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ABSTRACT 

The new field of ‘omics’ has spawned the development of metaproteomics, an approach 

that has the ability to identify and decipher the metabolic functions of a proteome 

derived from a microbial community that is largely uncultivable.  With the development 

and availabilities of high throughput proteomics, high performance liquid 

chromatography coupled to mass spectrometry (MS) has been leading the field for 

metaproteomics.  MS-based metaproteomics has been successful in its’ investigations 

of complex microbial communities from soils to the human body.   

Like the environment, the human body is host to a multitude of microorganisms 

that reside within the skin, oral cavity, vagina, and gastrointestinal tract, referred to as 

the human microbiome.  The human microbiome is made up of trillions of bacteria that 

outnumber human genes by several orders of magnitude.  These microbes are 

essential for human survival with a significant dependence on the microbes to encode 

and carryout metabolic functions that humans have not evolved on their own.  Recently, 

metaproteomics has emerged as the primary technology to understand the metabolic 

functional signature of the human microbiome. 

Using a newly developed integrated approach that combines metagenomics and 

metaproteomics, we attempted to address the following questions: i) do humans share a 

core functional microbiome and ii) how do microbial communities change in response to 

disease.  This resulted in a comprehensive identification and characterization of the 

metaproteome from two healthy human gut microbiomes.  These analyses have 

resulted in an extended application to characterize how Crohn’s disease affects the 

functional signature of the microbiota. 

Contrary to measuring highly complex and representative gut metaproteomes is 

a less complex, controlled human-derived microbial community present in the gut of 

gnotobiotic mice.  This human gut model system enhanced the capability to directly 

monitor fundamental interactions between two dominant phyla, Bacteroides and 

Firmicutes, in gut microbiomes colonized with two or more phylotypes.  These analyses 

revealed membership abundance and functional differences between phylotypes when 
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present in either a binary or 12-member consortia.  This dissertation aims to 

characterize host microbial interactions and develop MS-based methods that can 

provide a better understanding of the human gut microbiota composition and function 

using both approaches.  
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Chapter One 

Characterization of human host-microbiome interactions at the molecular level 
with metaproteomics approaches  

Part of the introduction is adapted from the ‘proteomics and metaproteomics’ 
chapter in ‘The Human Microbiome’ book (CABI with editor Dr. Julian Marchesi) 
written by Alison R Erickson (2012 release date). 

1.1: Introduction 

In a natural ecosystem, microbes do not exist in isolation, but rather in populations and 

communities in which competition and cooperation are essential to shaping the 

composition and function of a microbial community. To understand microbial community 

composition, structure, function, and evolution, research has focused on development of 

approaches to advance beyond single pure-culture laboratory experiments to in situ 

analyses of environmental microbial populations and communities, since single 

microbial isolates in lab cultures do not accurately capture the complexities of microbial 

interactions in environmental communities.  An organism cultivated in the laboratory 

may not represent or reflect its true activity and physiology in a natural environment 

where conditions such as resource competition and predation are widespread[1].  In 

addition, estimates suggest that ~90% of the microorganisms inhabiting the 

environment are not cultivable[2,3].  As a result, intensive research efforts have focused 

on improving methodologies for cloning, sequencing, and annotating whole genomes 

from heterogeneous microbial environments.  For many complex environmental 

communities, metagenomics (genomic sequencing and analysis of uncultured microbes 

[4]) has provided insight into the genetic diversity, evolution, and metabolic potential of 

uncultivable microorganisms[5,6,7,8] otherwise not possible with traditional laboratory 

techniques. 

With the emergence of metagenomics, extensive research has focused on 

sequencing and characterization of environmental microbial communities collected from 

extreme ecosystems, such as the Acid Mine Drainage[9] and hydrothermal systems[10], 
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the ocean[11,12], soils[13], and more recently the human body[14].  The human body is 

one example of a unique ecosystem where microbes and the human host live in 

symbiosis (Figure 1.1), in which the microbial cells outnumber human cells by 10-fold.  

Our collective microbial counterpart inhabits multiple body sites (e.g., skin, vagina, oral 

and gastrointestinal tract) and is referred to as the human microbiome.  Although the 

human microbiome is made up of thousands of bacterial species (Figure 1.2), ~20-60% 

of the bacteria inhabiting the human-associated microbiome cannot be 

cultured[15,16,17,18,19].  For example, ~50% of the human oral microbiome is 

estimated to be non-cultivable[20].  However, with the increasing availability and 

quantity of human microbiota-associated metagenomic sequence data[21,22,23,24,25], 

we can begin to study and understand the human microbiome in both healthy and 

disease conditions.  This sequence data has already increased our knowledge of the 

human microbiota gene content and variability and paved the way for systems biology 

(‘omic’) type studies, in particular making metaproteomics, a comprehensive community 

proteome analysis, feasible [26].  These whole community genomic sequences currently 

serve as the foundation for metaproteomics in the human microbiome (Figure 1.3) and 

enable the identification of hundreds to thousands of proteins.  However, the dogma 

that DNA and RNA are equivalent is no longer considered accurate, as suggested by Li 

et al., mandating that the primarily focus cannot only be on DNA, but RNA as a separate 

entity, since its alterations induce changes in the final end product, the proteins[27].  

Although metagenomic sequencing unveils the collective functional ‘potential’ of a 

microbial community, this prediction is not directly related to the ‘actual’ host-microbial 

functional signature where protein information provides a deeper look at the molecular 

activities.  Because metagenomics only captures the complete reportiore of genome 

capacity, it will be the integration of metaproteomics and/or metatranscriptomics with 

metagenomics that can serve as a powerful tool to study and collectively characterize 

the functional and metabolic signatures of the complex human microbiome. 
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Figure 1.1: An interconnected landscape of host genetics, microbiota, and external 

factors such as diet regulate the stability of the unique human ecosystem where 

microbes and the human host live in symbiosis. 

 

 

 

Figure 1.2: Microbial density in the gastrointestinal tract[26]. 
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Figure 1.3: Integration and interconnectivity of metaproteomics with other ‘omic’ 

disciplines, with metagenomics as the primary foundation for all other ‘omics.’  

Metagenomics provides DNA information, metatranscriptomics provides RNA 

information, metaproteomics provide protein-level information, metabolomics provides 

information about small-molecule metabolites, and interactomics provides information 

about all interactions between proteins and other molecules. 

Metagenomics
Metatranscriptomics

Metaproteomics
Metabolomics

Interactomics

Human
Microbiome
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1.2: Microbial Community Functional Analysis 

Proteomics, the identification and cataloguing of the entire suite of proteins translated in 

an organelle, organism(s), or tissue, has begun to rise in significance in the ‘post-

genomic era’, since proteomics reveals the final gene products that are inscribed in the 

genome “dictionary.”  It is the proteins, not genes, that are the active enzymatic and 

metabolic players, and their complex network interactions and pathways that are 

responsible for the complexity of humans and their microorganisms’ phenotype[28] in 

the human microbiome.  For example, the specific order and arrangement of genes in 

the genome does not provide any information about the structures and functions of 

protein complexes.  Studies have shown that proteins rarely function on their own, but 

rather usually exist in multi-component complexes and function with remarkable 

specificity[29,30].  Protein-protein interactions and post-translation modifications and 

are also very important and are not revealed by genomes or metagenomes.  Therefore, 

to understand the human microbiome, one has to not only identify and characterize the 

gene content, but identify how its complete suite of proteins actually function in vivo, 

which can not be revealed through metagenomics. 

To enable comprehensive functional analysis, high-throughput sequencing 

approaches (of transcripts and/or peptides) with high accuracy, sensitivity, and 

reproducibility are necessary to study the complex and diverse human microbiota.  

Microbial community functionality can be measured with either metaproteomics or 

metatranscriptomics, which is the sequencing of community mRNA.  Recent 

developments in microbial sequencing technologies from microarrays to RNA-seq have 

yielded a tremendous increase in the throughput, accuracy, and sequence coverage 

(number and length of reads) of microbial transcriptomes and metatranscriptomes.  

Metatranscriptomics has shown to be successful in the analysis of environmental 

communities[31,32,33,34,35,36] and recently was applied to the analysis of the human 

gastrointestinal microbiome[37,38,39,40,41].  In comparison, proteomics has also 

advanced from two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and 

single protein measurement platforms to MS-based proteomics and metaproteomics.  

The first large-scale metaproteome characterizations of microbial communities from a 
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static snapshot in time include the low-diversity Acid Mine Drainage (AMD)[42,43], 

wastewater sludge[44], as well as the more complex ecosystems such as the 

ocean[45,46] and the human gastrointestinal[26,47] and salivary[48,49] microbiome.  

These omics’ studies have demonstrated the experimental capabilities and feasibility of 

applying metatranscriptomics and metaproteomics to complex environmental 

communities, including the human microbiome.  Unlike traditional laboratory techniques, 

both technologies are valuable resources that can be used to characterize the 

functionality of uncultivable microorganisms and how it relates back to the genomic and 

taxonomic diversity in microbial communities derived from complex natural 

environments.  While both ‘omic’ technologies are viable, there are advantages and 

disadvantages to selectively use one over the other to understand microbial 

functionality, as outlined below.    

With respect to metatranscriptomics, there are several challenges when working 

with bacterial RNA.  For example, the half-life is short and fraction of obtainable 

bacterial mRNA is limited.  Compared to eukaryotic mRNA, most bacterial mRNA do not 

have 3’ poly-A tails[50], which complicates isolation and purification from other non-

coding RNA types when bacterial RNA preps consist of ~50-80% of rRNA and 

tRNA[51].  Although several studies have begun to identify methods to remove or 

deplete these contaminating RNA species[52,53,54,55], this comes at the risk of 

potentially altering or disrupting the true composition and nature of the environmental 

community transcriptome.  Similarly, technical challenges exist with for metaproteomics. 

Protein extraction from natural environments can be i) biased for high or low-abundance 

members within a community and ii) inefficient when exposed to complex sample 

matrices such as humic compounds commonly found in soils and sediment.  The 

separation and resolution of thousands of proteins from a consortium of microorganisms 

can prove difficult with liquid chromotraphy (LC) timescales and current MS platforms.  

Additionally, the vast dynamic range and complexity of microorganisms and proteins 

within a consortium (e.g., 10-100 trillion microorganisms inhabiting the human 

gastrointestinal tract) can hinder the ability to comprehensively identify the proteome of 

all members of a microbial community.  While both technologies have their limitations, 
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using either or both metatranscriptomics and metaproteomics, is still highly valuable in 

providing insight into the functional profile and physiological responses of a natural 

microbial community under various and extreme environmental conditions, which is not 

possible with metagenomics.   

At this point in time, metaproteomics is better suited for understanding the actual 

functional signature of the microbiota, as it directly measures and determines the 

phenotype of the cells being studied.  Metatranscriptomics (mRNA abundance) does not 

always provide a direct correlative link to protein activity[56], since the final gene 

products (proteins) can can be constitutively expressed and post-transcriptionally 

modified.  Additionally, mRNA abundance is an unreliable estimator for the 

corresponding proteins’ abundance[57,58,59].  Therefore, protein expression should not 

be directly predicted from mRNA expression data.  Unlike metatranscriptomics, 

metaproteomics directly provides measurement information about protein abundances, 

turnover, post-translation modifications, and protein-protein interactions not possible 

with metatransciptomics.  We will focus on proteomics and metaproteomics in the 

human microbiome from this point on. 

1.3: Metaproteomics of Microbial Communities 

Shotgun proteomics is a term commonly used to represent a variety of experimental 

(2D-PAGE and LC) and analytical methodologies (mass spectrometry) that identify the 

composite set of expressed gene products (proteins/proteome) collected from cells of a 

microorganism, organ, or tissue.  Similarly but distinct, metaproteomics, as first defined 

by Wilmes and Bond, is identification of the suite of proteins that are derived directly 

from an environmental consortia that can contain a mixture of several microorganisms, 

and that cannot be binned into species or organism types[60].  Like shotgun DNA 

sequencing, shotgun proteomics consists of digesting proteins into peptides, which can 

be more easily separated by gel electrophoresis and/or liquid chromatography prior to 

analysis via mass spectrometry.  Traditionally, shotgun proteomics has been used to 

catalogue all proteins from a single prokaryote (e.g., E. coli) or eukaryotic organism 

(e.g., S. cerevisiae) grown in culture under variable, but controlled, growth conditions to 
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evaluate the phenotypic changes as reflected by the measured proteome.  Meanwhile, 

developments in high resolution mass spectrometry, LC-based separation, and genomic 

sequencing led to the viability of community proteomics of natural environmental 

samples (metaproteomics) as first demonstrated by the large-scale proteome 

measurements of the microorganisms inhabiting the AMD[42].  From this point on, 

shotgun proteomics was also no longer restricted to using cultivable organisms or 

artificially created mixtures of known proteins in culture.  With the current state and 

adaptation of MS, metaproteomics has transitioned from low complexity communities 

consisting of few dominant organisms[5], to much more complex ecosystems such as 

soil with 103 – 106 taxa per gram of soil[28,61], human gut microbiome with 500-3,000 

bacteria species[62], and the oral microbiome with 500-700 bacteria 

species[18,20,63,64,65]. 

In an attempt to identify the entire protein complement of a microbial community, 

shotgun MS-based proteomics has been the most effective and comprehensive tool to 

date.  This involves the generation and identification of thousands of peptides in a single 

sample.  Protein identifications are generated by matching experimental tandem mass 

spectra (MS/MS) against a peptide sequence database(s) using well-established 

programs, such as SEQUEST, Mascot, and X!Tandem, to identify peptides (peptide-

spectrum matching)[66,67,68].  The accurate interpretation and assignment of MS/MS 

spectra is the first step in the informatics data processing pipeline, called database 

searching (discussed further in chapter two).  Therefore, a relevant genome or 

metagenome (protein database) is the necessary starting point to infer biological 

meaning from complex environmental metaproteomes.  Hence, the depth and quality of 

DNA sequencing have a significant impact on protein database searching. Relative to 

single microbial isolates, the complexity and sequence diversity (strain- and species-

level variation) and reduced coverage of community metagenomic sequences can pose 

many challenges for metaproteomics.  As additional metagenomes are acquired and the 

sequencing technologies and depth of coverage improve, this will correlate with an 

increase in protein identification and deeper proteome coverage of complex, human 
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microbial community metaproteomes using a metagenome(s) as the foundation for MS 

peptide-spectrum matching.   

1.4: Human microbiome  

Like other environmental microbial communities, the human microbiome is a complex 

and dynamic system that plays an important role in many aspects of human physiology.  

The human microbiome (i.e., the host of our microbial symbionts) not only consists of 

microbes living outside the body, but internally within the oral cavity, gastrointestinal 

tract, and vagina.  Together, these microbes (microbiota) outnumber the human somatic 

and germ cells by 10:1 (Figure 1.4).  A deep understanding of human genetic and 

physiologic diversity requires characterization of our microbiome by focusing on factors 

that influence its assembly, stability, functions, and functional variations.  The Human 

Microbiome Project (HMP) is currently focused on generation of large datasets 

describing the microbial lineages and genes present in our gut communities.  A central 

challenge will be to move beyond compositional information and develop ways of 

determining how these communities operate to influence human health as well as 

disease predisposition. 

 

Figure 1.4: The complex healthy human gut microbiome (mixture of human, bacteria, 

and digested food components) and microbial diversity in human feces. Micrograph 

courtesy of Janet Jansson, LBNL. 
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Fortunately, with the advent of the HMP[14,69], a multitude of human-habitat 

associated microbial metagenomes have been sequenced and are publically available 

for researchers to use for additional investigations to help improve our understanding of 

the human microbiome. In addition, a number of human-derived microbial reference 

genomes[70] have been sequenced and are publically available; however, the vast 

majority of microorganisms have yet to be cultured.  Currently, >1,000 microbial 

reference genomes collected from various sites of the human body including the mouth, 

skin, gut, and vagina are publically available.  Therefore, when a metagenome is not 

available or representative for a particular sample, the human-derived microbial 

reference genomes could be used as a substitute for a metagenome(s).  

Metaproteomics can also take advantage of these metagenomes and human-derived 

reference genomes for protein database searches against relevant human proteome 

samples.  While metagenomic predicted protein sequence database searches provide 

highly relevant proteome information, it can be difficult to unambiguously assign 

microbial species/strain information to many proteins.  The reference genomes can be 

used to overcome this by providing definitive species/protein identifications, which can 

be used separately or as a complement to metagenomic predicted protein database 

searches[71].  Several common experimental, analytical, and informatics workflows 

suitable for MS-based proteomics will be explored in more detail with respect to their 

applicability and challenges with the human gut microbiome. 

The objective of this dissertation research is a comprehensive and mechanistic 

understanding of the microbial functional signature in the gut microbiome.  To achieve 

this goal, it was necessary to begin with a lower complexity, synthetic gut microbiome 

and then progress to a more realistic and complex human gut microbiome.  Challenges 

are present in both approaches, but both approaches provide different information that 

will eventually contribute to an overall larger understanding of how the human gut, 

normal or diseased, functions with our microbial counterparts.  For both approaches, 

liquid chromatography coupled with tandem mass spectrometry will be used to 

characterize the gut microbial community proteomes of human twins and gnotobiotic 

mice. 
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1.4.1: Shotgun proteomics of a model human gut microbiome 

It has become clear that the human gut manages to function in symbiosis with an 

indefinite number of microorganisms which are necessary for normal gut function.  For a 

less complex, systematic approach, gnotobiotic mice were used as a model system due 

to the ability to control what microbial flora is present in the gut.  Collaborator Dr. Jeffrey 

Gordon (Washington University, St. Louis, MO) has sequenced a multitude of genomes 

from members of the two dominant phyla present in the normal distal human gut 

microbiota: the Firmicutes and the Bacteroidetes[62,72].  To explore the interactions 

between the Bacteroidetes and Firmicutes in vivo, adult germ-free mice were colonized 

by the Gordon group with either: two, seven, or twelve human-derived microorganisms.  

For example, to examine the fundamental interactions between these two phyla in gut 

biomes, germ-free mice were colonized with either B. thetaiotaomicron or E. rectale, or 

both (chapter 3). These gnotobiotic mice provided a novel model system in which to 

study not only microbial mono- versus bi-association, but up to twelve microbial 

inhabitants at a single point in time.  The overall goal of this initial two-member 

community study was to demonstrate proteomic measurements on gut microbiomes 

from gnotobiotic mice.  With increasing complexity, the goal was to (i) improve 

experimental and informatics applications to resolve closely-related species within a 

low-complexity system (chapter 4) and (ii) elucidate information about the functional 

activities of these low complexity microbial systems under various dietary conditions 

(chapter 5).  The results presented in chapters 3, 4, and 5 emphasize the value of 

combining gnotobiotics with high resolution proteomics as a strategy for developing the 

experimental and computational pipeline needed to characterize gene expression in 

more complex, human body habitat-associated microbial communities.   

1.4.2: Metaproteomics of the human gut microbiome 

The composition and stability of the gut microbiota can be disrupted by external factors 

influencing the likelihood of developing inflammatory bowel diseases (IBD) and the 

propensity for obesity.  IBD can be divided into two disease categories: Ulcerative 

Colitis and Crohn’s Disease. Crohn’s is a chronic, relapsing, immunologically mediated 
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disorder that can have severe physical consequences.  The current hypothesis is that 

this disease is due to an overly aggressive immune response to a subset of commensal 

enteric bacteria.  Studies to date on IBD have suggested that the disorder may be 

caused by a combination of bacteria and host susceptibility.  Until recently, no study has 

reported the use of advanced integrated systems biology techniques such as 

metagenomics and metaproteomics, for the characterization of the natural microflora in 

Crohn’s patients.  

A non-targeted MS-based approach is ideal for studying complex communities 

based on its ability to directly measure expressed proteins from complex environmental 

matrices.  This approach was applied to elucidate the differences and functional 

activities of commensal microbiota between monozygotic concordant (genetically 

identical twins with the same trait) and discordant (genetically identical twins, but differ 

phenotypically for a trait) human twins with and without Crohn’s disease with a focus on 

biological inference (chapter 6 and 8) in addition to method development (chapter 7).  

1.5: Metaproteomics informatics for the gut microbiome 

A challenge in MS-based proteomics is “protein inference” and the ability to accurately 

assign a peptide to the protein from which it originated.  This peptide-protein 

assignment is often complicated by homology between proteins of different microbial 

strains/species found in environmental communities.  In a protein database containing 

multiple bacterial reference genomes, gene redundancy between multiple 

strains/species belonging to the same genera can make it difficult to accurately assign a 

unique peptide to a MS/MS spectrum.  Erickson et al. published a method whereby i) 

only matched metagenomic derived protein databases were searched against the same 

samples’ tandem mass spectra (multiple metagenomes are not concatenated into one 

FASTA protein database) and ii) for proteins identified across multiple samples used for 

comparison, a clustering approach was used to cluster identified proteins with peptides 

that have >80% sequence identity to reduce the level of peptide and protein 

redundancy[71].  For the human gut microbiome, Cantarel et al., Erickson et al. and 

Roojers et al. suggest that if a matched metagenome is available, it should be used as 
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the protein database for the same metaproteome sample to comprehensively identify 

many MS/MS spectra without massive redundancy.  If a matched metagenome is not 

available, a synthetic metagenome can be created by concatenating available 

metagenomes with relevance to the body site of interest, as proposed by Verberkmoes 

et al. and/or use some combination of the publically available human-derived reference 

genomes from the human microbiome project (HMP)[73]. 

Although matched metagenomes are highly desirable for several reasons, the 

human-derived bacterial reference genomes have sufficient sequencing coverage 

where the protein sequences are full length.  Metagenomic sequencing of 

environmental samples are not often sequenced to a sufficient depth to contain the 

complete gene repertoire; as a result, the predicted genes are often fragmented, 

resulting in incomplete protein sequences in a database.  However, because many of 

the genomic sequences captured from an environmental sample do not map to any 

available reference genome, relying solely on reference genomes for metaproteomic 

protein identification limits the proteins identified to only those in found in sequenced 

organisms, which is a very small proportion of the total bacteria that is cultivable from 

the HM.  Additionally, the human microbiome is estimated to contain trillions of bacterial 

cells and thousands of bacterial species, many of which are uncharacterized.  Because 

the majority of these bacteria have not been sequenced, their proteomes are likewise 

undecipherable.  As a result, these ‘unknown’ bacteria and proteins (hypotheticals) 

cannot be assigned to MS/MS spectra with a protein database that contains only a 

collection of known sequenced reference isolate genomes.  Additionally, the human-

derived reference genomes do not have any disease-representation or individual 

sequence/strain variations, whereas a matched metagenome is usually derived from the 

same human individual sample that may be associated with some disease (e.g., ileal 

Crohns disease or gingivitis).  An approach that uses either a metagenome or 

genome/metagenome database search strategy will be able to capture the presence of 

these unknown microorganisms/proteins and sequence variations which can more 

accurately represent and reflect the entire metaproteome of the human microbiota being 

studied.  Finally, careful attention should be given to using only reference isolate 
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genomes, because unidentified and uncharacterized microorganisms and their proteins 

are equally important in revealing the function of the human microbiome. 

In conclusion, the quality of environmental protein databases, whether it be a 

matched or relevant metagenome(s) or a collection of reference genomes, and 

database searching is a critical step and in many MS-based studies it is the bottleneck 

in the informatics workflow and metaproteomics pipeline.  With the exponential increase 

in size, availability, and complexity of metagenomic sequence data from the human 

microbiome[25], metaproteomics investigators will be severely affected and hindered by 

the quality of the metagenomes in terms of obtaining full length contigs (incomplete 

protein encoding genes) and subsequently the accuracy of annotation, degree of 

technological sequencing errors, and impractical size of databases to generate reverse 

databases and accurately predict false discovery rates (FDRs) using traditional 

methods.  There is a strong need for a new database search engine that is compatible 

with large environmental protein databases that takes into account many of the 

complications described above.  Additionally, new informatics workflows that may 

include a combination of both protein database searching and de novo peptide 

sequencing may prove to be highly beneficial for covering the range of both known 

(database predicted proteins; chapter 7) and assist in revealing the unknown proteins 

that may not be sequenced (ie, due to low abundance) and/or are missed in the 

assembly of metagenomic sequence reads. 

1.6: The future of metaproteomics in the HM 

While metaproteomics has advanced significantly beyond low resolution two-

dimensional gel electrophoresis (2DE), many obstacles still remain.  Not only is 

metaproteomics heavily reliant upon mass spectrometry technologies, but also on the 

foundation of protein database searching, the metagenomes.  To improve protein 

identification using MS-based proteomics, we will need the quality (e.g., sequence 

lengths, assembly and annotation) of metagenomic-predicted protein databases to 

improve in parallel.  However, given the error rates in genomic sequencing, 

technologies that rely solely on database searching with genomes and/or metagenomes 



	   15	  

may not be as effective or desired in the future, but some alternative(s) and/or a 

combination of methodologies that will provide for metaproteomics to achieve a deeper 

and wider level of proteome coverage in the human microbiome.  The initial lack of 

metagenomic information hindered many environmental community studies from 

performing comprehensive and reliable protein identification.  However, investigators 

are now readily sequencing environmental communities (ie, cost of sequencing has 

decreased with the simultaneous improvement of DNA sequencing techologies such as 

Illumina) where they can also be used for matched and/or relevant metagenomic–

predicted protein database searches.  With large-scale DNA sequencing efforts, 

metaproteomics-based functional analyses will simultaneously improve for protein 

identification in microbial communities inhabiting the human microbiome. 

In order to cope with the large and increasing quantities of sequence data that 

has been acquired by large-scale sequencing efforts in the human microbiome, 

metaproteomics will equally require advanced technology and vast informatics 

resources to manage and preserve its significance within the ‘omics’ field.  However, 

given the advancement and cost of sequencing technologies, the scientific community is 

driving towards smaller and smaller sequence read lengths from Sanger (~1,000bp) to 

454 (~500bp) and now Illumina (75-100bp), which could potentially impede the 

advancement of metaproteomics by limiting the ability to achieve full length protein 

sequences in communities.  While the sequencing depth of coverage and error rate is 

equally important for metagenomics and metaproteomics, the lack of full-length protein 

sequences can be equally if not more detrimental to protein identification and biological 

inference.  Revolutionary tools and integrated ‘omic’ studies are highly sought after to 

enable the study of the web of events rather than a static snapshot of the activities 

taking place in the human microbiome.   

Future MS-specific developments include the optimization of up-front cellular 

lysis and protein extraction methods in addition to the development of new high-

throughput hybrid mass spectrometers capable of higher resolution and mass accuracy.  

While protein extraction methods are straightforward when applied to culture-based 

microorganisms, these methods are not always efficient or non-biased for the in situ 
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extraction of proteins from complex environmental matrices.  As seen with soil and 

sediment samples, efficient cell lysis and extraction can be technically challenging.  

However, as investigators continue to adapt and improve lysis and extraction protocols 

for environmental samples[74] (chapter 4), protein identification will benefit significantly 

by increasing the accessibility, depth, and coverage of proteins contained in 

complicated environmental matrices such as human feces.  Additionally, a direct cell 

lysis and protein extraction method of samples collected from the human microbiome 

may prove to be more efficient and/or representative of the microbial community 

compared to indirect methods that enrich for microorganisms.  To characterize the 

metaproteome of the human microbiota one step further would incorporate the analysis 

of post-translational modifications and strain-level variants in addition to 

protoegenomics, where we can use metaproteomics and identified peptides to refine 

metagenomes and gene predictions to assist in the identification of false starts/stops, 

misassembled contigs, gene boundaries, and incorrect protein annotations.  However, 

in order to accurately assess and correct these critical issues with high confidence, the 

acquirement of and use of high mass accurate mass spectrometric data is vital.  High 

mass accurate mass spectrometers that are capable of discriminating all amino acids 

will be essential to filter and control for false positives as the size and redundancy 

increases with higher complexity environmental communities such as those in soil and 

the human microbiome. 

As described above, protein redundancy and peptide degeneracy is a challenge 

and scales substantially with environmental communities such as the human gut.  Due 

to the level of protein redundancy found in higher complexity microbial communities, it is 

difficult to assign and suggest that one species/strain is uniquely responsible for a 

specific function within the community using MS/MS spectral abundance.  With current 

informatics workflows, it is often challenging to identify 1) to which proteins the 

measured peptides originated from, 2) to which organisms the identified proteins belong 

to, and 3) to estimate an accurate peptide or protein false discovery rate[75,76].  Even 

with the use of high mass accuracy, the available informatics algorithms are not capable 

of differentiating and classifying peptides that are not only shared amongst multiple 
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proteins, but between species and strains regardless of the database type (reference 

genomes and/or a matched or relevant metagenome) that is used for complex 

environmental communities.  While many algorithms assign and differentiate unique 

from non-unique (shared) peptide identifications, a large portion of the peptide 

identifications are non-unique, complicating the accuracy of biological inference in 

environmental communities.  Adaptations of either the available informatics workflows 

or the generation of new algorithms may prove to be more effective, accurate, and 

computationally higher throughput due to the sizes of metagenomic-derived protein 

databases for dealing with peptide and protein redundancy on a large-scale with 

environmental communities. 

Other challenges that remain include the ability to assess the “complete” or entire 

bacterial functionality of the human microbiome due to i) the biological dynamic range of 

low abundant proteins and on a broader level, microbial species/strains with variable 

abundance in the same sample and ii) dynamic range limitations of the mass 

spectrometer instrumentation.  With improvements in peptide separations (LC) and 

technological developments over the past couple of years, the dynamic ranges have 

increased by 1-2 orders of magnitude[77].  Technological developments have increased 

ion transmission and speed while delivering ultra-high resolution and accurate mass 

data as seen in the LTQ-Velos and LTQ-Oribtrap Velos[78] that have provided new 

capabilities to achieve deeper coverage of less abundant proteins.  More recently, the 

Orbitrap Elite was released with a novel high-field mass analyzer that increases the 

speed, sensitivity, and dynamic range of complex proteome samples.  Nevertheless, in 

spite of these partially solved challenges, metaproteomics is already providing 

remarkable insight into the functional activities of the gut and oral microbiota with 

technological advancements that will provide unrivaled capabilities for future 

metaproteomics analyses of the human microbiome.  

With increasing large-scale DNA sequencing efforts, metagenomics will drive the 

emerging field of metatranscriptomics and metaproteomics in the human microbiome.  

With innovation and new developments emerging in MS-based proteomics, the scientific 

community will have access to many more capabilities to study the metaproteome of the 
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human microbiome.  For example, it is anticipated that proteomics will be capable of 

identifying all isoforms and modifications (e.g., PTMs) on a large scale in the future.  To 

achieve this, not only will shotgun proteomics (bottom-up) continue to prevail in its 

applications, but also higher-throughput top-down analysis of proteins will emerge as a 

necessity.  It is the combination of both approaches, with advancement of all areas 

within mass spectrometry-based proteomics including technology and informatics 

workflows, which may serve as the revolutionary tool to fully characterize environmental 

community metaproteomes in the human microbiome. 
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1.7: Scope of the dissertation  

This dissertation encompasses a set of experimental and informatics methods and 

advancements that have enabled biological inference of the highly complex and diverse 

human gut microbiome.  As described above, the human gut microbiome is highly 

complex and diverse with thousands of microbial species.  Therefore, to 

comprehensively identify and characterize the metaproteome of each microbial member 

inhabiting the gut can be challenging as described throughout this dissertation.  Chapter 

2 will provide a detailed experimental and methodological overview and platform for 

successful applications of MS-based proteomics to microbial communities collected 

from complex gut-related sample matrices (ceca and feces).  As described in chapter 2, 

different approaches have been proposed and described as viable methods to 

effectively characterize the proteomes of gnotobiotic mice and metaproteomes of 

human individuals.  An approach that focuses on a less complex and carefully designed 

gut microbiota allows for the focused study of human-derived microbial structure, 

cooperation, competition and adaptation in vivo as described in chapters 3-5.  Chapter 3 

will introduce the first application of MS-based proteomics to a human-derived microbial 

community in gnotobiotic mice.  In this chapter, we define the interactions between two 

members of the Firmicutes and the Bacteroidetes that are commonly represented in the 

human gut microbiota.  The functional differences between B. thetaiotaomicron and E. 

rectale are revealed through an integrated approach of genomics, transcriptomics and 

proteomics.  This chapter lays the framework for comparing and developing new 

methods to increase protein identifications and coverage of individual microbes within a 

defined consortium as described in chapter 4. Chapter 4 will describe and compare 

several up-front sample processes for the lysis and extraction of proteins from a higher 

complexity, 7-member microbial community composed of only phylotypes belonging to 

Bacteroidetes.  Chapter 5 will use the previous two chapters as a guide for both 

experimental applications and biological inference of a 12-member microbial 

consortium. This chapter will not only focus on characterizing the community proteome 

as a single entity, but each individual species and their responses to diet perturbations.     

In contrast to chapters 3-5, an approach that directly measures the expressed 
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metaproteome of a highly complex gut microbiome derived from feces can more 

accurately represent the diversity and abundances of a human gut microbiome as 

described in chapters 6-8.  Chapter 6 will introduce the first application of high 

throughput MS-based metaproteomics to human gut microbiomes.  This chapter 

specifically describes the capabilities of the first LC-MS application to healthy gut 

microbiomes collected from adult feces and establishes a baseline for the biological 

inference of healthy metaproteomes.  This work lays the groundwork for developing new 

integrated informatics workflows to increase the identification and coverage of 

metaproteomes using a variety of metagenomic sequencing and assembly strategies as 

described in chapter 7.   Chapter 7 will deliver a new integrated 

metagenomic/metaproteomic approach that uses metagenomic sequence reads as a 

database to search against matched tandem MS/MS spectra collected from a healthy 

human twin pair.  Using the new methodology and informatics workflow discussed in 

chapter 7, chapter 8 will highlight the benefits of this method with increased protein, 

peptide, and spectra identifications in both healthy and diseased gut microbiomes.  

Compared to the previous two chapters, this chapter highlights the significant 

improvements and capabilities of MS-based metaproteomics in the revelation of a core 

gut microbiome in addition to the shared and functional differences in healthy and 

diseased (Crohn’s disease) metaproteomes.  Finally, chapter 9 will summarize the 

experimental, technological and informatics methods that served as the platform to 

permit in-depth biological inference of complex human-gut microbial metaproteomes of 

healthy and disease. 
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Chapter Two 

Development of an integrated experimental/computational omics platform for 
human gut microbiome research 

Part of the introduction is adapted from the ‘proteomics and metaproteomics’ 
chapter in ‘The Human Microbiome’ book (CABI with editor Dr. Julian Marchesi) 
written by Alison R Erickson (2012 release date). 

2.1: Introduction 

Metaproteomics has advanced from the protein identification in low-complexity 

ecosystems (AMD)[42] to highly complex microbial communities inhabiting the soil, 

ocean, and the human microbiome (HM).  The capability to identify hundreds to 

thousands of proteins in the HM is predicated on experimental optimization of sample 

collection and lysis/preparation methods, high throughput liquid chromatographic 

separation coupled to tandem mass spectrometry (MS/MS), and integration with 

genomics and metagenomics to perform sequence database searching (Figure 2.1). 
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Figure 2.1: Experimental design for human gut microbiome sample collection and 

integrated metagenomic / metaproteomic MS characterization. 

The collection of microbial cells and extraction of proteins from the human gut-

associated microbiota is the one of the most important steps in the experimental design 

of MS-based proteomics to insure accurate representation of the collective microbiota 

that is sampled and sufficient biomass for all downstream processes and MS analysis.  

The primary goals for MS-based community proteomics are: efficient sample 

processing, peptide separation, high sequence coverage of proteins and the proteome, 

and coverage of high and low abundant organisms (dynamic range).  Presently, a 

multitude of sample processing methods for microbial cell lysis, protein extraction, 
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denaturation and digestion, and purification are available to perform error-prone tandem 

mass spectrometry.  In general, there are two general methods for microbial cell lysis 

where a sample is collected for proteomics and either i) derived, processed, and lysed 

directly (in situ) from the source (i.e., feces, tissue biopsy) where both microbial and 

human cells are included (direct approach) or ii) the collected sample is enriched for 

microbial cells to eliminate all human proteins and contaminants via centrifugation 

(ultra- or differential centrifugation; indirect approach).  Currently there is no widely 

accepted or approved method suggesting that either the direct or indirect approach is 

better or worse than the other for metaproteomics of HM related samples, and this will 

be a key focus of part of the research under this dissertation.  

Mass spectrometry is the most comprehensive tool available for large-scale 

proteomics[79] and metaproteomics for several reasons.  MS is high-throughput, 

reproducible, unbiased, and highly versatile, with applications to a variety of sample 

types ranging from solids, gases, small molecules, to peptides and proteins (single, 

mixtures, or communities).  MS can provide high detection sensitivity, resolution, and 

mass accuracy, unlike traditional methods of Western blotting.  In addition, MS can be 

coupled with separation techniques to increase the dynamic range of higher complexity 

samples.  A multitude of mass spectrometers are increasingly available and range 

based on their i) ionization source, ii) mass analyzer, and iii) data processing and ion 

detection source.  The first component in the proteome measurement is the ionization 

source for proteins and peptides to be analyzed by MS.  This can be accomplished with 

two primary ionization methods: matrix-assisted laser desorption ionization (MALDI)[80] 

and electrospray ionization (ESI)[81].  The second critical component is the mass 

analyzer, which sorts and measures ions based on their mass-to-charge ratios (m/z).  

The most common mass analyzers include 1) trapping mass spectrometers: Ion trap, 

Orbitrap, and Fourier transform-ion cyclotron resonance (FT-ICR) that use dynamic 

electrostatic or magnetic confinement, 2) ion-beam mass spectrometers: quadrupoles 

(Q) and time-of-flight (TOF) that utilize spatial resolution.  Ion traps are generally most 

suited for bottom-up proteomics and LC-MS/MS of complex proteomes and mixtures.  

FT-ICR instruments are generally suited for top-down proteomics and PTM identification 
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due to its wide m/z range, high resolution (500,000 FWHM) and accuracy (< 1 ppm), 

however, the scan rate is much slower compared to the linear ion trap.  The widely used 

triple quadrupole (QqQ) instrument contains a series of three quadrupoles (Q) that 

allows for selected/multiple ion reaction monitoring (SRM and MRM).  Most 

investigators use the QqQ platform for targeted proteomics investigation rather than 

comprehensive proteome identification and coverage.  Finally, TOF mass analyzers can 

be used for either top-down or bottom-up proteomics with high duty cycle, unlimited 

mass range, and low cost, however, low resolution limits its general application.  Novel 

hybrid instruments integrating more than one mass analyzer (e.g., LTQ-FT-ICR, LTQ-

Orbitrap, and QqTOF) have evolved from single mass analyzer instruments to combine 

multiple features (Figure 2.2) to provide more superior, faster, and robust measurement 

possibilities.  For example, the newest revolution is the novel dual-pressure linear ion 

trap mass spectrometers LTQ Velos and LTQ-Orbitrap Velos with increased ion 

transmission, more efficient isolation and dissociation, greater resolution, and faster 

scan rates (compared to the LTQ-XL)[78].  For complex metaproteomes, this instrument 

permits higher acquisition rates while simultaneously isolating more low-abundant 

peptides and proteins. 

 

Figure 2.2: Schematic of the hybrid LTQ-Orbitrap[82].  The Orbitrap performs high 

resolution full MS scans and the linear trapping quadrupole performs MS/MS.  
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For the technical reasons described previously, mass spectrometry is an 

unparalleled analytical tool that has shown to be successful in its application to human 

microbiome-related samples.  Briefly, several studies have applied a variety of MS 

platforms to the human gut and oral microbiome, such as the work by Klaassens et al. 

to use MALDI-TOF mass spectrometry to analyze the infants’ gastrointestinal tryptic 

peptides[47].  While this study established the role of MS and metaproteomics in the 

human microbiome, it was very limited in protein and proteome coverage, with 55 

excised protein spots and only one identified microbial protein with 91% identity to 

Bifidiobacterium.  The lack of identifications may have been a result of the experimental 

technique (i.e., low resolution 2D gels), MS platform, and lack of peptide separation.  

VerBerkmoes et al. and Erickson et al. applied 2D-ESI-LC-MS/MS on a LTQ-Orbitrap 

mass spectrometer, specifically exploiting its’ high mass accuracy capabilities to acquire 

low false discovery rates of peptides and proteins in these complex microbial 

communities[26,71].  Similarly, Rooijers et al. used an LTQ-Orbitrap mass 

spectrometer, but did not focus on high mass accurate identifications for their analyses 

of the human gut microbiota[83].  Hongwei and Rudeny et al. both used an LTQ mass 

spectrometer without the Orbitrap for all MS analysis on human whole saliva[48,84].  

Grant et al. used a 7 T LTQ FT mass spectrometer for the analysis of human GCF to 

study the oral microbiome[49].  LC-ESI-MS/MS and hybrid mass spectrometers are the 

technology of choice for high-throughput peptide and protein identification[78] featuring 

greater sensitivity, acquisition rates, and resolution to accurately and comprehensively 

identify and characterize complex metaproteomes as those in the human microbiome.   

While up-front sample collection, preparation, and selection of the most 

appropriate MS platform are important for complex human microbiota samples, the final 

post-MS/MS steps are critical for data interpretation and biological inference.  Finally, 

the last step in the shotgun proteomics methodology and pipeline is informatics.  Protein 

identifications are generated by matching MS/MS spectra against a sequence 

database(s) to identify the most accurate peptide-spectrum matches (Figure 2.3).  The 

correct interpretation and assignment of such MS/MS spectra to peptides is the major 

step in the informatics data processing pipeline, called database searching.  This step is 
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not only heavily reliant upon MS/MS quality, but the quality and accuracy of a sequence 

database.  A ‘sequence database’ is a FASTA formatted file that contains the entire 

theoretical proteome and sequences that are predicted from a genome (e.g, bacterial 

isolate) or metagenome (e.g., microbial community).  Thus, we are limited to only 

matching spectra to the peptides that are found in the sequence database, hence, 

mutated or alternatively spliced genes, and post-translationally modified peptides will 

not be identified.  Although having a sequenced genome or metagenome for the exact 

same biological (protein) sample is extremely valuable for MS-based peptide-spectrum 

matching, a metagenome is of higher complexity compared to a single genome.  The 

simplicity of peptide-spectrum matching with, for example, a well-characterized bacterial 

genome (e.g., E. coli), via MS database searching is not as straightforward with a 

metagenome(s).  The traditional isolate/genome-based approaches and methodology 

for DNA sequencing, assembling, and predicting genes, thus, proteins for well-studied 

model organisms, although routine and widely accepted, may not provide the most 

expansive and reliable gene sequences for increasing both protein identifications and 

proteome coverage via MS-based proteomics for community samples. 
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Figure 2.3: Mass spectrometry protein database searching workflow. 

For each of the methodological steps and parameters described previously, this 

dissertation will focus on using a variety of sample processing methods (indirect and 

direct), hybrid ion trapping mass spectrometers (LTQ-Orbitrap), and protein database 

searching to optimize and examine the metaproteomes to provide an unprecedented 

molecular level glimpse into the complex human gut microbiome of both human 

individuals and gnotobiotic mice.     
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sodium dodecyl sulfate (SDS)) were acquired from Sigma Chemical Co. (St. Louis, MO) 

and were used as supplied without further purification.  Modified sequencing grade 

trypsin (Promega, Madison, WI) was used for all protein digestions. HPLC-grade water 

and acetonitrile were obtained from Burdick & Jackson (Muskegon, MI), and 99% formic 

acid was purchased from EM Science (Darmstadt, Germany). 
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2.3: Sample collection 

The selection of host subjects and body sites is a critical step for representing the 

collective metaproteome of the human microbiota.  The majority of subjects that have 

been selected to represent the metaproteome of the HM include human, but also 

gnotobiotic mice that have been colonized with human-derived microbes to control for 

and monitor a less complex, but representative human gastrointestinal microbiota[37].  

The use of culture-independent techniques for the collection of cells representative of a 

specific microbial metaproteome niche(s) within the human microbiome can be 

challenging for several reasons.  The invasiveness, quantity, quality, and preservation 

of sample collection is important for maintaining an intact, native proteome that has not 

been altered or disrupted such that biological and technical variation is minimal.  For 

example, biological variation would occur if the proteome were not treated (lysed and 

denatured) immediately upon removal from freezing temperatures where the proteome 

would begin experience changes as a result of active endogenous proteases. 

Therefore, minimization of both technical (LC-MS/MS-related) and biological variation 

will provide for more accurate biological inference relative to the microbiota, sampling 

subject, and site.  Sampling sites have included feces and ceca to represent the human 

gastrointestinal microbiome[26,37,47,71,83] where microbial cells are typically 

separated and enriched from the raw human fecal material to remove exfoliated human 

epithelial cells, interfering food debris and other contaminating compounds.  Klassens et 

al. was one of the first to apply metaproteomics to processed human fecal samples 

(infant).  Klassens and colleagues used mechanical homogenization with glass beads 

and centrifugation to enrich for microbial cells and remove debris.  Proteins were then 

extracted via bead beating. A second, more comprehensive study was performed on 

adult human fecal samples described from Verberkmoes et al. where healthy human 

feces was processed with a five-cycle differential centrifugation method published by 

Apajalahti et al.[85].  Microbial cells were lysed and proteins extracted via a small-scale 

microbial biomass protocol[86].  This protocol was also adapted by Mahowold et al. for 

gnotobiotic mice (chapter 3) and by Erickson et al. for healthy and diseased human 

subjects (chapter 8). 
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2.3.1: Gnotobiotic mice 

Gnotobiotic mice were used as a human model system to control the microbial diversity 

of the microbiota present in the gut.  A collaborator, Dr. Jeffrey Gordon and his research 

group at the Washington University in St. Louis performed all microbial inoculations and 

cultivations of the gnotobiotic mice (Figure 2.4).  Dr. Gordon has sequenced genomes 

from several members of the two dominant phyla present in the normal distal human gut 

microbiota: the Firmicutes and the Bacteroidetes.  To explore the interactions between 

the Bacteroidetes and Firmicutes in vivo, adult germ-free male mice were gavaged with 

a mixture of sequenced human-derived microorgansims, ranging from a binary mixture 

of two bacteria (binary community), seven-members, and finally, a twelve-member 

community.  qPCR analysis of both feces and cecal contents indicated that at the time 

of sacrifice, the microbial species had colonized the distal gut of recipient mice.  Unlike 

the binary communities containing two evolutionarily distinct microbes (Bacteroides 

thetaiotaomicron and Eubatcterium rectale), a second set of adult germ-free mice were 

colonized with 7 sequenced human gut-derived microbes belonging to the same phyla, 

Bacteroidetes.  After comparing the proteomes of these binary communities to the 

proteomes acquired from the 7-member communities, the focus shifted to sample 

processing optimization to better suite “cecum” and feces.  The traditional method of cell 

lysis was not as efficient for lysing cecal material nor did it provide a thorough sampling 

of the individual microbes’ proteome.  Thus, the initial goals for the 7-member 

community study were to achieve deeper and wider coverage of the ceca proteome 

prior to in depth biological analyses.  Lastly, with the improvements and accumulation of 

an advanced mass spectrometer (LTQ-Orbitrap Velos), Dr. Gordon scaled up the 

complexity of the microbial consortium to twelve human gut-derived microorganisms 

consisting of the same seven phylotypes used in the 7-member consortium in addition 

to four Firmicutes and one Actinobacteria. 
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Figure 2.4: Gnotobiotic mouse isolator used to rear pups to adulthood (figure courtesty 

of Dr. Jeffrey Gordon at Wash. Univ.). 

 Adult male germ-free mice belonging to the NMRI inbred strain were colonized 

via gavage with of either 108 Colony Forming Units (CFU) of B. thetaiotaomicron VPI-

5483 or a log-phase culture of E. rectale, or both.  All mice were fed a standard diet rich 

in complex plant polysaccharides.  Organisms were present in equivalent numbers in 

the inoculum.  Distinct microbial samples were obtained from the distal gut (cecum) of 

eight gnotobiotic mice provided by Dr. Jeffrey Gordon and Michael Mahowald.  Two 

mice were not colonized with any bacteria (germ-free control); two were colonized only 

with B. thetaiotaomicron; two were colonized with a mixture of both B. thetaiotaomicron 

and E. rectale; and the last two were colonized only with E. rectale.  

Dr. Gordon’s group provided a total of seven cecal samples for the 7-member 

community proteomics experiments.  The C57BL/6 mice, labeled as 2, 3, 5, and 7-10, 

were gavaged with an equal inoculum of the following species: Bacteroides caccae, B. 

ovatus, B. uniformis, B. WH2, B. thetaiotaomicron, B. vulgatus, and Parabacteroides 

distasonis and fed a standard BK diet ab libitum.  The total microbial does was ~ 8.7 x 

107 corresponding to 1.2-1.3x107 CFUs/microbe.  
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Dr. Gordon’s group provided a 12-member community of gut-derived 

microorganisms consisting of the same seven phylotypes used in the 7-member 

consortium (Bacteroides caccae, B. ovatus, B. uniformis, B. WH2, B. thetaiotaomicron, 

B. vulgatus, and Parabacteroides distasonis) in addition to four Firmicutes (Dorea 

longicatenta, Ruminococcus obeum, Clostridium spiroforme, and C. scindens) and one 

Actinobacteria (Collinsella aerofaciens).  This 12-member consortium was selected for a 

diet oscillation study in fourteen gnotobiotic mice where ORNL only received the ceca 

belonging to four mice.  There are two treatment groups for which two mice consumed a 

high fat and simple sugar diet (termed ‘western’ diet) and the other two other mice 

consumed a standard high-protein BK diet.  

2.3.2: Human gut swedish twin cohort 

Human fecal samples from normal, concordant, and discordant human twins with and 

without Crohn’s Disease were provided by a collaborator, Dr. Janet Jansson (Lawrence 

Berkeley National Lab).  The purpose of these studies is to apply proteogenomic 

techniques to understand the physiology of complex microbial communities in 

concordant and discordant twins with Crohn’s disease.  Highly representative, complex 

gut microbiomes were extracted from bulk human fecal samples (estimated >1011 

bacteria cells/g of feces) from a total of 6 monozygotic twin pairs (Table 2.1) including: 1 

set of healthy twins (6a and 6b), 1 set of concordant twins with Crohn’s disease 

inflammation localized in the colon (CCD; 9a and 9b), 2 sets of concordant twins with 

Crohn’s disease inflammation localized in the ileum (ICD; 10a and 10b, 15a and 15b) 

and 2 sets of ICD discordant twins (16a and 16b, 18a and 18b, ICD and healthy 

respectively), via differential centrifugation[85] to obtain enriched microbial pellets.  The 

resulting bacterial cell pellets were immediately frozen at –70°C and shipped overnight 

to the Oak Ridge National Laboratory (ORNL).   
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Table 2.1: Twin cohort sample descriptions and details for all subjects, healthy, ileal Crohn’s disease (ICD), and colonic 

Crohn’s disease (CCD). 

 

Sample ID Birth year Phenotype Sex NOD2 Status Gastro-enteritis Age at diagnosis Surgery (year)
6a 1951 Healthy F nd Yes - -
6b 1951 Healthy F nd No - -
9a 1947 CCD, Non-stricturing, Non-penetrating M wt No 41 -
9b 1947 CCD, Non-stricturing, Non-penetrating M wt No 40 -
10a 1962 ICD, Stricturing F wt Yes 23 ileal res + right hemi (1985)
10b 1962 ICD, Stricturing F wt Yes 24 ileocec res (1986)
15a 1953 ICD, Non stricturing, Non-penetrating M snp 8 m/w No 23 ileal res (1980)
15b 1953 ICD, Non-stricturing, Non-penetrating M snp 8 m/w No 23 ileocec res (1976)
16a 1954 ICD, Penetrating F wt No 20 ileal res + right hemi (1974)
16b 1954 Healthy Co-twin F wt No - -
18a 1953 ICD, Non-stricturing, Non-penetrating M wt No 20 ileal res + right hemi (1973)
18b 1953 Healthy Co-twin M wt No - -

Abbreviations: ileal res, ileal resection; right hemi, right sided hemicolectomy; ileocec res, ileocecal resection; nd, no data; wt, wildtype
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2.4: MS-Based Sample Preparation 

There are several major steps in MS-based shotgun proteomics that follow in the order 

of i), separation and/or in situ lysis of the bacteria from the environmental matrix and, ii) 

extraction, denaturation, and digestion of proteins into peptides and, iii) separation and 

fragmentation of peptides in a mass spectrometer and, iv) peptide-spectrum matching 

(PSM) (Figure 2.5).  Several protocols are available and complement the delicate 

intricacies (e.g., quantity biomass, complexity of sample matrix, and diversity of 

community membership) that come with processing samples collected from the 

environment for metaproteomics.  Widely accepted methods for the cellular lysis and 

extraction of proteins from complex microbial communities for metaproteomics analysis 

include a thermally assisted detergent-based cellular lysis (sodium dodecyl sulfate, 

SDS) method[74], a small-scale microbial biomass experimental approach[86], 

sonication[87,88], freeze-thaw cycles[89], French press[60] and published methods 

described above for HM-related metaproteome samples. 
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Figure 2.5: General MS-based proteomics experimental, analytical, and informatics 

pipeline. 

Available and tested cellular lysis buffers include detergents (e.g., SDS, CHAPS, 

and Triton X-100), chaotropes (urea and guanidine), acid-labile surfactants (PPS silent 

surfactant) and many other commercially available buffers to disrupt bacterial cells with 

or without physical or mechanical disruption prior to protein extraction.  Several 

precautions must be taken if a detergent is selected due to interference with binding, 

elution, and ionization of peptides during tandem MS experiments.  To eliminate 

contamination and interference with detergents and mass spectrometers, several 

metaproteomics studies[26,42,86,90] selected to use an indirect extraction approach 

and chaotropes (ie, guanidine) to enrich and lyse microbial cells and denature proteins.  

These methods were also dependent upon the type of peptide separation that would be 

applied following protein denaturation and digestion, that is, an online 2D-LC separation 

rather than 2D-PAGE.  For the third and fourth major steps, protocols for protein 
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denaturation and digestion of microbial environmental metaproteomes range where 

several methods include protein precipitation (ie, trichloroacetic acid (TCA) or ethanol) 

prior to denaturation and digestion to concentrate proteins away from contaminants (ie, 

small molecules and interfering environmental-related compounds) that were not 

eliminated further upstream with indirect extraction methods by centrifugation.  Chourey 

et al. has shown that protein precipitation (TCA) was beneficial in eliminating humic 

compounds and other interfering substances commonly found in soil 

metaproteomes[74] and could be also improve protein purification for other complex 

environmental matrices such as human feces. Protein digestion is one of the most 

critical steps because it involves the reduction of intact proteins to peptides that are 

suitable for MS analysis (10-20 amino acids), which relies heavily upon sufficient lysis 

and solubilization of all cells in order for proteases (e.g., trypsin) to access the entire 

surface area of proteins for effective digestion.  The final selection of one method 

should be based on the available starting biomass quantity and environmental sample 

type and quality (matrix type (ie, degree of exopolysaccharides and interfering humic 

and phenolic compounds) and feasibility for purification).   

Although many of the described protocols are suitable for a variety of samples, 

there are potential biases that range with: i) the indirect (enrichment) approach and its’ 

efficiency of bacterial extraction via density and differential centrifugation, ii) presence of 

other organisms (e.g., fungi, protozoa, and eukaryotes), iii) lysis of bacteria with certain 

properties (i.e., gram negative versus positive), iv) extraction of proteins with diverse 

properties (i.e., cytosolic versus membrane proteins and fractions) directly from natural 

environments, and v) the efficiency of digestion has not all been resolved for complex 

samples collected from the HM.  There are many challenges that stem from processing 

environmental communities for efficient recovery of proteins including those mentioned 

above in addition to contamination with other interfering compounds imbedded in the 

surrounding matrix if they are not eliminated prior to MS analysis and bias in the 

quantitative and qualitative recovery of proteins. 
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2.4.1: Gnotobiotic mice and human twin cohort 

The gnotobiotic mouse gut microbial communities were treated differently for each 

study.  Similar to the human twin cohort studies, the binary community cecal contents 

were processed via a single tube cell lysis method[86] and proteins digested into 

peptides with trypsin.  All eight samples were coded and mass spectrometry 

measurements conducted in a blinded fashion. Each of the individual cecal contents 

collected for the 7-member community were processed differently for method 

comparisons and development and is described in more detail under chapter 4.  Using 

the results from chapter 4, the 12-member microbial community cecal contents were 

solubilized in SDS lysis buffer and lysed mechanically by sonication and heat.  

Following a TCA precipitation, the precipitates were resolubilized and reduced in 8M 

urea and DTT and digested with trypsin. 

The bacterial cell pellets (~100mg) that were extracted from bulk human fecal 

samples were lysed; proteins were denatured and reduced, and digested into peptides 

with trypsin using the protocol developed by Thompson et al.[86].  These samples were 

used throughout chapters 6-8. 

2.5: Liquid Chromatography 

Complex biological samples often contain thousands to hundreds of thousands of 

proteins and can be a challenge in terms of total comprehensive intact protein 

identification.  Therefore, proteins and proteomes are generally digested into smaller 

products (peptides) that are technically easier to separate, measure, and identify 

compared to intact proteins.  However, following proteolytic digestion, a complex 

environmental sample can contain hundreds of thousands to millions of peptides.  

Therefore, complex peptide digests are fractionated by either a one or multiple 

chromatographic dimensions or electrophoretic steps to reduce the complexity of 

peptides analyzed at a single time point by mass spectrometry (Figure 2.1). 

Since the use of and coupling of two-dimensional gel electrophoresis (2DE), 

SDS-PAGE, and mass spectrometry with environmental communities[60,91], the 
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scientific community has moved towards using other gel-less alternatives, such as, 

higher throughput protein and peptide separation via LC coupled to mass 

spectrometers.  This transition has enabled the high resolution identification of a few 

thousands of proteins from cultured bacteria (e.g., R. palustris[92]) to an environmental 

microbial community[42].  For LC-MS, either a single-dimensional (1D) or orthogonal 

two-dimensional chromatographic system could be used to separate proteins or 

peptides online or offline[93], however, complex mixtures can overwhelm the capacity of 

a single dimension.  Therefore, a “multi-dimensional” separation is better suited for 

complex mixtures and it is the current standard for large-scale proteomics consisting of 

two- or three-step peptide fractionation.  Yates and colleagues founded the technique 

that is referred to as “multidimensional protein identification technology” (MudPIT) 

where orthogonal 2D chromatography is used to separate complex peptide mixtures 

prior to MS analysis[94,95,96].  The most popular MudPIT setup consists of i) strong 

cation exchange (SCX) chromatography followed by ii) reversed-phase (RP) 

chromatography to achieve peptide separation prior to MS/MS[96].  SCX 

chromatography serves as the primary dimension that separates peptides based on 

charge where it has an increased loading capacity compared to RP which separates 

peptides by their hydrophobicity while simultaneously eliminating any salts in the 

sample.  Compared to 2DE and 1D-LC, the MudPIT technique has the advantage of 

being higher throughput, higher resolution and reproducible with both the 

chromatography and identified proteins, and it is unbiased to a range of proteins with 

variable and extreme pIs, MW, location (membrane or cytosol) and abundance. 

In the human microbiome, both separation technologies have been applied in a 

variety of ways.  Klaassens et al. demonstrated for the first time that 2D-PAGE and 

protein identification via matrix-assisted laser desorption (MALDI)-time of flight (TOF) 

mass spectrometry was applicable to study the metaproteome of the gut microbiome in 

human infants using infant fecal material[47].  On the contrary, LC-MS-based 

proteomics was first demonstrated in the adult human gastrointestinal 

microbiome[26,71] with the application of 2D-(SCX-RP)-LC-MS/MS to human fecal 

material.  Rooijers et al., on the other hand, used gel electrophoresis for protein 
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separation followed by in gel protein digestions[83].  The tryptic peptides were then 

separated via 1D-(RP)-LC coupled to electrospray MS/MS on a Thermo LTQ-Orbitrap.  

For the oral microbiome, Hongwei et al. separated tryptic peptides via a 3-step 

fractionation method[84].  First, peptides were separated by isoelectric focusing (IEF) 

using a free-flow electrophoresis system (FFE) and fractionated into a 96-microtiter 

plate.  Each pI fraction was subjected to preliminary MS/MS to identify fractions with the 

highest complexity of peptides to be characterized and separated further.  For the final 

selected IEF fractions, the peptide fractions were purified (to remove high MW 

polymers) and fractionated by SCX (second fractionation step) using a step-gradient.  

The SCX peptide fractions were then desalted, concentrated, and loaded onto and 

separated on a RP column (third fractionation step) where peptides were directly eluted 

and analyzed by ESI-MS/MS on a thermo LTQ linear ion trap.  Similarly, Rudney et al. 

adapted the same protocol[84] to focus on the metaproteomics analysis of the bacterial 

component, taxonomy and metabolic activity, of the human oral microbiome using 

human whole saliva.  Grant et al. also investigated the oral microbiome in healthy 

humans using gingival crevicular fluid (GCF) and a non-invasive gingivitis model that is 

used to study the inflammatory response as a result of increasing bacteria over 21 

days[49].  GCF samples were pooled and treated with dithiothreitol, heat, and 

proteolytically digested with trypsin prior to quantitative labeling with iTRAQ (discussed 

in further detail under ‘quantitative proteomics in the HM’).  iTRAQ labeled samples 

were separated and fractions collected offline using SCX-HPLC.  The fractions were 

vacuum centrifuged, desalted, and peptides acidified with formic acid prior to LC-

MS/MS.  Lastly, tryptic labeled peptides were separated online using 1D-(RP)-LC and 

eluted directly into a thermo LTQ-FT mass spectrometer.  In conclusion, 

metaproteomics can be applied to complex samples collected from the human 

microbiota using a variety of separation technologies as described (2DE, 1D- or 2D-LC, 

and/or multiple fractionation steps online or offline).  In my opinion, an approach that 

uses a “multidimensional” separation approach (e.g., MudPIT) will provide the most 

comprehensive and representative coverage of peptides and proteins from the human 

microbiome. 
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2.5.1: Gnotobiotic mice and human twin cohort 

For all gnotobiotic mouse (chapters 3-6) and human twin (chapters 6-8) studies, the 

microbial proteins were extracted and processed for 2D-LC-MS/MS using an Ultimate 

HPLC system (Dionex, Sunnyvale, CA) coupled to a LTQ, LTQ-Orbitrap, or LTQ-

Orbitrap Velos (Thermo Fisher Scientific, San Jose, CA).  At a flow rate of ~100 µL/min 

(set on the Ultimate pump), the peptide mixtures of all twelve samples were separated 

across a split-phase column (packed in-house with SCX and C18 reverse-phase 

chromatographic resins) that was connected to a 15-cm C18 analytical column by a 12 

step, multidimensional high-pressure liquid chromatographic elution consisting of eleven 

salt pulses (0-500 mM ammonium acetate) followed by a 2 hour reverse-phase gradient 

from 100% solvent A (A: 95% H2O, 5% acetonitrile, 0.1% formic acid) to 50% solvent B 

(B: 30% H2O, 70% acetonitrile, 0.1% formic acid).  The last salt pulse was followed with 

a gradient from 100% solvent A to 100% solvent B.  During a single chromatographic 

separation (~22-24 hr run), mass spectral data acquisition was performed in data-

dependent mode under the control of Xcalibur software (version 2.0.7; Thermo Fisher 

Scientific). 

2.6: Mass spectrometric measurements 

As described previously under 2.1, the selection of a mass spectrometer is important 

and dependent upon several factors including: (i) the proposed biological questions (ie, 

comprehensive characterization or targeted analysis of a subset of proteins) and (ii) the 

type and complexity of the biological sample (single or mixture of proteins or 

environmental sample; dynamic range of proteins).  A linear ion trap mass spectrometer 

would be best suited for a comprehensive characterization of a proteome whereas a 

QqQ platform is preferred for targeted proteomics investigation.  Due to the complexity 

of the samples (i.e., microbial communities) used in both the human microbiome and 

gnotobiotic mice, and the desire to comprehensively characterize the proteomes, ion 

trap mass spectrometers and hybrid mass spectrometers are ideally best suited for 

these bottom up studies due to their rapid scan time, resolution, and mass accuracy.   
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2.6.1: Gnotobiotic mice and human twin cohort 

All cecal and fecal samples were analyzed in technical duplicates using a two-

dimensional (2D) nano-LC MS/MS system with a split-phase column (RP-SCX)[97] on a 

LTQ-XL, LTQ-Orbitrap (Figure 2.2), or LTQ-Orbitrap Velos (Thermo Fisher Scientific) 

with 22 hr runs per sample (LC as previously described). The mass spectrometer 

settings were as follows: one full MS scan was acquire in the Orbitrap (m/z 400-1,700) 

at 30k resolution followed by five or ten data-dependent MS/MS in the LTQ at 35% 

normalized collision energy. Two microscans were averaged for both full and MS/MS 

scans and centroid data were collected for all scans, with dynamic exclusion enabled at 

1. 

2.7: Proteome informatics 

Comparative and quantitative proteomics is the evaluation of how similar and/or 

different environmental conditions affect protein expression and abundance.  Following 

the acquisition of qualitative and in many studies quantitative proteome MS data, 

bioinformatics tools, such as DTASelect[98] and software packages, such as 

Scaffold[99,100,101] sort and filter through these massive MS datasets to provide the 

best quality peptide-spectrum matches (PSM) and their corresponding protein 

identifications.    

As described previously, protein database searching, an informatics workflow 

that deduces the amino acids of a peptide sequence and assigns it to a corresponding 

tandem mass spectrum (MS/MS) (Figure 2.3), has been widely adopted by MS-based 

proteomics for the high throughput identification of proteins.  Database search engines, 

such as SEQUEST[66], Mascot[67], and Xtandem![68], assign peptide sequences to 

MS/MS spectra by correlating the experimentally identified peptide to a theoretical 

peptide sequence derived in silico from a known FASTA formatted protein database.  

The peptide sequences with the highest correlation scores are reported in the final 

output.  As a result, the protein database informatics platform is high throughput and 

applicable to range of protein complexity, from a single or mixture of proteins to a 

complex environmental community metaproteome.  The alternative approach to assign 



	   41	  

MS/MS is de novo peptide sequencing where no prior knowledge of proteins or a 

protein database is required. 

2.7.1: PSM and database searching 

For the first informatics platform, protein database searches, mass spectrometers first 

collect precursor ions (intact peptide ions; MS scan) that are selected for fragmentation 

by collision with inert gas (e.g., collisional induced dissociation; CID) into fragment ions 

(amino acids; MS/MS scan).  In total, three to ten of the most abundant precursor ions 

(MS) are selected for MS/MS generating thousands of MS/MS during one experiment 

(2-24hrs) that represent fragmented peptides of a samples’ protein(s).  It is the quantity, 

quality (signal versus noise), and complexity of these MS/MS that necessitates the need 

for informatics workflows that can sort, filter, and confidently assign PSMs with high 

accuracy at a computationally reasonable speed.  Currently, there are several open-

source and commercial tandem mass spectrometry database search engines that are 

widely available.  The freely open-source search engines include X!Tandem[68], 

OMSSA[102], Myrimatch[103].  The commercially available search engines Mascot[67], 

from Matrix Science, and SEQUEST[66], from Thermo Fisher Scientific, have become 

the most widely used and are referred to as the golden standards.  However, each 

database search algorithm has its advantages and disadvantages in terms of spectral 

filtering, scoring, configuration, compatible formats, and speed/performance.  Several of 

these factors are dependent on the quality and relevance of the protein database to the 

measured sample and its’ proteome.  For example, if a high quality experimentally 

identified PSM cannot be assigned to a protein because it is missing in the protein 

database, these high quality PSMs will go unidentified.  As demonstrated by Cantarel et 

al. with the human gut microbiome, up to several thousands of high-quality MS/MS may 

not be identified as a result of the database even with having a matched 

metagenome(s)[76].  Therefore, the quality and selection of a protein database and/or 

metagenomes(s) is a critical component of the protein database search informatics 

workflow.  Additionally, the larger and all-inclusive protein sequence database(s) will 

often take longer to search hindering the performance of several search engines and 

increase the number of false positive-identifications. 



	   42	  

 Currently, there are many ways of estimating error associated with peptide 

identifications.  Until the field of proteomics comes to a conclusion on the proper way of 

reporting proteomic data, different versions will exist.  For these large-scale studies, 

false discovery rates were used in order to differentiate between true and false peptide 

identifications.  The overall false discovery rate (FDR) was estimated using the formula:  

FDR= 2[nrev/(nrev
 + nreal)]*100 where nrev is the number of peptides identified from the 

reverse database and nreal is the number of peptides identified from the real 

database[96]. 

2.7.1.1: Gnotobiotic mice and human twin cohort 

All MS/MS spectra were searched with the SEQUEST algorithm[66] [(enzyme type, 

trypsin; Parent Mass Tolerance, 3.0; Fragment Ion Tolerance, 0.5; up to 4 missed 

cleavages allowed (internal lysine and arginine residues), and fully tryptic peptides only 

(both ends of the peptide must have arisen from a trypsin specific cut, except N and C-

termini of proteins)] and filtered with DTASelect/Contrast[98] at the peptide level [Xcorrs 

of at least 1.8 (+1), 2.5 (+2) 3.5 (+3) and deltCN of either 0.08 or 0.0].  Only proteins 

identified with two fully tryptic peptides from the MS runs were considered for further 

biological study. Monoisotopic theoretical masses for all peptides identified by 

SEQUEST were generated and compared to observed masses.  Observed high 

resolution masses were extracted from .raw files from the full scan preceding best 

identified spectra; parts per million (ppm) calculations were made comparing each 

identified peptides’ observed and theoretical mass.  When quality MS/MS spectra didn’t 

have an observed mass (low intensity) due to an unassignable charge state for the 

precursor ion, a mass of 0 was reported and ppm was calculated as infinity.   

Detailed database descriptions and search strategies can be found for each of 

the following chapters under their “experimental methods.”  The FDRs were also 

calculated for the majority of experiments and are described in more detail for each 

chapter.  
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2.7.2: De novo peptide sequencing in the microbiome 

As mentioned, the second alternative workflow for protein identification from tandem 

mass spectra is de novo peptide sequencing[104,105,106].  Protein identification via 

database searching will not be able to identify peptides that are not in the database.  

Additionally, with the use of high mass resolution and mass accuracy MS data, de novo 

peptide sequencing can be used for the identification of amino acid polymorphisms and 

post-translation modifications (PTMs).  De novo sequencing calculates the mass 

difference between two peaks in a single mass spectrum and if the difference 

corresponds to an amino acids’ mass, the algorithm is able to assume that the two 

peaks are adjacent fragment ions in the peptide sequence.  However, to assess this 

mass difference, differentiate signal versus noise, and identify a specific amino acid with 

high accuracy, investigators need high mass accuracy MS/MS data to eliminate the 

degree of interference.  Several de novo sequencing algorithms are currently available 

and include PepNovo[105,107], DirecTag[108], PEAKS[109], MSNovo[110] and 

Vonode[111].  As described by Cantarel et al., the first de novo peptide sequencing 

application (high confidence sequence tags found by both PEAKS and PepNovo) to the 

human gut microbiome, conservative de novo sequencing can be highly beneficial for its 

revelation of novel peptides that were not identified using a database search engine 

(SEQUEST) and increase in protein discovery[76].  Additional details and results are 

described in chapter 7. 

2.8 Summary 

The experimental and analytical methods described above provides a robust, high-

throughput, and highly reproducible platform for the application of MS-based proteomics 

to characterize complex human gut microbiomes collected from gnotobiotic mice ceca 

and human feces.  Each step of the general MS-based proteomics workflow: i), sample 

collection, ii) MS-based sample preparation, iii) liquid chromatography, iv) MS/MS 

measurement and, v) peptide-spectrum matching is important and intended to provide a 

solid foundation for optimum identification and coverage of human gut metaproteomes.  

This workflow results in the assignment of hundreds of thousands of spectra and the 
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identification of thousands of proteins and peptides with a deeper characterization and 

understanding of the gut microbiota as highlighted in the following analyses. 
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Chapter Three 

Characterizing a model human gut microbiota composed of members of its two 
dominant bacterial phyla 

Portions of the included text are adapted from: 

Michael A. Mahowald, Federico E. Rey, Henning Seedorf, Peter J. Turnbaugh, 
Robert S. Fulton, Aye Wollam, Neha Shah, Chunyan Wang, Vincent Magrini, 
Richard K. Wilson, Brandi L. Cantarel, Pedro M. Coutinho, Bernard Henrissat, 
Lara W. Crock, Alison Russell, Nathan C. Verberkmoes, Robert L. Hettich, and 
Jeffrey I. Gordon. “Characterizing a model human gut microbiota composed of 
members of its two dominant bacterial phyla.” PNAS, 2009, volume 106, issue 
14, pages 5859-5864. 

Alison R. Erickson’s contributions include experimental preparation of ceca samples for 

proteomics and all experimental LC-MS/MS measurements and analysis. 

3.1: Introduction 

The adult human gut houses a bacterial community containing trillions of members 

comprising thousands of species-level phylogenetic types (phylotypes). Culture-

independent surveys of this community have revealed remarkable interpersonal 

variations in strain- and species-level phylotypes, and two commonly abundant bacterial 

phyla, the Firmicutes and the Bacteroidetes[112]. This phylum-level composition is not a 

unique feature of humans: a global survey of the guts of 59 other mammalian species 

showed a similar phylum level pattern[113]. 

Comparative analysis of five sequenced human gut Bacteroidetes revealed that 

each genome contains a large repertoire of genes involved in acquisition and 

metabolism of polysaccharides: this repertoire includes (i) up to hundreds of glycoside 

hydrolases (GHs) and polysaccharide lyases (PLs); (ii) myriad paralogs of SusC and 

SusD, outer membrane proteins involved in recognition and import of specific 

carbohydrate structures[114]; and (iii) a large array of environmental sensors and 

regulators[115]. These genes are assembled in similarly organized, selectively 

regulated polysaccharide utilization loci (PULs) that encode functions necessary to 

detect, bind, degrade and import carbohydrate species encountered in the gut habitat – 
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either from the diet or from host glycans associated with mucus and the surfaces of 

epithelial cells[116,117,118]. Studies of gnotobiotic colonized with human gut-derived 

Bacteroides thetaiotaomicron alone have demonstrated that this organism can vary its 

pattern of expression of PULs as a function of diet: e.g., during the transition from 

mother’s milk to a polysaccharide-rich chow consumed when mice are weaned[116], or 

when adult mice are switched from a diet rich in plant polysaccharides to a diet devoid 

of these glycans and replete with simple sugars (under the latter conditions, the 

organism forages on host glycans)[117,118]. 

Our previous functional genomic studies of the responses of B. thetaiotaomicron 

to co-colonization of the guts of gnotobiotic mice with Bifidobacterium longum, an 

Actinobacterium found in the guts of adults and infants, or with Lactobacillus casei, a 

Firmicute present in a number of fermented dairy products, have shown that B. 

thetaiotaomicron responds to the presence of these other microbes by modifying 

expression of its PULs in ways that expand the breadth of its carbohydrate foraging 

activities[119]. 

These observations underscore the notion that gut microbes may live at the 

intersection of two forms of selective pressure: bottom-up selection, where fierce 

competition between members of a community that approaches a population density of 

1011-1012organisms/ml of colonic contents drives phylotypes to assume distinct 

functional roles; and top-down selection, where the host selects for functional 

redundancy to insure against the failure of bioreactor functions that could prove highly 

deleterious[120,121]. 

The content, genomic arrangement and functional properties of PULs in 

sequenced gut Bacteroidetes illustrate the specialization and functional redundancy 

within members of this phylum. They also emphasize how the combined metabolic 

activities of members of the microbiota undoubtedly result in interactions that are both 

very dynamic and overwhelmingly complex (at least to the human observer), involving 

multiple potential pathways for the processing of substrates (including the order of 

substrate processing), varying patterns of physical partitioning of microbes relative to 
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substrates within the ecosystem, plus various schemes for utilization of products of 

bacterial metabolism. Such a system likely provides multiple options for processing of a 

given metabolite, and for the types of bacteria that can be involved in these activities.  

All of this means that the task of defining the interactions of members of the 

human gut microbiota is daunting, as is the task of identifying general principles that 

govern the operation of this system. In the present study, we have taken a reductionist 

approach to begin to define interactions between members of the Firmicutes and the 

Bacteroidetes that are commonly represented in the human gut microbiota. In the 

human colon, Clostridium cluster XIVa is one of two abundantly represented clusters of 

Firmicutes. Therefore, we have generated the initial two complete genome sequences 

for members of the genus Eubacterium in Clostridium cluster XIVa, (the human gut-

derived E. rectale strain ATCC 33656 and E. eligens strain ATCC 27750) and compared 

them with the draft sequences of 25 other sequenced human gut bacteria belonging to 

the Firmicutes and the Bacteroidetes. The interactions between E. rectale and B. 

thetaiotaomicron were then characterized by performing whole genome transcriptional 

profiling of each species after colonization of gnotobiotic mice with each organism 

alone, or in combination under three dietary conditions. Transcriptional data collected by 

Wash. Univ. were verified by mass spectrometry of cecal proteins collected by ORNL, 

plus biochemical assays of carbohydrate metabolism. Lastly, we examined colonization 

and interactions between these microbes from a host perspective; to do so, we 

performed whole genome transcriptional analysis of colonic RNA prepared from mice 

that were germ-free or colonized with one or both species. Our results illustrate how 

members of the dominant gut bacterial phyla are able to adapt their substrate utilization 

in response to one another and to host dietary changes, and how host physiology can 

be affected by changes in microbiota composition. 

3.2: Experimental Methods 

3.2.1: Genome comparisons 

All nucleotide sequences from all contigs of completed genome assemblies containing 

both capillary sequencing and pyrosequencer data, produced as part of the HGMI, were 
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downloaded from the Washington University Genome Sequencing Center’s website 

(http://genome.wustl.edu/pub/organism/Microbes/Human_Gut_Microbiome/) on 

September 27, 2007.  The finished genome sequences of B. thetaiotaomicron VPI-

5482, Bacteroides vulgatus ATCC 8482, and B. fragilis NCTC9343 were obtained from 

GenBank.   

For comparison purposes, protein-coding genes were identified in all genomes 

using YACOP[122].  Each proteome was assigned InterPro numbers and GO terms 

using InterProScan release 16.1. Statistical comparisons between genomes were 

carried out, as described previously[115] using perl scripts that are available upon 

request from the authors. 

3.2.2: GeneChip analysis 

Previously described methods were used to isolate RNA from a 100-300 mg aliquot of 

frozen cecal contents, synthesize cDNA, and to biotinylate and hybridize the cDNAs to a 

custom bacterial GeneChip[123]. The only modification was that in RNA isolation 

protocol 0.1mm zirconia/silica beads (Biospec Products, Bartlesville, OK) were used for 

lysis of bacterial cells in a bead beater (Biospec; 4 min run at highest speed). Genes in 

a given bacterial species that were differentially expressed in mono- versus 

biassociation experiments were identified using CyberT (default parameters) following 

probe masking and scaling with the MAS5 algorithm (Affymetrix; for details about the 

methods used to create the mask, see the Methods section of Supplementary 

Information).   

RNA was purified from proximal colon using Mini RNeasy kit (Qiagen) with on-

column DNase digestion. Biotinylated cRNA targets were prepared from each sample 

(n=4/treatment group). cRNA was hybridized to Affymetrix Mouse Genome Mo430 2 

GeneChips, and the resulting data sets analyzed using Probe Logarithmic Error 

Intensity Estimate method (PLIER+16). Fold-changes and p-values were calculated 

using Cyber-t. Significance was defined by maintaining a FDR <1% using Benjamini-

Hochberg correction[124]. 
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3.2.3: Proteomic methods 

Cecal contents were processed via a single tube cell lysis and protein digestion method 

as follows.  Briefly, the cell pellet was re-suspended in 6M Guanidine/10 mM DTT, 

heated at 60°C for 1h, followed by an overnight incubation at 37°C to lyse cells and 

denature proteins.  The guanidine concentration was diluted to 1 M with 50mM 

Tris/10mM CaCl2 (pH 7.8), and sequencing grade trypsin (Promega, Madison, WI) was 

added (1:100; wt/wt).  Digestions were run overnight at 37°C.  Fresh trypsin was then 

added followed by additional 4h incubation at 37°C.  The complex peptide solution was 

subsequently de-salted (Sep-Pak C18 solid phase extraction; Waters, Milford, MA), 

concentrated, filtered, aliquoted and frozen at -80°C.  All eight samples were coded and 

mass spectrometry measurements conducted in a blinded fashion.   

Cecal samples were analyzed in technical triplicates using a two-dimensional 

(2D) nano-LC MS/MS system with a split-phase column (SCX-RP)[97] on a linear ion 

trap (Thermo Fisher Scientific) with each sample consuming a 22 hr run as detailed 

elsewhere[92,125].  The linear ion trap (LTQ) settings were as follows: dynamic 

exclusion set at one; and five data-dependent MS/MS. Two microscans were averaged 

for both full and MS/MS scans and centroid data were collected for all scans.  All 

MS/MS spectra were searched with the SEQUEST algorithm[66] against a database 

containing the entire mouse genome, plus the B. thetaiotaomicron, E. rectale, rice, and 

yeast genomes (common contaminants such as keratin and trypsin were also included).  

To find potential food proteins, yeast and rice databases were included. The breakdown 

of each database component can be found in Table 3.1. The SEQUEST settings were 

as follows: enzyme type, trypsin; Parent Mass Tolerance, 3.0; Fragment Ion Tolerance, 

0.5; up to 4 missed cleavages allowed (internal lysine and arginine residues), and fully 

tryptic peptides only (i.e., both ends of the peptide must have arisen from a trypsin-

specific cut, except the N- and C-termini of proteins).  All datasets were filtered at the 

individual run level with DTASelect (22) [Xcorrs of at least 1.8 (+1 ions), 2.5 (+2 ions) 

3.5 (+3 ions)].  Only proteins identified with two fully tryptic peptides were considered.   
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Table 3.1: Protein sequence database components for binary microbial community 

SEQUEST database searches. 

 

For this study, false-positive rates (FPR) were used to estimate the error 

associated with peptide identifications.  The overall FPR was estimated using the 

formula: FPR = 2[nrev/(nrev + nreal)]*100 where nrev is the number of peptides identified 

from the reverse database and nreal is the number of peptides identified from the real 

database[96].  Reverse and shuffled databases were created in order to calculate 

FPRs[96,126].  A reverse database was created by precisely reversing each protein 

entry (i.e., N-terminus became C-terminus in each case) and then appended these 

reversed sequences onto the original database.  Two runs - samples 705, Run 1 and 

710, Run 2 - were randomly selected for estimating a FPR.  The observed FPR rates 

were 0.55% and 0.31% respectively for these two runs.  An additional database was 

created by randomly shuffling the amino acids of each protein rather than simply 

reversing the N-terminus and C-terminus.  A FPR was estimated using a similar formula 

as that described above except that the number of identified reverse peptides was 

replaced with the number of shuffled peptides.  A FPR was estimated for both samples, 

705, Run 1 (0.45%) and 710, Run2 (0.31%) and was similar to the rate determined by 

the reverse database method.  Datasets for calculating FPR rates are available on the 

website mentioned above. 

In addition to differentiating between true and false peptide identifications with 

FPRs, label-free quantitation methods were used to estimate relative protein 

abundance.  Several protein quantitation methods are currently available and routinely 

performed for shotgun proteomics analyses.  To estimate relative protein abundance in 

complex protein mixtures and communities, spectral counts and normalized spectral 

Database Proteins Size (MB)
B. thetaiotaomicron 4,958 2.3

E. rectale 3,188 1.36
M. musculus 34,966 19.2

Rice 66,710 36
Yeast 6,345 3.33

contaminants 36 0.02



	   51	  

abundance factors (NSAF)[127] are commonly used.  Spectral counting is based on the 

theory that the more abundant peptides are typically sampled more frequently, resulting 

in higher spectral counts.  Liu et al. has shown that spectral copy number provides a 

more accurate correlation to protein abundance than peptide count and % 

coverage[128]. NSAF, on the other hand, is based on spectral counts, but takes into 

account protein size and the total number of spectra from a run, thus normalizing the 

relative protein abundance between samples[127].    

3.3: Results and Discussion 

3.3.1: Comparative genomic studies of human gut-associated Firmicutes and 
Bacteroidetes 

Wash. Univ. produced finished genome sequences for Eubacterium rectale, which 

contains a single 3,449,685 bp chromosome encoding 3,627 predicted proteins, and 

Eubacterium eligens which contains a 2,144,190 bp chromosome specifying 2,071 

predicted proteins, plus two plasmids. We also analyzed 25 recently sequenced gut 

genomes, including (i) 9 sequenced human gut-derived Bacteroidetes [includes the 

finished genomes of B. thetaiotaomicron, B. fragilis, B. vulgatus, and Parabacteroides 

distasonis, plus deep draft assemblies of the B. caccae, B. ovatus, B. uniformis, B. 

stercoris and P. merdae genomes generated as part of the human gut microbiome 

initiative (HGMI; http://genome.wustl.edu/hgm/HGM_frontpage.cgi], and (ii) 16 other 

human gut Firmicutes where deep draft assemblies were available through the HGMI. 

We classified the predicted proteins in these two genomes using Gene Ontology (GO) 

terms generated via Interproscan, as well as according to the scheme incorporated into 

the Carbohydrate Active Enzymes (CAZy) database [www.cazy.org;[129], and then 

applied a binomial test to identify functional categories of genes that are either over- or 

under-represented between the Firmicutes and Bacteroidetes phyla. This analysis 

emphasized among other things that the Firmicutes, including E. rectale and E. eligens, 

have significantly fewer polysaccharide-degrading enzymes and more ABC transporters 

and PTS systems than the Bacteroidetes[130]. We subsequently chose E. rectale and 

B. thetaiotaomicron as representatives of these two phyla for further characterization of 
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their niches in vivo, because of their prominence in culture-independent surveys of the 

distal human gut microbiota[62,131], the pattern of representation of carbohydrate 

active enzymes in their glycobiomes and E. rectale’s ability to generate butyrate as a 

major end product of fermentation[132,133]. These choices set the stage for an 

‘arranged marriage’ between a Firmicute and a Bacteroidetes, hosted by formerly germ-

free mice. 

3.3.2: Functional genomic analyses of the minimal human gut microbiome  

3.3.2.1: Creating a “minimal human gut microbiota” in gnotobiotic mice - Young 

adult male germ-free mice belonging to the NMRI inbred strain were colonized with B. 

thetaiotaomicron or E. rectale alone (monoassociations) or co-colonized with both 

species (biassociation).  10-14 d after inoculation by gavage, both species colonized the 

ceca of recipient mice, fed a standard chow diet rich in complex plant polysaccharides, 

to high levels (n=4-5 mice/treatment group in each of 3 independent experiments). 

Moreover, cecal levels of colonization for both organisms were not significantly different 

between mono- and biassociated animals.  

3.3.2.2: B. thetaiotaomicron’s response to E. rectale - A custom, multispecies, 

human gut microbiome Affymetrix GeneChip was designed and used to compare the 

transcriptional profile of each bacterial species when it was the sole inhabitant of the 

cecum, and when it co-existed together with the other species. A significant number of 

B. thetaiotaomicron genes located in PULs exhibited differences in their expression 

upon E. rectale colonization [55 of 106; p<10-15 (cumulative hypergeometric test). Of 

these 55 genes, 51 (93%) were upregulated. 

As noted in the Introduction, two previous studies from our lab examined 

changes in B. thetaiotaomicron’s transcriptome in the ceca of monoassociated 

gnotobiotic mice when they were switched from a diet rich in plant polysaccharides to a 

glucose-sucrose chow[117], or in suckling mice consuming mother’s milk as they 

transitioned to a standard chow diet[116]. In both situations, in the absence of dietary 

plant polysaccharides, B. thetaiotaomicron adaptively forages on host glycans.  The 

genes upregulated in B. thetaiotaomicron upon co-colonization with E. rectale have a 
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significant overlap with those noted in these two previous datasets (p<10-14, cumulative 

hypergeometric test).  In addition, they involve several of the genes upregulated during 

growth on minimal medium containing porcine mucosal glycans as the sole carbon 

source[118]. For example, in co-colonized mice and in vitro, B. thetaiotaomicron 

upregulates several genes (BT3787-BT3792; BT3774-BT3777) used in degrading α-

mannosidic linkages, a component of host N-glycans as well as the diet. (Note that E. 

rectale is unable to grow in defined medium containing α -mannan or mannose as the 

sole carbon sources). B. thetaiotaomicron also upregulates expression of its starch 

utilization system (Sus) PUL in the presence of E. rectale (BT3698-3704).  This well-

characterized PUL is essential for degradation of starch molecules containing ≥6 

glucose units[134].  

Thus, it appears that B. thetaiotaomicron adapts to the presence of E. rectale by 

upregulating expression of a variety of PULs so that it can broaden its niche and 

degrade an increased variety of glycan substrates, including those derived from the host 

that E. rectale is unable to access. There are a number of reasons why the capacity to 

access host glycans likely represents an important trait underpinning microbiota function 

and stability: (i) glycans in the mucus gel are abundant and are a consistently 

represented source of nutrients; (ii) mucus could serve as a microhabitat for 

Bacteroidetes spp. to embed in (and adhere to via SusD paralogs), thereby avoiding 

washout from the ecosystem; and (iii) the products of polysaccharide 

digestion/fermentation generated by Bacteroidetes spp. could be shared with other 

members of the microbiota that are also embedded in mucus[118].  

3.3.2.3: E. rectale’s response to B. thetaiotaomicron - E. rectale’s response to B. 

thetaiotaomicron in the mouse cecum stands in marked contrast to B. 

thetaiotaomicron’s response to E. rectale. Carbohydrate metabolism genes, particularly 

GHs, are significantly overrepresented among the E. rectale genes that are 

downregulated in the presence of B. thetaiotaomicron compared to monoassociation; 

i.e., 12 of E. rectale’s predicted 51 GHs have significantly reduced expression while only 

two are upregulated. The two upregulated GH genes (EUBREC_1072, a 6-P-b-

glucosidase and EUBREC_3687, a cellobiose phosphorylase) are predicted to break 
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down cellobiose. Three simple sugar transport systems with predicted specificity for 

cellobiose, galactoside, and arabinose/lactose (EUBREC_3689, EUBREC_0479, and 

EUBREC_1075-6, respectively) are among the most strongly upregulated genes. 

Phosphoenolpyruvate carboxykinase (EUBREC_2002) is also induced with co-

colonization (GeneChip data verified by qRT-PCR assays in 2 independent experiments 

involving 3-4 mice/treatment group).  This enzyme catalyzes an energy conserving 

reaction that produces oxaloacetate from phosphoenolpyruvate. In a subsequent 

transaminase reaction, oxaloacetate can be converted to aspartate, linking this 

branching of the glycolytic pathway with amino acid biosynthesis.  

Additional data support the notion that E. rectale is better able to access nutrients 

in the presence of B. thetaiotaomicron. For example, a number of peptide and amino 

acid transporters in E. rectale are upregulated, as are the central carbon and nitrogen 

regulatory genes CodY (EUBREC_1812), glutamate synthase (EUBREC_1829) and 

glutamine synthetase (EUBREC_2543) (note that these genes are also upregulated 

during growth in tryptone glucose medium). 

3.3.2.4: Changes in E. rectale’s fermentative pathways - E. rectale possesses genes 

(EUBEC733-737; EUBEC1017) for the production of butyrate that show high similarity 

to genes from other Clostridia. This pathway involves condensation of two molecules of 

acetylCoA to form butyrate and is accompanied by oxidation of NADH to NAD+. 

Transcriptional and high resolution proteomic analyses (see below) disclosed that the 

enzymes involved in production of butyrate are among the most highly expressed in 

cecal extracts prepared from mono- and biassociated mice containing E. rectale.  

In vitro studies have shown that in the presence of carbohydrates, E. rectale 

consumes large amounts of acetate for butyrate production[133]. Several observations 

indicate that E. rectale utilizes B. thetaiotaomicron-derived acetate to generate 

increased amounts of butyrate in the ceca of our gnotobiotic mice.  First, E. rectale 

upregulates a phosphate acetyltransferase (EUBREC_1443; EC 2.3.1.8) - one of two 

enzymes involved in the interconversion of acetyl-CoA and acetate. Second, cecal 

acetate levels are significantly lower in co-colonized mice compared to B. 
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thetaiotaomicron monoassociated animals. Third, although cecal butyrate levels are 

similar in E. rectale mono- and biassociated animals, expression of mouse Mct-1, 

encoding a monocarboxylate transporter whose inducer and preferred substrate is 

butyrate[135], is significantly higher in the distal gut of mice containing both E. rectale 

and B. thetaiotaomicron versus E. rectale alone (p<0.05).  The cecal concentrations of 

butyrate we observed are similar to those known to upregulate Mct-1 in colonic 

epithelial cell lines[135]. Higher levels of acetate (i.e. those encountered in B. 

thetaiotaomicron monoassociated mice) were insufficient to induce any change in Mct-1 

expression compared to germ-free controls. 

The last enzyme in E. rectale’s butyrate production pathway, butyrylCoA 

dehydrogenase/electron transfer flavoprotein (Bcd/Etf) complex (EUBREC_0735-0737; 

EC 1.3.99.2), offers a recently discovered additional pathway for energy conservation, 

via a bifurcation of electrons from NADH to crotonylCoA and ferredoxin[136]. Reduced 

ferredoxin, in turn, can be reoxidized via hydrogenases, or via the membrane-bound 

oxidoreductase, Rnf, which generates sodium-motive force. The upregulation and high 

level of expression of these key metabolic genes when E. rectale encounters B. 

thetaiotomicron indicates that E. rectale not only employs this pathway to generate 

energy, but to also accommodate the increased demand for NAD+ in the glycolytic 

pathway. Consistent with these observations, we found that the NAD+/NADH ratio in 

cecal contents was significantly increased with co-colonization. A high NAD+/NADH 

ratio promotes high rates of glycolysis, since NAD+ is a required cofactor and may 

represent an adaptation by E. rectale to increased nutrient uptake.  

The pathway for acetate metabolism observed in this simplified model human gut 

community composed of B. thetaiotaomicron and E. rectale differs markedly from what 

is seen in mice that harbor B. thetaiotaomicron and the principal human gut 

methanogenic archaeon, Methanobrevibacter smithii. When B. thetaiotaomicron 

encounters M. smithii in the ceca of gnotobiotic mice, there is increased production of 

acetate by B. thetaiotaomicron, no diversion to butyrate (and no induction of Mct-1; 

[123] and B. Samuel and J. Gordon, unpublished observations), increased serum 

acetate levels, and increased adiposity compared to B. thetaiotaomicron mono-
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associated controls. In contrast, serum acetate levels and host adiposity (as measured 

by fat pad to body weight ratios) are not significantly different between B. 

thetaiotaomicron monoassociated and B. thetaiotaomicron-E. rectale co-colonized 

animals (n=4-5 animals/group; n=3 independent experiments; data not shown).  

3.3.2.5: Colonic transcriptional changes evoked by E. rectale-B. thetaiotaomicron 
co-colonization – We subsequently used Affymetrix Mouse 430 2 GeneChips to 

compare patterns of gene expression in the proximal colons of mice that were either 

germ-free, monoassociated with E.rectale or B. thetaiotaomicron, or  co-colonized with 

both organisms (n=4 mice per group; total of 16 GeneChip datasets). In contrast to the 

small number of genes whose expression was significantly changed (1.5-fold cut off, 

<1%FDR) after colonization with either bacterium alone relative to germ-free controls, 

co-colonization produced significant alterations in the expression of 508 host genes. 

Expression of many of these genes also changed with monoassociation with either 

organism, and in the same direction as seen after co-colonization, but in most cases the 

changes evoked by B. thetaiotaomicron or E. rectale alone did not achieve statistical 

significance. Unsupervised hierarchical clustering of average expression intensity 

values derived from each of the four sets of GeneChips, revealed that the E.rectale 

monoassociation and E.rectale-B.thetaiotaomicron bi-association profiles clustered 

separate from the germ-free and B. thetaiotaomicron monoassociation datasets.  

 Ingenuity Pathway Analysis (www.ingenuity.com) disclosed that the list of 508 

host genes affected by co-colonization was significantly enriched in functions related to 

cellular growth and proliferation (156 genes), as well as cell death (142 genes). A 

number of components of the canonical wnt/β catenin pathway known to be critically 

involved in controlling self-renewal of the colonic epithelium were present in this list. 

Many of the changes observed in biassociated mice are likely to be related to the 

increased influx of butyrate, generated by E. rectale, into colonic cells.  Butyrate, a 

histone deacetylase inhibitor that evokes pronounced transcriptional changes in 

different types of cultured epithelial cell line[137,138,139,140], is the preferred energy 

substrate for colonic enterocytes[141].  While transcriptional changes caused by 

butyrate differ depending upon the cell lineage, state of cellular differentiation, and 
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cellular energy status[139,140,142,143] in vitro and in vivo studies have shown that it 

affects expression of genes involved in proliferation, differentiation and 

apoptosis[137,142]. 

 As mentioned above, as part of its adaptation to the presence of E. rectale, B. 

thetaiotaomicron upregulates a number of genes involved in the harvest of host glycans. 

Included among these B. thetaiotaomicron genes are components of a fucose utilization 

operon linked to the production of a bacterial signal that induces synthesis of intestinal 

mucosal fucosylated glycans, and also catabolism of fucose from O-glycans[144]. 

GeneChip profiling of colonic gene expression disclosed that co-colonization results in 

increased expression of Fut2 (α-1,2 fucosyltransferase), Fut4  (α-1,3-

fucosyltransferase), plus nine other genes involved in the synthesis of mucosal glycans 

(glycosphingolipids and O-glycans). By increasing host production of glycans, B. 

thetaiotaomicron can benefit itself, and through its metabolic products, E. rectale.  

3.3.2.6: E. rectale’s colonization levels and production of butyrate are affected by 
host diet - In a final series of experiments, we assessed how E. rectale and B. 

thetaiotaomicron were affected by changes in host diet. Groups of age- and gender-

matched co-colonized mice were fed one of three diets that varied primarily in their 

carbohydrate and fat content: (i) the standard low-fat, plant polysaccharide-rich diet 

used for the experiments described above (abbreviated ‘LF/PP’ for low-fat/plant 

polysaccharide), (ii) a high-fat, ‘high-sugar’ Western-type diet (abbreviated HF/HS) that 

contained sucrose, maltodextrin, corn starch as well as complex polysaccharides 

(primarily cellulose) that were not digestible by B. thetaiotaomicron or E. rectale, and (iii) 

a control diet that was similar to (ii) except that the fat content was 4-fold lower (‘LF/HS’ 

for low-fat, high-sugar; n=5 mice per group). Whereas B. thetaiotaomicron’s colonization 

levels were similar in all three diets, colonization of E. rectale was significantly reduced 

(five-fold) in mice fed either the LF/HS or HF/HS diets (p<0.01, heteroscedastic t-test).   

Whole-genome transcriptional profiling of both organisms showed that relative to 

the standard polysaccharide-rich chow diet (LF/PP), both the Western style HF/HS diet 

and its LF/HS control produced a significant upregulation of B. thetaiotaomicron PULs 
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involved in harvesting and degrading host polysaccharides, and a downregulation of 

several PULs involved in the degradation of dietary plant polysaccharides. E. rectale’s 

response to the HF/HS and LF/HS diets was to downregulate several of its GHs as well 

as a number of its sugar transporters. Moreover, levels of butyrate were five-fold lower 

in co-colonized mice fed these compared to the standard chow LF/PS diet [0.496 

±0.0051 µmol/g wet weight cecal contents; (LF/PP) vs. 0.095±0.002 (HF/HS) vs 

0.080±0.008 (LF/HS) (p<0.05 ANOVA)].  

These dietary manipulations lend further support to the view that B. 

thetaiotaomicron functions in this model two-member human microbiota to process 

complex dietary plant polysaccharides and to distribute to the products of digestion to E. 

rectale which, in turn, synthesizes butyrate. The response of E. rectale to the HF/HS 

and LF/HS diets can be explained by the fact that this Firmicute does not have 

predicted GHs and PLs that can process host glycans. In addition, it could not utilize 

most of the sugars we tested that are derived from mucosal polysaccharides. Finally, 

the host possesses enzymes in its glycobiome that can directly process the simple 

sugars present in these two diets. Indeed, human subjects that are fed diets deficient in 

complex polysaccharides harbor lower levels of butyrate-producing gut bacteria, 

including members of the E. rectale-containing clade[145]. Our simplified gnotobiotic 

model of the microbiota underscores the functional implications of diet-associated 

changes in the representation of this clade, not only as they relate to the operations of 

the microbiota itself but also potentially as they relate to butyrate-mediated changes in 

gut epithelial homeostasis. 

3.3.3: Proteomic studies of this simplified two-component model of the human 
gut microbiome 

Model communities such as the one described above, constructed in gnotobiotic mice, 

where microbiome gene content is precisely known and transcriptional data are 

obtained under conditions where potentially confounding host variables such as diet and 

host genotype can be constrained, provide a way to test the efficacy of mass 

spectrometric methods for characterizing gut microbial community proteomes. 
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Therefore, we assayed luminal contents, collected from the ceca of 8 gnotobiotic mice 

fed the standard polysaccharide-rich LF/PP diet: (germ-free, monoassociated, and co-

colonized; n=2 mice/treatment group representing two independent biological 

experiments).  

The measured proteomes had high reproducibility in terms of total number of 

proteins observed and spectra matching to each species.  A total of ~6,300-21,000 

spectra were identified per sample and differ based on inoculations.  For a complete list 

of the total number of identified spectra, peptides and proteins per sample and run, see 

Table 3.2.  Interestingly, the total number of identified spectra was, for the most part, 

distinct and unique to each bacterial species.  Unlike B. thetaiotaomicron and E. rectale, 

the number of identified spectra belonging to mouse was redundant: thus, a higher 

number of spectra were non-unique spectra.  The difference is evident when the total 

spectra counts are compared to unique spectra counts only.  The total average spectra 

count identified in the control (germ-free) mouse was 10,767 for sample 700 and 11, 

221 for sample 799.  The total average unique spectra count, however, decreased to 

4,394 and 4,168.  Therefore, the majority of identified mouse peptides are not unique 

within the database.  The total number of unique spectra counts per species and run 

can be found in Table 3.3.  The two co-colonized mice (710 and 810) had a total of ~ 

77% unique spectra belonging to B. thetaiotaomicron, 20% unique spectra belong to E. 

rectale, and only 3% of the two species’ combined spectra counts were non-unique.  

This suggests that the majority of identified proteins belonging to B. thetaiotaomicron 

and E. rectale are true unique identifications and these species can be easily 

differentiated by proteomics.   These values were calculated by summing the total 

number of unique spectra per species per run, followed by an average per species 

across all runs (Table 3.3). 
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Table 3.2: High resolution proteomic analyses of cecal contents from gnotobiotic mice – 

total proteins, peptides, and spectra for each sample. 

 

 

 

 

 

  

Sample Protein IDs Peptide IDs Spectra Species Inoculation

700 Run 1 716 3505 7561
700 Run 2 702 3448 7067
700 Run 4 596 2965 7019
705 Run 1 1526 11515 21228
705 Run 2 1538 11534 20051
705 Run 3 1513 9577 17119
710 Run 2 1335 9270 17910
710 Run 3 1482 9256 16839
710 Run 4 1612 10484 17635
715 Run 1 914 6388 12243
715 Run 2 894 6241 12257
715 Run 5 945 6040 11358
799 Run 1 571 2809 6338
799 Run 2 471 2355 6575
799 Run 3 449 2213 6995
806 Run 1 1407 9366 18071
806 Run 2 1424 9400 18915
806 Run 3 1358 8867 15864
810 Run 1 1409 7798 14102
810 Run 2 1509 8505 14659
810 Run 3 1431 7658 14217
817 Run 1 837 4779 10294
817 Run 2 791 4519 10346
817 Run 3 881 4880 10829

B. thetaiotaomicron+and+E. rectale

E. rectale

None (control)

B. thetaiotaomicron 

B. thetaiotaomicron+and+E. rectale

E. rectale

None (control)

B. thetaiotaomicron
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Table 3.3: High resolution proteomic analyses of cecal contents from gnotobiotic mice – 

breakdown of unique spectral counts for all species in the database for Sample Set 1 

and 2. 

 

 

  

Sample Set 1

Sample ID: 700 Run1 700 Run2 700 Run4 705 Run1 705 Run2 705 Run3 710 Run2 710 Run 3 710 Run4 715 Run1 715 Run2 715 Run5

B. thetaiotaomicron 9 8 6 17329 16455 14149 10723 10104 10596 7 23 2
E. rectale 36 23 31 22 15 6 3596 3494 3843 6817 6790 6294

M. musculus 4591 4377 4216 2324 2122 1852 1911 1827 1847 3426 3438 3317
Rice 232 254 269 171 142 105 69 46 45 121 112 98

Yeast 13 8 13 2 4 5 9 4 16 23 12 8
contams 40 32 30 37 33 19 30 24 26 30 35 27

Total: 4921 4702 4565 19885 18771 16136 16338 15499 16373 10424 10410 9746

Sample Set 2

Sample ID: 799 Run1 799 Run2 799 Run3 806 Run1 806 Run2 806 Run3 810 Run1 810 Run2 810 Run3 817 Run1 817 Run2 817 Run3

B. thetaiotaomicron 0 0 0 14403 15034 12693 9115 9562 8933 4 4 3
E. rectale 4 1 2 6 11 5 1600 1736 1658 4749 4686 5068

M. musculus 3949 4250 4306 2318 2384 1932 2260 2183 2366 3582 3739 3743
Rice 272 226 243 56 113 34 62 114 107 140 113 135

Yeast 14 12 7 4 0 4 5 9 5 16 11 3
contams 15 13 15 5 0 4 7 6 8 3 7 5

Total: 4254 4502 4573 16792 17542 14672 13049 13610 13077 8494 8560 8957
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Table 3.4 provides a summary of our analyses, including the percentage of 

mRNAs called ‘Present’ in the GeneChip datasets for which there was an identified 

protein product.  These data suggest that RNA and protein identifications are not always 

correlative.  While both datasets provide valuable insight into the two microbes function 

in the gut, there are differences for which many mRNAs were identified, but were not 

present or identified in the final protein product. The most abundant identified products 

from both microbes included ribosomal proteins, elongation factors, chaperones, and 

proteins involved in energy metabolism.  Many conserved hypothetical and pure 

hypothetical proteins were identified, as well as 10 genes in B. thetaiotaomicron whose 

presence had not been predicted in our initial annotation of the finished genome.  

Together, the results provide validation of experimental and computational procedures 

used for proteomic assays of a model gut microbiota, and also illustrate some of the 

benefits in obtaining this type of information. 

Table 3.4: Summary of proteins detected by mass spectrometry of the cecal contents of 

gnotobiotic mice. 

 

3.4: Prospectus 

These studies of a model two component human gut microbiota created in gnotobiotic 

mice support a view of the Bacteroidetes, whose genomes contain a disproportionately 

large number of glycan-degrading enzymes compared to sequenced Firmicutes, as 

responding to increasing diversity by modulating expression of their vast array of 

polysaccharide utilization loci. B. thetaiotaomicron responds to the presence of E. 

rectale by upregulating a variety of loci specific for host-derived mucin glycans that E. 

rectale is unable to utilize. E. rectale, which like other Firmicutes has a more specialized 

capacity for glycan degradation, broadly downregulates its available GHs in the 

Mono$association Bi$association Total Mono$association Bi$association Total
Detected&by&MS/MS 661 453 680 1608 1367 1687
Detected&by&GeneChip 2139 2010 2150 3798 3865 3995
GeneChip2/&MS/MS+ 7 7 8 40 21 23
MS/MS2&/GeneChip+&a 1608 1638 1603 2280 2569 2357
aPositive:is:defined:as:having:a:‘Present’:call:in:≥75%:of:GeneChips.

E.&rectale B.&thetaiotaomicron
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presence of B. thetaiotaomicron, even though it does not grow efficiently in the absence 

of carbohydrates. It also becomes more selective in its harvest of sugars and its 

transcriptional profile suggests improved access to other nutrients (e.g. there is a 

generalized upregulation of amino acid biosynthetic genes as well as a set of nutrient 

transporters that can harvest peptides). 

We have previously used gnotobiotic mice to show that the efficiency of 

fermentation of dietary polysaccharides to short chain fatty acids by B. thetaiotaomicron 

increases in the presence of M. smithii [123]. Co-colonization increases the density of 

colonization of the distal gut by both organisms, increases production of formate and 

acetate by B. thetaiotaomicron and allows M. smithii to use H2 and formate to produce 

methane, thereby preventing the build-up of these fermentation end-products (and 

NADH) in the gut bioreactor, and improving the efficiency of carbohydrate 

metabolism[123]. Removal of H2 by this methanogenic archaeon allows B. 

thetaiotaomicron to regenerate NAD+, which can then be used for glycolysis. This 

situation constitutes a mutualism, in which both members show a clear benefit.  The 

present study, characterizing the co-colonization with B. thetaiotaomicron and E. 

rectale, describes a more nuanced interaction where both species colonize to similar 

levels if carbohydrate substrates are readily available. Moreover, certain aspects of 

bacterial-host mutualism become more apparent with co-colonization, including 

increased microbial production and host transport of butyrate, and increased host 

production and microbial consumption of mucosal glycans: this mutualism is likely vital 

for the co-existence of these species. 

It seems likely that as the complexity of the gut community increases, 

interactions between B. thetaiotaomicron and E. rectale will either be subsumed or 

magnified by other ‘similar’ phylogenetic types (as defined by their 16S rRNA sequence 

and/or by their glycobiomes). Synthesizing model human gut microbiotas of increasing 

complexity in gnotobiotic mice using sequenced members of our intestinal communities 

should be very useful for exploring two ecologic concepts: (i) the neutral theory of 

community assembly which posits that most species will share the same general niche 

(profession), and thus are likely to be functionally redundant[146], and (ii) the idea that 
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both bottom-up selection, where fierce competition between members of the microbiota 

drives phylotypes to assume distinct functional roles, and top-down selection, where the 

host selects for functional redundancy to insure against failure of bioreactor functions, 

operate in our guts. 
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Chapter 4 

Optimization of a cellular lysis/mass spectrometric proteome characterization 
approach for a model 7-member gut microbial community in gnotobiotic mice 

Alison R. Erickson, Nathan P. McNulty, Nathan C. VerBerkmoes, Jeffrey I. Gordon, and 

Robert L. Hettich 

4.1: Introduction 

Mass-spectrometry (MS)-based proteomics has become very powerful in providing 

comprehensive and unbiased characterization of proteins and proteomes.  With the 

onset of multidimensional protein separations interfaced to high-performance tandem 

mass spectrometry, this experimental approach can handle substantial protein or 

peptide complexity and simultaneously achieve protein identification[95].  However, the 

complexity and ‘dynamic range’ of microbial proteomes containing thousands of 

bacterial species have hindered the ability to identify whole community proteomes, as 

compared to traditional single bacterial isolates (e.g., E. coli).  

The ‘standard’ shotgun proteomics strategy includes cellular lysis (with or without 

fractionation), protein denaturation and digestion, peptide separation via LC and 

identification via tandem mass spectrometry (MS/MS).  While much optimization has 

been invested in LC-MS/MS, experimental methods involving sample preparation (i.e., 

cellular fractionation and lysis), peptide separation (i.e., gel electrophoresis and LC), 

and MS/MS are equally important to enhance overall protein identifications in MS-based 

shotgun proteomics of complex microbial samples (i.e., soil, ocean, feces).   

Environmental microbial samples pose several challenges not characteristic of 

laboratory –based systems, such as increased dynamic range (abundance) of microbial 

species and proteins, and interferences derived from the environmental matrix.  In 

general, there are two options available where a microbial community sample is either i) 

derived, processed, and lysed directly (in situ) from the source (i.e., feces, cecum, 

tissue) with both bacterial and host cells included (‘direct approach’) or ii) enriched for 

bacterial cells to eliminate all host proteins and contaminants via centrifugation 

(‘indirect’ approach).  Environmental matrices can be problematic for the ‘direct’ lysis 
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and protein extraction approach[89] without any pre-fractionation or enrichment (i.e., 

differential centrifugation) of bacterial cells due to inference with downstream processes 

and analysis (i.e., peptide signal suppression)[74].  Widely accepted protocols for cell 

lysis and extraction of proteins from complex microbial communities for proteomic 

analysis include a thermally assisted detergent-based cellular lysis (sodium dodecyl 

sulfate, SDS) method[74], a small-scale microbial biomass experimental approach[86], 

sonication[87,88], freeze-thaw cycles[89], and French press[60].  Available and tested 

lysis buffers include detergents (e.g., SDS, CHAPS, and Triton X-100), chaotropes 

(urea and guanidine), acid-labile surfactants (PPS silent surfactant) and many other 

commercially available buffers to disrupt bacterial cells with or without physical or 

mechanical disruption prior to protein extraction.  Several precautions should be taken if 

a detergent is selected due to their interference with binding, elution, and ionization of 

peptides during tandem MS experiments.  To eliminate contamination and interference 

of detergents with mass spectrometers, several proteomics studies[26,42,43,86] opted 

to use an ‘indirect’ approach and chaotropes (i.e., guanidine) to enrich and lyse 

bacterial cells and denature proteins.  In this study, we focused on comparing methods 

that are used prior to proteolysis and LC-MS/MS with emphasis on identifying an 

efficient in situ lysis and protein extraction method.   

Due to the growing interest and desire to understand the human 

microbiome[14,69], MS-based proteomics has begun to emerge as a key player in 

understanding the functional signatures of the human gut and oral 

microbiome[26,37,47,48,49,83].  Therefore, to achieve comprehensive proteome 

coverage of samples collected from the human gut microbiota, optimization of 

experimental MS-based methods for their direct application to complex community 

samples (i.e., feces or ceca) would help increase protein identification and our 

understanding of the host-microbiota functional signatures.  A variety of methods 

including one protein fractionation (ultracentrifugation) method, five bacterial lysis 

methods, and protein (TCA) precipitation were evaluated to identify the best performing 

method for MS-based analysis of human-derived gut microbiota in germ-free 

(gnotobiotic) mice (Figure 4.1).  A model human gut microbiota of seven bacterial 
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species (B. WH2, B. ovatus, B. vulgatus, B. thetaiotaomicron, B. caccae, and 

Parabacteroides distasonis) belonging to one of two dominant gut phyla, Bacteroides, 

was inoculated in gnotobiotic mice to measure the proteomes of the microbial 

community, in addition to each individual species.  The method that provided the most 

efficient lysis and higher peptide recovery, thus, increased protein identification would 

be identified as the best overall performing method that could be applied in situ to any 

future fecal or cecal samples. 

 

Figure 4.1. Experimental design for method optimization of microbial and host cell lysis 

and protein extraction of a model human-derived gut microbial community in gnotobiotic 

mice. 
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4.2: Experimental Methods 

4.2.1: Sample collection 

Dr. Jeffrey Gordon and Nate McNulty (Wash. Univ) provided a total of six ceca samples 

for the 7-member community proteomics experiments.  The C57BL/6 adult male germ-

free mouse cecum, labeled as either 2, 3, 7, 8, 9 and 10, were gavaged with an equal 

inoculum of the following species: Bacteroides caccae, B. ovatus, B. uniformis, B. WH2, 

B. thetaiotaomicron, B. vulgatus, and Parabacteroides distasonis and fed a standard BK 

diet ab libitum.  The total microbial does was ~ 8.7 x 107 corresponding to 1.2-1.3x107 

CFUs/microbe. The cecum was harvested at 14 days post-gavage, frozen in liquid 

nitrogen immediately, and shipped overnight on dry ice to ORNL.   

4.2.2: Bacterial lysis and protein extraction 

A total of five bacterial lysis methods were each performed on single mouse cecum (~1 

mL).  As described in Figure 4.1, the following widely-accepted bacterial lysis methods 

were applied and varied with respect to each of their individual protocols: sonication (8), 

freeze-thaw cycles (3), bead-beating (2 and 7), no physical disruption (9), and chemical 

disruption via sodium dodecyl sulfate (SDS) (10) with a brief description of the protocols 

to follow.  Cecum 2 (bead-beating) was first solubilized with 1mL 6M guanidine in 0.1 

mm zirconia/silica beads and beat using a RETSCH Mixer Mill MM 400 for a total of 2 

minutes (30 second intervals with 2 minute break) at room temperature with a frequency 

of 20Hz.  The homogenized cecum was centrifuged for 5 minutes at 3,000 rpm to 

remove excess debris and pellet all beads.  The supernatant was removed and beads 

washed with 6M Guanidine.   

Cecum 7 (bead-beating) was treated using the same steps described above for 

cecum 2; however, the cecum was solubilized in 50mM Tris/10mM CaCl2 instead of 6M 

guanidine to allow for proper cell separation via ultracentrifugation.  Following 

homogenization, the collected supernatant was transferred to a glass test tube and 

centrifuged at room temperature for 1 hour at 100,000x g using a Ti 40 fixed angle rotor 

ultracentrifuge (Beckman Coulter).  The supernatant (soluble fraction) was extracted 
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away from the pellet (membrane fraction) and treated separately for protein 

denaturation and digestion.   

Cecum 3 (freeze-thaw lysis method) was initially frozen in liquid N2 for 1 minute 

followed by 60°C treatment in a water for 1 minute and repeated for a total of three 

cycles.   

Cecum 8 (sonication only method) was initially solubilized in 6M Guanidine and 

exposed to sonication for a total 5 minutes at 20% amplitude on ice.   

Cecum 9 (no physical or chemical disruption) wa processed via single tube cell 

lysis[86] and protein digestion.  The cecum  (~1mL) was suspended in 6M 

Guanidine/10mM DTT at 60°C for 1 hour to lyse cells and denature proteins.  

Lastly, cecum 10 was solubilized in 1mL SDS lysis buffer (4% w/v SDS, 100mM 

Tris•HCl, pH 8.0, 10mM dithiothreitol (DTT)) and lysed mechanically by sonication 

followed by incubation for 5 minutes at 95°C.  Cells were centrifuged at 21,000 x g.  

Following an overnight tricholoroacetic acid (TCA) precipitation, the TCA precipitates 

(protein mixtures) were resolubilized in 500uL of 8M urea, 100mM Tris•HCl, pH 8.0, and 

reduced by incubation at a final concentration of 10mM DTT for 1 hr at room 

temperature.  Samples were sonicated and an aliquot taken to determine the protein 

concentration using a bicinchonic acid-(BCA) based protein assay kit (Pierce).  

Approximately 3mg of protein was extracted were diluted with 100mM Tris•HCl, 10mM 

CaCl2, pH 8.0 to a final urea concentration below 4M.  Proteolytic digestions were 

initiated with sequencing grade trypsin (1/100, w/w; Promega) overnight at room 

temperature.  A second aliquot of trypsin was added (1/100) and diluted with 100mM 

Tris•HCl, pH 8.0 to a final urea concentration below 2M.  Following a 4 hr incubation at 

room temperature, samples were reduced to a final concentration of 10mM DTT.  The 

peptides were acidified (protonated) in 200mM NaCl, 0.1% formic acid, filtered, and 

concentrated with a 10k molecular weight cutoff spin column (Sartorius).  A total of 

~100mg of peptides were used for each LC-MS/MS experiment. 
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For ceca 3, 8, and 9 the lysed cecum (~1mL) was centrifuged at room 

temperature for 10 minutes at 3,000 rpm to pellet all debris and any small contaminating 

molecules.  An aliquot was taken from all six ceca to determine the protein 

concentration using a BCA (Pierce).  A total concentration of 3mg protein was extracted 

for protein denaturation in 6M Guanidine and proteolytic digestions as follow.  For ceca 

2, 3, 7, 8, and 9 protein extractions, the guanidine concentration was diluted from 6M to 

1M with 50mM Tris buffer/10mM CaCl2 and proteolytic digestions initiated with 

sequencing grade trypsin (1/100, w/w; Promega) overnight at 37°C to digest proteins 

into peptides.  A second aliquot of trypsin was added (1/100) and incubated for 4 hours 

at room temperature. Samples were reduced to a final concentration of 10mM DTT.  

The complex peptide solution was desalted via C18 solid phase extraction, concentrated 

and filtered (0.45um filter).  For each LC-MS/MS analyses below, ~100mg of the total 

peptide sample was used for LC-MS/MS. 

4.2.3: LC-MS/MS analysis 

Peptides were loaded onto a two-dimensional (C18 and SCX) 15cm length column 

packed in-house and separated with a 12 step, multidimensional high-pressure liquid 

chromatographic elution method using an Ultimate HPLC system (Dionex, Sunnyvale, 

CA) consisting of eleven salt pulses followed by a 2 hr reverse-phase gradient from 

100% solvent A (A: 95% H2O, 5% acetonitrile, 0.1% formic acid) to 50% solvent B (B: 

30% H2O, 70% acetonitrile, 0.1% formic acid).  The HPLC system was coupled on-line 

with an LTQ-Orbitrap XL (Thermo Fischer Scientific) via the Proxeon nanospray source.   

Full MS scans were acquired in the Orbitrap mass analyzer (from 400-1700 m/z) with 

resolution 30,000 followed by five data dependent tandem MS/MS scans in the LTQ 

with normalized collision energy of 35%.  For all sequencing events, dynamic exclusion 

was enabled.   

4.2.4: Data analyses and informatics 

All MS/MS spectra were searched with the SEQUEST v 0.27 algorithm[66] and filtered 

with DTASelect/Contrast[98] at the peptide level [Xcorrs of at least 1.8 (+1), 2.5 (+2), 

3.5 (+3)] with a deltCN 0.08.  Only proteins identified with two fully tryptic peptides from 
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the 22 hr runs were considered for further biological inference.  Tandem MS/MS spectra 

were searched against a protein sequence database (Table 4.1) containing the 7 

relevant Bacteroides species (B. WH2, B. ovatus, B. vulgatus, B. thetaiotaomicron, B. 

caccae, and Parabacteroides distasonis) in addition to 8 distractor (non-relevant) 

species, the host (mouse) genome, diet components (rice and yeast), and common 

contaminants. 

Table 4.1: Protein sequence database composition for the 7-member database 

searches. Bolded genome names are relevant microbes that were gavaged in the 

gnotobiotic mice. 

 

Genome Proteins Size (MB)
Bacteroides caccae 3855 1.772
Bacteroides ovatus 5536 2.536

Bacteroides thetaiotaomicron 4778 2.376
Bacteroides uniformis 4663 1.952
Bacteroides vulgatus 4065 1.932

Bacteroides WH2 5244 2.656
Collinsella aerofaciens 2367 0.996
Clostridium scindens 3995 1.528

Clostridium spiroforme 2465 1.016
Dorea longicatena 2970 1.18

Eubacterium rectale 3631 1.42
Faecalibacterium prausnitzii_M212 3493 1.368

Parabacteroides distasonis 3850 1.86
Ruminococcus obeum 4175 1.536
Ruminococcus torques 2875 1.124

Mouse 34966 19.2
Yeast 6345 3.33
Rice 66710 36

Common contams 36 0.02
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4.3: Results and Discussion 

4.3.1: General MS-based proteome metrics  

As first demonstrated in chapter 3, MS-based proteomics for the human gut microbiome 

in gnotobiotic mice has proven successful and applicable to in vivo gut-derived 

ecosystems[37].  However, with increasing complexity and diversity of the microbial 

community(s) membership, traditional up-front sample processing methods were 

evaluated and optimized for increased depth and coverage of proteomes derived in situ 

from cecum.  All MS experiments were performed in duplicate for each method and 

demonstrated high technical reproducibility, with an R2 ≥ 0.9184 for all six ceca 

samples.  Using general MS-based proteomics metrics (i.e., assigned spectra and 

protein identifications), a comparison of all six samples and methods suggest that 

fractionation via ultracentrifugation and protein precipitation (TCA) of the soluble fraction 

provided the greatest identification of non-redundant spectra, peptides and proteins 

(Table 4.2).   Thus, the approach used for the ‘soluble fraction’ significantly improved 

the quantity of protein and peptide identifications with a 2.72X gain in protein 

identifications from, on average, 411 to 1,118 proteins and 2.925X gain in peptide 

identifications from, on average, 1,907 to 5,578 peptides per run.  Therefore, from this 

point on, we will only focus on using the protein precipitated soluble fraction to represent 

the soluble fraction of sample and method #7. 
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Table 4.2: Proteome sample metrics of total non-redundant protein, peptide and spectra 

counts per method. 

 

 

The results found in Table 4.2 demonstrate that method #7, ultracentrifugation 

and protein precipitation performed the best based on overall MS-based metrics with a 

total sum of, on average, 4,272 proteins (3,154 membrane and 1,118 soluble proteins 

per run).  However, these numbers can be misleading due to insufficient fraction purity 

and degree of protein overlap between the two fractions.  As described further below 

(Figure 4.2), a total of 3,118 and 521 proteins are unique to the membrane and soluble 

(protein precipitation) fractions, respectively, with 1,248 shared proteins for a total of 

4,887 non-redundant proteins.  Although method #7 (ultracentrifugation) significantly 

out-performs method #2 (without ultracentrifugation) and all other methods, a gain of 

only 521 proteins were uniquely identified from the soluble TCA fraction.  Following 

closely is the second best performing lysis method #10 with, on average, 3,068 

proteins, 10,574 peptides, and 21,121 spectra per run.  Of the physical disruption 

techniques (methods 2, 3 and 8), 8 and 3 (sonication and freeze-thaw, respectively) 

performed the best followed by #9 and #2 (guanidine only and bead-beating, 

respectively) which provided the least assigned spectra, peptide and protein 

identifications.   Because an equal quantity of tandem MS/MS spectra were acquired for 

each method and MS run, the variation in assigned spectra is not a reflection of the 

Sample Run Proteins Peptides Spectra PPMs (%) Method
1 3159 11675 23901 86.88
2 3149 11607 23338 86.99
4 1188 5961 14789 88.91
5 1047 5194 13220 88.94
1 424 1935 10331 87.7
2 398 1879 10709 88.6
1 3204 11162 20265 89.51
2 2931 9986 21976 89.63
1 2207 6874 16730 85.6
2 2079 6422 17107 85.79
1 2062 6470 16641 85.45
2 2178 6845 16467 86.29
3 1826 5416 11951 86.55
4 1834 5448 11380 87.43
2 1832 5908 13404 85.57
3 1728 5573 14175 86.889

Bead-beating; Ultracentrifugation; 
Guanidine

Bead-beating; Ultracentrifugation; TCA; 
Guanidine

7 (membrane)

7 (soluble)

10

8

2

3

Bead-beating, Ultracentrifugation; 
Guanidine

Boiling SDS; TCA; Urea

Sonication, Guanidine

Bead-beating, Guanidine

Freeze-Thaw, Guanidine

Guanidine only
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technical (mass spectrometer) variability, but rather a reflection of the lysis and protein 

extraction method. 

 

 

Figure 4.2: A comparison of identified proteins that are shared (1,248) between and 

unique to the membrane (left circle; 3,118 proteins) and soluble (TCA; right circle; 521 

proteins) fractions for method 7 only.  A total of 4,366 and 1,769 non-redundant proteins 

were indentified in the membrane and soluble (TCA) fraction, respectively.   

4.3.2: Protein-level comparison 

A four-way protein comparison of methods: 2 (bead-beating), 3 (freeze-thaw), 8 

(sonication), and 9 (no physical disruption) identified 1,972 shared proteins (~61-73% of 

all protein identifications) across all four methods, with 6-9% of all identified proteins 

unique to only one method (Figure 4.3).  A three-way protein comparison of methods 

containing physical disruption only (2, 3, and 8) identified 2,292 shared proteins (81%, 
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73%, and 71%, respectively, of all identified proteins) (Figure 4.4).   These two 

comparisons suggest that the methods 2, 3, 8, and 9 do not vary significantly from one 

another, since the majority of identified proteins are similar in one or more methods (i.e., 

only 6-9% of all identified proteins are unique to a single method).  On the other hand, 

these methods (with and without physical disruption) vary significantly from a method 

that uses a combination of chemical lysis (SDS) and physical disruption (sonication) 

simultaneously to lyse microbial and host cells, where only ≤ 48% of all identified 

proteins are shared with methods 2, 3, 8, and 9 and ≥ 30% are unique to method 10 

only (data not shown).  

 

 

Figure 4.3: A four-way comparison of identified proteins from four different methods: 2 

(bead-beating), 3 (freeze-thaw), 8 (sonication), and 9 (no physical disruption). 
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Figure 4.4: A three-way comparison of identified proteins from three methods 

containing physical disruption only (2, 3, and 8). 

For method 7, on average, 3,154 proteins were identified in the membrane 

fraction per run (Table 4.1) with a total of 4,366 non-redundant proteins across both 

runs.  On the other hand, an average of 1,118 and 411 proteins were identified per run 

for the soluble fraction with and without protein precipitation, respectively, for a total of 

1,769 and 676 non-redundant identified proteins.  As mentioned previously, a 

comparison of both fractions from method 7 indicated that 3,118 proteins were uniquely 

identified in the membrane fraction, as compared to 521 in the soluble fraction, with 

1,248 proteins shared between the two fractions.  Therefore, a total of 4,887 proteins 

were identified for method 7 (both membrane and soluble TCA fraction shared and 

unique proteins summed).   

Based on total spectra, peptides, and proteins identified, method # 7 (with protein 

precipitation) is the best overall performing method, with a total of 4,887 non-redundant 

proteins, followed by method # 10 with 4,495 non-redundant proteins.  Of all proteins 

identified, a two-way comparison of methods 7 and 10 indicate that 3,506 proteins are 

shared (72 and 78% of all identified proteins, respectively) with 1,381 and 989 proteins 

unique to methods 7 (28%) and 10 (22%), respectively (Figure 4.5).  While a significant 
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portion of identified proteins were found using both methods, method # 7 had ~40% 

more unique proteins relative to method 10.  Although method # 7 has out-performed 

the other four lysis methods, we wanted to determine whether any potential biases 

existed on a functional level as a result of each lysis and extraction method. Functional 

comparisons will be explored in more detail below. 

 

Figure 4.5: A comparison of identified proteins that are shared (3,506 proteins) between 

and unique to method 7 (membrane and soluble fractions combined; left circle) and 10 

(right circle). 

4.3.3: Comparison of methods based on protein-species assignments 

Due to the differences in lysis methods (i.e., chemical or physical), we wanted to 

evaluate whether any of the methods were biased and preferentially lyse one or more 

specific bacterial species within the 7-member consortium.  For example, does any 

method preferentially lyse one particular species better than another or enrich for 

proteins with specific functional roles, such as outer membrane receptor proteins?  A 

comparison of identified protein counts per species (Figure 4.6) suggested that the 

majority of proteins were derived from B. WH2 and B. thetaiotaomicron for all methods, 

with the exception of method 9 (guanidine only) and the soluble fractions (# 7).  
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Contrary to the majority of methods, B. thetaiotaomicron was one of the least abundant 

microbes in method # 9.  These results may suggest that additional chemical (SDS) 

and/or physical (i.e., sonication) disruption is necessary for the complete lysis of all 

Bacteroides.  Interestingly, M. musculus was the most abundant contributor based on 

protein counts followed by B. WH2 in both soluble fractions contrary to the membrane 

fraction for method 7.  

 

Figure 4.6: Distribution of identified protein counts for all relelvant database 

components (microbial and host) for all 7 cecal samples. 

Due to protein sequence redundancy between the seven-closely related 

Bacteroides phylotypes, a similar comparison was performed with only unique peptides 

(Figure 4.7) and total spectra counts (Figure 4.8) to determine whether similar trends 

were observed.  The distribution of unique peptides also suggest that B. WH2 and B. 

thetaiotaomicron are the most abundant microbial species for all methods, including 

method 9 (guanidine only), with the exception of both soluble fractions (# 7).  In 
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agreement with the protein count distribution, M. musculus was the most abundant 

based on unique peptide and spectra counts, followed by B. WH2 for both soluble 

fractions.   While the spectra counts distribution agrees with the protein and unique 

peptide distribution, slightly more spectra were assigned to B. thetaiotaomicron relative 

to B. WH2 for the majority of methods (exception are the soluble fractions). 

 

Figure 4.7: Distribution of unique peptide counts for all relevant database components 

(microbial and host) for all 7 cecal samples. 
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Figure 4.8: Distribution of total assigned spectra counts for all relevant database 

components (microbial and host) for all 7 cecal samples. 

Why the soluble fractions contain significantly more host-related (M. musculus) 

proteins, peptides, and assigned spectra relative to the membrane fraction and other 

methods (Figure 4.6-4.8) is unclear.  Although the unique peptide and protein counts 

agree with the majority of identifications belonging to B. WH2 and B. thetaiotaomicron 

for most of the methods, we have yet to determine why these two microbes dominate 

the community proteome relative to the other five species belonging to Bacteroides.  It 

may be that B. WH2 and B. thetaiotaomicron contain significantly more ‘unique’ 

peptides in the genome (predicted proteome) relative to the other microbes; hence, 

more unique peptides were identified for these two species.  Alternatively, there may be 

a biological (non-technical) difference between these two species relative to the other 

members of the consortium.  To assess whether a subset of proteins related to a 

specific function are enriched in one method compared to the others, we classified the 

identified proteins in Clusters of Orthologous Groups (COGs). Figure 4.9 indicated that 
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we are not enriching for specific functional subsets of proteins with any particular 

method.  However, proteins classified with functions related to translation and metabolic 

pathways commonly involved in the gastrointestinal tract were highly abundant across 

all six methods.  Therefore, while differences are evident between the types of COGs 

present in the proteomes, there are insignificant biases in the methods’ enriching for 

specific functional groups of proteins.  Although method # 7 identified more proteins 

relative to the other five methods, Figure 4.10 (A and B) suggests that methods 7 and 

10 provide very similar results in terms of identified protein COGs.  In conclusion, while 

method # 7 has the overall best performance for proteome identification relative to the 

other methods, method 10 may be equally sufficient in the in situ lysis of microbial 

communities derived from the cecum of mice, with the advantage of less sample 

handling, fewer surface exposures, less time-consuming, and does not require 

additional expensive instrumentation (i.e., ultracentrifuge). 

 

Figure 4.9: COG classification of all identified proteins for all cecal samples. 
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Figure 4.10: Distribution of identified proteins for (A) method 7 (membrane and soluble 

TCA fraction combined) and (B) compared to method 10 based on COG categories. 
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Figure 4.10 (B) 

 

4.4: Conclusions 

The method that demonstrated the greatest performance for the lysis and extraction of 

microbial and host (mouse) proteins from a model 7-member human microbial gut 

community is bead-beating homogenization, ultracentrifugation, and protein 

precipitation of the soluble fraction with a total of 4,887 non-redundant proteins.  

Although this method performed the best based on overall MS-based proteome metrics, 

the soluble fraction (TCA) only contributed 521 unique proteins.  Method #10 (lysis via 

SDS solubuilization and sonication) followed closely with a total of 4,495 non-redundant 

proteins and may be more successful for some research groups whom do not have 

access to an ultracentrifuge.   

Based on the host and microbial protein, unique peptide, and spectra count 

distributions per species, the abundance-levels were not evenly distributed among all 

seven phylotypes of Bacteroides and the host, but rather skewed with a higher 
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abundance of B. WH2 and B. thetaiotaomicron in all six methods with the exception of 

the soluble fraction in method 7.  We believe that this is not a reflection of technical or 

instrumental variation, but is a result of the microbial community dynamics and 

functional signature differences because the abundance-level trends are very similar 

across all lysis and protein extraction methods.  A classification of all microbial proteins 

by general function (e.g., COG) suggests that all six methods provide very similar 

functional trends with translation and metabolic pathways highly abundant across all 

methods.  Therefore, the five different methods described in this study are not biased 

and do not preferentially lyse one species or functional group (COG) more efficiently 

relative to others within the 7-member consortium.  
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Chapter 5 

Temporal profiling of a defined 12-member human gut microbial community in 
gnotobiotic mice in response to changing diets 

Alison R. Erickson, Nathan P. McNulty, Nathan C. VerBerkmoes, Jeffrey I. Gordon, 

Robert L. Hettich 

5.1: Introduction 

The human gut microbiome is host to a large population of microbes that heavily rely 

upon the host (human) and diet for maintenance and growth.  It is the microbial 

inhabitants that shape the establishment, diversity, and stability of the host-associated 

microbial community.  While the phylogenetic composition and membership differs 

between human individuals[62], [112], gut microbiomes are functionally very 

similar[112].  Although host genetics accounts for a small fraction of the variation 

observed between human individuals[147] and mice[148], studies have indicated that 

environmental conditions (e.g., diet) and stochastic factors affect the relative 

abundances of microbes in the gut community of both humans and 

mice[149,150,151,152].  As our diets have evolved over time, from a starch-rich diet to 

high-starch plant and dairy foods)[153], the host and gut microbiota subsequently 

adapted by competing for dietary substrates.  For example, the modern Western diet, 

low in complex carbohydrates but high in simple sugars and fat, has shown a relatively 

higher abundance of Firmicutes[131,154] relative to other phyla.  As a result, the host 

selects for simple carbohydrates while the microbes consume and degrade complex 

polysaccharides (e.g., starch).  To understand the interrelationship between the host-gut 

microbiota and diet, studies have focused on using gnotobiotic mice inoculated with a 

defined quantity of sequenced human gut bacteria and monitored their response to diet 

perturbations[155]. 

We have demonstrated effective proteomic methods for binary microbial 

communities and optimized the MS-based sample preparation methodology such that 

we are ready to scale up to more complex, interactive systems.  Here, we used high 
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resolution MS-based proteomics to evaluate the functional differences and estimate the 

relative abundance of closely-related species within a defined microbial community in 

gnotobiotic mice in response to diet perturbations.  An in vivo model microbial 

community was designed at Wash. Univ. to represent the diversity in the human gut and 

was comprised of 12 human gut-derived phylotypes belonging to the Firmicutes, 

Bacteroidetes, and Actinobacteria.  The microbial consortium consisted of the same 

seven phylotypes used in the 7-member consortium (Bacteroides caccae, B. ovatus, B. 

uniformis, B. WH2, B. thetaiotaomicron, B. vulgatus, and Parabacteroides distasonis) in 

addition to four Firmicutes (Dorea longicatenta, Ruminococcus obeum, Clostridium 

spiroforme, and C. scindens) and one Actinobacteria (Collinsella aerofaciens).  The 

gnotobioic mice and their 12-member consortium were exposed to two diet oscillation 

perturbations for which several mice initially consumed a high fat and simple sugar diet 

(‘western’ diet) and others consumed a standard BK diet.  Expression profiling of the 12-

member endpoint communities was performed using transcriptomics and MS-based 

proteomics to explore community robustness and system-wide microbial responses in 

the context of dietary disturbances.  We wanted to gain insight into the communities’ 

establishment, assembly, and adaption prior to and after a change in diet (Figure 5.1).  

Additionally, we wanted to investigate to what extent we can characterize the function of 

entire defined communities with significant dynamic range between species at the level 

of both transcription and protein expression.   

There are several challenges associated with the 12-member consortium, (i) the 

Actinobacteria and Firmicutes are not as abundant as the Bacteroides in these samples 

(0.5-2.0% of the community), which complicates the ability to achieve complete 

proteome coverage of the lesser abundant species and (ii) an increased number of 

degenerate peptides (peptides that match to multiple proteins due to sequence overlap) 

and protein redundancy.  The GeneChip expression data was also used to compare the 

protein abundance data to determine how well these methodologies agree and disagree 

in their revelation of the microbiotas’ functional signature and differences in response to 

diet. 
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A challenge in mass spectrometry-based proteomics is the ability to accurately 

assign a PSM to the protein from which it originated.  When studying microbial 

communities, this assignment is complicated by homology between proteins of different 

microbial strains/species.  In several environmental communities, the majority of 

identified PSMs are non-unique, and spectral counting may not be sufficient to estimate 

a protein’s abundance and concomitant phylogenetic origin.  Thus, with increasing 

complexity and microbial composition, differentiation of closely-related species 

compared to species that are more evolutionarily divergent becomes challenging for 

mass spectrometry.  Although proteomics is not the preferred method to evaluate the 

abundance of species or to differentiate between species, the use of either unique 

peptide counts or total spectra counts with the total number of identified proteins (per 

species) have been evaluated for their ability to differentiate and estimate the relative 

abundance of each species on a proteome level.  

5.2: Experimental Methods 

Adult germ-free mice were gavaged with: Bacteroides thetaiotaomicron, B. caccae, B. 

ovatus, B. uniformis, B. vulgatus, B. WH2, Parabacteroides distasonis, Clostridium 

scindens, C. spiroforme, Ruminococcus obeum, Dorea longicatena, and Collinsella 

aerofaciens.  Proteins were extracted from the cecum of four gnotobiotic mice fed a diet 

rich in plant polysaccharides (BK diet) or a ‘Western’ diet high in fat and sugars.   
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Figure 5.1: Experimental setup and example of sample collection timepoints for host-

microbial community diet oscillations.  Fecal and cecal collections were used for 

GeneChip expression experiments.  Cecal collections were also used for MS 

experiments. 

5.2.1: Sample preparation 

Cecal contents were collected from four mice and analyzed via nano-2D (strong cation 

exchange – reverse phase)-LC-MS/MS on a hybrid LTQ – Orbitrap Velos mass 

spectrometer (Thermo Fisher Scientific).  Cecal contents were solubilized in 1mL SDS 

lysis buffer (4% w/v SDS, 100mM Tris•HCl, pH 8.0, 10mM dithiothreitol (DTT)) and 

lysed mechanically by sonication followed by incubation for 5min at 95°C.  Cells were 

centrifuged at 21,000xg.  Following an overnight tricholoacetic acid (TCA) precipitation, 

the TCA precipitates (protein mixtures) were resolubilized in 500uL of 8M urea, 100mM 

Tris•HCl, pH 8.0, and reduced by incubation at a final concentration of 10mM DTT for 1 

hr at room temperature.  Samples were sonicated and an aliquot taken to determine the 

protein concentration using the widely available bicinchonic acid-(BCA) based protein 
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assay kit (Pierce).  Samples were diluted with 100mM Tris•HCl, 10mM CaCl2, pH 8.0 to 

a final urea concentration below 4M.  Proteolytic digestions were initiated with 

sequencing grade trypsin (1/100, w/w; Promega) overnight at room temperature.  A 

second aliquot of trypsin was added (1/100) and diluted with 100mM Tris•HCl, pH 8.0 to 

a final urea concentration below 2M.  Following a 4 hr incubation at room temperature, 

samples were reduced to a final concentration of 10mM DTT.  The peptides were 

acidified (protonated) in 200mM NaCl, 0.1% formic acid, filtered, and concentrated with 

a 10k molecular weight cutoff spin column (Sartorius).   

5.2.2: LC-MS/MS data collection and analyses 

Peptide mixtures were desalted and separated utilizing a split phase 2D-LC column 

(SCX-C18) over a 12-step gradient with 22 hr runs per sample.  All MS analyses were 

performed in positive ion mode.  One full MS scan was acquired in the Orbitrap Velos at 

30K resolution followed by ten data-dependent MS/MS scans (m/z 400-1700) at 35% 

normalized collision energy with dynamic exclusion enabled at 1.  The data was 

searched using SEQUEST against a database containing the following predicted 

proteomes to be encoded by the genomes of the 12-member community:  Bacteroides 

caccae, B. ovatus, B. thetaiotaomicron, B. uniformis, B. vulgatus, B. WH2, Clostridium 

scindens, C. spiroforme, Collinsella aerofaciens, Dorea longicatena, Parabacteroides 

distasonis, and Ruminococcus obeum in addition to potential food components (e.g., 

rice and yeast) and common contaminants (e.g., keratins).  Additionally, Eubacterium 

rectale, Faecalibacterium prausnitzii M212 and R. torques were included as distractors 

that were not expected to be present.  The SEQUEST settings were the following: 

enzyme type, trypsin; parent mass tolerance, 3.0; fragment mass tolerance, 0.5; up to 4 

missed cleavages, and fully tryptic peptides only.  All datasets were filtered with 

DTASelect, parameters included: Xcorrs of 1.8, 2.5, and 3.5 for singly, doubly, and triply 

charged precursor ions, minimum deltCN of 0.08, and a minimum requirement of two 

fully tryptic peptides per protein.  An in silico tryptic digested protein sequence database 

was used to generate a theoretical peptidome of unique peptides within a mass range of 

600-4,890Da and ≤1 miscleavages. 
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Spectral normalization by community and individual species was generated with 

the help of Chongle Pan in which the p value is calculated using the Mann–Whitney U 

test (non-parametric version of t test). The spectral count difference is the difference 

between the median spectral counts of the two diets. A protein is labeled as "UP" 

regulated if the p value is less than 0.05 and the spectral count different is greater than 

5 and equally for proteins are labeled as "DOWN.” 

5.3: Results and Discussion 

5.3.1: Overview of proteome metrics 

The proteomes displayed high technical reproducibility in terms of total number of 

assigned spectra per mouse with an R2 ≥ 0.9883 for all four mice.  The BK-fed mice 

proteomes were highly correlated with an R2 of 0.9059 for mouse 1 and 2, as compared 

to the Western-fed mice with R2 0.7815 for mouse 9 and 12.  This would suggest that 

the variation in the western fed mice is a reflection of biological variability and is not a 

result of technical deviation (i.e., mass spectrometer and HPLC effects).  On average, a 

total of 4,827 and 3,251 proteins were identified for the BK diet and Western diet, 

respectively (Table 5.1).  Of all proteins identified in the BK-fed mice, 4,220 proteins 

were found across both mice (1 and 2) and all four MS runs.  Of all identified proteins in 

the Western-fed mice, ~2,658 proteins were identified across both mice (9 and 12) and 

all four MS runs.  However, when both diets are directly compared, only ~1,824 

microbial and host proteins were identified across both diets where 2,322 proteins were 

unique to the BK diet and 805 proteins unique to the western diet (Figure 5.2).  Upon 

accumulation of all identified proteins from both diets and all MS runs, ~2-20% of each 

species’ genome was identified (Table 5.2) with the majority of proteins identified from 

B. WH2 (20%) and the least from C. spiroforme (2%).  Although the phylotypes 

belonging to Bacteroides collectively had higher proteome coverage in terms of non-

redundant protein identifications (>11%) compared to the Firmicutes and Actinobacteria 

in this study (<8%), the range of abundance varies between the two different diets.   
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Table 5.1: Overall MS metrics for the BK and western diet fed mice. 

 

 

 

Figure 5.2: Comparison of shared and unique microbial and host identified proteins 
across both diets with proteins unique to the BK diet (left; 2,322 proteins), shared 
proteins (center; 1,824 proteins) and proteins unique to the Western diet (right; 805 
proteins). 
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Table 5.2: Relevant database components and % of each species’ genome identified via MS-based proteomics. 

 

Genome Acroynmn Predicted.Proteins Identified.Proteins %.of.Predicted.
Proteome.Identified

Proteins.identified.
in.BK.diet

Proteins.identified.
in.Western.diet

#.of.statistically.
differential.proteins

%.of.Total.Identified.
Proteome.per.Species

%.of.Total.BK<Identified.
Proteome.per.Species

#.of.statistically.
differential.proteins

%.of.Total.Identified.
Proteome.per.Species

%.of.Total.Western<Identified.
Proteome.per.Species

Bacteroides+caccae BACCAC 3855 669 17.35% 594 362 148 22% 25% 65 10% 18%
Bacteroides+ovatus BACOVA 5536 693 12.52% 667 277 176 25% 26% 16 2% 6%
Bacteroides+thetaiotaomicron BACTHE 4778 722 15.11% 660 343 164 23% 25% 52 7% 15%
Bacteroides+uniformis BACUNI 4663 563 12.07% 550 204 160 28% 29% 9 2% 4%
Bacteroides+vulgatus BACVUL 4065 783 19.26% 755 357 244 31% 32% 20 3% 6%
Bacteroides+WH2 BACWH2 5244 1025 19.55% 996 353 339 33% 34% 24 2% 7%
Clostridium+scindens CLOSCI 3995 220 5.51% 105 203 1 0% 1% 82 37% 40%
Clostridium+spiroforme CLOSPI 2465 39 1.58% 18 32 0 0% 0% 4 10% 13%
Collinsella+aerofaciens COLAER 2367 154 6.51% 124 101 2 1% 2% 6 4% 6%
Dorea+longicatena DORLON 2970 114 3.84% 76 91 0 0% 0% 22 19% 24%
Parabacteroides+distasonis PARDIS 3850 414 10.75% 405 118 87 21% 21% 4 1% 3%
Ruminococcus+obeum RUMOBE 4175 325 7.78% 291 231 7 2% 2% 12 4% 5%
Mus+musculus Mus 34966 881 2.52% 575 698 41 5% 7% 203 23% 29%

Relevant.Database.Components
BK.fed.mice Western.diet.fed.mice

Community<wide.analysis.and.significantly.differential.proteins.with.preference.for.one.dietTotal.Protein.Identifcations
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5.3.2: Peptidome Comparisons 

Several quantitative metrics were evaluated for their ability to differentiate and estimate 

the abundance of closely-related and divergent microbial species within a defined 

human gut consortium.  Three quantitative methods that use spectra counts only, 

spectra and protein counts, or unique peptides to estimate species abundance were 

compared to GeneChip expression data from the same samples.  All three quantitative 

methods suggest the Bacteroides phylotypes are significantly more abundant in mice 

consuming the plant polysaccharide-rich diet.  More specifically, the unique peptide 

quantitative metric indicated that B. caccae was significantly more abundant in the 

western diet, in agreement with the GeneChip expression data.  A phylotype’s 

estimated abundance based on unique identified peptides, however, may be affected by 

the proportion of unique predicted peptides assignable to that phylotype in the 

database.   

A method that estimates abundance via identified unique peptides may be biased 

and skewed by the degree of predicted unique peptides in the sequence database.  For 

example, more unique peptides belonging to Bacteroides WH2 may be present because 

there are more unique peptides in the database relative to the other species.  To 

address this potential bias, a “theoretical peptidome” was created for each species (12 

relevant species and 3 unrelated distractor species) in the sequence database with an 

in silico peptide digest that takes into account (i) tryptic miscleavages (0-4) and (ii) the 

standard peptide mass range that can be experimentally detected.  A “theoretical 

peptidome” provides the ability to compare the identified peptidome (both unique and 

non-unique peptides per species) to the predicted (theoretical) peptidome to determine 

what percentage of each species is unique relative to all of the other species within the 

entire consortium.  By comparing the percentage of each species’ predicted unique 

peptidome to the identified peptidome, you could determine whether (i) the closely-

related species (i.e., Bacteroides) are contributing any unique peptides to the entire 

predicted peptidome and (ii) whether the identified unique peptides are following the 

same trends as the predicted peptidome.   
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To generate a theoretical peptidome, several parameters (miscleavages and 

peptide mass range) were first compared for the identified peptide results prior to their 

application of the sequence database (15 microbial genomes, mouse, rice and yeast 

genomes, and common contaminants) used in this study.  The majority of 

experimentally identified peptide sequences fell within 0-1 miscleavages (94%; Table 
5.3) and a mass range of 600-4,890 Da.  Based on this data, the theoretical peptidome 

was generated in silico with the same filters for the entire protein sequence database at 

≤1 miscleaveage.   

Table 5.3: Proportion of total non-redundant identified peptides for all mice with 0, 1, 2, 

3 or 4 miscleavages. 

 

Although the mouse and diet genomes contributed the majority of unique 

predicted peptides (20.44%-34.57%), all twelve phylotypes (including closely-related 

species) contributed comparable percentages of unique peptides (~2-4%) to the entire 

unique peptidome (Table 5.4) with B. WH2 containing the majority of unique predicted 

peptides of the human-derived bacteria.  Within each individual species, ~61-89% of all 

predicted peptides are classified as “unique” (Table 5.4).  This would suggest that 

although there is significant genome sequence overlap, this is does not equate on a 

peptide level since the majority of tryptic peptides are unique per species.  Significantly, 

89% of all peptides belonging to the single species (C. aerofaciens) of Actinobacteria 

are unique, whereas only ~61-79% of peptides belonging to the majority of Bacteroides 

are unique within this protein sequence database. 
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Table 5.4: Distribution of total predicted peptides (unique and non-unique) for the 

protein sequence database with ≤1 miscleavage. 

 

While B. WH2, B. ovatus, P. distasonis, and B. thetaiotaomicron are the most 

abundant phylotypes based on the representation of unique predicted peptides in the 

theoretical peptidome, experimental phylotype abundance estimated using unique 

identified peptides did not follow this same trend (Figure 5.3).  Instead, B. WH2, B. 

vulgatus, R. obeum, B. caccae, and C. scindens are most abundant in the ‘Western’ 

diet.  Although there is significant sequence overlap in the microbiota, less sequence 

overlap exists on a peptidome level, suggesting that a unique peptide quantitative 

metric, rather than spectra counts, can be used to quantitate the relative abundance of 

species and proteins in microbial communities with varying ranges of diversity.  In 

addition, the expression data, provided by Jeff Gordon’s group, indicates that B. ovatus 

and B. WH2 have a strong preference for the BK diet while B. caccae prefers the 

western diet.  Unlike the spectra and protein counts metric, the unique peptide counts’ 

distribution strongly supports the genechip expression data.   

Species Non-Unique % Non-Unique Unique % Unique Total
% Total of Total 

DB peptides
% Unique of Total 

DB peptides
% Unique of Total 

DB unique peptides #Proteins Size (MB)
Rice 2,733,343 56.35% 2,117,393 43.65% 4,850,736 44.86% 19.58% 34.57% 66,710 36.00
Mouse 1,174,515 48.40% 1,252,078 51.60% 2,426,593 22.44% 11.58% 20.44% 34,966 19.20
Yeast 64,216 13.40% 414,911 86.60% 479,127 4.43% 3.84% 6.77% 6,345 3.33
B. WH2 71,238 20.96% 268,594 79.04% 339,832 3.14% 2.48% 4.39% 5,244 2.66
B. ovatus 105,322 33.19% 211,964 66.81% 317,286 2.93% 1.96% 3.46% 5,536 2.54
P. distasonis 29,795 12.83% 202,464 87.17% 232,259 2.15% 1.87% 3.31% 3,850 1.86
B. thetaiotaomicron 101,982 34.06% 197,434 65.94% 299,416 2.77% 1.83% 3.22% 4,778 2.38
B. vulgatus 58,625 23.66% 189,181 76.34% 247,806 2.29% 1.75% 3.09% 4,065 1.93
B. uniformis 70,619 30.25% 162,806 69.75% 233,425 2.16% 1.51% 2.66% 4,663 1.95
R. obeum 26,276 14.96% 149,371 85.04% 175,647 1.62% 1.38% 2.44% 4,175 1.54
C. scindens 32,174 18.16% 144,987 81.84% 177,161 1.64% 1.34% 2.37% 3,995 1.53
E. rectale 26,300 15.80% 140,179 84.20% 166,479 1.54% 1.30% 2.29% 3,631 1.42
B. caccae 87,509 39.39% 134,675 60.61% 222,184 2.05% 1.25% 2.20% 3,855 1.77
F. prausnitzii M212 20,667 14.55% 121,341 85.45% 142,008 1.31% 1.12% 1.98% 3,493 1.37
D. longicatena 29,210 20.72% 111,738 79.28% 140,948 1.30% 1.03% 1.82% 2,970 1.18
R. torques 25,607 18.95% 109,523 81.05% 135,130 1.25% 1.01% 1.79% 2,875 1.12
C. spiroforme 18,658 15.44% 102,145 84.56% 120,803 1.12% 0.94% 1.67% 2,465 1.02
C. aerofaciens 11,628 11.11% 93,021 88.89% 104,649 0.97% 0.86% 1.52% 2,367 1.00
Contaminants 1,026 43.24% 1,347 56.76% 2,373 0.02% 0.01% 0.02% 36 0.02

Sequence Database: 1 Miscleavage; Peptide Mass Range: 600-4,890 Da
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Figure 5.3: Theoretical and experimental unique peptidome comparison per database 

component (genome) for the BK and Western-fed mice.  The % of unique peptides 

(predicted or identified) out of the total (unique and non-unique) peptides plotted for 

each database component. 

Finally, the predicted unique peptidome was compared to the experimentally 

identified unique peptidome distribution to identify which microbes are hurt most by 

proteome overlap with the other community members.  Although B. WH2 is the most 

abundant species followed by B. ovatus, B. thetaiotaomicron, and B. vulgatus based on 

predicted unique peptides, the western diet fed mice did not follow this same trend.  

Comparing the ratio of identified unique peptides to total predicted unique peptides per 

species, B. caccae and C. scindens continue to be the most abundant microbes in the 

western diet fed mice and are more abundant than in the BK fed mice.  Based on these 

results, our unique peptide data is not skewed by the sequence database and this 

Western'9'
Western'12'
BK'1'
BK'2'
Theore0cal'Pep0dome'

0.00%'

2.00%'

4.00%'

6.00%'

8.00%'

10.00%'

12.00%'

14.00%'

16.00%'

18.00%'

20.00%'

B.'
ca
cca
e'

B.'
ov
atu
s'

B.'
un
ifo
rm
is'

B.'
WH

2'

P.'
dis
tas
on
is'

B.'
the
tai
ota
om
icr
on
'

B.'
vu
lga
tus
'

C.'
sci
nd
en
s'

C.'
sp
iro
for
me
'

C.'
ae
rof
ac
ien
s'

D.'
lon
gic
ate
na
'

E.'
rec
tal
e'

F.'
pra
us
nit
zii'
M2
12
''

Mo
us
e'

Ric
e'

R.'
ob
eu
m'

R.'
tor
qu
es'

Ye
ast
'

%
"u
ni
qu

e"
ex
pe

rim
en

ta
l"p
ep

/d
es
/t
ot
al
"id
en

/f
ed

"p
ep

/d
es
"

Genome"



	   97	  

‘theoretical peptidome’ provides additional support for evaluating the relative distribution 

and abundance of species using MS proteomic data.   

5.3.3: Community-wide functional comparisons 

To understand to what extent we can monitor shifts in the community proteome in 

response to a diet change, we began by looking at the community as a one functional 

entity.  Within the community, all of the Bacteroides phylotypes are more abundant in 

the BK diet compared to the Western diet, with the exception of B. caccae, which is 

approximately proportional across all samples and runs, using the sum of normalized 

spectra counts (Figure 5.4).  C. scindens, on the other hand, is more abundant in the 

Western-fed mice.  This would suggest that although some species, e.g., C. scindens 

are at very low abundance based on total proteome coverage, they still contribute 

significantly to the pool of proteins and shift in response to diet.  In addition, several 

statistically differential abundant proteins were identified with higher abundance 

(preference) for one diet relative to the other.  Out of all the proteins identified within the 

12-member consortium, ~21-33% of the Bacteroides phylotypes’ identified proteins 

were identified with higher abundance in the BK diet relative to the western diet (p-value 

≤0.03).  Of the identified BK diet-only proteomes, B. WH2 and B. vulgatus expressed 

the majority of differentially abundant proteins with a preference for the BK diet (34% 

and 32%, respectively).  On the other hand, ~40% and 29% of all proteins identified as 

derived from C. scindens and Mus musculus, respectively, were significantly more 

abundant in the Western-fed mice (Table 5.2) compared to the BK diet (1% and 5%, 

respectively). 
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Figure 5.4: Community-wide normalized spectra counts for the host and relevant 

microbial proteins per MS run for both diets. 

Classification of all identified microbial proteins by Clusters of Orthologous 

Groups (COG) for the two diets indicate that proteins involved in critical gut-associated 

functions, e.g., carbohydrate metabolism and energy production, are highly abundant 

across all mice regardless of diet based on normalized spectra counts (technical 

replicates average and biological replicates summed) (Figure 5.5).  This would suggest 

that the microbial community members are actively working together to carryout vital 

metabolic functions necessary for host-microbiota gut homeostasis.  Interesting, many 

poorly characterized proteins (proteins with unknown function) are highly abundant 

across both communities and diets, with ~800 and 400 hypothetical proteins identified in 

the BK and Western-fed mice, respectively, suggesting that the gut microbiota encode 

beneficial, yet many unknown functions across both communities.  On the other hand, 
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translation was less represented in the Western-fed mice and protein functions related 

to cellular processes that include DNA replication, chromatin and nuclear structure, and 

RNA processing were not active in either diet.   

 

Figure 5.5: Classification of all differentially abundant proteins by COGs for both diets. 
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Bacteroides.  As a result of dietary protein deficiency or diet disturbances, protein 

synthesis by Bacteroides phylotypes may be suppressed in the western diet because 

they are growing slower since the diet does not contain the same level of nutrients that 

are needed by these species.  On the contrary, of the 19 translation-associated proteins 

that are over-abundant in the Western diet, the majority (16) belong to C. scindens.  Of 

the 332 microbial proteins identified with over-abundance in the Western diet, 16% (82 

proteins) are derived from C. scindens and 39% from M. musculus.  These findings 

suggest that the C. scindens and the host may be acting to provide one or several 

unique protein functions in the Western-fed mice that are not acquired or significantly 

active in the microbiota of the BK-fed mice.  Further investigation of these individual 

microbes (B. WH2 and C. scindens), their differences, and general role in the 

community is provided under ‘species-level functional comparisons.’ 

 

Figure 5.6: Statistically over-abundant proteins based on COG assignments in the BK 

diet relative to the Western diet. 

 

0"

50"

100"

150"

200"

250"

300"

350"

A" B" C" D" E" F" G" H" I" J" K" L" M" N" O" P" Q" R" S" T" U" Y" Z"

Pr
ot
ei
n(
Co

un
t(

COG(Categories(

Sta1s1cally(over6abundant(microbial(proteins(in(
BK(Chow(based(on(COG(classifica1on(



	   101	  

 

Figure 5.7: Statistically over-abundant proteins based on COG assignments in the 

Western diet relative to the BK diet. 
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analysis of the statistically differentiated microbial proteins, the total number of over-

abundant proteins in the BK fed mice reduced from 1,330 proteins to 1,092 protein 

clusters and from 332 proteins to 303 clusters in the Western fed mice.  Many of these 

protein clusters were related to similar functions described previously confirming a lack 

of translation-related protein abundance when exposed to a western fed diet relative to 

a high protein BK diet.   

5.3.4: Species-level functional comparisons 

While the community-wide analyses provide a broad functional understanding of the 

microbiota collectively, in order to directly compare the abundance levels of specific 

proteins of interest, it was necessary to evaluate the proteomes of each microbe within 

the 12-member community individually.  In addition, by using a species-level approach, 

we can determine whether one species up- or down-regulates gene(s) in a specific 

pathway in response to the host’s diet. 

Based on the community-wide proteome analyses (Figure 5.4 and Figure 5.8) 

and GeneChip expression data, B. WH2 has a strong preference for the BK diet.  

However, why such significant abundance differences exist and the significant 

functional role of B. WH2 in the BK-fed mice relative to the other microbial proteomes is 

unclear.  Of the 1,025 B. WH2 identified proteins, 269 were statistically differentiated, 

with 199 significantly more abundant in the BK-fed mice.  The majority of these proteins 

(199) were classified with functions related to carbohydrate metabolism, amino acid 

metabolism, translation or hypothetical proteins.  On the other hand, the B. WH2 

proteins that had a preference (up-regulated) for the Western diet were related to 

inorganic ion transport, coenzyme transport, carbohydrate metabolism, and hypothetical 

proteins.  Coenzyme metabolism related proteins included an outer membrane 

cobalamin receptor, 7-keto-8-aminopelargonate synthetase, and phosphoserine 

aminotransferase that were significantly more abundant in the Western-fed mice (p 

value<0.03 and difference of 52-84 spectra).  Inorganic ion metabolism related proteins 

include superoxide dismutase and outer membrane receptors for ferrienterochelin and 

colicins (p value<0.03 and difference of 17-280 spectra).   
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Figure 5.8: B. WH2 (only) total identified proteins’ distribution based on COG categories 

for both diets. 
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fed mice.  This may suggest that most members of the Bacteroides phylotypes are able 

to cooperate and function individually with respect to the host and Western diet whereas 

the BK-fed mice are heavily dependent upon B. WH2 to process certain biological 

functions.  Further investigation (ie, KEGG pathway analysis) would help reveal whether 

B. WH2 is responsible for processing specific pathways within these broad functional 

terms relative to the other phylotypes. 

 

Figure 5.9: Distribution of protein counts per COG category for each phylotype of 

Bacteroides for the BK-fed mice. 
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Figure 5.10: Distribution of identified protein counts per COG category for all 12 

phylotypes in the BK-fed mice. 
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Figure 5.11: Distribution of protein counts per COG category for each phylotypes of 

Bacteroides for the Western-fed mice. 
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Figure 5.12: Distribution of protein counts per COG category for all 12 phylotypes for 

the Western-fed mice. 
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involved in inorganic ion and carbohydrate metabolism and transport are more 

abundant in the Western-fed mice based on protein and/or normalized spectra counts. 

 

Figure 5.13: C. scindens (only) total identified proteins’ distribution based on COG 

categories for both diets. 
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the relative estimation of species abundance with significant dynamic range.  These 

analyses suggested that the community structure is dictated by the host’s diet (i.e., diet 

is shaping overall community structure). 

In conclusion, B. WH2 is highly abundant across proteomes in both diets, but is a 

strong diet responder with a preference for the BK diet.  B. caccae and C. scindens, on 

the other hand, are strong diet responders with a preference for the Western diet in 

agreement with the GeneChip expression data.  We would hypothesize that either (i) C. 

scindens and B. caccae both may directly benefit from one or more compounds in 

Western diet (e.g., they share some common traits/preferences with respect to 

metabolic niches) or (ii) other species in the community that normally strongly compete 

with C. scindens and B. caccae are at a disadvantage in the Western diet where their 

loss is these two species' gain.  To confirm either or additional hypotheses, further 

analysis and supporting genomic data is necessary. 
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Chapter 6	  

Shotgun metaproteomics of the human distal gut microbiota 

The text is adapted from: 

A. L. Russell, N. C. VerBerkmoes, M. Shah, A. Godzik, M. Rosenquist, J. 
Halfvarsson, M. G. Lefsrud, J. Apajalahti, C. Tysk, R. L. Hettich, and J. K. 
Jansson. “Shotgun metaproteomics of the human distal gut microbiota.” ISME J., 
2009, volume 3, pages 179-189. 

Alison R. Erickson’s contributions include experimental preparation of microbial samples 

for proteomics, experimental LC-MS/MS measurements and analysis, and shared 

primary authorship with Nathan VerBerkmoes. 

6.1: Introduction 

The human gastrointestinal (GI) tract is host for myriads of microorganisms 

(approximately 1011/gram feces) that carry out vital processes for normal digestive 

functions of the host and play an important, although not yet not fully understood, role in 

maturation of human immunity and defense against pathogens. Recent findings suggest 

that each human has a unique and relatively stable gut microbiota, unless disrupted by 

external factors such as antibiotic treatment[156]. Increasing evidence suggests that the 

composition of the GI microbiota is linked to inflammatory bowel diseases[157], such as 

Crohn’s disease[158], and can even influence the propensity for obesity[131]. Current 

estimates based on sequencing of 16S rRNA genes in DNA extracted from feces, are 

that 800-1000 different microbial species and >7000 different strains inhabit the GI 

tract[159] and that the majority of these (> 80%) have not yet been isolated or 

characterized[62]. Therefore, there is a vast microbial diversity with largely unknown 

function that is waiting to be explored.  

Recently, metagenomic sequencing has revealed information about the 

complement of genes in the gut microbiota of two healthy individuals[22]. Although this 

data set did not represent the entire GI microbiota, analysis of identified genes revealed 

that the GI microbiome has significantly enriched capacities for glycan, amino acid, and 

xenobiotic metabolism, methanogenesis, and synthesis of vitamins and isoprenoids. 
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This indirect evidence suggested that there are unique microbial functions carried out in 

the gut environment. 

A major limitation of DNA based approaches is that they predict potential 

functions, but it is not known if the predicted genes are expressed at all or if so, under 

what conditions and to what extent. In addition, it is not possible to determine whether 

the DNA is from active viable cells, dormant inactive cells, or even dead cells. These 

limitations can be overcome by directly assessing proteins, because the genes must 

have been transcribed and translated to produce a protein product. However, to date 

only a couple of microbial proteins have been identified from the human gut and these 

were obtained by 2 dimensional polyacrylamide gel electrophoresis (2D PAGE)[47], 

followed by excision and de novo sequencing of targeted spots on the gel.  

With an established and successful method to study the proteomes of lower-

complexity microbiota in gnotobiotic mice, we expanded this methodology into higher 

complexity representative human gut microbiomes to evaluate how well this method 

would work in human feces.  Here, our aim was to develop a novel high throughput, 

non-targeted mass spectrometry (MS) approach to determine the identities of 

thousands of microbial proteins in the most complex sample type to date (i.e. feces) and 

to test the feasibility of using a non-matched metagenome data set for protein 

identification. This MS-based shotgun proteomics approach relies on detection and 

identification of all proteins in a lysed cell mixture without the need for gel based 

separation or de novo sequencing. Instead, the resulting peptides from an enzymatic 

digest of the entire proteome are separated by liquid chromatography and infused 

directly into rapidly scanning tandem mass spectrometers (2D-LC-MS/MS) via 

electrospray ionization. The resulting peptide mass information and tandem mass 

spectra are used to search against protein databases generated from genome 

sequences. To date, the shotgun metaproteomics approach has only been 

demonstrated in a limited number of studies and only for microbial communities with low 

diversity, such as acid mine drainage systems[42,43], endosymbionts[160], and sewage 

sludge water[44].  It remains a technical challenge to apply this shotgun approach to 

more complex microbial communities, such as those inhabiting the human gut.  
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For this study, it was first necessary to develop the shotgun proteomics approach 

to work with fecal samples containing large amounts of particulate matter and 

undigested food and a large diversity of microbial cells. Figure 6.1 provides an overview 

of the experimental approach developed. Fecal samples were chosen because 

sampling is non-invasive and feces have been shown to provide material that is 

representative of an individual’s colonic microbiota[62]. Our goal was the qualitative 

identification of the range and types of proteins that can be confidently and reproducibly 

measured (i.e. with high specificity and low false positive rates; 1-5% maximum) from 

gut microorganisms by comparing to available metagenome databases[22] and 

available gut isolate genomes and to determine if unmatched data sets could suffice for 

accurate protein identifications.  An additional goal was to apply a novel bioinformatics 

approach to assign putative functions to unknown proteins not covered by standard 

analysis of clusters of orthologous groups (COGs). Ultimately, our aim was to use the 

protein data to provide direct evidence of dominant and key microbial functions in the 

human gut for the first time, some of which could serve as indicators of a healthy or 

diseased state. In addition, this non-targeted approach enables identification of human 

proteins associated with the gut microbiota, thus illustrating potential interactions 

between the human microbiome and host. 
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Figure 6.1: Shotgun metaproteomics approach used to identify thousands of microbial 

proteins in human fecal samples. 

6.2: Experimental methods 

6.2.1: Fecal sample collection 

A female healthy monozygotic twin pair born in 1951 was invited to take part in a larger 

double blinded study, and details of these individuals with respect to diet, antibiotic 

usage, etc. are previously described: individuals numbered 6a and 6b[158], that 

provided Samples 7 and 8, respectively, thus were the focus of this study. The only 

differences between the individuals according to the submitted questionnaire data were 

that Individual 6a had gastroenteritis and Individual 6b had taken NSAIDs the last 12 

months. Fecal samples were collected in 20 ml colonic tubes by the twins and 

immediately sent to Örebro University Hospital on the day of collection, where they were 

placed at –70°C and stored. The Uppsala County Ethics Committee and the ORNL 

human study review panel approved the study.  
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6.2.2: Microbial cell extraction from fecal samples 

Fecal samples were thawed at +4°C and microbial cells were extracted from the bulk 

fecal material by differential centrifugation, as previously described[85]. This cell 

extraction method has previously been found to result in a highly enriched bacterial 

fraction from complex samples, such as soil and chicken feces, with negligible bacterial 

cell loss and a good representation of fecal microbiota[85]. The resulting bacterial cell 

pellets were immediately frozen at –70°C and stored until use. 

6.2.3: Cell lysis and protein extraction from cell pellets 

The microbial cell pellets (~100 mg) were processed via single tube cell lysis and 

protein digestion. Briefly, the cell pellet was resuspended in 6M Guanidine/10mM DTT 

to lyse cells and denature proteins. The guanidine concentration was diluted to 1M with 

50 mM Tris buffer/10mM CaCl2 and sequencing grade trypsin (Promega, Madison, WI) 

was added to digest proteins to peptides. The complex peptide solution was desalted 

via C18 solid phase extraction, concentrated and filtered (0.45um filter). For each LC-

MS/MS analyses below, ~1/4 of the total sample was used. 

6.2.4: 2D-LC-MS/MS 

Both samples were analyzed in technical duplicates via two-dimensional (2D) nano-LC 

MS/MS system with a split-phase column (RP-SCX-RP)[97] on a LTQ Orbitrap (Thermo 

Fisher Scientific) with 22 hr runs per sample (LC as previously described[42,43]. The 

Orbitrap settings were as follows: 30K resolution on full scans in Orbitrap, all data-

dependent MS/MS in LTQ (top five), 2 microscans for both Full and MS/MS scans, 

centroid data for all scans and 2 microscans averaged for each spectra, dynamic 

exclusion set at 1.   

6.2.5: Proteome informatics 

All MS/MS spectra were searched with the SEQUEST algorithm[66] and filtered with 

DTASelect/Contrast[98] at the peptide level [Xcorrs of at least 1.8 (+1), 2.5 (+2), 3.5 

(+3)]. Only proteins identified with two fully tryptic peptides from a 22 hr run were 
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considered for further biological study.  Tandem MS/MS spectra were searched against 

four databases.  The first database (db1) contained two human subject’s 

metagenomes[22], a human database, and common contaminants such as trypsin, 

human keratins, etc.  The existing metagenome databases[22] were deficient in 

Bacteroides sequences and as Bacteroides are known to be common and abundant in 

the human intestine[62], Bacteroides genome sequences were also included in a 

second database (metadb), plus other sequences from representatives of the normal 

gut microbiota deposited and available at the Joint Genome Institute (JGI) IMG 

database (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi).  In addition, we included 

distracters that one would not commonly expect in the healthy gut. The third and fourth 

database were made by reversing or randomizing the db1 and appending it on the end 

of db1; these databases were used primarily for determining false positive rates, as 

described earlier[43,96].  

6.2.6: Hypothetical Protein Prediction 

Hypothetical proteins were submitted to the distant homology recognition server 

FFAS03[161]. For 80% of the hypothetical proteins, a statistically significant match (Z-

score below 9.5) to one of the proteins in the reference databases was obtained. 

Functions of the matching proteins were used to assign a provisional function for the 

hypothetical proteins identified in this study.  

6.3: Results and Discussion 

6.3.1: Metaproteomics of fecal samples 

Our results present the first large-scale investigation of the human gut microbial 

metaproteome. The metaproteomes were obtained from two fecal samples (samples 7 

and 8) collected from two healthy female identical twins (subjects 6a and 6b, 

respectively, see Dicksved et al. (2008) for a description of the individuals). The shotgun 

approach used enabled us to identify thousands of proteins by matching peptide mass 

data to available isolate genome and metagenome sequence databases. The total 

number of proteins identified from searching the first database (db1) that contained all 
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predicted human proteins and the gut metagenomes were 1822 redundant and 1534 

non-redundant proteins, with approximately 600 to 900 proteins identified per sample 

and replicate (Table 6.1).  From the entire non-redundant dataset, ~ 1/3 matched 

human proteins, ~ 2/3 matched predicted proteins from the microbial metagenome 

sequence data.  

Table 6.1: Number of protein, peptide, and spectra identifications for Samples 7 and 8 

(2 technical runs each) using the db1 and metadb databases (see supplementary 

material). 

db1 database  

Sample ID Protein 
identifications* 

Peptide 
identifications 

MS/MS 
Spectra 

Peptides between 
10 and -10 

ppm** 
Sample 7, Run 1 634 1886 4069 81.70 
Sample 7, Run 2 722 2253 4440 80.42 
Sample 8, Run 1 974 3021 5829 83.41 
Sample 8, Run 2 983 2948 6131 81.47 
 
metadb database 
Sample 7, Run 1 970 2441 4829 84.47 
Sample 7, Run 2 1098 2977 5364 81.67 
Sample 8, Run 1 1341 3586 6509 84.71 
Sample 8, Run 2 1275 3374 6635 82.92 

   *Numbers given are non-redundant identifications 
   ** Mass accuracy 
 
 

The second database (metadb) contained all of the sequences in the db1 

database above, in addition to sequences from representatives of the normal gut 

microbiota, including strains of Bacteroides, Bifidobacteria, Clostridia, and Lactobacilli, 

plus human pathogens and distracters that one would not commonly expect in the 

healthy gut, such as environmental isolates.  The rice (Oryza Sativa) genome was 

included to help identify plant (food)-related proteins. From the metadb, the total number 

of proteins identified were 2911 redundant and 2214 non-redundant; between 970 and 

1340 proteins were identified per sample and replicate (Table 6.1). The categorical 

breakdown of identified proteins from each major database type is shown Table 6.2.  In 

three out of four runs, the highest percentage of protein identifications corresponded to 
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the bacterial genome sequences that were screened.  In the fourth run (that is, run 2, 

sample 8), most protein identifications matched to one of the metagenomes. By 

contrast, 30-35% of spectra matched to the human protein database, most likely due to 

a few highly abundant human proteins in the samples with a large number of spectral 

counts.  The proteins matching to both rice and environmental isolate distracters were 

low, between 2 and 9%, indicating that the majority of the sequences matched to 

bacterial types and human sequences that one would expect in the human gut 

environment. Among the microbial genomes screened, the highest protein matches 

were to expected sequences from gut isolates. Of the ~10,000-13,000 total spectra 

observed from each run, ~2,000 matched Bacteriodes or Bifidobacterium species, with 

the Bacteriodes species always having slightly more spectra, emphasizing the 

dominance of these groups and their functional significance in the human distal 

intestine.  These data correlate well with our previously published microbial fingerprint 

data showing an abundance of Bacteroides spp. in both of the individuals studied 

here[158]. 

Table 6.2: Categorical breakdown of all identifications for each database component 

per MS run. 

 

Sample7_Run1 Sample8_Run1
Database Proteins % Spectra Total % Database Proteins % Spectra Total % 

Gut Isolate Genomes 547 38.17 2926 28.11 Gut Isolate Genomes 604 32.26 3047 22.12
Contams 7 0.49 177 1.7 Contams 5 0.27 85 0.62

Human Proteins 166 11.58 3276 31.48 Human Proteins 232 12.39 4440 32.24
Gill Metagenome Set7 205 14.31 1304 12.53 Gill Metagenome Set7 304 16.24 1835 13.32
Gill Metagenome Set8 328 22.89 1977 19 Gill Metagenome Set8 568 30.34 3720 27.01

Rice 45 3.14 226 2.17 Rice 53 2.83 273 1.98
Isolate Distracters 135 9.42 522 5.02 Isolate Distracters 106 5.66 373 2.71

Totals: 1433 10408 Totals: 1872 13773

Sample7_Run2 Sample8_Run2
Database Proteins % Spectra Total % Database Proteins % Spectra Total % 

Gut Isolate Genomes 600 38.73 3111 27.99 Gut Isolate Genomes 515 30.13 2658 20.08
Contams 6 0.39 154 1.39 Contams 3 0.18 63 0.48

Human Proteins 187 12.07 3752 33.76 Human Proteins 214 12.52 4671 35.28
Gill Metagenome Set7 243 15.69 1477 13.29 Gill Metagenome Set7 303 17.73 1810 13.67
Gill Metagenome Set8 365 23.56 2013 18.11 Gill Metagenome Set8 556 32.53 3535 26.7

Rice 57 3.68 246 2.21 Rice 34 1.99 197 1.49
Isolate Distracters 91 5.87 360 3.24 Isolate Distracters 84 4.92 305 2.3

Totals: 1549 11113 Totals: 1709 13239
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By using established methods of reverse database searching[43,96]; we 

estimated a false-positive rate at the peptide level of 1-5% for all identified peptides 

depending on the method.  If only those peptides with corresponding high mass 

accuracy measurements (<10 p.p.m.) were considered (80-85% of all identified peptides 

per run), then the rate dropped to 0.05-0.23%. 

6.3.2: COG categories in the gut metaproteome 

The proteins identified from the db1 search were classified into COG categories and 

when compared between the two samples and the two technical runs, the data were 

highly reproducible and consistent (Figure 6.2).  By comparison to the average 

metagenomes previously published from other individuals[22], we found that several 

COG categories were more highly represented in the average microbial metaproteomes 

of the individuals in the present study (Figure 6.3). The metaproteomes were 

significantly skewed, with a more uneven distribution of COG categories than those 

represented in the average metagenomes. The majority of detected proteins were 

involved in translation, carbohydrate metabolism, or energy production; together 

representing more than 50% of the total proteins in the metaproteome.  In addition, 

more proteins in the metaproteomes were representative of COG categories for post-

translational modifications, protein folding, and turnover. By contrast, other COG 

categories were under represented in the metaproteomes when compared with the 

metagenomes, including proteins involved in inorganic ion metabolism, cell wall and 

membrane biogenesis, cell division and secondary metabolite biosynthesis.  
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Figure 6.2: Microbial proteins identified from fecal samples 7 (blue bars) and 8 (yellow 

bars) according to clusters of orthologous group (COG) functions.  Bars represent 

technical proteome runs 1 and 2. 
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Figure 6.3: Comparison of average clusters of orthologous group (COG) categories for 

available human metagenomes and metaproteomes. (A) Average COG categories of 

the two metagenomes from the gut microbiota of two individuals from a previous study 

(Gill et al. 2006), (B) compared to average COG categories of the metaproteomes from 

the gut microbiota of two individuals in the present study. 
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6.3.3: Label-free estimation of relative protein abundance by normalized 
abundance factor 

We estimated the relative abundances of the thousands of proteins that were detected 

in each sample by calculating normalized spectral abundance factors (NSAF)[127,162].  

By comparing the NSAF data from each sample and technical run to each other, it was 

clear that the technical runs were highly reproducible for a given sample; R2 values of 

0.77 and 0.85 for samples 7 and 8, respectively (Figures 6.4 and 6.5).     

          

Figure 6.4: Comparison of NSAF values.  Sample 7, run 1 and run 2 NSAF values are 

plotted on a log scale.  The dark blue squares represent all of the proteins that were 

identified in both runs from metadb. 



	   122	  

          

Figure 6.5: Comparison of NSAF values.  Sample 8, run 1 and run 2 NSAF values are 

plotted on a log scale.  The dark blue squares represent all of the proteins that were 

identified in both runs from metadb. 

The most abundant proteins based on this prediction were common abundant 

human-derived digestive proteins such as elastase, chymotrypsin C, and salivary 

amylases.  The most abundant microbial proteins included those for expected 

processes, such as enzymes involved in glycolysis (for example, glyceraldehyde-3-

phosphate dehydrogenase). Ribosomal proteins (in particular for Bifidobacterium) were 

also relatively abundant, as were DNA binding proteins, electron transfer flavoproteins, 

and chaperonin GroEL/GroES (HP60 family).  

The gut microbiomes previously published[22] were enriched for many COGs 

representing key genes in the methanogenic pathway, consistent with H2 removal from 

the distal gut ecosystem through methanogenesis. By contrast, we found very few 

proteins represented by methanogens. One example is a hypothetical protein from 

Methanobrevibacterium found in sample 8. Instead, analysis of the list of proteins based 

on the NSAF ranking in our study revealed a high relative abundance of 

formyltetrahydrofolate synthetase, a key enzyme in the acetyl-CoA pathway of 
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acetogens[163]. Acetogenic bacteria utilize H2 to reduce CO2 and form acetate. 

Although methanogenesis is an important H2 disposal route in about 30-50% of people 

in Western countries, in the remainder H2 is consumed by sulfate reduction or reductive 

acetogenesis, and this seems to be the situation for the samples we have studied here.  

Similar to the finding of COGs responsible for host-derived fucose utilization that 

were enriched in the human gut microbiome[22], we also found several proteins 

involved in fucose metabolism, including fucose isomerase and propanediol 

fermentation (later steps in the pathway). In particular, we detected proteins 

corresponding to polyhedral bodies that are assumed to protect the cell by sequestering 

the toxic propionaldehyde intermediate of this pathway[164].  

Butyrate kinase was the most highly enriched COG in the previous metagenomic 

study by Gill et al. (2006). This enzyme is the final step in butyrate fermentation. 

Although we did not identify butyrate kinase, we did find that butyryl-CoA 

dehydrogenase had a relatively high abundance based on the NSAF analyses.  This 

enzyme catalyzes one of the previous steps in the same pathway; interestingly, this 

protein was strongly expressed in sample 8 but was not detected in sample 7.  

Additional proteins of interest that were relatively abundant included NifU-like homologs 

and rubrerythrin. The role of NifU has been proposed as a scaffold protein for Fe-S 

cluster assembly[165]. Rubrerythrin is found in anaerobic sulfate-reducing bacteria and 

is a fusion protein containing an N-terminal iron-binding domain and a C-terminal 

domain homologous to rubredoxin. The physiological role of rubrerythrin has not been 

identified, but it has been shown to protect against oxidative stress in Desulfovibrio 

vulgaris and other anaerobic microorganisms[166]. 

Average NSAF values were compared to determine unique and shared proteins 

in samples 7 and 8 (Figure 6.6, metadb database; Figure 6.7, db1 database). The 

scatter plot reveals five distinct areas: proteins found in similar abundances in both 

samples along the diagonal, proteins found in only one sample on the respective axis, 

and two distinct lobes that are overexpressed in one sample or the other but present in 

both (Figure 6.6). We suggest that the group of approximately equally abundant 
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proteins (747 total) represent core gut populations and functions, supported by the 

finding that a high proportion of these proteins were from common gut bacteria 

(Bacteroides, Bifidobacterium and Clostridium) and represented housekeeping 

functions: translation (19%), energy production (14%), post-translational modification 

and protein turnover (12%) and carbohydrate metabolism (16%) (Supplementary Table 

S10, first tab). By contrast, the proteins found in only one sample contained 

proportionately fewer COG categories for housekeeping functions and from common 

gut species, but a higher proportion with unknown functions (28% compared to 11% 

found in both). These results suggest that the proteins present or over-represented in 

only one sample could represent bacterial populations and functions that change 

according to environmental influences, such as immediate diet.  For example, 33% of 

the unique proteins only found in sample 7 are prolamin proteins, that is, plant storage 

proteins having a high proline content found in seeds of cereals, suggesting recent 

ingestion of cereal grains by that individual. Although these individuals did not specify 

any particular dietary habits in the questionnaire data that accompanied the 

samples[158], we do not have any detailed information about their specific dietary 

intake immediately prior to sampling that would enable us to verify this finding. 
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Figure 6.6: Comparison of relative abundances (NSAF values) of proteins detected in 

Samples 7 and 8. NSAF values for Samples 7 and 8 were averaged amongst their 

individual technical runs and plotted on a log scale.  The dark blue squares represent all 

of the proteins identified in each sample from screening the metadb database.  The 

straight diagonal line represents the location of all proteins that had approximately equal 

expression in both samples. 
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Figure 6.7: Comparison of NSAF values for Samples 7 and 8. NSAF values were 

averaged amongst two individual technical runs pre sample and plotted on a log scale.  

The dark blue squares represent all of the proteins identified in each sample from db1.  

The straight diagonal line is for visualizing the location of all proteins that had 

approximately equal expression in both samples. 

6.3.4: Analysis of unknown hypothetical proteins 

We performed detailed analyses of the unknown proteins (116 from the published 

metagenomes[22] and 89 from bacterial isolate genomes) that could not be classified 

into COG families. The majority belonged to novel protein families that are over-

represented in genomes of gut microbes (Figure 6.8a). Five of the ten most abundant 

hypothetical proteins in the metaproteome belong to the novel protein family 

represented by hypothetical protein CAC2564, identified earlier in human 

metagenomes[22], whereas four out of the top ten belong to another novel protein 

family represented by a hypothetical protein BF3045 from Bacteroides fragilis.  

Members of both families are present in several Bacteroides, Clostridium, and Vibrio 
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species, where they are always associated with each other (see the red and green 

arrows in Figure 6.8b) and various metabolic enzymes and transport systems. The 

neighborhood of these two proteins resembles a typical amino acid metabolic pathway, 

and we hypothesize that they are involved in amino acid metabolism, most likely 

cysteine or methionine. 
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Figure 6.8: Detailed analysis of hypothetical proteins identified in human gut 

metaproteome. (A) Protein representation in the genomes of human gut associated 

microbes; scale changes from 1 (only found in human gut microbes) to -1 (never found 

there), 0 represents even distribution. Conserved genomic neighborhoods of the 

CAC2564 (B) and BT2437 (C) families. 
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Another interesting example is the CPE0573 family of hypothetical proteins, 

originally identified in the human gut metagenome[22]. A distant homolog from this 

family was recently shown to belong to a novel lacto/galacto-N-biose metabolic 

pathway, identified in Bifidobacterium bifidum[167] and Bifidobacterium longum[168]. 

Other proteins from this pathway were also found in the metaproteome samples, 

suggesting that it was active in our subjects who apparently ingested lactose in their 

diet.  Additionally, an operon formed by a hypothetical protein BT2437 from Bacteroides 

thetaiotaomicron VPI-5482 was found which codes for a putative lipoprotein[169]. 

Proteins from this family are always associated with channel forming eight-stranded 

beta-barrel proteins from the OprF family[170] (Figure 6.8c).   

6.3.5: Identification of human proteins 

Almost 30% of all identified proteins were human. The two largest groups of human 

proteins identified in our study were digestive enzymes and structural cell adhesion and 

cell-cell interaction proteins. However, the third largest category was comprised of 

human innate immunity proteins, including antimicrobial peptides, scavenger receptor 

cysteine-rich (SRCR) proteins (represented by the DMBT1 (deleted in malignant brain 

tumors) protein), and many other proteins linked to innate immunity and inflammation 

response (intellectin, resistin, and others).   Most of the abundant human proteins were 

similar in the two individuals, but some differences were found in less abundant 

proteins. 

We were particularly interested in further investigation of DMBT1 (also called 

salivary agglutinin and glycoprotein-340) that is predominantly expressed in epithelial 

cells and secreted into the lumen. This protein has several proposed beneficial 

functions including tumor suppression, bacterial binding, and anti-inflammatory 

effects[171,172]. Detailed analysis of the distribution of DBMT1 peptides shows that 

they had fairly uniform distribution along the protein, including hits from all 17 domains 

present in the DBMT1 protein (Figure 6.9), suggesting that the DBMT1 protein was 

present in our samples as a complete, intact protein, that which we postulate is 

indicative of a healthy gut environment.  
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Figure 6.9: Positions of DMBT1 peptide fragments along the length of the DMBT1 

protein are shown as blue boxes (figure is not to scale). DBMT1 has a length of 1785 

amino acids. PFAM domain names: SRCR (Scavenger receptor cysteine-rich domain); 

CUB (from complement C1r/C1s, Uegf, Bmp1) is a domain found in many in 

extracellular and plasma membrane-associated proteins; Zona pellucida, a large, 

cysteine rich domain distantly related to integrins, found in a variety of mosaic 

eukaryotic glycoproteins, usually acting as receptors. 

6.4: Conclusions 

This is the first demonstration of an overall method for obtaining metaproteomics 

datasets from complex material, in this case human feces, and successful 

demonstration of the deepest coverage of a complex metaproteome to date. By 

comparison with earlier work on environmental samples with only a few dominant 

species[42,43,44], the gut microbiota represents a highly diverse community with 

thousands of species. Therefore, we are testing the technical limit of the use of the 

shotgun proteomics approach. We were encouraged that the sample extraction and 

preparation methods worked well for fecal samples. Although there remain experimental 

and computational challenges, this general approach should be applicable to other 

complex environments, such as marine and soil microbial communities.  

We also successfully demonstrated that it was feasible to use an unmatched 

metagenome dataset to obtain valid protein identifications in fecal samples. It is 

currently more rapid and less expensive to obtain metaproteome data, as we have 

demonstrated here, than metagenome data. This finding is promising for future 

metaproteomics studies of other environments that do not have available matched 

metagenomics sequence data. 
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One particular challenge is to estimate protein abundances in complex samples.  

Here, we used label free methods based on spectral counting and NSAFs[127,162]. 

NSAF is based on spectral counts but also takes into account protein size and the total 

number of spectra from a run, thus normalizing the relative protein abundance between 

samples. Efforts are underway to develop better tools for label-free methods, such as 

the absolute protein expression (APEX) method recently developed by Lu et al.[173].  

However, the APEX method was derived specifically for isolate data and is not 

applicable to complex microbial communities because it requires an estimate of the 

number of expressed proteins in the system and this is not known, for example, in our 

case.  

Although our results present the largest coverage of the human gut microbial 

metaproteome to date, increasing the dynamic range beyond this initial study will be 

necessary in the future to more fully understand the function of the human gut 

microbiota and its interactions with the human host.  Previous studies[42] and current 

work (NCV, unpublished results with artificial mixtures) suggest that proteins can be 

detected from populations that represent at least 1% of a mixed community. However, 

the number of proteins detected (dynamic range) dramatically decreases from 

thousands to hundreds of proteins for those populations that are present at lower 

abundances.   One possibility to increase the dynamic range of detection would be to 

enhance the protein separation steps prior to analysis. The trade-off for increasing the 

number of separation steps would be the requirement for a greater amount of starting 

material and instrument time.  Enrichment or depletion techniques could also be 

attempted to increase the coverage of community members present at low levels, but 

care must be taken to not affect the proteome during any manipulations.  Increasing the 

dynamic range is a clear challenge for all proteomic applications and this will be a 

pressing area for research and method development in the future.    

We made several comparisons of our metaproteome data to the existing 

metagenome data[22]. Some matches could be made between pathways predicted to 

be functioning based on abundant genes detected in the metagenome data to abundant 

proteins we found, such as those involved in fucose and butyrate fermentation. There 
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were also some interesting discrepancies, such as the implication of methanogenesis in 

the former study and the apparent lack of methanogenesis in the samples we analyzed. 

The few, low-level, nonunique peptide hits to methanogens that we found were not 

sufficient to indicate that these organisms were present or functioning. Instead, our data 

suggest that acetogenesis was occurring in our samples, implicating different hydrogen 

scavenging routes in the subjects in the two studies.  

Although about the same percentage of proteins with ‘unknown function’ was 

found in both the metagenomes and the metaproteomes, the metaproteome data 

provide direct proof that such proteins are actually expressed. Overall, 67% of 

hypothetical proteins identified in this study could be recognized as distant homologs of 

already characterized families, allowing putative function assignments, with most of 

them further enriching the amino-acid and carbohydrate metabolism categories, but also 

including proteins involved in cell-cell signaling and active transport of nutrients across 

bacterial membranes.  Also, fold recognition level structure predictions are possible for 

55% of them, opening doors for modeling and more detailed function analysis.  

There were additional discrepancies between some proteins predicted in the 

metagenomes that were not detected in the metaproteomes and reasons for this include 

all or some of the following: (1) the microbial community compositions and proteins 

produced were different in the different individuals, (2) the proteins were produced, but 

below the dynamic range of detection, (3) they might not have been expressed at 

significant levels at the time of sampling, or (4) the proteins may have mutated to a point 

that they are no longer detected by screening an unmatched metagenome[174]. 

Therefore, although we successfully identified thousands of proteins using an 

unmatched dataset, it would still be very valuable to have matching metagenome and 

metaproteome data from the same samples and this will certainly be achieved through 

ongoing and future initiatives, such as the NIH Human Microbiome Project 

(http://nihroadmap. nih.gov/hmp/) and the European Union Meta-HIT project 

(http://www.international.inra.fr/ press/metahit). Recently, 13 additional human 

metagenome sequences were published from Japan[24] and more representative 

genome sequences from commensal gut isolates are currently being sequenced [157]. 
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Taken together, these represent valuable resources that should eventually aid in 

identification of more proteins from the human gut. 

A large proportion of the proteins detected in the samples (approximately 30%) 

were human proteins. This finding can be explained by the differential centrifugation 

method that we used to obtain a bacterial cell fraction, which is not pure but highly 

enriched in bacterial cells when compared to human cells and particulate matter in the 

original fecal sample. Any human protein that adhered to the microbial cells would have 

been collected in the bacterial pellet. Also, there are many more proteins in human cells 

than in bacterial cells. Therefore, even a minor contamination of the bacterial fraction 

with human cells could represent a significant number of human proteins. In hindsight, 

this was advantageous because it enabled us to detect and identify human proteins, 

such as antimicrobial peptides, that reflect interaction between the host and the 

microbiota.  Furthermore, this highlights the power of this technology to distinctly identify 

both microbial and human proteins in a combined mixture.    

In summary, although it is evident that this massive dataset would require 

substantial effort to completely define and characterize, our goal was to develop an 

approach to obtain a first large-scale glimpse of the functional activities of the microbial 

community residing in the human gut. A wealth of information about functional pathways 

and microbial activities could be gleaned from this data, thereby providing one of the 

first views into the complex interplay of human and microbial species in the human gut 

microenvironment. It is clear that proteomics allows us to directly see potential host-

commensal bacterial interactions. While the human immune response is usually 

described in terms of response to infection, it is clear that innate immunity proteins are 

part of a normal gut environment, shaping the gut microflora to the desired shape.   



	   134	  

Chapter 7 

Strategies for Metagenomic-Guided Whole Community Proteomics of Complex 
Microbial Environments 

The text is adapted from: 

Alison R. Erickson, Brandi L. Cantarel, Nathan C. Verberkmoes, Brian K. 
Erickson, Patricia A. Carey, Chongle Pan, Manesh Shah, Emmanuel F. 
Mongodin, Janet K. Jansson, Claire M. Fraser-Liggett, and Robert L. Hettich. 
“Strategies for Metagenomic-Guided Whole Community Proteomics of Complex 
Microbial Environments.” Submitted and in review at PLoS One (2011). 

Alison R. Erickson’s contributions include experimental preparation of microbial samples 

for proteomics, experimental LC-MS/MS measurements, integrated comparisons and 

analyses of all protein database search results, and shared primary authorship with 

Brandi Cantarel. 

7.1: Introduction 

Key questions in environmental microbiology include: (i) what microorganisms are 

present in a particular environment, (ii) how are they functioning, and (iii) how does 

community structure and function vary in response to environmental 

conditions/changes?  Recent technological advances have provided powerful 

experimental approaches to address these questions, with 16S rRNA-based taxonomic 

profiling providing extensive information about microbial composition, and metagenomic 

whole-genome shotgun (WGS) sequencing/shotgun community proteomics, or 

“metaproteomics,” providing insights into the composition and functional activities of 

microbial communities.  In particular, metagenome sequencing with next-generation 

platforms has revolutionized the ability to measure and fully characterize the genomic 

repertoire in microbial communities. 

In order to successfully identify peptide sequences using mass spectrometry 

(MS)-based proteomics methods, a relevant database of predicted genes derived from 

genome or metagenome sequences is necessary.  Peptide identifications result from 

matching tandem mass spectra (MS/MS) against predicted fragmentation patterns of all 
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possible in silico digested peptides using well-established programs[66,67,68].  

Therefore, successful MS/MS sequence-database searching is critically dependent on 

the quality and accuracy of the metagenomic predicted sequence database. 

Although traditional MS-based proteomic analyses of single bacterial isolates are 

well established, applying these methods to complex microbial communities can be 

challenging for several reasons, including the lack of deep sequence coverage and 

difficulty in assembling metagenomes from 454-reads.  Considerable improvements in 

mass spectrometers and chromatography have been made over the past decade; 

however, the development of tools for optimizing metagenome-metaproteome sequence 

matching has not kept pace, especially when using the shorter sequence reads 

associated with next generation sequencing platforms such as the 454 

pyrosequencer[175] and Illumina GAII[176].   

While an increasing number of studies have developed computation methods for 

proteogenomics[177,178] and begun to integrate metagenomic sequence data with 

proteome measurements[42,43,44], these studies have primarily focused on either 

single eukaryotic genomes or populations with low diversity, allowing for sufficient depth 

of sequence coverage of abundant community members that facilitate proteome 

identifications as compared to more complex microbial communities (e.g., human 

microbiome, ocean, and soil).  In the human distal gut, there are approximately 1,000 

estimated species which represent >7,000 prokaryotic strains; therefore, the complete 

metagenome is estimated to be >100 times the human genome [159].  Based on 

previous studies of these exact same samples, we would expect ~ 30% of the proteins 

identified by proteomics to be of human origin[26].  The challenges inherent in a 

metagenomic-metaproteomic characterization of complex environmental samples 

include (i) considerable sequence diversity among closely related strains/species, (ii) 

large number of organisms for which no reference genome sequence is available and 

(iii) low nucleotide sequence coverage for the microorganisms, especially low 

abundance members.  
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In the previous chapter, we demonstrated that whole community proteome 

measurements were possible in the human gut microbiome, but were concerned with 

the accuracy for how to handle extensive microbial protein redundancy in the 

metagenomes.  Thus, we stepped back to a applying a systematic bioinformatics 

comparison and analysis of how to construct metagenomic sequence databases for 

optimum metaproteome measurements.  Here we present a benchmarking of strategies 

for integration of metagenomic and metaproteomic data derived from the same human 

gut microbiome samples.  Although the metagenomes were not sequenced to 

saturation, they were sufficient to enable us to evaluate how protein predictions based 

on metagenome data impact peptide-spectrum assignments in matched metaproteomic 

datasets (i.e., metagenome and metaproteome of the exact same sample).  Using 454 

pyrosequencing, 1,079 Mbp of DNA sequence was obtained from two fecal samples 

obtained from a pair of healthy twins[158].  Using these data, four protein sequence 

databases were created using several different assembly and gene finding strategies 

(Figure 7.1).  The resulting databases were evaluated for their utility in MS sequence-

database searching.  

 

Figure 7.1: Creation of protein sequence databases.  Protein sequence databases were 

created from metagenomic sequence reads using a variety of methods for assembly 

and gene finding. 

Assembly of metagenomic reads can potentially generate errors by joining 

sequence reads that share sequence identity but are derived from different strains or 

species.  This can be further complicated by sequencing errors, such as issues with 
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homopolymer tracts in 454 pyrosequencing datasets[179,180].  The metagenome 

assembly strategies examined in this study were (i) assembly by sample, exemplifying 

the traditional approach used for single isolate genomes, (ii) whole-dataset assembly, in 

order to increase sequence coverage, and (iii) no assembly, which will theoretically 

capture all sequence diversity present in a sample.  Since sequencing errors can also 

introduce frameshifts and in-frame stop codons, resulting in fragmented gene 

predictions, we explored homology-based gene finding, as it allows the ability to ‘gap’ 

over sequencing errors, and de novo based gene finding which uses models of known 

gene structure for prediction.   

 Proteomics approaches were also benchmarked to identify the parameters 

necessary to create accurate peptide-spectrum matches (PSMs; a match of a given 

MS/MS spectrum to a specific database peptide sequence) and increase protein 

discovery by de novo peptide sequencing.  Several MS-related parameters (spectral 

quality, delta correlation (deltCN), and high mass accuracy (±10 ppm (parts-per-million)) 

were examined and proved to be helpful in providing more comprehensive, confident 

PSMs.  Moreover, we investigated how much de novo peptide sequencing would 

increase peptide identification, since it provides novel sequences that were not originally 

present in the sequence database (e.g., polymorphisms).  By utilizing the genomic and 

proteomic tools described in this study, we identified a strategy that increased the 

number of PSMs and protein identifications in a complex microbial community that can 

provide a more comprehensive and accurate characterization of the human gut 

microbiome.  

7.2: Experimental Methods 

7.2.1: Samples, DNA and protein extraction 

Fecal samples from two healthy female human individuals (a concordant twin pair), 

numbered 6a and 6b, were collected under a separate study, as described and studied 

previously[26].  Both samples were used for DNA and protein extraction.  An additional 

three twin pairs corresponding to six human fecal samples: numbered 15a and 15b 

(concordant pair with Crohn’s disease), 16a and 16b (discordant pair, healthy 16a and 
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16b with Crohn’s disease), and 18a and 18b (discordant pair, healthy 18a and 18b with 

Crohn’s disease), were used for metagenomic sequencing only and were included in 

several of the sequence databases as described in “Protein Database Construction.”  

Therefore, a total of two healthy samples (6a and 6b) were used for metaproteomics 

and eight (four healthy: 6a, 6b, 16b, and 18b and four diseased: 15a, 15b, 16a, 16b) 

samples were used for metagenomics.  Throughout the manuscript, the diseased 

samples and individuals other than 6a and 6b are referred to as “unrelated” because we 

are only focusing on 6a and 6b samples’ metaproteomes, thus, we have a “matched” or 

“related” metagenome-metaproteome.  Since these fecal samples were collected under 

a separate research program and were supplied as de-identified information for this 

study, this work was approved in March 2010 by the Oak Ridge Site-wide Institutional 

Review Board (ORSIRB; Dr. Leigh Greeley, chair-person) as “human studies exemption 

4”, IRB REFERENCE #: ORNL EX(10)-3. 

Total genomic DNA was extracted using the MoBio PowerSoil DNA Isolation kit 

(MoBio Laboratories, Carlsbad, CA) following the manufacturer’s recommendations.  

Sample 6a was also extracted using the Zymo extraction protocol recently published by 

Ravel and colleagues[181].  Each sample was then sequenced using Roche 454 FLX-

Titanium pyrosequencing according to manufacturer specifications.  Raw sequence 

data were processed using the Roche/454 run processing software to filter short, mixed, 

and low quality reads.  The sequencing generated 418K - 627M passed-filter reads and 

170 – 381 Mbp per sample for the eight human fecal samples (15a, 15b, 16a, 16b, 18a, 

18b, 6b, and 6a).  Microbial cells (~100 mg cell pellet) and proteins were extracted and 

processed for 2D-LC-MS/MS.  The protocol for cell lysis and protein extraction has been 

rigorously tested and developed by our laboratory[74,86] with specific details 

corresponding to these samples detailed in Verberkmoes et al.[26]. 

7.2.2: Protein database construction 

Starting with 454 pyrosequencing reads, four metagenomic processing methods (NM, 

RM, RFM, and CAFM) were evaluated for the construction of predicted protein 

databases (Figure 7.1 and Table 7.1).  Sequences were first filtered for human 
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contamination by alignment of reads to the human genome (v 36) using NUCMER[182] 

using default parameters.  The Newbler-Metagene (NM) protein sequence database 

was created using the single-genome strategy by generation of a de novo assembly 

followed by de novo gene finding.   While there are a variety of gene prediction 

algorithms available, we chose to focus on MetaGene Annotator[183], a platform that 

we have extensive experience with for 454 sequencing datasets.  Certainly, newer 

approaches, such as Orphelia[184], MetaGeneMark[185], and FragGeneScan[186] 

have appeared and shown promise for Illumina datasets; the accuracy of these 

algorithms do not differ greatly for 300-400 bp reads and MetaGene Annotator is well 

suited for assembled datasets. 
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Table 7.1: Performance and comparison of the metagenomic predicted protein 

sequence databases. The database composition and SEQUEST/DTASelect search 

results (compute time, identified non-redundant spectra and peptides) with a 2-peptide 

and deltCN of 0.08 filters are shown for samples 6a (Run 2 and 3) and 6b (Run 1 and 

2). 

Metagenomic 
Predicted Protein 

Sequence Database 
 

Celera 
Assembler, 

Fastx, 
Metagene  

Newbler, 
Metagene 

Newbler, 
Metagene +  

Kurokawa/Gill 

Raw 
Reads, 

Metagene 

Raw 
Reads, 
FastX, 

Metagene 

Raw Reads, 
FastX, 

Metagene + 
Kurokawa/Gill 

Raw 
Reads, 

Metagene 
Paired 
Search 

Database Acronym CAFM NM NM_KG RM RFM RFM_KG RMPS 
Number of Sequences 

(thousand) 1,844 190 540 1,903 1,520 1,907 2,146 

Number of Amino 
Acids (million bp) 200 45 115 189 173 262 191 

Compute Time Per 
Run (minutes) 670 80 320 750 1,060 1,030 435 

Number of 
Non-redundant 

Spectra 

6a 
Run 2 5,179 6,235 10,441 9,100 9,074 10,975 13,806 

6a 
Run 3 4,326 5,376 9,272 8,152 8,538 10,330 18,401 

6b 
Run 1 4,092 5,615 10,830 8,639 8,480 11,254 12,363 

6b 
Run 2 3,873 5,800 10,724 8,775 8,573 11,167 12,212 

Total Spectra 17,470	   23,026	   41,267	   34,666	   34,665	   43,726	   56,782	  
Total number of PSMs  

within ±10ppm 14,317	   16,906	   31,289	   26,181	   25,997	   33,347	   39,681	  

Number of  
Non-redundant 

Peptides 

6a 
Run 2 4,383 3,093 5,678 4,710 4,669 5,911 7,592 

6a 
Run 3 3,655 2,403 4,617 3,804 3,963 5,068 6,303 

6b 
Run 1 3,404 2,426 5,409 3,919 3,879 5,549 5,923 

6b 
Run 2 3,216 2,297 5,088 3,747 3,690 5,238 5,605 

Total Peptides 14,658	   10,219	   20,792	   16,180	   16,201	   21,766	   25,423	  
Total NR Peptides 8,632	   5,994	   12,406	   9,618	   9,608	   13,111	   16,055	  
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Shotgun sequences from each sample were assembled using the Newbler 

Assembler (v2.0.01.14), and genes were predicted on contigs greater than 500 bp using 

Metagene[187], resulting in a total of 153,586 predicted open reading frames (ORFs) 

larger than 50 nt across a total of the seven metagenome samples included in this 

study.  The second database, Reads-Metagene (RM), was created by directly predicting 

ORFs from raw sequencing reads to prevent loss of sequence diversity when collapsing 

unrelated sequencing reads during genome assembly.  ORFs were predicted using 

Metagene, yielding 1,866,893 predicted ORFs larger than 50 nt.  Sequencing errors 

often seen in pyrosequencing datasets[179,180] can lead to artificially fragmented 

predicted ORFs.  Because these errors cause frameshifts and in-frame stop codons in 

gene predictions, we used protein-to-DNA alignments, generated by sequence similarity 

searches against NCBI’s NR using FASTX[188] with an expectation value threshold of 

1e-6, to predict genes by homology.  Homology-based gene finding was performed on 

raw 454 sequencing reads yielding 1,483,958 predicted ORFs larger than 50 nt, called 

Reads-FASTX-Metagene (RFM) protein database. 

 Additionally, three databases were created from assembled reads, with the intent 

of creating longer genes and fewer protein fragments.  The combination of short 

sequencing reads, averaging 369 bp, and the high bacterial diversity found in the 

human gut, produced a dataset with many fragmented genes.  Since assembled 

sequences were not much longer than raw sequencing reads, these genes were also 

fragmented, therefore, we were unable to validate proteins identified by multiple peptide 

matches.  Thus, an assembly was created by combining the shotgun sequence data 

from these samples using the Celera Assembler (v5.4), called Celera Assembler-

FASTX-Metagene (CAFM), yielding 1,807,963 predicted proteins on all contigs and 

singletons larger than 50 nt.  Homology-based gene finding was also used for this 

CAFM database, using the same parameters as RFM.  In addition to sequences 

generated in this study, we included the following published human gut metagenomic 

datasets: two metagenomes from Gill et al. [22] and thirteen metagenomes from 

Kurokawa et al.[24], that were concatenated with the NM (termed NM_KG) and RFM 

(termed RFM_KG) sequence databases to provide additional sequence variation and 
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increase proteome coverage.  The metagenomes published from Gill et al.[22] (17,688 

contigs; ORFs ≥ 20 amino acids; ~50,000 predicted proteins; available at the Joint 

Genome Institute (JGI) IMG database under NCBI project ID 16729) and Kurokawa et 

al.[24] (81,968 contigs; ORFs ≥ 50 amino acids; ~300,000 predicted proteins; available 

at CAMERA (2007)) studies were sequenced via Sanger-based methods.  The amino 

acid sequence of the proteins belonging to the two samples’ metagenomes used in this 

study (6a and 6b in addition to 15a, 15b, 16a, 16b, 18a, 18b) can be accessed through 

the NCBI Protein Database under NCBI project ID 46321. 

For each of the protein sequence databases described above (NM, CAFM, RFM, 

NM_KG, and RFM_KG), we concatenated the metagenomic protein predictions from 

multiple individuals into a single database.  For example, NM, RM, RFM, and CAFM 

each contain metagenomic sequences from seven individual human samples from this 

study (15a, 15b, 16a, 16b, 18a, 18b, and 6b), which include an unrelated healthy 

sample 16b (Figure 2 comparisons).  The NM_KG and RFM_KG protein databases 

contain the same 7 metagenomic predicted protein sequences (15a, 15b, 16a, 16b, 

18a, 18b, and 6b), but unlike NM and RFM, contain the published 13 Japanese 

metagenome sequences[24] and 2 American metagenome sequences[22] for a total of 

22 concatenated metagenomes per protein sequence database. 

 Deeper whole genome shotgun sequencing was obtained from an extra run on 

6b and an additional sample (6a), extracted using the Zymo and MioBio method, which 

resulted in a four-fold increase in sequence data for these two healthy samples (Table 
7.2).  Due to the limitations of analyzing this larger metagenomic sequence dataset, 

these sequences were processed similar to the RM strategy and compiled into 2-

independent protein databases, termed RMPS, for 6a and 6b in this assessment.  Each 

of these 8 protein databases (NM, NM_KG, CAFM, RFM, RFM_KG, RM, RMPS-6a and 

RMPS-6b) included human reference sequences (July 2007 release, NCBI; ~36,000 

protein sequences) and common contaminants (i.e., trypsin and keratin; 36 protein 

sequences).  Lastly, a 6-frame translation library was generated for sample 6a and 

searched against one MS experiment. 
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Table 7.2: Metagenomic sequencing metrics. 

  

7.2.3: Spectral analysis 

Microbial proteins were extracted and processed for 2D-LC-MS/MS as described[26] 

using an Ultimate HPLC system (Dionex, Sunnyvale, CA) coupled to a high resolution 

LTQ-Orbitrap (Thermo Fisher Scientific, San Jose, CA).  Peptide mixtures from the two 

samples, 6a and 6b, were separated by a 12 step, multidimensional high-pressure liquid 

chromatographic elution consisting of eleven salt pulses followed by a 2 hr reverse-

phase gradient from 100% solvent A (A: 95% H2O, 5% acetonitrile, 0.1% formic acid) to 

50% solvent B (B: 30% H2O, 70% acetonitrile, 0.1% formic acid).  Precursor full MS 

spectra (from 400-1700 m/z) were acquired in the Orbitrap with resolution = 30,000 

followed by five data-dependent MS/MS scans at 35% normalized collision energy in 

the LTQ with dynamic exclusion enabled.  All RAW files were converted to mzXMLs 

using ReAdW (v4.3.1; 2009) and mzXMLs subsequently converted to dta files using 

MzXML2Search (v4.3.1; 2009).  All MS/MS were searched with SEQUEST (v.27)[66] for 

fully tryptic peptides (≤ 4 missed cleavages, 3 Da parent mass tolerance window, 0.5 Da 

fragment ion window) against each of the 8 custom-made FASTA formatted protein 

sequence databases described above.  Since it is well established that trypsin cleaves 

primarily C-terminal to Arg and Lys[189], we have found in a variety of microbial 

communities[42,190,191] that using fully tryptic searches provides increased confidence 

in the peptide assignments while minimizing the potential for increased false positives 

due to incorrect candidate peptide sequences.  All SEQUEST output files were 

assembled and filtered using DTASelect (v1.9)[98] at either a 2-peptide level for all 

seven: NM, NM_KG, RM, RFM_KG, RFM, CAFM, and RMPS databases and also 1-

Metagenome LC Prep DNA Extraction Total Reads Total KiloBP Avg Read Length
15a 1 MoBio 563,893 220,685 391
15b 1 MoBio 550,360 204,845 372
16a 1 MoBio 585,262 229,389 392
16b 1 MoBio 418,759 147,547 352
18a 1 MoBio 627,543 221,475 353
18b 1 MoBio 424,935 142,718 336
6a 1 MoBio 1,079,211 403,882 374
6b 1 MoBio 584,264 220,354 377
6b 2 MoBio 599,107 188,577 315
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peptide level for the RMPS database searches with the following widely accepted 

parameters: cross correlation scores (XCorr) of at least 1.8, 2.5, 3.5 for +1, +2, and +3 

charge states[42,92,98], respectively and a minimum deltCN of either 0.08 (default) for 

all seven databases (NM, NM_KG, RM, RFM_KG, RFM, CAFM, and RMPS databases) 

and/or 0.0 for NM, NM_KG, RFM, RFM_KG, RMPS-6a and -6b, and target-decoy 

databases (described under “false discovery rates”).  Post-translational modifications 

and other fixed modifications were not included in the search criteria.   

We used the high mass accuracy capabilities of the Orbitrap with a wide mass 

tolerance to measure precursor ion (peptides) masses at low parts-per-million (ppm) 

and the ion trap to efficiently measure fragment ions at lower resolution.  A “post-

database search” filter with high precursor mass accuracy was used by comparing the 

theoretically derived peptide from the SEQUEST mass with what was observed in the 

Orbitrap in the full scan preceding the MS/MS scan.  Recently, Hsieh et al. indicated 

that a wide precursor mass window in a database search[192] and a post-database high 

precursor mass accuracy filter is a more superior method to control false positives.  

Therefore, for post-filtering the database results by high mass accuracy, the mass 

deviation (in ppm) of a PSM was calculated using the measured monoisotopic mass 

and theoretical monoisotopic mass of the peptide.  For all of the database searches 

(NM, NM_KG, RM, CAFM, RFM, RFM_KG, RMPS-6b and -6a, and target-decoy 

databases) and comparisons, DTASelect was run with a t0 option to report all MS/MS 

spectra, in which case two spectra per protein, rather than two peptides, are required for 

identification.  We compared each of the database results in a relative fashion such that 

all comparisons (degenerate peptides) are consistent to one another.  Every MS/MS 

spectrum that is assigned to a peptide (unique and non-unique peptides) was noted and 

handled by DTASelect as described[98]; therefore, we recognize peptides that are 

shared (non-unique) among multiple proteins.  While we recognize that non-unique 

peptides are somewhat problematic for label-free quantification using spectral counts, 

this was not the focus of the current study. 

Spectral quality assessment was accomplished utilizing an in-house developed 

script that parses the SEQUEST output and mzXML formatted spectral data.  All 
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spectra collected during an analysis were categorized according to type: full scan (MS1) 

or tandem mass spectra (MS/MS).  MS/MS spectra assigned to a peptide by SEQUEST 

were noted while the remaining unassigned MS/MS spectra were classified as high-

quality or poor based on the following conditions: a. the charge state of the parent ion 

must be greater than 1, b. the minimum absolute intensity must be greater than 2500 

counts, and c. greater than three fragment peaks within 20% of the based peak must be 

present (all other details in preparation to be submitted for publication).  To quantify the 

peptide-spectrum success, MS/MS were categorized as (i) assigned or unassigned to a 

peptide and (ii) if unassigned, a score of high-quality or poor as reflected by four 

methods (NM, CAFM, RFM, and RMPS) and six databases (NM, CAFM, RFM, 

RFM_KG, and RMPS-6a and -6b). 

7.2.4: False discovery rates 

A target-decoy database[96,126] was generated for each of the five metagenomic 

processing methods (NM, CAFM, RM, RFM, RMPS), for a total of six forward-reverse 

databases (RM, RFM, CAFM, KG, NM_KG, and RMPS-6b) and searched against one 

of the two samples (6b) used in this study to estimate the peptide-level false discovery 

rate (FDR) with the new metagenomic processing methods.   One sample and technical 

run (6b, Run1) was used to represent the entire sample set (2 samples; 4 runs) for each 

target-decoy database search in order to reduce the total number of target-decoy 

databases, search time, and complexity of comparisons.  All target-decoy SEQUEST 

output files were assembled and filtered using DTASelect (v1.9)[98] with the same 

XCorr filters as described previously, and either a ≥1 peptide per protein with a deltCN 

filter of 0.0, or a ≥2 peptide per protein with a deltCN of 0.0 (RMPS-6b) or 0.08 

(NM_KG, CAFM, RM, RFM, and KG), with an empirical FDR threshold of ≤ 2.0%.  The 

initial, 1-peptide filter and deltCN 0.0, forward-reverse database searches provide FDRs 

for NM_KG, CAFM, RM, RFM, KG, and RMPS-6b (read-based) database analyses 

while the latter, 2-peptide and deltCN 0.08 filter, forward-reverse database searches 

contain the same filtering criteria as the original forward databases (NM, NM_KG, RM, 

RFM_KG, RFM, CAFM, and RMPS databases; Table 1 results) described earlier.  

Finally, a forward-reverse database was also created for the final paired metagenome 
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sequence strategy (RMPS) for 6b and searched against the spectra collected from 6b, 

Run 1 and Run 2 using a deltCN 0.0, 1-peptide minimum, and high mass accuracy 

filtering.  The identified peptides (both forward and reverse) were then mapped back to 

the protein sequences derived from the assembled metagenomic sequences using a 

post-database 2-peptide filter by exact string comparisons.  Although the peptides with 

corresponding high mass accuracy measurements (±10 ppm) were considered for all 

downstream analyses, the peptide-level FDRs were estimated for both, with (-10 ≤ ppm 

≤ 10) and without (ppm < -10 and ppm > 10) high mass accuracy, for 6b, Run1 against 

six genomic processing methods (NM_KG, CAFM, RM, RFM, KG, and RMPS-6b).  

Each protein entry (sequence) was reversed, i.e., the original N-terminus became the C-

terminus.  The new reverse (false) sequences were then appended onto the backend of 

the original forward sequences where each set, forward and reverse, represents 50% of 

the entire database.  A peptide-level FDR was calculated based on the calculation: 

2[nrev/(nrev + nreal)]*100 where nrev is the number of peptides identified from the reverse 

database and nreal is the number of peptides identified from the real (forward) 

database[96].      

7.2.5: Sequences similarity searches 

Peptides obtained from our SEQUEST/DTASelect searches were searched against the 

6b and 16b protein databases using the FASTS algorithm and against raw sequencing 

reads using TFASTS[193], algorithm that compares peptides to DNA sequence, using 

an e-value cutoff of 10-5.  

7.2.6: De novo sequencing of peptides by MS   

PepNovo+[105] and PEAKS[109] algorithms were used to de novo sequence MS/MS 

spectra collected from both samples, independent of all sequence databases.  The 

PEAKS (v4.5 SP2) algorithm computes the best possible sequence among all probable 

amino acid combinations at a full peptide length confidence followed by individual amino 

acid confidence per residue in the predicted sequence for a MS/MS.  PEAKS was run 

with default parameters with a parent mass error tolerance of 0.5 Da, fragment mass 

error tolerance of 0.5 Da, and trypsin digestion.  First, a 90% confidence level was 
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required for the overall, full length prediction to be correct and second, an 80% 

confidence level was required for each residue within that sequence, which is consistent 

with Ma et al.[109].  PepNovo+ (v3.1) was executed using the following recommended 

parameters: -model CID_IT_TRYP -digest TRYPSIN -pm_tolerance 0.05 -

num_solutions 5 -output_cum_probs. The top-scoring tags of all spectra were filtered 

using a cumulative probability cutoff of 0.5.  In the sequence tags produced from both 

algorithms, the isobaric amino acid pair of Isoleucine (I) and Leucine (L) and the nearly 

isobaric pair of Lysine (K) and Glutamine (Q) are considered equivalent.  L and I were 

both substituted with the letter, J, for convenience.  Additionally, Q and K were 

substituted with the letter, U, since they are not easily resolvable (small mass difference 

of 0.036 Da) with ion trap MS/MS data.  For all three algorithms, SEQUEST, PEAKS, 

and PepNovo+, a minimum of 3 residues has to be assigned to a spectrum for it to be 

considered for any additional analysis and comparison to other algorithms.  For PEAKS, 

only the high confidence sequence tag was used for all analyses, not the predicted full-

length peptide sequence.  For the comparison of PSMs between all three algorithms, a 

“partial” consensus sequence was considered as a peptide sequence that has ≥3 amino 

acids that are exactly the same for the same mass spectrum between either SEQUEST 

peptide sequences, Peaks’ high confidence sequence string, and/or Pepnovo+s’ 

sequence tag.  If a PSM has an “exact” consensus sequence with 100% sequence 

identity between any two or more algorithms, it would be considered a shared, exact 

consensus sequence.  If a PSM does not have at least 3 residues within a peptide 

sequence string that match two or more algorithms, that spectrum would be considered 

unique to that algorithm.  The identified SEQUEST/DTASelect PSMs for RMPS-6a and -

6b sequence databases with a 1-peptide minimum and deltCN of 0.00 for 6a (Run 2 and 

3) and 6b (Run 1 and 2) were compared to the PSMs from PEAKS and PepNovo+.  The 

breakdown of partial and exact consensus sequences versus PSMs that are unique to a 

specific algorithm can be found in the Venn diagram.  We did not take into account any 

single amino acid polymorphisms in the algorithms’ consensus sequence comparisons.  

In this study, we controlled the false discovery rate by only using the high confidence 

consensus sequences tags found between the two de novo algorithms using their 

respective optimum parameters.  
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7.3: Results 

7.3.1: Protein sequence database comparison 

Four protein prediction strategies (Figure 7.1) were implemented for metagenomic DNA 

sequences obtained from two healthy human fecal samples (referred to as 6a and 6b), 

using a combination of assembly and gene prediction methods.  Each protein sequence 

database has a defined acronym (2-4 letters), designating the strategy used (Figure 7.1 

and Table 7.1).  Our goal was to increase peptide-spectrum matches (PSMs) using MS 

database searching for which the MS data was collected from the same samples as the 

DNA sequence data.  The ability to accurately match peptides to tandem mass spectra 

(MS/MS) was assessed by comparing the number of PSMs and unique peptides 

identified for each database search with SEQUEST/DTASelect at a 2-peptide level, 

deltCN 0.08, and XCorr filtering against the same 2 samples, 6a (with spectra from runs 

2 and 3) and 6b (with spectra from runs 1 and 2) (Table 7.1).  These results illustrate 

how common metagenomic processing methods (assembly and ORF finding) affect 

peptide and spectra identification (Table 7.1).  From these results, three major trends 

emerge: (A) Collapsing of the sequence data by assembly decreases the number of 

assigned spectra.  There was a decrease of assigned spectra when all reads were 

assembled from all samples compared to assembly by individual sample (NM, 23,026 

spectra vs. CAFM, 17,470 spectra).  Additionally, if reads are annotated without 

assembly, PSMs increase (NM, 23,026 spectra vs. RM, 34,666 spectra).  This can be 

largely attributed to the increased diversity of possible peptides, determined by in silico 

trypsin digestion, in the unassembled data, which is over 3 times what is found in 

assembled data (5,638,100 vs. 1,639,802).  (B) An increase in spectrum assignment 

usually translates to an increase in unique peptide identifications.  For example, the 

11,640 gains in spectral assignment translate to a 3,624 gain in identification of unique 

peptide sequences for RM compared to NM (Table 7.1).  However, this was not 

observed when comparing CAFM to NM, where the 5,556 gains in spectra assignment 

translated to a decrease of 2,638 unique peptides (Table 7.1).  (C) De novo gene 

finding methods are sufficient for optimal spectrum assignment.  The combined de novo 

and homology-based gene finding method did not increase PSMs as hypothesized 
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(RFM, 34,665 spectra vs. RM, 34,666 spectra) nor the number of identified unique 

peptides (RFM, 9,608 peptides vs. RM, 9,618 peptides; Table 7.1).  

Because of the low relative sequence coverage of our metagenomic samples, we 

wanted to evaluate whether adding metagenomic sequences from 15 unrelated 

samples in two published studies would enhance our spectrum assignment.  Therefore, 

to protein databases NM and RFM, we added the proteins sequences from predicted 

ORFs from two published human gut metagenomic studies, referred to as “KG” for 

Kurokawa et al. and Gill et al.[22,24], which are referred to as NM_KG and RFM_KG 

respectively.  The KG database contains 13 metagenomes from a Japanese cohort[24] 

and 2 metagenomes from an American cohort[22], both geographically distinct from 

samples in this study.  When compared to the metagenomic sequences in this study, 

only 9% of sequences align in KG at 99% identity or greater; thus, they provide over 2 

million additional unique peptides for MS/MS assignment, that are not identified in any 

of the matched metagenomes.  Because the assemblies from these studies are on 

average longer (average contig length of 2,300 nt for Kurokawa et al. compared to an 

average contig length of 1,128 nt in this study), the predicted proteins are more likely to 

be full-length compared to ORFs in this study (average protein length of 194.5 aa for 

Kurokawa et al. metagenomes; average protein length of 225 aa for Gill et al. 

metagenomes compared to an average protein length of 168.5 aa in this study).  By 

including metagenomic sequence from additional sources[22,24], the number of 

identified spectra increased (NM versus NM_KG (23,026 versus 41,267 spectra) and 

RFM versus RFM_KG (34,665 versus 43,726 spectra)) for 6a (Run 2 and 3) and 6b 

(Run 1 and 2) in total (Table 7.1).  However, the additional KG sequence data came at 

the cost of increased peptide degeneracy and subsequent protein redundancy (i.e., 

peptides mapping to multiple proteins or to the same protein in multiple metagenomes 

within the sequence database).  Although the level of redundancy ranges with the 

sequence diversity of a sample and has no effect on the actual database search 

algorithms, this complicates protein inference and assigning its’ corresponding 

phylogenetic origin in a complex environmental community. 
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While the four metagenomic processing methods were compared based on their 

ability to comprehensively assign all collected MS/MS spectra to peptides, the 

percentage of assigned and high-quality unassigned MS/MS is equally important to 

establish the utility of each sequence database.  For the following spectral analyses, the 

collected and assigned spectra from sample 6a (Run 2 and 3) and 6b (Run 1 and 2) 

were assessed and categorized after applying the same filters described above (2-

peptide level and deltCN 0.08 filter) with the following databases.  Of the total MS/MS 

collected during one MS experiment (70,000-81,000), on average 6,600 spectra were 

assigned to a peptide sequence in the NM database (~8% of total collected MS/MS 

spectra for a single run; Table 7.3).  In contrast, the processing strategy used to create 

RFM resulted in the assignment of an additional 1,800 MS/MS from the same sample, 

for a total of 8,430 peptide-spectrum matches on average (11% of total collected 

MS/MS).  Furthermore, the addition of unrelated KG sequences to RFM (a 25% 

increase in sequence data) resulted in an increase of the number of assigned spectra 

by only 2-3%.  Finally, the strategy used to create RMPS resulted in an additional 4,000 

MS/MS spectra assigned, for a total of 12,461 peptide-spectrum matches on average 

per sample (16% of total collected MS/MS spectra).  Although the total number of 

assigned MS/MS increased from NM < RFM < RFM_KG < RMPS, the number of 

unassigned, high-quality spectra decreased with database quality (NM > RFM > 

RFM_KG > RMPS).  
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Table 7.3: Database dependent distribution of acquired full MS and MS/MS and 

assigned MS/MS for samples 6a and 6b.  Unassigned MS/MS were parsed into either 

quality or poor spectra. 

 

The effects of two common filtering parameters (deltCN and high mass accuracy) 

on MS/MS peptide assignment were examined by determining the quantity of MS/MS 

spectra not assigned to the same peptide in multiple database searches (Supporting 

Text).  These results (Figure 7.2) suggest that filtering on high mass accuracy rather 

than deltCN can decrease ambiguous peptide-spectrum matches and provide more 

consistent and reproducible MS/MS identifications.  In order to maintain high specificity 

and accuracy with increasing metagenomic sequence data, a false discovery rate (FDR) 

was estimated at the peptide level using an established method of reverse database 

searching[96,126] for each metagenomic processing method for a total of 6 target-

decoy databases (RM, RFM, CAFM, KG, NM_KG, RMPS-6b).  Because we are using 

methods that directly measure peptides, not proteins, the FDR was estimated at the 

peptide level. In addition, we are primarily comparing the performance of all databases 

by peptide-spectrum matches, not proteins, given the nature of the metagenomic 

processing methods and their corresponding databases (i.e., not all databases contain 

assembled contigs, but only reads).  It has previously been noted[75] that false 

discovery rates can be difficult to accurately determine with metaproteome datasets due 

to problems associated with massive peptide degeneracy.  In this study, for example, of 

all the identified peptides for 6a (Run 2), only 7-30% were unique peptides from each 

database.  Consequently, if only unique peptides are used, the false discovery rate 

Sample Run # Database Total Spectra 
Collected

# MS1 
Collected

# MS/MS 
Collected

# 
Assigned 

MS/MS

% 
Assigned 

MS/MS

# Unassigned 
MS/MS

# of Quality MS/MS 
(ID'd + Qual Unass.)

# Poor Unass. 
MS/MS

# Quality 
Unass. MS/MS

NM 6,163 7.86 72,218 13,375 65,006 7,212
CAFM 8,872 11.32 69,509 15,681 62,703 6,809
RFM 8,854 11.30 69,527 15,622 62,759 6,768

RFM_KG 10,576 13.49 67,805 16,983 61,398 6,407
RMPS 13,426 17.13 64,955 19,139 59,242 5,713

NM 5,301 7.52 65,205 6,752 63,754 1,451
CAFM 7,918 11.23 62,588 9,215 61,291 1,297
RFM 8,305 11.78 62,201 9,522 60,984 1,217

RFM_KG 9,911 14.06 60,595 11,041 59,465 1,130
RMPS 12,413 17.60 58,096 13,390 57,119 977

NM 7,434 9.15 73,768 16,380 70,222 8,946
CAFM 8,391 10.33 72,811 16,921 64,281 8,530
RFM 8,234 10.14 72,968 16,802 64,400 8,568

RFM_KG 10,778 13.27 70,424 18,698 62,504 7,920
RMPS 12,077 14.87 69,125 19,543 61,659 7,466

NM 7,498 9.28 73,299 16,893 63,904 9,395
CAFM 8,517 10.54 72,280 17,594 63,203 9,077
RFM 8,327 10.31 72,470 17,447 63,350 9,120

RFM_KG 10,715 13.26 70,082 19,182 61,615 8,467
RMPS 11,927 14.76 68,870 20,124 60,673 8,197

78,38194,379

85,191Run 3

15,998Run 2

14,685 70,506

16,504 80,797

16,705 81,202

6a

6b

Run 1

Run 2

97,907

97,301
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would be overestimated; on the contrary, if all peptides are used the false discovery rate 

could be underestimated[75].  Therefore, to set a static FDR threshold and filter multiple 

databases (6 sequence databases in this study) of different sizes and internal levels of 

peptide redundancy to that threshold (i.e., 1%) becomes a challenge, in this case, for 

comparing and identifying the best metagenomic processing method for MS/MS 

database searching and peptide-spectrum matching.  As the level of redundancy affects 

the FDR, we have chosen a set of fixed scoring filters in order to accurately compare 

database assignments.  Thus, the same filter criteria to all database searches (i.e., 

Xcorr and ppm filtering) was applied to all database searches with a requirement that 

the FDR be less than or equal to, i.e., 2.0%.  The FDRs for the 1-peptide level, deltCN 

0.0, with and without HM filtering were 1.17%-2.03% and 16.09-31.47%, respectively for 

6b, Run 1 (Table 7.4).  The 2-peptide level and deltCN 0.08 filtered reverse database 

searches serve to represent the FDR of peptide identifications found in Table 1.  The 

FDRs for these PSMs, with and without HM filtering were within 0.09%-0.38% and 2.17-

4.15%, respectively for 6b, Run 1 (Table 7.5).  Following the application of a post-

database high precursor mass accuracy filter (± 10 ppm) to both, the 1- and 2-peptide 

filtered forward-reverse datasets, the number of identified reverse peptides decreased 

by, on average, 93% for each database which resulted in a reduction of the FDR to 

0.09%-0.38%.  
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Figure 7.2: Accuracy Assessment by DTASelect Filtering.  (A) For each DTASelect 

peptide prediction search, the number of identified spectra was calculated and 

compared using three different parameter combinations, deltCN filtered results at a 

deltCN of 0.08 only, both deltCN of 0.08 and HM (±10 ppm), and HM (±10 ppm) only, 

where identified peptide sequences were designated either ‘Consistent’ (solid gray) or 

‘Inconsistent’ (diagonal stripes).  (B) A VENN diagram with assignable spectra for RFM, 

RFM_KG, NM, and NM_KG databases, filtered by high mass accuracy, for both 

samples combined. 
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Table 7.4: False discovery rates for sample 6b (Run 1) against six different 

metagenomic-predicted sequence databases.  The database results were filtered at a 1-

peptide level with and without high mass accuracy. 

 

 

Table 7.5: False discovery rates for sample 6b (Run 1) against six different 

metagenomic-predicted sequence databases.  The database results were filtered at a 2-

peptide level with and without high mass accuracy. 

 

7.3.2: Tracking Missing Peptides 

By adding the unrelated KG metagenomic sequences to the RFM protein database, the 

number of additional predicted unique peptide sequences increased by 40%.  

Therefore, we wanted to determine how many additional peptide-spectrum matches 

were gained by adding these KG proteins sequences to the database.  The RFM_KG 

assigned MS/MS were distributed into three different categories: RFM only, KG only, 

and RFM plus KG (shared) for each sample (Table 7.6).  The majority of RFM_KG 

assigned spectra were “shared” between both RFM and KG protein sequences.  About 

26% of the total spectrum assignments were unique to the RFM protein sequences 

(zero overlap with KG sequences) and only ~8% of the spectra were unique to the KG 

protein sequences (no overlap with the RFM sequences) (Table 7.6).  

 

 

 <±10 ppm >±10 ppm <±10 ppm  >±10 ppm <±10 ppm >±10 ppm Total FP FP <±10 ppm
RM 19,589 8,747 69.13% 30.87% 321 4,551 29.34% 1.93%
RFM 18,229 8,375 68.52% 31.48% 320 4,648 31.47% 2.03%

CAFM 17,443 7,676 69.44% 30.56% 277 4,094 29.64% 1.88%
KG 20,059 7,672 72.33% 27.67% 256 3,419 23.40% 1.63%

NM+KG 23,881 8,709 73.28% 26.72% 256 3,603 21.17% 1.40%
RMPS 27,218 8,722 75.73% 24.27% 228 2,917 16.09% 1.17%

6b, Run1

False Discovery RateSample Database            
(Forward/Reverse)

Total Identified Forward % of Forward Identified Total Identified Reverse 

 <±10 ppm >±10 ppm <±10 ppm  >±10 ppm <±10 ppm >±10 ppm Total FP FP <±10 ppm
RM 15,363 3,523 81.35% 18.65% 27 310 3.51% 0.28%

RFM 13,971 3,057 82.05% 17.95% 33 328 4.15% 0.38%
CAFM 13,783 2,902 82.61% 17.39% 16 291 3.61% 0.19%

KG 16,840 3,695 82.01% 17.99% 15 248 2.53% 0.14%
NM+KG 19,898 4,320 82.16% 17.84% 11 255 2.17% 0.09%

False Discovery RateSample

6b, Run1

Database 
(Forward/Reverse)

Total Identified Forward % of Forward Identified Total Identified Reverse
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Table 7.6: Distribution of RFM_KG assigned PSMs for 6a (Run 2 and 3) and 6b (Run1 

and 2).  The assigned PSMs were distributed into three different categories: RFM only, 

KG only, and RFM plus KG based on their sequence uniqueness to each set of 

sequences.  If a PSM was unique to protein sequences in RFM, but was not present in 

KG, the PSM was classified and categorized as RFM only and vice versa.  If a PSM 

was found to match a protein in both, RFM and KG, the PSM was categorized as a 

shared spectrum. 

 

There are two possible hypotheses for why the metagenomes from these 

samples (i.e., RFM) cannot be used to assign peptides to spectra which are assignable 

by the unrelated protein database KG: (1) because of low sequencing depth, peptides 

are not assigned because our protein database is incomplete or (2) because of a 

sequencing error or limitation for predicting ORFs, we are unable to predict the proteins 

that are present.  Therefore, we have aligned the RFM_KG (2-peptide, deltCN 0.08, HM 

filtered) identified peptides (Figure 7.3, y-axis) from 6a (left panel) or 6b (right panel) to 

predicted raw reads from the related/same sample (6b) and an unrelated sample (16b) 

(Fig. 7.3, x-axis) using TFASTS (Fig. 7.3, white, fine striped bars).  Those results were 

compared to alignments of the same identified peptides to the predicted protein 

database from the related/same sample (6b) and the unrelated sample (16b) using 

FASTS[193] (Fig. 7.3, gray, solid bars).  As expected, more peptides mapped to the 

related/same (matched metagenome-metaproteome) sample (15% for 6a: left panel, 

Fig. 7.3 and 6b: right panel, Fig. 7.3) than to the unrelated, 16b, predicted protein 

sequences (8% for 6a and 10% for 6b).  When these same peptides were compared 

using TFASTS (algorithm that compares peptides to DNA sequence) to the raw 

sequencing reads (Fig. 7.3, white, fine striped bars), the number of peptides matching to 

reads increased by two-fold for both 6a and 6b.   

Unique 
Spectra

% of RFM & KG 
Spectra

% of Total 
Spectra

Unique 
Spectra

% of RFM & 
KG Spectra

% of Total 
Spectra 

Shared 
Spectra

% of RFM & 
KG Spectra

% of Total 
Spectra

6a, Run 2 8,012 34.33% 30.35% 1,454 6.23% 5.51% 13,869 59.43% 52.53% 26,403
6a, Run 3 6,995 31.20% 27.73% 1,341 5.98% 5.32% 14,085 62.82% 55.84% 25,223
6b, Run 1 5,651 27.09% 23.64% 2,431 11.65% 10.17% 12,779 61.26% 53.46% 23,902
6b, Run 2 5,595 28.29% 23.93% 2,149 10.86% 9.19% 12,036 60.85% 51.48% 23,378

Runs Averaged 6,563 30.23% 26.41% 1,844 8.68% 7.55% 13,192 61.09% 53.33% 24,727

Sample

RFM_KG Database

Total Assigned 
Spectra

RFM Only Kurokawa & Gill (KG) Only RFM and KG
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Figure 7.3: Comparison of identified peptides using sequence similarity techniques.  

Percentage of matches found when comparing identified peptides from sample 6a (left 

panel) or 6b (right panel) to predicted proteins using FASTS (gray bars) and raw 

sequencing reads using TFASTS (white striped bars). 

7.3.3: Targeting Peptide Discovery 

Throughout the course of our study, we were able to accumulate more metagenomic 

sequence data for the two healthy samples, 6a and 6b, by ~5 fold (Table 7.2, italicized 

text).  Although this increase in predicted ORFs resulted in an increase in the number of 

assigned MS/MS spectra, it can reduce the throughput of MS/MS sequence-database 

searching. Therefore, we investigated the impact of searching a metagenomic-based 

protein database derived from the exact same single sample to that of a concatenated 

sequence library of all available metagenomic data from this study.  The additional 

metagenomic sequences were used to construct a sequence database similar to that of 
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RM (non-assembled reads with 5.6 million predicted unique peptides), called RMPS 

(Figure 7.1) which has ~ 1.3 million predicted unique peptides, on average, per healthy 

sample 6a and 6b.  Searching the RMPS sequence databases with SEQUEST using 

standard 2-peptide, deltCN 0.08, and high mass accuracy filtering decreased the 

compute time to ~ 300-500 minutes per MS raw file.  By increasing the amount of 

metagenomic sequence data for a single sample, the total number of assigned spectra 

increased by 63% (from 34,666 to 56,782) and the number of total identified non-

redundant (NR) peptides increased by 67% (from 9,618 to 16,055) (Table 7.1, RM 

versus RMPS), resulting in a 54% increase in protein identifications (3,394 to 5,233) 

when mapping these peptides to a protein dataset generated from assembled reads for 

the exact same metagenomic sample.  

 Other than limitations associated with computational resources, there was also a 

concern that real peptides predicted from 454-reads would be filtered out given a 2-

peptide per protein minimum filter (Table 7.7, top panel).  Therefore, the filtering 

parameters were readjusted with a deltCN 0.0, 1-peptide minimum, and a high mass 

accuracy filter (±10 ppm) for the SEQUEST RMPS database searches for both 6a (Run 

2 and 3) and 6b (Run 1 and 2).  The identified peptides were then mapped back to the 

predicted protein sequences derived from the assembled metagenomic sequences with 

a 2-peptide filter, resulting in an increase of protein identifications, from 5,233 to 6,186 

(Table 2, RMPS top panel versus bottom panel).  The filtering parameters were also 

readjusted with a deltCN 0.0 and a high mass accuracy filter (±10 ppm) for the 

SEQUEST-RFM database searches for both 6a (Run 2 and 3) and 6b (Run 1 and 2).  

The protein identifications also increased, from 3,431 to 3,706 (Table 7.7, RFM top 

versus bottom panel).  While this increase might seem minimal, there is significantly 

less redundancy, less false positives, and no computational cost added to these filtering 

parameters.  The false discovery rate, using the same filtering parameters (deltCN 0.0, 

1-peptide minimum and HM) for the RMPS database was 1.17% for 6b (Table 7.4), 

however, these identified peptides (≥ 1 peptide/read) were mapped back to the 

predicted protein sequences derived from the assembled metagenomic sequences 
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using a post-database ≥2-peptide/protein filter.  Following application of this 2-

peptide/protein filter, the FDRs dropped to 0.1%-0.2% for 6b, Run 1 and 2 (Table 7.8). 

Table 7.7: Comparison of RFM and RMPS database results with different filtering 

metrics and a post-database mapping strategy. Comparison of SEQUEST/DTASelect 

database search results, non-redundant spectra and protein counts with different 

filtering parameters and HM, post-database mapping of identified peptides to a protein 

dataset generated from assembled reads for the same metagenomic sample. 

Protein Database RFM RMPS 
2-peptide, deltCN 0.08, HM Filter 

 Spectra Protein Spectra Protein 
6a Run 2 3,246 1,154 6,542 1,761 
6a Run 3 3,091 1,010 6,237 1,544 
6b Run 1 2,639 637 5,212 973 
6b Run 2 2,552 630 4,870 955 

Total 11,528 3,431 22,861 5,233 
1- or 2-peptide, deltCN 0.0, HM Filter 

 Spectra Protein Spectra Protein 
Peptide Criteria ≥ 2 peptide ≥ 1 peptide 

6a Run 2 3,541 1,252 7,497 2,069 
6a Run 3 3,346 1,088 7,048 1,808 
6b Run 1 2,879 686 5,881 1,182 
6b Run 2 2,786 680 5,502 1,127 

Total 12,552 3,706 25,928 6,186 
 

Table 7.8: False discovery rates for sample 6b (Run 1 and 2) against the RMPS 

database.  An initial ≥1-peptide, deltCN 0.0, and high mass accuracy (±10ppm) filter 

were applied to the read-based identifications followed by a ≥2-peptide/protein post-

database mapping filter. 

 

 

 

Sample Total 
Peptides

Non-redundant 
Peptides

Total Identified 
Forward Peptides

Non-redundant 
Forward Peptides

Total Identified 
Reverse Peptides

Non-redundant 
Reverse Peptides

Total 
FDR (%)

Non-redundant 
FDR (%)

6b, Run 1 5,500 3,765 5,498 3,763 2 2 0.07 0.11
6b, Run 2 5,325 3,538 5,316 3,535 9 3 0.34 0.17
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7.3.4: De novo Peptide Sequencing 

Two popular algorithms, PepNovo+[105] and PEAKS[109], were used to identify peptide 

sequences de novo from MS/MS spectra collected from both samples, independent of 

all protein sequence databases.  Initially, the two algorithms were run independently on 

the same raw MS data and samples as described.  The identified, high confidence 

consensus sequence tags (≥3 residues) were acquired from each de novo algorithm.  

The de novo consensus sequence tags (Supporting Text) for PEAKS and Pepnovo+ 

were compared for every MS/MS to identify the partial (≥3 residues) and exact 

consensus sequence tags that would represent the most confident PSMs identified by 

the two different de novo algorithms.  In this study, it was not our goal to compare the 

performance of the two programs; instead, we want to combine the best results from the 

two programs using their respective optimum parameters.  The final, representative de 

novo consensus tags were compared to the previously mentioned SEQUEST results 

from the RMPS sequence database searches that were filtered at a ≥1 peptide/read, 

deltCN 0.0, and high mass accuracy with a post-database ≥2 peptide/protein filters.    

On average, ~593-724 MS/MS spectra were assigned with a high confidence 

consensus peptide sequence between the two de novo algorithms, but were not 

assigned with the SEQUEST–RMPS database search (Figure 7.4).  These de novo 

peptide sequences were mapped to protein sequences predicted from assembled 

contigs with a 2-peptide minimum per protein and compared to the peptides that were 

identified from the SEQUEST-RMPS database searches.  A total of 421 new, non-

redundant proteins were identified with the de novo sequenced peptides for 

metagenome 6b, and 333 non-redundant proteins for metagenome 6a; these proteins 

were not identified using SEQUEST.  Approximately 450 de novo sequenced peptides 

(non-redundant) per sample could not be mapped to the matched metagenomic 

sequence data.  
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Figure 7.4: Performance and comparison of de novo peptide sequencing results. 

Distribution of assigned spectra per de novo algorithm with a predicted consensus 

sequence (partial and/or exact sequence match) among all three algorithms, PEAKS, 

PepNovo+, and SEQUEST.  Identified peptides from SEQUEST and RMPS sequence 

database were compared to the de novo predicted peptides for (A) 6a and (B) 6b. 

7.4: Discussion 

One of the major goals of MS-based proteomics is to comprehensively identify the 

protein complement of a given sample (isolate, mixture, or community).  The 

proteome(s) of microbial communities are highly complex and pose numerous 

challenges for MS experimentation and analysis.  These challenges include the 

dynamic range of peptide abundances and a number of informatics hurdles, such as 

differentiation between closely related species, identification of sequence 

polymorphisms, and global identification of post-translational modifications.  Many of the 

algorithms used in MS/MS database searching are based on the assumption that a 

protein is derived from a single organism with little sequence diversity.  However, these 

assumptions are no longer valid in the case of complex microbial communities.  This 

A B
PEAKS

PepNovo

SEQUEST

10,241

2,720
2,127

5,222

579 691
484

PEAKS

PepNovo

SEQUEST

8,743

2,680
2,128

5,164

554 593
503
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study presents several strategies for improving metagenomic guided MS-based 

metaproteomic peptide-spectrum matching in complex samples.   

It has become very clear that the quality of metagenomic sequence data and 

resulting protein sequence database has a significant impact on community MS-based 

proteomics and the ability to achieve deep proteome coverage.  This study initially 

explored how assembly and gene finding methods for metagenomic sequences affects 

peptide-spectrum matching.  Our findings suggest that predicting ORFs from an ab-initio 

gene finder on metagenomic reads provides the best database for maximal MS/MS 

assignment.  While assembly of metagenomic data can greatly reduce the necessary 

compute time for gene finding and database searching, it essentially collapses 

sequence diversity; thus, it is sub-optimal for maximal spectral assignment. Yet, 

introducing a homology-based gene finding method (RFM) does not increase the 

number of assigned spectra.  Lastly, with an increase in sequence coverage for a 

biological sample, our results suggest that predicted protein sequence databases 

derived from matched metagenomic sequenced reads (RMPS), increases the number 

of MS/MS spectra, peptides, and protein identifications.  In conclusion, expanding the 

metagenomic sequence library for matched or related samples improved peptide-

spectrum matching.  However, improvements in gene finding are equally important to 

maximize protein identification and coverage. 

As the matched metagenomic predicted protein sequence database (RMPS) 

more accurately reflected the “true proteome”, previously unassigned high-quality 

spectra are now being identified and provided greater proteomic depth.  When these 

results were compared to a standard bacterial isolate (e.g., E. coli) with a well-curated 

genome, ~ 41,000 MS/MS spectra were assigned to peptides (37% of total collected 

MS/MS) (data not shown) using the same database searching filters (≥2 peptide and 

deltCN 0.08).  This would suggest that underlying challenges are still inhibiting the 

identification of a majority of spectra collected from the community samples compared 

to that of a standard bacterial isolate.  The classification of acquired and assigned 

MS/MS spectra and quantification of total identified peptides suggested that the RMPS 

processing method provided the most comprehensive assignment of MS/MS spectra.   
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When we examine why some peptides are assigned from the read-based ORFs 

(e.g., RMPS processing method) and not assigned from the contig-based ORFs (e.g., 

NM processing method), we find that these “lost peptides” fall into three categories: (i) 

some reads are not assembled and therefore their protein predictions are not in the 

contig-based ORF predictions, (ii) because of SNPs and frameshifts, the peptides are 

100% similar to a predicted contig-based ORF, but are not 100% identical, and (iii) 

some peptides were very different (<50% identical) or missing from the contig-predicted 

ORF.  A 6-frame translation protein database was generated for sample 6a to capture 

all possible candidate peptide sequences and searched against one MS experiment 

(Run 2).  However, routine use of this sequence database is impractical due to the 

increased quantity of sequences which directly correlates with an increased quantity of 

candidate peptides, therefore, more scoring and prohibitively large search times (~134 

hrs per MS experiment) (data not shown).  As sequencing data generation increases, 

even a read-based strategy could become unsustainable, which will only worsen as new 

larger ‘omic’ datasets become available.  The testing and comparison of new search 

algorithms that are faster, accurate, and developed for omic’ datasets may help 

researchers overcome these challenges. 

Identifying the most reliable set of peptides from a MS-based metaproteomic 

experiment can be complicated, as we have shown that MS/MS assignments can vary 

and be assigned to different peptide sequences with different protein databases.  While 

filtering on deltCN is a common practice for reducing false positives, this type of filtering 

may (i) continue to include many ambiguous peptides based on the different database 

predictions and (ii) remove many legitimate peptides as a result of a highly redundant 

database.  Although filtering on deltCN and peptide-protein matches has proven 

effective for single genome searching, these filters decrease both precision and 

sensitivity in metagenomic predicted sequence databases.  As common filtering 

strategies have proven to be less effective and practical for large-scale proteomics 

studies (e.g., post-translational studies), these and other challenges will surface as the 

MS field moves towards sampling more environmental communities.  Alternatively, we 

propose that when high mass accuracy is used in conjunction with other filtering 
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metrics, such as, cross correlation (XCorr) and enzyme cleavage specificity, one can 

confidently identify the most comprehensive and reproducible set of PSMs and control 

false positives adequately in a complex environmental community sample.  As shown, 

this strategy greatly reduces the rate of ambiguous peptide predictions thereby giving 

higher confidence to our final peptide-protein identifications.  Once peptides are 

identified and mapped to metagenomic sequences, which have been assembled, the 

subsequent use of a 2-peptide filter greatly reduces the number of false positives in 

protein discovery for complex microbial environments.  

Finally, de novo peptide sequencing can complement MS/MS database 

searching to identify peptides absent in the protein sequence database due to the 

limitations of the gene finding algorithms or low metagenomic sequence coverage. We 

believe that novel peptides were identified with high confidence in this study, because 

these peptides were independently identified by two de novo sequencing algorithms.  

However, there is no widely accepted method for us to use for rigorously evaluating the 

FDRs of novel peptides identified from our microbial community samples. Thus, de novo 

sequencing results should be used with the caveat of uncertain FDRs as supplement to 

database searching results[194]. 

7.5: Conclusions 

By using a variety of MS filtering metrics, we were able to assess the quality and 

accuracy of MS/MS peptide sequencing for each MS experiment against four predicted 

protein sequence databases derived from whole genome shotgun sequences.  Our 

findings suggest that: (i) proteomic data is twice as likely to match metagenomic data 

derived from the same sample, (ii) although unrelated metagenomic data may capture 

more sequence diversity, large protein databases can create unreasonable sequence 

redundancy, thereby hampering the ability to differentiate real peptide-protein 

identifications, (iii) the percentage of unassigned, high-quality MS/MS spectra 

decreases with increased quality of metagenomic sequences, (iv) metagenomic data 

processing, such as assembly and gene finding, affects the ability to assign peptides to 

spectra, (v) MS filtering metrics can affect the accuracy of peptide-spectrum matching, 
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(vi) deeper metagenomic sequencing coverage results in deeper coverage of matched 

metaproteomes and (vii) de novo peptide sequencing can overcome potential 

sequencing errors and provide evidence for novel sequences not yet sequenced or not 

identified by database searching methods.  The high-quality unassigned MS/MS from 

sequence-database searching would be ideal target spectra to submit for de novo 

peptide sequencing whereby these sequences could be mapped back to help refine the 

metagenome and identify potential sequencing errors.  Finally, this study illustrates how 

common metagenomic processing methods (assembly and ORF finding) and database 

construction can affect metaproteomics search results. 
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Chapter 8 

Meta-omics reveals human host-microbiota signatures of Crohn’s disease 

The text is adapted from: 

Alison R. Erickson, Brandi L. Cantarel, Regina Lamendella, Youssef Darzi, 
Emmanuel F. Mongodin, Chongle Pan, Manesh Shah, Jonas Halfvarson, Curt 
Tysk, Bernard Henrissat, Jeroen Raes, Nathan C. Verberkmoes, Claire M. 
Fraser-Liggett, Robert L. Hettich, and Janet K. Jansson. “Meta-omics reveals 
human host-microbiota signatures of Crohn’s disease.” Draft will be submitted to 
the journal, Molecular Systems Biology (2012). 

Alison R. Erickson’s contributions include experimental preparation of all microbial 

samples for proteomics, experimental LC-MS/MS measurements, integrated matched 

MG-MP comparisons and analyses, biological inference of human proteins, and shared 

primary authorship with Brandi Cantarel and Regina Lamendella. 

8.1: Introduction 

Humans live in close association with communities of microorganisms (the human 

microbiota) that inhabit every exposed surface and cavity in the body[195]. The 

collective genetic information of the human microbiota represents a second genome, 

the human microbiome, currently the focus of intense international sequencing and 

research efforts[14],[196],[25]. Although most human host-microbe associations are 

beneficial, changes in the composition and function of the human microbiota are 

associated with a growing list of diseases, including inflammatory bowel disease 

(IBD)[197]. Several studies using both culture-dependent and molecular approaches 

have suggested that there is a dysbiosis in the gut microbiota of patients with Crohn’s 

disease (CD) compared to healthy subjects[158],[198],[199].  

 Recent advances in DNA sequencing and proteomics technologies have opened 

the door to explore the structure and function of the gut microbiota without the necessity 

for cultivation. However, there have been very few reports to date that have used a 

multi-“omics” approach to study the complex ecosystem in the human gut. The ability to 

combine information about the identities of microbial community members (obtained 

from 16S rRNA gene-based measurements), metabolic potential (obtained from 
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metagenome sequence data) and expressed proteins (obtained from metaproteome 

data) enables explorations of the gut microbiota at multiple molecular levels 

simultaneously[200].  

 In the previous chapter, we compared metagenomic data processing methods, 

such as assembly and gene finding, and their affects on the ability to assign peptides to 

MS/MS spectra.  Using the best performing informatics workflow, predicted protein 

sequence databases derived from matched metagenomic sequenced reads (RMPS), 

we can now apply this workflow to focus on biological inference and human disease as 

opposed to chapter 6, which focuses only on measurements of a healthy twin pair.  This 

study was focused on a subset of fecal samples collected from a large Swedish twin 

cohort with inflammatory bowel disease (IBD) that was previously characterized, with 

respect to their bacterial community composition by deep 16S rRNA pyrotag 

sequencing[158,198,201] and metabolite profiling[202]. Previous data indicated that 

healthy twin pairs had a similar gut microbiota, even when they had been living 

separately for decades. By contrast, twin pairs in which one or both subjects had CD 

harbored very dissimilar gut microbial compositions[158]. This disparity of the gut 

microbiota was particularly striking for subjects with inflammation in the ileum (ileal CD, 

ICD) compared to healthy subjects[158],[202],[201] and was primarily characterized by 

the reduced abundance of several key beneficial members of the community, such as 

Faecalibacterium prausnitzii. 

 Here our aim was to further explore a subset of the same Swedish twin cohort 

that had demonstrated microbial dysbiosis in fecal samples according to CD phenotype, 

for functions that were correlated to CD by applying non-targeted metagenomics12 and 

metaproteomics[26]. This eco-systems biology approach[200] allowed us to detect and 

directly correlate genes and expressed proteins for the first time in the same samples.  

It was particularly valuable to include discordant twin pairs in the sample set, where one 

twin was diseased and one was healthy, to mitigate the influence of host genetics on 

the microbiome[158],[112],[150]. The sample cohort included one healthy twin pair with 

existing metaproteome data[26], one colonic Crohn’s (CCD) twin pair, two ICD 

concordant twin pairs and two ICD discordant twin pairs (Table 2.1). All samples were 
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collected when the Crohn’s subjects were in endoscopic remission, or had minor 

inflammatory activity in the neo-terminal ileum only.  

8.2 Experimental Methods 

8.2.1: Sample collection 

Fecal samples were collected from 6 monozygotic twin pairs: 1 healthy twin pair with 

existing metaproteome data[26], 1 concordant pair with CCD, 2 concordant twins with 

ICD and 2 ICD discordant twin pairs (Table 2.1). DNA was extracted by the MoBio[158] 

and IGS-Zymo[203] protocols producing 3 – 5ug of purified metagenomic DNA from 

each sample. Proteins were extracted and processed for 2D-LC-MS/MS as previously 

described[26]. 

8.2.2: Metagenomics 

Sequences were generated and processed using the 454 Titanium Roche platform and 

assembled using Newbler (v2.0.01.14). Genes were predicted on contigs greater than 

500 bp using METAGENE[187] and for those less than 500 bp using a combination of 

METAGENE and FASTX[188] from alignments to homologous sequences in reference 

genomes.  Proteins were clustered using BLASTP[204], using e-value cutoffs of 10-5, 

and MCL[205], with an inflation value of 1.5. ORFs were searched against the 

eggnog[206], CAZY[129] and KEGG genes[207] using NCBI-BLAST[204] using e-value 

cutoff of 10-6 and bits per position cutoff of 1. 

8.2.3: Metaproteomics 

MS-based shotgun proteomics was performed as described[26] and acquired MS/MS 

searched against two databases: 1) matched metagenomic-predicted protein database 

(MM) and 2) human microbial reference genome database (HMRG); both including the 

human genome. The spectral count for a microbial protein cluster was calculated as the 

number of unique peptide identifications that can be attributed to proteins from that 

cluster only and not any other cluster. Spectral counts for human proteins were 
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calculated from both unique and non-unique peptide identifications. All spectral counts 

were normalized by the total numbers of MS/MS spectra per run. 

8.2.4: Statistics  

Non-metric multidimensional scaling was performed using normalized spectral 

abundances of identified proteins.   Protein lists were generated for proteins that 

correlated with a particular phenotype using Indicator Species Analysis and Wilcoxon’s 

rank sum tests.   

8.3: Results 

We generated whole genome shotgun metagenomic (Table 8.1) and shotgun mass 

spectrometry (MS)-based metaproteomic (Tables 8.2 and 8.3) datasets from the same 

samples for direct comparisons.  Metagenomic data were used to assess community 

gene content and predicted functional capability, while metaproteomics was used to 

identify the most abundant expressed microbial and human proteins.  The number of 

genes identified in each sample was two orders of magnitude greater than that of 

proteins (since proteins cannot be amplified like DNA), although both represent only the 

more abundant fraction of the total gene and protein reservoir in the human gut 

microbiome.   

Table 8.1: Metagenomic sequence data and statistics. 

 

  

Subject Mega base 
pairs  (Mbp)

Number of 
Reads 

(thousands)

Number of 
Singletons 

(thousands)

Number of 
Contigs

Mbp in 
Contigs 

Average Contig 
Length

Contigs > 
500 bp

Fraction 
Singleton

Fraction Contigs > 
500

6a 684 1,901 299 55,650 66 1195 39,318 0.157 0.7065
6b 409 1,183 372 55,463 43 776 33,375 0.3147 0.6018
9a 245 782 155 19,893 21 1053 13,439 0.1988 0.6756
9b 290 845 197 35,571 27 754 20,011 0.2328 0.5626
10a 502 1,211 82 36,328 49 1337 24,726 0.0681 0.6806
10b 541 1,327 140 30,642 39 1259 20,219 0.1053 0.6598
15a 504 1,358 256 38,046 42 1109 25,909 0.1887 0.681
15b 484 1,270 272 36,871 36 981 21,555 0.2146 0.5846
16a 229 585 207 22,764 18 798 15,545 0.3544 0.6829
16b 319 1,126 511 46,845 28 591 23,857 0.4541 0.5093
18a 425 1,341 215 26,803 27 1014 17,971 0.1604 0.6705
18b 258 955 372 28,631 19 671 13,862 0.3898 0.4842
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Table 8.2:  Normalized total spectra counts across all subjects and 24 MS runs for the 

matched metagenome (MM) database searches. 

 

 

  

Phenotype Sample Run Proteins Peptides Total Identified MS/MS Total Collected MS/MS #DB Entries
2 2,315 9,110 15,724 78,381
3 2,009 8,005 15,452 70,492
2 1,385 5,548 11,300 80,797
1 1,413 5,796 11,258 81,202
1 871 3,738 7,628 92,865
2 829 3,381 7,879 91,745
1 723 2,551 5,153 82,546
2 728 2,532 5,074 84,089
3 1,089 4,474 8,891 90,775
1 1,049 4,286 8,244 91,145
1 1,118 4,078 8,057 75,873
2 1,141 3,984 8,546 74,574
1 946 3,913 9,276 83,254
2 1,183 4,862 10,616 77,906
2 787 3,890 8,647 81,970
1 769 3,421 8,619 80,718
2 369 1,716 4,079 78,811
1 407 1,844 4,012 73,878
2 1,248 4,581 11,659 92,460
3 1,256 4,416 11,914 91,865
2 687 3,233 7,951 76,489
1 654 2,733 7,281 78,661
1 794 3,018 7,640 92,795
2 829 3,245 7,442 93,485

18a

18b

10b

15a

15b

16a

16b

6a

6b

9a

9b

10a

healthy

healthy

colonic CD

ileal CD

ileal CD

ileal CD

healthy

ileal CD

1,356,947

862,006

527,904

594,986

1,428,694

781,500

628,384

1,618,290

1,005,286

982,092

1,119,221

843,556
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Table 8.3: Normalized total spectra counts across all subjects and 24 MS runs for the 

human microbial isolate reference genome database (HMRG) searches. 

 

8.3.1: Taxonomic Community structural differences 

Taxonomic profiles of the metagenomic data were determined using nucleotide 

alignments and compared based on disease status (healthy, CCD, ICD). Greater than 

60% of the metagenomic sequence reads in the healthy samples could not be assigned 

at the phylum, family or genus level, as compared with ~40% of the reads in ICD or 

CCD subjects, potentially resulting from reduced diversity in CD. Of the metagenomic 

reads for which a taxonomic assignment could be made, 396 genera were represented 

in all of the samples, and nine of those were present at > 5%.  Eleven genera of the 

Firmicutes phylum (Faecalibacterium, Geobacillus, Desulfotomaculum, 

Desulfitobacterium, Holdemania, Thermoanaerobacter, Thermosinus, 

Carboxydothermus, Enterococcus, Alkaliphilus, Subdoligranulum and Anaerotruncus) 

Phenotype Sample Run Proteins Peptides Total Identified MS/MS Total Collected MS/MS
2 3,138 8,679 13,254 78,381
3 2,618 6,838 11,351 70,492
2 2,716 6,653 11,022 80,797
1 2,612 6,308 10,919 81,202
1 2,477 5,910 10,089 92,865
2 2,337 5,416 10,388 91,745
1 2,089 5,231 8,485 82,546
2 2,062 5,161 8,354 84,089
3 2,172 5,997 10,199 90,775
1 1,985 5,635 9,291 91,145
1 1,859 4,483 7,964 75,873
2 1,878 4,071 7,919 74,574
1 1,874 5,494 10,291 83,254
2 2,122 6,783 11,698 77,906
2 2,146 6,235 9,816 81,970
1 1,916 5,430 9,695 80,718
2 1,733 4,738 7,728 78,811
1 1,840 4,956 7,830 73,878
2 3,049 6,926 12,610 92,460
3 3,108 7,070 13,281 91,865
2 1,964 5,931 11,161 76,489
1 1,648 5,108 10,350 78,661
1 2,855 6,830 12,669 92,795
2 3,139 7,626 12,642 93,485

healthy

ileal CD

healthy

healthy

colonic CD

ileal CD

ileal CD

ileal CD

18b

6a

6b

9a

9b

10a

10b

15a

15b

16a

16b

18a
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and one genera of the Proteobacteria phylum (Pelobacter) were less abundant in the 

ICD compared to healthy subjects (Table 8.4).  The depletion of Faecalibacterium and 

Subdoligranulum was previously reported using 16S rRNA gene sequencing in these 

same samples[201]. Bacteria that were more abundant in the microbiota of ICD 

compared to healthy subjects included genera of Pasteurella.  These data are 

consistent with other reports of dysbiosis of the microbiota in subjects with CD[198], 

however, the list of differentially abundant genera are not entirely consistent between 

studies, which most likely reflects the different cohorts that have been studied to date. 

Table 8.4: Relative abundances of differentially abundant species. 

Taxonomy CCD 16S CCD WGS ICD 16S ICD WGS H 16S H WGS 

Desulfitobacterium 0.00E+00 0.00E+00 0.00E+00 1.67E-06 0.00E+00 1.50E-05 

Desulfotomaculum 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.00E-06 

Geobacillus 0.00E+00 1.00E-05 0.00E+00 0.00E+00 0.00E+00 7.50E-06 

Pasteurella 0.00E+00 2.00E-05 0.00E+00 8.33E-06 0.00E+00 2.50E-06 

Thermoanaerobacter 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.50E-05 

Enterocytozoon 0.00E+00 5.00E-06 0.00E+00 0.00E+00 0.00E+00 7.50E-06 

Carboxydothermus 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.00E-06 

Thermosinus 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.50E-06 

Pelobacter 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.50E-06 

Holdemania 0.00E+00 1.65E-04 6.67E-05 1.25E-04 0.00E+00 5.08E-04 

Anaerotruncus 1.20E-03 1.85E-04 2.83E-04 2.00E-04 6.25E-04 1.18E-03 

Enterococcus 2.45E-03 1.77E-02 0.00E+00 1.19E-03 0.00E+00 7.87E-04 

Faecalibacterium 1.53E-02 2.69E-03 1.55E-03 1.65E-03 1.50E-02 1.25E-02 

Neorickettsia 0.00E+00 1.50E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Fibrobacter 0.00E+00 5.00E-06 0.00E+00 0.00E+00 0.00E+00 7.50E-06 

Alkaliphilus 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.75E-05 

Subdoligranulum 8.50E-03 2.58E-03 7.75E-03 4.97E-04 3.25E-03 2.99E-03 
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8.3.2: Peptide-Spectrum Matching (PSM) and broad functional comparisons 

In addition to taxonomic information, metagenomic data provides information on gene 

content of the gut microbiome; however, it does not reveal the identities and relative 

abundances of expressed gene products (proteins) under the conditions studied. 

Therefore, to directly address gene function and expression, we performed database 

searches with tandem mass spectra (MS/MS) of peptides from the same samples.  

These extensive MS/MS datasets were searched both against their corresponding 

matched microbial metagenome (MM) (Table 8.1) or a representative set of 51 

sequenced human microbiome isolate reference genomes (HMRGs) (Table 8.5), each 

concatenated with the human genome. The HMRGs provide nearly complete DNA 

sequence coverage of a bacterial species, and the predicted genes are often full length, 

as compared to the MMs that are not sequenced to sufficient depth to contain complete 

genomes, and the predicted genes are often fragmented.  However, many sequences 

captured from a clinical sample do not map to HMRGs.  One challenge in using a 

HMRG database is gene redundancy between strains/species belonging to the same 

genera, which can make it difficult to uniquely assign a peptide to a mass spectrum. 

Therefore, we developed a novel method for clustering functionally similar proteins from 

the MMs to provide a more robust method of assigning peptide-spectrum counts for 

relative quantification.  This approach enabled us to take advantage of both MMs and 

HMRGs to identify both ‘core’ proteins and disease-specific proteins associated with the 

human gut microbiota, including those with unknown function.   
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Table 8.5: Human microbial isolate reference genome database (HMRG) database 

components. 51 bacterial isolates were downloaded from the JGI IMG human 

microbiome project (IMG-HMP) into a single FASTA-formatted protein sequence 

database. 

 

Database'Identifier Genome GID Total'#'of'Predicted'Proteins
Aero_hydr_hydr_ATCC_7966 Aeromonas2hydrophila2hydrophila2ATCC27966 639633004.faa 4,129

Cate_mits_DSM_15897 Catenibacterium2mitsuokai2DSM215897 643886110.faa 2,977
Dore_form_ATCC_27755 Dorea2formicigenerans2ATCC227755 641736133.faa 3,277

Ente_faec_PC4.1 Enterococcus2faecalis2PC4.1 647000238.faa 2,695
Shig_sp._D9 Shigella2sp.2D9 645058835.faa 4,463

Akke_muci_ATCC_BAAL835 Akkermansia2muciniphila2ATCC2BAAL835 642555104.faa 2,176
Alis_putr_DSM_17216 Alistipes2putredinis2DSM217216 641736205.faa 2,742
Anae_ster_DSM_17244 Anaerofustis2stercorihominis2DSM217244 641736193.faa 2,331
Bact_cacc_ATCC_43185 Bacteroides2caccae2ATCC243185 640963023.faa 3,855
Bact_dore_DSM_17855 Bacteroides2dorei2DSM217855 642979370.faa 4,966
Bact_frag_NCTC_9343 Bacteroides2fragilis2NCTC29343 637000024.faa 4,299
Bact_ovat_ATCC_8483 Bacteroides2ovatus2ATCC28483 641380449.faa 5,536
Bact_pect_ATCC_43243 Bacteroides2pectinophilus2ATCC243243 642979337.faa 3,246

Bact_sp._2_2_4 Bacteroides2sp.22_2_4 646206266.faa 5,959
Bact_sp._3_1_33FAA Bacteroides2sp.23_1_33FAA 647533113.faa 4,666
Bact_sp._3_2_5 Bacteroides2sp.23_2_5 646206273.faa 4,505

Bact_sp._4_3_47FAA Bacteroides2sp.24_3_47FAA 646206274.faa 4,613
Bact_sp._9_1_42FAA Bacteroides2sp.29_1_42FAA 646206263.faa 4,871

Bact_sp._D4 Bacteroides2sp.2D4 646206258.faa 4,431
Bact_thet_VPIL5482 Bacteroides2thetaiotaomicron2VPIL5482 637000026.faa 4,816
Bact_unif_ATCC_8492 Bacteroides2uniformis2ATCC28492 641380447.faa 4,663
Bact_vulg_ATCC_8482 Bacteroides2vulgatus2ATCC28482 640753008.faa 4,076

Bifi_adol_L2L32 Bifidobacterium2adolescentis2L2L32 640963015.faa 2,428
Bifi_long_infa_ATCC_15697 Bifidobacterium2longum2infantis2ATCC215697 643348516.faa 2,486
Blau_hans_DSM_20583 Blautia2hansenii2VPI2C7L242DSM220583 643886146.faa 3,218

Blau_hydr_S5a33_DSM_10507 Blautia2hydrogenotrophicus2S5a332DSM210507 643886199.faa 3,869
Citr_kose_ATCC_BAAL895 Citrobacter2koseri2ATCC2BAAL895 640753015.faa 5,031
Clos_bart_DSM_16795 Clostridium2bartlettii2DSM216795 641736113.faa 2,787

Clos_bolt_ATCC_BAAL613 Clostridium2bolteae2ATCC2BAAL613 641380428.faa 7,284
Clos_lept_DSM_753 Clostridium2leptum2DSM2753 641380427.faa 3,923
Clos_nexi_DSM_1787 Clostridium2nexile2DSM21787 642979369.faa 4,239

Clos_sp_M62L1 Clostridium2sp2M62L1 643886005.faa 4,266
Clos_sp._SS2L1 Clostridium2sp.2SS2L1 641736270.faa 3,167

Coll_aero_ATCC_25986 Collinsella2aerofaciens2ATCC225986 640612206.faa 2,367
Coll_inte_DSM_13280 Collinsella2intestinalis2DSM213280 642979320.faa 1,786

Copr_come Coprococcus2comes 643886116.faa 3,913
Dial_invi_DSM_15470 Dialister2invisus2DSM215470 645951833.faa 1,954

Esch_coli_KL12_MG1655 Escherichia2coli2str.2KL122substr.2MG1655 646311926.faa 4,148
Euba_rect_ATCC_33656 Eubacterium2rectale2ATCC233656 644736367.faa 3,621

Faec_prau_A2L165 Faecalibacterium2prausnitzii2A2L165 645951831.faa 3,475
Faec_prau_M21L2 Faecalibacterium2prausnitzii2M21L2 641380420.faa 3,493
Lact_reut_CF48L3A Lactobacillus2reuteri2CF48L3A 643886138.faa 2,164

Meth_smit_F1_DSM_2374 Methanobrevibacter2smithii2F12DSM22374 643886215.faa 1,710
Myco_tube_CDC1551 Mycobacterium2tuberculosis2CDC1551 637000172.faa 4,235
Para_dent_F0305 Parascardovia2denticolens2F0305 647533193.faa 1,481

Prev_copr_CB7_DSM_18205 Prevotella2copri2CB72DSM218205 643886200.faa 3,293
Rose_inte_L1L82 Roseburia2intestinalis2L1L82 642979356.faa 4,817

Rumi_gnav_ATCC_29149 Ruminococcus2gnavus2ATCC229149 640963057.faa 3,913
Rumi_lact_ATCC_29176 Ruminococcus2lactaris2ATCC229176 642791604.faa 2,750
Rumi_obeu_ATCC_29174 Ruminococcus2obeum2ATCC229174 640963024.faa 4,175
Rumi_sp._5_1_39BFAA Ruminococcus2sp.25_1_39BFAA 646206280.faa 3,525
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On average, a total of 1,250 (healthy), 850 (ICD), and 788 (CCD) proteins were 

identified with MM database searches and 2,904 (healthy), 1,928 (ICD), and 2,241 

(CCD) proteins using the HMRG database, thus represents the most extensive 

metaproteome characterization of the human gut to date (Tables 8.2 and 8.3).  Due to 

the redundancy of homologous proteins, microbial proteins with >80% sequence identity 

were clustered to generate a total of 5,692 and 3,101 orthologous clusters (OC) from 

the HMRGs and MMs, respectively, across all 24 MS runs. Of the OCs that were 

identified using the MM searches, 52 were identified across all subjects (core; Table 
8.6) and included primarily general housekeeping functions (such as ribosomal 

proteins); whereas 151, 3, and 88 OCs were unique to either the healthy, ICD, or CCD 

core metaproteomes, respectively (Figure 8.1). Post-cluster analysis revealed that 

1,017 proteins from the MM database searches were unique (i.e., they did not fall into a 

protein cluster), in contrast, all identified proteins from the HMRGs did cluster, 

suggesting that there is considerable diversity of genes within the human gut microbiota 

that is not captured in reference genome sequences.  
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Table 8.6: Common core microbial proteins identified in the metaproteomes of all 

subjects included in the study (healthy, ileal CD and colonic CD). 

 

 

Cluster Protein
CLST000006 Ribosomal/protein/L14
CLST000011 Ribosomal/protein/S11
CLST000208 Annotation/not/available
CLST000254 Phosphoenolpyruvate/carboxykinase/(ATP)
CLST000335 NifU/homolog/involved/in/FeLS/cluster/formation
CLST000603 GlyceraldehydeL3Lphosphate/dehydrogenase/erythroseL4Lphosphate/dehydrogenase
CLST000797 GTPases/L/translation/elongation/factors
CLST000998 Ribosomal/protein/L11
CLST001935 Rubrerythrin
CLST005531 Fructose/tagatose/bisphosphate/aldolase
CLST005618 KetolLacid/reductoisomerase
CLST005666 Chaperonin/GroEL/(HSP60/family)
CLST005804 Ribosomal/protein/L5
CLST005825 Ribosomal/protein/L7/L12
CLST005842 DNALdirected/RNA/polymerase,/beta/subunit/140/kD/subunit
CLST005865 Ribosomal/protein/S7
CLST005872 Ribosomal/protein/S2
CLST005915 Molecular/chaperone
CLST005929 Ribosomal/protein/S19
CLST005988 Ribosomal/protein/L20
CLST005996 Ribosomal/protein/S8
CLST006170 Ribosomal/protein/S9
CLST006191 Translation/elongation/factors/(GTPases)
CLST006298 Ribosomal/protein/L1
CLST006300 Phosphoenolpyruvate/synthase/pyruvate/phosphate/dikinase
CLST006373 ABCLtype/sugar/transport/systems,/ATPase/components
CLST006584 IMP/dehydrogenase/GMP/reductase
CLST006673 Ribosomal/protein/S10
CLST006805 Ribosomal/protein/L29
CLST006834 3Lphosphoglycerate/kinase
CLST006844 Ribosomal/protein/L13
CLST006883 F0F1Ltype/ATP/synthase,/beta/subunit
CLST006904 Ribosomal/protein/L23
CLST006921 Protein/involved/in/phosphoenolpyruvateLdependent/sugar/phosphotransferase/system
CLST007033 PyruvateLformate/lyase
CLST007119 DNALdirected/RNA/polymerase,/beta/subunit/160/kD/subunit
CLST007120 Transaldolase
CLST007226 Ribosomal/protein/S4/and/related/proteins
CLST007262 Ribosomal/protein/S3
CLST007269 Ribosomal/protein/S5
CLST007338 Pyruvate/oxaloacetate/carboxyltransferase
CLST007389 Ribosomal/protein/L6P/L9E
CLST007461 CoLchaperonin/GroES/(HSP10)
CLST007642 Ribosomal/protein/L17
CLST007797 Ribosomal/protein/S15P/S13E
CLST008351 Pyruvate:ferredox/in/oxidoreductase/and/related/2Loxoacid:ferredoxin/oxidoreductases,/beta/subunit
CLST008679 Triosephosphate/isomerase
CLST014282 Penicillin/tolerance/protein
CLST017476 AcetylLCoA/acetyltransferase
CLST018911 Formyltetrahydrofolate/synthetase
CLST020880 Carbon/dioxide/concentrating/mechanism/carboxysome/shell/protein
CLST022770 AcylLCoA/dehydrogenases
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Figure 8.1: Venn diagram showing the number of protein clusters common or unique to 

each disease category: H (healthy), ICD (ileal Crohn’s disease) and CCD (colonic 

Crohn’s disease). 

By broad comparison of the metagenomes and metaproteomes, two trends 

emerged:  (a) CD samples clustered separately from healthy (Figures 8.2a and 8.3) 

and (b) the percent of expressed genes compared to the total gene repertoire is lower in 

CD patients as compared to healthy subjects (Figure 8.2b), reflected by a significant 

decrease in protein family richness in ICD and CCD that was particularly pronounced for 

ICD (Figure 8.2c). The metaproteomes significantly differentiated by disease phenotype 

(p<0.004) based on spectra matching to HMRGs (Figure 8.3a).  This was also shown 

with i) clustering based on function to MMs (Figure 8.3b) and ii) functional assignments 

of genes from MMs by KEGG (Figure 8.3c), suggesting that disease phenotype was a 

stronger discriminator than zygosity, similar to our previous analyses of the same 

samples[201], [202].  Although healthy and CCD metaproteomes could be distinguished 

from another, they clustered more closely together compared to the ICD 

metaproteomes that were clearly distinct (Figure 8.2a).  Therefore, we primarily focused 

on functions that differentiated ICD from healthy, but included comparisons to the CCD 

twin pair when relevant.  
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Figure 8.2: (A) Non-metric multidimensional scaling (nMDS) of fecal metaproteomes.  A 

matrix of normalized spectral counts per protein from each duplicate gut metaproteome 

was imported into PCORD v5 software.  nMDS was performed using the Bray-Curtis 

distance measure A three-dimensional solution was found after 119 iterations. The final 

stress for the nMDS was 6.47458.  (B) Fraction of proteins expressed as measured by 

comparison to the metagenome (C) Functional richness as measured by the Chao1 

richness estimate of KEGG orthologous groups (KOs). 
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Figure 8.2 
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Figure 8.3: Clustering by Phenotype. (A) Non-metric multidimensional scaling (nMDS) 

of fecal metaproteomes.  A matrix of normalized spectral counts per protein from each 

duplicate gut metaproteome was imported into PCORD v5 software.  nMDS was 

performed using the Bray-Curtis distance measure A three-dimensional solution was 

found after 119 iterations. The final stress for the nMDS was 6.47458. (B) Heatmap of 

Metaproteomes prediced from matched metagenomes by protein clusters. (C) 

Hieractical Clustering of Metagenomes by KEGG KO relative abundances using 

Manhattan distance calculation and the ‘average’ clustering method with an arcsin 

square root transformation. 
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Figure 8.3 
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While there were core microbial functions that were identified across all samples 

in the metagenome (Figure 8.4a) and metaproteomes (Figure 8.4b), proteins involved 

in translation, defense, organic metabolism, post-translational modification and 

signaling, and genes involved in intracellular trafficking, translation and defense differed 

in abundance between healthy and ICD subjects.  To assess pathway abundance, 

KEGG module analysis was performed on metagenome and metaproteome datasets.  

Glycolysis, reductive pentose phosphate cycle and butyrate production were found to be 

under-represented in ICD compared with healthy microbiota, in both the metagenomic 

and metaproteomic datasets (data not shown).  In the metagenomic analysis, 

conjugated bile acid biosynthesis, urea cycle, phosphonate transport system and type 

IV secretion system were found to be over-represented in ICD compared with healthy 

microbiota.    
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Figure 8.4: (A) Relative abundance of metagenomic reads assigned to COG 

categories. (B) Relative abundance of metaproteomic spectra assigned to COG 

categories. (C, D) Sugar utilization in the metagenome (C) and metaproteome (D) by 

comparison to the CAZy database. 

Each dataset contained a subset of genes and proteins of unknown function.  For 

example, ~17% of predicted ORFs were conserved with no known function or were not 

homologous to any proteins.  Approximately 31% of identified HMRG proteins and 29% 
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of identified microbial OCs (including proteins that did not cluster in MMs) had no known 

function.  Interestingly, one OC comprising 11 unknown proteins was significantly 

correlated with ICD, where five OCs (10-100s of unknown proteins) were significantly 

correlated with healthy.  These findings support the need for better coupling of 

phenotypic assays with -omics strategies to aid in the characterization of important 

functional but unknown genes and proteins. 

8.3.3: Metabolic pathways differentiate CD and healthy phenotypes 

We identified several examples in both the metagenome and metaproteome datasets 

which suggested that functions related to carbohydrate transport and metabolism and 

energy production are depleted in the ICD microbiota (Figure 8.4b).  In addition to the 

differential pathways identified by KEGG analysis, the abundance of genes for sucrose 

and fructose degradation is higher in ICD, while genes and proteins involved in starch, 

glycogen, and complex carbohydrate degradation are lower in abundance (Figure 8.4c 
and d).  These results, along with pathway analysis, suggest that the microbiota of ICD 

subjects have a reduced capability to uptake complex carbohydrates and breakdown 

nutrients. 

Many proteins that were less abundant in ICD reflected a decreased abundance 

of bacteria that contain metabolic pathways with relevance to the physiology of the 

human gut (Figure 8.2a).  Butyrate, a major energy source for colonocytes, is involved 

in the maintenance of colonic mucosal health and can elicit anti-inflammatory 

effects[208], thus its depletion could be one reason for the inflammation in CD.  

Faecalibacterium prauznitzii is a major butyrate producer in the gut and the low 

abundance of this species (as revealed by 16S rRNA and metagenomic analyses) and 

proteins involved in the butyrate pathway (Figure 8.5) could contribute to the 

inflammation associated with ICD.  Reduced butyrate production correlates to the 

depletion of known butyrate producers (e.g., Roseburia, Faecalibacterium and 

Subdoligranulum) in our CD subjects (Figures 8.2a and 8.6).  The increased 

abundance of F. prausnitzii revealed abundant proteins central to butyrate production 

and other short-chain fatty acid production (e.g., acetate and proprionate) exclusively in 
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the healthy and CCD subjects but not in ICD (Figure 8.7a).  Several other genes 

associated with anti-inflammatory responses and properties, such as lactocepin 

(EC3.4.21.96) and aspartate dehydrogenase (EC3.4.21.96), were significantly more 

abundant in CD relative to healthy (Figure 8.5b).   
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Figure 8.5: (A) Metabolic pathways differentiating by disease phenotype, as resulting from the metabolic module analysis 

(p<0.05; 5% FDR). Highlighted areas discussed in the main text: (1) butyrate production; (2) membrane proteins (B) 

Enzymes that were significantly different across Healthy, ICD, and CCD fecal metagenomes. 
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Figure 8.6: Differences in Butyrate Production in ICD compared to Healthy.  Cumulative 

plots of fraction of total reads assigned to Faecalibacterium, Rosburia and 

Subdoligranulum genera per sample.  
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Figure 8.7: (A) Most significantly differential proteins from Healthy and CD subjects.  

Presence-absence heatmap shows which of the 51 bacterial strains the proteins 

matched to.  (B) Enzymes that were significantly different across Healthy, ICD, and 

CCD fecal metagenomes. 
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Protein abundance measurements, based on MM searches, indicate an over-

representation of bacterial TonB-dependent cell surface receptors, which are multi-

functional but are involved in inorganic ion transport and metabolism, in the ICD 

microbiota. These data are also consistent with metagenomic analysis which reveals a 

greater abundance of genes involved in inorganic ion metabolism in the CD microbiota 

(Figure 8.4a).  If the gut ecosystem is deficient in inorganic ions in CD, the gut 

microbiota may compensate by up-regulation of genes and proteins that are involved in 

ion acquisition and transport. 

8.3.4: Bacterial-host interactions and defense  

Several proteins involved in bacterial-host interactions and defense were more 

abundant in the ICD microbiota and included several bacterial outer membrane proteins 

(e.g., OmpA, RagB, and SusC/D) that were differentially present in both the 

metagenomes and metaproteomes (Figure 8.7a and b), supporting the current 

hypothesis that CD is manifested by an aberrant mucosal response to otherwise 

harmless bacterial antigens in genetically susceptible subjects[209,210,211].  OmpA, a 

pore-forming protein in the outer membrane of many Gram-negative bacteria, harbors 

diverse functions including maintenance of cell structure, binding various substances, 

adhesion, and resistance to antimicrobials[212], and is suggested to be involved in gut 

mucosal association[213]. One hypothesis is that because OmpA is highly represented 

and highly conserved in many enteric bacteria, the immune system has acquired the 

ability to recognize and to be activated by this class of protein[214]. Because these 

proteins are more abundant in ICD, this suggests that the immune system is functioning 

abnormally with respect to reduced levels of the corresponding bacteria expressing this 

protein, and supports the current hypothesis that CD is manifested by an aberrant 

mucosal response to otherwise harmless bacterial antigens in genetically susceptible 

individuals[209,210,211].   

Our study provides the first evidence of elevated abundance of other major 

OMPs, such as RagB, SusC/D associated with CD (Figure 8.5a).  An elevated IgG 

response to RagB was previously reported in subgingival samples of patients with 
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periodontitis[215] and virulence of the rag locus was demonstrated in Porphyromonas 

gingivalis strains[216].  While the role of RagB/Sus in the etiology of CD warrants further 

study, our data suggest that there is a shift from a healthy microbiota towards a 

microbial consortium that can elicit an inflammatory immune response. 

In addition, an integration host factor (IHF) protein, which is linked to virulence 

gene regulation[217,218], was identified as being statistically more abundant in ICD 

metaproteomes using MMs, but not HMRGs.  This finding highlights the importance of 

MMs to identify proteins that originate from bacteria not yet sequenced, or cultivated.   

8.3.5: Broad Functional Comparisons of the Human Proteome 

Because we are able to measure both bacterial and human proteins using 

metaproteomics, a total of 1,646 human proteins were experimentally identified.  Gene 

ontology (GO) analysis revealed that human proteins found in all 3 subject groups 

(core) are enriched in functions associated with the structural integrity of the mucosal 

epithelium.  Proteolysis, digestion, and carbohydrate catabolism were also among the 

most abundant ‘core’ functions, as would be expected in the GI-tract (Figure 8.8a).   For 

human proteins that varied in healthy compared to CD, the majority were involved in 

epithelial integrity and function, as detailed below.  To our knowledge, this is the first 

use of non-targeted shotgun proteomics to simultaneously assess both human and 

microbial proteins from the same fecal samples to assess a disease state.   
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Figure 8.8: Human proteins identified in the metaproteome data. (A) Human proteins’ 

“core” Gene Ontology terms across all subjects (healthy (H), ileal Crohn’s Disease 

(ICD), and colonic Crohn’s Disease (CCD)).  (B) Human proteins Gene Ontology terms 

that are enriched according to disease. 
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Figure 8.8 (A) 
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Figure 8.8 (B) 
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8.3.6: Impaired epithelial integrity in ICD 

The human proteins detected primarily in CD subjects support the hypothesis that 

subjects with ICD, even in remission, have a defective epithelial barrier.  A higher 

abundance of proteins in GO categories for inflammatory and host defense, wounding 

response, intracellular transport, and epithelial development and differentiation were 

enriched in ICD subjects (Figure 8.8b).  For example, mucin 2 (MUC-2), the most 

prominent mucin secreted by intestinal epithelial cells, was also more abundant in ICD 

subjects.  Similarly, thiosulfate sulfurtransferase, important in sulfate reduction and 

linked to mucin fermentation (PMID 3214155), was elevated in CD (p<0.001) based on 

metagenome analysis (Figure 8.5b).  

Other proteins that function in maintaining mucosal integrity were identified as 

being statistically under-represented in ICD, including protocadherin LKC, a calcium 

dependent mediator of cell-cell adhesion that associates with the mucosal actin 

cytoskeleton[219] and type 1 collagen (alpha-2), the major collagen in the intestinal 

extracellular matrix[220].  A depletion of these proteins might compromise host defense 

at the mucosal interface.  

A defective epithelial barrier is thought to result in an aberrant host response to 

luminal antigens leading to an exaggerated adaptive immune response and chronic 

inflammation[211]. Alpha defensin 5, a protein implicated in regulation of bacterial 

concentrations in the ileal intestinal crypt[221,222,223] was statistically more abundant 

in ICD, suggesting that the host may increase expression of defensins in response to 

aberrant microbiota in these subjects, or that the products are leaking from the intestinal 

site of action to feces.  

8.3.7: Impaired intestinal absorption in ICD 

The primary function of the small intestine is absorption and this appears to be impaired 

in subjects with ICD. For example, several pancreatic enzymes: chymotrypsinogen B1 

and B2, pancreatic carboxypeptidase A1 and B1 and pancreatic lipase were identified 

with higher abundance in ICD.  These enzymes are synthesized in the pancreas as 
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inactive precursors that are activated in the intestine where they aid in digestion. 

Relatively high amounts of pancreatic enzymes in feces may be indicative of 

pancreatitis, which has been linked to CD[224], but remains to be confirmed since the 

subjects in this study have not had active pancreatitis.   

Several bile salts were previously found to be elevated in ICD fecal 

samples[202], supporting the hypothesis that there is malabsorption of secreted 

enzymes and metabolites by the gut epithelium in ICD. The reduced uptake of bile salts 

and pancreatic enzymes could also be due to surgery since all ICD patients had 

undergone resections of the ileum. Since uptake of bile salts occurs within the terminal 

part of the ileum, patients that have undergone resections, leaving them with a shorter 

ileum, might have a reduced uptake of bile salts. Bile salt malabsorption with secondary 

diarrhea is a common clinical feature in patients undergoing extensive ileal resections. 

8.4: Conclusions 

Here we have used a combination of extensive and complementary “-omics” datasets to 

provide a more comprehensive view of the role of the gut microbiota in CD than has 

been previously possible. The value of this approach comes from the ability not only to 

examine the structure and function of the microbiota from multiple perspectives, but also 

from the ability to integrate data from the gut microbiota and the host.  The validity of 

our methods is supported by data at the species, gene, and protein levels that confirm 

previous reports that ICD is associated with a loss of F. prauznitzii. New findings from 

this study suggest several other malfunctions in CD, both with respect to the intestinal 

microbiota and the host.  Dysbiosis of the bacterial community in ICD results in a higher 

abundance of bacterial surface proteins, many of which are antigenic and could 

contribute to an exaggerated immune response, and that could cause or aggravate 

inflammation associated with CD. This imbalance comes at the expense of loss of many 

beneficial members of the microbiota, including those that produce butyrate. At the 

same time, there are several indications that the host epithelial barrier is impaired, both 

with respect to structural integrity of the mucosal boundary and with respect to its ability 

to absorb secreted enzymes and metabolites. These functional changes may define the 
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CD phenotype, even when patients are in remission.  It will be of great value to extend 

these studies to larger cohorts of CD patients and to also carry out longitudinal studies 

to assess how the structure and function of the gut microbiota changes in a given 

patient over time.  We have also uncovered some interesting examples of where the 

meta-omics data does not completely overlap, indicating the need to further explore the 

fundamental differences and significance of genomic potential versus proteome 

abundances.   Together, these data point towards several new targets for further 

investigation in the hunt for diagnostic targets and therapeutic treatments for CD. 
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Chapter 9 

Conclusions from the Metaproteomics Characterization of the Human Gut-
Associated Microbiome 

 

9.1: Conclusions 

The human microbiome, the collective set of microbes inhabiting the human body, is a 

complex ecosystem that is poorly understood in both human health and disease.  

Although the HMP has focused tremendous efforts and funds to understand the human 

microbiota by sequencing the microbes present in and on the skin, oral and nasal 

cavity, vagina and gastrointestinal tract by metagenomics, this approach will only reveal 

the composition and ‘potential’ function.  While genomics and metagenomics have laid 

the groundwork for many microbial communities including the human microbiome, 

proteomics and metaproteomics have evolved to provide an additional level of 

information, ‘actual’ protein abundance that is not possible with metagenomics.   

The research presented in this dissertation represents a detailed characterization 

of the human gastrointestinal (gut) microbiome.  Although not completely 

comprehensive, a fairly deep level of detail regarding the identity and functional 

signature of the host and gut microbial metaproteomes has been revealed through an 

integrative approach consisting of both community genomics and proteomics.  The 

technology that enables high-throughput, unbiased, and highly reproducible community 

proteomics is high throughput, high performance mass spectrometry.  MS-based 

proteomics can identify hundreds to thousands of proteins from a microbial community 

sample.  As discussed previously, genomics and metagenomics (predicted protein 

database) is the foundation for MS-based proteomics.  Therefore, the quality of DNA 

sequencing (i.e., depth of coverage and sequencing errors), assembly, and gene-finding 

has a tremendous effect on the ability of MS-based proteomics to assign all tandem 

mass spectra using protein database searching.  For example, if the final genomes or 

metagenomes are not representative of the exact same samples used for proteomic 

measurements or are not sequenced to a sufficient depth, fewer quality MS/MS will be 
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assigned resulting in fewer peptide and protein identifications.  Due to the 

interdependence of both technologies and future of systems biology, it is the 

development and advancement of genomic and proteomic technologies that will enable 

and improve biological inference of the complex human microbiome. 

The objective of this dissertation research is a detailed and mechanistic 

understanding of the host and microbial functional signature in the human gut 

microbiome.  Initially, we used a less complex and defined human-derived microbial 

community in gnotobiotic mice as a model system to study the human gut microbiome.  

This model system is advantageous for several reasons, including the ability to control 

the microbial membership in present in the gut.  A defined human microbiota enables 

the functional study of each of microbial member, their interactions, cooperation, 

competition and adaptation in the gut.  From the lower complexity binary and 12-

member consortia, we progressed to a representative and higher complex human gut 

microbiome in human individuals.  A non-targeted MS-based approach is ideal for 

studying complex communities based on its ability to directly measure expressed 

proteins from complex environmental matrices.  This approach was applied to elucidate 

the functional ‘core’ and differences in the commensal microbiota of human twins with 

and without Crohn’s disease.  Although challenges are present in both approaches, 

both have provided different information that has contributed to a larger understanding 

of how the human gut, health and disease, functions with our microbial counterparts.   

9.2: Experimental optimization and biological inference in the human gut 
microbiome 

The experimental methodology and analytical technology originally developed on single 

bacterial isolates has been extended to low- (AMD) and high-complexity (soil, ocean, 

and the human microbiome) microbial communities, all of which with range in microbial 

composition and diversity.  Microbial communities have many challenges not 

characteristic of single bacterial isolates including: environmental sample biomass 

quantity, interfering matrices, species and protein dynamic range, and microbial 

sequence redundancy.  As revealed throughout this dissertation, experimental 
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challenges associated with human gut microbiome related samples include efficient, 

non-biased lysis and extraction of proteins from bacteria and host cells in complex 

sample matrices (feces and cece) and dynamic range (detection of lower abundant 

proteins and microbes).  Informatics challenges are based on traditional database 

filtering metrics and the ability to uniquely assign MS/MS to a protein and its’ 

corresponding microbial species within a large collection of closely related and diverse 

microbes.  Although these challenges initially had a significant impact on the ability to 

perform deep proteome characterizations, we have identified new strategies that have 

and will enhance community MS-based proteomic studies of the human microbiome.  

For the two approaches described in this dissertation, liquid chromatography coupled 

with tandem mass spectrometry has been successful to characterize the gut microbial 

community proteomes of gnotobiotic mice and human twins.   

9.2.1: Gnotobiotic mice 

A defined human representative consortium of microbes has provided insight into how i) 

distinct members of a larger consortium of microbes initially establish themselves 

through cooperation and competition, and subsequently ii) compose the collective 

functional community. Chapters 3-6 outlined experimental and computational 

procedures used for proteomic assays of a model gut microbiota, and also illustrated 

some of the benefits in obtaining this type of information.  Experimental methods that 

used a combination of pre-fractionation via ultracentrifugation and chemical 

solubilization and physical homogenization have significantly improved peptide-

spectrum matching and protein identification of in situ extracted proteomes.  

Computational methods that compare and use unique peptide (theoretical peptidome), 

spectra, and protein counts enable the differentiation and assignment of proteins with 

high sequence similarity to a distinct phylotype.  The binary community proteomic 

results revealed that the majority of identified proteins belonging to B. thetaiotaomicron 

and E. rectale are true unique identifications, and that these species can be easily 

differentiated by proteomics.   Although this was a simplified two component human gut 

microbiota of two evolutionary divergent species, the 12-member proteomic results 

revealed similar conclusions with unique peptides as a preferred method for the relative 



	   199	  

estimation of species abundance with significant dynamic range.  These analyses 

suggested that the community structure is dictated by the host’s diet (i.e., diet is shaping 

overall community structure), with many conserved hypothetical and pure hypothetical 

proteins identified whose presence had not been predicted in the initial annotation of the 

finished genome.   

9.2.2: Human gut twin cohort 

With a successful method to study the proteomes of lower-complexity microbiota in 

gnotobiotic mice, we extended this methodology into higher complexity representative 

human gut microbiomes in human feces.  We have developed a novel non-targeted MS 

approach to measure the identities of thousands of microbial and host proteins in 

human feces using non-matched and/or matched metagenomes in addition to human-

derived reference genomes for protein identification.  Using this approach, we 

established the role of an integrated platform using MS-based proteomics and 

metagenomics in the human microbiome.  Although these results presented the largest 

coverage of the human gut metaproteome, to fully understand the functional role of the 

gut microbiota and its interaction with the human host would require extensive efforts to 

comprehensively define and characterize each microbial member in addition to the 

community as a single collective entity in health and disease.   

We have successfully demonstrated that whole community metaproteome 

measurements were achievable in the human gut microbiome and provided the first 

large-scale glimpse into the functional activities of the microbial community inhabiting a 

healthy gut.  These results also provided key insight into the challenges that we and 

future studies will encounter as the omics’ field progresses and accumulates thousands 

of metagenomic sequences, including extensive microbial sequence redundancy.  In 

order to advance and apply this methodology to higher complexity microbiota and 

human subjects with disease, the field has to establish methods for how to tackle 

microbial protein sequence redundancy in environmental samples.  Although non-

matched metagenomic data may capture more sequence diversity, large protein 

databases can create unreasonable sequence redundancy.  Therefore, we applied a 
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bioinformatics comparison and analysis of how to construct metagenomic sequence 

databases for optimum metaproteome measurements. These results suggested that 

proteomic data is twice as likely to match metagenomic data derived from the same 

sample and protein databases derived from matched metagenomic sequenced reads 

(RMPS), increased the number of MS/MS spectra, peptides, and protein identifications.  

Using this novel approach, we were able to increase PSM and coverage of 

metaproteomes collected from both healthy and individuals with Crohn’s disease and 

revealed examples of where reference genomes and meta-omics data does not 

correlate, indicating the need for future studies to explore the differences between 

genomic potential versus proteome abundances.     

9.3: Future directions 

As this dissertation has demonstrated, biological advancements go hand in hand with 

technological developments.  We cannot improve our understanding of the human 

microbiome unless the experimental and analytical tools are available and adapted for 

complex environmental samples with higher complexity in microbial composition and 

diversity (i.e., thousands of bacterial species with a wide range of abundances).  These 

analyses have and will advance the field of metaproteomics in the human gut 

microbiome by providing novel experimental and bioinformatic strategies to identify and 

characterize the metaproteomes of complex microbiomes extracted from feces and 

ceca.  Experimental comparisons and developments that lead to enhanced lysis and 

protein extraction methods will enable future studies to build upon these methods to 

increase protein identification and coverage of large-scale metaproteomes.  

The future of metaproteomics in the human microbiome will likely focus on 

several of the challenges discussed within this dissertation.  Because we are only 

sampling the surface with the identification of ~1-10% of the community proteome, 

technological advancements will enable deeper measurements and wider coverage of 

the entire community, but more importantly the lesser abundant microbes.  

Improvements in chromatographic peptide separation and/or fractionation and mass 

spectrometric measurements will provide better peptide separation and detection, 
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through-put, and higher resolution and mass accuracies to resolve single amino acid 

polymorphisms and post-translational modifications in the human microbiome which is 

currently not possible. 

The current bottleneck in microbial community metaproteomics hinges on the 

available informatics algorithms and filtering metrics that were designed for single 

microbial isolates and mixtures of proteins.  Contrary to single bacterial genomes, when 

faced with thousands of publically available metagenomes and reference genomes, 

computational resources will be stretched to their practical limits, and traditional 

database search algorithms will be ineffective and obsolete.  New cost-effective 

computational resources (i.e., to store and create substantial omic’ databases) and 

informatics algorithms that are designed for microbial communities will lead the future 

and enable the comprehensive and accurate assignment of all tandem mass spectra 

within microbial communities for which a large portion of the are closely-related 

microbes with high sequence similarity.   

The future of the human microbiome, both in metagenomics and 

metaproteomics, includes the development of tools to characterize large numbers of 

proteins with unknown function.  As evident throughout this dissertation in gnotobiotic 

mice and human individuals, a large percentage of the collective microbial community 

consists of proteins with unknown function that are not revealed by metagenomics.  It is 

obvious that these proteins are critical for microbial survival and carry out important 

functions in the human gut.  New experimental and biochemical assays focused on the 

profiling and characterization of proteins with unknown functions will likely unravel new 

microbial phylotypes and functions yet to be seen by traditional sequencing 

technologies. 

It is the field of systems biology and the combination of omic approaches, with 

advancement in all areas of MS-based proteomics including technology and informatics 

workflows that will serve as the future revolutionary tool to fully characterize microbial 

community metaproteomes in the human microbiome.  
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9.4: Perspective 

Over the last five years, the research presented here has helped establish the field of 

metaproteomics and its successfulness in the human gut microbiome, even though the 

majority of current research efforts and funds are focused on metagenomics.  We have 

identified an experimental and analytical platform that supports an unbiased and deep 

identification of the human gut metaproteome.  This platform can be effectively scaled 

from a less complex, controlled model microbiota to a highly complex gut microbiome 

derived from human subjects.  We have developed a novel bioinformatics workflow for 

integrated omic studies that incorporates metagenomic sequence data and MS to 

provide optimum identification and characterization of human host-gut metaproteomes.  

In addition to designing and developing experimental, analytical, and informatics 

workflows, we have provided a glimpse into whether a healthy ‘core’ gut metaproteome 

exists and the metabolic functional differences between individual microbial species 

(e.g., B. thetaiotaomicron and E. rectale) and communities as a whole (e.g., healthy 

versus disease).  These experiments and results represent substantial progress 

towards the ultimate goal of a complete identification of the human gut microbiome. 

The next 5 years will undoubtedly focus on implementing and continually 

developing the platforms described herein to characterize human microbiomes collected 

from higher complexity model communities (e.g., a 100-member microbial community in 

gnotobioic mice) and other human body sites (e.g., oral cavity and vagina).  The 

establishment of metaproteomics in the human microbiome should drive an increase in 

the funding and more extensive studies that focus on characterizing the actual 

functional metaproteome.  As a result, metagenomic-related research groups will 

engage metaproteomics to not only enhance our understanding of the microbiome, but 

also improve metagenomic sequencing with respect to its impact on metaproteomics.  

With regards to mass spectrometry, new informatics workflows that combine traditional 

protein database searching with novel de novo sequencing algorithms will be developed 

and benefit integrated omic’ studies with the identification of unknown proteins that are 

not sequenced and/or are missed in the assembly or gene-finding algorithms unique to 

metagenomics.  Finally, MS will be challenged to another level where efforts will likely 
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begin to focus on designing new techniques and technologies in all omic’ fields that 

permit the study of the ‘web of events’ rather than a static snapshot of the functional 

activities in a microbial community.   It is not apparent that there are any fundamental 

inpenetratable roadblocks to this progress towards a comprehensive systems-biology 

characterization of the human microbiome, but rather only experimental and informatics 

hurdles that need to continue to be navigated.  Since the ultimate goal is a gain in 

biological insight, a focus on mining biological inferences from integrated metagenomic-

metaproteomic datasets will advance mass spectrometry in the human microbiome. 
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