
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2011

Optimal Theory Applied in Integrodifference
Equation Models and in a Cholera Differential
Equation Model
Peng Zhong
pzhong@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Zhong, Peng, "Optimal Theory Applied in Integrodifference Equation Models and in a Cholera Differential Equation Model. " PhD
diss., University of Tennessee, 2011.
https://trace.tennessee.edu/utk_graddiss/1151

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268765232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Peng Zhong entitled "Optimal Theory Applied in
Integrodifference Equation Models and in a Cholera Differential Equation Model." I have examined the
final electronic copy of this dissertation for form and content and recommend that it be accepted in
partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in
Mathematics.

Suzanne Lenhart, Major Professor

We have read this dissertation and recommend its acceptance:

Louis Gross, Charles Collins, Don Hinton

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:

I am submitting herewith a dissertation written by Peng Zhong entitled “Optimal

Theory Applied in Integrodifference Equation Models and in a Cholera Differential

Equation Model.” I have examined the final electronic copy of this dissertation for

form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, with a major in Mathematics.

Suzanne Lenhart, Major Professor

We have read this dissertation
and recommend its acceptance:

Louis Gross

Don Hinton

Charles Collins

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



Optimal Theory Applied in

Integrodifference Equation Models

and in a Cholera Differential

Equation Model

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Peng Zhong

August 2011



c⃝ by Peng Zhong, 2011

All Rights Reserved.

ii



To my mother, Chen Fengyun

iii



Acknowledgements

First and foremost I want to thank my advisor Suzanne Lenhart. It has been an

honor to be Ph.D. student and a great pleasure working with her. I appreciate all

her contributions of time, ideas, and funding to my Ph.D. experience. The joy and

enthusiasm she has for her research was contagious and motivational for me, even

during tough times in the Ph.D. pursuit. I am also thankful for the excellent example

she has provided as a successful woman mathematician and professor.

I thank Prof. Louis Gross for the suggestions and discussions on both the

harvesting and the cholera model and Prof. Elsa Scheafer and Boloye Gomero for

the help with the Latin Hypercube Sampling analysis results. Prof. Don Hinton and

Prof. Charles Collins are thanked for their help and general advice as committee

members.

I am grateful to all my friends from the University of Tennessee, for being the

surrogate family during the many years I stayed there and for their continued moral

support there after.

Finally, I am forever indebted to my parents for their understanding, endless

patience and encouragement when it was most required. Thank you.

iv



Abstract

Integrodifference equations are discrete in time and continuous in space, and are used

to model the spread of populations that are growing in discrete generations, or at

discrete times, and dispersing spatially. We investigate optimal harvesting strategies,

in order to maximize the profit and minimize the cost of harvesting. Theoretical

results on the existence, uniqueness and characterization, as well as numerical results

of optimized harvesting rates are obtained. The order of how the three events, growth,

dispersal and harvesting, are arranged also affects the harvesting behavior.

Cholera remains a public health threat in many parts of the world and improved

intervention strategies are needed. We investigate a key intervention strategy,

vaccination, with optimal control applied to a cholera model. This system of

differential equations has human compartments with susceptibles with different levels

of immunity, symptomatic and asymptomatic infecteds, and two cholera vibrio

compartments, hyperinfectious and non-hyperinfectious. The spread of the infection

in the model is shown to be most sensitive to certain parameters, and the effect of

varying these parameters on the optimal vaccination strategy is shown in numerical

simulations. Our simulations also show the importance of the infection rate under

various parameter cases.

v



Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Optimal Control of Harvesting Problems Modeled by Integrodifference

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Optimal Control of Vaccination in a Model of Cholera . . . . . . . . . 4

2 Optimal Control for Harvesting Problems Modeled by Integrodif-

ference Equations (Growth, Harvest and Dispersal) 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Model with Linear Growth, Harvesting and Dispersal . . . . . . . . . 8

2.2.1 Statement of the Problem for the Linear Case . . . . . . . . . 8

2.2.2 Existence for State System for the Linear Case . . . . . . . . . 10

2.2.3 Characterization of an Optimal Control for the Linear Case . 12

2.2.4 Uniqueness Result for the Linear Case . . . . . . . . . . . . . 18

2.3 Model with Concave Growth and Control Cost . . . . . . . . . . . . . 23

2.3.1 Problem Statement for the Concave Case . . . . . . . . . . . . 23

2.3.2 Existence for State System for the Concave Case . . . . . . . 25

2.3.3 Characterization of an Optimal Control for the Concave Case 28

vi



2.3.4 Uniqueness Result for the Concave Case . . . . . . . . . . . . 33

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Comparison with Another Order of Events (Growth, Dispersal and

Harvest) 39

3.1 Optimality System for Growth, Dispersal and Harvest . . . . . . . . . 39

3.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Study of Six Different Harvesting Orders 51

4.1 List of Six Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Relations among all the Six Cases . . . . . . . . . . . . . . . . . . . . 54

4.2.1 The First Three Cases . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 The Last Three Cases . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Study of Case 6: Harvest, Growth and Dispersal 60

5.1 Existence of an Optimal Control . . . . . . . . . . . . . . . . . . . . . 62

5.2 Characterization of an Optimal Control . . . . . . . . . . . . . . . . . 66

5.2.1 Uniqueness Result . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Investigating Optimal Vaccination Strategies in a Cholera Model 81

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Description of Cholera Model . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Parameters and Latin Hypercube Sampling Analysis . . . . . . . . . 87

6.4 Calculate the Basic Reproduction Number, R0 . . . . . . . . . . . . . 91

6.5 Optimal Control Formulation and Analysis . . . . . . . . . . . . . . . 92

6.6 Simulation of an Outbreak . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6.1 Effect of Weights on Optimal Control . . . . . . . . . . . . . . 100

vii



6.6.2 Effect of Infection Rate on Optimal Control . . . . . . . . . . 102

6.6.3 Effect of LHS-sensitive Parameters on Optimal Control . . . . 106

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 116

Vita 123

viii



List of Tables

6.1 Notation assigned to parameters . . . . . . . . . . . . . . . . . . . . . 86

6.2 Sensitivity analysis of the initial model without controls . . . . . . . . 90

6.3 Base parameters for simulations . . . . . . . . . . . . . . . . . . . . . 99

6.4 Three sets of weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Four sets of parameters giving similar infection rates. . . . . . . . . . 103

ix



List of Figures

3.1 Normal kernel, β = 5, Linear growth function, r = 1.8, At = 10,

Bt = 500, L = 1, T = 5, δ = 0.04. . . . . . . . . . . . . . . . . . . . . 44

3.2 Normal kernel, β = 5, Linear growth function, r = 1.8, At = 10,

Bt = 1000, L = 1, T = 5, δ = 0.04. . . . . . . . . . . . . . . . . . . . 45

3.3 Normal kernel, β = 5, Linear growth function, r = 1.8, At = 10,

Bt = 500, L = 1, T = 10, δ = 0.04. . . . . . . . . . . . . . . . . . . . 46

3.4 Finite range kernel, R = 1, Linear growth function, r = 1.8, At = 10,

Bt = 500, L = 1, T = 10, δ = 0.04. . . . . . . . . . . . . . . . . . . . 47

3.5 Finite range kernel, R = 2, Linear growth function, r = 1.8, At = 10,

Bt = 500, L = 1, T = 10, δ = 0.04. . . . . . . . . . . . . . . . . . . . 48

3.6 Finite range kernel, R = 0.25, Linear growth function, r = 1.8, At =

10, Bt = 500, L = 1, T = 10, δ = 0.04. . . . . . . . . . . . . . . . . . 49

6.1 Diagram for the Cholera model with vaccination as control. . . . . . . 93

6.2 Outbreak Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Set 1: A = 1, B = 0.04, C = 1 . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Set 2: A = 1, B = 0.04, C = 2 . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Set 3: A = 1, B = 0.25, C = 1 . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.9 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



6.10 βL changed into 0.04. Case 1 . . . . . . . . . . . . . . . . . . . . . . . 107

6.11 p changed into 0.8. Case 1 . . . . . . . . . . . . . . . . . . . . . . . . 108

6.12 γ2 changed into 0.4, Case 1. . . . . . . . . . . . . . . . . . . . . . . . 108

6.13 S0 changed into 7000. Case 1 . . . . . . . . . . . . . . . . . . . . . . 109

6.14 βL changed into 0.04. Case 2 . . . . . . . . . . . . . . . . . . . . . . . 109

6.15 p changed into 0.8. Case 2 . . . . . . . . . . . . . . . . . . . . . . . . 110

6.16 S0 changed into 7000. Case 2 . . . . . . . . . . . . . . . . . . . . . . 110

6.17 βL changed into 0.04. Case 3 . . . . . . . . . . . . . . . . . . . . . . . 111

6.18 p changed into 0.8. Case 3 . . . . . . . . . . . . . . . . . . . . . . . . 111

6.19 S0 changed into 7000. Case 3 . . . . . . . . . . . . . . . . . . . . . . 112

6.20 βL changed into 0.04. Case 4 . . . . . . . . . . . . . . . . . . . . . . . 112

6.21 p changed into 0.8. Case 4 . . . . . . . . . . . . . . . . . . . . . . . . 113

6.22 S0 changed into 7000. Case 4 . . . . . . . . . . . . . . . . . . . . . . 113

6.23 γ2 changed into 0.4, Case 3. . . . . . . . . . . . . . . . . . . . . . . . 114

6.24 γ2 changed into 0.4, Case 4. . . . . . . . . . . . . . . . . . . . . . . . 114

xi



Chapter 1

Introduction

1.1 Optimal Control Theory

This dissertation studies optimal control theory and its applications to mathematical

models in biology and epidemiology, consisting of ordinary differential equations

and integrodifference equations that simulate dynamics of populations and diseases.

Mathematical biology is a growing branch of applied mathematics as the interest in

modeling complex biological systems increases. Optimal control theory is a branch of

mathematics developed to find optimal ways to control a dynamic system. Generally,

the optimal control problem consists of an objective functional, a dynamic system

and the control(s), which enter the dynamics in a variety of ways as coefficients,

boundary terms or sources [15]. This dissertation focuses on biological applications of

optimal control to integrodifference equations and to systems of ordinary differential

equations. The tools used are Pontryagin’s Maximum Principle and its extensions [43]

. This principle was developed for optimal control of systems of ordinary differential

equations.
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1.2 Optimal Control of Harvesting Problems Mod-

eled by Integrodifference Equations

Integrodifference equations model the spread of populations that are growing in

discrete generations, or at discrete times, and dispersing spatially. These equations

are discrete in time and continuous in space with a growth term usually followed by

dispersal, represented by integration against a kernel.

The general form of an integrodifference equation is

Nt+1(x) =

∫
Ω

k(x, y)f(Nt(y), y)dy,

where Nt(x) is the population size or density at location x at time step t, f(Nt(y), y)

describes the local population growth at location y, and k(x, y), often referred to as

the dispersal kernel, is the probability of moving from point y to point x.

For certain species, these equations can assist in capturing the speed of the

spread of populations [27, 28]. Invasive species and crops are important applications

for these equations and lead to considerations about including harvesting in these

models. Optimal control theory for integrodifference equations is beginning to be

developed. Gaff, Joshi and Lenhart [16] worked on optimal harvesting in a crop

model with a disease infestation, and Joshi, Lenhart, Gaff and Lou [21, 22] worked on

optimal harvesting problems in which growth happens first, then dispersal following

harvesting.

In Chapter 2 we first investigate optimal control analysis for harvesting problems

in which the harvesting occurs after the growth and before the dispersal. The

integrodifference model with harvesting is:

Nt+1(x) =

∫
Ω

k(x, y)(1− αt(y))f(Nt(y), y)dy (1.1)

where t = 0, 1, ..., T − 1.

2



The state variable N and the control α, which is the harvesting rate at the

corresponding time step, are represented by

N = N(α) = (N0(x), N1(x), . . . , NT (x)),

α = (α0(x), α1(x), . . . , αT−1(x)),

where x is the spatial variable in a bounded domain Ω ⊂ Rn.

The harvesting profit is the objective functional to be maximized and the

harvesting level is the control. The analytical part of this work includes existence,

uniqueness, and characterization of the optimal control. The proofs of these results

combine techniques from optimal control of partial differential equations [34] and

discrete time models [45]. In L2(Ω), weak convergence of maximizing sequences of

controls and strong convergence of the corresponding state sequences are needed to

justify the existence results. Differentiating the control-to-state and the control-to-

objective functional maps are used to obtain the optimal control characterization.

The difference between this work and the work of Joshi et. al. [21, 22] can be seen

in the different adjoint equations, the optimal control characterization, and the proof

of existence of optimal control. But the differences can also be seen in numerical

illustrations shown in Chapter 3. The numerical algorithm uses an iterative method

of forward-backward sweeps with solving the state equations forward and the adjoint

equations backwards, and updating the control with the characterization.

Since the order of events is crucial in a discrete time problem, in Chapter 4 we

study all six possible orders of arranging the three events that happen during each

time step - growth, dispersal and harvesting. Considering how certain orders can be

obtained through transformations to other orders, we show that the six cases can be

reduced to analyzing three cases.

3



1.3 Optimal Control of Vaccination in a Model of

Cholera

Cholera, an infection of the small intestine caused by the bacterium Vibrio choleae,

is a major cause of death in the world. Notable outbreaks happen every year, most

recently in Haiti, October 2010, causing considerable losses of life and in the economy.

A number of safe and effective vaccines for cholera are available.

Our research on this topic in Chapter 6 investigates the effects of vaccination in a

cholera model. This model is a system of nine ordinary differential equations, tracking

movement of susceptible individuals with and without partial immunities to either an

asymptomatic infected class or a symptomatic infected class, then to two recovered

classes with different waning rates. A vaccinated class is added into this model as

well, and the vaccination rate is a control function. This model has the feature of

two equations representing hyperinfectious and regular infectious Vibrio choleae, the

concentrations in the environment which are determined by populations of infected

humans. This work is an extension of models from King et al.[24], Hartley et al. [18],

and Miller Neilan et al.[39].

The purpose of applying optimal control theory to the model of cholera stated

above is to seek an optimal vaccination rate during a given time period that minimizes

the economic and social losses. Therefore, the objective functional is to minimize the

number of infected and the cost applying the vaccination control.

For illustrative numerical results, an iterative forward-backward sweep method

with a fourth order Runge Kutta algorithm is used [31]. We first simulate outbreaks

in a refugee camp with a population size of 10000, then construct optimal vaccination

rates under various scenarios and study the effects of the parameters, initial conditions

and weights of the objective functional on optimal vaccination strategies. The choice

of parameters to vary is determined according to sensitivity analysis results using

Latin Hypercube Sampling in collaboration with another UT student, Boloye Gomero,

and with Elsa Schaefer, a professor at Emory University.

4



This project is a part of a collaborative project involving Elsa Schaefer, Holly
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Chapter 2

Optimal Control for Harvesting

Problems Modeled by

Integrodifference Equations

(Growth, Harvest and Dispersal)

2.1 Introduction

Integrodifference equation (IDE) models are discrete in time and continuous in space

and represent populations with separate growth and dispersal stages [26, 33]. They

were first formulated to study applications in physics [8] and population genetics

[46, 47, 51].

Integrodifference equations were first applied to population ecology by Kot and

Schaefer in 1986 [29]. IDE models have become more popular recently because of

several advantages over reaction-diffusion equation models [3, 19, 38]. First, reaction-

diffusion equations tend to underestimate the invading speed of some species [9, 36,

44], while integrodifference equations can provide a more accurate solution to that

problem [27, 28, 32]. Second, integrodifference equations can readily incorporate a

6



variety of dispersal mechanisms [41], including fat-tailed kernels [5], while reaction-

diffusion equations can only work with normal distributions.

Integrodifference equation models are also referred to as integral projection models

[13], which were introduced as an alternative to traditional matrix population models,

with the advantage of being able to eliminate the need for dividing a population into

discrete classes. Populations of arthropod, multivoltine [23] and annual plant species

[2] can be modeled with integrodifference equations.

The goal of the first part of this dissertation is to investigate optimal control of

integrodifference equations, concentrating on harvesting problems. One application

of optimal control for integrodifference equation models is a harvesting problem. For

a species with separate growth and dispersal stages, harvesting can be done either

before growth and after dispersal or before dispersal and after growth. The former

case, on which the harvesting occurs before growth and after dispersal, was studied

by Joshi, Lenhart and Gaff. They began with linear growth for the population and

quadratic costs of the harvesting control [21]. Their objective functional was designed

to maximize discounted revenue while minimizing a quadratic cost of the control.

They completed both analysis and numerical results on this harvesting problem,

and later extended these results to the case with a convex growth function and convex

cost function [22]. Their results were the first results on optimal control of IDE

models. This approach was successfully used on an IDE system modeling crop disease

[16]. Their approach was a combination of techniques from optimal control of partial

differential equations and of discrete time models.

In this chapter, the case in which harvesting is done after growth and before

dispersal, is studied. Using the same type of objective functional, we also begin

with linear growth and quadratic costs, and then discuss a harvesting problem with

a concave growth function and convex cost function. In both cases, the existence,

characterization, and uniqueness of an optimal control are obtained.

7



Remark 2.1. We refer to the harvesting problem with linear growth and quadratic

costs as ”the Linear Case”, and the one with a concave growth function and convex

cost function as ”the Concave Case”.

2.2 Model with Linear Growth, Harvesting and

Dispersal

2.2.1 Statement of the Problem for the Linear Case

The integrodifference model is:

Nt+1(x) =

∫
Ω

k(x, y)(1− αt(y))f(Nt(y), y)dy (2.1)

where t = 0, 1, ..., T − 1.

The state variable N and the control α are represented by

N = N(α) = (N0(x), N1(x), . . . , NT (x)),

α = (α0(x), α1(x), . . . , αT−1(x)),

where x is the spatial variable in a domain Ω.

Assumption 1. Assume Ω is a bounded domain in Rn. The initial distribution N0(x)

is given in L∞(Ω). Assume αt(x) is Lebesgue measurable and 0 ≤ αt(x) ≤M < 1 for

all t = 0, 1, . . . , T − 1 and x ∈ Ω.

Our goal is to maximize the objective functional J(α),

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(y)f(Nt(y), y)−
Bt

2
(αt(y))

2]dy. (2.2)

In this problem, J represents the profit, which is the discounted revenue stream less

the cost of the control, where the coefficient where At is the price factor and e−δt is

8



the discount factor with δ > 0. Here we assume that the cost function is non-linear,

and we will be dealing with a simple quadratic cost. The coefficient Bt is a weight

factor that balances the two parts of the objective functional. The coefficients, At

and Bt, are both positive numbers for any t = 0, 1, · · · , T −1. We look for the control

α∗ that maximizes J , i.e.:

J(α∗) = max
α∈U

J(α)

where the control set is U =
{
α ∈

(
L∞(Ω)

)T |0 ≤ αt(x) ≤M, t = 0, 1, . . . , T − 1
}
for

M < 1.

Assumption 2. We begin with a linear growth function:

f(Nt(y), y) = rNt(y).

Assumption 3. Assume that the kernels are bounded and measurable such that

∫
Ω

k(x, y)dy ≤ 1

for all x ∈ Ω, and

0 ≤ k(x, y) ≤ Γ

for (x, y) ∈ Ω× Ω and Γ < 1.

Note that integrodifference equations do not have boundary conditions on ∂Ω like

in reaction-diffusion equations. No individuals enter the population from outside Ω.

If x is near the ∂Ω, the individuals who disperse outside ∂Ω are not counted in our

population in Ω.

Assuming N0(x) ∈ L∞(Ω), with N0(x) ≥ 0, we will show that the corresponding

state N = N(α) satisfies 0 ≤ Nt(α) ≤ CT , where CT is a constant that depends on

the number of discrete time steps considered in the process and the constant r.

9



Denote ∥·∥ by ∥·∥L∞ . Then we have

∥N1∥ = ∥
∫
Ω

k(1− α)rN0∥ ≤ r · ∥1− α0∥ · ∥N0∥ ≤ r∥N0∥

∥N2∥ ≤ r · ∥1− α1∥ · ∥N1∥ ≤ r2∥N0∥.

Continuing like this, we have

∥Nt+1∥ ≤ r · ∥1− αt∥ · ∥Nt∥ ≤ rt+1∥N0∥.

Observing the state equations, we see that k(x, y), 1−αt(y) are positive for any x, y,

and f is positive whenever Nt is positive. By induction, we know the population can

not be negative at anytime, i.e., Nt(x) ≥ 0, for all t, x.

2.2.2 Existence for State System for the Linear Case

We first prove the existence of an optimal control.

Theorem 2.2. Under Assumption 1, 2 and 3, there exists an optimal control α∗ in

U that maximizes the functional J(α).

Proof. Let {αn} be a maximizing sequence for the objective functional J in (2) and

Nn = N(αn) be the corresponding state sequence.

Since those two sequences are L∞ bounded, there exists α∗ ∈ U and N∗ ∈

(L∞(Ω))T such that on a subsequence, we have the following weak convergences,

Nn
t ⇀ N∗

t in L2(Ω), t = 1, · · · , T

αn
t ⇀ α∗

t in L2(Ω), t = 0, · · · , T − 1.

We want to show

∫
Ω

k(x, y)(1− αn
t (y))rN

n
t (y)dy →

∫
Ω

k(x, y)(1− α∗
t (y))rN

∗
t (y)dy

10



pointwise for each x ∈ Ω.

It is known that αn
t ⇀ α∗

t in L2(Ω), and we want to show Nn
t → N∗

t strongly in

L2(Ω). For k = 1, we have

Nn
1 (x) =

∫
Ω

k(x, y)(1− αn
0 (y))rN0(y)dy

since Nn
0 (x) = N0(x) for all n.

From the assumption 0 ≤ k(x, y) ≤ 1,
∫
Ω
k(x, y)2dy ≤ 1. So we know that

k(x, y) ∈ L2(Ω), and k(x, y)rN∗
0 (y) ∈ L2(Ω) as a function of y, for each x. Since

1− αn
0 (y)⇀ 1− α∗

0(y) in L
2, we have

∫
Ω

k(x, y)(1− αn
0 (y))rN

n
0 (y)dy →

∫
Ω

k(x, y)(1− α∗
0(y))rN

∗
0 (y)dy,

which means Nn
1 → N∗

1 pointwise for each x ∈ Ω.

We know the sequence Nn
1 is uniformly L∞ bounded and pointwise converge to

N∗
1 , which gives |Nn

1 (x)−N∗
1 (x)|2≤ C and |Nn

1 (x)−N∗
1 (x)|2→ 0 a.e. for all n. From

Lebesgue’s Dominated Convergence Theorem, we have

∫
Ω

|Nn
1 (x)−N∗

1 (x)|2dx→ 0,

i.e., Nn
1 → N∗

1 in L2. Using

Nn
2 (x) =

∫
Ω

k(x, y)(1− αn
1 (y))rN

n
1 (y)dy,

1− αn
1 (y)⇀ 1− α∗

1(y),

Nn
1 (y) → N∗

1 (y) in L
2,

and k, and the sequences, αn, Nn
1 are L∞ bounded, we obtain

Nn
2 → N∗

2 pointwise,

and then Nn
2 → N∗

2 in L2.
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Continuing, we get Nn
t → N∗

t in L2 for each t = 1, 2, · · · , T . The weak L2

convergence of 1 − αn
t sequence, the strong L2 convergence of Nn

t sequence, and the

L∞ bounds on both sequences and k, give us

∫
Ω

k(x, y)(1− αn
t (y))rN

n
t (y)dy →

∫
Ω

k(x, y)(1− α∗
t (y))rN

∗
t (y)dy

for each x. Since

∫
Ω

k(1− αn
t )rN

n
t dy →

∫
Ω

k(1− α∗
t )rN

∗
t dy

for each x, we conclude N∗ = N(α∗).

Here we use Corollary 2.2 from Ekeland and Témam’s book. [14] By the weak L2

convergence of αn
t sequence, for each t = 0, 1, · · · , T − 1, we have

∫
Ω

(α∗
t (x))

2dx ≤ lim inf
n→∞

∫
Ω

(αn
t (x))

2dx.

This inequality together with the convergence of the integral terms discussed above

gives

J(α∗) ≥ lim sup
n→∞

J(αn
t ).

Thus the maximum of J is attained at α∗.

2.2.3 Characterization of an Optimal Control for the Linear

Case

To characterize an optimal control, we must differentiate the map α → J(α), which

requires first the differentiation of the solution map α → N(α). The directional

derivative of this solution map is called the sensitivity of the state with respect to the

control.
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Theorem 2.3. Under Assumption 1, 2 and 3, the mapping α ∈ U → N ∈

(L∞(Ω))T+1 is differentiable in the following sense: For any α ∈ U and l ∈ (L∞(Ω))T ,

such that (α+ ϵl) ∈ U for ϵ small, where N ϵ = N(α+ ϵl) and N = N(α), there exists

a sensitivity ψ ∈ (L∞(Ω))T+1 such that

N ϵ
t (x)−Nt(x)

ϵ
⇀ ψt(x)

weakly in L2(Ω), as ϵ→ 0 for each t. Also ψ, depending on N , α and l, satisfies:

ψt+1(x) =

∫
Ω

rk(x, y)[(1− αt(y))ψt(y)− lt(y)Nt(y)]dy (2.3)

ψ0(x) = 0,

for t = 0, 1, · · · , T.

Remark 2.4. Since the sensitivity function depends on N , α and l, we can use

ψ(α,N(α), l) to denote the directional derivative of N(α) along vector l with respect

to α.

Proof. We form the difference quotient for the directional derivative of N with respect

to α in the direction l:

N ϵ
t+1(x)−Nt+1(x)

ϵ
=

1

ϵ

∫
Ω

rk(x, y)[(1− αt(y))(N
ϵ
t (y)−Nt(y))− ϵlt(y)N

ϵ
t (y)]dy

=

∫
Ω

rk(x, y)[(1− αt(y))
(N ϵ

t (y)−Nt(y))

ϵ
− lt(y)N

ϵ
t (y)dy

Using N ϵ
0 = N0 and

N ϵ
1(x)−N1(x)

ϵ
=

∫
Ω

rk(x, y)l0(y)N0(y)dy,

we have

|N
ϵ
1(x)−N1(x)

ϵ
| ≤ C1 for all x ∈ Ω.

13



And then by iteration,

|N
ϵ
t (x)−Nt(x)

ϵ
| ≤ Ct for all x ∈ Ω, t = 1, 2, · · · , T .

From the a priori estimate, we have

N ϵ
t (x)−Nt(x)

ϵ
⇀ ψt(x) weakly in L2(Ω).

Similarly as in Theorem 1, by iteration, we have
N ϵ

t (x)−Nt(x)

ϵ
converges pointwise,

and also strongly in L2, which gives us the existence of ψ ∈ (L∞(Ω))T+1 such that

ψ0(x) = 0

and

∫
Ω

rk(x, y)[(1−αt(y))
(N ϵ

t −Nt)(y)

ϵ
− ltN ϵ

t ]dy →
∫
Ω

rk(x, y)[(1−αt(y))ψt(y)− ltNt]dy

Passing to the limit, we get

ψt+1(x) =

∫
Ω

rk(x, y)[(1− αt(y))ψt(y)− lt(y)Nt(y)]dy,

for t = 0, · · · , T .

Now we differentiate the map α → J(α) to obtain a characterization of an optimal

control.

Theorem 2.5. Under Assumption 1, 2 and 3, given an optimal control α∗ and

corresponding state solution N∗ = N(α∗), there exists a solution p ∈ (L∞(Ω))T

satisfying the adjoint system:

pt−1(x) = r(1− α∗
t−1(x))

∫
Ω

pt(y)k(y, x)dy + e−δtrAt−1α
∗
t−1(x)

pT (x) = 0 (2.4)
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where t = T, · · · , 2, 1. Furthermore, for t = 0, 1, 2, · · · , T − 1;

α∗
t (x) = min(max(

(
∫
Ω
−pt+1(y)k(y, x)dy + e−δtAt)rN

∗
t (x)

e−δtBt

, 0),M) (2.5)

Proof. Let α∗ be an optimal control (which exists by Theorem 1) and N∗ = N(α∗)

be the corresponding state. For variation l with (α∗ + ϵl) ∈ U for ϵ > 0 sufficiently

small, let N ϵ be the corresponding solution of the state equation. Since the adjoint

system is linear, there exists a solution p. We compute the directional derivative of

the functional J(α) with respect to α in the direction l at α∗. Since J(α∗) is the

maximum value, we have

0 ≥ lim
ϵ→0+

J(α∗ + ϵl)− J(α∗)

ϵ

= lim
ϵ→0+

T−1∑
t=0

1

ϵ

{∫
Ω

e−δt
[
Atr(α

∗
t + ϵlt)N

ϵ
t (y)−

Bt

2
(α∗

t + ϵlt)
2
]
dy

−
∫
Ω

e−δt
[
Atr(α

∗
t )N

∗
t (y)−

Bt

2
(α∗

t )
2
]
dy

}
= lim

ϵ→0+

T−1∑
t=0

∫
Ω

e−δt
[
Atrα

∗
t

N ϵ
t (y)−N∗

t (y)

ϵ
+ AtltrN

ϵ
t (y)−

Bt

2
ϵl2t −Btαtlt

]
dy

=
T−1∑
t=0

∫
Ω

e−δtAtrα
∗
t (y)ψt(y)dy +

T−1∑
t=0

∫
Ω

e−δtAtltrN
∗
t (y)dy

−
T−1∑
t=0

∫
Ω

e−δtBtα
∗
t (y)lt(y)dy.
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We use the coefficient of the ψt term as the non-homogeneous term in the adjoint

system and transform that term:

T−1∑
t=0

∫
Ω

e−δtAtrα
∗
t (y)ψt(y)dy

=
T−1∑
t=0

∫
Ω

[pt(y)− r(1− α∗
t (y))

∫
Ω

pt+1(x)k(x, y)dx]ψt(y)dy

=
T−1∑
t=0

∫
Ω

pt(y)ψt(y)dy −
T−1∑
t=0

∫
Ω

r(1− α∗
t (y))ψt(y)

∫
Ω

pt+1(x)k(x, y)dxdy

=
T−1∑
t=0

∫
Ω

pt+1(y)ψt+1(y)dy −
∫
Ω

pT (y)ψT (y)dy +

∫
Ω

p0(y)ψ0(y)dy

−
T−1∑
t=0

∫
Ω

pt+1(x)

∫
Ω

r(1− α∗
t (y))ψt(y)k(x, y)dydx

=
T−1∑
t=0

∫
Ω

pt+1(x)[ψt+1(x)−
∫
Ω

rk(x, y)(1− α∗
t (y))ψt(y)dy]dx

=
T−1∑
t=0

∫
Ω

pt+1(x)[−r
∫
Ω

k(x, y)lt(y)N
∗
t (y)dy]dx

where we used pT (x) ≡ 0, ψ0(x) ≡ 0, and the sensitivity equation (2.3). Substituting

out for the first term from our quotient calculation,

0 ≥
T−1∑
t=0

∫
Ω

pt+1(x)[−r
∫
Ω

k(x, y)lt(y)N
∗
t (y)dy]dx+

T−1∑
t=0

∫
Ω

e−δtAtltrN
∗
t (y)dy

−
T−1∑
t=0

∫
Ω

e−δtBtα
∗
t (y)lt(y)dy

=
T−1∑
t=0

∫
Ω

[(

∫
Ω

−pt+1(x)k(x, y)dx+ e−δtAt)rN
∗
t (y)− e−δtBtα

∗
t (y)]lt(y)dy.

For any t = 0, 1, · · · , T − 1, on the set {(x : 0 < α∗
t (x) < M}, the variation lt can be

taken with support on this set, and have any sign, because the optimal control can

be modified a little up or down and still stay inside the bounds. Thus, on this set,
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the rest of the integrand must be zero, so that

α∗
t (x) =

(
∫
Ω
−pt+1(y)k(y, x)dy + e−δtAt)rN

∗
t (x)

e−δtBt

.

By taking the upper and lower bounds into account we now show

α∗
t (x) = min(max(

(
∫
Ω
−pt+1(y)k(y, x)dy + e−δtAt)rN

∗
t (x)

e−δtBt

, 0),M).

We now show how we handle the bounds.

For any t = 0, 1, · · · , T − 1, on the set {x : α∗
t (x) = 0}, take lt with support on

this set and lt can only be nonnegative, and

0 ≤
T−1∑
t=0

∫
Ω

[(

∫
Ω

−pt+1(x)k(x, y)dx+ e−δtAt)rN
∗
t (y)]lt(y)dy,

that indicates
(
∫
Ω
−pt+1(y)k(y, x)dy + e−δtAt)rN

∗
t (x)

e−δtBt

≤ 0.

Hence on this set, we have

α∗
t (x) = min(max(

(
∫
Ω
−pt+1(y)k(y, x)dy + e−δtAt)rN

∗
t (x)

e−δtBt

, 0),M) = 0.

On the other hand, on the set {x : α∗
t (x) =M}, then lt with support on this set can

only be non-positive, and

0 ≤
T−1∑
t=0

∫
Ω

[(

∫
Ω

−pt+1(x)k(x, y)dx+ e−δtAt)rN
∗
t (y)− e−δtBtM ]lt(y)dy,

that indicates
(
∫
Ω
−pt+1(y)k(y, x)dy + e−δtAt)rN

∗
t (x)

e−δtBt

≥M.
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Hence on this set,

α∗
t (x) = min(max(

(
∫
Ω
−pt+1(y)k(y, x)dy + e−δtAt)rN

∗
t (x)

e−δtBt

, 0),M) =M.

So α∗
t (x) = min(max(

(
∫
Ω
−pt+1(y)k(y, x)dy + e−δtAt)rN

∗
t (x)

e−δtBt

, 0),M) is our charac-

terization of an optimal control.

2.2.4 Uniqueness Result for the Linear Case

We obtain uniqueness of the optimal control under the assumption of largeness of the

cost coefficients, Bt, using a strict concavity argument. See [21] for similar arguments.

Remark 2.6. In both linear and concave cases, note for α = 0, we have J(α) = 0.

This implies 0 ≤ maxα∈U J(α). Thus J(α
∗) ≥ 0, even if Bt’s are large.

Theorem 2.7. Under Assumption 1, 2 and 3, if Bt, t = 0, 1, · · · , T−1 are sufficiently

large, then the optimal control is unique.

Proof. We show uniqueness by showing strict concavity of the map:

α ∈ U → J(α).

The strict concavity follows from showing for all α, l ∈ U , and 0 < ϵ < 1,

g′′(ϵ) < 0

where g(ϵ) = J(ϵl + (1− ϵ)α)) = J(α+ ϵ(l − α)).

For convenience we denote

N ϵ
t = N(α+ ϵ(l − α))
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for t = 0, 1, · · · , T − 1, and similarly

N ϵ+τ
t = N(α+ (ϵ+ τ)(l − α)),

for t = 0, 1, · · · , T − 1. First, we calculate

g′(ϵ) = lim
τ→0

J(α+ (ϵ+ τ)(l − α))− J(α+ ϵ(l − α))

τ

= lim
τ→0

T−1∑
t=0

1

τ

( ∫
Ω

e−δt[At(αt + (ϵ+ τ)(lt − αt))rN
ϵ+τ
t

−Bt

2
(αt + (ϵ+ τ)(lt − αt))

2]dy

−
∫
Ω

e−δt[At(αt + ϵ(lt − αt))rN
ϵ
t −

Bt

2
(αt + ϵ(lt − αt))

2]dy
)

= lim
τ→0

T−1∑
t=0

∫
Ω

e−δt[At(αt + ϵ(lt − αt))r
N ϵ+τ

t −N ϵ
t

τ
+ At(lt − αt)rN

ϵ+τ
t

−Bt

2
τ(lt − αt)

2 −Bt(αt + ϵ(lt − αt))(lt − αt)]dy

=
T−1∑
t=0

∫
Ω

e−δt[At(αt + ϵ(lt − αt))rψ
ϵ
t + At(lt − αt)rN

ϵ
t

−Bt(αt + ϵ(lt − αt))(lt − αt)]dy.

Remark 2.4 indicates that the directional derivative of N(α + ϵ(l − α)) along vector

l − α with respect to α + ϵ(l − α) is ψ(α + ϵ(l − α), N(α + ϵ(l − α)), l − α). For

convenience we use the following notation

ψϵ = ψ(α+ ϵ(l − α), N(α+ ϵ(l − α)), l − α),

and similarly

ψϵ+τ = ψ(α+ (ϵ+ τ)(l − α), N(α+ (ϵ+ τ)(l − α)), l − α).
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From Theorem 2.3 we obtain

N ϵ+τ
t −N ϵ

t

τ
⇀ ψϵ

t as τ → 0

with

ψϵ
t+1(x) =

∫
Ω

rk(x, y)[(1− (αt(y) + ϵ(lt − αt)))ψ
ϵ
t(y)− (lt − αt)N

ϵ
t (y)]dy (2.6)

ψϵ
0(x) ≡ 0.

Similarly,

ψϵ+τ
t+1 (x) =

∫
Ω

rk(x, y)[(1− (αt(y) + (ϵ+ τ)(lt − αt)))ψ
ϵ+τ
t (y)− (lt − αt)N

ϵ+τ
t (y)]dy

(2.7)

ψϵ
0(x) ≡ 0.

Estimate ψϵ
t(x) in terms of l − α:

|ψϵ
1(x)| =

∣∣∣∣∫
Ω

rk(x, y)(l0 − α0)N
ϵ
0(y)dy

∣∣∣∣
≤ D1

∫
Ω

|l0 − α0| dy,

|ψϵ
2(x)| =

∣∣∣∣∫
Ω

rk(x, y)[(1− (α1 + ϵ(l1 − α1)))ψ
ϵ
1(y)− (l1 − α1)N

ϵ
1(y)]dy

∣∣∣∣
≤ D2

( ∫
Ω

|l0 − α0| dy +
∫
Ω

|l1 − α1| dy
)
,

and continuing to estimate, we obtain

∣∣ψϵ
t+1(x)

∣∣ ≤ Dt+1

t∑
i=0

∫
Ω

|li − αi| dy,
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where the sequence Dt+1 does not depend on ϵ.

Given (2.6) and (2.7), and ψϵ+τ
0 ≡ ψϵ

0 ≡ 0, we use σϵ
t to represent the difference

quotient for directional derivative of ψ with respect to α + ϵ(l − α) in the direction

l − α:

ψϵ+τ
t+1 (x)− ψϵ

t+1(x)

τ
=∫

Ω

rk(x, y)[(1− αt(y)− ϵ(lt − αt)(y))
ψϵ+τ
t (y)− ψϵ

t(y)

τ
dy

−
∫
Ω

rk(x, y)(lt − αt)(y)ψ
ϵ,τ
t (y)dy

−
∫
Ω

rk(x, y)(lt(y)− αt(y))
N ϵ+τ

t (y)−N ϵ
t (y)

τ
dy.

Using N ϵ
0 = N0, ψ

ϵ
0 ≡ 0 and

ψϵ+τ
1 (x)− ψϵ

1(x)

τ
=

∫
Ω

rk(x, y)(αt(y) + (ϵ+ τ)(lt − αt)(y))N
ϵ+τ
0 (y)dy,

we have

|ψ
ϵ+τ
1 (x)− ψϵ

1(x)

τ
| ≤ E1 for all x ∈ Ω.

From the estimate above, the bounds on {ψϵ+τ
t (x)} and the bounds on

{N
ϵ+τ
t (y)−N ϵ

t (y)

τ
} obtained from (5.2), we have

|ψ
ϵ+τ
2 (x)− ψϵ

2(x)

τ
|

≤ |
∫
Ω

rk(x, y)[(1− α1(y)− ϵ(l1 − α1)(y))
ψϵ+τ
1 (y)− ψϵ

1(y)

τ
dy|

+|
∫
Ω

rk(x, y)(l1 − α1)(y)ψ
ϵ+τ
1 (y)dy|

+|
∫
Ω

rk(x, y)(l1(y)− α1(y))
N ϵ+τ

1 (y)−N ϵ
1(y)

τ
dy|

≤ E2, for all x ∈ Ω, t = 1, 2, · · · , T .
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Then by iteration, we obtain

|ψ
ϵ+τ
t (x)− ψϵ

t(x)

τ
| ≤ Et for all x ∈ Ω, t = 1, 2, · · · , T ,

where the bounding sequence Et+1 does not depend on τ or ϵ. From the a priori

estimates, we have the existence of σϵ ∈ (L∞(Ω))T+1 such that

ψϵ+τ
t (x)− ψϵ

t(x)

τ
⇀ σϵ

t(x) weakly in L2(Ω), as τ → 0,

where

σϵ
t+1(x) =

∫
Ω

rk(x, y)[(1−αt(y)+ϵ(lt−αt)(y)]σ
ϵ
t(y)dy−2

∫
Ω

rk(x, y)(lt − αt)(y)ψ
ϵ
t(y)dy

σϵ
0(x) ≡ 0

for t = 0, 1, · · · , T − 1.

Now we obtain

g′′(ϵ) =
T−1∑
t=0

∫
Ω

e−δt[2At(lt − αt)rψ
ϵ
t + At(αt + ϵ(lt − αt))rσ

ϵ
t −Bt(lt − αt)

2]dy.

We now use the iterative method to estimate σϵ
t+1 in terms of (lk − αk)

2, k =

0, 1, · · · , T − 1: ∫
Ω

|σϵ
t(y)| dy ≤ Ft

t−1∑
k=0

∫
Ω

(lk − αk)
2dy,

Where the sequence of constants Ft+1 does not depend on ϵ.

First, using σϵ
0 ≡ 0 and ψϵ

0 ≡ 0, we obtain σϵ
1(x) ≡ 0.
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And

|σϵ
2(x)| =

∣∣∣∣2∫
Ω

rk(x, y)(l1 − α1)(y)ψ
ϵ
1(y)dy

∣∣∣∣
≤ L1

∣∣∣∣∫
Ω

(l1 − α1)(y)dy

∫
Ω

(l0 − α0)(y)dy

∣∣∣∣
≤ L2(

∣∣∣∣∫
Ω

(l1 − α1)(y)dy

∣∣∣∣2 + ∣∣∣∣∫
Ω

(l0 − α0)(y)dy

∣∣∣∣2)
≤ F1(

∫
Ω

|(l1 − α1)(y)|2 dy +
∫
Ω

|(l0 − α0)(y)|2 dy),

where L1, L2, and F1 are constants that do not depend on ϵ. Continuing the

iteration, we can get the estimate for σϵ
t . Using the estimates, we obtain a constant

H independent of ϵ, such that

g′′(ϵ) ≤
T−1∑
t=0

(H −Bt)

∫
Ω

(lt − αt)
2dy,

which gives the desired concavity for Bt’s sufficiently large.

2.3 Model with Concave Growth and Control Cost

2.3.1 Problem Statement for the Concave Case

We consider the harvest of the following integrodifference model with a concave

growth function:

Nt+1(x) =

∫
Ω

k(x, y)(1− αt(y))f(Nt(y), y)dy (2.8)

where t = 0, 1, ..., T − 1.

Assumption 4. We assume f is twice differentiable in Nt(y) and measurable in

y. And for almost all y, f(·, y) is nondecreasing in the N variable,
∂f(Nt(x), x)

∂N
is
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decreasing and nonnegative, and

f(Nt(y), y) ≥ 0, for all Nt(y) ≥ 0, y ∈ Ω

|f(Nt(y), y)| ≤ Ct <∞, for all 0 ≤ Nt(y), y ∈ Ω

We also assume that the partial derivatives,
∂f(Nt(x), x)

∂N
and

∂2f(Nt(x), x)

∂N2
are both

L∞ bounded for any N ∈ L∞(Ω).

The control set is defined as U =
{
α ∈

(
L∞(Ω)

)T |0 ≤ αt(x) ≤M, t = 0, 1, . . . , T−

1
}
for M < 1.

Assumption 4 together with N0 ∈ L∞(Ω) and N0(x) ≥ 0 implies that given α ∈ U ,

the corresponding state N = N(α) satisfies

0 ≤ Nt(x) ≤ Cf(N0),

where Cf(N0) is a constant that depends on the growth function value at N0.

Assumption 5. The kernels are bounded and measurable such that

∫
Ω

k(x, y)dx ≤ C ≤ 1

for all x ∈ Ω and 0 ≤ k(x, y) ≤ k1 for (x, y) ∈ Ω× Ω.

We define the objective functional as:

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(y)f(Nt(y), y)−
Bt

2
V (αt(y))]dy, (2.9)

Again J represents the profit, which is the discounted revenue stream less the cost of

the control, where the coefficient where At is the price factor and e
−δt is the discount

factor with δ > 0.
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Assumption 6. We assume the cost of harvesting is a nonlinear function V , and

assume that the C2 function V : [0,M ] → R is increasing and convex with

V ′′(α) ≥ b > 0

for all α in [0,M ] [6]. The coefficient Bt is a weight factor that balances the two parts

of the objective functional. The coefficients, At and Bt, are both positive numbers for

any t = 0, 1, · · · , T − 1.

2.3.2 Existence for State System for the Concave Case

We first prove the existence of an optimal control for the case with a nonlinear growth

function and concave cost function.

Theorem 2.8. Under Assumption 4, 5 and 6, there exists an optimal control α∗ in

U that maximizes the functional J(α).

Proof. Let {αn} be a maximizing sequence for the objective functional J in (2) and

Nn = N(αn) be the corresponding state sequence. From the bounded assumption on

control and state, those sequences are L∞ bounded. Then there exists α∗ ∈ U and

N∗ ∈ (L∞(Ω))T such that on a subsequence, we have the following weak convergences,

Nn
t ⇀ N∗

t in L2(Ω), t = 1, · · · , T

αn
t ⇀ α∗

t in L2(Ω), t = 0, · · · , T − 1.

We want to show that N(α∗) = N∗. First we want to show

∫
Ω

k(x, y)(1− αn
t (y))f(N

n
t (y), y)dy →

∫
Ω

k(x, y)(1− α∗
t (y))f(N

∗
t (y), y)dy
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pointwise for each x ∈ Ω. It is known that αn
t ⇀ α∗

t in L2(Ω), we want to show

f(Nn
t ) → f(N∗

t ) in L
2(Ω). For t = 1, we have

Nn
1 (x) =

∫
Ω

k(x, y)(1− αn
0 (y))f(N0(y), y)dy

since Nn
0 (x) = N0(x) for all n. From the assumption 0 ≤ k(x, y) ≤ 1,

∫
Ω
k(x, y)2dy ≤

1, we know that k(x, y) ∈ L2(Ω) for each x. Since 1 − αn
0 (y) ⇀ 1 − α∗

0(y) in L
2, we

have ∫
Ω

k(1− αn
0 )f(N

n
0 (y), y)dy →

∫
Ω

k(1− α∗
0)f(N

∗
0 (y), y)dy,

which means Nn
1 → N1(α

∗), the first component of N(α∗), pointwise for each x ∈ Ω.

Since f(N) is a continuous function, we have f(Nn
1 )) → f(N1(α

∗)) pointwise.

We know the sequence f(Nn
1 ) is uniformly L∞ bounded and pointwise convergent

to f(N∗
1 ), which give |f(Nn

1 ) − f(N1(α
∗))|2≤ C and |f(Nn

1 ) − f(N1(α
∗))|2→ 0 a.e.

for all n. From Lebesgue’s Dominated Convergence Theorem, we have

∫
Ω

|f(Nn
1 )− f(N1(α

∗))|2dx→ 0,

i.e., f(Nn
1 ) → f(N1(α

∗)) in L2.

Using

Nn
2 (x) =

∫
Ω

k(x, y)(1− αn
1 (y))f(N

n
1 (y), y)dy,

1− αn
1 (y)⇀ 1− α∗

1(y),

f(Nn
1 (y), y) → f(N1(α

∗)(y), y) in L2,

and k, αn, f(Nn
1 ) are L

∞ bounded, we obtain

Nn
2 → N2(α

∗) pointwise,

and then f(Nn
2 ) → f(N2(α

∗)) in L2. Continuing, we get f(Nn
t ) → f(Nt(α

∗)) in L2

for each t = 1, 2, · · · , T . The weak L2 convergence of 1− αn
t sequence, the strong L2

convergence of f(Nn
t ) sequence, and the L∞ bounds on both sequences and k, give
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us

∫
Ω

k(x, y)(1− αn
t (y))f(N

n
t (y), y)dy →

∫
Ω

k(x, y)(1− α∗
t (y))f(Nt(α

∗), y)dy

for each x. Since

∫
Ω

k(1− αn
t )f(N

n
t (y), y)dy →

∫
Ω

k(1− α∗
t )f(Nt(α

∗)(y), y)dy

for each x, we conclude N∗ = N(α∗). Now we show that α∗ achieves the maximum

of J .

J(α∗) =
T−1∑
t=0

∫
Ω

e−δt[Atα
∗
t (y)f(N(α∗)t(y), y)−

Bt

2
V (α∗

t (y))]dy

=
T−1∑
t=0

∫
Ω

e−δt[Atα
∗
t (y)f(N

∗
t (y), y)−

Bt

2
V (α∗

t (y))]dy

≥ lim sup
n→∞

T−1∑
t=0

∫
Ω

e−δt[Atα
n
t (y)f(N

n
t (y), y)−

Bt

2
V (αn

t (y))]dy

= lim
n→∞

J(αn)

The inequality we got above is obtained by

∫
Ω

V (α∗
t (y))dy ≤ lim inf

n→∞

∫
Ω

V (αn
t (y))dy,

for t = 0, 1, ..., T − 1, which is given by the weak convergence of αn
t and convexity of

V .
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2.3.3 Characterization of an Optimal Control for the Con-

cave Case

To characterize an optimal control, we must again differentiate the map α → J(α),

which requires first the differentiation of the solution map α → N = N(α).

Theorem 2.9. Under Assumption 4, 5 and 6, the mapping α ∈ U → N ∈ (L∞(Ω))T

is differentiable in the following sense:

N ϵ
t (x)−Nt(x)

ϵ
⇀ ψt(x)

weakly in L2(Ω) as ϵ → 0 for any α ∈ U and l ∈ (L∞(Ω))T such that (α + ϵl) ∈ U

for ϵ small, where N ϵ = N(α+ ϵl). Also ψ, depending on N , α and l, satisfies:

ψt+1(x) =

∫
Ω

k(x, y)(1− αt(y))
∂f(Nt(y), y)

∂N
ψt(y)dy −

∫
Ω

k(x, y)lt(y)f(Nt(y), y)dy

(2.10)

ψ0(x) = 0

for t = 0, 1, · · · , T − 1.

Proof. Consider the control-to-solution map: α → J(α).

Let N ϵ = N(α+ ϵl), then

N ϵ
t+1(x)−Nt+1(x)

ϵ
=∫

Ω

k(x, y)(1− αt(y))
f(N ϵ

t (y), y)− f(Nt(y), y)

ϵ
dy

−
∫
Ω

k(x, y)lt(y)f(N
ϵ
t (y), y)dy.

Using N ϵ
0 ≡ N0, and

N ϵ
1(x)−N1(x)

ϵ
=

∫
Ω

k(x, y)l0(y)f(N
ϵ
0(y), y)dy.
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We have

|N
ϵ
1(x)−N1(x)

ϵ
| ≤ C1,

for all x ∈ Ω. And that quotient is independent of ϵ,

N ϵ
1(x)−N1(x)

ϵ
= ψ1.

This gives uniform convergence of N ϵ
1 to N1.

N ϵ
2(x)−N2(x)

ϵ
=∫

Ω

k(x, y)(1− α1(y))
f(N ϵ

1(y), y)− f(N1(y), y)

N ϵ
1 −N1(y)

ψ1dy

−
∫
Ω

k(x, y)l1(y)f(N
ϵ
1(y), y)dy.

From the uniform convergence of N ϵ
1 to N1, we can pass the limit and get pointwise

convergence for the quotient
N ϵ

2(x)−N2(x)

ϵ
.

Also we can get

|N
ϵ
2(x)−N2(x)

ϵ
| ≤ C2.

By iteration, we obtain:

|N
ϵ
t (x)−Nt(x)

ϵ
| ≤ Ct,

N ϵ
t (x)−Nt(x)

ϵ
→ ψt

pointwise, andN ϵ
t convergent toNt uniformly. Passing to the limit using the pointwise

convergence of the quotients, we obtain that ψ satisfies the equation in the theorem.

Theorem 2.10. Under Assumption 4, 5 and 6, given an optimal control α∗ and

corresponding state solution N(α∗) = N∗(α), there exists a weak solution p ∈
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(L∞(Ω))T satisfying the adjoint system:

pt−1(x) =
∂f(Nt−1(x), x)

∂N
(1− α∗

t−1(x))

∫
Ω

pt(y)k(y, x)dy

+
∂f(Nt−1(x), x)

∂N
e−δtAt−1α

∗
t−1(x)

pT (x) = 0 (2.11)

where t = T, · · · , 2, 1. Furthermore, for t = 0, 1, · · · , T − 1,

V ′(α∗
t (x)) =

2

Bt

(At −
∫
Ω

eδtpt+1(y)k(y, x)dy)f(N
∗
t (x), x)

on the interior of the control set.

Proof. Let α∗ be an optimal control (which exists by Theorem 1) and N∗ = N(α∗)

be the corresponding state. For variation l with (α∗ + ϵl) ∈ U for ϵ > 0 sufficiently

small, let N ϵ be the corresponding solution of the state equation. Since the adjoint

system is linear, there exists a solution p.
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We compute the directional derivative of the functional J(α) with respect to α in

the direction l at α∗. Since J(α∗) is the maximum value, we have

0 ≥ lim
ϵ→0+

J(α∗ + ϵl)− J(α∗)

ϵ

= lim
ϵ→0+

T−1∑
t=0

1

ϵ

{∫
Ω

e−δt
[
At(α

∗
t + ϵlt)f(N

ϵ
t (y), y)−

Bt

2
V (α∗

t (y) + ϵlt(y))
]
dy

−
∫
Ω

e−δt
[
At(α

∗
t )f(N

∗
t (y), y)−

Bt

2
V (α∗

t (y))
]
dy

}
= lim

ϵ→0+

T−1∑
t=0

∫
Ω

e−δt
[
Atα

∗
t

f(N ϵ
t (y), y)− f(N∗

t (y), y)

ϵ
+ Atltf(N

ϵ
t (y), y)

− Bt

2

V ((α∗
t + ϵlt)(y))− V (α∗

t (y))

ϵ

]
dy

=
T−1∑
t=0

∫
Ω

e−δtAtα
∗
t (y)

∂f(N∗
t (y), y)

∂N
ψt(y)dy +

T−1∑
t=0

∫
Ω

e−δtAtltf(N
∗
t (y), y)dy

−
T−1∑
t=0

∫
Ω

e−δtBt

2
V ′(α∗

t )lt(y)dy.
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We use the coefficient of the ψt term as the non-homogeneous term in the adjoint

system.

T−1∑
t=0

∫
Ω

e−δtAtα
∗
t (y)

∂f(N∗
t (y), y)

∂N
ψt(y)dy

=
T−1∑
t=0

∫
Ω

[pt(y)−
∂f(N∗

t (y), y)

∂N
(1− α∗

t (y))

∫
Ω

pt+1(x)k(x, y)dx]ψt(y)dy

=
T−1∑
t=0

∫
Ω

pt(y)ψt(y)dy −
T−1∑
t=0

∫
Ω

∂f(N∗
t (y), y)

∂N
(1− α∗

t (y))ψt(y)

∫
Ω

pt+1(x)k(x, y)dxdy

=
T−1∑
t=0

∫
Ω

pt+1(y)ψt+1(y)dy −
∫
Ω

pT (y)ψT (y)dy +

∫
Ω

p0(y)ψ0(y)dy

−
T−1∑
t=0

∫
Ω

pt+1(x)

∫
Ω

∂f(N∗
t (y), y)

∂N
(1− α∗

t (y))ψt(y)k(x, y)dydx

=
T−1∑
t=0

∫
Ω

pt+1(x)[ψt+1(x)−
∫
Ω

∂f(N∗
t (y), y)

∂N
k(x, y)(1− α∗

t (y))ψt(y)dy]dx

=
T−1∑
t=0

∫
Ω

pt+1(x)[−
∫
Ω

k(x, y)lt(y)f(N
∗
t (y), y)dy]dx

where we used pT (x) ≡ 0, ψ0(x) ≡ 0 and the sensitivity equation (2.10).

Substituting out for the first term from our quotient calculation,

0 ≥
T−1∑
t=0

∫
Ω

pt+1(x)[−
∫
Ω

k(x, y)lt(y)f(N
∗
t (y), y)dy]dx+

T−1∑
t=0

∫
Ω

e−δtAtltf(N
∗
t (y), y)dy

−
T−1∑
t=0

∫
Ω

e−δtBt

2
V ′(α∗

t (y))lt(y)dy

=
T−1∑
t=0

∫
Ω

[(

∫
Ω

−pt+1(x)k(x, y)dx+ e−δtAt)f(N
∗
t (y), y)− e−δtBt

2
V ′(α∗

t (y))]lt(y)dy.

For any t = 0, 1, · · · , T − 1, on the set {(x : 0 < α∗
t (x) < M}, the variation lt can be

taken with support on this set, and have any sign, because the optimal control can

be modified a little up or down and still stay inside the bounds. Thus on this set, the

32



rest of the integrand must be zero, so that

V ′(α∗
t (x)) =

2

Bt

(At −
∫
Ω

eδtpt+1(y)k(y, x)dy)f(N
∗
t (x), x)

on the interior of the control set.

Remark 2.11. In the simplest case, if V is a quadratic function as V (αt) = α2
t

(the coefficient of α2
t can be included in Bt), then the characterization result before

imposing bounds can be written as:

α∗
t (x) =

1

Bt

(At −
∫
Ω

eδtpt+1(y)k(y, x)dy)f(N
∗
t (x), x) (2.12)

2.3.4 Uniqueness Result for the Concave Case

We again obtain uniqueness of the optimal control when the cost coefficients are large.

Theorem 2.12. Under Assumption 4, 5 and 6, if Bt, t = 0, 1, · · · , T − 1 are

sufficiently large, then the optimal control is unique.

Proof. We show uniqueness by showing strict concavity of the map:

α ∈ U → J(α).

The concavity follows from showing for all α, l ∈ U , and 0 < ϵ < 1,

g′′(ϵ) < 0

where g(ϵ) = J(ϵl + (1− ϵ)α)) = J(α+ ϵ(l − α)).

For convenience we denote

N ϵ
t = N(α+ ϵ(l − α))
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for t = 0, 1, · · · , T − 1, and similarly

N ϵ+τ
t = N(α+ (ϵ+ τ)(l − α)),

for t = 0, 1, · · · , T − 1. First, we calculate

g′(ϵ) = lim
τ→0

J(α+ (ϵ+ τ)(l − α))− J(α+ ϵ(l − α))

τ

= lim
τ→0

T−1∑
t=0

1

τ

( ∫
Ω

e−δt[At(αt + (ϵ+ τ)(lt − αt))f(N
ϵ+τ
t (y), y)]dy∫

Ω

e−δt − Bt

2
V (αt + (ϵ+ τ)(lt − αt))dy

−
∫
Ω

e−δt[At(αt + ϵ(lt − αt))f(N
ϵ
t (y), y)−

Bt

2
V (αt + ϵ(lt − αt))]dy

)
= lim

τ→0

T−1∑
t=0

∫
Ω

e−δt[At(αt + ϵ(lt − αt))
f(N ϵ+τ

t (y), y)− f(N ϵ
t (y), y)

τ
]dy

+

∫
Ω

e−δtAt(lt − αt)f(N
ϵ+τ
t (y), y)dy

−
∫
Ω

e−δtBt

2

V (αt + (ϵ+ τ)(lt − αt))− V (αt + ϵ(lt − αt))

τ
dy

=
T−1∑
t=0

∫
Ω

e−δt[At(αt + ϵ(lt − αt))
∂f(N ϵ

t (y))

∂N ϵ
t

ψϵ
t + At(lt − αt)f(N

ϵ
t (y), y)

−Bt

2
V ′(αt + ϵ(lt − αt))(lt − αt)]dy.

Remark 2.4 indicates that the directional derivative of N(α+ϵ(l−α)) along vector

l−α with respect to α+ϵ(l−α) is ψ(α+ϵ(l−α), N(α+ϵ(l−α)), l−α). For convenience

we use the following notation

ψϵ = ψ(α+ ϵ(l − α), N(α+ ϵ(l − α)), l − α),

and similarly

ψϵ+τ = ψ(α+ (ϵ+ τ)(l − α), N(α+ (ϵ+ τ)(l − α)), l − α).
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From Theorem 2.3 we obtain

N ϵ+τ
t −N ϵ

t

τ
⇀ ψϵ

t as τ → 0

with

ψϵ
t+1(x) =

∫
Ω

rk(x, y)[(1− (αt + ϵ(lt − αt)))
∂f(N ϵ

t )

∂N ϵ
t

ψϵ
t − (lt − αt)f(N

ϵ
t )]dy (2.13)

ψϵ
0(x) ≡ 0.

Similarly,

ψϵ+τ
t+1 (x) =

∫
Ω

rk(x, y)[(1− (αt + (ϵ+ τ)(lt − αt)))
∂f(N ϵ+τ

t )

∂N ϵ+τ
t

ψϵ+τ
t − (lt − αt)N

ϵ+τ
t ]dy

(2.14)

ψϵ
0(x) ≡ 0.

Estimate ψϵ
t(x) in terms of l − α:

|ψϵ
1(x)| =

∣∣∣∣∫
Ω

rk(x, y)(l0 − α0)f(N
ϵ
0)dy

∣∣∣∣
≤ C1

∫
Ω

|l0 − α0| dy

|ψϵ
2(x)| =

∣∣∣∣∫
Ω

k(x, y)[(1− (α1 + ϵ(l1 − α1)))
∂f(N ϵ

1)

∂N ϵ
1

ψϵ
1 − (l1 − α1)f(N

ϵ
1)]dy

∣∣∣∣
≤ C2

( ∫
Ω

|l0 − α0| dy +
∫
Ω

|l1 − α1| dy
)

Continuing to estimate, we obtain

∣∣ψϵ
t+1(x)

∣∣ ≤ Ct+1

t∑
i=0

∫
Ω

|li − αi| dy.
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For

ψϵ = ψ(α+ ϵ(l − α))

and

ψϵ+τ
t = ψ(α+ (ϵ+ τ)(l − α)),

we use σϵ
t to represent the difference quotient for directional derivative of ψ with

respect to α+ ϵ(l − α) in the direction l − α:

σϵ
t+1(x) =

∫
Ω

k(x, y)[(1− αt + ϵ(lt − αt)]
(∂2f(N ϵ

t )

∂2N ϵ
t

(ψϵ
t)

2 +
∂f(N ϵ

t )

∂N ϵ
t

σϵ
t

)
dy

− 2

∫
Ω

k(x, y)(lt − αt)
∂f(N ϵ

t )

∂N ϵ
t

ψϵ
tdy

σϵ
0(x) ≡ 0

for t = 0, 1, · · · , T − 1.

Now we obtain

g′′(ϵ) =
T−1∑
t=0

∫
Ω

e−δt[2At(lt − αt)
∂f(N ϵ

t )

∂N ϵ
t

ψϵ
t

+ At(αt + ϵ(lt − αt))
(∂2f(N ϵ

t )

∂2N ϵ
t

(ψϵ
t)

2 +
∂f(N ϵ

t )

∂N ϵ
t

σϵ
t

)
− Bt

2
V ′′(αt + ϵ(lt − αt))(lt − αt)

2]dy

Next, we use the iterative method to estimate σϵ
t+1 in terms of (lk − αk)

2, k =

0, 1, · · · , T − 1: ∫
Ω

|σϵ
t | dy ≤ C

t−1∑
k=0

∫
Ω

(lk − αk)
2dy (2.15)
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Notice σϵ
1(x) ≡ 0, since σϵ

0(x) ≡ 0 and ψϵ
0(x) ≡ 0. Using that to estimate σϵ

2 gives

|σϵ
2(x)| =

∣∣∣∣∫
Ω

k(x, y)[(1− α1 + ϵ(l1 − α1)]
∂2f(N ϵ

1)

∂2N ϵ
1

(ψϵ
1)

2dy

∣∣∣∣
+ 2

∣∣∣∣∫
Ω

(x, y)(l1 − α1)
∂f(N ϵ

1)

∂N ϵ
1

ψϵ
1dy

∣∣∣∣
≤ C1

∣∣∣∣∫
Ω

(ψϵ
1)

2dy +

∫
Ω

(l1 − α1)ψ
ϵ
1dy

∣∣∣∣
≤ C2(

∫
Ω

|(l1 − α1)|2 dy +
∫
Ω

|(l0 − α0)|2 dy)

In the derivation above we used the L∞ boundedness of
∂f

∂N
and

∂2f

∂N2
are used.

Continuing the iteration, we can get the estimate (2.15) for σϵ
t .

Using the above estimates,

g′′(ϵ) ≤
T−1∑
t=0

(K − b
Bt

2
)

∫
Ω

(lt − αt)
2dy < 0,

which gives the desired concavity for Bt’s sufficiently large.
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2.4 Conclusion

The application of optimal control theory in integrodifference equation models is a new

area. In this chapter, we formulated an optimal control problem for integrodifference

equation models with harvesting before dispersal and after growth.

We started with a problem with a linear growth function and a quadratic cost

term, and obtained existence, uniqueness and characterization results for the optimal

control in Section 2.2. Boundedness of controls and states, weak convergence in L2

of control sequences, and strong convergence of state sequences are used to show the

existence of the optimal control. We first differentiated the map α→ N(α) to derive

the sensitivity system ψt, and then differentiated the map α → J(α) to obtain the

adjoint system and the characterization of the optimal control. The uniqueness of the

optimal control was proven by showing the strict concavity of the map α→ N(α).

In Section 2.3 we extended the theoretical analysis results to a problem with a

concave growth function and a convex cost term. We used similar techniques as

applied in Section 2.2 to obtain existence, characterization and uniqueness of the

optimal control. Additionally, for the proof of uniqueness in 2.3.4, we used lower

semi-continuity with respect to weak convergence in L2 for concave functions.

These results are important for the control application of optimal harvesting, to

species for which an integrodifference equation model is appropriate. For organisms

such as insects and many plants, the assumption of harvesting before dispersal and

after growth is reasonable, e.g. if harvesting is applied to reduce impact of harmful

insects or plants. The results in this chapter provide explicit guidance on optimal

harvesting given a particular dispersal kernel.
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Chapter 3

Comparison with Another Order of

Events (Growth, Dispersal and

Harvest)

3.1 Optimality System for Growth, Dispersal and

Harvest

In models with discrete time, the order of events within a time step is crucial. In this

chapter we explore the differences arising due to the order of growth, harvest and

dispersal, by comparing the two different cases, one following a growth-harvesting-

dispersal order, which is discussed in Chapter 2, with the another one following a

growth-dispersal-harvesting order, which was discussed by Joshi, Lenhart, Lou and

Gaff [21, 22].

In this section, we state the harvesting problem together with the adjoint system

and the characterization of the optimal control for a growth-dispersal-harvesting

order. We use the same assumptions and control set as in Chapter 2.
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Nt+1(x) = (1− αt(x))

∫
Ω

k(x, y)rNt(y)dy (3.1)

where t = 0, 1, · · · , T − 1. The state variable N and the control α are:

N = N(α) = (N0(x), N1(x), . . . , NT (x)),

α = (α0(x), α1(x), . . . , αT−1(x)).

The objective functional is:

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(x)

∫
Ω

k(x, y)Nt(y)dy −
Bt

2
(αt(x))

2]dx,

From the results in [21], for t = 0, 1, 2, · · · , T − 1, the characterization for the

optimal control is

α∗
t (x) = min(max(

(−pt+1(x) + e−δtAt)
∫
Ω
rk(x, y)N∗

t (y)dy

e−δtBt

, 0),M), (3.2)

with the following adjoint system:

pt−1(x) = r

∫
Ω

(1− α∗
t−1(y))pt(y)k(y, x)dy + r

∫
Ω

At−1e
−δ(t−1)α∗

t−1(y)k(y, x)dy

pT (x) = 0 (3.3)

where t = T, · · · , 2, 1.

For a concave growth function and a convex cost function, the population is

modeled by the following integrodifference model:

Nt+1(x) = (1− αt(x))

∫
Ω

k(x, y)f(Nt(y), y)dy (3.4)
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where t = 0, 1, · · · , T − 1. The state variable N and the control α are:

N = N(α) = (N0(x), N1(x), . . . , NT (x)),

α = (α0(x), α1(x), . . . , αT−1(x)).

The objective functional is:

J(α) =
T−1∑
t=0

e−δt

∫
Ω

[
Atαt(x)

∫
Ω

k(x, y)f(Nt(y), y)dy −
Bt

2
V (αt(x))

]
dx,

From the results in [22], for t = 0, 1, 2, · · · , T − 1, the characterization for the

optimal control on the interior of the control set is

V ′(α∗
t (x)) =

2

Bt

(
At − pt+1(x)e

δt
) ∫

Ω

k(x, y)f(N∗
t (y), y)dy.

If V (α) = α2, then we have

α∗
t (x) = min

(
max

(( 1

Bt

(At − pt+1(x)e
δt)

∫
Ω

k(x, y)f(N∗
t (y), y)dy

)
, 0
)
,M
)
, (3.5)

with the following adjoint system:

pt−1(x) = r

∫
Ω

(1− α∗
t−1(y))pt(y)k(y, x)dy + r

∫
Ω

At−1e
−δ(t−1)α∗

t−1(y)k(y, x)dy

pT (x) = 0 (3.6)

where t = T, · · · , 2, 1.

The optimality system for the growth-dispersal-harvesting case in the linear

growth or nonlinear growth consists of state (3.1)/(3.4), adjoint (3.3)/(3.6), and

characterization (3.2)/(3.5). Compared with the optimality system of the other

order, with state (2.1)/(2.8), adjoint (2.4)/(2.11), and characterization (2.5)/(2.12),

we can clearly see the differences in the expressions for the optimality systems for
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the two cases. When deciding to harvest in an optimal way, the order of the events

must be decided in advance to obtain the appropriate necessary conditions, and thus

calculating the appropriate optimal control.

3.2 Numerical Examples

We further illustrate the importance of considering the order of events in these

problems by numerically calculating the optimal controls for two cases from state

equations (2.8) and (3.4) and corresponding objective functionals (2.9) and (3.1)

respectively. We numerically calculate the optimal controls for these two cases, using

specific growth rates, balancing constants, and kernels.

Starting with a given initial population distribution and a guess for the control, an

iterative method is used to solve the optimality system. Given initial condition of the

state and an initial guess of control, we start with solving the state equations forward.

Using the new state value, we solve backwards the adjoint equations, and calculate

the characterization. We then update the control by taking a convex combination

of the old control values and the new value from control characterization. We use a

tolerance of 0.1%, and when relative errors in control, state and adjoint values all fall

below the tolerance, the iteration stops. We use V (α) = α2 as cost function. The

trapezoidal rule is used here to get integral approximations.

The work by Hackbush [17] shows that the type of numerical algorithm for

forward-backward sweeps is stable for parabolic partial differential equations. We

found that our numerical simulations always converged in 50 iterations.

Remark 3.1. We note that the trapezoidal rule requires C2 regularity in space which

holds for our examples.

If x is near the ∂Ω, then the part of the dispersal that would go outside Ω is not

included in the integral.

See [21, 22] for more details on such a numerical method.
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In this section we show figures comparing optimal harvesting rates and corre-

sponding populations from the two orders of events. We use kernels and growth

functions chosen from those used in applications [26, 41]

We first use a linear growth function

Nt+1 = rNt,

with a growth rate r of 1.8, and a normal dispersal kernel

k(x, y) =

√
β

π
exp

(
− β(x− y)2

)
,

with a β value of 5. We study the harvesting strategy over a one dimensional space

with size 1 during 5 time steps. Here the space gird size is 0.01. We use a parabola

curve 100x(1 − x) for the initial population. Possible maximum harvesting rate is

0.4, and the discount factor δ is set to be 0.04, indicating an interest rate of 4%. We

assume the weights in the objective functionals At and Bt to be constant for each

time step, taking values of 10 and 1000, respectively. Numerical results are shown in

Figure 3.1.

Figure 3.1 shows clear differences between how the two orders affect both

harvesting rates and populations. First, for the G-D-H order, the harvesting curve

is smoother and varies in a smaller value range, since the harvesting is done after

dispersal, when the population distribution is more even. Second, for both cases the

harvesting strategy is to harvest less population in the center of the region in early

time steps. The explanation could be that it is more likely to have population loss

near boundaries of the region due to dispersal. We observe a lower harvesting rate in

general for the G-D-H order, which could be the effect caused by the population loss

after dispersal. As a result, the population is slightly larger than the case with G-H-D

order. Third, in both cases, although a time discount factor δ is included the model,

indicating money is worth more at an earlier time step, it is still more profitable to
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Figure 3.1: Normal kernel, β = 5, Linear growth function, r = 1.8, At = 10,
Bt = 500, L = 1, T = 5, δ = 0.04.

let the population grow first and perform a larger scale of harvesting at later time

steps.
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Figure 3.2: Normal kernel, β = 5, Linear growth function, r = 1.8, At = 10,
Bt = 1000, L = 1, T = 5, δ = 0.04.

Here we change Bt from 500 to 1000. Figure 3.2 shows how weights in the objective

functionals affect harvesting decisions. Now with a larger harvesting cost, optimal

harvesting rates for both orders decrease, compared to Figure 3.1, and reach the

maximum threshold 0.4 at the final time step. Meanwhile, the harvesting rates show

less variation in time as compared to Figure 3.1.
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Figure 3.3: Normal kernel, β = 5, Linear growth function, r = 1.8, At = 10,
Bt = 500, L = 1, T = 10, δ = 0.04.

Here we extend the time range. In both cases in Figure 3.3 we observe no

harvesting in the first several time steps. For order G-H-D, little harvesting is done

most of the time and major effort is made during the last time step. For order G-D-

H, however, harvesting is performed earlier on a larger scale and the harvesting rate

levels off at the last time step.
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Figure 3.4: Finite range kernel, R = 1, Linear growth function, r = 1.8, At = 10,
Bt = 500, L = 1, T = 10, δ = 0.04.

We use a finite dispersal kernel

k (x, y) =


0, if x ≤ y −R

π

4R
cos
[ π
2R

|x− y|
]
, if y −R < x < y +R

0, if x ≥ y +R

to study how dispersal range affects the results. In Figure 3.4 a dispersal range R = 1

is used, which is the same size with the spatial region.

In Figure 3.5 a dispersal range R = 2 is used, which is twice the size of the spatial

region.

In Figure 3.6 a dispersal range R = 0.25 is used, which is 1/4 the size of the

spatial region.
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Figure 3.5: Finite range kernel, R = 2, Linear growth function, r = 1.8, At = 10,
Bt = 500, L = 1, T = 10, δ = 0.04.
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Figure 3.6: Finite range kernel, R = 0.25, Linear growth function, r = 1.8, At = 10,
Bt = 500, L = 1, T = 10, δ = 0.04.

49



3.3 Conclusion

In Chapter 2 we studied the harvesting problem with an order of growth, harvesting

and dispersal. The discrete structure in our model naturally raised the question about

the effects on the optimal results by changing order of events. In this chapter we

compared the order in Chapter 2 with the order of growth, dispersal and harvesting

studied by Joshi et al. [21, 22]. Section 3.1 compared the adjoint systems and

characterization of optimal controls, for both linear and concave cases under the two

orders. Section 3.2 showed numerical results of the optimal harvesting rates and

populations under the two orders, with various dispersal kernels and parameters.

With orders Growth-Harvesting-Dispersal and Growth-Dispersal-Harvesting, our

optimality systems and numerical results show clearly the differences between the

optimal controls.

Stability results for numerical computations of such optimality systems is an

interesting open question. One could consider specifically the stability of the forward-

backward sweep method.

Results in this chapter verify the importance of order of events in this discrete

harvesting model, and motivates the study in Chapter 4, in which the relations among

all the six possible ways of ordering events are discussed.
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Chapter 4

Study of Six Different Harvesting

Orders

4.1 List of Six Orders

In this chapter we study how the optimal control and state will be impacted by

changing the order of growth, dispersal and harvesting.

Here we use G, H and D to denote growth, harvesting and dispersal.

In total, there are 6 ways to order these three events:

G→ H → D (4.1)

H → D → G (4.2)

D → G→ H (4.3)

G→ D → H (4.4)

D → H → G (4.5)

H → G→ D. (4.6)
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In fact, the first 3 cases follows the same order as the chain

· · ·G→ H → D → G→ H · · ·

except with different starting points. Similarly, the last 3 cases follows the same order

as the chain

· · ·G→ D → H → G→ D · · ·

except with different on starting points. We will investigate the relationships among

those cases.

We next list the state equations and objective functionals using a monotone growth

function f . We use N
[i]
t to denote Nt for Case i.

For Case 1 with order G→ H → D, the state equations are

∫
Ω

k(x, y)(1− αt(y))f(N
[1]
t (y))dy = N

[1]
t+1(x); (4.7)

and the objective functional is

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(y)f(N
[1]
t (y))− Bt

2
V (αt(y))]dy. (4.8)

For Case 2 with order H → D → G, the state equations are

f(

∫
Ω

k(x, y)(1− αt(y))N
[2]
t (y)dy) = N

[2]
t+1(x); (4.9)

and the objective functional is

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(y)N
[2]
t (y)− Bt

2
V (αt(y))]dy. (4.10)
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For Case 3 with order D → G→ H, the state equations are

(1− αt(x))f(

∫
Ω

k(x, y)N
[3]
t (y)dy) = N

[3]
t+1(x). (4.11)

and the objective functional is

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(x)f(

∫
Ω

k(x, y)N
[3]
t (y)dy)− Bt

2
V (αt(y))]dy. (4.12)

For Case 4 with order G→ D → H, the state equations are

(1− αt(x))

∫
Ω

k(x, y)f(N
[4]
t (y))dy = N

[4]
t+1(x). (4.13)

and the objective functional is

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(x)

∫
Ω

k(x, y)f(N
[4]
t (y))dy − Bt

2
V (αt(y))]dy. (4.14)

For Case 5 with order D → H → G, the state equations are

f
(
(1− αt(x))

∫
Ω

k(x, y)N
[5]
t (y)dy

)
= N

[5]
t+1(x). (4.15)

and the objective functional is

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(x)

∫
Ω

k(x, y)N
[5]
t (y)dy − Bt

2
V (αt(y))]dy. (4.16)

For Case 6 with order H → G→ D, the state equations are

∫
Ω

k(x, y)f
(
(1− αt(y))N

[6]
t (y)

)
dy = N

[6]
t+1(x). (4.17)
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and the objective functional is

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(y)N
[6]
t (y)− Bt

2
V (αt(y))]dy. (4.18)

4.2 Relations among all the Six Cases

4.2.1 The First Three Cases

The following diagram shows the procedure of case 1 with an initial population of

N
[1]
0 ,

N
[1]
0 −→

G→H→D
N

[1]
1 −→

G→H→D
N

[1]
2 · · · −→

G→H→D
N

[1]
T .

With the control α = (α0, α1, · · · , αT−1) applied during T time steps.

For case 2, with the control α = (α0, α1, · · · , αT−1) applied during T time steps,

the objective functional in terms of N
[2]
t is written below, as in (4.10).

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(y)N
[2]
t (y)− Bt

2
V (αt(y))]dy.

We now try to write (4.10) in terms ofN
[1]
t . From previous proof as in Section 2.2.1,

all state functions are L∞ bounded. That is, there exits an C such that ∥ N [2]
t ∥≤ C

for any t = 1, 2, · · · , T . Thus the growth function f is a monotone map from [0, C]

to [0, C]. For t = 0, 1, · · · , T , we construct functions Nt : Ω → [0, C] such that

Nt(x) = f−1(N
[2]
t (x)) for any x in Ω.

The harvest at each time step at location y is αt(y)N
[2]
t (y), i.e., αt(y)f(Nt(y)).

Thus we can rewrite the objective functional for Case 2 as

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(y)f(Nt(y), y)−
Bt

2
V (αt(y))]dy.

We now show that Nt here is just N
[1]
t , the population at time step t under Case 1

order with control α = (α0, α1, · · · , αT−1) applied, only by showing Nt is a sequence
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satisfying the state equations (4.7) of Case 1.

Nt+1(x) = f−1(N
[2]
t+1(x))

(4.9)
= f−1(f(

∫
Ω

k(x, y)(1− αt(y))N
[2]
t (y)dy))

=

∫
Ω

k(x, y)(1− αt(y))N
[2]
t (y)dy

=

∫
Ω

k(x, y)(1− αt(y))f(Nt(y))dy.

Thus we could conclude that a problem starting with a N
[2]
0 population under

Case 2 order has exactly the same objective functional with the one starting with a

population of N
[1]
0 = f−1(N

[2]
0 ) under Case 1 order, if the same control was applied

at each time step. In other words, a harvesting problem under Case 2 order with

an initial population of N
[2]
0 , is equivalent to one under Case 1 order with an initial

population of N
[1]
0 = f−1(N

[2]
0 ). The following diagram indicates this correspondence.

N
[1]
0 99K

G→
N

[2]
0 −→

H→D→
N

[1]
1 →

G→
N

[2]
1 −→

H→D→
N

[1]
2 · · · −→

H→D→
N

[1]
T →

G→
N

[2]
T

We use a similar approach for case 3. First we construct functions Nt : Ω → [0, C],

where t = 0, 1, · · · , T , such that

Nt(x) =

∫
Ω

k(x, y)N
[3]
t (y)dy.

for any x in Ω.

With the control α = (α0, α1, · · · , αT−1) applied during T time steps, The harvest

at each time step is

αt(x)f(

∫
Ω

k(x, y)N
[3]
t (y)dy),

i.e., αt(x)f(Nt(x)).

The objective functional in terms of N
[3]
t is written below, as in (4.2.1).

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(x)f(

∫
Ω

k(x, y)N
[3]
t (y)dy)− Bt

2
V (αt(y))]dy.
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We show that Nt is just the population at time step t under Case 1 order with

control α = (α0, α1, · · · , αT−1) applied, only by showing Nt is a sequence satisfying

the state equations (4.7) of Case 1.

Nt+1(x) =

∫
Ω

k(x, y)N
[3]
t (y)dy

(4.11)
=

∫
Ω

k(x, y)(1− αt(y))f(

∫
Ω

k(y, x)N
[3]
t (x)dx)dy

=

∫
Ω

k(x, y)(1− αt(y))f(Nt(y))dy

Thus we could conclude that a problem starting with a N
[3]
0 population under

Case 3 order has exactly the same objective functional with the one starting with

N
[1]
0 (x) =

∫
Ω

k(x, y)N
[3]
0 (y)dy

population under Case 1 order, if the same control was applied at each time step.

The following diagram indicates the corresponding procedure.

N
[3]
0 →

D→
N

[1]
0 −→

G→H→
N

[3]
1 →

D→
N

[1]
1 −→

G→H→
N

[3]
2 · · · −→

G→H→
N

[3]
T 99K

D→
N

[1]
T

The comparison above indicates that harvesting problems under the first three

Cases of orders are equivalent to each other given a specific relationship between the

initial populations. The results on existence, characterization, and uniqueness of the

optimal control in Case 1 could be applied to Cases 2 and 3.

4.2.2 The Last Three Cases

Following the same logic we show that Cases 4, 5 and 6 have a similar kind of

relationship.

The following diagram shows the procedure of case 4 with an initial population of

N
[4]
0 .
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N
[4]
0 −→

G→D→H
N

[4]
1 −→

G→D→H
N

[4]
2 · · · −→

G→D→H
N

[4]
T

with the control α = (α0, α1, · · · , αT−1) applied during T time steps, the objective

functional in terms of N
[5]
t is written below, as in (4.16).

For case 5, again all state functions are L∞ bounded. That is, there exists an

C such that ∥ N
[5]
t ∥≤ C for any t = 1, 2, · · · , T . Thus the growth function f is

a monotone map from [0, C] to [0, C]. For t = 0, 1, · · · , T , we construct functions

Nt : Ω → [0, N ] such that Nt(x) = f−1(N
[5]
0 (x)) for any x in Ω.

Since the growth function is monotone, for each t = 0, 1, · · · , T , there exists an

Nt such that N
[5]
t (x) = f(Nt(x)) for any x in Ω.

The harvest at each time step is

αt(x)

∫
Ω

k(x, y)N
[5]
t (y)dy,

i.e., αt(x)
∫
Ω
k(x, y)f(Nt(y))dy.

Then the objective function in terms of Nt is:

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(x)

∫
Ω

k(x, y)f(Nt(y))dy −
Bt

2
V (αt(x))]dx.

We now show that Nt is just the population at time step t under Case 4 order with

control α = (α0, α1, · · · , αT−1) applied, only by showing Nt is a sequence satisfying

(4.13),

Nt+1(x) = f−1(N
[5]
t+1(x))

(4.15)
= f−1

(
f
(
(1− αt(x))

∫
Ω

k(x, y)N
[5]
t (y)dy

))
= (1− αt(x))

∫
Ω

k(x, y)N
[5]
t (y)dy

= (1− αt(x))

∫
Ω

k(x, y)f(Nt(y))dy
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Thus we could conclude that a problem starting with a N
[5]
0 population under

Case 5 order has exactly the same objective functional with the one starting with a

N
[4]
0 = f−1(N

[5]
0 ) population under Case 4 order, if the same control was applied at

each time step. The following diagram indicates the corresponding procedure.

N
[4]
0 99K

G→
N

[5]
0 −→

D→H→
N

[4]
1 →

G→
N

[5]
1 −→

D→H→
N

[4]
2 · · · −→

D→H→
N

[4]
T →

G→
N

[5]
T

Now we explain the complexity of Case 6. The two diagrams (4.19) and (4.20)

below indicates the only two possible ways to obtain a correspondence between Case

4 and Case 6.

N
[6]
0 →

H→
N

[4]
0 −→

G→D→
N

[6]
1 →

H→
N

[4]
1 −→

G→D→
N

[6]
2 · · · −→

G→D→
N

[6]
T 99K

H→
N

[4]
T (4.19)

N
[4]
0 −→

G→D→
N

[6]
1 →

H→
N

[4]
1 −→

G→D→
N

[6]
2 →

H→
N

[4]
2 · · · −→

G→D→
N

[6]
T 99K

H→
N

[4]
T (4.20)

The diagram (4.19) shows a relation of

(
(1− α0)

)
N

[6]
0 = N

[4]
0 , (4.21)

which does not provide helpful information because of the control term.

The diagram (4.19) shows a relation of

N
[6]
t (x) =

∫
Ω

k(x, y)f(N
[4]
t (y))dy, (4.22)

but it is hard to find N
[4]
0 explicitly in term of N

[6]
0 from this equation.

Thus we can not get the the characterization result of existence, characterization

and uniqueness result for Case 6 by transforming it into Case 4. Case 6 is studied

separately in the following chapter.
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4.3 Conclusion

There are totally six ways of ordering the three events, growth, harvesting and

dispersal in this harvesting problem. In Section 4.1 we listed the six orders ((4.1)-

(4.6)) and their state equations together with the objective functionals for the concave

case. In Section 4.2 we discussed the relations among those orders. In fact, similarity

in the first three orders is observable because they can all be viewed as one part on

this chain of events:

· · ·G→ H → D → G→ H · · · ,

and the only difference exists in the beginning and ending points. The ending points

are not a concern since the population at the final time step is not included in the

objective functional.

In 4.2.1 we give a rigorous proof of the equivalence among the first three cases

under certain transformations of initial populations. Following the same idea, in 4.2.2

we are able to show the equivalence between Case 4 and Case 5. However, Case 6 can

not be transformed into Case 4, due to the complexity of the two relations (4.21) and

(4.22). This leads to the study in Chapter 5 about the existence, characterization

and uniqueness of optimal control for Case 6.

From considering the six cases of order of events, transformations show that

analysis and necessary conditions only are needed for three cases. The other three

cases can be obtained from those three cases.
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Chapter 5

Study of Case 6: Harvest, Growth

and Dispersal

We now consider a model with the order of events being harvest, growth and dispersal.

We consider the harvest of the following integrodifference model with concave

growth function:

Nt+1(x) =

∫
Ω

k(x, y)f((1− αt)Nt(y), y)dy,

for t = 0, 1, · · · , T − 1.

Here f is twice differentiable in Nt(y) and measurable in y. For almost all y,

f(·, y) is nondecreasing and concave in the N variable,
∂fW (Nt(x), x)

∂N
is decreasing

and nonnegative, and

f(Nt(y), y) ≥ 0, for all Nt(y) ≥ 0, y ∈ Ω,

|f(Nt(y), y)| ≤ Cr <∞, for all 0 ≤ Nt(y), y ∈ Ω.

We assume that for almost all y, f(·, y) is Lipschitz continuous in L2(Ω). We also

assume that the partial derivatives, fW (Nt(x), x) and fWW (Nt(x), x) are both L∞

bounded for any N ∈ L∞(Ω). Here fW and fWW denote the first and second partial

derivatives of f(·, y) with respect to the first variable.
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The assumption for the initial population is N0 ∈ L∞(Ω) and N0(x) ≥ 0. The

control set is defined as U =
{
α ∈

(
L∞(Ω)

)T |0 ≤ αt(x) ≤M, t = 0, 1, . . . , T − 1
}
for

M < 1. Given α ∈ U the corresponding state N = N(α) satisfies

0 ≤ Nt(x) ≤ Cf(N0),

where Cf(N0) is a constant that depends on the growth function value at N0.

The kernels are bounded and measurable such that∣∣∣∣∫
Ω

k(x, y)dx

∣∣∣∣ ≤ C ≤ 1

for all x ∈ Ω and 0 ≤ k(x, y) ≤ k1 for (x, y) ∈ Ω× Ω.

We define the objective functional as:

J(α) =
T−1∑
t=0

∫
Ω

e−δt[Atαt(y)Nt(y)dy −
Bt

2
V (αt(y))]dy.

Here J represents the profit, which is the discounted revenue stream less the cost of

the control, where the coefficient where At is the price factor and e
−δt is the discount

factor with δ > 0. We assume the cost of harvesting is a nonlinear function V , and

assume that the C2 function V : [0,M ] → R is increasing and convex with

V ′′(α) ≥ b > 0

for all α in [0,M ]. The coefficient Bt is a weight factor that balances the two parts

of the objective functional. The coefficients, At and Bt, are both positive numbers

for any t = 0, 1, · · · , T − 1. All other assumptions are the same with previous linear

cases.

We seek α∗ ∈ U such that

Jα = max
α∈U

J(U)
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.

5.1 Existence of an Optimal Control

First we prove the existence of an optimal control using a convex combination

technique from [52].

Theorem 5.1. There exists an optimal control α∗ in U that maximizes the functional

J(α).

Proof. Let {αn} be a maximizing sequence for the objective functional J in (2) and

Nn = N(αn) be the corresponding state sequence. From the bounded assumption on

control, state, and f(N), the sequences {αn} and f((1− αn)Nn) are L∞ bounded.

Then there exists α∗ ∈ U and F ∈
(
L∞(Ω)

)T
such that on a subsequence, we have

the following weak convergence,

αn
t ⇀ α∗

t in L2(Ω), t = 0, · · · , T − 1,

f((1− αn
t )N

n
t (y), y)⇀ Ft(y) in L2(Ω), t = 0, · · · , T − 1.

Thus for almost every x ∈ Ω,

Nn
t+1(x) =

∫
Ω

k(x, y)f((1− αn
t )N

n
t (y), y)dy →

∫
Ω

k(x, y)Ft(y)dy (5.1)

for any t = 0, · · · , T − 1.

From dominated convergence theorem, the pointwise convergence above becomes

strong L2 convergence, i.e.,

∫
Ω

k(x, y)f((1− αn
t )N

n
t (y), y)dy →

∫
Ω

k(x, y)Ft(y)dy (5.2)

strongly in L2(Ω), for any t = 0, · · · , T − 1.
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Let N∗
0 = N0, and

N∗
t+1(x) =

∫
Ω

k(x, y)Ft(y)dy

for t = 0, · · · , T − 1. Then from (5.2) we know that

Nn
t → N∗

t

strongly in L2(Ω), for any t = 0, · · · , T .

Given N∗
0 = N0 = N0(α

∗), we want to show by induction that N∗
t+1(α) ≤ Nt+1(α

∗)

holds for any t = 0, · · · , T − 1 and any α ∈ U , with the induction assumption

N∗
t (α) ≤ Nt(α

∗). i.e., we want to show that

∫
Ω

k(x, y)Ft(y)dy ≤
∫
Ω

k(x, y)f((1− α∗
t )Nt(α

∗), y)dy (5.3)

for any t = 0, · · · , T − 1.

From weak convergence of {αn
t } and strong convergence of {Nn

t }, and the L∞

boundedness of both sequences, we have

(1− αn
t )N

n
t ⇀ (1− α∗

t )N
∗
t

weakly in L2(Ω).

Mazur’s Theorem [52] gives us that there exists constants βn
j , j = n, · · · ,mn, such

that:
mn∑
j=n

βn
j = 1, n = 1, 2, · · · ,

βn
j ≥ 0, n = 1, 2, · · · , j = n, · · · ,mn,

mn∑
j=n

βn
j (1− αj

t )N
j
t → (1− α∗

t )N
∗
t strongly in L2(Ω). (5.4)
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From the concavity of f(·, y), we have

mn∑
j=n

βn
j

∫
Ω

k(x, y)f((1− αj
t )N

j
t (y), y)dy

≤
∫
Ω

k(x, y)f(
mn∑
j=n

βn
j (1− αj

t )N
j
t (y), y)dy. (5.5)

From the Lipschitz Continuity of f(·, y) in L2(Ω), we have

∫
Ω

k(x, y)f(
mn∑
j=n

βn
j (1− αj

t )N
j
t (y), y)dy →

∫
Ω

k(x, y)f((1− α∗
t )N

∗
t (y), y)dy,

almost everywhere for x. Also from (5.1),

∫
Ω

k(x, y)f((1− αn
t )N

n
t (y), y)dy →

∫
Ω

k(x, y)Ft(y)dy

for almost every x ∈ Ω and any t = 0, · · · , T − 1. Thus a convex combination of

the left hand side sequence also converges to the right hand side function for almost

every x ∈ Ω and any t = 0, · · · , T − 1. i.e.,

mn∑
j=n

βn
j

∫
Ω

k(x, y)f((1− αj
t )N

j
t (y), y)dy →

∫
Ω

k(x, y)Ft(y)dy.

for almost every x ∈ Ω and any t = 0, · · · , T − 1.

From (5.5), (5.6), and (5.6), we conclude that

∫
Ω

k(x, y)Ft(y)dy ≤
∫
Ω

k(x, y)f((1− α∗
t )N

∗
t (y), y)dy. (5.6)

for almost every x ∈ Ω and any t = 0, · · · , T − 1.

Induction Hypothesis N∗
t (α) ≤ Nt(α

∗) and f being an increasing function gives

∫
Ω

k(x, y)f((1− α∗
t )N

∗
t (y), y)dy ≤

∫
Ω

k(x, y)f((1− α∗
t )Nt(α

∗), y)dy. (5.7)
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So we have

N∗
t+1(x) =

∫
Ω

k(x, y)Ft(y)dy ≤
∫
Ω

k(x, y)f((1− α∗
t )Nt(α

∗), y)dy = Nt+1(α
∗)(x)

(5.8)

for almost every x ∈ Ω and any t = 0, · · · , T − 1, which completes our induction

proof.

The weak convergence of αn
t and strong convergence of Nn

t gives

∫
Ω

e−δtAtα
n
t (y)N

n
t (y)dy →

∫
Ω

e−δtAtα
∗
t (y)N

∗
t (y)dy (5.9)

strongly in L2(Ω). The weak convergence of αn
t leads to the lower semicontinuity

result for V (αn
t ), thus∫

Ω

Bt

2
V (α∗

t (y))dy ≤ lim inf
n→∞

∫
Ω

Bt

2
V (αn

t (y))dy. (5.10)

So we have

J(α∗) =
T−1∑
t=0

∫
Ω

e−δt[Atα
∗
t (y)Nt(α

∗)(y)dy − Bt

2
V (α∗

t (y))]dy

≥
T−1∑
t=0

∫
Ω

e−δt[Atα
∗
t (y)N

∗
t (y)dy −

Bt

2
V (α∗

t (y))]dy (by induction argument)

≥ lim
n→∞

T−1∑
t=0

∫
Ω

e−δt[Atα
n
t (y)N

n
t (y)dy −

Bt

2
V (αn

t (y))]dy

= lim
n→∞

J(αn), (5.11)

which shows α∗ is an optimal control.
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5.2 Characterization of an Optimal Control

Theorem 5.2. We again differentiate the maps α → N(α) and α → J(α) to obtain

our characterization.

The mapping α ∈ U → N ∈ (L∞(Ω))T is differentiable in the following sense:

N ϵ
t (x)−Nt(x)

ϵ
⇀ ψt(x)

weakly in L2(Ω) as ϵ → 0 for any α ∈ U and l ∈ (L∞(Ω))T such that (α + ϵl) ∈ U

for ϵ small, where N ϵ = N(α+ ϵl). Also ψ, depending on N , α and l, satisfies:

ψt+1(x) =

∫
Ω

k(x, y)fW
(
(1−αt(y))Nt(y), y

)(
−lt(y)Nt(y)+(1−αt(y))ψt(y)

)
dy (5.12)

ψ0(x) = 0

for t = 0, 1, · · · , T − 1, where fW stands for the derivative of f(·, y) with respect to

the first variable.

Remark 5.3. Since the sensitivity function depends on N , α and l, we can use

ψ(α,N(α), l) to denote the directional derivative of N(α) along vector l with respect

to α.

Proof. In the proof, we omit the independent variable y in order to shorten the

expressions, as long as no ambiguity exists. For instance, we use αt for αt(y), lt for

lt(y), Nt for Nt(y), and so on.

Consider the control-to-solution map: α → J(α).
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Let N ϵ = N(α+ ϵl), then

N ϵ
t+1(x)−Nt+1(x)

ϵ
=

∫
Ω

k(x, y)
f
(
(1− αt − ϵlt)N

ϵ
t

)
− f

(
(1− αt)Nt)

ϵ
dy

=

∫
Ω

k(x, y)
f
(
(1− αt − ϵlt)N

ϵ
t

)
− f

(
(1− αt)N

ϵ
t )

−ϵltN ϵ
t

(−ltN ϵ
t ) +

f
(
(1− αt)N

ϵ
t

)
− f

(
(1− αt)Nt)

(1− αt)(N ϵ
t −Nt)

(1− αt)(N
ϵ
t −Nt)

ϵ
dy.

Using N ϵ
0 = N0 we get

N ϵ
1(x) = N1(x).

For t = 2,

N ϵ
2(x)−N2(x)

ϵ
=

∫
Ω

k(x, y)
f
(
(1− α1 − ϵl1)N

ϵ
1

)
− f

(
(1− α1)N1)

ϵ
dy

=

∫
Ω

k(x, y)

[
f
(
(1− α1 − ϵl1)N

ϵ
1

)
− f

(
(1− α1)N

ϵ
1)

−ϵl1N ϵ
1

(−l1N ϵ
1)

+
f
(
(1− α1)N

ϵ
1

)
− f

(
(1− α1)N1)

(1− α1)(N ϵ
1 −N1)

(1− α1)(N
ϵ
1 −N1)

ϵ

]
dy

=

∫
Ω

k(x, y)
f
(
(1− α1 − ϵl1)N

ϵ
1

)
− f

(
(1− α1)N

ϵ
1)

−ϵl1N ϵ
1

(−l1N ϵ
1)dy.

From the boundedness of N1 and Lipschitz Continuity of f(·, y) in L2(Ω), we have

|N
ϵ
2(x)−N2(x)

ϵ
| ≤ C2 for all x ∈ Ω.
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For t = 3,

N ϵ
3(x)−N3(x)

ϵ
=

∫
Ω

k(x, y)
f
(
(1− α2 − ϵl2)N

ϵ
2

)
− f

(
(1− α2)N2)

ϵ
dy

=

∫
Ω

k(x, y)

[
f
(
(1− α2 − ϵl2)N

ϵ
2

)
− f

(
(1− α2)N

ϵ
2)

−ϵl2N ϵ
2

(−l2N ϵ
2)

+
f
(
(1− α2)N

ϵ
2

)
− f

(
(1− α2)N2)

(1− α2)(N ϵ
2 −N2)

(1− α2)(N
ϵ
2 −N2)

ϵ

]
dy.

From the boundedness of N2,
N ϵ

2(x)−N2(x)

ϵ
and Lipschitz Continuity of f(·, y)

in L2(Ω), we have

|N
ϵ
3(x)−N3(x)

ϵ
| ≤ C3 for all x ∈ Ω.

And then by iteration,

|N
ϵ
t (x)−Nt(x)

ϵ
| ≤ Ct for all x ∈ Ω, t = 1, 2, · · · , T .

From the a priori estimate, we have

N ϵ
t (x)−Nt(x)

ϵ
⇀ ψt(x) weakly in L2(Ω).

Similarly as in Theorem 1, by iteration, we have
N ϵ

t (x)−Nt(x)

ϵ
converges

pointwise, and also strongly in L2. which gives us the existence of ψ ∈ (L∞(Ω))T+1

such that

ψ0(x) = 0

and

∫
Ω

k(x, y)
f
(
(1− αt − ϵlt)N

ϵ
t

)
− f

(
(1− αt)N

ϵ
t )

−ϵltN ϵ
t

(−ltN ϵ
t )

+
f
(
(1− αt)N

ϵ
t

)
− f

(
(1− αt)Nt)

(1− αt)(N ϵ
t −Nt)

(1− αt)(N
ϵ
t −Nt)

ϵ
dy

→
∫
Ω

k(x, y)fW
(
(1− αt)Nt

)
[(1− αt)ψt − ltNt]dy. (5.13)
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Passing to the limit, we get

ψt+1(x) =

∫
Ω

k(x, y)fW
(
(1− αt(y))Nt(y), y

)
[(1− αt(y))ψt(y)− ltNt]dy,

for t = 0, · · · , T .

Now we differentiate the map α → J(α) to obtain a characterization of an optimal

control.

Theorem 5.4. Given an optimal control α∗ and corresponding state solution N∗ =

N(α∗), there exists a solution p ∈ (L∞(Ω))T satisfying the adjoint system:

pt−1(x) = fW
(
(1− α∗

t (x))N
∗
t (x)

)(
1− α∗

t−1(x)
) ∫

Ω

pt(y)k(y, x)dy + e−δtAt−1α
∗
t−1(x)

pT (x) = 0 (5.14)

where t = T, · · · , 2, 1. Furthermore, for t = 0, 1, 2, · · · , T − 1;

V ′(α∗
t (x)) =

2

Bt

(At − fW
(
(1− α∗

t (x))N
∗
t (x)

) ∫
Ω

eδtpt+1(y)k(y, x)dy)N
∗
t (x)

on the interior of the control set.

Proof. Let α∗ be an optimal control (which exists by Theorem 1) and N∗ = N(α∗)

be the corresponding state. For variation l with (α∗ + ϵl) ∈ U for ϵ > 0 sufficiently

small, let N ϵ be the corresponding solution of the state equation. Since the adjoint

system is linear, there exists a solution p. We compute the directional derivative of

the functional J(α) with respect to α in the direction l at α∗. Since J(α∗) is the
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maximum value, we have

0 ≥ lim
ϵ→0+

J(α∗ + ϵl)− J(α∗)

ϵ

= lim
ϵ→0+

T−1∑
t=0

1

ϵ

{∫
Ω

e−δt
[
At(α

∗
t + ϵlt)N

ϵ
t (y)−

Bt

2
V (α∗

t + ϵlt)
]
dy

−
∫
Ω

e−δt
[
At(α

∗
t )N

∗
t (y)−

Bt

2
V (α∗

t )
]
dy

}
= lim

ϵ→0+

T−1∑
t=0

∫
Ω

e−δt
[
Atα

∗
t

N ϵ
t (y)−N∗

t (y)

ϵ
+ AtltrN

ϵ
t (y)−

Bt

2

V (α∗
t + ϵlt)− V (α∗

t )

ϵ

]
dy

=
T−1∑
t=0

∫
Ω

e−δtAtα
∗
t (y)ψt(y)dy +

T−1∑
t=0

∫
Ω

e−δtAtltN
∗
t (y)dy

−
T−1∑
t=0

∫
Ω

e−δtBt

2
V ′(α∗

t )lt(y)dy.
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We use the coefficient of the ψt term as the non-homogeneous term in the adjoint

system and transform that term:

T−1∑
t=0

∫
Ω

e−δtAtα
∗
t (y)ψt(y)dy

=
T−1∑
t=0

∫
Ω

[pt(y)− fW
(
(1− α∗

t (y))N
∗
t (y)

)
(1− α∗

t (y))

∫
Ω

pt+1(x)k(x, y)dx]ψt(y)dy

=
T−1∑
t=0

∫
Ω

pt(y)ψt(y)dy

−
T−1∑
t=0

∫
Ω

fW
(
(1− α∗

t (y))N
∗
t (y)

)
(1− α∗

t (y))ψt(y)

∫
Ω

pt+1(x)k(x, y)dxdy (5.15)

=
T−1∑
t=0

∫
Ω

pt+1(y)ψt+1(y)dy −
∫
Ω

pT (y)ψT (y)dy +

∫
Ω

p0(y)ψ0(y)dy

−
T−1∑
t=0

∫
Ω

pt+1(x)

∫
Ω

fW
(
(1− α∗

t (y))N
∗
t (y)

)
(1− α∗

t (y))ψt(y)k(x, y)dydx

=
T−1∑
t=0

∫
Ω

pt+1(x)[ψt+1(x)−
∫
Ω

fW
(
(1− α∗

t (y))N
∗
t (y)

)
k(x, y)(1− α∗

t (y))ψt(y)dy]dx

=
T−1∑
t=0

∫
Ω

pt+1(x)[−
∫
Ω

k(x, y)fW
(
(1− α∗

t (y))N
∗
t (y)

)
lt(y)N

∗
t (y)dy]dx,

where we used pT (x) ≡ 0, ψ0(x) ≡ 0, and the sensitivity equation (5.12).

Substituting out for the first term from our quotient calculation,

0 ≥
T−1∑
t=0

∫
Ω

pt+1(x)[−
∫
Ω

k(x, y)fW
(
(1− α∗

t (y))N
∗
t (y)

)
lt(y)N

∗
t (y)dy]dx

+
T−1∑
t=0

∫
Ω

e−δtAtlt(y)N
∗
t (y)dy −

T−1∑
t=0

∫
Ω

e−δtBt

2
V ′(α∗

t )ltdy

=
T−1∑
t=0

∫
Ω

[(

∫
Ω

−pt+1(x)fW
(
(1− α∗

t (y))N
∗
t (y)

)
k(x, y)dx+ e−δtAt)N

∗
t (y)

− e−δtBt

2
V ′(α∗

t )(y)]lt(y)dy. (5.16)
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For any t = 0, 1, · · · , T − 1, on the set {x : 0 < α∗
t (x) < M}, the variation lt can

be taken with support on this set, and have any sign, because the optimal control

can be modified a little up or down and still stay inside the bounds. Thus on this

set, the rest of the integrand must be zero, so that

V ′(α∗
t (x)) =

2

Bt

(At − fW
(
(1− α∗

t (x))N
∗
t (x)

) ∫
Ω

eδtpt+1(y)k(y, x)dy)N
∗
t (x)

on the interior of the control set.

Remark 5.5. In the simplest case, if V is a quadratic function as V (αt) = α2
t

(the coefficient of α2
t could be included in Bt), then the characterization result before

imposing bounds could be written as:

α∗
t (x) =

1

Bt

(At −
∫
Ω

eδtpt+1(y)fW
(
(1− α∗

t (x))N
∗
t (x), x

)
k(y, x)dy)N∗

t (x).

5.2.1 Uniqueness Result

We obtain uniqueness of the optimal control under the assumption of a quadratic

cost V = Bt

2
α2 and largeness of the cost coefficients, Bt.

Theorem 5.6. If Bt, t = 0, 1, · · · , T−1 are sufficiently large, then the optimal control

is unique.

Proof. We show uniqueness by showing strict concavity of the map:

α ∈ U → J(α)

The concavity follows from showing for all α, l ∈ U , and 0 < ϵ < 1,

g′′(ϵ) < 0

where g(ϵ) = J(ϵl + (1− ϵ)α)) = J(α+ ϵ(l − α)).
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For convenience we denote

N ϵ
t = N(α+ ϵ(l − α))

for t = 0, 1, · · · , T − 1, and similarly

N ϵ+τ
t = N(α+ (ϵ+ τ)(l − α)),

for t = 0, 1, · · · , T − 1.

First, we calculate

g′(ϵ) = lim
τ→0

J(α+ (ϵ+ τ)(l − α))− J(α+ ϵ(l − α))

τ

= lim
τ→0

T−1∑
t=0

1

τ

( ∫
Ω

e−δtAt(αt + (ϵ+ τ)(lt − αt))N
ϵ+τ
t dy

−
∫
Ω

e−δtBt

2
(αt + (ϵ+ τ)(lt − αt))

2dy

−
∫
Ω

e−δt[At(αt + ϵ(lt − αt))N
ϵ
t −

Bt

2
(αt + ϵ(lt − αt))

2]dy
)

= lim
τ→0

T−1∑
t=0

∫
Ω

e−δt[At(αt + ϵ(lt − αt))
N ϵ+τ

t −N ϵ
t

τ
+ At(lt − αt)N

ϵ+τ
t

−Bt

2
τ(lt − αt)

2 −Bt(αt + ϵ(lt − αt))(lt − αt)]dy

=
T−1∑
t=0

∫
Ω

e−δt[At(αt + ϵ(lt − αt))ψ
ϵ
t + At(lt − αt)N

ϵ
t ]dy

−
∫
Ω

e−δtBt(αt + ϵ(lt − αt))(lt − αt)dy.

Remark 5.3 indicates that the directional derivative of N(α+ϵ(l−α)) along vector

l−α with respect to α+ϵ(l−α) is ψ(α+ϵ(l−α), N(α+ϵ(l−α)), l−α). For convenience

we use the following notation

ψϵ = ψ(α+ ϵ(l − α), N(α+ ϵ(l − α)), l − α),
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and similarly

ψϵ+τ = ψ(α+ (ϵ+ τ)(l − α), N(α+ (ϵ+ τ)(l − α)), l − α).

Later in the proof, we omit the independent variable y in order to shorten the

expressions, as long as no ambiguity exists. For instance, we use αt for αt(y), lt for

lt(y), Nt for Nt(y), and so on.

From Theorem 5.2 we obtain

N ϵ+τ
t −N ϵ

t

τ
⇀ ψϵ

t as τ → 0

with

ψϵ
t+1(x) =

∫
Ω

fW
(
(1− (αt + ϵ(lt − αt)))N

ϵ
t

)
k(x, y)[(1− (αt + ϵ(lt − αt)))ψ

ϵ
t

− (lt − αt)N
ϵ
t ]dy (5.17)

ψϵ
0(x) ≡0.

Similarly,

ψϵ+τ
t+1 (x) =

∫
Ω

fW
(
(1− (αt + (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
k(x, y)

[(1− (αt + (ϵ+ τ)(lt − αt)))ψ
ϵ+τ
t − (lt − αt)N

ϵ+τ
t ]dy (5.18)

ψϵ
0(x) ≡0.

Estimate ψϵ
t(x) in terms of l − α by boundedness of fW :
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|ψϵ
1(x)| =

∣∣∣∣∫
Ω

fW
(
(1− (α0 + ϵ(l0 − α0)))N

ϵ
0

)
k(x, y)(l0 − α0)N

ϵ
0dy

∣∣∣∣
≤ D1

∫
Ω

|l0 − α0| dy,

|ψϵ
2(x)| = |

∫
Ω

fW
(
(1− (α1 + ϵ(l1 − α1)))N

ϵ
1

)
k(x, y)

[(1− (α1 + ϵ(l1 − α1)))ψ
ϵ
1 − (l1 − α1)N

ϵ
1]dy|

≤ D2

( ∫
Ω

|l0 − α0| dy +
∫
Ω

|l1 − α1| dy
)
,

and continuing to estimate, we obtain

∣∣ψϵ
t+1(x)

∣∣ ≤ Dt+1

t∑
i=0

∫
Ω

|li − αi| dy,

where the sequence Dt+1 does not depend on ϵ.

Given (5.17) and (5.18), to get the second derivative of g we show the boundedness

of
ψϵ+τ
t+1 (x)− ψϵ

t+1(x)

τ
:

ψϵ+τ
t+1 (x)− ψϵ

t+1(x)

τ

=

∫
Ω

fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
k(x, y)

[(1− αt − (ϵ+ τ)(lt − αt))ψ
ϵ+τ
t − (lt − αt)N

ϵ+τ
t ]dy

−
∫
Ω

fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
k(x, y)

[(1− αt − ϵ(lt − αt))ψ
ϵ
t − (lt − αt)N

ϵ
t ]dy

=

∫
Ω

k(x, y)(1− αt − ϵ(lt − αt))Q1dy

−
∫
Ω

k(x, y)fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
(lt − αt)ψ

ϵ+τ
t dy

−
∫
Ω

k(x, y)(lt − αt)Q2dy,
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where Q1 stands for the quotient

fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
ψϵ+τ
t − fW

(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
ψϵ
t

τ

and Q2 stands for the quotient

fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
N ϵ+τ

t − fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
N ϵ

t

τ
.

Q1 =

[fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
]ψϵ+τ

t

τ

+
fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
ψϵ+τ
t − fW

(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
ψϵ
t

τ

=
fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ+τ
t

)
τ

ψϵ+τ
t

+
fW
(
(1− αt − ϵ(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
τ

ψϵ+τ
t

+fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)ψϵ+τ
t − ψϵ

t

τ

=
fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ+τ
t

)
−τ(lt − αt)

∗[−(lt − αt)ψ
ϵ+τ
t ]

+
fW
(
(1− αt − ϵ(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
(1− αt − ϵ(lt − αt))(N

ϵ+τ
t −N ϵ

t )

∗(1− αt − ϵ(lt − αt))(N
ϵ+τ
t −N ϵ

t )

τ
ψϵ+τ
t

+fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)ψϵ+τ
t − ψϵ

t

τ
,
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Q2 =

[fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
]N ϵ+τ

t

τ

+
fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
N ϵ+τ

t − fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
N ϵ

t

τ

=
fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ+τ
t

)
τ

N ϵ+τ
t

+
fW
(
(1− αt − ϵ(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
τ

N ϵ+τ
t

+fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)N ϵ+τ
t −N ϵ

t

τ

=
fW
(
(1− αt − (ϵ+ τ)(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ+τ
t

)
−τ(lt − αt)

∗[−(lt − αt)N
ϵ+τ
t ]

+
fW
(
(1− αt − ϵ(lt − αt)))N

ϵ+τ
t

)
− fW

(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)
(1− αt − ϵ(lt − αt))(N

ϵ+τ
t −N ϵ

t )

∗(1− αt − ϵ(lt − αt))(N
ϵ+τ
t −N ϵ

t )

τ
N ϵ+τ

t

+fW
(
(1− αt − ϵ(lt − αt)))N

ϵ
t

)N ϵ+τ
t −N ϵ

t

τ
.

We can get the boundedness of (5.19) and (5.19) from the boundedness of Nt, ψt,
ψϵ+τ
t (x)− ψϵ

t(x)

τ
,
N ϵ+τ

t (x)−N ϵ
t (x)

τ
and Lipschitz continuity of f(·, y) in L2(Ω).

Thus (5.19) and iteration leads to the following boundedness:

|ψ
ϵ+τ
t (x)− ψϵ

t(x)

τ
| ≤ Et for all x ∈ Ω, t = 1, 2, · · · , T ,

where the sequence Et+1 does not depend on τ or ϵ.

From the a priori estimate, we have the existence of σϵ ∈ (L∞(Ω))T+1 such that

ψϵ+τ
t (x)− ψϵ

t(x)

τ
⇀ σϵ

t(x) weakly in L2(Ω), as τ → 0,
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where

σϵ
t+1(x) =

∫
Ω

k(x, y)(1− αt − ϵ(lt − αt))

(
fWW

(
(1− αt − ϵ(lt − αt))N

ϵ
t

)
∗
[
−N ϵ

t (lt − αt)ψ
ϵ
t + (1− αt − ϵ(lt − αt))

(
ψϵ
t

)2]
+fW

(
(1− αt − ϵ(lt − αt))N

ϵ
t

)
σϵ
t

)
dy

−
∫
Ω

k(x, y)fW
(
(1− αt − ϵ(lt − αt))N

ϵ
t

)
(lt − αt)ψ

ϵ
tdy

−
∫
Ω

k(x, y)(lt − αt)

(
fWW

(
(1− αt − ϵ(lt − αt))N

ϵ
t

)
∗
[
− (lt − αt)

(
N ϵ

t

)2
+ (1− αt − ϵ(lt − αt))ψ

ϵ
tN

ϵ
t

]
+fW

(
(1− αt − ϵ(lt − αt))N

ϵ
t

)
ψϵ
t

)
dy

σϵ
0(x) ≡ 0

for t = 0, 1, · · · , T − 1.

Now we obtain

g′′(ϵ) =
T−1∑
t=0

∫
Ω

e−δt[2At(lt − αt)ψ
ϵ
t + At(αt + ϵ(lt − αt))σ

ϵ
t −Bt(lt − αt)

2]dy.

We now use an iterative method to estimate σϵ
t+1 in terms of (lk − αk)

2, k =

0, 1, · · · , T − 1: ∫
Ω

|σϵ
t | dy ≤ Ft

t−1∑
k=0

∫
Ω

(lk − αk)
2dy,

where the sequence of constants Ft+1 does not depend on ϵ.

First, using σϵ
0 ≡ 0 and ψϵ

0 ≡ 0, we obtain

|σϵ
1(x)| =

∣∣∣∣∫
Ω

k(x, y)(l0 − α0)
(
N ϵ
)2
fWW

(
(1− α0 − ϵ(l0 − α0))N

ϵ
t

)
dy

∣∣∣∣
≤ F1

∫
Ω

|(l0 − α0)|2 dy.
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Then we have

|σϵ
2(x)| =≤ L1

∣∣∣∣∫
Ω

(l1 − α1)ψ
ϵ
1dy

∣∣∣∣+ L2

∣∣∣∣∫
Ω

(
ψϵ
1

)2
dy

∣∣∣∣
+ L3

∣∣∣∣∫
Ω

σϵ
1dy

∣∣∣∣+ L4

∣∣∣∣∫
Ω

(l1 − α1)
2dy

∣∣∣∣
≤ F2(

∫
Ω

|(l1 − α1)|2 dy +
∫
Ω

|(l0 − α0)|2 dy),

from

σϵ
2(x) =

∫
Ω

k(x, y)(1− α1 − ϵ(l1 − α1))

(
fWW

(
(1− α1 − ϵ(l1 − α1))N

ϵ
1

)
∗
[
−N ϵ

1(l1 − α1)ψ
ϵ
1 + (1− α1 − ϵ(l1 − α1))

(
ψϵ
1

)2]
+fW

(
(1− α1 − ϵ(l1 − α1))N

ϵ
1

)
σϵ
1

)
dy

−
∫
Ω

k(x, y)fW
(
(1− α1 − ϵ(l1 − α1))N

ϵ
1

)
(l1 − α1)ψ

ϵ
1dy

−
∫
Ω

k(x, y)(l1 − α1)

(
fWW

(
(1− α1 − ϵ(l1 − α1))N

ϵ
1

)
∗
[
− (l1 − α1)

(
N ϵ

1

)2
+ (1− α1 − ϵ(l1 − α1))ψ

ϵ
1N

ϵ
1

]
+fW

(
(1− α1 − ϵ(l1 − α1))N

ϵ
1

)
ψϵ
1

)
dy.

where L1, L2,L3 and F1 are constants that does not depend on ϵ.

Continuing the iteration, we can get the estimate for σϵ
t .

Using the estimates,

g′′(ϵ) ≤
T−1∑
t=0

(H −Bt)

∫
Ω

(lt − αt)
2dy,

which gives the desired concavity for Bt’s sufficiently large. Here H is a constant that

does not depend on ϵ.
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5.3 Conclusion

This chapter completes the analysis and characterization results for Case 6 of the

order of events. We now have completed control results for all six cases. Whatever

order a manager would choose to use in harvesting a particular species, the optimal

control analysis is available for all possible orders. These techniques could also be

extended to harvesting of an invasive species using an objective functional to minimize

the population and the cost of harvesting controls.
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Chapter 6

Investigating Optimal Vaccination

Strategies in a Cholera Model

6.1 Introduction

Cholera is an intestinal infection that is caused by the bacterium Vibrio cholerae

and can lead to death in its untreated victims within hours. The main symptoms are

profuse watery diarrhea and vomiting, with severe cases leading to rapid dehydration.

Cholera is primarily spread through the consumption of feces-contaminated drinking

water or food, and the majority of infected individuals can be treated successfully

with oral rehydration salts, with more extreme cases requiring intravenous fluids [42].

There is a huge discrepancy between the cases of cholera that are reported annually

worldwide (around 200,000) and the actual number of infected people (3 - 5 million),

as well as the reported (4000-6300) versus actual (more than 100,000) deaths due to

cholera [42].

Cholera is a disease that affects communities with lack of sanitation and poor

infrastructure, and thus long-term solutions would involve improvements in water

supply, sanitation, and food safety. Current vaccines have improved efficacy and

81



safety and as such are being considered as valuable tools to be used along with

measures that for clean drinking water and food [4].

In 2001, Codeço formulated an ODE cholera model which considered the interplay

between infected humans and the concentration of cholera bacteria in the surrounding

environment and the resulting disease dynamics [10]. Then Merrell and Butler

reported that freshly shed cholera bacteria from human intestines are as much as

700 times more infectious than bacteria shed only hours previously [37]. For this

pathway of infection, Hartley et al. [18] proposed a model with hyperinfective vibrios

introduced into the water reserves by the infected people in the population; that

new model explained the frequent explosive nature of the disease due to the human

contribution to the environment [40].

King et al. [24] proposed a two-patch cholera ODE model including classes for

‘mild’ infections and waning immunity. Miller Neilan et al. [39] studied optimal

control of three strategies to slow the spread of the disease in ODE model with

hyperinfectious vibrios, asymptomatic infecteds and waning immunity. That work

considered antibiotic treatment as one of the controls, as well as sanitation and

vaccination. In the 1990s, Angola cleaned up all strains within 1 year but antibiotic

resistance caused serious problems in the following year. Thus antibiotic treatment

is no longer considered in this model. Furthermore, since oral rehydration is given

to everyone, the variable for oral rehydration combined with antibiotic treatment is

eliminated. There is another modeling approach with a compartment for pathogen

level in the water; this SIWR system of four ODEs was used to simulate cholera in the

19th century in London [48, 49]. A recent review of cholera transmission by Nelson et

al. suggests that questionable parameter assumptions in previous models, including a

high assumption of the percentage of asymptomatic infections, can affect from model

results. The work also states that future models should consider decay rates from

protective immunity and seasonal variation [40].

We combine the key ideas of asymptomatic infecteds, hyperinfectious vibrios

and optimal control from [10, 24, 39]. We seek to develop insight in this work
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by including a new mechanism for tracking protective immunity, and a concern

for how parameter assumptions influence model outcomes with an exploration for

how vaccination might optimally be distributed in a population. In Section 6.2

we present a model which includes two classes of susceptible humans, with and

without partial immunity, which are then infected at differing rates as symptomatic

or asymptomatic in infection. The model allows for waning of protective immunity

to differ in the population depending on whether an infection was with our without

symptoms [24, 40]. Additionally, the model uses the assumption that hyperinfectious

cholera bacteria contribute to the dynamics of a cholera outbreak [18, 37]. Our focus

is to investigate the effect of model assumptions on optimal vaccination schedule,

and to determine the sensitivity of potential policy advice to the hidden dynamics of

cholera that may not be easily measured, especially in the affected areas that typically

have poor infrastructure. Because vaccination implementation would require at least

a rudimentary infrastructure, the model assumes that all individuals suffering from

symptomatic cholera would be given oral rehydration therapy, and thus we assume a

low death rate of infected individuals.

In particular, in Section 6.3 we investigate the sensitivity of the model to its

parameters through a Latin Hypercube Sampling (LHS) analysis. In Section 6.4 we

derive the basic reproductive number corresponding to the new model. In Section 6.5

we introduce the optimal control problem: we seek to simultaneously minimize the

human cost of disease as well as the financial cost of vaccination. We establish the

existence of a solution to the optimal control problem and we characterize the optimal

solutions. We consider various numerical simulations of the optimal control problem.

We analyze the effects of the choice of weights between human cost and vaccination

cost on optimal control advice, and then turn our attention to populations which share

similar visible infection rates, but whose underlying dynamics differ in the choice of

the certain parameters. Do the disease dynamics that we cannot easily observe change

the advice of the amount and duration of the optimal vaccination strategy? We also

vary the parameters found to be most sensitive in our LHS analysis.
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6.2 Description of Cholera Model

Susceptible humans are divided into two classes, susceptible humans S without

partial immunity and susceptible humans Ŝ that have gained partial immunity

either genetically or from previous infection. For susceptible humans without partial

immunity, a proportion p of possible infections will become symptomatic, while

for susceptible humans with partial immunity, infections are always asymptomatic.

Humans recovered from asymptomatic infection and symptomatic infection are

distinguished as RA and RS. We introduce a control ν and a vaccinated class V

into which all susceptible individuals can be sent directly.

As suggested by Nelson et al. [40], our model considers the rates at which various

types of protective immunity are lost. We assume that individuals in RA who have

recovered from asymptomatic infections return at rate ω1 to the partially immune

class Ŝ, and that individuals recovering from fully symptomatic cholera, those in the

RS class, also wane to the partially immune class Ŝ but at a slower rate ω2. We assume

a very slow waning from the partially immune class Ŝ into the fully susceptible class

S with rate ω3. We assume as well that vaccination wanes at rate ω4 into the fully

susceptible class S. In the current model, BL and BH represent the concentrations of

non-HI and HI vibrios in environment.

The nine ODEs of this cholera model with corresponding initial conditions are

shown below, with notation and parameter descriptions given in Table 6.1.
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dS

dt
= −

[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
S(t)

+b
(
S(t) + Ŝ(t) + IS(t) + IA(t) +RS(t) +RA(t) + V (t)

)
−dS(t) + ω3Ŝ(t) + ω4V (t)− νS(t)

dIS
dt

= p
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
S(t)

−dIS(t)− γ2IS(t)− e2IS(t)

dRS

dt
= −dRS(t) + γ2IS(t)− ω2RS(t)

dŜ

dt
= −

[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
Ŝ(t)− dŜ(t)

−ω3Ŝ(t) + ω1RA(t) + w2RS(t)− νŜ(t)

dIA
dt

=
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
Ŝ(t)− dIA(t)− e1IA(t)

−γ1IA(t) + (1− p)
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
S(t)

dRA

dt
= −dRA(t) + γ1IA(t)− ω1RA(t)

dV

dt
= ν(Ŝ(t) + S(t))− ω4V (t)− dV (t)

dBH

dt
= η1IA(t) + η2IS(t)− χBH(t)

dBL

dt
= χBH(t)− δBL(t)

with initial conditions

S(0) = S0, Ŝ(0) = Ŝ0, IS(0) = IS0 , IA(0) = IA0 , RS(0) = RS0 , RA(0) = RA0 ,

V (0) = V0, BL(0) = BL0 , BH(0) = BH0 .

85



Table 6.1: Notation assigned to parameters

Notation Description
S0 Initial number of susceptible humans

Ŝ0 Initial number of susceptible humans with partial immunity
IA0 Initial number of asymptomatic infecteds
IS0 Initial number of symptomatic infecteds
RA0 Initial number of recovered humans (asymptomatic)
RS0 Initial number of recovered humans (symptomatic)
V0 Initial number of humans with vaccinated immunity
BL0 Initial concentration of non-HI vibrios in environment
BH0 Initial concentration of HI vibrios in environment
p Probability of infected individual without partial immunity

originally to be symptomatic
βL Ingestion rate of non-HI vibrio from environment
βH Ingestion rate of HI vibrio from environment
κL Half saturation constant of non-HI vibrios
κH Half saturation constant of HI vibrios
e1 Cholera-related death rate for asymptomatic infecteds
e2 Cholera-related death rate for symptomatic infecteds
γ1 Cholera recovery rate (asymptomatic)
γ2 Cholera recovery rate (symptomatic)
ω1 Rate of waning cholera immunity from asymptomatic infecteds to

susceptible humans with partial immunity
ω2 Rate of waning cholera immunity from symptomatic infecteds to

susceptible humans with partial immunity
ω3 Rate of waning cholera immunity from susceptible humans without

partial immunity to susceptible humans with partial immunity
ω4 Rate of waning cholera immunity from humans with vaccinated

immunity to susceptible humans without partial immunity
η1 Rate of contribution to HI vibrios in environment by asymptomatic

infecteds
η2 Rate of contribution to HI vibrios in environment by symptomatic

infecteds
χ Transaction rate of vibrios from HI to non-HI state
δ Death rate of vibrios
ν Rate at which susceptible and asymptomatic infecteds are vaccinated

on day
b Natural birth rate of humans
d Natural death rate of humans
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6.3 Parameters and Latin Hypercube Sampling

Analysis

In modeling cholera, we have many unknown parameters, and a limited amount of

data to determine if our parameters and model structures are appropriate.

King et al. [24] point out that the effect on the epidemic dynamics from so-

called “inapparent infections” may be an important factor in explaining the pattern

of outbreaks. The immunity from an asymptomatic infection most likely lasts

a significantly shorter period of time than does the immunity from symptomatic

infection, which indicates ω1 << ω2. More recently, Nelson et al. [40] suggests that

the very high rate of asymptomatic infecteds in [24] that work maybe significantly

higher than current studies suggest. Nelson et al. report the symptomatic rate

across age brackets in Bangladesh is about 57%, contrasting much lower rates for

symptomatic infections in the same region in the 1970s. Indeed, the World Health

Organization factsheet for cholera reports that the only 25% would be expected to

show symptoms [1], while the Centers for Disease Control and Prevention states

on their General Information page for cholera that only 1 in 20 people would show

severe symptoms [7]. Thus, values for the parameters p, and in turn ω1 and ω2, the

proportion of symptomatic illnesses from the S class, and the waning asymptomatic

and symptomatic recoveries, respectively, are clearly in doubt. The choice for values

of p is additionally complicated by our model structure which seeks to explain some

proportion of asymptomatic illness through the process of gaining partial immunity

through recovery from disease. The vaccination rates are based on work of Legros

et al. [30]. In areas without infrastructure we might see 1 − 2% but in areas with

infrastructure, such as a refuge came, we expect up to 4% daily. We choose ranges for

the death rates from symptomatic and asymptomatic illnesses based on potential

case fatality rates and an assumption that while we would expect no deaths to

result directly from an asymptomatic infection, we do suspect cholera could be a

confounding element in seemingly-unrelated deaths. From the year 2007 to 2008,
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globally, the majority of countries reported an overall CFR > 1%; the CFR was

< 1% in 9 countries, it ranged from 1% to 4.9% in 22 countries and in 5 countries it

was between 5.5% and 14.3% [12]. Here we use a CFR of 4%. A recent cost analysis

by Jeuland [20] assumes the length of illness is 2 - 8 days, combining with the work

of Nelson et al. [40], we assume γ1 = 0.5 and γ2 = 0.2. e2, the cholera-related death

rate for symptomatic infecteds is calculated from:

e1 = ln(1− CFR) ∗ γ1, e2 = ln(1− CFR) ∗ γ2.

We choose the waning rate for vaccination and partial immunity to be ω3 = ω4 =

1/(10 ∗ 365), deduced from a mathematical model by [25], suggesting a 10-year-long

period before the immunities completely wane out. We also assume ω1 = 0.01, ω2 =

0.0022, according to the work by King et al. [24].

We use estimates consistent with Hartley et al.[18] and Codeço [11]. The half

satuartion constant for non-HI vibrios κL is estimated to be 103 cells/ml. According

to laboratory experiments, when inoculated into the intestines of mice, freshly shed

Vibrio cholerae greatly outcompete bacteria grown in vitro, by as mush as 700-fold.

So for HI vibrios estimations, we assume the ratio of saturation constants for non-HI

vibrios and HI vibrios is 1 : 700. i.e., κH = 103/700 cells/ml. Freshly shred Vibrio

cholerae stay at a hyper-infectious state for approximately 5 days, and then reduce

to non-hyper-infectious vibrios. Average lifespan of the non-HI vibrios is around 30

days. Thus we set χ = 1/5 = 0.2, and δ = 1/30.

There are several other parameter values whose values cannot be expected to be

known independent of the intuition gained from model simulation. One is the contact

rate βL of humans with less-infectious bacteria, and the proportion r of that rate

which we expect to describe contact with hyper-infectious bacteria. Prior attempts at

describing contact rate have depended on quantifying the amount of water consumed

by an individual in a day, and assuming that the only contact with cholera bacteria is

through ingestion of drinking water [18], but it is well understood that contact with
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cholera bacteria can actually occur through contact with contaminated household

items [40]. While we think loosely of the environmental reservoir of bacteria as

inhabiting a literal reservoir of water, the true picture is actually more complicated

and difficult to quantify. In addition, it is also difficult to quantify the contribution of

humans to cholera contamination in the environment. We can quantify the shedding

rate of symptomatic and asymptomatic humans, but how much of the shedding

actually makes it into the environmental reservoir, and what is the volume of that

reservoir remain in question. In fact, we can only quantify the the difference in

shedding between the humans [40]. But numerical results in Section 6.6.2 illustrate

that for parameter sets with different β, η, and S0 values, even though the population

dynamics underneath might be different, as long as the Infection Rate remains on the

same level, the optimal control strategies will be almost identical to each other.

We analyze parameter sensitivity by using the Latin Hypercube Sampling (LHS)

scheme (Marino et al 2008; Blower and Dowlatabadi, 1994). This scheme estimates

the uncertainty of a parameters by treating each parameter as a random variable

and defining a probability density function for it using a biologically realistic range

(see Table 6.2). The n sampled values for each parameter are then randomly chosen

and the model is simulated. We run our simulations for 180 days and calculate three

outcome measures for each run: Total Infecteds, Total Symptomatic Infecteds, and

Maximum Number of Symptomatic Infecteds, respectively. Here “total infecteds”

refers to the accumulated total of all individuals who have entered either of the

two infected classes, and “total symptomatic infecteds” refers to the accumulated

total of all individuals who have entered the symptomatic infected class. For each

parameter, we confirm that the outcome measures are monotone. Subsequently, we

compute Partial Rank Correlation Coefficients (PRCC) and accompanying p-values

to determine the level of sensitivity of each sampled parameter. If, for a given outcome

measure, a parameter has a PRCC value ranging from 0.5 to 1.0 or from −1.0 to −0.5,

along with a corresponding low p-value, then the parameter is considered sensitive

and, thus, deemed to affect that outcome measures significantly were slight changes to
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be made to that parameter during the simulation. Sensitive parameters are selected

for further study in optimal control analysis.

Our simulations show that the outcome measures are sensitive to changes in

parameters p, γ2, S0 and βL. We find that p, the proportion of the infected population

who are asymptomatic; and S0, the susceptible population without partial immunity;

is significant in determining the total number of symptomatic infected people, as well

as the maximum population size for the symptomatic infecteds. Note γ2, the recovery

rate from symptomatic infection, is significant for maximum number of symptomatic

infecteds. Unlike p, S0 and γ2, however, βL, which measures ingestion rate of

non-highly infectious vibrio from environment, is significant for all three outcome

measures.

Table 6.2: Sensitivity analysis of the initial model without controls

LHS sensitivity analysis: initial model without control (n = 400, time = 180 days)

Parameters Ranges PRCC

Min Max Total Total symptomatic Max symptomatic
infecteds infecteds infecteds

ω1 0.0098 0.027 0.211 0.015 −0.009
ω2 0.0012 0.0034 −0.021 0.016 0.041
ω3 0.00001 0.01 0.109 0.329 0.094
p 0.05 0.15 0.214 0.613∗ 0.519∗

r 0.01 1 0.554∗ 0.380 0.471
βL 0.001 0.08 0.881∗ 0.757∗ 0.808∗

e1 0.00003 0.0005 0.025 −0.009 0.002
e2 0.0006 0.01 0.005 −0.018 −0.071
γ1 0.1 0.9 −0.122 −0.034 −0.004
γ2 0.01 0.50 −0.523∗ −0.348 −0.762∗

η1 0.001 0.015 0.559∗ 0.343 0.247
s 1 200 0.533∗ 0.331 0.233
BL0 κL/500 κL 0.279 0.190 0.301
S0 1000 10000 −0.362 −0.767∗ −0.797∗

∗ Denotes a parameters having a p-value below 0.001.
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6.4 Calculate the Basic Reproduction Number, R0

The next generation method, set forth by van den Driessche and Watmough [50],

is used to calculate the basic reproduction number, R0, which helps determine

whether or not this infectious disease will spread through a population. Consider

the system consisting of all disease-free states to be ordered such that x =

(IA, IS, BH , BL, RA, RS, S, Ŝ), and let N denote the total human population before

the disease attacks. The disease-free equilibrium is x0 = (0, 0, 0, 0, 0, 0, S0, Ŝ0). New

infections only occur in the first and second compartments. For 1 ≤ i ≤ 8, let

Fi(x) be the rate of new infections in the ith compartment, V +
i (x) be the rate of

transfer of population, either humans or vibrios, into compartment i by all other

means, and V −
i (x) be the rate of transfer of population, either humans or vibrios, out

compartment i. Then Vi(x) is defined as the difference V +
i (x)− V −

i (x). Our system

is X ′
i = Fi − Vi, where i = 1, 2, · · · , 8. The reproduction number R′ is the spectral

radius of the next generation matrix, FV −1, where F and V are the components of

the Jacobian matrix corresponding to F and V for infected components.

We calculate F and V −1 below,

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
βH(S0(1− p) + Ŝ0)

κH

βL(S0(1− p) + Ŝ0)

κL

0 0
βHS0p

κH

βLS0p

κL

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

V −1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

d+ e1 + γ1
0 0 0

0
1

d+ e2 + γ2
0 0

η1
(d+ e1 + γ1)χ

η2
(d+ e2 + γ2)χ

1

χ
0

η1
(d+ e1 + γ1)δ

η2
(d+ e2 + γ2)δ

1
1

δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Thus the basic reproduction number is given by

R0 =

(
η1
(
S0(1− p) + S1

)
d+ e1 + γ1

+
η2S0p

d+ e2 + γ2

)(
βL
δκL

+
βH
χκH

)
.

When R0 < 1, the disease free equilibrium is locally stable. But if R0 > 1, the

infection will be able to spread in a population.

6.5 Optimal Control Formulation and Analysis

We seek an optimal vaccination strategy to minimize both the social loss due to

disease and the cost of vaccination during the time interval. In our model, the social

loss is assumed to be proportional to the number of symptomatic infecteds. The

cost consists of a linear term, measuring the total price of vaccination used, and a

quadratic term, indicating non-linear costs potentially arising at high intervention

levels.

Thus our objective functional is the following,

J(ν) =

∫ T

0

{
AIS(t)+Bν(t)

(
S(t)+ Ŝ(t)+IA(t)+RA(t)

)
+C(S0+ Ŝ0)ν

2(t)
}
dt, (6.1)

where A, B, and C are positive balancing coefficients which transform the integrand

into units of dollars. In the third term, we multiply C by the initial total population

to balance the size of the three terms.

The vaccination rate ν is positive and not more than 1. Thus the control set is

U =
{
ν ∈ L∞([0, T ])|0 ≤ ν(t) ≤ νmax, t ∈ [0, T ]

}
for νmax < 1. The optimal control

problem is stated as:

Find ν∗ ∈ U such that

J(ν∗) = min
ν∈U

J(ν) (6.2)

subject to the state system (6.1)-(6.1) and initial conditions (6.2).
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Figure 6.1 shows transmissions of cholera disease between seven human population

classes, effected by concentrations of two vibrio population classes in the environment,

while vaccination is enforced.

Figure 6.1: Diagram for the Cholera model with vaccination as control.

Using a result in Lukes [35], one can show that given a control, there exists a

unique solution to the state system. The structure of the system gives boundedness

and non-negativity of those solutions.

Theorem 6.1. There exist an optimal control ν∗ with corresponding states (S∗, Ŝ∗, I∗A,

I∗S, R
∗
A, R

∗
S, V

∗, B∗
H , B

∗
L) that minimizes the objective functional J(ν) defined by (6.1).

Proof. Since the controls and the state solutions are non-negative, the objective

functional is bounded below by 0 and there exists a corresponding minimizing

sequence νn such that

lim
n→∞

J(νn) = infν∈UJ(ν).
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Given that the controls are uniformly bounded, the state solution sequence

corresponding to the sequence of minimizing controls are uniformly bounded.

That gives uniform bounds on the derivatives of those state solution sequence,

resulting in uniform boundedness and equicontinuity of the corresponding state

solution sequence. On a sequence, the control sequence x converges weakly in L2(0, T )

and the state solution sequence converges uniformly. Passing to the appropriate limit

in the system of differential equations and the objective functional, we can deduce

that the limit of the those sequences are an optimal control and its corresponding

state solutions.
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The Pontryagin’s Maximum principle [43] is used to characterize the optimal

control. The Hamiltonian is formed as the following,

H =

AIS(t) +Bν(t)
(
S(t) + Ŝ(t) + IA(t) +RA(t)

)
+ C(S0 + Ŝ0)ν

2(t)

+λS

(
−
([
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
− b+ d+ ν

)
S(t)

+b
(
Ŝ(t) + IS(t) + IA(t) +RS(t) +RA(t) + V (t)

)
+ ω3Ŝ(t) + ω4V (t)

)
+λŜ

(
−
([
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
+ d+ ω3 + ν

)
Ŝ(t)

+ω1RA(t) + w2RS(t)

)
+λIS

(
p
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
S(t)− (d+ γ2 + e2)IS(t)

)
+λIA

([
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
Ŝ(t)− (d+ e1 + γ1)IA(t)

+(1− p)
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
S(t)

)
+λRS

(
− (d+ ω2)RS(t) + γ2IS(t)

)
+λRA

(
− (d+ ω1)RA(t) + γ1IA(t)

)
+λV

(
ν(Ŝ(t) + S(t))− (ω4 + d)V (t)

)
+λBH

(
η1IA(t) + η2IS(t)− χBH(t)

)
+λBL

(
χBH(t)− δBL(t)

)
,

where the λ’s are the adjoint variables associated with their respective states. For

example, λS is the adjoint variable corresponding to state S. Since an optimal control

exists by Theorem 6.1, we can now obtain the necessary condition for optimality using

Pontryagin’s Maximum Principle [43].

95



Theorem 6.2. , Given an optimal control ν∗ ∈ U , and corresponding states

(S, Ŝ, IA, IS, RA, RS, V, BH , BL), there exist adjoint functions satisfying

dλS
dt

= −Bν +
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
(λS − pλIS − (1− p)λIA)

+(d− b+ ν)λS − λV ν, (6.3)

dλŜ
dt

= −Bν +
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
(λŜ − λIA)

+(d+ ω3 + ν)λŜ − (ω3 + b)λS − λV ν, (6.4)

dλIS
dt

= −A+ (d+ γ2 + e2)λIS − bλS − γ2λRS
− η2λBH

, (6.5)

dλIA
dt

= −Bν + (d+ γ1 + e1)λIA − bλS − γ1λRA
− η1λBH

, (6.6)

dλRS

dt
= −ω2λŜ − bλS + (d+ ω2)λRS

, (6.7)

dλRA

dt
= −Bν − ω1λŜ − bλS + (d+ ω1)λRA

, (6.8)

dλV
dt

= −ω4λS − bλS + (d+ ω4)λV , (6.9)

dλBH

dt
= βH

κH(t)

(κH +BH)2
(
S(λS − pλIS − (1− p)λIA) + Ŝ(λŜ − λIA)

)
+χλBH

− χλBL
, (6.10)

dλBL

dt
= βL

κL(t)

(κL +BL)2
(
S(λS − pλIS − (1− p)λIA) + Ŝ(λŜ − λIA)

)
+δλBL

, (6.11)

with transversality conditions

λS = λŜ = λIA = λIS = λRA
= λRS

= λV = 0

at t = T . And this optimal control is characterized by

ν∗ = max

(
0,min

(
−B(S + Ŝ + IA +RA) + SλS + ŜλŜ − (S + Ŝ)λV

2C(S0 + Ŝ0)
, νmax

))
.

Proof. The differential equations for the adjoints are standard results from Pontrya-

gin’s Maximum Principle [43]. The right hand sides of the differential equations can
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be easily computed by

dλS
dt

= −∂H
∂S

,

dλŜ
dt

= −∂H
∂Ŝ

,

dλIS
dt

= −∂H
∂IS

,

dλIA
dt

= − ∂H

∂IA
,

dλRS

dt
= − ∂H

∂RS

,

dλRA

dt
= − ∂H

∂RA

,

dλV
dt

= −∂H
∂V

,

dλBH

dt
= − ∂H

∂BH

,

dλBL

dt
= − ∂H

∂BL

.

The final time conditions are due to the transversality conditions. Because there is

no salvage term in the objective functional, the final time conditions are zero.

The necessary condition for an optimal control ν∗ on the set {t|0 < ν∗(t) < νmax}

is

0 =
∂H

∂ν
= B(S + Ŝ + IA +RA) + 2C(S0 + Ŝ0)ν

∗ − λŜS − λSS + λV (S + Ŝ). (6.12)

Thus we have

ν∗ =
−B(S + Ŝ + IA +RA) + SλS + ŜλŜ − (S + Ŝ)λV

2C(S0 + Ŝ0)
.

The necessary condition for an optimal control ν∗ on the set {t|ν∗(t) = 0} is

0 ≤ ∂H

∂ν
= B(S + Ŝ + IA +RA) + 2C(S0 + Ŝ0)ν

∗ − λŜS − λSS + λV (S + Ŝ). (6.13)
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Since 2C > 0 and S0 + Ŝ0 > 0, we have

−B(S + Ŝ + IA +RA) + SλS + ŜλŜ − (S + Ŝ)λV

2C(S0 + Ŝ0)
≤ 0.

The necessary condition for an optimal control ν∗ on the set {t|ν∗(t) = νmax} is

0 ≥ ∂H

∂ν
= B(S+ Ŝ+ IA+RA)+2C(S0+ Ŝ0)ν

∗
max−λŜS−λSS+λV (S+ Ŝ). (6.14)

Since 2C > 0 and S0 + Ŝ0 > 0, we have

−B(S + Ŝ + IA +RA) + SλS + ŜλŜ − (S + Ŝ)λV

2C(S0 + Ŝ0)
≥ νmax.

In conclusion of the above three cases, the optimal control is

ν∗ = max

(
0,min

(
−B(S + Ŝ + IA +RA) + SλS + ŜλŜ − (S + Ŝ)λV

2C(S0 + Ŝ0)
, νmax

))
.

Note the uniqueness result for the optimal control for small time T can be obtained

as in [39] using boundedness of solution of the state and adjoint systems and the

continuity in the structure of the differential equations.

6.6 Simulation of an Outbreak

We start with the set of parameters shown in Table 6.3 to simulate an outbreak. Here

we assume a scenario of a refugee camp with an initial population of 10, 000, 1000 out

of which have partial immunity. A non-hyperinfectious vibrios population of κL/100

is introduced into the environment. Figure 6.2 shows the simulation of an outbreak

during a 100 day time period. The basic reproduction number R0 is calculated as

6.096, and the disease will spread in this population.
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Table 6.3: Base parameters for simulations

βH .002 day−1 βL .02 day−1 κL 103 cells/ml
κH κL/700 b 0.03149/365 day−1 d 0.01619/365 day−1

p .1 ω1 0.01 day−1 ω2 0.0022 day−1

ω3 1/(10*365) day−1 ω4 1/(10*365) day−1 r1 .5 day−1

r2 .2 day−1 e1 .000205 day−1 e2 .0041 day−1

η1 .008 cells
ml−day−human

η2 0.8 cells
ml−day−human

χ 5 day−1

δ 1/30 day−1 S0 9000 Ŝ0 1000
IA0 0 IS0 0 RA0 0
RS0 0 V0 0 BL0 κL/100
BH0 0 T 100 day

Figure 6.2: Outbreak Simulation
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6.6.1 Effect of Weights on Optimal Control

Now we add vaccination as a control and find the optimal vaccination rate. The

maximum vaccination rate is set as 0.04. We choose three sets of the weights in the

objective functional from Table 6.4, to show the effects of varying weights on optimal

control result. Compared to Set 1, Set 2 has a bigger C value, indicating a larger

quadratic cost and Set 3 has a smaller B value, indicating a smaller linear vaccination

cost.

Table 6.4: Three sets of weights.

A B C
Set 1 1 0.04 1
Set 2 1 0.04 2
Set 3 1 0.25 1

Figure 6.3, 6.4 and 6.5 show the best vaccination plans and populations in different

classes under control, using the three sets of weights in Table 6.4. We observe declining

vaccination rates in all three cases, and no vaccination is suggested during later period

of time. Figure 6.3 shows a vaccination rate around 0.035 at the beginning of the

time and vaccines are applied during the first 60 days. Both infected populations are

significantly reduced by control, and the number of symptomatic infected individuals

stays at level lower than 5. Figure 6.4 shows that with a bigger quadratic cost in Set

2, the optimal vaccination rate is reduced correspondingly. The initial vaccination

rate drops to 0.025 yet the vaccination period is still around 60 days. Symptomatic

infecteds are control at the same level while number of asymptomatic infecteds is

larger compared to the first case. Figure 6.5 suggests a lower initial vaccination rate

of 0.025 and a much shorter vaccination period around 15 days, effected by a larger

vaccination linear cost in Set 3. Because less vaccination is applied, symptomatic

infecteds can reach as many as 20 and asymptomatic infecteds reaches 80.
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Figure 6.3: Set 1: A = 1, B = 0.04, C = 1
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Figure 6.4: Set 2: A = 1, B = 0.04, C = 2
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Figure 6.5: Set 3: A = 1, B = 0.25, C = 1

6.6.2 Effect of Infection Rate on Optimal Control

We define the infection rate as the ratio of total number of symptomatic infecteds to

total number of population. During the time period we study, the total population

will not have significant change, thus we use

total number of sympotomatic infecteds

total number of initial population

as infection rate to measure the intensity of the outbreak. The total number of

symptomatic infecteds is calculated by counting the flux into that class at each time

step.

It is possible to simulate outbreaks with approximately same infection rates using

different sets of parameters. For instance, by the four set of parameters in Table 6.5

we obtain infection rates around 0.26.

Figure 6.6, 6.7, 6.8, and 6.9 show the populations of both humans and vibrios as

vaccination is applied, as well as optimal vaccination rates. For each simulation we

use the same set of weights, A = 1, B = 0.04, C = 1. Maximum vaccination rate

is set as 4%. We observe that those parameter sets give similar vaccination advices,
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Table 6.5: Four sets of parameters giving similar infection rates.

Parameters Case 1 Case 2 Case 3 Case 4
S0 9000 5000 7000 6000

Ŝ0 1000 5000 3000 4000
βL 0.02 0.04 0.02 0.03
η1 0.008 0.007 0.01 0.008
Total Attacked 298 270 231 276
Infection Rate 0.298 0.269 0.230 0.275

with a starting rate around 3.5% and a time duration of around 60 days. In fact, we

tried more sets of parameters and those numerical results also suggest the infection

rate plays a key rule in making optimal vaccination plans.
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Figure 6.6: Case 1
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Figure 6.7: Case 2
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Figure 6.8: Case 3
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Figure 6.9: Case 4
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6.6.3 Effect of LHS-sensitive Parameters on Optimal Control

We now study the effect of LHS-sensitive parameters on optimal control.

We use a set of weights as in Set 1 of Table 6.4. Based on the parameter table,

Table 6.5, we study the effect of LHS-sensitive parameters βL, p, γ2 and S0, as

suggested in Section 6.3.

We vary one of the three parameters each time while keeping others the same

values as shown in Table 6.5. The remaining parameters are from Table 6.3.

Figures 6.10, 6.11, 6.13 and 6.12 show the effect of changing the sensitive

parameters for Case 1 in Table 6.6. In Figure 6.10, βL is increased from 0.02 to

0.04, which brings in a higher infection rate, causing the vaccination rate reaches the

upper bound 0.04 for about 10 days, and the duration of vaccination is extended to

around 70 days. Figure 6.11 shows a strong effect caused by raising p from 0.1 to

0.8. The maximum population of symptomatic infecteds are 30 times larger, and

the effort of vaccination almost lasts through the whole 100 days time period, with

the vaccination largest rate for more than half of the time. At the end of the time

approximately 8000 people are vaccinated, together with almost 1200 people in the

recovered classes, nearly everyone is immune to the disease. Figure 6.13 shows a

much smaller infected population with much less effort in vaccination, not more than

2.5% in the beginning and lasting only for 50 days, when more people, from 1000 to

3000, are with partial immunities. Figure 6.12 also shows a much smaller infected

population with much less effort in vaccination, not more than 0.1% in the beginning

and lasting not more than for 30 days, when the recovery rate from symptomatic

infection, γ2, is increased from 0.2 to 0.4.

Figures 6.14, 6.15, 6.16, and 6.15 for Case 2, Figures 6.17, 6.18, 6.19, and 6.18 for

Case 3, Figures 6.20, 6.21, 6.22 and 6.21 for Case 4 in Table 6.5, show the outcomes

by changing βL into 0.04, p into 0.8, S0 into 7000 and γ2 into 0.4. In those figures, We

observe similar effects of the sensitive parameters on populations of different classes

and the optimal vaccination strategies.
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Remark 6.3. In the numerical results, the dashed lines are susceptibles without

partial immunity, asymptomatic infecteds, recovered individuals from asymptomatic

infections, and hyperinfectious vibrio populations. The solid lines are susceptibles

with partial immunity, symptomatic infecteds, recovered individuals from symptomatic

infections, and non-hyperinfectious vibrio populations.

Remark 6.4. In the numerical results, populations of hyperinfectious vibrios are

low relative to the non-hyperinfectious vibrios, which raises a question whether

the hyperinfectious vibrio population class is actually needed in this model. Our

calculations show that sympotomatic infecteds caused by hyperinfectious vibrios is a

large proportion (generally 30% to 50%) in total infecteds. So the BH variable is

needed in order to accurately mimic the infection.
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Figure 6.10: βL changed into 0.04. Case 1
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Figure 6.11: p changed into 0.8. Case 1
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Figure 6.12: γ2 changed into 0.4, Case 1.
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Figure 6.13: S0 changed into 7000. Case 1
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Figure 6.14: βL changed into 0.04. Case 2
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Figure 6.15: p changed into 0.8. Case 2
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Figure 6.16: S0 changed into 7000. Case 2
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Figure 6.17: βL changed into 0.04. Case 3
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Figure 6.18: p changed into 0.8. Case 3
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Figure 6.19: S0 changed into 7000. Case 3
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Figure 6.20: βL changed into 0.04. Case 4
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Figure 6.21: p changed into 0.8. Case 4
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Figure 6.22: S0 changed into 7000. Case 4
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Figure 6.23: γ2 changed into 0.4, Case 3.
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Figure 6.24: γ2 changed into 0.4, Case 4.
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6.7 Conclusion

This work provides an ordinary differential equation model for the spread of cholera

that incorporates symptomatic and asymptomatic infections, hyperinfectious and

non-hyperinfectious vibrios, susceptibles with partial immunity and susceptibles

without partial immunity, and different rates of loss of immunity.

Our work on the application of the optimal control theory on this model also

presents both theoretical and numerical analysis of the most economical vaccination

strategies. Numerical results based on Latin Hypercube Sampling analysis determines

the effects on the optimal control arising from variation in sensitive parameters.

An important result of this work is the role played by infection rate in decision

making. This work shows that there are different sets of parameters that can give

the same infection rate, and even though the population dynamics arising from those

sets of parameters are different, the optimal vaccination strategy remains about the

same. We have not developed provide rigorous proofs of this result, but we do observe

this pattern in numerical results for many sets of parameters. This result can be very

helpful in determining vaccination schedules, because some parameters, such as the

ingestion rates of vibrios, are hard to quantify in real life, and are sensitive parameters

in the system, yet the infection rate is more easily measured.
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