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                                              ABSTRACT 
 
 
 Herpetic stromal keratitis (HSK) is an immunopathological and tissue 

destructive corneal lesion caused by herpes simplex virus (HSV) infection, which 

induces an intense inflammatory response and finally leads to blindness. 

Accumulating evidence using the murine model has shown that Th-1 phenotype 

CD4+ T cells orchestrating the inflammation mainly contribute to the 

immunopathological reaction in HSV-1 infected cornea. Initially various innate 

immune cells recruit and produce numerous inflammatory and angiogenic 

molecules into the corneal stroma those in turn drive the corneal 

immunopathology. 

While the basic principles of immunity to the influenza A viruses (IAV) are 

probably similar for all vertebrates, detailed understanding is based largely on 

experiments in laboratory mice. Virus clearance is normally mediated via CD8+ 

effector T cells but, in their absence, the class-switched antibody response can 

ultimately achieve the same goal. Influenza virus-specific plasma cells and CD8+ 

T cells persist in the long term and the recall of the CD8+ T cell response can lead 

to earlier virus clearance. 

The first part (Part I) of this dissertation focuses on the understanding of 

HSV-1 induced immunoinflammatory processes in the cornea and the secondary 

lymphoid tissues and the involvement of immuno-modulatory mechanisms 

following acute viral infections such as HSV and IAV. The next three parts (Part II-

IV) focus on different inflammatory and counter-inflammatory mechanisms that 
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are activated following acute viral infections. Results in Part II evaluate the role of 

small molecule inhibitors of VEGFR2/src kinase inhibitors in controlling the 

progression of the inflammatory lesions after ocular HSV infection. Results of the 

third section show that the host counter inflammatory mechanisms inhibit tissue 

damage but these may also act to constrain the effectiveness of immunity to acute 

infections. The fourth section describes the functional significance of HVEM 

expression on regulatory T cell in their expansion following HSV-1 infection. 

In this study, experiments were designed to understand the mechanisms 

involved in the regulation of immunity and resultant immunopathology using HSV-

1 and IAV as the model systems and that modulation of these processes can 

enhance immune response and diminish immunopathology following acute 

infections. 

               
 
 
 
 
 
 
 
 
 
 
                     



 

 v

                  TABLE OF CONTENTS 
 

Part                                                                                                          Page  

I     Background and Overview.................................................................1  

       Animal models and pathogenesis of SK.................................................3 

       Immunity and Immunopathology to IAV................................................12             

        Conclusion.............................................................................................19 

        List of references...................................................................................20 

       Appendix...............................................................................................29 

 

II     An anti-inflammatory role of VEGFR2/src kinase inhibitor in HSV-1   

      induced immunopathology................................................................34 

Abstract................................................................................................35 

Introduction..........................................................................................36  

Materials and Methods.........................................................................38 

Results......................................................................…………………..45 

Discussion............................................................................................53 

List of references..................................................................................59 

Appendix..............................................................................................63 

 

III   Tim-3/Galectin-9 interaction regulates influenza A virus specific                   

 humoral and CD8 T cell responses...............................................79 



 

 vi

Abstract.............................................................................................80 

Introduction........................................................................................81 

Materials and Methods......................................................................82 

Results..............................................................................................88    

Discussion........................................................................................95 

List of references............................................................................100 

Appendix.........................................................................................104 

 

IV Regulatory T cell expression of Herpes virus entry mediator (HVEM)  

     following HSV-1 infection and its functional significance.........128 

Abstract...........................................................................................129 

Introduction......................................................................................130 

Materials and Methods....................................................................132 

Results............................................................................................136 

Discussion.......................................................................................142  

List of references.............................................................................148 

Appendix.........................................................................................151 

 

V  Conclusion.....................................................................................169 

 

     VITA................................................................................................171



 

 vii

                                 LIST OF FIGURES 
 
 
Part                              Figure                                   Page 

I   Figure 1. Principal cellular events in herpetic SK pathogenesis...................30 

   Figure 2. Herpes virus entry mediator and its ligands………………………..31 

   Figure 3. Schematic representation of consequences of Tim-/Galectin-9     

    Interaction ………………………………………………………………………...32 

 

II   Figure 2.1. Effect of topical administration of src kinase inhibitor (TG100801)   

     on the severity of SK......................................................................................65 

Figure 2.2. TG100801 inhibits FAK-y861 phosphorylation in the murine   

    cornea...........................................................................................................66 

Figure 2.3. TG100572 controls SK lesion severity independent of viral    

replication......................................................................................................67 

Figure 2.4. Effect of systemic administration of src kinase inhibitor   

(TG100572) on angiogenesis and SK lesion severity...................................69 

Figure 2.5. Representative eye photograph (at day 15 p.i.) of control (a) and   

TG100572 treated (b) mice...........................................................................70 

Figure 2.6. Kinetics of Cellular infiltration in the corneas of control and        

TG100572 treated mice.................................................................................72 

Figure 2.7. TG100572 treatment diminishes the infiltration of pathogenic Th1    



 

 viii

cells in the cornea…………………………………………………………………74 

Figure 2.8. TG100572 treatment results in the blockade of CXCL1 in the 

cornea…………………………………………………………………………….76 

Figure 2.9. Src kinase inhibition may result in the attenuation of T cell 

function……………………………………………………………………………78 

 

III Figure 3.1. Tim-3 expression is up regulated on virus-specific CD8 T cells  

    after IAV infection.......................................................................................106 

     Figure 3.2. Galectin 9 induces apoptosis of IAV NP tetramer specific and Tim-3+ 

CD8 T cells in vitro…………………………………………………………..108 

     Figure 3.3. Gal-9 knockout animals mount stronger virus-specific CD8 T cell 

responses in the acute phase.....................................................................110 

     Figure 3.4. Enhanced virus-specific antibody production in G9KO mice after 

influenza infection.......................................................................................112 

     Figure 3.5. Gal-9 knockout mice develop more robust recall responses to 

influenza A virus upon heterologous challenge..........................................114 

     Figure 3.6. Administration of Tim-3 fusion protein in mice after IAV infection 

enhances the magnitude and quality of IAV-specific CD8 T cells 

responses..................................................................................................116 

Figure 3.7. Outcome of infection with IAV HKx31......................................118 

Figure 3.8. Cells obtained from broncho-alveolar lavage (BAL) were stained for 

CD45+ and CD45+CD11b+Ly6G+ ...............................................................120 



 

 ix

Figure 3.9. Lung Histopathology................................................................122 

Figure 3.10. Characterization of CD4+FoxP3+ regulatory T cells from WT and     

the G9KO mice………………………………………………………………….124 

Figure 3.11. Adoptive transfer of memory CD8 T cells……………………..127 

 

IV  Figure 4.1. HSV-1 infection results in the expansion of CD4+FoxP3+ regulatory    

      T cells.........................................................................................................153 

       Figure 4.2. HVEM expression is up regulated on regulatory T Cells following    

       HSV-1 infection and its viral ligand is expressed in PLN following 

infection………………………………………………………………………….155 

      Figure 4.3. Primed cells stimulated with HSV causes HVEM up regulation on    

      Tregs..........................................................................................................157 

      Figure 4.4. Recombinant HSV-1 gD increases the proportions of FoxP3+ T cells   

      among CD4+T cells....................................................................................159 

      Figure 4.5. HSV-1gD can help to expand Tregs........................................161 

      Figure 4.6. Diminished representations of CD4+FoxP3+ regulatory T cells in the        

      HVEM knockout mice.................................................................................163 

      Figure 4.7. Reduced numbers of CD4+FoxP3+ per CD4+FoxP3-T cells in HVEM           

      knockout mice............................................................................................165 

      Figure 4.8. Diminished frequencies of activated Tregs in HKO animals ...167 

   Figure 4.9 Influence of HVEM expressing T regs on outcome of immune       

   response to HSV........................................................................................168 



 

 x

                                     ABBREVIATIONS 

 
APC...........................……..Antigen presenting cell 

BTLA………………………..B and T lymphocyte attenuator 

CCL2, 5, 20........................Chemokine (C-C motif) ligand 2, 5, 20 

CD..................................... Cluster of differentiation 

CTL....................................Cytotoxic T lymphocyte 

COX-2................................Cyclooxygenase-2 

CXCR2..............................CXC chemokines receptor 2 

CXCL3, 8...........................CXC chemokine ligand 3, 8 

DC…………………………..Dendritic cell 

FGF....................................Fibroblast growth factor 

Gal-9………………............Galectin-9 

G9KO………………………Galectin-9 knockout 

HKO………………………..HVEM knockout 

HVEM……………………...Herpes virus entry mediator 

HSV-1................................Herpes simplex virus 1 

HSV-1gD…………………..Herpes simplex virus 1 glycoprotein D 

HSK...................................Herpetic Stromal Keratitis 

IAV……………………….…Influenza A virus 

ICAM-1..............................Intercellular adhesion molecule 1 

IFN-α, γ.............................Interferon alpha, gamma 

IL-1, 2, 6, 12, 17, 18, 23... IL-18 Interleukin 1, 2, 6, 12, 17, 18, 23  



 

 xi

BP.....................................Binding protein 

IP-10.................................Interferon inducible protein 10 

KC.....................................Keratinocyte-derived chemokine 

LT…………………………..Lymphotoxin 

LTa…………………………Lymphotoxin alpha 

LTbR……………………….Lymphotoxin beta-receptor 

MCP-1.............................. Monocyte chemoattractant protein 1  

MIP-1, 2......................…...Macrophage inflammatory protein 1,2 

MMP-9..............................Matrix metalloproteinase-9 

NFκB.................................Nuclear factor- kappa B 

PECAM.............................Platelet endothelial cell adhesion molecule 

PFU..................................Plaque forming unit 

PGE2...............................Prostaglandin E2 

PMN.................................Polymorphonuclear leukocyte  

PAMP...............................Pathogen Associated Molecular Patterns 

siRNA..............................Small interfering RNA 

SK....................................Stromal Keratitis 

SCID………………………Severe combined immunodeficiency 

TGF-β...............................Transforming growth factor beta 

TIMP.................................Tissue inhibitors of metalloproteinases 

TLR 2, 4, 9........................Toll like receptor 2, 4, 9 

TNF-α................................Tumor necrosis factor alpha 

VEGF..............................Vascular endothelial growth factor 



 

 xii

VEGFR2…………………Vascular endothelial growth factor receptor 2 

VLA4...............................Very late antigen 4  

Treg................................Regulatory T cell 

Tim-3……………………..T cell immunoglobulin and mucin protein 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 1

                           PART I 
 

BACKGROUND AND OVERVIEW  
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



 

 2

IMMUNOPATHOLOGY AND IMMUNITY TO HSV-1 

Clinical Background 

Herpes simplex virus (HSV) induced eye diseases are one of the 

commonest causes of unilateral infectious blindness in the western world. 

Epidemiological studies in the United States reveal that, 400,000 persons are 

affected, with 20,000 new cases occurring annually with the incidence ranging 

from 4.1- 20.7 cases/100 000 patients per year (9, 87). Results from surveys 

conducted by the National Health and Nutrition Examination between 1976 and 

1980 (NHANES II) and again between 1988 and 1994 (NHANES III) showed a 

30% increase in HSV-2 specific antibodies within the studied timeframe in the 

United States (67) . In contrast the age specific seroprevalence of HSV-1 has 

decreased in industrial countries with the exception of several developing 

countries (67) . Ocular lesions are mostly caused by HSV type 1 and very rarely 

by HSV type 2 infections. However, 80% of neonatal herpes infection is caused 

by HSV-2, although both strains can be involved. 

Classically, the life cycle of HSV in the host is divided into four stages 

namely, entry, spread, establishment of latency and reactivation. After the 

primary infection of the skin or mucosal surfaces with HSV, it spreads to the 

neuronal cell bodies where latency is established. It is currently believed that the 

virus reactivation is kept in check by host immune cells in the sensory ganglion 

(82). The psychological and physical stresses that result in temporary impairment 

of the immune system facilitate the reactivation of HSV and subsequent release 

of the virus to the periphery (26). Most ocular HSV infections result in acute 
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epithelial keratitis that can be controlled with several antiviral drugs (42) . Twenty 

% of the patients infected ocularly with HSV develop, a chronic vision impairing 

stromal lesion known as herpetic stromal keratitis (HSK). In humans, 

approximately 50% of HSK occurs as a consequence of virus reactivation from 

the trigeminal ganglion and only ~2% of such cases result directly from primary 

HSV infection. The chances of developing SK are three times greater following a 

recurring herpetic keratitis than following a primary infection. 

Symptoms of HSK lesions include corneal necrosis and ulceration along 

with stromal edema and neovascularization (16) . These lesions are shown to 

occur mainly as a result of T cell mediated immunopathological responses in the 

cornea whose pathogenesis is poorly understood. Forty to ninety percent of the 

patients with stromal keratitis may develop disciform keratitis (corneal 

endothelium is the main site of damage), while the rest of the patients may 

develop stromal opacities. If not treated properly, it may lead to corneal scarring 

and ulcerations warranting corneal transplantation. Apart from stromal keratitis, 

HSV infection can also result in viral retinitis and/or encephalitis in 

immunosuppressed and immunocompetent individuals. In some cases, infection 

with HSV-1 or 2 have also been reported to be associated with acute retinal 

necrosis syndrome. 

Animal models and pathogenesis of SK 

 Most of the studies to elucidate the pathogenesis of HSK have been 

performed in animal models for human HSK. For primary infection, the mouse is 

the most studied animal species, while the rabbit is the preferred animal for 



 

 4

recurring infection. However similar types of lesions occur after primary or the 

recurrent infection (83). Understanding progressing events that finally lead to 

corneal inflammation has mainly come from primary ocular infection in mice. 

Several strains of mice including both immunocompromised and 

immunocompetent animals such as BALB/c, C57BL6, CAL-20, 129/SVEV have 

been described for studying HSK (16) . In immunocompetent animals SK lesions 

are evident within 6-7 days after ocular infection with HSV-1 that peak in severity 

between 15-21 days. The lesions are primarily caused by CD4+ T cells that are 

detected in abundance at day 7-8 pi and most of which are likely to be HSV 

reactive. Another model uses TCR transgenic mice on a RAG–/– background, 

which have been shown to develop SK upon ocular infection with HSV, even 

though their CD4+ T cells were almost all reactive with OVA323-339 peptide and 

not detectably cross-reactive with HSV antigens (28). The CD4+ T cells in the 

ocular lesions of such animals were shown to react with the KJ1.26 mAb noted 

by others to react with the TCR of H-2d CD4+ T cells that recognize the OVA323-

339 peptide (35) . Since this KJ+ TCR had no demonstrable reactivity with HSV, it 

was thought that the activation of KJ+ CD4+ T cells was not TCR mediated but 

involved activation by one or more cytokines (30) . This model was referred to as 

a bystander model of SK (29) . Yet another model that has been characterized is 

SK induced in SCID mice  after reconstitution with CD4+ but not CD8+ T cells 

isolated from either HSV immune or naïve animals (80, 87, 93). All these animal 

models present typical SK lesions characterized by corneal haze, edema, 

necrosis, ulceration and neovascularization. 
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Ocular infection with HSV 1 in immunocompetent animals is followed by 

initial replication of virus especially in the corneal epithelium for up to 5-6 days. 

Live viral particles and the transcribed mRNA copies of viral genes can be 

detected from the corneal swabs during this time but not beyond 7 days post 

infection using conventional viral titration and RT-PCR assays respectively (9). 

However, viral DNA could be detected in the cornea even up to 21 days post 

infection (pi), the time when the disease is at its peak and spontaneous healing 

may start in a minority of animals. The nature and pathophysiological significance 

of the persisting viral genomic DNA in terms of its transcriptional and translational 

efficiency to make viral proteins is not yet elucidated. Studies focused on these 

aspects would shed light on some of the previously unknown players in the 

causation of SK.  

After the initial phase of viral infection and replication in the cornea, there 

is a prominent infiltration of inflammatory cells near the corneal epithelium that 

mainly consists of neutrophils (PMN) (92). These cells could potentially exert 

anti-viral defense by producing nitric oxides, reactive oxygen species, TNF-α, 

IFN-γ or perhaps just by engulfing viral particles. Furthermore, the kinetics of 

their infiltration correlates with the clearance of replicating virus from the cornea 

as shown in Fig.1 (All figures are supplied in an appendix). Other studies where 

neutrophils were depleted prior to ocular HSV infection showed a delay in viral 

clearance from the cornea (96). In addition to their role in viral clearance, they 

may also provide conducive conditions for the ensuing inflammatory response by 

releasing mediators such as IL-1β, IL-8 (MIP-1α) IL-12 and TNF- α. Neutrophil 
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secreted NO could unmask corneal antigens that can be a continuous source for 

the influx of reactive T cells. The matrix metalloproteinases such as MMP-9 can 

cause break in stromal matrix and along with neutrophil or perhaps stromal cell 

secreted VEGF-A contribute to the neovascularisation of usually avascular 

cornea. Recently it has been shown that VEGF-A is indeed present in the cornea 

and being bound to a soluble form of the VEGF receptor-1 impedes its 

angiogenic activity. Ocular neovascularization resulting from HSV infection 

involves a change in the balance between VEGF-A and its soluble inhibitory 

receptor (85). Inhibition of angiogenesis by targeting MMP-9 and VEGF by siRNA 

approach were shown to reduce the extent of neovascularization (4, 44). Some 

additional angiokines such as bFGF, E-L-R motif containing chemokines (MIP-2) 

are also up regulated in cornea after HSV infection (107). In addition to PMNs, 

other cells such as DCs, NK cells, γδ-T cells, macrophages etc. could contribute 

both towards viral clearance and the subsequent inflammation by secreting type I 

IFNs, and other cytokines as well as chemokines such as IL-6, IL-1β, IL-12, MIP-

2, TNF-α, IFN-γ, IL-23, IL-17 (9). Once the vascular bed is formed, there is 

continuous infiltration of cells because of leakage of newly formed vessels. IL-1 

and IL-6 were shown to be the critical cytokines to initiate the subsequent 

inflammatory events and could be produced by epithelial cells initially after viral 

infection. HSV DNA and perhaps some of its other components expressing 

PAMPs can activate PRR such as toll like receptors (TLRs)-2,4 and 9 on the 

innate cells which provide stimulation for the activation of the NFκB pathway (76). 

CpG motifs derived from viral DNA in the cornea could stimulate TLR 9 and 



 

 7

induce IL-1 and IL-6 which contribute to the immunopathological lesions along 

with an efficient induction of adaptive immune response (110). IL-6 could be 

produced by un-infected cells by IL-1 stimulation in a paracrine manner which in 

turn trigger MIP-2 (also known as CXCL8) production that is involved in the 

attraction of PMNs. COX-2, is another important mediator of inflammation that 

could be induced by IL-1 in the cornea and acts through production of PGE2 (23) 

. Recent studies have shown the important role of TNF-α in the causation of SK. 

Animals lacking this cytokine were unable to control the virus in cornea and thus 

exhibited enhanced lesion severity (55) . 

IL-12 produced by PMNs, macrophages and Langerhans DCs was shown 

to be another important candidate cytokine involved in the pathogenesis of SK 

(48, 63) . It is involved in the downstream production of IFN-γ by macrophages, 

NK cells, neutrophils and CD4+ T cells. Both proinflammatory and anti-

inflammatory activities have been attributed to IFN-γ. It aids in the PMN influx by 

up regulating PECAM-1 and ICAM-1 on corneal epithelial cells (90, 108), 

endothelium cells and keratocytes needed for the exit of inflammatory cells. It 

also helps to prime the CD4+ T cell responses by up regulating MHC II on 

antigen presenting cells. The most important anti-inflammatory activity of IFN-γ is 

attributed to its potential of inducing anti- angiogenesis factors including, but 

probably not limited to, IP-10 (51). Its role in promoting Foxp3+ regulatory T cells 

induction was also described recently (21, 22, 99). IL-23/IL-17 axis is another 

identified pathway involved in pathogenesis of various types of autoimmune 

inflammatory lesions. IL-23 produced by innate cells such as DCs is responsible 
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for the stabilization of cells with the Th17 phenotype. IL-17 produced by 

inflammatory Th17 or perhaps fibroblast or neutrophils help recruit more PMNs. 

The role of IFN-γ producing Th1 cells is well studied in SK pathogenesis but a 

precise role of Th17 cells has not yet been described. In mouse SK lesion CD4+ 

T cell outnumbers CD8+ T cells but the reasons for their preferential 

accumulation remains unclear (61) . The inflammatory reaction in the trigeminal 

ganglion has a preponderance of CD8+ T cells in addition to CD4+ T cells. The 

antigen-specificity of CD4+ T cells that infiltrate cornea remains largely unknown 

because of a lack of specific CD4+ T cells epitope derived from HSV or the 

tetramer. It is anticipated that CD4+ T cells that infiltrate into cornea initially 

constitute a population enriched in HSV reactivity. Later on lesions would be 

dominated by bystander cell populations. Because of less stringent requirements 

of antigenic stimulation of Th17 cells (101), it is possible that the role of these 

cells in the pathogenesis of SK predominates in the later stages of inflammation 

where viral antigen availability is limited. Thus, one valid hypothesis could be that 

the acute phase is mainly dominated by Th1 cells while the chronicity of lesion is 

maintained by Th17 cells. Some of our initial  published observations support this 

hypothesis (86). 

Current treatment modalities 

Presently the therapeutic agents used for treating acute keratitis include 

the administration of antivirals and corticosteroids and non-steroidal anti- 

inflammatory drugs such as Cyclooxygenase-2 (COX-2) blockers (7, 16, 105). 

Prolonged use of antivirals was shown to result in the development of resistance 
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particularly in immunocompromised individuals (10, 13). Similarly use of 

corticosteroids might give rise to numerous adverse effects (14, 45) and in some 

patients it may exacerbate HSK lesions due to enhanced HSV-1 replication 

(102). Animal studies in the mouse model of HSK have demonstrated that 

cytokine and chemokine blockers such as the IL-1 receptor antagonist are 

effective (8) . As neovascularization is an essential event for HSK pathogenesis, 

siRNA against VEGF was shown to be effective in reducing HSK lesions in the 

mouse (44) . Recent studies have shown that VEGF-induced vascular leakage is 

mediated by cytoplasmic protein kinase members of the Src proto-oncogene 

family in brain, heart, and other tissues (20, 109) (65, 103). Such vascular 

permeability is likely related to a loss of integrity in adherens junctions, which 

regulate cell-cell adhesion. VEGF has been shown to activate the Src family of 

tyrosine kinases (SFKs), leading to tyrosine phosphorylation of adhesion junction 

components, including VE-cadherin and its associated proteins β-catenin and γ-

catenin, which are important to endothelial cell adhesion(20, 43, 64, 103, 104) . 

Abnormal vascular permeability is frequently associated with neovascularization 

(77). Endothelial cell barrier functions are disrupted by a number of viruses and a 

recent study suggests that VEGFR2 and SFK inhibitors may be of therapeutic 

utility in stabilizing vasculature during viral infections (33) . Furthermore, mouse 

model studies also support the effectiveness of regulatory T cell therapy in 

controlling HSK immunopathology (80) . 

Regulatory T cells as an immunotherapeutic 
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The magnitude of a T cell mediated immune response to an acute viral 

infection may be influenced by the activity of one or more types of regulatory T 

cells (Tregs) (87, 88), particularly those that express FoxP3. For example HSV-1 

infection results in the activation and expansion of regulatory T cells and the 

majority of expanded Tregs are not antigen specific. It is conceivable that the 

Treg expansion following an acute viral infection could be an immune evasion 

strategy employed by the virus to dampen the antiviral CD8 T cell responses (5) 

or conversely it could be a counter inflammatory mechanism imposed by the viral 

infected host itself to prevent the immune mediated collateral tissue damage 

(72). In addition to other mechanisms such as the cytokine IL-10 (71, 87) Treg 

are shown to be involved in controlling the ongoing inflammatory processes in 

the cornea (87) . In addition, these cells might help in the resolution of the clinical 

lesions and in model systems in which the activity of Treg cells can be inhibited, 

tissue-damaging immunopathological reactions to some viruses are increased 

(87). How HSV infection triggers Treg expansion and the molecular interactions 

responsible for their suppressive activity remains poorly understood. Additionally, 

since the expanded Treg population is largely non-specific to HSV, TCR (T cell 

receptor) mediated events likely play at most a minor role. 

HSV entry into cells requires binding of the envelope glycoprotein D (gD) 

to HVEM (a TNF receptor family member) receptors on the cell (46). Besides 

being an entry receptor for HSV, HVEM is identified as a co-stimulatory molecule 

that is known to be constitutively expressed on the cells of immune compartment. 

HVEM can promote T cell activation by propagating signals from the TNF super 
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family member ligand, LIGHT, a lymphotoxin related inducible ligand (100) that 

competes with glycoprotein D for binding to HVEM on T cells or can deliver 

inhibitory signals upon binding with BTLA (B and T lymphocyte attenuator) (Fig 

2). In a previous report HVEM knockout mice were shown to develop an 

unexpected enhancement of T cell responses (98), with increased susceptibility 

to autoimmunity and that over expression of HVEM enhances Treg suppressive 

function (91) suggesting a role of HVEM in Treg suppressive function. 

Importantly T cells from scurfy mice have been shown to lack HVEM expression 

even after activation (91), suggesting an involvement of FoxP3 in regulation of 

HVEM expression. 

BTLA and CD160 binding to HVEM has an important role in antagonizing 

and down regulating effector cell function activated directly or indirectly by LIGHT 

and LT binding to HVEM or LTbR. The inhibitory functions of BTLA and CD160 

may be distinct and non-redundant as suggested by their distinct expression. In 

addition, the TNF family ligands of HVEM (LIGHT and LTa) bind to LTbR and are 

important for immunoregulation by shaping the lymph node architecture and DC 

expansion and homeostasis. Therefore, HVEM may serve as a ‘negotiator’ 

balancing co-inhibition by BTLA ⁄ CD160 and co-stimulation by LIGHT ⁄ LTa ⁄ 

LTbR in order to achieve an immunobalance. But overall, the role of the newest 

ligand in the HVEM pathway, CD160, in these diseases remains to be 

determined and studies with mice deficient in CD160 and doubly deficient in 

CD160 ⁄ BTLA are needed to answer these questions (11). Taken together, 

although HVEM binding to LIGHT and LTa delivers a positive signal to T-cell 
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activation, the overall function of HVEM is inhibitory, suggesting the negative 

signals mediated by BTLA and CD160 are dominant. Therapies targeting the 

CRD1 of HVEM to block BTLA and CD160 binding are being developed to 

enhance immune responses and vaccination (50) and increasing BTLA 

expression levels in the cornea to prevent HSV-1 induced immunopathology 

(106). 

 

IMMUNITY AND IMMUNOPATHOLOGY TO IAV 

Respiratory virus infections are a major cause of morbidity and mortality 

throughout the world. A major challenge for immunologists is deciphering the 

underlying mechanisms of immune protection at mucosal surfaces such as the 

lung epithelium. Understanding the individual steps of an immune response in 

the lungs is essential if we are to develop vaccines that elicit effective immunity in 

the lung. 

Influenza virus infections alone result in the deaths of about 36,000 people 

per year in the United States and there is tremendous concern that highly lethal 

variants of this virus may emerge and cause a major pandemic (39, 60). 

Moreover, the emergence of new respiratory pathogens, such as the corona 

virus associated with Severe Acute Respiratory Syndrome, poses a continual 

threat (66). Despite the medical significance of respiratory viral infections, 

satisfactory vaccines have not been developed. For example, in the case of 

influenza virus, the currently available vaccine elicits humoral immunity specific 

for viral coat proteins and must be reformulated yearly to be effective against 
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new viral strains (31). Recent progress in our understanding of cellular immune 

responses in the lung will facilitate the development of effective vaccines. 

Immunity in the respiratory tract 

Much of our understanding of immune responses to respiratory virus 

infections has been derived through experimental animal models. A particularly 

robust and well-characterized model is the infection of mice with mouse-adapted 

influenza virus(6, 18, 69). When introduced through the nose, the virus 

establishes infection of lung epithelial cells and elicits powerful cellular and 

humoral immune responses in the lung. CD8+ cytotoxic T cells first appear in the 

lung airways on day 7 post-infection and play a key role in clearing virus(24) . 

Typically, this effector T-cell response peaks around day 10 or 11 (24). Antibody 

is also generated in the response, but isotype switched antibody does not 

accumulate until day 7 and does not appear to play a critical role in the primary 

infection unless the viral titer is particularly high (34) . Following resolution of the 

infection, memory T cells persist in secondary lymphoid organs, such as the 

spleen and local draining lymph nodes, as well as a variety of peripheral sites, 

including the lung parenchyma and airways (38, 53). These memory cells retain 

the capacity to mediate accelerated recall responses due to their semi-activated 

status and increased precursor frequencies relative to naive T-cell populations 

(12, 24, 37, 38). 

While the basic outline of T-cell immunity in the lung has been 

established, the specific details remain obscure. The advent of new technologies 
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for studying immune responses in vivo has allowed viral immunologists to begin 

to visualize key processes and dissect the underlying mechanisms.  

Primary T-cell responses 

The infection of respiratory epithelial cells initiates a cascade of events 

that culminate in the activation of a cellular immune response in the lung. The 

initial infection induces the production of inflammatory mediators by epithelial 

cells, which alert the innate immune response to the infection (17) . In addition, 

dendritic cells (DCs) lining the upper respiratory tract also detect the presence of 

an infection via toll-like receptors (TLRs), which detect viral proteins (49) or 

products of viral replication, such as double stranded RNA (2, 17, 36, 49, 95) . 

The combination of inflammation and TLR signaling activates DCs, increases 

their expression of class I and class II Major Histocompatibility Complex (MHC) 

molecules and induces a wide array of co-stimulatory and adhesion molecules as 

well as inflammatory cytokines that are required for the induction of T-cell 

responses (54, 56). Together, these changes in DC activity result in enhanced 

presentation of viral antigens to T cells (54). Finally, the DCs acquire the ability to 

traffic to the lymph nodes, migrate into T-cell areas and interact directly with 

naive T cells (52) . Once in the T-cell areas, mature DCs present antigen to naive 

T cells, which then initiate a program of proliferation and maturation (62) . This 

results in a massive increase in the number of antigen-specific T cells and the 

production of large numbers of effector cells with the capacity to lyse infected 

epithelial cells and secrete antiviral cytokines (70) . Finally, these effector cells 
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acquire the capacity to traffic and subsequently move to the site of infection in 

the lung where they effectively terminate the infection (70).  

Animal models 

Experimentally, the mouse model that is so familiar to immunologists 

provides a well-characterized system for analyzing acute and memory responses 

in this localized, non-persistent infection. Influenza can be controlled either by 

CD8+ T cells or by antibodies, but mice lacking both CD8+ T cells and antibodies 

succumb (19). Influenza viruses are not natural mouse pathogens, and viral 

spread between mice is minimal, despite the fact that substantial lung viral titers 

are achieved within 24 h of infection. Influenza infection in the ferret more closely 

resembles human influenza infection, but the ferret model has received little 

attention from immunologists, probably because of the lack of reagents and 

inbred ferret strains. 

Influenza viruses grow rapidly in the human respiratory mucosa, allowing 

transmission to colleagues and family members via respiratory droplet inhalation 

(coughs and sneezes) even before the development of obvious symptoms. The 

net consequence is that influenza outbreaks tend to be ‘explosive’, moving 

rapidly through a community, and then dying out. Any given influenza A virus 

variant, however, can be sustained globally for at least 1–2 years in 

geographically dispersed communities. 

Therapeutics and vaccines 

X-ray crystallographic analysis of the structure of monoclonal antibody– 

NA complexes has helped the development of the ‘rationally designed’ 
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therapeutics zanamivir (Relenza) and oseltamivir (Tamiflu) (58, 97). Both 

influenza A and influenza B viruses find it difficult to ‘escape’ by altering the NA 

site targeted by these drugs. However, escape variants can emerge during 

severe H5N1 infection (15). These drugs are being stockpiled by national 

governments, but the real need is for an effective vaccine. 

Adaptive immune responses to foreign antigens require precise regulation. 

If not, excessive bystander damage to host tissues may occur and an unlimited 

reaction could erode the size of the repertoire, limiting responses to other 

antigens. It is evident that the host possesses several mechanisms that control 

the size, composition and duration of immune reactions (113) . In consequence, 

after the primary response most cells die leaving a memory population that 

represents a fraction of the cells that responded initially to the antigen. Moreover, 

these memory cells rarely account for 10% of the total antigen reactive repertoire 

(1). In some circumstances, it would be desirable to expand the size of the 

memory population and perhaps extend the durability of effector cell activity, 

since this could improve immunity to certain pathogens. HIV is such an example 

(27) .  

Some bystander tissue damage usually happens since several host 

defenses can destroy cells or orchestrate inflammatory reactions. With chronic 

infections, for example, immune mediated tissue damage would be more severe 

were it not for several cellular and chemical host components that inhibit 

inflammatory reaction (72). However, the activity of some of these counter 

inflammatory mechanisms could act to constrain the efficiency of protective 
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immune components (78). For instance, regulatory T cells (Treg) can inhibit 

inflammatory reactions associated with chronic virus infections (5), but the same 

Treg response can also limit the magnitude of protective immunity to a virus or 

induced by a vaccine (88, 94). Other host components may also function to limit 

and help resolve inflammatory reactions. These include some cytokines (84), 

groups of molecules derived from omega-3 polyunsaturated fatty acids (81), as 

well as some of the carbohydrate binding proteins of the galectin family (68). 

Galectin-9 (Gal-9), for example, upon binding to Tim-3 on T cells acts to limit the 

extent of immuno-pathological lesions in autoimmunity (47) as well as in some 

chronic infections (32, 41, 79). 

Tim-3 was first discovered in 2002 as a molecule expressed on interferon 

(IFN)- -producing CD4+ T helper type 1 (Th1) and on CD8+ T cytotoxic type 1 

(Tc1) cells (57). The S-type lectin galectin-9 (Gal-9) was then identified as a Tim-

3 ligand. Gal-9 is a soluble molecule that is widely expressed, up regulated by 

IFN- (3), and binds to oligosaccharides on the Tim-3 IgV domain. Gal-9 

triggering of Tim-3 on Th1 cells has been shown to induce cell death (112). Thus, 

Tim-3 came to be known as a negative regulatory molecule important for 

abrogating Th1- and Tc1-driven immune responses. Consistent with its role as 

an inhibitory molecule, blockade of the Tim-3 Tim-3L pathway in vivo by blocking 

antibody or soluble Tim-3 Ig fusion protein (Tim-3Ig), which serves to block Tim-

3/Gal-9 interactions, exacerbates experimental allergic encephalomyelitis and 

type 1 diabetes (57, 75). Similarly, abrogation of Tim-3 signaling with blocking 
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antibody or by RNA interference increases the secretion of IFN- by activated 

human T cells. 

Tim-3 is also involved in the induction of peripheral tolerance. 

Administration of Tim-3Ig abrogates the development of tolerance in Th1 cells 

and Tim-3-deficient mice are refractory to induction of tolerance by administration 

of high dose aqueous antigen (73). Of note, it has been shown that Tim-3 can 

regulate auto- and alloimmunity by modulating the capacity of regulatory T cells 

to dampen inflammatory responses (75). In addition, studies in a murine graft-

versus-host disease model and a hepatitis B infection model support a role for 

Tim-3 in negatively regulating IFN- producing CD8+ Tc1 cells 

New findings regarding the inhibitory role of Tim-3 have emerged over the past 

few years and it is now well established that Tim-3 is highly expressed on 

‘exhausted’ or impaired CD8 T cells in various chronic viral infections (32, 40, 

41)and in tumor-bearing hosts (25, 59, 74, 111). More importantly, the function of 

these impaired CD8 T cells can be restored by blocking the Tim-3/Tim-3L 

pathway. Recent studies have examined Tim-3 expression in acute and chronic 

models of viral infection. In acute Lymphocytic Choriomeningitis virus (LCMV) 

and herpes simplex virus (HSV) infection, Tim-3 is expressed on CD8+ T cells; 

however, this expression is transient and is found on only a small fraction of cells 

(78). Blockade of Tim-3/Gal-9 signals during the acute phase of HSV infection 

results in increased effector and memory CD8+ T cell responses and more 

efficient viral control (78). By contrast, virus-specific CD8+ T cells in chronic 

LCMV and Friend virus infection exhibit sustained high-level expression of Tim-3 
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on a large fraction of cells. These cells co express PD-1 and exhibit impaired 

effector cytokine production (40, 89). In these experimental models of viral 

infection, as well as in T cells from patients chronically infected with human 

immunodeficiency virus (HIV) and Hepatitis C virus (HCV), blocking both the 

Tim-3 and PD-1 pathways restores T cell proliferation and enhances cytokine 

production. Thus, in chronic viral infections, both the Tim-3 and PD-1 pathways 

seem to affect T cell exhaustion (Figure 3). 

CONCLUSION 

Understanding of the circumstances of infection and host-controlled 

factors that could explain why an infection can be resolved with minimal impact 

or cause substantial tissue damage could prove to be useful in the future for the 

control and perhaps prevention of tissue-damaging virus infection. Accordingly by 

inhibiting the factors involved in immunopathology following an acute viral 

infection or manipulating the immunomodulatory factors such as some cytokines, 

groups of molecules derived from omega-3 polyunsaturated fatty acids, as well 

as some of the carbohydrate binding proteins of the galectin family and co 

stimulatory molecules like HVEM could be beneficial in preventing 

immunopathology and to enhance immune responses to vaccines. 
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Figure. 1. Principal events in herpetic SK pathogenesis 

Following ocular HSV infection replicating virus could be detected in the cornea 

till 5-7 days p.i. Early inflammatory response in the cornea is dominated by the 

polymorphonuclear leukocytes (PMN). Infiltration of PMNs into the cornea is be 

characterized by a typical biphasic influx. Angiogenesis or the process of new 

blood vessel development from the existing limbal vessels starts at 24h p.i. and 

peaks around 15 days p.i. Influx of pathogenic CD4+ T lymphocytes occurs in the 

clinical phase around 7-9 days p.i. 
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Figure 2 | Molecular interactions between TNFRs, TNFs and immunoglobulin-

domain-containing receptors. Tumour-necrosis factor (TNF) receptor (TNFR) 

family members predominantly interact with one or more soluble or cell-surface 

TNF family ligands. Herpesvirus- entry mediator (HVEM) binds both LIGHT and 

lymphotoxin-α (LTα), and LIGHT also binds LTβ receptor (LTβR) and decoy 

receptor 3 (DCR3). LTα also binds TNFR1 and TNFR2. HVEM binds the 

immunoglobulin-domain- containing proteins B- and T-lymphocyte attenuator 

(BTLA) and herpes simplex virus type 1 glycoprotein D (HSV1 gD), whereas its 

viral homologue human cytomegalovirus (CMV) UL144 binds human BTLA. 
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Figure 3. Model of Tim-3 function in the immune response. (a) In acute 

inflammation, Tim-3 is expressed on terminally differentiated IFN-g-producing 

CD4+ and CD8+ T cells. Upon recognition of its ligand, Gal-9, Tim-3-expressing 

T cells undergo apoptosis. (b) In chronic inflammation, Tim-3 is coexpressed with 

PD-1 on dysfunctional or exhausted CD8+ T cells. Combined targeting of the PD-

1�PD-L1 and Tim-3�Tim-3L pathways successfully restores CD8+ T cell 

effector function and ameliorates chronic disease. (c) Tim-3 on T cells interacts 
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with Gal-9 on MDSC precursors to promote MDSC expansion, which in turn 

suppresses T cell responses. (d) Tim-3 on CD4+ T cells can also act to facilitate 

killing of intracellular pathogens in macrophages through interaction with Gal-9 

and a mechanism involving IL-1b and caspase-1. Overall, Tim-3 on CD4+ and 

CD8+ T cells harnesses multiple mechanisms to regulate negatively effector T 

cell responses and terminate IFN-g-mediated inflammation while preserving or 

enhancing the ability of innate cells to kill intracellular pathogens. 
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Research described in this chapter is a modified version of an article published in 

2011 in Journal of Virology by Shalini Sharma, Sachin Mulik, Naveen Kumar, 

Amol Suryawanshi, and Barry T Rouse. 

 

Sharma S, Mulik S, Kumar N, Suryawanshi A and Rouse BT. An Anti-

inflammatory Role of VEGFR2/Src Kinase Inhibitor in HSV-1 Induced 

Immunopathology J Virol: 2011 2011; 85: 5995-6007 

Copyright © 2011, American Society for Microbiology. 

 

In this chapter “our” and “we” refers to co-authors and me. My contribution in the 

paper includes (1) Selection of the topic (2) Compiling and interpretation of the 

literature (3) Designing experiments (4) understanding the literature and 

interpretation of the results (5) providing comprehensible structure to the paper 

(6) Preparation of graphs and figures (7) Writing and editing 

 

                                              Abstract 

Corneal neovascularization represents a key step in the blinding 

inflammatory stromal keratitis (SK) lesion caused by ocular infection with Herpes 

simplex virus (HSV). In this report we describe a novel approach to limit the 

angiogenesis caused by HSV infection of the mouse eye. We show that topical or 

systemic administration of the src kinase inhibitor (TG100572) that inhibits 

downstream molecules involved in the VEGF signaling pathway, resulted in 

markedly diminished levels of HSV induced angiogenesis, and significantly 
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reduced the severity of SK lesions. Multiple mechanisms were involved in the 

inhibitory effects. These included blockade of IL-8/CXCL1 involved in 

inflammatory cells recruitment that are a source of VEGF, diminished cellular 

infiltration in the cornea, and reduced proliferation and migration of CD4+T cells 

into the corneas. As multiple angiogenic factors (VEGF, bFGF) play a role in 

promoting angiogenesis during SK and since src kinases are involved in 

signaling by many of them, the use of src kinase inhibition represents a 

promising way of limiting the severity of SK lesions the most common cause of 

infectious blindness in the Western world. 

 

                                       Introduction 

Ocular Herpes Simplex virus (HSV) infection can result in blinding 

immuno-inflammatory lesions in the cornea termed stromal keratitis (SK) (3, 25). 

A critical step in the pathogenesis in SK is neovascularization of the normally 

avascular cornea, but such vessels are leaky and permit the escape of cells and 

inflammatory molecules into stromal tissues, events that impair vision. 

Preventing, or limiting, neovascularization was shown in animal models of SK to 

be a useful means to control the severity of lesions (16, 30, 31). Many molecules 

may participate in causing neovascularization in the HSV infected eye, but 

VEGF-A is the principal angiogenic factor involved (30). The VEGF-A can derive 

from multiple sources, that include endogenous production of VEGF-A whose 

angiogenic function is blocked by being bound to a soluble form of one of its 

receptors (2). HSV infection results in the breakdown of this inhibitory interaction 
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(26).Additional VEGF-A supplies come from newly synthesized protein by 

infected or cytokine stimulated cells, as well as from VEGF-A being transported 

to the eye by inflammatory cells (8). Whatever the source, VEGF-A mediates 

ocular angiogenesis by signaling mainly through the VEGFR2 receptor that in 

turn sets off a sequence of intracellular events that involve src kinases (6, 7, 29).  

Recent studies have shown that src family of tyrosine kinases are 

responsible for VEGF mediated vascular permeability and angiogenesis in several 

systems (6, 11, 24).  Accordingly, using inhibitors of src kinases represents a 

logical approach for therapy against pathological angiogenesis such as occurs in 

SK. Approaches tested to date to inhibit angiogenesis in the SK system have either 

targeted VEGF or one of its receptors, but inhibiting biochemical events set off by 

VEGF signaling such as src kinase activation has not been evaluated.  This 

approach could have advantages over others since src kinase are also responsible 

for mediating vascular permeability and may also be involved in signaling by other 

angiogenic factors, such as fibroblast growth factors (24). The later are known to 

be involved in pathological angiogenesis caused by ocular HSV infection (10, 30).  

Drugs have recently become available that effectively inhibit one or more 

src kinases and which can function to inhibit new blood vessel development and 

function (5, 19, 24). One such example is the drug TG100572, shown recently to 

be effective at inhibiting VEGF mediated events involved in a non infectious 

vascular disease of the retina (24). A compound of particular interest is the pro-

drug src kinase inhibitor TG100801, since upon topical ocular administration to the 

eye it converts to the active src kinase inhibitor molecule TG100572 that inhibits 
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VEGF signaling (24). In the present report, we demonstrate that TG100801 given 

topically is an effective means of inhibiting neovascularization and the subsequent 

severity of SK in the HSV infected eye. The use of src kinase inhibitors could add 

to the arsenal of therapeutics useful for the clinical management of SK, an 

important cause of impaired vision in humans. 

 

                      Materials and methods 

Mice and virus 

Female 5-6-week-old C57BL/ 6 mice and Balb/c mice were obtained from 

Harlan Sprague –Dawly (Indianapolis IN). The animals were housed in the 

animal facility at the University of Tennessee. All manipulations were done in a 

laminar flow hood. All experimental procedures were in complete agreement with 

the Association for Research in Vision and Ophthalmology resolution on the use 

of animals in research. HSV-1 RE was propagated and titrated on vero cells 

(American type culture collection CCL81) using standard protocols. The virus 

was stored in aliquots at -80°C until use. 

Corneal HSV-1 infection and clinical observations 

Corneal infections of C57BL/6 mice were conducted under deep 

anesthesia. Mice were scarified on their corneas with 27 gauge needles and a 3 

µl drop containing the required viral dose (104 PFU of HSV RE) was applied to 

the eye. The eyes were examined on different time points post infection with a slit 

lamp biomicroscope (KOWA), and the clinical severity of keratitis and 

angiogenesis of individually scored mice was recorded. The scoring system was 
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as follows: 0, normal eye; 1,mild corneal haze; 2,moderate corneal opacity, iris 

visible; 3, severe corneal opacity, iris visible; 4, opaque cornea, ulcer formation; 

and 5, necrotizing SK. Similarly, the angiogenic scoring system was based on 

quantifying the degree of neovessel formation based on three primary 

parameters: 1) the circumferential extent of neovessels (as the angiogenic 

response is not uniformly circumferential in all cases). 2) The centripetal growth 

of the longest vessel in each quadrant of the circle; and 3) the longest 

neovessels in each quadrant was identified and graded between 0 (no 

neovessels) and 4) (neovessels in corneal centre) in increments of nearly 0.4mm 

(radius of the cornea is 1.5mm). According to this system, a grade of 4 for a 

given quadrant of the circle represents the centripetal growth of 1.5mm towards 

the corneal centre. The score of four quadrants of the eye were then be summed 

up to derive neovessel index (range, 0-16) for each eye at a given time point. 

Antibodies and reagents 

For flow cytometry measurement of the infiltrating cells, 6 corneas per 

group were collected at the indicated time points by dissecting the corneal 

buttons above the limbus by a scalpel. Corneas were digested in liberase (Roche 

diagnostics) for 45 minutes at 370C. Single cell suspension was prepared as 

described elsewhere (30). The Fc receptors were blocked with unconjugated anti 

CD16/32 (BD pharminogen) for 30 min. Samples were incubated with CD4-APC 

(RM4-5), CD11b-PerCP (M1/70), F4/80–FITC (BM8), Gr1-PE (RB6-8C5), CD45- 

APC (LCA-Ly5, 30-F11), CD31-PE(MEC 13.3) ,CD49d (MFR4.B) CD8-PerCP, 

IFN-APC, CD44-FITC  and CD62L-FITC purchased from BD pharmingen (San 
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Diego, CA)  for 30 min. All samples were collected on a FACS scan (BD 

biosciences) and data were analyzed using Flowjo software. 

Immunofluorescent staining for PECAM-1 in vascular endothelium was also 

performed on the corneal flat mounts. Corneas of Balb/c mice infected with 5x105 

PFU of HSV-1 RE were dissected under stereomicroscope (Leica, Wetzlar, 

Germany) and corneal flat mounts were rinsed in PBS for 30 min and flattened 

on a glass slide under stereo microscope. Corneal flat mounts were dried and 

fixed in 100% acetone (Sigma St. Louis, MO) for 10 min at -20oC. Non specific 

binding was blocked with 10% goat serum (Sigma G 9023) for 24 hours at 4oC. 

Invitrogen). The PECAM-1 was detected by an antibody directly labeled with 

conjugate (PE anti mouse CD-31 MEC 13.3; BD pharmingen). Each step was 

followed by three washing with PBS. Stained corneal flat mounts were mounted 

with prolong gold antifade mounting reagent (invitrogen P36934) and visualized 

with Nikon Ti fluorescent microscope using the software Nikon elements.  

TG100801 - a topically applied prodrug form of a src kinase inhibitor was 

obtained from Sanofi-Aventis (Paris)/Targegen Inc., San Diego, California. The 

active compound, TG100572 (also obtained from Targegen for in-vitro use and 

intra-peritoneal injections), is an ATP competitive multi targeted tyrosine kinase 

inhibitor whereas the prodrug TG100801 is devoid of kinase inhibitory activity. 

Treatment of animals with Src kinase inhibitor TG100801/TG100572 

Female 5-6-week-old C57 BL/6 mice were used. Corneal infections were 

conducted under deep anesthesia induced by i.p. injection of Avertin (Sigma 

Aldrich).The mice were scarified on their corneas with a 27 gauge needle and 
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infected with 104 PFU of HSV-1 RE per eye and divided randomly into groups. In 

some groups src kinase inhibitor TG100801 (0.6%, 0.3%; Targegen Inc.) was 

applied topically (5µl eye drop, twice daily) and in other group TG100572 (0.5,1.5 

and 5mg/kg body weight dissolved in DMSO was administered intra peritoneally) 

starting from either day 1 to day 14-post infection or day 6 to day 14 p.i.  Animals 

in the control group received liposomal vehicle (25% phospholipon vehicle 90 G) 

in the case of topical drug administration and DMSO in the intra peritoneal 

treatment modality following the same regimen. Mice were observed for the 

development and the progression of HSK lesions and angiogenesis from day 6 

until day 15 as described previously. Most of the experiments were repeated at 

least 3 times unless stated otherwise. 

Treatment of animals with anti VEGF antibody, Bevacizumab( Avastin) 

Anti VEGF antibody Avastin was obtained from Genentech. Female 5-6-

wk-old C57 BL/6 mice were used. Corneal infection were conducted under deep 

anesthesia induced by i.p. injection of Avertin (Sigma Aldrich).The mice were 

scarified on their corneas with a 27 gauge needle and infected with 104 PFU of 

HSV-1 RE per eye and divided randomly into groups. In one group src kinase 

inhibitor TG100572 (5mg/kg, Targegen Inc.) was administered intra-peritoneally, 

daily and in the other group Avastin (5mg/kg body weight at day 3, 6, 9 and 

12p.i.) was given intra-peritoneally. Animals in the control group received mock 

treatment. Mice were observed for the development and the progression of HSK 

lesions and angiogenesis from day 6 until day 15 as described previously in 
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materials and methods. Most of the experiments were repeated at least 3 times 

unless stated otherwise. 

Virus specific CD8+ IFNγ staining 

To determine the immune response generated in the controls and src 

kinase treated groups, intracellular cytokine staining was performed as previously 

described (13). Single cell suspension of infected DLN was prepared and 106 

cells per well were cultured in 96 well U bottom plates. Cells were left 

untreated/stimulated with gB peptide (1 µg/ml) for 5 hrs at 37°C in 5% CO2. 

Brefeldin A (10µg/ml) was added to the culture for the intracellular cytokine 

accumulation. Cell surface marker and intracellular cytokine staining for IFN-γ 

was performed using a cytofix /cytoperm kit (BD Pharmingen). All samples were 

collected with a FACSCAN and were analyzed by FLOWJO.  

Thymidine incorporation assay 

Lymphocytes from the draining cervical draining lymph nodes were 

obtained at day 15 p.i. and enriched for CD4+T cell population by Miltenyi biotech 

CD4+T cell isolation kit. The cells were plated at the density of 5x105 in 96 well 

round bottom tissue culture plate in a total volume of 200 ul of RPMI (GIBCO). 

The cells were stimulated with anti-CD3 (1µg/well) anti-CD28 (1µg/well). 16 

hours before harvest, [3H] thymidine (1mCi/well; 1Ci=37GBq) was added. The 

cells were harvested onto-UniFilter (PerKinElmer). [3H] Thymidine incorporation 

was measured in a scintillation counter and the results were expressed as mean 

CPM from triplicate cultures. 

Western blotting 
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For the detection of FAK phosphorylation, 3 corneas per group were 

dissected at the indicated time points in 300 ul of RIPA buffer containing 

protease inhibitor cocktail (aprotinin, PMSF and sodium orthovanadate ), cell 

debris was removed by centrifugation and the samples stored at -80oC till used 

for SDS-PAGE. In brief, after 2 hrs of blocking with 3% nonfat milk in TBS, 

membranes were incubated with 1:1000 dilution of rabbit polyclonal phosphor-

specific anti FAK861 antibody and membranes were then incubated for 1 hr with 

secondary antibody coupled to horse raddish peroxidase. Specific bands were 

detected with ImmobilionTM western; Millipore). Membranes were stripped and 

then reprobed to detect Total FAK and and β actin antibody. 

Histopathology 

For histopathological analysis, eye balls from different groups of mice 

were extirpated at the indicated time point post infection in 10% formalin. In brief, 

the samples were put overnight in tissue tek (Sakura), which virtually removes all 

the moisture content from the samples and embeds it in paraffin. Tissue tek was 

automatically programmed, that treated the samples sequentially with alcohol 

(100%), xylene (100%), and paraffin. 5μm sections were then cut using 

microtome and stained with hematotoxylin and eosin. 

Cytokine ELISA 

Six corneas per group were collected at indicated time points. The 

corneas were sonicated and the levels of CXCL1/KC/mouse homologue of IL-8 

were measured in the supernatants using Qantikine kit as per manufacturer’s 

protocol. (R&D systems). 
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Quantitative PCR (QPCR) 

 Total mRNA was isolated from corneal cells using TRIzol LS reagent 

(Invitrogen). The cDNA prepared using 1 μg of RNA was used for subsequent 

analysis. QPCR was done using SYBR Green PCR Master Mix (Applied 

Biosystem, Foster City, CA) with iQ5 real-time PCR detection system. (Bio Rad, 

Hercules, CA). The expression levels of cytokines were normalized to  

β-actin with ∆Ct method and relative quantification between control and infected 

mice was performed using the 2-∆∆Ct formula. The primers used were as follows: 

IL-1β      Forward primer:  CATCAACAAGAGCTTCAGGC    

              Reverse primer:  CATCATCCCATGAGTCACAGAG 

IL6         Forward primer:  CCAGAGTCCTTCAGAGAGATAC; 

              Reverse primer:  CTCCTTCTGTGACTCCAGCTTATC 

IFN-γ     Forward primer:  GAACGCTACACACTGCATCT:  

              Reverse primer:  CCAGTTCCTCCAGATATCCAAG 

β-actin   Forward primer: CCTTCTTGGGTATGGAATCCTG,  

β-actin    Reverse primer: GGCATAGAGGTCTTTACGGATG 

Reverse Transcription Polymerase chain reaction (RT-PCR) 

RT-PCR for the presence of CXCL1 transcripts was done according to the 

manufacturer’s protocol (Promega, Madison, WI). The amplified products were 

resolved on 1% agarose gel. Primers for RT-PCR were as follows. 

β-actin Forward primer: CCTTCTTGGGTATGGAATCCTG 

β-actin Reverse primer: GGCATAGAGGTCTTTACGGATG 

CXCL1 Forward primer: GGGATTCACCTCAAGAACATCC 
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CXCL1 Reverse primer: TCTGAACCAAGGGAGCTTCA 

In vitro and in vivo virus (HSV-1) - drug interaction assay 

The effect of src kinase inhibitor TG100572 on viral replication (if any) was 

confirmed by incubating cells with inhibitor either before (pretreatment) or after 

(post treatment) inoculation with the virus and then quantifying infectious HSV 

kos yield by the viral plaque assay. Vero cells were infected with MOI=1 and and 

were incubated with 100 nM (maximum below cytotoxicity levels) TG100572 or 

0.1%DMSO either before (-1h) or after infection. The effect of the drug 

(TG100572) on production of HSV-1 was determined by titrating the virus in cell 

culture supernatant at different times following infection. For the in vivo assay, 

the virus (HSV-RE) was quantified in eye swabs following HSV-1 infection in 

TG100801 treated and control mice and titrated by viral plaque assay. 

Statistical analysis 

Most of the analyses for determining the level of significance were 

performed using either one way ANOVA (Dunnetts post hoc test) or two way 

ANOVA (Bonferroni test). Values of p≤0.001 (***), p≤0.01 (**), and p≤ 0.05 (*) 

were considered significant. Results are expressed as means ± SD. 

 

                                  Results 

Topical application of prodrug TG100801 inhibits angiogenesis and SK 

 The prodrug was shown by others to convert to an active inhibitor of the 

src kinase involved in VEGF signaling following topical application to the eye (5, 

24). Using the same conditions shown by others to inhibit retinal angiogenesis 
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and vessel permeability, the effects on responses to ocular infection with HSV 

was evaluated. C57BL/6 animals infected with 104 PFU of HSV-1 and divided 

into 3 groups. One group served as infected and untreated control and the other 

groups were treated with TG100801 either 0.3% or 0.6%, topically. Drug 

treatment was administered twice daily with therapy begun 1 day after infection 

until experiments were terminated on day 14 p.i. Three separate experiments 

were performed and cumulated results are shown in Figs 2.1 a and b. As is 

evident, there was a significant inhibition of both angiogenesis and SK lesion 

severity with the higher dose of drug investigated compared to controls. The 

incidence of SK as recorded in three independent experiments was lower in 

TG100801 treated group (Fig 2.1c). Histological sections taken from sample 

animals from test and control groups revealed evident differences in ocular 

inflammatory responses (Figs.2.1 d, e &f).  

In another experiment mice were infected with HSV-1 and divided into 

two groups, One group was treated with TG100801 (0.6%), a concentration that  

resulted in significant inhibition of both angiogenesis and SK lesion severity, and 

the non treated groups receiving liposomal vehicle served as an infected control. 

The corneas from these mice were collected at the indicated time points post 

infection and subjected to western blotting for the detection of FAK 

phosphorylation, an event known to be the biomarker of src kinase activity (6, 7, 

29). Whereas phosphorylated FAK was undetectable in naïve corneal lysates, it 

could be demonstrated in infected corneas as early as day 1 post infection (Fig 

2.2a). However there was a significant inhibition in FAK phosphorylation in 
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TG100801 treated corneal lysates at the time points tested within the periods of 

elevated FAK-p861 (Fig 2.2b) suggesting that an important step in VEGF 

signaling, i.e src kinase activation and FAK phosphorylation was efficiently 

blocked by the inhibitor (TG100801). 

TG100572 controls the lesion severity independent of viral replication 

  Ocular swabs from control and TG100801 treated animals, from the 

above mentioned experiments were taken in the early time periods to determine 

if the drug was inhibitory to virus replication. The corneas were homogenized and 

centrifuged and the viral titers were determined in the supernatants of the 

infected control and TG100801 treated animals. No significant differences were 

observed in the viral titers recovered from the corneas in different groups (Fig 2.3 

a).  To measure if the src kinase inhibitors had any antiviral activity, we examined 

the effect of TG100572 on HSV infection in vitro. Vero cells were infected with 1 

MOI of HSV kos and treated with maximum below cytotoxic levels (100nM) of 

TG100572 or 0.1% DMSO as control. Quantitation of viral titers in culture 

supernatants by plaque assay revealed no significant effect on viral titers as 

compared to DMSO treated controls (Fig 2.3 b). Accordingly, we conclude that 

TG100572 does not have anti viral activity. 

 Effect of active src kinase inhibitor given systemically on ocular HSV 

infection 

 Repeatedly administering drugs topically to the infected mouse eye can be 

problematic and requires a general anesthetic to facilitate the procedure. In 

consequence, experiments to measure the effects of drug treatment on cellular 



 

 48

and molecular events at different times after treatment were also done in infected 

animals given the active drug intra-peritoneally.  Animals were ocularly infected 

with HSV and divided into different groups and treated with TG100572 (0.5, 1.5 

or 5mg/kg body wt) once daily starting at 24 hours after infection. The pattern of 

angiogenic response, compared to sham treated controls, was recorded at day 

15 p.i. Potent effects were obtained with a dose of 5mg/kg body weight (Fig 2.4a) 

with minimal effects on their general health. As shown in (Fig 2.4b&c), treatment 

started at day 1 p.i. (preventive) resulted in a major reduction in the extent of 

angiogenesis (which was >5 fold at day 12 post infection) and SK (3 fold at day 

12 p.i.) along with a 6 fold reduction in CD11b+Gr1+ cells (at day 15 p.i) (Fig 2.4 

g) compared to infected and untreated control (Fig 2.4f). Additionally, 

commencing treatment at day 6p.i (Fig 2.4d&e) also resulted in significant 

inhibition of angiogenesis, lesion scores and CD11b+Gr1+ infiltration (Fig 2.4h) 

measured at the termination of experiments at day 15 p.i. The visible 

angiogenesis and SK lesion severity was also significantly less in the treated 

mice (Fig 2.5a &b). 

To compare our novel approach (TG100572) with a potential positive 

control bevacizumab (a monoclonal antibody that binds to VEGF with high 

specificity; thereby blocking VEGF mediated signaling pathways and thus 

angiogenesis) (22), experiments were done where mice were divided into three 

groups (n=6/group). One group received bevacizumab (Avastin) i/p (5 mg/kg body 

weight) at day 3, 6, 9 and 12 p.i and other was treated with TG100572 i/p (5mg/kg 

b wt) starting at day 3p.i until day 13p.i. The third group served as infected and 
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untreated control. As shown (Fig 2.4i) at day 9 p.i., bevacizumab (Avastin) resulted 

in significant inhibition of angiogenesis and SK severity (p<0.0201) but this was 

less than observed in a group of animals that received TG100572 systemically. 

TG100572 treatment showed a highly significant inhibition of angiogenesis. At day 

14p.i. (Fig 2.4j) there was around 1.6 fold and 2.9 fold reduction in angiogenesis 

following Bevacizumab (avastin) and TG100572 treatment respectively as 

compared to the control groups. 

To evaluate whether the administration of the src kinase inhibitor could 

influence the expression of SK, animals were treated either with TG100572 starting 

from day 1 p.i till day 14 p.i. or day 6 to day 14 p.i and the extent of inflammatory 

ocular reactions were compared in the treated and control animals by sacrificing 

animals and recovering ocular cells from corneas following collagenase digestion. 

As is evident, there was a reduced infiltration of Gr1+CD11b+ cells (neutrophils) in 

treated mice at all indicated time points post infection (Fig 2.6a). The neutrophil 

infiltration peaked at day 2 and day 11 post infection in both the control and treated 

mice, however the control mice had 3 fold and 2.5 fold higher frequencies (Fig 

2.6a) and absolute numbers (Fig 2.6e) of neutrophil infiltrates at day 2 and day 

11p.i. respectively, as compared to the treated group.  

A significant reduction in the infiltration of CD11b+ F4/80+cells 

(macrophages) was also observed following src kinase inhibition when evaluated 

at the later time points post infection (in the clinical phase). There were both 

reduced frequencies (Fig 2.6b) and total numbers (Fig 2.6f) of F4/80 cells in 

treated compared to the infected and untreated controls. Strikingly, around 4 fold 
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decrease in the CD4+ T cells infiltration was evident in the src kinase inhibitor 

treated mice both in terms of percentages (Fig 2.6c) and absolute numbers (Fig 

2.6g) at the clinical phase of the disease. Additionally, the frequencies and 

numbers of IFNγ+ CD4+ T cells were reduced 7-8 fold as a consequence of 

TG100572 treatment along with a highly significant reduction in IFNγ and IL-2 

producing CD4+ T cells upon stimulation with anti-CD3 anti-CD28 (Figs 2.7a, b, e 

&f) or uv inactivated HSV kos (Fig 2.7c, d ,g & h). Corneal single cell suspension 

stained for CD45 (a pan leukocyte marker) revealed significantly reduced 

frequencies (Fig 2.6d) and absolute numbers (Fig 2.6h) of CD45+T cells (almost 2 

fold) in the corneas of the treated mice at all indicated time points analyzed post 

infection. Taken together our data indicates that both topical and systemic 

administration of small molecule inhibitors of src kinases results in significant 

reduction in both the extent of neovascularization and severity of SK. 

Inhibition of src activity blocks CXCL1 and proinflammatory cytokines 

Our observation that src kinase inhibitors caused a reduction in neutrophil 

infiltration could mean that the drug inhibited the expression of molecules 

involved in neutrophil recruitment such as the chemokine CXCL1. In support of 

this CXCL1 mRNA was present in the infected eye at higher levels than the 

scarified controls. Fig 2.8a depicts the expression of CXCL1 in HSV-1 infected 

corneas as early as day 1 p.i. For the quantification of CXCL1 gene expression, 

mice were ocularly infected with HSV and 6 corneas from each group (control 

and treated) were collected, pooled and were analyzed by QPCR at indicated 

time points. Corneas from src kinase treated mice subjected to QPCR revealed a 
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decrease in CXCL1 levels at all time points tested with maximum reduction 

observed during the clinical phase of the disease (Fig 2.8b). In addition, the 

same situation was evident with the protein levels measured by ELISA. The 

corneal supernatants were assayed for CXCL1/IL-8 by ELISA as indicated in 

materials and methods. Fig 2.8c depicts the kinetics of CXCL1 protein 

expression levels in the control and src kinase inhibitor treated mice throughout 

the course of ocular infection. There was a significant reduction in the CXCL1 at 

day 2 and also during the clinical phase (around 8 fold reduction at day 11 p.i.) of 

the disease in the treated mice. Thus, our data could mean that Src kinases may 

regulate critical “downstream” signaling pathways that might contribute to 

expression of CXCL1, a pro-angiogenic and pro-inflammatory chemokine in 

murine cornea. Additionally treated mice represented diminished levels of 

proinflammatory cytokines notably IL-6, IFN-γ and IL-1β as compared to infected 

and untreated controls (Fig 2.8d).  

TG100572 may down regulate CD49d on CD4+T cells in lymphoid organs 

resulting in fewer cells to migrate to the ocular site 

SK is well known to be orchestrated by CD4+T cells (25). The  frequencies 

and absolute numbers of CD4+ T cells recovered by collagenase digestion of 

corneas were diminished in TG100572 treated animals at all time points tested 

after ocular HSV infection. To address the cause of reduced CD4+T cells in the 

treated mice, animals that were ocularly infected and begun TG100572 treatment 

i/p at day 1 p.i and continued daily were sacrificed and the phenotype of CD4+T 

cells isolated from the DLN as well as from corneal lesions after collagenase 
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digestion was evaluated at indicated time points (day 5, 7,9,11 post HSV-1 ocular 

infection). In these experiments, lesion severity was greater in the control 

animals as compared to the drug treated animals. FACS analysis revealed that 

whereas there was no difference in the expression of CD62L (data not shown) 

and a modest difference in the expression of CD44 (Fig 2.9b), interestingly 

CD49d on CD4+T cells in CLN (Fig 2.9a) and corneas (Fig 2.9c) was significantly 

down regulated at all time points in the src kinase inhibitor recipients. This 

observed down regulation of CD49d on CD4+T cells could be relevant since 

previous studies indicate that blocking CD49d reduces SK (27). Taken together, 

we interpret these observations to mean that src kinases are involved in 

controlling the expression of integrin molecules such as CD49d that are involved 

in migration of inflammatory cells to the ocular lesion site (10) which could 

explain the overall impaired infiltration of CD4+T cells in the cornea. 

TG100572 inhibits CD4+T cell proliferation in vitro 

  Src knockout mice have shown marked reduction in inflammatory 

responses to a variety of physiological insults (11). Measurement of the absolute 

numbers of draining cervical lymph node (CLN) cells revealed diminished  

numbers of total lymph node cells (Fig 2.9d)  and also CD4+T (Fig 2.9e)  cells in 

the kinase inhibitor (TG100572 i.p) recipient mice at all the time points tested. 

This likely means that in addition to effects on VEGF, TG100572 may also 

interfere directly with CD4+T cell activation and proliferation. To explore this 

possibility, draining CLN cells from HSV infected mice at day 15 p.i were 

enriched for CD4+T cells and stimulated with anti-CD3 anti-CD28 (as described 
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in materials and methods). In some wells, different concentrations of TG100572 

(non cytotoxic concentrations) were added and the effects on proliferation 

responses recorded. Whereas a minimal proliferation was observed with anti-

CD3 alone, anti-CD3 anti-CD28 resulted in a significant CD4+T cell proliferation. 

TG100572 inhibited CD4+T cell proliferation in a dose dependent manner (Fig 

2.9f) suggesting that by diminishing immune activation and CD4+T cell 

proliferation, TG100572 may additionally serve to limit the size of 

immunopathogenic CD4+T cells involved in lesion expression. 

 

                                            Discussion 

Neovascularization of the otherwise avascular cornea represents a 

pathological hallmark of ocular HSV-1 infection. Present approaches for clinical 

management of corneal neovascularization rely on anti-virals, corticosteroids or 

anti VEGF antibody treatment. In this study we show that a small molecule 

inhibitor of src kinases, results in suppression of angiogenesis and lesion severity 

in a murine model of SK. Administered topically as a prodrug  

(TG100801) or the active form (TG100572) systemically, resulted in inhibition of 

several key events in the pathogenesis of SK. These included diminished cellular 

infiltration in the corneas, of CD4+T cells and neutrophils, the cells primarily 

involved in SK. There was also a reduction in levels of the chemokine CXCL1 

and proinflammatory cytokines such as IFNγ, IL1Β and IL-6. Importantly 

treatment resulted in inhibited FAK phosphorylation in the corneal tissues; an 

essential step in VEGF mediated angiogenesis (1). Additionally TG100572 
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administered systemically resulted in down regulation of CD49d on CD4+T cells 

in the DLN and cornea. However, the src kinase inhibitor had no demonstrable 

proinflammatory effect and failed to express antiviral activity. 

The current anti-angiogenic approach shows effective control of newly 

proliferating vascular endothelial cells and since the phosphorylation of FAK and 

src activation appears to be very early events post infection, src blockade by the 

inhibitors early during the course of infection could be advantageous for 

significant and complete anti angiogenic effects. Additionally achieving 

efficacious drug concentration in the corneal tissues following the topical delivery 

route (TG100801) is generally considered a technical challenge. However recent 

clinical trials with these drugs have shown that TG100801, while lacking anti 

kinase activity of its own, quickly generated active TG100572 within the eye upon 

topical delivery, however neither compound was detectable in plasma, indicating 

that delivery to the eye occurs by local penetration and not systemic absorption 

(5).  

Systemic treatment with the src kinase inhibitors also significantly 

reduced angiogenesis and cellular infiltration, particularly of neutrophils, one 

plausible explanation being that by inhibition of FAK phosphorylation, src kinase 

inhibitors preserves the junctional integrity of the endothelial cells (14) and thus 

inhibited the paracellular transport of neutrophils. However, src kinases were also 

shown to modulate the expression of the pro angiogenic neutrophil attracting 

chemokine CXCL1/mouse KC/homologue of IL8 (28) and that src kinase 

activation correlates with the amount of IL-8 produced (14, 17, 28). Consistent 
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with this, src kinase inhibitors resulted in inhibition of CXCL1 expression. Thus it 

is possible that significant reduction in the neutrophils in the treated group may 

be a consequence of reduced chemokine levels, which is the prominent regulator 

of neutrophil infiltration into the inflamed cornea (23). 

In humans, SK may lead to permanent loss of vision and the current 

treatment modalities that are used for the clinical management of SK includes 

anti VEGF antibody treatment such as bevacizumab (4, 23), antivirals and 

corticosteroids but none of them are considered ideal. Antiviral compounds that 

block virus entry or reduce viral replication can be prophylactic and may not be 

efficacious against SK. As a result, small-molecule inhibitors targeting cellular 

responses that contribute to disease may have a substantial advantage over 

antiviral approaches. Corticosteroid therapy, on the other hand when continued 

for a longer duration might exhibit several side effects (15), and anti VEGF 

antibody (bevacizumab) although shown to reduce VEGF induced 

neovascularization (22, 23), however abnormal vascular permeability is 

frequently associated with neovascularization (24). Thus, an antivascular 

permeability compound that is also antiangiogenic such as src kinase inhibitor 

should have added therapeutic benefit. Endothelial cell barrier functions are 

disrupted by a number of viruses and a very recent study suggests that VEGFR2 

and SFK inhibitors may be of therapeutic utility in stabilizing vasculature during 

viral infections(9) .Additionally both VEGF and FGF growth factors have been 

shown to be potent proangiogenic factors in HSV-1 induced corneal 

neovascularization. The binding of angiogenic growth factors (VEGF, bFGF) to 
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their receptors is known to result in activation of non receptor tyrosine kinases 

(src kinases) which in turn regulates endothelial cell proliferation, migration and 

survival (by inhibiting apoptosis of endothelial cells) (6). A compound that inhibits 

redundant pathways of angiogenesis has the potential of being therapeutically 

advantageous (24). In support of this our results clearly indicate that 

bevacizumab (avastin), a VEGF antagonist, inhibit HSV-1 induced corneal 

neovascularization, but the levels of inhibition achieved were less than that 

caused by TG100572. Although we do not preclude the possibility that the 

observed lesser reduction in angiogenesis in the avastin treated mice could be 

due to a weaker binding affinity of avastin to mouse VEGF-A (4, 23). Our findings 

therefore rationalize testing of these kinase inhibitors for additional indications 

and clinical application in reducing HSV induced immunopathology. The fact that 

VEGFR2 and SFK inhibitors are already FDA approved for use in humans, they 

could be immediately rationalized for use in clinical cases of HSK. 

A significant anti-angiogenic and anti-inflammatory effect was also 

observed following systemic treatment with TG100572. This mode of treatment 

also produced additional effects such as CD49d expression (on CD4+T cells) and 

attenuation of T cell function. It may be argued that these effects might be due to 

the limited specificity of the src kinase inhibitors (20). However the drug was well 

tolerated systemically with no adverse effects on the general health except for 

some reduction in the body weight of the animals. Our observations that 

systemically administered TG100572 influences the severity of SK lesions is 

supported by the observation of significantly less CD4+T cell infiltration in the 
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cornea in the clinical phase suggesting that TG100572 (src kinase inhibitor, i/p) 

could control the lesion development by limiting the migration of pathogenic T 

cells to the extra lymphoid inflammatory site. The SK model represents a 

situation where normally immunoprotective CD4+T cells exert an 

immunopathological function in the cornea of the eye(18). The Integrin CD49d 

(VLA-4) is known to be involved in the migration of pathogenic CD4+Tcells to the 

ocular site and that in SK 70–80% of corneal T cells in disease expresses CD49d 

(VLA-4) early in lesion development (27). Thus, it was intriguing to observe that 

the CD49d integrin was expressed on a significantly lower percentage of 

lymphoid CD4+ T cells in the src kinase inhibitor treated mice compared to 

controls. The down regulation of CD49d in src kinase inhibitor treated mice was 

not unexpected since there is mounting evidence that α4 integrins use the src 

family kinases to transduce intracellular signals (21). Our observations could 

shed light on the relative merits of various cellular targets as candidates for 

therapeutic intervention during an ongoing immune-inflammatory reaction such 

as is SK. Src kinase inhibition also resulted in a less activated phenotype of 

CD4+T cells as shown by decreased CD44 expression on cells in the draining 

cervical lymph nodes. Additionally src kinase inhibitors resulted in diminished 

levels of inflammatory cytokines which is in accordance with findings that the 

reduction in proinflammatory cytokines resulted in impairment of Th1 

differentiation(12).  

In conclusion, we demonstrated that the blockade of Src kinase activation 

(which is an essential step in VEGF signaling) with VEGFR2/src kinase inhibitor 
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resulted in reduced SK lesion severity and diminished cellular infiltration, 

probably by inhibition of vascular leak and removal of a corneal chemokine 

gradient. In the present approach, which is novel for infectious ocular 

angiogenesis, we did achieve highly significant but not complete anti 

angiogenesis. We advocate that combining src kinase inhibitor with additional 

therapeutic approaches could be valuable for use in the clinic to manage herpetic 

ocular lesions.  
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Figure 2.1 Effect of topical administration of src kinase inhibitor 

(TG100801) on the severity of SK  

C57BL/6 animals infected with 104 PFU of HSV-1 were treated with TG100801 

(0.3%, 0.6%, topically). TG100801 was applied topically starting at day 1 till day 

14 post infection (p.i.). (a,b) Cumulative data of angiogenesis (a) and HSK scores 

(b) at day 12 p.i as measured by slit lamp biomicroscopy, of three independent 

experiments. The level of significance was determined by one-way ANOVA using 

Dunnett’s post hoc setting. (c) The bar diagram demonstrates the percentage 

severity of each group of mice infected with 104 PFU of HSV-1 RE at day 15 p.i. 

in three independent experiments. The SK scores of three or greater than three 

were counted as SK incidence (black bars= infected control; white bars 

represents TG100801 treated). (d-f) H&E staining of the corneal sections of 

naïve (d) control (e) and TG100801-treated animals (f). 
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Figure 2.2 TG100801 inhibits FAK-y861 phosphorylation in the murine 

cornea 

(a) Western blot analysis for phosphorylated FAK861 in corneal cell lysate at 

different time points following HSV-1 infection. (b) Inhibition of FAK 

phosphorylation: Mice were infected with 104 pfu of HSV-1 RE. Twenty four hrs 

following infection, one group was treated topically (cornea) with a 5µl drop of 

0.6% TG100801, twice daily till 14 dpi. Second group received the vehicle control 

in the same way. Corneal cell lysate was used to detect level of phosphorylated 

FAKY861 by anti-rabbit FAK antibody in Western blot. Drug treated mice showed 

inhibition of FAK phosphorhylation at all time points tested within the periods of 

elevated phoshorylated FAK. (N=naïve;C=control;T=treated). 
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Figure 2.3 TG100572 controls SK lesion severity independent of viral 

replication 

 (a) Viral titers in corneal swabs in control and TG100801 treated mice at day 2 

and 4p.i. is shown. (b) Vero cells were infected with MOI=1 and incubated with 

100 nM of TG100572 (maximum below cytotoxicity level) after infection or 

0.1%DMSO. The effect of the drug (TG100572) on production of HSV-1 was 

determined by titrating the virus in cell culture supernatant at different times 

following infection.  
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Figure 2.4 Effect of systemic administration of src kinase inhibitor 

(TG100572) on angiogenesis and SK lesion severity 

(a) C57BL/6 animals infected with 104 PFU of HSV were treated with different 

concentrations of TG100572 (0.5, 1.5 and 5 mg/kg body weight), intra-

peritoneally daily starting from either 24 hrs post infection (preventive) or day 6 

p.i. (therapeutic manipulation) until day 14. The comparative angiogenesis scores 

of HSV infected animals at day 14, treated with indicated concentrations of 

TG100572. The statistical significance was determined using one way ANOVA. 

(b-e) Kinetics of angiogenesis and lesion expression in control and TG100572 

treated animals at 9-15 dpi is shown. Disease progression in control and 

TG100572 treated mice following infection with 104 pfu of HSV-1 to C57Bl/6 

animals under preventive (b & c) and therapeutic (d & e) mode of treatment. The 

level of significance was calculated by two way ANOVA. (i & j) Comparative 

angiogenesis scores in bevacizumab and TG100572 treated mice compared to 

infected but untreated controls at day 9p.i (i) and day 14 p.i (j). The statistical 

significance was determined by student’s t test. (f-h) Infiltration of CD11b+Gr1+ 

polymorph nuclear neutrophils in the corneas of control (f), following preventive 

(g) and therapeutic (h) treatment at day 15 p.i. All experiments were repeated at 

least three times.  
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Figure 2.5 Representative eye photograph (at day 15 p.i.) of control (a) and 

TG100572 treated (b) mice. 
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Figure 2.6 Kinetics of Cellular infiltration in the corneas of control and 

TG100572 treated mice.  

Effects of TG100572 treatment on kinetics of cellular infiltration in corneas of 

HSV infected animals analyzed by flow cytometry. C57BL/6 infected with 104 

PFU of HSV were either treated with TG100572 5 mg/kg body weight i/p daily 

starting from 24 hr p.i. until day 14p.i. or untreated controls. Single cell 

suspension of the infected corneas were prepared from pooled 6 corneas (n=3) 

at indicated time points from each group (TG100572 treated or control) of mice. 

The cells were labeled for: (a, e) Gr1+CD11b+ (polymorph nuclear cells), (b, f) 

CD11b+F4/80+ (macrophage), (c, g) CD4+ and (d, h) CD45+ (leucocyte common 

antigen; pan leucocyte marker). The numbers on the dot plots indicates the 

percentage of the cells expressing the particular markers in control and kinase 

inhibitor treated mice at indicated time points p.i. The experiment was repeated 

three times and data are representative of a single experiment. 
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Figure 2.7 TG100572 treatment diminishes the infiltration of pathogenic 

Th1 cells in the cornea. 

C57BL/6 infected with 104 PFU of HSV-1 was treated with TG100572 (5 mg/kg 

body weight) i/p daily staring from 24 hr p.i. until the termination of the 

experiments. Single cell suspension of the infected corneas were prepared from 

pooled 6 corneas at day 15 p.i. from each group (control and treated) of mice. 

The cells were stimulated with either anti-CD3 anti-CD28 or UV inactivated HSV 

Kos and stained for CD4+T cells producing IFN and IL-2. Frequencies (a & b) 

and absolute numbers (per cornea) (e & f) of IFNγ+  and IL2+ T cells respectively 

in control and treated group was observed following stimulation by anti-CD3 anti-

CD28.  The frequencies (c & d) and absolute numbers (g & h) of IFNγ+ and IL2+ 

T cells respectively in control and treated group following stimulation by UV 

inactivated HSV Kos is shown. The experiment was repeated three times and 

data are representative of a single experiment. 
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Figure 2.8 TG100572 treatment results in the blockade of CXCL1 in the 

cornea. 

(a) Agarose gel analysis for CXCL1 (132bp) (Lane 4) transcripts from infected 

corneas is shown. Lane M is Marker; lane 2 is beta actin (92bp). Lane1 and lane 

3 are RT negative control for beta actin and CXCL1 respectively. Lane 5 is 

negative control (water) (b) Kinetic analysis for the expression of CXCL1 mRNA 

by QPCR at different time p.i after src kinase inhibitor or mock treatment is 

shown. WT mice were infected with HSV and treated with mock or TG100572. 6 

Corneas were harvested from respective groups at an indicated time points, 

pooled and subjected to quantification by QPCR for CXCL1 mRNA. (c) 

Quantification of CXCL1 protein in HSV-1 infected corneas by ELISA after mock 

or TG100572 treatment is shown. At each time point, 6 corneas were harvested 

from HSV infected mice treated with mock or TG100572 and levels of CXCL1 

protein were determined by ELISA. The level of significance was determined 

using two way ANOVA with Bonferroni post test. (d) Reduction in IL6, IFN-γ and 

IL-1β after TG100572 treatment is shown. The mice infected with HSV were 

treated with mock or TG100572 and corneas collected from respective groups at 

an indicated time points were subjected to QPCR for IL-6, IFN- and IL-1 

mRNAs. The values are represented as fold change m RNA compared to 

infected control. The above experiments were repeated three times. 
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Figure 2.9 Src kinase inhibition may result in the attenuation of T cell 

function 

(a) Kinetic analysis of CD49d expression on the CD4+T cells in the control and 

treated animals after ocular HSV-1 infection. C57BL/6 mice were infected with 

104 PFU of HSV. Mice (n=3) were sacrificed at each indicated time points and 

their draining cervical lymph nodes and corneas were analyzed for surface 

expression of CD4 and CD49d by flow cytometry. (a) Histograms representing 

the percentage of CD49d expression on CD4+T cells in draining cervical lymph 

node at the indicated time points post infection. Data are shown from one 

representative experiment. (b) Reduced expression of CD44 on CD4+T cells in 

draining CLN of TG100572 treated mice. (c) FACS plots showing the percentage 

of CD4+ CD49d+ T cells in the corneas in control and TG100572 treated animals 

at day 11-post infection. All kinetic experiments were repeated at least twice. (d, 

e) Absolute numbers (x106) of the total lymph node cells and (d) and CD4+T cells 

(e) in control and treated animals is shown at indicated time points p.i. The level 

of significance was determined using two way ANOVA with Bonferroni post test.  

(f) DLN cells were enriched for CD4+Tcells and stimulated with anti-CD3 anti-

CD28 in the presence or absence of drug at the indicated concentrations. Cell 

proliferation results are expressed as mean CPM from triplicate cultures. 
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Research described in this chapter is a modified version of an article published in 

2011 in in Proc. Natl. Acad. Sci. USA. by Shalini Sharma, Aarthi Sundararajan, 

Amol Suryawanshi, Naveen Kumar, Tamara Veiga Parga, Vijay K Kuchroo, Paul 

G Thomas, Mark Y Sangster and Barry T Rouse. 

 

Shalini Sharma, Aarthi Sundararajan, Amol Suryawanshi, Naveen Kumar, 

Tamara Veiga Parga, Vijay K Kuchroo, Paul G Thomas, Mark Y Sangster and 

Barry T Rouse. Tim-3/Galectin-9 interaction regulates influenza A virus specific 

humoral and CD8 T cell responses. pnas.org/cgi/doi/10.1073/pnas.1107087108. 

 

In this chapter “our” and “we” refers to co-authors and me. My contribution in the 

paper includes (1) Selection of the topic (2) Compiling and interpretation of the 

literature (3) Designing experiments (4) understanding the literature and 

interpretation of the results (5) providing comprehensible structure to the paper 

(6) Preparation of graphs and figures (7) Writing and editing. 

 

                                                     Abstract 

Reactions to pathogens are usually tuned to effect immunity and limit 

tissue damage. Several host counter inflammatory mechanisms inhibit tissue 

damage but these may also act to constrain the effectiveness of immunity to  

acute infections, as we demonstrate in mice acutely infected with influenza A 

virus (IAV). We show that compared to wild type (WT), galectin-9 knockout 

(G9KO) mice mounted a more robust acute phase virus-specific CD8 T cell 
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response as well as higher and more rapid virus specific serum IgM, IgG and IgA 

responses, and also cleared virus more rapidly than did WT mice. Blocking 

galectin-9 signals to Tim-3 expressing cells using a Tim-3 fusion protein resulted 

in improved immune responses in WT mice. When IAV immune mice were 

challenged with a heterologous IAV, the secondary IAV-specific CD8 T cell 

responses were 4-5 fold higher in G9KO compared with WT mice. Our results 

indicate that manipulating galectin signals may represent a convenient approach 

to improve immune responses to some vaccines. 

                                       

                                             Introduction 

The host immune response to pathogens needs precise regulation to 

minimize tissue damage whilst still achieving defense (24, 39). Some bystander 

tissue damage usually happens since several host defenses can destroy cells or 

orchestrate inflammatory reactions. With chronic infections, for example, immune 

mediated tissue damage would be more severe were it not for several cellular 

and chemical host components that inhibit inflammatory reactions (24). However, 

the activity of some of these counter inflammatory mechanisms could act to 

constrain the efficiency of protective immune components (27). For instance, 

regulatory T cells (Treg) can inhibit inflammatory reactions associated with 

chronic virus infections (1), but the same Treg response can also limit the 

magnitude of protective immunity to a virus or induced by a vaccine (32, 34). 

Other host components may also function to limit and help resolve inflammatory 

reactions. These include some cytokines (31), groups of molecules derived from 
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omega-3 polyunsaturated fatty acids (29), as well as some of the carbohydrate 

binding proteins of the galectin family (22). Galectin-9 (Gal-9), for example, upon 

binding to Tim-3 on T cells acts to limit the extent of immuno-pathological lesions 

in autoimmunity (14) as well as in some chronic infections (7, 9, 28). In the 

present study, we investigated whether the inhibitory effects of Gal-9 on Tim-3 

expressing cells could influence the outcome of acute infection with IAV. We 

demonstrate that animals lacking the regulatory effects of Gal-9/Tim-3 triggering 

mount superior CD8 T cell and humoral immune responses and were more 

refractory to IAV. Moreover, IAV immune G9KO mice challenged with a 

heterologous IAV strain generated better virus-specific memory CD8 T cell 

responses then WT animals. Our results indicate that manipulating galectin 

signaling may represent a convenient approach to improve responses to some 

vaccines. 

 

                            Materials and Methods 

 
Mice and virus infections  

Female 6-8-wk-old C57BL/6 were purchased from Harlan Sprague-

Dawley and housed in the animal facilities at the University of Tennessee, 

Knoxville. G9KO were kindly provided by Gal Pharma Co. Ltd, Japan. Stocks of 

IAV strains HK/x31 (H3N2)(x31) and A/Puerto Rico/8/34 (H1N1)(PR8) for mice 

infections were grown and titrated as described previously (11). Mice were 

infected intranasally with 5000 EID50 of IAV HKx31 in 30-µl volume. To assess 
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secondary CD8T cell responses, mice were infected with x31 and challenged 

intranasally at least 4 weeks later with 8000 EID50 of PR8. The Animal Care and 

Use Committee of the University of Tennessee approved all animal procedures. 

Tissue sampling 

Spleen, BAL fluid, plasma and lung samples were recovered from mice at 

acute phases of the primary and secondary infections. BAL samples were 

obtained from individual mice as described previously (20). Cells in the BAL were 

collected by centrifugation and the supernatants were stored at -80°C for ELISA. 

BAL associated cells were pooled from three mice in each group and single cell 

suspensions were prepared from individual spleens. IAV x31 titers in lungs were 

determined by plaque assay using MDCK cells (15). 

Flow cytometry 

  The antibodies to CD8 (53-6.7), CD4 (RM4-5), CD62 ligand (CD62L) 

(MEL-14), CD44 (IM7), IFN, TNFα, IL-2, and CD103 (2E7) were purchased from 

BD Bioscience. PE and APC conjugated Tim-3 antibodies were purchased from 

R&D Systems. Intra-nuclear FoxP3 staining was performed using a kit from E-

Bioscience according to the instructions. Cell suspensions were blocked with 

anti-mouse CD16/32 and then incubated with specific antibodies or isotypes for 

30 min at 4°C. The antibody-stained cells were acquired with a FACS Calibur (BD 

Biosciences) and the data were analyzed using the FlowJo software (Tree Star, 

OR).  

Tetramer and phenotypic staining of CD8 T cells 
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 Influenza A peptide NP366–374 (ASNENMETM), NP311–325 

(QVYSLIRPNENPAHK) were kindly provided by the Trudeau Institute and Dr. 

John Altman respectively. The experiments utilized the H-2Db MHC class I 

glycoprotein complexed with the influenza virus nucleoprotein (NP) 

ASNENMETM peptide (NP) and being designated NPtet and staining was done 

as described previously (17). H-2Db-NP366–374 is an immuno-dominant CD8 T cell 

response to IAV in H-2b mice (35). IFN and TNFα producing T cells were 

enumerated by ICCS as previously described (16). In brief, 106 freshly isolated 

splenocytes were cultured in U bottom 96-well plates. Cells were left untreated or 

stimulated with NP366-374 ASNENMETM peptide (0.1µg/ml or 0.02µg/well), 

NP311–325 QVYSLIRPNENPAHK (10µg/ml or 2µg/well), and incubated for 5 h 

at 37°C in 5% CO2. Brefeldin A (10 µg/ml) was added for the duration of the 

culture period to facilitate intracellular cytokine accumulation. After this period, 

cell surface staining was performed, followed by intracellular cytokine staining 

using a Cytofix/Cytoperm kit (BD PharMingen) as per the manufacturer’s 

recommendations. The fixed cells were re-suspended in FACS buffer (PBS with 

3% heat inactivated serum) and analyzed flow cytometrically. 

Ex vivo apoptosis assay 

Spleen single cell suspension isolated 10 days pi from IAV infected 

animals were incubated for 5 hrs with varying concentrations of Gal-9 in the 

absence or the presence of α lactose in 96-well flat-bottom plates in humidified 

incubators in the presence of 5% CO2. After the incubation period was over, cells 

were stained for annexin V using a kit from BD Biosciences. Additionally, cells 
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were also co-stained for CD8, Tim-3, DbNPTet. Stained cells were analyzed 

immediately by flow cytometry. 

ELISA 

  Virus-specific antibodies levels in plasma and BAL were determined by 

ELISA using plates coated with purified, detergent disrupted virus (25). The 

antibody titer is expressed as the reciprocal of the highest dilution giving an 

absorbance value more than twice that for simultaneously titrated samples from 

naive mice.  

Quantification of IAV in infected lung tissue  

The quantification of IAV (HKx31) in lung tissue was done as previously 

reported (15). Briefly, Lungs were removed from infected mice on days 2,4,7,8, 9 

and 10 days after infection and snap-frozen in serum free minimal essential 

medium (MEM) supplemented with 0.2% bovine serum albumin, 20 mmol/L 

Hepes, 100 U/ml penicillin, and 100 mg/ml streptomycin. Snap-frozen lungs were 

stored at -80°C until further processing. Tissues were disrupted by chopping with 

scissors, homogenized and centrifuged at 10,000 rpm for 15 minutes. The 

resulting supernatant was used to titrate the virus on MDCK cells as follows:  

Serial 10-fold dilution (in MEM) of the virus was incubated on 90-100% confluent 

MDCK cells for 1 hr. Thereafter, the infection medium was replaced with 2 ml of 

agar-overlay medium containing equal volume of 2X L-15 medium (Invitrogen) 

and 2% agar (Becton Dickinson). The plates were further incubated at 37oC. The 

plaques were visible at 3 days post-infection which were counted following 

staining with 0.2% crystal violet. The 2X L-15 medium contained 27.4g L-15 
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powder (2 bags), 0.25% Bovine serum albumin, 2X L-glutamine (Invitrogen), 2X 

Penicillin and streptomycin (Invitrogen), 2X HEPES (Invitrogen), 2X nonessential 

amino acids (NEAA) (Invitorgen) 0.15% sodium bircarbonate and 2 mg/ml TPCK 

treated trypsin (Life Technologies, Inc., Grand Island, NY). 

Immunoblotting for the detection of galectin-9 expression and 

quantification 

  Mediastinal Lymph node (MLN) and lung homogenate samples (10 

mg/lane) were resolved on 15% SDS-PAGE and transferred electrophoretically 

on to a PVDF membrane (Bio-Rad). The membrane was blocked overnight with 

5% BSA and washed 5 times with TBS containing 0.05% Tween-20 (TBST) and 

incubated with biotinylated anti- galectin antibody (R&D Systems) at a 

concentration of 0.5 mg/ml diluted in TBST for 1 hr at room temperature. The 

membrane was washed 5 times with TBST and incubated with streptavidin- HRP 

antibody (Pierce) at a dilution of 1:10000 for 1 hr at room temperature. The 

membrane was developed with chemiluminescent substrate (Immobilon western 

chemiluminescent HRP substrate, Millipore) and the image was taken on CL-

XPosure X-ray film (Thermo scientific). 

 Ninety-six-well microplates were coated with capture antibody at a 

concentration of 3000 ng/ml (100 ml/well, anti-galectin-9, GalPharma Co. Ltd, 

Japan). After incubation overnight at 4⁰C, the wells were washed three times with 

PBST (PBS containing 0.05% Tween-20) and blocked with 5% BSA for 2 h at 

RT. The wells were washed three times with PBST and Lymph node, spleen 

homogenate samples (100 ml) were added to the wells and incubated at RT for 2 
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h and aspirated. The wells were then washed with wash buffer. Biotinylated anti 

galectin detection antibody (1;10000, R&D Systems) diluted in reagent diluent 

(R&D Systems, PBS, 5% Tween 20, 2% goat serum) was added to each well 

and incubated at RT for 1 h. The wells were then washed three times and 100 ml 

of streptavidin–horseradish peroxidase (1:10000 dilution) added and incubated 

for 1 hr at room temperature. The plate was washed thrice and developed with 

TMB (R&D systems) substrate and the absorbance of each sample was 

determined at 450 nm. A standard curve ranging from 5 mg to 156.25 ng of 

recombinant galectin-9 (Gal Pharma, Japan) was generated to calculate the 

galectin-9 concentration in the unknown samples. 

In vivo blockade with Tim-3 fusion protein 

For blockade of Tim-3 pathway, 100 µg Tim-3 Ig fusion protein were 

injected intra peritoneally on alternate days starting from day 1 until the time of 

sampling on day 10 p.i. 

Adoptive transfers 

  Splenocytes from WT or G9KO (both Thy1.2) x31 immune mice were 

enriched (miltenyi biotech kit) for CD8 T cells and then titrated for 104 NPtet+ CD8 

T cells and transferred into Thy1.1 C57BL/6 animals. Alternatively 104 NPtet+ 

CD8 T from B6Thy1.1 (x31 immune) mice were transferred into Thy1.2 C57BL/6 

WT or G9KO animals. 24 hrs post transfer, recipient animals were infected with 

8000 EID50 PFU of IAV PR8. 8 days post challenge CD8 T cell analysis was 

performed. 

Statistical analysis 
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Data were analyzed using Prism 5.0 software (Graph pad). Experiments 

were repeated two to three times. The data presenting the differences between 

the groups were assessed using two-tailed unpaired student’s t tests or by two 

way ANOVA with Bonferroni post hoc settings. Values of p< 0.001 (***), p< 0.01 

(**), and p< 0.05 (*) were considered significant. P<0.05 indicates that the value 

of the test sample was significantly different from that of relevant controls. 

 

                                Results 

Virus-specific CD8 T cells up regulate Tim-3 expression after IAV infection 
 

Both BAL and spleens were isolated at different times from IAV infected 

WT animals and analyzed by FACS for CD8 T cells that expressed Tim-3. The 

highest levels in the BAL were observed at day 8, with 30-40% of total CD8 T 

cells expressing Tim-3 (Fig 3.1A). In addition, most of these Tim-3+ cells were 

also CD44hi and CD62Llo (Fig 3.1D, upper panel) indicative of activated or 

effector phenotype. Peak frequencies of Tim-3+ CD8 T cells were also present on 

day 10 p.i. in the spleen (Fig 3.3J). Using tetramers and the ICCS assay to detect 

DbNP366-374 (ASNENMETM) specific CD8 T cells, up to 75% IAV NP tetramer- 

specific cells were Tim-3+ (Fig 3.1 A and C) as well as CD44hi and CD62Llo (Fig 

3.1D, lower panel). Furthermore, after NP peptide stimulation the majority 

(around 75%) of IFN+
 CD8 T cells were Tim-3+ (Fig 3.1B). Endogenous levels of 

Gal-9 in the lung extracts of IAV infected animals were also quantified by both 

western blotting (Fig 3.1E) and ELISA (Fig 3.1F). Basal levels of Gal-9 were 
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detectable in control lung extracts and these were moderately increased after 

IAV infection. A significant increase (2-2.5 fold) was observed at around 7 days 

p.i.   

 We could also show at day 10p.i. that around 20-22% of total CD4 T cells 

(Fig 3.1G) were Tim-3+ in the BAL samples of the WT animals. Moreover, using 

the ICCS assay to detect NP311–325 (QVYSLIRPNENPAHK) peptide- specific 

CD4 T cells, up to 65-70% (on average) of virus specific IFN+ CD4 T cells were 

Tim-3+ (Fig 3.1H). Tim-3 expression was not detected on CD3-B220+CD19+ B 

cells. 

Gal-9 induces apoptosis of IAV NPtet+CD8 T cells ex-vivo 

 The results of previous in vitro studies revealed that Gal-9 binding to Tim-

3 receptors on some, although not all, T cell subsets causes them to undergo 

apoptosis (28, 38).To test the fate of the CD8+Tim-3+ population following IAV 

infection to Gal-9 exposure, spleen cells were collected at day 10 pi and exposed 

in vitro for 5 hrs to a range of concentrations of Gal-9. Subsequently, the cells 

were analyzed by FACS for changes in the expression levels of Tim-3 and 

annexin V, the latter indicative of apoptosis (12).  As shown in Fig (3.2A), 

approximately 16-17% of CD8+T cells were Tim-3+ at the onset of culture and this 

percentage did not change significantly in the absence of Gal-9 (Fig 3.2A). 

However, Gal-9 addition (at 1.0 µM) caused a loss of almost all cells that were 

Tim-3+ (Fig 3.2A). Baseline levels of annexin V+ cells also did not change 

significantly in the absence of Gal-9 (or in the presence of Gal-3, data not 

shown). However, when optimal amounts of Gal-9 were present, annexin V+ cells 
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increased 15-20% beyond baseline numbers (Fig 3.2A lower right quadrant). 

This number roughly correlated with the fraction of Tim-3+CD8+T cells that 

disappeared upon Gal-9 exposure.  

 In additional experiments, we measured the effects of Gal-9 addition on 

the fate of NPtet+CD8+T cells, the majority of which, as described previously, 

were Tim-3+. As shown in Fig 3.2B, the great majority of NPtet+ CD8+T cells were 

lost after Gal-9 exposure and there was a notable increase in annexin V+T cells 

(Fig 3.2B lower right quadrant). In other experiments with Gal-9 treated cultures, 

we investigated the effects of adding an excess of a-lactose, the sugar that binds 

to the carbohydrate binding domain of Gal-9 and reduces Gal-9 binding to Tim-

3(3, 38). In such experiments, lactose addition served to prevent the 

disappearance of most Tim-3+ (Fig 3.2A) as well as NPtet+CD8+T (Fig 3.2B) cells 

and also reduced the increase in annexin V+ cells. Taken together, our results 

imply that Gal-9 binding to Tim-3+ effectors can cause them to die by apoptosis.  

 The major effect of Gal-9 was observed in Tim-3+ cells and was dose 

dependent. However there was a low level of apoptosis of Tim-3- cells consistent 

with recent reports that Gal-9 could regulate T cell function independently of Tim-

3 (30). Our ex-vivo results indicate that Gal-9 binding to Tim-3+ effectors causes 

them to die by apoptosis in-vitro, an effect that might similarly occur in vivo. 

Animals unable to produce Gal-9 mount better acute phase virus-specific 

CD8 T cell responses 

 We reasoned that if the presence of endogenous Gal-9 acts to limit the 

magnitude of CD8 T cell responses in the WT animals, then mice unable to 
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produce Gal-9 due to gene knockout (G9KO), should respond better than WT 

animals to IAV. To analyze this possibility, WT and G9KO animals were infected 

intranasally with 5000 EID50 of IAV (x31) and the magnitude of CD8 T cell 

responses were compared 6, 8 and 10 days later.  As shown, the responses of 

virus-specific CD8 T cells in both BAL and spleen, as measured by tetramers 

(3.3A-E) and ICCS (3.3H-J) were significantly higher at multiple time points in the 

G9KO mice. In both WT and G9KO animals up to 70-73% IFN+ CD8 T cells 

were Tim-3+ (3.3I). However, a higher proportion of Tim-3+ and NPtet+ T cells in 

G9KO were CD44hi (3.3K and L) and CD62Llo (3.3M and N) indicating that more 

virus specific CD8 T cells in G9KO animals expressed the activation phenotype. 

We also evaluated and compared the mean fluorescence intensity (MFI) of IFN 

and co-expression of multiple cytokines, both indicative of high quality T cells 

(26). G9KO animals expressed significantly higher MFI of IFN as compared to 

WT animals (3.3F). Collectively our data indicates that G9KO animals have a 

2.5-3.5 fold augmented IAV specific CD8 T cell responses that have a higher 

proportion of CD8 T cells with properties of high quality. 

  ICCS was also performed on the BAL fluid cells using NP311-325 peptide 

stimulation (to detect IAV specific CD4 T cells) at day 10p.i. G9KO mice had 2-3 

fold higher frequencies of IFN+CD4 T (IAV specific CD4 T) cells in the BAL as 

compared to the WT (3.3H). Additionally, around 39-40% of CD4 T cells were 

Tim-3+ at day 10 p.i. in the BAL of G9KO (3.3G) compared to only 18-20% in the 

WT mice. It is conceivable that better CD4 T cell responses of G9KO mice play a 
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role in maintaining higher CD8 T cell responses and also provides help for 

antibody (Ab) responses (33). Additionally, compared to WT mice, G9KO animals 

had fewer Tregs both in the BAL (Fig3.10 A, B and C) and spleen (Fig3.10 D) 

particularly that were CD103+ and Tim-3+ (Fig3.10 E and F). 

Gal-9 knockout mice generate a more rapid IAV-specific humoral response  

WT and G9KO mice were also compared for their serum virus-specific Ab 

responses. Serum levels of virus-specific IgM and IgG were substantially higher 

in G9KO compared with WT mice on day 7 (Fig 3.4 A and B), indicating a 

markedly more rapid Ab response in the G9KO mice. IgG levels remained 

significantly higher in G9KO mice for at least 2 wk after infection. The strong 

early Ab response in G9KO mice reflected enhanced production of both the IgG1 

and IgG2c isotypes, but by day 14 only IgG2c remained significantly higher in 

G9KO mice (Fig 3.4 C and D). To gain further insights into the B cell response, 

Ab-secreting cells (Fig 3.4 J and K) and germinal center B cells (Fig 3.4 L and M) 

in the draining lymph node on day 8 after infection were identified by flow 

cytometry.  The proportion of cells with the B220int CD138+ phenotype of Ab-

secreting cells was significantly higher in G9KO mice, consistent with the higher 

level of circulating virus-specific Ab early in the response. Interestingly, the 

proportion of PNA+ FAS+ germinal center B cells was significantly higher in WT 

mice, raising the possibility that strong early Ab-secreting cell formation in G9KO 

mice was at the expense of entry of activated B cells into germinal center 

reactions. 
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Virus-specific Ab levels were measured in the BAL to evaluate the IgA 

response as well as Ab-mediated antiviral activity at the site of viral replication. 

There was a trend towards higher BAL levels of IgG and IgA in G9KO compared 

with WT mice on day 10, but differences were not quite significant (Fig 3.4 E and 

F). An analysis of virus-specific serum Ab levels in G9KO and WT mice on day 8 

after IAV PR8 infection demonstrated a much earlier response in the G9KO mice 

(Fig 3.4 G and H), consistent with the result after x31 infection. 

Diminished viral titers and enhanced viral clearance in Gal-9 knockout mice  

To evaluate if G9KO and WT mice differed in their effectiveness at 

clearing viral infection, animals were infected with 5000 EID50 of IAV (x31) intra-

nasally and the lungs from the infected WT and G9KO mice (n=3 per group at 

each time point) were collected at days 2,4,7,8 and 9 p.i. to quantify IAV. Viral 

levels were similar in early lung homogenate samples but by day 7p.i. levels in 

G9KO mice were significantly (p<0.05) decreased compared to WT (Fig 3.4 I). 

G9KO mice cleared virus by day 8 p.i., but WT animals still possessed virus 9 

days p.i. The results of viral clearance experiments clearly indicated that G9KO 

animals had more effective protective immunity to IAV. Susceptibility of G9KO 

mice to IAV HKx31 was also compared with WT mice by three different 

approaches: body weight loss (Fig 3.7), neutrophil infiltration (Fig 3.8), and lung 

histopathology (Fig 3.9). Our data indicate that G9KO showed greater weight 

loss and significantly increased CD11b+Ly6G+ neutrophil infiltration at day 3p.i in 

the BAL following IAV infection. By histopathology no differences were observed 

at the lower viral doses, but at 5x107 EID50 multifocal type II pneumocytic 
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hyperplasia was observable in at least 50% of the G9KO mice.  

Gal-9 knockout mice develop more robust recall responses to IAV infection 

To compare recall response to IAV, animals were primed with x31 then 

challenged intranasally 41 days later with the heterologous IAV strain PR8. The 

NPtet+ CD8 T cell responses were around 4-5 fold higher in the G9KO as 

compared to WT animals in the BAL (Fig 3.5 A and D) and spleen (Fig 3.5 E, H 

and I). Additionally G9KO mice had a 4 fold greater proportion of NPtet+ cells that 

were Tim-3+ in the BAL (Fig 3.5C) and spleen (Fig 3.5G). More interestingly, 

when primary and secondary responses were compared, WT mice expressed 2-

3 fold higher frequencies of NPtet+ CD8 T cells compared to the primary 

response, while in G9KO mice the NPtet+ T cell frequencies were enhanced 8 

fold. Furthermore a significantly higher proportion of NPtet+ CD8 T cells were 

CD62Llo (5 fold higher) in BAL (Fig 3.5B) and (9 fold higher) in the spleens (Fig 

3.5F) of G9KO animals. Using the ICCS assay IFN+TNFα+ CD8 T cells in BAL 

(3.5 J and K) and spleen (Fig 3.5L) in G9KO mice were increased over WT 

indicative of larger and higher quality responses. The significantly higher 

proportion of CD62Llo and Tim-3+ IAV NP tetramer specific CD8 T cells in the 

G9KO mice that followed secondary infection suggests that a greater proportion 

of these cells were in an activated state in G9KO mice during recall responses. In 

an attempt to address the issue of whether G9KO CD8 T cells were intrinsically 

more responsive or being less inhibited in G9KO environment, adoptive transfer 

experiments were conducted (Fig 3.11A). The accumulation of WT DbNPtet+ 

donor Thy1.1+ CD8 T cells was significantly greater in G9KO than WT recipient 
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animals (Fig 3.11 G and H) indicating that Gal9/Tim-3 signaling is responsible for 

the observed T cell phenotype. The reverse experiment, where WT or G9KO 

cells were transferred to WT animals resulted in no observed differences in 

expansion. Taken together our results suggest that the Tim-3/Gal-9 interaction 

acts in normal animals to limit the magnitude and efficiency of recall CD8 T cell 

responses.  

In vivo blockade of Tim-3 pathway results in augmented primary IAV 

specific CD8 T cell responses 

Our results indicated that Gal-9 may be playing a role in vivo to limit the 

extent of anti-viral CD8 T cell responses. To further evaluate the regulatory effect 

of Tim-3/Gal-9 interaction, this pathway was inhibited in vivo with a Tim-3 fusion 

protein (Tim-3 Ig). Using tetramers and the ICCS assay to record virus specific 

CD8 T cell responses in the BAL and spleen, Tim-3 blockade resulted in 

approximately 1.6 to 2 fold higher frequencies and 4 fold higher absolute 

numbers of NPtet+ and IFN+TNF+ CD8 T cells in BAL (Fig 3.6 A and B) and 

spleen (Fig 3.6E) at day 10 p.i. The blockade also resulted in better viral control 

(Fig 3.6C). Additionally a higher proportion of virus specific CD8 T cells were 

CD62Llo both in the BAL (Fig 3.6D) and spleen of Tim-3Ig treated mice (Fig 

3.6F). A similar phenotype was observed when the Tim-3 fusion protein 

administration was begun at day 4p.i. (data not shown). 

 

                                        Discussion 
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The host response to pathogens is usually tuned to effect immunity and to 

minimize any bystander tissue damage resulting from the immune reaction to the 

invader (24).  Tissue damage is limited by several counter inflammatory events 

that act to functionally inhibit or destroy damaging cells as occurs when Gal-9 

binds to one of its receptors, Tim-3 (38). Counter inflammatory event benefit the 

host in some chronic inflammatory processes (13, 14), autoimmunity and some 

viral immunopathological lesions	 (28, 38) but, as we demonstrate in this report, 

Tim-3/Gal-9 interactions can also act to limit the effectiveness of immunity to 

acute infectious agents, such as influenza virus. Accordingly, we show that mice 

lacking the ability to produce Gal-9 because of gene knockout generate more 

robust anti-viral T cell responses, more rapid antibody responses and control 

intranasal infection more effectively than WT animals.  The more effective 

responses to IAV by G9KO animals was explained by the observation that virus 

specific CD8 and CD4 T cells up regulate Tim-3 early after infection, making 

them susceptible to apoptosis upon binding to Gal-9, as we demonstrated in ex 

vivo studies.  G9KO animals also developed better recall responses to IAV and 

generated superior CD8 T cell responses compared to WT upon heterologous 

IAV infection.   Our results could mean that manipulating signals that are usually 

provided by Gal-9 could result in improved responses to influenza vaccines.   

Our data indicate that decreased cellular responses observed in WT 

animals were likely the consequence of the elevated endogenous production of 

Gal-9 that occurred after infection, along with the fact that most of the responder 

T cells, both CD8 and CD4, up-regulated the Tim-3 receptor. This scenario would 
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set the scene for T cell apoptosis as demonstrated by our ex-vivo studies. 

However, alternative events might also explain the better responses of G9KO 

animals compared to WT. For example, G9KO animals have lower numbers of 

FoxP3 Tregs compared to WT. Such cells could be responsible for suppressing 

the magnitude of influenza specific T cell responses as some have reported (8), 

at least as a minor effect. In addition to the observance of 2-3 fold higher 

responses in G9KO animals, on the basis of multi-cytokine production and the 

levels of cytokine produced by antigen stimulated CD8 T cells (26), the 

responses in GK9O mice were also of higher quality than were those in WT mice. 

This may mean that the levels of Tim-3 differ between responding T cells 

accounting for differential susceptibility to Gal-9 mediated killing or inhibition. 

However, such effects were not formally investigated.  

Whereas a number of previous studies reported the modulating effects of 

Tim-3/Gal-9 on T cell-mediated lesions and immunity, few if any have analyzed 

the influence on Ab responses. We show that the early production of virus-

specific antibody responses to influenza infection was strikingly enhanced in the 

absence of Gal-9. Since we could not demonstrate Tim-3 expression on B cells, 

their destruction as a consequence by Gal-9 binding would seem an unlikely 

mechanism. A better explanation may be that the enhanced responses of G9KO 

animals reflected the absence of modulating effects of Gal-9 on Tim-3 expressing 

helper CD4 T cells. Antibody responses to influenza virus are largely T cell 

dependent (25). Thus, accelerated B cell help due to an increase in the 

availability or effectiveness of CD4 T cells could explain the stronger early 
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antibody responses observed in G9KO mice (18, 19). We did not evaluate CD4 T 

cell activation in lymph nodes draining the respiratory tract where cognate help 

for early B cell responses is delivered. However, Gal-9 deficiency resulted in 

higher frequencies of virus-specific CD4 T cells in the airways after influenza 

infection, consistent with a more vigorous CD4 T cell response in the draining 

lymph nodes. The rapidity of the B cell response in G9KO mice suggests an 

increase in antibody-secreting cell generation via the extrafollicular pathway of B 

cell differentiation, an arm of the B cell response that is enhanced by increased 

availability of T cell help (23). The expression of Tim-3 by activated Th1, but not 

Th2, cells suggests that the Th1 response may be preferentially enhanced in 

G9KO mice. This could fit with the pattern of isotype expression in the antibody 

response of G9KO mice, since enhanced IgG2c production (driven by Th1-type 

cytokines) was sustained for longer than was IgG1 production (driven by Th2-

type cytokines). We also observed that the frequency of germinal center B cells 

was significantly lower in G9KO than in WT mice likely reflecting differentiation of 

activated B cells via the extrafollicular pathway at the expense of germinal center 

formation in G9KO mice. At this time, we cannot exclude other mechanisms that 

may also contribute to the enhanced Ab response in G9KO mice. For instance 

Gal-9 deficiency may limit other mechanisms of suppression (5), resulting in 

increased levels of factors that act directly on B cells to promote their activation 

(4). 

Antiviral antibody production in response to influenza infection contributes 

in large part to viral control (37). We analyzed virus-specific antibody levels in the 
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airways as a measure of antibody-mediated antiviral activity at the site of viral 

replication. This strategy also permitted an evaluation of the effect of Gal-9 

deficiency on the virus-specific IgA response, since IgA-secreting cells generated 

in lymphoid tissues rapidly home to the respiratory tract submucosa and secretes 

IgA that is transported to the airway lumen (10, 25). IgG that is recovered from 

the airways is thought to be primarily derived from circulating antibody by 

transudation (21). The levels of virus-specific IgG and IgA recovered from the 

airways on day 10 after infection were generally higher in G9KO compared with 

WT mice, but differences were not quite statistically significant. However, the 

overall kinetic pattern suggested earlier production of both IgG and IgA in G9KO 

mice and a contribution of these antibodies to antiviral activity in the lung during 

the phase of viral clearance. A strong IgA response in G9KO mice, as for the IgG 

response, may reflect a more vigorous and sustained CD4 T cell response (25). 

However, this mechanism must be weighed against evidence that strong Th1 

responses and IFN production, as might be expected in G9KO mice, are 

antagonistic to IgA production (2, 6, 36). Further studies are required to clarify 

this situation. 
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Figure 3.1 Tim-3 expression is up regulated on virus-specific CD8 T cells 

after IAV infection: 

 At different time points after infection, BAL and spleen cells (n=3) isolated at 

each time point were analyzed flow cytometrically for Tim-3 expression on IAV 

specific CD8 T cells. BAL samples from 3 mice were pooled. (A) Percentage of 

total CD8 T cells and NPtet+ CD8 T cells expressing Tim-3 in BAL is shown. (B) 

FACS plots showing Tim-3+IFN+ CD8 T cells at day 10 p.i in the BAL fluid of WT 

animals. (C) Frequencies of Tim-3+ NPtet+ CD8 T cells in the BAL of IAV infected 

animals. (D) Co-expression of Tim-3 (upper panel) and DbNPtet+ (lower panel) 

with CD44 and CD62L in BAL of WT mice at day 8 p.i. is shown by 

representative FACS plots. (E) Immunoblots showing Gal-9 expression in the 

lung homogenates from naïve and IAV infected mice at different time points post 

infection. (F) Gal-9 concentrations as measured by sandwich ELISA using anti-

Gal-9 mAb in the lung homogenates is shown. (G) Histograms depict Tim-3 

expression on CD4 T cells in WT and G9KO animals at day 10 p.i. in the BAL. 

(H) Representative FACS plots showing IFN+ Tim-3+ CD4 T cells in BAL of WT 

and G9KO animals upon NP311–325 peptide stimulation. Numbers in the 

quadrants indicate percent of each subset. Data are representative of three 

independent experiments. 
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Figure 3.2 Galectin 9 induces apoptosis of IAV NP tetramer specific and 

Tim-3+ CD8 T cells in vitro:  

Ex Vivo apoptosis assay was performed with Splenocytes isolated at 10 dpi from 

IAV infected animals as described previously (3). Briefly splenocytes were 

incubated for 5 hours with varying concentrations of galectin-9 in the absence or 

the presence of α-lactose. The experiments were repeated multiple times with 

similar results. (A) Representative FACS plots showing the expression of Tim-3 

and annexin-V on gated CD8 T cells under indicated incubation conditions. (B) 

Representative FACS plots showing the expression of NPtet and annexin-V on 

gated CD8 T cells under indicated incubation conditions. (C) The bar diagram 

shows the percent of Tim-3+ CD8 T cells as calculated from A (with three 

triplicate wells). (D) The bar diagram shows the percentage of NPtet+ CD8 T cells 

as calculated from B. Statistical analysis was done by 2 way ANOVA with 

Bonferroni post hoc settings. 
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Figure 3.3 Gal-9 knockout animals mount stronger virus-specific CD8 T cell 

responses in the acute phase:  

Virus-specific CD8 T cell responses were compared among age and gender 

matched IAV infected WT and G9KO animals at indicated time points post 

infection. Representative FACS plots showing NPtet+CD8 T cells from WT and 

G9KO animals in the BAL (A) and spleen (B). (C) Absolute numbers of NPtet+ 

and IFN+TNF+ CD8 T cells at day 10 p.i. in BAL. Bar diagram shows the 

frequencies (D) and absolute numbers (E) of NPtet+ CD8 T cells in spleen. (F) 

The MFI of cytokine IFN produced by CD8 T cells in BAL. (G) Histograms 

showing Tim-3 expression on total BAL CD8 T cells in WT (light line) and G9KO 

mice (darker line) at day 10p.i. Representative FACS plots show the frequencies 

of Influenza A peptide NP366–374 (ASNENMETM) stimulated polyfunctional 

(IFN+TNFα+) CD8 T cells isolated from the BAL (H, upper panel) and spleen (H, 

lower panel) at day 10 p.i. of WT and G9KO animals. (I) Tim-3 expression by 

IFN+CD8 T cells in WT and G9KO animals at day 10 p.i following stimulation 

with NP366-374 peptide. (J) Absolute numbers of Tim-3+, IFN+, IFN+TNF+ CD8 T 

cells in the spleen at indicated time points p.i. Co-expression of Tim-3 and NPtet+ 

with CD44 in BAL (K), spleen (L) and with CD62L in BAL (M) and spleen (N) at 

day 8 p.i. is shown in WT and G9KO animals by representative FACS plots. Data 

are representative of three independent experiments with 3 mice per group in 

each experiment. Error bars represent SEM. 
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Figure 3.4 Enhanced virus-specific antibody production in G9KO mice after 

influenza infection.  

(A-F) WT and G9KO mice were sampled on the indicated days after intranasal 

infection with influenza X31. Plasma levels of virus-specific IgM (A), IgG (B), 

IgG1 (C), and IgG2c (D), and BAL levels of virus-specific IgG (E) and IgA (F) 

were measured by ELISA. Titers are expressed as the reciprocal of the endpoint 

dilution and are shown as mean + SE for 6-8 individual mice in each group. (G, 

H) Plasma levels of virus-specific IgM (G) and IgG (H) on day 8 after intranasal 

infection with influenza PR8. The mean + SE is shown for 6-8 individual mice in 

each group. Arrows indicate values below the level of assay sensitivity. (I) 0n 

indicated days post infection, lungs from WT and G9KO mice were collected and 

assayed for influenza viral titer by viral plaque assay. Representative FACS plots 

(J) and bar graphs (K) depicting the frequencies of CD3-B220+CD138+ B cells in 

the MLN of WT and G9KO mice at D8 p.i. Representative FACS plots (L, upper 

panel= naïve; lower panel= day 8p.i) and bar graphs (M) showing CD3-

B220+PNA+FAS+ germinal center B cells in the MLN of WT and G9KO mice.  
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Figure 3.5 Gal-9 knockout mice develop more robust recall responses to 

influenza A virus upon heterologous challenge: 

 Both WT and Gal-9 KO animals primed 41 days previously with x31 were 

challenged intranasally with 8000 EID50 of heterologous IAV (PR8) and the 

response in the BAL and spleen measured at day 8-post challenge by tetramers 

and ICCS assays. Representative FACS plots showing the frequencies of NPtet+ 

CD8 T cells in the x31 immune WT and G9KO animals in BAL (A) and spleen (E 

and H) respectively.  Absolute numbers of NPtet+ CD8 T cells in BAL (D) and 

spleen (I). Co-expression of NPtet and CD62L in BAL (B) and spleen (F). Tim-3 

expression on NPtet+ CD8 T cells isolated from BAL fluid (C) and spleen (G) of 

WT and G9KO animals. Representative FACS plots showing the frequencies (J) 

and absolute numbers (K) of IFN+TNF+ CD8 T cells at day 8 post challenge in 

the BAL of x31 immune WT and G9KO animals. (L) Absolute numbers of 

IFN+TNF+ CD8 T cells in the spleen of x31 immune WT and G9KO animals. 

Data are representative of three independent experiments. Error bars represent 

SEM. 
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Figure 3.6 Administration of Tim-3 fusion protein in mice after IAV infection 

enhances the magnitude and quality of IAV-specific CD8 T cells responses. 

IAV infected C57BL/6 animals were treated with 100µg of Tim-3 fusion protein 

per mice from day 1 post infection at alternate days until day 9 p.i. and those in 

the other group were given control Ig and animals were sacrificed at day 10 p.i 

Percentages (A) and absolute numbers (B) of NPtet+ and IFN+ TNF+ CD8 T 

cells isolated from the BAL of Tim-3 fusion protein treated and control animals 

are shown. (C) Viral titers in the lungs of control and Tim-3 Ig treated mice. (D 

and F) Co-expression of NPtet and CD62L on CD8 T cells in BAL and spleen 

respectively is shown. (E) Absolute numbers of NPtet+ CD8 T cells isolated from 

the spleen at day 10 p.i. Data are representative of three independent 

experiments with three to four mice per group. Error bars represent SEM. 
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Figure 3. 7 Outcome of infection with IAV HKx31: 

 WT mice were inoculated with IAV HKx31 (108, 107, 106, 105, 104 EID50 or PBS). 

(A) Body weight of WT mice after infection was determined daily and expressed 

as the percentage of the body weight lost following infection. (B) % body weight 

loss comparison between the WT and G9KO mice infected with 5000 EID50 i/n. 

over a period of 10 days is shown. (C) % body weight loss comparison between 

the WT and G9KO mice infected with  5x107 EID50 i/n. over a period of 10 days is 

shown. The data are representative of 5-6 mice per group.  
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Figure 3.8 Cells obtained from broncho-alveolar lavage (BAL) were stained for 

CD45+ (pan leukocyte marker) and CD45+CD11b+Ly6G+ (neutrophils) and FACS 

analysis performed at day 3 (A and B) and day 7 (D and E) in WT and G9KO 

mice. Bar graphs representing % CD45+CD11b+Ly6G+ (neutrophils) at day 3p.i 

(C) and day 7p.i. (F) is shown. The experiments were repeated multiple times 

and the data are representative of pooled BAL samples from 3 mice. Statistical 

analysis was done by student’s t test and the Error bars represent SEM. 
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Figure 3.9 Lung histopathology: The lungs of mice infected with 5000 EID50 of 

virus were harvested at indicated time points post infection, washed in PBS, fixed 

in 10% neutral buffered formalin and embedded in paraffin wax. Sections (5 mm) 

were stained with haematoxylin and eosin and microscopically reviewed. H&E 

sections from WT (A) and G9KO (B) animals infected with 5000EID50 of IAV x31 

at day 9 p.i is shown. Representative H&E sections from WT (C) and G9KO (D) 

animals infected with 5x107EID50 of IAV x31 at day 10 p.i is shown. The section 

blocks in the upper right corner represent the 40X magnification. The overall lung 

readouts (n=3 mice at each time points/group infected with x31 5000 EID50) is 

indicated as table E.  
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Figure 3.10 Characterization of CD4+FoxP3+ regulatory T cells from WT and 

the G9KO mice:  

C57BL/6 and G9KO animals were infected intra-nasally with 5000 EID50. BAL 

samples from 3 mice were pooled and spleens from individual mice were stained 

for FoxP3. Representative FACS plots show the frequencies of FoxP3+ Tregs in 

the BAL (A) and spleens (D) of WT and G9KO animals at day 10 p.i. The kinetics 

of Treg frequencies at indicated time points p.i. (B) and their absolute numbers at 

day 10 p.i (C) in the BAL fluid of WT and G9KO is shown.  Histograms showing 

the expression of Tim-3 (E) CD103 (F) and CD44 (WT-light line) and (G9KO-dark 

line) (G) on FoxP3+ Tregs isolated from the Spleens of WT and G9KO animals at 

day 10 p.i.  
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Figure 3.11 Adoptive transfer of memory CD8 T cells: Splenocytes from 

either WT or G9KO (both Thy 1.2) HKx31 immune mice (mice were held for at 

least one month following infection with IAV HKx31 i/n) were enriched for CD8T 

cells using miltenyi biotech (CD8T cell isolation) kit. Around 93-94% pure CD8T 

cells were obtained in the enriched CD8T cell population. The enriched CD8T 

cells were then titrated for equal number of NP tetramer specific CD8T cells and 

1x104 antigen specific CD8T cells were transferred in B6 Thy1.1 mice (n=4). 

Alternatively splenocytes from B6 thy1.1 HKx31 immune mice (mice were held 

for at least one month following infection with IAV HKx31 i/n) were enriched for 

CD8T, and equal number of NP tetramer specific CD8T cells (1x104) cells were 

transferred in WT or G9KO mice (n=4). 24 hrs post transfer, the recipients were 

challenged with 8000EID50 of heterologous IAV (PR8). (A) Diagrammatic 

depiction of the scheme for adoptive transfer experiments. (B) Representative 

FACS plots for enriched CD8T cell population is shown. FACS plots show the 

frequencies of donor Thy1.2+CD8+ (C, upper panel) and NPtet+ Thy1.2+ CD8+ (C, 

lower panel) WT or the G9KO cells in the MLN (C), and spleen (D) of Thy1.1 

animals at 8dpi. Absolute numbers of the donor NPtet+thy1.2+CD8+T cells WT or 

the G9KO cells in the MLN (E) and spleens (F) of the recipients. Absolute 

numbers of the donor NPtet+Thy1.1+CD8+T WT or the G9KO cells in the MLN (G) 

and spleens (H) of the recipients are shown. The experiments were repeated two 

times. Statistical analysis was done by student’s t test and the Error bars 

represent SEM. (I) Representative histograms showing CD62L expression by 
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NPtet+ CD8 T cells in the MLN’s of WT and G9KO animals at day 23 p.i. (J) Bar 

graphs represents the ratios of CD62Lhi/CD62Llo of NPtet+ CD8 T cells in the 

MLN of WT and G9KO animals at day 23 p.i. 
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REGULATORY T CELL EXPRESSION OF 

HERPES VIRUS ENTRY MEDIATOR 

(HVEM) FOLLOWING HSV-1 INFECTION 
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Research described in this chapter is from a manuscript that is in preparation for 

submission to Journal of Immunology by Shalini Sharma and Barry T. Rouse. 

 

Sharma S and Rouse BT. Regulatory T cell expression of Herpes virus entry 

mediator following HSV-1 infection and its functional significance. (Journal of 

Immunology-in preparation). 

 

In this chapter “our” and “we” refers to co-authors and me. My contribution in the 

paper includes (1) Selection of the topic (2) Compiling and interpretation of the 

literature (3) Designing experiments (4) understanding the literature and 

interpretation of the results (5) providing comprehensible structure to the paper 

(6) Preparation of graphs and figures (7) Writing and editing. 

 

                                         Abstract 

In many infections especially those that are chronic, the outcome may be 

influenced by the activity of one or more types of regulatory T cells (Tregs). 

Infections may cause Treg expansion but how this is accomplished remains 

uncertain. In this report, we demonstrate one possible mechanism by which 

HSV-1 infection could act to signal and expand the Treg population. We show 

that CD4+FoxP3+ regulatory T cells up regulate the receptor, herpes virus entry 

mediator (HVEM) following HSV-1 infection [a binding site for major viral 

glycoprotein HSV-1gD (gD)]. Recombinant HSV-1 gD added to the cultures 

increased the proportions of Foxp3+ cells among CD4+CD25+T cells, up 
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regulated activation markers on FoxP3+ T cells in the cultures and expanded 

Treg population with suboptimal TCR stimulation. The Treg expansion was 

dependent on gD interaction with HVEM. In addition Treg expansion in HVEM 

knockout animals (HKO) was significantly less than WT mice. As a result HKO 

animals generated more elevated T cell responses than the wild type (WT) 

animals and cleared virus more rapidly. Our results are discussed in terms of 

understanding of the factors that control Treg activation and expansion in 

response to pathogens and their application to manipulate Treg function in acute 

infections. 

 

                                    Introduction 

The magnitude of a T cell mediated immune response to an acute viral 

infection may be influenced by the activity of one or more types of regulatory T 

cells (15), particularly those that express FoxP3. Pathogens may signal Treg 

expansion with the response influencing the magnitude and perhaps pattern of 

the immune response. In some cases, responses to pathogens and vaccines are 

elevated if the Treg response is modulated (14, 17). The extent of the Treg 

response in different individuals may also explain in some circumstances the 

differential outcome of infection with chronic infection such as in hepatitis(4). 

However in situations where infections persist and immune reactions cause 

extensive tissue damage such as HSK, the Treg response can be beneficial and 

can limit the size of lesions (10). In many studies the Treg response to pathogens 

is assumed to consist mainly or predominately of antigen specific Tregs, although 
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there are instances where the Treg involved appear not be antigen reactive. This 

may be the case with HSV infection, and this possibility is investigated in the 

present report. We show that one of the major glycoprotein of HSV, normally 

involved in viral entry into susceptible cells, may cause proliferation and 

activation of Treg since such cells may express the entry molecule HVEM. 

Besides being an entry receptor for HSV, HVEM is identified as a co-stimulatory 

molecule that is known to be constitutively expressed on the cells of the immune 

compartment. HVEM can promote T cell activation by propagating signals from 

the TNF super family member ligand, LIGHT, a lymphotoxin related inducible 

ligand (19) that competes with glycoprotein D for binding to HVEM on T cells or 

can deliver inhibitory signals upon binding with BTLA (B and T lymphocyte 

attenuator). In a previous report HVEM knockout mice were shown to develop an 

unexpected enhancement of T cell responses (18), with increased susceptibility 

to autoimmunity. In addition over expression of HVEM enhances Treg 

suppressive function (16) suggesting a role of HVEM in Treg suppressive 

function.  

Our studies demonstrate that a CD4+FoxP3+ regulatory T cell expand and 

up regulate HVEM following HSV-1 infection. Additionally HSV-1gD was 

detectable in the draining popliteal lymph nodes (PLN) following footpad infection 

with peak levels present around day 5 p.i.  Primed cells, when re-stimulated with 

UV inactivated HSV resulted in further upregulation of HVEM on Tregs. 

Interestingly the presence of soluble gD increased the proportions of Foxp3+ cells 

among CD4+CD25+T cells in the culture and expanded Tregs in the presence of 
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suboptimal TCR stimulation. Consistent with this, HKO mice possessed 

significantly diminished ratios of CD4+FoxP3+/CD4+FoxP3-   cells in the PLN after 

HSV-1 infection and cleared virus faster than the WT animals. This could mean 

that engagement of HVEM with gD results in Treg activation and expansion 

which in turn modulates effector responses. T cells from scurfy mice, which have 

truncated form of FoxP3 (16)  lacked HVEM expression even after activation and 

over expression of HVEM enhances Treg suppressive function (16) suggesting a 

role of HVEM in Treg suppressive function. Consistent with this, naïve HVEM 

knockout animals expressed reduced frequencies and expression levels of 

FoxP3+ T cells compared to their naïve WT counterparts. 

 

                                  Materials and Methods 

Mice and Virus  

Female 7-8-wk-old C57BL/6 (B6) (H-2b) mice were purchased from 

Harlan Sprague-Dawley and housed in the animal facilities at the University of 

Tennessee. Foxp3-GFP knock in mice were a kind gift from Dr. M. Oukka 

(Brigham and Women’s Hospital, Harvard Medical School). HVEM knockout mice 

were obtained from Dr. Carl Ware at La Jolla institute of Allergy and Immunology 

(LIAI), California and were bred and maintained in the animal facility at the 

University of Tennessee. All investigations follow guidelines of the Committee on 

the Care of Laboratory Animals Resources, Commission on Life Science, 

National Research Council. HSV-1 strain KOS and RE was grown in vero cells 

obtained from American Type Culture Collection. The viruses were concentrated, 
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titrated, and stored in aliquots at -80C until use. Titers were measured in vero 

cells and expressed as PFU per milliliter.	Mice were infected in footpad (FP) with 

2.5 x 105 PFU of HSV KOS in 30-µl volume. Corneal infections of C57BL/6 mice 

were conducted under deep anesthesia. Mice were scarified on their corneas 

with a 27-gauge needle, and a 3 µl drop containing the required viral dose was 

applied to the eye. The eyes were examined on different days post infection (dpi) 

with a slit-lamp biomicroscope (Kowa), and the clinical severity of keratitis and 

angiogenesis of individually scored mice was recorded as described elsewhere 

(12). 

Antibodies and Reagents 

 Antibodies purchased from BD PharMingen were PerCP-CD4, FITC and 

PE anti-FoxP3, APC–anti-CD25 (PC61), APC-anti-CD103, FITC-anti GITR, 

antiCD62 ligand (CD62L), FITC-anti-CD44, and PerCP-anti-CD69. BrdU staining 

kit was purchased from BD Pharmingen. PE- anti HVEM (e-Bioscience), 

recombinant HSV-1gD and anti HVEM antibody were kindly provided by Dr. Gary 

Cohen (University of Pennsylvania), Recombinant human IL-2 was obtained from 

Hemagen. Complete RPMI 1640 was used for in vitro cultures.   

Quantitation of HSV-1 in Foot Pad Tissues  

The quantitation of HSV-1 in foot pad (FP) tissue was determined as 

reported by Jennings et al (5). Briefly, the mice were killed at the indicated time 

post infection (p.i.), the FP surface was cleaned with 70% isopropyl alcohol, and 

the tissues were removed with a scalpel. The tissues were stored in virus diluent 

(PBS supplemented with 0.6 mM CaCl2, 0.5 mM MgCl2/H2O, 20 mg Phenol red, 
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and 50g gentamicin sulfate per ml) at -80⁰C. Tissues were disrupted by 

homogenization in 1 ml ground glass grinders (Wheaton) and centrifuged, and 

the supernatant was used to assay viral titration on vero cells. Finally, plaques 

were visualized with crystal violet. 

Cell Surface and Bromodeoxyuridine Staining  

Surface staining was performed as described previously (6). For 

bromodeoxyuridine (BrdU) staining, the BrdU kit from BD PharMingen was used 

according to the manufacturer’s instructions. Briefly, HSV-1 infected mice 

received i.p. injection of BrdU (1 mg/ml) 12 hours before termination of mice. 

Draining popliteal lymph node cells were stained first with anti-CD4 and FoxP3 

and subsequently labeled with anti-BrdU mAb. Samples were analyzed on a 

FACS caliber cytometer using FlowJO software (BD Biosciences). 

Western blotting 

 For the detection of HSV-1gD, draining popliteal lymph nodes were 

dissected at the indicated time points in 300 ul of RIPA buffer containing 

protease inhibitor cocktail (aprotinin, PMSF and sodium orthovanadate), cell 

debris was removed by centrifugation and the samples stored at -80oC till used 

for SDS-PAGE. In brief, after 2 hrs of blocking with 3% nonfat milk in TBS, 

membranes were incubated with 1:1000 dilution of rabbit polyclonal anti HSV-

1gD antibody (mouse monoclonal IgG1, 100 µg/ml, Santa Cruz biotechnology) 

and membranes were then incubated for 1 hr with secondary antibody coupled to 

horse raddish peroxidase. Specific bands were detected with ImmobilionTM 
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western; Millipore). Membranes were stripped and then reprobed to detect  

actin. 

Cell purification and in vitro cell culture 

 CD4 T cells were purified from Foxp3-GFP knock-in animals using a CD4 

T cell isolation kit, and 5x105 cells were cultured with the indicated 

concentrations of recombinant HSV-1gD and suboptimal concentrations of anti-

CD3. In some cultures anti-HVEM antibody was added to the cultures. In 

additional experiments FoxP3+ cells were sorted (FACS vantage) from the 

enriched CD4 T cell population based on the GFP expression. CD4+FoxP3+ 

Tregs were incubated with recombinant HSV-1gD. 48 hours post incubation 

Tregs in the culture were analyzed by flow cytometry for expression of surface 

activation markers. 

Thymidine incorporation assay 

Splenocytes from the naïve FoxP3-GFP knock in mice were enriched for 

CD4 T cells using CD4 T cell isolation kit according to the manufacturer’s 

protocol (Miltenyi Biotec, Auburn, CA). Tregs were sorted (FACS vantage) from 

this enriched CD4 T cell population based on GFP expression. Sorted 

CD4+CD25+ Treg populations were incubated with anti-CD3 and recombinant 

HSV-1gD at the indicated concentrations. The cells were plated at a density of 5x 

105 in 96-well round-bottom tissue culture plates in a total volume of 200 l of 

RPMI medium (Gibco). Sixteen hours before harvest, [3H] thymidine (1µCi/well; 

1Ci=37GBq) was added. The cells were harvested onto a UniFilter 
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(PerkinElmer). [3H]thymidine incorporation was measured with a scintillation 

counter, and the results were expressed as mean cpm from triplicate cultures. 

                                                     

                                                      Results 

HSV infection causes expansion of FoxP3+ Tregs   

             To follow changes in CD4+FoxP3+ Treg responses after HSV 

infection, FoxP3GFP knock in mice were used and analyses were performed in 

draining PLN populations. The infection changed the frequency of CD4+T cells 

that were FoxP3+ with numbers of such cells increased by  more than two fold at 

day 5 p.i  (fig 4.1B) and more than fourfold  at day 8 p.i. compared to naive mice. 

A similar trend was observed with the absolute numbers of CD4+FoxP3+. The 

absolute numbers of CD4+ T cells (fig 4.1C) in the popliteal lymph nodes peaked 

at day 5 p.i. Whereas the highest absolute numbers of CD4+FoxP3+ cells (fig 

4.1D) were present after the peak of effector activity i.e. at day 8 p.i. To 

determine whether or not different viral loads could influence the magnitude of 

Treg expansion, we infected WT animals with various inoculation doses of HSV-1 

i.e 2x106, 2x105, 2x104 as well as with UV inactivated virus. Increasing infection 

doses resulted in a gradual increase in the level of Treg expansion in the draining 

popliteal lymph nodes (data not shown). 

HVEM expression is up-regulated on regulatory T Cells following HSV-1 

infection 

We next analyzed the expression of HVEM on Tregs. HVEM, a tumor 

necrosis factor receptor super family member that interacts with the gD protein of 
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HSV-1 to facilitate cell entrance, is shown to be constitutively expressed by the 

cells of the immune compartment. Flow Cytometry showed HVEM expression by 

45-50% of naïve CD4+FoxP3+ cells. Following HSV-1 infection in the footpad, 

HVEM was up regulated on CD4+FoxP3+ cells with up to 70% at day 8p.i and 

90% CD4+FoxP3+ cells expressing HVEM at day 11p.i (fig 4.2 A and B). The MFI 

of HVEM expression was also increased on FoxP3+ Tregs (fig 4.2C) following 

HSV-1 infection. HVEM knockout Tregs have been reported to be less 

suppressive and over expression of HVEM in Tregs increases their suppressive 

ability (16) thus increased expression of HVEM on Tregs following HSV-1 

infection could be of functional significance.  

In some experiments DLN cells from infected FoxP3-GFP knock in mice 

were obtained at indicated time points post infection and were stimulated with 

either UV inactivated HSV kos or anti-CD3/anti-CD28 for 72 hours. HVEM 

expression was analyzed on CD4+FoxP3+ and CD4+FoxP3- cells by flow 

cytometry. Our results demonstrate that HVEM expression was further up 

regulated (fig 4.3A) on FoxP3+ CD4 T cells when stimulated with UV inactivated 

HSV kos but not on CD4+FoxP3- cells. Stimulation with anti-CD3 anti-CD28 did 

not result in change in HVEM expression levels on either the FoxP3+ or FoxP3- 

cells (fig 4.3B). Interestingly the highest MFI of HVEM expression after UV 

inactivated HSV stimulation was observed when the cells were obtained after day 

6 p.i. Taken together our in vivo observations of the detectable HSV-1gD in the 

DLN after HSV-1 infection and in vitro experiment suggests that presence of 

HSV-1 gD could influence the up regulation of its own receptor HVEM. 
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It has been shown that HSV-1 is able to enter activated T lymphocytes as 

well as immature and mature DCs. Additionally gD is expressed on the surface of 

infected T cells and it is postulated that the cellular gD interacts with HVEM in a 

juxtacrine and autocrine way (7). To explore the mechanism that might be 

responsible for triggering Treg expansion, we hypothesized that possibly HSV 

itself could trigger this and may represent an early means by which the virus 

infection could signal Treg activation and expansion. Experiments were 

performed to detect if viral protein gD is detectable in the draining lymph node. 

Western blotting on the draining popliteal lymph node homogenates from the 

naïve and HSV infected animals at day 2, 5, 7 and day 10 p.i. showed that 

whereas the PLN homogenates from the naïve mice completely lacked gD 

expression and a negligible amounts of gD was detectable at day 2 p.i. However 

gD was detectable at day 5, 7 and 10 post HSV-1 infection, a significant 

expression of gD being detectable in the PLN homogenates at days 7 and 10 p.i. 

(fig 4.3C). 

Recombinant HSV-1 gD increases the proportions of FoxP3+ T cells among 

CD4+CD25+T cells  

Our observations that regulatory T cells expand following HSV-1 infection, 

that HVEM is preferentially up regulated by regulatory T cells and more 

interestingly the detectable levels of HSV-1 gD in the draining popliteal lymph 

node led us to hypothesize that the interaction of HVEM with one of its known 

viral ligand gD could be of functional significance in terms of causing a T cell 
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perhaps only Treg to change gene expression, proliferate or show activation 

changes.   

  To address this question we performed three sets of experiments, in one 

experiment we enriched CD4 T cells  (fig 4.4A) from the splenocytes of naïve 

mice (up to around 90% purity) and incubated 5x105 cells with varying 

concentrations of recombinant gD and anti CD3 (1 ug/ml). As shown in fig 4.4B, 

addition of recombinant gD in the presence of anti-CD3 increases the proportion 

of FoxP3+ cells among the CD4 T cells in the cultures. This effect was relatively 

specific for HSV-1gD HVEM interaction, as addition of anti HVEM antibody to the 

cultures did not result in increased proportions of FoxP3+ cells (fig 4.4C). In some 

experiments FoxP3+ cells were sorted from enriched CD4 T cells based on GFP 

expression and 2x105 FoxP3-GFP+ cells were incubated with different 

concentrations of HSV1-gD and IL-2. 48hrs post-incubation, the cells were 

stained for activation markers. CD69 and CD25 were up regulated on Tregs that 

were incubated with recombinant gD in a dose dependent manner (fig 4.4 D and 

E). In the third set of experiments sorted FoxP3+ cells (2x105 cells) were 

incubated with anti-CD3 alone or anti-CD3 plus recombinant HSV-1 gD and 

recombinant IL-2 in the cultures. In presence of gD, Tregs showed proliferation 

when relatively higher concentrations of anti-CD3 was used (fig 4.5C). This 

proliferative effect was not observed when anti-HVEM antibody was added (fig 

4.5D) to the culture suggesting an effect that is mediated by gD binding with 

HVEM. Taken together our results could mean that besides being an entry 
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receptor for HSV, HVEM binding with HSV-1 gD can trigger activation and 

proliferation of Tregs. 

HVEM knockout mice generate weaker Treg responses  

Our in-vivo and in-vitro observations suggest that HVEM is up regulated 

on regulatory T cells following HSV-1 infection and that gD-HVEM interaction 

results in the increased representations of CD4+FoxP3+ regulatory T cells among 

CD4 T cells. To evaluate if HKO and WT animals showed differences upon HSV-

1 infection, the animals were infected with HSV-1 in the foot pad and the 

frequencies and absolute numbers of CD4+ and CD4+Foxp3+ cells were recorded 

in the draining popliteal lymph node at day 5.5 and 8p.i. At day 5.5 and day 8 p.i 

HKO mice had significantly reduced frequencies of CD4+Foxp3+T cells (fig 4.6 C-

F). The absolute numbers of total lymphocytes (p<0.0006) as well as CD4+T cells 

(p<0.0006) and CD4+FoxP3+Tcells (p<0.017) were significantly higher in the 

HKO animals (fig 4.7A). The numbers sustained to be significantly higher for CD4 

T cells (p<0.0179) even at day 8 p.i in the HKO mice. These findings are 

consistent with the previous findings (18) that reported a hyper proliferative CD4 

T cell responses in HKO mice. However when the representation of CD4+FoxP3+ 

among the CD4+FoxP3- T cells was compared, HKO mice showed a significantly 

lower Treg to Teff ratios at day 8 p.i (p<0.002) (fig 4.7 D and E), whereas the 

ratios were largely non significant at day 5.5 p.i. consistent with our observations 

that significantly higher numbers of CD4+FoxP3+ T cells are observed after the 

peak of effector responses in the WT animals. Taken together and consistent 

with in vitro experiments, our in vivo data suggests that there are diminished 
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representations of CD4+FoxP3+ regulatory T cells among CD4 T cells in the HKO 

mice. The expansion of Tregs observed in the draining popliteal lymph node 

following HSV-1 infection might be mediated by recruitment and/or proliferation of 

these cells. BrDU incorporation assay was performed to analyze whether Treg 

undergo proliferation in vivo. HSV-1 infected mice were pulsed with BrDU 12 

hours before sacrifice. At day 8 p.i. draining popliteal lymphoid populations were 

analyzed by FACS for evidence of BrDU incorporation. CD4 T cells were gated 

on FACS plot, and the assay revealed an average 1.5 to 2 fold increase in 

proliferation of CD4+FoxP3+ cells in PLN of WT animals compared to HKO (fig 

4.6 G and H). 

Additionally the proportions of CD4+T cells co expressing FoxP3 and the 

activation markers CD25 (fig 4.8A, B and E), CD103 (fig 4.8C, D and F), were 

significantly reduced in HKO animals. Interestingly a higher proportion of FoxP3+ 

cells were CD62Llo (fig 4.8G) at the indicated time points post infection and 

reduced expression of CD44 on FoxP3+ cells (fig 4.8H and I) in HKO mice 

compared to the WT animals, thus indicative of them being less activated. 

Influence of regulatory T cell expression of HVEM on the outcome of 

immune response to HSV 

We monitored whether the diminished representations of FoxP3+ T cells in 

HKO mice affected the course of viral infection. Our data imply that the acute 

cutaneous viral load in the FP was comparable in both WT and HKO until day 5 

However, no viral plaques were observed in the HKO mice on day 6 whereas 
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significant viral load was still present in the control animals. By day 8 no virus 

was detected in the FP of both groups (data not depicted). 

In the mouse model of SK, CD4+CD25+ regulatory T cells have been 

shown to control the severity of viral immuno-inflammatory lesions (14) and 

previous studies have suggested a non-redundant inhibitory effect of HVEM on T 

cell responses (18).Thus given our data that HKO Tregs are less suppressive 

and the lack of HVEM mediated negative regulation of T cell activation we tested 

the susceptibility of HKO mice to the development of HSK following ocular HSV-1 

infection. There were two possibilities, either the HKO mice will not develop the 

disease because they lack the HSV-1 entry receptor (HVEM) or will develop 

more disease due to the deficiency of negative regulatory interaction. 

WT or HKO mice were infected with 1x104 PFU of HSV RE ocularly and 

the progression of HSK and angiogenesis were recorded by slit lamp 

biomicroscopy. The cellular infiltration in the collagenase digested corneas was 

recorded at day 15 p.i in WT and HKO animals. There were around 2 fold higher 

frequencies of CD4 T (fig 4.9A) cells with significantly increased expression of 

CD49d (fig 4.9B) on them in the HKO animals compared to the WT animals. 

These findings are consistent with our own findings where absence of Tregs 

resulted in altered phenotype of CD4 T cells (with increased CD49d expression 

on CD4+T cells) following ocular HSV-1 infection (14). 

                                             Discussion 

To survive an infection, host needs to generate an efficient immune 

response against the pathogen but at the same time the host immune response 
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to pathogens needs precise regulation to minimize tissue damage whilst still 

achieving defense (10). Tregs play a very important role in balancing these 2 

contradictory effects occurring in most infectious diseases. In our previous report 

we have shown that HSV infection activates and expands CD4+CD25+ regulatory 

T cells (15) and the majority of expanded Tregs are not antigen specific. In the 

current study we report one possible mechanism by which HSV-1 infection could 

act to signal and expand the Treg population. Using footpad infection model we 

show that CD4+FoxP3+ regulatory T cells up regulates HVEM following HSV-1 

infection and the viral ligand HSV-1gD was detectable in the draining popliteal 

lymph nodes (PLN). Presence of recombinant HSV-1 gD increased the 

proportions of Foxp3+ cells among CD4+CD25+T cells and up regulated activation 

markers on FoxP3+ T cells in the cultures. Consistent with this, HKO mice 

represented significantly diminished ratios of CD4+FoxP3+/CD4+FoxP3-   cells in 

the PLN after HSV-1 infection and cleared virus faster than the WT animals 

suggesting that functional interaction of HSV-1gD with HVEM expressed on T 

regs might be one possible means of non-specific Treg expansion. 

In the present study we observed significantly increased frequencies and 

absolute numbers of FoxP3+ Tregs following HSV infection of the footpad in the 

draining PLN. These findings are consistent with our previous report (15) 

suggesting that the CD8 T cell response to the immunodominant peptide 

SSIEFARL was significantly enhanced when CD4+CD25+ Tregs were depleted.  

Treg activation prevents immunopathology by dampening pathogen specific 

immune responses but this can also lead to enhanced pathogen survival (3). This 



 

 146

leads to the question for the cells or the factors involved in expansion of Treg and 

whether proliferation, de novo induction or enhanced survival of Tregs is the 

predominant reason for the increased numbers of Tregs in the virus infected 

tissues and the draining lymph nodes following a viral infection. It has been 

reported that virus infected DCs can expand the population of FoxP3+ cells in 

vitro upon presentation of antigens to naïve T cells (2), alternatively it is shown 

that CD8+T cells play a vital role in Treg expansion (22, 23) where Friend’s virus 

(FV) infected mice without CD8+T cells, no expansion of Tregs was observed in 

any of the investigated organs. One such study has also reported that the 

expansion of Tregs exclusively depended on the presence of virus specific 

effector CD4+T cells (1). Viral replication itself or presentation of antigen to virus 

specific Tregs have also been attributed to induce Treg expansion (22). 

One curious observation we made was the up regulation of HVEM by 

Tregs and its viral ligand HSV-1gD was detectable in the draining popliteal lymph 

node following HSV infection of the foot pad. Previous reports have shown that 

HVEM is up regulated on Tregs and down regulated on T effectors upon 

activation. Interestingly our data points towards the maximum Treg numbers and 

HVEM up regulation after the peak of effector responses. Additionally highest 

levels of HSV-1gD levels were also detected after day 5-post infection (i.e after 

peak of effector responses). One plausible explanation of high Treg numbers 

after peak of effector responses could be that effector T cells are undergoing a 

contraction after peak activity and thus increased Treg representation. Enhanced 

up regulation of HVEM could be ligand mediated, as increased availability of 
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HSV-1gD was evident at later time points post infection. More direct evidence for 

this was obtained by additional in-vitro experiments where stimulation of primed 

T cells with UV inactivated HSV kos resulted in further up regulation of HVEM on 

Tregs, maximum up regulation again observed when cells were obtained after 

peak effector activity. Currently, it is not clear how regulatory T cells are induced 

and act to modulate effector cell function following HSV-1 infection, we therefore 

undertook these studies to better understand whether the ability of HSV-1gD to 

interact with HVEM could alter immune responses. Although HVEM mediates 

both positive and negative immune signals (9)`, our observations are more 

consistent with the hypothesis that binding of viral ligand gD to HVEM causes T 

cells and perhaps only Treg to show activation changes. Evidence suggests that 

HSV-1 gD can modulate the activities of the T cell via HVEM during binding, 

entry, or egress (7). It has been shown that HVEM is involved in NFkB activation 

by HSV-1 gD (11) thus it is conceivable that one consequence of this interaction 

might be the NFkB activation in Tregs however; such effects were not formally 

investigated.  

Further support for the immunomodulatory role of gD HVEM interaction 

came from the studies using HVEM knockout mice. Previous reports have 

established a role of HVEM in Treg function. One such study reported that HVEM 

expression on CD4+CD25+ T regulatory cells was important to mediate the 

suppressive functions of Tregs, accordingly HVEM knockout Tregs had 

decreased suppressive activity (16). T cells from scurfy mice have been shown to 

lack HVEM expression even after activation, suggesting involvement of FoxP3 in 
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regulation of HVEM expression. These findings are consistent with our own 

observation that Tregs from naïve HVEM knockout mice had reduced 

frequencies and FoxP3 expression levels compared to the WT animals. However 

more interesting was the observation that following HSV infection the expression 

levels of FoxP3 increased on WT Tregs whereas decreased on the HKO Tregs. 

Additionally significantly diminished ratios of CD4+FoxP3+Tcells to CD4+FoxP3- 

cells were observed in the HKO mice and again the differences more evident at 

day 8p.i. (after the peak of effector responses).This could mean that absence of 

gD-HVEM interaction in HKO animals further augments the scenario of 

diminished FoxP3 expression on Tregs already existing due to lack of HVEM. 

These findings were further supported by our in-vitro experiments that utilized 

soluble gD and the effects abolished with anti HVEM antibody. It is still a matter 

of debate whether Treg that suppress pathogen specific T-cell responses have to 

be pathogen specific themselves. In several infectious diseases, such as 

Leishmania (13) or hepatitis C virus (8) pathogen specific Tregs have been found 

and in some auto-immune diseases, only antigen specific Tregs were able to 

suppress autoreactive T cells, whereas non-specific Tregs were ineffective (21). 

However several studies have reported that polyspecific Tregs that are efficiently 

recruited to proliferate in the organs with virus induced inflammation can 

suppress virus specific T cell responses (22).  

Soluble gD has been shown to inhibit T cell proliferation (7). It is 

conceivable that gD binding to HVEM might be able to provide a strong negative 

signal, the outcome of which is manifested as a defect in T cell proliferation. 
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Alternatively our observation might suggest that gD binding to HVEM on Tregs 

result in treg activation and expansion which in turn inhibit T cell proliferation. 

Thus it is conceivable that same type of receptor ligand interaction might have 

different outcome depending on the cell type. In the present study we observed 

similar or even attenuated numbers of IFN+ CD4 T cells in the draining PLN of 

HKO animals. Because engagement of HVEM on T cells by its natural ligands 

may augment (in the case of LIGHT) or attenuate (in the case of BTLA or 

CD160) immune response (20) therefore it remains to be studied in more depth 

how the balance of these competing interactions condition the kinetics of the 

immune response in different cell types. 
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Figure 4.1 HSV-1 infection results in the expansion of CD4+FoxP3+ 

regulatory T cells 

FoxP3-GFP knock in mice were infected with 2x105 PFU of HSV kos in a 30 ul 

drop in the footpad. The kinetics of FoxP3+ Tregs was measured at indicated 

time points in the draining popliteal lymph nodes (PLN) following HSV-I infection 

of the footpad. (A) Representative FACS plot showing CD4+FoxP3+ and 

CD4+FoxP3- T cells in the pooled (n=4) popliteal lymph nodes of naïve mice. (B) 

Histograms depicting the increased frequencies of FoxP3+ Tregs at indicated 

time points in the draining PLN following HSV-1 infection. Bar graphs depicting 

absolute numbers of CD4 T (C) and CD4+FoxP3+T (D) cells in the draining PLN 

of naïve and HSV infected mice at indicated time points post infection. Data are 

representative of three independent experiments with 4-5 mice per group in each 

experiment. Error bars represent SEM. The level of significance was determined 

using one-way ANOVA with Bonferroni post hoc settings. 
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Figure 4.2 HVEM expression is up-regulated on regulatory T Cells following 

HSV-1 infection and its viral ligand is expressed in PLN following infection  

Mice were infected with 2x105 PFU of HSV-1 KOS. At indicated time points 

following infection, draining popliteal lymph nodes were collected and flow 

cytometry was performed on these samples for expression of HVEM. (A) 

Representative FACS plots depicting HVEM expression by FoxP3+ Tregs. 

Numbers in the quadrants indicate percent of each subset. (B) HVEM expression 

by CD4+FoxP3+T at indicated time points post infection is shown by histograms. 

(C) Bar graphs shows the MFI of HVEM expression on FoxP3+T cells. Data are 

representative of three independent experiments. Error bars represent SEM. The 

level of significance was determined using student’s t test. 
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Figure 4.3 Primed cells stimulated with HSV causes HVEM up regulation on 

Tregs 

FoxP3-GFP knock in mice were infected with 2x105 PFU of HSV KOS in a 30-ul 

drop in the footpad. Draining PLN cells were isolated at indicated time points p.i 

and stimulated with either UV inactivated HSV kos (MOI = 2) or anti-CD3 

(1g/well) anti-CD28 (0.5g/well) for 72 hours. (A) The cells were then analyzed 

flow cytometrically for HVEM expression on CD4+FoxP3+ (upper panel) and 

CD4+FoxP3- (lower panel) cells. Histograms depicting HVEM expression by un-

stimulated (shaded area) and UV inactivated HSV kos stimulated (black line). (B) 

FACS analysis for HVEM expression on CD4+FoxP3+ (upper panel) and 

CD4+FoxP3- (lower panel) cells. Histograms depicting HVEM expression by un-

stimulated (shaded area) and anti-CD3 anti-CD28 stimulated (black line). (C) 

Western blot analysis for detection of HSV-1gD in the draining PLN lysates at 

different time points following HSV-1 infection. Draining PLN (2PLN/mice) were 

collected and levels of HSV-1gD were detected using rabbit polyclonal anti HSV-

1gD antibody. Soluble HSV-1gD served as a positive control. 
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Figure 4.4 Recombinant HSV-1 gD increases the proportions of FoxP3+ T 

cells among CD4+T cells 

CD4 T cells were enriched from the splenocytes of naïve mice using miltenyi 

biotech kit. Up to around 90% pure CD4 T cells were obtained following 

enrichment (A). Enriched naïve CD4 T (5x105) cells were incubated cells with 

varying concentration of soluble gD, recombinant human IL-2 and suboptimal 

concentrations of anti CD3 (0.5g/ml) for 48 hours. As shown (B) addition of 

recombinant gD in the presence of IL-2 increases the proportion of FoxP3+ cells 

among the CD4 T cells. (C) Bar graphs depicting the percentages of CD4+ 

CD25+ FoxP3+ CD4 T cells in the cultures under indicated incubation conditions. 

Error bars represent SEM. The level of significance was determined using one-

way ANOVA using Bonferroni post hoc settings. In some experiments enriched 

CD4 T cells from FoxP3-GFP mice were sorted for FoxP3+ from enriched CD4 T 

cell population based on GFP expression. Sorted FoxP3+ cells (2x105 cells) were 

then incubated with different concentrations of HSVgD and IL-2 (conc.). CD69 

(D) and CD25 (E) expression on sorted FoxP3+T cells following 48hrs post-

incubation is shown. Data are representative of three independent experiments. 
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Figure 4.5 HSV-1gD can help to expand Tregs 

CD4 T cells were enriched from the splenocytes of naïve mice using miltenyi 

biotech kit and FoxP3+ cells were sorted from enriched CD4 T cell population 

based on GFP expression. Representative FACS plots showing presort (A) and 

post sort (B) population. (C) CD4+FoxP3+ Treg populations from naive WT mice 

were stimulated with anti-CD3 alone, anti-CD3 plus recombinant HSV-1gD, or 

anti-CD3 plus anti-CD28 at the indicated concentrations. The proliferation was 

determined by [3H]thymidine incorporation. Tregs proliferated significantly at 

relatively high concentrations of anti-CD3 with HSV-1gD compared with anti-CD3 

alone. (D) CD4+FoxP3+ Treg populations from naive WT mice were stimulated 

with anti-CD3 (1 ug/ml), anti-CD3 (1 ug/ml) plus HSV-1gD (1 ug/ml), or anti-CD3 

plus HSV-1gD (1 ug/ml) and soluble anti-HVEM Ab (100 ug/ml) as indicated. The 

proliferation was determined by [3H] thymidine incorporation. These experiments 

were repeated two times. Error bars represent SEM. The level of significance 

was determined using student’s t test. 
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Figure 4.6 Diminished representations of CD4+FoxP3+ regulatory T cells in 

the HVEM knockout mice 

CD4+ and CD4+FoxP3+ T cell responses were compared among age and gender 

matched HSV-1 infected WT and HKO animals at indicated time points post 

infection. Representative FACS plots showing frequencies of CD4+ T cells from 

WT and HKO animals in the draining PLN at day 5.5 (A) and day 8 (B) following 

HSV-1KOS infection in the footpad. Representative FACS plots showing 

CD4+FoxP3+ T cells from WT and HKO animals in the draining PLN at day 5.5 

(C) and day 8 (D) following HSV-1kos infection in the footpad. (E) Histograms 

depicting FoxP3 expression on CD4T cells in WT (black line) or HKO (shaded 

area) mice in draining PLN at day 8 post HSV infection in the foot pad. (F) MFI of 

FoxP3 expression in WT and HKO animals at day 8 p.i is shown. HSV-1 infected 

mice were pulsed with BrDU 12 hours before sacrifice. At day 8 p.i. (I and J) 

draining popliteal lymphoid populations were analyzed by FACS for evidence of 

BrDU incorporation. Data are representative of three independent experiments 

with 5 mice per group in each experiment. Error bars represent SEM. The level of 

significance was determined using student’s t test. 
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Figure 4.7 Reduced numbers of CD4+FoxP3+ per CD4+FoxP3-T cells in 

HVEM knockout mice 

(A) Absolute numbers of CD4+ and CD4+FoxP3+T cells in the draining PLN of WT 

and HKO animals at indicated time points as calculated from 4.6 C and D. (B) 

Ratios of absolute numbers of CD4+FoxP3+ cells to CD4+T cells at day 5.5 (B) 

and day 8 (C) p.i. Ratios of absolute numbers of CD4+FoxP3+ cells to 

CD4+FoxP3-T cells at day 5.5 (D) and day 8 (E) p.i. is shown. 
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Figure 4.8 Diminished frequencies of activated Tregs in HKO animals 

(A) Gated CD4+T cells from WT and HKO mice were analyzed at indicated time 

points by flow cytometry for co-expression of the Treg surface markers CD25 (A, 

B and E), CD103 (C, D and F) and activation marker CD44 (H) with the Treg 

associated transcription factor FoxP3. (H) MFI of CD44 expression on WT and 

HKO Tregs is shown. CD62L expression on CD4+FoxP3+ cells in WT and HKO 

mice at indicated time points is shown. The FACS plots of a representative 

mouse are shown. Five animals/group were analyzed, which all gave very similar 

results.   
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Figure 4.9 Influence of HVEM expressing T regs on outcome of immune 

response to HSV. 

WT or HKO mice were infected ocularly with 1x104 PFU of HSV RE in a 3-ul drop 

in the footpad. Single cell suspension of the infected corneas were prepared from 

pooled 6 corneas (n=3) at day 15 p.i. from each group (WT and HKO) of mice. 

The cells were labeled for: (A) CD4+ and (B) CD49d (VLA4). The numbers on the 

dot plots indicates the percentage of the cells expressing the particular markers 

in WT and HKO mice. The experiment was repeated three times and data are 

representative of a single experiment. 
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Many viruses infect humans and most are controlled satisfactorily by the 

immune system with limited damage to host tissues. Some viruses, however, do 

cause overt damage to the host, either in isolated cases or as a reaction that 

commonly occurs after infection. The outcome is influenced by properties of the 

infecting virus, the circumstances of infection and several factors controlled by 

the host. In this dissertation, we focus on host factors that influence the outcome 

of viral infection, including the induction of anti-inflammatory cells and proteins, 

as well as the presence of counter-inflammatory mechanisms. Here we discuss 

our current understanding of the circumstances of infection and host-controlled 

factors that could explain why an infection can be resolved with minimal impact 

or cause substantial tissue damage. 

Understanding of the circumstances of infection and host-controlled 

factors that could explain why an infection can be resolved with minimal impact 

or cause substantial tissue damage could prove to be useful in the future for the 

control and perhaps prevention of tissue-damaging virus infection. Accordingly by 

inhibiting the factors involved in immunopathology following an acute viral 

infection or manipulating the immunomodulatory factors such as some cytokines, 

groups of molecules derived from omega-3 polyunsaturated fatty acids, as well 

as some of the carbohydrate binding proteins of the galectin family and co 

stimulatory molecules like HVEM could be beneficial in preventing 

immunopathology and to enhance immune responses to vaccines. 
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