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Abstract 

 

Programmed cell death (PCD) is an essential feature during the development of the central 

nervous system in Drosophila as well as in mammals.  During metamorphosis, a group of 

peptidergic neurons (vCrz) are eliminated from the larval central nervous system (CNS) via 

PCD within 6-7 h after puparium formation.  To better understand this process, we first 

characterized the development of the vCrz neurons including their lineages and birth 

windows using the MARCM (Mosaic Analysis with a Repressible Cell Marker) assay.  

Further genetic and MARCM analyses showed that not only Myoglianin (Myo) and its type I 

receptor Baboon is required for neuron cell death, but also this death signal is extensively 

regulated by endocytic trafficking in Drosophila melanogaster.  We found that 

clathrin-mediated membrane receptor internalization and subsequent endocytic events 

involved in Rab5-dependent early endosome and Rab11-dependent recycling endosome 

differentially participate in TGF-β [beta] signaling.  Two early endosome-enriched proteins, 

SARA and Hrs, are found to act as a cytosolic retention factor of Smad2, indicating that 

endocytosis mediates TGF-β [beta] signaling through regulating the dissociation of Smad2 

and its cytosolic retention factor. 
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Chapter One 

Background and Significance 

 

Extensive evidence showed that neuronal cell death occurs in almost all regions and cell 

types in the nervous system from the early embryonic proliferating stages until the late adult 

stage.  It includes neural stem cells, proliferating precursors, and differentiated neurons, 

such as motorneurons and sensory neurons (Oppenheim, 1989).  Even long project neurons 

and local circuit neurons in the brain and spinal cord are found to display restricted periods of 

cell death (Oppenheim, 1991).  Although the magnitude and duration of the cell death may 

vary through different stages and different populations, it is estimated that at least half of the 

original cell population undergoes cell death and is eliminated in the developing nervous 

system (Yeo and Gautier, 2004).  In extreme cases, most or all cells of some units die since 

those neuronal structures degenerate during insect and amphibian metamorphosis.  Thus, 

cell death in the nervous system occurs on a very large scale, indicating that it plays an 

important role in normal development. 

I. Neuronal cell death in embryonic stage 

In the developing nervous system, programmed cell death (PCD) occurs as early as 

neural tube formation and carries on throughout terminal differentiation of the neural network 

in adult stages (Naruse and Keino, 1995).  Early PCD is characterized as an integral part of 

CNS morphogenesis during embryonic stages.  It takes place early during embryogenesis 

within populations of proliferating neural precursors and newly postmitotic neuroblasts.  For 
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example, during Drosophila embryogenesis, the first PCD occurring within the neural 

population is observed in the head region at stage 11, spatially and temporally overlapping 

with some embryonic neuroblasts or neuronal precursors (Abrams et al., 1993; Urbach et al., 

2003).  The functional basis of early neural cell death is not well known.  Some possible 

roles are proposed to be involved in cell number adjustment, removal of damaged or 

misspecified cells (Boya and de la Rosa, 2005).  Study from developmental PCD in 

C.elegans and Drosophila found various signaling pathways integrating this process, 

including bone morphogenetic proteins (BMPs), Wnts, fibroblast growth factors(FGFs), 

and Sonic Hedgehog (Shh) (Yeo and Gautier, 2004).  Since those signals are also associated 

with multiple cellular and developmental processes such as proliferation and differentiation 

of neuroepithelial cells, it indicates that early neuronal cell death is an integral part of 

neurogenesis.  

The most distinct period of neuronal cell death in embryonic stage is observed at stage 16 

when the first twitching movements occur in the neuromuscular system (Abrams et al., 1993). 

At least 4% of the neural population in the ventral nerve cord is eliminated through PCD 

during this period.  Their loss is thought to reflect a competition for trophic signals produced 

by their innervating target cells; thus it is also called neurotrophic cell death (Boya and de la 

Rosa, 2005).  The neurotrophic theory postulates that excessive neurons are generated in the 

beginning and they compete for the limited amount of survival factor.  Only the neurons that 

receive enough neurotrophic factors survive, while the others undergo PCD (Davies, 2003).  

Therefore, the regulation of neuronal cell number is postulated as a major role of this process, 
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comparing with other function such as refinement of connection and carving of the 

sophisticated cytoarchitecture of the nervous system.   

Neurotrophic factors include nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF) and neurotrophin (NT) and they are small, basic, secretory proteins that are 

essential for survival of postmitotic differentiated neurons both in vivo and in vitro (Binder 

and Scharfman, 2004).  Deprivation of growth factor source or early removal of the 

innervated target leads to neuron PCD during development.  A similar function of the 

neurotrophic factors is also observed in the adult brain.  In a variety of neurological diseases, 

neurotrophic factors are known to be capable of protecting against excitotoxic neuronal death 

(Mattson et al., 1993).  Aspects of the potential relevance of these findings to the 

neurodegenerative disease need to be revealed. 

II. Neuronal cell death associated with postembronic stage and vCrz cell death 

The occurrence of massive neuron cell death after embryogenesis is a phenomenon 

characteristic of animals that undergo dramatic life-history changes.  For these cells, tissues, 

and organs that may have had a transient function in early stage but that becomes useless at a 

later stage will be eliminated during stage transition.  This type of degeneration can be 

termed metamorphic cell death and has been well documented in insects, especially in 

tobacco hornworm Manduca sexta and Drosophila melanogaster (Truman et al., 1992).    

In the central nervous system (CNS) of M.sexta, the highly organized clusters of neurons and 

their processes form a series of ganglia joined by paired longitudinal nerve cords.  During 

metamorphosis, two pair of excitatory accessory planta reactor (APR) motoneurons in A5 
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and A6 segment (Weeks and Truman, 1984), which innervate their larval muscle targets, die 

during the prepupual stage.  Surprisingly however, similar motoneurons in segments A3 and 

A4 die later at the end of pupal stage.  Furthermore, approximately half of the nerve cells in 

the abdominal region degenerates within three days after the adult emerges (Weeks and 

Truman, 1984).  Most neurons that die during this stage are motor neurons that have lost 

their innervated muscle or had been involved in the regulation of behavior displayed by one 

life stage and not the other. 

During metamorphosis of D. melanogaster, neuronal death is found to be prominent 

mostly in the thoracic and abdominal neuromeres of the CNS (Kimura and Truman, 1990; 

Robinow et al., 1993; Lee et al., 2011).  Unlike in M. Sexta, the smaller size of the nerve 

cells and the fused nature of the ventral neural mass in Drosophila make it more challenging 

to identify individual neuron lineages that are doomed to die.  Lack of appropriate neuron 

lineages result in a large restriction of the studies in fly and thus researchers still largely 

depend on microscopic cell counts to identify degenerating neurons.  Recently, a subgroup 

of Corazonin producing neurons (called vCrz) in Drosophila CNS were characterized and 

found to undergo cell death during metamorphosis (Choi et al., 2006) .  These peptidergic 

neurons display large cell bodies (somata) with high level of steady-state secretory activity 

and extend long and complex neuronal processes, which allow us to visualize them easily by 

anti-Crz antibody or Crz gene reporters (Fig. 1-1). 
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Figure 1- 1. Crz neurons in WL3 and prepupal stage. 

 (A) Crz-immunoreactive neuron at WL3. (B) Crz-gal4 induced GFP expression at WL3. (C) 

Crz-immunoreactive neuron at 6 hours APF (after puparium formation). Scale bar = 100 µm. 
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III. Ecdysone-dependent neuronal cell death 

Ecdysteroids are the steroidal hormones, regulating molting, metamorphosis, reproduction 

and diapause of insects (Dinan and Lafont, 2006).  During metamorphosis, ecdysteroid is 

critical for regulation of neuronal death in the CNS.  Truman and colleagues demonstrated 

that a decline in ecdysone titers triggered neuronal death after adult emergence and 

manipulating its levels altered the timing of neuronal death (Truman and Schwartz 1984).  

On the other hand, the same steroid also regulates neuronal death in the ventral ganglia 

during early stage of metamorphosis.  A peak of ecdysone signals death, not life at the 

larval-pupal transition (Truman and Schwartz, 1984; Truman et al., 1992).  In M.sexta, APR 

neurons die as a result of exposure to the rising levels of ecdysone at the end of the caterpillar 

stage (Weeks 1987).  These neurons also appear to express nuclear receptors for 

ecdysteroids at this time.  According to its dual nature at different stages, ecdsyone is more 

likely acting as a timing signal, rather than directly triggering cell death.  

One possible explanation for this multiple- effects with only one hormone is that more 

than one receptor exists and they may execute different functions.  Cloning and sequencing 

of the nuclear receptor for ecdysone (EcR) demonstrated that fruit fly has three different 

isoforms of receptor: EcR-A, EcR-B1, and EcR-B2.  These isoforms share C-terminal 

DNA- and ligand binding domains, but are variable in their N-termini (Talbot et al., 1993).  

Interestingly, they have different expression profiles and distinct biological functions in the 

CNS (Truman et al., 1994) .  It has been shown that each of these EcR isoform forms 

a heterodimer with Ultraspiracle (USP), another receptor (Yao et al., 1993).  The interaction 
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between them significantly increases the binding affinity for ecdysone and in turn stabilizes 

the interaction of complex with their target DNA.  Once bound by ecdysone, EcR induces 

the transcription of a set of transcription factors (White et al., 1997).  

EcR-induced transcriptional hierarchy has been extensively documented in cell death of 

salivary glands and midgut during metamorphosis.  It includes sequential activation of 

primary-response genes, which in turn regulates the expression of secondary-response genes 

(Thummel, 1996).  The primary-response genes include: Broad Complex (BR-C), which 

encodes several isoforms of BTB-zinc finger transcription factors; E74, which encodes an 

ETS-domain transcription factor; E75, which encodes the nuclear receptor; and E93 which 

encodes a novel DNA binding protein.  These primary response genes play essential roles in 

developmental responses to ecdysone.  For example, E93 mutant results in early stage arrest 

of salivary gland degeneration (Lee et al., 2000a).  A similar scenario occurs in BR-C and 

E74 mutants (Lee and Baehrecke, 2001).  The secondary ecdysone-response genes are core 

cell death genes, including rpr, hid, grim, dark, and caspase gene, dronc (Fletcher and 

Thummel, 1995).  As proapoptotic proteins, Rpr, Hid and Grim control caspase activation 

by multiple mechanisms, including activation of caspase through Dark, or through 

antagonizing caspase inhibitors such as DIAPI (Yoo et al., 2002).  Taken together, ecdysone 

orchestrates a large variety of molecular events temporally and spatially for the destruction of 

obsolete larval tissues via upregulation of death activators, caspase activation, and repression 

of apoptosis inhibiting proteins.  
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IV. TGF-β dependent cell growth arrest and cell death 

Transforming growth factor β is a member of a large family of multifunctional secreted 

polypeptides involved in cell proliferation, cell differentiation, cell death and various 

morphogenetic processes during development (Derynck and Akhurst, 2007; Kingsley, 1994).  

The diversity of TGF-β responses in different cell types and different developmental 

processes is generated by controlling transcription of various target genes (Siegel and 

Massague, 2003).  Furthermore, many cofactors modulate TGF-β to activate and repress 

gene transcription according to its developmental as well as environmental cues (ten Dijke 

and Hill, 2004).  It has been reported that TGF-β is a negative regulator of the maintenance 

of the T-cell homeostasis, and loss of TGF-β signaling in T cells results in abnormal T-cell 

differentiation and autoimmune disease (Gorelik and Flavell, 2000; Hahm et al., 2000).  

TGF-β also possesses a strong inhibitory effect on the proliferation of epithelial cells.  Such 

anti-mitotic effect is associated with the cancer development in the absence of TGF-β 

signaling (Yue and Mulder, 2001).   

A growing body of evidence indicates that TGF-β induces cell death in many different 

cell types, including normal B cells and a lymphoma B-cell line (Chaouchi et al., 1995). 

Extensive lymphocytic hyperproliferation and systemic lupus erythematosus-like 

autoantibodies are seen in TGF-β1-deficient mice (Dang et al., 1995; Shull et al., 1992). 

Conversely, ectopic expression of TGF-β1 in the liver results in hepatic fibrosis and cell 

death (Sanderson et al., 1995).   

On the other hand, TGF-β is also a stimulator of cell proliferation and differentiation and 
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acts as an antiapoptotic factor.  The presence of exogenous TGF-β 1 prevents cell death in 

serum-deprived macrophages and human lung carcinoma cells (Chin et al., 1999; Huang et al., 

2000).  Therefore, studying the signaling mechanism is very important for better 

understanding of this diverse or antagonistic effect in different scenarios.  

V. TGF-β signal transduction 

The TGF-β superfamily of growth factors comprises 7 members in Drosophila and more 

than 30 members in mammals.  The mammalian members include three TGF-β isoforms, 

four activin β-chains, the protein nodal, ten bone morphogenetic proteins (BMP) and eleven 

growth and differentiation factors (GDFs) (Schmierer and Hill, 2007).  All ligands are first 

synthesized as inactive precursor forms, a dimeric pre-proprotein, which contains an 

N-terminal prodomain and a C-terminal mature domain (Derynck et al., 1985).  After the 

cleavage of the prodomain, the mature dimeric forms are secreted.  A characterized 

structural feature is found in the mature protein, the so-called ‘cysteine knot’, a structure 

motif that is formed by three intramolecular disulfide bonds between six highly conserved 

Cys residues (Shi and Massague, 2003).  The cysteine knot facilitates the protein to dimerize, 

which avoiding exposure of hydrophobic residues to the aqueous surrounding.  This 

conformation is not uniquely possessed by TGF-β proteins and is also found in other cytokine 

families, such as NGF, PDGF, glycoprotein hormone (GPH) and IL-17, which together 

constitute a large superfamily of cysteine knot proteins (Sun and Davies, 1995). 

To initiate its intracellular signaling cascade, the ligand binds and brings together pairs of 

receptors, named type I and type II receptors (Fig. 1-2).  Both of them are a single-pass  
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Figure 1- 2. Conventional TGF-β signal pathway.  

TGF-β signals via two receptor Ser/Thr kinases, type I and type II receptor.  In the 

presence of ligand, type II phosphorylates specific Ser residues in type I, mediating its 

activation. In turn, R-Smads are recruited to the receptor complex through the 

membrane-associated molecule SARA.  The subsequent phosphorylation in the SXS motif 

releases Smads from retention in the cytoplasm and allows them to translocate into the 

nucleus.  Smad4 serves as a common partner of activated Smads and helps to execute their 

function together.  In the nucleus, activated Smad proteins interact with DNA and 

transcription factors, generating hundreds of early gene responses. 
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transmembrane protein with a large intracellular Ser-Thr kinase domain and an extracellular  

domain (Shi and Massague, 2003).  Generally, the ligand first binds the pre-formed dimers 

of its high affinity receptor, the type II receptor, but for BMP-2, its high affinity receptor is 

the type I receptor.  After binding of the high-affinity receptor, the lower-affinity receptor is 

then brought to the complex (Massague, 1998).  In most cases, type II and type I receptors 

are not in direct contact with each other, but are held close together by the bound ligand 

(Allendorph et al., 2006).  Following binding of ligands to the receptors, the type I receptor 

is phosphorylated by the constitutively active type II receptor kinase.  The phosphorylation 

event specifically occurs at several Ser and Thr residues in Gly/Ser-enriched domain (GS 

domain), which is conserved in all type I receptors.  Upon phosphorylation in the GS 

domain, the type I receptor activates, by phosphorylation, a subset of Smad transcription 

factors, called receptor-regulated Smads (R-Smads).  In addition to the R-Smads, two other 

functional classes of Smad proteins are found, the co-mediator Smads (co-Smads) and the 

inhibitory Smads (I-Smads).  The phosphorylated R-Smads are able to form the heteromeric 

complex with the co-Smad and then translocate into the nucleus.  In the basal state, the 

R-Smads are retained in the cytoplasm, possibly through the interaction with Smad anchor for 

receptor activation (SARA).  SARA is highly concentrated in EEA1-positive early 

endosomes through the interaction of the FYVE domain with the membrane lipid PtdIns(3)P.  

Following receptor-mediated phosphorylation, SARA is disassociated from Smads by 

decreasing their affinity between each other.  However its affinity to the co-Smad is 

concomitantly increased (Xu et al., 2000).  Hrs, another FYVE domain protein involved in 
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endosomal trafficking, may play a role similar to that of SARA (Miura et al., 2000).   

The I-Smads act as negative regulators of TGF-β signaling by either binding to the 

activated type I receptor and thus interfering with the phosphorylation of R-Smads (Kavsak et 

al., 2000; Suzuki et al., 2002) or by direct binding to the phosphorylated R-Smads thereby 

competing with the co-Smad (Hata et al., 1998).  More indirect mechanisms by which 

I-Smads inactivate receptors have been documented.  The I-Smads interact constitutively 

with ubiquitin ligase SMURFs (Smad ubiquitylation regulatory factors) (Zhu et al., 1999) and 

therefore target them to the activated receptors, which causes the degradation of the receptors 

in the proteosome (Ebisawa et al., 2001; Tajima et al., 2003).  I-Smads themselves also 

undergo ubiquitination and degradation in this process. 

The TGF-β superfamily can be further divided into two major branches: BMP or 

Activin/TGF-β, according to their intracellular effectors (Feng and Derynck, 2005).  The 

BMP subfamily signals through R-Smads1/5/8 whereas the Activin/TGF-β utilizes 

R-Smads2/3.  In Drosophila, seven members of the TGF-β family have been identified. 

Decapentaplegic (Dpp), Screw (Scw), and Glass bottom boat (Gbb) belong to BMP family 

and have been shown to specifically signal through type-I receptors Thickveins (Tkv) and 

Saxophone (Sax), whereas dActivin (dAct), Dawdle (Daw), Myoglianin (Myo), and 

Maverick (Mav) are members of Activin/TGF-β branch and propagate signal through only 

one type-I receptor, Baboon (Babo) (Lo and Frasch, 1999; Nguyen et al., 2000; Serpe and 

O'Connor, 2006; Zhu et al., 2008).  Both subfamilies share the type II receptors: Punt (Put) 

or Wishful thinking (Wit).  As the only type-I receptor in Activin pathway, Babo has been 
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known to regulate several developmental processes including mushroom body remodeling 

during metamorphosis (Zheng et al., 2003), morphogenesis of ellipsoid body neurons in the 

adult (Zheng et al., 2006), motor axon guidance in the embryo (Serpe and O'Connor, 2006) 

and neuron proliferation in the larval brain (Brummel et al., 1999).  The contrast between 

the wide spectrum of cellular and developmental responses elicited by TGF-β signal and the 

fact that they utilize a relatively simple signal transduction mechanism with a few Smads or 

receptors imply that there is an extensive regulation controlling the different biological 

responses on different cellular levels.  Several lines of evidence showed that transcriptional 

activation by Smads in the nucleus play an important role for the specificity and versatility of 

signaling (Feng and Derynck, 2005).  A remarkable diversity of DNA sequence-binding 

transcription factor were identified to be able to directly interact with Smads (Feng and 

Derynck, 2005).  In addition to transcriptional regulation in nucleus, the endocytic 

regulation of TGF-β signal transduction has been intensely investigated on the mechanism of 

receptor trafficking and dynamic maintenance of nuclear Smad accumulation.  

VI. Endocytosis and molecular sorting 

VI-1. Membrane internalization 

Endocytosis begins with membrane internalization, by which extracellular materials are 

enclosed and moved into a vesicle within the cell.  The content of the vesicle is then 

delivered to an endosomal compartment where it is sorted to multiple locations such as 

recycling back to the cell surface or trafficking to lysosomes for degradation (Fig. 1-3) (Seto 
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et al., 2002). 

In higher eukaryotic cells, endocytosis occurs by one of two general mechanisms: 

clathrin-dependent and clathrin-independent pathway (Le Roy and Wrana, 2005).   

Clathrin-dependent endocytosis involves the formation of pit using a clathrin coat.  It is 

induced through the interaction of cytosolic proteins with components of the invaginated 

membrane.  Clathrin-coated pit, as an assembled structure, is specialized to concentrate 

surface proteins for internalization.  It possesses a striking lattice morphology that results 

from the polymerization of clathrin from the cytosol to the membrane (Brodsky et al., 2001). 

Clathrin-independent endoctyosis occurs at sites of lipid rafts, where cholesterol is highly 

enriched in the plasma membrane (Le Roy and Wrana, 2005).  It was known that some of 

the clathrin-independent events are mediated by calveolin, accompanied by forming 

membrane invaginations called caveolae.  The mechanisms underlying clathrin-independent 

pathway are not well understood. 

Clathrin-coated vesicle biogenesis is extensively studied in nerve terminals since a large 

number of synaptic vesicle formation occur during neuronal information flows along nerve 

system.  It is known to be essentially required for recycling of synaptic-vesicle components 

after release of neurotransmitter in response to action potentials.  Later, non-neuronal cells 

also are found to have a similar process.  According to their intermediate morphology 

during the formation of clathrin-coated vesicle, three mechanistically sequential stages are 

recognized: (1) assembly of clathrin into a polygonal lattice at the site of endocytosis, (2) 

invagination of the membrane to form coated pits, and (3) pinching-off of the coated pit, 
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forming clathrin-coated vesicles (Mousavi et al., 2004).  

Clathrin-mediated internalization is initiated by the reallocation of membrane proteins 

into clathrin-coated pits (Brodsky et al., 2001).  During formation of the pits, AP2, a 

clathrin-binding adaptor complex, binds directly or indirectly to transmembrane receptors 

(Kirchhausen et al., 1997), allowing clathrin to cluster into a lattice morphology that pulls 

membrane inwardly.  The clathrin-coated pit is a multi-component endocytic unit; besides 

clathrin and AP-2, several accessory proteins are also implicated in the formation of 

clathrin-coated pits.  

Clathrin 

Clathrin is assembled as a triskelion shape composed of three heavy chains and three light 

chains.  The three heavy chains form the backbone of the clathrin lattice, and the three light 

chains regulate assembling of a clathrin lattice (Ybe et al., 1998).  The heavy chain is 

remarkably invariant among species and contains multiple subdomain: the globular 

N-terminal domain, a relatively curved region called ankle, distal leg, the knee, proximal leg, 

and the C-terminal end (Greene et al., 2000; Schmid, 1997).  Based on the study of crystal 

structure, the N-terminal domain forms a β-propeller morphology and contains a binding site, 

which allows interacting with a number of endocytic proteins, including AP-2 (Mousavi et al., 

2004).  Two isoforms of the light chain exist named LCa and LCb.  They are known to be 

associated randomly with clathrin heavy chains in the triskelion.  

Dynamin  

Dynamin is a large GTPase implicated in the regulation of budding and scission of the coated 
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pit during endocytosis.  The GTPase domain, localized in the N terminal, is known to have 

low affinities for GTP and high intrinsic GTPase activity.  The PH (pleckstrin homology) 

domain in the central region is involved in binding to PtdIns(4,5)P2.  The GED (GTPase 

effector domain) domain existed as a coiled-coil structure in the C-terminal region regulates 

dynamin oligomerization and its assembly.  It is known that self-assembly is important for 

dynamin’s GTPase activity in vivo.  Finally, PRD (proline-rich domain) domain interacts 

with other proteins, such as SH3 (Src homology 3) domain containing protein and actin 

binding protein (Hinshaw, 1999; Kessels et al., 2001; McNiven et al., 2000; Muhlberg et al., 

1997; Schmid et al., 1998).  A temperature sensitive mutant of dynamin was found in 

Drosophila (shibire, shi for short).  At non-permissive temperatures, the mutants display 

paralysis and a presynaptic failure of evoked synaptic transmission because of synaptic 

vesicle recycling defect (Kitamoto, 2002).  

VI-2. Early endosome fusion and sorting  

Clathrin-coated pits are pinched off from the membrane, followed by the formation of 

clathrin-coated vesicles (CCVs).  This process is concerted with disassembly of coat 

components, which is required for fusion of the primary endocytic vesicle.  These small, 

primary endocytic vesicles then fuse with the early endosome, and early endosomes fuse with 

one another.  The mechanism of the early endosome fusion has been well characterized and 

several components are found to be crucial during this process.  

Rab proteins are small GTPases that are implicated principally in the control of vesicle 
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docking and fusion (Gonzalez and Scheller, 1999; Mohrmann and van der Sluijs, 1999).  

Like other small GTPase, Rab proteins possess a capacity of conformational transition upon 

binding to either GDP or GTP.  Upon external stimulation, GDP/GTP exchange factors 

(GEFs) interact with Rab, and catalyze the conformation switch from GDP-bound inactive 

form to GTP-bound active form.  This transition can be reverted by GTPase activating 

protein (GAP).  In the GTP-bound active form, Rab protein, along their cognate partners 

(effectors), facilitates targeting of endocytic vesicles to different acceptor membranes 

(Molendijk et al., 2004; Pfeffer and Aivazian, 2004).  Below are several protein components 

essential for such vesicular trafficking.  

Rab5 

Rab5 is specifically associated with early endosomes.  It regulates the fusion between early 

endosomes with endocytic vesicles, as well as the homotypic fusion between each other 

(Olkkonen and Stenmark, 1997).  The expression of a Rab5 constitutively active, 

GTPase-deficient form (Q79L) mutant results in the formation of giant endosomes; 

conversely, the expression of the mutant that preferentially binds GDP (S34N) inhibits 

endocytosis, resuling in the formation of very small endosomes (Stenmark et al., 1994).  The 

active Rab5 is equipped to fulfill their various roles in membrane trafficking through binding 

to their specific effectors.  Among their potential effectors, Rabaptin-5 (Stenmark et al., 1995) 

and EEA1 (Simonsen et al., 1998) are well known. 

EEA1 (Early endosome Antigen 1) 

As one of the most important effectors of Rab5, EEA1 is a membrane bound endosome 

http://folk.uio.no/stenmark/EEA1-model.jpg
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fusion promoting protein.  Homotypic fusion study showed that EEA-1 is essential of early 

endosome fusion, and at high levels, it is the only cytosolic factor required for conferring 

minimal fusion activity (Christoforidis et al., 1999).  EEA1 is a large coiled-coil protein that 

can potentially interact with other proteins.  It contains phosphatidyl inositol-3-phosphate 

[PI(3)P]-binding FYVE domain in its N-terminal and two Rab5 binding domains, among 

which, one is adjacent to the FYVE-finger, and the other is a C2H2-type zinc finger at the N 

terminus (Kutateladze and Overduin, 2001; Mu et al., 1995).  The affinity of EEA1 for PI3P 

and Rab5-GTP is relative low, allowing for the specific enrichment in membranes that 

contain both of these components under certain physiological conditions (Lawe et al., 2000; 

Simonsen et al., 1998).  This is presumably underlying reason that EEA1 is exclusive 

targeted to early endosome (Simonsen et al., 1998).  

Hrs (hepatocyte growth-factor-regulated tyrosine-kinase substrate) 

Another FYVE finger protein that has been implicated in membrane fusion and trafficking is 

HRS, a hepatocyte growth-factor-regulated tyrosine-kinase substrate (Komada and Kitamura, 

1995).  Like EEA1, it is also present in early endosomal membranes and is required for 

sorting of endocytosed proteins.  Hrs contains an ubiquitin interacting motif (UIM) and a 

C-terminal clathrin interacting domain, allowing it to bind ubiquitinated proteins and sorts 

them into clathrin-coated microdomains of the early endosomes.  By using the chimeric 

combination of the ubiquitin and human transferrin receptor (TfR), Raiborg and its colleague 

showed that overexpression of Hrs strongly inhibits recycling of ubiquinated receptors by 

concentrating them in the early endosome.  The ubiquitinated proteins are subsequently 
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sorted to the lysosome for degradation (Raiborg et al., 2002). 

VI-3. Recycling endosome and late endosome  

After sorting in early endosome, the endocytic cargo is either transported to the plasma 

membrane for recycling or to the lysosome for degradation (Gu and Gruenberg, 1999).  The 

lysosome is the last compartment of the endocytic pathway, and most of the materials 

delivered to this degradative compartment must pass through the early and late endosomes 

(Bright et al., 1997).  For recycling route, recycling endosome is essential compartment and 

it is believed to bud off from early endosome membranes and then fuse directly or indirectly 

with the plasma membrane (Mellman, 1996).  Therefore, early endosomes act as a sorting 

station, directing the cargo to the different destinations with precision.  However, the 

mechanism of endocytic cargo sorting and recycling is still not well understood.  A small 

G-protein Rab7 is known to be associated with late endosomes.  Expression of a dominant 

negative Rab7 blocks the regular trafficking of certain cargo molecules from early endosomes 

to late endosomes (Feng et al., 1995), indicating that Rab7 is required for regulating early to 

late endosome transport.  

In contrast, another Rab protein, Rab11 is enriched in the pericentriolor recycling 

endosome, where it controls the traffic route through the recycling endosome (Green et al., 

1997; Ren et al., 1998; Ullrich et al., 1996).  Overexpression of Rab11 mutants results in 

changes of the morphology of recycling endosome and the corresponding endocytic 

trafficking.  It indicates that Rab11 is essential of structural and functional properties of the 
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Figure 1- 3. Endocytosis pathway and players. 

Transmembrane receptors and their ligands are mainly internalized through 

Clathrin-mediated endocytosis.  Receptors are sequestered into the pits through direct 

interaction with clathrin coat adaptor protein complex AP2 or other adaptor proteins.  

Clathrin undergoes polymerization and drives the invagination of the pit.  During this 

process, GTPase dynamin serves as a clipper to pinch off the vesicle.  Following their 

internalization into early Rab5-containing endosomes, receptors can traffic to the recycling 

compartment that contains Rab11 or undergo a Rab7- and Hrs-dependent, degradative route 

through late endosomes and then lysosomes.  Several clathrin independent pathways of 

endocytosis also exist, even though the exact mechanisms of these pathways are not fully 

understood.  
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recycling endosome.  Overall, Rab proteins are functionally specialized for the trafficking of 

endocytic vesicles, determining the fate of the cargos included in the vesicles. 

VII. Endocytic regulation of TGF-β signaling  

Receptor internalization can play either a positive or a negative role in signal transduction.  

The classical view is that endocytosis act as a negative and passive regulatory mode by 

inducing receptor degradation, thus terminates prolonged signaling.  However, a wealth of 

evidence recently indicates that endocytic organelles not only function as a “sink” of 

signaling complex, they can also play a more active role in signal propagation and 

amplification (Miaczynska et al., 2004). 

TGF-β controls the proliferation, differentiation, cell death and various morphogenetic 

processes during development.  Like other cell surface receptors, TGF-β receptors are 

internalized into the cell and this process now is emerging as an important regulatory 

framework in TGF-β signaling.  

TGF-β receptor internalization proceeds through two major pathways, clathrin-mediated 

endocytosis and non-clathrin-mediated endocytosis (caveolar/lipid-raft mediated pathway).  

It is known that these two pathways fulfill separate functions in TGF-β signal transduction.  

The former is important for promoting signaling whereas the latter mediates receptor 

degradation (Chen, 2009; Le Roy and Wrana, 2005).   

For the clathrin-dependent endocytosis of the TGF-β receptors, a short specific sequence 

in the cytoplasmic domain of the receptor is found to play an important role during this 

process.  For example, type II receptor contains a di-leucine-based motif, which lends itself 
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the capacity of binding the β2 subunit of AP2 in clathrin-coated pits (Bonifacino and 

Lippincott-Schwartz, 2003; Bonifacino and Traub, 2003).  After internalization into 

clathrin-coated vesicles, TGF-β receptor is retained for extended periods in EEA1-positive 

early endosome and is also found in Rab11 positive recycling endosome (Hayes et al., 2002; 

Panopoulou et al., 2002).  Furthermore, SARA, which contains a FYVE domain, is highly 

concentrated in PtdIns3p-containing early endosomes.  Interfering with SARA localization 

by depleting the endosomal pool of PtdIns3P, or overexpression of SARA mutant lacking the 

FYVE domain blocks TGF-β induced Smad2 activation and signaling (Itoh et al., 2002).  

Therefore, the clathrin-mediated endocytic pathway might promote TGF-β signaling via 

mediating interaction of receptor/Smad2 complex with other proteins in early endosome.  

By using the chimeric combination of the granulocyte-macrophage colony-stimulating factor 

(GM-CSF) and TGF-β receptor, Penheiter and its colleagues found that R-smads activation 

and downstream signaling depend on endocytic vesicle formation (Penheiter et al., 2002).  

Treatments blocking receptor endocytosis, such as low temperatures, potassium depletion, 

and expression of dominant-negative K44A dynamin mutant, inhibit Smad2 phosphorylation 

and Smad3 nuclear translocation.  However, these treatments do not impair the early events 

in TGF-β signaling such as type I receptor phosphorylation and association of SARA and 

Smad2 with the TGF-β complex.  It suggests that endocytic regulation on TGF-β signaling 

is much more sophisticated than previously recognized.  The relationship between receptor 

endocytosis and the subsequent signaling event requires more investigation (Ceresa and 

Schmid, 2000; Di Fiore and Gill, 1999).  In the TGF-β system, it is still unclear how 
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clathrin-mediated endocytosis initiates Smad2/3 phosphorylation and activation in the 

receptor-SARA-Smad complex, whose assembling event takes place presumably at the 

plasma membrane.  Runyan et al. (2005) proposed a different mechanism that inhibition of 

clathrin-mediated endocytosis only slightly affects Smad2 phosphorylation and 

Smad2-Smad4 association, even though the nuclear accumulation of Smad2 and its 

downstream transcriptional responses were significantly impaired.  Potassium depletion 

treatment prolonged the SARA-Smad2 complex formation, indicating endocytosis is possibly 

required to release Smad2 from the SARA complex.  

VIII. Study of neural cell death using genetic mosaic technique in Drosophila 

A genetic mosaic technique is a method used to generate a group of somatic cells containing 

different genotypes (usually homozygous mutations) in otherwise wild-type background.  It 

has been widely used to analyze gene functions in many biological processes.  Particularly, 

the techniques provide a means of examining the function of genes whose mutations cause 

pleiotropic developmental defects.  For example, a number of loss-of-function mutants are 

homozygous lethal in embryonic or early larval stages of development, disallowing us to 

study the roles of these genes during the later stages of development.  This problem could be 

overcome by using temperature-sensitive (ts) mutant alleles; for instance, genetic analysis of 

the cell cycle regulators had been successfully done with ts mutations in yeasts (Hartwell et 

al., 1974).  However, it is not very easy to generate the ts alleles of a desired gene.  

Moreover, the ts alleles do not provide clear information as to whether the mutational effect is 

cell-autonomous.  Because mosaic techniques produce only in a small number of cells  
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Figure 1- 4. Schematic representation of clonal analysis. 

 It requires (i) two FRT sites on homologous chromosomes, (ii) UAS-mCD8GFP located 

distal to one of the FRT sites, (iii) FLP recombinase in the genome, (iv) GAL4 in the genome, 

(v) a mutation distal to FRT. FRT (black arrowheads) site-specific mitotic recombination 

gives birth to two daughter cells. The cell which loses UAS-mCD8GFP is homozygous 

mutant without labeling. 

 

 

 

 

 



25 

 

 carrying the homozygous mutation in a whole animal, early lethality can often be avoided. 

In Drosophila, with the introduction of FLP/FRT systems (Golic and Lindquist, 1989), a 

highly efficient and effective genetic mosaic technique has been established (Fig. 1-4) (Xu 

and Rubin, 1993).  It allowed for both functional analysis of candidate genes and screening 

new mutants in late stage.  This approach has been widely utilized to help understanding the 

development of late-developing adult tissues, such as compound eyes, and oocyte. 

In the traditional clonal system, the marker transgene locates distal to the FRT (Flippase 

Recognition Target) site and is in trans to the mutant allele.  Following site-specific mitotic 

recombination, homozygous mutant cells are the only cells that are not labeled.  In many 

cases, this negative labeling system can trigger a problem, in particular in nervous system.  

Since there are millions of neurons are densely packed in the CNS, it would be not very easy 

for us to track the small number of unlabeled homozygous mutant cells from overwhelmingly 

labeled background.  Therefore, it is desirable to have a positive labeling system in which 

only the homozygous mutant cells are marked, thus distinguishable from their wild type 

siblings.   

 A new mosaic technique, MARCM (for Mosaic Analysis with a Repressible Cell 

Marker) system was developed (Lee and Luo, 1999; Lee and Luo, 2001) to fulfill this goal.  

The principle of the MARCM system is schematically described in Figure I-5.  Compared to 

the traditional mosaic technique, the introduction of a dominant repressor of a cell marker in 

trans to the mutation allows it to positively mark the mutant cells.  This system requires at 

least 6 transgenes: two FRTs, one FLP recombinase, one UAS-marker, one GAL4 driver, and 
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one tubp-GAL80.  In heterozygous cells, the presence of GAL80 inhibits the activation of 

UAS-GAL4 system, whereas in homozygous mutant cells the marker is expressed due to the 

loss of GAL80 (Lee and Luo, 1999).  

This new mosaic method in this thesis works greatly in the analysis of neural lineage and 

the following homozygous mutant clone labeling in CNS.  The results largely elucidate the 

complexity of the underlying cellular and molecular mechanisms in neuron cell death. 
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Figure 1- 5. Schematic representation of the MARCM genetic system.  

(A) GAL80 protein suppresses the GAL4-dependent expression of UAS-gene. Therefore, in 

contrast to the cell with UAS-gene and GAL4, the cell containing GAL80 protein is not 

labeled. (B) MARCM includes (i) two duplicated FRT located on homologous chromosomes, 

(ii) GAL80 located distal to the FRT site on each chromosome, (iii) FLP recombinase, (iv) 

GAL4 and UAS-marker, (v) a mutation distal to FRT. After site-specific mitotic 

recombination at FRT sites (black arrowheads), two daughter cells are generated. Because of 

loss of GAL80, the homozygous mutant cells are specifically labeled by the marker. Modified 

from (Wu and Luo, 2006). 
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Chapter Two 

Developmental analysis of Corazonin neurons in Drosophila, 

using genetic mosaic techniques 

I. Abstract: 

Our various studies indicated that eight pairs of ventrally located Crz neurons (vCrz) are 

heterogenous with respect to their neuroanatomy.  Since conventional labeling system using 

antibody or reporter gene expression that we routinely employed cannot characterize 

individual vCrz neurons, we could not clarify such heterogeneity.  Using MARCM, we were 

able to label and trace individual vCrz axonal projections and we found that there are three 

distinct subgroups of vCrz neurons according to their projection patterns and two subgroups 

in terms of birth order.  Furthermore, we showed that MARCM is a very useful tool to study 

the roles of genes associated with vCrz apoptotic death.  As an example, we induced mitotic 

recombination of a usp lethal allele in the vCrz neurons.  The results show that the usp gene 

is absolutely required for cell death of vCrz neurons.  We also compared traditional genetic 

mosaic methods with MARCM, while dissecting the function of homozygous mutant alleles 

in vCrz cell death.  

II. Introduction 

Genetic mosaic analysis can generate specific homozygous mutant cell or tissue with 

background of a phenotypically wild-type heterozygous organism.  It allows us to study 

gene functions at later stages of development.  Traditional genetic mosaic system labels 
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negatively the mutant homozygous cells.   In particular, this poses a severe problem in the 

CNS, since a single unmarked neuron or a small subset of these neurons are not easily 

tractable in the background of numerous surrounding cells.  The MARCM (mosaic analysis 

with a repressible cell marker) system was developed as a new generation of clonal analysis, 

a particularly effective method in the CNS.  It has been widely used to dissect various gene 

functions in neuron remodeling in Drosophila (Lee and Luo, 1999; Wu and Luo, 2006).  

MARCM is also a useful and versatile tool to study cell lineage and morphology in the 

CNS.  Neurogenesis starts the sequential generation of distinct neurons from common 

progenitors, called neuroblasts (Nbs) (Ito and Hotta, 1992; Truman and Bate, 1988; Urbach et 

al., 2003).  Each Nb undergoes a series of asymmetric cell divisions to produce multiple 

neuron types in an invariant sequence.  In Drosophila, a stereotypic pattern of these neuron 

types derived from an Nb includes neuroblast, ganglion mother cells (GMCs), neurons and/or 

glia, and they form a specific cell lineage during development.  For example, the 

best-characterized Nb lineage in Drosophila CNS is Nb7-3 (Fig. 2-1A).  First asymmetric 

divison of the Nb7-3 yields a regenerating Nb and GMC-1.  Following a mitotic division, 

GMC-1 gives rise to two daughter cells; one (EW1) develops into a serotonergic interneuron 

and the other a GW motoneurons.  Subsequently born GMC-2 divides once, producing one 

daughter cell (EW3) that becomes another serotonergic interneuron.  The other daughter cell 

is removed via programmed cell death.  The third progeny of the Nb7-3 is GMC-3, which 

gives rise to an EW3 interneuron, which later produces Crz neuropeptide (Karcavich and Doe, 

2005; Lundell et al., 2003; Novotny et al., 2002).  All those information including the 
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Figure 2- 1. NB7-3 lineage development and MARCM labeling.  

(A) Three contralaterally projecting interneurons (EW1, EW2, and EW3) and one 

motoneuron (GW) are derived from NB7-3.  GW motoneuron is the most posterior cell in 

NB7-3 derived cell cluster.  EW1 and EW2, expressing neurotransmitter Serotonin (5-HT) 

are located medially.  Additionally, two sister cells are eliminated through apoptosis during 

development. The NB7-3 and all of its progenies express transcription factor eagle (eg), 

which is widely used as a genetic marker of NB7-3 lineage.  (B) In the MARCM system, 

following Flipase-mediated mitotic recombination, a Nb losses GAL80 and subsequently, all 

neurons derived from this GAL80 negative Nb are specifically labeled. It can be used in 

lineage study.



31 

 

precursor and its descendants, the cell compositions, the birth timing and birth order of the 

progeny and the development of the cells is described as a cell lineage (Anderson, 1992).  

The versatility and power of MARCM assay in the cell lineage study has been exemplified 

vastly in olfactory system in Drosophila (Komiyama et al., 2003).   

The MARCM system emerges as a useful tool to study cell lineage because of the 

following properties.  First, one can express FLP expression by heat shock treatment at a 

specific stage.  Thus only precursors that divide actively at that particular stage might 

possibly prone to mitotic recombination.  Therefore, by controlling the timing of mitotic 

recombination during development, the timing of cell birth and the birth order of different 

cells within a given lineage can be easily tracked (Fig. 2-1B).  Second, the neuron set in a 

multicellular Nb clone is generated from a common progenitor, so study of these neurons and 

their respective projection patterns reveals the role of cell lineage in the construction of 

neural circuits.  Third, single-cell marking can differentiate morphological features from 

their corresponding neuron set (Jefferis et al., 2001; Lee and Luo, 2001).  With lineage 

analysis of the development of mushroom bodies (MB) with MARCM, it is illustrated how 

adult MBs acquire their mature morphologies after production of postmitotic neurons along 

larval and pupal stages.  Three distinct axon projection patterns in MB are further revealed 

by examining single-cell clones systematically generated at different stages (Lee et al., 1999).  

Similar strategies can be utilized to analyze the development of other neural structures in the 

Drosophila CNS. 

Corazonin (Crz) is a neuropeptide and has been shown to have diverse functions in 
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insects.  In D. melanogaster larva, Crz expression is found in four pairs of neurons per 

cerebral lobe and in eight pairs of bilateral neurons in the ventral nerve cord (vCrz).  vCrz 

are programmed to die during early metamorphosis.  Characterization of the development of 

individual Crz neurons will be important for elucidating their functions. 

Here a conventional mosaic analysis and MARCM assay were used to study the 

development of Crz neurons.  We showed that the 8 pairs of Crz neurons can be classified 

into three groups according to their projection patterns, and two groups based on their birth 

order.  Further, we demonstrated the effectiveness of mosaic analysis and MARCM assay in 

studying program cell death.  Two types of candidate gene, the cell death promoting gene 

and cell death blocking gene were exemplified to show how to label homozygous mutant 

clone during cell death.  

III. Materials and methods 

Drosophila strains and species 

Generation of clones in lineage analysis (1) y w, hs-FLP; FRTG13, UAS-mCD8GFP; (2) 

FRTG13, tubP-GAL80; Crz-gal4.  usp mutant analysis (Lee et al., 2000b) (3) FRT19A, 

tubP-GAL80, hs-FLP; Crz-gal4, UAS-mCD8GFP; (4) FRT19A, usp
3
; (5) FRT19A, usp

4
; 

FRTG13, (6) FRT19A, usp
5
, (7) UAS-usp-miRNA (Lin et al., 2009).  Clonal analysis (7) y w, 

hs-FLP; FRTG13. (8) FRTG13,UAS-mCD8GFP; Crz-gal4.  Fkh mutant clone (9) fkh
6
 

(Bloomington Stock Center); (10) FRT82B; (11) y w, hs-FLP, UAS-mCD8GFP; FRT82B, 

Crz-gal4  

Recombination of a mutant allele with FRT 
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The mutant line was crossed with the corresponding P[ry, hsneo, FRT] line.  The F1 virgin 

was collected and then crossed with the corresponding balancer to undergo G418 selection in 

G418-containing medium.  Flies carrying the corresponding P[ry, hs-neo, FRT] element can 

be selected by their resistance to G418 (Geneticin, GIBCO laboratories).  Homozygous 

lethality was used to screen the flies carrying the mutant allele.  G418-containing medium 

was made as follows: a fresh vial was taken and few holes were made in food surface with 

toothpicks, and 100 ul of 180 ug/ml freshly made G418 solution was added per 13 ml of food 

and the vials were allowed to air-dry for overnight. 

Generation of clones 

To produce clones in the Crz neurons, eggs from the appropriate crosses were collected at 

specific time before Crz neurons are born (8.5 hours after egg laying at 25°C), and then were 

incubated in a 37°C water bath for 60 minutes to induce mitotic recombination.  After the 

heat shock treatment, the animals were kept at 25°C until the CNSs were dissected for 

immunohistochemical analyses at the desired stage. 

Immunohistochemistry 

Whole-mount Crz immunohistochemistry was performed, as described previously (Choi et al., 

2005).  Brefly, dissected CNSs were fixed in 4% paraformaldehyde in PBS for 30 min 

followed by rinsing with TNT buffer (0.1 M Tris, 0.3 M NaCl, 0.5 % Triton X-100, pH 7.4) 

three times for 15 min each.  After that, the CNS samples were applied with anti-Crz 

antibody and incubated overnight at 4°C.  After rinsing 6 times with TNT for 10 minites 

each at room temperature, the TRITC-conjugated secondary antibodies was applied to the 
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samples with dilution of 1:200 (Jackson ImmunoResearch) for 1-h incubation.  The samples 

were then cleared in 60% glycerol and mounted in 10% glycerol.  Fluorescent signals were 

acquired by Olympus BX61 connected with CC-12 camera. 

IV. Results 

Characterization of vCrz neurons for genetic mosaic analysis 

As previously reported, vCrz are generated from NB7-3 lineage on each neuromere.  These 

NBs undergo 4 rounds of division and produce 8 pair of vCrz before 8.5h After Egg Lay 

(AEL) during embryogenesis.  According to this, embryos (hs-FLP/Y or X; FRTG13, 

tubP-gal80/ FRTG13, UAS-mCD8GFP; Crz-gal4/+) were heat-shocked at 37°C for 1 hr 

during early embryogenesis (0-8 h AEL) to induce FLP/FRT-mediated mitotic recombination.  

After these animals reach wandering third-instar larval stage, CNSs were dissected for Crz 

IHC.  As a result, we were able to identify larval CNSs bearing 1-3 GFP labeling vCrz 

neurons (Fig.2-1).  These studies indicate that MARCM is useful for clonal analysis of 

neurons that are produced from embryonic NBs. 

After analyzing a number of CNSs bearing a few GFP-marked vCrz neurons at different 

positions, we found segment-specific anatomical variations among vCrz neurons.  In the 

T2-A3 neuromeres, the neurons project contralaterally into the opposite hemimere, and then 

turn anteriorly to the medial protocerebrum.  In contrast, neurons in the A5-A6 neuromeres 

send projections contra-laterally, and then posteriorly, terminating at the caudal region of the 

abdominal ganglion.  Unlike the two groups just described, A4 neuronal projection 

bifurcates into two directions after passing midline, one is going anteriorly until the T2  
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Figure 2- 2. Lineage analysis of Crz using MARCM 

 

(A, B, C) MARCM with a heat shock during 0-6 h AEL. In this sample, A1 and A5 neurons 

show distinct neuroanatomical features in their aborization patterns. (genotype: hs-FLP/Y; 

FRT
G13

, tubP-gal80/FRT
G13

, UAS-mCD8GFP; Crz-gal4/+). (D) Schematic diagram of each 

segmental vCrz neuron. Only one side is drawn here and detailed arborizations in the midline 

are not shown for the sake of simplicity. Scale bars = 100 µm. 
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neuron, and the other one travel posteriorly and converges with the projection of A5 and A6.  

It indicates that there exist inherent interdependence between the projection pattern of each 

vCrz and their specific spatial properties, such as segment information.  

Segment specific generation of vCrz neuron 

VNC neurons originally arise from a sheet of neuroectodermal cells located in the 

ventral-lateral region of the embryo.  In early stage of embryogenesis, the sheet is 

subdivided into several neural equivalence groups along anterior-posterior and dorsal-ventral 

axes.  Interactions among the cells in each group ultimately select one cell to acquire the 

CNS stem cell or neuroblast fate.  The selected cell enlarges and segregates to the interior of 

the embryo.  As a result from 5 sequential waves of NB segregation, 30 NBs are patterned 

stereotypically in each hemisegment (Skeath and Thor, 2003).  One of them, NB7-3 is 

vCrz’s ancestor. 

Previously, BrdU labeling in NB7-3 derived neuron showed vCrz neurons are born 

around stage 15 at 6.5h AEL and until 8.5h AEL (Novotny et al., 2002).  Using MARCM, 

we determined whether there is heterogeneity of birth timing among vCrz neurons.  To do 

this, we manipulated heat-shock timing, thus inducing mitotic recombination at various 

embryonic stages, and then dissected around 20 larval CNSs bearing differential vCrz 

neurons labeled.  When heat-shock was given randomly during 0-8 h AEL, we observed that 

most of samples acquired one or two vCrz neurons each.  However, if mitotic recombination 

was induced in embryos after 8.5 h AEL, none of the CNS samples showed vCrz neurons 

labeled.  These results indicate that all vCrz neurons are born before 8.5 h AEL, which is  
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Figure 2- 3. The birth order analysis with MARCM in Crz.  

(A) posterior-most pairs (A4-A6) are not labeled with GFP. (B) A5-A6 pairs are not labeled, 

note that DL neuron is labeled and the A4 pair has a very faint GFP expression. (red, anti-Crz; 

green, GFP; yellow, overlapping signals of red and green). (C) Summary of the Crz 

development. One vCrz is derived from one NB7-3 in T2-A6 segment. Within 7h AEL, all 

Crz clone can be captured by MARCM labeling. However after 7h AEL, the most posterior 

segment A5-A6 can not be labeled. It indicates that A5-A6 pairs are born before 7h AEL, 

whereas T2-A4 and DL neuron are born late (genotype: hs-FLP/Y; FRT
G13

, 

tubP-gal80/FRT
G13

, UAS-mCD8GFP; Crz-gal4/+). Scale bars = 100 µm. 
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consistent with previous BrdU labeling study.  Interestingly, we observed that 8 pairs of 

vCrz neurons randomly were labeled in samples with 0h AEL-6h AEL; however, with heat 

shock treatment after 6h AEL, the abdominal 2 pairs of vCrz (A5, A6) were unlabeled in any 

sample (Fig. 2-3A, B ) (n=50).  It means that these 2 pairs are generated before 6h AEL, 

whereas anterior 6 pair vCrz are generated until 8h AEL.  Taken together, there is a different 

birth order of vCrz along anterior posterior axes (Fig. 2-3C ). 

MARCM labeling homozygous mutant clone 

In the CNSs taken from prepupa aged 6 h APF, Crz expression is undetectable in the VNC, 

and we have shown that such disappearance is due to the programmed death (Choi et al., 

2006).   Since many of the mutations that completely remove the function of a given gene 

are homozygous lethal in embryonic or early larval stages of development, it would be 

impossible to undertake directly mutant dissection for neuronal PCD.  

Previously, we have shown that vCrz PCD requires ecdysone receptor (EcR) activity.  

Since EcR's functional heterodimeric partner is Ultraspiracle (Usp), we expected that vCrz 

PCD would be impaired in a loss-of-usp function mutant.  Since all known usp-null mutants 

are embryonic lethal, we took advantage of MARCM to generate usp homozygous mutant 

vCrz neurons.  

As shown in Fig. 2-4B, a few GFP-labeled neurons bearing homozygous usp
5
 allele are 

clearly viable and have a normal cell body and projection during larval stage, suggesting that 

normal morphogenesis of the vCrz neurons does not require Usp activity.  During 

metamorphosis, the usp
5
 mutant vCrz neurons and its projection are intact at 6 h APF,  



39 

 

  

Figure 2- 4. Lack of cell death in usp mutant Crz neurons.  

(A) At 6h APF, two vCrz neurons are detectable with intact cell body and projection. (B) As 

marked by GFP, two survival neurons are homozygous mutant of usp
5
. (C) Overlapping of A 

and B (genotype: FRT
19A

,usp
5
/FRT

19A
,hs-FLP,tubp-GAL80; ;UAS-mCD8GFP,Crz-gal4/+ ). 

(D) RNAi-mediated knockdown of the usp results in complete cell death defect (n=6). Scale 

bars = 100 µm. 
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supporting that vCrz PCD requires Usp as a partner of EcR (Fig. 2-4, A-C).  Consistent with 

clonal analysis, RNAi-mediated knockdown of the usp resulted in a complete block of vCrz 

PCD at 6 h APF (Fig. 2-4D). 

Mosaic analysis of fkh mutant 

Following neurogenesis, neurons have multiple fates to choose: to survive, differentiate and 

connect with its targets, or to undergo cell death.  Two groups of genes are found to regulate 

this important decision-making process, pro-survival genes and pro-apoptotic genes.  In 

vertebrates, the known pro-survival genes in regulation of program cell death include Bcl-2 

family, neurotrophic factors, and other survival related genes (Schmidt et al., 2004).  Also 

there is clear evidence for similar regulation of PCD in Drosophila.  Since MARCM assay 

can only be used to label homozygous mutant cells, it is not appropriate to study the 

pro-survival gene function, because homozygous mutant cells will die prematurely due to the 

lack of survival factors.  Compared to positive labeling with MARCM assay, traditional 

genetic mosaic technique marks the clone in opposite way, as it labels only the heterozygous 

precursor cell and wild-type cell.  Thus it gives an opportunity to study the gene function, 

whose genetic disruption causes early cell death. 

As described in MARCM assay, 1-h heat treatment at 37°C was applied to embryos 

during early embryogenesis (0-8 h AEL).  After these animals reach wandering third-instar 

larval stage, CNSs were dissected for Crz IHC.  As a result, we found some sample CNSs 

bearing 1-3 GFP-negative vCrz neurons (Fig. 2-5A,B,C).  These GFP unlabeled neurons are 

the result of mitotic recombination between homologous chromosomes, FRTG13 UAS-mGFP 
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and FRTG13.  These results indicate that traditional genetic mosaic technique can be used to 

reversely label the homozygous mutant clone.  Here we exemplified how to use candidate 

gene approach to test whether mutations in known pro-survival genes would affect vCrz cell 

death.  

Forkhead genes are a family of transcription factors that play important roles in cell 

growth, proliferation, differentiation, and longevity (Kaufmann and Knochel, 1996).  In 

Drosophila, fkh is required for early embryogenesis, the formation of several organs and 

tissues, such as the gut, the malpighian tubules and the larval salivary glands (Myat and 

Andrew, 2000).  Expression of the fkh in larval and pupal stage depends on ecdysone signal.  

Ectopic expression of fkh in late prepupae blocks the cell death of salivary glands (Liu and 

Lehmann, 2008; Wang et al., 2004).  However its function has not been well characterized 

in the Drosophila CNS.  It was reported that fkh regulate apoptosis in dMP2 neuron during 

embryogenesis, as 95% of anterior dMP2 neurons fail to undergo cell death in fkh mutants 

(Miguel-Aliaga et al., 2008).  Here we examined its function in vCrz PCD by applying 

genetic mosaic analysis. 

In order to use the FRT/FLP recombination system to produce clones homozygous for 

fkh
6
 mutation, the mutant allele was recombined with FRT

82B
.  Since fkh

6
 mutation is 

embryonic homozygous lethal, we screened for both neoR and homozygous lethality, but 

balanced heterozygous survival mutation.  Mosaic animals were generated after crossing 

this recombinant to a strain that carries a chromosome arm with the same P[ry+, hs-neo, FRT] 

element, FRT
82B

 combined Crz-gal4 and a cell marker as well as the hsFLP gene on a  
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Figure 2- 5. fkh is required for vCrz survival during development 

(A, B, C) Marking vCrz clone. Three vCrz clones (arrow) are not labeled by GFP because of 

mitotic recombination (genotype: hs-FLP/Y; FRT
G13

, UAS-mCD8GFP/FRT
G13

; Crz-gal4/+).  

(D, E, F) Clonal analysis of fkh
6
 mutant. 15 GFP labeled vCrz which carry wildtype fkh gene 

are survival at WL3. One missing neuron (arrow head) is possibly caused by lack of Fkh 

function (genotype: hs-FLP, UAS-mCD8GFP/Y; FRT
82B

, fkh
6
/FRT

82B
, Crz-gal4). Scale bars 

= 100 µm. 
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separate chromosome.  The FLP recombinase was then induced in the heterozygous progeny 

by a brief heat-shock treatment at 0-8h AEL. 

After these animals reach wandering third-instar larval stage, CNSs were dissected for 

Crz IHC.  As a result, we found that more than half of the samples (n=14) carried 8 pairs of 

GFP-marked vCrz and rest of them lacked one of vCrz neurons in T2 segment (Fig. 2-5D-F).  

Since mitotic recombination results in GFP-negative homozygous mutant cells, we speculate 

that the missing vCrz neuron is fkh
6
 mutant cell.  Furthermore, such cell was not labeled by 

Crz-immunohistochemistry (Fig. 2-5D), most likely reflecting cell death.  Considering the 

Fkh as a pro-survival factor, it is reasonably assumed that fkh mutant vCrz died prematurely.   

V. Discussion: 

MARCM based cell labeling 

Genetic mosaic analysis can be used to generate homozygous mutant cells from heterozygous 

precursors, and is a powerful tool to study gene function in many systems (Lee and Luo, 1999; 

Xu and Rubin, 1993; Zong et al., 2005).  MARCM is an advanced genetic mosaic technique.  

Through mitotic recombination, MARCM positively labels a clone of cells that are generated 

from a common GAL80-minus precursor cell (Lee and Luo, 1999, 2001).  This feature gives 

it a great advantage of gene function study and lineage analysis in CNS.  In MARCM, the 

labeling method depends on the GAL4 driver used in the system.  Mostly, they are designed 

to selectively label the cell of interest, called cell-subtype-specific GAL4 driver (Brand and 

Perrimon, 1993; Manseau et al., 1997).  For example, Crz neuron specific GAL4 driver is 

controlled by genomic regulatory sequence of Crz gene that specifically labels Crz in CNS 
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(Choi et al., 2005).  However, using subtype-specific GAL4 to label MARCM clones has 

potential problems.  Since clones are most likely to be generated in a non–tissue-specific 

manner, MARCM cannot give full profile of the GAL80-minus cell lineage without using a 

ubiquitous GAL4 driver.  In vCrz cell death, Crz-gal4 only labels Crz neuron in all 

GAL80-minus progeny of NB7-3.  Therefore, it is difficult to tell whether the cell death 

defect occurred due to cell-autonomous or non-autonomous phenotypes by examining subsets 

of mosaic patterns.  It is also the same scenario in cell lineage study.  Since usually all the 

progeny derived from a single GAL80-minus precursor can not be labeled in MARCM, it 

become insufficient for a comprehensive lineage analysis. 

MARCM analysis in Crz PCD 

vCrz neurons are born in late embryonic stage (Lee et al., 2008).  Since vCrz neurons are 

terminally differentiated cells, they have no chance to undergo mitotic recombination.  

Therefore, an early embryonic stage mitotic recombination was conducted to generate 

chimeras and then only label those homozygous mutant clones among Crz using Crz-Gal4 

and UAS-mCD8GFP.  It allows us to examine homozygous mutant phenotype in vCrz 

during late stage.  However, since the recombination is mediated by heat shock-induced 

Flpase, homozygous mutant cell clones are randomly generated not only in the vCrz neurons 

but also in the entire animal.  Often this could cause severe detrimental effect on normal 

animal development, which makes it very hard to obtain later stages of animals with 

recombination.  This could explain the difficulty of generating mutant cells with some 

mutant alleles (for example, dSmad2 mutant analysis in our study).  To overcome this 
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problem, it is necessary to restrict Flpase expression to the target progenitor cells.  For 

instance, the ey-Flp transgene has been used to conduct mutant clonal analysis only in the 

photoreceptor cells.  Similarly, neuron lineage specific expression of the Flp recombinase 

might be useful to limit mitotic recombination to the dividing NBs or GMCs. 

Segmental diversity and roles of Hox genes 

The underlying molecular and cellular mechanisms to control the generation of cell diversity 

have been studied in many systems.  Two sources of information, spatial and temporal 

factors, have been shown to be required for the generation of neural diversity during 

development (Pearson and Doe, 2003).  In Drosophila, the pattern of segregating neural 

stem cells, the neuroblasts (NBs) is identical in the ventral nerve cord and all of NBs are 

derived from the ventral neurogenic region of the ectoderm (Bate, 1976).  However, 

significant differences occur to these progenitor cells during development.  Each NB gives 

rise to lineages of specific size and cell composition along anterioposteior axis (Bossing and 

Technau, 1994; Maurange and Gould, 2005; Schmidt et al., 1997; Udolph et al., 1993).  

NB 7-3, one of the last neuroblasts delaminated from the neuroepithelium in CNS has 

been well studied in lineage analysis.  It generates three contralaterally projecting 

interneurons (EW1, EW2, and EW3) and one motoneuron (Higashijima et al., 1996).  EW3 

is known as Crz neuron as it synthesizes the neuropeptide Corazonin.  However, Corazonin 

antibody staining only marked 8 pairs in VNC and the subesophageal segment, the first 

thoracic, T1, and the abdominal segment A7, A8, and A9 misses its expression.  It indicates 

differently sized lineages exist along anteroposterior axis.  
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Previous studies have shown that Hox homeotic genes play a key role, acting in several 

different ways to regulate segment-specific behaviors of NB lineages (Carpenter, 2002; Dalla 

Torre di Sanguinetto et al., 2008; Rogulja-Ortmann and Technau, 2008).  Recent studies 

have shed new light on these events.  For instance, Hox genes and their cofactors, Pbx and 

Meis act in tight interplay with temporal genes to prevent formation of abdominal-specific 

neurons through blocking lineage progression within an early temporal window in NB5-6 

lineage.  Another known mechanism of controlling lineage size in NB 7-3 is related to cell 

death.  Detailed studies showed that lineage size increased from 4 up to 10 cells when cell 

death is genetically blocked (Lundell et al., 2003; Novotny et al., 2002).  In H99 deficient 

line, supernumerary cells are detectable within the NB7-3 lineage.  Ectopic expression of 

p35 in NB7-3 and its progeny during embryogenesis produce ectopic Crz neuron in some 

segments (Novotny et al., 2002).  Numb/Notch signaling was found to be necessary for 

regulating cell death.  When Numb inhibits Notch signaling, cells undergo neuronal 

differentiation, whereas cells that maintain Notch signaling initiate cell death (Lundell et al., 

2003).  However, our understanding of the segment-specific neuronal subtype specification 

is still rudimentary, in particular with respect to how the spatial factor and temporal cues are 

integrated with lineage progression.  We find that Crz neurons exclusively appear in thoracic 

segments, T2 and T3 and abdominal segment, A1-A6.  How does the identifiable neural 

lineage generate diverse cell numbers along anteroposterior axis?   Here, several combined 

elements present us with an opportunity for understanding the underlying molecular and 

cellular mechanism to control the generation of neural diversity, including; 1) Genetically 
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blocking cell death does not recover any Crz neuron in T1 and posterior abdominal segment 

A7, A8, and A9.  2) Birth window study of vCrz along anterior posterior axis showed the 

abdominal segments, A5 and A6, have early temporal birth window than other segments.  

Therefore this set of studies demonstrates that early lineage progression termination caused 

by NB cell cycle exit could be a key factor of preventing formation of vCrz neurons in the T1 

and A7-9 segments.  

Previous studies have shown that Hox input plays a key role in controlling 

segment-specific behaviors of NB lineages.  We find that manipulation of the Hox gene 

expression in NB7-3 and its progeny can change the pattern of vCrz neurons along 

anteroposterior axis.  Over-expression of Hox genes was achieved using a UAS-Hox 

transgene driven by an eagle-GAL4 transgene.  At larval stage, overexpression of AbdA and 

Ubx, respectively, leads to extra vCrz neurons at subesophageal and thoracic segment (Fig. 

2-6A, D), whereas AbdB and Antp overexpression cause less number of neuron at VNC (Fig. 

2-6B, C).  These preliminary data provide the first insight into the mechanisms by which 

positional cues conferred by differential Hox gene expression and temporal cues are 

integrated within a defined lineage to control unique neuronal identities only in specific 

segments.  
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Figure 2- 6. Hox genes regulate segment dependent vCrz development 

(A) Overexpression of AbdA leads to the generation extra Crz at T1 and S3 segment (arrow 

head).  (Genotype, eagle-GAL4/UAS-AbdA). (B) Overexpression of AbdB inhibits 

development of most of vCrz neuron (genotype, eagle-GAL4/UAS-AbdB). (C) T2 segment 

misses one Crz neuron (arrow) when Antp is overexpressed in NB7-3 lineage (arrow). 

(Genotype, eagle-GAL4/UAS-Antp). (D) In contrast to the generation of extra neuron at 

thoracic and subesophageal segment (arrow head), There is losing of Crz in some abdominal 

and thoracic segments when Ubx is overexpressed (arrow). (Genotype, 

eagle-GAL4/UAS-Ubx).  Scale bars = 100 µm. 
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Chapter Three 

Signaling involving Baboon receptor and its ligand Myoglianin is required for the 

programmed death of peptidergic neurons during metamorphosis 
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I. Abstract 

Program cell death (PCD) is an essential feature during the development of the central 

nervous system in Drosophila as well as in mammals.  During metamorphosis, a group of 

peptidergic neurons (vCrz) are eliminated from the larval central nervous system (CNS) via 

PCD within 6-7 h after puparium formation.  To better understand this process, we first 

characterized the development of the vCrz neuron including its lineage and its birth window 

using MARCM assay.  Further genetic and MARCM analyses showed that Myoglianin 

(Myo), a ligand TGF-β, and its type I receptor Baboon mediate TGF-β signaling in vCrz PCD.   

Genetic analyses of the components downstream of the receptors suggest that Myo does not 

signal exclusively through Babo, indicating complicated signaling pathway of Myo.  

Interestingly, an adaptor protein, Sara is also required in vCrz PCD and function as a 

concentration-dependent biphasic modulator of TGF-β signaling.  

II. Introduction 

Establishment of a functional nervous system is achieved through precise controlling of the 

staggering neuronal cell number and assembling their highly complex neuronal circuits.  

Programmed cell death (PCD) plays a key role in regulating the number of neurons in the 

nervous system throughout animal development.  During embryogenesis, prominent cell 

death occurs in populations of proliferating neuroblasts, early postmitotic cells, and neurons 

that fail to make functional connections with their targets (Davies 2003).  A well established 

idea is that the fate of neurons during this period is largely regulated by a variety of secreted 
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proteins that either promote survival or bring about cell death after binding to receptors 

expressed on the neurons (Davies, 2003).  For example, neurotrophic factors secreted from 

the innervated targets and associated glial cells can promote the survival of these developing 

neurons (Levi-Montalcini, 1987).  As a result of competition for limiting neurotrophic 

factors in their target organs, removal of a subpopulation of initially equivalent neurons is 

random and called stochastic PCD (Miguel-Aliaga and Thor, 2009).  In contrast, a 

predetermined PCD by its neuronal lineage is called stereotyped PCD.  It evolved a 

conserved mechanism that removes specific cells with precision and reproducibility and has 

been observed in Drosophila, C. elegans and vertebrate nervous systems (Miguel-Aliaga and 

Thor, 2009).  For example, in Drosophila, lineage-specific PCD of differentiated neurons 

occurs in a segment manner.  The dMP2 and MP1 pioneer/visceral neurons and the GW and 

anterior NB2-4t motor neuron are eliminated during embryonic development (Miguel-Aliaga 

and Thor, 2004; Rogulja-Ortmann et al., 2008).  Despite these studies, however, the 

mechanism of how these stereotyped PCD is initiated is still unknown. 

 Holometabolous insects, which undergo complete metamorphosis, offer a model system 

for studying developmentally-regulated neuronal cell death, because the formation of the 

adult CNS during metamorphosis involves reorganization of larval neural circuits (Robinow 

et al., 1993; Truman, 1990).  A number of unwanted larval neurons are programmed to die, 

while other neurons are persistent into adulthood but usually remodeled through pruning of 

axon and dendritic processes (Robinow et al., 1993).  Previously, we found that a group of 

peptidergic neurons producing Crz neuropeptide are eliminated from the larval CNS via PCD 
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within 6-7 h APF in Drosophila (Choi et al., 2006), which provides us with a model to study 

how this subgroup of neurons are eliminated in CNS.  

 Members of the TGF-β superfamily have been shown to control many aspects of cellular 

behavior, including cell differentiation, cell growth and death, and various morphogenetic 

processes during development (Derynck and Akhurst, 2007; Kingsley, 1994).  A growing 

body of evidence has shown that TGF-β induces cell death in many different cell types, 

including normal B cells and a lymphoma B-cell line (Chaouchi et al., 1995).  Extensive 

lymphocytic hyperproliferation and systemic lupus erythematosus-like autoantibodies was 

seen in TGF-β1-deficient mice (Dang et al., 1995; Shull et al., 1992).  Likewise, ectopic 

expression of TGF-β1 in the liver results in hepatic fibrosis and cell death (Sanderson et al., 

1995).  However its function in the CNS is still elusive. 

According to the conventional model, binding of TGF-β ligands induces the formation of 

a serine/threonine kinase complex that is composed of type-II receptor and type I receptor.  

The type II receptor kinase phosphorylates the GS domain, a regulatory region within type-I 

receptor and activates its kinase activity.  The active type-I receptor kinase phosphorylates 

receptor-regulated Smad (R-Smad) proteins (Shi and Massague, 2003).  In the basal state, 

R-Smads are retained in the cytosol because of its interaction with some adaptor proteins, 

such as SARA (Xu et al., 2000) and HRS (Miura et al., 2000).  It is known that SARA 

provides an anchor where R-smads binds the activated TGF-β receptor complex and 

undergoes phosphorylation (Tsukazaki et al., 1998).  However, the phosphorylated R-Smad 

has lower affinity with SARA, releasing R-Smad from the complex and allowing it to form a 
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complex with co-Smad, Smad4.  The resulting R-Smad:co-Smad complex translocates to 

the nucleus and regulates gene expression of diverse target genes (Chen et al., 1997; Labbe et 

al., 1998; Yanagisawa et al., 1999).   

In Drosophila, seven members of the TGF-β family are identified.  Decapentaplegic 

(Dpp), Screw (Scw), or Glass bottom boat (Gbb) belong to BMP family and have been shown 

to specifically signal through type-I receptors, Thickveins (Tkv) and Saxophone (Sax), and 

type-II receptors, Punt and Wit (Bangi and Wharton, 2006; Shimmi and O'Connor, 2003).  

dActivin (dAct), Dawdle (Daw), Myoglianin (Myo), and Maverick (Mav) are members of 

Activin/TGF-β branch and propagate signal through only one type-I receptor, Baboon (Babo) 

and they share the type II receptor with BMP pathway (Lo and Frasch, 1999; Nguyen et al., 

2000; Serpe and O'Connor, 2006; Zhu et al., 2008).  Therefore pathway specificity is only 

provided by the type-I receptors.  As an only type-I receptor in Activin pathway, Babo has 

been known to regulate several developmental processes including mushroom body 

remodeling during metamorphosis (Zheng et al., 2003), morphogenesis of ellipsoid body 

neuron in the adult (Zheng et al., 2006), motor axon guidance in the embryo (Serpe and 

O'Connor, 2006) and neuron proliferation in the larval brain (Brummel et al., 1999).  It 

indicates that Babo may respond to different ligands in different developmental context. 

Here we demonstrate that Babo/dSmad2 mediates TGF-β signaling through another 

ligand Myo, and plays a central role in the PCD of vCrz neurons during metamorphosis.  

Interestingly, we further observed that endosome enriched protein SARA is also involved in 

vCrz PCD, adding a complexity of TGF-β signaling. 
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III. Materals and methods  

Fly strains and genetic crossing 

The recombinant fly lines were generated and employed for MARCM of Crz neurons.  The 

Crz-gal4 lines were from our previous studies (Choi et al., 2008).  For babo mutation: (1) 

hs-FLP, UAS-mCD8GFP; FRT
G13

, tubP-Gal80/CyO, y
+
. (2) FRT

G13
, babo

52
/CyO, y

+
; 

Crz-gal4. (3) FRT
G13

, babo
Fd4

/CyO, y
+
. (4) FRT

G13
, babo

Fd4
; Crz-gal4, UAS-babo.  For 

dSmad2
1 

(Zheng et al., 2003): (5) FRT
19A

, tubP-Gal80, hs-FLP; Crz-gal4 and (6) FRT
19A

, 

dSmad2
1
, UAS-mCD8GFP/FM7C.  For sara mutation: (7) FRT

G13
, sara

12
/CyO, y

+
; 

Crz-gal4 (Bokel et al., 2006).  For a wild-type clone: (8) FRT
G13

, UAS-mCD8GFP; 

Crz-gal4. 

The following mutants for the type-II receptors were also used: wit
G15

/TM6B 

(Marques et al., 2002), punt
62

 and punt
135

 (Simin et al., 1998).  In an experiment, wit
G15

 was 

recombined with the punt mutants.  To induce transgenic RNAi-mediated knockdown, the 

following UAS-lines (gift from M. O’Connor) were crossed to a Crz-gal4: UAS-punt
RNAi

, 

UAS-wit
RNAi

, and UAS-dSmad2
RANi

 (Vienna Drosophila RNAi Center).  The myo
D1

 mutant, 

myo-gal4 and UAS-babo lines were also obtained from M. O’Connor (Awasaki et al., 2011; 

Zhu et al., 2008b), and UAS-Akt and UAS-ras
v12

 lines from E. Baehrecke. 

Generation of MARCM clones 

Embryos (0-8 hours old) were collected and placed on standard fly food.  A 60-min heat 

shock at 37°C was applied to induce the expression of the hs-FLP transgene, and hence 

mitotic recombination.  After the heat pulse, the animals were kept at 25°C until the CNSs 
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were dissected for immunocytochemistry. 

Detection of MARCM clones by immunohistochemistry 

Whole-mount Crz immunohistochemistry was performed, as described previously (Choi et al., 

2005).  The primary antibodies were detected by FITC- or TRITC-conjugated secondary 

antibodies (Jackson ImmunoResearch) at 1:200 dilution.  The specimens were then cleared 

in 60% glycerol and mounted in 10% glycerol.  Fluorescent signals were acquired by 

Olympus BX61 connected with CC-12 camera. 

IV. Results 

Babo and Smad2 are required for vCrz PCD 

As most homozygous mutations of PCD-associated genes cause embryonic or early larval 

lethality, it is difficult to assess these genes’ functions in late developmental events.  As 

previously described, clonal analysis of vCrz neurons based MARCM assay poses a good 

reason that we can use it to study homozygous gene function in vCrz PCD (Lee and Luo, 

1999).  Therefore, we conducted a MARCM-based screen for mutations that disrupt normal 

cell death in vCrz.  Since several lines of evidence indicate that TGF-β has a role in cell 

death, thus a collection of known mutations of the TGF-β receptor was examined 

Two independent babo-null alleles, babo
52 

and babo
Fd4

 were further characterized 

(Brummel et al., 1999).  We found around 85% specimens contain surviving vCrz neurons at 

6 h APF (n=50); all of these vCrz are GFP labeled and therefore bear babo
Fd4

 mutant alleles 

(Fig, 3-1A-C), whereas only 35% specimens retain surviving vCrz in babo
52

 MARCM 

analysis (n=50) (Fig. 3-1D-F).  This is consistent with the previous study and supports the 
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notion that babo
Fd4

 may function as an antimorphic allele since it is still capable of binding 

ligands, but not signaling (Zheng et al 2003).  Furthermore, babo hemizygous mutant CNS 

showed significant rescue of vCrz PCD (Fig. 3-1G).  Together, the data strongly suggest that 

autonomous TGF-β signaling mediated by Babo is crucial for the PCD of vCrz neurons. 

The babo locus codes for three isoforms, Babo-a, Babo-b, and Babo-c, varying the fourth 

exon through differential splicing and each isoform seems to perform functions specific to the 

type of ligand (Jensen et al., 2009).  Four cysteine residues interspersed within this domain 

are conserved and involved in the formation of disulfide bonds upon ligand binding 

(Brummel et al., 1999; Wrana et al., 1994).  To determine the isoform that is responsible for 

the vCrz PCD, each isoform was expressed in babo
Fd4 

mutant background.  Transgenic 

expression of the babo-a complemented babo
Fd4

, as vCrz PCD took place normally, leaving 

no detectable vCrz neurons in the tissue (n=50, Fig. 3-1H).  In contrast, expression of the 

babo-b or babo-c did not rescue babo
Fd4

 mutation, as ~40% sample of babo-b expression 

(n=32, Fig. 3-1I) and 30% of babo-c expression (n=50, data not shown) showed defective 

PCD phenotype, which is comparable to that observed with babo
Fd4

 mutant alone.  The 

result is also consistent with the fact that babo-a is the predominant form expressed in the 

CNS (Jensen et al., 2009).  

Since dSmad2 is a likely candidate as an R-Smad for the Babo-mediated signal 

transduction, we investigated the role of dSmad2 as a proapoptotic factor.  Genetic analyses 

of dSmad2
1
 mutant as well as RNAi-mediated knockdown resulted in the defective PCD of 

vCrz neurons, as the prepupal CNS at 6 h APF showed 13-14 vCrz neurons alive (Fig. 
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Figure 3- 1. PCD of vCrz neurons is prevented in homozygous babo mutant clones.  

Mitotic recombination was induced by a heat-shock of embryos at 0-8 h AEL and then vCrz 

neurons were examined at 6-7 h APF.  (A-C) babo
Fd4

 mutant clones (arrowheads).  Note 

that only GFP-labeled vCrz neurons bearing babo
Fd4

 homozygous mutation survive, thus 

become Crz-immunoreactive. (D-F) Same as A-C, except for babo
52

 allele used (G) 

Hemizygous babo mutant VNC (babo
Fd4/Df

) at 20 h APF. Most vCrz neurons do not undergo 

PCD.  (H) Expression of UAS-babo-a complemented babo
Fd4

 with respect to vCrz PCD, as 
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no GFP-labeled mutant vCrz neurons are detectable.  (I) Defective PCD in babo
Fd4

 mutant 

CNS is not rescued by the expression of UAS-babo-b (or UAS-babo-c, data not shown), 

suggesting that these two isoforms do not complement babo
Fd4

 mutation.  Scale bars = 100 

µm. 

 

 

 

 

Figure 3- 2. Roles of Smad2 for vCrz PCD.   

(A) Most vCrz neurons survive in dSmad2
1
 homozygous mutant prepupal CNS 6 h APF (16 ± 

0, n=5).  (B) Knockdown of dSmad2 blocks the PCD significantly (13.5 ± 1.0, n=5). 

(Genotype: Crz-gal4/+; Crz-gal4/UAS-dSmad2
RNAi

).  Scale bar = 100 µm. 
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3-2A,B).  Taken together, the results suggest that Babo and dSmad2 are essential signaling 

components for the neuronal PCD during metamorphosis. 

Punt and Wit mutant exhibit different phenotype expressivity as babo 

According to the study in mushroom pruning, punt and wit could function redundantly. 

Therefore we combined punt and wit mutant together, punt
62

, wit
G15

 and punt
135

, wit
G15

.  To 

our surprise, these double transhetero mutant at 25℃ also does not significantly block cell 

death (Figure 3-3C).  Result of using double RNAi for Punt and Wit showed similar results 

with mutant analysis (Figure 3-3D).  Since these mutants are not null alleles, we can not 

concude whether punt and wit are required for vCrz PCD.  However, considering type I 

receptor babo mutant has strong phenotypic effect in cell death, it is speculated that type II 

receptor may have different phenotype expressivity. 

Myo is required for PCD 

The Drosophila genome contains four potential ligands for Babo: Activin, Myoglianin (Myo), 

Maverick (Mav) and Daw (reviewed by (Parker et al., 2006).  Both Activin and Myo are 

known to bind Babo in biochemical assay (Lee-Hoeflich et al., 2005), but only Activin 

function is well characterized in mushroom body remodeling, neuron proliferation and motor 

axon guidance during development (Serpe and O'Connor, 2006; Zheng et al., 2003; Zhu et al., 

2008).  To functionally explore their roles in vCrz PCD, three ligands with avaliable mutant, 

Activin, Myo and Daw have been examined during metamorphosis.  We observed no 

blocking effect of PCD in activin or dawdle homozygous mutants but complete blocking in 

myo muant at 6 h APF (Fig. 3-4A).  Even after 20 h APF, 8 pair neurons are also retained 
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Figure 3- 3. punt and wit mutant analysis in vCrz death.   

(A-C) Anti-Crz staining for the indicated genotypes at 7 h APF. Only a few vCrz cell debris 

without any projections remain detectable in these mutants.  (D) Double RNAi-mediated 

knockdown of the punt and wit. The result is similar to that in the double punt, wit mutant. 

(Genotype: Crz-gal4/UAS-punt
RNAi

; Crz-gal4/UAS-wit
RNAi

). Scale bar = 50 µm. 
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with intact neuronal morphology (Fig. 3-4B).  To further study myo function, myo’s 

expression pattern was examined using GAL4-myo and it shows that myo is mainly  

expressed in glial cells and not Crz neurons (Fig. 3-4C).  However there are always a few 

number of myo-expressing glial cell around vCrz at white pupal stage.  This discovery is 

consistent with the notion that Myo is a secreted ligand and not a cell-autonomous factor for 

vCrz PCD. 

Myo is not exclusively transduced into Babo  

In vCrz PCD, Myo and its binding receptor, Babo and downstream Smad2 are required for 

cell death.  However their blocking intensity is quite different.  Myo has the strongest 

blocking effect among them.  In MB remodeling and vCrz PCD, EcR is a critical factor to 

synchronize these degeneration process during metamorphosis (Zheng et al., 2003).  To 

further study its mechanism, we examined the EcR gene expression and found out it 

completely depletes EcR expression in myo mutant (Fig. 3-4D).  Whereas the expression 

level of EcR-B1, was not altered in babo mutant according to anti-EcR-B1 staining (Fig. 

3-5D,E).  Furturemore, forced expression of EcR-B1 did not rescue babo mutant clonal 

defects (Fig. 3-5A-C).  Combining these lines of evidence, we postulate that Myo is critical 

factor for EcR expression and therefore it is important for vCrz PCD, however its death 

signal is not exclusively transduced through Babo and Smad2.  Such a model could explain 

the observed blocking effect difference between myo and babo.  As infered by myostatin 

function study in mouse (McCroskery et al., 2003; Yang et al., 2007), it could be that other 

downstream components bypass and transduce death signal to EcR-B1.  Therefore, the  
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Figure 3- 4. Myoglianin (myo) is required for the PCD of vCrz neurons.   

 

(A, B) Anti-Crz immunohistochemistry in homozygous myo-null mutant at 7 h APF and 20 h 

APF, respectively.  Most vCrz neurons remain intact even at 20 h APF.  (C) Double 

labeling of the white prepupal CNS for the expression of myo (GAL4-myo/UAS-nuclear GPF) 

and Crz (red, immunohistochemistry).  Expression of the myo does not overlap with Crz.  

(D) EcR-B1 expression is not detectable in myo mutant VNC of the white prepupa. (E) Faint 

but numerous EcR-B1 immunoreactivity in the wild-type control. Scale bar = 50 µm. 



63 

 

  

Figure 3- 5. EcR-B1 is not downstream of Babo.   

(A-C) Live vCrz neurons carrying babo
Fd4

 mutation at 6 h APF after ectopic expression of 

EcR-B1 (Genotype: hs-FLP, UAS-mCD8GFP/X; FRT
G13

, babo
Fd4

/FRT
G13

, tubP-gal80; 

Crz-gal4, UAS-EcR-B1/+).  (D, E) Anti-EcR-B1 staining (red) in a babo
Fd4

 mutant clone 

(green) in white pupal stage is indicated by an arrow. Scale bar = 10 µm.   
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relevant transcriptional targets of Babo/Smad2 and other downstream of Myo in vCrz PCD 

need to be identified. 

Sara is a concentration-dependent biphasic modulator of TGF-β signaling  

As we know, TGF-β receptor transmits signal to nucleus through phosphorylation of Smad2.  

Our results showed type I receptor Babo and dSmad2 are essential for activating the TGF-β 

signaling pathway in vCrz PCD.  However, these seemingly simple subcellular translocation 

of Smad2 is still highly regulated by a number of additional factors.  Smad protein can 

undergo nucleocytoplasmic shuttling freely in the basal state (Inman et al., 2002; Nicolas et 

al., 2004).  However, several cytosolic retention factors can keep smad2 in the cytoplasm 

through physical interaction between them.  Once phosphorylation of Smad2 by type I 

receptor occurs, affinity between those cytosolic retention factor and smad2 declines and 

smad2 will accumulate in the nucleus.  Therefore, the intra-cellular localization results from 

the battling between phosphorylation of Smad2 and interaction of retention factors (Derynck 

and Zhang, 2003; ten Dijke and Hill, 2004).  SARA, an adaptor protein that presents an 

anchor where the activated TGF-β receptor complex interacts and phosphorylates R-Smad, is 

also the best characterized  cytosolic retention factor for Smad2 (Tsukazaki et al., 1998; Xu et 

al., 2000).  Despite some studies on SARA function of Smad nuclear import, the 

physiological consequences of disruption of proper Smad amount within the nucleus when 

SARA amount is manipulated in TGF-β signaling have rarely been examined. 

sara has two mutant alleles sara
12

 and sara
1
.  sara

1
 is a point mutation in FYVE 

domain, resulting in mistargeting of SARA out of the apical endosomes into the cytosol. 
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sara
12

 removes the entire coding region and represents a null mutation.  Both mutants fail to 

target signaling cargo to endosomes associated with the spindle machinery during mitosis 

(Bokel et al., 2006).  We tested flies bearing those mutant alleles in pupal stage.  About 

50% of vCrz neurons are observed in sara
12

 tissue (Figure 3-6A), similar to those animals 

with transallelic mutant of sara
1
 (Figure 3-6B).  To further confirm it, clonal analysis is also 

applied to those mutants.  Around 20% specimens have live vCrz neurons in sara
12

 

MARCM analysis (n=30) (Figure 3-6C-E).  It indicates that SARA, as an adaptor factor, is 

indispensable for phosphorylation of Smad2.  Disruption of SARA function will lead to 

decreased nuclear accumulation of Smad2.  

To further study the role of SARA during TGF-β signaling, SARA protein level was 

manipulated in vCrz using a genetic approach.  Over-expression of sara in Crz blocks vCrz 

PCD during metamorphosis (Figure 3-6F).  This result validates that SARA may function as 

a cytosolic retention factor and high expression levels of SARA can interfere with nuclear 

translocation of Smad2, thereby reducing its transcriptional activator functions.  Therefore, 

the relative amount of SARA and Smad2 is precisely regulated in the cell and disruption their 

ratio could change the Smad2 subcellular distribution.  To demonstrate this, we elevated 

Smad2 and SARA expression level together.  We observed that ectopic co-expression of 

dSmad2 and SARA completely revert the blocking effect of SARA (Fig. 3-6G).  It indicates 

that high Smad2 levels over saturate SARA and yield free distribution for Smad2.  Thus 

SARA is a concentration-dependent biphasic modulator of TGF-β signaling.  Depletion of 

SARA protein can deteriorate the ability of phosphorylation of Smad2 by the type I receptor, 
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and then change its subcellular distribution.  However elevating SARA levels could retain 

cytosolic localization of Smad2 and block smad2 nucleus trafficking.   

V. Discussion 

The TGF-β superfamily including TGF-β, Activins and bone morphogenetic proteins (BMPs) 

play critical roles in regulating the development of many organisms.  TGF-β functions in a 

context-dependent manner.  Upon the cell type, the differentiation stage, it may act 

differently (Sanchez-Capelo, 2005; Schmierer et al., 2008; Schuster and Krieglstein, 2002).  

Whereas Activins have been shown to be important apoptotic players in different systems, e.g. 

in the immune system, in tumorigenesis and in the nervous system, especially in 

oligodendroglial progenitors (Deli et al., 2008; Schulz et al., 2008; Wang et al., 1996), they 

are also involved in proliferation and function as survival factor (Ageta et al., 2008; 

Bilezikjian et al., 2006).  Our studies provide the first genetic evidence that TGF-β can 

function as a death signal and may help understanding the implemented mechanism in a 

different context. 

An intertwined roles of TGF-β in cell death and other signal pathway 

As a member of TGF-β superfamily, Myo have several features including a core of 

hydrophobic amino acids near N-terminal regions as a secretory protein signal and cysteine 

cluster in the C-terminal which facilitates the forming of a homodimer, and a proteolytic 

processing site (McPherron et al., 1997).  Its mammalian homolog, Myostatin has been 

known to be expressed specifically in developing and adult skeletal muscle and functions as a 

negative regulator of skeletal muscle cell proliferation and differentiation.  In contrast to 
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Figure 3- 6. Sara has dual roles for vCrz PCD.   

(A, B) sara mutant alleles, as indicated, block vCrz death partially. Numbers of vCrz neurons 

detected are 5.6 ± 0.5 (n=5) for sara
12

 and 5 ± 0.6 (n=5) for sara
1
.  (C-E) MARCM analysis 

of sara
12

 allele. (Genotype: hs-FLP, UAS-mCD8GFP/X; FRT
G13

, sara
12

/FRT
G13

, tubP-gal80; 

Crz-gal4/+).  (F) Overexpression of wild-type sara can block the PCD (11.2 ± 0.9, n=6). 

(Genotype: Crz-gal4/UAS-sara).  (G) Co-expression of sara and dSmad2 reverts blocking 

effect of sara. (Genotype: Crz-gal4, UAS-dSmad2/UAS-sara).  Scale bar = 100 µm.
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Myostatin’s muscle-specific expression through development, Myo is mainly expressed in 

glial and muscle cell during embryogenesis, and later during third larval stages, it is only 

observable in the CNS.  Both myoglianin and myostatin are shown to bind type I and type II 

receptor complex to activate TGF-β/Activin-like signaling pathways (Lee-Hoeflich et al., 

2005; Rebbapragada et al., 2003).  Additionally, non-Smad-dependent pathway has also 

been implicated to signal through inhibiting AKT phosphorylation (McCroskery et al., 2003; 

Yang et al., 2007).  Therefore, consideration of how Myo/Myostatin activates downstream 

effectors will be paramount in understanding the functional flexibility and molecular 

specificity in TGF-β signal transduction.  

Since loss of EcR expression was observed in myo mutant but not in the babo mutant, it 

raises the hypothesis that Myo does not bind exclusively to Babo and transduced to 

Babo/Smad2 signal pathway in vCrz PCD.  Previous structure studies have revealed a 

similarity between members of the TGF-β superfamily and members of the NGF and 

platelet-derived growth factor (PDGF) families (McDonald and Hendrickson, 1993).  All of 

these ligands contain the cysteine knot motif.  In particular, crystallography studies showed 

the cores of the monomers are nearly superimposable.  NGF and PDGF belong to 

neurotrophic factor and originally are identified as neuronal survival factors.  They exert 

diverse biological effects by binding a specific receptor.  NGF binds TrkA and PDGF binds 

PDGF receptor and they can activate two pathways including phosphoinositide 3-kinase 

(PI-3k)/Akt and Ras/MAPK (Kaplan and Miller, 2000).  Over the last two decades, 

extensive research has been carried out to study their function in stochastic neuron PCD 
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during embryonic stage.  However their roles in PCD during later stages are still largely 

unknown.  To elucidate their functions in vCrz PCD, several downstream factors including 

Ras, PIP3K and Akt have been examined in vCrz PCD.  Overexpression of Ras or Akt 

caused cell death defect as Myo (Fig. 3-7A,B).  All these results indicate that neurotrophic 

factors play an essential role in vCrz PCD.  Considering structure similarity between TGF-β 

ligand and NGF, PDGF, it raises the probability that Myo may regulate survival factor signal 

through competition to bind their receptors or decreasing their transcription level indirectly. 

Babo-a is a type I receptor for Myo 

Four potential Activin-like ligands are found in Drosophila, Dawdle, Activin, Myo, and 

Mav.  They are known to regulate many cellular functions including cell growth, cell-fate 

determination and differentiation, and apoptosis (Schmierer and Hill, 2007).  The diversity 

of those signal effects for different ligands relies on large repository of receptor combination.  

One type-I receptor and two type-II receptors are identified in Drosophila and have capacity 

to form a functional heterocomplex.  Recently three type-I receptor Babo isoforms are also 

discovered to contribute to the specificity of the signal (Jensen et al., 2009).  During 

development, specific combination of these receptors is expressed in different larval tissues. 

As such, they regulate various activin-type signals.  Dawdle was found to preferentially 

signal through one isoform of type-I receptor, Babo-c (Jensen et al., 2009) and Activin is 

specifically binding to another isoform Babo-b based on cell-line binding assay (personal 

communication with M. O’Connor).  Of interest, our data indicate that Babo-a is a major 

signaling component for vCrz cell death.  Preferential expression of babo-a in the larval  
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Figure 3- 7. Effect of survival factors on the vCrz PCD.   

(A) Overexpression of a UAS-Akt shows cell death defect (5.8±0.9, n=6) (genotype: 

Crz-gal4/+; Crz-gal4/UAS-Akt).  (B) Overexpression of a constitutively active form of Ras 

blocks the cell death (6 ± 0.5, n=5) (genotype: Crz-gal4/UAS-ras
v12

).  Scale bar = 100 µm. 
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CNS supports our data (Jensen et al., 2009).  Taking together, we gingerly propose that 

Myo functions preferentially through the Babo-a isoform to induce various events occurring 

in the post-embryonic CNS.   

Type I receptor and type II receptor has different phenotype expressivity  

Although type I and type II TGF-β receptors are presumed to function in the same signaling 

complex, their respective ligand binding affinity varies among different subfamily.  The 

generally established theory in TGF-β signaling assumes that the type II receptor represents 

the high-affinity receptor and the binding of ligand to the type II receptor firstly is followed 

by recruitment of the type I receptor.  However for BMP-2, the high affinity receptor is the 

type I receptor and their sequential ligand binding is reversed even though a measureable low 

affinity of type II BMP receptor for free BMP-2 exists (Kawabata et al., 1995; Liu et al., 

1995).  Mutations in two respective binding epitopes of high-affinity and low affinity 

receptor in BMP2 yielded different effect on biological activity in C2C12 cells.  Only 

epitope for low affinity receptor binding behaved as antagonists partially or completely 

inhibiting BMP-2 activity (Kirsch et al., 2000).  It indicates that high affinity and low 

affinity receptor exert variable influence on assemble of ternary signaling complex and the 

related cellular signaling process.  Generally, the high affinity ligand-receptor binding 

implies that a relatively low amount of proteins are needed to form ligand-receptor complex, 

whereas low affinity binding require a relatively high concentration of a ligand or receptor.  

Binding study of TGF-β1 with its low affinity receptor TβR-1 revealed that the forming 

heteromeric complexes of type I and type II receptors was dependent on the presence of low 
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concentration of high affinity type II receptor (ten Dijke et al., 1994).  In our study, punt and 

wit double mutant does not produce a comparable blocking phenotype as babo mutant.  The 

similar logic can be used to explain this.  First, the punt and wit mutants in the study are not 

null mutant.  For instance, punt
135

 is a moderate allele and it cannot be ruled out the 

possibility that the small amount of Punt exist (Simin et al., 1998).  Second, punt and wit 

mutant are zygotic loss-of-function mutant. Perdurance of maternal protein results in the 

presence of low concentration of protein (Marques et al., 2002 ; Simin et al., 1998).  Thus, 

mutant cells may possibly possess small number of type II receptors, which allows formation 

of functional ternary signaling complex. In contrast, as a low affinity of receptor, babo 

mutant exhibits a severe cell death defect.  In some sense, it validates our hypothesis. 

Nucleocytoplasmic shuttling is a dynamic process 

Smad2 are key intracellular signal transducers for TGF-β signaling and the level of nuclear 

R-Smads determine the duration and strength of signaling (ten Dijke and Hill, 2004).  

Normally, Smads possess intrinsic nucleocytoplasmic shuttling capacity and lots of 

interacting proteins including nuclear transport factors and cytosolic retention proteins can 

alter their translocation and determine their subcellular distribution (Pierreux et al., 2000; 

Schmierer et al., 2008; Watanabe et al., 2000).  It is generally thought that the 

phosphorylation status of R-Smads is coupled with their nuclear accumulation.  TGF-β 

activation can retain more phosphorylated Smad2 in the nucleus through inhibition of Smad2 

nuclear export rather than change of the nuclear import rate of Smad2 (Schmierer and Hill, 

2005).  Also, it is reported that Ran-binding protein 3 (RanBP3) can mediate nuclear export 
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of R-Smad after R-Smad are dephosphorylated by the nuclear phosphatase (Dai et al., 2009; 

Lin et al., 2006).  In our study, TGF-β signaling is shown to have a biphasic response to 

SARA concentration.  An optimal amount of SARA is required for Smad2 nucleus 

accumulation, whereas low levels and high levels deteriorate the response.  It may explain 

that SARA has dual roles.  As a cytosolic retention factor, SARA can prevent the Smad2 

nuclear import, whereas as an anchor protein, it can help in phosphorylation and nuclear 

accumulation of Smad2, thereby enhancing TGF-β signaling. 
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Endocytic trafficking is required for neuron cell death through 

regulating TGF-β signaling 

 

 

This part is a manuscript in preparation 

C 



75 

 

I. Abstract 

Endocytic trafficking is crucial for various aspects of cell homeostasis.  Here, we show that 

endocytic membrane trafficking is coupled with cell signaling during PCD.  Endocytosis 

and its regulatory signal of TGF-β play essential roles in vCrz PCD during early 

metamorphosis.  By using available genetic tools, we revealed the following events: the 

clathrin mediated membrane receptor internalization and subsequent endocytic events 

involved in Rab5 dependent early endosome and Rab11 recycling endosome differentially 

participates in TGF-β signaling.  Two early endosome-enriched proteins SARA and HRS are 

observed to act as a cytosolic retention factor of Smad2, indicating that endocytosis mediates 

TGF-β signaling via regulation of the dissociation of Smad2 and its cytosolic retention factor, 

SARA and Hrs.  

II. Introduction 

No cell lives in an isolated island.  In all multicellular organisms, cell fate determination, 

cell death or survival is largely controlled by an elaborate intercellular communication 

network.  This is particularly the case in the nervous system.  Neural functions are strictly 

dependent on the cellular interactions.  Inter-neuronal communication occurs by means of 

variable signals such as hormones, neurotransmitters, or secreted proteins.  These 

extracellular modulators may promote survival or favor the cell death according to receptors 

that the cell bears (Davies, 2003; Oppenheim et al., 1999).  For instance, developing 

motoneurons or sensory neurons deprived of neurotrophic factors died through the interaction 
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of the death ligand and its receptor.  The well-studied case of death ligand is a member of 

the tumor necrosis factor (TNF) family.  Activation of Fas in cultured embryonic 

motoneurons is even sufficient to trigger death of a significant proportion of motoneurons in 

the presence of neurotrophic factors (Lewin and Barde, 1996; Raoul et al., 1999).  However, 

aside from the neuron cell death induced by TNF family (Frade and Barde, 1998), other 

possible death receptors have remained undetermined.  

Signal transduction by many surface receptors is largely involved in membrane 

trafficking and endocytosis.  For many years, the internalization of receptors by endocytosis 

is not only known to be associated with signal attenuation by degradation of the complex of 

receptor and ligand, but also to play an essential role in propagation of signal transduction 

(Le Borgne et al., 2005).  Experiments demonstrate that active receptors initiate signal from 

the plasma membrane, and stay in their active states in endosomes, suggesting continuation 

of signaling from this intracellular compartment (Di Guglielmo et al., 2003).  Therefore, 

endocytosis may serve to bring ligand-bound receptors to the specific intracellular 

compartments where signal-tranducing machinery is assembled (Seto et al., 2002).  

Endocytosis is the process of cellular ingestion by which plasma membrane is 

internalized into the cytoplasm together with ingested molecules.  According to the kinetic 

relevance and the diagnostic molecular markers, the endocytic pathway is defined as several 

functional organelles, including clathrin-coated vesicles (CCVs), early endosomes, recycling 

endosomes, late endosomes and lysosomes.  As one of molecular markers, the Rab protein 

in rab family of ras-like GTPases are distributed to distinct intracellular compartments and 
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regulate transport between organelles (Zerial and McBride, 2001). 

Endocytosis is typically initiated by the formation of CCVs in the cell membrane 

(Gruenberg, 2001).  Dynamin has been shown to play a key role in this process.  Dynamin 

has been originally linked to endocytosis through the discovey of a temperature-sensitive 

Drosophila mutant shibire
ts
 (shi

ts
).  In shi

ts
, endocytosis is inhibited at the restrictive 

temperature because clathrin-coated pits cannot be pinched off from the plasma membrane 

(PM) (Kosaka and Ikeda, 1983).   

The second station along the endocytic pathway is early endosome, where the 

endocytosed proteins are delivered by the endocytic vesicle.  It is a critical organelle to 

serve as a sorting station along the endo-lysosomal pathway.  Whether an endocytosed 

protein is recycled back to membrane or delivered to the successive degradative compartment 

is controlled by the sorting process initiated in the early endosome.  Rab proteins mediate 

trafficking at each distinct step of interorganellar transport.  Rab5 mediates traffic from the 

PM to the early endosome (Bucci et al., 1992), Rab7 the step from the early sorting 

endosome to the degradative compartment (Bucci et al., 2000) and Rab4 and Rab11 

trafficking within the recycling pathway (Zerial and McBride, 2001).  

we reported here the investigation of endocytosis dependent signal transduction on 

neuron cell death.  A set of dominant negative, constitutively active, temperature sensitive 

form of endocytosis transporter proteins were examined in vCrz PCD and they showed 

significant blocking of cell death.  The underneath possible transduced messenger is TGF-β 

signaling.  
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III. Methods and Materials 

Fly Stocks  

Inhibition of dynamin and CHC function (1) w; TM3 UAS-shi
K44A

/TM6B (Molline et al., 

1999) (2) UAS-Shi
ts
 (Awasaki and Ito, 2004) (3) UAS-CHC

DN 
(Bloomington Stock Center). 

Early endosome analysis (4) UAS-Rab5
SN

 (Entchev et al., 2000) (5) UAS-sara (Bokel et al., 

2006)(6) UAS-Hrs (Seto and Bellen, 2006)(7) UAS-hrs
RNAi

 (Bloomington Stock Center).  

Rescycling and late endosome analysis (8) UAS-Rab11
NI 

(Satoh et al., 2005) 

(9)UAS-Rab11
RNAi

 (Satoh et al., 2005) (10)UAS-Rab7
QL 

(Entchev et al., 2000).  TGF-β 

pathway analysis (11) UAS-Smad2 (12) UAS-Smad2
SVD

 (13) UAS-Smad2-2SA  (14) 

UAS-babo-a  

Generation of MARCM clones 

Embryos of 0-8 hours old were collected and placed on standard fly food.  A 60-min heat 

shock at 37°C was applied to induce the expression of the hs-FLP transgene, and hence 

mitotic recombination.  After the heat pulse, the animals were kept at 25°C until dissection. 

Generation of UAS-babo-aWA transgenic line 

Mutagenesis was carried out by two rounds of PCR amplification.  First, using the 

PUAST-babo-a (from Dr. O’Connor)as a template, two DNA fragments were generated using 

the first pair of primer: baboKpn1_forward (ATCGCGTGGGTACCAAGCGC), 

baboWA_reverse (GATTGGGATACGCGCACTCCTTC) and second pair of primer: 

baboWA_forward (GAAGGAGTGCGCGTATCCCAATC) and UAS_reverse 

(TGTCCAATTATGTCACACCAC).  The primer baboWA-reverse and baboWA_forward 
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are complementary to each other and contain point mutation of Tryptophan to Alanine 

(TGG-GCG).  The two amplified PCR products were then mixed together and re-amplified 

using primer baboKpn1_forward and UAS-reverse to yield a 500bp fragment.  The primer 

baboKpn1_forward was specifically designed to contain a Kpn I digestion site.  With KpnI 

and XbaI digestion, we combined the mutant sequence with the original PUAST-babo-a 

construct.  After sequencing, and the construct was injected into the w
1118

 embryos for 

germ-line transformation.  

IV. Results: 

Clathrin-mediated internalization is required for cell death 

The binding of an extracellular ligand at the cell surface triggers the internalization of 

molecules into internal membrane compartments.  In most animal cell types and under 

normal conditions, the complex of receptor and ligands are endocytosed mainly through the 

formation of CCVs (Mellman, 1996).  

The GTPase dynamin is a critical mediator of clathrin-dependent endocytosis, and is 

required for pinching off invaginated coated pit during formation of CCVs (Schmid et al., 

1998).  To determine if dynamin regulates the internalization of cell death related receptor, 

the dominant-negative dynamin mutant dynamin K44A line, which is deficient in GTP 

binding and GTPase activity, was expressed in vCrz.  Immunostaining at 6 h APF showed 

14-15 vCrz neurons alive (n=6) (Fig. 4-1A).  Moreover, ectopic expression of UAS-shi
ts
 at 

the nonpermissive temperature (29°C) manifests the comparable result with 14 neurons 
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surviving at 6 h APF (n=5) (Fig. 4-1B). 

     Dynamin has also been implicated in forming of caveolae and non-clathrin vesicles 

(Henley et al., 1998; Le Roy and Wrana, 2005) and non-clathrin dependent endocytosis 

pathway is speculated to be mainly involved in receptor degradation.  To further study the 

endocytosis pathway that dynamin is involved, the function of clathrin needs to be examined.  

In the clathrin-mediated endocytic pathway, clathrin is composed of a trimer of clathrin heavy 

chain (CHC).  A dominant negative form of the CHC was overexpressed in vCrz, which 

caused significant cell death defect, with 12.3 ± 0.19 (n=6) neurons alive (Fig. 4-1C). 

Considering cell death blocking intensity triggered by the defect of dynamin and CHC are 

similar, it is speculated that the extracellular signal molecules or membrane proteins are 

internalized through dynamin- and clathrin-dependent pathway during vCrz cell death. 

Trafficking through early endosome and recycling endosome are necessary for cell 

death 

After dynamin-mediated internalization, endocytic vesicles undergo Rab5 mediated fusion 

with the endosome.  To determine the possible role of early endosome in cell death, we 

overexpress dominant negative Rab5, a constitutively GDP-bound form that inhibits 

endosome fusion.  Subsequently, the vCrz neuron with expressing Rab5
SN

 has cell death 

defect and 7 pairs of vCrz neurons still survived at 6 h APF (n=6) (Fig. 4-2A).   

Following their trafficking into early Rab5-containing endosomes, receptors can rapidly 

recycle back to the plasma membrane.  Through a Rab11-dependent mechanism, traffic 

route is steered to the recycling endosome.  We next examined whether the recycling 
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dependent endocytic regulation is required for signal transduction in cell death.  We 

perturbed the endocytic routes by suppressing the function of Rab11.  

Crz-immunofluorescence experiment with Crz-Gal4/UAS-Rab11
DN

 CNSs (Fig. 4-2B, n=5) 

showed severe deficit in the vCrz PCD, as about 46% of neurons were detectable at 6 h APF.  

Less significant cell death defect was also observed with the knockdown of Rab11 

(Crz-Gal4/UAS-Rab11
RNAi

), which showed ~29% vCrz neurons survived (Fig. 4-2C).  

Nevertheless, the results suggest that levels of signaling are reduced by impaired recycling 

endosomal transport.  

Endocytic suppression affects TGF-β signaling 

We next sought to identify the molecular cargo that is transported by the clathrin and Rab5 

dependent pathway.  Our previous work showed that TGF-β plays a role in inducing cell 

death. Signaling involving Baboon receptor and its ligand Myoglianin is required for Smad2 

phosphorylation in vCrz PCD during metamorphosis.  Once phosphorylated, the Smad2 

undergoes subcellular translocation from cytoplasm to nucleus, where Smad2 can regulate the 

signaling outcome.  Considering that TGF-β dependent death signal emanates from the cell 

surface, endocytosis may be the efficient way to conduct signaling molecules translocation 

from cell membrane to nucleus.  

To test this possibility, we performed genetic rescue experiment by overexpressing Babo-a, 

dSmad2 with Rab5
SN

, Shi
K44A

 respectively.  It showed that ectopic expression of dSmad2 or 

Babo-a can significantly rescue the cell death defect triggered by overexpression  
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Figure 4- 1. Effect of impaired clathrin dependent internalization.  

(A) Overexpression of shibre dominant negative shi
K44A

 inhibits cell death in vCrz (14.5 ± 

0.67, n=6). (Genotype: Crz-gal4/Y;; UAS-shi
K44A

).  (B) Overexpression of temperature 

sensitive shi mutant at 29°C cause a comparable cell death defect as A (14.2 ± 0.66, n=5). 

(Genotype: Crz-gal4/+;; Crz-gal4/shi
ts
).  (C) Overexpression of dominant negative CHC 

also significantly blocks the cell death (12.3 ± 0.56, n=6). (Genotype: Crz-gal4/UAS-CHC
DN

). 

Scale bars = 100 µm. 
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Figure 4- 2. Inhibition of Rab5-dependent, Rab11-dependent endocytic route causes cell 

death defect. 

(A) Overexpression of dominant-negative Rab5 in Crz inhibits vCrz cell death (14.3 ± 0.91, 

n=6). (Genotype: UAS-Rab5
SN

/Crz-gal4).  (B, C) Overexpression of dominant negative 

Rab11 (7.4 ± 0.92, n=5) (Genotype: UAS-Rab11
N124I

) or RNAi mediated knock down also 

cause cell death defect significantly (4.6 ± 0.42, n=6) (genotype: UAS-Rab11
RNAi

/Crz-gal4). 

Scale bars = 100 µm. 
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of shi
K44A

 (Fig. 4-3B,E), even though the babo-a has a stronger restoring effect with 4-5 

neurons surviving (n=5).  It indicates that dynamin dependent signal transduction is more 

involved with receptor than the downstream effector dSmad2.  However, this is not the case 

in Rab5 dependent pathway.  In contrast to non-significant rescue of babo-a, dSmad2 can 

completely revert the defect of cell death triggered by overexpression of rab5
SN

 (Fig. 4-3C,F).  

These data indicate that the death signal transduced through endocytosis is TGF-β signaling.  

As an intracellular effector of TGF-β mediated signaling, subcellular localization of Smad2 is 

regulated by several factors.  In addition to the well known phosphorylation state dependent 

nucleus accumulation, some cytoplasmic retention factors also regulate the subcellular 

location of dSmad2.  Here, we sought to investigate the role of phosphorylation state 

dependent signal regulation in vCrz PCD.  Ectopic expression of dSmad2 cannot completely 

revert the cell death in babo mutant clone (Fig. 4-4A,B).  Despite of significant reduction of 

homozygous babo mutant clone percentage (85% sample of babo
fd4 

bear homozygous clone), 

there is still 22% of CNS samples bearing GFP labeled clone which can not be rescued by 

overexpression of dSmad2.  It indicates that TGF-beta signaling propagates information 

from receptor to dSmad2 in a non-transcriptional manner.  As a signaling effector, dSmad2 

encodes information derived from membrane receptor through phosphorylation.  In line with 

this, overexpression of the phospho-mimicking mutation of Smad2, Smad2-DMD leads to 

accelerated cell death in vCrz.  At wandering L3 stage, most of samples carry no neuron 

except at the posterior abdominal segment A5 and A6 (Fig. 4-4C).  Therefore, 

phosphorylation is a prerequisite for Smad2  
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Figure 4- 3. Involvement of TGF-β signaling in endocytosis dependent cell death 

(A, D) overexpression of babo-a or dSmad2 in Crz does not cause cell death defect. (B, C) 

Co-expression of babo-a with shi
K44A

 (4.6 ± 0.40, n=5) has a stronger restoring effect than its 

corresponding rescue of Rab5
SN

 (11.4 ± 0.81, n=5). (Genotype: UAS- shi
K44A

 /Crz-gal4, 

UAS-babo-a; UAS-Rab5
SN

 / Crz-gal4, UAS-babo-a).  (E, F) In contrast to its mild rescue of 

shi
K44A

(6.0± 0.68, n=6), dSmad2 has completely can completely revert the defect of cell death 

triggered by overexpression of Rab5
SN

.  Scale bars = 100 µm. 
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Figure 4- 4. Phosphorylation of Smad2 is required for TGF-β signaling 

(A, B) ectopic expression of Smad2 did not restore the defect of cell death in babo
Fd

 mutant 

homologous clone. (Genotype: hs-FLP, UAS-mCD8GFP/Y; FRT
G13

, 

tubP-gal80/FRT
G13

BaboFd4; Crz-gal4,UAS-dSmad2/+).  (C) Overexpression of the 

phospho-mimicking mutation of dSmad2, dSmad2-DMD leads to premature cell death at 

WL3 stage. Note that abdominal segment A5 and A6 carry surviving neuron. (Genotype: 

UAS- dSmad2
DMD

 /Crz-gal4). Scale bars = 100 µm. 
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nucleus accumulation in TGF-β receptor dependent regulation of signal transduction.  

The foregoing study showed that Dynamin dependent signal transduction is more involved in 

receptor than downstream effector, Smad2, indicating that Dynamin regulate the TGF-β 

signaling through receptor dependent Smad2 phosphorylation.  However, it is not the case in 

Rab5 dependent signaling.  Smad2 but not receptor Babo-a can recue the cell death defect 

caused by the inhibition of early endosome formation.  It is speculated that early endosome 

controls cell death via regulating Smad2’ cytosolic retention factor. 

SARA and HRS functions redundantly as a cytosolic retention factor 

SARA acts as a cytosolic retention factor of Smad2 and regulates TGF-β signaling by 

controlling nuclear translocation of Smad2.  By virtue of the FYVE domain binding to PI3P, 

SARA is localized to EEA1-positive and Rab5-containing early endosome (Hu et al., 2002), 

providing a potential link between membrane trafficking and TGF-β signaling.  As indicated 

by our previous data, SARA acts as a biphasic regulator of Smad2 nucleus translocation and 

is required for cell death.  To further characterize other cytosolic retention factor in vCrz 

PCD, we investigated another FYVE finger-membrane protein Hrs.  HRS localizes to flat 

clathrin lattices, a complimentary part of EEA1 locale on early endosomes (Raiborg et al., 

2002).  Overexpression of hrs in Crz neurons significantly triggered defective cell death 

with 7-8 vCrz neurons alive at 6 h APF (n=6) (Fig. 4-5A).  However, co-expression of hrs 

and Smad2 completely reverted the blocking effect by hrs (Fig. 4-5C).  Furthermore, 

RNAi-mediated knockdown of hrs also partially inhibited cell death and causes 5 vCrz 

neurons surviving (n=5) (Fig. 4-5B).  Therefore, hrs knockdown in vCrz  
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Figure 4- 5. Hrs is required for vCrz PCD.  

(A) Overexpression of wild-type Hrscan block the PCD (7.3 ± 0.6, n=6). (Genotype: 

Crz-gal4/UAS-hrs).  (B) Knockdown of Hrs blocks the PCD partially (5.0 ± 0.77, n=5). 

(Genotype: Crz-gal4/+; Crz-gal4/UAS-hrs
RNAi

).  (C) Co-expression of hrs and dSmad2 

completely reverts blocking effect by Hrs (n=5). (Genotype: Crz-gal4, 

UAS-dSmad2/UAS-hrs). Scale bars = 100 µm. 
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phenocopies the loss of sara.  Moreover, the blocking magnitude of their loss gene is less 

than the effect trigged by their overexpression.  These studies indicate that SARA and HRS 

may act, partially redundantly, to recruit Smad2 to the receptor.  Simultaneous depletion of 

HRS and SARA shows more severe effect than individual one (to be done).  Therefore, 

considering SARA and Hrs possess the direct binding site of Smad2 and their endocytic roles 

in membrane trafficking, it is reasonably speculated that endocytosis allows the Smad2 

nucleus translocation by regulating the interaction of Smad2 and its cytosolic retention 

factors during vCrz PCD.   

Babo-a carrying Trp573 to Ala mutation is defective in the vCrz cell death 

The endocytosis of cell surface receptor occurs in response to the ligand-induced receptor 

activation.  The activated signaling receptors are internalized to clathrin-coated vesicle by 

directly interacting with the clathrin coat adaptor protein.  A short, specific signal sequence 

at signaling receptor is known to be involved in recognition by the enodcytic machinery 

(Bonifacino and Jackson, 2003; Mukherjee et al., 1997).  Type II TGF-β receptors contain 

an internalization signal belonging to the dileucine family (Ehrlich et al., 2001), which is one 

of motifs recognized by the clathrin-associated adapter complex AP2 (adaptor protein 2) 

(Traub, 2003).  In addition, a NANDOR box (nonactivating-non-down-regulating), 

localized at the carboxyl terminus, is found to be well conserved in type-I receptors and play 

a role in receptor endocytosis (Garamszegi et al., 2001).  However, later studies identified 

Trp477 within the kinase domain of the type-I activin receptor Alk4 as a key residue 

responsible for the ligand-dependent internalization (Zhou et al., 2004).  We found that this 
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residue is also conserved in Drosophila Babo.  Babo is know to encode three isforms that 

differ only in their extracellular portion, Babo-a, Babo-b, and Babo-c.  Our previous results 

showed that Babo-a is the functional receptor for vCrz PCD.   

To investigate whether the W573 residue is required for internalization of the Babo-A for 

vCrz PCD, we substituted this residue with Ala (W573A) in Babo-a and generated 

UAS-babo-aWA transgenic flies (Fig. 4-6A).  Remarkably, ectopic expression of this 

mutant form in vCrz acts as a dominant negative form and partially blocks the PCD at 6 h 

APF with four vCrz neurons surviving (Fig. 4-6B).  To further explore its role in cell death, 

the mutant babo-aW573A is combined with MARCM assay to rescue babo mutant.  As 

shown in our previous results, Babo-a can completely rescue vCrz PCD defects in babo 

mutant clone using ectopic expression (Fig. 3-1H), whereas Babo-a-WA mutant cannot (Fig. 

4-6C &D, n=24) do with 42% of sample bearing GFP labeled homozygous clone.  This 

finding strongly indicates that endocytosis of activated Babo is a key TGF-β signaling event 

for PCD of vCrz. 
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Figure 4- 6. Babo-aW573A is defective in cell death of vCrz.   

(A) The Trp, which is conserved in TGF-β family recetpors, is substituted with Ala in 

mutagenesis studies of babo-a. The boxed region is the NANDOR box.  (B) Overexpression 

of babo-aW573A partially block cell death (4.4±0.50, n=5). (Genotype: 

Crz-gal4/UAS-Babo-aW573A).  (C, D) ectopic expression of babo-aW573A did not restore 

the defect of cell death in babo
Fd

 mutant homologous clone. (Genotype: hs-FLP, 

UAS-mCD8GFP/Y; FRT
G13

, tubP-gal80/FRT
G13

BaboFd4; Crz-gal4,UAS-babo-aW573A/+). 

Scale bars = 100 µm. 
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V. Discussion: 

Membrane trafficking underpins the fundamental need for cells to maintain cellular 

homeostasis.  For example, actin and microtubular cytoskeletons undergo specific structural 

changes upon initiation of cell death.  A wealth of evidence implicates the importance of 

membrane trafficking with regards to mitochondrial function and cell death (Leadsham and 

Gourlay, 2008).  However, we provided evidence that membrane trafficking is required for 

cell death by regulating of signal transduction.  Endocytosis and its regulatory signal TGF-β 

play essential roles in neuron cell death during metamorphosis.  Using the advanced genetic 

analysis tools, we found that the clathrin mediated membrane internalization and Rab5 

dependent endocytosis is required for Smad2 nucleus accumulation through distinct 

mechanism.  The Clathrin and Dynamin dependent endocytic trafficking exert their 

regulation through controlling receptor dependent Smad2 phosphorylation, whereas Rab5 

enriched early endosome acts as a platform to regulate the interaction of Smad2 and its 

cytosolic retention factor in vCrz PCD. 

Regulation of signal transduction by endocytosis 

Recent studies implicated that endocytic organelles can play a more active role in signal 

propagation and amplification than was recognized before.  The classical mode of signaling 

presumes that activation of membrane receptor by binding of extracellular ligand occurs at 

the cell surface.  Endocytosis is known as a means to terminate signaling via degradation of 

activated receptor complexes after their internalization from the cell surface (Ceresa and 

Schmid, 2000).  However, it has become clear that a high order of regulation has been put 
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forward by exerting the compartmentalization and functional specialization of the endocytic 

pathway, such as where and how long the signal is emitted (Miaczynska et al., 2004).  One 

instinctive role of endocytosis in signal transduction is to provide temporal and spatial 

regulation by controlling the duration of signaling at specific organelles.  Each endosomes 

have their unique properties such that they possess different type of endosomal signaling.  

For example, owing to an enrichment in phosphatidylinositol 3-phosphate (PtdIns3P), early 

endosome serve as a platform where various proteins including FYVE domain and PX 

domain-containing proteins are assembled as signaling molecules (Sasaki et al., 2007).  In 

the case of TGF-β signaling, it is reported that the presence of FYVE domain containing 

proteins, SARA and Hrs in early endosome control the receptor dependent phosphorylation of 

Smad2 (Miura et al., 2000).  Furthermore, late endosome has an acidic environment, which 

especially favors activity of proteolytic enzymes and therefore preferentially terminated the 

signal transduction through degradation of signaling molecules.  

In this report we show that inhibition of early endosome and its preceding endocytic event 

lead to the defect of cell death in vCrz.  Downstream signal transducer analysis using 

genetic rescue experiment indicates that the death signal regulated by endocytosis is TGF-β 

signaling.  The clathrin dependent receptor internalization and its succeeding endocytosis 

pathway serve to regulate the Smad2 subcellular localization during vCrz cell death.  In 

particular, early endosome is major platform where several FYVE domain containing 

proteins reside and interact with Smad2.  Based on our previous data and the data of others, 

SARA functions to recruit Smad2 to the TGF-β receptor at the plasma membrane (Runyan et 
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al., 2005).  The following dissociation of SARA and Smad2 has been observed under two 

prerequisites: phosphorylation and endocytic regulation.  Endocytosis exerts its roles of 

separation of Samd2 from it cytosolic retention factor, SARA, by reducing their affinity 

between each other.  Based on structural analysis of SARA and Smad2 complex, SARA is 

capable to directly interact with the β sheet and the three-helix bundle of Smad2 through its 

SBD (Smad2 Binding Domain) (Wu et al., 2000).  The receptor dependent phosphorylation 

places negative charge on c-terminal motif of Smad2, reducing its binding affinity to SARA.  

In our proposed model, ligand dependent activation of receptor initiates protein complex 

internalization.  The following endocytic event will recruit the cytosolic retention factor 

SARA to early endosome through the FYVE domain.  The specific property owned by early 

endosome favor the dissociation of Smad2 from SARA.  Comparing with cytosol, the 

slightly acidified environment of early endosome could cause negatively charged Smad2, a 

reminiscent of phosphorylation dependent alteration, therefore trigger the dissociation of 

SARA and Smad2.  Also, a complex network of Rab5 regulator and effectors is found to be 

clustered in early endosome (Zerial and McBride, 2001). The combinatorial use of Rab5, its 

effector and other membrane proteins that create the specificity of that particular membrane 

environment could favor the dissociation of Smad2 and its retention factor.  Furthermore, 

we found another cytosolic retention factor, Hrs. It has a redundant role in regulating Smad2 

subcellular localization.  Overexpression of Hrs and SARA could over saturate the binding 

specifically to phosphatidylinositol 3-phosphate (PI(3)P), and cause their cytoplasmic 

localization, where high affinity protein-protein interaction occurs.  Therefore, the signal 
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transducer Smad2 will be retained in the cytoplasm and unable to undergo nucleus 

translocation.  Taken together, endocytosis is very crucial for signal propagation from cell 

surface to nucleus.  As a major regulatory organelle, early endosome governs the nucleus 

translocation of Smad2 by regulating the dissociation between Smad2 and cytosolic retention 

factor (Fig. 4-7).  

Beyond Dynamin’s role in endocytosis 

As a family of large mechanochemical GTPases, Dyanmin is well known to be involved in a 

diversity of cellular processes, including endocytosis, protein trafficking, and organelle 

partitioning (Hinshaw, 2000; Danino and Hinshaw, 2001).  However, recent study point 

more clearly than ever toward a novel role for this protein in cell death.  Ubiquitously 

expressed isoform dynamin-2 in Hela cell activate the transcription factor p53 and induces 

cell death (Fish et al., 2000).  Inhibition of Drp1, a dynamin-related protein by 

overexpressin of a dominant negative mutant prevents staurosporine-induced cell death in 

Hela cells (Frank et al., 2001).  Here we presented evidence that the neuronal isoform 

dynamin-1 is also capable to induce cell death.  Surprisingly, our results implicate that 

dynamin control cell death by internalizing of TGF-β receptor.  This novel result raises the 

possibility that we could couple the role of dynamin in endocytosis with signal transduction 

in cell death.  For instance, another role for dynamin is modulating of actin cytoskeleton. 

Vps1p, one of yeast dynamin-related protein is required for normal actin cytoskeleton 

organization.  In higher eukaryotic cells, remodeling of actin and microtubular cytoskeletons 

is an essential event of destruction of plasma membrane integrity followed by membrane 
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blebbing.  Considering actin cytoskeleton participating in endocytosis, it is intuitive that the 

function of dynamin I endocytosis might also depend on their roles as actin cytoskeleton 

regulators.  In the present study, inhibition of dynamin activity lead to a more severe 

phenotypic blocking effect than other protein and ectopic expression of Smad2 only partially 

retrieve the defect of cell death caused by blocking of Shibire function. It might points to 

deeper levels of understanding how cell death is executed by coordinating various regulatory 

events. 
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Figure 4- 7. Endocytic regulation of TGF-β signaling in vCrz PCD 

Upon ligand binding, the receptors can initiate signaling by activating the Smad pathway 

through phosphorylation. The concomitant set-up of ligand-bound receptor also triggers the 

membrane internalization and subsequent endocytic trafficking. The receptor induced Smad2 
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phosphorylation continues and even maximizes their signaling activity during this process. 

Therefore, inhibition of activity of CHC and Dynamin will effect the phosphorylation 

dependent signal transduction. However the major function of Rab5-mediated early 

endosomes is to release the Smad2 from the SARA-Smad2-receptor comlex. Hrs also resides 

in early endosome and has redundant role of SARA. Thus, early endosome serves as a sorting 

station, whereby the free phosphorylated Smad2 accompanied by Smad4 will translocated 

into nucleus, whereas some of the ligand-bound receptor are recycled back to the plasma 

membrane for re-use, or sorted to late endosomes and lysosomes for degradation.  
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Chapter Five 

Discussion 

I. Summary 

PCD is essential for the development and homeostasis of the nervous system.  The 

bewildering study of the cell death core machinery during the past several decades has caused 

the elucidation of the genetic and molecular pathway effecting PCD and has revealed an 

intrinsic program of degeneration that consists of hundreds of proteins build-in molecular 

network (Chu and Chen, 2008).  Less is known, however, about the upstream regulatory 

events that selectively control the cell death program in heterogeneous cell population.  This 

is particularly the case for PCD in nervous system.  It is estimated that 50% of neuron will 

undergo cell death in mammalian nervous system and 25% in the VNC of Drosophila (Buss 

et al., 2006; Rogulja-Ortmann et al., 2007).  How is cell death program initiated to kill a 

selected member of the population while ensuring the survival of the others in the population 

of nervous system?  Results of the present investigation, in brief revealed that extracellular 

modulators, such as TGF-β, lead to either the death or the survival of neuron bearing their 

specific receptors.  Furthermore, the endoctyic organelles play an active role in TGF-β 

signal propagation and amplification.  

  The complexity of the cell death program began to increase with the notation that the 

death of cell in different context may thus reflect of survival factor, presence of intrinsic or 

extrinsic death factors, or both.  Genome-wide analysis of dying salivary glands in 

Drosophila revealed that around 1000 gene transcripts exhibited a significant magnitude of 
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change comparing 6- and 12-hr salivary glands.  It includes genes involved in cell 

death, cytoskeleton remodeling, noncaspase proteolysis, and protein translation (Gorski et al., 

2003; Lee et al., 2003).  To identify genes that may regulate cell death in nervous system, 

we underwent screening of candidate genes based on mosaic technique and RNAi-induced 

gene knockdown.  We found that a wide variety of genes are involved in neuron cell death 

including growth factors and survival factors, cell surface receptors, transcription factors, 

cytoplasmic protein, nucleus receptors, and protein translation related proteins.  It indicates 

that neuron cell death is not a simple proteolytic cascades based on caspase, but a 

co-operative action of multiple processes that requires absolute precise coordination of all the 

developmental genes and signaling cascades involved.  In this chapter I will further discuss 

other possible factors in vCrz PCD. 

II. Nuclear receptor 

The nuclear receptors comprise the receptors for steroid, thyroid and retinoid hormones, 

vitamins A and D and many orphan receptors lacking identified ligands (Chawla et al., 2001). 

They belong to a superfamily of transcription factors that share similar structure modular 

containing DNA binding domain (DBD) and ligand binding domain (LBD) and control a 

variety of systemic processes, such as metabolism, maturation, and fecundity (Francis et al., 

2003).  Mutations of some nuclear receptors have been reported to cause development 

defect and a variety of human diseases. 

In insects, one of NR, Ecdysone receptor (EcR), is particularly well documented during 
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metamorphosis.  For example, genetic analyses have shown that EcR is essential for cell 

autonomous remodeling of mushroom body neurons and SCP immunoreactive (IR) 

neurosecretory cells and the class IV dendritic arborization (C4da) neurons (Lee et al., 2000b; 

Schubiger et al., 2005; Schubiger et al., 1998).  Our previous studies have implicated the 

EcR is also involved vCrz death (Choi et al., 2006).  Genetic disruptions of EcR-B and its 

corresponding signal transduction suppressed vCrz death.  Studies from the salivary grand 

in Drosophila have revealed an EcR dependent transcriptional regulatory hierarchy.  Upon 

binding to ecdysone, the heterodimeric receptors (EcR:USP) activate a cascade of signal 

transduction via the primary response genes including BR-C, E74, and E75, E93 (Thummel, 

1996).  

The Drosophila genome encodes 18 canonical NRs and they represent six NR 

subfamilies across the animal kingdom (Laudet, 1997).  Compared to the intense study of 

EcR and USP, the functions of the remaining 16 NRs in neural development have not been 

well documented.  During metamorphosis, a high-titer pulse of ecdysone at L3 wandering 

stage is reported to regulate EcR and some other NRs as well (Sullivan and Thummel, 2003). 

This ecydsone pulse triggers lots of neuron cell death in ventral nerve cord (Lee et al., 2011). 

It indicates the potential role for these NRs.  Recently, Lin, et al. (2009) developed a genetic 

toolkit using miRNA-based RNA interference and systematically surveyed these NRs 

functions in brain development.  They found that unfulfilled (unf), an ortholog of human 

photoreceptor specific nuclear receptor (PNR), is required for axonal morphogenesis and 

neuronal subtype identity during the development of mushroom bodies (MBs).  
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In the present study, we knocked down each of the 18 Drosophila NR genes in vCrz 

using this toolkit.  In addition to EcR, USP, we identified another 2 NRs that is required for 

vCrz PCD, unf, and DHR78 (Table. 5-1).  DHR78 has two vertebrate orthologs, TR2 

(NR2C1) and TR4 (NR2C2).  In vitro study shows that DHR78 is capable of binding to a 

subset of EcR/USP-binding sites and inhibits ecydsone dependent signal induction (Fisk and 

Thummel, 1995; Zelhof et al., 1995).  DHR78-null mutants display growth defect and die at 

early L3 stage (Fisk and Thummel, 1998).  Taken together, our data indicate that besides 

EcR, many NRs are required for ecdysone signaling through their protein and protein 

interaction, therefore maintain appropriate growth during development. 

III. Glial function in cell death 

The programmed degeneration of neural processes is closely associated with its 

neighboring cells, glial cells.  During metamorphosis, some larval neurons survive but 

undergo extensive remodeling in order to acquire the adult pattern of projections.  Excessive 

or obsolete axons, dendrites and synapses are eliminated by the engulfing activity of the 

surrounding glia (Awasaki and Ito, 2004; Watts et al., 2004).  Inhibition of glial activity 

leads to inappropriate adult neural circuits (Awasaki et al., 2006).  Similar observations are 

also made during mammalian brain development.  In the neuromuscular junctions, the 

surrounding Schwann cells are required for the reduction of synapses and axon branches in 

the course of neural circuit refinement (Bishop et al., 2004).  Despite intensive studies of the 

underlying mechanisms of cell death, little is known about how neighboring cell interact with  
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Table 5-1. Complete survey of 18 nuclear receptors’ function in vCrz PCD by miRNA 

knockdown 

 

All those miRNA stocks are obtained from Dr. Tzumin Lee and Crz-gal4
S2b,T2a

 is used in 

the crossing. 
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 doomed cells and trigger the cell death. 

As the primary phagocytes, glial cells are involved in the neural degeneration in the 

developing and mature brain.  Glial cell infiltration and engulfment of the neuronal debris 

during axon pruning or during Wallerian degeneration in the adult brain is an essential event 

that facilitates the corresponding degenerative process (Aldskogius and Kozlova, 1998).  In 

Drosophila, the engulf receptor, drpr is expressed in engulfing cells and required for glial 

phagocytosis of their targets (Freeman et al., 2003).  It is an ortholog of the C. elegans 

CED-1, containing 15 extracellular atypical epidermal growth factor (EGF) repeats, a single 

transmembrane domain, and a novel intracellular domain.  An intracellular NPXY motif in 

close proximity to transmembrane region endows Drpr an ability of binding with the proteins 

containing a phosphotyrosine-binding (PTB) domain, which is required for cell corpse 

engulfment.  In addition, drpr is also highly expressed in Drosophila macrophages, 

suggesting that immune cells in flies may also use the drpr/ced-1 pathway for the general cell 

corpse removal (Freeman et al., 2003).  

In order to explore the potential role of glia, we first conditionally inhibited the glial 

function by the targeted expression of temperature-sensitive allele of shibire (shi
ts
).  As a 

dominant-negative at a restrictive temperature, Shi
ts
 inhibit phagocytosis and other 

membrane-related function (Kitamoto, 2001; Orth and McNiven, 2003).  We expressed Shi
ts
 

in glia by using the repo-GAL4 driver at a permissive temperature (25°C) and then placed 

them in the restrictive temperature (29°C) from wandering larvae stage to 6 h APF.  Raising 

repo>shi
ts
 animal at the restrictive temperature lead to the cell death defect and 6 pairs of 



105 

 

vCrz are retained at 6 h APF (Fig. 5-1A).  Furthermore, because of Drpr is required for glial 

activity, we tested whether drpr
∆5 

null mutants have a defect in vCrz cell death (MacDonald 

et al., 2006), and found that homozygous drpr
∆5 

null mutants have a comparable phenotype 

with repo>shi
ts1

 animal (Fig. 5-1B), with 4 vCrz neurons survived.  These results indicate 

that reduced glial activity by inhibiting membrane function or decreased drpr expression 

appears to block the vCrz cell death.  Interestingly, recent study showed that Drpr is present 

in dying salivary glands and directly mediate their degradation via activation of autophagy 

(McPhee et al., 2010).  Therefore, how Drpr functions to regulate autophagy specifically in 

a cell death context remains to be determined.
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Figure 5- 1. Glial activity and cell death.  

(A) When Shi
ts
 is activated in glial cells during early pupal stage (0-6h APF), abnormal cell 

death occurred with 14 neurons alive, even though the axonal projection is not present (13.66 

± 0.33, n=6). (Genotype: Repo-gal4/UAS-Shi
ts
). (B) drpr

∆5
 null mutant displays uncomplete 

cell death with 4 neuron surviving (4.3±0.83, n=3).  
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