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Abstract

Systems of linear equations are central to many science and engineering application

domains. Given the abundance of low-cost parallel processing fabrics, the study of

fast and accurate parallel algorithms for solving such systems is receiving attention.

Fast linear solvers generally use a form of LU decomposition. These methods face

challenges with workload distribution and communication overhead that hinder their

application in a true broadcast communication environment.

Presented is an efficient framework for solving large-scale linear systems by means

of a novel utilization of Cramer’s rule. While the latter is often perceived to be

impractical when considered for large systems, it is shown that the algorithm proposed

has an order Nˆ3 complexity with pragmatic forward and backward stability. To the

best of our knowledge, this is the first time that Cramer’s rule has been demonstrated

to be an order Nˆ3 process. Empirical results are provided to substantiate the stated

accuracy and computational complexity, clearly demonstrating the efficacy of the

approach taken.

The unique utilization of Cramer’s rule and matrix condensation techniques

yield an elegant process that can be applied to parallel computing architectures

that support a broadcast communication infrastructure. The regularity of the

communication patterns, and send-ahead ability, yields a viable framework for

solving linear equations using conventional computing platforms. In addition, this

dissertation demonstrates the algorithm’s potential for solving large-scale sparse linear

systems.
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Chapter 1

Introduction

At the heart of many scientific computations is finding the solution to a system

of linear equations. Simulation and optimization of power systems, for example,

repeatedly solves systems of linear equations. In order to efficiently solve these

systems, reliable tools and methods are required. A number of different approaches

exist, and most depend on an algorithm to quickly and accurately find the solution.

This dissertation focuses on one particular algorithm that shows great promise.

The approach is based on two established mathematical methods: Cramer’s rule and

Chio’s matrix condensation. When combined, these methods can solve for a set of

variables in a highly distributed fashion. At a first glance, a simple combination of

these methods involves higher computational complexity than existing techniques.

However, the addition of a clever data structuring scheme allows this algorithm to

efficiently solve a linear system while still retaining its distributed nature.

Like all numerical methods, it must produce solutions that are accurate and timely.

For these reasons, the algorithm requires careful study of numerical stability, accuracy

and computational complexity. Once a level of confidence is established in these traits,

the parallelization potential can be explored.
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1.1 Numerical Solutions to Systems of Linear Equa-

tions

Historically, the algorithm that required the least amount of computation to solve

a system worked best. Not only could it complete its work quicker than more

computationally complex algorithms but fewer calculations generally meant fewer

rounding and truncation problems. As hardware speed improved, the time to

complete floating point calculations decreased and the bottle neck shifted to memory

bandwidth. The time required to solve a problem was dominated by how often an

algorithm moved data in and out of the processor. For this reason, a great deal

of research focused on algorithms that efficiently moved data through a machine’s

memory hierarchy.

As networks and multicore computers became cost-effective, new platforms arrived

that could distribute work over more hardware. Calculations could be done in

parallel to reduce processing time. Unfortunately, the nature of linear systems

makes it difficult to solve pieces independently. This leads to communication between

processing units to share data. The run time of distributed solvers depends not only

on the number of calculations but also on the amount and speed of communication.

In addition, the problem of workload for each unit has become a consideration for

distributed solvers. An algorithm that can distribute calculations uniformly across

the different processors will complete quicker, since the run time of an algorithm

depends on the last processor to complete its work. An unbalanced work load results

in some processors lagging behind while others wait. This leads to allocating work in

non-intuitive ways so that resources do not remain idle.

For these reasons, efficient linear solvers have continually been of interest in

scientific computing. Not only must an algorithm display accuracy and stability,

but it must now consider effectively balancing workloads, communication overheads

and memory optimization. The only constraint that has lessened has been the amount

of computational workload due to the improved speed of hardware.
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1.2 Algorithm Requirements

Research into an algorithm needs criteria to evaluate its effectiveness. A successful

process in one situation may not be optimal for another. An algorithm that runs

very quickly with less stability may be beneficial in real-time systems, whereas an

extremely accurate and stable method that requires extended run times is less useful.

In most cases, the user must identify a balance between these requirements. The

following items are the attributes considered important in this thesis for evaluating a

parallel linear system solver.

1.2.1 Accuracy and Stability

Paramount to any numerical method is the ability to provide an adequately accurate

answer. The acceptable level of accuracy depends on the application but in all

situations a basic level of accuracy is desirable. There can be a balance between high

levels of accuracy and inefficient calculations. Pivoting in LU factorization provides a

good example. Complete pivoting produces a more stable algorithm whereas partial

pivoting a potentially less stable algorithm, however most actual implementations use

partial pivoting. The reason is partial pivoting provides a more efficient algorithm

with little loss in accuracy. This, again, emphasizes the balance between different

aspects of an algorithm.

Errors that reduce accuracy and ultimately cause instability are generally divided

into two categories: round-off error and truncation error [20]. Round-off error can

be combated by using higher precision. In computer hardware terms, this means

more bits to store data. Floating point values generally stored as singles can be

expanded to doubles where arithmetic calculations will involve more digits and thus

more accurate answers. This comes at the cost of larger memory requirements and

additional hardware.

Truncations errors arise from the inability of a computer or process to exactly

represent the solution to an individual calculation. This type of problem is generally

3



associated with operations that involve a finite number of steps [39]. For example, if

a process provides a second order polynomial as a solution but the exact answer is

actually a third order polynomial, error is introduced.

If these inaccuracies, generally referred to as computational errors, can be made

small and remain small even as the problem size grows, an algorithm is considered

stable. The challenge becomes presenting an argument which proves that an algorithm

is stable. The two most common strategies are forward analysis and backward analysis

[26]. Forward error is a relatively intuitive measure. It’s a bound on the difference

between the algorithm’s solution and the actual correct solution. The challenge here is

in providing a known correct solution for comparison. The other strategy, backward

analysis, estimates the potential perturbations that the algorithm could ’impress’

upon the original data [39]. These strategies can also take the label of a priori error

analysis.

1.2.2 Performance Attributes

There are a number of standard measures for the performance of an algorithm,

including floating-point operations per second, wall time, and processor cycles. In

simplest terms, an algorithm that returns an answer in less time than another will be

considered faster. This speed is dependent on a number of factors and an algorithm

that completes quickly on one hardware platform may perform poorly on another.

Below are factors that affect how quickly a algorithm can deliver a solution.

Computation Complexity

The amount of computation, or number of arithmetic operations, is an indicator

on how long an algorithm will take to return a solution. A measurement of this

values is typically given in big O notation and ties to the size of the problem. Since

hardware platforms differ in how many operations they can do per time period this

notation provides a means to compare the algorithms as opposed to the hardware

4



their implement on. An algorithm with a lower computational complexity should

consistently compute quicker than a higher complexity algorithm, independent of the

computer used.

Memory Optimization

One of the other key influences on a program’s efficiency is how much time the

processor sits idle waiting on data from memory. In order to minimize a CPU’s idle

time an in depth understanding of the memory hierarchy and hardware platform are

required.

Systems typically have a memory hierarchy with large amounts of slow memory

at the bottom and very small amounts of fast memory at the top. Moving the data

between these different levels requires time. The optimization of memory tries to

minimize data movement between these layers. If that’s not possible the software

can try to pre-schedule a miss so that the processor has data before it needs it. This

essentially hides the calls to memory by having it happen while the CPU is working

with other data. The term for this concept is prefetch [42].

Communication Complexity

The nature of linear systems requires communication between parallel processes once

the data has been distributed. Inter-process communication generally takes the form

of one-to-one messages or broadcast messages. If all the processes need a particular

piece of data then a message can be broadcast. Depending on the underlying network

system in use, this can be extremely efficient. For example, an Ethernet network

readily supports broadcasts and can reduce the amount of traffic handled by the

network. A process can send one broadcast message that is replicated by the network

and distributed to all other process, rendering the sending process available to work

on other tasks.

5



Communication complexity also encompasses the overhead associated with track-

ing which processes require what pieces data [29]. The book-keeping associated with

properly sending and receiving data can contribute not only to complexity of the

algorithm but to its run time. In addition, the timeliness of the communication can

affect run times. If multiple process must wait for data before doing any work, this

contributes to processor idle time. If data can be sent early then other processors can

begin as soon as they are ready.

Workload Distribution

When multiple processors contribute to a solution it’s best if each complete their work

at roughly the same time. Since an algorithm doesn’t generally return the solution

until the last process completes, the run time depends largely on this process. If

all processors are equal, then the last process to finish is generally the one with the

largest workload. If other processors that were idle could share the workload, then

run time can be improved.

1.3 Motivation

The primary motivation for this research was to study an algorithm that can solve

large scale linear systems efficiently on enterprise-grade hardware. This conceived

scenario involves a small number of parallel nodes with an Ethernet network

infrastructure, instead of super-computing grids or large computing centers. This

dissertation, and the proposed algorithm, target small sized data centers that have a

limited number of servers which can operate in parallel to solve problems for real-time

operations. For example, a small utility that needs to continually solve power flow

optimization problems to keep it’s electric system efficient in day-to-day operations.

With this environment in mind, this dissertation focuses on the design of the algorithm

and evaluation of its effectiveness.

6



1.4 Key Contributions

The following are the most important contributions to the body of scientific knowledge

from this research:

• The refinement of the mirroring scheme to delay the substitution of the solution

vector (b column) till the end of the algorithm. This reduces the bookkeeping

and streamlines the algorithm.

• Implementation of the MxM condensation to help reduce the number of memory

accesses.

• A detailed error analysis of the algorithm.

• The development of a parallel scheme for the algorithm and evaluation of the

communication complexity.

• Exploration of the algorithm for suitability with sparse problems and imple-

mentation improvements for dealing with sparse matrices.

1.5 Dissertation Outline

The following chapters provide background and detail on the proposed algorithm

and various outcomes of the research. Chapter 2 provides general information

pertaining to this area of study, including introduction to the mathematical pieces of

the algorithm. Chapter 3 introduces the proposed algorithm in detail. Chapter

4 focuses on the accuracy and stability attributes of the algorithm. Chapter 5

provides results from a serial implementation along with associated optimization

details. Chapter 6 discusses the parallel design of the algorithm and the results

both in terms of communication complexity and run times. Chapter 7 explores the

potential of the algorithm for sparse matrices, in the context of both serial and parallel

implementations. The final chapter provides a summarizing discussion and draws key

conclusions on the research outcomes.

7



Chapter 2

Background on Linear Systems

Solvers

2.1 Common Direct Solvers

Fast linear solvers generally use a form of Gaussian elimination [22], the most common

of which is LU-factorization. This process involves a computation complexity of

WLU ≈ 2
3
N3 [28], where N denotes the number of linearly independent columns in

a matrix. The factor 2 accounts for one addition and one multiplication. If only

multiplications are considered, then WLU ≈ N3

3
, which is the operation count often

quoted in the literature.

The advantage of LU-factorization is trivial. By breaking up the solution into two

matrices, the user can solve multiple right hand sides with only minimal effort [38].

This feature combined with the low computational complexity and partial pivoting

techniques makes LU-factorization extremely efficient.

A number of other methods could also be used to solve certain linear systems.

Professional computing packages commonly include factorization routines such as QR

and Cholesky, in addition to LU factorization [12]. There are also common numerical

methods such as Gaussian Elimination or Gauss Jordan [20]. However, the dominant

8



approach for general systems, which has been extensively studied in the literature,

remains LU-factorization.

2.2 Iterative Solvers

Many sparse matrices use an iterative solver to find the variables. The iterative solvers

are well suited to sparse matrices because they typically don’t need to factorize the

matrix like direct solvers. Instead, iterative solvers provide an initial guess and then

refine that guess to a specified tolerance. This provides two key advantages. First, the

refinement of the of the guess is much less intensive than factorization of the matrix.

Second, the specified tolerance can reflect the nature of the problem being solved.

If a high level of accuracy is needed, the tolerance will be small. If the accuracy

required is less, then the amount of refinement can be reduced. This will provide a

less computationally demanding solution.

The draw-back for iterative solvers is the amount of refinement required. While

direct solvers will return an answer if the presented problem is not singular, an

iterative solver may never reach the specified tolerance. The iterative solver will

continue to run until it diverges or meets some other stopping criteria. Also, for a

problem that demands a small tolerance the computational workload required for the

iterative refinement may surpass the computation needed for a direct solver. Thus

eleminating it’s computational workload advantage.

2.3 Cramer’s Rule

The proposed algorithm centers on the mathematically elegant Cramer’s rule, which

states that the components of the solution to a linear system in the form Ax = b

(where A is invertible) are given by

xi = det(Ai(b))/det(A), (2.1)
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where Ai(b) denotes the matrix A with its ith column replaced by b [26]. As mentioned

above, the matrix must of course be non-singular, otherwise a unique solution is not

available.

Cramer’s rule is cleverly based on the adjoint of a matrix A, adj(A) [14]. if the

inverse of a matrix can be computed by the equation

A−1 =
adj(A)

det(A)

The adjoint of the matrix is simply the transpose of cofactors for each position in

the matrix, with a cofactor given by

Ci,j = (−1)i+jdet(Mi,j)

and Mi,j being the minor corresponding to matrix entry ai,j where the ith row and

jth column of A are eliminated. This gives the adjoint as

adj(A) =


C11 C12 · · · C1n

C21 C22 . . . C2n

...
...

. . .
...

Cn1 Cn2 . . . Cnn



T

It can then be easily seen why Cramer’s rule provides a solution for a given

unknown.

x = A−1b =
adj(A)

det(A)
b =

1

det(A)


C11 C12 · · · C1n

C21 C22 . . . C2n

...
...

. . .
...

Cn1 Cn2 . . . Cnn



T 
b1

b2
...

bn


Therefore:

xi =
C1ib1 + C2ib2 + · · ·+ Cnibn

det(A)

10



Unfortunately, when computing large matrices, Cramer’s rule is generally consid-

ered impractical. This stems from the fact that the determinant and cofactor values

are calculated via minors. As the number of variables increases, the determinant

computation becomes unwieldy [7]. The time complexity is widely quoted as O(N !),

which would make it useless for any practical application when compared to a method

like LU-factorization at O(N3).

2.3.1 Accuracy Concerns

The other concern with Cramer’s rule pertains to the numerical instability, which

has received far less attention by the research community [26]. A simple example

put forward in [32] suggests that Cramer’s rule is unsatisfactory even for 2-by-2

systems, mainly because of round error difficulties. However, that argument heavily

depends on the method for obtaining the determinants. If an accurate method for

evaluating determinants is used then Cramer’s rule can, in fact, be numerically stable.

If greater precision is utilized only for the determinant calculations, Cramer’s rule

offers accuracy comparable to that of LU-factorization. In fact, a later paper [16]

revisited the cited example and provided an example where Cramer’s rule yielded a

highly accurate answer while Gaussian elimination with pivoting a poor one.

2.3.2 Implementations in Literature

As stated earlier Cramer’s rule is rarely deployed in actual computations, however

there are a few proposed algorithms that utilize it. The main interest being in

parallel implementations. One example is a proposed algorithm that creates a tree

like structure and reduces the matrices in the tree with an elimination method akin to

Gaussian Elimination [43]. The algorithm was named Parallel Cramer’s Rule (PCR)

and suggested that with 2n2 processors it could solve a linear system in n steps. The

distinctive tree structure is shown in Figure 2.1.
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Figure 2.1: Parallel solution using Cramer’s Rule. Source: M.K. SRIDHAR A New
Algorithm for Parallel Solution of Linear Equations, 1987

The most intuitive approach to Cramer’s rule is in combination with a conden-

sation technique to solve the determinants. This provides a strait forward parallel

implementation that can be distributed among numerous processors with little or no

communication between them. A good example of this type of parallel solution can

be found in a master’s thesis at UT [5]. The problem with this implementation is that

it has a computation complexity of O(N4). Assuming N processors, each performs

what a serial LU-factorization process could perform by itself as an O(N3) algorithm.

The layout that has the most promise is a combination of a condensation technique

and mirroring scheme. The research presented here is based largely on a paradigm

first introduced by Arun Nagari, Itamar Arel and Ben Thompson [33, 34]. Although

this algorithm differs in it’s handling of the solution vector and the condensation

scheme, it serves as the foundation for this dissertation.

12



2.4 Chio’s Matrix Condensation

Chio’s condensation [17] method reduces a matrix of order N to order N − 1 when

evaluating its determinant. As will be shown, repeating the procedure numerous

times can reduce a large matrix to a size convenient for the application of Cramer’s

rule. Chio’s pivotal condensation theorem is described as follows. Let A = [aij] be

an N ×N matrix for which a11 6= 0. Let D denote the matrix obtained by replacing

each element aij by

∣∣∣∣∣∣ a11 a1j

ai1 aij

∣∣∣∣∣∣, then it can be shown that |A| = |D|
an−2
11

[17].

Note that this process replaces each element in the original matrix with a 2 × 2

determinant consisting of the a11 element, the top value in the element’s column, the

first value in the element’s row and the element being replaced. The calculated value

of this 2× 2 determinant replaces the initial ai,j with a′i,j. The first column and first

row are discarded, thereby reducing the original N ×N matrix to a (N −1)× (N −1)

matrix with an equivalent determinant. As an example, we consider the following

3× 3 matrix:

A =

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣ and its condensed form:

∣∣∣∣∣∣∣∣∣
0 0 0

0 (a11a22 − a21a12) (a11a23 − a21a13)

0 (a11a32 − a31a12) (a11a33 − a31a13)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
× × ×

× a′22 a′23

× a′32 a′33

∣∣∣∣∣∣∣∣∣
Obtaining each 2×2 determinant requires two multiplications and one subtraction.

However, if the value of a1,1 is one, then only a single multiplication is required. In

the example above we note that a1,1 is used in each element as a multiplier to the

matrix element, for example, the equation for the matrix element in position (2, 2) is

a11a22−a21a12. If in this situation a11 = 1, then the equation changes to a22−a21a12.

This holds true for every element in the matrix. Therefore for each condensation step

k, if akk = 1 then (N − k)2 multiplications are removed.
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In order to guarantee akk = 1, an entire row or column must be divided by akk.

This value would need to be stored because the determinant value calculated by Chio’s

condensation would be reduced by this factor. To find the true value at the end of the

condensation, the calculated answer would need to be multiplied by each akk that was

factored out. Multiplying all of these values over numerous condensation steps would

result in an extremely large number that would exceed the floating point range of most

computers. This is where the elegance of Cramer’s rule is exploited. Cramer’s rule

determines each variable by a ratio of determinants, xi = det(Ai(b))/det(A). Given

that both determinants are from the same condensation line, they both are reduced

by the same akk values. The akk values factored out during Chio’s condensation

cancel during the application of Cramer’s rule. This allows the algorithm to simply

discard the akk values in the final computations. The actual determinant values are

not correct, however the ratio evaluated at the core of Cramer’s rule remains correct.

The cost of using Chio’s condensation is equivalent to computing (N − k)2 2× 2

determinants and (N − k) divisions to create akk = 1. Hence, the computational

effort required to reduce an N ×N matrix to a 1× 1 matrix is O (N3) , since

N−1∑
k=1

2(N − k)2 + (N − k) =
2N3

3
− N2

2
− N

6
∼ O(N3). (2.2)

Combined with Cramer’s rule, this process can yield the determinant to find a

single variable. In order to find all N variables, this would need to be repeated N

times, suggesting that the resulting work would amount to O(N4).

2.5 Parallel Solutions

Highly efficient parallel algorithms balance computational complexity, memory

constraints and communication overhead. An optimized algorithm for a single

processor may not produce the best parallel implementation. The ability for

a program to utilize multiple processors depends on numerous factors. Two of
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interest in this research are the ability to balance workload across resources and

the communication requirements. An extremely fast algorithm on a single core may

have difficulty evenly distributing workload across multiple processors. The algorithm

might also require constant communication, causing a node to stall while waiting on

data or instructions from other processors [37].

A software package for solving a system of linear equations, whether implemented

on serial or parallel platforms, is based on an established mathematical framework.

As in the serial implementations, standardized software packages typically use

a form of LU-factorization. It is well studied and accepted to be stable and

accurate within reasonable bounds. Moreover, it lends itself well to scalable parallel

implementations [13]. Although there are other linear systems solvers available, with

vast implementations, this research focuses on parallel LU-factorization as a baseline

for comparison.

A parallel implementation of decomposing a matrix A into its LU factorization

must address two main issues [28]:

1. Partitioning of the matrix A among the available processors

2. Organizing the code to efficiently compute the factorization at each node.

One of the main challenges with parallel factorization is dividing up the workload

among the processors. Figure 2.2 shows the communication/computation pattern of

a parallel LU-solver if data is distributed as rows. In the first stages of the algorithm

nearly all processors have work. Processor P1 broadcasts some shared data and

all the other processors proceed with their local computations. Assuming a single

row to each processor, the elimination of the first row in LU-factorization leaves the

processor associated with that row idle as the algorithm continues. The processor,

in this case P1, sits idle because it does not have any work allocated to it. At the

completion of step #2 another processor becomes idle and so on. Just before the

algorithm completes, this scenario would have Pn−1 processors sitting idle while a

single processor finishes the computations. This format is inefficient [28].
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Figure 2.2: Schematic of communication (a) and computation (b) pattern when
a matrix is partitioned such that each processor contains one row. source: Parallel
Scientific Computing in C++ and MPI (Figure 9.2) [28]
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The common solution to this problem is dividing up the matrix data in a non-

intuitive manner. Instead of distributing groups of rows or columns to processors,

the calling program assigns rows or columns of data to the processors in a cyclical

manner. Consider an 8 × 8 matrix for allocation to four processors. Processor P0

receives the first two columns, P1 the next two, P2 the next two, and P3 the final two

columns. After the first two condensation steps P0 would sit idle.

In a cyclic distribution the columns would be assigned in a round-robin. The

first column would be assigned to P0, the next column P1 and so on. Once all the

processors have received their first column the assignment starts over. Processor P0

would receive a second column and so forth. In this way each processor has data

spread out across the entire matrix. As the factorization proceeds and rows and

columns are eliminated, each processors still has portions of the matrix that will need

computation. The left portion of Figure 2.3 shows a column cyclic distribution or a

1-D cyclic distribution.

2.5.1 2-D Cyclic Block Distribution

While the 1-D cyclic distribution provides good load balancing it has two draw backs.

The first is that it limits the number of processors for a particular problem. For

example, using nine processors for an 8 × 8 matrix leaves one processor without a

column to factor. In typical parallel clusters this is rarely a concern since the problem

sizes are much larger than the number of available nodes. Problems of small size are

typically better solved with serial implementations.

The second problem cited in the literature is the theoretical communication

minimum [25], [18], [9]. The communication required for a 1-D distribution to proceed

with factorization is larger than the minimum lower bound on communication for

factorization of a matrix. However, this assumes that true broadcast messages are

not available in the parallel platform and will be further discussed in the following

section.
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Figure 2.3: ScaLAPACK block Cyclic distribution example, Source: ScaLAPACK
user’s guide (Figure 4.4) [6]

In order to overcome these limitations parallel algorithms will distribute the matrix

as small blocks of data. These blocks are distributed in a cyclic manner but will

contain only a portion of rows and columns. A 2-D block-cyclic distribution of the

matrix is demonstrated in the right portion of figure 2.3. In this case processor 0 is

responsible for a number of small blocks over the entire matrix. Even as columns and

rows are eliminated there are still portions of the matrix process 0 can work on.

The 2-D block-cyclic data distribution allows for good workload balancing but

presents additional communication when pivoting occurs. Arrays of data must be

passed between processors in order to physically pivot a row from one position to

another. This generally occurs before further factorization can progress, which in

most cases causes a natural delay for processors not involved in the pivoting.

The other concern is the conceptual complexity of distributing the data in this

manner. Assigning portions of the matrix to a processor is largely left to the calling

program and must match what the factorization routine expects. For casual users

this can be cumbersome and confusing.

Once the data is distributed to the processors the actual computations involved

can reuse the BLAS operations developed for serial versions. Since these are designed

for blocks of data the 2-D distribution fits well with these highly optimized subrou-

tines. This allows a parallel implementation to leverage the memory optimizations

18



Figure 2.4: LU-decomposition block factorization
image source: James Demmel lecture notes (http://www.cs.berkeley.edu/˜demmel/cs267/lecture13X/lecture13X.html)
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and high-speed instructions from earlier work. In fact, the ScaLAPACK code calls the

serial version of LU-factorization to perform factorization on each processor. Figure

2.4 depicts the overall factorization of a matrix where one processor would hold the

b× b block of the matrix and can apply the serialized factorization to that particular

piece.

2.5.2 Parallel Communication

As mentioned earlier, the literature considers 2-D block distribution to have less

communication than 1-D distributions. This is an important consideration for this

research. In order to complete a Gauss transformation on a square n × n matrix

the communication is at least 2n(
√
αp − 1) [25]. Assuming a specific problem size,

this simplifies to some factor times
√
p. The calculated communication for a 1-

D distribution is (2/γ)n(p − 1), where γ is some constant that satisfies 2n ≤ γn.

Clearly this equation holds a factor of p while the cited minimum states a factor of
√
p. However, this depends on the assumption that all communication is processor

to processor and not broadcasted from one processor to many. If a highly reliable

broadcast medium is available the overall communication requirement is drastically

reduced [41].

The concept of broadcast communication is not clear in many implementations.

For example, in the most common parallel message passing interface, the broadcast

command is not a true broadcast. In the MPICH2 implementation of MPI, which

was used for this research, the broadcast call is actually a combination of two

communication algorithms [44]. For smaller broadcasts, less than 1,500 doubles, a

binomial tree algorithm is used. This means that the first processor, P0, sends to one

other processor in step one. After that completes, both P0 and P1 send to another

processor. At the completion of that step four processors have the data. All those

processors then send their data to another processor. Each time the number of sending
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Figure 2.5: Representation of a binomial tree for broadcast communication [44]

processors doubles until all processors have the data. This is represented in Figure

2.5.

There are two obvious problems with this method. First it will take much longer

than a single broadcast of the data because it must step through several rounds.

Second, it will cause congestion if a bus type communication infrastructure is used.

Near the end of the process, half the processors will attempt to send at roughly the

same time. This could result in collisions and delays. The reason a simple broadcast

is not done is fault tolerance. This method ensures that all processors receive the

message.

When a very large message, greater than 1,500 doubles, is sent the MPICH2 code

scatters pieces of the message to the processors and then calls an all-gather. All the

different processors exchange data with each other so that at the end of the routine

all the processors have the whole message. This suffers the similar challenges as the

binomial tree.

An Ethernet network infrastructure supports broadcast and to realize reduced

communication this functionality could be used. A true broadcast would reduce the

communication time to something on the order of the message size. There would be

no dependence on the number of processors. It would also eliminate congestion on

the network, since only one processor is sending. The challenge would be a reliable
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broadcast medium and a method to identify when messages were lost or corrupted

and recover or rebroadcast in a timely manner.

Assuming a true broadcast infrastructure the 1-D distribution requires less

communication than the 2-D block distribution. If a matrix is divided into columns

then a simple broadcast from one processor to all others would provide the data

needed to factor the matrix. Whereas, the distribution of matrix blocks to various

processors requires numerous one-to-one or one-to-subset communication patterns.

2.5.3 Parallel LU-factorization

Figure 2.6 shows a simplified communication pattern for LU-factorization using 2-

D block distribution. The numbers in each block represent the processor for that

portion of the matrix. Processor 00 must factorize its portion of the matrix and then

send information to U01 and U02 as well as L10 and L20. Those nodes must then

do a matrix-matrix operation and communicate those results to the nodes directly

beneath or to their right. Not only does this require one-to-one communication but

in some cases requires pauses while the A11 - A22 processors wait on row/column

leads to complete their calculations [4].

As mentioned earlier, handling the pivot row also generates excess communication.

If the matrix was distributed as rows or columns then the pivot could simply be

communicated as a particular location and all nodes could adjust as required. Instead

the actual data contained in the lead row/column must be communicated to the

processor with the pivot. In some cases this may be the same node but in many

case it will not. The pivoting information must be transferred for the entire length,

as well. This means even the previously factorized portion of the matrix must be

transferred.

Finally, LU-factorization requires forward and backward substitution to arrive at

the solution. Since portions of the decomposed matrix are distributed across multiple

processors, these substitutions require additional communication. For example, At
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Figure 2.6: Simplified communication pattern of parallel LU-factorization

the outset of backward substitution every node in the domain sits idle waiting for one

node to give the first few solution elements.

2.5.4 Pipelined Communication

Commonly referred to as send-ahead, pipelined communication is the concept of

sending and receiving data while computations are being done. The goal of this

technique is to hide the time required for communication by passing messages while

calculations are proceeding. This requires two elements. First the computer’s ability

to handle communication independently of processing data, and second an algorithm

that provides the necessary data in advance of the calculations.

This practice allows the processors to work asynchronously, where no process

waits for the others to finish an iteration before beginning the following iteration [23].

Pipelined communication can be implemented in Figure 2.6 by having required data

pass from node to node instead of originating from it’s source for each message. For
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Figure 2.7: Pipelined Gaussian elimination [23]

example, processor 00 would send data to processor U01 but instead of sending to

node U02 also it would continue with other work. processor U01 would then send

to processor U02 while it also does it’s computation workload. Once processor U01

finishes it’s computation workload it will pass the data to processor A11, and then A11

would pass along the information to processor A21. While this shows no improvement

for the initial condensation step it allows A11 to finish it’s computations, begin it’s

factorization and then pass along the required data to A12 and A21 while they’re

still working on the previous condensation. On the second condensation step A12

and A21 already have the required data available and can proceed asynchronously.

The condensation flows as a ’front’ as seen by the progression of the pink squares in

Figure 2.7 and overlaps communication with computation to hide the time required

for communication.

Pivoting to improve accuracy and stability obviously hinders the ability for the

processors to proceed asynchronously since all processors must find the pivot and

communicate that correctly before continuing each condensation iteration.
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2.6 Parallel Solvers

There are numerous parallel solvers available in the public domain; PETSc (Portable,

Extensible Toolkit for Scientific Computation) from Argonne National Laboratory,

PINEAPL (Parallel Industrial NumErical Applications and Portable Libraries) from

the Numerical Algorithms Group Ltd (NAG), and the ParaSol project (CLRC

Rutherford-Appleton Laboratory and collaborators) [3] are a few examples. The

most prevalent, however, is ScaLAPACK (Scalable LAPACK) from the Innovative

Computing Laboratory (ICL) at the University of Tennessee. This package provides

optimized routines for solving linear systems and will thus can serve as a measuring

stick for this research.

2.6.1 ScaLAPACK

ScaLAPACK [6] is based on small optimized subroutines called PBLAS (Parallel Basic

Linear Algebra Subroutine). These subroutines provide methods with highly localized

memory access to complete basic linear algebra operations. The ScaLAPACK package

then calls these PBLAS routines to compute more complex methods such as LU-

factorization.

As with most parallel packages, ScaLAPACK provides inter-process communica-

tion via MPI (Message Passing interface), however another software layer is placed

between ScaLAPACK and MPI to provide something more linear algebra friendly.

The BLACS library (Basic Linear Algebra Communication Subprograms) provides

a communication interface that supports linear algebra type messages as well as a

platform independent connection.

ScaLAPACK grew from the LAPACK project and in development of the software

an effort was made to keep the interfaces as similar as possible. This leads to parallel

code that looks almost exactly like it’s serial version [8] and makes conversion for

LAPACK users to ScaLAPACK straightforward. Unfortunately, it also carries the
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somewhat cryptic naming conventions and structure that came out of the original

FORTRAN coding.
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Chapter 3

Matrix Condensation-based

Realization of Cramer’s Rule

Fortunately, Cramer’s rule can be realized in far lower complexity than the typically

quoted O(N !). The complexity of Cramer’s rule depends predominantly on the

determinant calculations. If the determinants are calculated via minors the factorial

complexity holds. In an effort to overcome this limitation, a matrix condensation

technique and clever mirroring of the matrix can reduce the size of the original matrix

to one that may be solved efficiently and quickly. As a result, Cramer’s Rule becomes

an O(N3) process, which is similar to LU-factorization.

3.1 Matrix Mirroring

The overarching goal of the proposed approach is to obtain an algorithm with O (N3)

complexity and low storage requirement overhead. As discussed earlier, Chio’s

condensation and Cramer’s rule provide an elegant solution with O (N4) complexity.

In order to retain O (N3) computational complexity, it is necessary to reuse some of

the intermediate calculations performed by prior condensation steps. This is achieved
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Figure 3.1: Tree architecture applied to solving a linear system using the proposed
algorithm

by constructing a binary, tree-based data flow in which the algorithm mirrors the

matrix at critical points during the condensation process, as detailed next.

A matrix A and a vector of constants b are passed as arguments to the algorithm.

The latter begins by appending b to A creating an augmented matrix. All calculations

performed on this matrix are also performed on b. Normal utilization of Cramer’s

rule would involve substitution of the column corresponding to a variable with the

vector b, however the proposed algorithm introduces a delay in such substitution such

that multiple variables can be solved utilizing one line of Chio’s condensation. In

order to delay the column replacement, b must be subject to the same condensation

manipulations that would occur had it already been in place. This serves as the

motivation for appending b to the matrix during condensation.

The condensation method removes information associated with discarded columns,

which suggests that the variables associated with those columns cannot be computed

once condensed. For this reason, a mirror of the matrix is created each time the

matrix size is halved. The mirrored matrix is identical to the original except the
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order of its columns is reversed. For example, the first and last column are swapped,

the second and second to last column are swapped, and so on. A simple 3x3 matrix

mirroring operation would be:∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣→ mirrored→

∣∣∣∣∣∣∣∣∣
a13 a12 −a11

a23 a22 −a21

a33 a32 −a31

∣∣∣∣∣∣∣∣∣
In the example above, the third column of the mirror is negated, which is

performed in order to retain the correct value of the determinant. Any exchange

of columns or rows requires the negation of one to preserve the correct determinant

value. As discussed in more detail below, this negation is not necessary to arrive at

the correct answer, but is applied for consistency.

Following the mirroring, each matrix is assigned half of the variables. The original

matrix can solve for the latter half while the mirrored matrix solves for the first half of

the variables. In the example above, there are three variables: x1, x2, x3. The original

matrix could solve for x2, x3, and the mirrored matrix would provide x1. Each matrix

uses condensation to yield a reduced matrix with size at least equal to the number

of variables it’s responsible for. For the case of a 3 × 3 matrix, we have the pair of

matrices: ∣∣∣∣∣∣∣∣∣
× × ×

× a′22 a′23

× a′32 a′33

∣∣∣∣∣∣∣∣∣
original : x2, x3

∣∣∣∣∣∣∣∣∣
× × ×

× a′22 a′21

× a′32 a′31

∣∣∣∣∣∣∣∣∣
mirrored : x1

Once this stage is reduced, the algorithm either solves for the variables using

Cramer’s rule or mirrors the matrix and continues with further condensation. A

process flow depicting the proposed framework is illustrated in Figure 3.1.
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3.2 Extended Condensation

Chio’s condensation reduces the matrix by one order per repetition. Such an operation

is referred to here as a condensation step of size one. It’s possible to reduce the matrix

by more than one order during each step. Carrying out the condensation one stage

further, with leading pivot

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣ (assumed to be non-zero), we have [2]

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣
−1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
a11 a12 a14

a21 a22 a24

a31 a32 a34

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a41 a42 a43

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
a11 a12 a14

a21 a22 a24

a41 a42 a44

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.1)

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣
−1

×

∣∣∣∣∣∣∣∣∣∣∣∣

× × × ×

× × × ×

× × a′33 a′34

× × a′43 a′44

∣∣∣∣∣∣∣∣∣∣∣∣ .
(3.2)

In this case, each of the matrix elements {a33, a34, a43, a44} are replaced by a 3× 3

determinant instead of a 2× 2 determinant. This delivers a drastic reduction in the

number of repetitions needed to condense a matrix. Moreover, a portion of each minor

is repeated, namely the

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣ component. Such calculation can be performed

once and then reused multiple times during the condensation process. Letting M

denote the size of the condensation, and using the example above, M = 2 while for

the basic Chio’s condensation technique M = 1. As an example, a 6×6 matrix could

be reduced to a 2 × 2 matrix in only two condensation steps, whereas it would take
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four traversals of the matrix to arrive at a 2× 2 matrix if M = 1. The trade-off is a

larger determinant to calculate for each condensed matrix element. Instead of having

2× 2 determinants to calculate, 3× 3 determinants are needed, suggesting a net gain

of zero.

However, the advantage of this formulation is that larger determinants in the same

row or column share a larger number of the minors. The determinant minors can be

calculated at the beginning of each row and then reused for every element in that

row. This reduces the number of operations required for each element with a small

penalty at the outset of each row. In a practical computer implementation, this also

involves fewer memory access operations, thus resulting in higher overall execution

speed.

Pivoting in the case of M > 1 requires identifying a lead determinant that is

not small. As with pivoting for LU-factorization, ideally the largest possible lead

determinant would be moved into the top left portion of the matrix. Unfortunately,

this severely compromises the computational complexity, since an exhaustive search

for the largest lead determinant is impractical. Instead, a heuristic method should

be employed to select a relatively large lead determinant when compared to the

alternatives.

The pseudocode in algorithm 1 details a basic implementation of the proposed

algorithm using extended condensation. The number of rows and columns condensed

during each pass of the algorithm is represented by the variable M , referred to earlier

as the condensation step size. The original matrix is passed to the algorithm along

with the right-hand side vector in A, which is an N×(N+1) matrix. The mirrorsize

variable represents the number of variables a particular matrix solves for. In other

words, it reflects the smallest size that a matrix can be condensed to before it must

be mirrored. If original matrix, A, has a mirrorsize = N it solves for all N variables.

It should be noted that this will result in bypassing the while loop completely at

the initial call of the algorithm since mirroring must occur before any condensation

is done. The first mirror will have mirrorsize = N
2

, since it only has to solve for
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Algorithm 1 Extended Condensation

{A[][] = current matrix, N = size of current matrix}
{mirrorsize = variables for this matrix to solve for}
while (N-M) > mirrorsize do

lead determinant = CalculateMinor(A[][], M+1, M+1)
if lead determinant = 0 then then

return(error)
end if
A[1:N][1] = A[1:N][1] / lead determinant;
{calculate the minors that are common}
for i = 1 to M step by 1 do

for j = 1 to M step by 1 do
{each minor will exclude one row & col}
reusableminor[i][j] = CalculateMinor(A[][], i, j);

end for
end for
for row = (M+1) to (N+1) step by 1 do
{find the lead minors for this row}
for i = 1 to M step by 1 do

Set leadminor[i] = 0;
for j = 1 to M step by 1 do

leadminor[i] =leadminor[i] + (−1)j−1A[row][j] × reusableminor[i][j]
end for

end for
{Core Loop; find the MxM determinant for each A[][] item}
for col = (M+1) to (N+1) step by 1 do

for i = 1 to M step by 1 do
{calculate MxM determinant}
A[row][col] =A[row][col]+ (−1)jleadminor[i]×A[i][col]

end for
end for

end for
{Reduce matrix size by condensation step size}
N = N - M;

end while
if N has reached Cramer’s rule size (typically 4) then
{solve for the subset of variables assigned}
x[] = CramersRule(A[][]);

else {recursive call to continue condensation}
A mirror[][] = Mirror(A[][])
Recurisvely call Algorithm (A mirror[][], N, mirrorsize/2)
Recursively call Algorithm (A[][], N, mirrorsize/2)

end if
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half of the variables. After this mirror has been created, the algorithm will begin the

condensation identified within the while loop.

Three external functions assist the psuedocode: CalculateMinor, CramersRule

and Mirror. CalculateMinor finds an M × M determinant from the matrix

passed as an argument. The two additional arguments passed identify the row and

column that should be excluded from the determinant calculation. For example,

CalculateMinor(A[][], 2, 3) would find the M × M determinant from the top left

portion of matrix A[][], whereby row 2 and column 3 are excluded. The method

would return the top left M ×M determinant of A[][] without excluding any rows or

columns by calling CalculateMinor(A[][],M+1,M+1), since an M+1 value excludes

a column beyond the M rows and M columns used to calculate the determinant. This

is used in the algorithm to find the lead determinant at each condensation step. When

M = 1, the method simply returns the value at A[1][1].

The CramersRule method solves for the variables associated with that particular

matrix using Cramer’s rule. The method replaces a particular column with the

condensed solution vector, b, finds the determinant, and divides it by the determinant

of the condensed matrix to find each variable. The method then replaces the other

columns until all variables for that particular leaf are calculated. The Mirror function

creates a mirror of the given matrix as described in section 3.1.

The arrays labeled reusable minor and lead minor maintain the pre-calculated

values discussed earlier. The array reusable minor is populated once per condensation

step and holds M2 minors that will be used at the outset of each row. The latter will

then populate the lead minor array from those reusable minors. The lead minor array

holds the M minors needed for each matrix element in a row. Hence, the lead minor

array will be repopulated N −M times per condensation step.

The algorithm divides the entire first column by the top left M ×M determinant

value. This is performed for the same reason that the first column of the matrix was

divided by the a11 element in the original Chio’s condensation formulation. Dividing

the first row by that determinant value causes the lead determinant calculation to
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retain a value of one during the condensation. This results in a ’1’ being multiplied by

the ai,j element at the beginning of every calculation, thus saving one multiplication

operation per each element.

3.3 Computation Complexity

As illustrated in the pseudocode, the core loop of the algorithm involves the

calculation of the M × M determinants for each element of the matrix during

condensation. Within the algorithm, each M × M determinant requires M

multiplications and M additions/subtractions. Normally, this would necessitate the

standard computational workload to calculate a determinant, i.e. 2
3
M3, using a

method such as Gaussian elimination. However, the reuse of the determinant minors

described earlier reduces the effort to 2M operations within the core loop.

An additional workload outside the core loop is required since M2 minors must

be pre-calculated before Chio’s condensation commences. Assuming the same 2
3
M3

workload using Gaussian elimination to find a determinant and repetition of this at

each of the N
M

condensation steps, yields an overhead of

N

M
×M2 × 2

3
M3 =

2M4N

3
. (3.3)

In situations where M � N , this effort is insignificant, although with larger values

of M relative to N , it becomes non-negligible.

The optimal size of M occurs when there’s a balance between pre-calculation

done outside the core loop and the savings during each iteration. In order to reuse

intermediate calculation results, a number of determinant minors must be evaluated

in advance of each condensation step. These reusable minors save time during the core

loops of the algorithm, but do not utilize the most efficient method. If a large number

of minors are required prior to each condensation, their additional computation annuls

the savings obtained within the core iterations.
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The optimal size of M is thus calculated by setting the derivative of the full

complexity formula, 2
3
N3−MN2 + N2

M
+ 2

3
M4N +M2N , with respect to M , to zero.

This reduces to 8
3
M5+2M3 = NM2+N , suggesting an optimal value of M 3

√
3
8
N . As

an example, the optimal point for a 1000× 1000 matrix is ≈ 7.22. Empirical results

indicate that the shortest execution time for a 1000×1000 matrix was achieved when

M=8, supporting the theoretical result.

In order to condense a matrix from N × N to (N − M) × (N − M), the core

calculation is repeated (N −M)2 times. The algorithm requires N/M condensation

steps to reduce the matrix completely and solve using Cramer’s rule. In terms of

operations, this equates to

γ =

N/M∑
k=1

2M(N − kM)2

=2M

N/M∑
k=1

(N2 − 2NMk +M2k2)

=2M

(
N

M
N2 − 2NM

(
N
M

(
N
M

+ 1
)

2

)
+M2

(
N
M

(
N
M

+ 1
) (

2N
M

+ 1
)

6

))

=
2

3
N3 −MN2 +

M2N

3
. (3.4)

resulting in a computational complexity, γ, of 2
3
N3 to obtain a single variable solution.

Mirroring occurs with the initial matrix and then each time a matrix is reduced

in half. An N × N matrix is mirrored when it reaches the size of N
2
× N

2
. Once the

matrix is mirrored, there is double the work. In other words, two N
2
× N

2
matrices each

require a condensation, where previously there was only one. However, the amount of

work for two matrices of half the size is much lower than that of one N ×N matrix,

which avoids the O(N4) growth pattern in computations. This is due to the O(N3)

nature of the condensation process.

Since mirroring occurs each time the matrix is reduced to half, log2N matrices

remain when the algorithm concludes. The work associated with each of these
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mirrored matrices needs to be included in the overall computation load estimate. The

addition of the mirrors follows a geometric series resulting in roughly 2.5 times the

original workload, which leads to a computational complexity of 5
3
N3 when ignoring

the lower order terms.

The full computational complexity is the combination of the work involved in

reducing the original matrix, γ, and that of reducing the mirrors generated by the

algorithm. Hence, the total complexity can be expressed as follows:

γ +

log2N∑
k=0

2k

(
2

3

(
N

2k

)3

−M
(
N

2k

)2

+
M2

3

(
N

2k

))
. (3.5)

The latter summation can be simplified using the geometric series equivalence
n−1∑
k=0

ark = a1−rn

1−r [1], which when ignoring the lower order terms reduces to:

γ +
8

9
N3 =

14N3

9
≈ 5

3
N3 (3.6)

3.4 Mirroring Considerations and Related Mem-

ory Requirements

Equation (3.6) expresses the computational complexity assuming a split into two

matrices each time the algorithm performs mirroring. One may consider a scenario

in which the algorithm creates more than two matrices during each mirroring step.

In the general case, the computational complexity is given by

γ +

logSN∑
k=0

(S − 1)Sk

(
2

3

(
N

Sk

)3

−M
(
N

Sk

)2

+
M2

3

(
N

Sk

))
(3.7)

where S denotes the number of splits. When lower order terms are ignored, this yields

γ +
2S2

3(S + 1)
N3. (3.8)
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As S increases the complexity clearly grows. The optimal number of splits is thus

two, since that represents the smallest value of S that can still solve for all variables.

Additional splits could facilitate more work in parallel, however they would generate

significantly greater overall workload.

The memory requirement of the algorithm is 2× (N + 1)2, reflecting the need for

sufficient space for the original matrix and the first mirror. The rest of the algorithm

can reuse that memory space. Since the memory requirement is double the amount

required by typical LU-factorization implementations and similar to LU-factorization,

the original matrix is overwritten during calculations.

3.5 Solution Subsets

One benefit of Cramer’s rule is the ability to target specific variables. If there’s a large

linear system but only a subset of the variables need to be solved for, the algorithm

can easily focus on those and thus vastly reduce the computational workload. For

example, if only one unknown is needed then the computational workload reduces

from 5
3
N3 to 2

3
N3, which is the same workload that of LU-factorization.

As explained in section 3.1, Cramer’s rule algorithm mirrors initially so that

columns are retained for all the variables even after the application of Chio’s

condensation. The mirrored matrix solves for the first half of the variables and the

original matrix solves for the last half of variables. This creates two initial matrices

for condensation. If there are variables that the algorithm does not need to solve for,

the algorithm can delay the initial mirroring thus reducing the workload. The real

benefit being a reduction at the outset of the condensation when the matrix is it’s

largest and requires the most computation.
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Chapter 4

Algorithm Accuracy and Stability

The stability properties of the proposed algorithm are very similar to those of

Gaussian Elimination techniques. Both schemes are mathematically accurate yet

subject to truncation and rounding errors. As with LU-factorization, if these errors

are not accounted for, the algorithm returns poor accuracy. LU-factorization utilizes

partial or complete pivoting to minimize truncation errors. As will be shown, the

proposed algorithm employs a similar technique.

Each element during a condensation is affected by the lead determinant and the

’lead minors’ discussed earlier. In order to avoid truncation errors, these values should

go from largest on the first condensation to smallest on the last condensation. This

avoids a situation where matrix values are drastically reduced, causing truncation,

and then significantly enlarged later, magnifying the truncation error. The easiest

method to avoid this problem is by moving the rows that would generate the largest

determinant value to the lead rows before each condensation. This ensures the largest

determinant values available are used in each step.

Once the matrix is rearranged with the largest determinant in the lead, normal-

ization occurs. Each lead value is divided by the determinant value, resulting in the

lead determinant equaling unity. This not only reduces the number of floating point

calculations but serves to normalize the matrix.
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4.1 Backward Error Analysis

The backward stability analysis of the algorithm yields results similar to LU-

factorization. This coupled with empirical findings provides evidence that the

algorithm yields accuracy comparable to that of LU-factorization. As with any

computer calculations, rounding errors affect the accuracy of the algorithm’s solution.

Backward stability analysis shows that the solution provided is the exact solution to

a slightly perturbed problem. The typical notation for this concept is

(A+ F )x̂ = b+ δb. (4.1)

Where A denotes the original matrix, b gives the constant values, and x̂ gives

the solution calculated using the algorithm. F represents the adjustments to A, and

δb the adjustment to b that provides a problem that would result in the calculated

solution if exact arithmetic was possible. In this analysis the simplest case is given,

namely where the algorithm uses M = 1.

In the first stage of condensation, A(2) is computed from A(1), which is the original

matrix. It should be noted that each condensation step also incurs error on the right-

hand side due to the algorithm carrying those values along during reduction. This

error must also be accounted for in each step, so in the first stage of condensation,

b(2) is computed from b(1) just as A.

Before Chio’s pivotal condensation occurs, the largest determinant is moved into

the lead position. Since M = 1, the determinant is simply the value of the element.

This greatly simplifies the conceptual nature for conveying this analysis. Normally

M ×M determinants would need to be calculated, and then all the rows comprising

the largest determinant moved into the lead. Here, the row with the largest lead

value ai,1 is moved to row one, followed by each element in column one being divided

by akk. This normalizes the matrix so that the absolute values of all row leads are
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smaller or equal to one, such that

ak,j =
akj
akk

(1 + ηkj), where ηkj ≤ β−t+1 (4.2)

In this case, β−t+1 is the base number system used for calculation with t digits. This

is equivalent to machine epsilon, ε. The computed elements a
(2)
ij are derived from this

basic equation a
(2)
ij = aij − aik × akj when the error analysis is then added

a
(2)
ij =

[
a

(1)
ij − aik × akj ×

(
1 + γ

(1)
ij

)](
1 + α

(1)
ij

)
|γ(1)
ij | ≤ β−t+1 and |α(1)

ij | ≤ β−t+1

(4.3)

a
(2)
ij = a

(1)
ij − aik × akj + e

(1)
ij (4.4)

where

e
(1)
ij =

a
(2)
ij × α

(1)
ij(

1 + α
(1)
ij

) − aik × akj × γ(1)
ij ij = 2, ..., n. (4.5)

This then provides the elements for E(1) such that A + E(1) provides the matrix

that would condense to A(2) with exact arithmetic. The lead column is given by

e
(1)
ij = aik × ηkj. This follows for each condensation step A(k+1) = A(k) + E(k) and

similarly for the right-hand side, b(k+1) = b(k) +E
(k)
b , where E includes an additional

column to capture the error incurred on b. In this case, the E matrix will capture

the variability represented by δb found in equation 4.1. If taken through all steps of

condensation, then E = E(1) + ...+ E(n−1), giving

(A+ E)x̂ = b. (4.6)

Bounds on E need evaluation, since this controls how different the matrix used

for computation is from the original matrix. It’s important to note that, due to the

use of Cramer’s rule, the algorithm can normalize a matrix and simply discard the

value used to normalize. Cramer’s rule is a ratio of values so as long as both values

are divided by the same number the magnitude of that number is unimportant. This
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is a crucial attribute, since needing to retain and later use these values would cause

instability.

Consider a = max|aij|, g = 1
a
max|a(k)

ij | and equation (9). If these are combined

along with the knowledge that |a1j| ≤ 1, the following is obtained

|e(k)ij | ≤
β−t+1

1− β−t+1
|a(k+1)
ij |+ β−t+1 × |a(k)

ij | ≤
2

1− β−t+1
agβ−t+1 (4.7)

In essence the E matrix yields the following

|E| ≤ agΥ





0 0 ... ... 0

β−t+1 2 ... ... 2

: : :

: : :

β−t+1 2 ... ... 2


+



0 0 0 ... 0

0 0 0 ... 0

0 β−t+1 2 ... 2

: : : :

0 β−t+1 2 ... 2


+ ....


(4.8)

where Υ = β−t+1

(1−β−t+1)
, such that

|E| ≤ agΥ



0 0 ... ... 0

β−t+1 2 + β−t+1 ... ... 2

: : 4 + β−t+1 ... 4

: : : :

β−t+1 2 + β−t+1 4 + β−t+1 ... 2(n)


. (4.9)

The bottom row of the matrix clearly provides the largest possible value, whereby

the summation is roughly n2. When combined with the other factors, it yields the

equality ‖E∞‖ = 2n2ag β−t+1

1−β−t+1 . If it’s assumed that 1− β−t+1 ≈ 1 and a is simply a

scaling factor of the matrix, two values of interest are left: n2 and the growth factor

g. The growth factor is the element that has the greatest impact on the overall value,

since it provides a measure of the increase in value over numerous condensation steps.

Fortunately, this value is bound because all multipliers are due to the pivoting and
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the division performed before each condensation, such that

max|a(k+1)
ij | = max|a(k)

ij − aik × akj| ≤ 2×max|a(k)
ij |. (4.10)

The value of a
(k)
ij is at most the largest value in the matrix. The value of aik × akj is

also at most the largest value in the matrix. Since aik is the row lead, it’s guaranteed

to be one or less. The value of akj could possibly be the largest value in the matrix.

Therefore, the greatest value that could result from the equation a
(k)
ij −aik×akj is twice

the maximum value in the matrix or 2max|a(k)
ij |. This can then repeat at most n times,

which results in a growth factor of 2n. The growth factor given for LU-factorization

with partial pivoting in the literature is g ≤ 2n−1 [36]. The slight difference being

that this algorithm computes a solution directly, whereas LU-factorization analysis

must still employ forward and backward substitution to compute a solution vector.

As with LU-factorization, it can be seen that generally the growth rate will less than

double each step. In fact, the values tend to cancel each other leaving the growth

rate around 1 in actual usage.

Mirroring does not affect the stability analysis of the algorithm. The matrices that

are used to calculate the answers may have been mirrored numerous times. Since no

calculations take place during the mirroring, and it does not introduce an additional

condensation step, the mirroring has no bearing on the accuracy.

4.2 Backward Error Measurements

One of the most beneficial attributes of LU-factorization is that, although it has a

growth rate of 2n−1, in practice it generally remains stable. This can be demonstrated

by relating the relative residual to the relative change in the matrix, giving the

following inequality:
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Matrix Size nεmachine Cramer’s ‖b−Ax̂‖‖A‖·‖x̂‖ Matlab ‖b−Ax̂‖
‖A‖·‖x̂‖

1000 x 1000 2.22E-13 5.93E-14 8.05E-16
2000 x 2000 4.44E-13 5.42E-14 1.04E-15
3000 x 3000 6.66E-13 9.62E-14 1.95E-15
4000 x 4000 8.88E-13 3.32E-13 2.49E-15
5000 x 5000 1.11E-12 8.12E-14 3.05E-15
6000 x 6000 1.33E-12 5.52E-14 3.35E-15
7000 x 7000 1.55E-12 7.46E-14 3.55E-15
8000 x 8000 1.78E-12 8.12E-14 4.28E-15

Table 4.1: Relative residual measurements for Cramer’s rule algorithm

‖b− Ax̂‖
‖A‖ · ‖x̂‖

≤ ‖E‖
‖A‖ .

(4.11)

The symbol ‖x̂‖ represents the norm of the calculated solution vector. When the

residual found from this solution set is divided by the norm of the original matrix

multiplied by the norm of the solution set, an estimate is produced of how close the

solved problem is to the original problem. If an algorithm produces a solution to a

problem that is very close to the original problem then the algorithm is considered

stable. A reasonable expectation for how close the solved and given problems should

be is expressed as [24].

‖E‖
‖A‖

≈ nεmachine (4.12)

A pragmatic value of εmachine ≈ 2.2E−16 reflects the smallest value the hardware

can accurately support, and n represents the size of the linear system. Table 4.1 shows

this relative residual calculations when using Cramer’s Rule in comparison to those

obtained with Matlab and for the target values given by equation (4.12). The infinite

norm is used for all norm calculations and Cramer’s Rule used a condensation step size

(M) of 8. As shown in table 4.1, both Matlab’s implementation of LU-factorization

and Cramer’s Rule deliver results below the target level to suggest a stable algorithm

for the test matrices considered. The latter were created by populating the matrices

43



Matrix κ(A) Matlab GSL Avg Avg
Size ‖x− x̂‖∞ ‖x− x̂‖∞ Matlab GSL

1000 x 1000 506930 2.39E-9 1.93E-10 1.03E-10 5.38E-12
2000 x 2000 790345 4.52E-9 5.36E-9 1.01E-10 7.27E-12
3000 x 3000 1540152 1.95E-8 1.84E-8 1.12E-10 2.09E-11
4000 x 4000 12760599 4.81E-8 5.62E-8 1.43E-10 7.91E-11
5000 x 5000 765786 2.92E-8 4.39E-8 1.18E-10 3.46E-11
6000 x 6000 1499430 8.67E-8 8.70E-8 1.37E-10 6.04E-11
7000 x 7000 3488010 9.92E-8 8.95E-8 1.27E-10 5.15E-11
8000 x 8000 8154020 9.09E-8 9.43E-8 1.86E-10 7.85E-11

Table 4.2: Cramer’s rule algorithm relative error when compared to Matlab and
GSL solution sets

with random values between -5 and 5 using the standard C language random number

generator. Results produced by the proposed algorithm for these matrices were

measured over numerous trials.

4.3 Forward Error Measurements

The forward error is typically defined as the relative difference between the true

values and the calculated ones. Here, the actual answers are generated by Matlab

and GSL (GNU scientific library). The solution vector provided by the algorithm was

compared to those given by both software packages. Table 4.2 details the observed

relative difference between the software packages and the solutions provided by the

proposed algorithm.

Matlab includes a number of test matrices in a matrix gallery that were used

for further comparison. In particular, a set of dense matrices from this gallery were

selected. Each type had four samples of 1000x1000 matrices. In many cases, Cramer’s

Rule resorted to a condensation size of one (M = 1) for improved accuracy. The

relative residuals were then calculated in the manner shown in section 3.2. Table 4.3

provides a summary of those findings.
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Matrix Type Cramer’s Matlab
‖b−Ax̂‖
‖A‖·‖x̂‖

‖b−Ax̂‖
‖A‖·‖x̂‖

chebspec — Chebyshev spectral differentiation matrix 1.95E-07 1.13E-16
clement — Tridiagonal matrix with zero diagonal entries 3.66E-16 2.80E-17

lehmer — Symmetric positive definite matrix 2.67E-15 6.46E-18
circul — Circulant matrix 6.39E-14 8.35E-16

lesp — Tridiagonal matrix with real, sensitive eigenvalues 1.22E-16 1.43E-18
minij — Symmetric positive definite matrix 2.44E-15 2.99E-18

orthog — Orthogonal and nearly orthogonal matrices 1.41E-17 6.56E-17
randjorth — Random J-orthogonal matrix 1.40E-09 7.24E-16

frank - Matrix with ill-conditioned eigenvalues 5.59E-03 1.52E-21

Table 4.3: Comparisons using Matlab matrix gallery

4.4 PDE Application

A further test for the accuracy of the algorithm involved applying the algorithm

to a problem where a known solution exists. The chosen example was a simple

implementation of the heat equation:

∂φ

∂t
= α

∂2φ

∂x2
0 ≤ x ≤ L, t ≥ 0 (4.13)

An initial condition of φ(x, 0) = sin(πx) + sin(3πx) and a precise solution of

φ(x, 0t) = sin(πx)e−tπ
2

+ sin(3πx)e−9tπ2
[31] were applied to the partial differential

equation (PDE). The Crank Nicolson method [40] was used to transform the PDE into

a large linear system of equations with a size of 2000 x 2000. The Crank Nicolson

method was run for a single time step from time zero to time .001. Matlab and

Cramer’s rule algorithm were then used to solve the system of linear equations for

a solution. The computed solutions were compared to the exact solution and norms

of the difference were recorded, as shown in Table 4.4. The results of both Matlab

and Cramer’s rule algorithm show an accurate answer. It should be noted that the

method for transforming the example into a system of linear equations will introduce

some small amount of error. This example simply provides more evidence of the

algorithm’s accuracy and stability.
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Linear Solver norm2 norm∞

Cramer’s Rule Algorithm 2.34E-8 7.39E-10
Matlab 2.34E-8 7.41E-10

Table 4.4: Application of Cramer’s rule algorithm to a PDE
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Chapter 5

Serial Implementation Results

This chapter presents implementation results for the proposed algorithm. The

latter has been implemented on a single processor platform. Compiled in the

C programming environment, it has been compared to LAPACK (Linear Algebra

PACKage) on a single core Intel Pentium machine to provide a baseline for

comparison.

5.1 Optimization Efforts

Several optimization techniques were applied to the implementation, including the

SIMD (single instruction multiple data) parallelism that is standard on most modern

processors. The program code also employs memory optimizations such as cache

blocking to reduce misses. No multi-processor parallelization has been programmed

into the implementation such that the algorithm itself could be evaluated against the

industry standard prior to any parallelization efforts.

5.1.1 Extended Condensation

Software packages such as LAPACK that leverage BLAS routines are optimized to

do multiple calculations on data while it’s in cache memory as opposed to moving
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the data in and out of memory multiple times as the algorithm traverses the matrix.

This doesn’t follow the mathematical representation of LU-factorization but is much

more efficient on a computer.

For the proposed algorithm a similar technique was employed with the extended

Chio’s condensation. Instead of traversing a matrix N times for an (N ×N) matrix

the algorithm can reduce the repetitions. If a Chio’s condensation step size of four is

used, the algorithm only traverses the matrix N
4

times. In theory this could decrease

memory accesses by 75%, although in practice the memory calls are not reduced that

significantly. It does, however, make an improvement in run times.

This improvement, however, must be balanced with the accuracy of the algorithm.

The pivoting scheme, as discussed earlier, depends on identifying the largest lead

determinant. As the Chio’s condensation step size increases so does the size of the

determinants that need to be evaluated to find the lead determinant. The gain in

memory accesses must be balanced with the additional computation required for the

determinant identification.

5.1.2 Memory Re-use

The mirroring function of the algorithm requires a copying of the matrix. While

the copy operation itself is not particularly time consuming, setting up the target

memory requires significant time. When a program allocates memory it generally

must make a call to the operating system to check permissions and a number of other

items. This forces a context switch in the processor and generates a great deal of

overhead. Making this call to the operating system each time a algorithm mirrors

leads to significant idle time.

The solution to eliminate this overhead entails allocating all the memory needed

at the outset of the process. In order to keep the memory requirements to a minimum

and reduce the probability of page faults, the memory used to store matrices is reused

continually. As a matrix is condensed it vacates memory. When the matrix reaches
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a mirroring size, the newly formed mirror takes the memory recently vacated. In

addition, those memory locations may still be stored in cache, particularly when the

matrices reach the end of their condensation.

The act of mirroring requires a memory copy of the matrix. This can be combined

with the first condensation step of the new mirrored matrix. If when a matrix is being

copied the computations for the first condensation step are applied it saves moving

the same data through memory twice. Once for the memory copy of the matrix and

once for the first condensation step. Instead both are done together to reduce the

number of times the new matrix must be accessed.

5.1.3 Profiling

One very common tool for optimizing an algorithm is a profiler. This helps identify hot

spots in computer code where a programmer can target their efforts. The profiling

tool ’Oprofile’ [30] provided detailed information on the execution of the proposed

algorithm. The profiling first level report provides a breakdown of run times for

each method. The report shows the condensation method with the most amount of

processing time as expected. The profiling tool can then provide a breakdown of the

run times for specific lines code. The profiler as configured for these tests samples

the CPU at a set interval to see what instruction the computer is processing at each

sample. The profiler then tallies the number of samples that fell on each line of code.

Lines that collect more samples spent more time using the CPU, statistically. Figure

5.1 shows an example for the proposed algorithm. This particular section shows the

core loop of Chio’s condensation that represents the bulk of the run time. The left

margin shows the number of samples and percentage of time spent on particular lines

of code.
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Figure 5.1: Example of opannotate results from ’Oprofile’ for the proposed
algorithm
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5.1.4 Assembly Code

The profiling tool provided the target areas for code optimization. These areas

were changed to assembly code using gcc-inline-assembly. This gave opportunity

to fully utilize the SSE2 instruction set [35]. These instructions allow the proposed

algorithm to leverage the hardware supported floating point operations, similar to

BLAS routines. These instructions allow for multiple floating point operations in

parallel on one processor. This provided a significant speed-up.

Converting the core loop to assembly also allowed for optimization of the SSE

registers. The algorithm now keeps the lead minors, discussed earlier, in the registers

to streamline memory access. Four of the eight registers hold the lead minors while

the other four shuttle matrix data in and out. This prevents the lead minors from

being moved back to the cache to make room for new matrix data. For the particular

implementation this also drives the Chio’s condensation step size to be a multiple of

four to match up with the SSE registers holding the lead minors.

5.1.5 Cache Blocking

The final piece of optimization ties to the size of the layer 1 cache. The algorithm

focuses on a portion of the matrix that comfortably fits into the layer 1 cache and

completes all work on that section before touching the next section. The algorithm

works on pieces of a different rows at one time and the returns later to get the other

pieces of a row as opposed to simply running the length of each row during each

Chio’s condensation.

5.1.6 Prefetching

A common optimization technique is prefetching data, or in other words, loading data

to the cache before it’s actually requested. This should reduce memory misses and

the time associated with the miss. Unfortunately, this optimization was unsuccessful.

Chio’s condensation, and most likely LU-factorization, are very predictable in what
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Matrix Size Algorithm (sec) MATLAB (sec) Ratio

1000x1000 2.06 .91 2.26
2000x2000 16.44 6.32 2.60
3000x3000 52.33 19.92 2.63
4000x4000 115.44 45.10 2.56
5000x5000 220.32 86.90 2.54
6000x6000 380.92 142.05 2.68
7000x7000 583.02 242.61 2.40
8000x8000 872.26 334.68 2.61

Table 5.1: Execution comparison to LAPACK

data is needed. Both methods work their way across or down the matrix repeatedly

in a deterministic manner. It’s likely that the hardware prefetch works well with this

type of memory usage and automatically prefetch what’s needed. In fact, manual

prefetching may actually inhibit this process generating additional cache misses. For

that reason prefetch is not part of the algorithm optimization.

5.2 Run Time Results

The processor used for the serial comparison was an Intel Pentium M Banias with

a frequency of 1.5GHz using a 32KB L1 data cache and 1MB L2 cache. The

manufacture quotes a maximum GFLOPS rate of 2.25 for the specific processor [27].

The Linpack benchmark MFLOPS for this processor is given as 755.35.

As can be seen in Table 5.1, the algorithm runs approximately 2.5 times slower

than the execution time of Matlab, independent of matrix size, which closely

corresponds to the theoretical complexity analysis presented above. Both pieces of

software processed numerous trials on a 1.5GHz single core processor. The results

further show that while the algorithm is slower than the LU-based technique, it is

consistent. Even as the matrix sizes grow, the algorithm remains roughly 2.5 times

slower than state of the art methodologies. Figure 5.2 depicts a comparison between

the proposed algorithm and Matlab.
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Figure 5.2: Algorithm execution times compared to those obtained using
Matlab(TM)

The theoretical number of floating point operations (FLOPS) to complete a

1000x1000 matrix based on the complexity calculation is roughly 1555 million. The

actual measured floating point operations for the algorithm summed to 1562.466

million. This equates to an estimated 758 MFLOPS. The Matlab algorithm measured

733 MFLOPS based on the measured execution time and theoretical number of

operations for LU factorization.
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Chapter 6

Parallel Design

With the abundance of parallel processing computing fabrics, in order to determine

the scalability attributes of any new algorithm it is natural to consider the implications

of realizing it using parallel processing units. The parallel implementation of the

proposed algorithm can essentially be broken into two phases. First, the reduction of

a given matrix to a number of reasonable sized matrices. Second, the application of

Cramer’s rule in parallel to the condensed matrices to find the values of the variables.

The point to transition from phase one to phase two depends on the original size of

the matrix and the number of processors employed. The following sections detail the

various implementation aspects of the proposed algorithm over parallel processing

platforms.

6.1 Matrix Distribution

One of the key challenges facing LU-factorization is the distribution of a matrix

to the various processors using a 2-D block cyclic allocation. For this algorithm

a cyclic distribution of the columns to available processors provides a simple and

predictable allocation. Figure 6.1 shows the allocation of columns to processors.

The first column to P0, the second column to P1 and so on, until all processors are

allocated a column at which point the process repeats giving each processor another
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Figure 6.1: Matrix allocation and parallel condensation of proposed algorithm

column. In addition each processor receives the b column that it must include in all

condensations. The processor responsible for a particular column can be determined

with a simple modulus calculation.

6.2 Parallel Condensation and Balanced Load Dis-

tribution

Once the columns have been distributed or loaded to the various processors, the

parallel condensation commences. The processor holding the lead column broadcasts

the column to all other processors, as depicted in figure 6.1. At the conclusion of

that broadcast process, the processor sends a marker indicating which row should be

considered as the pivot. The receiving nodes then condense all the rows they posses

using Chio’s condensation.
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Figure 6.2: Mirroring and Gathering of data for proposed algorithm

The beneficial attribute of doing so is that the lead column is highly predictable. In

fact, no communication is required to establish which processor will be broadcasting

information. A node will determine if it is going to be the lead node during the next

condensation step as it performs current calculations. This allows the future lead

processor to begin broadcasting the subsequent lead column prior to the processor’s

completion of the current condensation step. For example, figure 6.1, the bottom

matrix will require P1 to broadcast the lead column. This processor can begin sending

column 2 out as soon as it condenses that column in the first step, and then continue

condensing column 6 and 10 while it’s sending data. This is often referred to as send-

ahead or pipelining, allowing communication work to overlap computation work.

The condensation technique used in the algorithm would normally suffer from the

same workload distribution problem that LU-factorization exhibits. After a number

of condensation iterations are performed, there would be processors that don’t have

columns left while others do. However, the mirroring step redistributes the work

among the processors such that the algorithm inherently re-balances the workload.
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As the condensation progresses, the matrix will eventually reduce to a size equal

to the number of variables. At this point the algorithm will mirror the matrix and

distribute the number of variables each side is responsible for. Figure 6.2 shows the

matrix after it is reduced to size 6, which is the number of variables this matrix was

assigned. At this point, the columns are logically mirrored, yet it should be noted

that the newly mirrored columns remain with the same processors. There is no inter-

node communications required, simply a memory copy operation. The left matrix

can continue to solve for variables 10, 11 and 12, while the newly created mirror can

solve for 9, 8 and 7.

6.3 Distributed Implementation of Cramer’s Rule

The second phase of the parallel work is the combination of the columns to one

processors to complete the condensation and solve using Cramer’s rule. Obviously

the strength of Cramer’s rule and reason it’s so inviting for parallel applications is

the ability for the gathered matrices to complete without any communication. The

only remaining communication is to report the various calculated variables back to a

central process.

Figure 6.2 shows the gathering of the columns to P0 after the matrix reaches a

size of four. The specific point that the matrix recombines to one processor is flexible.

The recombining of the matrix can also easily leverage optimized communication calls

such as the MPI GATHER command.

Once the columns are gathered to a processor it’s best for that node to delay

the further reduction and application of Cramer’s rule on the small matrix. The

processors as a group would then return to the mirrored matrix on the top right of

figure 6.2 to condense that matrix and gather it to P1. Once all the mirrors are

gathered to individual processors, each node can work independently on the small

matrices it has been allocated. This allows for nodes to work completely in parallel,

when the matrices are the smallest. Beneficial in two senses. This is where a serial
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solution is faster, and it’s when communication overhead would have its greatest

impact due to the reduced amount of computation to hide the communication.

6.3.1 Optimal Point to Gather Columns

The size of the matrix when all columns should be gathered to a single processor is

referred to as size F . This is the point when the condensation of a matrix is better

handled by a single processor. There are two hard limits on this size. First, it must

be larger than the number of nodes in the cluster. If sixteen nodes are used then

F ≥ 16, otherwise nodes will sit idle. Second the gathering should not occur before

enough mirrorings have occurred to assign at least one mirror to each node.

This second constraint will depend on the initail size of the matrix. For example

a 1000× 1000 matrix will mirror initially giving two matrices and then mirror again

when it reaches size 500 giving four matrices. If sixteen nodes are being used the

gather should not occur at this point because there will only be four matrices to

assign. Twelve nodes would sit idle. Instead the algorithm should wait until the

algorithm mirrors two more times. This would occur at size 250 and then 125. At

this point there would then be sixteen matrices available, fifteen mirrors and the

original matrix. If the matrices are gathered when they reach this size then there

would be enough for each node to have a matrix to work on independently, thus

supporting full utilization of the matrix.

Beyond these two hard limits there are also consideration on the communication.

Gathering very large matrices might generate additional idle time because of

communication delays. This communication is not broadcast and while many nodes

can send at roughly at the same time the receiving node can only take information

from one node at a time. For this reasearch, a standard value of F = 64 was used.

58



6.4 Communication Requirements

The theoretical amount of communication for the proposed algorithm should consist

of the messaging required to facilitate the two phases. The first phase, where the

matrix is condensed amongst all the processors, will require a broadcast of the lead

column for each iteration. Keeping in mind that the column size will decrease during

each pass. Assuming that N represents the size of the original matrix then equation

6.1 represents the data communicated to reduce the matrix and its mirrors.

N∑
k=0

(N − k) +

log2N∑
k=0

2k

(
1

2

(
N

2k

)2

−
(
N

2k

)2
)

(6.1)

Reducing to a more manageable form gives the following

3N2

2
− N

2
− N

2
(1 + log2N) (6.2)

This amount includes the communication volume to completely condense the

matrix and it’s mirrors. The proposed algorithm, however, only condenses the

matrices to the gather size, at which point phase two of the parallel algorithm begins.

The fact that the algorithm doesn’t condense completely means that a small part

of the communication and computation is saved in phase one. If the size at which

phase two is initiated is F , and the less significant terms are removed, the complete

communication volume is the following

3N2

2
− 3F 2

2
(6.3)

The communication for phase two where each condensed matrix is communicated

to a single processor requires gathering all the columns. If p represents the number of

processors, and F represents the size of the matrix when gathered then, F
p

columns

are transmitted, times the number of transmitting processors, p− 1, times F , which

is the length of each column. This amount must then be multiplied by the number

of leaves on the binary tree giving equation 6.4.
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Number of PCramer PCramer ScaLAPACK ScaLAPACK
Processors Messages Volume (kB) Messages Volume (kB)

4 18,579 12,115 8,042 15,560
8 23,703 12,148 13,797 23,608
12 31,387 12,159 19,822 31,692
16 28,367 12,115 25,888 39,696
24 47,831 12,247 38,022 50,880
32 42,767 12,166 50,047 72,000

Table 6.1: Parallel Cramer algorithm (PCramer) communication compared to LU-
factorization (1000 x 1000 matrix)

2log2
N
F × F

p
× (p− 1)× F (6.4)

Combining the two phases yields the theoretical bandwidth in equation 6.5, which

is overwhelmingly dependent upon the size of the original matrix N , when F is small.

8 bytes/double ×
(

3N2

2
− 3F 2

2
+ 2log2

N
F × p− 1

p
F 2

)
(6.5)

6.5 Communication Volume Results

The proposed algorithm has been coded using the C programming language, using

doubles to store and calculate data, with MPICH2 serving as the message passing

interface. The implementation uses MPI for inter processor communication and

pthreads for timing and parallel work within a single processor. The developed code

was tested for accuracy and communication requirements on a simulated MPI cluster

using Argonne National lab’s Fast Profiling library for MPI (FPMPI). Solution sets

from MATLAB used for accuracy comparison.

The main focus for this research is the amount of communication required in a true

broadcast environment. The measurement of a broadcast communication is counted

once. A broadcast message of one double (8 bytes), has a communication volume of

8 bytes, not some factor of (p− 1) as discussed in Subsection 2.5.2. This is done even
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though the MPICH2 implementation will actually convey the message in log(p−1)×8

bytes.

The test scenario compared the proposed parallel algorithm, referred to as

PCramer, to Parallel LU-factorization implemented within the ScaLAPACK library.

Both programs used double floating point arithmetic and were run on a randomly

created 1000x1000 size dense matrix. The ScaLAPACK was set to a block size of 4,

since this gave the lowest communication volume in empirical trials. The profiling

software counted a MPI broadcast message once as discussed earlier. The results of

these tests are listed in table 6.1. All tests were simulated on a single core laptop

running Fedora’s Linux operating system.

A gather size of 10 was used for the parallel Cramer’s rule algorithm. This means

that when the original matrix or one of the mirrors condenses to a size of 10x10, all

the columns are communicated to a single processor for application of Cramer’s rule

to find the variables. The gather communication is not broadcast messaging. For

a gather size of 10, this communication is very small when compared to the total

communication, with around 98% of the messaging being broadcast in table 6.1, for

eight processors.

The nature of the communication for the proposed algorithm is largely broadcast

with a minimal amount of communication in the form of MPI GATHER calls to

Figure 6.3: Proposed Cramer algorithm (PCramer) Communication Volume

61



Number of PCramer Predicted Relative
Processors Volume (kB) Volume (kB) Error

4 12,115 12,059 0.46%
8 12,148 12,069 0.65%
12 12,159 12,072 0.72%
16 12,115 12,074 0.34%
24 12,247 12,075 1.40%
32 12,166 12,076 0.74%

Table 6.2: Comparison of parallel Cramer’s rule algorithm predicted communication
volume to actual

recombine a reduced matrix to one processor. Since the broadcast communication is

the vast majority of the bandwidth and message count, the overall communication

profile follows this pattern when comparing empirical results. The amount of

broadcast data is a set amount per condensation step. This means that the actual

data transmitted across the network backbone is dependent on the size of the original

matrix and not the number of processors. The communication pattern, as can be

seen on figure 6.3, stays nearly constant for a specific sized problem. Unlike LU-

factorization, represented here by ScaLAPACK’s pdgetrf() function, the addition

of more resources does not drastically increase the communication requirement.

A comparison of the theoretical communication predicted by equation 6.5 to the

empirical results shows a very close relationship. Table 6.2 displays the comparison

and shows that the predicted amount is within 2% of the empirical findings for all

scenarios. In fact the empirical amount is always slightly more than the predicted

amount which is expected because of the small amount of communication required to

setup the global variables and data structures between the various processors.

Again, these communication results assumes a true broadcast infrastructure.

If the broadcast messages were sent as a point-to-point message to all processors

the communication volume would be significantly higher and the ScaLAPACK

communication volume comparatively less. The benefit of this communication

structure is only realized in a true broadcast medium.
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Number of Matrix PCramer ScaLAPACK Run Time
Processors Size Run Time (sec) Run Time (sec) Ratio

2 2000x2000 8.92 2.98 2.99
4 2000x2000 4.85 2.52 1.93
6 2000x2000 2.04 2.05 1.00
8 2000x2000 2.05 1.36 1.51
16 2000x2000 1.78 1.19 1.49

Table 6.3: Parallel Cramer algorithm (PCramer) run time compared to LU-
factorization (2000 x 2000 matrix)

6.6 Implementation Results

The parallel implementation of Cramer’s rule can also be extended using a larger

condensation step size as discussed in section 3.2. The same optimal values of

condensation size were seen in the parallel version as the serial version. The PCramer

implementation also incorporated a version of pipelining to broadcast required data

in advance.

The processor that holds the column or columns for the next condensation

broadcasts that data as soon as it was ready, instead of waiting to condense the

rest of the columns it holds. For example, if processor P1 holds the lead column for

the next condensation step as well as four other columns it would condense the future

lead column, find the pivot and broadcast out the column. The processor would

then continue condensing its remaining four columns. This would give the message

time to arrive at the other processors while they were still working on the current

condensation step. Processor P1 could also convey the future pivot row without any

communication or delay since it contains all the data needed to select the appropriate

pivot. This is a result of using the 1-D matrix distribution, which also helps minimize

the communication overhead when compared to a 2-D matrix distribution.

The run times were collect using the ’mil’ cluster in the Machine Intelligence

Lab at the University of Tennessee. The cluster consists of four servers each with

a Quad core Intel Xeon X5472 processor and eight gigabytes of RAM. The CPUs
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Figure 6.4: Parallel Cramer algorithm (PCramer) run time graphically compared
to LU-factorization by processor count

are 3.00 GHZ processors with 12 megabytes of L2 cache. Six megabytes of the L2

cache are shared by a pair of cores and the remaining six megabytes shared by the

other two cores. To the MPI daemon this appears as a 16 processor cluster, so tests

were run up to 16 processors. However, because two of the cores share the same part

of the L2 cache there is local memory contention between the pair of cores. This

exacerbates memory constrained operations like the scientific computing being done

in this research. For this reason the results obtained for 16 processors are not a true

reflection of the parallel algorithms because the local memory bandwidth is most

likely the limiting factor for test with more than eight processors.

Table 6.3 and Figure 6.4 show the run times of the parallel Cramer’s rule algorithm

and a typical parallel LU-factorization implementation provided by ScaLAPACK. The

problem size of 2000x2000 was used for this particular test and ten trials were run

for each processor count. The average run times for those trials are shown.

The parallel Cramer’s rule algorithm compares well at this processor range and

matrix size. The workload amount is adequate to hide the communication overhead
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Number of Matrix PCramer ScaLAPACK Run Time
Processors Size Run Time (sec) Run Time (sec) Ratio

8 1000x1000 0.49 0.35 1.38
8 2000x2000 2.05 1.36 1.51
8 3000x3000 13.73 3.71 3.70
8 4000x4000 66.21 6.83 9.69

Table 6.4: Parallel Cramer algorithm (PCramer) run time compared to LU-
factorization (8 processors)

Figure 6.5: Parallel Cramer algorithm (PCramer) run time graphically compared
to LU-factorization by matrix size

65



for the processors and the matrix portions are small enough to keep completely within

cache memory. Keeping in mind that the message passing package, MPICH2, does not

truly broadcast the messages. The larger number of processors likely begins to create

more communication and the run time becomes more dependent on the messaging

overhead than the actual computations. As can be seen in Figure 6.4 the run times

for 6, 8 and 16 are roughly the same. The amount of communication begins to nullify

the extra processing capacity as does the local memory contention.

Table 6.4 shows the comparison of run times as the matrix size increases. Here

eight processors is shown because that’s the largest true processor count for the mil

cluster, as discussed earlier. ScaLAPACK uses the BLAS subroutines that are highly

optimized for local memory access. The parallel Cramer’s rule code, uses SSE code

but is not optimized for local memory access within each node doing computation.

As each processor’s portion of the matrix grows the local memory contention becomes

more of a problem. When a size of 4000 x 4000 is reach, Figure 6.5 clearly shows

that the algorithm diverges from the baseline. Improved cache blocking and memory

optimization, as well as the implementation of a true broadcast message passing

scheme would allow the algorithm to scale in a more competitive manner.
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Chapter 7

Application to Sparse Matrices

A large number of the matrices used in power systems and other scientific fields are

sparse, meaning a vast majority of the matrix is filled with zeros. In order to efficiently

handle these types of matrices the proposed algorithm must avoid computations where

the outcome is already known. A sparse serial version as well as a sparse parallel

version (SPCramer) of the proposed algorithm were developed to test its suitability

for handling such matrices.

The sparse versions of the algorithm are based on the same programming code

as the previous versions, but with a number of major modifications to handle sparse

situations. The code avoids as much computation as possible, although at the cost

of additional checks and messaging. These additional overheads are used to identify

situations where computation can be variable due to the sparsity of the system.

The data structure used for storing the sparse matrix is a full matrix like those

used for dense storage. This is far from optimal but assisted in troubleshooting and

analyzing the sparse potential of the algorithm. If a condensed matrix format, like the

compressed-column form [10] was used there would need to be coding to manipulate

the data structure as fill-ins occurred [15]. Fill-in is defined in this research as matrix

positions that were previously zero changed to a non-zero value by the algorithm.
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Unfortunately, the full matrix storage made the application of SSE instructions

in the computations difficult. An SSE instruction performs operations on multiple

pieces of data but since the non-zero values are not necessarily contiguous the

SSE instructions cannot target the non-zero matrix locations. For this reason SSE

optimizations were not used and therefore reduced the overall computational speed

of the implementation.

The following sections detail the three main features of the sparse implementation:

structure prediction of the variables, computation avoidance, and switching to

dense matrix condensation as the fill increases. The final section will give the

implementation results in comparison to the dense version.

7.1 Structure Prediction of variables

Section 3.5 discusses the ability of the proposed algorithm to compute a subset of the

variables, instead of all the variables. This trait can be exploited in certain sparse

situations. If a sparse matrix is coupled with a sparse solution set it’s possible that

some of the variables will calculate to zero, simply due to the sparse structures. The

ability to check which variables will calculate to zero based simply on the sparse

structure is referred to as structure prediction for sparse solve [21]. The algorithm to

find the variables that are non-zero is O(N2), so the additional overhead to check the

matrix for this condition is worth the potential savings even if one unknown can be

avoided.

A simple visual example of the prediction algorithm is displayed in Figure 7.1. In

this case a directed graph is built of the sparse matrix. Each non-zero value of the

solution vector is marked on the graph. All other nodes that have a directed path to

one of the marked nodes will most likely have a non-zero unknown associated with

it. The nodes that do not have a path to a marked node are guaranteed to have an x

value of zero. In the example shown, nodes 1 and 4 are marked with red since those

values are non-zero in the solution vector. It can then be seen that only nodes 2 and
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Figure 7.1: Structure Prediction for Sparse Solve
source: http://www.cs.ucsb.edu/˜gilbert/talks/SparseDay2.ppt

7 have a path to the marked nodes in graph G(A). Therefore, nodes 1, 2, 4 and 7 will

most likely have non-zero values while variables 3, 5 and 6 will equal zero and do not

need to be solved for.

The sparse version of the proposed algorithm runs this check before it begins, if

the solution vector is not dense. In the parallel version it also runs this check, however

it runs completely on one processor since a parallel version of the prediction algorithm

was not developed or readily available. This requires the entire matrix to be loaded

into memory to solve the prediction algorithm. This is unusual because a parallel

solver would not generally load the entire matrix but only the portion needed for

computation. The sparse Cramer’s rule algorithm loads the matrix, runs the sparse

check and then releases the full matrix and reloads the smaller portion of the matrix

it needs for computation.

7.2 Computation Avoidance

The similarities of the proposed algorithm with Gaussian elimination allows it to reuse

some of the ideas of a sparse Gaussian elimination [19]. A key concept is how the lead

row and column affects the values in the resulting matrix during a condensation step.

Each matrix entry is calculated by the equation a′ij = a11aij − ai1a1j, as documented
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in Section 2.4. Since the a11 value is always unity the only values that affect the value

of aij are those that are subtracted, namely ai1 and a1j. As can be seen, if either ai1

or a1j are zero the resulting equation is a′ij = 1× aij − 0 = aij. The value of aij does

not change.

The sparse algorithm takes advantage of this fact by calculating only columns

that don’t lead with a zero. This is an O(N2) check so it does not greatly affect the

overall computational complexity. The lead column also only has a certain number of

non-zero values. In the sparse version of the algorithm, only the rows with non-zero

values in that lead column are calculated. The only values that are even submitted

to the processor for computation are those that will change.

In the parallel version these sparse considerations require sending four pieces of

information. As in the normal Parallel Cramer’s rule algorithm, it sends the values

in the lead column and a marker for the pivot row. However, in this case it only

needs to send the non-zero values and an integer array telling which rows are non-

zero. The receiving nodes can then bypass all rows except those that have non-zero

values in the broadcasted column. In order to pass only the non-zero values the first

broadcast must be a message telling how many non-zero values the receiving nodes

should expect. This way the other nodes determine how to size their buffers.

There is a cost associated with sending the condensed lead column. The

broadcasting node must check the first column for non-zeros and store the positions

that are non-zero in an integer array. This is an O(N2) check. These values must then

be broadcast to the other nodes generating additional communication. In cases where

the lead column is sparse, this additional integer array is balanced by the reduced

number of matrix entries that need to be communicated. However, as the matrix

becomes less sparse the communication may exceed that associated with the dense

version of the algorithm. It should be noted that if a data structure, such as the

compressed-column form was used then the checks for non-zero entries would not be

needed since this information would be readily available. Although there would be

additional overheads in maintaining the data structure.
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These checks to avoid computation add some additional overhead, although it is

is minimal compared to the overall complexity of the algorithm. In return, it provides

the potential to drastically reduce the amount of computation. The following equation

shows the computational workload given an initial level of sparsity, α. The overall

workload depends on the specific matrix, so it is the combination of work on sparse

items in matrix and the work on non-sparse items in matrix. The equation follows

this logic with the workload on sparse items multiplied by α and the workload on

non-spare items multiplied by (1 − α). As before, γ represents the computational

complexity.

γ =
n∑
k=1

αk [(n− k) + (n− k)] + (1− αk)
[
4(n− k) + 2(n− k)2

]

γ =
n∑
k=1

2αk(n− k) + (1− αk)
(
2(n− k)2 + 4(n− k)

)
(7.1)

γ =
n∑
k=1

2αk(n− k) + 2(n− k)2 − 2αk(n− k)2 + 4(n− k)− 4αk(n− k)

γ =
n∑
k=1

(2− 2αk)(n− k)2 + (4− 2αk)(n− k)

γ =
n∑
k=1

(2− 2αk)(n
2 − 2nk + k2) + (4− 2αk)n− (4− 2αk)k

take the most significant terms, discarding the lower order terms and the equation

becomes

γ =
n∑
k=1

(2− 2αk)n
2 −

n∑
k=1

(2− 2αk)2nk +
n∑
k=1

(2− 2αk)k
2 (7.2)
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At this point the equation clearly shows that the complexity depends on the size

of the matrix and the sparsity, but it also depends on how the sparsity changes. Each

iteration the sparsity, α, changes as the fill-in increases. In order to capture this

concept the sparsity value has a k subscript. The original sparsity of the matrix is

α1 and the sparsity after the first condensation is α2. The change in sparsity is due

to the situation when a row lead and column lead are non-zero (ai1 6= 0, a1j 6= 0),

but the actual matrix entry associated with those two is zero (aij = 0). When the

equation a′ij = a11aij−ai1a1j is applied, aij changes from zero to some non-zero value.

How often this situation arises depends on the specific matrix.

This situation is fill and an expected average for the Cramer’s rule algorithm can

be captured with the following equation.

fill = ((1− α)(n− k − 1)× (1− α)(n− k − 1))× α (7.3)

Once the expected fill is available this can be used to estimate the sparsity for the

next condensation step.

αk+1 =
αk(n− k − 1)2 − fillk

(n− k − 1)2

αk+1 =
αk(n− k − 1)2 − αk(1− αk)2(n− k − 1)2

(n− k − 1)2

αk+1 = αk − αk(1− αk)2

αk+1 = αk − αk + 2α2
k − α3

k

αk+1 = 2α2
k − α3

k (7.4)
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Now that the change in sparsity is captured this can be combined with equation

7.1.

The actual fill for a matrix is highly dependent on the structure of the matrix.

Figure 7.2 shows two sparse matrices used to test the algorithm. The left matrix

is referred to as rajat12 and represents a circuit simulation problem. It’s a size of

1879 rows and columns and a sparsity of .996. The matrix on the right is named

bcsstk26 and is a structure problem. It has a size of 1922 and a sparsity of .992. The

matrix size and sparsity are similar but the problem types and the appearance of the

matrices are different.

These differences cause very different fill amounts for the sparse Cramer’s rule

algorithm. The left matrix, rajat12, has a fill count of 3,933,818 while the right matrix,

bcsstk26, has a fill count of 659,789. As will be seen in section 7.4, this disparity causes

the run times for these two similar sized matrices to be drastically different. It’s also

interesting that while the difference in fill greatly affects the difference in run times

for the sparse Cramer’s rule algorithm, it has less of an impact when the dense version

of the algorithm is used.

The difference between these two matrices is that the right matrix, bcsstk26, is

a symmetric matrix, while the other is a general matrix. The sparse Cramer’s rule

algorithm consistently has less fill and better run times when the matrix structure is

symmetric. This is due to the fact that the row and column leads that have non-zero

values will generally intersect at the diagonal, rarely causing fill.

7.3 Switching to Dense Solver

Unlike LU-factorization, the proposed algorithm cannot easily rearrange the order of

the matrix columns. This prevents the use of techniques that could reduce the fill-ins

during the condensation of the matrix. This limitation coupled with the pivoting of

the largest value into the lead position generates fill. As the matrix is condensed it
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Figure 7.2: Similar sparsity and size matrices with different fill amounts (left:
rajat12, right: bcsstk26)

generally becomes more dense, hence at some point it becomes more efficient to use

the dense form of the proposed algorithm.

This creates an opportunity for the sparse parallel implementation of Cramer’s

rule. As described in section 6.3, the algorithm collects all the condensed columns to

a single processor to continue the condensation without the need for any additional

communication. If this collection point is determined in part by when the matrix

reaches a dense level, the algorithm can continue solving the matrix with the non-

sparse version of code. This allows for an optimized version using SSE instructions

to continue the condensation and compute the variables.

7.4 Sparse Implementation Results

The sparse version of the Cramer’s rule algorithm is missing a number of optimizations

and is therefore not competitive with a true sparse server such as MATLAB or CSparse

[10]. It does not utilize a compressed memory structure or the SSE instructions which

would drastically improve the code performance. Despite lacking such optimization

steps, it performs better than a dense solver on the same sparse problems.
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Matrix Sparsity Matrix Matrix
Name Level Structure Size

Schenk IBMNA/c-20 0.9976 Symmetric 2921x2921
Rajat/rajat12 0.9964 General 1879x1879
HB/bcsstk26 0.9918 Symmetric 1922x1922
Norris/heart2 0.8756 General 2339x2339

Dense Matrix (control) 0.0997 General 1000x1000

Table 7.1: Sparse matrices used for testing sparse Cramer’s rule algorithm

Matrix Sparsity Dense Alg Sparse Alg Run Time
Name Level Time (sec) Time (sec) Ratio

Schenk IBMNA/c-20 0.9976 253.22 43.83 .17
Rajat/rajat12 0.9964 64.11 34.07 .53
HB/bcsstk26 0.9918 73.92 5.61 .08
Norris/heart2 0.8756 122.36 62.67 .51

Dense Matrix (control) 0.0997 8.67 17.32 2.00

Table 7.2: Comparison of Sparse Cramer’s rule algorithm and dense Cramer’s rule
algorithm on sparse matrices

Table 7.1 shows the details of the matrices used to test the sparse version of the

proposed algorithm. Please note that the dense implementation of the Cramer’s rule

algorithm uses a Chio step size of 1 when solving sparse matrices. This is due to the

occasional inability to find a satisfactory sorting of rows for the pivot. A larger Chio

step size may not find a non-zero lead without adjusting the heuristic that selects the

appropriate pivot rows.

The sparse matrices are taken from The University of Florida Sparse Matrix

Collection [11]. All these matrices are from actual problem sets and are stored in

a number of formats. One of the condensed types is the Matrix Market format.

The sparse implementations of Cramer’s rule algorithm uses this format to load the

matrices into memory. As mentioned earlier, the matrices are loaded into a full

matrix that has been initialized to zero, and not stored in a compressed format. The

sparse matrix collection also stores the matrices as a mat file that can be opened in

MATLAB.
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Matrix Fill MFLOP Matlab Sparse Run Time
Name Amount Count Time (sec) Time (sec) Ratio

Schenk IBMNA/c-20 6,604,122 6479 8.67 43.83 5.05
Rajat/rajat12 3,933,818 4410 3.89 34.07 8.76
HB/bcsstk26 659,789 113 2.23 5.61 2.52
Norris/heart2 5,931,208 8470 7.51 62.67 8.34

Dense Matrix (control) 145,085 1562 .91 17.32 19.03

Table 7.3: Fill and Flop counts for test matrices

Each matrix has a specific name and details on the actual problem it represents.

The sparsity level of the matrix gives a ratio of how much of the matrix is filled with

zeros. A matrix that reaches a sparsity of one is completely sparse with no non-zero

elements and a matrix of sparsity zero is completely dense with all non-zero elements.

A small number of matrices was selected to test the algorithm. Different structure,

sizes and levels of sparsity were selected for comparison.

The sparse version of the algorithm consistently outperforms the dense version

except in the case of a dense matrix. The last entry in table 7.2 reports results

pertaining to a dense matrix. In this case the sparse algorithm takes nearly twice

as long to run as the dense version. This is due to the extra overhead of checking

for sparsity and lack of SSE instruction optimizations. The dense time is also with a

Chio step size of one. If a step size of four were used the execution times would drop

to the range mentioned earlier and create even a larger disparity.

The run times differ greatly even for similar sized matrices. This is a result of the

fill discussed earlier. Sparse matrices that have little fill like c-20 and bcsstk26 show

reduced run times when compared to the dense run times. These are the matrices with

symmetric structures which results in less fill for the sparse Cramer’s rule algorithm.

Table 7.3 shows the Fill amounts for each matrix, as well as the MFLOPS for these

examples. As expected the run times closely track the MFLOP count in the serial

implementation. The last two columns compare the run times to MATLAB for the

same sparse matrices. Please note that MATLAB was forced to run with full matrices,

instead of the typical compressed matrix storage.
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Number of Dense Parallel Sparse Parallel Run Time
Processors Run Time (sec) Run Time (sec) Ratio

2 30.47 11.97 .39
4 17.07 8.17 .48
8 20.81 8.41 .40

Table 7.4: Parallel sparse Cramer’s rule algorithm results on Schenk IBMNA/c-20
matrix

The final testing was a sparse version of the parallel Cramer’s rule algorithm.

Table 7.4 shows the run times for the c-20 sparse matrix. This is a symmetric matrix

from a non-linear optimization problem. The sparse version of the proposed algorithm

shows the run time to solve this problem. Both the dense and sparse run times show

a longer run time for 8 nodes than 4 nodes. This is due to the excess communication

that cannot be hidden by overlapping computation with communication. As with

the dense parallel implementation of the Cramer’s rule algorithm a true broadcast

message passing scheme would be needed to realize the best run times.
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Chapter 8

Conclusions

This dissertation explored a novel approach for solving large linear systems that ex-

hibits low-communication overhead for true broadcast communication platforms. The

benefits of the proposed framework are attributed to a highly regular computation and

data exchange patterns, when compared to commonly used parallel LU-factorization

schemes. The fact that additional processing resources do not significantly impact

the amount of communication suggests that this methodology has great potential

as a scalable parallel linear systems solver. The use of Chio’s matrix condensation,

combined with a customized mirroring scheme and Cramer’s rule, allow the algorithm

to vastly reduce communication overhead at the cost of roughly two and a half the

computational workload. In scenarios where communication requirements restrict full

utilization of processing capacity and true broadcast communication is available, this

algorithm can provide a viable alternative to mainstream approaches. Future work

should focus on the implementation of the proposed algorithms on modern massively-

parallel computing platforms, such as graphics processing units (GPUs). Moreover,

it would be interesting to explore the applicability of condensation-based Cramer’s

rule to other problems in linear algebra, such as matrix inversion.
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8.1 Key Contributions

The original algorithm was developed and documented in [33, 34] but this research

further refines the algorithm and examines several different aspects of its function.

The first refinement deals with the mirroring scheme. Previously the algorithm

would substitute the solution vector or b column immediately and then proceed with

the condensation and mirroring. This meant that a number of values had to be kept

in memory so that the b column could be manipulated when solving with Cramer’s

rule at the end. This research proposes a delay in the substitution of the solution

vector till the end of the condensation. This reduces the bookkeeping and provides

for an intuitive application of Cramer’s rule.

This research also presents the addition of the MxM step size during chio’s

condensation phase. This allows the algorithm to be competitive with the more

mainstream linear solvers that employ matrix blocking to optimize memory access.

The larger step size allows the algorithm to drastically reduce the number of memory

accesses as well as slightly reduced the computational workload. This optimization

helps give run-times that are competitive with algorithms that use blocking to

optimize the data transferred between cache and main memory.

One of the key requirements for practical application of an algorithm is a level

of confidence that the algorithm returns the correct answer. While this research

does not prove that the algorithm is numerically accurate it provides a detailed

error analysis that suggests that it’s similar to currently used methods. Furthet

evidence is presented that the algorithm is as accurate as other commonly used linear

solvers. Numerous test results are provided with comparisons to solutions provided

by mainstream methods.

The key potential of the algorithm is in parallel utilization. This research proposes

a parallel scheme for the algorithm that retains the O(N3) characteristic even in a

multiprocessor environment. Evaluation of the communication complexity and actual
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implementations are provided for comparison to parallel implementations of LU-

factorization. This proposed implementation is shown to have competitive run-times

for smaller matrices, although additional optimizations are needed for the algorithm

to scale as well as existing parallel methods.

Finally this research explores the algorithm’s suitability for sparse problems. This

includes an actual implementation both for a serial version and parallel version. The

implementation requires a great deal of refinement and optimization but shows that

the algorithm can support reduced computational complexity when presented with

sparse problems. The research also identified particular sparse problem sets that lend

themselves well to the Cramer’s rule algorithm.

8.2 Relevant Publications

• K. Habgood, I. Arel, Revisiting Cramer’s Rule for Solving Dense Linear Systems

in Proc. ACM High Performance Computing Symposium (HPC 2010), April,

2010.

• K. Habgood, I. Arel, A Condensation-based Application of Cramer’s Rule for

Solving Large-Scale Linear Systems. Accepted for publication in Journal of

Discrete Algorithms

• In Preparation: A Parallel Linear Solver Utilizing Cramer’s Rule

• Wikipedia update: Clarification that Cramer’s rule can be implemented in

O(N3). (http://en.wikipedia.org/wiki/Cramer’s rule)

8.3 Future Directions

This research provide a theoretical understanding and analysis of the algorithm, and

give a solid basis for practical implementation. In order to realize the full potential of

the algorithm further development and testing is required in a few areas. The obvious
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potential of the algorithm is as a low-communication parallel solver and the future

directions should focus on that potential.

The algorithm needs an environment that can provide a true broadcast message

passing scheme. As discussed in section 2.5.2 the implementations presented use

mainstream parallel communication software. The MPICH2 package does not

implement messaging that takes advantage of the native broadcasts in networking

hardware. Instead the software uses a more reliable form of one-to-one message

passing. The algorithm needs to be implemented in a manner where it can leverage

a true one-to-many message passing infastructure.

In addition the parallel coding of the algorithm needs further optimization. The

tuning of the code for memory access would help reduce the runtimes considerably

when compared to other parallel solvers. In addition, the code could futher exploit the

difference between parallel nodes that are on the same computer, multicore processors,

when compared to nodes across a network. Nodes that are on the same core could

take advantage of shared memory instead of the network message passing schemes.

The algorithm also needs further optimizations for sparse matrices. The

implementation provided focuses on the theoretical potential to solve sparse matrices

rather than the practical application. The coding would need to employ an optimized

memory strucutre for the storage of the algorithm. This would reduce the memory

access times considerably and thus reduce the overall runtimes of the algorithm.

The algorithm should also be Further investigated for opitmal sparse matrices. The

research presented clearly shows that the algorithm is well suited to some sparse

problems, as shown in table 7.3. However, a better understanding of which matrix

types are best stuited would identify when the algorithm could best be applied.
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