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Abstract

Compressed sensing (CS) theory specifies a new signal acquisition approach, po-

tentially allowing the acquisition of signals at a much lower data rate than the

Nyquist sampling rate. In CS, the signal is not directly acquired but reconstructed

from a few measurements. One of the key problems in CS is how to recover

the original signal from measurements in the presence of noise. This dissertation

addresses signal reconstruction problems in CS. First, a feedback structure and signal

recovery algorithm, orthogonal pruning pursuit (OPP), is proposed to exploit the prior

knowledge to reconstruct the signal in the noise-free situation. To handle the noise, a

noise-aware signal reconstruction algorithm based on Bayesian Compressed Sensing

(BCS) is developed. Moreover, a novel Turbo Bayesian Compressed Sensing (TBCS)

algorithm is developed for joint signal reconstruction by exploiting both spatial and

temporal redundancy. Then, the TBCS algorithm is applied to a UWB positioning

system for achieving mm-accuracy with low sampling rate ADCs. Finally, hardware

implementation of BCS signal reconstruction on FPGAs and GPUs is investigated.

Implementation on GPUs and FPGAs of parallel Cholesky decomposition, which is

a key component of BCS, is explored. Simulation results on software and hardware

have demonstrated that OPP and TBCS outperform previous approaches, with UWB

positioning accuracy improved by 12.8x. The accelerated computation helps enable

real-time application of this work.
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Chapter 1

Introduction

This dissertation addresses signal acquisition problems. We consider the research in

the state-of-the-art compressed sensing theory. The research problem and general

problem statement will be detailed. Previous work and papers will be investigated.

We will discuss the research achievable goals and possible approaches, leading into a

description of the dissertation problem.

1.1 Introduction to Compressed Sensing

Compressed sensing (CS) theory [11] [27] is blooming in recent years. Essentially, in

CS theory, the original signal is not directly acquired but reconstructed based on the

measurements obtained from projecting the signal onto a random distributed matrix.

It is well known that most natural signals are sparse, i.e., in a certain transform

domain, most elements are zeros or have very small amplitudes. Taking advantage

of such sparsity, various CS signal reconstruction algorithms are developed to recover

the original signal from a few observations and measurements.

In Fig. 1.1 we first consider a real-valued, N -dimensional, discrete-time signal x,

which can be viewed as an N × 1 column vector in RN with elements x[n], n =

1, 2, ..., N. The signal vector x is the original signal. Any signal in RN can be

represented with respect to some basis set. Using the N × N basis matrix Ψ =

1



S

Figure 1.1: Illustration of compressed sensing theory

[ψ1|ψ2|...|ψN ] with the vectors ψi as columns, a signal x can be expressed as,

x = ΨS, (1.1)

where S is the N × 1 column vector. Clearly, x and S are equivalent representations

of the signal, with x in the time or space domain and S in the Ψ domain. The signal

x is K-sparse if it is a linear combination of only K basis vectors; that is, only K

of the coefficients are nonzero and (N −K) are zero. When K << N , the signal x

is compressible if the representation has just a few large coefficients and many small

coefficients. Then we consider a general linear measurement process that computes

M < N inner products,

y = Φx = ΦΨS = ΘS, (1.2)

where the measurement vector y is an M × 1 vector. Note that the Gaussian

measurement matrix Θ is incoherent. Otherwise, the redundant elements should

be removed. More specifically, an M × N Independent and Identically Distributed

(iid) Gaussian matrix can be shown to have the Restricted Isometry Property (RIP)

with high probability if M ≥ cKlog(N/K), with c a small constant. Therefore,

2



K sparse and compressible signals of length N can be recovered from only M ≥

cKlog(N/K)≪ N random Gaussian measurements [11].

CS theory develops algorithms to reconstruct the original signal vector x or,

equivalently, its sparse coefficient vector S, given the M -dimensional measurement

vector y, and the random measurement matrix Θ. There are several methods which

can be utilized to obtain an estimate of the signal. For example, based on optimization

theory, the minimum ℓ1 optimization is given by

Ŝ = argmin ∥S∥1, (1.3)

subject to to y = ΘS. (1.4)

where a family of convex optimization algorithms, such as Basis Pursuit (BP), and

simplex methods, can be utilized to reconstruct the signal by minimizing the ℓ1 norm.

For the minimum ℓ2,

Ŝ = argmin ∥S∥0, (1.5)

subject to to y = ΘS. (1.6)

where a family of pursuit algorithms, such as Matching Pursuit (MP), and Orthogonal

Matching Pursuit (OMP) approaches, can be utilized to reconstruct the signal by

minimizing the ℓ2 norm. Other algorithms are also developed based on machine

learning theory[38], Bayesian network [59], and wireless coding/decoding algorithms

[24].

Essentially CS theory reconstructs the N -dimensional signal vector indirectly from

the limited M measurements. CS theory can be applied to several applications to

lower down the sampling rate of direct signal acquisitions. One application is an

Ultra-Wideband (UWB) system.

3



1.2 General Problem Statements

1.2.1 UWB Application Problem

Ultra-wideband (UWB) techniques bring a paradigm shift to the field of wireless

communications which can realize giga bit/second data rates for many applications.

For example, the UWB technique has been utilized for realizing high rate communi-

cation systems, sensor networks, and millimeter precision positioning systems due to

advantages of high timing resolution, low power consumption, and simple transmitter

architecture [69]. The UWB system utilizes a short-range, high-bandwidth pulse

without carrier frequency for communication, positioning, and radar imaging systems.

However, the challenge is the acquisition of the high-resolution, ultra-short duration

pulses, such as timing information in nano- or subnano-second levels. The extremely

high sampling rate requirement for acquiring short impulses (on the order of

picoseconds) is one of the biggest challenges in UWB receivers. Fortunately, the

emerging theory of compressed sensing (CS)[11] offers an effective approach to

achieve sub-Nyquist sampling rate acquisition for UWB channel estimation and UWB

communication. In this approach, original signals are linearly mixed to yield indirect

measurements. From the measurements obtained by using multiple low sampling rate

analog to digital converters (ADC), the original UWB signal is reconstructed using

CS algorithms [27].

It is well known that the UWB echo signals are inherently sparse in the time

domain, as shown in Fig. 1.2. Propagating through multi-path UWB channels, the

UWB echo signals, sl(t), received at the i-th base station in the continuous time

domain are given by

sl(t) =
L∑
l=1

alp
′(t− til) (1.7)

4



Figure 1.2: Example of the received UWB pulses

where we denote by p(t) the transmitted Gaussian pulse, p′(t) the received distorted

pulse resulting from frequency-dependent propagation channels, L the number of

resolvable propagation paths, al the amplitude attenuation of the signal along the

l-th path, and til the time delay of the l-th path at the i-th base station. In a line-of-

sight (LOS) environment, the first arriving pulse always moves through the shortest

propagation path, which has the largest amplitude. In the digital domain, we mark

the high definition UWB signal vector as u, which is given by

u =
L∑
i=1

alp
′(t− til) (1.8)

To obtain the ultra-high resolution UWB pulses using low sampling rate ADCs,

we can apply CS theory into the UWB system[20][19]. However, in the realistic UWB

system where multiple UWB echo signals must be reconstructed, it is necessary to

develop a novel CS algorithm for joint signal reconstruction.

Receiver Structure

The bottleneck of the UWB system is the ultra-high sampling rate ADC at the

receivers since the sampling rate for capturing extremely short UWB pulses (on the

5
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order of picoseconds) of the ADC for real-time signal processing is typically much

higher than that of commercially available ADCs. Therefore, we seek help from the

fact that UWB pulses are sparse in the time domain (an example is given in Fig. 1.2)

and employ the powerful technique of compressed sensing to alleviate the difficulty

of high rate sampling for UWB pulses. Note that we consider only one base station

in this subsection, thus ignoring the indices of base stations.

The receiver structure is illustrated in Fig. 1.3. Note that the key component in

the proposed receiver is the distributed amplifier to yield the measurements for the

following ADCs and Field Programmable Gate Array (FPGA) devices.

The distributed amplifier (DA) can be utilized for compressing the analog signal.

The DA, first invented in 1936 and studied for many decades, is a microwave circuit for

wideband microwave signal amplifiers, which can also be used as microwave FIR filter,

and transversal filters. As shown in Fig. 1.4, a DA consists of multiple repeated and

identical taps, each containing a section of micro-strip input and output transmission

line, and the gain cell. This periodic architecture forms a tunable transmission line

[25][75]. The output of a DA at time t is given by

y(t) =
m∑
j=1

cnu(t− jτ) (1.9)
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Figure 1.4: Illustration of the inner structure of distributed amplifier

where m is the number of taps in a DA, {cn} are attenuation coefficients of different

gain cells which can be set randomly, u is the input signal, and τ is the physically fixed

time delay of each section of transmission line, which determines the time resolution

of the UWB signal. Note that the gain cn can be arbitrarily set for different gain

cells and different distributed amplifiers. The outputs of the distributed amplifiers

are then fed into an array of M ADCs.

The DA is suitable for analog CS processing in the following three aspects:

• The artificial transmission line in DA supports wideband signal propagation and

the characteristic impedance of such transmission line changes little over several

GHz. Thus, the waveform of the propagating UWB signal, S(t), is maintained.

• The time delays, determined by the length of each section of transmission line

along which the signal propagates, can easily achieve 100ps, or even less based on

different substrates and technologies without changing the structure of DA[75].

• The co-efficient of the gain cell can be either predefined or reconfigurable

to meet the requirements of measurement matrix. In this paper, these gain

coefficients are randomly distributed numbers conforming the requirement of

the CS measurement matrix.

Note that, in practice, the nonlinearity of the gain cell in different frequency bands

will introduce the polynomial multiplication terms. However, under the small signal
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model and low gain in our case, the nonlinear effect can be largely alleviated. Also

we can use low noise figure components to alleviate noise interference. For simplicity

of discussion, we ignore the nonlinearity effect.

Then if we can utilize several DAs to compose the measurement matrix, we mark

the coefficient as cin, where i represents the i-th row DA. Therefore, the compressed

UWB signal is represented as:

Y = Φu+ ϵ. (1.10)

Note that Y is an M -vector. A is an M ×N matrix given by

Φ =


c11 c12 · · · c1N

c12 c22 · · · c2N
...

...
. . .

...

cM1 cM2 · · · cMN

 . (1.11)

x is an N -vector given by

x = (x(t− τ), x(t− 2τ), ..., x(t−Nτ))T , (1.12)

where x is noise-free received signal. For simplicity, we write x as

x = (x1, x2, ..., xN) . (1.13)

ϵ is an additive white Gaussian noise (AWGN) in the distributed amplifier with known

mean and variance. It is easy to see that the original signal x is compressed into the

lower dimensional vector y andA plays the role of measurement matrix in compressed

sensing.
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Figure 1.5: Illustration of positioning system

Figure 1.6: Historical redundancy in UWB signals

We then use the Filed Programmable Gate Array (FPGA) to reconstruct u from

y, thus obtaining the UWB pulse arrival times and combining the data from all base

stations to estimate the current location.

UWB positioning system

The UWB positioning system basically contains a transmitter (tag) and multiple

receivers (base stations or BS), which is illustrated in Fig. 1.5. The task is to

estimate the location of the tag via the signal transmitted from the tag and received

at the base stations.

We can find some obvious characteristics or redundancies in the unknown UWB

signal vector:
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Figure 1.7: Spatial redundancy in UWB signals

• Temporal redundancy: if we assume that the tag does not move rapidly, which

is valid for most positioning systems, the arrival time does not change rapidly,

so we can roughly predict the locations of UWB pulses. This redundancy is

demonstrated in Fig. 1.6.

• Spatial redundancy: the UWB pulses are intercepted at multiple base stations,

thus incurring redundancy; therefore, we can combine the information of

multiple base stations to exploit the redundancy. This redundancy is displayed

in Fig. 1.7.

Based on the above analysis, we can apply the CS theory into the UWB system.

However, when applying CS to practical UWB systems, we need to address the

following problems:

• Can we reduce the number of measurements required for reliable signal

reconstruction? The CS reconstruction algorithm requires a certain number

of measurements to recover the original signals. However, in practical systems

the measurements realized in the analog domain require expensive hardware

resources. Reducing the number of measurements leads to decrease the sampling

rate, which means to alleviate the sampling problem for UWB systems.

• How do we alleviate the complexity of CS algorithms for fast signal recon-

struction? Most CS algorithms are computationally expensive. A simple CS
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reconstruction algorithm is in pressing need for high speed UWB communication

systems. In addition, it is also important for the algorithm to combat noise and

interference.

• How can we take advantages of temporal and spatial redundancy to improve

performance of CS signal reconstruction? By exploiting and integrating the

redundant information into the CS signal reconstruction algorithm, can we

reduce the number of measurements? Can we improve the performance of

combating the noise and alleviate the complexity of the CS algorithm?

1.2.2 Computation Acceleration Problem

CS theory and signal reconstruction algorithms are usually computationally ex-

pensive. In particular, most CS algorithms are associated with intensive matrix

operations, such as matrix-matrix multiplication, Cholesky decomposition, and

matrix inversion. With the growth of the matrix size, computational costs will greatly

increase, leading to unacceptably high execution time. This hampers applying the CS

algorithm into time sensitive applications, such as real-time video pattern recognition,

online model regression, and fast signal reconstruction. Therefore, we seek to obtain

a speedup of the CS computation by utilizing special purpose accelerators such as

Graphical Processing Units (GPUs) and FPGAs.

The least square method is widely used in various computational applications

such as scientific computation, signal processing, and image processing. In particular,

the least square problem is the key part in Orthogonal Matching Pursuit (OMP), a

powerful signal reconstruction algorithm in compressed sensing theory [1]. However,

the computational cost of obtaining least square solutions is very heavy. By

optimizing the algorithm and exploiting parallelism through designing dedicated

hardware on FPGAs, we achieve a significant computational speedup.

Cholesky decomposition with O(N3) complexity is dominant in the computation.

The traditional Cholesky decomposition needs to utilize the division, multiplication
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and square root operation. however, the square root operation involves very long

latency, which hampers its use in an efficient pipeline architecture. We need to

rearrange the decomposition procedure to improve performance.

In this chapter, we introduced CS theory and associated general problems. In the

next chapter, the related work in CS theory will be further investigated.
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Chapter 2

Related Work

2.1 Related Work

Compressed Sensing (CS) theory was introduced in [27][11][56] around 2006. Research

interest in CS theory focuses on the projection matrix and reconstruction algorithm.

A sparse signal is linearly mixed by a projection matrix to yield measurements. From

a certain number of measurements, the sparse signal can be exactly recovered. In

order to successfully reconstruct the original sparse signal, the Restricted Isometry

Property (RIP) of the matrix is studied in [40][32][55]. Associated with the matrix,

another research topic is to study the minimum number of measurements for successful

reconstruction according to various algorithms. Fig. 2.1 shows a taxonomic tree of

CS signal reconstruction algorithms.

At the beginning, for a single frame signal reconstruction, mathematicians and

statisticians developed CS reconstruction algorithms based on linear programming

techniques [35][43]. The first way to reconstruct the signal is based on hard decision

and optimization theory. The most famous algorithm is basis pursuit (BP) using

the simplex algorithm by minimizing the norm ℓ1. At the expense of slightly more

measurements, iterative greedy algorithms have been developed to recover the signal

x from the measurements y. Examples include the iterative Orthogonal Matching
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Pursuit (OMP) [23], matching pursuit (MP)[60], and modified matching pursuit [31]

algorithms. Another modified Matching pursuit algorithm is Stage-wise Orthogonal

Matching Pursuit (StOMP) [33]. StOMP is an enhanced version of OMP where

multiple coefficients are resolved at each stage of the greedy algorithm, as opposed to

only one in the case of OMP.

Our work on hard decision CS algorithms is to develop a feedback structure to

introduce the prior information based on optimization theory. Our proposed new

algorithm is similar to orthogonal matching pursuit (OMP)[35] and other advanced

l0 norm optimization algorithms, e.g. the Stagewise OMP (StOMP)[10], regularized

OMP (ROMP)[9], and sparsity adaptive matching pursuit(SAMP) [64] algorithms.

Compared with those traditional CS signal reconstruction algorithms, our work

can reduce the complexity. The proposed algorithm can significantly improve the

performance by exploiting redundant information.

The second way to develop CS reconstruction algorithms is based on statistical

signal processing and information theory. In [24][28], authors discuss and compare

CS theory and channel coding/decoding theory, and find that the CS reconstruction

algorithm can be realized and analyzed by using channel decoding algorithms. Then

the Turbo, Low Density Parity Coding (LDPC), and belief propagation algorithms

are also applied into CS theory to recover the sparse signal by recasting CS theory as

a channel coding/decoding procedure [24]. Research on applying channel decoding

algorithms into CS theory is a trend.

The third way to reconstruct the signal is based on machine learning. For

example, the relevance vector machine algorithm [38][39][29] for sparse Bayesian

machine learning has been applied to CS, called Bayesian CS theory [59], which

has a good capability of combating noise. BCS algorithm has a statistical hierarchy

structure which can be utilized to integrate and introduce useful information for joint

signal reconstruction.

The CS signal reconstruction algorithms based on machine learning and statistical

theory are soft decision based CS signal reconstruction algorithms. Those algorithms
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Table 2.1: CS reconstruction algorithm

Algorithms Setting Complexity Minimum M
ℓ1 Optimization noise-free Ω3 K log(1 + N

K
)

ℓ1 Regulation noisy NK2 K log(1 + N
K
)

OMP noise-free 2K logK2 NK2

StOMP noise-free K logN K logN

Chain Pursuit noise-free K log2N N log2N
BCS noisy Ω3 K logN
LDPC noisy K logN K logN

Our work noisy < K logN ≪ K logN

have good performance on combating the noise. More importantly, those algorithms

are easy to modify for integrating the prior information for particular applications.

For joint signal reconstruction, the proposed research is to exploit the prior

information in sparse signals for joint signal reconstruction based on sparse Bayesian

machine learning theory. Related research about joint CS signal reconstruction has

been developed recently. Distributed compressed sensing (DCS) [22][67] studies joint

sparsity and joint signal reconstruction. Simultaneous OMP (SOMP) [23] [60] [31]

for simultaneous signal reconstruction is developed by extending the traditional OMP

algorithm. Serial OMP [46] studies the time sequence signal reconstructions. The

joint sparse recovery algorithm [26] is developed associated with the basis pursuit

(BP) algorithm. Those algorithms focus on either temporal or spatial joint signal

reconstructions. They are developed by extending convex optimization and linear

programming algorithms but ignore the impact of possible noise in the measurements.

Other work on sparse signal reconstruction is based on a statistical Bayesian

framework. In [28], the authors developed a sparse signal reconstruction algorithm

based on a belief propagation framework for the signal reconstruction. The

information is exchanged among different elements in the signal vector in a way

similar to the decoding of low density parity check (LDPC) codes. In [24],

the LDPC coding/decoding algorithm has been extended for real number CS

signal reconstruction. Other Bayesian CS algorithms also have been developed

15
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in [63][29][53]. However, all these algorithms are designed only for a single

procedure signal reconstruction and are not applied for multiple simultaneous signal

reconstructions. In [19], the redundancies of UWB signals are incorporated into

the framework of Bayesian Compressed Sensing (BCS)[38] [59] and have achieved

good performance. However, only a heuristic approach is proposed to utilize the

redundancy in [19].

More work related with our research for the joint sparse signal reconstruction

includes [61]. The author proposed Multi-task Bayesian Compressive Sensing

(MBCS) for simultaneous joint signal reconstruction by sharing the same set of

hyperparameters for the signals. The mutual information is directly transferred over

multiple simultaneous signal reconstruction tasks. In [74], the authors proposed to

utilize the Dirichlet prior distribution. The mechanism of sharing mutual information

is similar to the MBCS [61]. This sharing scheme is effective and straightforward. For

signals with high similarity, it has a much better performance than the original BCS

algorithm. However, for a low level of similarity, prior information may adversely

hamper the signal reconstruction, resulting in much worse performance than the

original BCS. In the situation where there exist lots of low-similarity signals, this

disadvantage could be unacceptable.

Compared with the previous research work on joint signal reconstruction, we

propose a novel and flexible Turbo Bayesian Compressed Sensing (TBCS) algorithm

for sparse signal reconstruction through exploiting and integrating spatial and

temporal redundancies in multiple signal reconstruction procedures performed in

parallel, in serial, or both. Moreover, we apply our proposed TBCS algorithm to

an UWB positioning system for high positioning accuracy.

In order to alleviate the sampling problem, some previous work proposed methods

for acquiring high resolution UWB signals. In our previous work [8][13][45], we utilized

a sequential sub-sampler to acquire ultra-high timing resolution UWB pulses by using

a low sampling rate ADC. The basic idea of the sequential sampling sub-sampler is to

compose one period of UWB signal with many repetitive periods of original signals.
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The received UWB signal is assumed to be repeated at the known and fixed pulse

repetition frequency. Then the sampling clock at the receiver has an offset compared

with the pulse repetition frequency. After many periods of sampling, one complete

period of high resolution UWB signals is obtained. More details can be found in

[13]. However, such a sequential sub-sampler suffers from many problems. One is

that the speed is very slow so that this approach is not suitable for tracking fast

moving targets. The positioning accuracy is seriously decreased when the target is

moving. The asynchronous clocks between the tag and the receivers prevents the

UWB positioning system from achieving a higher accuracy. In order to achieve an

ultra-high positioning accuracy in high speed, we are seeking to find an approach for

real-time ultra-high speed sampling with low sampling rate ADCs.

In addition, the CS theory[27] has been applied to UWB systems for acquiring

high resolution pulses below the Nyquist sampling rate [30] [76][20][12][19][15]. In a

certain time interval, suppose that an N -dimensional high resolution signal vector

containing the original UWB signals is compressed by a projection matrix to output

an M -dimensional measurement vector. From the measurements which are obtained

by ADCs, the signal vector can be reconstructed. It is well known that UWB echo

signals are naturally sparse in the time domain. In our experiments, we observed that

nonzero pulse signals are less than 10% of received signals in one pulse repetition

period [13][45][8]. Therefore, the N -dimensional high resolution signal vector can

be reconstructed from M -dimensional measurements. In a certain time interval, the

number M determines the sampling rate of the ADC. The acquisition of the limited

measurements, instead of the original pulse, dramatically decreases the sampling rate

of the ADC, which makes it possible to obtain ultra-high resolution UWB pulses at a

very low sampling rate. Related work for applying CS theory to UWB systems can be

found [30][76], which focus on the acquisition of high resolution UWB pulses using CS

algorithms. In [7], CS based pulse signal reconstruction has been studied, but only for

single frame pulse reconstruction. In [66], CS theory is applied to positioning systems;

however, it is performed in the frequency domain. Also note that existing joint CS
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reconstruction algorithms for general cases include distributed compressed sensing

(DCS) [22][67] for studying joint sparsity and joint signal reconstruction, simultaneous

OMP (SOMP) [23][60] [31][33] for simultaneous signal reconstruction, serial OMP

[46] for time sequence signal reconstruction, and joint sparse signal recovery using

the basis pursuit (BP) algorithm [26]. However, these algorithms do not consider the

redundancies in both space and time and consider only noise-free cases.

The proposed TBCS algorithm is still computationally expensive. The compu-

tational cost is a bottleneck in time-sensitive applications[21]. High performance

parallel computing for computational acceleration is needed for fast CS signal

reconstruction. One of the most computationally expensive steps in CS signal

reconstruction algorithms is Cholesky decomposition[5], so we desire to accelerate

Cholesky decomposition and CS signal reconstruction by designing a dedicated

hardware/software module to exploit parallelism.

Besides CS signal reconstruction in signal/image processing, Cholesky decomposi-

tion is one of most widely used decomposition algorithms in various applications and

fields[69], such as in solving least square problems, linear regression, and least square

fitting in mathematics, machine learning, and economics. Cholesky decomposition has

O(1
3
n3) complexity, which is computationally expensive. Even when the matrix size

n is small, the computation time is too expensive in many applications, such as real-

time CS signal reconstruction[20][21][19]. In many other fields, such as computational

chemistry[57], there exist a demand of computing Cholesky decomposition for many

small matrices. Modern massively parallel devices, such as FPGAs and GPUs, can

accelerate Cholesky decomposition by exploiting parallelism.

Related work on Cholesky decomposition and compressed sensing either focus

on FPGA implementation or GPU/CPU programming. In [52], the authors reorder

the Cholesky decomposition computation using a 3-dimensional structure for FPGA

implementation. However, the standard Cholesky decomposition procedure is

complicated and the associated root square operation requires lots of resources and

long latency. In [34][6], Cholesky decomposition is implemented on a GPU using
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vectorized inner and outer methods based on subroutines provided by CUDA Basic

Linear Algebra Subprograms (CUBLAS) and Basic Linear Algebra Subprograms

(BLAS). In [65], authors analyze performance trade-offs for various matrix-vector

operations and matrix decomposition on GPUs. For CS signal reconstruction, others

discuss GPU implementation in [42][58] for the matching pursuit algorithm based

on sub-routines from CUBLAS. Orthogonal matching pursuit (OMP) and CS signal

reconstruction are also implemented on FPGAs in [4] and [20]. We proposed an

optimized GPU and FPGA implementation for a family of CS signal reconstruction

algorithms. In our previous work [17][18][16][14], we propose an iterative Cholesky

decomposition for solving linear square problems and the Relevance Vector Machine

(RVM) algorithm. In this thesis, we expand our work for CS signal reconstruction

algorithms on both FPGAs and GPUs.

Other well known parallel computing libraries include Linear Algebra PACKage

(LAPACK) [37] for CPUs and Matrix Algebra for GPGPU and multi-core archi-

tectures (MAGMA)[41] for a hybrid system with CPU and GPU, which provides

plenty of optimized Level 1-3 basic matrix operations. LAPACK can be utilized

for single or multi-core high performance parallel computing. MAGMA can exploit

both CPU and GPU capabilities for best performance. For example, for Cholesky

decomposition, MAGMA can assign parallel tasks to GPUs, such as matrix-matrix

multiplication, and perform serial tasks on CPUs, such as solving triangular equations

using forward/backward substitution, to exploit the strengths of these different

platforms[41]. LAPACK and MAGMA have excellent performance for large matrix

decomposition; however, LAPACK and MAGMA may not be a good choice for small

matrix Cholesky decomposition due to overhead and data streaming costs. Moreover,

the target matrix in the iterative CS signal reconstruction algorithm is actually

augmented each iteration so that Cholesky decomposition can be performed based

on previous results for good performance. However, LAPACK and MAGMA do not

utilize previous results for Cholesky decomposition, so that they may not perform

very efficiently for the iterative CS signal reconstruction algorithms. We propose an
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iterative Cholesky decomposition on FPGAs and GPUs, which is not only suitable

for iterative CS signal reconstruction algorithms but also for other applications.

We have investigated the recent progress about sparse signal reconstruction

algorithms and their hardware implementation in CS theory in this chapter. In the

following chapters, we are going to detail the sparse signal reconstruction algorithms.
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Chapter 3

Hard Decision Algorithm:

Feedback Orthogonal Pruning

Pursuit Algorithm

3.1 Background and Motivation

CS signal reconstruction algorithms are normally computationally expensive. The

hard decision CS signal reconstruction algorithms are based on mathematical

optimization theory, which requires exhaustive computation for searching for optimal

solutions. However, many applications require a fast signal reconstruction for real

time signal processing. How do we alleviate the complexity of CS algorithms for fast

signal reconstruction? In addition, it is also important for the algorithm to combat

noise and interference.

In this chapter, a novel CS reconstruction algorithm, coined orthogonal pruning

pursuit (OPP), is proposed for fast signal reconstruction. In contrast to traditional

greedy CS algorithms, the key idea of OPP is to prune indices of zero elements based

on a given index set for finding true nonzero indices. This makes the signal as sparse

as possible and thus improves the capability of defeating noise and interference. OPP
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Figure 3.1: The feedback structure for the UWB receiver.

is based on the feedback structure for fast signal reconstruction. The prior knowledge

in time sequence signals is exploited, which leads to a substantial reduction of the

amount of required measurements [46] [19]. The recovered signal is fed back as prior

knowledge into the next reconstruction processing. This low complexity algorithm is

quite suitable for parallel computation on FPGAs [16] for fast processing. The UWB

system is utilized in the simulation as an example. A performance gain is achieved

to improve the capability of de-noising and to reduce the bit error rate (BER) for the

UWB high speed communication system.

The remainder of this chapter is organized as follows. Section 4.2 provides the

system model and problem formulation by illustrating a scenario of UWB signal and

introducing a feedback structure UWB receiver. Section 3.3 gives the derivation and

description of the proposed OPP algorithm. Section 3.4 shows numerical simulation

results.

3.2 System Model and Problem Formulation

3.2.1 Problem Formulation

We apply sequential CS to UWB communications. Recall that the characteristics of

the received UWB signals are discussed in previous chapters. A frame of signal xt is

a high resolution digitalized signal with N -dimensions. Its sparsity (i.e. the number
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of nonzero elements) is k and satisfies k ≪ N . The index set of nonzero elements is

defined as the support set, which is given by

yt = Φxt + nt, (3.1)

where nt is white Gaussian noise. The measurement matrix ΦM×N has independent

and identically distributed (i.i.d) elements and satisfies the Restricted Isometry

Property (RIP). The original signal can be reconstructed successfully from M

measurements (M ≪ N) through CS algorithms[27]. Using low sampling rate ADCs

to obtain measurements, ultra-high sampling rate for direct signal acquisition is

avoided.

In sequential CS we consider consecutive signal frames. The current frame xt is

highly correlated to the previous one xt−1. We denote the support set of xt−1 by Tt−1.

The range of Tt is statistically predictable from Tt−1. Thus, based on transmission

rate and Tt−1, a prediction index set, denoted as I, is computed for predicting Tt and

a feedback structure is proposed to utilize this prediction set I.

3.2.2 Feedback Structure for UWB Receiver

Fig.3.1 shows a feedback structure for sequential CS-based UWB communications.

The measurement matrix in Eq.(3.1) is realized in the analog domain [20] [62]. In

signal reconstruction, a prediction set I obtained from the previous frame of signal

is fed back. The prediction set I is formed by enlarging Tt−1 based on the known

transmission rate. The size of I is several times larger than the size of true Tt but

much smaller than the dimension N . The purpose of a large I is to guarantee that Tt

is contained in I. The benefit of set I is to reduce the searching range for Tt. Based

on this structure, we propose the OPP algorithm to find the Tt and reconstruct xt,

which will be explained in the next section.
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3.3 Orthogonal Pruning Pursuit Algorithm

3.3.1 Necessary Lemmas

Given a prediction set I which contains the support set Tt, then how do we shrink

I to find Tt? The following lemmas build a criterion to delete a basis not belonging

to Tt. For convenience, we denote yt by y and xt by x. x̂ stands for the estimation

of the signal x. The following mathematical notation is used: For a matrix Φ and

the index set I, submatrix ΦI consists of the columns of Φ with indices i ∈ I. Φ′
I is

the transpose of matrix ΦI . The ith column vector in ΦI is denoted by ϕi, i ∈ I. If

deleting an index from I, the corresponding submatrix is denoted by ΦI−1. We also

define < · > as the scalar product.

Lemma 3.0.1. Given an index set I, suppose Φ′
IΦI is invertible. The orthogonal

projection of given vector y onto subspace SI is yI, given by:

yI = ΦI (Φ
′
IΦI)

−1
Φ′

Iy. (3.2)

Then the residual RI = y − yI is orthogonal to every basis in subspace SI . ∥RI∥2 is

the minimum distance from y to any vector z belonging to SI , i.e.

∥RI∥2 = inf
z∈SI

∥y − z∥2, z ∈ SI (3.3)

The corresponding proof is well known [36] and is thus omitted here. It is easy to

verify that the orthogonal projector onto SI is PSI
= ΦI (Φ

′
IΦI)

−1Φ′
I . The projection

of y is yI = PSI
y = ΦI (Φ

′
IΦI)

−1 Φ′
Iy. The residual RI = y − yI is orthogonal to the

subspace SI , equivalently expressed as < RI, ϕi >= 0, ϕi ∈ SI . From Lemma 1, if

deleting a basis from set I, the residual is denoted by RI−1. We also have

∥RI−1∥2 = inf
z∈SI−1

∥y − z∥2, z ∈ SI−1 (3.4)
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Given a set I containing Tt, there exists an unique solution which is the true signal

[27] because the matrix Φ is incoherent. Then, we obtain that, when ∥RI∥ → 0,

∥x̂− x∥ → 0. Thus, the value in the entry not belonging to the support set should

keep small to satisfy a minimum residual and this corresponding index should be

deleted. On the other hand, if an index in the support set is pruned, it will lead

to a relatively large residual. When shrinking I by deleting redundant indices while

keeping the true support set, the residual will correspondingly keep small [43]. Now,

a question arises: how do we prune a redundant basis to keep the residual small?

Lemma 3.0.2. Assume that, after pruning the jth column vector ϕj from ΦI the

new matrix ΦI−1 spans a subspace SI−1. Through the orthogonal projection from the

given vector y onto SI−1, the residual is RI−1 = y − yI−1. Let A = (Φ′
IΦI)

−1 Φ′
I .

Then αj is the jth row vector in A and x̂I
j is the jth coefficient of the estimated signal

from projecting y onto SI . The difference between the residuals of two projections is

expressed as:

∥RI −RI−1∥2 =
(
x̂I
j

)2
< αj, αT

j >
. (3.5)

The corresponding proof can be found in [36]. Obviously for shrinking I the

criteria for pruning a basis is to find the one that minimizes Eq.(3.5). However,

searching for such a minimum of Eq.(3.5) involves inverting a large matrix, which is

computationally expensive. Alternatively, we adopt a heuristic criteria for deleting a

basis, which is given by

min

(
x̂I
j

)2
∥ϕj∥2

. (3.6)

In contrast to OMP which searches the most possible true support vector through

finding the largest projection [35], Eq.(3.6) uses an opposite approach to delete

redundant indices which are least likely in the true support set. In our numerical

simulations, Eq.(3.6) always yields the same results as obtained from minimizing
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Eq.(3.5). Therefore, in practice, we can compute the solution to Eq.(3.6), rather

than Eq.(3.5), to achieve good performance for signal reconstruction.

3.3.2 Algorithm Description

Based on our feedback structure, a prediction set is formed by moderately enlarging

the obtained support set of the previous frame. Then it is introduced as an initial

index set to the current frame. The procedure of the OPP algorithm is given in details

and an illustration is given in Fig. 3.2.

1. Step 1: Initialization:

The index set I is the given prediction set.

The coefficients from orthogonal projection:

x̂ := (Φ′
IΦI)

−1 Φ′
Iy

2. Step 2: Deleting a basis:

Index j := argmin ∥x̂i∥2
∥ϕi∥2 , i ∈ I; ϕi is the ith column vector in ΦI

3. Step 3: Calculating new coefficients:

x̂ :=
(
Φ′

I−1ΦI−1

)−1
Φ′

I−1y

Obtaining residual: R = y −ΦI−1x̂

4. Step 4: Termination:

If the residual is less than an acceptable error threshold, the algorithm is

terminated. The support set is forwarded for processing the next frame of

signal. Otherwise go to Step 2 to continue shrinking the index set I.

The complexity of this algorithm is mainly in Steps 2 and 3. To avoid the inversion

of matrix and speed up computation, Cholesky decomposition can be adopted and

implemented on FPGAs for parallel computation[16].
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Compute the coefficients and residual R

Initialize the prediction set
Support set of the previous frame

R > thresholdReconstructedsupport set Next frame

Figure 3.2: Diagram of algorithm
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3.4 Numerical Simulation

Based on the proposed feedback structure, we compare the performance of our

orthogonal pruning pursuit with OMP and BP. Other l0 norm optimization CS

algorithms, e.g. Stomp, ROMP, and SAMP, have similar performance to OMP[64].

BP is the most used l1 norm optimization CS algorithm. Therefore, only OMP and

BP are simulated to make a comparison.

In UWB communication we first reconstruct the high resolution pulse signals.

Fig.3.3(a) shows a section of received UWB signals in a Line-Of-Sight (LOS)

environment [1]. The measurement matrix is an i.i.d. The Gaussian random

matrix and the measurements are obtained under the Nyquist sampling rate. The

measurement number is M = 55 (N = 512), which is far less than the required

number for successful signal recovery when the correlation between different frames

is not considered. When the original signal is contaminated by noise, many more

measurements are needed for recovery. In OPP algorithm, the prediction set I

containing the true support set is seven times larger than the size of the true support

set. The reconstruction percentage is defined as 1− ∥x̂t−xt∥
∥xt∥ . The reconstructed signal

using OMP, BP, and our feedback OPP are illustrated in Fig.3.3(b), (c), and (d),

respectively. Obviously, with so few measurements, the OPP obtains a much better

reconstruction performance than the traditional OMP and BP. Hence, by using a

feedback structure and the OPP algorithm, one needs only a few measurements to

achieve good performance, saving expensive hardware resources.

Furthermore, we exploit the relationship between the number of measurements

and reconstruction percentage using different algorithms. We denote by p the ratio

of the prediction set size to the true support set size. For the noiseless case, as

shown in Fig.3.4, the OPP algorithm needs fewer measurements to achieve an exact

recovery compared with OMP and BP. When the prediction set size is large, more

measurements are needed. If the prediction set is equal to N , the performance of

OPP will be degraded to that of OMP.
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Figure 3.3: Reconstructed UWB echo signals using OMP, BP, and OPP. Time is
in ns; Length N=512, measurements M=55 and the sparsity K=17. Signals are
contaminated by the noise with SNR=12.95dB. The reconstruction percentages are
respectively: (a)Original UWB echo signal without noise. (b)OMP: 0% (c)BP: 20.48%
(d)OPP: 65.83% .
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Figure 3.4: Probability of reconstruction vs. measurements without noise
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Figure 3.5: Probability of reconstruction vs. measurements in the presence of noise

Considering noise effect, Fig.3.5 shows the reconstruction percentage versus the

measurement amount using different algorithms. The signals are contaminated by

the noise with SNR=18.65dB. Clearly, to achieve 90% reconstruction percentage,

OPP needs fewer measurements compared with OMP and BP. Also the recovered

signal from our OPP is sparser than that from traditional OMP. For instance, at 90%

reconstruction percentage using 60 measurements, the number of nonzero elements is

35 using OPP with p = 5; while it is 85 using traditional OMP. It is also observed that

the size of prediction set determines the performance of OPP. A big p will degrade the

performance and require more measurements. However, a small p incurs the risk of

missing the true support set. An adaptive and more efficient algorithm to construct

a small prediction set in OPP is needed, which is our future work.

Fig.3.6 shows BER versus SNR when using 50, 60, and 70 measurements for PAM

UWB communications. We can see that our proposed OPP provides better BER

performance using the same number of measurements as OMP and BP. When using

OPP, more measurements improve the capability to combat the noise and interference,

31



−10 −5 0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
it 

E
rr

or
 R

at
e

OMP with M=70
BP with M=70
OPP with M=50
OPP with M=60
OPP with M=70

Figure 3.6: BER vs. SNR using different amount of measurements.

leading to a better BER performance for UWB communications. Our scheme can also

be modified for other types of pulse modulations, such as PPM and OOK.

In summary, this chapter describes the OPP algorithm for sparse signal recon-

struction without the presence of noise. However, the noise is a critical problem in

CS theory. We discuss how to handle the noise in signal reconstruction in the next

chapter.
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Chapter 4

Soft Decision Algorithm: Joint

Bayesian Compressed Sensing

Algorithm

4.1 Background and Motivation

The soft decision CS signal reconstruction algorithms are based on Bayesian statistical

theory. Compared with the hard decision CS algorithms, the soft decision CS

algorithms build up a statistical hierarchy structure[59]. One of the typical soft

decision CS algorithms is the Bayesian compressed sensing (BCS) algorithm[59],

which has good performance to combat the noise. More importantly, BCS can be

modified for many applications’ requirements. One typical application is to require

joint signal reconstruction. For example, in some situations, there are multiple

copies of signals that are correlated in space and time, thus providing spatial and

temporal redundancies. Take the CS-based Ultra-Wideband (UWB) system ∗ as an

example [12][54]. In a typical UWB system as shown in Fig. 4.1, one transmitter

∗A UWB system utilizes a short-range, high-bandwidth pulse without carrier frequency for
communication, positioning, and radar imaging. One challenge is the acquisition of the high-
resolution ultra-short duration pulses. The emergence of CS theory provides an approach to acquiring
UWB pulses, possibly under the Nyquist sampling rate [20][76].
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periodically sends out ultra-short pulses (typically nano- or subnano-second Gaussian

pulses). Surrounding the transmitter, several UWB receivers are receiving the pulses.

The received echo signals at one receiver are similar to those received at other

receivers in both space and time for the following reasons: (1) at the same time

slot, the received UWB signals are similar to each other because they share the same

source, which leads to spatial redundancy; and (2) at the same receiver, the received

signals are also similar in consecutive time slots because the pulses are periodically

transmitted and propagation channels are assumed to change very slowly. Hence

the UWB echo signals are correlated both in space and time, which provides spatial

and temporal redundancies. Such prior information can be exploited in the joint

CS signal reconstruction to improve performance. On the other hand, our work is

also motivated to reduce the number of necessary measurements and improve the

capability of combating noise. For successful CS signal reconstruction, a certain

number of measurements are needed. In the presence of noise, the number of

measurement may be greatly increased. However, more measurements lead to more

expensive and complex hardware and software in the system [20]. In such a situation,

a question arises: can we develop a joint CS signal reconstruction algorithm to exploit

temporal and spatial information a priori for improving performance in terms of fewer

measurements, more noise tolerance, and better quality of reconstructed signal?

Our work and MBCS[61] are both focused on reconstructing multiple signal frames.

However, MBCS cannot perform simultaneous multitask signal reconstruction until

all measurements have been collected, which is purely in a batch mode and cannot

be performed in an online manner. Moreover, MBCS is centralized and is hard to

decentralize. Our proposed incremental and decentralized TBCS has a more flexible

structure, which can reconstruct multiple signal frames sequentially in time and/or in

parallel in space through transferring mutual prior information.

In this chapter, we propose a novel and flexible Turbo Bayesian Compressed

Sensing (TBCS) algorithm for sparse signal reconstruction through exploiting and
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Figure 4.1: A typical UWB system with one transmitter and several receivers

integrating spatial and temporal redundancies in multiple signal reconstruction pro-

cedures performed in parallel, in serial, or both. Note the BCS algorithm has

an excellent capability of combating noise by employing a statistically hierarchical

structure, which is very suitable for transferring prior information. Based on

the BCS algorithm, we propose a prior information-based iterative mechanism for

information exchange among different reconstruction processes, motivated by the

Turbo decoding structure, which is denoted Turbo BCS. A primary challenge in

the proposed framework is how to yield and fuse prior information in the signal

reconstruction procedure in order to utilize spatial and temporal redundancies. The

proposed algorithm exploits a mathematically elegant framework to impose an

exponentially distributed hyperparameter on the existing hyperparameter α of the

signal elements. This exponential distribution for the hyperparameter provides

an approach to generate and fuse prior information with measurements in the

signal reconstruction procedure. An incremental method [39] is developed to find

the limited nonzero signal elements, which reduces the computational complexity

compared with the expectation maximization (EM) method. A detailed STTBCS

algorithm procedure in the case study of UWB systems is also provided to illustrate

our algorithm is universal and robust: when the signals have low similarities, the
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performance of STTBCS will automatically equal that of the original BCS; on the

other hand, when the similarity is high, the performance of STTBCS is much better

than the original BCS.

At the end of this chapter, simulation results have demonstrated that our

TBCS significantly improves performance. We first use spike signals to illustrate

the performance which can be achieved at each iteration employing the original

BCS, MBCS, and our TBCS algorithms. The simulations show that our TBCS

outperforms the original BCS and MBCS algorithms at each iteration for different

similarity levels. We also choose IEEE802.15a [1] UWB echo signals for performance

simulation. For the same number of measurements, the reconstructed signal using

TBCS is much better compared with the original BCS and MBCS. To achieve

the same reconstruction percentage, our proposed scheme needs significantly fewer

measurements and is able to tolerate more noise, compared with the original BCS

and MBCS algorithms. A distinctive advantage of TBCS is that when the similarity

is low, MBCS performance is worse than the original BCS while our TBCS is close

to the original BCS and much better than MBCS.

The remainder of this paper is organized as follows. The problem formulation

is introduced in Section 4.2. Based on the BCS framework, prior information is

integrated into signal reconstruction in Section 4.3. A fast incremental optimization

method is detailed in Section 4.4 for the posterior function. Taking UWB systems

as a case study, Section 4.5 develops a space-time TBCS algorithm by applying our

TBCS into the UWB system. The space-time TBCS algorithm is summarized in

Section 4.5. Numerical simulation results are provided in Section 4.6.

4.2 Problem Formulation

Figure 4.2 shows a typical decentralized CS signal reconstruction model. We assume

that the signals received at the receiver sides and the transmitted signal are sparse.

We also ignore any other effects such as propagation channel and additive noise on
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Figure 4.2: Block diagram of decentralized turbo Bayesian compressed sensing

the original signal. Taking the UWB system as an example, the original UWB echo

signals, s11, s12, s21, ... are naturally sparse in the time domain. These signals can

be reconstructed in high resolution from a limited number of measurements using

low sampling rate ADCs by taking advantage of CS theory. We define a procedure

as a signal reconstruction process from measurements to recover the signal vector.

Signal reconstruction procedures are performed distributively. We will develop a

decentralized TBCS reconstruction algorithm to exploit and transfer mutual prior

information among multiple signal reconstruction procedures in time sequence and/or

in parallel.

We assume that the time is divided into K frames. Temporally, a series of K

original signal vectors at the first procedure is denoted as s11,s12, ..., and s1k(s1k ∈

RN), which can be correspondingly recovered from the measurements y11, y12, ...,

and y1k(y1k ∈ RM) by using the projection matrix Φ1. All the measurement vectors

are collected in time sequence. Spatially, at the same time slot, e.g. the k-th frame,

a set of I original signal vectors, denoted as s1k,s2k, ..., and sIk(sik ∈ RN) are

reconstructed from the M -vector measurements, corresponding to y1k, y2k, ..., and
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yIk(yik ∈ RM) by using the different projection matrix Φ1,Φ2, ...,ΦI . All the spatial

measurement vectors are collected at the same time.

The measurements are linear transforms of the original signals, contaminated by

noise, which are given by

yik = Φisik + ϵik (4.1)

with k = {1, 2, ..., K} and i = {1, 2, ..., I}; the matrix Φi, (Φi ∈ RM×N) is the

projection matrix with M << N . The ϵik are additive white Gaussian noise with

unknown but stationary power βik. The noise level for different i and k may be

different; however, the stationary noise variance can be integrated out in BCS and

does not affect the signal reconstruction [38][39][59]. For mathematical convenience,

we assume the βik are identical for all i and k and denote it by β. Without loss of

generality, we assume that sik is sparse, i.e. most elements in sik are zero.

Signal reconstruction is performed among different BCS procedures in parallel

and in time sequence. Information is transferred in parallel and serially. Note that

the original signals, s11, s12, s22, ... may be correlated with each other because of the

spatial and temporal redundancies. However, without loss of generality, we do not

specify the correlation model among the signals at different BCS procedures. This

similarity leads to information which can be introduced into decentralized TBCS

signal reconstruction a priori for improving performance in terms of reducing the

number of measurements and improving the capability of combating noise.

For notational simplicity, we abbreviate sik into si to utilize one superscript

representing either the temporal or spatial index, or both. We use the subscript

to represent the element index in the vector. The main notation used throughout

this paper is stated in Table 1.
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Table 4.1: Notation list
sij, s

i, s:sij is the j-th signal element of the
original signal vector si at the i-
th spatial procedure or the i-th time
frame; the signal vector si is si =
{sij}Nj=1, which can be abbreviated as
s.

yij,y
i,y:yij is the j-th element of the mea-

surement vector for reconstructing the
signal vector si is collected at either i-
th spatial procedure or i-th time frame,
which has yi = {yij}Mj=1; yi can be
abbreviated as y.

Φi: the measurement matrix utilized for
compressing the signal vector si to
yield yi.

β: the noise variance.
αi
j,α

i,α:αi
j is the j-th hyperparameter imposed

on the corresponding signal element sij;
it can be abbreviated as αj; and it has
αi = {αi

j}Nj=1; αi can be abbreviated
as α.

λij,λ
i,λ:λij is the parameter controlling the dis-

tribution of the corresponding hyperpa-
rameter αi

j for mutual prior information
transfer, where λi = {λij}Nj=1 and it can
be abbreviated as λ.

4.3 Mutual Information Transfer in Bayesian Com-

pressed Sensing

In this section, we propose a Turbo BCS algorithm to provide a general framework

for yielding and fusing prior information from other parallel or serial reconstructed

signals. We first introduce the standard BCS framework, in which selecting the

hyperparameter αi imposed on the signal element is the key issue. Then we impose

an exponential prior distribution on the hyperparameter αi with parameter λi. The

previous reconstructed signal element will impact the parameter λi to affect the αi
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distribution, yielding prior information. Next, prior information will be integrated

into the current signal estimation.

4.3.1 Bayesian Compressed Sensing Framework

Starting with Gaussian distributed noise, the BCS framework [59][38] builds a

Bayesian regression approach to reconstruct the original signal with additive noise

from the compressed measurements. In the BCS framework, a Gaussian prior

distribution is imposed over each signal element, which is given by

P (si|αi) =
N∏
j=1

(
αi
j

2π

)1/2

exp

(
−
(sij)

2αi
j

2

)

∼
N∏
j=1

N
(
sij|0, (αi

j)
−1
)
, (4.2)

where αi
j is the hyperparameter for the signal element sij. The zero-mean Gaussian

prior is independent for each signal element. By applying Bayes’ rule, the a posteriori

probability of the original signal is given by

P (si|yi, αi, β) =
P (yi|si, β)P (si|αi)

P (yi|αi, β)

∼ N (si|µi,Σi), (4.3)

where A = diag(αi). The covariance and the mean of the signal are given by

Σi =
(
β−2(Φi)TΦi +A

)−1
(4.4)

and

µi = β−2Σi(Φi)Tyi (4.5)
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Then, we obtain the estimation of the signal, ŝi, which is given by

ŝi = ((Φi)TΦi + β2A)−1(Φi)Tyi (4.6)

In order to estimate the hyperparameters αi and A, the maximum likelihood

function based on observations is given by

αi = argmax
αi

P (yi|αi, β)

= argmax
αi

∫
P (yi|si, β)P (si|αi)dsi (4.7)

where, by integrating out si and maximizing the posterior with respect to αi,

the hyperparameter diagonal matrix A is estimated. Then, the signal can be

reconstructed using Eq. (4.6).

The matrix A plays a key role in the signal reconstruction. The hyperparameter

diagonal matrixA can be used to transfer the mutual prior information by sharing the

same A among all signals [61]. In such a way, if signals have many common nonzero

elements, the signal reconstruction will benefit from such a similarity. However, when

the similarity level is low, the transferred “wrong” information may impair the signal

reconstruction[61].

Alternatively, we find a soft approach to integrating information a priori in a

robust way. An exponential priori distribution is imposed on the hyperparameter αi

controlled by the parameter λi. The previously reconstructed signal elements will

impact the λi and change the αi distribution to yield prior information. Then, the

hyperparameter αi conditioned on λi will join the current signal estimation using the

maximum a posterior (MAP) criterion.

4.3.2 Yielding Prior Information

The key idea of our TBCS algorithm is to impose an exponential distribution

on the hyperparameter αi
j and exchange information among different BCS signal
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reconstruction procedures using the exponential distribution in a turbo iterative way.

In each iteration, the information from other BCS procedures will be incorporated

into the exponential prior and then used for the signal reconstruction of the current

BCS signal reconstruction procedure being considered. Note that, in the standard

BCS [38], a Gamma distribution with two parameters is used for αi
j. The reason we

adopt an exponential distribution here is that we need to handle only one parameter

for the exponential distribution, which is much simpler than the Gamma distribution,

while both distributions belong to the same family of distributions.

We assume that hyperparameter αi
j satisfies the exponential prior distribution,

which is given by,

P (αi
j|λij) =

 λije
−λi

jα
i
j , if αi

j ≥ 0

0, if αi
j < 0

, (4.8)

where λij (λij > 0) is the hyperparameter of the hyperparameter αi
j. By assuming

mutual independence, we have

P (αi|λi) =

(
N∏
j=1

λij

)
exp

(
N∑
j=1

−λijαi
j

)
. (4.9)

By choosing the above exponential prior, we can obtain the marginal probability

distribution of the signal element depending on the parameter λij by integrating αi
j

out, which is given by:

P (sij|λij) =

∫
P (sij|αi

j)P (α
i
j|λij)dαi

j

= (2π)−
1
2Γ(

3

2
)λij

(
λij +

(sij)
2

2

)−( 3
2
)

(4.10)

where Γ(.) is the gamma function, defined as Γ(x) =
∫∞
0
tx−1e−tdt. The detailed

derivation is shown in Appendix A.2.
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Figure 4.3: The distribution P (sij|λij)

Figure 4.3 shows the signal element distribution conditioned on the hyperparame-

ter λij. Obviously, the bigger the parameter λij, the more likely the corresponding

signal element can take a larger value. Intuitively, this looks very much like a

Laplace prior which is sharply peaked at zero [63]. Here, λij is the key of introducing

information a priori based on reconstructed signal elements.

Compared with the Gamma prior distribution imposed on the hyperparameter

λij [38][39], the exponential distribution has only one parameter while the Gamma

distribution has two degrees of freedom. In many applications (e.g., communication

networks), transferring one parameter is much easier and cheaper using the exponen-

tial distribution than handling two parameters. The exponential prior distribution

does not degrade the performance, which can encourage the sparsity (see Appendix

A). Also, it is computationally tractable to use the exponential distribution.

Now the challenge is that, given the j-th reconstructed signal element sbj from

the b-th BCS procedure, how does one yield prior information to impact the

hyperparameters in the i-th BCS procedure for reconstructing the j-th signal element
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sij? When multiple BCS procedures are performed to reconstruct the original signals

(no matter whether they are in time sequence or in parallel), the parameters of

the exponential distribution, λij, can be used to convey and incorporate information

from other BCS procedures. To this end, we consider the conditional probability,

P (αi
j|sbj, λij), for αi

j, given an observation element from another BCS procedure, sbj

(b ̸= i), and λij. Since the proposed algorithm does not use a specific model for the

correlation of signals at different BCS procedures, we propose the following simple

assumption when incorporating the information from other BCS procedures into λij,

for facilitating the TBCS algorithm:

Assumption: For different i and b, we assume αi
j = αb

j, ∀i, b.

Essentially, this assumption implies the same locations of nonzero elements for

different BCS procedures. In other words, the hyperparameter αi
j for the j−th signal

element is the same over different signal reconstruction procedures. Then, mutual

information can be transferred through the shared hyperparameter αi
j as proposed in

[61]. However, the algorithm in [61] is a centralized MBCS algorithm, so the signal

reconstructions for different tasks cannot be performed until all measurements are

collected. Note that this technical assumption is only for deriving the algorithm for

information exchange. It does not mean that the proposed algorithm only works for

the situation in which all signals share the same locations of nonzero elements. Our

proposed algorithm based on this assumption can provide a flexible and decentralized

way to transfer mutual information.

Based on the assumption, we obtain

P (αi
j|sbj, λij) =

P (sbj, α
i
j|λij)

P (sbj, λ
i
j)

=
P (sbj|αi

j)P (α
i
j|λij)∫

P (sbj|αi
j)P (α

i
j|λij)dαi

j

=

(
λ̃ij

) 3
2
exp

(
−λ̃ijαi

j

)
Γ(3

2
)

(4.11)
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where Γ(.) is the gamma function, defined as Γ(x) =
∫∞
0
tx−1e−tdt. The detailed

derivation is given in Appendix A.2.

Obviously, the posterior (αi
j|sbj, λij) also belongs to the exponential distribution

[2]. Compared with the original prior distribution in Eq. (4.8), given the j-th

reconstructed signal element sbj from the b-th BCS procedure, the hyperparameter

λij in the i-th BCS procedure controlling the prior distribution is actually updated to

λ̃ij, which is given by

λ̃ij = λij +

(
sbj
)2
2

. (4.12)

If information from n BCS procedures b1,...,bn are introduced, the parameter λ̃ij

is then updated to

P (αi
j|s

b1
j , s

b2
j , ..., s

bn
j , λ

i
j)

=

(
λ̃ij

) 2n+1
2

exp
(
−λ̃ijαi

j

)
Γ(2n+1

2
)

. (4.13)

where

λ̃ij = λij +

∑n
i=1

(
sbij
)2

2
. (4.14)

The derivation details are given in Appendix A.

Eq. (4.12) and Eq. (4.14) show that how the single or multiple signal elements

sbnj , j = 1, 2, ..., N, n = 1, 2, ... from other BCS procedures impact the hyperparameter

of the signal element sij, j = 1, 2, ..., N at the same location in the i-th BCS signal

reconstruction. Note that the b-th BCS signal reconstruction may be previously

performed or is ongoing with respect to the i-th BCS procedure. This provides

significant flexibility to apply our TBCS in different situations.
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4.3.3 Incorporating Prior Information into BCS

Now, we study how to incorporate the prior information obtained in the previous

subsection into the signal reconstruction procedure. In order to incorporate prior

information, provided by the external information, we maximize the log posterior

based on Eq. (4.7), which is given by

L(αi) = logP (yi|αi, β)P (αi|
{
sb
}
, λi)

= logP (yi|αi, β) + logP (αi|
{
sb
}
, λi) (4.15)

Therefore, the estimation ofαi not only depends on the local measurements, which

are in the first term logP (yi|αi, β), but also relies on the external signal elements{
sb
}
through the parameter λi, which are in the second term logP (αi|

{
sb
}
, λi)).

An expectation maximization (EM) method can be utilized for the signal

estimation. Recall that the signal vector si is Gaussian distributed conditioned on αi,

while αi also conditionally depends on the parameters λi. Eq. (4.3) shows that the

conditional distribution of si satisfies N (µ,Σ). Then, applying a similar argument to

that in [38], we consider si as hidden data and then maximize the following posterior

expectation, which is given by

Esi|yi,αi

[
logP (si|αi, β)P (αi|λi)

]
. (4.16)

By differentiating (4.16) with respect to αi and setting the differentiation to zero,

we obtain an update, which is given by

αi
j =

3

(sij)
2 + Σi

jj + 2λij
, (4.17)

where Σi
jj is the j-th diagonal element in the matrix Σi. The detail of the derivation is

given in Appendix A.3. Basically, the hyperparameters αi are interactively estimated
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and most of them will tend to infinity, which means most corresponding signal

elements are zero. Only the nonzero signal elements are estimated.

Considering the computation of the matrix inverse (with complexity O(n3))

associated with the process, the EM algorithm has a large computational cost. Even

though a Cholesky decomposition can be applied to alleviate the calculation [14][16],

the EM method still incurs a significant computational cost. We will provide an

incremental method for the optimization to reduce the computational cost.

4.4 Incremental Optimization

In this section, we utilize an incremental optimization to incorporate transferred

prior information and optimize the posterior function. Due to the inherit sparsity of

the signal, the incremental method finds the limited nonzero elements by separating

and testing a single index one by one, which alleviates the computational cost

compared with the EM algorithm. Note that the key principle is similar to that

of the fast relevance vector machine algorithm in [38]. However, the incorporation

of the hyperparameter λi brings significant difficulty for deriving the algorithm. For

convenience, we abbreviate αi as α and yi as y, because we are focusing on the

current signal estimation.

In order to introduce prior knowledge, the target log posterior function can be

written as

α = argmax
α

L(α)

= argmax
α

(
logP (y|α, β2)P (α|x)

)
= argmax

α

(
logP (y|α, β2) + logP (α|

{
sb
}
, λ)
)

= argmax
α

(L1(α) + L2(α)) (4.18)

where L1(α) is the signal estimation term from local observation and L2(α) introduces

information a priori from other external BCS procedures.
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In contrast to the complex EM optimization, the incremental algorithm starts by

searching for a nonzero signal element and iteratively adds it to the candidate index

set for the signal reconstruction, an algorithm which is similar to the greedy pursuit

algorithm. Hence, we isolate one index, assuming the j-th element, which is given by

L(α) = L(α−j) + l(αj)

= L1(α−j) + l1(αj) + L2(α−j) + l2(αj) (4.19)

where l1(αj) is the separated term associated with the j-th element from the posterior

function L(αi). The remaining term is L1(α−j), resulting from removing the j-th

index.

Initially, all the hyperparameters λj, j = {1, 2, ..., N} are set to zero. When

the transferred signal elements are zero, i.e. sbj = 0; j = {1, 2, ...N}, the updated

hyperparameters will also be zeros, i.e. λ̃ij = 0, j = {1, 2, ...N} according to Eq.

(4.12) and Eq. (4.14). This implies no prior information and the term L2(α) = 0

based on Eq. (4.8), which is equivalent to the original BCS algorithm[39][59].

Suppose that the external information from other BCS procedures is incorporated,

i.e., sbj ̸= 0, λ̃ij ̸= 0, and L2(α) ̸= 0. We target maximizing the separated term

by considering the remaining term L(α−j) as fixed. Then, the posterior function

separating a single index is given by

l(αj) = l1(αj) + l2(αj)

=
1

2

(
log

αj

αj + gj
+

h2j
αj + gj

)
+ log λj − λjαj

(4.20)

where,

gj = ϕT
j E

−1
−jϕj, (4.21)

hj = ϕT
j E

−1
−j y, (4.22)
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and

E−j = β2I +
∑
k ̸=j

α−1
k ϕkϕ

−1
k (4.23)

where ϕj is the j-th column vector of the matrix Φ. The detailed derivation is provided

in Appendix A. Then, we seek for a maximum of the posterior function, which is given

by

α∗
j = argmax

αj

l(αj) = argmax
αj

(l1(αj) + l2(αj)). (4.24)

When there is no external information incorporated, the optimal hyperparameter

is given by [39]

α⋆
j = argmax

αj

(l1(αj)), (4.25)

where

α⋆
j =


h2
j

g2j−hj
, if g2j > hj;

∞, otherwise.

(4.26)

When external information is incorporated, to maximize the target function

Eq.(4.20), we compute the first order derivative of l(αj), which is given by

l′(αj) =
gj

2αj(αj + gj)
−

h2j
2(αj + gj)2

− λj

=
f(αj, gj, hj, λj)

αj(αj + gj)2
, (4.27)

where f(αj, gj, hj, λj) is a cubic function with respect to αj. By setting Eq. (4.27) to

zero, we get the optimum α∗
j .
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By setting Eq.(4.27) to zero, we get the optimum solution for the posterior

likelihood function l(αj), which is given by

αj =

α
∗
j , if g2j > hj;

∞, otherwise.

(4.28)

The details are given in Appendix A.

Therefore, in each iteration only one signal element is isolated and the corre-

sponding parameters are evaluated. After several iterations, most of the nonzero

signal elements are selected into the candidate index set. Due to the sparsity of the

signal, after a limited number of iterations, only a few signal elements are selected

and calculated, which greatly increases the computational efficiency.

4.5 Case Study: Turbo Bayesian Compressed Sens-

ing for UWB Systems

The TBCS algorithm can be applied in various applications. A typical application

is the UWB communication/positioning system. Our proposed TBCS algorithm will

be applied to the UWB system to fully exploit the redundancies in both space and

time, which is called Space-Time Turbo BCS (STTBCS). In this section, we first

introduce the UWB signal model. Then, the structure to transfer spatial and temporal

prior information in the CS-based UWB system is explained in detail. Finally, we

summarize the STTBCS algorithm.

4.5.1 UWB System Model

In a typical UWB communication/positioning system, suppose there is only one

transmitter, which transmits UWB pulses on the order of nano- or subnano-seconds.

As shown in Figure 4.1, several receivers, or base-stations, are responsible for receiving
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the UWB echo signals. The time is divided into frames. The received signal at the

i-th base station and the k-th frame in the continuous time domain is given by

sik(t) =
L∑
l=1

alp
′(t− tl), (4.29)

where L is the number of resolvable propagation paths, al is the attenuation coefficient

of the l-th path, and tl is the time delay of the l-th propagation path. We denote

by p(t) the transmitted Gaussian pulse and by p′(t) the corresponding received pulse

which is close to the original pulse waveform but has more or less distortion resulting

from the frequency dependent propagation channels. At the same frame or time

slot, there is only one transmitter but multiple receivers which are nearby in the

environment. Therefore, the received echo UWB signals at different receivers are

similar at the same time, thus incurring spatial redundancy. In other words, the

received signals share many common nonzero element locations. Typically, around

30%-70% of the nonzero element indices are the same in one frame according to

our experimental observation [13]. In particular, no matter what kind of signal

modulation is used for UWB communication, such as pulse amplitude modulation

(PAM), on-off keying (OOK), or pulse position modulation (PPM), the UWB echo

signals among receivers are always similar, thus the spatial redundancy always exists.

In this case, the spatial redundancy can be exploited for good performance using the

proposed space TBCS algorithm.

In one base station, the consecutively received signals can also be similar. Suppose

that in UWB positioning systems the pulse repetition frequency is fixed. When the

transmitter moves, the signal received at the i-th base station and the (k + 1)-th

frame can be written as

si(k+1)(t) =
L′∑
l=1

a′lp
′(t− τ − tl), (4.30)
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Compared with Eq. (4.29), τ stands for the time delay which comes from the position

change of the transmitter. In high precision positioning/tracking systems, this τ is

always relatively small, which makes the consecutive received signals similar. Due to

the similar propagation channels, the numbers L and L′, as well as al and a
′
l are similar

in consecutive frames. This leads to the temporal redundancy. In our experiments,

about 10%-60% of the nonzero element locations in two consecutive frames are the

same[13]. Then, this temporal redundancy can be exploited for good performance by

using the Time TBCS algorithms. Actually, there exist both spatial and temporal

redundancies in the UWB communication/positioning system. Therefore we can

utilize the STBCS algorithm for good performance.

To archive a high precision of positioning and a high speed communication rate,

we have to acquire ultra-high resolution UWB pulses, which demands ultra-high

sampling rate ADCs. For instance, it requires pico-second level time information

and 10Gsample/s or even higher sampling rate ADCs to achieve millimeter (mm)

positioning accuracy for UWB positioning systems [14], which is prohibitively difficult.

UWB echo signals are inherently sparse in the time domain. This property can

be utilized to alleviate the problem of an ultra-high sampling rate. Then the

high resolution UWB pulses can be indirectly obtained and reconstructed from

measurements acquired using lower sampling rate ADCs.

The system model of the CS-based UWB receiver can use the same model as

that in Figure 4.2. The received UWB signal at the i−th base station is first

“compressed” using an analog projection matrix [20]. The hardware projection matrix

consists of a bank of Distributed Amplifiers (DA). Each DA functions like a wideband

FIR filter with different configurable coefficients [20]. The output of the hardware

projection matrix can be obtained and digitized by the following ADCs to yield

measurements. For mathematical convenience, the noise generated from the hardware

and ADCs is modeled as Gaussian noise added to the measurements. When several

sets of measurements are collected at different base stations, a joint UWB signal

reconstruction can be performed. This process is modeled in Eq. (4.1).
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Figure 4.4: Block diagram of space-time turbo Bayesian compressed sensing

4.5.2 STTBCS: Structure and Algorithm

We apply the proposed TBCS to UWB systems to develop the STTBCS algorithm.

Figure 4.4 illustrates the structure of our STTBCS algorithm and explains how mutual

information is exchanged. For simplicity, only two base stations (BS1 and BS2) and

two consecutive frames of UWB signals (the k-th and (k+1)-th) in each base station

are illustrated. For each BCS procedure, Figure 4.4 also depicts the dependence

among measurements, noise, signal elements, and hyperparameters.

In the STTBCS, multiple BCS procedures in multiple time slots are performed.

Between BS1 and BS2, the signal reconstruction for s1(k+1) and s2(k+1) are carried

out simultaneously while the information in s1k and s2k, the previous frame, is also

used.

Procedure 1 shows the details of the STTBCS algorithm. We start with the

initialization of the noise, hyperparameters α, and the candidate index set Ω (an

index set containing all possibly nonzero element indices). Then, the information
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from previous reconstructed signals and from other base stations are utilized to update

the hyperparameter λ. The term gj and hj are also computed. The term g2j > hj

is then used to add the j-th element from the candidate index set. A convergence

criterion is used to test whether the differences between successive values for any

αj, j = {1, 2, ..., N} are sufficiently small compared to a certain threshold. When the

iterations are completed, the noise level β will be re-estimated from setting ∂L
∂β

= 0

using the same method in [38], which is given by:

(β2)new =
∥y − ΣS∥2

N −
∑M

i=1(1− αiΣii)
, (4.31)

where Σii is the diagonal element in the matrix Σ. The details of the above STTBCS

algorithm are summarized in Procedure 2. Note that only the nonzero signal elements

from the local measurements can introduce prior information and thus update the

hyperparameter λ̃j. In other words, only if it satisfies g2j > hj can the parameter λ̃j

be updated. This avoids the adverse effects from wrong prior information to add a

zero signal element into the candidate index set.

4.6 Simulation Results

Numerical simulations are conducted to evaluate the performance of the proposed

TBCS algorithm, compared with the MBCS [61] and original BCS algorithms [59].

We use spike signals and experimental UWB echo signals [1] for the performance test.

The quality of the reconstructed signal is measured in terms of the reconstruction

percentage, which is defined as

1− ∥s− s̃∥2
∥s∥2

, (4.32)

where s is the true signal and s̃ is the reconstructed signal.
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Our TBCS algorithm performance is largely determined by how the introduced

signal is similar to the objective signal. In other words, we consider how many

common nonzero element locations are shared between the objective signal and the

introduced signals. Then we define the similarity as

Ps =
Kcom

Kobj

(4.33)

where Kobj is the number of nonzero signal elements in the objective unrecovered

signal; Kcom is the number of the common nonzero element locations among the

transferred reconstructed signals and objective signal; and Ps represents the similarity

level as a percentage. Note that, without loss of generality, we only consider the

relative number of common nonzero element locations to measure the similarity,

ignoring any amplitude correlation. Hence, when Ps = 100%, it does not mean

that the signals are the same but means that they have the same nonzero element

locations; the amplitudes may not be the same.

Our TBCS algorithm performance is compared with MBCS and BCS using

different types of signals, different similarity levels, noise powers, and measurement

numbers.

4.6.1 Spike Signal

We first generate four scenarios of spike signals with the same length N = 512,

which have the same number (20) of nonzero signal elements with random locations

and Gaussian distributed (mean=0, variance=1) amplitudes. One spike signal is

selected as the objective signal, as shown in Figure 4.5. With respect to the objective

signal, the other three signals have a similarity of 25%, 50%, and 75%, which will

be introduced as prior information. The objective signal is then reconstructed using

the original BCS, MBCS, and TBCS algorithms, respectively, with the same number

of measurements (M=62) and the same noise variance 0.15 (SNR≃6dB). We also
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investigate the performance gain (in terms of reconstruction percentage) at each

iteration.

Figures 4.6 and 4.7 show the reconstructed spike signal using MBCS and

TBCS, respectively, by introducing the spike signal with a similarity of 75%. The

reconstruction percentage using TBCS is 92.7% while it is 57.5% using MBCS. The

comparison of the two figures shows that TBCS can recover most of the original signal

while MBCS fails to reconstruct the signal with so few measurements (M=62) in spite

of using a high similarity signal as a priori information.

Figures 4.8, 4.9, and 4.10 show when transferred signals have a similarity of

25%, 50%, and 75%, respectively, how much signal reconstruction percentage can

be achieved at each iteration using the BCS, MBCS, and TBCS algorithms. The

simulations are run 100 times, over which the results are averaged. It is clear that

our proposed TBCS is much better than the BCS at each iteration. Particularly,

when the similarity is 25%, MBCS is worse than BCS while our TBCS achieves higher

performance at each iteration than BCS. For instance, at iteration 25 in Figure 4.8,

TBCS can achieve a reconstruction percentage of 61.7%, while BCS can reach 42.2%

and MBCS only recovers 35.6%. It shows that, at a low similarity, our TBCS can

still achieve good performance at every iteration, compared with MBCS and BCS.

Moreover, with a high similarity, the performance gap between TBCS and MBCS is

enlarged at each step. For example, at iteration 21 with a similarity of 25% in Figure

4.8, TBCS can achieve a reconstruction percentage of 59.7% while MBCS can reach

28.2%. Hence, the performance gap is 31.5%. When the similarity is 75% in Figure

4.10, the performance gap is increased to 50.9% because TBCS can reach 80.5% while

MBCS achieves 29.6% at the 21st iteration.

4.6.2 UWB Signal

The tested scenarios are the experimental UWB echo pulses from various UWB

propagation channels in practical indoor residential, office and clean, line-of-sight
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Figure 4.5: Spike signal with 20 nonzero elements in random locations
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Figure 4.6: Reconstructed spike signal using MBCS with 75% similarity
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Figure 4.7: Reconstructed spike signal using TBCS with 75% similarity
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Figure 4.8: Performance gain in each iteration with 25% similarity
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Figure 4.9: Performance gain in each iteration with 50% similarity
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Figure 4.10: Performance gain in each iteration with 75% similarity
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(LOS) and non-line-of-sight (NLOS) environments, which are drawn from ex-

perimental IEEE 802.15.4a UWB propagation models [1]. In a typical UWB

communication/positioning system where receivers are distributed in the same

environment, the received UWB echo signals are more or less similar. We test

the performance of the original BCS, TBCS, and MBCS algorithms with different

similarity levels.

Fig 4.11 shows the reconstructed UWB echo signals using the original BCS and

our TBCS algorithms. The test UWB echo signals S0 (not shown in Fig.4.11), S1,

S2, S3, and S4 are drawn from the IEEE802.15 UWB propagation model [1], in

which the reconstructed S0 is transferred to the other four signal scenarios. The

UWB echo signals S1, S2, S3, and S4 with length N=512 are reconstructed using

the BCS and TBCS algorithms but only a section (length=150) is shown. In the

TBCS algorithm, the reconstructed signal S0 (not shown) is transferred to other

signal reconstruction procedures. The number of measurements, SNR, similarity, and

reconstruction percentage are: (a)(b) measurements M=60; SNR=9.2dB; with respect

to S0, the similarity in S1 is 11.5%; the reconstruction percentages of S1 using BCS

and TBCS algorithms are 81.2% and 84.4%, respectively. (c)(d) M=60, SNR=17.7dB;

with respect to S0, similarity in S2 is 31.3%; the reconstruction percentages are

46.4% and 89.7%. (e)(f) M=50, SNR=12.4dB; 61.0% similarity; the reconstruction

percentages are 14.9% and 92.8%. (g)(h) M=70, SNR=15.1dB; 98.1% similarity; the

reconstruction percentages are -77.0% and 93.2%. With respect to S0, the similarity

levels in S1, S2, S3, and S4 are 11.5%, 31.3%, 61.0%, and 98.1%, respectively.

For each signal, both algorithms utilize the same number of measurements with

the same SNR level for reconstruction. For clarity, only a portion of the UWB

signal scenario is expanded to illustrate the waveform details of the reconstructed

pulses. It is clearly observed from Figure 4.11 that our TBCS is much better than

the original BCS for different similarity levels. The reconstruction percentages using

TBCS are much higher than using original BCS by introducing prior information

with the same number of measurements. Moreover, the performance gap is increasing

60



50 100 150
−1

0

1

(a) BCS reconstructed S1: 81.2%

50 100 150
−1

0

1

(c) BCS reconstructed S2: 46.4%

50 100 150
−1

0

1

(e) BCS reconstructed S3: 14.9%

50 100 150
−1

0

1

(g) BCS reconstructed S4: −77%

50 100 150
−1

0

1

(b) TBCS reconstructed S1: 84.4%

50 100 150
−1

0

1

(d) TBCS reconstructed S2: 89.7%

50 100 150
−1

0

1

(f) TBCS reconstructed S3: 92.8%

50 100 150
−1

0

1

(h) TBCS reconstructed S4: 93.2%

Figure 4.11: Performance of original BCS and TBCS

with the growth of the similarity level. For instance, with a similarity of 11.5% for

reconstructing the signal S1 in Figure 4.11 (a)(b), the difference of reconstruction

percentages using BCS and TBCS is only 3.2% (84.4%-81.2%). When the similarity

level is 98.1% for reconstructing the signal S4 in Figure 4.11 (g)(h), the difference is

increased to 170.2% (93.2%-(-77%)). Therefore, with a higher similarity level, higher

performance gain can be achieved.

The performance of the original BCS, MBCS, and TBCS at different similarity

levels are then compared. We select three UWB echo signals S5, S6, and S7 with

the same dimension N = 512. The additive noise variance is only 0.01, implying

a very high SNR. The reconstructed signals S6 and S7 as a priori information are
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Figure 4.12: Performance comparison at different similarity levels without noise.

transferred to the signal reconstruction for S5. With respect to S6 and S7, the

similarities in S5 are 16.3% and 64.4%, respectively. The signal S5 is recovered

with different numbers of measurements using the original BCS, TBCS, and MBCS

algorithms. Figure 4.12 shows the reconstruction percentages versus the number of

measurements for the signal S5. Obviously, at a low similarity level, the MBCS

performance is substantially worse than the original BCS whereas our TBCS achieves

a performance equaling that of the original BCS performance. For a high similarity

level, both MBCS and TBCS are much better than the original BCS due to the

benefits of high similarity transferred from the signal S7. This demonstrates that our

TBCS achieves a good balance between local observations and a priori information,

leading to a more robust performance than the MBCS.

In the presence of more noise interference, our TBCS still outperforms MBCS and

BCS, as shown in Figure 5.6. We use the same signals S5, S6, and S7 but the noise

variance is increased to 0.4. We observe that our TBCS exhibits good performance

as shown in Figure 4.12. Particularly in the presence of noise, when the number of

measurements is large enough (M > 150). At a low similarity level, the MBCS can

62



60 70 80 90 100 110 120 130 140 150 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Measurements

R
ec

on
st

ru
ct

io
n 

P
er

ce
nt

ag
e

 

 

Original BCS
TBCS,16.6% similarity
MBCS,16.6% similarity
TBCS,66.1% similarity
MBCS,66.1% similarity

Figure 4.13: Performance comparison at different similarity levels in the presence of
noise

achieve a maximum reconstruction percentage of 74.5% while our TBCS algorithm

is able to accomplish a maximum reconstruction percentage of 86.9%. At a high

similarity level, MBCS can reach a maximum of 80.1% while our TBCS algorithm

is still able to accomplish a maximum of 86.9%. Therefore, by introducing prior

information, the proposed TBCS algorithm can significantly reduce the number of

measurements and improve the capability of combating noise.

Fig. 4.14 shows the Bit Error Rate (BER) for an example UWB communication

system using different algorithms. We utilize Binary Phase Shift Keying (BPSK)

modulation to transfer the data since bi-phase modulation is one of the easiest

methods to implement. The performance of the TBCS, MBCS, and the original

BCS algorithms are compared for the UWB communication system. The BER is

tested using different noise levels with the same number of measurements (M = 112).

With so few measurements, using the BCS algorithm leads to a high BER at different

SNR. It is also observed that, at a low similarity level, the TBCS performance is much

better than the MBCS algorithm. At a high similarity level, the BER performance

using the TBCS and MBCS algorithms are much better than using the original BCS
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Figure 4.14: BER performance using different algorithms

algorithm, while TBCS is the best. Therefore, by applying our TBCS algorithm in

the UWB communication system, it can reduce the BER, provide more tolerance of

the noise, and thus achieve the best performance when compared with the MBCS

and BCS algorithms.

We presented a Turbo Bayesian CS algorithm in this chapter for general joint

signal reconstruction. In the next chapter, the developed TBCS algorithm will be

applied to the UWB positioning system to reduce sampling rates for high positioning

accuracy.
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Procedure 1 Space-Time Turbo Bayesian Compressed Sensing Algorithm

1: The hyperparameter α is set to α = [∞, ...,∞].
The candidate index set Ω = ∅.
The noise is initialized to a certain value without any prior information, or utilize
the previous estimated value.
The parameter of the hyperparameter λ : λ = [0, ..0];

2: Update λ using Eq.(4.12) and (4.14) from the previous reconstructed nonzero
signal elements. This introduces temporal prior information.

3: repeat
4: Check and receive the ongoing reconstructed signal elements from other

simultaneous BCS reconstruction procedures to update the parameter. λ; this
is to fuse spatial prior information.

5: Choose a random j-th index; Calculate the corresponding parameter gj and hj
as shown in Eq.(A.22) and (A.23).

6: if (gj)
2 > hj and λ̃j ̸= 0 then

7: Add a candidate index: Ω = Ω ∪ j;
8: Update αj by solving Eq.(4.27).
9: else
10: if (gj)

2 > hj and λ̃j = 0 then
11: Add a candidate index: Ω = Ω ∪ j
12: Update αi using Eq.(4.26).
13: else if (gj)

2 < hj then
14: Delete the candidate index: Ω = Ω\{j} if the index is in the candidate

set.
15: end if
16: end if
17: Compute the signal coefficients sΩ in the candidate set using Eq.(4.6).
18: Send out the ongoing reconstructed signal elements sΩ to other BCS procedures

as spatial prior information.
19: until converged
20: Re-estimate the noise level using Eq.(4.31) and send out the noise level for the

next usage.
21: Send out the reconstructed nonzero signal elements for the next time utilization

as temporal prior information.
22: Return the reconstructed signal.
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Chapter 5

Applications of Joint BCS

Algorithm

5.1 Background and Motivation

Ultra-wide band (UWB) technology, taking advantage of large transmission band-

width, low power consumption, and simple transceiver architecture, has been widely

applied in many applications, such as UWB communications, wall penetrating radar

[13] and vehicle positioning. Particularly, due to the extremely short duration of the

transmitted pulse, the UWB pulse can be utilized for indoor high precise positioning

navigation systems. The ultra-short pulse, typically on the order of nano- or subnano-

second width, can provide very precise timing information (e.g., pico-second level)

for a millimeter (mm) or sub-mm precision positioning system. On one hand, the

duration of the pulse is inversely proportional to the positioning accuracy: the

shorter the duration of the pulse is, the higher positioning precision can be achieved

[13][45]. On the other hand, it brings a primary challenge of acquiring the high

resolution narrow duration pulse. For instance, in order to realize a millimeter
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accuracy UWB positioning system, we should have the capability to acquire pico-

second level timing resolution∗. However, such an ultra-high sampling rate ADC is

either extremely expensive or commercially unavailable, which is the main problem

for UWB positioning systems to achieve an ultra high position accuracy.

In order to alleviate the sampling problem, a sequential sub-sampler is utilized

[13] to acquire ultra-high timing resolution UWB pulses by using a low sampling

rate ADC. However, such a sequential sub-sampler suffers from many problems.

One is that the speed is very slow, so it is not suitable for tracking fast moving

targets. The positioning accuracy is seriously decreased when the target is moving.

The asynchronous clocks between the tag and the receivers prevents the UWB

positioning system from achieving a higher accuracy. In order to achieve an ultra-

high positioning accuracy in high speed, we seek to find an approach for real-time

ultra-high speed sampling with low sampling rate ADCs. CS theory [27] has been

applied to UWB systems acquiring high resolution pulses below the Nyquist sampling

rate [30] [76][20][12][19][15]. However, we seek to develop a joint CS reconstruction

algorithm for UWB positioning systems.

A typical CS-based UWB positioning system is shown in the previous chapter

in Fig. 4.1. A moving UWB pulse transmitter, called the tag, periodically sends

out ultra-short duration pulses (about 300-ps duration) at a certain frequency.

Surrounding the tag, multiple receivers, called base stations (BS), are responsible

for receiving the transmitted pulses. The received UWB signals are compressed

using some analog circuits, such as transversal filters in [20], to yield measurements

by mixing the original signal. The measurements are acquired and digitized using

a low sampling rate ADC. From the measurements, the high resolution UWB

signals at different base stations can be jointly reconstructed using our proposed

CS reconstruction algorithm. From the reconstructed signal, the pulse arrival time

information is obtained. We connect and synchronize clocks at base stations through

∗Assuming the UWB pulse propagation speed is the speed of light, i.e., c = 3 × 108m/s. Then
the time delay for UWB pulses propagating 1mm is about 3ps. ( 1mm

3×108(m/s) ≈ 3ps)
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wires such that the time differences of pulses arriving at different base stations reflect

the geometrical difference. Hence, the position of the tag can be calculated using the

Time Difference Of Arrival (TDOA) algorithm.

In this chapter, we propose a novel front-end scheme for a high precision CS-based

UWB positioning system. Focusing on the properties of the UWB positioning system,

we developed a joint Bayesian Compressed Sensing (BCS) signal reconstruction

algorithm, which is tightly integrated with the TDOA algorithm for fast tag

tracking. The key idea in the proposed scheme is to utilize the spatial and temporal

redundancies existing in received UWB signals among base stations. In one base

station, the received UWB echo signals are similar in time because the tag moves very

slowly compared with the pulse repetition frequency, which results in the temporal

redundancy. Among different base stations, the received UWB echo signals are also

similar, which yields spatial redundancy.

At the end of this chapter, numerical simulation results investigate the perfor-

mance of the proposed STBCS algorithm compared with the traditional OMP, BCS,

and MBCS algorithms using UWB echo signals drawn from the IEEE802.11b UWB

standards [1]. With a few measurements, our STBCS algorithm can achieve a good

reconstruction percentage while other algorithms fail to reconstruct signals. Also our

STBCS algorithm has the best ability to combat noise. Moreover, in the CS-based

UWB positioning system, the STBCS-TDOA algorithm is able to calculate the tag

position at each iteration before the signal is fully reconstructed. Finally, simulation

shows that UWB positioning systems using our proposed STBCS-TDOA algorithm

can achieve much higher accuracy than the traditional sequential sampling method.

The remainder of this chapter is organized as follows. The signal model of the

CS-based UWB positioning system is formulated and introduced in Section 5.2.

The STBCS algorithm is detailed in Section 5.3 for joint BCS signal reconstruction

procedures. In Section 5.4, the STBCS-TDOA algorithm for integrating STBCS with

TDOA for UWB positioning systems is discussed. Simulation results in Section 6.6
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demonstrate the performance of the proposed STBCS-TDOA algorithms compared

with other CS algorithms and UWB positioning systems.

5.2 UWB Positioning System Model

5.2.1 UWB Signal Model for Positioning

The UWB pulse is periodically transmitted from the tag. After propagating through

multi-path UWB channels, the signal, ui(t), received at the i-th base station in the

continuous time domain is given by

ui(t) =
M∑

m=1

amp
′(t− tim), (5.1)

where we denote by p(t) the transmitted Gaussian pulse, p′(t) the received distorted

pulse resulted from frequency-dependent propagation channels, M the number of

resolvable propagation paths, am the amplitude attenuation of the signal along the

m-th path, and tim the time delay of the m-th path at the i-th base station.

We assume the UWB positioning system is in a clean line-of-sight (LOS)

propagation environment. In such an environment, the first arriving pulse is always

the transmitted pulse which goes through the shortest propagation path, having the

largest amplitude and power and indicating the pulse arrival time [1][13][69]. We

assume that the signal element with the maximum amplitude represents the UWB

pulse peak. Also, the time location of the pulse peak indicates the pulse arrival

time. Therefore, we need to detect the time index of the element with the maximum

amplitude in order to determine the arrival time of the pulse for localizing the position

of the tag.

In order to handle the asynchronous problem between the tag and base stations,

we calculate the time difference of the pulse arriving at different base stations. Among

the base stations, the time difference τji is obtained when the pulses arrive at the j-th
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and i-th base stations, which is given by

τji = (tj1 − ti1), (5.2)

where tj1 represents the time when the first pulse arrivals at the j-th base station. In

a clean LOS environment, the first arrival pulse always has the maximum amplitude

due to the shortest propagation path. tj1 can be regarded as the time index of the

signal element with the maximum amplitude in the digital domain. Similarly, ti1

represents the first pulse arrival time at the i-th base station. The time difference

τji implies the distance difference information. When multiple time differences are

collected from the received UWB signals at several base stations, the position of the

tag can be calculated and the asynchronous problem is removed by using the TDOA

algorithm [13][45].

Obviously, the key to precision in UWB positioning systems is to obtain accurate

pulse arrival times. In order to acquire the fine timing information, we apply CS

theory in the UWB positioning system for acquiring high resolution UWB signals

using low sampling rate ADCs.

5.2.2 Compressed Sensing UWB Signal Acquisition

The CS-based UWB positioning system is illustrated in Fig. 5.1. Since the pulse

repetition frequency is fixed, we define one pulse repetition period as one frame.

At the k-th frame and in the i-th BS, the received signal uik is firstly compressed

by using a hardware projection matrix Φi, (Φi ∈ RM×N). A possible analog

hardware implementation scheme of the projection matrix can be found in [20]. The

measurement vector yik is given by

yik = Φiuik + ϵik, (5.3)
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where ϵik is additive white Gaussian noise with unknown but stationary power βik.

By assuming that βik is identical for all i and k, we abbreviate βik into β for

convenience. In a certain time interval, the analog measurement can be obtained by

the subsequent ADC, which forms an M -dimensional measurement vector vik. Then

the N -dimensional sparse UWB signal uik at the i-th BS can be recovered from the

M -dimensional measurement vector yik using CS signal reconstruction algorithms.

Since the UWB signal uik is inherently sparse, we haveM ≪ N so that the sampling

rate to obtain the measurements yik is much slower than that to obtain the signal

uik directly. The sampling rate to obtain measurements SM is given by

SM =
M

N
× 1

∆N

=
M

N
× SN = Cr × SN , (5.4)

where ∆N is the time resolution of the reconstructed N -dimensional signal vector,

which is the inverse of the sampling rate SN for direct signal acquisition; and Cr is the

compression ratio, Cr =
M
N

= SM

SN
. The compressed ratio represents the reduction of

the sampling rate by applying the CS theory compared with direct signal acquisition.

In UWB positioning systems, the received signals are correlated, which provides

spatial and temporal redundancies. Without loss of generality, we do not specify

the correlation model because the correlation varies for UWB positioning systems in

different propagation environments. Based on many experimental observations, we

found the received signals at different frames and different base stations many nonzero

signal elements share the same time locations[13][45]. The correlation is measured by

the similarly level, which is defined as

Ps =
Kcom

Kobj

(5.5)

where Kobj represents the total number of nonzero signal elements in the objective

unrecovered signal, Kcom is the number of common nonzero element locations among

the transferred reconstructed signals and objective signal, and Ps means the similarity
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Figure 5.1: Compressed sensing UWB positioning system

level as a percentage. Note that, when Ps = 100% it does not mean that the signals

are the same but that they have the same nonzero element locations; the amplitudes

may not be the same.

For notational simplicity, we utilize a superscript to represent temporal and spatial

indices and a subscript to denote the element index in the vector. We denote uik

as the received signal vector at the i-th base station and the k-th time frame. It is

abbreviated as u without considering the spatial and temporal index for representing

a single vector. uikj is the j-th signal element in the vector uik, which has uik =

{uikj }Nj=1. This notation is also applied into other letters. y,yik, yikj are abbreviated

as y. Similar notation is used for the Φ and α.

5.3 Space-Time Bayesian Compressed Sensing

In this section, we develop a joint signal reconstruction algorithm, namely the STBCS

algorithm, to exploit and integrate space-time prior information for the CS-based

UWB positioning system. The framework of the BCS algorithm is first introduced.

We then detail how to utilize the gamma prior imposed on the exponentially

distributed hyperparameters to yield prior information, which is the key in our STBCS
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algorithm. The transferred reconstructed signal elements will impact the parameters

which control the exponential distribution of the hyperparameters α, yielding prior

information. Next, a flexible structure to transfer mutual spatial and temporal prior

information is explained in detail. Our STBCS algorithm can be utilized for exploiting

and integrating spatial, temporal, and space-time information a priori for the best

performance.

5.3.1 Bayesian Compressed Sensing

The key of the BCS [59] and relevance vector machine (RVM) algorithms [39] is to

impose an exponentially distributed hyperparameter on each signal element. The

BCS theory and algorithms have been detailed in previous chapters and ignored here.

5.3.2 Transfer Prior Information

In this chapter, we are using the Gamma prior [59], which is imposed on the

hyperparameter αik with parameters aik and bik. By assuming independent

distribution, we have the gamma prior distribution, which is given by

P (αik|aik, bik)

=
N∏
j=1

Γ(αik
j |aikj , bikj )

=
N∏
j=1

(bikj )
aikj (αik

j )
(aikj −1) exp(−bikj αik

j )

Γ(aikj )
, (5.6)

where aikj and bikj are the parameters controlling the hyperparameter αik
j distribution

for the j-th signal element in the i-th BCS procedure at the k-th frame.

In order to bridge the mutual information transfer among different BCS proce-

dures, we assume that, for different i and k they share the same hyperparameter,

which has

Assumption 1. ∀i, k, assume αik
j = αj.
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Now assume we have the j-th reconstructed signal element, e.g., ucdj from the c-th

BCS procedure at the d-th frame. The problem is how to transfer prior information

through updating the parameters aikj and bikj based on the signal element ucdj .

Based on the above assumption, we can integrate the hyperparameter αj out:

P (ucdj |aikj , bikj )

=

∫
P (ucdj |αj)P (αj|aikj , bikj )dαj

=
(bikj )

aikj Γ(aikj + 1
2
)

(2π)
1
2Γ(aikj )

(
bikj +

(ucdj )2

2

)−(aikj + 1
2
)

, (5.7)

where Γ(·) is the gamma function, defined as Γ(x) =
∫∞
0
tx−1e−tdt. The derivation

is detailed in Appendix A. In particular, when aikj = 2bikj , it becomes a student-

t distribution where aikj is the number of degrees of freedom. Here, the parameters

aikj , b
ik
j play the key to transferring prior information. The transferred information will

change the parameters aikj , b
ik
j , which will impact the corresponding hyperparameter

and the signal element.

Given the transferred signal element ucdj , we can update the parameters aikj and

bikj to bring prior information in the i-th BCS procedure. We have

âikj = argmax
aikj

n∏
c,d=1

P (ucdj |aikj , bikj ) (5.8)

b̂ikj = argmax
bikj

n∏
c,d=1

P (ucdj |aikj , bikj ). (5.9)

However, it is not easy to estimate the parameters by maximizing the likelihood

function. Alternatively, based on Bayes theory, we utilize the posterior to update the
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parameters, which is given by

P (αj|ucdj , aikj , bikj ) (5.10)

=
P (ucdj |αj)P (αj|aikj , bikj )∫
P (ucdj |αj)P (αj|aikj , bikj )dαj

=

(
b̃ikj

)ãikj
(αj)

(ãikj −1) exp
(
−b̃ikj αj

)
Γ(ãikj )

. (5.11)

By comparing Eq. (A.11) with Eq. (5.6), we have the updated parameters, which

are given by

ãikj = aikj +
1

2
(5.12)

b̃ikj = bikj +

(
ucdj
)2

2
. (5.13)

Based on the signal element ucdj , the parameters aikj and bikj are updated to ãikj

and b̃ikj . Obviously, the posterior is still the gamma distribution, which provides

convenience for parameter updating. This is the reason why we utilize the gamma

priors to transfer mutual prior information.

When multiple reconstructed signal elements are transferred, e.g., uc1j , u
c2
j , and

ucnj , the parameters are updated to

ãikj = aikj +
n

2
(5.14)

b̃ikj = bikj +

∑n
i=1(u

ci
j )

2

2
. (5.15)

The derivations of above equations are detailed in Appendix A.6.

Therefore, based on the given signal elements transferred from other BCS

procedures, parameters are updated to introduce the prior information into the

current BCS procedure. Note that, initially, the parameters aikj and bikj are set to zero,

implying no prior information, which is equivalent to the original BCS algorithm.
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If and only if the transferred signal elements are nonzero, the parameters will be

updated. Furthermore, we develop a space-time structure for exploiting and utilizing

prior information.

5.3.3 Space-Time Structure

In the CS-based UWB positioning system, the joint BCS signal reconstruction

procedures are performed both in parallel and in serial. In order to exploit spatial,

temporal, or space-time prior information, we develop a flexible space-time structure

for the STBCS algorithm. At one base station, the temporal prior information can be

exploited and utilized for signal reconstruction in the time sequence, which is namely

the Time BCS (TBCS) algorithm. At the same time among several base stations,

spatial prior information can also be transferred for joint signal reconstruction in

parallel, which is the Space BCS (SBCS) algorithm. In CS-based UWB positioning

system, our STBCS algorithm can exploit and fuse the space-time prior information

for the best performance.

Fig. 5.2 shows the structure to transfer space-time prior information in the

STBCS algorithm. For simplicity, we only show three base stations (BS1, BS2,

and BS3). Only the BCS signal reconstruction procedures at the k-th frame in

each BS are illustrated. On one hand, temporal prior information is transferred

by using the TBCS algorithm. In BS1, for example, the BCS procedure is performed

for reconstructing the signal u1k and u1(k+1) in serial at the k and (k + 1)-th

frames. Then the reconstructed signal u1k is forwarded to the next frame to update

hyperparameters a1(k+1) and b1(k+1) in the (k + 1)-th frame. It is the same in BS2

and BS3 by using the TBCS algorithm. On the other hand, mutual spatial prior

information is transferred in parallel using the SBCS algorithm. At the k-th frame,

BCS procedures for reconstructing u1k, u2k and u3k are performed simultaneously.

For BS1, the ongoing reconstructed u1k can be transferred to BS2 and BS3 to update

hyperparameters a2k and b2k, as well as a3k and b3k. Similarly, the information can
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Figure 5.2: Space-time structure for the STBCS algorithm

be also transferred from BS2 to BS3 and BS1, and from BS3 to BS1 and BS2. All

together, space-time prior information can be transferred and utilized both in serial

and in parallel, which is called the Space-Time BCS (STBCS) algorithm.

5.4 STBCS-TDOA Joint Signal Processing

In this section, we develop a joint STBCS-TDOA algorithm for the CS-based UWB

positioning system. The transferred prior information is integrated into the STBCS

signal reconstruction procedure. Along with the TDOA algorithm, the iterative

STBCS-TDOA algorithm is able to compute the tag position at each iteration even

though the received UWB signal is not fully reconstructed. We first discuss how

to select the nonzero signal element which is most likely the pulse peak based on

the incremental optimization method. Then given the transferred prior information

and measurements, we will discuss how to fuse the prior information into the signal
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reconstruction procedure. Next, based on the obtained pulse peak location and

pulse arrival time, the TDOA algorithm can calculate the position of the tag.

Finally, the procedure and structure of the proposed STBCS-TDOA algorithm will

be summarized. Since the current signal reconstruction is performed at the i-th base

station and the k-th frame, for convenience we abbreviate uik, yik, and αik into u, y,

and α, respectively.

5.4.1 Estimate the Pulse Peak Location

The incremental optimization method will sequentially find and select one nonzero

signal element in each iteration. How can we estimate the largest signal element for

determining the pulse arrival time?

The key step of the BCS signal reconstruction algorithm is to estimate the

hyperparameters A by maximizing the marginal log-likelihood function [39][59]. The

incremental optimization method separates one index from the target function, e.g.,

the j-th element, which is given by

L(α) = log p(y|α, β)

= log

∫
P (y|u, β)P (u|α)du

= −1

2
(Nlog2π + log|E|+ yTE−1y)

= L−j(α) + l(αj), (5.16)

The derivation details are shown in Appendix A. Actually, at the beginning

iterations, we have a pool of candidate indices which correspond to possible nonzero

signal elements. Based on Appendix A, we define the candidate index set Λ, which

is given by 
αj =

h2
j

g2j−hj
, g2j − hj > 0; if j ∈ Λ

αj =∞, g2j − hj ≤ 0; if j /∈ Λ

(5.17)

where the details about the terms gj and hj are shown in Appendix A.
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Then one index in Λ will be selected and added into the nonzero signal index Ω,

e.g., the αj. The signal elements in Ω with the new element will be estimated. The

next iteration, we will recalculate parameters gj, hj, j = {1, 2, ...N} and form a new

candidate index set Λ. Another new index will be selected from Λ and added into

Ω. This process will be repeated until all nonzero signal elements are found after a

limited number of iterations.

Traditionally, the index is randomly selected and added from the candidate index

set Λ into the nonzero index set Ω each iteration. However, for our BCS-based

UWB positioning system, instead of a random choice, we hope to find the nonzero

signal element which is most likely the maximum signal element, indicating the peak

location. Hence the pulse arrival time can be estimated without waiting until the

signal is fully reconstructed. For this purpose, we propose the following Proposition

about how to select an index from the candidate index set Λ.

Proposition 1. During a given iteration, the estimated signal based on the current

nonzero signal index Ω is denoted as ũ. Then the j-th hyperparameter αj in the

current index set Λ which can maximize the marginal log-likelihood function L(α) is

also able to minimize the term (∥y∥ − yTΦũ), which is given by

[j] = arg max
αj ,j∈Λ

(L(α))

= arg min
αj ,j∈Λ

(∥y∥ − yTΦũ). (5.18)

Proof. Proposition 1 bridges between the selected αj and the signal element uj by

decomposing the log-likelihood function L(α). The derivation details are shown in

Appendix A.

Therefore, in each iteration the index in the candidate index set which can

maximize the target function L(α) will be selected into the nonzero signal index

set Ω for signal reconstruction. The selected index and its corresponding signal

element most likely has the largest amplitude, which indicates the pulse peak.
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Therefore, we can estimate the pulse arrival time even though the signal is not fully

reconstructed. Essentially, our STBCS-TDOA algorithm is like a greedy algorithm,

where the nonzero signal element which has the most impact on the measurements

will be estimated first to minimize the residual. Note that the index selection is only

based on local measurements, but the estimation of the hyperparameter αj with the

selected index j should be based on both local measurements and transferred prior

information.

5.4.2 Fusing Prior Information

When the selected αj is estimated, we consider fusing the transferred prior informa-

tion, if available. Then the target log-likelihood function is given by

L(α) = logP (y|α) + logP (α|ã, b̃))

= L−j(α) + l(αj), (5.19)

where the first term logP (y|α) is only about local measurements. The second term

logP (α|ã, b̃)) introduces the transferred prior information with updated parameters

ã, b̃.

In order to estimate the selected αj, we maximize the posterior function, which is

given by

l(αj) =
1

2

(
log

αj

αj + gj
+

h2j
αj + gj

)
+ aj logαj − bjαj,

(5.20)

where the terms gj and hj are shown in Appendix A.
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The first derivative of Eq. (5.20) is given by

l′(αj) =
gj

2αj(αj + gj)
−

h2j
2(αj + gj)2

+
aj
αj

− bj

=
f(αj, gj, hj, aj, bj)

αj(αj + gj)2
, (5.21)

where f(αj, gj, hj, aj, bj) is a cubic function of the hyperparameter αj. By setting Eq.

(A.29) to zero, we obtain the optimum estimation α∗
j , which is given by

argmax
αj

L(α) =

α
⋆
j , if g2j − hj > 0;

∞, otherwise.

(5.22)

The detailed derivations are given in Appendix A.8. Actually, the optimal

hyperparameter is not only based on the local measurements but also takes advantage

of the transferred prior information. Optimizing the posterior function Eq. (5.20)

provides a soft way to balance the measurements and transferred prior information

for estimating the hyperparameters α. Based on the estimated hyperparameters, the

signal elements can be reconstructed each iteration. The pulse peak is detected so

that the pulse arrival time is obtained. The TDOA algorithm is used for localizing

the tag each iteration.

5.4.3 TDOA Algorithm

Let (xi, yi, zi), i = 1, 2, ...I be the known position coordinates of the i-th base station.

Let (xt, yt, zt) be the unknown tag location. The distance from the i-th base station to

the tag is denoted by Di. Then, between the 1st and i-th base station, the difference

of the pulse arrival time τ1i can be obtained from the received UWB signal using Eq.

(5.2). The range difference D1i is given by

τ1i = cD1i, i = 2, 3, ...I, (5.23)
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and

D1i =
√
(x1 − xt)2 + (y1 − yt)2 + (z1 − zt)2

−
√

(xi − xt)2 + (yi − yt)2 + (zi − zt)2, (5.24)

where c is the propagation speed. Taking the derivative on both sides of the equation,

we have

dD1i =
(xi − xt)dxt + (yi − yt)dyt + (zi − zt)dzt√

(xi − xt)2 + (yi − yt)2 + (zi − zt)2

−(x1 − xt)dxt + (y1 − yt)dyt + (z1 − zt)dzt√
(x1 − xt)2 + (y1 − yt)2 + (z1 − zt)2

. (5.25)

For the i-th base station with respect to the 1st base station, the matrix is given by
dD12

dD13

...

dD1i

 =


α11 α12 α13

α21 α22 α23

...
...

...

αi1 αi2 αi3



dxt

dyt

dzt

 , (5.26)

where, we have

αi1 =
x1 − xt
D1

− xi − xt
Di

(5.27)

αi2 =
y1 − yt
D1

− yi − yt
Di

(5.28)

αi3 =
z1 − zt
D1

− zi − zt
Di

. (5.29)

TDOA computation starts with an initial guess position of the tag, (x̂t, ŷt, ẑt). By

iteratively updating and solving Eq. (5.26), TDOA will gradually converge to the

true position. The computation continues until the error is below a certain threshold,

82



which is given by

Er =
√
(dxt)2 + (dyt)2 + (dzt)2. (5.30)

Note that the TDOA algorithm relies heavily on the initial position. If the

initial guess is far away from the true position, more iterations and computations

are needed. Then we develop the STBCS-TDOA algorithm, which is able to output

the approximate position of the tag each iteration so that the TDOA algorithm has

a good initial position.

5.4.4 Joint STBCS-TDOA Algorithm

The proposed STBCS-TDOA algorithm for our UWB positioning system is described

in Procedure 2. The temporal and spatial prior information among different base

stations is exploited and utilized in the STBCS algorithm. At each iteration, the

information about the pulse arrival time is forwarded to the TDOA algorithm for fast

calculation of the tag position.

The STBCS-TDOA algorithm is performed in a parallel pipeline mode for the

best performance, as shown in Fig. 5.3. Traditionally, the pulse arrival time cannot

be obtained until the UWB echo signal is fully reconstructed. This serial mode

needs substantial computation time because both the STBCS signal reconstruction

and TDOA algorithms are computationally expensive. Our parallel STBCS-TDOA

algorithm is able to calculate the position of the tag each iteration while the UWB

signal reconstruction procedures are ongoing. It is based on the fact that the

acquisition of the pulse arrival time does not require a full signal recovery. Even

though the pulse arrival time is not accurate when the signal is far away from being

well reconstructed, the approximate value will help the TDOA converge quickly.
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5.5 Simulation Results

Numerical simulations are conducted to investigate the performance of the STBCS-

TDOA algorithm in the CS-based UWB positioning system. The tested UWB signals

are drawn from the experimental IEEE 802.15.4a UWB propagation standards [1].

We first demonstrate the performance of the STBCS algorithm for UWB signal

reconstruction with different compression ratios and different noise levels. The

positioning performance of using the STBCS, OMP, and BCS algorithms is then

compared in the CS-based UWB positioning system. Finally, in a 3D scenario, our

CS-based UWB positioning system using the proposed STBCS algorithm is compared

with the UWB positioning system using the traditional sequential sampling method.

The quality of the reconstructed signal is measured in terms of the reconstruction

percentage, which is defined as

Pr = 1− ∥u− ũ∥2
∥u∥2

, (5.31)

where u is the true signal and ũ is the reconstructed signal. Recall that the

compression ratio is defined as Cr = M
N

= SM

SN
, which means how many sampling

rate is reduced for obtaining measurements compared with the sampling rate for

direct signal acquisition.

5.5.1 UWB Signal Reconstruction

Fig. 5.4 compares the reconstructed UWB echo signals in the time domain using the

original BCS and our STBCS algorithm. Four scenarios of UWB echo signals, U0

(not shown in Fig. 5.4), U1, U2, and U3 are utilized for testing performance, where

the reconstructed U0 is utilized as prior information for UWB signal reconstruction.

U0, U1, U2, and U3 have different similarity levels. For clarity, only a small section

(N=200) of all the UWB signals (N=512) are shown to illustrate the reconstructed

waveforms. Four scenarios of UWB signals, U0, U1, U2, and U3, are reconstructed
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using both algorithms under the same number of measurements and SNR. In detail,

(a) and (b) compare the reconstructed signal U1 using BCS and STBCS with the

same measurements M = 60, Cr ≈ 0.12 and SNR=9.2dB; with respect to U0, the

similarity in U1 is 31.5%. The reconstruction percentages of U1 using the BCS and

STBCS algorithms are 84.2% in (a), and 90.4% in (b), respectively. (c) and (d)

compare the reconstructed signal U2 using BCS and STBCS with M = 60, Cr ≈

0.12 and SNR=17.7dB; with respect to U0, the similarity in U2 is 67.3%. The

reconstruction percentages are 68.4% for BCS and 91.7% for STBCS. (e) and (f)

compare the reconstructed signal U3 with M = 60, Cr ≈ 0.1, SNR=12.4dB. The

similarity level in U3 is 87.0%. The reconstruction percentages are -10.9% for BCS

and 93.57% for STBCS. Obviously, it is observed that the reconstruction percentages

are increasing with the growth of the similarity level. For instance, in (a) and (b)

with a similarity of 11.5% for U1, the performance gap using BCS and STBCS is

only 6.2% (90.4%-84.2%). In (c) and (d), when the similarity level is 98.1%, the

performance gap increases to 23.3% (91.7%-(68.4%)). In (e) and (f), it increases to

104.4% (93.5%-(-10.9%)). This because that a higher similarity level implies more

useful prior information, which is helpful to improve the performance. Therefore, our

STBCS is much better than the original BCS. The higher the similarity level is, the

better performance is gained in the STBCS algorithm.

Fig. 5.5 shows the performance comparison of the original BCS, OMP, MBCS, and

STBCS algorithms for reconstructing the same UWB signal at different compression

ratios. The tested UWB signal is denoted as U5 (N=512), which will be reconstructed

with a different number of measurements under the same level noise with a high

SNR (SNR ≈ 24dB). In the original BCS and OMP algorithms, there is no prior

information introduced for reconstructing the signal U5. We test the performance, in

terms of reconstruction percentage, by introducing spatial, temporal, and space-time

prior information. The experiment is run 100 times and results are averaged. Since

the MBCS algorithm is for parallel multitask signal reconstruction, our spatial BCS

(SBCS) algorithm is compared with MBCS by introducing spatial prior information.
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Figure 5.4: Comparison of the reconstructed UWB echo signals, U1, U2, and U3
using BCS in (a), (c), and (e) and STBCS in (b), (d), and (f).
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In the MBCS and SBCS algorithms, we introduce the UWB signal U6 as spatial

prior information for recovering U5. The signal reconstruction for U5 and U6 is

performed in parallel in both algorithms with the same number of measurements.

With respect to U6, the similarity in U5 is 33.6%. At the same compression

ratio, it is observed that both STBCS and MBCS algorithms are much better than

the BCS and OMP algorithms. Our STBCS algorithm outperforms the MBCS

algorithm at a low similarity level. Also, another reconstructed signal scenario U7

is utilized as temporal prior information and transferred into the STBCS algorithm

for reconstructing the signal U5. The similarity in U5 is 66.1% with respect to

U7. Next, the unreconstructed signal U6 and reconstructed signal U7 are utilized

as space-time prior information and transferred into the STBCS algorithm. The

similarity level is increased to 89.1% in U5 with respect to U6 and U7. Clearly, it is

observed that performance is increased with the growth of the similarity level. For

example, with a low compression ratio Cr ≈ 0.15 (M = 80), our STBCS algorithm

through introducing prior information with similarity can achieve a 92.6% signal

reconstruction percentage. While at the same compression ratio, the TBCS algorithm

can accomplish 21.8% reconstruction percentage. The performance of the SBCS,

MBCS, OMP, and BCS algorithms are much worse (< 8%) at such a low compression

ratio. Therefore, our STBCS algorithm can significantly reduce the compression ratio

and the sampling rate of ADCs by utilizing the space-time prior information for CS-

based UWB systems.

In Fig. 5.6, we further test the performance of the algorithms under different noise

levels with the same compression ratio (Cr ≈ 0.2,M = 100) for reconstructing the

signal U5. The test procedure and other configurations are the same as in Fig. 5.5.

It is observed that by introducing prior information, the proposed STBCS algorithm

exhibits a much better capability of combating noise compared with the MBCS, OMP,

and BCS algorithms. For instance, when SNR=12dB, the STBCS utilizing prior

information with a high similarity level (89.1%) can achieve a 93.8% reconstruction

percentage while the reconstruction percentage is 21.3% for the OMP algorithm and
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Figure 5.5: Compression ratio versus reconstruction percentage

35.1% for the BCS algorithm at the same noise level and compression ratio. With

the same similarity level, our SBCS algorithm outperforms the MBCS algorithm at

different noise levels. Therefore, at a low compression ratio with the same number

of measurements, by utilizing prior information, our STBCS algorithm can achieve

much better performance of combating noise than the MBCS, original BCS, and OMP

algorithms.

5.5.2 Joint STBCS-TDOA Performance

We further investigate the positioning performance of the OMP, BCS, and STBCS-

TDOA algorithms in the CS-based UWB positioning system.

We utilize the UWB signal U5 for testing the positioning performance and other

configurations are the same for Fig. 5.5. We first calculate the difference of the

pulse peak time index in the reconstructed UWB signal and in the true signal U5.

Since the pulse peak indicates the pulse arrival time, we measure the positioning

error as the product of the propagation speed and difference of pulse arrival time
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Figure 5.6: Noise versus reconstruction percentage

between the recontracted signal and the true signal. At each iteration, the iterative

OMP, BCS, and STBCS-TDOA algorithms output the reconstructed signal U5. Our

STBCS-TDOA algorithm will introduce prior information with different similarity

levels. The positioning error is measured at each iteration even though the UWB

signal is not fully reconstructed. Noise is added (SNR≈15dB) and the compression

ratio is low (Cr ≈ 0.2,M = 100) in signal reconstruction. The experiment is run 100

times with different random measurement matrices and results are averaged.

The iterative STBCS algorithm is able to output the peak location, or the arrival

time index in each iteration while the signal reconstruction is performing. For clarity,

we just measure the 1D error. The error is measured by the offset of the reconstructed

UWB signal and the true UWB signal. The error is measured in distance, which is

the product of propagation speed (light speed) and pulse arrival time.

Figure 5.7 shows the positioning error at each iteration using the OMP, BCS,

and STBCS-TDOA algorithms. The errors from OMP and BCS algorithms are large

and fluctuating due to a low compression ratio and a high noise level. In sharp
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Figure 5.7: Positioning performance of the OMP, BCS, and STBCS-TDOA algorithm

contrast, our STBCS algorithm by introducing prior information exhibits much better

performance than the OMP and BCS algorithm at each iteration. Moreover, it is

clearly observed that in the STBCS-TDOA algorithm, the higher the similarity level,

the better positioning accuracy can be achieved with a limited number of iterations.

For example, after 23 iterations, the STBCS algorithm with 89.1% similarity can

detect the correct pulse arrival time with zero error and achieve an error on the

order of millimeters. The performance of BCS and OMP are even worse because

of the reconstruction failure due to insufficient measurements and noise. Therefore,

our STBCS-TDOA algorithm can detect the pulse arrival time quickly with fewer

iterations than the OMP and BCS algorithms for CS-based UWB positioning systems.

5.5.3 3D Positioning Performance

We investigate the 3D positioning performance using the proposed STBCS-TDOA

algorithm and the sequential sampling method [8][44][13][45] for UWB positioning

systems. The simulation is performed in a 5m×5m×4m room, where four base

stations are placed at the following positions: (0, 0, 170), (4000, 0, 1855), (4410, 4435,

2860) and (0, 4545, 3260) (in millimeters). Four scenarios of UWB echo signals drawn
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Figure 5.8: CS-based positioning system performance

from the UWB IEEE 802.15.4a model are used to represent the received UWB signals

at the four base stations. The noise is added to the original signals (SNR≈15dB).

The UWB positioning error is based on the received UWB signals at base stations

using the sequential sampling method and the proposed STBCS-TDOA algorithms.

The dominating factors in the UWB positioning system using the sequential

sampling method are essentially different from the CS-based UWB positioning

system using the STBCS-TDOA algorithm. The sequential sampling method is

the bottleneck to achieve a very high positioning accuracy in the UWB positioning

system[13][45] because it is not a real-time signal acquisition method. Based on

our previous realistic UWB experiments [13][45][8], we found that, for the sequential

sampling based UWB positioning system, the dominating factor of positioning error is

the asynchronous clocks between the pulse repetition clock in the tag and the sampling
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clock in the receiver. The sequential sampling method can stretch the UWB pulse

by K times using the K periods of UWB signals. The scalar K is determined by the

offset of the pulse repetition clock and the sampling clock. Since those two clocks are

asynchronous, the scale K is not fixed but fluctuating based on the relative jitter of

those two clocks. We model such a behavior as

τ ′ji = K(1± j%)τji, (5.32)

where τji is the time difference of pulse arrival time and K is the stretch scale number.

In the wireless UWB positioning system, the relative time jitter at the tag and

the base station will cause a drift scalar j%, which introduces a positioning error

and geometrical dilution. The error is linearly increased with the time difference

τji. This physical limitation makes it very difficult for the sequential sampling

based UWB positioning systems to achieve high (e.g., sub-millimeter) accuracy. In

the simulation, we adopt a state-of-the-art high stable oscillator with ±5ppm time

jitter [13] for simulations. In contrast, in the CS-based UWB positioning system,

it is a real-time UWB signal acquisition. The positioning errors in CS-based UWB

positioning systems are mainly from the reconstructed UWB signals. The peak of

pulse and arrival time will be blurred due to a limited number of measurements.

To overcome this limitation, we utilize the STBCS-TDOA algorithm to reconstruct

the high resolution UWB signal with a low compression ratio (15%) and ultra low

sampling rate ADCs for obtaining measurements.

Fig. 5.8 (a) and (b) show the performance comparison of the UWB positioning

system using the proposed STBCS-TDOA algorithm and the sequential sampling

method. It is seen that the positioning accuracy is significantly improved by using the

STBCS-TDOA algorithm in the CS-based UWB positioning system. The expected

absolute value of error using the CS-based sampling method is 0.8mm in Fig.5.8 (b)

while it is about 5.52mm by using the sequential sampling method in (a). Moreover,

Fig.5.8 (a) shows that the error is unevenly distributed. The minimum error is
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achieved when the tag is at the geometrical center point, where the distance difference

is zero (τji = 0). When the tag is moving close to the base station and the distance

differences are significantly increasing, the error will be dramatically enlarged due to

geometrical dilution. However, when we apply CS theory into the UWB positioning

system, the error is evenly distributed, as demonstrated in Fig.5.8 (b). The standard

error variance using the sequential sampling method is 6.65mm in (a) while it is only

0.52mm using our proposed scheme in (b). This represents a 12.8x improvement in

positioning accuracy. Besides improving the positioning accuracy, other advantages

of using STBCS-TDOA algorithm in CS-based UWB positioning system include real-

time and high speed processing. Also note that a CS-based UWB positioning system

using the proposed STBCS-TDOA algorithm will be a breakthrough, which has a

potential to achieve much higher accuracy. Therefore, the positioning performance

using the STBCS-TDOA algorithm in the CS-based UWB positioning system can

be significantly improved compared with the system using the traditional sequential

sampling method. The STBCS-TDOA algorithm can utilize prior information in CS-

based UWB positioning systems to obtain good timing information but using a low

compression ratio and low sampling rate ADCs to achieve a sub-mm accuracy.

We discussed how to apply TBCS to UWB position systems for high accuracy

positioning performance in this chapter. However, the signal reconstruction algorithm

is computationally expensive. In the next chapter, we will accelerate the computation

by mapping the CS signal reconstruction algorithms on parallel devices.
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Procedure 2 STBCS-TDOA Algorithm

1: Initialization: the hyperparameter α is set to α = {∞}; the nonzero sigal index
set Ω = ∅; the parameters a, b : a, b = {0, 0}; the position of the tag is set to an
initial position.

2: Introducing temporal prior information: update a, b using Eq.(5.8), (5.9), (5.12)
and (5.13) from the previous reconstructed nonzero signal elements.

3: repeat
4: Introducing spatial prior information: receive the ongoing reconstructed signal

elements from other simultaneous BCS procedures to update the parameter
a, b.

5: Calculate the components gj and hj (shown in Appendix A) and form the
candidate set Λ based on Eq. (5.17).

6: According to Proposition 1, select an index from the index set Λ. Assume it is
the j-th index. Then add it into index set Ω: Ω = Ω ∪ j;

7: Update αj by solving Eq.(5.22) if the parameters are updated so that aj ̸=
0, bj ̸= 0. Otherwise update αj using Eq.(4.26).

8: if Ω ∪ Λ ̸= Ω then
9: Delete the index: Ω = Ω\{j}, where j ∈ Ω but j /∈ Λ.
10: end if
11: Compute the signal elements whose index are in Ω. Output the index of the

maximum signal based on the current reconstructed signal vector as the pulse
arrival time for the TDOA algorithm for computing the position of the tag.

12: Send out the ongoing reconstructed signal elements to other BCS procedures
as spatial prior information.

13: until converged
14: Send out the reconstructed nonzero signal elements for the next frame utilization

as temporal prior information.
15: In parallel, the TDOA algorithm receives values of pulse arrival times from

different BCS signal reconstruction procedures on base stations. With respect
to one base station, the differences of pulse arrival and corresponding distance
differences are calculated based on Eq.(5.23).

16: The tag position is calculated using Eq. (5.26) with an initial start position.
17: Go to step 16 to check any new updates. If there are new updates, utilizing

the current calculated tag position as the initial position value recalculate the
tag position. Otherwise iteratively compute the position of the tag until TDOA
converges.

95



Chapter 6

Hardware Implementation of

Bayesian compressed Sensing

6.1 Background and Introduction

Compressed Sensing (CS) can acquire signals at below the Nyquist sampling

rate[27]. CS using signal reconstruction algorithms can indirectly acquire and

reconstruct the signal from a small number of measurements obtained at a very low

sampling rate; however, CS signal reconstruction algorithms are very computationally

expensive[11] [27], becoming a bottleneck in time-sensitive applications[21]. High

performance parallel computing for computation acceleration is needed for fast CS

signal reconstruction. One of the most computationally expensive steps in CS signal

reconstruction algorithms is Cholesky decomposition[5], so we desire to accelerate

Cholesky decomposition and CS signal reconstruction by designing a dedicated

hardware/software module to exploit parallelism.

Besides CS signal reconstruction in signal/image processing, Cholesky decomposi-

tion is one of most widely used decomposition algorithms in various applications and

fields[69], such as in solving least square problems, linear regression, and least square

fitting in mathematics, machine leaning, and economics. Cholesky decomposition has
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O(1
3
n3) complexity, which is computationally expensive. Even when the matrix size

n is small, the computation time is too expensive in many applications, such as real-

time CS signal reconstruction[20][21][19]. In many other fields, such as computational

chemistry[57], there exist a demand of computing Cholesky decomposition for many

small matrices. Modern massively parallel devices, such as FPGAs and GPUs, can

accelerate Cholesky decomposition by exploiting parallelism.

This chapter presents a high performance iterative Cholesky decomposition and

CS signal reconstruction on FPGAs and GPUs. At end of this chapter, results

show that FPGA and GPU implementations for Cholesky decomposition outperform

LAPACK and MAGMA for small matrices. For the 256 × 256 matrix Cholesky

decomposition, Cholesky decomposition on FPGAs show the best performance. Our

proposed GPU implementation for Cholesky decomposition outperforms LAPACK

and MAGMA when the matrix size is smaller than 4096 × 4096. Based on the

proposed iterative Cholesky decomposition, we implement a CS signal reconstruction

algorithm on FPGAs and GPUs in single and double precision. Our FPGA and GPU

implementation can achieve a high speedup compared with MAGMA and LAPACK

for computation acceleration for fast CS signal reconstruction. Compared with the

CS signal reconstruction on the CPU using LAPACK and the hybrid CPU/GPU

mode, our FPGA implementation for CS signal reconstruction can achieve about 15x

speedup and GPU implementation can achieve a 38x speedup.

The remainder of this paper is organized as follows. Section 6.2 introduces a

novel Cholesky decomposition on a GPU with memory access optimization. Section

6.3 presents Cholesky decomposition on FPGAs by using one dedicated triangular

equation solver. Section 6.4 summarizes a family of CS signal reconstruction

algorithms and discusses implementation on both GPUs and FPGAs. Performance

of GPU and FPGA implementations are compared from different perspectives in

Section 6.5. Section 6.6 shows the performance for Cholesky decomposition on

GPUs and FPGAs, as well as the performance of CS signal reconstruction algorithms

implemented on GPUs, FPGAs, CPUs, and a hybrid platform.
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6.2 Cholesky Decomposition on GPUs

A linear equation system, Ax = b, where A is a dense n × n matrix, and x and b

are column vectors of size n, can be solved using a decomposition technique, LU for

instance. If the matrix is symmetric and positive definite, Cholesky decomposition

with complexity of 1
3
O(N3) is the most efficient in solving the system[36] and CS signal

reconstruction algorithms. We developed a high performance Cholesky decomposition

implementation on a GPU.

Procedure 3 lists the computational procedure for Cholesky decomposition on a

GPU. The computation on GPUs include (1)a blocked Cholesky decomposition for

factoring sub-matrix A11, A11 = L11L
T
11; (2)solving the triangular linear equations for

updating A21, A21 := L21 = A21L
−1
11 ; and (3)triangular matrix-matrix multiplication

for updating A22, A22 := A22 − L21L
T
21. Those computation is repeated until the

whole matrix A is entirely factored and overwritten into the lower triangular matrix.

Note that in each step, the size of sub-matrices and computation are tuned to exploit

potential parallelism and maximize vector thread usage for good performance.

Procedure 3 Cholesky decomposition Algorithm on GPUs

1: Begin Cholesky decomposition
2: repeat
3: Partition the matrix A = {A11, A12;A21, A22}
4: Compute Cholesky decomposition and overwrite the sub-matrix A11 ← L11,

where A11 = L11D11L
T
11

5: Update and overwrite A21 ← L21 = A21L
−T
11

6: Overwrite A22 for the next iteration computation: A22 ← A22 − L21L
T
21;

7: Let A = A22 and decompose A22 using the same procedure
8: until Cholesky Decomposition reaches the right bottom sub-matrix so that the

entire matrix A is factored into a lower triangular matrix
9: Return the factored matrix A

Fig. 6.1 depicts the computation procedure of Cholesky decomposition on a GPU

in detail. Due to the symmetric matrix, we only show half of the matrix which is

needed in GPU global memory. Correspondingly, for GPU implementation, we have

a total of four kernels. Sequentially, the first kernel performs the standard Cholesky
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Figure 6.1: Cholesky decomposition on GPUs. (a), (b), (c), and (d) depict the
computational procedure sequentially, where computation in (c) for updating A22

using matrix-matrix multiplication is dominant.

decomposition for factoring the first upper left sub-matrix A11. The second kernel

updates the elements in the strip, i.e., A21, below the current working block by solving

triangular linear equations. The third kernel updates the diagonal in the block.

Finally, the fourth kernel updates the rest of the lower matrix A22 by doing a matrix-

matrix multiplication. We loop through the blocks by sending block offsets until the

entire matrix is factored. For best performance, we tune the sub-matrix size to achieve

full-occupancy of vector threads on GPUs. We let A22, the biggest sub-matrix, each

iteration take advantage of massively parallel resources on GPUs for matrix-matrix

multiplication. Compared with the standard Cholesky decomposition procedure, the

proposed Cholesky decomposition can minimize copying operation, optimize memory

access pattern and exploit potential parallelism for good performance.
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Optimization is critical for achieving good performance on GPUs. Through

optimizing the memory access pattern, performance can be greatly improved. The

first optimization technique is to improve the use of shared memory. We load

the current working block information into shared memory and reuse it repeatedly

without having to go back to global memory. Next, we looked at coalesced global

memory accesses to improve performance for GPU implementation. This was

accomplished by loading the data into shared memory so that each thread loads

data in a consecutive manner as described in [10]. Likewise, we store data in the

same way. The third optimization technique was to avoid shared memory banking

conflicts since the banking conflicts are causing non-coalesced reads and writes. To

do this, we simply increased our shared memory size by one extra value. After these

optimizations, memory access is not a limiting factor any longer. Note that the LDLT

Cholesky decomposition can be easily implemented on a GPU by simply modifying

the computational procedure and corresponding kernels.

6.3 Cholesky Decomposition on FPGAs

For FPGA implementation, we adopt a modified Cholesky decomposition to solve the

linear equation system Ax = b, which is given by

A = LDLT (6.1)

where D is a diagonal matrix and L is a unit lower triangular matrix with all unit

elements on the diagonal.

The reason we adopt LDLT , rather than the standard UTU Cholesky decom-

position, is multifold. First, compared with the standard Cholesky decomposition,

the LDLT Cholesky decomposition will remove the square root operation, which can

save hardware resources and increase the data throughput[14]. Second, the LDLT

Cholesky decomposition can avoid the division dependency from the pipelines. Third,
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the modified Cholesky decomposition with one more diagonal matrix D does not

require more memory because the lower triangular matrix L has units on the diagonal

that can be utilized for saving the diagonal matrix D.

We developed a novel iterative algorithm for calculating the LDLT Cholesky

decomposition for solving Eq.6.1. Compared with the standard Cholesky decom-

position, the proposed augment algorithm only needs to iteratively solve triangular

linear equations without any square root operations. The computation procedure is

as below. The n by n symmetric matrix A is firstly partitioned into a 2x2 block

matrix consisting of an n-1 by n-1 matrix An−1, a column vector t, and a scalar

number g, which is shown in Eq. (6.2):

A =


a11 . . . a1,n−1 a1n
...

. . .
...

...

an−1,1 . . . an−1,n−1 an−1,n

an1 . . . an,n−1 ann


=

 An−1 tT

t g

 = LDLT

=

 Ln−1 0

w 1

 Dn−1 0

0 dn

 LT
n−1 wT

0 1

 (6.2)

where g (g = ann) and dn are scalars. Elements in matrix A are denoted by aij, (i, j =

1, .., n). Elements in the lower triangular matrix are denoted as lij, (i, j = 1, .., n).

The vectors t and w are 1× (n− 1) column vectors, where t = {a1n, a2n, ...an−1n} and

w = {l1n, l2n, ...ln−1n}.

Obviously, we can find An−1 = Ln−1Dn−1L
T
n−1, which is just the Cholesky

decomposition for An−1. Suppose we have Cholesky decomposition results, An−1 =

Ln−1Dn−1L
T
n−1. In order to factor the matrix A based on Ln−1 and Dn−1, we only
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need to calculate the column vector w and diagonal element dn. It is easy to verify

that:

Ln−1Dn−1w = t (6.3)

and,

dn = g − wTDn−1w = g −
n−1∑
i=1

w2
i di (6.4)

The column vector w can be calculated by solving the lower triangular linear

equations in Eq. (6.3). Therefore, based on the factored matrix An−1 =

Ln−1Dn−1L
T
n−1 we know that matrix A can be decomposed. However, to obtain

the Cholesky decomposition for matrix An−1 we must know the decomposition

An−2 = Ln−2Dn−2L
T
n−2. Now imagine that this computation begins with the upper

left element in the matrix A. We denote that one element matrix A1 = a11 and

L1 = l11. Similarly, a 2 by 2 sub-matrix A2 = {aij}2i,j=1 and L2 = {lij}2i,j=1.

Fig. 6.2 demonstrates the iterative Cholesky decomposition on FPGAs. Cholesky

decomposition begins with the upper left most element, i.e., A1 = {a11}. A1 =

L1D1L
T
1 = 1× a11 × 1, where L1 = {l11}. In the next step, we obtain matrix L2 and

D2 by solving w and d from Eq. (6.3) and Eq. (6.4). In a similar manner, the matrices

L3, D3, . . . , Ln−1, Dn−1, Ln, and Dn are computed sequentially by solving Eq. (6.3)

and Eq. (6.4). Recursively, therefore, this is an iterative algorithm for computing

Cholesky decomposition that only needs to solve the lower triangular equations for

updating vectors and the diagonal elements.

It is not hard to design dedicated hardware for solving Eq. (6.4); however, solving

Eq. (6.3) is essentially a serial computational procedure with heavy data dependency.

Therefore a dedicated triangular equation solver for Eq. (6.3) must be designed and

optimized for good performance. Note this triangular hardware solver is also utilized

for solving linear equation systems after the Cholesky decomposition, which will be

discussed in the next section.
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Figure 6.2: Cholesky decomposition computational procedure on FPGAs

6.3.1 Pipelined Triangular Linear Solver on FPGAs

We present a dedicated triangular linear solver for solving Cholesky decomposition

and linear equation systems in this section. In order to further demonstrate why we

adopt LDLT Cholesky decomposition, we first show how to solve the linear equation

system, Ax = b, based on standard UTU Cholesky decomposition on FPGAs. Then

we design a pipelined triangular solver on FPGAs for solving Cholesky decomposition

and linear equation systems.

Assume matrix A is factored to A = UTU using standard Cholesky decomposition.

In order to solve the linear equation system, Ax = b, we need to solve UTUx = b,

which is equivalent to two steps: (1) solve UT r = b for the vector r using forward

substitutions; (2) solve Ux = r to get x using backward substitutions. The first step

is expanded as:

r1 = b1/u11

r2 = (b2 − u12r1)/u22
...

rn = (bn −
∑n−1

i=1 uinri)/unn

(6.5)
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The second step for solving Ux = r is written as:

xn = bn/unn

xn−1 = (bn−1 − un−1n−2rn−1)/un−1n−1

...

x1 = (b1 −
∑n−1

i=1 uinri)/u11

(6.6)

Obviously, it is observed that divisions must be computed for each component due

to non-unit diagonal elements, uii, in the triangular matrix U . It is clear that the long

latency of the divider (determined by the bit width of the dividend and divisor)[71],

will adversely hurt the performance because the next input data depends on previous

division results. Therefore, we adopt the LDLT Cholesky decomposition to remedy

this problem.

The LDLT Cholesky decomposition can separate the divider dependency by

introducing a diagonal matrix D. In this way introduction of the triangular

matrices D make the diagonal components in the matrix L become all unit elements.

Equivalently, in order to solve LDLTx = b, we need three steps: Lz = b, Dr = z and

LTx = r, which are:

z1 = b1

z2 = (b2 − l21z1)

z3 = (b3 − l31z1 − l32z2)
...

zn = (bn −
∑n−1

i=1 lnizi)

(6.7)

Note that divider operations can be separately performed in parallel:

rn = zn/dn (6.8)

where dn is the diagonal element in the diagonal matrix D. Finally the solution vector

x is obtained similarly by solving the triangular linear system:
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Figure 6.3: Computational procedure for solving triangular equations on FPGAs

xn = bn

xn−1 = bn−1 − un−1,n−2rn−1

...

x1 = b1 −
∑n−1

i=1 uinri

(6.9)

Fig. 6.3 demonstrates the pipelined computation order for solving the linear

triangular equations, Eq. (6.7) and Eq. (6.8). This computational order can maximize

the potential computation parallelism to optimize the design for good performance.

Note that z1, z2, . . . zn are registers which save results for the accumulator. Also note

that initially z1 is provided then input to the hardware solver for calculating z2.

After being computed, z2 is then fed back for z3. The time delay between two clocks

is determined by the hardware latency. At the same time the separated division also

operates in parallel using an individual divider.

Fig. 6.4 illustrates a dedicated pipelined hardware architecture for implementing

the triangular linear solver on FPGAs. This triangular linear equation solver consists

of multiple PEs, result control logic, a divider, and BRAM modules. Inside a PE,

one of the columns in the lower triangular matrix L (such as l21, l31, . . . ln1) is fed into

the PEs, multiplied with zj .The product is accumulated as the basic computation,

demonstrated in each step in Fig. 6.3. The result zj+1 is further fed back through
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Figure 6.4: Architecture for solving triangular linear systems

FIFO2 outside of the PEs for computing the next zj+2. The latency of the PE

determines the time delay from zj to zj+1. Note that the divider is separated, operated

in pipelined mode for calculating (r1, r2, . . . rn) based on the (z1, z2, . . . zn) output from

the PEs, and controlled by the result control logic module.

Note that the FIFO in the PE is used for solving large linear equation systems

based on a limited number of PEs, which improves the hardware usage efficiency.

Without FIFO1, for example, in order to solve a 128x128 lower triangular linear

system we have to use 127 PEs (z1 is known) with one clock latency, according to

Fig. 6.3, to process 127 pipelined multiplication-addition operations in Step 1. In

Step 2, it only requires 126 PEs. In Step 3, 125 PEs are needed, and so on. Obviously,

this design wastes hardware resources because the requirement of PEs decreases in

later steps. The design of the short PE latency will decrease system clock frequency.

So we propose a novel method to solve this problem by introducing one FIFO1.

For example, assume that we have only 8 PEs with clock latency 8 for pipelined

processing. In the first step it requires 127 multiplications for computing the product

of the vector {l11, l21, l31, . . . l128,1} and number z1. So we have to run the hardware

solver 16 times or clocks (127/8) based on 8 PEs. Thus, the depth of the FIFO1 is set
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to 16, which is used to save the registers {z1, z2, . . . , z16} for the following accumulator

or adder. The depth of the FIFO1 is controllable, which could be changed for the

next steps. For instance, the depth of FIFO1 is adjusted to 15 if it requires 120

multiplications (120/8=15). Due to the limited depth, this kind of FIFO can be

customized by designing the Finite State Machine (FSM) control logic plus separate

RAM or registers in VHDL.

The BRAM is the end of the hardware solver for storing the solution vector. The

memory size is determined by the input matrix size. To feed the hardware solver

it has a memory block storing the elements of the triangular matrix L and column

vector b inside or outside of the FPGA, depending on the matrix size and FPGA

memory limitation. For a small matrix, elements can be stored inside the FPGA

but for a large matrix, data must be stored in memory outside the FPGA. The data

communication bandwidth decided by the number of PEs and the matrix size can be

alleviated by using several independent memory blocks outside the FPGA.

The proposed triangular equation hardware solver for solving Eq. (6.7) and

Eq. (6.8) can also be utilized for solving Eq. (6.3) for Cholesky decomposition.

Note that the computation for updating matrix D using Eq. (6.4), which is not

shown in Fig. 6.4, can be easily designed and implemented by using a pipelined

multiplier-accumulator[73]. Therefore, the whole Cholesky decomposition of the

linear equation system can be solved using only one dedicated triangular equation

solver. Similarly, only one pipelined triangular equation solver is needed to solve

least square problems[14]. Our design can simplify system complexity, reduce circuit

delay, and improve performance. Furthermore, our proposed iterative Cholesky

decomposition can be utilized for accelerating CS signal reconstruction algorithms.
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6.4 Compressed Sensing on FPGAs and GPUs

6.4.1 Signal Reconstruction Algorithm

In CS theory, a signal is not directly acquired using Nyquist sampling theory but

indirectly reconstructed from a few measurements in order to significantly reduce the

sampling rate, which is described by:

y = Φs+ ϵ (6.10)

where s is the sparse signal vector, which is needed to be reconstructed from the

measurement vector y; the matrix Φ, (Φ ∈ RM×N) is the known projection matrix

with M << N , and ϵ is additive noise. Even though the length of vector y is much

less than the length of signal vector s (i.e., M << N), CS theory shows that the

signal s can be exactly or approximately reconstructed based on y and Φ.

However, CS signal reconstruction algorithms utilize linear programming, convex

optimization, and Bayesian inference methods, which are very computationally ex-

pensive. A family of algorithms for signal reconstruction are through ℓ2 minimization,

where the key computation is associated with solving least square problems and

Cholesky decomposition. A family of signal reconstruction algorithms is summarized

in Procedure 4.

The most computationally expensive step in Procedure 4 is to estimate the signal

vector at each iteration. To estimate the signal vector, one has to solve problem (6.11)

or problem (6.12). A family of CS signal reconstruction algorithms, such as orthogonal

matching pursuit (OMP)[35], SToMP[10], SOMP[23], FOMP[12], and so on, all need

to iteratively solve Eq. (6.13) for signal reconstruction. Solving problem (6.11) is

equivalent to solving the least square problem, which is equivalent to computing:
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Procedure 4 A family of CS signal reconstruction algorithms

1: Input: the projection matrix Φ and measurement vector y, where ϕi is the i-th
column vector in the matrix Φ, yi is the i-th element in the vector.
Output: the estimated signal vector S.

2: Initialize the iteration counter t = 1, the residual rt = y, the candidate set Ωt := ∅,
and the matrix Φt := ∅.

3: repeat
4: Find the candidate index. In OMP, the candidate index can be found by

projecting the measurement vector y onto the matrix Φ through matrix-vector
multiplication, which is equivalent to solve a optimization problem

λt = argmaxi=1,...,n | < ϕi, y > |
5: Augment the index set Ωt = Ωt−1 ∪ {λt} and the chosen matrix Φt :=

{Φt−1, ϕλt}.
6: Reconstruct the signal vector by minimizing norm-2 to estimate the signal

vector:

St = argmin
s
∥Φt − y∥2 (6.11)

Considering noise effects, add a constraint:

St = argmin
s
∥Φt − y∥2

Subject to : argmin ∥S∥0 (6.12)

7: Calculate the new residual and judge whether it converges or not. The residual
can be calculated as:

rt = ∥ΦtSt − y∥2
8: Increment t, then return to Step 2.
9: until converged
10: Return the reconstructed signal vector.

ŝ = ((Φt)
TΦt)

−1(Φt)
Ty (6.13)

where Φt is a set of selected column vectors from Φ, and ŝ is the reconstructed signal.

In computing Eq. (6.13), Cholesky decomposition typically is adopted and is the most

expensive step in calculating ŝ each iteration. Note that each iteration, the matrix
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is augmented and the Cholesky decomposition operates on previous results for good

performance.

Other well-known CS signal reconstruction algorithms solve problem (6.11) by

introducing a regulation to combat noise for signal reconstruction. Those CS algo-

rithms include regularized OMP[9], Bayesian compressed sensing (BCS)[59][39][53],

TBCS[15], and MTBCS[61]. To solve problem (6.11), one needs to compute:

ŝ = ((Φt)
TΦt +A)−1(Φt)

Ty (6.14)

where matrix A is the regulation term for combating noise. Note that computing

Eq. (6.14) is the most computationally expensive step in estimating the signal each

iteration[15]. Cholesky decomposition should be utilized to iteratively calculate the

signal vector. Also note that Cholesky decomposition can be performed by using

previous results to save time.

Therefore, the iterative CS signal reconstruction algorithms are computationally

expensive. Cholesky decomposition is the key computation step, used to iteratively

factor the augmented matrix for signal reconstruction at each iteration. Other

computation for CS signal reconstruction algorithms can be easily realized using

CUBLAS subroutines[42][58]. We only focus on accelerating the most computa-

tionally expensive step, the iterative Cholesky decomposition. Our proposed high

performance Cholesky decomposition for GPUs and FPGAs is not only for general

matrix decomposition but also optimized for accelerating CS signal reconstruction

algorithms.

6.4.2 Compressed Sensing on FPGAs

Fig. 6.5 shows implementation of the OMP algorithm for CS signal reconstruction

on FPGAs. The proposed structure consists of several units:
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Figure 6.5: Compressed sensing on FPGAs
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1. A matrix-vector multiplication unit for computing the inner product Φty to

select the candidate index.

2. A Cholesky decomposition unit for factoring the target matrix Φ+
t . Since Φ

+
t =

(ΦT
t Φt)

−1Φt, a matrix-matrix multiplication unit can be designed to calculate

the target matrix. As the matrix Φ is known, the target matrix Φ+
t can also be

obtained by simply using a look-up table. Computation of the target matrix

Φ+
t is not shown in the structure.

3. A linear triangular solver for solving linear equations and estimating the signal

vector. It computes St = Φ+
t y, where Cholesky decomposition is performed for

ΦT
t Φt = LDLT . Note that the residual computation can be performed using

the matrix-vector multiplication unit.

4. A main logic controller. The logic controller can be realized by using an

embedded CPU, such as a PowerPC or Microblaze[72] on Xilinx FPGAs. It

controls the data communication and schedules the working units for the system.

Note the proposed hardware structure is pipelined and a dual port BRAM is

utilized between two units and stages for good performance. The data between two

stages can be buffered and reorganized for data reuse in the next stage. Initialization

data and results can be fetched and updated to the CPU from the FPGA through an

interface controlled by the main controller. Also note that the proposed structure can

be easily modified for implementing other CS signal reconstruction algorithms. At

each iteration, Cholesky decomposition operates based on previous results. So only

the new selected index and vectors must be transferred for Cholesky decomposition

on the FPGA.

6.4.3 Compressed Sensing on GPUs

Fig. 6.6 shows the computational procedure of CS signal reconstruction algorithms

on a GPU. The GPU implementation for CS signal reconstruction include several
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sequential steps as described in Procedure. 4. The program starts with data transfer

from CPU to GPU. In step (1), the candidate indices are chosen by doing matrix-

vector multiplication, i.e., Φty. In step (2), the target matrix is calculated, where

Φt = {Φt, ϕt} and Φ+
t = (ΦT

t Φt)
−1Φt. Steps (3) and (4) perform matrix decomposition

for solving linear equations. Steps (5) and (6) compute the signal vector and the

residual for judging convergence. These computation steps are iteratively performed

until the algorithm converges and the signal is reconstructed. The key computation

in signal reconstruction is to compute Cholesky decomposition iteratively for the

augmented matrix each iteration. Cholesky decomposition dominates computation

time. Note that each iteration, the target augmented matrix, Φ+
t , needing to be

factored using Cholesky decomposition can be conveniently solved based on the

previous target matrix, Φ+
t−1 =, due to Φt = {Φt−1, λt}. Rather than calling a

CUBLAS level 3 subroutine for Cholesky decomposition (i.e., sport.cl for single

precision and dportf.cll for double precision) to recalculate the whole matrix, we utilize

our proposed Cholesky decomposition, which can take advantage of previous results to

save computation time and improve performance[17]. For other computation steps,

the CUBLAS libraries can be exploited[49]. Note that Level 3 sub-routines about

matrix-matrix inner product can be utilized in step (2). Level 2 sub-routines in

CUBLAS for matrix-vector inner products can be exploited in step (1), and Level 1

sub-routines for scaler vector-vector computation can be used for calculating the

regulation term in Steps (1) or (4) and other steps according to the CS signal

reconstruction algorithm.

6.5 Performance Comparison of FPGA and GPU

In parallel computing, FPGAs and GPUs are two important technologies for

application acceleration. However, FPGAs are essentially different from GPUs from

many perspectives. A GPU has a fixed SIMD hardware architecture, which can

provide massively parallel execution resources and high memory bandwidth. GPUs
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are optimized for streaming, floating point calculations. FPGAs provide basic

logic units, function blocks, lookup tables, and routing resources which are highly

customizable for fine grained parallelism. Thus, FPGAs can offer better performance,

flexibility, and low overhead because the hardware architecture can be fully optimized

for the specific application.

GPGPUs tend to be much easier to programmers and have less hardware

controllability compared with FPGAs. The programming language for GPUs are

CUDA[48] or OpenCL[51], each extensions of C with an associated API. By using

CUDA[48], a GPU programmer does not need to know as many hardware details. In

CUDA, computational tasks are performed by thousands of threads in 3-dimensions,

which are further organized as thread blocks and grids. CUDA provides a friendly

interface for programmers by hiding hardware architecture details. However, for best

performance, the CUDA program for Cholesky decomposition acceleration still needs

to be tuned and optimized according to the characteristics of the application and

GPU hardware limits, such as arithmetic operation order, memory access pattern,

and communication. FPGA designers have to not only think about programming

but also consider the low level design and implementation, such as pipelines, delays,

and architecture details. FPGA designers utilize a hardware design language (such

as VHDL or Verilog HDL) to have full control on the low level logic circuits,

programmable resources, and hardware architecture. In addition, IP CoreGen[70]

provides plenty of reusable and optimized IP cores, such as arithmetic units for

scientific computations, which can save designers’ time. However, the dedicated

hardware architecture for a particular application is still needed to be specially

designed for best performance. All hardware details, such as pipeline depth, latency,

throughput, and memory bandwidth should be fully investigated and considered by

FPGA designers.

GPUs have fixed memory architecture while FPGAs provide customizable memory

hardware. The fixed memory architecture, such as cache, global memory, and shared

memory, along with their associated bandwidths, may slow down the performance
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for the Cholesky decomposition. For example, for the NVIDIA GeForce GTX480

GPU[50], the peak performance is 1.35TFLOPS in single precision with 1400MHz

frequency. However, due to memory bandwidth this peak performance is very difficult

to achieve for Cholesky decomposition. For FPGAs, a dedicated triangular linear

equation solver is designed by using several pipelined PEs. The dedicated scalable

architecture can be fully customizable and optimized, but on-chip memory is very

limited. For example, the newer Xilinx XC6VSX475T FPGA in the Virtex 6 family

has only 38,304 KB total BRAM memory which can be fully customized, so the

limited memory resource is not suitable for large matrix operations. The memory

communication bus can be fully customized for Cholesky decomposition in order to

achieve the best performance. GPUs are more suitable for large size matrix operation

while FPGAs are the best for small size matrix due to limited but customizable on

chip hardware resources.

GPUs can support single and double precision floating point. When computation

is associated with some operations, such as division, inversion, and square root,

results from GPUs lose some precision. Due to limited hardware resources, the

peak performance for double precision is worse than that for single precision. For

instance, the GTX480 GPU has double precision performance only one half of the

single precision performance [50], and older GPUs have one eighth the performance

of single precision (or no support for double precision at all). On the other hand,

FPGAs alow customizing the precision. For example, IP CoreGen provides IEEE

754 [14] arithmetic units for integer, fixed point, and single and double precision

floating point. Moreover, the precision of those arithmetic units in the PE can be

fully customized, such as adjusting mantissa and exponential bits. Lower precision

arithmetic units on FPGAs require significantly less hardware resources than higher

precision units, leading to higher frequency and performance for FPGAs.

For Cholesky decomposition, both GPUs and FPGAs can be utilized for high

performance parallel computing; however, design and optimization for GPU and

FPGA implementations are dramatically different. In order to achieve higher
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frequency on FPGAs, one should reorder and simplify Cholesky decomposition for a

pipelined architecture, minimize circuit delay, and maximize memory usage efficiency.

Arbitrary memory access patterns in FPGAs may be supported but memory resources

are limited. Memory outside the FPGA may be large but the communication

interface may be a bottleneck. So we designed one pipelined triangular equation solver

for Cholesky decomposition, where several identical Processing Elements (PEs) can

operate in parallel. The BRAM memory can be organized to facilitate data fetch and

store for reuse in the next iteration. In contrast to FPGAs, the proposed Cholesky

decomposition on GPUs can take advantage of the SIMD architecture, which is totally

different from FPGAs. The proposed algorithm for GPUs can facilitate optimizing

memory access patterns to reduce data communication for good performance.

6.6 Hardware Results

The proposed Cholesky decomposition and CS signal reconstruction algorithms are

implemented on the latest representative commercial products of GPUs and FPGAs.

For performance comparison purpose, we also perform Cholesky decomposition and

signal reconstruction algorithms on a CPU using LAPACK[37] and a hybrid system

with CPU and GPU using MAGMA[41]. The test platform has an NVIDIA Fermi

GTX480 GPU card[50] running at 1400MHz. The CPU is an Intel Quad Core i7

2.67GHz with 12 GB RAM. The software compilers consist of CUDA[48], OpenCL[51]

version 3.0 and gcc version 4.3.3 for the GPU and CPU implementation. For the

FPGA implementation, we adopt a Xilinx XC5VSX95T-2 FPGA in the Virtex 5

family. We utilize VHDL and Xilinx ISE 11.4 compiler, where IP CoreGen[70] can

provide plenty of basic arithmetic units with customizable IEEE 754 standard floating

point.
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Figure 6.7: Accuracy using customized mantissa bits on FPGAs

6.6.1 Customizable Precision on FPGAs

FPGA implementation of Cholesky decomposition can fully customize the precision

by designing fixed point, floating point, or other formats. In scientific computing,

IEEE 754 floating point [14] is the most widely used format which has been proven to

be suitable for most situations. Cholesky decomposition on FPGAs can specify the

mantissa and exponential bits. High accuracy requirements imply high precisions

leading to higher memory bandwidth, and more hardware resources, but lower

achievable frequency. Customizing precision can save limited hardware resources,

improve the achievable frequency, and maximize performance. There is a balance

between computation speed and accuracy using different precisions with customized

mantissa bits. Table 1 shows the resource usage for Cholesky decomposition for

different precisions. We implemented 16 parallel pipelined Processing Elements (PEs)

on the FPGA for Cholesky decomposition. Note that we utilized DSP48 modules

in building multipliers for best performance. For notational simplicity, ”s52e11”

represents 52 mantissa bits and 11 exponent bits, which is double precision, and

”s23e8” represents single precision with 23 mantissa bits and 8 exponent bits. The
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number of exponent bits determines the dynamic range of representable values, so we

vary the mantissa bits from 20 to 52 bits and fix the exponent to 11 bits.

Table 6.1: Performance and hardware resources usage on FPGA

FPGA Design s20e8 s23e8 (single) s32e11 s46e11 s52e11 (double)
Frequency 265 MHz 255 MHz 220 MHz 206 MHz 182 MHz

Slices 19% 24% 34% 62% 70%
DSP48 7% 22% 24% 35% 50%

Fig. 6.7 depicts the root mean square (RMS) error for the Cholesky decomposition

of a 256x256 matrix with random elements. The RMS error, Er, is defined as,

Er = 10 log10
1

N

√√√√ n∑
i=1

n∑
i=j

(L̃ij − Lij)2 +
n∑

i=1

(D̃ii −Dii)2 (6.15)

where the elements Lij, (Lij ∈ L) and Dii, (Dii ∈ D) are the reference results using

double precision (s52e11), and the matrix L̃ and D̃ are the results with customized

mantissa bits by factoring the truncated matrix. Since the error will be affected

by the condition number, we test 1000 iid matrices for Cholesky decomposition

with different mantissa size. Obviously, the RMS error is exponentially decreased

with increasing mantissa size. Taking advantage of customized precision on FPGAs,

designer could balance the accuracy, precision, and hardware resources according to

application requirements.

6.6.2 Cholesky Decomposition Performance

Fig.6.8 and Fig.6.9 show the performance of Cholesky decomposition on GPUs,

FPGAs, CPUs using LAPACK[37], and a hybrid system using MAGMA[41] in single

and double precision. The FPGA is running at 180MHz for both single and double

precision. The FPGA has around 20GFLOPS performance. For a small 256x256

matrix, the FPGA can outperform GPU, CPU, LAPACK, and MAGMA in single and
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Figure 6.8: Performance comparison for Cholesky decomposition in single precision

256 512 768 1024 2048 4096 6048 7200
0

20

40

60

80

100

120

140

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

Matrix size

 

 

GPGPU: OpenCL
Hybrid: MAGMA
CPU: LAPACK
FPGA

Figure 6.9: Performance comparison for Cholesky decomposition in double precision
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Figure 6.10: Computation cycles for Cholesky decomposition in single precision
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Figure 6.11: Computation cycles for Cholesky decomposition in double precision
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double precision. The GPU has much better performance than the FPGA, LAPACK,

and MAGMA when the matrix is smaller than 2048x2048. MAGMA exhibits much

better performance than LAPACK for large matrices. With growth of the matrix

size, the performance gap of MAGMA and LAPACK is increasing. Therefore,

FPGAs and GPUs in single and double precision are suitable for small matrix

Cholesky decomposition, outperforming LAPACK and MAGMA, while MAGMA

shows advantage for large matrices because both the CPU and GPU are working

simultaneously.

Fig.6.10 and Fig.6.11 compare efficiency and the computation cycles of Cholesky

decomposition implemented on GPUs, FPGAs, CPUs using LAPACK[37], and a

hybrid system using MAGMA[41] in single and double precision. The FPGA clock

cycles are calculated based on the operations needed for a certain size matrix

decomposition. For the GPU and CPU implementation, we obtain the computation

cycles through the division of the measured execution time and frequency clocks

(GPU:1400MHz, CPU: 2670MHz). Obviously, the number of cycles needed for

Cholesky decomposition on FPGA, GPU, and CPU all increase with the matrix size

due to O(1
3
n3) computational complexity. The FPGA needs the minimum number

of cycles because the hardware architecture is fully customized and optimized for the

Cholesky decomposition. For single and double precision, our GPU implementation

needs much fewer cycles than LAPACK and MAGMA, indicating more efficiency and

less execution time depending on clock rate. When the matrix size is larger than

512× 512, that performance gap decreases.

6.6.3 Compressed Sensing Performance

Fig. 6.12 and Fig. 6.13 show performance comparison of the CS signal reconstruction

algorithm implemented on GPUs and FPGAs using the proposed iterative Cholesky

decomposition, on CPU using LAPACK, and in a hybrid mode using MAGMA

in single and double precision. We implement the BCS algorithm[59] for signal
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reconstruction based on the proposed Cholesky decomposition for GPUs and FPGAs.

The BCS algorithm is a typical de-noising CS signal reconstruction algorithm which

has been widely utilized[61][15][21]. We compare the execution time of the CS

algorithm on FPGA, GPU, and on a hybrid mode using MAGMA with respect to the

execution time on CPU using LAPACK. We test different scale signal reconstruction

tasks, i.e., the length of the target signal vector, which is shown in the the x-axis.

Note that the length of the signal vector also represents the matrix size which must be

iteratively factored using Cholesky decomposition. Due to limited on-chip memory,

we only test the FPGA for computing a 1× 2048 signal vector. In order to compare

GPU, CPU, and hybrid CPU/GPU with FPGA, the performance comparison is only

performed for reconstructing from 1× 256 to 1× 4096 signal vectors.

Fig. 6.12 compares the speedup of different implementations in single precision.

The speedup is defined as: Sr = Tc

Tp
, where Tc is the execution time of the BCS

algorithm on CPU using LAPACK, Tp is the execution time of the BCS algorithm

on FPGA, GPU, or a hybrid mode with MAGMA. It is observed that our GPU

and FPGA implementations outperform the CPU using LAPACK and the hybrid

system using MAGMA. The FPGA has the best performance compared with the

GPU, CPU with LAPACK, and hybrid GPU/CPU with MAGMA in recovering a

length of 1×256 signal vector, which is 13.6 times faster than the CPU using LAPACK

and 12.9 times faster than MAGMA. Note that the FPGA has the best performance

in Cholesky decomposition for a 256 × 256 matrix as shown in Fig. 6.8. With an

increase of the problem scale, the speedup of FPGAs decreases but is still better

than the CPU and MAGMA. GPUs can achieve a 37.6x speedup in reconstructing

a 1 × 512 signal vector, and a 35.1x speedup for a 1 × 768 signal vector, which are

much faster than MAGMA and FPGAs. This is because in computing the Cholesky

decomposition for small matrices, the GPU and FPGA are better than the CPU using

LAPACK and the hybrid system with MAGMA. This advantage is greatly enlarged in

computing the iterative Cholesky decomposition required in CS signal reconstruction

algorithms. The key point is that our proposed Cholesky decomposition on FPGAs
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and GPUs for CS signal reconstruction can utilize previous results while MAGMA

and LAPACK have to recalculate the whole matrix each iteration, so that good

performance on FPGAs and GPUs is achieved. In recovering a small 1 × 128 signal

vector, GPUs do not show good performance due to overhead and data communication

for small matrices. With growth of the problem scale, GPU speedup is decreasing

and the performance of CPUs using LAPACK and the hybrid mode using MAGMA

are relatively increasing. MAGMA exhibits much better performance for large scale

problems than LAPACK due to both GPUs and CPUs working together.

Fig. 6.13 compares the speedup of different implementations in double precision.

Compared with the performance in single precision, our GPU and FPGA performance

in double precision are still much better than the CPU using LAPACK and the

hybrid CPU and GPU using MAGMA. In solving the 1 × 256 signal vector, the

FPGA still has the best performance, which is 14.6 times faster than the CPU

using LAPACK and hybrid mode using MAGMA. The GPU can achieve about 27.9x

speedup compared with the CPU using LAPACK in computing the 1 × 512 signal

vector. With problem size increasing, MAGMA in double precision shows much better

performance than that in single precision. Therefore, FPGAs and GPUs are suitable

for small-scale CS signal reconstruction problems. The GPU implementation can

achieve best performance for recovering a 1 × 512 signal vector. The FPGA is the

best in reconstructing the 1× 256 signal vector. For large scale signal reconstruction

problems, implementation on the CPU using LAPACK and the both CPU and GPU

using MAGMA may be a good choice since the FPGA and GPU implementations for

very large matrices are less effective.

In this chapter, we explore the hardware implementation of the BCS algorithm

to accelerate the computation for fast signal reconstruction. The CS signal

reconstruction algorithms in previous chapters can also be implemented on hardware

such as FPGAs and GPUs for computational acceleration. In the next chapter, we

conclude the dissertation and discuss the future work.
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Chapter 7

Conclusions and Future Work

7.1 Contributions

In this PhD dissertation, we have made contributions to CS signal reconstruction

algorithms and their hardware implementation. The main contributions include:

1. A novel orthogonal pruning pursuit (OPP) hard decision algorithm is proposed

and developed for CS signal reconstruction. Based on our feedback structure,

the OPP algorithm can reconstruct the signal much faster and require fewer

measurements than other traditional hard decision CS algorithms. In contrast

to other greedy CS algorithms, the key idea of OPP is to prune indices of zero

elements based on a given index set for finding true nonzero indices. OPP can

reduce a substantial amount of measurements. OPP can also make the signal

as sparse as possible and thus improves the capability of defeating noise and

interference.

2. A novel Turbo Bayesian Compressed Sensing (TBCS) algorithm is proposed

to provide an efficient approach to transfer and incorporate this redundant

information for joint sparse signal reconstruction. A space-time TBCS structure

is developed for exploiting and incorporating the spatial and temporal prior

information, both or independent, for space-time signal reconstruction. Based
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on the BCS algorithm, we develop an iterative mechanism for information

exchange among different reconstruction processes, motivated by the Turbo

decoding structure, which is denoted Turbo BCS. To the author’s best

knowledge, there has not been any work applying the Turbo scheme in the

BCS framework. A key contribution is the space-time structure to exploit

and utilize the temporal and spatial redundancies. A mathematically elegant

framework is proposed to impose an exponentially distributed hyperparameter

on the existing hyperparameter α of the signal elements. This exponential

distribution for the hyperparameter provides an approach to generate and fuse

prior information with measurements in the signal reconstruction procedure. An

incremental method [39] is developed to find the limited nonzero signal elements,

which reduces the computational complexity compared with the expectation

maximization (EM) method.

3. We propose a novel front-end scheme for a high precision CS-based UWB

positioning system. Focusing on the properties of the UWB positioning system,

we applied the TBCS algorithm into the UWB positioning system. The joint

signal reconstruction algorithm is tightly integrated with the TDOA algorithm

to develop a new algorithm for fast tag tracking, which is named Space-Time

Bayesian Compressed Sensing (STBCS). The key idea in the proposed scheme

is to utilize the spatial and temporal redundancies existing in received UWB

signals among base stations. In one base station, the received UWB echo signals

are similar in time because the tag moves very slowly compared with the pulse

repetition frequency, which results in the temporal redundancy. Among different

base stations, the received UWB echo signals are also similar, which yields in

the spatial redundancy. The STBCS algorithm is in a pipelined mode to process

the TBCS and TDOA signal processing algorithms for fast tag tracking. Both

algorithms are realized in a modified incremental method.
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The BCS algorithms are computationally expensive based on the BCS signal

reconstruction algorithm framework. Hence, we develop a high performance iterative

Cholesky decomposition and CS signal reconstruction implementation on FPGAs

and GPUs to speed up the computation for fast signal processing. Contributions on

hardware implementation in this dissertation include:

• Cholesky decomposition implementation on GPUs. We present a novel

algorithm for Cholesky decomposition on GPUs through several optimized

kernel calls to exploit potential parallelism, minimize copying operations, and

optimize memory access for best performance.

• Cholesky decomposition implementation on FPGAs. We develop an augmented

Cholesky decomposition on FPGAs, in which only one pipelined triangular

linear equation solver is needed for solving the whole Cholesky decomposition

and associated linear equation systems. A dedicated pipelined Processing

Element (PE) is designed and optimized for realizing the triangular linear

equation solver on a single FPGA. The proposed approach can avoid division

dependencies and remove expensive square root operations so that hardware

complexity is minimized and performance is greatly improved.

• CS signal reconstruction on GPUs and FPGAs. We analyze and exploit

parallelism in signal reconstruction algorithms. We propose a high performance

structure for computational acceleration for CS signal reconstruction on both

GPUs and FPGAs.

• Performance comparison of parallel Cholesky decomposition and CS on different

devices. We compare GPU and FPGA implementation from many perspectives,

such as hardware architecture, software programming, optimization techniques,

and precision.
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7.2 Conclusions

In this dissertation, we have made contributions to CS signal reconstruction

algorithms and their hardware implementation on GPUs and FPGAs. We proposed

the OPP algorithm based on the hard decision CS signal reconstruction algorithm

framework. A novel joint BCS algorithm is developed to integrating the redundant

information for good performance. For the UWB positioning system, we integrate

the CS signal reconstruction algorithm and the TDOA algorithm together to develop

a new algorithm for fast signal processing. Finally, we implement the CS algorithm

on GPUs and FPGAs for high performance computation.

For the hard decision CS signal reconstruction algorithm, we develop a novel OPP

algorithm. OPP is based on a feedback structure to exploit the prior knowledge in

consecutive signal frames. The OPP algorithm can significantly reduce the number

of measurements and improve the capability to defeat noise and interference. The

numerical simulation shows that our proposed scheme can achieve good performance

using very few measurements, while traditional CS algorithms like OMP and BP

cannot successfully reconstruct the UWB signal. It is also demonstrated that

our proposed structure and algorithm achieve good BER performance under a few

measurements in the proposed UWB communication system.

Then, a joint signal reconstruction algorithm is developed to exploit and integrate

the spatial and temporal prior information existing in sparse signals, e.g. UWB pulses.

The turbo BCS algorithm has been designed to fully exploit prior information from

both space and time. Numerical simulation results have shown that the proposed

TBCS outperforms the MBCS and traditional BCS, in terms of the robustness to

noise and reduction of the required amount of samples.

For the UWB positioning system, a front-end TBCS-TDOA algorithm is developed

to apply the CS theory into UWB positioning systems for achieving ultra-high

accuracy. The STBCS algorithm is able to exploit space-time prior information in

joint UWB signal reconstruction to dramatically reduce the number of measurements

129



while thus the sampling rate of ADCs. Simulation results demonstrate that our

proposed STBCS-TDOA algorithm in the CS-based UWB positioning system can

achieve a sub-mm accuracy while using low sampling rate ADCs. The results using

STBCS-TDOA are not sensitive to the tag location relative to base stations, so this

approach avoids the geometrical dilution of accuracy using the traditional sequential

sampling method.

In order to alleviate the computational cost, we propose a novel Cholesky decom-

position implementation on both GPUs and FPGAs for computational acceleration.

Cholesky decomposition on a GPU is optimized with minimum memory access for

good performance. Cholesky decomposition on FPGAs needs only one pipelined and

dedicated triangular linear equation solver. CS signal reconstruction algorithms are

both implemented based on the proposed iterative Cholesky decomposition, which

greatly improve performance. Results shows that Cholesky decomposition on FPGAs

and GPUs have much better performance than the CPU using LAPACK and the

hybrid system using MAGMA for small matrices. In terms of computing cycles,

the FPGA implementation shows the highest efficiency. We can achieve around 15x

speedup for CS signal reconstruction algorithm on FPGAs and around 38x speedup

on GPUs compared with the implementation with LAPACK and MAGMA.

7.3 Future Work

One of the main problem in CS is how to deal with the noise in the sparse signal vector.

The basic assumption in CS is that the original signal vector should be sparse: most

of elements in the vector are zero and only a few of elements are nonzero; however, the

additive noise in the signal breaks the sparse assumption, which brings a fundamental

problem to reconstruct the noise-free signal.

One of the trends in the research of CS is to deal with the noise in the signal vector.

Bayesian compressed sensing theory develops a way to reducing the noise. However,
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if the additive noise is large, the signal reconstruction effect is not acceptable, which

has similar performance as the hard decision CS algorithms.

Based on our previous research work on BCS theory, our future is to exploit

new ways to combat the noise. In particular, in many applications, we have prior

knowledge about the noise strength, or statistical properties, or other information.

All the useful information can be integrated into the algorithm for better combating

the noise to improve the performance of signal reconstruction. This research work is

significantly meaningful and will impact many applications, such as signal acquisition,

signal compressing, and signal sensing.

131



Bibliography

132



Bibliography

[1] A. F. Molisch, “IEEE 802.15.4a channel model - final report,” [online], IEEE

2004.

www.ieee802.org/.../channel-model-final-report-r1.pdf 29, 36, 54, 60,

68, 69, 85

[2] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis,

2nd edition, CRC Press, 2003. 45

[3] A. G. Dimakis, P. O. Vontobel, “LP decoding meets LP decoding: a connection

between channel coding and compressed sensing,” in Proceedings of the 47th

annual Allerton Conference on Communication, Control, and Computing,

Monticello, Illinois, 2009. 3, 14, 15

[4] A. Septimus and R. Steinberg, “Compressive sampling hardware reconstruc-

tion,” in IEEE International Symposium on Circuits and Systems (ISCAS),

Paris, France, July, 2010. 20

[5] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM

Journal on Computing, vol. 24, no. 2, pp. 137-147, 1995. 19, 96

[6] Cholesky factorization algorithm, Parallel Linear Algebra Package, The

University of Texas at Austin, [Online], 2007.

http://userweb.cs.utexas.edu/~plapack/ 19

133



[7] C. Hegde and R. G. Baraniuk, “Compressive sensing of a superposition of

pulses,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing

(ICASSP), Dallas, Texas, March, 2010. 18

[8] C. Zhang, M. Kuhn, B. Merkl, A. Fathy, and M. Mahfouz, “Real-time

noncoherent UWB positioning radar with millimeter range accuracy: theory

and experiment,” in IEEE Trans. on Microwave Theory and Techniques, vol.

58, pp. 9-20, 2009. 17, 18, 91, 92

[9] D. Needell and R. Vershynin, “Signal recovery from incomplete and inaccurate

measurements via regularized orthogonal matching pursuit,” in IEEE Journal

of Selected Topics in Signal Processing, pp.310-316, 2010. 14, 110

[10] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of

underdetermined linear equations by stagewise orthogonal matching pursuit,”

Technology Report, Mar., 2006. 14, 108

[11] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol.52,

no.4, pp.1289-1306, April, 2006. 1, 3, 4, 13, 96

[12] D. Yang, H. Li, and G. D. Peterson, “Feedback orthogonal pruning pursuit for

pulse acquisition in UWB communications,” in the 20th Personal, Indoor and

Mobile Radio Communications Symposium (PIMRC), Tokyo, Sept. 2009. 18,

33, 67, 108

[13] D. Yang, A. Fathy, H. Li, G. D. Peterson, and M. Mahfouze, “Millimeter

accuracy UWB positioning system using sequential sub-sampler and time

difference estimation algorithm,” in IEEE Radio and Wireless Symposium

(RWS), New Orlean, Jan. 2010. 17, 18, 51, 52, 66, 67, 69, 70, 71, 91, 92,

93

134



[14] D. Yang, G. D. Peterson, H. Li and J. Sun, “An FPGA implementation for

solving least square problem,” in the Seventeenth IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), Napa, California, April.,

2009. 20, 47, 52, 100, 107, 116, 118

[15] D. Yang, Husheng Li, and G.D. Peterson, “Space-time Turbo Bayesian

Compressed Sensing for UWB system,” in IEEE International Conference on

Communications (ICC), Kapton, May, 2010. 18, 67, 110, 124

[16] D. Yang, G. Peterson, and H. Li, “High performance reconfigurable computing

for Cholesky decomposition,” in Symposium on Application Accelerators in High

Performance Computing(SAAHPC), UIUC, Urbana, July, 2009. 20, 23, 27, 47

[17] D. Yang, G. Liang, D. Jenkins, G. D. Peterson, and H. Li, “High performance

relevance vector machine on GPUs,” Symposium on Application Accelerators in

High Performance Computing (SAAHPC), Knoxville, TN, July, 2010. 20, 114

[18] D. Yang, J. Sun, J. Lee, G. Liang, D. D. Jenkins, G. D. Peterson, and H. Li,

“Performance comparison of Cholesky decomposition on GPUs and FPGAs,”

Symposium on Application Accelerators in High Performance Computing

(SAAHPC), Knoxville, TN, July, 2010. 20

[19] D. Yang, H. Li, G. D. Peterson, and A. Fathy, “UWB signal acquisition

in positioning systems: Bayesian compressed sensing with redundancy,” in

Conference on Information Sciences and Systems (CISS), Baltimore, MD,

March, 2009. 5, 17, 18, 19, 23, 67, 97

[20] D. Yang, H. Li, G. D. Peterson, and A. E. Fathy, “Compressed sensing

based UWB receiver: hardware compressing and FPGA reconstruction,” in

Conference on Information Sciences and Systems (CISS), Baltimore, MD,

March, 2009. 5, 18, 19, 20, 24, 33, 34, 52, 67, 70, 97

135



[21] D. Yang, H. Li, and G.D. Peterson, “Decentralized Turbo Bayesian compressed

sensing with application to UWB systems,” in EURASIP Journal on Advances

in Signal Processing, March, 2011. 19, 96, 97, 124

[22] D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Baraniuk,

“Distributed compressed sensing,” [online], 2005.

http://arxiv.org/abs/0901.3403 15, 19

[23] D. Leviatan and V. N. Temlyakov, “Simultaneous approximation by greedy

algorithms,” IMI Report 2003, University of South Carolina at Columbia, 2003.

14, 15, 19, 108

[24] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compressive sensing

via belief propagation,” IEEE Transactions on Signal Processing, vol. 58, Issue

1, pp.269-275, 2009. 3, 14, 15

[25] D. M. Pozar, Microwave Engineering, Wiley, 1998. 6

[26] E. Berg, and M. P. Friedlander, “Joint-sparse recovery from multiple

measurements,” IEEE Transactions on Information Theory, vol.56, no.5,

pp.2516-2527, 2010 15, 19

[27] E. J. Candès, J. Romberg and T. Tao, “Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information,” IEEE

Trans. Inform. Theory, vol.52, no.2, pp.489-509, Feb. 2006. 1, 4, 13, 18, 24, 26,

67, 96

[28] F. Zhang and Henry D. Pfister, “On the iterative decoding of high-rate LDPC

codes with applications in compressed sensing,” submitted to IEEE Trans. on

Inform. Theory, 2011. 14, 15

[29] H. Zayyani, M. Babaie-Zadeh, and C. Jutten, “Bayesian pursuit algorithm for

sparse representation” in IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing (ICASSP), Taipei, Taiwan, April, 2009 14, 17

136



[30] J. L. Paredes, G. R. Arce, and Z. Wang, “Ultra-Wideband compressed sensing:

channel estimation,” IEEE Journal of Selected Topics in Signal Processing. vol.

1, no. 3, pp.383-395, 2007. 18, 67

[31] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous

sparse approximation. Part I: Greedy pursuit,” IEEE Trans. Signal Processing,

vol. 86, pp. 572-588, Apr. 2006. 14, 15, 19

[32] J. Haupt and R. Nowak, “A generalized restricted isometry property,”

University of Wisconsin Madison Technical Report, May. 2007. 13

[33] J. A. Tropp, “Algorithms for simultaneous sparse approximation. Part II:

Convex relaxation,” IEEE Trans. Signal Processing, vol. 86, pp. 589-602, Apr.

2006. 14, 19

[34] J. Jung, D. OLeary, “Cholesky decomposition and linear programming on a

gpu,” in ACM/IEEE Conference on Supercomputing, Reno, NV, November,

2007. 19

[35] J. Tropp and A. Gilbert, “Signal recovery from random measurements via

orthogonal matching pursuit,” IEEE Trans. on Information Theory, vol. 53,

no. 12, pp. 4655-4666, 2007 13, 14, 26, 108

[36] L. Trefethen, D. Bau, Numerical Linear Algebra, SIAM: Society for Industrial

and Applied Mathematics, 1997. 25, 26, 98

[37] Linear Algebra PACKage (LAPACK), Version 3.2.1, [Online], 2010.

http://www.netlib.org/lapack/ 20, 117, 119, 122

[38] M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,”

Journal of Machine Learning Research, vol.1, pp.211-244, 2001. 3, 14, 17, 38,

40, 42, 43, 46, 47, 54, 149

137



[39] M. E. Tipping and A. C. Faul, “Fast marginal likelihood maximisation for

sparse Bayesian models,” in Proc. of the International Conference on Artificial

Intelligence and Statistics, Keywest, Fl., June, 2003. 14, 35, 38, 43, 48, 49, 73,

78, 110, 127

[40] M. Davenport and M. Wakin, “Analysis of orthogonal matching pursuit using

the restricted isometry property,” IEEE Transactions on Information Theory,

Vol. 56, issue 9, pp. 53-64, Jan. 2010. 13

[41] Matrix Algebra on GPU and Multicore Architectures (MAGMA) user guide,

[Online], 2009.

http://icl.cs.utk.edu/magma/ 20, 117, 119, 122

[42] M. Andrecut, “Fast GPU implementation of sparse signal recovery from random

projections,” [online], 2008.

http://arxiv.org/arxiv/pdf/0809/0809.1833v1.pdf 20, 110

[43] M. Andrle, L. Rebollo-Neira, and E. Sagianos, “Backward-optimized orthogonal

matching pursuit approach,” IEEE Signal Processing Letters, Vol. 11, pp.705-

708, Sept. 2004. 13, 26

[44] M. Kuhn, C. Zhang, B. Merkl, D. Yang, Y. Wang, M. Mahfouz, and A. Fathy,

“High accuracy UWB localization in dense indoor environments,” in IEEE

International Conference on Ultra-Wideband (ICUWB), Germany, Sep. 2008.

91

[45] M. Mahfouz, C. Zhang, B. Merkl, M. Kuhn, and A. E. Fathy. “Investigation of

high-accuracy indoor 3D positioning using UWB technology,” IEEE Trans. on

Microwave Theory and Technology, no. 6, pp. 88-96, 2008. 17, 18, 66, 70, 71,

91, 92

138



[46] N. Vaswani and W. Lu, “Modified-CS: Modifying compressive sensing for

problems with partially known support,” IEEE International Symposium on

Information Theory (ISIT), Seoul, Jun. 2009. 15, 19, 23

[47] N. Higham, Accuracy and Stability of Numerical Algorithms , SIAM, pp. 258,

2002. 144, 157

[48] NVIDIA CUDA programming guide, [Online], 2007.

http://www.nvidia.com/object/cuda_home.html 115, 117

[49] NVIDIA CUBLAS library, [Online], 2008.

http://developer.download.nvidia.com/compute/CUBLAS_Library 114

[50] NVIDIA Tesla GTX480 computing processor, [Online], 2010.

http://www.nvidia.com/object/product_geforce_GTX480_us.html 116,

117

[51] OpenCL programming guide, [Online], 2009.

http://developer.download.nvidia.com/.../ProgrammingGuide.pdf 115,

117

[52] O. Maslennikow, V. Lepekha, A. Sergiyenko, A. Tomas, and R. Wyrzykowski,

“Parallel implementation of Cholesky LLT algorithm in FPGA-based

processor,” Parallel Processing and Applied Mathematics, pp.137-141, 2008. 19

[53] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian matching pursuit,”

Workshop on Information Theory and Applications (ITA), La Jolla, CA, Jan.

2008. 17, 110

[54] P. Zhang, Z. Hu, R. C. Qiu, and B. M. Sadler, “Compressive sensing based

Ultra-wideband communication system,” in IEEE International Conference on

Communications (ICC), Dresden, Germany, June, 2009. 33

139



[55] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the

restricted isometry property for random matrices,” Constructive Approximation

pp. 253-263, December 2008. 13

[56] R. Baraniuk, “Compressive sensing,” IEEE Signal Processing Magazine, pp.

118-121, July, 2007. 13

[57] R. Harrison, G. Fann, T. Yanai, Z. Gan, G. Beylkin, “Multiresolution quantum

chemistry: Basic theory and initial applications,” J. Chem. Phys., pp. 102-121,

2004. 19, 97

[58] S. Lee and S. J. Wright, “Implementing algorithms for signal and image

reconstruction on graphical processing units,” Technical Report, [online], 2008.

http://www.optimization-online.org/2008/11/2131.pdf 20, 110

[59] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans.

Signal Processing, vol. 56, no. 6, June 2008. 3, 14, 17, 33, 38, 40, 48, 54, 73, 78,

110, 122

[60] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions

to linear inverse problems with multiple measurement vectors,” IEEE Trans.

Signal Processing, vol. 53, no. 7, pp. 2477-2488, July 2005. 14, 15, 19

[61] S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Trans.

Signal Processing, vol. 57, issue 1, pp. 92-106, 2009. 17, 34, 41, 44, 54, 110, 124

[62] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y.

Massoud, and R. Baraniuk, “Analog-to-Information conversion via random

demodulation,” Proc. IEEE Dallas Circuits and Systems Workshop (DCAS),

2006. 24

[63] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Bayesian compressive

sensing using laplace priors,” IEEE Transactions on Image Processing, Vol.

19, issue 1, pp. 53-64, Jan. 2010. 17, 43

140



[64] T. Do, L. Gan, N. Nguyen and T. Tran, “Sparsity adaptive matching pursuit

algorithm for practical compressed sensing,” Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, California, Oct. 2008. 14, 29

[65] V. Volkov, J. Demmel LU, “LU, QR and Cholesky factorizations using

vector capabilities of GPUs,” Technical Report, UCB/EECS-2008-49, EECS

Department, University of California, Berkeley, May 2008. 20

[66] V. Cevher, P. Boufounos, R. G. Baraniuk, A. C. Gilbert, and M. J. Strauss,

“Near optimal bayesian localization via incoherence and sparsity,” IEEE/ACM

Information Processing in Sensor Networks (IPSN), San Francisco, CA, April

2009. 18

[67] W. Wang, M. Garofalakis, and K. Ramchandran, “Distributed sparse

random projections for refinable approximation,” in Int. Conf. on Information

Processing in Sensor Networks (IPSN), Cambridge, Massachusetts, April 2007

15, 19

[68] W. S. Anglin, and J. Lambek, The Heritage of Thales, Springers, 1993. 152,

160

[69] X. Shen, M. Guizani, R. C. Qiu, and T. LeNgoc, Ultra-Wideband Wireless

Communications and Networks, John Wiley, 2006. 4, 19, 69, 96

[70] Xilinx IP Coregen, [online], 2006.

http://www.xilinx.com/ise/products/coregen_overview.pdf 115, 117

[71] Xilinx Logicore, “Xilinx pipelined divider v3.0,” [online], 2008.

http://www.xilinx.com/ipcenter/.../sdivider.pdf 104

[72] Xilinx PowerPC and MicroBlaze development kit, [online], 2006.

http://www.xilinx.com/publications/EmbeddedKit.pdf 112

141



[73] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, G. N. Gaydadjiev, “64bit floating

point FPGA matrix multiplicatio,” in 13th International Symposium on Field

Programmable Gate Arrays (FPGA), Monterey, CA., Feb., 2005. 107

[74] Y. Qi, D. Liu, D. Dunson, and L. Carin, “Bayesian multi-task compressive

sensing with dirichlet process priors,” in the 25th International Conference on

Machine Learning, Helsinki, Finland, July, 2008. 17

[75] Y. Zhu, J. D. Zuegel, J. R. Marciante,and H. Wu, “A reconfigurable, multi-

Gigahertz pulse shaping circuit based on distributed transversal filters ”, IEEE

ISCAS, 2006. 6, 7

[76] Z. Wang, G. R. Arce, B. M. Sadler, J. L. Paredes, S. Hoyos and Z. Yu,

“Compressed UWB signal detection with narrowband interference mitigation,”

in IEEE International Conference on Ultra-Wideband, ICUWB, Singapore,

Sept., 2008. 18, 33, 67

142



Appendix

143



Appendix A

Proof of Equations

A.1 Proof of Lemma 3.0.2

Proof. By deleting the jth column vector ϕj from ΦI , the jth coefficient x̂I
j in signal x̂

is then become zero. For convenience, we rearrange the matrix ΦI = (ΦI−1 ϕj). The

order of coefficients of x̂t is rearranged but does not affect the values. For convenience,

we write ϕj as ϕ. Then we use ΦI−1 to express projection yI:

yI = y −RI

=
(
ΦI−1 ϕ

)Φ′
I−1ΦI−1 Φ′

I−1ϕ

ϕ′ΦI−1 ϕ′ϕ

−1

×

Φ′
I−1

ϕ′

y (A.1)

On using the Woodbury identity[47], the inverse matrix could be rewritten as

Φ′
I−1ΦI−1 Φ′

I−1ϕ

ϕ′ΦI−1 ϕ′ϕ

−1

=

C + CΨ′ϕDϕ′ΨC −CΨ′ϕD

−Dϕ′ΨC D

 , (A.2)
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where we define

Ψ = ΦI−1; C = (Ψ′Ψ)−1 ; (A.3)

and

D = (Ψ′Ψ− ϕΨCΨϕ)−1
. (A.4)

Then (A.1) becomes

yI = ΦI (Φ
′
IΦI)

−1
Φ′

Iy = ΦIAy

=
(
Ψ ϕ

)CΨ′ + CΨ′ϕDϕ′ΨCΨ′ − CΨ′ϕDϕ′

−Dϕ′ΨCΨ′ +Dϕ′

y.

(A.5)

Clearly, we also have

yI−1 = y −RI−1

= ΦI−1

(
Φ′

I−1ΦI−1

)−1
Φ′

I−1y

= ΨCΨ′y. (A.6)

From Eq. (A.6) and expanding Eq. (A.5), after tedious computation, we have

yI−1 − yI = RI −RI−1

= αy
(
αT
)−1

, (A.7)

where α = Dϕ′ − Dϕ′ΨCΨ′. Clearly, α is just the last row vector of the matrix A.

We note that x̂I
j = αy, then:

∥RI −RI−1∥2 =
(
x̂I
j

)2
< αj, αT

j >
. (A.8)
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This concludes the proof.

A.2 Proof of Eq. (4.10) and (4.11)

We first show the derivation of Eq. (4.10), which is given by:

P (sij|λij)

=

∫
P (sij|αi

j)P (α
i
j|λij)dαi

j

=

∫
(
αi
j

2π
)−

1
2 exp (−

(sij)
2αi

j

2
)λij exp(−λijαi

j)dα
i
j

=
λij

(2π)
1
2

∫
(αi

j)
− 1

2 exp(−(λij +
(sij)

2

2
)αi

j)dα
i
j

Let t = (λij +
(sij)

2

2
)αi

j

=
λij

(2π)
1
2

∫  t

λij +
(sij)

2

2

 1
2

exp(−t)

d(
t

λij +
(sij)

2

2

)

=
λij

(2π)
1
2

(
λij +

(sij)
2

2

)−( 3
2
) ∫

t
1
2 exp(−t)dt

= (2π)−
1
2Γ(

3

2
)λij

(
λij +

(sij)
2

2

)−( 3
2
)

(A.9)

where Γ(.) is the gamma function, defined as Γ(x) =
∫∞
0
tx−1e−tdt. We have

Γ(3
2
) =

∫∞
0
t
1
2 e−tdt. Because both distributions belong to the exponential distribution

family, the marginal distribution is still in the same family. It is also observed that

the marginal distribution P (sij|λij) is sharply peaked at zero, which encourages the

sparsity. Therefore, the chosen exponential prior distribution in the hierarchical

Bayesian framework can be recognized and encourage the sparsity of the reconstructed

signal.

146



Based on the assumption αb
j = αi

j, we have the same derivation:

P (sbj|λij)

=

∫
P (sbj|αi

j)P (α
i
j|λij)dαi

j

=

∫
(
αi
j

2π
)−

1
2 exp (−

(sbj)
2αi

j

2
)λij exp(−λijαi

j)dα
i
j

= (2π)−
1
2Γ(

3

2
)λij

(
λij +

(sbj)
2

2

)−( 3
2
)

(A.10)

In order to obtain Eq. (4.11), we utilize the above equations. Then the derivation

of the posterior is given by

P (αi
j|sbj, λij) =

P (sbj|αi
j)P (α

i
j|λij)

P (sbj, λ
i
j)

=
P (sbj|αi

j)P (α
i
j|λij)∫

P (sbj|αi
j)P (α

i
j|λbj)dαi

j

=
(αi

j)
−1
(2π)−

1
2λij exp

(
− (sbj)

2αi
j

2
− αi

jλ
i
j

)
(2π)−

1
2Γ(3

2
)
(
λij +

(sbj)
2

2

)− 3
2

λij

=

(
λij +

(sbj)
2

2

) 3
2

exp
(
−(λij +

(sbj)
2

2
)αi

j

)
Γ(3

2
)

=

(
λ̃ij

) 3
2
exp

(
−λ̃ijαi

j

)
Γ(3

2
)

(A.11)

So the parameter λij is updated to λ̃ij, which is given by

λ̃ij = λij +

(
sbj
)2
2

. (A.12)

For transferred multiply reconstructed signal elements sb1j , s
b2
j , ...s

bn
j , The posterior

function also belongs to the exponential distribution family. As shown in the

Eq.(4.13), the parameter λij is updated to:
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P (αi
j|s

b1
j , s

b2
j , ..., s

bn
j , λ

i
j)

=
P (sb1j |αi

j)P (s
b2
j |αi

j)...P (s
bn
j |αi

j)P (α
i
j|λij)

P (sb1j , s
b2
j , ..., s

bn
j , λ

i
j)

=
P (sb1j |αi

j)P (s
b2
j |αi

j)...P (s
bn
j |αi

j)P (α
i
j|λij)∫

P (sb1j , α
i
j|λij)P (s

b2
j , α

i
j|λij)...P (s

bn
j , α

i
j|λij)dαi

j

=
P (sb1j |αi

j)P (s
b2
j |αi

j)...P (s
bn
j |αi

j)P (α
i
j|λij)∫

P (sb1j |αi
j, λ

i
j)P (s

b2
j |αi

j, λ
i
j)...P (s

bn
j |αi

j, λ
i
j)P (α

i
j|λij)dαi

j

=

(
λij +

∑n
i=1(s

bi
j )2

2

) 2n+1
2

exp

(
−
(
λij +

∑n
i=1(s

bi
j )2

2

)
αi
j

)
Γ(2n+1

2
)

=
(λ̃ij)

2n+1
2 exp

(
−λ̃jαi

j

)
Γ(2n+1

2
)

.

The distribution P (sb1j |αi
j), P (s

b2
j |αi

j), ..., P (s
bn
j |αi

j) is conditionally independent

from each other. In this case, the parameter is updated to:

λ̃ij = λij +

∑n
i=1(s

bi
j )

2

2
, (A.13)

where n represents the total number of sb1j , s
b2
j , ..s

bn
j .

Therefore, above derivations show that how the single or multiple signal elements

sbnj , j = 1, 2, ..., N, n = 1, 2, ... from the other BCS procedures update the hyperpa-

rameters in the i-th BCS signal reconstruction procedure.

A.3 Derivation of Eq. (4.16)

One strategy to maximizing the target log function is to exploit an EM method,

treating the si as hidden data and maximize the following expectation:

Esi|yi,αi

[
logP (si|αi)P (αi|λi)

]
. (A.14)
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The operator Esi|yi,αi denotes an expectation of the posterior P (si|yi, αi, λi, β)

with respect to the distribution over the si given the data and hidden variables.

Through differentiation with respect to αi we get:

∂

∂αi
j

Esi|yi,αi

[
logP (si|αi, β)P (αi|λi)

]
= Esi|yi,αi

[
∂

∂αi
j

(
logP (si|αi, β) + logP (αi|λi)

)]
= −1

2
Esi|yi,αi

[
−2(sij)2 − 4λij +

6

αi
j

]
= Esi|yi,αi

(
(sij)

2
)
+ 2λij −

3

αi
j

. (A.15)

According to Eq.(4.3), we have:

Esi|yi,αi

(
(sij)

2
)
= Σi

jj + (µi
j)

2 (A.16)

We set Eq.(A.15) to 0, which yields to an update for αi
j:

αi
j =

3

(sij)
2 + Σi

jj + 2λij
. (A.17)

A.4 Derivation of Eq. (4.20)

For the L1(α),as shown in [38], we have:

L1(α) = −1

2
(Nlog2π + log|E|+ yTE−1y)

= L1(α−j) + l1(αj) (A.18)
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where,

E = σ2I + ΦA−1ΦT

= σ2I +
∑
k ̸=j

α−1
k ϕkϕ

−1
k + α−1

j ϕjϕj

= E−j + α−1
j ϕjϕj (A.19)

and

L1(α−i) = −
1

2
(Nlog2π + log|E−j|+ yTE−1

−j y) (A.20)

l1(αj) =
1

2
(logαj − log(αj + gj) +

h2j
αj + gj

(A.21)

The quantities gj, hj and E−j are given by

gj = ϕT
j E

−1
−jϕj (A.22)

hj = ϕT
j E

−1
−j y (A.23)

E−j = β2I +
∑
k ̸=j

α−1
k ϕkϕ

−1
k (A.24)

where ϕj is the j-th column vector of the matrix Φ.

In order to find the critical point, the differentiation of l1(αj) is given by:

∂l1(αj)

∂αj

=
α−1
j g2j − (h2j) + gj

2(αj + gj)2
= 0 (A.25)

It is easy to maximize l1(αj) with respect to αj by taking the first and second

derivatives. Then the maximum point αj is given by:

α⋆
j =


h2
j

g2j−hj
, if g2j > hj;

∝, otherwise.

(A.26)
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The second derivative is:

∂2l1(αj)

∂α2
j

=
−2α2

j (αj + gj)(α
−1
j g2j − h2j + gj)− (αj + gj)

2g2j
2α2

j (αj + gj)4
(A.27)

Taking the critical point α⋆
j into the second derivative expression, we have know that:

∂2l1(αj = α⋆
j )

∂α2
j

=
−g2j

2α2
j (αj + gj)2

(A.28)

Obviously, it is always negative, and therefore function l1(αj) achieves the maximum

at α⋆
j , which is unique.

A.5 Derivations about Eq.(4.27) and Eq.(4.28)

The first derivative of the l2(αj) is l
′
2(αj) = −λj. All together the first differentiation

of the posterior l(αj) is given by:

l′(αj) = l′1(αj) + l′2(αj)

= (
gj

2αj(αj + gj)
−

h2j
2(αj + gj)2

)− λj

=
1

2
[
1

αj

− 1

αj + gj
−

h2j
(αj + gj)2

− 2λj] (A.29)

By setting the Eq.(A.29) to zero, we can find the optimum α⋆
j for Eq. (4.28).

The gj and h
2
j are not negative based on Eq. (A.22) and (A.23). We have αj ≥ 0

and λj > 0 according to the exponential distribution as shown in Eq.(4.8), and

l′(αj) → −2λj < 0 as αj → +∞. Then, it has l′(αj) > 0 when αj → 0. Therefore,

for the function l′(αj) = 0, it has at least one positive root for αj > 0.
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We rearrange Eq.(A.29) to

l′(αj) =
1

2
[
1

αj

− 1

αj + gj
−

h2j
(αj + gj)2

− 2λj]

=
f(αj, gj, hj, λj)

αj(αj + gj)2
(A.30)

Setting Eq.(A.54) to zero is to let the numerator be zero, i.e., f(αj, gj, hj, λj) =

0. To find the solution, we normalize the equation to reduce one parameter for

convenience. Then we need to solve

f(αj, gj, hj, λj)

−2λj
= α3

j +B0α
2
j +B1αj +B2 = 0 (A.31)

The corresponding coefficients are given by [68]:

B0 = 2gj (A.32)

B1 =
gj − 2λjg

2
j − h2j

−2λj
(A.33)

B2 =
g2j
−2λj

(A.34)

To solve the cubic function, we define intermediate components as:

U = 2B3
0 − 9B0B1 + 27B2 (A.35)

V = (2B3
0 − 9B0B1 + 27B2)

2 − 4(B2
0 − 3B1)

3 (A.36)
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Then the solutions of the cubic function are given by:

x1 = −1

3
(B0 +

3

√
U +
√
V

2
+

3

√
U −
√
V

2
) (A.37)

x2 = −1

3
(B0 + ω1

3

√
U +
√
V

2
+ ω2

3

√
U −
√
V

2
) (A.38)

x3 = −1

3
(B0 + ω2

3

√
U +
√
V

2
+ ω1

3

√
U −
√
V

2
) (A.39)

where,

ω1 = −1

2
+

√
3

2
i (A.40)

ω2 = −1

2
−
√
3

2
i (A.41)

Therefore, all those three roots x1, x2 and x3 are critical points of the optimization

function shown in Eq.(4.20). We choose the positive root which maximizes the

optimization function in Eq.(4.20) as the optimum solution α∗
j for Eq.(4.28).

A.6 Prior Information

Taking the j-th element as an example, we show how the parameters aikj and bikj are

updated based on the signal element ucdj . First, we prove Eq. (5.7):
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P (ucd|aik, bik)

=

∫
P (ucdj |αj)P (αj|aikj , bikj )dαj

Let ucdj = u, aikj = a, bikj = b;

=

∫
ba(αj)

a−1 exp(−bαj)

Γ(a)
(
αj

2π
)
1
2 exp(−u

2αj

2
)dαj

=
ba

Γ(a)(2π)
1
2

∫
(αj)

a− 1
2 exp

(
−(b+ u2

2
)αj

)
dαj

Let t = (b+
u2

2
)αj

=
ba

Γ(a)(2π)
1
2

×

∫ (
t

b+ u2

2

)(a− 1
2
)

exp(−t)d( t

b+ u2

2

)

=
ba

Γ(a)(2π)
1
2

∫ (
1

b+ u2

2

)(a+ 1
2
)

t(a−
1
2
) exp(−t)dt

=
ba
(
b+ u2

2

)(−a− 1
2
)

)

Γ(a)(2π)
1
2

∫
t(a−

1
2
) exp(−t)dt

=
ba
(
b+ u2

2

)(−a− 1
2
)

Γ(a)(2π)
1
2

· Γ(a+ 1

2
)

=
(bikj )

aikj Γ(aikj + 1
2
)

(2π)
1
2Γ(aikj )

(
bikj +

(ucdj )2

2

)−(aikj + 1
2
)

(A.42)
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Then the derivation of the posterior based on Eq. (5.7) is given by

P (αj|ucdj , aikj , bikj )

=
P (ucdj |αj)P (αj|aikj , bikj )

P (ucdj , a
ik
j , b

ik
j )

=
P (ucdj |αj)P (αj|aikj , bikj )∫
P (ucdj |αj)P (αj|aikj , bikj )dαj

= (
αj

2π
)1/2 exp(−(ucdj )2

αj

2
)×

(bikj )
aikj (αj)

(aikj −1) exp(−bikj αj)

Γ(aikj )
×

1

(bikj )
aik
j Γ(aikj + 1

2
)

(2π)
1
2 Γ(aikj )

(
bikj +

(ucd
j )2

2

)−(aikj + 1
2
)

=

(
bikj +

(ucd
j )2

2

)(aikj + 1
2
)

(αj)
(aikj − 1

2
) exp

(
−(bikj +

(ucd
j )2

2
)αj

)
Γ(aikj + 1

2
)

=

(
b̃ikj

)ãikj
(αj)

(ãikj −1) exp
(
−b̃ikj αj

)
Γ(ãikj )

,

where Γ(·) is the gamma function, defined as Γ(x) =
∫∞
0
tx−1e−tdt. Obviously, we

can see that the posterior is still the gamma distribution with updated parameters

by comparing Eq. (A.43) and Eq. (5.6). Because both distributions belong to the

exponential distribution family, the joint distribution is still in the same family. So

the parameters are updated to,

ãikj = aikj +
1

2
(A.43)

b̃ikj = bikj +

(
ucdj
)2

2
. (A.44)
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For the transferred reconstructed signal elements uc1j , u
c2
j , ...u

cn
j , the posterior

function also belongs to the exponential distribution family, which is given by

P (αj|uc1j , u
c2
j , ..., u

cn
j , a

ik
j , b

ik
j )

=
P (uc1j |αj)P (u

c2
j |αj)...P (u

cn
j |αj)P (αj|aikj , bikj )

P (uc1j , u
c2
j , ..., u

cn
j , a

ik
j , b

ik
j )

=
P (uc1j |αj)P (u

c2
j |αj)...P (u

cn
j |αj)P (αj|aikj , bikj )∫

P (uc1j , αj|aikj , bikj )...P (u
cn
j , αj|aikj , bikj )dαj

=
P (uc1j |αj)P (u

c2
j |αj)...P (u

cn
j |αj)P (αj|aikj , bikj )∫

P (uc1j |αj, aikj , b
ik
j )...P (u

cn
j |αj, aikj , b

ik
j )P (αj|aikj , bikj )dαj

=

(
bikj +

∑n
i=1(u

ci
j )2

2

)(aikj +n
2
)

(αj)
(aikj +n

2
−1)

Γ(aikj + n
2
)

×

exp

(
−
(
bikj +

∑n
i=1(u

ci
j )

2

2

)
αj

)

=

(
b̃ikj

)ãikj
(αj)

(ãikj −1) exp
(
−b̃ikj αj

)
Γ(ãikj )

.

The distribution P (uc1j |αj), P (u
c2
j |αj), ..., P (u

cn
j |αj) are conditionally independent

of each other. In this case, the parameters are updated to

ãikj = aikj +
n

2
(A.45)

b̃ikj = bikj +

∑n
i=1(u

ci
j )

2

2
. (A.46)

where n represents the total number of uc1j , u
c2
j , ..u

cn
j .
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A.7 Proof of Proposition 1

Proof. In order to prove Proposition 1, we first expand the marginal log-likelihood

function, which is given by

L(α) = −1

2
(Nlog2π + log|E|+ yTE−1y). (A.47)

where,

E = β2I + ΦA−1ΦT , (A.48)

The term log |E| is expanded to

log |E| = log |β2I + ΦA−1ΦT |

= log(|β−2I||A+ β2ΦTΦ|)

= −2N log β + log |A+ β2ΦTΦ|. (A.49)

Clearly, this term, log |E|, is associated with the projection matrix Φ and the

hyperparameter matrix A, which is not directly related to the measurements. Hence,

it does not contain any information about measurements and observations. Then in

order to expand the term yTE−1y, we utilize the Woodbury Inverse Identity [47] to

expand the term E−1, which is given by

E−1 = (β2I + ΦA−1ΦT )−1

= β−2I − β−2Φ(A+ β−2ΦTΦ)−1ΦTβ−2. (A.50)
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And we have

yTE−1y = yT (β2I + ΦA−1ΦT )−1y

= yTβ−2Iy − yTβ−2Φ(A+ β−2ΦTΦ)−1ΦTβ−2y

= β−2yTy − β−2yTΦΣΦTβ−2y

= β−2yTy − β−2yTΦû

= β−2yT (y − ŷ)

= β−2(∥y∥ − yT ŷ), (A.51)

where û is the estimated signal vector at the current iteration with the current nonzero

index set Ω. And correspondingly, ŷ is the corresponding measurements at the current

iteration. After several iterations, the index set Ω augments until all nonzero signal

elements are found and added into Ω. Then the algorithm converges and we have

ŷ → y, û→ u and correspondingly the term β−2yT (y − ŷ)→ 0.

Based on above analysis, the log-likelihood function Eq. (A.47) can be written as:

L(α) = −1

2
[Nlog2π +

∑
log(β) +

∑
log(α)

+ log |A−1 + βΦTΦ|+ βyT (y − Φũ)]

≈ C − 1

2
β(∥y∥ − yT ŷ)

∝ −(∥y∥ − yT ŷ). (A.52)

where C is the term which is not associated with the measurement vector y.

Obviously, we have

[j] = argmin
αj

(∥y∥ − yT ŷ)

= argmax
αj

(L(α)). (A.53)
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Therefore, the j-th hyperparameter αj which can maximize the log-likelihood

function can also minimize the ”residual” term, i.e., (∥y∥ − yT ŷ). Hence, the j-th

index should be selected and added from the candidate index set Λ to the nonzero

index set Ω at that iteration. So Proposition 1 is proved.

A.8 Maximum Posterior

When external prior information is incorporated, the first order derivative of l(αj) is

given by

l′(αj) =
gj

2αj(αj + gj)
−

h2j
2(αj + gj)2

+
aj
αj

− bj

=
f(αj, gj, hj, aj, bj)

αj(αj + gj)2
, (A.54)

where f(αj, gj, hj, aj, bj) is a cubic function with respect to αj. By setting Eq. (A.54)

to zero, the root is the optimum α∗
j . We know that gj, h

2
j are not negative based on

their definition. And we also have αj ≥ 0 and aj > 0, bj > 0. Then based on Eq.

(A.54, we have l′(αj) → −bj < 0 as αj → +∞. In addition, it has l′(αj) > 0 when

αj → 0. Therefore, for the function l′(αj) = 0, it has at least one positive root αj > 0.

So we have to solve,

l′(αj) = 0

⇒ f(αj, gj, hj, aj, bj) = A0α
3
j + A1α

2
j + A2αj + A3 = 0

⇒ α3
j +B0α

2
j +B1αj +B2 = 0

where we normalize the equation to reduce one parameter A0 for simplicity by

replacing B0 = A1

A0
, B1 = A2

A0
, and B2 = A3

A0
. The corresponding coefficients are given
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by

B0 =
(2aj − 4bjgj)

−2bj
(A.55)

B1 =
gj + 4ajgj − 2bjg

2
j − h2j

−2bj
(A.56)

B2 =
(1 + 2aj)g

2
j

−2bj
. (A.57)

To solve the cubic function, we define the intermediate components as

U = 2B3
0 − 9B0B1 + 27B2 (A.58)

V = (2B3
0 − 9B0B1 + 27B2)

2 − 4(B2
0 − 3B1)

3. (A.59)

Then the solutions of the cubic function [68] are given by:

α
(1)
j = −1

3
(B0 +

3

√
U +
√
V

2
+

3

√
U −
√
V

2
) (A.60)

α
(2)
j = −1

3
(B0 + ω1

3

√
U +
√
V

2
+ ω2

3

√
U −
√
V

2
) (A.61)

α
(3)
j = −1

3
(B0 + ω2

3

√
U +
√
V

2
+ ω1

3

√
U −
√
V

2
) (A.62)

with

ω1 = −1

2
+

√
3

2
i (A.63)

ω2 = −1

2
−
√
3

2
i. (A.64)

Therefore, the three roots α
(1)
j , α

(2)
j and α

(3)
j are critical points of the optimization

function shown in Eq. (5.20). We choose the positive root which maximizes the

optimization function in Eq. (5.20) as the optimum solution α⋆
j for Eq. (5.22).
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