1:
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(S210 � S220) = 0 =
1

2
(p21 +m

2
1 � p22 �m2

2) ; (141)

leads to the equation

P � p = 1

2
[w("1 � "2)� (m2

1 �m2
2)] = 0; (142)

which is the same constraint on the relative momentum that eliminates the relative energy in the center of

momentum frame that appeared in the spinless case.

Covariant Dirac � and � matrices are de�ned as

�i = �i � P̂ = 2�5i�i � P̂ ;

��i = 2��i?�i � P̂ ; (143)

along with the � matrix

��i = 5i�
�
i = 2

p
2i�5i �i � P̂ �?i; i = 1; 2: (144)

These take on the simpler forms ��i = (0;�i) and �
�
i = (0;�i) in the center of momentum system for which

P̂ = (1;0): In that case the free two-body Dirac equations take the more familiar forms of

�5i(i � p� �i"i +mi) = 0 ; i = 1; 2; (145)

analogous to Eq.(124), or

(i � p� �i"i +mi) = 0 ; i = 1; 2: (146)

If one makes the naive substitutions for scalar interactions de�ned by Eq.(43), the Dirac equations would

become

S1 = (�1 � p+ "1�1 � P̂ +M1�51) = 0;

S2 = (��2 � p+ "2�2 � P̂ +M2�52) = 0; (147)

which are then not compatible, that is
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[S1;S2]� = [�1 � p;M2�52]� + [M1�51;��2 � p]�

= �i(@M1 � �1�52 + @M2 � �2�51) 6= 0: (148)

Using supersymmetry arguments and the third law condition of Eq.(45) and Eq.(46), one can obtain the

compatible spin-dependent constraints S1 and S2 below[35],

S1 = (�1 � p+ "1�1 � P̂ +M1�51 � i@L � �2�52�51) = 0; (149)

S2 = (��2 � p+ "2�2 � P̂ +M2�52 + i@L � �1�52�51) = 0;

which commute with each other. These equations are known as the external potential forms, due to how

each particle�s potential is created by the other particle. They satisfy

[S1;S2] = 0; (150)

provided that

@L = @M1

M2
=
@M2

M1
: (151)

The strong compatibility due to a supersymmetry is responsible for producing the spin-dependent recoil

terms depending on @L: It can be shown that these terms vanish when one particle is in�nitely massive

relative to the other (M1 >> M2 or vice versa, giving @L = @M1

M2
= @M1

1 = 0 or @L = @M2

M1
= @M2

1 = 0),

thereby recovering the one-body Dirac equation. The operators S1 and S2 satisfy the relation

(S21 � S22 ) = �
1

2
(p21 +m

2
1 � p22 �m2

2) = �P � p = 0; (152)

thus showing that the relative momentum remains orthogonal to the total momentum.

The above di¢ culty with compatibility from Eq.(148)can also be overcome if the scalar interaction is

replaced by vector, pseudoscalar, pseudovector, or tensor potentials as described below. We �rst rewrite

the Dirac equations Eq.(149) for scalar interactions in the hyperbolic form of[28]
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S1 = (cosh(�) S1 + sinh(�) S2) = 0;

S2 = (cosh(�) S2 + sinh(�) S1) = 0; (153)

where

S1 � (S10 cosh(�) + S20 sinh(�) ) = 0; (154)

S2 � (S20 cosh(�) + S10 sinh(�) ) = 0;

and

� = ��51�52L(x?): (155)

Here, S1 and S2 are auxiliary constraint operators.

It turns out that for all arbitrary � satisfying

[P � p;�] = 0;

�(x) = �(x?);

P � p = 0; (156)

this leads to weak compatibility on both sets of constraints

[S1;S2] = 0;

[S1;S2] = 0: (157)

The function � is de�ned as

�L = �L�51�52 � �1
L
2
O1; O1 = �5152; (158)

for scalar interactions,

�J = J P̂ � �1P̂ � �2 � O2
J
2
= �1�2

J
2
O1; (159)
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for time-like vector interactions, and

�G = G�1? � �2? � O3
G
2
= 1? � 2?

G
2
O1; (160)

for space-like vector interactions. Here, L;J ; and G are all invariant arbitrary functions of x? related to

each interaction. For the axial interactions, see [28],[35].

2.5.1 Quantum Analogy and Reduction to Schrödinger-like Form

Similar to the one-body case, this section discusses an analogy of the two-body for converting to Schrödinger-

like equation. This reveals one of the advantages to our methods in that methods for solving Schrödinger-

like equations are very well known and so if we can convert any formalism into this form, a �nal solution

becomes much more feasible. For the combined scalar, time-like vector, and space-like vector, the equations

Eq.(154,153) take the form below after bringing the free Dirac operators through to the right [28],[35]

S1 = (G�1 � p+ E1�1 � P̂ +M1�51 + i
G

2
(�2 � @GO3 + �2 � @JO2 � �2 � @LO1)) = 0; (161)

S2 = (�G�2 � p+ E2�2 � P̂ +M2�52 � i
G

2
(�1 � @GO3 + �1 � @JO2 � �1 � @LO1)) = 0: (162)

In the two-body case, the wavefunction is now a 16 component spinor, with each individual  i having four

components

 =

0BBBBBBB@

 1

 2

 3

 4

1CCCCCCCA
: (163)

The end result of the matrix multiplications of Si = 0 is a set of eight simultaneous equations for the

Dirac spinors  1;  2;  3;  4. There is a set of four simultaneous equations from the constraint of the two-

body Dirac equations that S1 = 0 and another set of four simultaneous equations from the second of the

constraint two-body Dirac equations S2 = 0: In order to fully solve these equations, we de�ne the terms

�� �  1 �  4; (164)

�� �  2 �  3; (165)

D++
1 = eG(�1 � p�

i

2
�2 � @(J � L+ G�1 � �2)); (166)
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D++
2 = eG(�2 � p�

i

2
�1 � @(J � L+ G�1 � �2)); (167)

D�+
1 = eG(�1 � p�

i

2
�2 � @(J + L+ G�1 � �2)); (168)

D��
1 = eG(�1 � p+

i

2
�2 � @(J + L � G�1 � �2)); (169)

E1 = "1 cosh(J ) + "2 sinh(J ); (170)

E2 = "2 cosh(J ) + "1 sinh(J ); (171)

M1 = m1 cosh(L) +m2 sinh(L); (172)

M2 = m2 cosh(L) +m1 sinh(L); (173)

and work out the matrices to obtain

D++
1 �+ = E1�+ �M1��; (174)

D+�
2 �+ = E2�+ +M2��; (175)

D�+
1 �+ = E1�+ �M1��; (176)

D��
1 �� = �E1�� +M1�+: (177)

These equations can be solved through a system of substitution and elimination similar to what was done

for the one-body Dirac equation (Eq.(134)), since there are now four equations and four unknowns. The

result is[35]

[E1D
�+
1

1

E1M2 + E2M1
(M2D

++
1 �M1D

++
2 ) + (178)

M1D
��
1

1

E1M2 + E2M1
(E2D

++
1 + E1D

++
2 )]�+

= (E21 �M2
1 )�+:

34



Further expansion of terms reveals [35]

[p2 + 2mwS + S
2 + 2"wA�A2

�[2G0 � E2M2 + E1M1

E2M1 + E1M2
(L � G)0]ir̂ � p� 1

2
r2G � 1

4
(G)02 � (G0 + L0)2 + E2M2 + E1M1

E2M1 + E1M2

1

2
G0(L � G0)

+
L � (�1 + �2)

r
[G0 � 1

2

E2M2 + E1M1

E2M1 + E1M2
(L � G)0]� L � (�1 � �2)

2r

E2M2 � E1M1

E2M1 + E1M2
(L � G)0

+�1 � �2(
1

2
r2G + 1

2r
L0 + 1

2
(G0)2 � 1

2
G0(L � G)0E2M2 + E1M1

E2M1 + E1M2
)

+�1 � r̂�2 � r̂(
1

2
r2L � 3

2r
L0 + G0L0 � 1

2
L0(L � G)0E2M2 + E1M1

E2M1 + E1M2
)

+
i

2
(L+ G)0(�1 � r̂�2 � p+ �2 � r̂�1 � p) +

i

2
(L � G)E1M2 � E2M1

E2M1 + E1M2

L � (�1 � �2)
r

]�+

� (p2 +�)�+

= b2(w)�+; (179)

We work in the c.m. frame in which P̂ = (1;0) and r̂ = (0; r̂): The �nal four component wave functions

 �; �� that appear in Eq. (179) are de�ned by [2]

�� = exp(F +K�1 �̂r�2 �̂r) � = (expF)(coshK + sinhK�1 �̂r�2 �̂r) �;

�� = exp(F +K�1 �̂r�2 �̂r)�� = (expF)(coshK + sinhK�1 �̂r�2 �̂r)��; (180)

in which

F = 1

2
log

D
"2m1 + "1m2

� G;

D=E2M1 + E1M2;

K = (L � J )
2

: (181)

In analogy to what occurs in the decoupled form of the Schrödinger equation for the individual single particle

wave function, this substitution has the convenient property that in the resultant bound state equation, the

coe¢ cients of the �rst order relative momentum terms vanish and we are left with a more concise form

(p2 +�12 � b2) =fp2 + (mw + S)
2 � ("w �A)2 +�D + L � (�1+�2)�SO + �1 �̂r�2 �̂rL � (�1+�2)�SOT

+ �1��2�SS + (3�1 �̂r�2 �̂r��1��2)�T + L � (�1��2)�SOD + iL��1��2�SOXg + = 0:

(182)
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Here, J ; G and L are arbitrary functions of x? related to each interaction, as de�ned in Eq.(158), Eq.(159),

and Eq.(160) and G = �J . Thus is derived a two-body Schrödinger-like equation for scalar, time-like and

space-like vector interactions. The 2mwS + S2 + 2"wA � A2 term is the classical interaction potential

term (which also appears in the spinless Klein-Gordon equations), the L � (�1� �2) terms represent e¤ective

magnetic �eld dipole moments and Thomas precession, and �1 � r̂�2 � r̂; �1 � �2 and �i � r̂�j � p terms arise

from dipole-dipole interactions and their relativistic corrections. The main focus of this work has been to

derive a similar equation for the three-body baryon system.

This is the framework for the two-body system in a fully relativistic formalism, so from here we go to

larger systems. Sazdjian[11] has done considerable work on the N -body system, which will be reviewed

shortly. Although he does not deal with spin dependence with as much detail as done here, he does provide

a very useful framework for the N -body problem in a constraint formalism.

2.6 Two Body Dirac Equations: Explicit Forms of the Potentials

Since the forms of the potentials in the three-body case are similar to those in the two-body case, it is of use

to (very) brie�y describe the two-body interacting potentials and how they a¤ect the wavefunction. This

section then contains a review of how the operators of the tensor, spin-spin, spin-orbit, spin-orbit di¤erence

and spin-orbit exchange work on a hjlsnj state coupling, where n is a radial quantum number. In the

three-body case there will be two n0s, one for each relative coordinate, but here there is just one.

First, our quasipotential (energy dependent e¤ective potential) is de�ned by

� = �SI +�D + L � (�1+�2)�SO + �1 �̂r�2 �̂rL � (�1+�2)�SOT (183)

+ �1��2�SS + (3�1 �̂r�2 �̂r��1��2)�T + L � (�1��2)�SOD + iL��1��2�SOX ;

�SI = 2mwS + S
2 � 2"wA�A2

where the potential terms6

�D;�SO;�SOT ;�SS ;�T ;�SOD;�SOX

are all collections of two-body terms depending on the masses, distances between the two particles, energies

of the two particles and the energy of the system. The explicit forms of these are therefore not important

6The subscript on quasipotential �D refers to Darwin. It consist of what are called Darwin terms, those that are the
two-body analogue of terms that accompany the spin-orbit term in the one-body Pauli reduction of the ordinary one-body
Dirac equation, and ones related by canonical transformations to Darwin interactions [2], momentum dependent terms arising
from retardation e¤ects. The subscripts on the other quasipotentials refer respectively to SO (spin-orbit), SOD (spin-orbit
di¤erence), SOX (spin-orbit cross terms), SS (spin-spin), T (tensor), SOT (spin-orbit-tensor)
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to the current discussion of the operators and so will be left in this form for simplicity�s sake. The spin

independent and Darwin terms have no spin operators and so when used on a hjlsnj state they just give

hjlsnj�SI jjl0s0n0i = �ll0�ss0hnj�SI jn0i;

hjlsnj�Djjl0s0n0i = �ll0�ss0hnj�SI jn0i:

These are the only simple terms though, as the spin-orbit gives

hjlsnjL � (�1+�2)�SOjjl0s0n0i = [j(j + 1)� l(l + 1)� 2]�ll0�ss0�s1hnj�SOjn0i:

As we will show later, while in the two-body case this l,j;and s are for the entire system, in the three-body

problem it is just for each pair of particles and so this spin-orbit function requires additional (and extensive)

manipulation in order to reach a completely coupled jJLSi state for each set of particles. The emphasis

here is important as this is the main di¢ culty in going from the two-body formalism to a three-body one,

in this work as well as others.

The tensor and spin-orbit tensor terms allow for coupling of di¤erent l states as well as identical l states,

as shown ([49])

Tensor:

hjj + 11nj(3�1 �̂r�2 �̂r��1��2)�T jjj + 11n0i = �2j + 4
2j + 1

hnj�T jn0i;

hjj + 11nj(3�1 �̂r�2 �̂r��1��2)�T jjj � 11n0i = 6

p
j(j + 1)

2j + 1
hnj�T jn0i;

hjj � 11nj(3�1 �̂r�2 �̂r��1��2)�T jjj + 11n0i = 6

p
j(j + 1)

2j + 1
hnj�T jn0i;

hjj � 11nj(3�1 �̂r�2 �̂r��1��2)�T jjj � 11n0i = �2j � 4
2j + 1

hnj�T jn0i: (184)

Spin-orbit Tensor:

hjj + 11nj�1 �̂r�2 �̂rL � (�1+�2)�SOT jjj + 11n0i = � 1

2j + 1
[�2j � 4]hnj�SOT jn0i;

hjj + 11nj�1 �̂r�2 �̂rL � (�1+�2)�SOT jjj � 11n0i = [�2j � 4]2
p
j(j + 1)

2j + 1
hnj�SOT jn0i;

hjj � 11nj�1 �̂r�2 �̂rL � (�1+�2)�SOT jjj + 11n0i = [2j � 2]2
p
j(j + 1)

2j + 1
hnj�SOT jn0i;

hjj � 11nj�1 �̂r�2 �̂rL � (�1+�2)�SOT jjj � 11n0i =
1

2j + 1
[2j � 2]hnj�SOT jn0i: (185)

37



The spin-orbit di¤erence and spin-orbit exchange only allow couplings between di¤erent spin states

hjl1njL � (�1��2)�SODjjl
01n0i = 0

hjl1njL � (�1��2)�SODjjl
00n0i = [f1� (j � l)2gf(j + l)(j + l + 2)g]hnj�SODjn0i

hjl0njL � (�1��2)�SODjjl
01n0i = [f1� (j � l)2gf(j + l)(j + l + 2)g]hnj�SODjn0i

hjl0njL � (�1��2)�SODjjl
00n0i = 0 (186)

hjl1njiL��1��2�SOX jjl01n0i = 0

hjl1njiL��1��2�SOX jjl00n0i = [f1� (j � l)2gf(j + l)(j + l + 2)g]hnj�SODjn0i

hjl0njiL��1��2�SOX jjl01n0i = �[f1� (j � l)2gf(j + l)(j + l + 2)g]hnj�SODjn0i

hjl0njiL��1��2�SOX jjl00n0i = 0 (187)

The exact derivations of these potential terms are done in ([1, 2, 3]). Since one of the goals of this work is

to compare essentially the same methods that worked well for the meson spectrum to the baryon spectrum,

we use these same potential terms in mostly the same form as they appear in the pure two-body case. The

two-body operators are therefore loosely de�ned and described in preparation for their adaptation to the

three-body potential. Now we will derive de�nitions for the scalar and vector potentials used in our model

and from that de�ne the two-body potentials �D;�SO;�SOT ;�SS ;�T ;�SOD; and �SOX :

2.7 Explicit Forms of the QCD Model Potentials

The authors of [39] have used a sophisticated form of the static quark potential developed by Adler

and Piran [40], one that has ties at all length scales to �eld theoretic data and from this obtained good

agreement with the quarkonium spectrum from experimental data. However, it is much more common in

nonrelativistic treatments to use the static quark Cornell potential[41] for potential model studies,

V (r) = ��c
r
+ br; (188)

as in [42, 43]. Although not displaying asymptotic freedom, it does give the dominant Coulomb-like behavior

as well as the linear quark con�nement. Early on a model was proposed by Richardson for a static potential

which both depends only a single scale size � and interpolates in a simple way between asymptotic freedom
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and linear con�nement [44]. Richardson�s model for the static interquark potential in momentum space is

~V (q) =� 16�
27

1

q2 ln(1 + q2=�2)
; (189)

arising from the assumption that

~V (q) =� 4�s(q
2)

3q2
; (190)

(including the color factor �4=3). It is important to note that this is for a qq singlet state for the meson

spectrum. In order to properly account for asymptotic freedom, we must have q2=�2 >> 1; which gives

�s(q
2)! 8�

27

1

ln(q2=�2)
: (191)

On the other hand, the property of linear con�nement requires that for �r >> 1; V (r) / r or equivalently

that for q2=�2 << 1 one must impose �s(q2) � q
�2. The interpolation of Eq. (189) is not tied at all in the

intermediate region and only roughly tied in the large r region to any �eld theoretic data. Nevertheless it

provides a convenient one-parameter form for the static quark potential. In coordinate space it has the form

V (r) =
8��2r

27
� 8�f(�r)

27r
; (192)

where f(�r) is given by a complicated integral transform7 that displays the asymptotic freedom behavior

for r ! 0 of

f(�r)! � 1

ln�r
; (193)

while for r !1;

f(�r)! 1: (194)

A simpler model for the potential function f(r), which we apply in this model and one which displays

the same large and small r behavior is8

V (r) =
8��2r

27
� 16�

27r ln(e2 + 1=(�r)2)
: (195)

It amounts to replacing Richardson�s f(�r) by 2= ln(e2 + 1=(�r)2); having the same limits. The forms of

7 In addition to the spin independent nonrelativistic model presented in [44] see also a relativistic extension of it given in
[45].

8An earlier coordinate space form that displays asymptotic freedom as well as linear quark con�nement proposed in [46] is
V = (8�=27)(1� �r)2=(r ln�r):
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the scalar and vector invariant potentials

S =
8��2r

27

A = � 16�

27r log(Ke2 + B
(�r)2 )

+
e1e2
4�r

(196)

are used to construct all of the individual � terms. The explicit forms of these potentials that are derived

from the vector and scalar potentials are given in Appendix A. In the case of the baryons these are slightly

changed due to a di¤erent color factor (� 4�s
3 becomes � 2�s

3 due to this being quark-quark and not quark-

antiquark) to

S =
4��2r

27

A = � 8�

27r log(Ke2 + B
(�r)2 )

+
e1e2
4�r

(197)

and also of course there is no longer just one interaction but three, so r becomes r12; r13;or r23, depending

on which potential we are currently discussing.

The technique that Crater et al. used in the two body problem for �nding the eigenvalues is called the

Inverse Power Method and its application depends on the variables being separable. Unlike the two-body

problem, the variables are not separable in the three-body problem. This requires the use of the variational

principle, which in turn requires a basis. Therefore, now that the potentials are de�ned, we turn to de�ning

a basis for the two-body system and from there extending it to the three-body.

2.8 Gaussian Basis Functions

Here we will brie�y detail how our wavefunctions are used to construct the basis for use with the

variational theorem. In the case of a nonrelativistic, energy independent Hamiltonian the standard way of

using the variational principle is having the wavefunction vary by some alpha, i.e.

h	(�)jHj	(�)i = E(�);

@E

@�
= 0;

E(�0) � Eactual: (198)
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In order to expand the basis into a more general matrix eigenvalue equation, we de�ne.

j	i =
X
n

cnj	ni;

h	jHj	i =
X
n;m

cnc
�
mh	mjHj	ni;

h	j	i =
X
n;m

cnc
�
mh	j	i =

X
n;m

cnc
�
mBmn: (199)

Since the basis we will choose for the baryons is not orthogonal, B is not the usual Kronecker delta. Using

the method of Lagrange multipliers (subject to the constraint h	j	i = 1) gives that

@

@c�m
(h	jHj	i � Eh	j	i) =

X
n;m

cnh	mjHj	ni � E
X
n;m

cnBmn = 0; (200)

we arrive at the eigenvalue equation

Hmncn = EBnmcn; (201)

or in matrix form (where H and B are matrices, c
¯
is a vector and E is a scalar eigenvalue)

Hc
¯
= EBc

¯
. (202)

In the non-relativistic two-body problem with tensor coupling, the s and d states (l = j + 1 and l = j � 1)

are mixed, so we need a mixed wavefunction

j	i =
X
n

Cn+j	n+i+
X
n

Cn�j	n�i;

� ! l = j � 1;

+ ! l = j + 1: (203)

Using this 	 in Eq.(199) gives

h	jHj	i =
X
n;m

(c�+m c+nH
++
mn + c

��
m c+nH

�+
mn + c

�+
m c�nH

+�
mn + c

��
m c�nH

��
mn );

h	j	i =
X
n;m

(c�+m c+n + c
��
m c+n + c

�+
m c�n + c

��
m c�n ); (204)
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and as before, we take the partial derivative with respect to the complex conjugate of one of the c parameters

@

@C�+m
h	jHj	i � Eh	j	i = H++

mn c
+
n +H

+�
mn c

�
n = EB++mnc

+
n

H��
mn c

�
n +H

�+
mn c

+
n = EB��mn c

�
n (205)

giving us 0B@H++ H+�

H�+ H��

1CA
0B@c¯+
c
¯
�

1CA = E

0B@B++ 0

0 B��

1CA
0B@c¯+
c
¯
�

1CA (206)

Now we must de�ne a wavefunction for our basis.

2.8.1 Gaussian wavefunctions and In�nite Interval Discretization

This section describes how our wavefunctions comes about for our basis. The potentials in our Hamil-

tonian have both short distance and long distance e¤ects, so we need a basis wavefunction that can accurately

account for that. We de�ne a wavefunction in terms of some parameter � that determines the e¤ect of the

Gaussian wavefunction for short and long interactions. We then split the wavefunction into those two parts

(short and long) and discretize it to a certain N value, from where we get our basis. The wavefunction is

originally de�ned in an in�nite vector space, so we must truncate it in order to work with it.

Boris Kupershmidt, a mathematician,[50] has suggested a Laplace transform/Gaussian basis

 (x) =

Z 1

0

d�q(�)

s
1

a3

r
�3

�3
exp(��x

2

2a2
) (207)

where  is essentially the Fourier transform of some function d: In order to work with this function, we split

the integral into two pieces, one with boundaries from zero to one and and the other with boundaries from

one to in�nity, so that

 (x) =

Z 1

0

d�q(�)

s
1

a3

r
�3

�3
exp(��x

2

2a2
)

+

Z 1

1

d�q(�)

s
1

a3

r
�3

�3
exp(��x

2

2a2
): (208)

By replacing � with 1/� in the �rst half of the equation (so that the integral from 0 to 1 now becomes 1 to
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in�nity) we get

 (x) =

Z 1

1

d�q(1=�)

vuut 1

a3

s
1

�3�3
exp(� x2

2�a2
)

+

Z 1

1

d�q(�)

s
1

a3

r
�3

�3
exp(��x

2

2a2
); (209)

and from there, replacing integrals with sums over arbitrarily large N , this discretizes to

 (x) =
NX
n=1

cn

s
1

a3

r
1

n3�3
exp(� x2

2na2
)

+
NX
n=1

dn

s
1

a3

r
n3

�3
exp(�nx

2

2a2
)

= (c1 + d1)

s
1

a3

r
1

�3
exp(� x

2

2a2
) + c2

s
1

a3

r
1

8�3
exp(� x

2

4a2
) + d2

s
1

a3

r
8

�3
exp(�x

2

a2
) + :::

= e1

s
1

a3

r
1

�3
exp(� x

2

2a2
)

+

NX
n=2

cn

s
1

a3

r
1

n3�3
exp(� x2

2na2
) +

NX
n=2

dn

s
1

a3

r
n3

�3
exp(�nx

2

2a2
): (210)

So, for N = 1 we have

 (x) = e1

s
1

a3

r
1

�3
exp(� x

2

2a2
); (211)

For N = 2 we have

 (x) = e1

s
1

a3

r
1

�3
exp(� x

2

2a2
)

+c2

s
1

a3

r
1

8�3
exp(� x

2

4a2
) + d2

s
1

a3

r
8

�3
exp(�x

2

a2
) (212)

Note that the original wavefunction from N = 1 remains as the �rst term. This is true for all N:

For N � 3

 (x) = e1

s
1

a3

r
1

�3
exp(� x

2

2a2
)

+

NX
n=2

cn

s
1

a3

r
1

n3�3
exp(� x2

2na2
) +

NX
n=2

dn

s
1

a3

r
n3

�3
exp(�nx

2

2a2
) (213)
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or more symmetrically

 (x) =
2N�1X
n=1

en

s
1

a3

r
f3n
�3
exp(�fnx

2

2a2
);

fn =
1

n
; 1 � n � N ;

fn = n+ 1�N ; N + 1 � n � 2N � 1 (214)

As we can see from the N = 2 case, the order of the matrix increases as 2N � 1. Each matrix element

of the Hamiltonian matrix is constructed from the expectation value of the Hamiltonian with two of these

wavefunctions. For example, for the N = 2 case, our general wavefunction j n(fn)i is

n = 1! j 1(1)i;

n = 2! j 2(
1

2
)i;

n = 3! j 3(2)i; (215)

and thus we have the 3x3 matrix 0BBBB@
h 1jHj 1i h 1jHj 2i h 1jHj 3i

h 2jHj 1i h 2jHj 2i h 2jHj 3i

h 3jHj 1i h 3jHj 2i h 3jHj 3i

1CCCCA : (216)

As can be inferred from the values of fn for n > 1; this basis allows the wavefunction to account for both

the long-rage and short-range interactions of the Hamiltonian. Smaller fn values-such as for n = 2 in the

above example-allow for long-range interactions while larger fn values (like the n = 3 wavefunction) account

for the short-range interactions.

Graphically, this can be seen in the plots for the N=1 through 5 (not normalized) Gaussians. These

are all given with unit width for simplicity, as they are merely intended to show how the sum of Gaussians

spreads the possible wavefunctions. Figure 6 shows how these combine and allow some to account for

long-range interactions while others are more short-range.
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Figure 1: N=1 Gaussian

Figure 2: N=2 Gaussian
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Figure 3: N=3 Gaussian

Figure 4: N=4 Gaussian
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Figure 5: N=5 Gaussian

Figure 6: N=1 through 5 Gaussians
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In a similar manner, we can now also write our B matrix from Eq.(202) as

 (x) =
2N�1X
n=1

en n(x);

Bnm =

Z
d3x �n(x) m(x)

=

s
1

a6

r
f3nf

3
m

�6

Z
d3x exp(� (fn + fm)x

2

2a2
)

=

q
f
3=2
n f

3=2
m

p
8

(fn + fm)3=2
=

s
8f

3=2
n f

3=2
m

(fn + fm)3
(217)

Thus we get an analytical form for the B matrix that remains the same regardless of coordinate transfor-

mations. Note also that this becomes one in the case of fn = fm = 1; which is expected. This completes

our review of the two-body formalism. Since we are attempting to reach a convergence point with as few

Gaussians as possible, we do not necessarily include as many wavefunctions as is possible. So for N = 2,

we only begin with two wavefunctions for each coordinate (giving a 4x4 matrix) and then go to three wave-

functions (going to 9x9). Similarly, N = 3 can have up to 5 wavefunctions per coordinate, but we only add

one at a time in order to more quickly converge the energy eigenvalues.

3 The Three Body Problem

Now that we have completed our review of constraint dynamics for the two-body problem, we move on

to the three-body one. Doing so is not a trivial task, as many pieces of our Hamiltonian become considerably

more complicated, or at the very least, considerably di¤erent, from those used in the two-body problem. We

will begin our review of the three body problem with a simple non-relativistic Hamiltonian with a harmonic

oscillator potential. As is common for three body approaches, we set up a relative coordinate system from

the coordinates of the quarks themselves. From there, we change the potential to a power law and add in an

ad-hoc spin dependent term to acquire crude spectral results for our potential, the purpose of which being

to familiarize ourselves and the reader with the larger problem at hand, as while this is a vastly simpler

problem, it still has the same form as the fully relativistic, spin-dependent Hamiltonian. The actual spectral

results are found using a �2 minimization routine.

After the non-relativistic results, we move on to Sazdjian�s relativistic N body formalism that we then

adapt to a three-body formalism and from there further modify to a Schrödinger-like form, as we did in the

two-body. We then once again set up our relative coordinate system, but use a more direct and advanced

method to do so in order to avoid mathematical di¢ culties for the intrinsically more complicated system
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(i.e. dealing with an error function as we do below is not di¢ cult, but it would become a much bigger issue

with a more complicated Hamiltonian). Finally, we modify the two-body potentials as needed in order

to �t a three-body problem. Some of these potentials are simple and require little other than changing

an interaction between two particles to three interactions between three sets of two particles, while others

require a nearly complete overhaul of the original potentials from the two-body system.

3.1 Nonrelativistic Three Body Problem

Before going to Sazdjian�s work on the N-body relativistic approach (and from there to our three-body

case), we begin with a simple non-relativistic three-body approach. The purpose of this is to provide a

much simpler analogue to the work done in the following sections in order to more readily facilitate an

understanding of the workings of the system. Therefore, we �rst solve the non-relativistic problem for a

three-body system using relative coordinates for a simple harmonic oscillator. Then, we replace the oscillator

potential with a power law potential and add in an ad-hoc spin-dependent term and numerically solve the

equations. We limit our work here to the octet and use a chi-squared minimization routine to acquire the

best �t for the baryon octet. The non-relativistic Hamiltonian is

H =
p21
2m1

+
p22
2m2

+
p23
2m3

+ V (r1; r2) + V (r2; r3) + V (r3; r1), (218)

which in the simpli�ed case of three coupled harmonic oscillators becomes

H=
p21
2m1

+
p22
2m2

+
p23
2m3

+
1

2
�3(r1�r2)2+

1

2
�3(r1�r3)2+

1

2
�3(r2�r3)2 , (219)

where �3 is the usual spring constant with � having the dimensions of energy. Using the canonical trans-

formation [9]

� = r2�r3; p� = p2�p3 (220)

� =
Mm2

(m2 +m3)m1
r2 +

Mm3

(m2 +m3)m1
r3; p� =

m3p2 �m2p3
m2 +m3

R =
m1r1 +m2r2 +m3r3

m1 +m2 +m3
; P = p1+p2+p3

where

M = m1 +m2 +m3; m� =
m1(m2 +m3)

(m1 +m2 +m3)
; m� =

m2m3

m2 +m3
; (221)
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we arrive at

H =
P2

2M
+
p2�
2m�

+
p2�
2m�

+
1

2
�3fm

2
3 +m

2
2 + (m2 +m3)

2

(m2 +m3)2
�2 � 2

m2 +m3
(m2 �m3)� � �+2�2g: (222)

As a side note, similar to in Isgur�s work, in the simpli�ed case of m2 = m3 (most of the octet has two

masses equal, so this is reasonable for this case), the Hamiltonian becomes

H =
P2

2M
+
p2�
2m�

+
p2�
2m�

+
3

4
�3(�2+2�2): (223)

It is interesting to note that this substitution bears a resemblance to a quark-diquark system in that in

setting up our coordinate systems two quarks are favored over the third, but the similarities end there as

everything past that point treats the system as symmetrically as possible. Also, the oscillator case is similar

to a typical phonon problem; however, since this case is just a simple example of what will be a general

power law potential, it is not particularly relevant to the discussion at hand.

This Hamiltonian Eq.(223) is fairly simple to solve (for the ground state) using the Gaussian wave function

	(�;�) =
�
3=2
� �

3=2
�

�3=2
e��

2
��

2=2e��
2
��

2=2; (224)

where

�� = (3�3m�)
1=4; (225)

�� = (3�3m�)
1=4:

Now we will begin to build upon the simplest state by adding in spin dependent terms. The spin terms

typically have the form X
i<;j

c

mimj
si � sjr2V(ri; rj); (226)

(with c an adjustable parameter) that modi�es the spin independent two-body potential and will be treated

as three two-particle interactions. This spin term should not be taken as a derived term, but it is important

to note that it bears some similarities to one that is derived later for Two-Body Dirac equations. The

purpose of adding this spin term is simply to see how it might be treated in this much simpler case than

the one with which we will actually be working. The results of working out the quark model expectation

value si � sj terms are shown in Appendix C, along with the quark state vector structure for the baryons

(Appendix B). It should be noted that though this addition does technically make the problem relativistic,

50



we are still using the non-relativistic kinetic and potential terms from earlier, so for all intents and purposes

it is a "non-relativistic problem with spin." Moving from the oscillator to the general case, the Hamiltonian

now is

H =
p21
2m1

+
p22
2m2

+
p23
2m3

+V(r1; r2) + V(r1; r3)+V(r2; r3)

+
X
i<;j

c

mimj
si � sjr2V(ri; rj): (227)

For the purpose of further exemplifying the techniques we will use for the relativistic case, we choose V =

1
2�(�jri�rj j)

p, which with the substitution from Eq.(220) makes the Hamiltonian

H =
P2

2M
+
p2�
2m�

+
p2�
2m�

+
1

2
�p+1fj�jp + j � m3

m2 +m3
�� �jp + j�� m3

m2 +m3
�jpg

+
X
i;j

c

mimj
si � sjr2V(ri; rj); (228)

where p is an arbitrary general power. The kinetic term can always be worked out exactly and is, working

in the center of momentum system,

h	jT j	i =
�3��

3
�

�3

Z
e��

2
��

2

e��
2
��

2 p2�
2m�

e��
2
��

2

(229)

+e��
2
��

2

e��
2
��

2 p2�
2m�

e��
2
��

2

d3�d3�

=
�2�

64�m�
+

�2�
64�m�

;

as can the �rst potential term of j
p
2�jp; yielding, for integer values of p,

h	jj
p
2�jpj	i =

�3��
3
�

�3

Z
j�jpe��

2
��

2

e��
2
��

2

d3�d3� =
1

2

�3��
2
�

�2
1

�p+1�

C

=
1

2

�2�
�2

1

�p�
C; (230)

C =
1

2
� 3
2
� 5
2
� :::(p+ 1

2
):

The other two potential terms do not work out analytically in the general case though and require some

numerical work. Through the substitution

�
0
= � m3

m2 +m3
�� �; (231)
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Table 1: Nonrelativistic model parameter values and baryon masses
Particle Mass(MeV) Mass(MeV)(experimental)
u 317
d 322
s 495
p 971 938
n 973 939
�+ 1146 1189
�0 1148 1192
�� 1150 1197
�0 1323 1314
�� 1325 1321
� 1125 1115

Constants value
� 175 MeV
c 1.22 (dimensionless)
p 2.05

one can move some of the more di¢ cult terms (the j � m3

m2+m3
�� �jp and j� � m3

m2+m3
�jp terms) into the

Gaussian wavefunction, which gives us

h	jj� m3

m2 +m3
�� �jpj	i1

2
�p+1 =

1

2
�p+1

Z
exp(��2��2) exp(��2�(�

m3

m2 +m3
�� �0)2)�

0pd3�d3�
0
: (232)

The term in the second exponential above results in

� �2�(�
m3

m2 +m3
���0)2 = ��2�(�02 +

m2
3

(m2 +m3)2
�2+

m3

m2 +m3
�
0
� cos �); (233)

which will cause the Hamiltonian to integrate to an error function in �
0
: This can be approximated and then

the remaining integral over � can be done numerically. The other term (j�� m3

m2+m3
�jp)is done in a similar

fashion and also results in an error function. We use a Monte Carlo modeling approach in a chi-squared

minimization routine. The numerical results are as follows for the baryon octet

So, we have now completed a simpli�ed version of the three-body problem and obtained some crude

spectral results. We have used a relative coordinate system for an oscillator basis at �rst and then changed

our potential to a power law with spin-dependent terms. From there, we numerically solved the problem and

used a �2 minimization routine to acquire a best �t for the parameters (the quark masses and the constant

�):

3.2 Sazdjian�s N body formalism and the Three Body Problem

This section will focus on reviewing Sazdjian�s work on the two-body and N-body systems[11]. We

describe his derivations for the N -body problem and distill them down to a three-body formalism that we

can then use for our speci�c problem. By using similar constraints to those de�ned in the two-body case
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for compatibility, he derives the same eigenvalue equation as in Eq.(33)

[p2a? +�a � b2] (xa?) = [Ha � b2 ](xa?) = 0; (234)

where p? = p� bP bP � p is the transverse momentum.
Sazdjian applies the covariant formalism with constraints to the N-particle case. The compatibility

condition is then

[Ha;Hb]	 = 0 (a; b = 1; :::; N); (235)

which are N(N � 1)=2 in number and give conditions on the interaction potentials (�a). Later it will

be necessary to specialize Sazdjian�s work to the three-body system so that it more directly applies to the

three-body problem at hand.

Sazdjian now includes all two-body interactions into each �a in order to construct separable interactions,

i.e.,

�a =
X
b

�ab +Wa; (236)

where Wa are remainders (in other words, three-body potentials) to be speci�ed later. These potentials are

symmetric (�ab = �ba) and are solutions of the compatibility equation

[p2a +m
2
a +�ab; p

2
b +m

2
b +�ba] = 0; (237)

which since �ab = �ba can be written as

[p2b � p2a;�ab] = 0: (238)

The two-body potentials �ab cannot alone satisfy the global compatibility condition. Therefore Sazdjian

adds the Wa terms. The equations that must be satis�ed by the Wa potentials are

[p22;Wa]� [p21;Wb] = �[
X
a;b

�ac +Wa;
X
a;b

�bc +Wb] (a; b = 1; :::; N): (239)

Sazdjian makes a few remarks at this point. First, the total potentials would not have a closed form like

in the two-body case (where � is a function of x?). Second, in the quantized two-body case, the potentials

would become non-local operators, due to the two-body momentum operators Pab = pa + pb no longer

representing the total momentum of the system and therefore not possessing corresponding eigenvalues. On

the other hand the total momentum in two-body case is a number (an eigenvalue). He then abandons this
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approach and instead takes a simpler one that works only for con�ned systems where questions of correct

cluster decompositions do not have to be addressed.

Sazdjian �nds that in working with the free N-body system, one can be guided by the simplifying features

of the two-body system. Since the system must reduce to that of the free case in the absence of interactions,

he found it useful to begin with the N-body system without any interacting potentials. In the free case the

wave equations are

(p2a +m
2
a)	(x1;:::xN ) = 0 (a = 1; :::; N). (240)

Let us introduce longitudinal and transverse momenta, which are de�ned by

pa = pjja + p?a;

p?a = pa + pa � P̂ P̂ ; (241)

where

P̂ =
Pp
�P 2

P = p1 + p2 + :::pn

and the c.m energies of the individual particles which are

pjja = �pa � P̂ P̂ = "aP̂ ;

p2jja = �"2a: (242)

By subtracting the two wave equations from each other we obtain

(p2b � p2a)	 = (m2
a �m2

b)	; (243)

or

(p2jjb � p2jja)	 = ("2a � "2b)	 = [(m2
a �m2

b)� (p2b? � p2a?)]	 (a; b = 1; 2; 3): (244)

Even in the free case, however, the longitudinal momenta (pjj) cannot be taken as the analogs of the lon-

gitudinal momenta for the two-body case since p2b? � p2a? 6= 0. Therefore, one must de�ne generalized

longitudinal momenta.

54



Sazdjian de�nes U as the operator of the canonical transformation

U = exp[i
X
a

xaLkaL]; (245)

where kaL are functions of the transverse momenta, total mass squared, and free mass, satisfying the condition

X
a

kaL = 0; (246)

and xaL is a function of the particle position

xaL = xa � P̂ : (247)

The operator U transforms the "i into "0i, where

"
0

a = "a + kaL; (248)

The operators ki are chosen such that the new (transformed) wavefunction is an eigenfunction of p
0

jja with

eigenvalues "0a that satisfy ( dropping the primes)

"2b � "2a = m2
b �m2

a (a; b = 1; :::; N): (249)

By dividing the above relation by ("a + "b) and summing over all relations with respect to b for �xed a,

Sazdjian arrives at N equations:

N"a �
X
b

(m2
a �m2

b)

("a + "b)
= w; (a = 1; :::; N); (250)

where w is the total c.m. energy

w =
X
b

"b: (251)

These equations cannot be solved simply except in the two-body case, which gives

2"1 �
(m2

1 �m2
2)

("1 + "2)
= w;

2"2 �
(m2

2 �m2
1)

("2 + "1)
= w; (252)
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which reduce down to Eq.(29)

"1 � "2 =
m2
1 �m2

2

w
; (253)

as expected. He shows it is possible, however, to �nd an approximate solution by using successive iterations

in the general case.

In order that Eq. (249) be satis�ed, the operators ka must satisfy the relations

("a + kaL)
2 � ("b + kbL)2 = (m2

a �m2
b) + (p

2
?a � p2?b) (a; b = 1:::N): (254)

By using a similar procedure to that for Eq.(250), he derives the relation

NkaL +
X
b

(pb? � pa?) + ("a � "b)(kaL + kbL)
("a + "b + kaL + kbL)

= 0 (a = 1:::N): (255)

An approximate solution for the k0s can be obtained by keeping those terms which contribute in the

non-relativistic limit. In that limit, "a and pa? behave as c2, which means that ka behaves as c0. So, by

using those approximations one comes up with the end result

"a =
w

N
+
1

N

NX
b=1

(ma �mb)

[1 + (w �M)=(2mamb

PN
c=1

1
2mc

)]
(a = 1; :::; N): (256)

This equation gives the constituent c.m. energies of each particle in terms of the total c.m. energy and the

masses. In the N = 2 case, we recover the exact two-body equations for the epsilons of

"1 =
w

2
+
1

2

(m1 �m2)

[1 + (w �m1 �m2)=(m1 +m2)]
=
m2
1 �m2

2 + w
2

2w
;

"2 =
w

2
+
1

2

(m2 �m1)

[1 + (w �m1 �m2)=(m1 +m2)]
;=

�m2
1 +m

2
2 + w

2

2w
;

"1 � "2 =
m2
1 �m2

2

w
; (257)

and so our full N-body equation can now read as

NX
a=1

[�"2a +N
p2a?=(2"a)PN
b=1 1=2"b

+m2
a] = 0: (258)

The equation (258) determines the total c.m. energy w in terms of the masses. Again, for N = 2, this

becomes

[�"21 + 2
p21?"2
"1 + "2

+m2
1] + [�"22 + 2

p22?"1
"1 + "2

+m2
2] = 0; (259)
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which, since

"21 �m2
1 = "22 �m2

2 = b2;

"1 + "2 = w; (260)

is the same as the equation derived in the two-body system earlier

[
p21?"2
w

] + [
p22?"1
w

] = ("2 + "1)
p2?
w
 = (p2? � b2) = 0: (261)

Finally, he also derives the system of N Klein-Gordon equations

f�"2a + [
NX
b=1

p
2

b?
(2"b)

]=(
X
c=1

1

2"c
) +m2

ag	 = 0 (a = 1; :::; N): (262)

Sazdjian �nds that in the interacting case, the N non-independent wave equations are kinematic in nature

and should not be modi�ed by the interactions. For example, particle a "feels" an interaction potential �a

that enters additively into its kinetic energy term by the relation

p2?a ! p2?a +�a: (263)

Eq.(258) then becomes X
a

[�"2a +N
(p2a? +�a)=(2"a)P

b 1=2"b
+m2

a] = 0; (264)

which in the two-body case is

[
p21? +�1

w
"2] + [

p22? +�2
w

"1] = b2 (265)

which since p21? = p22? and �1 = �2 reduces to Eq. (234). In the general N-body case, the individual wave

equations become

f�"2a + [
X
a

(p2a? +�a)

(2"a)
]=(
X
c

1

2"c
) +m2

ag	 = 0 (a = 1; :::; N): (266)

For compatibility of these wave equations, we must have

�a =
NX
b 6=a

�ab(xab?);

x�ab? = (x�a � x
�
b )� P

�P̂ � (x�a � x
�
b ); (267)
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where again, P is the total momentum9

P =
NX
a=1

pa: (268)

The � in this equation is chosen to have the same functional dependence on S and A as in Eq.(179).

Sazdjian does not deal directly with the potential (hence his free case here with potential added at the

end), so part of this work has been to use the potential from the Two-Body Dirac equations in the Sazdjian

three-body equations.

3.2.1 Our Adaptation of Sazdjian�s Three-Body Generalization

In order to apply the work done by Sazdjian to our problem, we have to specialize his N -body equations

to the three-body system and derive the appropriate Hamiltonian, eventually ending up with an equation

that looks very much like a nonrelativistic Schrödinger equation and is thus much easier with which to work.

He obtains the following approximation for the three-body eigenvalue equation, which is the expanded three

body version of Eq.(264). Specializing this equation to the three-body case for the baryons and expanding

terms, we get

0 = ["21 �m2
1 � 3

p21? +�1
"1(1="1 + 1="2 + 1="3)

+"22 �m2
2 � 3

p22? +�2
"2(1="1 + 1="2 + 1="3)

+"23 �m2
3 � 3

p23? +�3
"3(1="1 + 1="2 + 1="3)

] (x12?; x23?; x31?); (269)

in which the epsilons, representing the total energy of each quark, are

"1 =
w

3
+
1

3

m1 �m2

1 + (w �M)=(m1m2(1=m1 + 1=m2 + 1=m3)

+
1

3

m1 �m3

1 + (w �M)=(m1m3(1=m1 + 1=m2 + 1=m3)

"2 =
w

3
+
1

3

m2 �m1

1 + (w �M)=(m1m2(1=m1 + 1=m2 + 1=m3)

+
1

3

m2 �m3

1 + (w �M)=(m2m3(1=m1 + 1=m2 + 1=m3)

"3 =
w

3
+
1

3

m3 �m1

1 + (w �M)=(m1m3(1=m1 + 1=m2 + 1=m3)
(270)

+
1

3

m3 �m2

1 + (w �M)=(m2m3(1=m1 + 1=m2 + 1=m3)

9Note that this dependence of the potential on the part of the potential that depends on component of the relative coordinates
perpendicular to the momentum of the total system, is allowed as long as the issue of cluster decomposition need not be
addressed. In that case, where one may separate out a part of the system from the remaining part, it is not meaningful to
require the potentials to depend on the total momemtum of the total system instead of that of its subconstituents.
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and the potentials �i are linear combinations of the two-body interacting potentials

�1 = �12(x12?; "1; "2) + �23(x23?; "2; "3)

�2 = �23(x23?; "2; "3) + �31(x31?; "3; "1)

�3 = �31(x31?; "3; "1) + �12(x12?; "1; "2): (271)

This equation is essentially the three-body version of the two-body equation:

H =
(p21 +m

2
1 +�)

2"1
+
(p22 +m

2
2 +�)

2"2
; (272)

as long as one restricts oneself to con�ning interactions.

In the above equations for the epsilons ( Eq.(270)), we de�ne

pi? = pi + pi � P̂ P̂

xij? = xij + xij � P̂ P̂

P̂ =
Pp
�P 2

P = p1 + p2 + p3

E = w �M � "1 + "2 + "3 �m1 �m2 �m3 (273)

in order to make them into a more usable form. Through some extensive algebraic manipulations, we obtain

the much simpli�ed equations of

"1 �m1 = Ef1(E;m1;m2;m3)

"2 �m2 = Ef2(E;m1;m2;m3)

"3 �m3 = Ef3(E;m1;m2;m3) (274)

in which the f 0is are collections of functions, given by [51]

f1(E;m1;m2;m3)

=
3m2

2m
2
3 + 3m

2
2m3m1 + 3m2m

2
3m1 +m1m

2
2E + 2m

2
2m3E + 2m

2
3Em2 +m

2
3Em1 +m3E

2m2

3 (m1m2 +m2m3 +m3m1 +m3E) (m1m2 +m2m3 +m3m1 +m2E)
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f2(E;m1;m2;m3)

=
3m2

1m2m3 + 3m2m
2
3m1 +m

2
3Em2 + 2m

2
3Em1 + 3m

2
1m

2
3 + 2m3m

2
1E +m3E

2m1 +m
2
1m2E

3 (m1m2 +m2m3 +m3m1 +m3E) (m1m2 +m2m3 +m3m1 +m1E)

f3(E;m1;m2;m3)

=
3m2

2m3m1 + 3m
2
1m2m3 + 2m1m

2
2E +m

2
2m3E + 3m

2
1m

2
2 +m3m

2
1E + 2m

2
1m2E +m2E

2m1

3 (m1m2 +m2m3 +m3m1 +m2E) (m1m2 +m2m3 +m3m1 +m1E)
;(275)

so that

"1(E;m1;m2;m3) = m1 + Ef1(E;m1;m2;m3);

"2(E;m1;m2;m3) = m2 + Ef2(E;m1;m2;m3);

"3(E;m1;m2;m3) = m3 + Ef3(E;m1;m2;m3): (276)

Now we want to go back to the full three-body equation (Eq.(269)) in order to create a Schrödinger-like

form. Our bound state equation is then rewritten as

[
�
"21 �m2

1

�
(1="1 + 1="2 + 1="3)� 3

p21 + "
2
1 +�1
"1

+
�
"22 �m2

2

�
(1="1 + 1="2 + 1="3)� 3

p22 + "
2
2 +�2
"2

+
�
"23 �m2

3

�
(1="1 + 1="2 + 1="3)� 3

p23 + "
2
3 +�3
"3

] (x12?; x23?; x31?)

= 0: (277)

And once again, in order to simplify down to a Schrödinger-like form, we collect functions into the de�nitions

b1(E;m1;m2;m3) = ("1(E;m1;m2;m3) +m1)

�(1="1(E;m1;m2;m3) + 1="2(E;m1;m2;m3) + 1="3(E;m1;m2;m3))=6;

b2(E;m1;m2;m3) = ("2(E;m1;m2;m3) +m2)

�(1="1(E;m1;m2;m3) + 1="2(E;m1;m2;m3) + 1="3(E;m1;m2;m3))=6;

b3(E;m1;m2;m3) = ("3(E;m1;m2;m3) +m3)

�(1="1(E;m1;m2;m3) + 1="2(E;m1;m2;m3) + 1="3(E;m1;m2;m3))=6:(278)
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So, our eigenvalue equation is now

fE[f1(E;m1;m2;m3)b1(E;m1;m2;m3)

+f2(E;m1;m2;m3)b2(E;m1;m2;m3)

+f3(E;m1;m2;m3)b3(E;m1;m2;m3)]

� p21? +�12 +�13
2"1(E;m1;m2;m3)

� p22? +�23 +�12
2"2(E;m1;m2;m3)

� p23? +�31 +�23
2"3(E;m1;m2;m3)

]g (x12?; x23?; x31?)

= 0; (279)

and �nally, de�ning

f1(E;m1;m2;m3)b1(E;m1;m2;m3)

+f2(E;m1;m2;m3)b2(E;m1;m2;m3)

+f3(E;m1;m2;m3)b3(E;m1;m2;m3) = F (280)

we acquire a (relatively) simple Schrödinger-like form of the Hamiltonian:

H =
1

F

�
p21? +�12 +�13
2"1(E;m1;m2;m3)

+
p22? +�23 +�12
2"2(E;m1;m2;m3)

+
p23? +�31 +�23
2"3(E;m1;m2;m3)

�
: (281)

As a check, note that for E = 0

F (0) = f1(0;m1;m2;m3)b1(0;m1;m2;m3)

+f2(0;m1;m2;m3)b2(0;m1;m2;m3)

+f3(0;m1;m2;m3)b3(0;m1;m2;m3)

= 1 (282)

so that when E = 0, this becomes an ordinary non-relativistic Hamiltonian like Eq.(218). So now, we have

gone from Sazdjian�s N-body formalism to a condensed three-body one that is much easier to work with

in the constraint dynamics approach, as the Hamiltonian is now in a familiar form. This equation has

the distinct advantage that it is like, for the purposes of solving it anyway, a non-relativistic Schrödinger

equation. It is, of course, still relativistic, but it is now in a form that is much more easily recognizable and
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usable than the one which Sazdjian left us, Eq.(266). It is important to note the recursive nature of this

equation as this becomes highly relevant in the numerical studies. The ��s are dependent on the "0s and

the w0s and so we must begin with an initial guess and solve the equation iteratively until an acceptable

level of convergence is met.

4 The relativistic three body problem

It should be noted that this model and our relativistic generalizations below are often referred to as

the "naive quark model" in that it does not account for the swarm of gluons and quark-anti-quark pair

interactions directly. Rather, the model has all of the interacting forces existing between each quark-quark

pair.

The process of going from a two-body system to a three-body one is not as straightforward as one might

expect. Since the interacting potentials are limited to each quark-quark pair, there are now three times

as many terms. Additionally, there are three sets of coordinates (r1 � r2; r2 � r3; r1 � r3) instead of just

one distance between the quarks as in the two-body case. This is best treated with a relative coordinate

substitution to reduce the number of coordinates from three to two. The coordinate transform used in this

work is similar to and uses the same notation as Isgur�s ([6]) work, but is not an identical transformation

due to treating the more general case of all three quarks as di¤erent masses, rather than just two.

The sections that follow describe the methods used in going from a two-body system to a three-body

one, mostly dealing with the potentials and coordinate transforms. We also describe our Gaussian basis

functions and the reasoning behind them. Since we are still merely using two quark interaction potentials

(see Eq.(183)), the scalar (S), vector (A) and Darwin (�D) terms, all simply expand from one term to three,

to account for all three interactions. However, the spin-spin (�SS), spin-orbit (�SO;�SOT ;�SOX) and

tensor (�T ) terms require manipulations of total J , total L and total S, that the two-body system neither

accounts for nor has to deal with and thus have been extensively reworked for the three-body system.

4.1 Coordinate system transforms and tensor substitutions

One of the more di¢ cult parts of the three-body problem is also possibly the most fundamental: a

proper coordinate system. Therefore, this section provides a description of how the coordinate system is set

up for the relativistic three-body problem. De�ning a coordinate system that is both correct and useful for

a three-body problem is non-trivial and requires extensive manipulations and even some of what would be

considered mathematical tricks. One of the simplest and most common ways to begin handling a three-body

system is to rede�ne the coordinate system so that there are only two relative coordinates instead of three.
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In the following section we describe the way the coordinate system is de�ned for the three-body system and

then reduced to two relative coordinates, plus a "center of mass". We then address how those are further

simpli�ed with additional coordinate transforms in order to analytically solve as much of the problem as

possible before going to numerical methods.

Let us return to Eq. (281). Our goal is to create a coordinate system in which the kinetic terms are

analytic and the variational principle will be used to solve for the energy eigenvalues. The general form of

each �ij is

�ij = 2mwijSij + S
2
ij + 2"wijAij �A2ij +�Dij + L � (�i+�j)�SOij + �i �̂rij�j �̂rijL � (�1+�2)�SOTij

+ �i��j�S Si j + (3�i �̂rij�j �̂rij��i��j)�Tij + L � (�i��j)�SODij ; (283)

where

Sij =
4��2rij
27

;

Aij = � 8�

27rij ln(Ke2 +
B

(�rij)2
)
+

e1e2
4�rij

; (284)

and the various � terms are all functions of Sij; Aij and their derivatives (explicit forms given in Appendix

A). Note here how they still account for the asymptotic freedom and linear con�nement mentioned earlier.

The scalar term goes to in�nity as r goes to an in�nite value, providing con�nement, while the logarithm

in the vector term becomes large at short distance, giving asymptotic freedom (this causes the vector term

to behave more like ~�=r). We now want to de�ne a coordinate system such that the three coordinates

rij become two relative coordinates that can be written in terms of the original rij distances between each

quark pair. In direct analogy to what was done in the nonrelativistic case (Eq.(220), the coordinate system

is de�ned as

� = r2 � r3;

� =
w"2

("2 + "3)"1
r2 +

w"3
("2 + "3)"1

r3;

r1 � r2 = � "3
"2 + "3

�� �;

r1 � r3 = � "2
"2 + "3

�+ �;

r2 � r3 = �;

"� =
"1("2 + "3)

w
; "� =

"2"3
"2 + "3

; (285)

63



where again, w is the total baryon energy eigenvalue and the epsilons are the individual c.m. energies of

each quark, such that

w = "1 + "2 + "; (286)

and the "�; and "� can be regarded as reduced energy terms (similar to reduced mass, but energy instead

since we are writing most of our Hamiltonian in terms of energy). We choose this form (rather than a

more standard one that Isgur uses) in order to maintain the proper form of our momentum terms from the

two-body formalism. In this new system, the original Hamiltonian of Eq. (281) now becomes

H =
1

F
(

p2�
2"�(E;m1;m2;m3)

+
p2�

2"�(E;m1;m2;m3)

+
�12 +�13

2"1(E;m1;m2;m3)
+

�23 +�12
2"2(E;m1;m2;m3)

+
�31 +�23

2"3(E;m1;m2;m3)
); (287)

so that the kinetic terms are now simple and easily worked out analytically. Note that this equation is very

similar to the non-relativistic Hamiltonian Eq.(218) in the preceding section.

We use the variational principle

h	njHj	mi = h	njEj	mi; (288)

to �nd the eigenvalues of our Hamiltonian. For greater accuracy, we expand our Hamiltonian basis into the

matrix equation

H	=�B	; (289)

where H and B are both matrices given by

Hnm = h	njHj	mi;

Bnm = h	nj	mi: (290)

We denote the wavefunction of total J ,L and S, where total L is composed of the angular momenta

associated with the � or � coordinate and total S is composed of the individual spins of each of the three

quarks, with S1; S2 and S3 corresponding to the spins of quarks 1, 2 and 3, respectively, as

jJL(l�l�)S(S1S2S3)Mn�n�i = j	ni: (291)
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Therefore a matrix element of the Hamiltonian would be

h	njHj	mi = hJL(l�l�)S(S1S2S3)Mn�n�jHjJL0(l0�l0�)S0(S01S02S03)M 0n0�n
0
�i (292)

One major advantage of this particular choice of coordinates is that the kinetic terms can be analytically

evaluated. The matrix elements for the kinetic term

1

F
(

p2�
2"�(E;m1;m2;m3)

+
p2�

2"�(E;m1;m2;m3)
) (293)

are then

h	njT j	mi

= f 1

F"�

��
(2l�+3)

�[(2l� + 3)=2]

q
(n�n0�)

(2l�+3)=2(n�n0�)
(2l�+3)=2[l�(l� + 1)

�[(2l� + 1)=2]

2([n� + n0�]�
2
�=2)

(2l�+1)=2

�(2l� + 3)n0��2�
�[(2l� + 3)=2]

2([n� + n0�]�
2
�=2)

(2l�+3)=2
+ n02� �

4
�

�[(2l� + 5)=2]

2([n� + n0�]�
2
�=2)

(2l�+5)=2
]

+
1

F"�

��
(2l�+3)

�[(2l� + 3)=2]

q
(n�n0�)

(2l�+3)=2(n�n0�)
(2l�+3)=2[l�(l� + 1)

�[(2l� + 1)=2]

2([n� + n0�]�
2
�=2)

(2l�+1)=2

�(2l� + 3)n0��2�
�[(2l� + 3)=2]

2([n� + n0�]�
2
�=2)

(2l�+3)=2
+ n0�

2�4�
�[(2l� + 5)=2]

2([n� + n0�]�
2
�=2)

(2l�+5)=2
]g

�
X
m0
�m

0
�

hl0�l0�m0
�m

0
�jLMi�l0�l0��m0

�m
0
�

X
m�m�

hl�l�m�m�jLMi�l�l��m�m�
: (294)

The matrix elements for the potentials are not analytic though and must be evaluated numerically.

However, with the current substitution, the r23 term is relatively simple since r23 = �. The matrix element

for the spin-independent �23(r23) potential then is

h	n(�; �)j�23(�)j	m(�; �)i

=

Z
�23(�)

s
(n��2�)

(2l�+3)=2(n��2�)
(2l�+3)=2

�[(2l� + 3)=2]�[(2l� + 3)=2]

s
(n0��

2
�)
(2l0�+3)=2(n0��

2
�)
(2l0�+3)=2

�[(2l0� + 3)=2]�[(2l
0
� + 3)=2]

��(l�+l
0
�+2)�(l�+l

0
�+2)e�(n�+n

0
�)�

2
��

2=2�(n�+n0�)�
2
��

2=2X
m�m�

hl�l�m�m�jLMiY m�

l�
Y m�

l�

X
m0
�m

0
�

hl0�l0�m0
�m

0
�jL0M 0iY m

0
�

l0�
Y
m0
�

l0�
d3�d3�; (295)

which, due to there being no dependence on the � variable in the potential �23(�) and performing the angular
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integrations; reduces down to

h	n(�; �)j�23(�)j	m(�; �)i

=

Z
�23(�)

s
(n��2�)

(2l�+3)=2(n��2�)
(2l�+3)=2

�[(2l� + 3)=2]�[(2l� + 3)=2]

s
(n0��

2
�)
(2l0�+3)=2(n0��

2
�)
(2l0�+3)=2

�[(2l0� + 3)=2]�[(2l
0
� + 3)=2]

�[(l� + l
0
� + 3)=2]

2[(n� + n0�)�
2
�]
(l�+l0�+3)=2

�(l�+l
0
�+2)e�(n�+n

0
�)�

2
��

2=2

�
X
m�m�

hl�l�m�m�jLMi�l�l��m�m�

X
m0
�m

0
�

hl0�l0�m0
�m

0
�jL0M 0i�l0�l0��m0

�m
0
�
d�: (296)

Thus we are left with a function of one variable that can easily be numerically integrated regardless of what

�23(�) happens to be. However, this is not the case for the other two terms. The matrix elements of the

r12 and r13 interactions are, respectively

h	n(�; �)j�12(�; �)j	m(�; �)i

=

Z
�12(�; �)

s
(n��2�)

(2l�+3)=2(n��2�)
(2l�+3)=2

�[(2l� + 3)=2]�[(2l� + 3)=2]

s
(n0��

2
�)
(2l0�+3)=2(n0��

2
�)
(2l0�+3)=2

�[(2l0� + 3)=2]�[(2l
0
� + 3)=2]

��(l�+l
0
�)�(l�+l

0
�)e�(n�+n

0
�)�

2
��

2=2�(n�+n0�)�
2
��

2=2X
m�m�

hl�l�m�m�jLMiY m�

l�
Y m�

l�

X
m0
�m

0
�

hl0�l0�m0
�m

0
�jLMiY

m0
�

l0�
Y
m0
�

l0�
d3�d3�; (297)

h	n(�; �)j�13(�; �)j	m(�; �)i

=

Z
�13(�; �)

s
(n��2�)

(2l�+3)=2(n��2�)
(2l�+3)=2

�[(2l� + 3)=2]�[(2l� + 3)=2]
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(n0��

2
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(2l0�+3)=2(n0��

2
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0
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��(l�+l
0
�)�(l�+l

0
�)e�(n�+n

0
�)�

2
��

2=2�(n�+n0�)�
2
��

2=2X
m�m�

hl�l�m�m�jLMiY m�

l�
Y m�

l�
d3�d3�

X
m0
�m

0
�

hl0�l0�m0
�m

0
�jLMiY
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�

l0�
Y
m0
�

l0�
d3�d3�; (298)

and so as the potentials are now in terms of two variables, it is much more di¢ cult and time-consuming to

numerically evaluate this integral. We therefore wish to make another variable change in the r12 and r13

systems in order to rewrite them in terms of a single variable as well.

What now follows is a brief description of the variable change simpli�cation; more explicit details can be

found in Appendix D. The variable change used is based on properties of the spherical harmonics and how
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they relate to spherical tensors. Since spherical harmonics are trigonometric functions, we can get

Y 01 =
1

2

r
3

�
cos �;

� cos � = z;

Y 01 � =
1

2

r
3

�
z;

(Y 01 �)
�Y 01 � =

1

4

3

�
z2; (299)

Y �11 =
1

2

r
3

2�
sin �e�i� =

1

2

r
3

2�
sin �(cos�� i sin�);

x = r cos � sin�;

Y �11 r =
1

2

r
3

2�
x� i1

2

r
3

2�
sin � sin�� =

1

2

r
3

2�
(x� iy);

(Y �11 r)�Y �11 r =
1

2

r
3

2�
(x+ iy)

1

2

r
3

2�
(x� iy) = 1

4

3

2�
(x2 + y2); (300)

and similarly for the other spherical harmonics. Since we will be using no more than l = 2, we now specialize

our discussion to l = 1 with a brief description of l = 2: Therefore, since part of our wavefunction is a

spherical harmonic (which is a trigonometric function) and a coordinate, the wavefunction can be rewritten

in spherical tensor form as

	n =
4

3
p
�
n5=4� �5=2� n

5=4
� �

5=2
� ��e�n��

2
��

2=2�n��2��
2=2
X
M

h11m�m�j00iY m�

1 Y m�
1

=
4

3
p
�
n5=4� �5=2� n

5=4
� �

5=2
� e�n��

2
��

2=2�n��2��
2=2
X
M

h11m�m�j00i�m�
�m�

; (301)

where

�m�
= �Y

m�

1 (�̂) (302)

�m�
= �Y m�

1 (�̂):

Additional manipulations are still needed in order to work out the expectation values explicitly. For the r12
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integration, a new set of variables is de�ned as

�0 = r12 = r1 � r2; (303)

�0 =
w"1

"3("1 + "2)
r1 +

w"2
"3("1 + "2)

r2;

then are rewritten in terms of new primed variables and as tensors, using the same tensor substitution done

above

� =
"1

"1 + "2
�0 + �0;

�m�
=

"1
"1 + "2

�0m�
+ �0m�

; (304)

� =
w"2

("2 + "3)("1 + "2)
�0 � "3

"2 + "3
�0;

�m�
=

w"2
("2 + "3)("1 + "2)

�0m�
� "3
"2 + "3

�0m�
: (305)

Note that this is not a new coordinate system but rather a change of integration variables. This means that,

while we are currently working out the new integral for the r12 system, we can use a similar substitution

for the r13 system and acquire a nearly identical equation with only a few constants changed (constants in

terms of the integration variable, not overall constants for the full calculation). Before the new substitution

of the primed coordinates, the expectation value of the potential �12(�0 = r12) is

h	nj�12(r12)j	mi = h	nj�12(�0)j	mi (306)

=
16

9�
�5��

5
�(n

5=4
�1 n

5=4
�1 n

5=4
�2 n

5=4
�2 )

�
Z X

m�1m�1

h11m�1m�1j00i��m�1
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X
m�2m�2

h11m�2m�2j00i�m�2
�m�2

;

�e�(n�1+n�2)�
2
��

2�(n�1+n�2)�2��
2

d3�d3��12(�
0): (307)

And so now, using the derived relationships between the primed and un-primed coordinates � and �(Eq.302,303),
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the expectation value becomes

h	nj�12(�0)j	mi

= N

Z
e�c(�

0+ b
2c�

0)2�(a� b2
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where for simplicity

N =
16

9�
�5��
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5=4
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5=4
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5=4
�2 n

5=4
�2 );

a =
(n�1 + n�2)�
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2
�
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2
�

2
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(n�1 + n�2)�

2
�

2
(

"3
"2 + "3

)2: (309)

However, there is still a troublesome �0 � �0 cross term in the Gaussian wavefunction itself. In order to

eliminate this, one �nal coordinate change is used

x = �0 +
b

2c
�0;

�0 = x� b

2c
�0;

�0m = xm �
b

2c
�0m: (310)

The explicit details can be found in Appendix D; the end result is
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h	nj�12(�0)j	mi =
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So now the expectation value is in terms of just one variable, which can be numerically evaluated easily.

The r13 term simply requires changing the a, b, and c constants and the epsilons and the r23 term is trivial

since the coordinate system is de�ned in terms of r23: Again, these are listed in Appendix A. The potential

is now in terms of just one variable, so almost regardless of what potential is used, the numerical calculations

will be fairly straightforward. Thus, the coordinate system has been de�ned and transformed in such a

way as to make a good deal of the problem analytic while keeping what is not analytic still easy to solve

numerically.

We can follow a similar method for l = 2, by constructing new states as functions of the l = 1 states.

The explicit forms of the spherical harmonics for l = 0 and l = 1 are

Y 00 =
1

2

r
1

�
;

Y �11 =
1

2

r
3

2�
sin �e�i�;

Y 01 =
1

2

r
3

�
cos �;

Y 11 = �1
2

r
3

2�
sin �ei�; (312)

which can be used to rewrite the l = 2 spherical harmonics as
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So then, since our wavefunction for l� = l� = 2 is of the form
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we can use the original tensor substitution of Eq. (302) to de�ne

�2Y �22 = �2(Y �11 )2
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3
;
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2
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r
5�

3
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p
2

r
5�

3
�21: (315)

Therefore, we can follow the same procedure outlined for l = 1, the only major di¤erence being that the

algebra is more complicated. However, since we�re going to have to do at least one numerical integration

anyway, we can simply use a program such as Mathematica (or Wolframalpha) to analytically integrate

what is analytically integrable and then numerically integrate the rest without doing an absurd amount of

algebra. This method should actually hold to allow for higher order l states to be done relatively simply,

since essentially all that will become more complicated is the algebra arising from the substitutions (this

may be part of future work on this subject).

With the matrix elements de�ned for a general potential and for analytic kinetic terms, we now need to

explicitly de�ne our potential model.
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5 Three Body Potential

Conceptually speaking, the approach one would take to go from a two-body system with the formalism

we have described to a three body one is straightforward. The problem is now treated as three two-body

problems, so the overall form of the potentials remain mostly the same. However, the explicit calculations

become considerably more complicated since there are three di¤erent sets of couplings to consider, three

di¤erent sets of coordinates (which were reduced to two in the previous section), and three di¤erent operators

for each potential term. This not only increases the magnitude of the calculations involved, it requires

entirely new approaches as some methods that work very well for the two-body system can no longer be

used. As everything is now in terms of the r23 variable, the other terms must be appropriately recoupled

to properly use the operators. The two-body potential derived by Crater[4] can be written as

� = 2mwS + S
2 + 2"wA�A2 +�D + L � (�1+�2)�SO + �1 �̂r�2 �̂rL � (�1+�2)�SOT

+ �1��2�SS + (3�1 �̂r�2 �̂r��1��2)�T + L � (�1��2)�SOD + iL��1��2�SOX ; (316)

where the � terms are all functions of the vector potential, scalar potential, and quark masses (these are all

de�ned explicitly in Appendix A). The three-body potential is of similar form and essentially just triples

the number of terms, so instead of having 1 and 2 there are interactions for all three quarks. For the

relatively simple vector (A), scalar (S) and Darwin (�D) terms this is almost trivial, as there are no direct

spin-dependent operators; however, the spin-spin, tensor, and spin-orbit terms require extensive reworking,

which are described in the following sections.

5.1 State Couplings and Operator Methods

We will now describe how we set up our three-body states in such a way as to use the potential operators.

In order to simplify our numerical calculations, it is helpful to note that the potential terms are products

of a term involving the coupled angular momentum operators and a coordinate dependent terms that have

trivial operator dependence . This allows us to use the operator angular momentum operators on a speci�ed

state and just get a number back that depends on the angular components of the state itself and not any

radial components, so that the numerical integral itself does not involve any angular momentum operators.

Thus, our potential terms separated into operator and non-operator pieces are given in table 2 and and the

explicit forms of the � terms are given in Appendix A. For the purposes of working out the operators, it is

su¢ cient to simply consider them to be radial functions that are una¤ected by the operators.
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Table 2: Potential terms, operators and non-operator components
Potential Term Operator component Non-operator component
Spin-Spin �i��j �SS(rij)
Spin-Orbit Lij �(�i+�j) �SO(rij)
Spin-Orbit Di¤erence Lij �(�i��j) �SOD(rij)
Tensor 3�i �̂rij�j �̂rij��i��j �T (rij)
Spin-Orbit Cross iLij ��i��j �SOX(rij)
Spin-Orbit Tensor �i �̂rij�j �̂rijLij �(�i+�j) �SOT (rij)

Table 3: Spin-�avor wavefunctions for the baryon spectrum
N J L S SF 	
8 1

2 0 1
2

1p
2
(�0�0 + �00�00) 0 	1

10 3
2 0 3

2 �s�s 0 	2
8 1

2 ;
3
2 1 1

2
1
2 [(�

0�00 + �00�0) 0 + (�0�0 � �00�00) 00] 	3(J =
1
2 );	4(J =

3
2 )

8 1
2 ;

3
2 ;

5
2 1 3

2
1p
2
[�0�s 0 + �00�s 00] 	5(J =

1
2 );	6(J =

3
2 );	7(J =

5
2 )

10 1
2 ;

3
2 1 1

2
1p
2
[�s�0 0 + �s�00 00] 	8(J =

1
2 );	9(J =

3
2 )

1 1
2 ;

3
2 1 1

2
1p
2
[�a�00 0 � �a�0 00] 	10(J =

1
2 );	11(J =

3
2 )

For the baryons we have considered, there are a total of eleven di¤erent wavefunctions, which represent

all possible spin-�avor couplings for the various particles. The form of these is given in table 3 where it

has been split into three components: spin, �avor and space (represented by �; �;  ; respectively), explicitly

de�ned in Appendix B. As there are six interactions to consider and three couplings per interaction (we are

using two-body operators, so there is a 1-2, 1-3, and 2-3 term for each operator), there are a total of 198

possible interactions to consider. Fortunately, many of these are similar or trivial and so the number that

must actually be worked out explicitly drops considerably, but there still are a quite a large number that are

non-trivial. The eleven wavefunctions are given by [47] where  0 is a total L = l� = l� = 0 wavefunction

and  0 and  00 are total L = 1 and l� = 1 or l� = 1 wavefunctions, respectively (L = 1 state have parity of

�1; so l� and l� cannot both be 1). In addition, �0; �00; �s and �a are all purely �avor wavefunctions and

�0; �00; �s are all purely spin wavefunctions, having total S = 1=2; 1=2 and 3=2, respectively. These merely

contain all possible combinations of �avor or spin so that the product of the two gives all possible spin-�avor

couplings. All of these wavefunctions are orthogonal to the others in the set (that is, �0 is orthogonal to

�00 and �s etc.). Explicit forms of these terms are given in Appendix B. The quark �avor combination of

the � terms is di¤erent for each baryon, but since the operators we use do not a¤ect the �avor, it does not

matter what they are explicitly for the purposes of this calculation.

There are two methods we use to determine the a¤ect of these operators. One is a simple ladder operator

approach and the other involves use of the Wigner 9j recoupling coe¢ cients. Both methods are always valid,

but not necessarily always useful due to how the operator form a¤ects each individual wavefunction for the

ladder operators. It is worth noting that having two methods be viable also allows for a good check. The
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ladder operator method works out simply for everything but the Spin-Orbit Cross term (Eq. (187)) due to

how we can have a wavefunction independent of total M . Thus, we can set M = J and force Ms = S. For

the states 	1;	2;	4	7;	9 and 	11; this means that any operator that changes total Ms will be orthogonal

to the original wavefunction and thus we can eliminate any term that does change total Ms: As most

readers are familiar with ladder operators, we relegate most of the details of this method to Appendix C.

The other method (9j coupling) though is not as familiar and so we will describe it in detail. Due to having

matrix elements for the two-body problem already de�ned by Crater [4] , the di¢ cult part of this problem

is recoupling the state into one which can use these matrix elements, since it is not readily clear how they

operate on a three-body problem.

5.2 Spin-Spin

This section deals with how the spin-spin couplings are de�ned and worked out. As we will see in the

spin-orbit term (and others as well), the use of 6j recoupling coe¢ cients is necessary. The default state is a

2-3 coupling one due to how we have de�ned our coordinate system, so in order to work out the spin states

for the other couplings (1-2 and 1-3) the state must be changed to re�ect those couplings, since while the

S2 �S3 term simply yields a number, the S1 �S2 and S1 �S3 do not. The recoupling is done using 6j (Racah)

coe¢ cients. Here, we work out an example state (the proton) to show how this is done. Full calculations

and results are in Appendix B.

Note on notation: the general quark spin state is

[s1fs2s3gs23 ]S (317)

where si represents each quark (1,2 or 3), S23 is the coupled spin of quark 2 and quark 3, and S is the total

spin of the system. The curly brackets denote which quarks are sub-coupled (that is, which two are coupled

�rst to a Sij coupling before being coupled to total S). For example,

[s1fs2s3gs23 ]S (318)

would indicate that quarks 2 and 3 are coupled to S23 and quark 1 couples to that state for total S; while

[fs1s3gs13s2]S (319)

would indicate that quarks 1 and 3 are coupled to S13 and quark 2 couples to that state for total S:
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The spin dependence of the wavefunction is contained entirely within the �0; �00 and �S terms. These

� spin terms couple with a �avor term we call � in a unique way for each set of baryons that share similar

properties. Explicit forms of these are given in Appendix B. Therefore, all we are concerned with for the

spin-spin operator are these � terms. The various spin terms are written as

�0(mS =
1

2
) =

1p
2
("#" � #"");

�0(mS = �1
2
) =

1p
2
("## � #"#);

�00(mS =
1

2
) =

1p
6
(2 ""# � #"" � "#");

�00(mS = �1
2
) =

1p
6
(�2 ##" + #"# + "##);

�s(mS = 3=2) =""";

�s(mS =
1

2
) =

1p
3
(#"" + "#" + ""#);

�s(mS = �1
2
) =

1p
3
(##" + #"# + "##): (320)

These can be written in a Clebsch-Gordan sum form for the 1-2 coupling as

�0(mS =
1

2
) = �0(mS = �

1

2
) = [fs1s2g0s3]1=2

�00(mS =
1

2
) = �00(mS = �

1

2
) = [fs1s2g1s3]1=2

�s(mS =
1

2
) = �s(mS =

1

2
) = �s(mS = �

1

2
) = [fs1s2g1s3]3=2: (321)

The easiest way now to convert these to 1-3 and 2-3 systems is to use a 6j recoupling coe¢ cient, which is

de�ned as

j[facgJacb]Ji =
X
Jab

(�1)jb+jc+Jab+Jac
p
(2Jab + 1)(2Jac + 1)

0B@ja jb Jab

J jc Jac

1CA j[fabgJabc]Ji: (322)

where 0B@ja jb Jab

J jc Jac

1CA (323)

is a 6j symbol, similar to 9j and 3j symbols. Like the 9j symbol, the 6j allows us to recouple a state into

a desired form, which allows the operators to work simply. The di¤erence between it and the 9j is simply

that the 6j recouples three di¤erent angular momenta while the 9j recouples four (and in case the reader

is curious, there are 12j symbols that change couplings among 5 angular momenta and 15j that change
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couplings among 6, but those are not useful to us here). Thus, to go from 1-2 to 1-3, we have

�0 = [fs1s2g0s3]1=2 =
X
S13

(�1)1+S13+0
p
(2S13 + 1)(1)

0B@ 1
2

1
2 S13

1
2

1
2 0

1CA [fs1s3gS13s2]1=2
=

1

2
[fs1s3g0s2]1=2 +

p
3

2
[fs1s3g1s2]1=2

�00 = [fs1s2g1s3]1=2 =
X
S13

(�1)1+S13+1
p
(2S13 + 1)(3)

0B@ 1
2

1
2 S13

1
2

1
2 1

1CA [fs1s3gS13s2]1=2
=

p
3

2
[fs1s3g0s2]1=2 �

1

2
[fs1s3g1s2]1=2

�s = [fs1s2g1s3]3=2 =
X
S13

(�1)1+S13+1
p
(2S13 + 1)(3)

0B@1=2 1=2 S13

3=2 1=2 1

1CA [fs1s3gS13s2]3=2
= [fs1s3g1s2]3=2 (324)

and similarly for 1-2 to 2-3, we have

�0 = [fs1s2g0s3]1=2 =
X
S23

(�1)1+S23+0
p
(2S23 + 1)(1)

0B@ 1
2

1
2 S23

1
2

1
2 0

1CA [fs2s3gS23s1]1=2
=

1

2
[fs2s3g0s1]1=2 +

p
3

2
[fs2s3g1s1]1=2
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X
S23

(�1)1+S23+1
p
(2S23 + 1)(3)
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1
2 S23

1
2

1
2 1

1CA [fs2s3gS23s1]1=2
=

p
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2
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2
[fs2s3g1s1]1=2

�s = [fs1s2g1s3]3=2 =
X
S23

(�1)1+S23+1
p
(2S23 + 1)(3)

0B@1=2 1=2 S23

3=2 1=2 1

1CA [fs2s3gS23s1]3=2 (325)

= [fs2s3g1s1]3=2

So now that spins i and j are coupled, the operator Si � Sj can operate simply and just gives a number

Si � Sj [fsisjgSij=0sk]1=2 =
S2ij � S2i � S2j

2
=
0� 3

4 �
3
4

2
= �3

4

Si � Sj [fsisjgSij=1sk]1=2 =
S2ij � S2i � S2j

2
=
2� 3

4 �
3
4

2
=
1

4
: (326)
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Also note that in terms of ladder operators,

Si � Sj =
1

2
(Si+Sj� + Si�Sj+) + SizSjz; (327)

which works out simply for every 	n listed above. The 6j recoupling is then not necessary for the spin-spin

interaction, but it does become necessary in the others. Details and tables of all spin matrix elements are

given in Appendix C. The spin-spin is, unfortunately, the simplest of our interactions. We have described

two possible ways of obtaining the operator matrix elements here and now we continue on to the spin-orbit

interaction.

5.3 9j Couplings

Here will we describe how the 9j recoupling coe¢ cient is used for our three-body problem. We begin with

a totally general state with four angular momenta of

j((j1j4)j7; (j2j5)j8)j9m9i;

where j1 and j4 couple to j7; j2 and j5 couple to j8 and �nally j7 and j8 couple to a total j9m9 state. If

instead we wanted to couple the state to

j((j1j2)j3; (j4j5)j6)j9m9i;

then we can use a 9j recoupling coe¢ cient. The de�nition of the transformation is (essentially a big

Clebsch-Gordan coe¢ cient)

j((j1j4)j7; (j2j5)j8)j9m9i

=
X
j3

X
j6

j((j1j2)j3; (j4j5)j6)j9m9ih((j1j2)j3; (j4j5)j6)j9m9j((j1j4)j7; (j2j5)j8)j9m9i; (328)

where, like a CG coe¢ cient

h((j1j2)j3; (j4j5)j6)j9m9j((j1j4)j7; (j2j5)j8)j9m9i

=
p
(2j3 + 1)(2j6 + 1)(2j7 + 1)(2j8 + 1)

8>>>><>>>>:
j1 j2 j3

j4 j5 j6

j7 j8 j9

9>>>>=>>>>; : (329)
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Note that this 9j coe¢ cient is the reason we have written our original state as j((j1j4)j7; (j2j5)j8)j9m9i

instead of j((j1j2)j3; (j4j5)j6)j9m9i; it allows greater clarity in the 9j symbol itself due to how the numbers

read simply left to right (that is, j1; j2; j3; j4:::):

So now, since our initial state is the total JLM state

j((SiSjk)S; (lilj)L)JMi;

and we want a state of total J coupled in such a way that the operators derived by Crater et al. [4] work

simply

j((Sili)Ji; (Sjklj)Jjk)JMi;

we can use the 9j symbol to recouple the states as

j((SiSjk)S; (lilj)L)JMi

=
X
Ji

X
Jjk

j((Sili)Ji; (Sjklj)Jjk)JMih((Silk)Ji; (Sjklj)Jjk)JM j((SiSjk)S; (lilj)L)JMi

=
X
Ji

X
Jjk

q
(2Ji + 1)(2Jjk + 1)(2S + 1)(2L+ 1)

�

8>>>><>>>>:
Si li Ji

Sjk lj Jjk

S L J

9>>>>=>>>>; j((Sili)Ji; (Sjklj)Jjk)JMi: (330)

where

8>>>><>>>>:
Si li Ji

Sjk lj Jjk

S L J

9>>>>=>>>>; is a 9j symbol. For example, if our state was a 2-3 coupling, then the 9j recoupling

would look like

j((S1S23)S; (l�l�)L)JMi =
X
J1

X
J23

j((S1l�)J1; (S23l�)J23)JMih((S1l�)J1; (S23l�)J23)JM j((S1S23)S; (l�l�)L)JMi

=
X
J1

X
J23

p
(2J1 + 1)(2J23 + 1)(2S + 1)(2L+ 1)

�

8>>>><>>>>:
S l� J1

S23 l� Jjk

S L J

9>>>>=>>>>; j((S1l�)J1; (S23l�)J23)JMi: (331)
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Every row and column of the 9j symbol itself must conform to the triangle condition as well (angular

momentum Sudoku, basically), so while it appears to be a complicated and intimidating method at �rst

glance, it quickly reduces down to something very manageable. It is important also to note that one of the

advantages to using 9j symbols as opposed to combinations of 3j symbols is that the 9j is independent of

any M values. Explicit calculations and tables of the 9j symbols are given in Appendix C.

5.4 Spin Orbit

This section de�nes and describes the spin orbit coupling for the three-body system. The focus is on

how to handle the L � S coupling for the three-body system, as the other terms are simple variables. This

is where the 9j symbols begin to come in very handy. In order to use the operator Lij � Sij in a simple way,

we need the wavefunction to be in a total Jij = Lij + Sij state. Then, the spin-orbit operator working on

a state jlijSijJiji gives

lij � Sij jlijSijJiji = [Jij(Jij + 1)� lij(lij + 1)� Sij(Sij + 1)]jlijSijJiji

lij � Sij jlij0Jiji = 0

lij � Sij j0SijJiji = 0 (332)

Since we have three couplings, we have three di¤erent lij terms. Due to how we are completely separating

the operators from the spatial components of the wavefunction, these states can still work out relatively

simply for the 1-3 and 1-2 couplings (recall that our "default" coupling is 2-3, de�ned in terms of the �

variable). The momenta associated with these coordinate changes are, by de�nition, the momenta that are

conjugate to each of them. So then, our three angular momentum terms would be (using the de�nitions

given in Eq.303)

L12 = r12 � p12 = �0 � p�0 = l�0 ;

L13 = r13 � p13 = �00 � p�00 = l�00 ;

L23 = r23 � p23 = �� p� = l�: (333)

Our substitutions for the 1-2 and 1-3 systems give a linear combination of wavefunctions-as the coordinate

transform itself is a simple linear combination-of either l = 1 or l = 0; so the calculations for those states for

the spin-orbit ends up being the same as that for the 2-3, just with a few more terms.

We can then apply the 9j symbols with the spin-orbit operator to obtain a value for the operator on a
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given wavefunction. For a state of ljk = 0 or Sjk = 0, the operator gives zero, which greatly simpli�es

calculations. Therefore, the spin-orbit operator ljk�Sjk working on a state j((SiSjk)S; (lilj)L)JMi gives

ljk�Sjkj((SiSjk)S; (lilj)L)JMi

=
X
Ji

X
Jjk

ljk�Sjk
q
(2Ji + 1)(2Jjk + 1)(2S + 1)(2L+ 1)

�

8>>>><>>>>:
Si li Ji

Sjk lj Jjk

S L J

9>>>>=>>>>; j((Sili)Ji; (Sjklj)Jjk)JMi; (334)

where we have used the 9j recoupling coe¢ cients to change the state into one which the spin-orbit operator

is merely a number. Details of these calculations are given in Appendix C.

As explained earlier, some of the wavefunctions allow the use of ladder operators on the base functions

without any concern to couplings. Where this is doable it is considerably easier for the spin-orbit state since

when the S+ or S� matrix elements are zero, the spin-orbit operator reduces to

ljk � Sjk = ljk � (Sj + Sk) = ljkz(Sjz + Skz) (335)

or just the z components of the operators. Again, both methods are always viable, but the underlying

structure of the wavefunction determines which is more useful for a given calculation.

The details of the ladder method are also given in appendix C. We have recoupled the state for a general

wavefunction into one which the spin-orbit operator is simply a number by using the 9j symbols. Now that

the two simplest terms are completed, we move on to the more complicated tensor interaction.

5.5 Tensor(�T )

The so-called tensor term, [3�1 �̂r�2 �̂r� �1��2]�T term involves couplings between di¤erent possible

L states. Since our potentials are still two-body interactions, the e¤ect of the STij = 3�i �̂rij�j �̂rij��i��j

operator remains the same for each interacting pair. Like the spin-orbit term, it involves total S and total

L of the two-body system, so that in order to use the matrix elements from a two-body system derived by

Crater et al. ([1, 2, 3]), we need to recouple it using the 9j symbols as well. From ([49]), we have the

following de�nitions for the STij operator working on an jlsjmi state, where l; s; j; and m are the two-body

orbital angular momentum, spin angular momentum, total angular momentum and z component of the total

angular momentum, respectively:
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ST jl0jmi = 0; (336)

ST jj1jmi = 2jjj1mi; (337)

ST jj + 11jmi = �2j + 4
2j + 1

jj + 11jmi+ 6
p
j(j + 1)

2j + 1
jj � 11jmi;

ST jj � 11jmi = �2j � 4
2j + 1

jj � 11jmi+ jj + 11jmi6
p
j(j + 1)

2j + 1
: (338)

Applying the tensor operator after using the 9j recoupling coe¢ cients then gives

[3�j �̂r�k �̂r� �j ��k]j((SiSjk)S; (lilj)L)JMi

=
X
Ji

X
Jjk

[3�j �̂r�k �̂r� �j ��k]
q
(2Ji + 1)(2Jjk + 1)(2S + 1)(2L+ 1)

8>>>><>>>>:
Si li Ji

Sjk lj Jjk

S L J

9>>>>=>>>>;
�j((Sili)Ji; (Sjklj)Jjk)JMi: (339)

Explicit forms of this equation change depending on which baryon state to which it is applied, so the details

are again in Appendix C.

The ladder operator is also used for some states where it is useful. The full form of the operator is

3Si�rSj �r = 3(Sixrx + Siyry + Sizrz)(Sjxrx + Sjyry + Sjzrz)� Si�Sj

= 3(
Si+ + Si�

2

Sj+ + Sj�
2

r2x +
Si+ + Si�

2

Sj+ � Sj�
2i

rxry +
Si+ + Si�

2
Sjzrxrz

+
Si+ � Si�

2i

Sj+ + Sj�
2

ryrx +
Si+ � Si�

2i

Sj+ � Sj�
2i

r2y +
Si+ � Si�

2i
Sjzryrz

+
Sj+ + Sj�

2
Sizrzrx + Siz

Sj+ � Sj�
2i

rzry + SizrzSjzrz)� Si�Sj ; (340)

which when we only consider terms that do not change total MS becomes

= 3
Si+Sj� + Si�Sj+

4
sin2 � + 3SizSjz cos

2 � � Si�Sj ; (341)

that, as one may expect from, becomes simple in most cases where it can be applied because sin2 �+cos2 � =

1(and thus where this is useful the � does not matter since it disappears from the equation). This dramatic

simpli�cation is only possible in the highest possible J states for each set of baryons, as when J is at a

maximum value, we can set M = J (since everything is independent of total M); which in turn forces total
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MS to be its highest possible value, meaning that any change to total MS on the ket would cause it to be

orthogonal to the bra and therefore those terms would not contribute.

Thus, the adaptation methods of the two-body tensor operator to a three-body system is now well-de�ned.

We continue on to the fourth and �fth potential operators, the spin-orbit di¤erence and the spin-orbit cross.

5.6 Spin-Orbit Di¤erence and Spin-Orbit Cross (�SOD;�SOX)

In a similar manner to the tensor term, here we describe how the spin-orbit di¤erence and spin-orbit

cross operators work on the total hlsjmj state. From Eq. (186) we have that

L � (�i��j)�SODjjl0ni = jjl1ni[f1� (j � l)2gf(j + l)(j + l + 2)g]�SOD;

L � (�i��j)�SODjjl1ni = jjl0ni[f1� (j � l)2gf(j + l)(j + l + 2)g]�SOD; (342)

iL��i��j�SOX jjl0ni = jjl1ni[f1� (j � l)2gf(j + l)(j + l + 2)g]�SOX ;

iL��i��j�SOX jjl1ni = �jjl0ni[f1� (j � l)2gf(j + l)(j + l + 2)g]�SOX : (343)

As can be seen from the operator equations, these states will account for spin mixing e¤ects, coupling spin

zero states to spin one states. Recoupling using the 9j symbol gives

L � (�j��k)j((SiSjk)S; (lilj)L)JMi

=
X
Ji

X
Jjk

L � (�j��k)
q
(2Ji + 1)(2Jjk + 1)(2S + 1)(2L+ 1)

8>>>><>>>>:
Si li Ji

Sjk lj Jjk

S L J

9>>>>=>>>>;
�j((Sili)Ji; (Sjklj)Jjk)JMi: (344)

These particular states also lend themselves very well to the ladder operator method, much like the spin-orbit

state. For the spin orbit di¤erence, the only non-zero operator (that doesn�t change total MS) is

L � (�j��k) =Lz(�jz � �kz); (345)

and for the spin-orbit cross term we also get

Lz(
�i��j+ � �i+�j�

4
): (346)
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These ladder operators are however only usable on about half of the possible states. Details of these and

the other operators are given in Appendix C.

The spin-orbit cross and spin-orbit di¤erence terms have been described from the purely two-body for-

malism to the three-body formalism, and so now we continue to the last term, the spin-orbit tensor term.

5.7 Spin-Orbit Tensor

The �nal piece of our potential is the spin-orbit tensor term,�1 �̂r�2 �̂rL � (�1+�2). Unlike the other

terms, this one does not lend itself well to the ladder approach, so all of the states have been worked out

using the 9j method. The operators on an jlsjmi state are ([49])

�i �̂r�j �̂rL � (�i+�j)jj1jmi = [j(j + 1)� l(l + 1)� s(s+ 1)]jj1jmi;

�i �̂r�j �̂rL � (�i+�j)jj � 11jmi = [j(j + 1)� l(l + 1)� s(s+ 1)]

�( 1

2j + 1
jj � 11jmi+ 2

p
j(j + 1)

2j + 1
jj + 11jmi);

�i �̂r�j �̂rL � (�i+�j)jj + 11jmi = [j(j + 1)� l(l + 1)� s(s+ 1)]

�(� 1

2j + 1
jj + 11jmi+ 2

p
j(j + 1)

2j + 1
jj � 11jmi): (347)

As with all of the potential terms, the individual values of these operators will vary, but we can write a

completely general state as

�j �̂r�k �̂rL � (�j+�k)j((SiSjk)S; (lilj)L)JMi

=
X
Ji

X
Jjk

�j �̂r�k �̂rL � (�j+�k)
q
(2Ji + 1)(2Jjk + 1)(2S + 1)(2L+ 1)

8>>>><>>>>:
Si li Ji

Sjk lj Jjk

S L J

9>>>>=>>>>;
�j((Sili)Ji; (Sjklj)Jjk)JMi: (348)

Details of all calculations for these operators are in Appendix C.

This completes our derivation of the individual Hamiltonian matrix elements. We have written the

three-body problem in terms of two relative coordinates and shown how they can be transformed for each

interacting pair. This allows a description of the methods used to adapt the ([1, 2, 3]) two-body potential

operators of Crater et al. derived for the meson spectrum to the three-body problem. We have used 9j

symbols to recouple the wavefunctions into usable form and also have used ladder operators for some of the

wavefunctions (the ones on which it works more simply than the 9j method). It now falls to numerical
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calculations to obtain a �t for the spectrum using these equations.

6 Numerical Results and Comments

The expectation value of the Hamiltonian cannot be evaluated analytically, so it falls to numerical

studies to acquire an explicit number. We use a Monte Carlo approach combined with a simple gradient

method to obtain a best-�t chi-squared for the spectrum as a whole, as compared to current experimental

data. The following sections describe the numerical methods used and give the results after using said

methods.

6.1 Methods and Parameter Values

The numerical calculations were done using a Monte Carlo approach followed by a gradient method to obtain

a least square �t for the spectrum as a whole. We originally attempted to use a more simpli�ed gradient

approach but it quickly became apparent that the functions are far too sensitive to changes and thus will

get "stuck" in a local minimum much too easily without some other approach. So, we adopted a Monte

Carlo routine that would trigger whenever the gradient approach found a new best �t in order to ensure

we were reaching the best results for our theory. The integrations were done numerically using Gaussian

Quadrature and the parameters �� and �� were minimized by the Nelder-Mead simplex method, though it

is worth noting that the � parameters do not generally vary much from the analytic result if one were to

use a harmonic oscillator model and also that as the size of our matrix increases, the actual value of these

parameters does not a¤ect the �t as much, becoming irrelevant at an in�nitely large matrix. Due to how

we use the additional basis functions to essentially spread out the wavefunction, the results given in tables

4,5,6 and 7 are for N = 3, which corresponds to a 26 � 26 matrix, as beyond this we observed the overall

energy and thus the �t would change very little, if at all.

Our model has a total of 8 parameters, given along with the values for Crater et al. where u,d,s,c and b

are the masses of the up, down, strange, charm and bottom quarks, respectively, �, K and B are coupling

constants in our model. It is worth noting that our model has signi�cantly fewer parameters than most

models, with only 8 total and 5 of those being universal to any model (the quark masses themselves). This

is signi�cant simply because of the way that a �tting routine will work; the more parameters one has, the

easier it is to �t the data. Or as the mathematician John von Neumann put it: "with four parameters I can

84



Table 4: Parameter values
This work

u 166.6 (MeV)
d 165.4 (MeV)
s 337.5 (MeV)
� 285.8 (MeV)
c 2050.3 (MeV)
b 5301.5 (MeV)
K 18.1
B 100.6

Reference 2
u 55:7 (MeV)
d 55:3 (MeV)
s 249:9 (MeV)
� 421:8 (MeV)
c 1:476 (MeV)
b 4:844(MeV)
K 4:198
B 0:05081

Table 5: Low lying baryon states
Baryon J Theoretical Mass (MeV) Experimental Mass(MeV) Exp-Theory(MeV)
p 1/2 961 938 -23
n 1/2 962 939 -22
�+ 1/2 1259 1189 -70
�0 1/2 1261 1192 -69
�� 1/2 1262 1197 -65
�0 1/2 1388 1314 -74
�� 1/2 1389 1321 -68
�0 1/2 1093 1125 32
�++ 3/2 1266 1232 -34
�+ 3/2 1266 1232 -34
�0 3/2 1267 1232 -35
�� 3/2 1268 1232 -36

�+(1390) 3/2 1393 1383 -10
�0(1390) 3/2 1394 1384 -10
��(1390) 3/2 1395 1387 -8
�0(1530) 3/2 1505 1531 26
��(1530) 3/2 1506 1535 29

� 3/2 1609 1672 63

�t an elephant, and with �ve I can make him wiggle his trunk."10 The model of course, is still expected to

be accurate regardless of the number of parameters, but it is worth noting in this work. In addition, there

are only two parametric functions that de�ne our potential model, so this further reduces the e¤ect that a

large number of parameters would have on our model.

6.2 Results and Comparison to Experiment

The complete results of our model are given in tables 5-7. As the purpose of this work is to test if the model

used in the two-body case works well for the three-body, we are only using those baryons which have a three

or four star rating by the Particle Data Group, meaning that they are fairly well-known.

The ground-state baryons are generally slightly high energy-wise for the �rst 8 and this is most likely to

10 It should be mentioned though that due to the way our potentials are de�ned, simply increasing the number of parameters
should not give a drastic increase in the quality of the �t
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Figure 7: Low order baryons. Squares represent experimental data and diamonds are theoretical.
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Table 6: Higher order baryons states
Baryon J Theoretical Mass (MeV) Experimental Mass(MeV) Exp-Theory
N(1440) 1/2 1508 1420-1470 -63
�(1600) 1/2 1684 1560-1700 -54
�(1660) 1/2 1660 1630-1690 0
�(1690) 1/2 1787 1680-1700 -97
�(1600) 1/2 1535 1550-1700 90
�(1670) 3/2 1679 1665-1685 -4
N(1535) 1/2 1561 1525-1545 -26
�(1670) 1/2 1678 1660-1680 -8
�(1750) 1/2 1674 1730-1800 91
�(1775) 5/2 1673 1770-1780 102
N(1520) 3/2 1562 1515-1525 -42
�(1690) 3/2 1677 1685-1695 13
�(1820) 3/2 1780 1818-1828 43
N(1650) 1/2 1549 1645-1670 108
�(1800) 1/2 1667 1720-1850 118
�(1880) 1/2 1679 1800-1960 201
N(1700) 3/2 1581 1650-1750 119
N(1675) 5/2 1561 1670-1680 114
�(1830) 5/2 1690 1810-1830 130
�(1950) 5/2 1791 1935-1965 159
�(1620) 1/2 1554 1600-1660 76
�(1700) 3/2 1549 1670-1750 161
�(1405) 1/2 1410 1402-1410 -4
�(1520) 3/2 1680 1518-1521 -160

allow the following 10 to be �t relatively accurately. This is not a surprising result of our model due to the

fact that since we are using no purely 3-body potentials, the only di¤erence between these sets of baryons is

the spin-spin interaction.

As for the higher order baryons, these are not as well-known and the experimental values are only given

in a (sometimes wide) range, the di¤erence between the experimental and theoretical values is given as the

di¤erence between the theoretical value and the average experimental value. This data is given in table 6.

The higher order baryons fall within an acceptable range on the whole, though there are a few outliers.

Of important note is that our model does �t very well the often troublesome �(1405) particle. The other �

particles however are, as before, missing some sort of interaction that will aid in di¤erentiating among them.

In addition, we �t a the well-known charmed and bottom baryons, given in table 7. These agree relatively

well with experimental data.

6.3 General Comments

The purpose of this work was to see if the two-body model used for the meson spectrum can be purely

applied to a three-body problem while remaining in what is known as the "naive quark model," that is,
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Figure 8: Higher order baryons. Theoretical values are given as horizontal lines and the range of experimental
values for each baryon is shown as a vertical bar
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Figure 9: Charmed and bottom baryons, theoretical and experimental values. Squares represent experi-
mental data and triangles are the results of our theoretical model.
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Table 7: Charmed and bottom baryons
Baryon J Theoretical Mass (MeV) Experimental Mass(MeV) Exp-Theory(MeV)
�c(2454) 1/2 2397 2454 57
�c(2520) 1/2 2411 2520 109
�c(2286) 1/2 2402 2286 -116
�c(2595) 1/2 2428 2595 -167
�c(2880) 1/2 2593 2880 -287
�c(2467) 1/2 2400 2467 67
�c(2470) 1/2 2401 2470 69
�c(2645) 1/2 2539 2645 106
�c(2790) 1/2 2672 2790 118
�c(2815) 1/2 2678 2815 137

c(2695) 1/2 2550 2695 145

c(2770) 1/2 2567 2770 203
�b(5829) 1/2 5832 5832 0
�b(5836) 1/2 5833 5836 3
�b(5790) 1/2 5834 5790 -44

b(6071) 1/2 5845 6071 226

without considering fully three-body forces, ignoring any e¤ects on the spectrum due to the instability of

the particles and focusing only on interactions between one pair of quarks at a time. We have shown that

this is indeed possible as our �t was relatively good compared to other approaches([9])([10])([52])([53]) and

to the experimental data itself. Furthermore, the discrepancy between the theoretical and experimental

results can be explained (qualitatively at least) as one overall missing piece that skews the �tting routine.

We believe this to be the reason that the quark masses are higher than those done by Crater et al. [39] In

general, though the initial octet is high, the splittings are correct among them. The masses of the up and

down quark themselves do not match the work done by Crater, but there is a nearly negligible di¤erence

between them, which is an expected result and thus some theories assume this ab initio([9]). It is also

interesting to note that the up and down quark masses are almost right in between the masses given by the

two major sources of inspiration and material for this work, Crater and Isgur ([39, 6]).

On the whole though, the �t is nearly as accurate as others, most notably the work of Capstick and Isgur

([6]), which is generally regarded as one of the more valuable references for theoretical baryon spectroscopy.

The only marked di¤erence of the results of our model versus other models is that while our higher order

baryons are generally �t fairly well, the lower ones are not �t as well, relatively speaking. However, as is

discussed below, this may actually reinforce that the fundamental approach is sound.
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6.4 Conclusion and Future Work

The model has shown that it is possible to use the purely two-body approach for a good �t of the baryon

spectrum. However, some work remains to be done though to truly count this model as accurate for the

purposes of making quark model predictions. This should not bee seen as a detriment to our model but

rather a triumph of it as we are aware of interactions, such as how the interactions of two particles a¤ects

the third, that we did not consider and may be signi�cant. The high masses of the octet can largely be

attributed to our potential model not discriminating between such states as the N and the � with anything

more than the spin-spin interactions, which may simply not be enough to account for approximately a

300 MeV di¤erence between baryons. All of the other interactions require either a radial or an orbital

excitation.

As for future work, it may be possible to introduce fully three-body forces in addition to the two-body

ones and to use a fully three-body approach for a coordinate system and JLS couplings. Total JLS

couplings for a three-body system are usually done in a mathematically rigorous fashion by coupling two

particles together and then coupling their Clebsch-Gordan coupled two-body system to a third particle for

a complete three-body system. A fully three-body approach to angular momentum couplings may at the

very least yield a more elegant formalism and perhaps better overall results. A system derived purely for a

three-body problem and including three-body JLS couplings may include additional interactions not seen in

a two-body model. We believe this will solve the issue of the same family of particles (i.e. �;�; N) lacking

in enough di¤erentiation. Realistically speaking, it can be viewed as positive in this work that the lower

order baryons are not �t as well as other models, but rather the model as a whole appears to be shifted.

This lends credence to the theory as a whole being fundamentally sound, but merely incomplete. In other

words, if the "missing piece" were added to the model in such a way as to a¤ect all the baryons, it would

be more likely to shift all of them in the correct direction, as opposed to if some of them were nearly exact

in the current �t and thus an overall change/addition to the model would be likely to shift them away from

values in good agreement with experiment.

In addition, it may be possible to extrapolate out to an in�nitely large basis and thus get an exact value

for the ground state, rather than simply truncating our basis size at an arbitrarily large value. This may

yield a better overall �t, but it is worth noting that the truncation was done at the N=3 value because higher

values did not appear to change substantially, so it may not give any more accurate results.
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7 Appendix

A Explicit forms of the Potentials

The full two-body potential is written as

�ij = 2mwijSij + S
2
ij + 2"wijAij �A2ij +�Dij + �i��j�S Si j + L � (�i+�j)�SOij + (3�i �̂rij�j �̂rij��i��j)�Tij

+ �i �̂rij�j �̂rijLij �(�i+�j)�SOTij + Lij �(�i��j)�SODij + iLij ��i��j�SOXij ; (A1)

where the individual i� j interacting potentials are given by (r being the distance between each pair in that

particular i� j combination)

�D = �
2(F 0 + 1=r)(cosh 2K � 1)

r
+ F 02 +K02 + 2K

0 sinh 2K
r

�r2F +m(r);

�SO = �
F 0
r
� (F

0 + 1=r)(cosh 2K � 1)
r

+
K0 sinh 2K

r
;

�SOD = (l
0 cosh 2K � q0 sinh 2K);

�SOX = (q
0 cosh 2K � l0 sinh 2K);

�SS = k(r) +
2K0 sinh 2K

3r
� 2(F

0 + 1=r)(cosh 2K � 1)
3r

+
2F 0K0
3

� r
2K
3

;

�T =
1

3
[n(r) +

(3F 0 �K0 + 3=r) sinh 2K
r

+
(F 0 � 3K0 + 1=r)(cosh 2K � 1)

r
+ 2F 0K0 �r2K];

�SOT = �K0
cosh 2K � 1

r
� K

0

r
+
(F 0 + 1=r) sinh 2K

r
: (A2)

These in turn are made up of the functions11

k(r) =
1

3
r2(K + G)� 2F

0(G0 +K0)
3

�1
2
G02;

n(r) =
1

3
[r2K � 1

2
r2G + 3(G

0 � 2K0)
2r

+ F 0(G0 � 2K0)];

m(r) = �1
2
r2G+3

4
G02 + G0F 0 �K02; (A3)

11These are all two-body potentials acting in a three-body system, so the subscripts 1 or 2 refer to the 1st or 2nd particle in
that pair, not the �rst or second particle in the overall system.
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l0(r) = � 1

2r

E2M2 � E1M1

E2M1 + E1M2
(L0 + J 0);

q0(r) =
1

2r

E2M1 � E1M2

E2M1 + E1M2
(L0 + J 0): (A4)

K =
(G + L)
2

K0 =
(G0 + L0)

2

r2K =
(r2G +r2L)

2
(A5)

F =
1

2
log

D
"2m1 + "1m2

� G

F 0 =
(L0 � G0)(E2M2 + E1M1)

2(E2M1 + E1M2)
� G0

r2F =
(r2L�r2G)(E2M2 + E1M1)

2(E2M1 + E1M2)
� (L0 � G0)2 (m2

1 �m2
2)
2

2 (E2M1 + E1M2)
2 �r

2G

D = E2M1 + E1M2

D0 = E02M1 + E
0
1M2 + E2M

0
1 + E1M

0
2 (A6)

Mi =

s
m2
i +

2mwS + S2

(w � 2A)=w

M 0
i =

(mwS
0 + S0)p

m2
i + 2mwS + S2

=
(mwS

0 + S0)

Mi

M 00
i = � (mwS

0 + S0)

(m2
i + 2mwS + S2)3=2

= �M
0

i

M2
i

Ei =
"i �Ap
(w � 2A)=w

(A7)

E0i =
(�"wA0 +A0)p
"2i � 2"wA+A2

=
(�"wA0 +A0)

Ei

E00i =
(�"wA00 +A00)p
"2i � 2"wA+A2

� (�"wA0 +A0)2
("2i � 2"wA+A2)3=2

=
(�"wA00 +A00)

Ei
� E02i

Ei

G =
Log( 1

(1�2A=w) )

2
(A8)
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G0 =
A0

w � 2A

r2G =
r2A

w � 2A + 2G
02

S0 =
4��2

27

A0 = � e1e2
4�r2

+
8�

27r2log(e2K + B
r2�2 )

� 16B�

27r4(e2K + B
r2�2 )�

2(log(e2K + B
r2�2 ))

2

r2A =
16B�(�4B + (B + 3e2Kr2�2)log(e2K + B

r2�2 ))

27r3(B + e2Kr2�2)2(log(e2K + B
r2�2 ))

3
(A9)

mw =
m1m2

w
; "w =

(w2 �m2
1 �m2

2)

2w

L = log(

p
m2
1 + exp(2G)(2mwS+S2) +

p
m2
2 + exp(2G)(2mwS+S2)

m1 +m2
)

L0 =
w

M1M2

�
S0(mw + S)

w � 2A +
(2mwS + S

2)A0

(w � 2A)2

�
r2L =

�L02(M2
1 +M

2
2 )

M1M2
+

w

M1M2

�
�
r2S(mw + S) + S

02

w � 2A +
4S0(mw + S)A

0 + (2mwS + S
2)r2A

(w � 2A)2 +
4(2mwS + S

2)A02

(w � 2A)3

�
:(A10)

The scalar and vector invariants A(r) and S(r) form the basis for all of the above functions. They are given

by

S =
4��2r

27

A = � 8�

27r log(Ke2 + B
(�r)2 )

+
e1e2
4�r

(A11)

B Spin-Flavor-Space States

This appendix contains the derivations of the spin-�avor states for all the baryons in our �t. They are

composed of products of spin wavefunctions, denoted �, and �avor wavefunctions, denoted as � [47] . The

spin wavefunctions are, explicitly

�S(Sz =
3

2
) =""";

�0(Sz =
1

2
) =

1p
2
("#" � #"");

�00(Sz =
1

2
) =

1p
6
(2 ""# � "#" � #""): (B1)
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Table 8: Baryon �avor wavefunctions
�s �

0
�00

p 1p
2
(udu� duu) 1p

6
(2uud� duu� udu)

n 1p
2
(udd� dud) 1p

6
(dud� udd� 2ddu)

� 1
2
p
3
(usd+ sdu� sud� dsu� 2dus+ 2uds) 1

2 (sud+ usd� sdu� dsu)
�++ uuu
�+ uud
�0 udd
�� ddd
�+ uus 1p

2
(suu� usu) 1p

6
(suu� usu� 2uus)

�0 uds 1
2 (sud+ sdu� usd� dsu)

1
2
p
3
(usd+ sdu+ sud+ dsu� 2dus� 2uds)

�� dds 1p
2
(sdd� dsd) 1p

6
(sdd� dsd� 2dds)

�0 uss 1p
2
(sus� uss) 1p

6
(2ssu� sus� uss)

�� dss 1p
2
(sds� dss) 1p

6
(2ssd� sds� dds)


� sss
�c uuc 1p

2
(cuu� ucu) 1p

6
(cuu� ucu� 2uuc)

�b uub 1p
2
(buu� ubu) 1p

6
(buu� ubu� 2uub)

�c
1

2
p
3
(ucd+ cdu� cud� dcu� 2duc+ 2udc) 1

2 (cud+ ucd� cdu� dcu)
�b

1
2
p
3
(ubd+ bdu� bud� dbu� 2dub+ 2udb) 1

2 (bud+ ubd� bdu� dbu)
�c usc 1p

2
(suc� usc) 1p

6
(2scu� suc� usc)

�b usb 1p
2
(sub� usb) 1p

6
(2sbu� sub� usb)


b ssb 1p
2
(ssc� scs) 1p

6
(css� scs� 2ssc)

Table 9: Total spin-�avor-space wavefunctions
N J L S Total State 	
8 1

2 0 1
2

1p
2
(�0�0 + �00�00) 0 	1

10 3
2 0 3

2 �s�s 0 	2
8 1

2 ;
3
2 1 1

2
1
2 [(�

0�00 + �00�0) 0 + (�0�0 � �00�00) 00] 	3(J =
1
2 );	4(J =

3
2 )

8 1
2 ;

3
2 ;

5
2 1 3

2
1p
2
[�0�s 0 + �00�s 00] 	5(J =

1
2 );	6(J =

3
2 );	7(J =

5
2 )

10 1
2 ;

3
2 1 1

2
1p
2
[�s�0 0 + �s�00 00] 	8(J =

1
2 );	9(J =

3
2 )

1 1
2 ;

3
2 1 1

2
1p
2
[�a�00 0 � �a�0 00] 	10(J =

1
2 );	11(J =

3
2 )

There are four di¤erent �avor wavefunctions, denoted as �0; �00; �s; �a;

and the singlet state

�a =
1p
6
(uds+ dsu+ sud� dus� usd� sdu) (B2)

There are eleven possible combinations of these spin and �avor states for (most of) the known baryons.

These wavefunctions then de�ne a grouping of baryons and the individual baryon itself is de�ned by the

�avor state from there, as given below
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Table 10: Baryons and their corresponding spin-�avor wavefunctions

	1 ! P;N;�;�+;�0;��;�0;��; N(1440);�(1600);�(1660);�(1690);�+c (2455);�
+
b ;�

+
b ;�

+
c ;�

+
c (2595);�

0
b

	2 ! �++;�+;�0;��;�+(1385);�0(1388);��(1390);�0(1530);��(1535);
�;�(1600);�(1690)

	3 ! N(1535);�(1670);�(1750);�(1880)

	4 ! N(1520);�(1690);�(1670);�(1820)

	5 ! N(1650);�(1800);�(1750)

	6 ! N(1700);�(1940)

	7 ! N(1675);�(1830);�(1775);�(1950)

	8 ! �(1620)

	9 ! �(1700)

	10 ! �(1405)

	11 ! �(1520)

C Operator and 9j Details

The eleven possible wavefunctions [47] are

N J L S Total State 	

8 1
2 0 1

2
1p
2
(�0�0 + �00�00) 0 	1

10 3
2 0 3

2 �s�s 0 	2

8 1
2 ;

3
2 1 1

2
1
2 [(�

0�00 + �00�0) 0 + (�0�0 � �00�00) 00] 	3(J =
1
2 );	4(J =

3
2 )

8 1
2 ;

3
2 ;

5
2 1 3

2
1p
2
[�0�s 0 + �00�s 00] 	5(J =

1
2 );	6(J =

3
2 );	7(J =

5
2 )

10 1
2 ;

3
2 1 1

2
1p
2
[�s�0 0 + �s�00 00] 	8(J =

1
2 );	9(J =

3
2 )

1 1
2 ;

3
2 1 1

2
1p
2
[�a�00 0 � �a�0 00] 	10(J =

1
2 );	11(J =

3
2 )

where  0 is a ground state Gaussian and  
0 and  00 are orbitally excited Gaussians given by [47] and each

have di¤erent coe¢ cients for the 9j recoupling (radial excitations are accounted for in the explicit forms of

the Gaussians themselves). The tables below give the 9j coe¢ cients for every possible coupling that we use.

They are constructed in a similar manner to a clebsch-gordan table, where we have([54])

possible spin for Sjk ! 0 1

possible l for lj #

0 9j coe¢ cient(Ji; Jjk) 9j coe¢ cient(Ji; Jjk)

1 9j coe¢ cient(Ji; Jjk) 9j coe¢ cient(Ji; Jjk)
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where Ji is the total J for the "spectator" particle (i.e. particle one in the 2-3 interaction) and Jjk is the

total J for the interaction in question, which is what we are really concerned with for working out the state

explicitly.

J =
1

2
; L = 0; S =

1

2
; li = lj

Sjk 0 1

lj

0 1( 12 ;0) 1( 12 ;1)

1 �
p
2( 12 ; 1) +

q
2
3 (
3
2 ; 1)

1
3 (
1
2 ; 0) +

p
2
3 (

1
2 ; 1) +

1
3 (
3
2 ; 1) +

p
5
3 (

3
2 ; 2)

J =
1

2
; L = 1; S =

1

2
; li = 1� lj

Sjk 0 1

lj

0 1( 12 ; 0) � 1
3 (
1
2 ; 1)�

2
3

p
2( 32 ; 1)

1 1( 12 ; 1) � 1p
3
( 12 ; 0) +

q
2
3 (
1
2 ; 1)

J =
1

2
; L = 1; S =

3

2
; li = 1� lj

Sjk 0 1

lj

0 0 � 2
3

p
2( 12 ; 1) +

1
3 (
3
2 ; 1)

1 0
q

2
3 (
1
2 ; 0) +

1p
3
( 12 ; 1)

J =
3

2
; L = 0; S =

3

2
; li = lj

Sjk 0 1

lj

0 0 1( 12 ; 1)

1 0 1
3 (
3
2 ; 0)�

1
6

p
(2)( 12 ; 1) +

p
5

3
p
2
( 32 ; 1)�

1
6

p
10( 12 ; 2) +

p
5

3
p
2
( 32 ; 2)

J =
3

2
; L = 1; S =

1

2
; li = 1� lj
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Sjk 0 1

lj

0 1( 32 ; 0)
2
3 (
1
2 ; 1) +

p
5
3 (

3
2 ; 1)

1 1( 12 ; 1) � 1p
6
( 12 ; 1) +

1
3

q
15
2 (

1
2 ; 2)

J =
3

2
; L = 1; S =

3

2
; li = 1� lj

Sjk 0 1

lj

0 0
p
5
3 (

1
2 ; 1)�

2
3 (
3
2 ; 1)

1 0
q

5
6 (
1
2 ; 1) +

1p
6
( 12 ; 2)

J =
5

2
; L = 1; S =

3

2
; li = 1� lj

Sjk 0 1

lj

0 0 1( 32 ; 1)

1 0 1( 12 ; 2)

Since the states are all independent of total M; we can set M = J for the higher J states in each set of

wavefunctions. This allows the use of the much simpler ladder operators as opposed to the 9j method, which

has the side bene�t of being a check on both approaches (many were done both ways to ensure accuracy).

The states on which this is possible are 	1;	2;	3;	7;	9; and 	11: The reason it is simple is because any

state with M = J = jL + Sj will only have the maximum possible value for MS and so any operator that

changes total MS will have a di¤erent set of quantum numbers from the state to which it is coupling and

will thus give a matrix element of zero. The simpli�ed versions of the ladder operators are (where we have

used said property of M and MS)

Si�Sj =
Si+Sj� + Si�Sj+

2
+ SizSjz;

SO = L � S = Lz(Siz + Sjz);

T = 3
Si+Sj� + Si�Sj+

4
sin2 � + 3SizSjz cos

2 � � Si � Sj ;

SOD = Lz(Siz � Sjz);

SOX = Lz(
Si�Sj+ � Si+Sj�

2
): (C1)
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Note both that the spin-spin operator is simple regardless of the state and thus we can use it either way on

any state and that the spin-orbit tensor operator does not appear. This is due to the fact that the spin-orbit

tensor operator does not have a simple form, even with the simpli�cation that any change in total MS will

be zero. Using both of these approaches, we can reduce all of our operators to simple numerical factors onto

the radial wavefunction, which vary depending on the state. The tables are written in the format

total wavefunction interaction

quark coupling numerical coe¢ cient

So that the table for 	1 (for example) would read that all interactions but spin-spin are zero and all spin-spin

interactions give back a coe¢ cient of - 14 :

	1 SS SO T SOT SOD SOX

12 - 14 0 0 0 0 0

13 - 14 0 0 0 0 0

23 - 14 0 0 0 0 0

	2 SS SO T SOT SOD SOX

12 1
4 0 0 0 0 0

13 1
4 0 0 0 0 0

23 1
4 0 0 0 0 0

	3 SS SO T SOT SOD SOX

12 - 14 - 43 0 0 0 0

13 - 14 - 43 0 0 0 0

23 - 14 � 2
3 0 0 0 0

	4 SS SO T SOT SOD SOX

12 - 14
2
3 0 0 0 0

13 - 14
2
3 0 0 0 0

23 - 14
2
3 0 0 - 12 0

	5 SS SO T SOT SOD SOX

12 - 14 � 10
3 -2 1 0 0

13 - 14 � 10
3 -2 1 0 0

23 - 14 � 5
3 -1 1

2 0 0

	6 SS SO T SOT SOD SOX

12 - 14 � 4
3

8
5 - 85 0 0

13 - 14 � 4
3

8
5 - 85 0 0

23 - 14 � 2
3

4
5 - 45 0 0

	7 SS SO T SOT SOD SOX

12 1
4 2 � 2

5
2
5 0 0

13 1
4 2 � 2

5
2
5 0 0

23 1
4 1 � 1

5
1
5 0 0

	8 SS SO T SOT SOD SOX

12 - 14 - 43 0 0 0 0

13 - 14 - 43 0 0 0 0

23 - 14 -1 0 0 1 0
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	9 SS SO T SOT SOD SOX

12 - 14
2
3 0 0 0 0

13 - 14
2
3 0 0 0 0

23 - 14
1
2 0 0 - 12 0

	10 SS SO T SOT SOD SOX

12 - 14 - 43 0 0 0 0

13 - 14 - 43 0 0 0 0

23 - 14 - 43 0 0 -1 0

	11 SS SO T SOT SOD SOX

12 - 14
2
3 0 0 0 0

13 - 14
2
3 0 0 0 0

23 - 14
1
6 0 0 - 12 0

D Coordinate System Detailed Derivations

This appendix contains explicit details for the coordinate transform derivation. First, we de�ne our

relative coordinates

� = r2 � r3

� =
w"2

("2 + "3)"1
r2 +

w"3
("2 + "3)"1

r3

r1 � r2 = � "3
"2 + "3

�� �

r1 � r3 = � "2
"2 + "3

�+ �

r2 � r3 = � (D1)

where the "0s are the energies of each quark and

w = "1 + "2 + "3; (D2)

as usual. Our base wavefunction is

	n = N�l��l�e�n��
2
��

2=2�n��2��
2=2Y

m�

l�
Y m�

l�
(D3)
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which must be normalized. As usual, the spherical harmonics are already normalized

Y ml =

s
2l + 1

4�

(l �m)!
(l +m)!

Pml (cos �)e
im� (D4)Z

Y ml Y m
0

l0 = �ll0�mm0

so we just have to normalize the radial part of the wavefunction, which gives

h	njj	ni = 1 = �l�l0��m�m0
�
N2

Z
�2l+2�2l+2e�n��

2
��

2�n��2��
2

d�d�

= N2 �[(2l� + 3)=2]

(n��2�)
(2l�+3)=2

�[(2l� + 3)=2]

(n��2�)
(2l�+3)=2

N =

s
(n��2�)

(2l�+3)=2(n��2�)
(2l�+3)=2

�[(2l� + 3)=2]�[(2l� + 3)=2]
(D5)

	n =

s
(n��2�)

(2l�+3)=2(n��2�)
(2l�+3)=2

�[(2l� + 3)=2]�[(2l� + 3)=2]
�l��l�e�n��

2
��

2=2�n��2��
2=2Y

m�

l�
Y m�

l�
(D6)

or more completely with the appropriate Clebsch-Gordan coe¢ cient

	n =

s
(n��2�)

(2l�+3)=2(n��2�)
(2l�+3)=2

�[(2l� + 3)=2]�[(2l� + 3)=2]
�l��l�e�n��

2
��

2=2�n��2��
2=2

�
X
m�m�

hl�l�m�m�jLMiY m�

l�
Y m�

l�
(D7)
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This wavefunction is now su¢ cient to perform the r23 = � integration and the kinetic terms (which are

analytic). The kinetic terms are given by

r2	� =
1

�2
@

@�
[l��

l�+1e�n��
2
��

2=2 � n��2��l�+3e�n��
2
��

2=2]

=
1

�2
[l�(l� + 1)�

l�e�n��
2
��

2=2 � n��2�l��l�+2e�n��
2
��

2=2

�(l� + 3)n��2��l�+2e�n��
2
��

2=2 + n2��
4
��
l�+4e�n��

2
��

2=2]

r2	� = N(l�(l� + 1)�
l��2e�n��

2
��

2=2 � (2l� + 3)n��2��l�e�n��
2
��

2=2 + n2��
4
��
l�+2e�n��

2
��

2=2)

h	�jT j	�0i =

Z
�l�+2N1N2[l�(l� + 1)�

l��2e�(n�+n
0
�)�

2
��

2=2

�(2l� + 3)n��2��l�e�(n�+n
0
�)�

2
��

2=2 + n2��
4
��
l�+2e�(n�+n

0
�)�

2
��

2=2]

h	�jT j	�0i =

s
(n��2�)

(2l�+3)=2n�(2l�+3)=2

�[(2l� + 3)=2]

s
(n0��

2
�)
(2l�+3)=2n

0(2l�+3)=2
�

�[(2l� + 3)=2]
[l�(l� + 1)

�[(2l� + 1)=2]

2([n� + n0�]�
2
�=2)

(2l�+1)=2

�(2l� + 3)n��2�
�[(2l� + 3)=2]

2([n� + n0�]�
2
�=2)

(2l�+3)=2
+ n2��

4
�

�[(2l� + 5)=2]

2([n� + n0�]�
2
�=2)

(2l�+5)=2
] (D8)

�
X
m�

hl�l�m�m�jLMiY m�

l�
�
X
m0
�

hl0�l0�m0
�m

0
�jLMiY

m0
�

l0�
: (D9)

In order to perform the r12 and r13 integrations, we rede�ne the wavefunction in what we call spherical

tensor form as

	n = N�l��l�e�n��
2
��

2=2�n��2��
2=2

�
X
m�m�

hl�l�m�m�jLMiY m�

l�
Y m�

l�

= Ne�n��
2
��

2=2�n��2��
2=2

X
m�m�

hl�l�m�m�jLMi�m�
�m�

(D10)

where

�m�
= �Y

m�

l�
(�̂) (D11)

�m�
= �Y m�

l�
(�̂):

For r12 integration, we will de�ne

r12 = r1 � r2 = �0 (D12)

�0 =
w"1

"3("1 + "2)
r1 +

w"2
"3("1 + "2)

r2
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in order to create an integration variable purely in terms of r12 = �0: Then we rewrite our wavefunction in

terms of new variables and as tensors

� = r2 � r3 = r2 �
"1r1 + "2r2

"3
=
"2 + "3
"3

r2 +
"1
"3
r1 (D13)

= (
("2 + "3)"1
"3("1 + "2)

+
"1"2

"3("1 + "2)
)�0 + (

"2 + "3
"

+
"1
"
)�0

� =
"1

"1 + "2
�0 + �0

�m�
=

"1
"1 + "2

�0m�
+ �0m�

� =
w"2

"1("2 + "3)
r2 +

w"3
"1("2 + "3)

r3 =
w"2

"1("2 + "3)
r2 +

w"3
"1("2 + "3)

(
�"1r1 � "2r2

"3
) (D14)

=
w

"2 + "3
r1 + (

w"2
"1("2 + "3)

� w"2
"1("2 + "3)

)r2

� =
w"2

("2 + "3)("1 + "2)
�0 � "3

"2 + "3
�0

�m�
=

w"2
("2 + "3)("1 + "2)

�0m�
� "3
"2 + "3

�0m�

A general expectation value of any potential �12 which depends only on the coordinate r12 is

h	nj�12(r12)j	mi = h	nj�12(�0)j	mi (D15)

= N1N2

Z X
m�m�

hl�1m�m�jLMi��m�
��m�

X
m0
�m

0
�

hl0�1m0
�m

0
�jL0M 0i�m�

�m�
e�

1
2 (n�+n

0
�)�

2
��

2� 1
2 (n�+n

0
�)�

2
��

2

�12(�
0)d3�d3�

(D16)

Using above identities for � and �(D13,D14,D12) we arrive at

h	nj�12(�0)j	mi

= N1N2

Z
e�c(�

0+ b
2c�

0)2+(a� b2

4c )�
02
d3�0d3�0

�
X
m�m�

hl�l�m�m�jLMi(
w"2

("2 + "3)("1 + "2)
�0m�1

� "3
"2 + "3

�0m�1
)�(

"1
"1 + "2

�0m�1
+ �0m�1

)�

�
X
m0
�m

0
�

hl0�l�m0
�m

0
�jL0M 0i( "1

"1 + "2
�0m�2

+ �0m�2
)(

w"2
("2 + "3)("1 + "2)

�0m�2
� "3
"2 + "3

�0m�2
) (D17)
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where for simplicity

a =
(n� + n

0
�)�

2
�

2
(

"1
"1 + "2

)2 +
(n� + n

0
�)�

2
�

2
(

w"2
("2 + "3)("1 + "2)

)2

b = �
(n� + n

0
�)�

2
�

2
(

"1
"1 + "2

) + (n� + n
0
�)�

2
�

w"2"3
("2 + "3)2("1 + "2)

c =
(n� + n

0
�)�

2
�

2
+
(n� + n

0
�)�

2
�

2
(

"3
"2 + "3

)2 (D18)

In order to eliminate the cross term in the Gaussian, we make one �nal change of variables and essentially

complete the square, so a variable x is de�ned as

x = �0 +
b

2c
�0 (D19)

�0 = x� b

2c
�0

�0m = xm �
b

2c
�0m

From this point on the calculation will continue for l = 1 as it becomes extremely complicated for general l;

but the formalism is the same. The expectation value now is

h	nj�12(�0)j	mi

= N1N2

Z
e�c(�

0+ b
2c�

0)2+(a� b2

4c )�
02
d3�0d3�0

�
X
m�m�

h1l�m�m�jLMi(
w"2

("2 + "3)("1 + "2)
�0m�1

� "3
"2 + "3

�0m�
)�(

"1
"1 + "2

�0m�
+ �0m�

)� (D20)

�
X
m0
�m

0
�

h1l0�m0
�m

0
�jL0M 0i( "1

"1 + "2
�0m�

+ �0m�
)(

w"2
("2 + "3)("1 + "2)

�0m�
� "3
"2 + "3

�0m�
)

h�12i = N1N2

Z
e�c(�

0+ b
2c�

0)2+(a� b2

4c )�
02
d3�0d3x0

X
m�m�

h11m�m�jLMi

�( w"2
("2 + "3)("1 + "2)

�0m�
� "3
"2 + "3

(xm�
� b

2c
�0m�

))�(
"1

"1 + "2
�0m�

+ xm�
� b

2c
�0m�

)�

�
X
m0
�m

0
�

h1l0�m0
�m

0
�jL0M 0i( w"2

("2 + "3)("1 + "2)
�0m0

�
� "3
"2 + "3

(xm0
�
� b

2c
�0m0

�
))

�( "1
"1 + "2

�0m0
�
+ xm0

�
� b

2c
�0m0

�
) (D21)
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Expanding this out, we obtain

h�12i = N1N2

Z
e�c(�

0+ b
2c�

0)2+(a� b2

4c )�
02
d3�0d3x0

X
m�m�

h11m�m�jLMi

�[ w"2
("2 + "3)("1 + "2)

�0�m�

"1
"1 + "2

�0�m�
+

w"2
("2 + "3)("1 + "2)

�0�m�
x�m�

� w"2
("2 + "3)("1 + "2)

�0�m�

b

2c
�0�m�

� "3
"2 + "3

x�m�

"1
"1 + "2

�0�m�
� "3
"2 + "3

x�m�
x�m�

+
"3

"2 + "3
x�m�

b

2c
�0�m�

+
b

2c
�0�m�

"1
"1 + "2

�0�m�
+

b

2c
�0�m�

x�m�
� b2

4c2
�0�m�

�0�m�
] (D22)

�
X
m0
�m

0
�

h1l0�m0
�m

0
�jL0M 0i

[
w"2

("2 + "3)("1 + "2)
�0
m
0
�

"1
"1 + "2

�0
m0
�
+

w"2
("2 + "3)("1 + "2)

�0
m
0
�

xm0
�
� w"2
("2 + "3)("1 + "2)

�0
m
0
�

b

2c
�0
m0
�

� "3
"2 + "3

xm0
�

"1
"1 + "2

�0m0
�
� "3
"2 + "3

xm0
�
xm0

�
+

"3
"2 + "3

xm0
�

b

2c
�0m0

�

+
b

2c
�0m0

�

"1
"1 + "2

�0m0
�
+

b

2c
�0m0

�
xm0

�
� b2

4c2
�0m0

�
�0m0

�
] (D23)

Now that we have expanded it we will go backwards and replace the spherical tensor form with the explicit

forms of spherical harmonics from 302 and the coordinates

h�12i = N1N2

Z
e�c(�

0+ b
2c�

0)2+(a� b2

4c )�
02
d3�0d3x0

X
m�m�

h11m�m�jLMi

�[ w"2
("2 + "3)("1 + "2)

"1
"1 + "2

Y m��
1 (�̂0)Y

m��
1 (�̂0)�02 +

w"2
("2 + "3)("1 + "2)

Y m��
1 (�̂0)Y

m��
1 (x̂)�0x

� w"2
("2 + "3)("1 + "2)

b

2c
Y m��
1 (�̂0)Y

m��
1 (�̂0)�02 � "3

"2 + "3

"1
"1 + "2

Y m��
1 (x̂)Y

m��
1 (�̂0)�0x

� "3
"2 + "3

Y m��
1 (x̂)Y

m��
1 (x̂)x2 +

"3
"2 + "3

b

2c
Y m��
1 (x̂)Y

m��
1 (�̂0)�0x

+
b

2c

"1
"1 + "2

Y m��
1 (�̂0)Y

m��
1 (�̂0)�02 +

b

2c
Y m��
1 (�̂0)Y

m��
1 (x̂)�0x� b2

4c2
Y m��
1 (�̂0)Y

m��
1 (�̂0)�02](D24)
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�
X
m0
�m

0
�

h1l0�m0
�m

0
�jL0M 0i

[
w"2

("2 + "3)("1 + "2)

"1
"1 + "2

Y
m0
�

l0�
(�̂0)Y

m0
�

1 (�̂0)�02 +
w"2

("2 + "3)("1 + "2)
Y
m0
��

1 (�̂0)Y
m0
��

1 (x̂)�0x

� w"2
("2 + "3)("1 + "2)

b

2c
Y
m0
��

1 (�̂0)Y
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We use the following identities of spherical harmonics to perform the angular integrations and simplify
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X
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s
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So now
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�(Y m��
1 (�̂0)Y

m0
�

1 (�̂0)Y
m��
1 (�̂0)Y

m0
�

1 (�̂0)�04
(�2c"1 + b("2 + "3))2(b("1 + "2)"3 + 2c"2w)2

16c4("1 + "2)2("2 + "3)4

+�02x2Y m��
1 (x̂)Y

m0
�

1 (x̂)Y
m��
1 (�̂0)Y

m0
�

1 (�̂0)
"23(�2c"1 + b("2 + "3))2

4c2("2 + "3)4

+x2�02
"3(�2c"1 + b("2 + "3))(b("1 + "2)"3 + 2c"2w)

c2("1 + "2)("2 + "3)3

�[Y m��
1 (x̂)Y

m��
1 (x̂)Y m�

1 (�̂0)Y
m0
�

1 (�̂0) + Y m��
1 (�̂0)Y

m0
�

1 (�̂0)Y
m0
�

1 (x̂)Y
m��
1 (x̂)

+Y m��
1 (x̂)Y

m0
�

1 (x̂)Y
m0
�

1 (�̂0)Y
m��
1 (�̂0) + Y m��

1 (�̂0)Y
m��
1 (�̂0)Y

m0
�

1 (x̂)Y
m0
�

1 (x̂)]

+x2�02Y m��
1 (�̂0)Y

m0
�

1 (�̂0)Y
m��
1 (x̂)Y

m0
�

1 (x̂)
(b("1 + "2)"3 + 2c"2w)

2

4c2("1 + "2)2("2 + "3)2

+x4Y m��
1 (x̂)Y

m0
�

1 (x̂)Y
m��
1 (x̂)Y

m0
�

1 (x̂)
"23

("2 + "3)2
)

This is a gigantic equation when everything is worked out, so we will treat it term by term. The �rst term
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gives
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Again from Eq.D28, we have
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So the expectation value is

h�12i = N1N2
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We can now perform the angular integrations for the spherical harmonics, which are identical for both

the �04 and x4 term as there is no dependence on the angular pieces in the potentials
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All other terms either integrate to zero (due to an odd number of Ylm�s) or to Kronecker deltas, so the rest

of the integral is just a polynomial, given by
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Performing the x integration yields
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So now the expectation value is in terms of just one variable, which can be numerically integrated easily.

Doing the 13 just involves changing the a,b,c constants and the epsilons and the 23 is trivial since it

doesn�t require any additional substitutions.

We can follow a similar method for l = 2, by constructing new states as functions of the l = 1 states.
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The explicit forms of the spherical harmonics for l = 0 and l = 1 are
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which can be used to rewrite the l = 2 spherical harmonics as
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So then, since our wavefunction for l� = l� = 2 is of the form
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we can use the original tensor substitution of Eq. (D11) to de�ne
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Therefore, we can follow the same procedure outlined for l = 1, the only major di¤erence being that the

algebra is more complicated. However, since we�re going to have to do at least one numerical integration

anyway, we can use a program such as Mathematica (or Wolframalpha) to analytically integrate what is

analytically integrable and then numerically integrate the rest without doing an absurd amount of algebra

(this is what was done in this work). This method should actually hold to allow for higher order l states to

be done relatively simply, since essentially all that will become more complicated is the algebra arising from

the substitutions (this may be part of future work on this subject).
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