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Abstract 

The overall goal of this work is to provide a systematic methodology by which the 

difficulties associated with the inverse heat conduction problem (IHCP) can be resolved.  To this 

end, two inverse heat conduction methods are presented.  First, a space-marching IHCP method 

(discrete space, discrete time) utilizing a Gaussian low-pass filter for regularization is studied.  

The stability and accuracy of this inverse prediction is demonstrated to be more sensitive to the 

temporal mesh than the spatial mesh.  The second inverse heat conduction method presented 

aims to eliminate this feature by employing a global time, discrete space inverse solution 

methodology.  The novel treatment of the temporal derivative in the heat equation, combined 

with the global time Gaussian low-pass filter provides the regularization required for stable, 

accurate results.   

A physical experiment used as a test bed for validation of the numerical methods 

described herein is also presented.  The physics of installed thermocouple sensors are outlined, 

and loop-current step response (LCSR) is employed to measure and correct for the delay and 

attenuation characteristics of the sensors.  A new technique for the analysis of LCSR data is 

presented, and excellent agreement is observed between this model and the data.   

The space-marching method, global time method, and a new calibration integral method 

are employed to analyze the experimental data.  First, data from only one probe is used which 

limits the results to the case of a semi-infinite medium.  Next, data from two probes at different 

depths are used in the inverse analysis which enables generalization of the results to domains of 

finite width.  For both one- and two-probe analyses, excellent agreement is found between the 

actual surface heat flux and the inverse predictions.  The most accurate inverse technique is 
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shown to be the calibration integral method, which is presently restricted to one-probe analysis.  

It is postulated that the accuracy of the global time method could be improved if the required 

higher-time derivatives of temperature data could be more accurately measured.  Some 

preliminary work in obtaining these higher-time derivatives of temperature from a voltage-rate 

interface used in conjunction with the thermocouple calibration curve is also presented.   
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Chapter 1: Introduction 

 The inverse heat conduction problem (IHCP) involves estimating the surface thermal 

condition without the use of surface-mounted sensors.  Although the goal of the IHCP can be to 

resolve a variety of surface conditions – i.e., convection heat transfer coefficient, radiation heat 

transfer, surface heat flux, and temperature – the prediction techniques are generally identical.  

Resolution of the surface condition always involves projecting interior data (an ill-conditioned 

procedure) to the surface.  Temperature and heat flux measurements are taken below the surface, 

and the surface thermal condition is projected using the interior data.  IHCPs are of particular 

interest when the surface is under a harsh thermal environment, such as high temperatures and/or 

high heat fluxes, which precludes the use of sensors on the surface.  Applications of the IHCP 

include atmospheric reentry, solid rockets, nozzles, hypersonic flow, quenching, and fire 

research.   

 There are several difficulties that arise when attempting to resolve the inverse heat 

conduction problem.  These issues will be briefly introduced here, discussed further in the 

Literature Review, and expanded upon in subsequent chapters.   

 The IHCP is well-known to be ill-posed – i.e., noise in the data will be magnified in the 

surface projection [1, 2].  The physics of conduction provide a venue for the explanation of this 

phenomenon.  In the forward (or direct) problem, diffusion damps out high frequency oscillation 

as the thermal front passes from the surface through the body.  In the opposite direction 

(inverse), any high frequency oscillations present in the data (i.e., noise) are amplified as the 

surface condition is projected from the sensor site [1, 2].  Therefore, all inverse techniques must 

employ some form of regularization of the data which is a nontrivial task.   
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 Another difficulty encountered when dealing with the IHCP is that temperature data are 

required from embedded sensors.  Often these sensors are thermocouples which are characterized 

by the first order model – i.e., the temperature reported by a thermocouple is not the temperature 

of the medium.  This is due to the probe’s sensor characteristics (size, thermal capacitance, 

contact resistance, or lead losses effects).    As the effect of the sensor characteristics increases, 

the difference between thermocouple temperature and medium temperature also increases.  

Therefore, it is essential to quantify and account for sensor characteristics before inverse 

projections are made. 

 Also tantamount to the resolution of the surface condition with in-situ data is an 

understanding of the penetration time.  An embedded sensor will require a finite amount of time 

to feel a change in the surface condition[3].  We call this amount of time the penetration time.  

Therefore, transient inverse predictions will not be capable of resolving changes in the surface 

condition that occur more rapidly than the signal can penetrate through the medium. 

 Once an understanding of the physics encompassed by the inverse heat conduction 

problem is achieved, one must select a projection technique whereby the data from embedded 

sensors will be used to predict the surface thermal condition.  There are several methods 

available to resolve the IHCP including “exact solutions,” space-marching, sequential function 

specification, control volume techniques, non-integer system identification (NISI) methods and 

others (see [1]).  Complexity of the inverse solution schemes can range from a few lines of code, 

to highly involved.  Regularization can be incorporated into the projection scheme itself, or it can 

be used as an external process. 
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 Coupled with the projection scheme is the treatment of the time.  Beck et al. [1] classify 

three approaches to the time domain.  In the first approach, the projection scheme incorporates 

all time data up to the current time.  The second approach requires use of all time up to the 

current, plus a few future time steps of data.  The third domain utilizes all time data (i.e., global 

time).  Global time methods are highly appealing as they allow the smallest time steps in the 

inverse estimation.  However, they require the resolution of higher order time derivatives of 

temperature, which can be problematic when dealing with noisy data. 

 After selecting a projection method, a test case using errorless data should be used.  

Analysis of the IHCP projection algorithm for the case of errorless data provides two distinct 

advantages.  First, an inverse result based on errorless data will demonstrate the method’s 

maximum attainable stability and accuracy – that is, the addition of noise will only worsen the 

inverse projection.  Second, since IHCP projection methods are numerical and, therefore, subject 

to round-off error, the scenario under which round-off error should be studied is the case of 

errorless data.  Despite the fact that few researchers address this issue explicitly, round-off errors 

do play an important role in the stability and accuracy of the inverse projection. 

 The final IHCP method then consists of a projection technique, regularization and sensor 

characterization.  It is important for an IHCP technique to be experimentally validated.  

Oftentimes, noisy data is simulated as either a uniform or Gaussian distribution, having a zero 

mean, by way of a random number generator.  The simulated noise is added to an exact solution 

and is supplied to the inverse scheme as “data.”  This approach has merit, and is especially 

convenient when no experimental data are available.  However, in order for an inverse method to 

be truly validated, it should use real data from a physical experiment. 
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1.1 Literature Review 

Projection Methods 

 The surface condition for an IHCP can be resolved using a variety of techniques.  It 

would be impossible to document all IHCP methods.  Therefore, the intent of this literature 

search is to provide a sampling of the most commonly used techniques.  These include exact 

solutions, function specification, space-marching and finite difference, calibration methods and 

others. 

One of the early inverse projection schemes was proposed by Burgraff [4] and used an 

exact solution for the transient one-dimensional IHCP with provided temperature and heat flux 

data at an embedded sensor site.  An infinite series involving time derivatives of the temperature 

and heat flux data was truncated to two terms, and the surface heat flux was found.  The time 

derivatives of temperature and heat flux were found by differentiating a polynomial 

representation of the simulated input data.  While this method provided a clear investigation 

using errorless data, measurement error analysis was not included.  Additionally, accuracy was 

limited since only two terms of the infinite series were used.  Greater accuracy would require 

higher time derivatives of the data which would become problematic since the data were 

approximated by polynomials. 

Beck [5] first introduced the function specification method where the heat flux at the 

surface was assumed a functional form over each time interval – i.e., constant, line segment, 

parabola, etc.  For a detailed discussion on this method, see [1, 5-8].  A number of future 

temperature data (user specified) were generally included in the formulation to overcome 

measurement error.  A least squares approach was used to minimize the difference between the 



5 
 

temperature at the current time step and the future temperatures.  This approach successfully 

limited the method’s vulnerability to measurement error when more future temperatures were 

used; additionally, smaller time steps were possible, though the time step size was still limited.  

A difficulty with this method is that the exact number of future temperatures that should be 

incorporated is arbitrary; indeed this number depends on the (unknown) surface boundary 

condition.  Also commonly used with the function specification method is Tikhonov 

regularization [1, 9] which is a modification of the least squares minimization.   

 D’Souza [10] first proposed the concept of “space-marching” where the inverse space-

time domain was discretized, and the spatial and temporal derivatives of the heat equation were 

replaced by finite differences.  A fully-implicit in time finite difference scheme was applied with 

temperature data at two locations as input.  This method is very attractive because of its 

simplicity and its allowance for small time steps.  However, no regularization was used which 

caused the surface projection to be unstable in the presence of measurement error.   

 Subsequent space-marching techniques have been shown to provide stability in the 

presence of measurement error through a variety of methods.  Al-Khalidy [11] used a Savitzky-

Gollay digital filter to remove the noise.  This type of filter is essentially a least squares fit of the 

data to a polynomial.  A similar filtering approach was used by Taler [12]; however, Gram 

orthogonal polynomials were used as a basis set.  However, Frankel et al. [13] have shown that 

least squares does not assure good representation of derivatives.  Mollification, a type of filtering 

which uses an integral kernel as the regularization parameter, has been shown to stabilize the 

space-marching approach [14-16].  Carasso [17] reviewed and proposed a class of different 

space-marching schemes where the heat equation was approximated with varying combinations 
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of space and time differences without external regularization.  The most successful of these 

algorithms were those that included future information.  Carasso [18] later incorporated 

Tikhonov regularization [1, 9] into space-marching schemes. 

 An alternative to traditional inverse techniques is a calibration approach.  One such 

method is the non-integer system identification (NISI) technique [19-21].  This method generally 

uses a null-point calorimeter as the sensor, although the technique can be applied to other 

geometries as well.  A known heat source (laser) is first used as a calibration source to determine 

the relationship between the surface heat flux and the observed sensor temperature response.  In 

this way, the installed sensor characteristics, depth of the sensor, and material properties are 

accounted for in calibration coefficients which are determined via least squares.  An unknown 

heat flux can then be determined from the observed sensor temperature response and the 

calibration coefficients.  While useful, the NISI method [19, 21] is limited as it was derived 

assuming an isotropic material with constant properties and a one-dimensional, semi-infinite 

geometry.   

 Recently, a new integral calibration approach has been suggested by Frankel et al. [22].   

For the case of a semi-infinite medium, a calibration run is conducted with a known heat source, 

and the transient sensor temperature response is stored.  A second “real” run is then conducted 

and the unknown heat source is resolved by solving the Volterra integral of the first kind given 

by 

 )(),(),0(
0

tfduutdKuq
t

u

run =−∫
=

 (1.1)

where the kernel involves the calibration temperature history, and f(t) involves the calibration 

heat flux and the real run temperature history.  In contrast to the NISI method which calculates 
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calibration coefficients from the calibration data, this approach incorporates the calibration data 

directly into the solution integral.  Additionally, this approach was derived with a unified 

mathematical theory which will lead to higher dimensions, orthotropic materials, and finite-

width samples.  While the calibration approach is attractive as it eliminates the need to have 

accurate knowledge of the sensor depth, material properties, and sensor characteristics, 

conduction lead losses, caution must be used as the physics of the problem are hidden within the 

calibration data.  

 The above is merely a sample of the inverse methods available in the literature.  Others 

include the control volume method [23, 24], maximum entropy method [25], conjugate gradient 

method [26], finite element method [6], boundary element methods [6, 27], Green’s functions 

[7], neural networks [28, 29], wavelet-Galerkin method [30], and integral transforms [31].  

 Given the wide variety of projection schemes available, this work will first focus on finite 

difference based (space-marching) methods.  There are three reasons for this.   First, finite 

difference based methods are inherently simple in concept and straightforward.  Second, the user 

is free to apply any form of external regularization to the scheme as needed.  Third, finite 

difference methods are computationally inexpensive; therefore, parametric investigations can be 

easily conducted by varying the spatial mesh size, time step size, and any regularization 

parameters.  However, given the promise of the newly developed calibration integral approach, 

this technique will also be investigated. 

Errorless Data 

 The majority of previous investigations of inverse stability focus on the effect of 

measurement error on the stability and accuracy of the IHCP method.   While this is important 
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(see Measurement Error section below), a small amount of round-off error will amplify in the ill-

conditioned inverse projection.  For example, Elden [32] provides an analysis of the effects of 

finite differencing the time derivative of the heat equation.  His results show, however, that as 

the measurement error decreases to zero, the time step size should also decrease to zero.  This 

cannot be true since round-off errors will propagate through the time differences even for 

errorless data as noted by Taler [12].   

 The author was only able to find one study where the effect of round-off error on the 

inverse projection was studied and even then only indirectly.  Carasso [17] investigated the 

“amplification factor,” a function of the spatial and temporal mesh, of 18 different space-

marching algorithms.  Carasso’s expression for the error in the inverse projection involved, 

among other terms, the product of the amplification factor and the round-off error.  His findings 

indicated that implicit in time formulations amplified round-off error more than finite difference 

formulations involving future information.  However, a parametric analysis was not conducted 

by varying both the spatial and temporal mesh to obtain a stable and unstable region.  The spatial 

mesh was fixed at 1000 nodes in the inverse domain.  Clearly, there is a gap in the literature 

concerning the susceptibility of space-marching schemes to round-off error and the identification 

of a stability criterion. 

Measurement Error 

In practice, continuous errorless data does not exist.  Random fluctuations (noise) are 

present in all temperature and heat flux measurements.  The noise is amplified in the inverse 

projection process, which results in an unstable surface prediction, even if a stable mesh (as 

determined from errorless data) is used.  Therefore some type of regularization must be used to 
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“smooth” the data.  Considerable effort has been expended by previous researchers on the 

development of appropriate regularization techniques.  A sampling of the literature is provided 

below. 

 One of the first regularization methods was proposed by Beck [1, 5, 33].  He suggested 

the use of future temperatures to stabilize the surface prediction at the current time step.  The 

reason for this is that future sensor temperatures contain information about the current surface 

condition.  A least squares procedure is utilized to incorporate the future temperatures.  

However, a clear guide is not provided as to 1) when future temperatures are required for 

stability and 2) how many future temperatures should be used when required.  Indeed, if more 

future times are incorporated into the algorithm than necessary, the resulting surface heat flux 

prediction is shown to be attenuated and delayed. 

 A similar regularization method was proposed by Tikhonov and Arsenin [9].  In Beck’s 

procedure [1], the difference between future temperatures and the current temperature were 

minimized in the least squares sense.   In Tikhonov regularization, the product of a 

“regularization parameter” with heat flux terms was added to this minimization.  Unfortunately, 

this parameter does not have a physical interpretation, and the value of the regularization 

parameter can vary by four or more orders of magnitude.  Additionally a trial-and-error method 

is suggested for determining the necessary value of this parameter [1]. 

 Digital filtering is another method used for regularizing the data.  Recently, Beck [8] used 

the “filter coefficient method” in combination with Tikhonov regularization.  In this scheme, an 

external regularization method is employed to determine the required filter coefficients.  Digital 

filtering via mollification has been demonstrated to stabilize the inverse problem [14-16].  Al-
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Khalidy employed both Kalman filtering [24] and a Savitzky-Gollay digital filter [11] in 

conjunction with the control volume method to resolve the inverse problem.  Frankel [2] has also 

shown the effectiveness of filtering in removing noise from the data.  While not employed for an 

IHCP, Frankel showed that only a single, physically based cutoff frequency was necessary to 

regularize the data and obtain a smooth curve.   

Another important area for the understanding of real data is the penetration time.  The 

parabolic heat equation assumes an infinite speed of heat propagation [34-36].  However, it is 

known that in reality this does not occur.  A finite time is required for an in-situ sensor to “feel” 

the heat applied at the surface of a slab.  This is called the penetration time.  Recently, de Monte 

et al. [23] defined the penetration time as the amount of time for a thermal disturbance to 

propagate a distance, d, into the solid at a level of one part in 10z.  They recommended a value of 

z=2 for engineering purposes, and proposed the approximation of penetration time as 0.05d
2/α 

where d is the depth of the sensor below the surface and α is the thermal diffusivity.  This result 

was based on their numerical observations.   

To further elaborate on the concept of penetration time, the classical integral method [37] 

can be used to solve the heat equation (in terms of temperature or heat flux) for a semi-infinite 

medium at uniform initial temperature subject to a constant heat flux boundary at x = 0.  Rather 

than a threshold argument, the in-depth heat flux is assumed to have a fourth-degree polynomial 

profile.  The integral method solution for the dimensionless time required for the thermal front to 

reach a depth of d in the solid is Fo = 0.075 where Fo is defined as αt/d
2.  The integral method 

solution of the heat equation for a constant surface temperature boundary condition yields an 

identical solution for the penetration time [37]. 
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Effect of Sensor Characteristics 

 For the IHCP, experimental data is supplied from embedded sensors (i.e., 

thermocouples).  Since the sensor and lead wires will have different material properties than the 

sample, the observed temperature of the sensor will be different from the undisturbed sample.  

Further, thermocouples have non-negligible sensor characteristicss due to bead size and contact 

resistance with its surroundings.  Woodbury [38] demonstrated the effects of a finite 

thermocouple time constant on the inverse projection using the function specification method; 

the classical triangular surface heat flux was used as the surface boundary condition.  As 

expected, increasing values of time constant caused greater surface prediction attenuation and 

lag; a dimensionless time constant of ατ/d2 = 0.05 yielded approximately a 4% reduction in the 

maximum surface heat flux with a lag of 0.1 (dimensionless time) – i.e., twice the time constant.  

Clearly, it is essential to quantify the time constant of the sensors used for inverse prediction.   

 Orientation of the thermocouple lead wires perpendicular to the isotherm will result in 

further discrepancy between the positional, undisturbed temperature of the sample and the 

observed temperature.  As noted above, the NISI [19-21] and calibration integral [22] methods 

account for the effect of the thermocouple via the calibration data.   Woolley [39] exhaustively 

investigated variations on a technique suggested by Beck [40] for correcting thermocouple 

measurements of this type.  This correction technique uses observed thermocouple temperature 

and undisturbed positional temperature to obtain a calibration kernel.  This calibration kernel can 

then be used on a different dataset to obtain the undisturbed, positional temperature given 

thermocouple data.  This is a similar approach to the calibration integral and NISI method to 

accounting for the effect of the sensor characteristics.  However, one disadvantage of Beck’s 
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correction method is that it still requires accurate knowledge of the sensor depth and material 

properties.  Further, an accurate model must be constructed to provide the necessary undisturbed 

temperature history for the calibration, and a value of contact resistance between the sensor and 

the host must be assumed. 

 The Loop Current Step Response (LCSR) technique [41, 42] provides another method by 

which the in-situ sensor characteristics of the thermocouple can be measured.  The thermocouple 

is installed in the sample, and the sample is allowed to be at uniform initial temperature.  An 

electric current is passed through the installed thermocouple, and the emf decay of the 

thermocouple is observed.  The time constant is then found as the time corresponding to 63.2% 

of the overall decay.  This technique is heavily used in nuclear power plants for both time 

constant determination and health monitoring of thermocouples and other temperature sensors.    

Treatment of the Time Domain 

 The treatment of the time domain in IHCP algorithms is of highest importance, as this 

usually determines the method’s stability (or instability) in the presence of measurement error.  

For example, the space-marching method of D’Souza [10] utilizes all previous time steps in the 

calculation of the present time step, but no future information.  With no external regularization, 

this method is unstable in the presence of measurement error.  Carasso [17, 18] offers several 

space-marching schemes where information from future time steps are incorporated into the 

determination of surface heat flux at the current time step.  Consequently, these methods can be 

stable for some choices of time step size.  However, in the above examples, the time domain has 

been discretized.  Therefore, only a small portion of the entire time domain is utilized, and 

(significant) round-off is introduced into the inverse prediction. 
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 An alternative approach has been taken by Frankel and Keyhani [43].  They incorporate a 

weighted-residual method of collocation with Chebyshev polynomials of the first kind as a basis 

set, and resolve the entire space-time domain at once.  By treating time in a global sense, the 

problem is stabilized without the introduction of round-off error.  Regularization is employed by 

choosing the number of terms to include in the series.  Other whole domain methods have also 

been proposed [1].  Whereas discrete time methods become unstable as the time step size is 

decreased, this is not a concern for whole domain methods since time is made continuous.  In 

general, this benefit is at the cost of computational time.   

 Frankel [2] has proposed the use of a Gaussian low-pass filter for regularization.  This 

can be used irrespective of the projection scheme used, and provides a global time regularization 

– i.e., all future and all past information is used in the regularization of the current time.  This 

form of regularization is computationally inexpensive, and provides an analytical function as the 

output rather than discrete time values.  However, it should be noted that incorporation of this 

filter into a traditional space-marching method will negate some of the “global time” benefits.  

This is because traditional space-marching schemes utilize a finite difference representation of 

the time derivative which will magnify measurement error. 

 To this end, Taler [23] has used a control volume technique without differencing the time 

derivative of the heat equation.  Instead, the method of Burgraff [4] was used to obtain the heat 

flux at the sensor site, and a cubic spline (in time) was fit through the temperature and heat flux 

data.  Temporal derivatives were then taken from the spline equations and incorporated directly 

into the inverse projection.  Stability was achieved, but Taler’s results were limited to three 

control volumes which utilized two time derivatives of the sensor temperature and heat flux.  
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 As seen in Taler’s algorithm [23], higher-time derivatives of the temperature and heat 

flux are needed at the sensor site.  This is problematic since this involves differentiation of noisy 

data, which amplifies the error.  Frankel et al. [44] have demonstrated a sensor capable of 

measuring the first time derivative of temperature.  Additionally, their design can be cascaded in 

series so as to provide the higher time derivatives of temperature necessary for the global 

treatment of the time domain. 

Experimental Verification 

 As noted above, experimental verification of inverse techniques is essential since the 

IHCP is ill-posed and, therefore, sensitive to measurement error present in all real data.  Most 

inverse investigations simulate noise by adding Gaussian random error (fixed standard deviation 

and zero mean).  This is generally acceptable, but a rigorous test of the inverse scheme should be 

performed utilizing real experimental data wherever possible.   

 One experimental investigation was performed by Beck et al. [7].  A 0.86mm thick mica 

heater was sandwiched between two identical layers of 9.14mm thick carbon-carbon, and 

identical outer layers of ceramic insulation.  A thin heating element was located along the 

centerline of the mica heater.  In this way, a line of symmetry was created through the center of 

the mica heater.  Seven thermocouples were placed along the mica/carbon interface, which 

produced consistent temperature readings.  The temperatures reported by each of these 

thermocouples were averaged at each time step to obtain one value of the mica/carbon interface 

temperature.  A variety of inverse techniques were employed on the resultant data including 

function specification, Tikhonov regularization, and iterative regularization with Green’s 

functions.  The time scale for this experiment was very fast; using the definition of penetration 
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time as discussed later in Chapter 2, a meaningful signal should reach the mica/carbon interface 

in 0.2µs.  However, the inverse results required approximately 1s to resolve the heat flux, despite 

a sufficiently fast sampling rate of 100 Hz. 

 Taler and Zima [45] conducted a one-dimensional experiment using a steel tube as the 

inverse domain.  The tube had an inner diameter of 0.1085m and an outside diameter of 

0.1385m.  The external surface of the tube was stated to be “perfectly insulated.”  The 

temperature of the tube was at an initial uniform state; the inner wall is suddenly heated by hot 

water.  The water temperature changed over time since the water did not flow through the tube.  

The tube/insulation interface temperature was sampled every 5s and supplied as input to a 

control volume inverse scheme.  Though the number of control volumes used was not specified, 

previous research by Taler [23] used only three control volumes in the inverse projection.  The 

inner wall temperature was monitored for comparison with the inverse scheme.  The accuracy of  

the inverse scheme was only measured by comparison of the inverse temperature prediction with 

the inner wall temperature measurements.  Agreement between these two values was high for 

large time (t > 45s), but low for the initial transient of the experiment.  The reason for this is 

likely due to the distance of the sensor from the surface; the penetration time as defined later in 

Chapter 2 was 5.6s.  Additionally, the uncertainties present in the temperature measurements 

were not quantified. 

 Ji and Jang [46] constructed a one-dimensional experiment utilizing a kapton film heater 

sandwiched between two identical copper plates with thickness of either 1mm or 2mm.  A 

thermal flux meter (dimensions 1 x 1 x 0.055 in.) was placed on the back surface of one of the 

copper plates, and a type K thermocouple was soldered to the center of the same back plate.  A 



16 
 

“heat sink paste” was used to coat all interfaces to ensure good contact and uniform heat transfer.  

For the case of a 1mm copper plate, the penetration as defined later in Chapter 2 was 

approximately 0.75ms.  The entire assembly was wrapped in asbestos and placed in a chamber 

for insulation.  Data were collected at 50 Hz, and although the researchers state that a resolution 

of 12 bits was used, the accuracy of the data is unknown since the range of the data acquisition 

device was not provided.  An additional area of concern is the measurement of the back surface 

flux.  The thickness of the flux meter is nontrivial given the thickness of the copper plates used.  

Since the flux meter was only mounted on one side, the problem is not truly symmetric.  The 

source heat flux measurement is, therefore, suspect.  A Kalman filtering technique was used as 

the inverse scheme.  While the general trend of the inverse predictions matched that of the direct 

input measurements, a lag can be seen.  Additionally, the predicted flux magnitude was seen to 

vary by as much as 33% at the peak value.   

1.2 Scope of Dissertation 

 The overall goal of this work is to provide a systematic methodology by which the difficulties 

associated with the inverse heat conduction problem outlined above can be resolved.  First, a 

space-marching IHCP method (discrete space, discrete time) utilizing a Gaussian low-pass filter 

for regularization is studied.  Second, a new discrete time, global time IHCP method is presented 

which requires higher time derivatives of temperature.  The stability and accuracy of both 

methods are investigated for errorless data and in the presence of simulated noise.  A sensor 

capable of delivering higher time derivatives of temperature is demonstrated.  Next, a physical 

experiment is presented, and methods for quantifying the sensor characteristics of embedded 

thermocouples are presented.  Finally, the space-marching method, global time method and 
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calibration integral approach are used with the experimental temperature input data and the 

predicted surface heat flux is compared with the actual input surface heat flux. 
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Chapter 2: Space-Marching Method for Inverse 

Heat Conduction Problem 

This chapter is a revised version of a paper to be submitted for publication authored by 

Bryan S. Elkins, Majid Keyhani, and Jay I. Frankel: 

Elkins, B. S., Keyhani, M., and Frankel, J. I., in preparation, "Methodology for stable and 

accurate resolution of the inverse heat conduction problem." . 

My primary contributions to this paper include (i) collaboration in conceptualization of 

work, (ii) development of the numerical method, (iii) writing of the computerized code, (iv) 

parametric investigation of the numerical method, and (v) most of the writing.  

2.1 Space-Marching Method Introduction 

The inverse heat conduction problem (IHCP) is highly sensitive to both measurement 

error and round-off error.  The method presented in this chapter provides a simple means to 

circumvent both sources of error.  The method consists of a systematic approach that may be 

summarized as: 

• The role of penetration time on inverse analysis is clearly demonstrated, and the 

numerical value of the dimensionless penetration time (Fourier number) is established 

and experimentally verified. 

• The dimensionless optimal temporal mesh (time-step normalized with the penetration 

time) for circumventing round-off error (limited to precision of the 

computation/computer) for the space-marching technique is established. 
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• To minimize the effect of measurement error on the inverse projection, a low-pass 

Gaussian filter with a physically-based cutoff frequency as the regularization parameter is 

utilized.  The proposed procedure for determining the cutoff frequency exploits the 

physics of diffusion.  

• The accuracy of an alternative method for obtaining heat flux data at the sensor site via 

an integral relationship between heating rate (using temperature data at sensor site) and 

heat flux (applicable to the case of a semi-infinite medium) is established. 

• Using the proposed procedures to circumvent both round-off and measurement error, it is 

demonstrated that 10% error on temperature and heat flux data at sensor site results in 

less than 10% error on the resolved surface heat flux and temperature.   

It is significant to note that the proposed methodology (a) does not amplify the input error as the 

data is projected to the surface (a common inverse prediction predicament), and (b) indeed 

reduces the projected error to the surface for both temperature and heat flux.   

It is assumed that temperature and heat flux data are available with no delays, attenuation, 

etc.  This is a significant assumption, and will be discussed further in Chapter 6.  The focus of 

this chapter lies in the development of the numerical method to resolve the inverse heat 

conduction problem. 

2.2 Problem Description 

 For demonstration, consider one-dimensional, constant property, isotropic heat conduction in 

a solid.  The dimensional governing equation for this problem is given by 
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where T = T(x,t), subject to the initial condition 

 ,0,)0,( LxTxT i ≤≤=  (2.2)

where α is the thermal diffusivity and Ti is the initial condition.  The solid is subjected to a 

surface (x=0) heat flux described by 
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where k is the thermal conductivity, and the back wall (x=L) is insulated 
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Temperature and heat flux histories are known at the sensor site, x = d, where d ≤ L. The goal is 

to use the given sensor temperature T(x=d,t) and heat flux q(x=d,t) data to project and obtain the 

unknown surface conditions, T(0,t) and q(0,t).  It is noted that for a finite domain of thickness L 

> d, the half-space condition exists in the solid up to the time that the thermal front reaches the x 

= L boundary. 

 It is useful for analysis to non-dimensionalize the governing system.  This is accomplished 

without loss of generality by employing the dimensionless variables θ for temperature, Fourier 

number Fo for time, η for space, and q  for heat flux given as 
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where qs is the maximum surface heat flux.  The resulting equations are 
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2.3 Penetration Time 

 The parabolic heat Eq. (2.1) assumes an infinite speed of heat propagation [34-36].  However, 

it is known that in reality this does not occur.  A finite time is required for an in-situ 

thermocouple to “feel” the heat applied at the surface of a slab.  This is called the penetration 

time and is denoted by tp.  Therefore, if a source at the surface is turned on at time t = 0, a sensor 

at a given depth, d, will measure a temperature T = Ti for t < tp and a temperature T > Ti for t ≥ tp.  

Inverse predictions will not be possible when using embedded measurements until t > tp since the 

thermal front has yet to reach the thermocouple. 

 The numerical experiments herein rely on the aforementioned parabolic heat equation, since 

(Tnum – Ti) at x=d will be non-zero for t > 0.  To circumvent this issue, we make an 

approximation of tp and say that for t < tp all numerical results at x=d are meaningless.  The 

question is then how do we define penetration time?  When using analytical data, we propose 

defining tp as the time it takes the sensor to overcome a threshold value.  For example, consider a 
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constant temperature boundary condition of T0; for a threshold value of 1% of the surface 

temperature change (T0 – Ti), the penetration time can be found to be Fo = 0.075 using the well-

known exact solution for this problem [47].  For a constant surface heat flux case, the time for a 

sensor to feel 1% of the surface heat flux also occurs at Fo = 0.075.  This 1% threshold concept 

suggests the definition of penetration time as 

 ,075.0
22

αα
dd

Fot pp ==  (2.13)

 A threshold concept was also proposed by de Monte et al. [48], where they defined the 

penetration time as the amount of time for a thermal disturbance to propagate a distance, d, into 

the solid at a level of one part in 10z.  A value of z=2 was recommended by [48] for engineering 

purposes (i.e., 1% of surface change), and proposed the approximation of penetration time given 

by  
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which was based on their numerical observations.   

 Alternatively, the classical integral method [37] can be used to solve the heat equation (in 

terms of temperature or heat flux) for a semi-infinite medium at uniform initial temperature 

subject to a constant heat flux boundary at x = 0.  If the heat flux is assumed to have a fourth-

degree polynomial profile, the integral method solution for the dimensionless time required for 

the thermal front to reach a depth, d, is Fo = 0.075 where Fo is again defined in Eq. (2.6).  The 

integral method solution of the heat equation for a constant surface temperature boundary 

condition yields an identical solution for the penetration time.   



23 
 

 Experimentally, penetration time is defined as the instant at which the temperature data 

overcomes the uncertainty in the initial condition.  In order to demonstrate this, a physical 

experiment was conducted (see Chapter 5 for full details).  Two identical bronze plates were 

used (k = 58.7 W/(mK), ρ = 7450 kg/m3, Cp = 419.0 J/(kgK)), [25] with dimension 0.1270m x 

0.1397m and a thickness of 0.0403m.  A 0.125 mm thick nichrome resistance heater with a 

resistance of 4.326 Ω was used as the source.  The heater was sandwiched between two sheets of 

0.002 in. thick mica for electrical insulation.  This assembly was placed between the bronze 

plates to create a symmetric boundary condition.  An in-house manufactured type T 

thermocouple with a bead diameter of 1.47mm was surface mounted on the back face of one of 

the plates.  Temperature data were sampled at a rate of 10 Hz via TEMPpoint – a fully-isolated, 

low-noise data acquisition board manufactured by Data Translation.  The source was activated 

with a voltage of 80.5 VRMS after 15 seconds of lead data were taken.  The resulting temperature 

history can be seen in Figure 2.1.  The standard deviation of the lead temperature data was 

observed to be 6.96(10-3) °C.  The uncertainty in the initial condition was defined as  

 ,%)95( %95στ±= meani TT  (2.15)

where Tmean is the mean of the lead data, σ is the standard deviation of the lead data, and τ95% is 

student’s t-distribution value for 95% confidence.  Using a value of τ95% as 1.96 [49], the 

uncertainty in the initial condition was found to be ± 0.040 °C.  The temperature was found to 

exceed the uncertainty in the initial condition after 6.8s of heating, which corresponds to a 

dimensionless penetration time of Fop = 0.079.  Note that the difference between the 

experimental penetration time and the analytical value of Fop = 0.075  (1% change threshold) is 
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Figure 2.1: Illustration of lead data to capture background noise (0 ≤ t ≤ 15s) and 
experimental penetration time.  Temperatures measured from a back face thermocouple 
resulting from a surface heat flux of 4.3 W/cm2 switched on at 15s.   
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 only 5%.  The agreement between theses values suggests that Fop = 0.075 is a reasonable 

approximation for the dimensionless penetration time.   

2.4 Inverse Method 

 For the inverse method presented here, it is assumed that the required temperature and heat 

flux data at x = d (η = 1) are known via experimental data (with no delay or attenuation) or the 

exact solution.  A straightforward implicit-in-time finite difference with space-marching 

approach is used to project the in-situ data to the surface.  The domain 0 ≤ x ≤ d is discretized 

using equal spacing between all nodes such that 

 ,1,...,2,1,)1( +=∆−= Mmxmxm
 (2.16)

where xm=1 = 0 and xm=M+1 = d are located at the surface and the sensor site, respectively.  Control 

volume lines are drawn halfway between each node.  This creates half control volumes at both x 

= 0 and x = d.  The equations below are presented in dimensional form for clarity.  The 

dimensionless forms can be easily derived using the dimensionless variables in Eqs. (2.5)-(2.8).   

 A general, implicit-in-time, finite difference formulation [50] is used to write the equations at 

each interior node “m” location such that 

 ,)()()()( 00
11 mPmWmEmP TaTaTaTa ++= −+  (2.17)

where the temperature subscript refers to the spatial node, superscript “0” refers to the previous 

time step, and temperatures without a superscript refer to the current time step.  All “a” 

coefficients are given by Patankar’s method [50] as 

 ,
x

k
aa EW ∆

==  (2.18)



26 
 

 ,0

t

xC
aP ∆

∆
=

ρ
 (2.19)

 ,0
PEWP aaaa ++=  (2.20)

At the sensor node (m=M+1), we can manipulate Eq. (2.17) and solve for the temperature at the 

m=M node such that  
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where Td and qd are the sensor data at the current time step, and 0
dT is the sensor temperature at 

the previous time step.  The coefficients are defined as 
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Note that Eq. (2.21) solves directly for TM in terms of sensor data.  Similarly, the equations for 

nodes 2 < m < M are written as 
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Beginning with Eq. (2.21), we solve for the temperature just above the sensor; then using Eq. 

(2.24), we can project to the surface and find Tm=1 = Tx=0.  This provides a straightforward 

procedure where there is always only one equation and one unknown.  No future times are used 

in the formulation.  The surface heat flux is then given by 

 .)()()( 1
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 For demonstration, three test cases of finite width slabs with an adiabatic boundary condition 

of x=L are investigated.  For test cases one and two, the temperature sensor is located at x=d≪L 
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such that for the duration of the transient the thermal front does not reach the surface at x=L.  

Therefore, one can use the exact solution for the semi-infinite medium subjected to (case 1) a 

constant surface heat flux at x=0 [47] or (case 2) a pulse heat source at x=0 [51] to generate the 

temperature and non-zero heat flux data at x=d and proceed with the inverse projection.  For test 

case three, the temperature sensor is located at x=d=L (an adiabatic boundary) and the surface at 

x=0 is subjected to the classical triangular heat source. The exact solution [1] is used to generate 

temperature data at x=L with zero heat flux to proceed with the inverse projection. It should be 

added that in investigations with “data with error,” error is added to the temperature and nonzero 

heat flux data at sensor site for test cases one and two. For test case three, error is added to the 

temperature data at x=L and heat flux is taken to be zero which is the same approach used by 

other investigators who have studied this specific problem. 

Test Case 1 

 Consider an isothermal semi-infinite solid subjected to a constant surface heat flux at time t = 

0.  The dimensionless exact solution [47] for this problem is  

 

 ,0,,
2

erfc
4

exp
2

),(
2

≥







−







 −
= Fo

FoFo
FoFo η

η
η

η
π

ηθ  (2.26)

and 

 ,0,,
2

erfc),( ≥







= Fo

Fo
Foq η

η
η  (2.27)

where erfc(u) is the complementary error function with argument u [52].  A plot of the resultant 

inverse-predicted temperature and heat flux can be seen in Figure 2.2 using the exact data 

generated from Eqs. (2.26) and (2.27) as sensor data – i.e. no measurement error.  The time axis  
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Figure 2.2: Inverse surface temperature and heat flux solution using “perfect,” discrete data (ε = 
0%) from the exact solution for test case 1.  Mesh parameters used are tp/∆t = 30 and d/∆x = 9. 
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is normalized by the penetration time, tp.  For this and all subsequent numerical simulations, 

dimensionless variables were used in double precision in MATLAB 7.8.0.347 (2009a) on a Dell 

Latitude E6400 with an Intel Core 2 Duo P8600 2.4 GHz processor.  The simulation took  0.11 

seconds to generate the “sensor” data and run the inverse code using the mesh parameters shown 

in Figure 2.2: tp/∆t = 30 (number of temporal nodes per one penetration time) and d/∆x = 9 

(number of spatial nodes).  For t > 2tp, the accuracy of the inverse predictions for the surface 

temperature and heat flux are 0.0029% and 0.0013%, respectively. 

 Clearly an inverse prediction for t < tp is very challenging since the thermal front has not 

reached the sensor yet; therefore the sensor temperature would remain at the initial condition 

value.  However, it must be noted that the exact solutions, Eqs. (2.26) and (2.27), yield non-zero 

temperature and heat flux at x=d for t < tp (infinite speed of propagation). Intuition suggests that 

we should, therefore, force the initial time step of the inverse method to be equal to the 

penetration time.  The code would then be restricted to predicting the surface temperature and 

heat flux for t > tp.  However, this would remove the stabilizing effect that the lead data (t < tp) 

has on the inverse method, and the surface prediction would blow up in the interval tp < t < 2tp.  

The sensor data for t < tp is, therefore, considered to be lead data and is allowed to be passed to 

the inverse code.  The use of lead data is again utilized later when noise is added to the data and 

subsequently regularized with the aid of a digital filter.  For the case of step change in surface 

heat flux imposed at time t=0 (no lead data taken), the presented inverse predictions do not show 

results for t < tp as the predictions are unreliable in this time interval. 
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2.5 Stability and Accuracy Investigation of the Inverse Method 

 When discussing the stability of a numerical method, it is important to note the subtle 

difference between stability and accuracy.  We define accuracy as the percent difference between 

the inverse prediction and the exact solution at the surface.  We define stability as a measure of 

the inverse prediction’s smoothness.  The difference between these two principles is 

demonstrated in Figure 2.3 which is generated using the exact solution for test case 1 with no 

measurement error as input to the inverse code.  It is observed that a course mesh (∆t = tp and ∆x 

= d/2), while stable, produces an inaccurate inverse prediction for time (t < 5 tp).  Conversely, if 

the mesh is refined past the “optimized mesh,” the inverse prediction becomes unstable due to 

significant round off error. The fine mesh results (∆t = tp/40 and ∆x=d/30), shown in Figure 2.3 

clearly demonstrate the unstable nature of the results due to round off error. This instability is 

magnified if the mesh is further refined.  It is also noted that the round off error amplifies as time 

progresses. 

 The distinction between accuracy and stability is further illustrated in Figure 2.4, which shows 

two plots of root-mean-square (RMS) error for the inverse prediction over the time interval 5tp ≤ 

t ≤ 15tp in percent of the surface exact solution as a function of nodal Fourier Number.  The RMS 

error, ΦRMS, is given by 
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where Φ(ti) is the exact solution, Φi is the inverse prediction (temperature or heat flux) at time 

step i, and the time steps it2 and it1 correspond to the times t = t2 and t = t1, respectively, over 

which analysis is desired.  Note that the chosen denominator does not vanish in the time interval  
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Figure 2.3: Comparison of inverse results for test case 1 using the exact solution as input data 
with varying mesh parameters: coarse mesh: tp/∆t = 1, d/∆x = 2; fine mesh: tp/∆t = 40, d/∆x = 30; 
and optimized mesh: tp/∆t = 30, d/∆x = 9. 
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of interest. An alternative and potentially better suited denominator could involve the norm of 

the function Φ(t).  The nodal (control volume) Fourier number is defined as 
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The exact solutions for temperature and heat flux at η = 1 with no measurement error for test 

case 1 are used as input to the inverse problem, and double precision is maintained for all 

variables.  Figure 2.4(a) is created by fixing the spatial mesh and varying the temporal mesh 

while Figure 2.4(b) is created by fixing the temporal mesh and varying the spatial mesh. 

 In both plots, a coarse mesh results in a stable, but inaccurate prediction.  As the mesh is 

refined, the accuracy improves until the prediction becomes unstable, i.e., the fine mesh causes 

the round-off error to become significant.  Figure 2.4(a) (fixed spatial mesh) and Figure 2.4(b) 

(fixed temporal mesh) clearly show that by changing the “other” mesh parameter (temporal or 

spatial) and thus increasing or decreasing the nodal Fourier number, unstable-inaccurate or 

stable-inaccurate results will be obtained. These figures also show that the inverse prediction is 

more sensitive to the choice of temporal mesh than spatial mesh; Figure 2.4(a) shows a single 

optimized value for the temporal nodes, while Figure 2.4(b) suggests a range of optimum spatial 

nodes.  Clearly, a definite stability criterion exists for this inverse method, which is a 

compromise between refining the spatial and temporal meshes. 

 Seeking this stability criterion, let us first explore the physics of the problem.  For a constant 

heat flux surface boundary condition (test case 1), the heating rate, ),0( Fo=ηθ&  should remain 

positive for Fo > 0. Similarly, ),0( Fo=ηθ&& should remain negative for Fo > 0.  Taking advantage 

of these physical attributes, a stability condition is constructed such that if the inverse  
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(a) 

 
(b) 

Figure 2.4: Inverse prediction RMS error for test case 1 over the interval 5 < t/tp < 15 for the 
dimensionless surface temperature and heat flux values using exact data for (a) fixed nodal 
spacing and (b) fixed temporal mesh. 
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prediction at the surface resulted in 0),0( >= Foηθ&& , the prediction is deemed unstable.  An 

extensive stability analysis has been conducted using the exact solution as input and varying the 

spatial mesh as 3 ≤ d/∆x ≤ 106 and the temporal mesh varying as 1 ≤ tp/∆t ≤ 400.  Figure 2.5(a) 

shows the resulting stability criterion.  This curve can be interpreted as follows: for a given 

spatial mesh (fixed location on vertical-axis), the temporal mesh may be refined (moving right 

on the horizontal-axis) until the stability limit is reached.  Conversely, for a given temporal mesh 

(fixed location on the horizontal-axis) the spatial meshed may be refined (moving up on the 

vertical-axis) until the stability limit is reached. 

 This analysis provides a clear picture of how round-off error propagates, independent of 

measurement error (ε=0 for these results), through the inverse prediction.  Using the derived 

stability criterion, mesh parameters can be chosen such that the effect of round-off error is 

minimized.  As was shown in Figure 2.4, the accuracy is improved as the mesh is refined to the 

stability limit.  Therefore, for optimum stability and accuracy, mesh parameters should be chosen 

such that they exactly lie on the stability line.  Figure 2.5(b) shows a plot of the RMS error over 

the interval 5 ≤ t/tp ≤ 15 obtained using the stability lines to define mesh parameters.  The 

minimum error is seen to be at d/∆x = 9 and tp/∆t = 30, which is the optimum mesh.  However, it 

should be noted that straying slightly from the optimum mesh (while remaining on the stability 

line) results in only a small change in accuracy.  It should also be noted that the reported 

optimum mesh is obtained from a dimensionless analysis; therefore, it is applicable to any one-

dimensional inverse heat conduction problem with a constant heat flux boundary condition.  An 

optimum mesh for an alternative surface boundary condition could be easily developed using the 

methodology presented. 
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(a) 

 
(b) 

Figure 2.5: Optimization of mesh for test case 1.  (a) Stability correlation relating the spatial 
mesh size (d/∆x) to the temporal mesh size (tp/∆t) and (b) optimum mesh for both stability and 
accuracy. 
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2.6 Digital Filtering – Regularization with Physical Meaning 

 As with all space-marching methods, this inverse method will blow up in the presence of 

noisy data unless some type of regularization is employed.  However, it is well-known that high 

frequency oscillations in the measurement data of an embedded sensor cannot be physically valid 

since conduction damps out any high frequency content in the signal.  Alternatively phrased, a 

sensor should only receive low frequency information from conduction; all high frequency 

energies are associated with noise.  The natural tool for removal of high frequency noise is a 

low-pass filter, where signal content above a user-specified cutoff frequency is significantly 

attenuated.  The resulting regularized data contains only the low frequency portion of the data, 

which is the true signal.  Therefore, a physically-based regularization method employs a low-

pass filter for removing high frequency energy visible from the power spectrum of the Discrete 

Fourier Transform (DFT) [2]. 

 The goal of the regularization method presented is to separate the projection scheme 

(discretization) from the regularization (filtering).  Instability due to round-off error is addressed 

by choosing the optimum discretization parameters.  In this way, either ideal (errorless) data, or 

noisy data that has been properly regularized can be supplied to the projection scheme and 

stability is guaranteed.  The low-pass Gaussian filter described below, coupled with the 

physically-based cutoff frequency provides the regularization required for stable inverse 

predictions.  Indeed, any choice of discretization parameters in the stable region of Figure 2.5(a) 

produces a stable inverse prediction whether errorless data or regularized noisy data are used.  

Additionally, any choice of discretization parameters in the unstable region of Figure 2.5(a) 

produces an unstable inverse prediction whether errorless data or regularized noisy data are used. 
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 Recently, Beck [8] used the “filter coefficient method” in combination with an external 

regularization method such as Tikhonov Regularization.  In this scheme, an external 

regularization method is employed to determine the required filter coefficients.  Guo and Murio 

[14] have demonstrated digital filtering via mollification in combination with finite differences.  

Park and Jung [53] employed Kalman filtering in an inverse technique.  Frankel [2] has also 

shown the effectiveness of filtering in removing noise from the data.  While not employed for an 

IHCP, Frankel showed that only a single, carefully chosen cutoff frequency, fc, was necessary to 

filter the signal and obtain a smooth curve.  Building on previous contributors, it is proposed that 

a digital filtering scheme can provide the necessary regularization for an inverse analysis.  

Additionally, it is proposed that a single cut-off frequency is the only “regularization parameter” 

required to reduce the effect of measurement error on the inverse prediction and achieve a stable 

and accurate result. 

 Press et al. [54] suggest using Wiener filtering ideas to obtain the optimum choice of cutoff 

frequency.  The goal of such a method is to remove content from the corrupted signal where the 

noise level overpowers the true signal level, i.e., a low signal-to-noise ratio.  The DFT of a 

function, Φ, is given by [54] 
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where time is discretized as 

 .,...,1,0, Pktktk =∆=  (2.31)

Note that Φ can represent either temperature or heat flux.  White noise is simulated and added to 

the data such that 
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where uk is a random number in the interval [-1,1] based on a uniform probability density 

function, ε is the noise level and P is the number of data points used in time.  Figure 2.6 shows a 

plot of the magnitude (i.e., power spectrum) of the DFT for corrupted (ε = 0.1, i.e., 10% error) 

dimensionless temperature data from test case 1 as a function of dimensionless frequency given 

by 
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As can be seen in Figure 2.6, the true signal is comprised of low-frequency content, while the 

noise dominates the data at high-frequencies.  For this reason, the use of a low-pass filter is 

recommended.  In order to obtain the cutoff frequency in Figure 2.6, a line is drawn tangent to 

the high frequency portion which extrapolates the noise level in the signal.  A second line is 

drawn tangent to the low frequency portion which extrapolates the true signal.  The cutoff 

frequency is defined at the intersection of the two tangent lines (	
� ≅ 2).  Frankel [2] has shown 

that this method can be used with good success.  This concept follows the basic premise of 

Wiener filtering involving signal-to-noise principles. 

 Unfortunately, this method requires a judgment to be made as to where each tangent line 

should be drawn.  Additionally, this method can have a limited resolution due to the “eyeball” 

approximation used.  As such, this technique of determining cutoff frequency is somewhat 

difficult to analytically implement.  An alternate method of choosing the cutoff frequency 

analytically is the subject of future investigation.  However, the inverse results are relatively 

insensitive to a small change in the value of the cutoff frequency as discussed below.  
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Figure 2.6: Choice of cutoff frequency by tangent line method. 
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 Once the optimum cutoff frequency is determined, the noise can be removed using a Gaussian 

low-pass filter [2] given by 

 ( ) ( )( ) ( ) ( )( ),exp
~

expˆ
0

222

1

0

222 ∑∑
=

−

=

−−Ψ







−−=Ψ

P

k

kck

P

k

kc ttftttft ππ  (2.34)

where Ψ can be heat flux or temperature, P is the number of time steps and fc is the cutoff 

frequency chosen as described above.  This filter encompasses all future and past information in 

acquiring the local filtered value.  Figure 2.7(a) demonstrates the effectiveness of the filter at 

removing noise from the signal using ε = 10% and 	
� = 2.0.  The filter output and the exact 

solution are graphically identical for t > 3tp.  Figure 2.7(b) shows the inverse results using the 

filtered data displayed in Figure 2.7(a).  Good agreement is seen between the exact solution and 

the inverse results for t > 2tp.   

 Figure 2.7(a) also shows the effect of the filter at the beginning and end of the time history.  

Around t = 0, the filtered temperature history over-predicts the temperature.  This is known as 

the filter effect, and it can be combated in part by padding the data with “lead data.”  For the 

inverse problem presented in this chapter, padding the noisy input data reduces the filter-affected 

small time inverse results to be only for t �  2tp.  The procedure of padding the data is as follows: 

2tp of lead data are added to the noisy data before the filter.  The lead data are forced to be 

exactly equal to the initial condition, i.e., there is no noise in the lead data, (-2tp ≤ t ≤ 0) .  This 

data set is then filtered, and the first 2tp of data (padding) is subsequently removed.  The 

remaining data are supplied to the inverse code as input. 

 Near t = tmax, the filtered temperature and heat flux histories begin to depart from the exact 

solution; this is the ending filter effect.  The ending filter effect can also be overcome by  
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(a) 

 
(b) 

Figure 2.7: Effectiveness of filter at eliminating unwanted noise. (a) Noisy, filtered temperature 
and heat flux input data (η = 1) used to predict (b) surface (η = 0) conditions.  Parameters used 

were cf = 2.0, d/∆x = 9 and tp/∆t = 30 for test case 1. 
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simply sampling data for a longer period of time.  For example, if 15 seconds of inverse results 

are desired, one should take data for at least 20 seconds since approximately the last 25% of the 

data will be compromised due to the end filter effects. 

 It is also important to note that a slight change in the value of cutoff frequency has minimal 

effect on the resulting filtered data.  Varying the cutoff frequency by 25% (say 	
� = 2.0 vs. 	
� = 

2.5) shows little change in the resulting inverse temperature and heat flux histories.  This was 

also shown by Frankel and Arimilli [55].  It should also be noted that if more of the oscillatory 

behavior of the signal is desired to be passed through the filter, a higher cutoff frequency can be 

used.  This causes the inverse prediction to become more sensitive to changes in the surface 

condition at the expense of increasing noise sensitivity. 

2.7 Results with Measurement Error 

 Figure 2.8 demonstrates the effects of measurement error in temperature and heat flux data for 

ε = 0, 5% and 10% on the inverse predictions for test case 1.  Ideal input data are created by 

using the exact solutions for temperature and heat flux given in Eqs. (2.26) and (2.27).  As 

described in the previous section, noise is added to the data via Eq. (2.32), and is subsequently 

filtered via Eq. (2.34).  The filtered temperature and heat flux data at (η = 1) are then provided to 

the inverse code. The CPU time for one such simulation using mesh parameters d/∆x = 9 and 

tp/∆t = 30 on the machine described in Section 2.4 was 0.26 seconds.  As expected, Figure 2.8 

shows that the inverse prediction error is directly related to the measurement error, i.e., an 

increase in measurement error produces a corresponding increase in the inverse prediction errors 

for both temperature and heat flux.  Figure 2.8 shows that the inverse prediction is seen to be 

highly accurate, even in the presence of 10% random error distribution (shown in Figure 2.7(a));  
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(a) 

 
(b) 

Figure 2.8: Effect of input error, ε on the surface temperature and heat flux error histories.  The 
RMS error was calculated over the interval 5 < t/tp < 15 for test case 1. 
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the maximum temperature and heat flux prediction errors are found to be 0.28% and 2.14%, 

respectively, in the interval 3 < t/tp < 15.  Since these results depend on the random error 

distribution used, 15 different cases were tested, each with a unique random error distribution 

and a noise level ε = 10%.  The maximum error found in any of these runs over the time interval 

of 3 < t/tp < 15 was found to be 1.96% for temperature and 6.45% for heat flux, with an average 

of maximum errors of 0.68% for temperature and 3.22% for heat flux (average of the 15 cases). 

It is significant to note that the proposed methodology (a) does not amplify the input error as the 

data are projected to the surface (a common inverse prediction predicament), and (b) indeed 

reduces the projected error to the surface. 

 Figure 2.9 is created by fixing the spatial mesh and refining the temporal mesh to the stability 

limit with a noise level of 10%.  Further refinement of the temporal mesh produces unstable 

results.  Figure 2.10 is similarly created by fixing the temporal mesh and refining the spatial 

mesh to the stability limit with a noise level of 10%.  Further refinement of the spatial mesh 

produced unstable results.  In both Figures 2.9 and 2.10, it is seen that marginal improvement can 

be gained by refining to the “optimum mesh.”  This is similar to the case of errorless data seen in 

Figure 2.5(b); the optimum mesh (d/∆x = 9 and tp/∆t = 30) gave a heat flux RMS error of 0.05% 

while an alternate mesh of d/∆x = 5 and tp/∆t = 56 produced a heat flux RMS error of 0.063%.  

The key point here is that while there is an “optimum mesh” which yields the minimum error, 

there is a significant amount of leeway in the choice of the mesh parameters, provided the choice 

is in the stable regions of Figure 2.5(a) and the data are regularized via an appropriate cutoff 

frequency. 
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(a) 

 
(b) 

Figure 2.9: Effect of ∆t using noisy (ε = 10%), filtered data on the inverse-predicted surface (a) 
temperature error and (b) heat flux error histories.  The RMS error was calculated over the 
interval 5 < t/tp < 15 for test case 1. 
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(a) 

 
(b) 

Figure 2.10: Effect of ∆x using noisy (ε = 10%), filtered data on the inverse-predicted surface (a) 
temperature error and (b) heat flux error histories.  The RMS error was calculated over the 
interval 5 < t/tp < 15 for test case 1. 
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2.8 Heat flux Evaluation via Heating Rate  

 Frankel [2] has reported an integral relationship between the heating rate and the heat 

flux in a semi-infinite medium given by 
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where ρ is the density and C is the specific heat capacity.  Again, note that Eq. (2.34) is only 

valid on the half-space, i.e., the thermal front has not penetrated through the back wall of the 

sample for the duration of the experiment.  Frankel et al. [44] (see also Chapter 4) have recently 

shown that the heating rate can be directly measured using a thermocouple and a simple analog 

filtering-differentiating circuit.  Therefore, Eq. (2.35) is a novel way of obtaining the heat flux 

data at the sensor site with minimal instrumentation.   

 Figure 2.11(a) shows a comparison between two different sensor site heat flux inputs to the 

inverse problem along with the exact solution for the heat flux labeled as “exact” for test case 1.  

The input heat flux for the curve labeled (�� , � data) refers to the case where temperature and 

heating rate data are obtained at the sensor site. In this case, the heating rate (��) is obtained by 

differentiating the exact solution for the temperature, Eq. (2.26), extracting discrete exact ��  data, 

adding noise, and then filtering in a similar manner as previously described for temperature.  Eq. 

(2.35) is then used to obtain the heat flux at the sensor site.  The curve labeled “θ data only” 

refers to the case where only temperature data is collected at the sensor site; the input heat flux is 

obtained using the exact solution for the temperature, Eq. (2.26), with noise added and then 

filtered.  A simple forward difference is used to obtain the heating rate which is then used in Eq.  
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(a) 

 
(b) 

 
(c) 

Figure 2.11: Half-space application: (a) input heat flux data obtained via the heat flux-heating 
rate integral relationship at sensor site (η = 1), (b) the resultant surface temperature (η = 0) 

and (c) the resultant surface heat flux (η = 0).  Parameters used were ε = 10%, cf = 2.0, d/∆x 

= 9 and tp/∆t = 30, respectively for test case 1. 
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(2.35) to obtain the heat flux at sensor site.  In both cases, Eq. (2.35) is evaluated using product 

integration given by 
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where ti = i∆t for 0 < t/tp < 20 using a time step size of tp/∆t = 150 for a total of 3001 temporal 

nodes.  If more computational nodes are used for the integral equation, better agreement is 

achieved for small time; however, since we are primarily interested in the accuracy of the 

solution for t > tp, there is no tangible benefit to increasing the number of computational nodes.   

Only tp/∆t = 30 temporal nodes are passed to the inverse method to achieve stability  Figure 

2.11(a) shows that the sensor site heat flux obtained via the forward difference heating rate is 

more sensitive to the filter effects at large time. 

 Figure 2.11(b) compares the predicted surface temperature using the two different input heat 

fluxes shown in Figure 2.11(a) with the exact solution.  Figure 2.11(c) compares the predicted 

surface heat flux using the two different input heat fluxes shown in Figure 2.11(a) with the exact 

solution. These figures show that the sensor heat flux provided by Eq. (2.37) produces an 

accurate inverse result.  Clearly, the results based on �� , � data suggest that direct heating rate 

measurements are preferred (even if they contain substantial error [56]) in order to avoid strong 

filter end effects. 
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2.9 Transient Surface Heat flux With Measurement Error 

Test Case 2 

 In order to fully demonstrate the effectiveness of the proposed method, two cases involving 

transient heat flux boundary conditions at x = 0 have been investigated.  First, a pulsed heat 

source is applied at the surface for 10tp ≤ t ≤ 30tp, before and after which the surface is insulated.  

The sensor is located at x = d and the half space boundary condition exists at x = L where d < L.  

Temperature and heat flux data are obtained at the sensor site [51].  Noise is simulated via Eq. 

(2.32) with a uniform distribution and a noise level of ε = 10% for both temperature and heat 

flux.  The results can be seen in Figure 2.12(a).  Mesh parameters of d/∆x = 9 and tp/∆t = 30 and 

a dimensionless cutoff frequency of 2.0 are again found to yield favorable results. Results are 

seen to be highly accurate: an input error of 10% results in an inverse prediction error of less 

than 4% in the range of 13tp ≤ t ≤ 27tp.   

Test Case 3 

 A second transient surface boundary condition was investigated where the source was defined 

as 
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which results in the classical triangular heat source [1] with maximum of 1.0.  The body is 

insulated at x = L, and the sensor is located at x = d = L.  Temperature data with 10% simulated  
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(a) 

 
(b) 

Figure 2.12: Inverse results with a transient surface boundary condition and 10% measurement 
error: (a) pulse flux (test case 2) and (b) triangular flux (test case 3).  Both results used the 

parameters ε = 10%, cf = 2.0, d/∆x = 9 and tp/∆t = 30. 
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error were supplied to the inverse code, and the adiabatic condition was used as sensor heat flux 

data.  The inverse projection is shown in Figure 2.12(b).  Mesh parameters of d/∆x = 9 and tp/∆t 

= 30 and a dimensionless cutoff frequency of 2.0 are again found to yield favorable results. The 

inverse code predicts a peak heat flux of 0.903 which is less than 10% prediction error for 10% 

input temperature error.  Also good agreement between the exact surface condition and the 

inverse prediction is seen during the ramp up and ramp down times.   

2.10 Chapter Summary 

 The inverse heat conduction problem is highly sensitive to both measurement error and round-

off error.  The method presented in this chapter provides a simple means to circumvent both 

sources of error.  The method consists of a systematic approach that may be summarized as: 

• The role of penetration time on inverse analysis is clearly demonstrated, and the 

numerical value of the dimensionless penetration time (Fourier number) is established 

and experimentally verified. 

• The dimensionless optimal temporal mesh (time-step normalized with the penetration 

time) for circumventing round-off error is established (limited to precision of the 

computation/computer). 

• To minimize the effect of measurement error on the inverse projection, a low-pass 

Gaussian filter with a physically-based cutoff frequency as the regularization parameter is 

utilized.  The proposed procedure for determining the cutoff frequency exploits the 

physics of diffusion.  
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• The accuracy of an alternative method for obtaining heat flux data at the sensor site via 

an integral relationship between heating rate (using temperature data at sensor site) and 

local heat flux (applicable to the case of a semi-infinite medium) is established. 

 Using the proposed procedures to circumvent both round-off and measurement error, it is 

demonstrated that 10% error on input temperature and heat flux data at sensor site results in less 

than 10% error on the resolved surface heat flux and temperature.  For example a 10% 

measurement error results in an average (over 15 cases of random number generator) maximum 

inverse prediction error of 0.68% for temperature and 3.22% for heat flux.  It is significant to 

note that the proposed methodology (a) does not amplify the input error as the data is projected 

to the surface (a common inverse prediction predicament), and (b) indeed reduces the projected 

error to the surface for both temperature and heat flux.  
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Chapter 3: Global Time Method for Inverse Heat 

Conduction Problem 

This chapter is a revised version of a conference paper published by Bryan S. Elkins, 

Majid Keyhani, and Jay I. Frankel: 

Elkins, B. S., Keyhani, M., and Frankel, J. I., 2011, "Global Time Method for Inverse 

Heat Conduction Problem," 2011 International Conference on Inverse Problems in Engineering, 

Orlando, FL, May 4-6, 2011. 

My primary contributions to this paper include (i) collaboration in conceptualization of 

work, (ii) development of the numerical method, (iii) writing of the computerized code, (iv) 

parametric investigation of the numerical method, and (v) most of the writing.  

3.1 Global Time Method Introduction 

 Traditional space-marching techniques for solving the inverse heat conduction problem 

(IHCP) are highly susceptible to both measurement and round-off error.  This difficulty is 

exacerbated if the problem requires small time steps to resolve rapid changes in the surface 

condition, since this can cause instability.  The work presented in this chapter is motivated by the 

global time and global space paper of Frankel and Keyhani [43].  In this chapter, a global time 

and discrete space formulation of the inverse problem is presented.  A novel treatment of the 

temporal derivative in the heat equation is utilized; namely, the time derivative in the heat 

equation is not finite differenced, and the in-depth data are projected directly to the surface 

without any need to compute the temperature at intermediate spatial nodes.  A Gaussian low-pass 

filter is employed for regularization.  There are three main benefits to using this type of filter.  
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First, this filter provides a global time regularization – i.e., all future and all past information is 

used in the regularization of the current time.  Second, the output of this filter is an analytical 

function which can be analytically differentiated.  Third, the filter ensures all time derivatives of 

the data to be smooth and bounded.  The inverse technique presented in this chapter is 

demonstrated to be robust in the presence of noise.   

3.2 Problem Description and Inverse Technique 

Consider an isotropic, one-dimensional geometry with no internal generation and 

constant properties.  The governing equation for this problem is given by the heat equation 
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where T = T(x,t) is temperature, t is the time variable, x is the spatial variable, α is thermal 

diffusivity, and L is the length of the (direct) spatial domain.  Equation (3.1) is subject to an 

initial condition 
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for the entire spatial domain.  The surface (x=0) thermal condition is unknown 
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where k is the thermal conductivity.  Heat flux and temperature data are provided at the 

embedded sensor site (x=d) such that 
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where qd(t) is the heat flux data and Td(t) is the temperature data.   
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The goal of the inverse problem is to resolve the unknown surface (x=0) thermal 

condition using the provided sensor (x=d) temperature and heat flux data.  This can be 

accomplished by first discretizing space such that xj = (N-j)∆x – i.e., xj=0 corresponds to the 

sensor site (x=d) and xj=N corresponds to the surface (x=0).  The spatial derivative of the heat 

equation (3.1) is approximated using a central difference as  
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Traditionally, the time derivative is also approximated using a difference formula.  However, if 

the heating rate and higher-time derivatives of temperature are directly measured (see Chapter 4) 

or can be obtained via post-processing, then time need not be differenced.  We, therefore, define 

the operator, F, as 
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and solve Eq. (3.6) for Tj+1 to obtain 
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An energy balance at the sensor site (j=0) yields the result 
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where Td(t) and qd(t) are the sensor data.  Using a process of repeated analytical substitution with 

Eqs. (3.8-3.9), the temperature at the Nth spatial node (i.e., at the surface) can be solved for in 

terms of the sensor temperature and heat flux explicitly.  As an example, for N = 4 and N=7 the 

equations are 



57 
 

 ( ) ),(2)(12
2

1
)( 324

4 tqFF
k

x
tTFFtT ddN −

∆
+







 +−==  (3.10)

 ( ) ),(165)(
2

7
7

2

7

2

1
)( 246357

7 tqFFF
k

x
tTFFFFtT ddN −+−

∆
+







 −+−==
 

(3.11)

respectively.  For resolution of the surface temperature, N temporal derivatives of temperature 

data and N-1 temporal derivatives of the heat flux data are required.  An energy balance at the 

surface yields  
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which again can be found explicitly in terms of sensor temperature and heat flux only.  As an 

example, Eq. (3.12) for N = 4 and N = 7 becomes 
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 For resolution of the surface heat flux, N+1 temporal derivatives of the temperature data, and 

N temporal derivatives of the heat flux data are required.  Therefore, if noise exists in the sensor 

data, the projection process is clearly ill-posed.  Additionally, if the derivatives are obtained 

numerically, significant round-off error will accumulate as N increases, and again the process is 

ill-posed.  However, if the data and the required number of temporal derivatives are bounded and 

smooth, the projection process is well-posed.  This can be accomplished via a low-pass Gaussian 

filter.  
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3.3 Regularization via Digital Filtering 

As discussed above, high frequency oscillations present in the data (noise) cause the 

inverse projection to become unstable.  The reason for this is made clear through inspection of 

Eq. (3.13).  For N = 4, five time-derivatives of the temperature data and four time-derivatives of 

the heat flux data are required to resolve the surface heat flux.  Time differentiating noisy data 

produces an unbounded and unstable result.  A physically meaningful way of stabilizing the 

inverse problem is to remove the non-physical high frequency energies from the signal by way of 

a low-pass digital filter.  Consider the Gaussian low-pass filter given by 
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where fc
 is the cutoff frequency in Hz, P is the number of time steps, ��  is the filtered temperature 

and ��  denotes the raw, discrete sensor data.  Derivatives of Eq. (3.15) can be obtained 

analytically; the first time derivative is given by 
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The outputs of Eqs. (3.15-3.16) are analytical functions which remove high frequency energies 

(noise) from the signal and ensure continuous, smooth temporal derivatives [2] as required by the 

inverse technique.  Therefore, a carefully chosen cutoff frequency is the only parameter 

necessary to regularize the data, and make the problem well-posed. 

 The cutoff frequency of the filter can be determined using residual minimization in the least-

squares sense.  Traditional least squares would seek to minimize the difference between the 
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filtered and noisy data – i.e. the residual.  However, some authors [13, 57] have noted that the 

difference between the filtered data and the exact data should be minimized.  First, let us define 

the noisy data to be 
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≥+= tttTtT exact ε  (3.17)

where ε is the noise which is considered to be of a Gaussian distribution with a constant standard 

deviation, σ, and has a zero mean.  Next, we define the residual as the difference between noisy 

and filtered data such that 

 ,...,2,1,0),()(ˆ)()(ˆ)(
~

)( =+−=−= kttTtTtTtTtR kkkexactkkk ε  (3.18)

Clearly, minimizing the difference between the filtered and exact data is the same principle as 

setting the residual equal to the noise.  Therefore, we utilize the Euclidean norm and seek to 

minimize the function 
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where ton is the time at which the source at the surface is switched on, and tmax is the time at the 

final data sample.  The discrete 2-norm is defined here as 
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The function, ϕ1, now contains the noisy data, filtered data, and the noise history.  Additionally, 

lead data is commonly taken before the source is turned on.  We use the mean of the lead data, Ti 

(initial condition), to define ϕ2 as 
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where Ti is again the initial condition.  The cutoff frequencies which produce minimums of ϕ1 

and ϕ2 provide a range of optimal cutoff frequencies from which the user can choose.  It should 

be noted that the Gaussian low-pass filter of Eq. (3.15) is not overly sensitive to the choice of 

cutoff frequency; a change of 15-20% will not dramatically influence the filtered data. 

 At first, this procedure does not seem useful since in the real world both the exact data and the 

noise history are unavailable (apart from the initial condition).  However, we utilize a procedure 

of estimating the noise outlined in [13].  A first-order polynomial is fit to the noisy data, and the 

residual, R1(tk), between the noisy data and the first-order least squares fit is calculated.  Next, a 

higher order function, ���(tk), is used to approximate R1(tk) via least squares.  The error is then 

estimated as 

 ,...1,0),()(ˆ)( 11 =−= ktRtRt kkkestε  (3.22)

3.4 Errorless Data 

 For demonstration, consider a pulsed surface heat flux given by 
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where qS is the peak source heat flux, H is the Heaviside step function [52], and tm are the time 

values for switching the surface flux on and off.  For this chapter, we wish to observe lead data 

(before surface heat flux is turned on), one pulse, and cooling data.  Therefore, tm=0 = ton and tm=1 

=  toff.  Without loss of generality, we use the half-space as the domain, noting that this is valid 

until the thermal front reaches the back wall (x = L).  The exact solution for the forward problem 

is given by [51] 
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Without loss of generality, the results we present are made dimensionless via 
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where Fo is dimensionless time, η is dimensionless space, θ  is dimensionless temperature, �� is 

dimensionless heat flux, and 	
 is dimensionless frequency.  Note that although the peak source 

heat flux, qS, is unknown apriori, it is merely a scaling factor in Eqs. (3.28-3.29).  Therefore, the 

actual value of qS is unimportant for this analysis. 

  Although the exact solution for this problem is available, the digital filter was used to show 

its performance.  The exact solution for temperature and heat flux Eqs. (3.24-3.25) were 
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“sampled” at a given rate,	
�, and the data were provided to the Gaussian low-pass filter.  Since 

errorless data were used (i.e., no regularization needed), a suitably high dimensionless cutoff 

frequency of 	
�=50 was used in the filter for both temperature and heat flux data.  The output of 

the filter was then provided as input the to the projection scheme.   

 Inverse temperature and heat flux results for N = 4 can be seen in Figure 3.1 using a sampling 

rate of 	
� = 265.  The inverse method does an excellent job of capturing the jump in heat flux at 

Fo = 0.5, with only a short lag.  The accuracy of the inverse method should improve as the order 

of the projection (N) increases.  Figure 3.2(a) shows the inverse heat flux results for N = 7 with 

all other parameters unchanged.  Although increasing the projection order should have had a 

positive effect on the results, a bias in the heat flux prediction is observed.  This is because the 

dimensionless sampling rate of 	
� = 265 for N = 7 is slow; as the projection order increases, the 

data density required to resolve the higher order temporal derivatives via the filter also increases. 

Figure 3.2(b) shows the inverse heat flux results for N = 7, but with an increased sampling rate of 

	
� = 400.  As the sampling rate is increased, the results are still stable, and the bias in the heat 

flux prediction vanishes. 

 If the sampling rate is appropriately fast, use of more spatial nodes will also enable the inverse 

method to capture a change in the surface condition more quickly.  Figures 3.1(b) and 3.2(b) 

illustrate this quite well.  For N = 7, the response time for when the source is turned on and off is 

much faster than for N = 4.  Additionally, the Gibbs’ spike is also seen to decrease with 

increasing N.  These observations make physical sense for two reasons.  First, as N increases, 

space is becoming less lumped and more continuous – i.e., more accurate.  Second, increasing N 

increases the highest order of time derivative used in the inverse prediction.  Each higher time  
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(a) 

 
(b) 

Figure 3.1: Inverse results using N=4 using errorless, discrete data. (a) temperature and (b) heat 
flux inverse predictions. 
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(a) 

 
(b) 

Figure 3.2: Effect of the sampling rate on the inverse heat flux prediction with N=7 using 

errorless data. (a) sf = 265 and (b) sf  = 400. 
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derivative picks up on changes in boundary conditions faster than the previous derivative, which 

will result in a faster response time.  In sharp contrast to other inverse methods, this implies one 

should use the largest N consistent with the highest available sampling rate. 

3.5 Noisy Data 

 For demonstration, again we consider a pulsed surface heat flux given by Eq. (3.23) with the 

exact solution given by Eqs. (3.24-3.25). Noise is simulated using dimensionless variables and a 

random Gaussian distribution with a constant dimensionless standard deviation of 0.01 and a 

zero mean.  This noise is added to the temperature and heat flux data as in Eq. (3.17).  The cutoff 

frequency for the low-pass Gaussian filter must then be found.  This is accomplished by first 

obtaining an estimate for the noise history as outlined in [13].  A first order polynomial is fit to 

the noisy data, and the residual, R1, between the noisy data and the first order least squares fit is 

calculated.  Next, a higher order function is used to approximate R1, and the residual between 

this fit and R1 is used as the estimated noise history.  Figure 3.3(a) shows the noisy data and a 

one-term least squares fit of the data.  Figure 3.3(b) shows the residual, R1, and an eighth order 

least squares fit of R1.  Here, the function used to fit the residual is of the form 

 ,)()(
1

0 ∑
=

Ω+Ψ≈Ψ
M

m

mm tat  (3.31)

where Ωm(t) are the basis functions and am are the unknown coefficients.  We have used Hardy 

multiquadric radial basis functions [58] given by 

 ( ) ,,...,2,1,)( 222
Mmttttt mmmmmmm =++−+−−+=Ω ββββ  (3.32)

where tm and βm are the mth center and shape factor, respectively.  As in [13], we have used 

equidistant centers tm = mtmax/M and set βm = β = (tmax/M)2.  The recreated noise and the actual  
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(a) 

 
(b) 

 
(c) 

Figure 3.3: Technique for estimating the noise present in the data: (a) first order fit to data (b) 
least squares fit to residual and (c) actual and estimated noise. 
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noise can be seen in Figure 3.3(c).  Clearly, this is an effective tool for estimating the noise 

present in the data. 

 Once the noise history has been estimated, ϕ1 and ϕ2 from Eqs. (3.19) and (3.21) can be used 

to provide a range of appropriate cutoff frequencies.  This can be seen in Figure 3.4(a) where the 

reported optimum dimensionless cutoff frequency range is 2.4 - 2.8.  As noted above, the 

Gaussian low-pass filter used here is relatively insensitive to the actual choice of cutoff 

frequency.  Figure 3.4(b) shows the noisy and filtered temperature histories using cutoff 

frequencies of 2.4 and 2.8.  Although there is a 17% difference between these two values of 

cutoff frequency, the filter outputs are nearly graphically identical. 

 Figure 3.5 shows the effectiveness of the inverse method in the presence of noise.  Noise was 

simulated using a normal distribution with a standard deviation of 0.01 for both dimensionless 

temperature and heat flux data and can be seen in Figure 3.5(a) using a sampling rate of 	
� = 400 

.  Optimum cutoff frequency ranges were determined to be 2.4 – 2.8 for the temperature data and 

1.7 – 3.9 for the heat flux data.  For simplicity, a common cutoff frequency of 2.6 was used for 

both temperature and heat flux data.  The data were filtered and passed to the inverse scheme.  

The resulting inverse predictions of the surface temperature and heat flux histories can be seen in 

Figure 3.5(b-c), respectively.  A smoothing effect is observed near ton and toff; Once the inverse 

prediction settles, the standard deviation of the error is calculated to be 0.01 in the domain 0.75 ≤ 

Fo ≤ 1.75 – which is exactly the same as input error.  Additionally, further refinement of the 

sampling rate does not adversely affect the inverse results.  The regularization and inverse 

method combination effectively makes the problem well-posed.   
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.  

(a) 

 
(b) 

Figure 3.4: Gaussian low-pass filter exploration. (a) optimum cutoff frequency range and (b) 
insensitivity of Gaussian filter to a small change in cutoff frequency. 
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(a) 

 
(b) 

 
(c) 

Figure 3.5: Inverse results using a normal distribution, with a standard deviation of 0.01 and a 
dimensionless cutoff frequency of 2.6.  (a) Noisy data used as input to the inverse code, (b) 
inverse temperature results and (c) inverse heat flux results. 
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 In order to demonstrate the generality of this inverse technique, we also present the classical 

Beck triangle problem [1].  The surface boundary condition is defined as  
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The body is insulated at x = L, and the sensor is located at x = d = L.  For a dimensionless 

sampling rate of 	
� = 1200, noise is simulated as in Eq. (3.17) using a normal distribution with a 

zero mean and a standard deviation of 0.01 for dimensionless temperature which can be seen in 

Figure 3.6(a).  The optimum cutoff frequency range for the data presented was determined to be 

2.1 – 4.9.  As noted above, the Gaussian low-pass filter used here is relatively insensitive to the 

actual choice of cutoff frequency.  Figure 3.6(b) shows the exact and filtered temperature 

histories using cutoff frequencies of 2.1 and 4.9.  Although there is a large difference between 

these two values of cutoff frequency, both filter outputs approximate the temperature data well.  

As a compromise between these two values, a dimensionless cutoff frequency of 3.5 was used to 

filter the data.  The filter output was then passed to the inverse code; the results for the predicted 

surface temperature and heat flux histories can be seen in Figure 3.7.  The peak value of heat flux 

is underestimated by only 7.0%.   

 An investigation of the accuracy of the proposed inverse method as a function of the sampling 

rate was conducted using the surface heat flux of Eq. (3.33) as the test case.  The sampling rate 

was varied from 100 ≤ 	
�≤ 1200.  Five unique random error distributions were  
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(a) 

 
(b) 

Figure 3.6: Temperature data for Beck triangle problem  (a) raw data with σ = 0.01 and sf = 

1200 (b) insensitivity of Gaussian filter to change in cutoff frequency. 
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(a) 

.  

(b) 
Figure 3.7: Inverse results for the classical Beck triangle problem for (a) surface temperature 
prediction and (b) surface heat flux prediction.  Noise was simulated using a normal distribution, 

σ = 0.01 and cf  = 3.5 used for regularization. 
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generated for each sampling rate and added to the data as in Eq. (3.17).  The RMS of the surface 

inverse heat flux prediction was calculated for each dataset such that 
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where M is the number of time samples.  The RMS error was averaged for the five runs at each 

sampling rate.  Two different values for the order of the inverse scheme, N=4 and N=7, were 

used.  The cutoff frequency was chosen as the midpoint of the optimum range from ϕ1 and ϕ2 

for both values of N.  Also, for N=7, 	
� was held constant at 	
� = 3.0 to investigate the effect of 

sampling rate independent of the cutoff frequency. 

 Table 3.1 shows the results of the accuracy investigation.  In sharp contrast to other inverse 

methods [1], for N=4 or N=7, increasing the sampling rate resulted in a decrease of the error 

norm.  This is because the time derivatives of the temperature data are more accurately resolved 

at higher sampling rates.  These results hold whether the cutoff frequency is kept constant at 3.0, 

or chosen as the midpoint of the optimum range.  Additionally, greater accuracy was achieved by 

using the proposed analytical method of determining cutoff frequency over holding the cutoff 

frequency constant at 	
�=3.  Next, it was observed that the error norm improved as N was 

increased (i.e., more spatial nodes) from N=4 to N=7 using the proposed cutoff frequency 

determination method.  Minimal improvement occurred for low sampling rates, while greater 

improvement occurred as the sampling rate was increased.  Again, this is because the higher-time 

derivatives of the temperature data are more accurately resolved at higher sampling rates; hence 

greater improvement is seen at higher sampling rates.  These results suggest that optimum 

inverse predictions are obtained by sampling the data at the highest  
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Table 3.1: Predicted heat flux RMS error as a function of the sampling rate, sf  , projection order, 

N, and choice of cutoff frequency, cf ; meancf , and qRMS,mean are average values resulting from five 

independent noise distributions. 

  4=N  

( ) 2/2,1, φφ ccc fff +=  

 7=N  

( ) 2/2,1, φφ ccc fff +=  

 7=N  

3=cf  

sf   
meancf ,  meanRMSq ,   

meancf ,  meanRMSq ,   
meancf ,  meanRMSq ,  

100  2.56 0.0370  2.56 0.0368  3.00 0.0439 
200  2.86 0.0352  2.83 0.0301  3.00 0.0357 

400  3.11 0.0335  3.09 0.0273  3.00 0.0245 
1200  3.41 0.0301  3.49 0.0212  3.00 0.0246 
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possible rate, using higher number of spatial nodes (N), with the proposed cutoff frequency 

determination method.  

3.6 Chapter Summary 

 A robust global time inverse heat conduction method has been demonstrated.  In stark contrast 

to traditional inverse methods, increasing the data density does not compromise stability of the 

inverse prediction.  Indeed, the inverse results improve with faster data sampling.  The time-

derivative of the heat equation is not finite differenced.  Instead, a functional representation of 

the higher-time derivatives of temperature are employed to project directly to the surface without 

the need to calculate the temperatures at intermediate spatial nodes.  This is accomplished via a 

low-pass Gaussian filter with a physically based cutoff frequency which provides an analytical 

function as output.  The proposed regularization scheme presented provides bounded, 

continuous, analytical time derivatives of the sensor data.  Additionally, an analytical method for 

determining the optimum filter cutoff frequency range is demonstrated.  The novel treatment of 

the temporal derivative in the heat equation, combined with the global time Gaussian low-pass 

filter provides the regularization required for stable, accurate results.    Future studies with this 

concept should involve extension to two- and three-dimensional geometries. 
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Chapter 4: In-Situ Higher-Time Derivative of Temperature Sensors 

for Aerospace Heat Transfer   

This chapter is revised based on a paper under review by Bryan S. Elkins, Manguo 

Huang, and Jay I. Frankel: 

Elkins, B. S., Huang, M., and Frankel, J. I., in review, "In-situ higher-time derivative of 

temperature sensors for heat transfer," International Journal of Thermal Sciences. 

My primary contributions to this paper include (i) collaboration in conceptualization of 

work, (ii) design and construction of the sensor, (iii) collection and analysis of experimental data, 

and (iv) most of the writing.  

4.1 Motivation for Higher-Time Derivatives of Temperature Sensor 

This chapter presents a novel sensor that delivers higher-time derivatives of temperature 

in combination with a thermocouple calibration curve.  This highly attractive quantity has been 

demonstrated to be of critical importance in the global time inverse heat conduction method 

presented in Chapter 3.  Further, higher-time derivatives are useful for acquiring both stable and 

accurate in-depth heat fluxes, predicting sudden changes in surface heat fluxes from an in-depth 

array of sensors, and predicting the future temperature in a thermal control environment.  This 

chapter outlines the motivation for developing such a sensor, presents the salient and poignant 

features of the initial design and processes required for arriving at the sensor while incurring 

minimal component delay times.  Finally, preliminary predictions are presented using an 

experimental thermocouple drop facility that allows for comparison with an analytic model.  The 

presented results are highly encouraging for stability, accuracy and repeatability.   
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Heat Flux  

This chapter builds on recent previous analytic results [2, 51, 55, 59-63] that produce 

insightful heat flux-temperature integral relationships that explicitly display the heating rate, 

∂T/∂t as a desirable quantity of physical importance.  For example, in one-dimensional half-

space studies involving an isotropic material subject to a trivial initial condition, the heat flux at 

the location x = d < L in the interior can be mathematically expressed as 
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This equation is valid until the thermal front penetrates the back wall at x = L (see Section 2.3 for 

a discussion of penetration time).  Physically, Eq. (4.1) states that one can acquire the local (in-

depth) heat flux at a point within the half space from the local heating rate, ∂T/∂t.  

The ill-posed nature of Eq. (4.1), when using experimental temperature measurements, is 

clearly described in [2, 55]. If the error is bounded in temperature, T, the resulting error in ∂T/∂t 

is unbounded as the sample density is increased for fixed run time (i.e., the numerical 

approximation goes unbounded as sampling density is increased).  However, it should be noted 

that heat flux reconstruction is well-posed if the heating rate, ∂T/∂t is directly measured since a 

finite error bound would exist.  That is, the heat flux error decreases as the sample density 

increases [51, 55].  In other words, the time derivative of the temperature is the key ingredient 

for stability and accuracy [2, 55].  Additionally, this viewpoint is not limited to one-dimensional 

analysis.  Similar relationships exist for two- [60] and three-dimensional [61] space, as well as 

for orthotropic materials [63]. 
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Global Time Inverse Heat Conduction Method 

 Chapter 3 presented a global time inverse heat conduction method which requires higher time 

derivatives of the embedded temperature measurements.  A Gaussian low-pass filter was used in 

functional form which allowed analytical derivatives to be obtained.  However, this was required 

to be done in the post-processing of the data, and the procedure is not computationally cheap.  

For a semi-infinite medium, a real-time sensor capable of delivering the required higher-time 

derivatives of temperature could enable a real-time local heat flux via Eq. (4.1) and associated 

time derivatives; therefore, a real-time inverse surface heat flux prediction could be made.  

Further, the Gaussian filter can over-smooth changes in temperature data.  This in turn can cause 

attenuation in the resulting derivatives of the Gaussian filter function.   A sensor capable of 

delivering higher-time derivatives of temperature directly from the embedded thermocouple 

could reduce this attenuation and result in a more accurate inverse surface prediction. 

Locating Sudden Jumps in a Surface Heat Flux by In-Depth Determination  

Figure 4.1 displays a two-dimensional, isotropic half space subject to a square, steady 

surface heat flux.  For the given surface heat flux, an exact solution is available [59, 60].  

Assuming errorless data for demonstration purposes, the objective involves locating or 

identifying the position (above sensor “0”) where the sudden change in surface heat flux takes 

place from in-depth rate-based measurements.  Per the property and geometric data displayed in 

Table 4.1 and Figure 4.1, Figures 4.2-4.3 display a progressive series of higher-time derivatives 

of temperature plotted against time at the indicated sensor sites.  It is evident that as the time 

derivatives increase, a coalescence of curves about the jump condition appears.  This permits a  
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Figure 4.1: Schematic of probe placement (below surface) for surface flux jump location 
simulation.  
 

 

Table 4.1: Properties of Copper Bronze. 

Property Value 

Thermal conductivity, k 58.7 W/m·K 
Thermal diffusivity, α 1.88 x 10-5 m2/s 
Density, ρ 7450 kg/m3 
Specific heat capacity, Cp 419 J/kg·K 
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(a) 

 
(b) 

Figure 4.2: (a) Temperature and (b) heating rate histories at indicated embedded sites.  Boundary 
condition is shown in Figure 4.1 with qs = 106 W/m2. 
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(a) 

 
(b) 

Figure 4.3: (a) Second and (b) third time derivatives of temperature histories at indicated 
embedded sites.  Boundary condition is shown in Figure 4.1 with qs = 106 W/m2. 
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direct interpretation (i.e., no inverse analysis required) for the location of the jump using an array 

of in-depth sites. 

A second and important observation can be made from Figures 4.2 and 4.3.  By diffusion 

theory, the effect among the sensors is picked up earlier as the time derivative increases.  That is, 

it is well known that differentiation has a “roughening” effect while integration has a 

“smoothing” effect.  Numerical “roughening” translates to amplifying physics useful for early 

detection.  If noise is controlled in the differentiation, then this concept can be used for detecting 

sudden changes in surface heat fluxes.  This concept may have application for locating transition 

in hypersonic flows.  

Thermal Management and Feedback/Controls.  

If higher time derivatives of temperature are available then it appears possible to predict 

the future in the sense of analytic continuation.  That is, the Taylor series of temperature at time 

t+g can be estimated through an expansion about the point t as 
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where γ  represents a small increment in time.  This will be demonstrated in Section 4.5.   

4.3 Time Derivatives of Temperature Sensor 

Section 4.2 presented some preliminary but revealing findings that clearly describe the 

need for a new array of rate-based sensors.  Three immediate choices are conceptually available 

for obtaining higher-time derivatives of temperature. 
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1. Find a material that has a property that is dT/dt dependent (an electrical property is an 

ideal choice if available, e.g., Pyroelectric materials).  

2. Obtain the derivatives via post-processing. 

3. Develop a highly accurate electrical interface (sensor) that can be used with a known 

property (such as a calibration curve) through differential calculus. 

The first option does not seem viable since higher-time derivatives will be difficult to 

obtain.  The second option involves numerical differentiation of data with measurement error 

which will amplify the noise; however, post-processing can be an acceptable technique provided 

the data is carefully filtered (see section 3.3).  Additionally, obtaining the derivatives through 

post-processing eliminates the possibility of using real-time analysis.  Case 3 does not represent 

a true temperature rate sensor; however, the desired temperature rates are estimated through a 

voltage-rate interface that accounts for the nature of diffusion.  The third option both allows for 

real time analysis and presents the possibility of higher-time derivatives without noise 

amplification.  Therefore, the sensor presented herein relies is based on the voltage rate interface. 

Thermocouples and Well-Designed Voltage-Rate Interface:  

In order to arrive at the necessary number of time derivatives of temperature, we must 

first propose a strategy.  The strategy starts by noting that a thermocouple is a well-behaved and 

a mainstay sensor.  The calibration curve normally follows the form given by the simple 

polynomic expansion[64] 
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where �������
�  are experimentally determined coefficients.  Here, the reference point is taken as 

the freezing temperature of pure water.  The desired time derivatives of temperature follow from 

the chain rule of calculus as 
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where ( ).T T V→  Thus, for a third time derivative of temperature, three voltage-rate circuits 

must be cascaded in series with minimal error amplification in the analog differentiation process.  

Eqs. (4.4-4.6) require calibration data for determining the properties, dn
T/dV

n
 (n=0,1,…) which is 

available per Eq. (4.3).  Additionally, if the calibration curve is linear over the temperature range 

of interest, Eqs. (4.5-4.6) simplify to become 
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It then remains to obtain the higher-time derivatives of voltage, which can then be 

mapped back to higher-time derivatives of temperature.  For this task, we rely on the circuit 

shown in Figure 4.4.  The time derivatives are obtained using the basic architecture of the 

“practical differentiator” [65] seen in Figure 4.5 with a modified design procedure.  This choice 

of differentiator stabilizes the differentiation process by reducing the level of high frequency  
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Figure 4.4: Schematic of concept for acquiring necessary voltage rates with minimal high 
frequency content and minimal time lag. Here, em, m=1,2.. are voltage outputs from differentiator 
that are mathematically related to the thermocouple voltage, Vi.  
 

 

 

 
(a) 

 
(b) 

Figure 4.5: (a) Basic differentiating circuit used in practice (m=1,2,…) and (b) symbolic element 
as expressed in Figure 4.4.                            
           

  

Voltage- time derivative 

    m-cascade element 

em-1 
em 



86 
 

noise allowed to be passed; a 20dB/decade rolloff is present for input frequencies greater than 

the corner frequency, f2.   

The practical differentiator [65] has two characteristic frequencies given by 
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where f1 is chosen as the highest frequency of the signal (cutoff frequency), and traditional 

design procedure suggests setting the corner frequency f2 = 10f1.  However, this allows 

nonphysical frequency content one order of magnitude greater than the cutoff frequency to be 

passed.  Therefore, the proposed modified design procedure of the practical differentiator instead 

sets the corner frequency, f2, equal to the cutoff frequency, fc.  This allows proper attenuation of 

noise.  Rather that arbitrarily setting f1 = 10f2, we next examine the differential equation of the 

practical differentiator given by 
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where em-1(t) is the input to the differentiator and em(t) is the output.  For low input frequencies, 

the differential equation simplifies to 
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where (-Rm,2Cm,1) is the differentiation gain, GD.  We therefore propose using f1 to set the 

differentiator gain to user-defined value, suitable to the application at hand.  This is chosen to a) 
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avoid saturation of the analog-to-digital interface and b) maximize the resolution of the 

differentiated signal.  The ground resistor, Rm,3, is determined by R m,1||R m,2 in the differentiator.  

Using basic calculus following from Eqs. (4.3-4.5) in combination with Eq. (4.13), we can then 

obtain the higher-temporal derivatives as 
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 The cutoff frequency can be chosen using Wiener filtering concepts outlined in Section 2.6.  

Figure 4.6 presents the power spectra, as obtained from the DFT via Eqs. (2.30) and (2.32), from 

a thermocouple dropped into a constant temperature, well-stirred hot bath described in Section 

4.4.  The noise level in the signal is extrapolated via a line is drawn tangent to the high frequency 

portion.  The true signal is extrapolated by a line drawn tangent to the low frequency portion.  

The intersection of these two tangent lines is the cutoff frequency. 

Consider the two differentiator designs seen in Table 4.2.  Both designs have a 

differentiation gain of 0.091; one has a cutoff frequency of 35 Hz, and the other has a cutoff 

frequency of 350 Hz.  Using the input given by em-1=Am-1 sin(2πft) we can obtain the theoretical 

output em(t). Trivial initial conditions are assumed.  A plot of the differentiators’ experimental 

input-output magnification ratio can be seen in Figure 4.7 compared with the theoretical ratio.  

Figure 4.8 displays the differentiators’ experimental delay times as a function of frequency. The 

component delay, or lag time, for this application is defined by the maximum value in the range 

of f ϵ [0, fc,dif).  Theoretical results were obtained from the circuit differential equation given by  
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Figure 4.6: Typical power spectra from DFT for a thermocouple drop test. The physical cut-off 
frequency is estimated as fc,p=35 Hz.              
                

 

Table 4.2: Differentiator components used in generating results displayed in Figure 4.10 where 

[ ) lagfflag difc
ττ

,,0max ∈∞
= . 

Item fc,dif = 35 Hz fc,dif =350 Hz 

Operational Amplifier OP07DP OP07DP 
R m,1 10.02kΩ 1.002kΩ 
C m,1 0.454µf 0.455µf 
R m,2 19.96kΩ 19.96kΩ 
C m,2 0.228µf 22.8nf 

R m,3 6.617kΩ 0.954kΩ 

∞lagτ  (theoretical) 9ms 0.9ms 
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Figure 4.7: Filtering effect in the designed differentiator as a function of frequency for two 
sample cut-off frequencies.  
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Figure 4.8: Lag times as a function of frequency to demonstrate that increasing the differentiator 
cut-off frequency produces a corresponding decrease in circuit component delay times.  
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Eq. (4.11).  It is apparent from Figure 4.8 that an increase in the differentiator cutoff 

frequency by one order of magnitude correspondingly decreases the lag time by one order of 

magnitude.  

Reduction in time lags (component delays) is necessary in many applications, particularly 

in aerospace experiments involving short-time durations (ex. arc-jets). Thus, a delay time of 1 

millisecond (or less) may be necessary in the entire circuit design. This can be accomplished by 

exploiting the physics of the problem; both heat transfer by diffusion in a solid body and the 

present thermocouple drop tower experiment are dominated by energy at the low frequencies as  

previously depicted by the power spectra displayed in Figure 4.6. Therefore, it is possible to 

reduce the component delay times of the differentiators by (1) increasing the differentiator cut-

off frequency and (2) introducing a multistage low-pass filter after the low-noise instrument 

amplifier but prior to the cascaded differentiators. This negates the adverse effect of permitting 

high frequency information to freely pass to the differentiator by filtering it before it reaches the 

differentiators. Therefore, a multistage low-pass filter is used as the pre-filter, with offset control 

and filter cut-off frequency, fc,fil, based on the physical cut-off frequency, fc,p, obtained from a 

sample run of the experiment (for example, see Figure 4.6).   

The Butterworth 2-stage, fourth-order, low-pass filter was initially chosen as the pre-filter 

for simplicity.  This filter will be later replaced by a higher-order filter for additional control and 

accuracy.  This filter is displayed in Figure 4.9.  The Butterworth filter behaves as designed 

having an 80 db/decade rolloff to the stopband as shown in Figure 4.10.  Theoretical calculations 

are acquired from the filter’s transfer function while the experimental values are determined by  
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(a) 

 
(b) 

Figure 4.9:  2-Stage Low-Pass filter (Butterworth) designed to remove signal frequency content 
f>f c,p.  (a) Circuit schematic and (b) symbolic element for use in Figure 4.4. 
 

  

 
 

             Stage 1                              Stage 2 

 

 

2 Stage Low-Pass Filter 

Pass filter, f

input output 

Vo eo 



93 
 

 
Figure 4.10: Butterworth filter characteristics as a function of frequency for each stage and as a 
cascaded filter indicating ffil = f c,p=35 Hz as designed. 
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comparing the output amplitude to the input amplitude.  Tables 4.3 and 4.4 contain the specific 

component details and test equipment, respectively used in the present investigation. 

4.4 Heat Transfer Experiment 

In order to verify the designed sensor, a simple experiment was developed using the drop 

facility shown in Figure 4.11.  A type T thermocouple in equilibrium with ambient air at 20.3 °C 

was plunged into an isothermal, stirred water bath at 46.6 °C.  The insulation was pulled away 

from the thermocouple junction (bead) to reduce conductive lead losses as the bead plunges into 

the hot bath. In this way, the leads and bead experience similar environmental conditions.  The 

drop facility has been demonstrated to produce a highly repeatable drop [44].  Table 4.5 presents 

the calibration curve data used for this experiment.  The calibration data was obtained using the 

specific thermocouple for this experiment.  The collected voltage converted to temperature as per 

Eq. (4.3) and verified by comparison to a NIST calibrated thermometer, which is accurate to 

±0.1°C.   

The thermocouple was connected to the circuit as seen in Figure 4.4.  An instrument 

amplifier (INA) with a gain of -1507.1 was used as input to the pre-filter.  A 4th order 

Butterworth filter with a cutoff frequency of 35 Hz was used as the pre-filter in order to 

minimize the component lag time in the differentiators as described above.  A cutoff frequency 

of 350 Hz was used in the differentiators (see Tables 4.2 and 4.3 for specific components).  

Voltages from the INA, pre-filter, and derivative sensors were collected at 10 kHz.   

An idealized thermocouple model is normally developed based on a lumped capacitance 

formulation producing [44] 
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Table 4.3: Components used in constructing the low-pass filter displayed in Figure 4.12. 

Item Stage1 Item Stage2 

Operational Amplifier OP07EP Operational Amplifier AD 818AN 
R1 147.9kΩ R3 56.28kΩ 
C1 47.5nF C3 48.4nF 
R2 29.07kΩ R4 15.67kΩ 

C2 101.3nF C4 485nF 

 

 

Table 4.4:  List of test equipment used in generating all displayed electronic data. 

Equipment Purpose 

Data Acquisition Function Module (DT9806) Collection of voltages e0,e1,e2 as in Figure 4.7 

Fluke 87V  Multimeter Measurement of resistors and capacitors 
displayed in Tables 4.1 and 4.2 

Agilent Waveform Generator (Model 33220A) Testing of the basic circuits after construction 

for characterizing the frequency response of 
the circuit 

NIST Calibrated Thermometer Calibration of TC 

RTE-110 isothermal bath Well-stirred isothermal bath for plunge test 
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(a) 

 
(b) 

Figure 4.11: Isothermal hot bath used for experimentally verifying sensor along with a schematic 
diagram. (a) Picture of setup and (b) labeled sketch of setup. 
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Table 4.5: Type T thermocouple calibration data Te [20.3°C, 46.6°C].  Calibration performed 
after amplification. 

Coefficient Value 

a0 3.7252 oC 
a1 25.536 oC/V 
a2 0 oC/V2 
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subject to the initial condition 

 ,)0( iTT =  (4.18)

where τTC is the thermocouple time constant; T∞  is the ambient temperature; h is the convection 

heat transfer coefficient; and ρ, Cp, and VolTC  are the thermocouple bead density, heat capacity 

and volume, respectively.  The analytic solution to Eq. (4.16) subject to the initial condition 

given in Eq. (4.18) is 
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with the first time derivative 
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The time constant is experimentally determined as the time when the system has responded to 

63.21% of the step change [44].  Higher-time derivatives with respect to time, t can be 

analytically determined from Eqs. (4.19-4.20) for later comparison with the collected 

experimental data.  However, it should be noted that the ideal responses for the heating rate, Eq. 

(4.20) and all higher time derivatives of temperature are nonphysical; the theoretical model 

assumes an instantaneous jump in the heating rate at time t=0 which cannot be replicated. 

Therefore, an alternative method of verifying the accuracy of the derivative sensors is 

necessary.  It is well-known that numerical differentiation of data with measurement error 
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amplifies the error [1, 66].  Therefore, a Gaussian low-pass filter (previously used in Chapters 2 

and 3) has been used to filter the temperature data before numerical differentiation such that 
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where fc
 is the cutoff frequency in Hz, P is the number of time steps, ��  is the filtered temperature 

and ��  denotes the raw, discrete sensor temperature data. Once again, we highlight that this filter 

uses discrete data as input, while the output to the filter is an analytical function.  As previously 

noted in Chapter 3, the filtered temperature can therefore be differentiated analytically; the first 

time derivative is given by 
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and the higher time derivatives can be similarly obtained analytically.  Therefore, the Gaussian 

low-pass filter and its derivatives are used as a comparison to the sensor output.   

4.5 Results 

In this section, we present time derivative (rate) of temperature results up to the second-

time derivative using the proposed sensor.  The time constant of the thermocouple was 

determined to be 0.0222 seconds from the temperature history plot shown in Figure 4.12 

following the previously outlined procedure [44].  Due to the high sampling rate used, a solid 

line is used to represent the experimental discrete data for clarity.  The dashed line denotes the 

ideal solution given in Eq. (4.19), and the dash-dot line represents the Gaussian low-pass filtered  
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Figure 4.12: Experimentally acquired thermocouple data, Gaussian filter, and analytic model 
results. 

 

  



101 
 

temperatures using a cutoff frequency of 100 Hz.  This high cutoff frequency was used since the 

data was already pre-filtered, and hence relatively clean.  

Figure 4.12 displays a favorable comparison between the ideal model, the acquired 

experimental data, and the Gaussian filter output.  Again, we point out that the ideal model is 

nonphysical.  Additionally, the use of the analog pre-filter caused smoothing of the sensor data 

when the thermocouple was plunged into the hot water bath.  This smoothing was not observed 

in the INA output, and is therefore due to the analog filter.  The experimental data is seen to 

conform reasonably well to the ideal model during the transient portion and again moves toward 

the ideal model as time increases.  The Gaussian filter output is seen to be graphically identical 

to the raw temperature data. 

Figures 4.13 and 4.14 present higher-time derivative of temperature results. The initial 

physics of the plunge (reality) cannot conform to the ideal model which is well known. However, 

the experimental results do conform to physical expectations, appear highly favorable, and move 

toward the analytic model shortly after the instant of the thermocouple plunge.  Additionally, the 

Gaussian derivatives obtained via post-processing are seen to be graphically identical with the 

sensor outputs.  This demonstrates that the sensor does indeed function as an accurate time 

derivative of temperature sensor. 

An alternative way to assess the accuracy of the sensor results involves using the concept 

of analytic continuation as expressed by the Taylor series given in Eq. (4.2) – i.e., overlay the 

analytically continued approximation over the acquired temperature data.  Figure 4.15 presents 

the results using Eq. (4.3) in conjunction with the data presented in Figures 4.12-4.14 for 

estimating the future temperature. The expansion presented in Eq. (4.2) contains the arbitrary  
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Figure 4.13: Analytic model results, Gaussian filter and sensor output results for first-time 
derivative of temperature. 
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Figure 4.14: Analytic model results, Gaussian filter and sensor output for second-time derivative 
of temperature. 
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Figure 4.15: Analytic continuation, as defined with the aid of Eq. (4.2), indicates that future 
temperatures can be estimated based on using rate-based sensors. 
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constant given by g. Let us now assign this parameter as a fraction of the thermocouple time 

constant. It is apparent that the future temperatures are accurately predicted based on γ = τTC/4.  

At first glance, predicting γ = τtc/4 into the future seems like a short time.  However, consider 

that the rise time, τrise, of a first order system - time to reach 90% of step change – is only 2.3 τtc.  

In other words, the sensor is able to predict 11% of the total rise time into the future (see Table 

4.6). 

4.6 Chapter Summary 

The time derivatives of temperature are developed from a voltage-rate interface used in 

conjunction with the thermocouple calibration curve. For the heating rate, dT/dt, this sensor 

construction represents a balance between theory and practice. This sensor concept is not a true 

heating rate sensor; however, it does take into account the physics of diffusion in its design and 

permits generalization to higher time derivatives of temperature. The time-domain viewpoint 

mathematically described in this chapter has led to the development of rate-based sensors for use 

in the global time inverse heat conduction method; estimating local heat flux; detection of 

sudden jumps in surface heat flux from embedded sites; and, accurately predicting the future 

temperature based on analytic continuation.    
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Table 4.6: Descriptive times for the thermocouple drop tower run. 

Time Value 

τtc 0.0222 s 
τrise 0.0512 s 
τtc/2 0.0111 s 
τtc/4 0.0056 s 
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Chapter 5: Sandwich Experiment  

 The inverse heat conduction techniques described in the Chapters 2 and 3 use 

temperature and heat flux data at an embedded sensor site to predict the surface thermal 

condition.  Both the space-marching and global time techniques were proven accurate and stable 

using simulated data from exact solutions with random noise added.  However, these techniques 

need to be validated with experimental data.  The aim of this chapter is to present a physical 

experiment capable of generating the in-situ temperature and heat flux data required by these 

inverse techniques.  

5.1 Experimental Setup 

 Figure 5.1 shows a diagram of an electrical heating experiment with embedded and surface 

mounted sensors.  Two identical bronze plates were coated with a thin layer of Omegatherm 201 

thermal paste on the heated face.  Since the purpose of the thermal paste was to reduce contact 

resistance, the thinnest layer possible (nearly transparent) was used.  A two mil thick layer of 

muscovite mica was adhered to the thermal paste.  The bronze/paste/mica layers were then used 

to sandwich a 0.125 mm thick custom nichrome heater element.  This created a line of symmetry 

across the centerline of the heater.  Figure 5.2 shows a sketch of the custom heater designed by 

Dr. Majid Keyhani.  The sides of the sandwich were then thermally insulated.  Thermophysical 

and electrical properties of these materials can be seen in Table 5.1, while material thicknesses 

are summarized in Table 5.2.   

 Fine gage (30 AWG wire) surface mount thermocouples (Omega SA1XL-T) were affixed 

to the back (unheated) surface of each bronze plate.  Probes were also embedded at roughly two  
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(a) 

 
(b) 

Figure 5.1: Sandwich electrical heating experimental setup shown with (a) side view and (b) 
planview.  Line of symmetry exists along the centerline of the heater. 
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Figure 5.2: Dimensioned sketch (not to scale) of custom heater.  The heater was machined from a 
0.125mm thick nichrome foil. 
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Table 5.1: Thermophysical and electrical properties of materials used. 

Property Value 

Bronze  
 Thermal diffusivity, α  1.88x10-5 m2/s 
 Density, ρ 7450 kg/m3 

 Specific heat, C 419 J/(kg K) 
Mica  
 Thermal diffusivity  4.73x10-3 m2/s 
 Density 300 kg/m3 

 Specific heat 0.5 J/(kg K) 
Thermal paste (Omegatherm 201)  
 Thermal conductivity  2.3 W/(m K) 
Heater (nichrome)  
 Thermal diffusivity 7.75x10-5 m2/2 
 Density 1420 kg/m3 

 Specific heat 1.09 J/(kg K) 
 Heater resistance 4.326 Ω 
Potting compound (Cotronics 989F)  
 Thermal conductivity 1.7 W/(m K) 

 

 

Table 5.2: Measured distances for the sandwich experiment. 

Parameter Value 

LBronze 40.3 mm 
LMica 0.051 mm 
LPaste �  0.03 mm 
LHeater 0.125 mm 
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different depths.  All “A” thermocouples were installed at a distance of 5mm from the heated 

surface, while “B” thermocouples were installed at a distance of 10mm from the heated surface.  

Hole A4* was originally designed to be drilled to a 5mm depth; however, this was over-drilled to 

approximately 4.5mm depth.  Therefore, this hole was filled in, and the corresponding A4 hole 

was drilled and used instead.  The holes were first drilled with a 0.070 in. diameter to within 

10mm of the final probe depth.  The final 10mm of each hole was drilled out at a 0.040 in. 

diameter.  These holes were drilled from the back surface (perpendicular to the heated surface).  

The distances from the bottom of each hole to the heated surface are tabulated in Table 5.3. The 

deepest point within each hole was measured using a pointed probe in combination with the 

MicroVal coordinate measuring machine; these values are reported as dtip in Table 5.3.  As seen 

in Figure 5.1, the locations of the holes were staggered to reduce disturbance of the sample near 

each hole.  A summary of the instruments used can be seen in Table 5.4. 

 A type T thermocouple probe (Omega TMTSS transition junction style, 38 AWG 

thermocouple wire, with exposed bead with a diameter of 0.142 mm) with a sheath diameter of 

0.020 in. was potted into each hole seen in Figure 5.1 using Cotronics 989F (alumina paste), 

diluted with 10% (volume) distilled water.  One hole at a time was filled with the paste, and the 

thermocouples were inserted into the hole until the sheath began to slightly bend.  This indicated 

that the bead was in contact with the bottom of the hole.  It was attempted to x-ray the bronze 

sample to determine the exact location of the thermocouple beads.  However, this was not 

possible since the bronze was nearly opaque to this wavelength.  Since the holes were drilled 

with a pitched drill bit, the bottom of the hole is sloped.  The height of this slope was estimated 

to be 0.30mm.  Therefore, the uncertainty in the actual position of the thermocouple beads was  
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Table 5.3: Probe distance and resistance measurements. 

Probe dtip [mm] d [mm] y [mm] z [mm] RCu-Brz 

A0 5.04 5.19 0.0 6.4 1.9 Ω  
A1 4.94 5.09 6.4 6.4 2.1 Ω 
A2 5.04 5.19 -12.7 6.4 0.8 Ω 
A3 4.89 ---1 +19.1 6.4 45 MΩ 
A4 5.01 5.16 +25.4 6.4 > 50 MΩ 
B0 9.99 10.14 0.0 -6.4 12.8 MΩ 
B1 9.97 10.12 -6.4 -6.4 4.0 MΩ 
B2 10.00 10.15 12.7 -6.4 430 kΩ  
B3 10.02 10.17 -19.1 -6.4 4.3 Ω 
B4 9.73 ---2 25.4 -6.4 ---2 

1Probe A3 was improperly installed, and was not seated in the bottom of hole A3.   
2No probe was installed in hole B4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 
 

Table 5.4: List of equipment and material used in sandwich experiment. 

Instrument/Material Description Purpose 

Data Translations 
DT9824 

Fully-isolated, simultaneous, 
24 bit, 4 differential channel 
DAQ 

TC probe and surface-mount 
histories 

Data Translations 
DT9806 

Multiplexed, 16 bit, 8 
differential channel DAQ 

Power and ice TC histories; 
control of solid state relay 

Kaye Instruments 
K140-4 Ice Point 

Constant 0°C reference Compensation for installed and 
surface-mounted TCs 

Dell Latitude E5400 
laptop 

PC with MATLAB Data collection and control 

Potter and Brumfield 
SSR-240D80 

80A, AC solid state relay Heater activation 

Brown and Sharpe 
MicroVal 

Coordinate measuring 
machine ± 0.004 mm 

Measurement of hole depths 

Data Precision 3500 Multimeter, ± 0.005 Ω Measurement of all resistances 
Omegatherm 201 Thermally conductive paste Reduction of contact resistance 

between mica and bronze 
Cotronics Resbond 
989F 

Alumina paste with particle 
size of 600 nm 

Thermocouple potting 
compound 

Bronze Atlas Bronze alloy C95400 Sandwich sample 
Mica Axim Mica muscovite V3 

grade 
Sandwich experiment electrical 
insulator  

Nichrome Goodfellow (Ni80/Cr20) 
0.125mm thick foil 

Heater material 

Omega TMTSS-020E-6 Type T thermocouple probe, 
0.020 in. stainless steel sheath, 
exposed bead, 38AWG wire 

Installed probes 

Omega SA1XL-T Type T surface mount 
thermocouple, 30AWG  

Surface mount thermocouple for 
back face temperature/symmetry 
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estimated to be ± 0.15mm, and the nominal depth, d, used for analysis was dtip + 0.15mm.  These 

values for each hole are tabulated in Table 5.3.   

 Retrospectively, a method of confirming contact between the thermocouple bead and the 

bronze was discovered.  The electrical resistance between the thermocouple’s copper lead wire 

and the bronze slab was measured.  Since the potting compound was an electrical insulator, a 

small value (<10Ω) indicated good contact.  These resistance values can be seen in Table 5.3 as 

RCu-Brz.  Probes A0, A1, A2, and B3 were seen to have excellent contact with bronze.  However, 

it is not possible from this data to describe the quality of contact between the thermocouple bead 

and the surrounding potting material.  This contact is also important as it contributes to the 

response time of the probe.  Therefore, techniques used to quantify the response time of each 

probe will be discussed in Chapter 6.  Nevertheless, this technique offers promise for 

instrumentation of future samples. 

5.2 Electrical Wiring 

 Figure 5.3 shows a sketch of the electrical wiring used in the sandwich experiment.  The 

Data Acquisition Toolbox in MATLAB was used to control the experiment.  All devices were 

software triggered to begin sampling/outputting at the same instant.  Unregulated alternating 

current (60 Hz) was supplied from a 120VRMS, 50A line.  This supply was wired to a Variac 

which was capable of boosting the voltage to 137VRMS.  The output of the Variac was wired to 

an 80A solid state relay, which was controlled by a 0/+5V DC signal on an analog output 

channel on a DT9806 DAQ.  The output of the relay was wired to copper bus bars which were in 

turn connected to the nichrome heater.  The voltage across the heater was also connected to a  



115 
 

 
Figure 5.3: Electrical wiring diagram of sandwich experiment. 
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voltage divider which was sampled at 7500 Hz via a separate DT9806 data acquisition board, 

labeled as the power board.   

 The thermocouples’ emf outputs were sampled at 200 Hz with a gain of 32 via two 

DT9824 data acquisition boards (DAQs).  The DT9824 is a 24 bit, low noise, fully isolated DAQ 

with simultaneous measurements.  Two DT9824 DAQs were used, each with four differential 

channels.  This provided a total of eight thermocouple channels available.   

 A Kaye Instruments Ice Point machine was used to maintain a reference thermocouple at 

0 °C.  Since the ice voltage was constant, it was not sampled by one of the expensive DT9824 

DAQs so as to leave these channels available for the embedded and surface mounted 

thermocouples.  Instead, the ice thermocouple was sampled on the DT9806 power board.  To 

eliminate noise in the ice signal, the average emf of the ice TC over the entire sampling time was 

used for compensation. 

 Since three different DAQs were used to collect data, it was necessary to synchronize the 

boards.  As seen in Figure 5.3, the 0/+5V DC supply output used to control the AC relay was 

also wired to each of the DAQs.  This was sampled on the DT9806 power board on an extra 

analog input channel.  On the DT9824 DAQs, this was wired to the digital input channel which 

was sampled on the same clock as the analog input channels.  After each experimental run, data 

were shifted in time to synchronize with the activation of the heater. 

 The connectors on the DT9824 DAQs used to sample the thermocouples’ emf outputs are 

not isothermal which can cause large drift and oscillation in the reported thermocouple 

temperatures if thermocouple wire is taken directly to the DAQs.  Therefore, all thermocouples 

(embedded, surface mounted, and ice) were compensated individually at separate copper-copper 
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screw terminals.  The terminals were mounted onto an aluminum plate and placed in an insulated 

enclosure.  This ensured all thermocouples were compensated at the same temperature and 

allowed copper-copper wire to be taken to the DAQs rather than thermocouple (copper-

constantan) wire.  The ice emf measurement was subtracted from the emf outputs of the 

embedded and surface mounted thermocouples in the post-processing.  Since all TCs were also 

compensated at room temperature, this algebraically subtracted the room temperature emf from 

the final compensated TC voltage.  The resulting compensated voltages were converted to 

temperature via the NIST polynomial calibration curve for type T thermocouples [64]. 

 Since AC power was used to activate the heater, great care was taken to isolate the 

thermocouples from “power-on” noise.  If this was not done, 60Hz noise would have leaked into 

the thermocouples when the heater was activated; the low voltage (~ 0.8 mV at room 

temperature) thermocouple signal-to-noise ratio would quickly deteriorate in this environment.  

For this experiment, thermocouple isolation was accomplished by first using an electrical 

insulator (mica) between the heater and the sample.  A high quality, fully-isolated DAQ 

(DT9824) was used to sample the embedded and surface-mounted thermocouples – i.e., one 

analog-to-digital card per channel, one independent ground for each channel, and full isolation 

between channels and chassis ground.  Wiring the bronze slabs to wall ground was also 

necessary to prevent power-on noise in the installed TCs.  The laptop used to collect the data was 

also operated on battery power to prevent ground loops from forming.  Using this arrangement, 

power-on noise was completely eliminated in most TC channels, and effectively minimized in 

the remaining channels. 
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5.3 Sandwich Experimental Procedure 

 The procedure for running a sandwich experiment was as follows.  With the exception of the 

Kaye Instruments Ice Point which was never turned off, all instruments were turned on and 

allowed to warm-up for at least one hour prior to collecting data.  The heater resistance was 

measured before each experimental run to verify none of the heater legs were in contact with 

each other which could cause electrical arcing.  Before connecting the heater terminals to the 

relay, the electrical resistance was measured between the heater and the bronze sample using the 

Fluke multimeter.  A reading of “overload” verified the integrity of the mica electrical insulation; 

the heater was then connected as in Figure 5.3, and all electrical connections were verified.  The 

thermal insulation was checked to ensure a snug fit around the sample.   

 A final check was made by running the MATLAB driver program with the Variac unplugged 

from the 120V source.   This ensured all software settings were correct, all instruments 

performed properly, data was saved, and allowed a final check of the thermocouple noise levels 

and temperatures.  If uniformity of the sample temperature was verified by this preliminary run 

(± 0.1°C), the Variac was connected to the 120V source, and the run was initialized in MATLAB 

by running the driver program.  

 Table 5.5 shows the experimental runs conducted.  For all experimental runs, 15 seconds of 

lead data were collected.  At t = 15s, the heater was activated for a set amount of time (10 

seconds or less).  Heating and subsequent cooling data was then collected up to t = 60s.  Most 

runs were conducted by applying a constant voltage across the heater during the heating time.  

For these runs, either a low (approximately 85V) or a high (approximately 135V) voltage was 

used.   However, for one run, the voltage was (nearly) linearly increased to the maximum  
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Table 5.5: Experimental details of the 9 sandwich experiment runs performed. 

Run # Run Name Date of Run 
Vmax 

[VRMS] 
∆theat 
[s] 

V Profile 
fs 

[Hz] 
Vdiv 

1 qCLOt3f200 04/15/2011 85 3 Constant 200 19.76 
2 qCLOt3f1200 04/15/2011 85 3 Constant 1200 19.76 
3 qCHIt3f200 04/16/2011 135 3 Constant 200 28.67 
4 qCHIt10f200 04/18/2011 135 10 Constant 200 28.67 
5 qCHIt10f1200 04/19/2011 135 10 Constant 1200 28.67 
6 qCHIt10f60 04/19/2011 135 10 Constant 60 28.67 
7 qRHIt5f200 04/24/2011 135 5 Ramp 200 28.67 
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voltage, held constant for approximately two seconds, and then linearly decreased to the off 

position.     

 For ease of discussion, a naming convention for each experimental run was adopted where the 

name of a run is given by “qWXtYfZ.” In this nomenclature, “W” can be C for a constant 

voltage applied or R for a ramped voltage; “X” is HI for maximum voltage applied to the heater 

or LO for the lower voltage level; “Y” is the duration of the heating cycle; “Z” is the sampling 

rate used in Hz.  Using this naming convention, run qCHIt3f200 would indicate a constant 

voltage of 135V was applied for 3s, and temperature data was sampled at a rate of  

200Hz.  A run named qRHIt5f200 indicates that a ramped voltage was used with a peak voltage 

of 135V.  The total heating duration was 5 seconds, and thermocouple data was sampled at 

200Hz. 

5.4 Direct Model 

 A three layer (half-heater, mica and bronze), one-dimensional implicit-in-time finite 

difference (FD) code was used to model the forward problem.  A diagram of the discretization 

used in the FD model can be seen in Figure 5.4.  The heater power was modeled as volumetric 

heat generation, where the amount of power dissipated by the heater was given by the Joule 

heating equation such that 

 ,
)(

)(
2

heater

RMS

gen
VolR

tV
tu =  (5.1)

where Vol is the volume of the heater, Rheater is the resistance of the heater, and VRMS is the 

voltage applied to the heater.  It is emphasized here that the direct FD model is one-dimensional.  

Therefore, using the actual heater volume in Eq. (5.1) (i.e., accounting for the individual element  
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Figure 5.4: Discretization sketch for three layer finite difference model of sandwich experiment. 
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width, element gap, etc.) is inappropriate.  Instead, the volume of the heater used in the FD 

model, Vol, was calculated as the surface area of the bronze multiplied with the thickness of the 

heater.  The measured transient voltage was supplied to the FD model.  The effect of the thermal 

paste was neglected, and perfect contact was assumed between each layer.  The direct FD model 

calculated incident heat flux to the bronze layer; this was used as the surface heat flux input for 

comparison with the inverse prediction.  A mesh convergence study was conducted for this 

model.  For convergence, the half-heater layer required 1000 nodes, the mica layer required 100 

nodes, and the bronze layer required 2000 nodes.  A time step of 0.008s or smaller was found to 

accurately resolve the time domain.   
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Chapter 6: Characterization of In-Depth Probes 

It is well-known that the temperature reported by an installed thermocouple is different 

from the positional temperature of an undisturbed sample [38, 39].   In steady-state 

measurements, this problem stems from material property differences between the sample and 

the thermocouple bead and axial conduction along the wires if the wires are not parallel to 

isotherm.  In transient measurements, the problem is further exacerbated by the response time of 

the thermocouple.  The space-marching and global time inverse algorithms presented in Chapters 

2 and 3, respectively, assume that the undisturbed sample temperature history is provided as 

input data.  If uncorrected thermocouple data are used as input to these algorithms, the surface 

thermal condition will be under predicted and delayed. 

For illustration, consider sandwich experiment data from run qRHIt5f200.  Figure 6.1(a) 

shows the raw and filtered thermocouple temperature history for probe A0.  The data were used 

to calculate the in-situ heat flux using semi-infinite medium heat flux-heating rate integral 

relationship as in Section 2.8.  The global time inverse method was then employed to predict the 

surface temperature and heat flux which can be seen in Figure 6.2.  Although the method has 

been proven accurate when noisy, positional temperature data are provided, the inverse 

prediction severely under-predicts the actual surface condition.  We, therefore, seek a method by 

which the thermocouple data can be transformed into the actual positional temperature of the 

sample. 

The orientation of the thermocouple leads must be considered when seeking a probe 

characterization technique.  Figure 6.3 shows a sketch of two installed thermocouples with the  
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(a) 

 
(b) 

Figure 6.1: Temperature and heat flux data uncorrected for response time. (a) Raw and filtered 
temperature data and (b) resulting semi-infinite heat flux.  Data for probe A0 from run 
qRHIt5f200. 
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(a) 

 
(b) 

Figure 6.2: Inverse predicted surface temperature and heat flux using sandwich experiment data 
from run qRHIt5f200, uncorrected for response time. (a) Surface temperature with uncertainty 
band and (b) surface heat flux with uncertainty band.  Data used can be seen in Figure 6.1. 
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Figure 6.3: Effect of thermocouple wire orientation on lead losses. 
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lead wires oriented in two different arrangements.  If the surface at x=0 is heated uniformly, the 

lead wires of Case 1 are oriented perpendicular to the isotherm.  During this process, qlead > 0 

since the lead wires will pull heat away from the bead.  In contrast, the lead wires of Case 2 are 

oriented parallel to the isotherm; therefore, qlead = 0 during a uniform surface heating process.  

For the sandwich experiment presented in Chapter 5, all thermocouples were installed with a 

Case 1 arrangement.  Therefore, a proper characterization technique should account for both the 

response time of the thermocouple and the lead losses.  

6.1 Thermocouple model 

Let us first look at the energy balance of the thermocouple bead given by 

 .storoutgenin EEEE &&&& +=+  (6.1)

It is assumed the environment is hot, and therefore heat transfer is incident from surroundings to 

the thermocouple bead.  It is also assumed heat is lost from the bead to its leads.  Eq. (6.1) then 

becomes 

 ( ) ( ) ),()()()()( 2,2,1,1, tTCVtqAtqAtTtThA TCTCleadleadleadleadTCTC
&ρ++=−∞  (6.2)

where h is the effective heat transfer coefficient, ATC is the surface area of the bead in contact 

with surroundings, T∞ is the temperature of the surroundings, Alead,1  and Alead,2 are the surface 

area of the bead which is in contact with each lead wire, qlead,1 and qlead,2 are the heat lost from 

the bead to the each lead wire, ρTC is the density of the bead, CTC is the heat capacity of the bead, 

and VTC is the volume of the bead.  It is emphasized here that h is not the convective heat transfer 

coefficient, but is the effective heat transfer coefficient which encompasses contact resistance.  

After rearranging, Eq. (6.2) becomes 
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The constants τ0 and λ are defined as 
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and substitute Eq. (6.4) into Eq. (6.3) yielding 
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For small time, the lead heat loss from each lead can be described using the half-space integral 

relationship (see Section 2.8 for discussion) given by 
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where subscript i refers to lead wires one and two.  The constant, λ, is now defined as 
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and substitute Eqs. (6.6-6.7) into Eq. (6.5) which yields 
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It is noted that the sign of λ should always be positive since the directionality of heat transfer is 

determined by sign of ��!".   

 Insight into the behavior of the lead loss term can be gained by expanding ��!"�#� about t in 

Eq. (6.6) which leads to 
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Substituting only the low-order term from Eq. (6.9) into Eq. (6.8) yields  

 ( ) ).()()(20 tTtTtTt TCTC ∞≈++ &λτ  (6.10)

Therefore, including the lead loss term in Eq. (6.8) effectively introduces a time-dependent time 

“constant” given by 

 .2)( 0 tt λττ +=  (6.11)

Assuming T∞ is constant, Eq. (6.10) has an exact solution via Laplace Transform [67] given by 

 ( ) ( )[ ] ,0,2ln2ln
2

1
exp)( 00002

≥






 −−+= ttttTC λττλττ

λ
θ  (6.12)

where 

 .
)0(

)(
)(

∞

∞

−
−

=
TT

TtT
t

TC

TC
TCθ  (6.13)

Clearly, the definition of τ(t)  reduces to the classical first order system if lead losses are 

neglected (i.e., set λ=0).  This leads to the exact solution 
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The goal of this chapter is to accurately resolve the sensor characteristics of an installed 

thermocouple.  The two methodologies by which this can be accomplished are now presented. 

6.2 Loop-Current Step Response 

Loop-current step response (LCSR) is a technique developed by [41, 42].  An electric 

current (AC or DC) is applied to the sensor leads for a specified heating time (∆theat), then the 

current is removed and the decay of the thermocouple emf is observed and recorded.  Figure 6.4  
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Figure 6.4: LCSR test circuit setup using AC current for heating.  DIO SSR1 closes when DIO 
SSR2a and DIO SSR2b open to prevent damage to the data acquisition board. 
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shows an experimental setup for LCSR testing.  During heating, the thermocouple leads are 

isolated from the data acquisition system via solid state relays to prevent damage.  The 

experimental procedure used to collect data for the LCSR tests in the present work is as follows: 

1) Lead data is collected to establish the initial condition. 

a. Relay configuration: 

i. DIO SSR1 is open; therefore AC SSR1 and 2 are open 

ii. DIO SSR2a and b are closed; therefore DAQ is collecting data 

2) AC voltage is applied (VRMS) to the thermocouple leads for a specified heating 

time (∆theat).  VRMS and ∆theat are chosen to provide at least a ∆T of 10°C. 

a. Relay configuration: 

i. DIO SSR1 is closed; therefore AC SSR1 and 2 are closed 

ii. DIO SSR2a and b are open; therefore DAQ is not collecting data 

3) Cooling data is collected. 

a. Relay configuration: 

i. DIO SSR1 is open; therefore AC SSR1 and 2 are open 

ii. DIO SSR2a and b are closed; therefore DAQ is collecting data 

4) The total temperature change is recorded (∆T). 

5) Steps 1-4 are repeated with shorter ∆theat until a decrease in ∆T is observed. The 

test data of the shortest heating period that results in the desired ∆T is analyzed. 

For all data presented herein, thermocouple data were collected via DT9824 with fs = 200 Hz.  

All DIO solid state relays employed were on the digital output channels of the DT9824. 
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When AC current is used as in Figure 6.4, both the lead wires and the thermocouple bead 

are heated.  When the current is removed, the thermocouple bead cools by transferring heat to the 

surrounding medium initiating axial conduction heat transfer from the leads to the bead. LCSR 

cooling test data for probe A0 can be seen in Figure 6.5.  For very small time, the rate of heat 

transfer is dominated by τ0.  After a significant gradient occurs between the bead and the leads, 

conduction from the leads into the bead significantly slows the bead cooling process.  This is  

noted in Figure 6.5 as “middle time” which is dominated by λ.  Eventually, a maximum effective 

time constant is reached. This is noted in Figure 6.5 as “large time” which is dominated by τmax. 

The thermal process created by LCSR testing is similar to the case of a thermocouple 

installed with leads perpendicular to the isotherm.  In LCSR testing, the cooling of the bead is 

slowed by conduction along the leads.  In the sandwich experiment, the heating of the bead is 

slowed by conduction along the leads.  Therefore, LCSR testing is an appropriate way to 

characterize the response of the installed probes for use in the sandwich experiment. 

Analysis of LCSR data 

 Consider the LCSR data presented in Figure 6.5.  For all models used to fit this data, a 

nonlinear least squares procedure (NLS) can be used to determine the unknown parameters.  This 

can been accomplished with Newton’s method using 
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Figure 6.5: LCSR data for probe A0 for VRMS = 16.3V, ∆theat = 0.25s, ∆T = 12.7 °C, and fs = 200 
Hz..  Time regions where parameters have the strongest influence are shown.   
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where βk contains the unknown parameters at the kth iteration, αr is a relaxation factor, θTC,i is the 

ith data point, θTC(ti,β
k) is the NLS fit to the data, and J is the Jacobian.  The relaxation factor is 

necessary to prevent the estimation of τ0 from diverging.  A value of αr = 0.001 was found to 

stabilize the NLS procedure. 

A NLS algorithm seeks to minimize the difference between each data point and the NLS fit 

at that time step.  Equal weighting is given to each time point.  Only the data that is most 

sensitive to the parameter being estimated should be passed to the NLS algorithm.  Therefore, 

the sensitivity coefficients for each unknown parameter must be found.  The procedure for using 

the NLS algorithm is as follows: 

1. Make an initial guess for the unknown parameters. 

2. Plot the resulting sensitivity coefficients. 

3. Send only data near the peak value of the sensitivity coefficients to the NLS algorithm. 

4. Repeat steps 2 and 3 until convergence is met. 

This procedure is used for all models described below. 

Model 1: First Order System 

As a first step in the analysis procedure, it is assumed lead losses are negligible.  This 

leads to a first order system with exact solution in Eq. (6.14).  Therefore, the first order system 

sensitivity coefficient Zθ1,τ0 is next defined as 
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which peaks at t = τ0.  Figure 6.6 shows the sensitivity coefficient and converged first order 

system model for LCSR data using probe A0.  Only data near the peak sensitivity 
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(a) 

 
(b) 

Figure 6.6: Model 1 results for LCSR testing of probe A0.  (a) Sensitivity coefficient and (b) 
comparison of model with raw data.  Testing parameters were VRMS = 16.3V, ∆theat = 0.25s, ∆T = 
12.7 °C, and fs = 200 Hz. 



136 
 

 (0.3s ≤ t ≤ 0.5s) were used to calculate τ0.  However, a large residual can be seen between the 

NLS fit and the data for both early and large time.  Clearly, modeling the probe as a first order 

system is inappropriate, and the model should be refined.   

Model 2: Semi-infinite lead loss 

 As the next step in the analysis, the leads loss term is approximated as in Eq. (6.9) which 

leads to the exact solution of Eq. (6.12).  The modified sensitivity coefficients for τ0 and λ are 

given by 
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This approach can be seen in Figure 6.7 for probe A0.  As compared to the first order system, 

significant improvement is seen in the agreement between the NLS fit and the data, especially for 

early time.  This makes intuitive sense when viewing the sensitivity coefficients.  The model is 

much more sensitive to the values of τ0 and λ for early time than large time.  A significant 

departure between the model and the data is seen for t > 1s.  Therefore, a better model is needed 

for large time. 
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(a) 

 
(b) 

Figure 6.7: Model 2 results for LCSR testing of probe A0.  (a) Sensitivity coefficients and (b) 
comparison of model with raw data.  Testing parameters were VRMS = 16.3V, ∆theat = 0.25s, ∆T = 
12.7 °C, and fs = 200 Hz. 
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Model 3: Modified first order system 

 A different model is needed to improve the agreement between the model and the data for 

large time.  To this end, the first order system model can be modified to allow for a non-unity 

constant such that 
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The resulting modified sensitivity coefficients are given by 
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A nonlinear least squares approach is again used to estimate the parameters C and τmax, and the 

results for probe A0 can be seen in Figure 6.8.  Excellent agreement is seen between the data and  

the model for t > 0.4s.  However, as expected, this model has extremely poor agreement with the 

data for early time.   

Model 4: Matched Models 2 and 3 

 In order to improve the degree of fit to the data, a modification of τ defined in Eq. (6.11) is 

proposed such that  
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where tcr is given by 
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(a) 

 
(b) 

Figure 6.8: Model 3 results for LCSR testing of probe A0.  (a) Sensitivity coefficient and (b) 
comparison of model with raw data.  Testing parameters were VRMS = 16.3V, ∆theat = 0.25s, ∆T = 
12.7 °C, and fs = 200 Hz. 
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Essentially, this is matching the good early time model of Eq. (6.12) with the good large time 

model of Eq. (6.22).  This leads to the exact solution given by 
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The sensitivity coefficients for τ0, λ, τmax, and tcr are given by 
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These sensitivity coefficients and the resulting converged NLS fit to the data for probe A0 can be 

seen in Figure 6.9.  It can be seen that Model 4 has excellent agreement over the entire time 

domain.  Therefore, the definition of τ given by Eq. (6.25) is proposed as the best representation 

of the LCSR data. 
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(a) 

 
(b) 

Figure 6.9: Model 4 results for LCSR testing of probe A0.  (a) Sensitivity coefficient and (b) 
comparison of model with raw data.  Testing parameters were VRMS = 16.3V, ∆theat = 0.25s, ∆T = 
12.7 °C, and fs = 200 Hz. 
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 A summary of the results for each installed probe can be seen in Table 6.1.  All probes except 

for B3 were successfully modeled by Model 4.  Probe B3 was better described by Model 2 – i.e., 

no maximum value of τ(t)  was reached.  This implies that τ(t) for probe B3 continues to increase 

with time, which is nonphysical.  Therefore, probe B3 was not used for any of the sandwich 

experiments. 

Application of LCSR characterization values to sandwich experiment data 

 The characterization values for probe A0 are now applied to the example presented at the 

beginning of this chapter.  The raw thermocouple data from run qRHIt5f200 are filtered using 

the Gaussian low-pass filter previously discussed.  The filtered data were then adjusted for τ0, λ, 

τmax, and tcr via Eq. (6.10).  These results can be seen in Figure 6.10(a).  The in-situ heat flux data 

are then obtained via the semi-infinite medium integral relationship as in Section 2.8 and can be 

seen in Figure 6.10(b).  These adjusted temperature and heat flux data are then passed to the 

global time inverse method (details discussed in Chapter 2 and further in Chapter 7) and the 

resulting inverse surface temperature and heat flux predictions can be seen in Figure 6.11 where 

the uncertainty bounds on the actual and inverse surface temperature and flux are discussed in 

the Appendix.  Whereas the inverse results for uncorrected data resulted in attenuated and 

delayed predictions (Figure 6.2), the inverse results after correcting for the response time are 

significantly more accurate.  Indeed, the uncertainty bands of the actual and inverse surface flux 

are seen to overlap.  However, since the physics of the LCSR testing do not exactly match the 

physics of the sandwich experiment, this is the best inverse result one can achieve with LCSR 

characterization. 
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Table 6.1: LCSR results for all installed sandwich experiment probes. 

Probe VRMS [V] ∆theat [s] ∆T [°C] τ0 [s] λ [s1/2] τmax [s] tcr [s] 

A0 16.3 0.25 12.7 0.0338 0.460 0.701 0.575 
A1 12.7 0.25 13.4 0.0046 0.809 1.256 0.605 
A2 16.9 0.25 12.9 0.0001 0.458 0.746 0.556 
A3 11.2 0.25 12.4 0.0874 0.443 0.553 0.224 
A4 14.6 0.25 16.5 0.0404 0.038 0.103 0.033 
B0 17.4 0.25 14.2 0.0534 0.038 0.116 0.044 
B1 16.8 0.25 11.3 0.0140 0.396 0.349 0.113 
B2 17.0 0.30 11.0 0.0334 0.174 0.103 0.043 
B3 13.0 0.25 14.2 0.0280* 0.382* --- --- 

* B3 was unable to be modeled via Model 4.  Values presented are for Model 2. 
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(a) 

 
(b) 

Figure 6.10: (a) Temperature and (b) heat flux for probe A0 showing the effect of shifting for 
LCSR characterization values.  One-probe analysis used as detailed in Chapter 7. 
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(a) 

 
(b) 

Figure 6.11: Inverse predicted surface temperature and heat flux using data corrected for 
response time. (a) Surface temperature prediction with uncertainty band and (b) Surface heat flux 
with uncertainty band.  Data used for prediction can be seen in Figure 6.10 with one-probe 
analysis as detailed in Chapter 7. 
  



146 
 

6.3 Two-Probe Taylor Series Method 

 While the LCSR technique relies on a separate experiment to determine the response time 

of thermocouples, the Two-Probe Taylor Series (TPTS) method presented herein utilizes data 

from the run of interest – i.e., the sandwich run data.  The TPTS method utilizes thermocouple 

temperature histories from two probes installed at different depths.  This technique relies on the 

first-order system model of a thermocouple bead and is valid for the case of a semi-infinite 

medium and simultaneously determines the response time of both probes. 

Derivation of Method 

Let us take a second look at Eq. (6.8) for the case where thermocouple lead losses are 

negligible and T∞(t) = T(x=d,t).  Therefore, τ(t) is no longer a function of time, and the 

thermocouple model equation becomes 

 ,0),,()()( ≥==+ ttdxTtTtT TCTC
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Consider the case of one-dimensional conduction in a semi-infinite medium with two embedded 

thermocouples subject to the trivial initial condition.  The goal of this analysis is to obtain a 

system of equations relating measurable quantities (temporal derivatives of temperature) with the 

unknown thermocouple time constants.  For all equations, unless otherwise noted, the domain is 

given by x, t ≥0.  The governing equation for this domain is the heat equation 
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or in terms of heat flux 
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At our disposal is Fourier’s Law 
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and the half-space relationship between the heating rate and the heat flux given by 
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Using Taylor Series, the temperature at any point x < x2 can be written as 
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and the heat flux as 
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Therefore, a temporal derivative representation for the spatial derivatives in Eqs. (6.38-6.39) is 

needed.  The first temporal derivative of temperature is readily available from Eq. (6.36) as 

 ),,(
1

),( txq
k

tx
x

T
−=

∂
∂

 (6.40)

and the second derivative is also available from Eq. (6.34) as 
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Differentiating Eq. (6.41) with respect to x, and utilizing the commutative property of continuous 

variables, we obtain 
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Using Eqs. (6.40-6.41), a closed form solution is obtained for the nth spatial derivative of 

temperature in terms of temporal derivatives from the recursive relation of Eq. (6.44) as 
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Similarly, the spatial derivatives of heat flux can be replaced by temporal derivatives using 

 










=
∂

∂

=
∂
∂

−
=

∂
∂ +

+

−

,...4,2,0),,(
1

,...5,3,1),,(
),(

2/

2/

2/

2/)1(

2/)1(

2/)1(

ntx
t

q

ntx
t

TC

tx
x

q

n

x

n

n

n

n

n

n

n

α

α
ρ

 (6.46)

Temperature and its temporal derivatives are measurable quantities (see Chapter 4) or can be 

obtained via post-processing (see Chapter 3), while heat flux and its derivatives are not always so 

readily available.  Therefore, Eq. (6.37) can be differentiated using integration by parts followed 

by Leibniz Rule [67] to obtain the general relationship 
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A system of two equations and two unknowns (time constants) can be obtained by substituting 

Eq. (6.32) along with Eqs. (6.45-6.47) into Eqs. (6.38-6.39) to obtain 

 

( )

( )

( )

( )
,0,

!

)(
!

1

!

)(
!

1

,...2,0
2/

2
2/

2/
21

,...3,1 0
2/)1(

2
2/)1(

2/
21

1

,...2,0
2/)2(

2
2/)2(

2/
21

,...3,1 0
2/)3(

2
2/)3(

2/
21

2
1

1

≥
−

+
−

−
−−

=


−
−

−




−

−
+

∑

∑ ∫

∑

∑ ∫

=

= =
+

+

=
+

+

= =
+

+

t
dt

Td

n

xx

ut

du
u

du

Td

n

xx
T

dt

Td

n

xx

ut

du
u

du

Td

n

xx

dt

dT

N

n
n

TC

n

n

n

N

n

t

u

n

TC

n

n

n

TC

N

n
n

TC

n

n

n

N

n

t

u

n

TC

n

n

n

TC

α

απ

α

απ
ττ

 (6.48)

 

( )

( )

( )

( )
.0,)(

!

1

!
)(

1

)(
!

1

!
)(

1

,...2,0 0
2/)2(

2
2/)2(

2/)1(
21

,...3,1
2/)1(

2
2/)1(

2/)1(
21

0

1

,...2,0 0
2/)4(

2
2/)4(

2/)1(
21

,...3,1
2/)3(

2
2/)3(

2/)1(
21

2

0
2

1
2

1

≥
−

−

+
−

−
−

−

=




−

−

−


 −
+

−

∑ ∫

∑∫

∑ ∫

∑∫

= =
+

+

+

=
+

+

+
=

= =
+

+

+

=
+

+

+
=

t
ut

du
u

du

Td

n

xx

dt

Td

n

xx

ut

du
u

du

dT

ut

du
u

du

Td

n

xx

dt

Td

n

xx

ut

du
u

du

Td

N

n

t

u

n

TC

n

n

n

N

n
n

TC

n

n

nt

u

TC

N

n

t

u

n

TC

n

n

n

N

n
n

TC

n

n

nt

u

TC

απ

ααπ

απ

α
τ

απ
τ

 

(6.49)

 One interesting observation is that for N = even, increasing N by one will still require the 

same number of temporal derivatives.  Therefore, it is wise to always use an odd value for N.  

Further, this method of determining the time constants simultaneously always requires 2 

temporal derivatives of probe 1 temperature data regardless of N.  For odd N, (N+3)/2 temporal 

derivatives of probe 2 temperature data are required.  It is also important to note that the TPTS 

method is limited by the response of probe 2 – i.e., the probe furthest away from the surface.   
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Results with Simulated Data 

 In order to validate this technique of simultaneously obtaining τ1 and τ2, a simulation was 

run using semi-infinite medium with a pulsed constant surface heat flux as the boundary 

condition at x=0 given by 
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The exact solution for this problem subject to the trivial initial condition is given by [51] 
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where H(z) is the Heaviside function [52], erfc is the complementary error function [52] and 

'()*
)��

�
 are the times when the source is “switched” on or off.  The source remains off until t ≥ 

tj=0.  The exact solution of Eq. (6.33) is then used to obtain the simulated thermocouple response.  

The integration of Eq. (6.33) was attempted by hand using integration by parts, and using 

MATHEMATICA; however, an analytical form was not possible.  Therefore, the integral was 

performed numerically.   

 The analysis procedure is as follows: 

1) Exact data for two probes (dimensionless properties, x1=d1=1, x2=d2=2) was generated 

with Eq. (6.51). 

2) Two unique time constants were chosen (τ1=0.2, τ2 = 0.1) for each probe, and Eq. (6.33) 

was used to generate the thermocouple data using trapezoidal integration.   
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3) In order to simulate how real data would be processed, the Gaussian filter of Eq. (3.15) 

was used to obtain the higher temporal derivatives of the data.  Since no noise was added, 

a significantly high dimensionless cutoff frequency of 5 was used. 

4) The two-probe time constant model in Eqs. (6.48-6.49) was used to simultaneously solve 

for τ1 and τ2 at each time step.  Integrals were evaluated using product integration. 

Figure 6.12(a) shows a plot of the temperature histories at two locations d1=1, d2=2.  The source 

was turned on and off at Fo = 1 and Fo = 3.25, respectively.  This roughly corresponds to a three 

second heating time for probes located at 5mm and 10mm in bronze (see Table 5.1 for 

properties).  The resulting prediction for τ1 and τ2 can be seen in Figure 6.12(b) for N=9 (6 

temporal derivatives of probe 2 data) and a dimensionless sampling rate of 1000.  This 

corresponds to dimensional sampling rate of 750 Hz for the sandwich experiment of this 

dissertation.   

 Comparing Figure 6.12(b) with Figure 6.13(a), it can be seen that increasing the number 

of derivatives reduces the bias in the time constant prediction.  This makes physical sense as 

increasing N is essentially making space more continuous.  It is analogous to using more spatial 

nodes in a finite difference scheme.  Comparing Figure 6.12(b) with Figure 6.13(b) shows the 

effect of increasing the sampling rate on the predicted time constant values.  Clearly, a higher 

sampling rate will provide better resolution for the integrals of Eqs. (6.48-6.49).   

Results with Experimental Data 

 Figure 6.14 shows the resulting time constant prediction using data from sandwich 

experiment run qCHIt10f1200 with probes A0 and B0 (dA0 = 5.19mm, dB0 = 10.14mm) using N = 

9.  It is noted that the sampling rate is faster than was used for the case of dimensionless  
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(a) 

 
(b) 

Figure 6.12: Two-Probe Taylor Series method results with simulated data. (a) Input 

dimensionless data and (b) resulting time constant prediction with N = 9, sf = 1000. 

 



153 
 

 
(a) 

 
(b) 

Figure 6.13: Effect of varying (a) number of derivatives used and (b) sampling rate on the 
resulting Two-Probe Taylor series results using simulated data.   
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Figure 6.14: Two-Probe Taylor Series results using sandwich experiment data from run 
qCHIt10f1200 with N = 9. 
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probes change from positive to negative throughout the entire heating cycle, and a converged 

value is not found.  A second simulation was run with N = 15; however, the results remained 

unchanged from the N = 9 case.  These results show that the model used does not accurately 

describe the experimental data.  Recall that the TPTS method is based on the assumption that τ 

in Eq. (6.32) is constant which leads to the subsequent derivation of the two-probe time constant 

model. However, the leads for the sandwich experiment are oriented perpendicular to the 

isotherms.  Therefore, lead losses are not negligible, and the assumption of constant τ is not 

applicable.  The results from the TPTS method verify the physics of the problem, and show that 

this technique should not be used to characterize probes that are subject to axial conduction 

along its wires. 

6.4 Recommended Characterization for Sandwich Experiment 

 As noted by previous investigators [38-40, 44], it has been shown that determination of 

the response time of an embedded thermocouple plays a significant role in the determination of 

the inverse-predicted surface temperature and heat flux.  In this chapter, two techniques for 

characterizing embedded thermocouples have been presented.  The first technique, loop current 

step response, was shown to be effective.  The uncertainty in the inverse projection of the surface 

heat flux using the LCSR characterization method was seen to overlap the uncertainty in the 

experimental surface heat flux.   

 In contrast, the two-probe Taylor Series method was unable to characterize the probes of 

the sandwich experiment. The reason for this is in the underlying assumptions of the TPTS 

method; namely, this technique assumes the thermocouples have a constant τ.  Since the 

thermocouples in the sandwich experiment have non-negligible conduction lead losses, the TPTS 
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technique is an inappropriate characterization technique.  However, the Two-Probe Taylor Series 

method is promising for the case where leads are oriented parallel to the isotherm. 
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Chapter 7: Experimental Results with One-Probe Analysis 

 The goal of this chapter is to experimentally validate the inverse heat conduction methods 

discussed in Chapters 2 and 3.  Additionally, the new inverse technique of the calibration integral 

method developed by Frankel et al. [22] will be also be investigated.  There are some key 

differences between the calibration integral method and the other two inverse techniques.  First, 

no knowledge of thermal properties or probe depth is required.  Second, the calibration integral 

method does not require the thermocouple data to be corrected to represent the actual positional 

temperature.  Third, as the name implies, the surface heat flux from a “real run” is predicted 

using data from a preliminary calibration run.  To date, this is the first study to implement this 

calibration integral with experimental data. 

 Section 7.1 first discusses the details of the experimental data reduction process.  Section 7.2 

presents preliminary results using each of the three inverse techniques.  Finally, Section 7.3 

compares the results from the three techniques, and conclusions are drawn as to the “best” one-

probe data inverse method.   

7.1 Data Analysis 

One-Probe Embedded Heat Flux Calculation 

The inverse techniques presented herein require temperature and heat flux data at an 

embedded location in order to project to the surface.  The sandwich experiment presented in 

Chapter 5 provided a test bed where embedded thermocouple measurements could be obtained.  

Chapter 6 presented a technique whereby thermocouple measurements could be (nearly) 

transformed into positional temperature measurements.  However, the inverse methods presented 

in Chapters 2 and 3 also require local heat flux data at the sensor site for use in the projection 
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scheme.  For one-probe analysis, our only choice is to employ the semi-infinite medium 

relationship between heating rate and in-situ heat flux presented Section 2.8 such that 
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Higher time derivatives of the heat flux can be found by integrating Eq. (7.1) by parts, then time 

differentiating both sides (via Leibniz’ rule [67]) such that 

 .0,,),(),(
0 1

1

≥
−∂

∂
=

∂
∂

∫ = +

+

tx
ut

du
ux

u

TCk
tx

t

q t

u n

n

n

n

π
ρ

 (7.1)

The time derivatives required by Eqs. (7.1-7.2) can be obtained using the post-processing 

technique described in Section 3.3 or using the rate sensor described in Chapter 4.  For the 

results presented herein, the temporal derivatives of temperature are obtained as in Section 3.3 

using the Gaussian filter which is an analytical function such that  
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The first derivative is obtained via 
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This approach provides all of the data required by the inverse methods in Chapters 2 and 3. 

LCSR Shifting and Higher-Time Derivatives of Temperature 

Both the space-marching and global time inverse methods require time-derivatives of 

LCSR-shifted temperature.  The theory and approach used to characterize installed 
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thermocouples via LCSR was presented in Chapter 6, and the final result is that the positional 

temperature is related to the thermocouple data such that 

 ),()()(),( tTtTttdxT TCTC +== &τ  (7.4)
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where T(x=d,t) is the positional, shifted temperature, TTC(t) is the thermocouple data, τ(t) is the 

time-dependent response time of the thermocouple (Section 6.2), and tp’ = tp + ton.   

 One detail that must be elaborated on here is the specific numerical procedure by which the 

higher-time derivatives of positional temperature are obtained.  Eq. (7.5) can be time-

differentiated to yield 
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Therefore, the first method of obtaining higher-time derivatives of positional temperature from 

thermocouple data is: 

• Filter the thermocouple data via Eq. (7.3). 

• Obtain analytical derivatives of the filtered thermocouple data via Eq. (7.4) (and 

subsequent derivatives). 

• Use Eq. (7.7) and subsequent analytical derivatives to obtain ∂n
T/∂tn. 

This approach is denoted as the “single filter method”.  However, τ(t) is not smooth (i.e., the 

slope is discontinuous); therefore, dτ/dt and each subsequent derivative are not smooth, 

continuous functions.  As will be shown in the global time inverse method discussion of Section 

7.2, if this first method of obtaining the higher time-derivative of temperature is used for inverse 
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predictions, it will result in discontinuous inverse predictions.  Therefore, a “band aid” is needed 

in the data reduction procedure to provide continuous, smooth inverse predictions.  To this end, 

the second method of obtaining the higher-time derivatives is: 

• Filter the thermocouple data via Eq. (7.3). 

• Obtain ONE analytical derivative of the filtered thermocouple data via Eq. (7.4). 

• Use Eq. (7.5) to obtain the positional temperature. 

• Filter the positional temperature via Eq. (7.3) to smooth out the effect of τ(t). 

• Use Eq. (7.4) to obtain the higher-time derivatives, ∂n
T/∂tn. 

This approach is denoted as the “double filter method”.  The benefit of this approach is that it 

does solve the problem of having discontinuous derivatives.  However, as the name implies, this 

is at the cost of filtering the data twice which can over-smooth.  Even though this is less than 

ideal, this second approach to obtaining the higher time derivatives of temperature is employed 

herein, and alternative approaches should be the subject of future work. 

Penetration Time of Back Face 

 The half-space relationship of Eq. (7.1) can be used as long as the semi-infinite medium 

condition is valid.  Phrased alternatively, this equation is valid until the back face temperature 

departs from the initial condition.  Therefore, the experimental penetration time of the sample 

must be obtained.  This was accomplished by making an experimental run, qCHIt10f60.  The 

highest power possible was used to produce the largest response at the back face thermocouple.  

The sampling rate of 60 Hz was chosen as the best compromise between measurement noise and 

temporal accuracy.  Figure 7.1 shows the resulting temperature history for this run.  The heater 

was activated at ton = 15s; therefore, the initial condition was calculated to be 23.6 °C from the  
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Figure 7.1: Penetration time of back surface with run qCHIt10f60 where tp’ = ton + tp. 
  

  



162 
 

average of all temperature readings up to 15s.  The uncertainty in the initial condition was 

calculated as 

 ,%95σγ±=TiU  (7.7)

where σ is the standard deviation of the lead data and γ95% is the corresponding Student’s t-

distribution value [49].  As shown in Figure 7.1, the back face temperature is seen to have a 

statistically significant departure from the initial condition at tp = t – ton = 6.1s.  This corresponds 

to a dimensionless penetration time of Fop = 0.071;  this compares well with the discussion of 

penetration time theory presented in Section 2.3 which proposed a dimensionless penetration 

time of 0.075 – a 5% difference.  However, while thermal penetration is observed 6.1s after 

heater activation, the back face temperature only increased to 0.1 °C by t – ton = 7s.  Therefore, 

up to 7s of data past ton is used henceforth for semi-infinite analysis. 

Actual Surface Heat Flux 

 As discussed in Chapter 5, the heater resistance and transient heater voltage were measured 

for each run.  Since AC voltage at 60 Hz was used, the transient RMS of the voltage was found 

such that 
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Two interpretations of the actual bronze surface heat flux could be used.  First, the thermal 

conductance effect of the nichrome volumetric generation, mica and thermal paste could be 
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neglected, and the bronze surface heat flux be assumed to be equal to the power supplied to the 

heater divided by twice (two plates) the heated area of one bronze plate such that 
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This is called the “direct flux model.”  Second, the three layer FD model described in Section 5.4 

could be used to account for the effects of the heater volumetric generation and the mica layer.  

The volumetric generation of the heater is then calculated as 
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where L1 (one-half of the heater thickness) is defined as in Figure 5.4.  The bronze surface heat 

flux is then obtained from the FD model via an energy balance at the bronze/mica interface, and 

the resulting heat flux is denoted as qS,2.  Figure 7.2 shows a comparison of qS,1 and qS,2 for run 

qCHIt10f60.  Note that the power board was sampled at 7500 Hz for this and all other sandwich 

runs.  The effect of the thermal conductance can be seen mainly near the power on and power off 

“corners.”  Since the FD model better accounts for the actual physics of the heater, this method 

of determining the incident flux to the bronze layer is employed henceforth.  The FD model 

bronze surface flux will be called the “actual” surface heat flux and denoted as qS.  

Choice of Probe to Use in Inverse Analysis 

For data collection, two thermocouple DAQs (DT9824s) were available, each with four 

channels.  Two channels were reserved for the back face thermocouples, TChalf1 and TChalf2.  

For all runs, the remaining six channels were used by three 5mm depth “A” probes (A0, A1, and 

A4) and three 10mm depth “B” probes (B0, B1, and B3).  All other probes were eliminated from 

analysis for the following reasons.  Preliminary analysis using probe A2 showed that the depth of  
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Figure 7.2: Comparison of surface flux obtained direct measured power history (qs1) and direct 
FD model which accounts for heater capacitance and mica layer (qs2).  Heater voltage was 
sampled at 7500 Hz. 

 

  



165 
 

the hole was improperly measured.  Probe A3 was not properly seated into the bottom of its drill 

hole during installation.  LCSR test data and analysis of Probe B3 indicated poor health.   

The physics of conduction damp out higher frequencies as one proceeds deeper into the sample.  

Therefore, a sensor closer to the surface will be able to capture changes in the surface condition 

more easily.  Since the focus of this chapter is on one-probe data analysis, only the data from 

5mm depth probes will be discussed.  Some authors [1, 26] recommend the use of multiple 

sensors at an identical depth and incorporating them into the inverse algorithm via some form of 

averaging.  Unfortunately, the depths of the A probes (see Table 5.3) are not identically equal; 

therefore, averaging the temperature readings from these three probes does not make physical 

sense.  Therefore, one probe must be selected as the “best” probe and used for analysis.  Probe 

A0 was selected for this task since it is healthy, and it is along the centerline of the sample.  This 

means that it should suffer the least from multi-dimensional effects.  For all of the analysis 

presented in this chapter, data from probe A0 is used. 

7.2 Experimental Validation of Inverse Techniques 

 Each of the three inverse techniques will be investigated below individually.  In order to 

illustrate the differences between the approaches employed for each method, Figure 7.3 shows a 

flow chart of the data analysis procedure for the three techniques.  The space-marching and 

global time methods use an identical pre-processing procedure; the only difference between these 

two approaches is the numerical procedure itself.  However, the calibration integral method is 

quite different.  Sensor characteristics, sensor depth, and thermal properties are all stored in the 

calibration data.  Therefore, regularization of the data is all that is required for preprocessing. 
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Figure 7.3: Flow chart for preprocessing of data for use in one-probe inverse analysis. 
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 As an example of the preliminary details that must be handled for each run, let us examine the 

experimental data for run qCLOt3f200 (constant 85V applied to heater, 3 second heating cycle, 

thermocouples sampled at 200 Hz).  The actual surface heat flux for run qCLOt3f200 of 

approximately 4.5 W/cm2 can be seen in Figure 7.4(a).  Figure 7.4(b) shows the resulting back 

face thermocouple histories for thermocouples TChalf1 and TChalf2.  This figure indicates that 

the symmetry assumption is valid.  Figure 7.5(a) shows the raw and LCSR-shifted (see Table 

6.1) temperature data for probe A0, along with the direct FD model temperature history.  As 

expected, the LCSR characterization values shift the raw data backwards in time, and amplify the 

measured values.  The method of Section 3.3 was used to determine the cutoff frequency.  Figure 

7.5(b) shows the plot of the error norms, ϕ1 and ϕ2 as defined in Eqs. (3.19) and (3.21); the 

optimum range appears to be 0.9 Hz ≤ fc  ≤ 2.1 Hz.  While this range is very large, it is seen that 

the error norm ϕ2 is relatively unchanged over this range.  Conversely, ϕ1 varies by almost two 

orders of magnitude over this range.  Therefore, the cutoff frequency was set to 0.9 Hz, 

corresponding with ϕ1.   

 One way to validate the experimental data is comparison of the shifted thermocouple data 

with the direct FD analytical model discussed in Section 5.4.  The actual heater power and actual 

temperature observed on the back face are used as input to this code, and the resulting positional, 

FD model temperature data at probe location A0 can be seen in Figure 7.6(a) compared against 

the measured, shifted temperature data.  It is important to note here that the FD model assumes 

one-dimensional diffusion, with no contact resistance between layers. In reality, the problem is 

three-dimensional due to non-uniform surface heating of the bronze and heat loss from the sides 

of the experiment.  Additionally, there are thermocouple lead losses which are not completely  
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(a) 

 
(b) 

Figure 7.4: (a) Imposed surface flux and (b) back face thermocouple histories for run 
qCLOt3f200.  Maximum difference between TChalf1 and TChalf2 was 0.02°C. 
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(a) 

 
(b) 

Figure 7.5: Details of post-processing the data for run qCLOt3f200.  (a) Raw and LCSR-shifted 
experimental A0 data and (b) optimum cutoff frequency range. 
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(a) 

 
(b) 

Figure 7.6: (a) Direct FD model temperature history at probe A0 depth compared with LCSR-
shifted experimental A0 data and (b) resulting local heat flux using semi-infinite medium 
integral equation.  Experimental data was regularized with fc = 0.9 Hz. 
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accounted for via LCSR shifting.  Furthermore, there are uncertainties associated with the inputs 

to the FD model such as the exact probe location and thermophysical properties. It is suspected 

that the contact resistance between the layers and the unaccounted portion of the thermocouple 

lead losses may have dominant roles. Therefore, it is expected that the FD model-predicted probe 

temperatures should be greater than the observed, LCSR-shifted temperatures.  Indeed, this is 

seen to be the case in Figure 7.6(a).  Therefore, it is not reasonable to attempt to draw further 

conclusions from a comparison of the FD model in-depth temperatures with the shifted 

thermocouple temperatures; henceforth, the FD model is not used for this purpose.  The FD 

model is only used for generating the actual surface flux of the bronze.  

Space-Marching Method 

 The space-marching method of Chapter 2 requires temperature and heat flux data at the sensor 

site as input.  The local heat flux is obtained via Eq. (7.1), using the LCSR-shifted temperature 

procedure outlined above for run qCLOt3f200.  The resulting local heat flux can be seen in 

Figure 7.6(b).  For this run, the ratio of penetration time to time step size was tp/∆t = 21.5; 

therefore, for the greatest stability and accuracy (see Figure 2.5(a)), 21 spatial nodes were used in 

the inverse prediction.  The resulting inverse-predicted surface temperature and heat flux can be 

seen in Figure 7.7.  Despite the three-dimensional nature of the experiment, losses, etc., the trend 

of the actual surface temperature and heat flux is captured by the space-marching inverse 

method.  However, it is prudent to find conditions under which the accuracy of this method could 

be further improved.  In order to compare the accuracy of the various inverse schemes across 

different runs, an error norm is defined as 
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(a) 

 
(b) 

Figure 7.7: Space-marching inverse results for run qCLOt3f200 for (a) surface temperature and 
(b) surface heat flux.  Parameters used were d/∆x = 21, tp/∆t = 21.5, and fc = 0.9 Hz.  The error 
norms were calculated over 12s ≤ t ≤ 22s. 
  



173 
 

 ( ) ,)()(
112

1 2

1

2∑
=

−
+−

=
j

jj

jinversejexact tt
jj

e ϕϕϕ  (7.13)

where φ can be either T or q, and j1 and j2 correspond to the time range over which the error 

norm is calculated.  For this chapter, three seconds of lead data and seven seconds of 

heating/cooling data were included as the time range for the error norm – i.e., j1 corresponds to t 

= 12s, and j2 corresponds to t = 22.  The error norms of predicted surface thermal conditions for 

this and all subsequent inverse analysis can be seen in Table 7.1. 

 Figure 2.5(b) suggests the optimal mesh for the space-marching method is for tp/∆t = 30 and 9 

spatial nodes.  However, the data density for run qCLOt3f200 is not high enough for this 

requirement.  Therefore, a second run was performed at a higher sampling rate.  Run 

qCLOt3f1200 (sampling rate of 1200 Hz) was conducted, and the resulting filtered (fc = 0.9Hz) 

positional temperature and heat flux data (seen in Figure 7.8) were down-sampled to correspond 

with the optimal mesh parameters of tp/∆t = 30 and d/∆x = 9.  The space-marching inverse 

prediction with this data can be seen in Figure 7.9.  Contrary to the hypothesis, the space-

marching method prediction for this run is seen to have a higher error norm than run 

qCLOt3f200 for both temperature and heat flux.  The reason for this is clear when comparing the 

data used for these two runs seen in Figure 7.5(a) with Figure 7.8(a).  While qCLOt3f1200 does 

have a higher data density available, the signal-to-noise ratio is significantly degraded from that 

of run qCLOt3f200.  This is due to the higher noise associated with sampling at higher rates with 

the DT9824 DAQ.   

 The accuracy of the space-marching inverse method after increasing the signal-to-noise ratio 

of the data is next investigated.  This can be accomplished by either 1) decreasing the noise in 

the data (i.e., better DAQ or lower sampling rate) or 2) increasing the temperature change at  
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Table 7.1: Inverse error norms for temperature and heat flux calculated over 12s ≤ t ≤ 22s.  
Global time method uses the double filter for derivatives.  Calibration Integral uses the 

thermocouple temperature as the kernel (rather than the heating rate). 

  Space-Marching  Global Time  Calibration Integral 
Run Name  eT eq  eT eq  eT eq 

qCLOt3f200  0.041 0.134  0.041 0.132  0.024 0.099 
qCLOt3f1200  0.045 0.149  0.045 0.147  0.022 0.099 
qCHIt3f200  0.039 0.122  0.039 0.120  0.019 0.097 
qRHIt5f200  0.030 0.058  0.030 0.058  0.009 0.037 
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(a) 

 
(b) 

Figure 7.8: (a) Raw and LCSR-shifted experimental A0 data for run qCLOt3f1200 and (b) 
resulting local heat flux for probe A0. 
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(a) 

 
(b) 

Figure 7.9: Space-marching inverse results for run qCLOt3f1200 for (a) surface temperature and 
(b) surface heat flux.  Parameters used were d/∆x = 9, tp/∆t = 30, and fc = 0.9 Hz. The error norms 
were calculated over 12s ≤ t ≤ 22s. 
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the probe site.  Since the investigation is limited to the DAQ on hand (which is already of high 

quality), and lowering the sampling rate contradicts the findings of Chapter 2, increasing the 

temperature change at the probe site is the preferred way to improve the signal-to-noise ratio.  

Therefore, an additional run qCHIt3f200 was conducted where the surface flux was increased 

from 4.5 W/cm2 to approximately 12 W/cm2.  The resulting filtered (fc = 0.9 Hz), shifted 

temperature and heat flux data can be seen in Figure 7.10, and the space-marching inverse 

prediction can be seen in Figure 7.11.  As expected the inverse predictions are more accurate (in 

a relative sense) for the higher temperature rise; compared to run qCLOt3f200, the temperature 

error norm decreased from 0.041 to 0.039, and the heat flux error norm decreased from 0.134 to 

0.122. 

Sharp changes in the surface boundary are very difficult to recreate with inverse 

techniques.  Therefore, an additional run qCHIt5f200 was conducted to see how well the space-

marching inverse method was able to recreate a linear change in the surface heat flux.  The 

heater voltage was increased (nearly) linearly to a peak flux of approximately 12 W/cm2, held 

constant for about two seconds, then linearly decreased to the off position.  Figure 7.12 shows 

the shifted temperature and heat flux data for this run, and Figure 7.13 shows the resulting space-

marching inverse run.  As expected, the space-marching inverse method is seen to be the most 

accurate for this boundary condition with temperature and heat flux error norms of 0.030 and 

0.058, respectively. 

Global Time Inverse Method 

 In addition to the shifted temperature and heat flux data at the sensor site, the global time 

method requires higher time derivatives of each of these quantities.  In Section 7.1, two methods  
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(a) 

 
(b) 

Figure 7.10: (a) Raw and LCSR-shifted experimental A0 data for run qCHIt3f200 and (b) 
resulting local heat flux for probe A0. 
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(a) 

 
(b) 

Figure 7.11: Space-marching inverse results for run qCHIt3f200 for (a) surface temperature and 
(b) surface heat flux.  Parameters used were d/∆x = 21, tp/∆t = 21.5, and fc = 0.9 Hz.  The error 
norms were calculated over 12s ≤ t ≤ 22s. 
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(a) 

 
(b) 

Figure 7.12: (a) Raw and LCSR-shifted experimental A0 data for run qRHIt5f200 and (b) 
resulting local heat flux for probe A0. 
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(a) 

 
(b) 

Figure 7.13: Space-marching inverse results for run qRHIt5f200 for (a) surface temperature and 
(b) surface heat flux.  Parameters used were d/∆x = 21, tp/∆t = 21.5, and fc = 1.5 Hz.  The error 
norms were calculated over 12s ≤ t ≤ 22s. 
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of obtaining the higher time derivatives of the temperature data were discussed.  It was stated 

that use of the first method (single filter) would produce a discontinuity in the inverse projection.  

The second method (double filter) provided a means by which the discontinuity was removed, 

enabling higher time derivatives of the temperature data.  This is demonstrated by using data 

from run qCLOt3f200.  Figure 7.14 shows the first and fifth time derivatives of the LCSR shifted 

temperature data.  Figure 7.14(a) shows the discontinuity in the first time derivative when the 

single filter method is used.  In addition to this discontinuity, the single filter method also allows 

too much noise to be passed into the derivatives.  Figure 7.14(b) shows the signal-to-ratio (SNR) 

for the fifth derivative with the single filter method is approximately 1, whereas the SNR with 

the double filter method is approximately 4.   

Figure 7.15 shows the resulting global time inverse method predictions using N = 4 for 

both the single and double filter methods.  Both the inverse temperature and heat flux results for 

the single filter method produce a discontinuity in the inverse prediction.  Further, the error 

norms for the single filter method are worse than the space-marching method.  In contrast, the 

double filter method performs well; the temperature error norm is as good as the space-marching 

method (eT = 0.041), and the heat flux error norm shows slight improvement over the space-

marching method (0.134 vs. 0.0132).  Therefore, for all subsequent results, only the double filter 

method is presented as the global time inverse results. 

The global time inverse method was next applied to the same experimental runs tested 

with the space-marching method discussed earlier.  Inverse results for runs qCLOt3f1200, 

qCHIt3f200, and qRHIt5f200 can be seen in Figures 7.16 – 7.18, and the corresponding error 

norms are tabulated in Table 7.1.  Very little improvement (if any) is seen when comparing the  
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(a) 

 
(b) 

Figure 7.14: (a) First and (b) fifth time derivative of shifted temperature data from run 
qCLOt3f200 with fc = 0.9 Hz. 
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(a) 

 
(b) 

Figure 7.15: Global time inverse (a) temperature and (b) heat flux results using global time 
inverse method with N = 4 and fc = 0.9 Hz for run qCLOt3f200.  Discontinuity seen when single 
filter method of obtaining time derivatives is employed.  The error norms were calculated over 
12s ≤ t ≤ 22s. 
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(a) 

 
(b) 

Figure 7.16: Effect of increased sampling rate on global time inverse method.  Inverse (a) 
temperature and (b) heat flux results for run qCLOt3f1200 using global time inverse method with 
N = 4 and fc = 0.9 Hz.  The error norms were calculated over 12s ≤ t ≤ 22s. 
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(a) 

 
(b) 

Figure 7.17: Global time inverse (a) temperature and (b) heat flux results using global time 
inverse method with N = 4 and fc = 0.9 Hz for run qCHIt3f200.  The error norms were calculated 
over 12s ≤ t ≤ 22s. 
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(a) 

 
(b) 

Figure 7.18: Global time inverse results for (a) temperature and (b) heat flux using data from run 
qRHIt3f200 with N = 4 and fc = 1.5 Hz.  The error norms were calculated over 12s ≤ t ≤ 22s. 
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space-marching results with the global time results.  This makes intuitive sense since both 

inverse methods are based on the same finite difference scheme in space.  The advantage of the 

global time inverse method is that round-off can be avoided while increasing accuracy by using 

higher-time derivatives in the inverse projection.  However, the accuracy and sampling rates of 

the measured temperatures with the available data acquisition system are not sufficient for 

extracting accurate higher-time derivatives that are needed. Table 7.2 shows that there is no gain 

in accuracy of the global time inverse method for N>3.  Recall that in Chapter 3 it was 

demonstrated when accurate required higher-time derivatives of the data are available, an 

increase of N from 4 to 7 resulted in significant improvement of the inverse predictions. 

In addition to the nominal value of the inverse predictions, it is also important to account 

for uncertainty in the inverse method.  The Appendix outlines the derivation for the uncertainty 

in both the surface heat flux due to heater resistance, measured heat voltage, and surface area.  

The Appendix also outlines the derivation for uncertainty in the global time inverse method due 

to sensor depth, material properties, sensor depth, temperature data and its temporal derivatives, 

and heat flux data and its temporal derivatives.  Figure 7.19 shows the inverse results with 

uncertainty for run qRHIt5f200.  The actual surface temperature is seen to nearly lie inside the 

uncertainty band of the global time method over the entire time domain.  However, significant 

differences are still seen near power on and peak temperature.  The uncertainty band of the actual 

surface heat flux is seen to overlap the uncertainty band of the global time method for a 

significant amount of time.  During the time of peak flux, the global time uncertainty band 

oscillates around the actual surface flux.  However, significant differences between actual and 

inverse are still seen after the source is deactivated. 
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Table 7.2: Global time inverse method error norms for run qCLOt3f200 

N eT eq 

1 0.04813 0.18475 
2 0.03709 0.10150 
3 0.03530 0.10028 
4 0.03475 0.09996 
5 0.03451 0.09983 
6 0.03439 0.09977 
7 0.03431 0.09973 
8 0.03427 0.09971 
9 0.03423 0.09970 
10 0.03421 0.09969 
11 0.03421 0.09969 
12 0.03418 0.09968 
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(a) 

 
(b) 

Figure 7.19: Uncertainty in global time inverse results for (a) temperature and (b) heat flux using 
data from run qRHIt3f200 with N = 4 and fc = 1.5 Hz.  The error norms were calculated over 12s 
≤ t ≤ 22s. 
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Calibration Integral Inverse Method 

 In addition to the inverse methods presented in Chapters 2 and 3, the recently developed 

calibration integral method presented in [22] will also be investigated herein.  The novel result of 

the calibration integral method is the Volterra equation of the first kind  
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where qcal(0,t) and Tcal(d,t) are the known surface heat flux and measured in-depth temperature 

response for a calibration run, and qrun(0,t) and Trun(d,t) are the surface heat flux and measured 

in-depth temperature response for a second “real run.”  Eq. (7.15) is valid for the case of one-

dimensional conduction into a semi-infinite medium where the sample is initially at some 

uniform temperature.  Frankel et al. also showed that Eq. (7.15) is still valid for thermocouple 

data, Tcal and Trun, without accounting for the thermocouple sensor characteristics.  

 It should be noted that temperatures in Eq. (7.15) should be viewed as excess temperature 

above the initial condition – i.e., a trivial initial condition of T(x, t=0) = 0 is assumed. The 

unknown in Eq. (7.15) is qrun(0,t).  Therefore, Eq. (7.15) can be cast in a more familiar form such 

that 
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Despite the elegant presentation, Eq. (7.16) is very difficult to solve.  This is because Volterra 

integrals of the first kind are well-known to be ill-posed [68].  Therefore, some form of 

regularization must be utilized.  For the results presented herein, the Gaussian low-pass filter of 

Eq. (7.3) will be utilized.  Additionally, classical quadrature methods for Volterra integrals of the 

first kind rely on the assumption that K(d,0) ≠ 0.  However, the physics of conduction dictate that 

excess temperature T(d,t) = 0 for d > 0 and t < tp.  Therefore, qrun(0,t) must be solved for at t + tp.  

This is made clear by numerically integrating Eq. (7.16) such that 
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where wj are the quadrature weights.  The time step ∆t and p* are now defined such that tp = p* 

∆t and write Eq. (7.19) for m = p* such that 
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which reduces to 
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Therefore, a straightforward calculation of qrun(0,t) can be made such that  
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where a negative integer in the summation limit sets the summation to zero.  This leads to a 

solution procedure where qrun(0,t) can be found one time step at a time, and this technique will be 

compared to the space-marching and global time methods previously discussed. 
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 One additional note here is that Eq. (7.15) can be differentiated in time to yield (via Leibniz’ 

rule [67])  
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Higher time derivatives of Eq. (7.15) are also possible.  Since the higher-time derivatives of 

temperature have been shown to contain physical information for diffusion, it is possible that 

using the time derivatives of temperature for surface heat flux prediction, rather than temperature 

itself, might be advantageous.  The resulting numerical technique is identical to Eq. (7.22), 

except that the definition of f(t) and the kernel is changed to reflect the derivatives.  Therefore, 

the effect of using the time derivatives of temperature will also be investigated below. 

 One of the main advantages to using the calibration integral method is that the user is not 

required to have knowledge of thermal properties.  However, if the thermal properties are 

known, the surface temperature history can be obtained via [2] 
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For the sake of comparison with the space-marching and global time methods, Eq. (7.24) is used 

below to obtain the surface temperature. 

 In preliminary analysis, a constant heat flux at the highest possible power level was found to 

provide the best calibration data.  Therefore, run qCHIt10f200 was used as the calibration run for 

all “real” runs using a sampling rate of 200 Hz.  As a first investigation, data from run 

qCLOt3f200 was used as the real run.  Figure 7.20(a) shows actual surface flux for both the 

calibration and real runs.  Figure 7.20(b) shows the unshifted thermocouple temperature histories 

for both the calibration and real runs.  Figure 7.21 shows the first and second temporal  
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(a) 

 
(b) 

Figure 7.20: Calibration integral method data for calibration qCHIt10f200 and real run 
qCLOt3f200.  (a) Actual calibration and real run heat flux and (b) calibration and real run 
temperature histories. 
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(a) 

 
(b) 

Figure 7.21: (a) First and (b) second temporal derivative of temperature data from calibration run 
qCHIt10f200 and real run qCLOt3f200.  Derivatives were taken using Gaussian filter function. 
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derivatives (using the Gaussian filter function) for both the unshifted calibration and real run 

data.  The resulting inverse predictions for the surface temperature and heat flux can be seen in 

Figure 7.22.   

A strong case was made in Chapter 4 for the amount of physical information contained in 

higher time derivatives of temperature.  Therefore, one might expect the highest meaningful 

temporal derivative of temperature to produce the best inverse results.  However, this is not the 

case.  In reality, the second derivative produced highly inaccurate results.  The inverse results 

using temperature and heating rate were similar in accuracy and better than those using the 

second derivative.  It is suspected that the reason for this is similar to the reason why the global 

time method was limited to N = 4.  Namely, as the higher temporal derivatives of the Gaussian 

filter function are taken, the signal-to-noise ratio degrades.  This is seen to be the case in Figure 

7.20(b) and Figure 7.21.  The SNR of the temperature data is strong.  The SNR of the heating 

rate is seen to be perhaps slightly less than for temperature.  However, the SNR of the second 

derivative of temperature is significantly lower than temperature or heating rate.  Therefore, it is 

not surprising that the resulting inverse predictions made exclusively with the second derivative 

data are less accurate than inverse predictions made with temperature or heating rate data. 

In order to compare the accuracy of the calibration integral method with that of the space-

marching and global time techniques, analysis was conducted on the same four runs: 

qCLOt3f200 (discussed above), qCLOt3f1200, qCHIt3f200, and qCLOt5f200.  The inverse 

results can be seen in Figures 7.23 – 7.25, and the corresponding error norms are tabulated in 

Table 7.1 for using temperature data as the kernel.  In contrast to the global time and space-

marching methods, the accuracy of the calibration integral method slightly improved as the  
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(a) 

 
(b) 

Figure 7.22: Calibration integral method inverse results for (a) temperature and (b) heat flux 
using calibration run qCHIt10f200 (fc = 1.1 Hz) and real run qCLOt3f200 (fc = 0.9 Hz).  The 
error norms were calculated over 12s ≤ t ≤ 22s. 
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(a) 

 
(b) 

Figure 7.23: Calibration integral method inverse results for (a) temperature and (b) heat flux 
using calibration run qCHIt10f1200 (fc = 0.9 Hz) and real run qCLOt3f1200 (fc = 0.9 Hz).  The 
error norms were calculated over 12s ≤ t ≤ 22s. 
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(a) 

 
(b) 

Figure 7.24: Calibration integral method inverse results for (a) temperature and (b) heat flux 
using calibration run qCHIt10f200 (fc = 1.1 Hz) and real run qCHIt3f200 (fc = 0.9 Hz).  The error 
norms were calculated over 12s ≤ t ≤ 22s. 
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(a) 

 
(b) 

Figure 7.25: Calibration integral method inverse results for (a) temperature and (b) heat flux 
using calibration run qCHIt10f200 (fc = 1.1 Hz) and real run qCHIt3f200 (fc = 1.5 Hz).  The error 
norms were calculated over 12s ≤ t ≤ 22s. 
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sampling rate was increased (run qCLOt3f1200).  This significant result suggests a well-posed 

procedure.  It should also be noted that the error norms decreased by almost one half from when 

the surface flux boundary condition was switched from a step change to a linear 

increase/decrease.   

In all runs investigated, the calibration integral approach was much more accurate than 

either the space-marching or the global-time method.  Additionally, the accuracy of the integral 

is heavily dependent on the numerical algorithm employed to evaluate it.  The technique 

employed herein was a crude numerical procedure which solves for the surface flux using 

physical insight and numerical “brute force.”  A more elegant method of numerically evaluating 

the calibration integral could improve the already impressive accuracy of this approach.  

7.3 Chapter Summary 

This chapter provided experimental validation using one-probe analysis for the space-

marching and global time inverse methods presented in Chapters 2 and 3, respectively, as well as 

for the newly developed calibration integral method.  The space-marching and global time 

methods approach the inverse problem with a traditional point of view; they require accurate 

knowledge of the sensor depth, thermal properties, and sensor characteristics.  In contrast, the 

calibration integral method does not require this information, but instead uses a preliminary 

experimental run as calibration data.  Both the space-marching and global time methods 

predicted the surface temperature and heat flux with similar accuracy.  The global time method 

could be improved if more accurate higher-time derivatives could be obtained.  The calibration 

integral method produces surface temperature error norms that are an astounding 41% - 70% 

more accurate the space-marching and global time methods; heat flux results are 19%-36% more 
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accurate.  These results are highly encouraging and suggest future efforts should be dedicated to 

the further development of more generalized (i.e., finite width, higher dimensions, etc.) 

calibration integral inverse techniques. 
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Chapter 8: Experimental Results with Two-Probe Analysis 

The goal of this chapter is to experimentally validate the inverse heat conduction methods 

discussed in Chapters 2 and 3 using data from two probes at different depths.  The inverse 

predictions presented in Chapter 7 relied on the assumption of a semi-infinite medium and used 

data from one probe to project to the surface.  By using data from two probes at different depths, 

the approach used in this chapter no longer requires the semi-infinite medium assumption and is 

valid for finite width domains.  At the time of this writing, a finite width domain parallel to the 

semi-infinite calibration integral method presented in Chapter 7 is still under development.  

Therefore, the space-marching and global time methods are the only inverse methods presented 

herein.  

8.1 Two-Probe Data Analysis Procedure 

 As noted in Chapter 7, the global time and space-marching inverse methods require both 

embedded temperature and heat flux measurements in order to project to the surface.  The 

sandwich experiment presented in Chapter 5 can be used to generate embedded temperature data, 

but heat flux data must be obtained through some form of post-processing.  Chapter 7 utilized an 

integral relationship between the embedded heating rate and heat flux.  However, this 

relationship is only valid for the case of a semi-infinite medium – i.e., until the thermal front 

reaches the back wall of the sample.  While this is useful, inverse predictions for the sandwich 

experiment were limited to t – ton ≤ 7s.  Therefore, an alternative method of calculating the 

embedded heat flux is required if inverse predictions are desired for t – ton > 7s.   
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This chapter utilizes data from two embedded probes at different depths to calculate the 

embedded heat flux histories.  A flow chart of the preprocessing used with the two-probe 

analysis can be seen in Figure 8.1.  Using the procedure outlined in Chapters 4 and 7, embedded  

temperature data was shifted in time for the corresponding sensor characteristics.  The shifted 

temperature data were then passed to a direct, finite difference code between the two embedded 

probes to calculate the embedded heat flux at both probe sites.  The implicit-in-time approach of 

Patankar [50] was used to construct the code.  Higher-time derivatives of temperature and heat 

flux data were obtained as in Chapter 7 using the Gaussian filter.  Finally, the shifted temperature 

data and calculated embedded heat flux (with corresponding derivatives) from the “A” probe 

(closest to the surface) was passed to both the space-marching and global time inverse methods. 

8.2 Two-Probe Analysis of Experimental Data 

 Chapter 7 demonstrated the inverse methods produced the best results using data with the 

highest signal-to-noise ratio.  It was also demonstrated that a linearly increased (ramped) surface 

heat flux was more accurately predicted than the case of a step change in flux.  The two 

experimental runs investigated in Chapter 7 which corresponded to these conditions were 

qCHIt3f200 and qRHIt5f200.  To facilitate comparison of the two-probe analysis with the one-

probe analysis, data from these two runs will first be analyzed with the two-probe technique. 

Demonstration of Two-Probe Analysis Technique 

 Figure 8.2(a) shows the raw, filtered, and shifted temperature data for probes A0 and B0 for 

run qCHIt3f200.  Probe B0 was chosen as the second probe since it is healthy and it is along the 

centerline of the sample.   Using the technique and logic outlined in Chapter 7, the cutoff 

frequencies used here were fc,A0 = 0.9 Hz and fc,B0 = 1.1 Hz.  The filtered, shifted temperature  
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Figure 8.1: Flow chart for preprocessing of data for use in two-probe inverse analysis. 
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(a) 

 
(b) 

Figure 8.2: Inputs for inverse problem using data from run qCHIt3f200.  (a) Raw, filtered, and 
shifted temperature data for both probes and (b) local heat flux at both probe sites using the 
single- and two-probe approach.  Cutoff frequencies used were fc,A0 = 0.9 Hz and fc,B0 = 1.1 Hz. 
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data from both probes were then passed to the direct FD model, and the embedded heat flux 

histories were calculated at both probe sites shown in Figure 8.2(b), and the resulting inverse 

surface temperature and heat flux predictions can be seen in Figure 8.3.  As in Chapter 7, the 

space-marching and global time inverse methods produce graphically identical results.  Again, 

this is counter-intuitive.  Chapter 3 demonstrated the high level of accuracy achievable with the 

global time method.  If it were possible to resolve the needed higher-order time derivatives of the 

data accurately, then the global time method would be more accurate than the space-marching 

method.  Nevertheless, both the space-marching and global time inverse methods produce 

excellent results; after the initial Gibbs’ spike in the predicted heat flux, the nominal value of 

peak flux is predicted ± 2% of the actual surface flux. 

 The second experimental run investigated with the two-probe analysis was run qRHIt5f200.  

The embedded temperature and heat flux data can be seen in Figure 8.4, and the resulting inverse 

projections can be seen in Figure 8.5.  Cutoff frequencies used for this run were fc,A0 = 1.5 Hz 

and fc,B0 = 1.1 Hz.  Both the space-marching and global time inverse methods are seen to capture 

the transient behavior of the surface temperature and heat flux.  Excellent agreement is seen 

between the actual surface condition and the inverse predicted history.  As in the one-probe 

analysis, the two-probe inverse methods are seen to be much more accurate when predicting 

linear changes in heat flux rather than a step change.  Comparing the ramped surface heat flux to 

the step change in flux, the error norm for the global time surface temperature decreased by 50% 

(0.030 to 0.015), and the surface heat flux error norm decreased by 62% (0.117 to 0.045).  This 

behavior is mainly attributed to the Gaussian filter which smooths out 
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(a) 

 
(b) 

Figure 8.3: Two-probe inverse results for surface (a) temperature and (b) heat flux.  Data used 
from run qCHIt3f200 seen in Figure 8.2. 
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(a) 

 
(b) 

Figure 8.4: Inputs for inverse problem using data from run qRHIt5f200.  (a) Raw, filtered, and 
shifted temperature data for both probes and (b) local heat flux at both probe sites using the 
single- and two-probe approach.  Cutoff frequencies used were fc,A0 = 1.5 Hz and fc,B0 = 1.1 Hz. 
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(a) 

 
(b) 

Figure 8.5: Two-probe inverse results for surface (a) temperature and (b) heat flux.  Data used 
from run qRHIt5f200 seen in Figure 8.4. 
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 sharp changes in the data, hence limiting the degree of accuracy which a step change in the 

surface can be recreated. 

 It should also be noted that the space-marching and global time methods are again seen to 

produce graphically identical results.  Since the global time method lends itself to uncertainty 

analysis more easily than the space-marching method, the global time method is used to compare 

the one-probe and two-probe results and is employed in analysis of subsequent datasets. 

Henceforth, reference to the two-probe analysis refers to the global time inverse prediction using 

heat flux from the two-probe FD model.   

Comparison of Two-Probe and One-Probe Analyses 

  The results for one-probe and two-probe analyses may be compared up to t=22s without 

violating the semi-infinite thermal condition. For both runs qCHIt3f200 and qRHIt5f200, a 

higher local heat flux was calculated for probe A0 using the two-probe FD model than for the 

one-probe analysis (see Figures 8.2(b) and 8.4(b)).  Therefore, it is expected that a higher surface 

heat flux will be predicted using the global time two-probe method (GTTP) than for the single-

probe global time method (GTSP).  Figures 8.6 and 8.7 compare the two-probe inverse results 

with the one-probe global time and calibration integral inverse results, and the corresponding 

error norms are shown in Table 8.1.   

As expected, for both runs GTTP predicted a higher surface temperature and heat flux 

than GTSP.  Additionally, the accuracy of the global time method appears to be improved for 

both runs by employing data from two probes.  For run qCHIt3f200 (Figure 8.6), employing 

GTTP as compared to GTSP resulted in a 23% improved in the surface temperature error norm 

and a 2.5% decrease in the surface heat flux error norm.  However, this small reduction of eq is  
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(a) 

 
(b) 

Figure 8.6: Comparison of two-probe inverse results with single-probe global time and 
calibration integral method for surface (a) temperature and (b) heat flux.  Data used from run 
qCHIt3f200 seen in Figure 8.2. 
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(a) 

 
(b) 

Figure 8.7: Comparison of two-probe inverse results with single-probe global time and 
calibration integral method for surface (a) temperature and (b) heat flux.  Data used from run 
qRHIt3f200 seen in Figure 8.4. 
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Table 8.1: Inverse error norms for temperature and heat flux using both the one- and two-probe 
approaches.  Calibration Integral uses the thermocouple temperature as the kernel (rather than the 

heating rate).  The time range indicates the domain used to calculate the error norms. 

   One-Probe  Two-Probe 

   Global Time  Calibration Integral  Global Time 
Run Name Time Range  eT eq  eT eq  eT eq 

qCHIt3f200 12s ≤ t ≤ 22s  0.039 0.120  0.019 0.097  0.030 0.117 
qRHIt5f200 12s ≤ t ≤ 22s  0.030 0.058  0.009 0.037  0.015 0.045 
qCHIt10f200 12s ≤ t ≤ 28s  --- ---  --- ---  0.020 0.095 
qCHIt10f1200 12s ≤ t ≤ 28s  --- ---  --- ---  0.022 0.102 
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not indicative of the improved accuracy.  After the initial Gibbs’ spike in the inverse predicted 

heat flux, GTTP is seen to oscillate around the actual surface heat flux.  In contrast, GTSP is 

seen to have a bias of approximately -10% in the surface flux prediction.  For the ramped surface 

heat flux (run qRHIt5f200, Figure 8.7), employing GTTP as compared to GTSP resulted in an 

amazing 50% improvement in eT and 22.4% improvement in eq (see Table 8.1).  As in the step 

change boundary condition, GTTP was seen to oscillate around the actual surface heat flux while 

GTSP showed a negative bias in its predicted surface heat flux.  In both runs (qCHIt3f200 and 

qRHIt5f200), both the single- and two-probe global time methods have a bias in predicting the 

power-off surface heat flux.     

Despite the increased accuracy in the global time method by employing the two-probe 

approach, the calibration integral method was still seen to be more accurate than GTTP.  For run 

qCHIt3f200 (Figure 8.6), employing CISP as compared to GTTP resulted in a 37% decrease in 

eT and a 17% decrease in eq.  The initial Gibbs’ spike was significantly improved for CISP; 

additionally, the bias in the power-off surface heat flux prediction was dramatically reduced.  For 

run qRHIt5f200 (Figure 8.7), employing CISP as compared to GTTP resulted in a 53% decrease 

in eT and an 18% decrease in eq (see Table 8.1).  While both CISP and GTTP are seen to be 

similarly accurate during heating, the bias in the power-off GTTP prediction was not visible in 

the CISP prediction.  In all aspects of these two representative runs, the single-probe calibration 

integral method (CISP) was seen to be more accurate than GTTP.  Future development of a two-

probe calibration integral method should further increase accuracy of the inverse prediction. 
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Two-Probe Analysis with Finite Width Sample  

 As demonstrated above, the accuracy of the global time inverse method is improved by using 

the two-probe approach.  The other major benefit to using two probes is the ability to perform 

inverse calculations after the semi-infinite condition is violated.  As demonstrated in Chapter 5, 

this occurs for t – ton > 7s.  Run qCHIt10f200 provides a test case where the effect of violating 

the semi-infinite condition on the two-probe analysis can be investigated.  Figure 8.8 shows the 

filtered (fc,A0 = 1.1 Hz, fc,B0 = 1.3 Hz), shifted temperature data and local heat flux histories.  

Figure 8.9 shows the corresponding inverse surface temperature and heat flux predictions, with 

error norms tabulated in Table 8.1.  The error norms for this run were calculated over 12s ≤ t ≤ 

28s.  A small bias is seen in the inverse prediction during heating and a larger bias is seen after 

the source was turned off.  Despite this bias, the GTTP has excellent agreement with the actual 

surface heat flux.  When comparing error norms for GTTP between a three second heating cycle 

and ten second heating cycle (runs qCHIt3f200 and qCHIt10f200), the surface temperature error 

norm is reduced by 33%, and the heat flux error norm is reduced by 19%.   

 Chapter 3 demonstrated that employing a higher data density with numerically simulated 

improved inverse results.  A higher sampling rate can affect both the Gaussian filter and the two-

probe direct FD model used to generate heat flux data.  In contrast to the results of Chapter 3, 

Chapter 7 showed that increasing the data density using experimental data with the one-probe 

inverse results (using the Gaussian filter) was seen to decrease accuracy.  This is because the 

noise level in the DAQ increases as the sampling rate is increased.  Therefore, the negative effect 

of increasing the noise level outweighed the positive benefit of increasing the data density.  We  
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(a) 

 
(b) 

Figure 8.8: Inputs for inverse problem using data from run qCHIt10f200.  (a) Raw, filtered, and 
shifted temperature data for both probes and (b) local heat flux at both probe sites using the 
single- and two-probe approach.  Cutoff frequencies used were fc,A0 = 1.1 Hz and fc,B0 = 1.3 Hz.  
Note semi-infinite medium condition is violated at t = 22s. 
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(a) 

 
(b) 

Figure 8.9: Two-probe inverse results for surface (a) temperature and (b) heat flux.  Data used 
from run qCHIt10f200 seen in Figure 8.8.  Note semi-infinite medium condition is violated at t = 
22s. 
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now seek to investigate the effect of increasing the data density on two-probe analysis which 

includes not only the Gaussian filter, but also the two-probe direct FD model.  Temperature and 

heat flux data for run qCHIt10f1200 can be seen in Figure 8.10 with fc,A0 = 1.0 Hz and fc,B0 = 1.3 

Hz.  Inverse surface temperature and heat flux results can be seen in Figure 8.11, with error 

norms tabulated in Table 8.1.  Similar to the one-probe analysis, increasing the sampling rate is 

seen to increase the error norms by 10% for surface temperature and 7% for surface heat flux.  

This is for the same reason as noted above for the one-probe analysis.  It is suspected, however, 

that if the higher-time derivatives of temperature were directly measured as in Chapter 4, the 

accuracy of the global time method could improve with increased data density provided the noise 

levels were controlled.  

Two-Probe Analysis Uncertainty 

 As discussed in Chapter 7, all measurements and calculations are subject to uncertainty.  The 

actual surface heat flux is subject to uncertainties (see the Appendix) in a) the heater resistance, 

b) the measured heater voltage, c) dimensions of the heater.  The global time inverse predictions 

are subject to uncertainties in a) input thermophysical properties, b) sensor depth, c) temperature 

and higher-time derivatives of temperature data and d) heat flux and higher-time derivatives of 

heat flux data.  Using the uncertainty derivation outlined in the Appendix, Figure 8.12 shows the 

uncertainty in the two-probe global time method inverse prediction and the uncertainty in the 

surface condition for a representative run qCHIt10f200.  The uncertainty bands of the inverse 

prediction and actual surface temperature and heat flux are seen to overlap.  Since this is the case 

for all four runs discussed in this chapter, the plots are superfluous, and only the results from one 

run are shown. 
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(a) 

 
(b) 

Figure 8.10: Inputs for inverse problem using data from run qCH10t10f1200.  (a) Raw, filtered, 
and shifted temperature data for both probes and (b) local heat flux at both probe sites using the 
single- and two-probe approach.  Cutoff frequencies used were fc,A0 = 1.0 Hz and fc,B0 = 1.3 Hz. 
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(a) 

 
(b) 

Figure 8.11: Effect of increasing the data density on the two-probe global time inverse results for 
surface (a) temperature and (b) heat flux.  Data used from run qCHIt10f1200 seen in Figure 8.10. 
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(a) 

 
(b) 

Figure 8.12: Uncertainty bands for actual and inverse predicted surface (a) temperature and (b) 
heat flux.  Data used from run qCHIt10f200 seen in Figure 8.8. 
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8.3 Chapter Summary 

 This chapter validated the two-probe approach for the space-marching and global time inverse 

methods of Chapters 2 and 3 using sandwich experiment data.  The accuracy of the one-probe 

results of Chapter 7 were improved in this chapter by using data from two-probes at different 

depths.  Perhaps the most significant feature of the two-probe analysis is the ability to make 

inverse predictions without the assumption of a semi-infinite medium.  Two experimental runs 

which violated this assumption were conducted, and it was shown that indeed the accuracy of the 

two-probe method was not degraded.  Further, it was demonstrated that the uncertainty band of 

the two-probe inverse approach overlapped the uncertainty band in the actual surface condition. 
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Chapter 9: Conclusions and Future Work 

9.1 Conclusions 

The overall goal of this work was to provide a systematic methodology by which the 

noted difficulties associated with the inverse heat conduction problem can be resolved.  To this 

end, two inverse heat conduction methods were presented in Chapters 2 and 3.  First, a space-

marching IHCP method (discrete space, discrete time) utilizing a Gaussian low-pass filter for 

regularization was studied.  One key observation from Chapter 2 was that the stability and 

accuracy of the inverse prediction was more sensitive to the temporal mesh than the spatial mesh.  

Therefore, the goal of Chapter 3 was to eliminate this feature by employing a global time, 

discrete space inverse solution methodology.  This was accomplished by assuming that the 

higher-time derivatives of temperature were available, and the time-derivative of the heat 

equation was not finite differenced.  The novel treatment of the temporal derivative in the heat 

equation, combined with the global time Gaussian low-pass filter provided the regularization 

required for stable, accurate results.  The numerical investigation of the global time method in 

Chapter 3 showed that in stark contrast to traditional inverse methods (including the space-

marching method), increasing the data density did not compromise stability of the inverse 

prediction.  Indeed, the global time inverse numerical results improved with faster data sampling.   

Chapter 4 presented some preliminary work in obtaining higher-time derivatives of 

temperature from a voltage-rate interface used in conjunction with the thermocouple calibration 

curve.  Significant motivation for the development of this sensor was discussed including use in 

the global time inverse heat conduction method; estimating local heat flux; detection of sudden 

jumps in surface heat flux from embedded sites; and, accurately predicting the future temperature 
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based on analytic continuation.  A thermocouple drop tower experiment was used to validate the 

sensor, and two temporal derivatives were demonstrated.   

Chapter 5 presented the setup of a physical experiment which was used as a test bed for 

validation of the numerical methods described in Chapters 2 and 3.  Thermocouples were 

installed at specific distances from a heated surface.  Careful design of this sandwich experiment 

ensured that the actual surface heat flux could be measured for comparison with the inverse 

techniques investigated.  A detailed description of this setup was presented in Chapter 5. 

Chapter 6 outlined the physics of installed thermocouple sensors, and presented two 

techniques by which the delay and attenuation characteristics of the sensors could be measured. 

The experimentally determined characteristics of each sensor were used to correct the measured 

thermocouple data of the sandwich experiment.  The first technique, loop-current step response, 

provides a way to characterize in-situ sensors independently from the main experiment (i.e., the 

sandwich experiment).  A new technique for the analysis of the LCSR data was presented, and 

excellent agreement was observed between this model and the data.  The second technique, the 

Two-Probe Taylor Series (TPTS) method, was unable to characterize the probes of the sandwich 

experiment. The reason for this is in the underlying assumptions of the TPTS method; namely, 

this technique assumes the thermocouples have a constant τ.  Since the thermocouples in the 

sandwich experiment have non-negligible conduction lead losses, the TPTS technique is an 

inappropriate characterization technique for the sandwich experiment.  However, the Two-Probe 

Taylor Series method is promising for the case where leads are oriented parallel to the isotherm. 

Chapter 7 presented experimental results and inverse projections using an analysis 

procedure with data from only one probe and limited to the case of a semi-infinite medium.  The 
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space-marching method, global time method, and a new calibration integral method were all 

employed to analyze data from the sandwich experiment.  The space-marching and global time 

methods approach the inverse problem with a traditional point of view; they require accurate 

knowledge of the sensor depth, thermal properties, and sensor characteristics.  In contrast, the 

calibration integral method does not require this information, but instead uses a preliminary 

experimental run as calibration data.  Excellent agreement was found between the actual surface 

heat flux and the inverse predictions.  It was also found that the space-marching and global time 

methods produced inverse predictions which were graphically identical.  This is because both 

techniques are based on the same spatial finite difference approach, and resolution of the higher-

time derivatives of the temperature data was limited which hampered the global time method.  

The global time method could be improved if more accurate higher-time derivatives could be 

obtained.  The calibration integral method produces surface temperature error norms that were an 

astounding 41% to 70% more accurate than the one-probe space-marching and global time 

methods; heat flux results were 19% to 36% more accurate.  These results are highly 

encouraging and suggest future efforts should be dedicated to the further development of more 

generalized (i.e., finite width, higher dimensions, etc.) calibration integral inverse techniques. 

Chapter 8 presented a more generalized approach to the inverse problem where data from 

two probes at different depths were used.  In contrast to the one-probe analysis, the two-probe 

inverse approach was not restricted to the case of a semi-infinite medium.  Data from the 

sandwich experiment was used for both the space-marching and global time inverse techniques.  

As in the one-probe analysis, it was found that these inverse methods produced graphically 

identical results due to limited resolution of the higher-time derivatives of the data.  The two-
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probe global time method was seen to significantly improve accuracy of the surface temperature 

predictions by as much as 50%, while surface heat flux prediction improved up to 10% over the 

single-probe global time method.  The two-probe global time method was still seen to be 

significantly less accurate than the one-probe calibration integral method (up to 40% for surface 

temperature and 37% for surface heat flux).  However, the uncertainty band of the two-probe 

global time inverse method was seen to significantly overlap the uncertainty band of the actual 

surface heat flux for nearly all time.   

9.2 Future Work 

Further Development of Higher-Time Derivative Sensor for Use in Inverse Analysis 

 Chapter 4 of this work demonstrated the accuracy that could be achieved with the higher-time 

derivative sensors.  Additionally, Chapters 7 and 8 presented experimental data using the global 

time inverse method without the use of these sensors.  For both one-probe and two-probe 

analysis, analytical derivatives of the Gaussian filter function were used, and the global time 

method was found to perform no more accurately than the space-marching method.  It is 

suspected that this is due to the smoothing nature of the Gaussian filter – i.e., significant 

information is lost due to the filtering.  It is the opinion of the author that the use of the voltage-

rate sensors for measurement of the higher-time derivatives of temperature would significantly 

improve the ensuing inverse results using the global time method.   

 Further, Chapter 7 discussed the use of temperature derivatives in the calibration integral 

method.  However, it was demonstrated that using the Gaussian filter to obtain the derivatives, 

inverse predictions using the calibration integral approach were more accurate using temperature 

directly rather than its derivatives.  It is strongly suspected that this may not be the case if the 
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voltage-rate sensor was employed to measure the temperature derivative instead of relying on the 

analytical derivative of the Gaussian filter. 

Sensor Characterization 

 The new analysis procedure of the LCSR data provided excellent results when applied to the 

sandwich experiment data in both Chapters 7 and 8.  However, a “band aid” was required in the 

shifting procedure to prevent discontinuities from occurring in the higher-time derivatives.  One 

way this could be remedied would be to use a smooth function to fit the LCSR data.  Rather than 

a square root in time modeling of the sensor characteristics given by Eq. (6.25) perhaps a smooth 

function such as the error function would provide a smooth τ(t) and temporal derivatives. 

 The goal of the LCSR testing was to obtain the parameters τ and λ.  An alternative way to 

finding these parameters independently of LCSR would be to directly use sandwich experimental 

data to calibrate the sensor.  A direct FD model of this experiment is readily available, and the 

positional temperature from the FD model could be compared with the unshifted thermocouple 

data.  Using Eq. (6.8), a least-squares algorithm could be employed to determine τ0 and λ where 

T∞(t) is the positional temperature from the FD model.  This approach is similar to the calibration 

integral method in that it would require at least one calibration run before a “real run” could be 

performed.  In contrast to the calibration integral method, however, actual values of the sensor 

characteristics would be determined.   

 The Two-Probe Taylor Series method of probe characterization showed excellent promise 

with numerical simulations.  However, the sandwich experiment presented herein has probes 

where the leads wires are oriented perpendicular to the isotherms.  A new experiment should be 
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constructed with lead wires oriented parallel to the isotherms, and the Two-Probe Taylor Series 

method should be experimentally validated with data from this experiment. 

Further Development of the Calibration Integral Method  

In Chapters 7 and 8, it was demonstrated that the new calibration integral method 

produced inverse results which were more accurate than either the space-marching or global time 

inverse methods.  However, the calibration integral method is currently limited to the case of a 

semi-infinite medium.  This is a significant limitation.  Given the high promise of this method, 

significant effort should be dedicated to the further development of this approach to produce a 

calibration technique that is extendable to multi-material finite width domains, anisotropic 

materials, and higher dimensions. 
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A.1 Uncertainty in Actual Surface Heat Flux 

 The actual surface heat flux of the slab is obtained via a finite difference (FD) code (see 

Section 5.4).  The geometry used for the FD code is three layers: 1) nichrome heater with 

volumetric generation 2) electrical insulator (mica) and 3) instrumented sample (bronze).  

Chapter 7 shows that the surface heat flux reported by the FD model asymptotically approaches 

the direct flux model.  Therefore, for ease of manipulation, we obtain the uncertainty in the 

surface heat flux from the approximation 
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where VRMS is the RMS of the AC voltage applied to the heater, Aheat is the surface area of one of 

the bronze plates, and Rheat is the resistance of the heater.  For the derivations presented herein, 

Uϕ denotes uncertainty such that ϕ = ϕav ± Uϕ.  The uncertainty in the surface heat flux via 

Kline-McClintock’s [49] equation is given by 
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The uncertainty in the area is negligible as compared to the uncertainty in the power 

measurement.  Therefore, Eq. (A.2) simplifies to 
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The required partial derivatives of Eq. (A.3) are given by 
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Substituting Eqs. (A.4-A.5) into Eq. (A.3) and dividing both sides of Eq. (A.3) by Eq. (A.1) 

yields 
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All that remains is to find the uncertainties in the heater voltage and resistance.   

Uncertainty in Heater Voltage 

The transient voltage of the heater was passed through a voltage divider, and then 

measured via a DT9806 data acquisition board with a gain of 1.  The equation for the heater 

voltage is then given by 
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where Rh1 and Rh2 are the individual resistances in the voltage divider and Vh,DAQ is the RMS of 

the voltage recorded by the data acquisition system.  Depending on the power level desired, two 

different values of Rh2 were used as seen in Table A.1.  The equation for the overall uncertainty 

in the heater voltage is given by Kline-McClintock’s method as 
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The required partial derivatives are given by  
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Table A.1: Uncertainty parameters for actual surface heat flux calculation. 

Parameter Value 
Run qCLOt3f200 qCHIt3f200 

Resistance   
        Rh 4.326 Ω 
        FSORh 100 Ω 
        LSDRh 0.001 Ω 
URh ± 0.005 Ω 
        Rh1 2.7178 kΩ 
        FSORh1 10 kΩ 
        LSDRh1 0.1 Ω 
    URh1 ± 0.4 Ω 
        Rh2 50.992 kΩ 75.215 kΩ 
        FSORh2 100 kΩ 
        LSDRh2 1 Ω 
    URh2 ± 6 Ω ± 7 Ω  

Voltage   
VRMS 82.0 VRMS 133.3 VRMS 

        Vh,DAQ 4.15 VRMS 4.65 VRMS 

        FSOh,DAQ ± 10V 
        LSBh,DAQ 305 µV 
        Esystem ± 0.01% FSOh,DAQ 
        Eaccuracy ± 0.01% FSOh,DAQ 
        Elinearity ± 1.2 LSBh,DAQ 
        Edrift ± 25 µV 
    UVh,OIE ± 0.0021 VRMS 
        t∞,95% 1.96 
        σh 0.012 V 0.012 V 
    UVh,σ  ± 0.023 V ± 0.024 V 
    UVh,DAQ ± 0.023 VRMS ± 0.024 VRMS 

UVRMS ± 0.46 VRMS ± 0.69 VRMS 

UVRMS/VRMS 0.0056 0.0056 
URh/Rh 0.0012 
UqS/qS 0.011 0.011 
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The voltage divider resistances were assumed to be constant and were measured with a 

Data Precision 3500 multimeter.  The specifications of this device state that the uncertainties in 

Rh1 and Rh2 are given by 

 ( ) 2,1,1%001.0%007.0 =++±= iLSDFSORU RhiRhihiRhi  (A.12)

The overall uncertainty in the measured heater voltage is given by 

 2
,

2
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where UVh,σ is the uncertainty in the voltage due to the noise level of the data and UVh,OIE is the 

overall instrument (DT9806) uncertainty.  These uncertainties are given by 

 hVh tU σσ %95,, ∞±=  (A.14)

 2222
, driftlinearityaccuracysystemOIEVh EEEEU +++±=

 
(A.15)

where σh is the standard deviation of the lead voltage data, t∞,95% is the Student’s t-distribution 

value [49], and all “E” terms in Eq. (A.15) are manufacturer’s specifications.  The parameters 

needed to compute Eqs. (A.12-A.15) can be found in Table A.1 which details the uncertainty 

calculation for a low power run (qCLOt3f200) and a high power run (qCHIt3f200).  

Interestingly, the resulting ratio of VRMS/UVRMS was found to be 0.0056 for both the low and high 

powered runs.  Indeed, this was found to be the case for all experimental runs. 
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Uncertainty in Heater Resistance 

The resistance of the heater was measured with the Data Precision 3500 instrument using the 

lowest range (100 Ω).  The equation for the uncertainty in the heater resistance is given by 

 ( )RhRhhRh LSDFSORU 1%004.0%008.0 ++±=  (A.16)

where the required parameters can be seen in Table A.1.  The overall uncertainty in the heater 

resistance was found to be 4.326 ± 0.005 Ω. 

Overall Uncertainty in Actual Surface Heat Flux 

Using the results above for the uncertainties in the heater voltage and resistance, the overall 

uncertainty in the actual surface heat flux was found to be  

 011.0=
S

qS

q

U
 (A.17)

It was found that the overall uncertainty in the actual surface heat flux is dominated by the 

uncertainty in the heater voltage.  This was in turn dominated by UVh,DAQ, which was dominated 

by UVh,σ.  Therefore, in order to reduce the uncertainty in the actual surface heat flux, the 

standard deviation of the lead voltage data should be reduced.  Indeed, this is a nontrivial task 

considering the high sampling rate of 7500 Hz (required for resolution of the RMS function), and 

reduction is unnecessary for most applications since the overall uncertainty is only 1.1%. 

A.2 Uncertainty in Global Time Inverse Method 

 It is desirable to quantify the uncertainty in the global time inverse method.  In Chapter 3, the 

projection equations were written in compact form.  In order to quantify the uncertainty in the 

inverse projection, it is recommended that the compact notation first be expanded.  For N = 1, 2, 

…, 7, the surface temperature equations are given by 
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where 
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The corresponding expansions for surface heat flux are given by 

q at the surface is given by 
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Next, we define the overall uncertainty in the surface temperature projection with the aid 

of Kline-McClintock’s method [49] as  
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Similarly, the uncertainty in the surface heat flux projection is defined as 
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Before proceeding, it is necessary to obtain an estimate of the uncertainty in probe depth and in 

material properties. 

Uncertainty in probe depth 

The holes in which the probes have been installed were drilled with small diameter 

(0.040 in.) drill bits.  A diagram of representative resulting hole can be seen in Figure A.1.  The 

depth of each hole was measured as the distance from the heated surface to the tip of the hole.  

The installation technique used yields good confidence that the thermocouple bead is in contact 

with the bottom of the hole somewhere along the slope.  The depths of the holes were measured 

with Microval, a coordinate measuring machine manufactured by Browne and Sharpe.  The 

accuracy of the machine was found to be ± 0.000 16 in.   This was verified with DoALL gage 

blocks set 86S which had a tolerance of ± 0.000 002 in.  Therefore, the uncertainty in the 

measurement was negligible as compared to the uncertainty due to the hole bottom slope.  The 

equation for the uncertainty in the hole depth is then 
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Figure A.1: Sketch of drilled hole geometry and uncertainty of hole depth. 
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where values for bronze samples can be found in Table A.2.  The probe depth is then given by 

 ( ) ddmeas UUdd ±+=  (A.48)

Uncertainty in Material Properties 

The manufacturer of the bronze (Atlas Bronze) was contacted to determine the 

uncertainty in the material properties.  At the present time, they have not responded.  Therefore, 

based on uncertainties reported in the literature for other materials, a 5% uncertainty was 

assumed in the product ρC as well as a 5% uncertainty in the nominal value of k. 

Overall Uncertainty in the Global Time Inverse Method 

Tables A.2-A.6 show the resulting uncertainty in the inverse projection for 1 ≤ N ≤ 4.  As 

defined above, an uncertainty of ± 0.15 mm was assumed for d, 5% uncertainty in the nominal 

value of the product of ρC was assumed, and 5% uncertainty in k was also assumed.  An 

uncertainty of ± 0.2°C was assumed for Td, and 5% of the maximum value was assumed for the 

uncertainty in the temporal derivatives of Td as well as qd and its temporal derivatives.  Data 

from probe A0, run qCHIt3f200 was used with fc = 0.9 Hz, τo =0.0338s, τmax = 0.701s, λ = 

0.460s1/2 to populate Table A.2-A.6.  The one-probe analysis technique outlined in Chapter 7 

was used to calculate the in-situ heat flux. 

The uncertainty in the surface temperature due to probe depth and material properties is 

seen to converge to a plateau value as the number of spatial nodes is increased (see Table A.2).  

Likewise, the uncertainty in the surface temperature prediction due to uncertainties in 

temperature data (Table A.3) and heat flux data (Table A.4) converges to a plateau value.  This is  

  



248 
 

Table A.2: Contribution of uncertainty in k, ρ, C, and d to the overall uncertainty in the inverse 
predicted surface temperature and heat flux for different values of N.  Temperature uncertainty is 

in °C and heat flux uncertainty is in W/cm2.  Data used from run qCHIt3f200. 

N 
maxk

T
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k ∂
∂
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C ρρ ∂
∂

 
maxd

q
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d ∂
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1 0.113 0.113 0.131 0.487 0.487 0.564 
2 0.142 0.142 0.165 0.435 0.435 0.503 
3 0.147 0.147 0.170 0.423 0.423 0.489 
4 0.148 0.148 0.171 0.419 0.419 0.485 

 

 
Table A.3: Contribution of uncertainty in temperature data and its temporal derivatives to the 

overall uncertainty in the inverse predicted surface temperature for different values of N in °C.  
Data used from run qCHIt3f200. 

N )0(,TT
ϖ  )1(,TT

ϖ  )2(,TT
ϖ  )3(,TT

ϖ  )4(,TT
ϖ  ( )

2/1

0

2

, )( 




∑
=

N

i
TT iω  

1 0.200 0.0971 --- --- --- 0.22231 
2 0.200 0.0971 0.00805 --- --- 0.22246 
3 0.200 0.0971 0.00954 0.00390 --- 0.22252 
4 0.200 0.0971 0.0101 0.00548 2.96x10-5 0.22254 

 

 

Table A.4: Contribution of uncertainty in heat flux data and its temporal derivatives to the 
overall uncertainty in the inverse predicted surface temperature for different values of N in °C.  

Data used from run qCHIt3f200. 

N )0(,qT
ϖ  )1(,qT

ϖ  )2(,qT
ϖ  )3(,qT

ϖ  ( )
2/1

0
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, )( 




∑
=

N

i
qT iω  

1 0.267 --- --- --- 0.26684 
2 0.267 0.0228 --- --- 0.26782 
3 0.267 0.0271 0.00110 --- 0.26821 
4 0.267 0.0286 0.00157 5.16x10-5 0.26837 
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Table A.5: Contribution of uncertainty in temperature data and its temporal derivatives to the 
overall uncertainty in the inverse predicted surface heat flux for different values of N in W/cm2.  

Data used from run qCHIt3f200. 

N )0(,Tq
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ϖ  )2(,Tq
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ϖ  )4(,Tq
ϖ  )5(,Tq

ϖ  ( )
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0

2

, )( 






∑
=

N

i
Tq

iω  

1 0 0.220 0.0728 --- --- --- 0.23143 
2 0 0.220 0.0546 0.00502 --- --- 0.22641 
3 0 0.220 0.0513 0.00529 0.000502 --- 0.22563 
4 0 0.220 0.0501 0.00534 0.000671 2.71x10-5 0.22536 

 

 
Table A.6: Contribution of uncertainty in heat flux data and its temporal derivatives to the 

overall uncertainty in the inverse predicted surface heat flux for different values of N in W/cm2.  
Data used from run qCHIt3f200. 

N )0(,qq
ϖ  )1(,qq
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ϖ  )3(,qq
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2/1

0

2

, )( 






∑
=

N

i
qq

iω  

1 0.302 0.103 --- --- --- 0.31911 
2 0.302 0.103 0.00948 --- --- 0.31926 
3 0.302 0.103 0.0103 0.0112 --- 0.31931 
4 0.302 0.103 0.0119 0.0119 3.22x10-5 0.31934 
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a desirable characteristic since the accuracy of the global time method was demonstrated in 

Chapter 3 to improve as the number of spatial nodes is increased.   

The uncertainty in the surface heat flux due to uncertainties in probe depth (Table A.2), 

material properties (Table A.2), temperature data (Table A.5), and heat flux data (Table A.6) is 

seen in to decrease to a converged value as more spatial nodes are used.  Again, this is highly 

desirable since the accuracy of the global time method improves as N is increased. 

In summary, for the example run of qCHIt3f200, the maximum overall uncertainty in the 

surface temperature due to material properties, sensor depth, temperature data and heat flux data 

was ± 0.96 °C.  The maximum observed surface temperature was 16.9 °C; therefore, the ratio of 

maximum uncertainty to maximum temperature was 5.7%.  Similarly, the maximum overall 

uncertainty in surface heat flux was ± 1.87 W/cm2, and the maximum surface heat flux was 11.9 

W/cm2.  Therefore, the ratio of maximum uncertainty to maximum surface heat flux was 16%.  

These ratios of uncertainty to maximum value were similar for different experimental runs. 
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