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Abstract 

As global demand for nuclear energy and threats to nuclear security increase, the need for verification 

of the peaceful application of nuclear materials and technology also rises.  In accordance with the 

Nuclear Nonproliferation Treaty, the International Atomic Energy Agency is tasked with verification of 

the declared enrichment activities of member states.  Due to the increased cost of inspection and 

verification of a globally growing nuclear energy industry, remote process monitoring has been 

proposed as part of a next-generation, information-driven safeguards program.  To further enhance this 

safeguards approach, it is proposed that process monitoring data may be used to not only verify the 

past but to anticipate the future via prognostic analysis.  While prognostic methods exist for health 

monitoring of physical processes, the literature is absent of methods to predict the outcome of decision-

based events, such as the production of undeclared enriched uranium. 

This dissertation introduces a method to predict the time at which a significant quantity of unaccounted 

material is expected to be diverted during an enrichment process.  This method utilizes a particle filter 

to model the data and provide a Type III (degradation-based) prognostic estimate of time to diversion of 

a significant quantity.  Measurement noise for the particle filter is estimated using historical data and 

may be updated with Bayesian estimates from the analyzed data.  Dynamic noise estimates are updated 

based on observed changes in process data.  The reliability of the prognostic model for a given range of 

data is validated via information complexity scores and goodness of fit statistics.  The developed 

prognostic method is tested using data produced from the Oak Ridge Mock Feed and Withdrawal 

Facility, a 1:100 scale test platform for developing gas centrifuge remote monitoring techniques.  Four 

case studies are considered: no diversion, slow diversion, fast diversion, and intermittent diversion.  All 

intervals of diversion and non-diversion were correctly identified and significant quantity diversion time 

was accurately estimated.  A diversion of 0.8 kg over 85 minutes was detected after 10 minutes and 

predicted to be 84 minutes and 10 seconds after 46 minutes and 40 seconds with an uncertainty of 2 

minutes and 52 seconds.   
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Executive Summary 

As with many technologies, the peaceful benefits of nuclear energy such as clean power and production 

of medical isotopes must be balanced against potential harms.  The appeal of the low lifetime costs, high 

energy output, and clean emissions has kept nuclear power as an attractive energy source for much of 

the world, even in the face of the potential risks for nuclear materials to be used in weapons such as 

traditional nuclear bombs or "dirty" bombs.  As of this writing, well over 400 commercial nuclear power 

plants operate across the world in over 30 countries, accounting for almost 400 GWe of electrical 

production and roughly 14% of the world's total electrical energy supply.  Additionally, nearly 250 

research reactors and a little less than 200 naval vessels (e.g. aircraft carriers and submarines) rely on 

nuclear power in a total of over 50 nations.  Global nuclear capacity is continually increasing, and the 

demand for nuclear resources continues to grow despite the negative publicity of incidents such as the 

event at Fukushima-Daiichi. 

Unfortunately, the process of developing raw materials into fissionable sources of energy productions is 

nearly identical to the development of weapons-grade fission sources.  For example, a typical 

commercial nuclear reactor might consume fuel with the Uranium 235 content enriched to about 5%, 

while a nuclear bomb using U-235 as the fissionable fuel would require far higher enrichment levels.  

(Precise estimates of uranium enrichment required for weapons-grade material are highly sensitive and 

typically classified; for sake of discussion, let us suppose that Uranium 235 enrichment greater than 50% 

is necessary.)   While the difference in enrichment levels may seem significant, the equipment that can 

produce low levels of enrichment for power generation may be used for producing far higher levels of 

enrichment.  The only difference is how long the enrichment process is allowed to run before extraction 

of the enriched material is finalized.  Additionally, the process of enriching uranium 235 from its natural 

level of about 0.7% to about 5% requires as much effort as enrichment from 5% to levels closer to 50%.  

To balance the peaceful benefits of nuclear energy against the potential dangers, the members of the 

United Nations have agreed to task the International Atomic Energy Agency (IAEA) with the verification 

of declared production and processing of nuclear materials, as outlined by the Nuclear Nonproliferation 

Treaty.  In the context of uranium enrichment, the IAEA monitors the amount of material processed by 

enrichment facilities and reports whether their observations support the declarations that the facility 

makes of its production.  While the IAEA does not have enforcement capacity, their verifications play a 

major role in international relationships: countries that demonstrate effective safeguarding and 
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application of nuclear materials benefit from the use of nuclear energy without the stigma of being 

perceived as a significant nuclear risk while noncompliant nations are at risk of economic sanctions or 

other negative effects of impaired international relationships. 

Historically and presently, the IAEA monitors uranium enrichment by periodically sending inspectors to 

declared enrichment facilities and comparing the operator's declarations to their own accountancy of 

the material processing (i.e. the amount of feed, product, and tails material moving in and out of the 

facility).  This process relies entirely on visual inspection and measurement of the facility's activities and 

typically involves about a dozen trips by inspectors to enrichment facilities each year.  As global nuclear 

power demand increases, more enrichment facilities are built and the need for more inspectors 

continues to rise.  In response, the IAEA is seeking to reduce their operating cost by incorporating 

remote monitoring practices into their inspection regime.   Conceptually, the IAEA would collect process 

data in their own on-site database and analyze the data to generate conclusions of facility compliance 

with the NPT.  These conclusions would not replace the accountancy system in place; rather, the hope is 

that remote monitoring may provide greater assurance of compliance between inspections and 

therefore allow the IAEA to conduct fewer live inspections on an "information-driven" schedule rather 

than the current periodic schedule that has been employed for several decades.  In return, enrichment 

facilities stand to benefit from the reduced live inspection periodicity; with fewer interruptions in the 

enrichment process, more material may be processed in a facility and the holding time of material 

cylinders may be reduced, resulting in significant economic savings. 

Should remote monitoring be incorporated into the IAEA's safeguards program for uranium enrichment, 

the information collected from the monitoring system may be useful for more than simply explaining 

the past (i.e. what has already occurred at a facility).  While traditional inspection practices are 

backward looking in nature and verify the activities that have already occurred, remote monitoring data 

may be coupled with prognostic techniques developed for health monitoring applications to anticipate 

how current trends at a facility may play out into the future.  For example, if the process data suggests 

that a protracted diversion event is occurring (i.e. that material is slowly being removed from the 

process stream and accumulated without being declared), the traditional approach to the data would 

only allow the IAEA to estimate the amount of material that has already been lost.  With prognostics, 

the IAEA may be able to forecast the time until a specific quantity of material is unaccounted for in the 

process; such information may be used to decide how urgently the Agency needs to consider a 
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response.  If the apparent loss of material is extremely slow, perhaps the next scheduled inspection is 

sufficient to identify and resolve the issue.  If the material loss is quick, the Agency may need to consider 

an unannounced inspection prior to the next scheduled inspection.  Such knowledge would be well-

suited to the concept of information-driven safeguards and inspections, and would help maximize 

inspection efficiency. 

This research focuses on the development of a prognostic method to forecast the time until a 

predetermined quantity of material has been diverted from an enrichment facility.  Unlike traditional 

health monitoring applications such as crack propagation in metal components or degradation of valves, 

inspection monitoring is not focused on modeling mechanical processes but identifying human decisions 

and changes in operating conditions as a result of these decisions.  This distinction introduces several 

problems to the process monitoring approach.  First, diversion may not actually occur and the material 

balance may never truly "degrade" due to the loss of material.  Second, there is no guarantee that a 

diversion, if present, will follow a predetermined pattern.  Diversion may be performed at a constant 

rate, intermittently, at fast or slow rates, or a myriad of other patterns.  Third, diversion is not the only 

means by which the material balance may be affected; measurement biases in weight sensors, holdup in 

the enrichment cascade, and normal processes such as degassing of feed cylinders may all affect the 

material balance. 

To accommodate the variety of possible diversion and non-diversion scenarios that may be 

encountered, this research employs a prognostic method to predict the time at which a predefined 

"significant quantity" of material is lost from the material balance of the enrichment process.  The 

particle filter uses a Monte Carlo procedure to estimate trends in the materials balance and generate 

predictions and uncertainty estimates of the time to significant quantity diversion.  The particles are 

constrained to linear predictions, so that any estimated time to diversion of a significant quantity 

assumes that the diversion rate remains constant.  (This is in alignment with typical enrichment 

processes, where maximal efficiency and minimal equipment wear are achieved by maintaining a 

constant rate of processing.)  The particle filter process, however, affords nonlinear flexibility by 

updating the particle weights and trajectories as more data are received. 

The prognostic method is applied to data collected from the Oak Ridge Mock Feed and Withdrawal 

Facility, an analog of the gas centrifuge enrichment process that uses water as the simulated enrichment 

medium and is scaled roughly 1:100 in both time and mass to a gas centrifuge enrichment plant.  The 
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particle filter is applied to four data sets: a non-diversion process, a slow diversion, a fast diversion, and 

an intermittent diversion.  The significant quantities of concern for the non-diversion and slow 

diversions are 0.8 kg of water, or analogously 80 kg of low-enriched uranium; for the fast and 

intermittent diversions, the significant quantity limits are 2 kg, which scales to approximately 200 kg.  

(The varying thresholds for diversion were designed to accommodate laboratory restrictions for 

operating times.  However, the IAEA definition of a significant quantity for low enriched uranium is the 

amount that contains 75 kg of Uranium 235, or roughly 2000 kg of 5% enriched uranium hexafluoride, 

which scales to roughly 20 kg of diverted water at the mock facility.  The lower limits thus represent a 

conservative threshold for diversion rather than an absolute time to undeclared significant quantity 

production.) 

For the non-diversion case, the particle filter correctly predicts that diversion does not produce 0.8 kg of 

material within the prognostic window of roughly 14 hours.  For slow diversion, the particle filter first 

detects the diversion about 10 minutes after initiation; by 46:40 minutes, the actual time to diversion of 

85 minutes lies within the 95% confidence interval of the particles, and the final prediction at 6 minutes 

and 40 seconds accurately predicts 0.8 kg of diversion between 81:58 minutes and 92:46 minutes with 

95% confidence.  For fast diversion, the diversion is again detected within 10 minutes (the earliest 

allowable detection time due to particle learning time) with the 120 minutes to 2 kg of diversion 

predicted with 95% confidence immediately.  With intermittent diversion, the diversion was initiated 

after approximately 60 minutes and paused from 96:40 minutes to 103:20 minutes.  The particle filter 

accurately detected the diversion immediately and recognized the pause in diversion, giving a 

temporary prediction of no significant quantity production during this time.  Once diversion resumed, 

the particle filter predicted the correct time to significant quantity production of 135 minutes with 95% 

confidence, with a 95% confidence interval prediction at 103:20 minutes of approximately [283:20 

66:40] minutes and a 95% confidence interval at 126:40 minutes  of [167:40 135:50] minutes.  The very 

large confidence intervals at 103:20 minutes were reflective of the very high uncertainty associated with 

a prediction immediately after a change in regime. 

The precision of predictions of time to significant quantity diversion were heavily dependent on the 

constancy of the diversion rate itself.  Not knowing the intent of the operator, the particle filter 

automatically adapted its confidence intervals based on the dynamics of the data, increasing the 

variance estimates with dynamic diversion rates and converging on the time to significant quantity 
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diversion when the diversion rate was stable.  In all cases, the presence of diversion was correctly 

identified and the estimates converged toward the correct time to diversion as more data were 

collected.  
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1 INTRODUCTION 

One of the central missions of the International Atomic Energy Agency (IAEA) is to monitor the 

enrichment of uranium at declared facilities such as gas centrifuge enrichment plants (GCEPs) [IAEA, The 

Structure and Content of Agreements Between the Agency and States Reguired in Connection with the 

Treaty on the Non-Proliferation of Nuclear Weapons, 1972].  The two primary goals of the inspection 

process are to verify that the facility is enriching only as much material as is declared, and to verify that 

"Significant Quantities" (SQs) [IAEA, 2002] of undeclared special nuclear material such as low-enriched 

uranium (LEU) or high-enriched uranium (HEU) are not produced [IAEA, 2002].  (For LEU, a Significant 

Quantity is the amount of material that contains 75 kg of U-235.  For example, approximately 2,000 kg 

of 5% enriched UF6 meets this standard.)  The current method of verification of GCEP activity is to 

periodically send inspectors to the facility to ensure that only declared feed cylinders are brought on 

site, while only declared tails and product cylinders are removed from the facility.  Additionally, the 

material balance is reviewed alongside assay of the feed, product, and tails cylinders to ensure that the 

material feed into the enrichment process has been extracted and accounted for, and that the balance 

of U-235 is maintained.  The process is rather cumbersome to the IAEA, who must maintain a sufficient 

staff and travel budget of inspectors, as well as the enrichment facility operator, who must often wait on 

the inspector to verify cylinders before using them, or who must occasionally stop the enrichment 

process so that the cylinders at feed or withdrawal stations may be measured and verified.  

Currently, the global increase in nuclear power is causing a continual and sharp increase in the number 

of nuclear power plants (and consequently, the number of enrichment facilities) [Sokolov, September 

2006].  As the number and size of enrichment facilities continues to grow, the financial and manpower 

burdens on the IAEA increase correspondingly.  However, the operating budget of the IAEA is not 

currently growing at the same pace as worldwide uranium processing, a discrepancy that may eventually 

preclude the IAEA from effectively monitoring GCEPs and other enrichment facilities and fulfilling their 

verification mission.  Knowing this, the IAEA is interested in developing alternative monitoring methods 

that may save time and manpower without sacrificing inspection effectiveness (and possibly even 

increasing the effectiveness of IAEA monitoring). 

One solution that lends itself naturally to the problem is to adapt remote process monitoring techniques 

for verification of GCEP operation [Dixon, et al., 2007; Laughter, 2009; Laughter, et al., 2010].  Use of 
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process monitoring as a verification tool is neither a new idea [Speed, et al., 1986] nor is limited to 

GCEPs, and process monitoring has also been proposed to assist verification for other nuclear processes, 

particularly for reprocessing facilities where transuranic elements (especially plutonium) are involved 

[Burr, et al., 2008].  In addition to the continuation of research at Los Alamos National Laboratory into 

statistical and methodological processes for monitoring, coordinated research is currently being 

conducted at Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and 

Sandia National Laboratory (SNL) to develop a process monitoring system that could meet the 

verification requirements of the IAEA as well as the data protection requirements of the GCEP 

operators.  The research of these national laboratories focuses largely on load cell monitoring of the 

feed, tails, and product stations to maintain a constant account of the material entering and leaving the 

"cascade" area of a GCEP – the network of centrifuges that perform the actual task of enrichment.  

Many challenges must be solved to develop a reliable monitoring system, such as the development of a 

data communication network that cannot transmit proprietary operator information off-site, the 

certification of accountancy scales that can verify cylinder weights without necessarily having an 

inspector on-site, and adequate protection of the system against spoofing and other forms of data 

manipulation.  The research of this dissertation, however, will focus on analyzing the load cell and 

accountancy scale data and developing automated methods of drawing safeguards conclusions that 

serve the IAEA's mission of verification. 

As with the current inspection process, any new techniques must protect the operator's proprietary and 

confidential information [IAEA, 2002]; for example, inspection cannot be so invasive as to learn the 

operator's methods for maximizing efficiency of the enrichment process.  To meet this need, the 

amount of data that is monitored must be minimized to that which is necessary for verification, and only 

the necessary conclusions and information may be passed beyond the physical boundaries of the facility.  

For this reason, any process monitoring-based method of inspection and verification must be robust 

enough to be applied on-site without requiring constant inspector presence while still communicating 

the necessary information to IAEA headquarters in Vienna, Austria. 

At ORNL, a mock feed and withdrawal (F&W) facility has been developed so that process monitoring 

techniques may be tested and refined without disturbing the operations of a GCEP [Krichinsky, et al., 

2009].  The facility uses water as a substitute for UF6, greatly reducing cost and eliminating the need for 

radiation and special materials controls.  With three feed stations, two tail stations, and three product 
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stations, the facility may be run continuously and has provided data that can be analyzed in a similar 

manner to that of GCEP operation [White, et al., 2010].  Though some features of the enrichment 

process are lost (e.g. the ability to perform destructive analysis (DA) and nondestructive analysis (NDA) 

of the product and tails materials to determine enrichment levels), the system as a whole serves as a 

suitable analog to GCEP load cell activity, allowing for the development of load cell monitoring 

techniques at the "proof of concept" level.  Further discussion of the mock F&W facility is provided in 

Appendix A. 

For this research, the mock F&W facility will be used in place of real GCEP data.  All conclusions are 

intended to illustrate the techniques at a scale level so that the IAEA and GCEP operators may 

understand how an automated process monitoring and prognostic system may work.  With the potential 

for upscaling to real GCEP monitoring in mind, any techniques developed in this research will be partially 

judged on their apparent portability to full-scale GCEP monitoring as well as the confidence and 

accuracy at which any safeguards conclusions are made. 

1.1 Problem Statement 

The shift toward information-driven safeguards of GCEP activity represents a fundamental change in the 

way the IAEA fulfills its verification mission.  Where the traditional method of enrichment activity 

verification relied purely on agreement between inspector observation and facility operator declaration, 

the information-driven approach adds analysis of process monitoring data as a complement to inspector 

observations.  By adding plant performance data to the inspection metrics, the IAEA hopes to reduce the 

gaps in material accountability (e.g. the inability to verify material processed to and from cylinders that 

are still in-process), increase the level of sophistication required to defeat IAEA inspection, and to 

establish a smarter, more efficient inspection routine.  Improved inspection efficiency holds particular 

value to both the IAEA and the GCEP operator; by utilizing "on-demand" inspection periodicities, the 

overall number of inspections (as well as the time required to perform the inspections) may be reduced 

for GCEPs where process data indicates a high likelihood of agreement between declarations and actual 

enrichment activity.  Reduction in the frequency and length of time of inspections is expected to provide 

significant savings to the IAEA through reduced inspector hours and travel, and to provide reduce cost to 

the operator, whose enrichment operations would experience fewer interruptions in the process. 

The heart of the information-driven safeguards system the IAEA hopes to implement lies in the ability to 

identify behaviors in GCEP operation that may indicate a need for inspections, with a particular concern 
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toward identifying potential diversion or undeclared activity.  Extending this goal, process monitoring 

information may also provide the ability to anticipate the severity of an event.  (For example: if diversion 

is occurring, how long until a SQ of material is diverted?)  Prognosis of safeguards-related faults in GCEP 

monitoring may further refine the ability of the IAEA to decide upon appropriate action.  This research 

focuses on the development of prognostic methods using on-line weight measurements of feed, 

product, and tails cylinders at process stations.  

The mock F&W facility at Oak Ridge will be used as a test platform for the development of prognostic 

techniques to predict the time to SQ production through either diversion or undeclared activity.  

Predictions of SQ production must also discriminate between illicit activities and normal features of 

operation that affect the MUF calculations, such as cold trap operation, cascade holdup, and 

instrumentation error.  Additionally, uncertainty estimates must be developed so that the results of the 

prognosis do not merely identify a prediction of time to SQ production, but the likelihood that the data 

is in fact suggesting SQ production as well as the perceived variance in the prediction.  Competing 

prognostic models will be developed using General Path and Particle Filter techniques, and the models 

will be compared based on the accuracy and uncertainty of their predictions. 

1.2 Original Contributions 

The research within this document contains distinct, original contributions to the fields of prognostics 

and of international safeguards.  These contributions center on the development of prognostic methods 

for uranium enrichment verification with a specific focus of predicting the time at which a significant 

quantity of diverted material may be produced.  In contrast to traditional health monitoring prognostics, 

this research focuses on diagnosing and prognosing the effects of human decisions instead of 

component wear and failure.  Such prognostics methods are also novel to safeguards application, which 

traditionally focus on diagnosing the past rather than anticipating the future.  The primary original 

contributions are described here: 

1. Adaptation of prognostic methods for safeguards applications by the development of a 

prognostic method to predict the estimated time until diversion of a "significant quantity" of 

material from the mock feed and withdrawal facility. 

2. Development of uncertainty estimates for the time until significant quantity diversion prediction 

and metrics to quantify the validity of the prognostic method.   
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3. Development of methods to update measurement and dynamic noise estimates to account for 

potentially sudden and significant decision-based changes in system behavior, such as the 

initiation or cessation of diversion. 

4. Development of methods to discriminate anomalous behavior (e.g. diversion) from normal 

perturbations of the mass balance data from the mock F&W facility, such as the loss of material 

to cold trap emulation. 

1.3 Organization of the Document 

Chapter 2 reviews the literature in international safeguards and prognostics as pertinent to this 

research.  The state of the art for prognostics methods is examined, as well as research in remote 

monitoring for gas centrifuge enrichment facilities.  Chapter 3 discusses the equipment and methods 

used in this research.  The Oak Ridge Mock Feed and Withdrawal Facility is discussed, and detailed 

information of the facility may be found in Appendix A: Description of the Mock Feed and Withdrawal 

Facility.  The general path model and the particle filter method are described in detail in relation to 

prognostics applications.  Chapter 4 provides the results of the research.  The changes made to the 

Mock Feed and Withdrawal Facility are described in detail, including procedural and equipment 

modifications to improve data consistency.  A preliminary comparison of the various prognostic models 

is made and the particle filter is justified as the prognostic model of choice for this research.  The 

particle filter method is then applied to the four case studies described in Appendix C:  Case Studies.  

Finally, Chapter 5 provides conclusions drawn from this research, as well as possibilities for future work 

beyond the scope of this research.   
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2 LITERATURE SURVEY 

2.1 IAEA Responsibility for Enrichment Verification 

The authority for IAEA verification of enrichment processes stems from treaty between nation states 

and the United Nations (UN) to promote the non-proliferation of nuclear weapons [IAEA, 1972].   

Through independent verification of the enrichment facility operator's activities, the ability for a 

declared enrichment plant to produce weapons-grade enriched uranium or to produce LEU that is 

earmarked for future weapons production without international awareness is reduced.  While the IAEA 

has no enforcement authority (that is, the IAEA cannot prevent an enrichment facility from producing 

HEU or LEU for weapons production), their independent verification that a facility (and, by extension, 

the nation) is operating only for energy production purposes is a key contributor in determining whether 

a nuclear nation is a significant proliferation threat [IAEA, 2009]. 

The primary objectives of IAEA inspections are to ensure that the enrichment facility is not diverting 

declared nuclear material and that the facility is not producing undeclared nuclear material [IAEA, 2002].  

In both cases, the goal is to assure that an enrichment facility is not generating a "Significant Quantity" 

(SQ) of nuclear material, where an SQ is defined as the minimum amount of nuclear material needed to 

produce a pure fission weapon.  Currently, the IAEA defines a SQ of LEU as the amount of LEU that 

contains 75 kg of U-235, and of HEU as the amount of HEU that contains 25 kg of U-235 [IAEA, 2002].  

(Note:  [Cochran, 1995] suggested that far lower levels are needed based on more conservative 

estimates of the material needed for weapons production, but the IAEA convention will be followed in 

this research.)  This verification is considered the fulfillment of the IAEA's inspection purpose under the 

IAEA Statute, Article III.A.5 [IAEA, The Structure and Content of Agreements Between the Agency and 

States Reguired in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons, 1972]: 

To establish and administer safeguards designed to ensure that special fissionable and other materials, 

services, equipment, facilities and information made available by the Agency or at its request or under its 

supervision or control are not used in such a way as to further any military purpose; and to apply 

safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a 

State, to any of that State's activities in the field of atomic energy. 

 

 By verifying that no material is removed from the balance of declared nuclear material and that no 

undeclared material is processed within the enrichment facility, the facility is deemed to be operating 

for the peaceful purpose of producing enriched uranium for energy production.  The authority of the 
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IAEA to inspect enrichment plants is provided by the IAEA Statute in fulfillment of this statement as 

agreed to by the nations who have signed to the Nuclear Nonproliferation Treaty (formally the Treaty on 

the Non-Proliferation of Nuclear Weapons, or the NPT). 

2.2 Current Process for GCEP Inspection 

Currently, inspections of GCEPs are conducted by IAEA inspectors who travel on-site to verify 

compliance with the NPT [IAEA, 2009].  The inspectors verify the accountancy weights of all feed, 

product, and tails cylinders that are either arriving or departing the facility, ensure that all declared 

cylinders are properly accounted for, and ensure that there is no undeclared material present at the 

facility.  Every cylinder must be weighed prior to being placed in the enrichment process, and must again 

be weighed after processing prior to the cylinder's removal from the facility; both of these weights 

(called accountancy weights) are taken in the presence of the IAEA inspector.  Assay of the feed, 

product, and tails materials are also taken to measure their respective enrichment levels.  These 

accountancy weights are the heart of the verification process; if the processed feed stock weights match 

that of the of the withdrawal weights, and if the enrichment balances of the assay agree with the 

accountancy weights, then the declared material is considered to have been properly accounted for.   

The inspection process may also look for evidence of undeclared activity, such as the presence of feed 

and withdrawal stations that are not listed in the facility declarations. 

In conjunction with the inspector's actions, the facility operator is responsible for maintaining a current 

and accurate inventory of all nuclear material within the facility, recording all transport of nuclear 

material to and from the facility, and submitting routine inventory reports to the IAEA [IAEA, 1993].  The 

operator's declarations are compared to the inspector's findings to determine if sufficient agreement 

exists between the two observations.  If any discrepancies (referred to as 'material unaccounted for', or 

MUF [IAEA, 2002]) exist, they are resolved by searching for reasonable technical origins, such as 

measurement uncertainties.  If MUF cannot be satisfactorily explained, then the inspector reports an 

inability to verify that no diversion has occurred.  With the exception of measured added under the 

additional protocol of 1998 [IAEA, 2009; IAEA, Model Protocol Additional to the Agreement(s) between 

State(s) and the International Atomic Energy, 1998], the inspection process has remained largely 

unchanged since its inception. 
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2.3 Next-Generation Techniques for GCEP Inspection and Monitoring 

A shift toward the implementation of an "information-driven" approach to safeguards has been 

documented since the discovery of the Iraq covert nuclear program in 1991 [Frazar, et al., 2010; IAEA, 

2005].  Applying information-driven concepts to GCEP inspections is a topic that has been discussed as 

early as the 1970s [Speed, et al., 1986] with a revival of interest in the last fifteen years [Howell J. W., 

1995], though application has yet to materialize largely due to the extensive amount of negotiation 

between the IAEA and enrichment facility operators [Friend, 2008; Friend, 2010].  Much of the interest 

in enhanced monitoring techniques is driven by the desire to improve the timeliness of detection 

[Tsvetkov, 2007] with regards to diversion, undeclared activity, and higher than declared enrichment 

[Pickett, et al., 2008] and to close existing gaps in continuity of knowledge of verified activity at GCEPs 

[Curtis, 2009].  Another reason for interest is the desire to increase inspection efficiency so that 

inspection costs may be reduced for both the IAEA and the facility operator [Gyane, 2010]. 

The concept of information-driven safeguards is hardly new [Cobb, 1981; Shipley, 1983] and is not 

isolated to monitoring of GCEPs.  Over the past 15 years, a significant amount of research has focused 

on remote monitoring techniques for spent fuel reprocessing facilities [Burr T. , et al., 1995].  The 

presence of transuranic elements in spent fuel (especially plutonium) and their isolation during 

reprocessing has resulted in a greater focus on reprocessing facilities than enrichment facilities during 

this time [Burr, et al., 1999; Longmire, et al., 2002; Burr T. , et al., 2003; Burr, et al., 2006] in part due to 

the greater sensitivity toward undeclared plutonium production within the IAEA's definitions of 

significant quantities.  Where uranium enrichment SQ limits are focused on U-235, the presence of 

plutonium in reprocessing invokes the IAEA SQ limit of material containing 8 kg of plutonium [IAEA, 

2002].  (The far more restrictive limit for plutonium and the specific elemental separation of plutonium 

that occurs in reprocessing results in a greater interest in verifying that undeclared plutonium is not 

diverted.  This attention is largely responsible to the greater research interest that was shown in 

reprocessing monitoring over enrichment monitoring from approximately 1995 to 2005.)  The research 

efforts in the development of online monitoring techniques for spent fuel reprocessing may be seen to 

mirror efforts applied to GCEPs.  In both cases, the primary focus is placed on closing "knowledge gaps" 

in material inventory balances and in isotopic assays through remotely monitored sensing equipment so 

that both the between-inspection uncertainties and the inspection periodicities may be reduced 

(compare [Burr, et al., 2008] and [Curtis, 2009]). 
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2.3.1 Load Cell Monitoring and Automated Analysis 

Research efforts are currently being conducted within the United States [Krichinsky, et al., 2008; 

Krichinsky A. M., 2009; Garcia, 2010; Boyer, 2010; Durst, 2008; Lockwood, 2010; Laughter, et al., 2008] 

and internationally [Howell, et al., 2009; Delbeke, et al., 2008; Delbeke, et al., 2007; Dixon, et al., 2006; 

Howell J. , 2008; Howell, et al., 2007] to develop new monitoring techniques that help the IAEA meet 

their enrichment monitoring mission within the constraints of their budget.  Load cell monitoring has 

been central to most research efforts for next-generation verification of GCEP and other enrichment 

facility activity [Howell J. , 2008; Krichinsky A. , 2008; Whitaker, et al., 2009; Laughter, 2009].  The central 

focus of load cell monitoring has been to maintain a running calculation of the MUF within a facility.  The 

MUF value may include losses from cold traps, the initial charging of the cascade, and natural variations 

in holdup within the cascade due to normal operations.  A typical example of a MUF calculation over 

time is presented by Howell in Figure 1 from an experiment in load cell calculations at Capenhurst 

[Howell, et al., 2009].  Natural fluctuation in the MUF value may be seen, and the positive upward trend 

was attributed to a scale bias in the tails station load cell. 

Similar calculations have been performed on operational data from the mock F&W facility, as shown in 

Figure 2.  Unlike Figure 1, which shows MUF as a positive value, the mock F&W facility data represents 

MUF as a negative value.  Here, the effects of holdup can be seen in facility startup and shutdown (near 

400 and 1600 units of time, respectively), but the MUF remains relatively constant over time during 

operation.  Normal fluctuation due to facility operation may be seen, and perturbations near the 1000 

units of time mark are attributable to switchovers between feed and tails tanks.  (Further discussion of 

the mock F&W facility may be found in Appendix A.) 

As with Howell's work at Capenhurst, the remaining literature on analytical methods for verification of 

enrichment activities focuses on calculation of the MUF and application of statistical measures to 

evaluate and interpret the data.  In virtually all instances, the central statistic for monitoring the 

material balance is the inventory difference (ID), which is defined by [Burr, 2008] as Equation 1, where 

IDt is the inventory difference at time t, BIt is the beginning inventory (typically calculated by an audit), Rt 

is the receipt of new material, EIt is the ending physical inventory (also by audit), and St is the shipment 

of material out of the control area.  By traditional inspection methods, where the inspectors calculate 

the various terms of Equation 1 by manual audit of the inventory at a facility, the measurements are 

taken with a periodicity of the inspection visits themselves, which is typically performed monthly.    
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Figure 1 - MUF Calculation from Capenhurst Load Cell Evaluation [Howell, et al., 2009] 
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Figure 2 - MUF Calculation from the Mock F&W Facility 
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Equation 1 - Inventory Difference for Special Nuclear Material 

 

Indeed, Equation 1 represents the core of all inspector-based verification performed by the IAEA and is 

identical to Equation 2 [Speed, et al., 1986], where I(n-1) and I(n) are the respective inventories at the 

beginning and ending times of the evaluation interval and T(n) is the net transfer of material in and out 

of the material balance boundary.  Material Unaccounted For (MUF), is equivalent to ID and is the 

common term within the IAEA for the material balance discrepancy.  The annual facility-wide audits 

provided the estimates for the beginning inventory and ending inventory for a given interval, and the 

monthly inspections provided calculations for the receipts of new feed material and shipments of the 

enriched product and depleted tails materials.  If the calculated inventory differences fell outside 

previously determined thresholds, further inquiry could be performed to resolve the apparent loss (or 

gain) of material from the facility. 

                        

Equation 2 - Historic Formulation of Material Unaccounted For (MUF) 

   

Both [Burr, 2008] and [Speed, et al., 1986] point to statistical tests derived from the calculation of the 

inventory difference.  One such test is the CUMUF (Cumulative Material Unaccounted For) test, where 

the MUF is calculated at each inspection interval as an accumulation since the previous facility audit.  In 

other words, the material balance at the previous audit resets the MUF to zero; each inspection 

thereafter adds or subtracts the material balance discrepancy to the current MUF tally, creating an 

integrated calculation of the MUF between audits.  Using this approach, a likelihood ratio test was 

formulated in [Cobb, 1981] where the CUMUF fails the test if Equation 3 is true.  This particular test is 

suspect due to its assumption that each measurement Xi is independent, which cannot be guaranteed. 

          
     

  

 

   

 

Equation 3 - Likelihood Ratio Test for Cumulative MUF 
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Page's test was commonly proposed as an alternative procedure around the same time [Woods, et al., 

1980; Pike, et al., 1982; Jones, 1984].  The test is applicable with ordered observations (e.g. time series) 

and allows the testing of the hypothesis of a trend against its null.  In this case, the suggested hypothesis 

is that the MUF remains constant, which is tested against the null of a nonconstant MUF.  Accordingly, 

the likelihood ratio for Page's test reduces to Equation 4, where mb and me are the beginning and end of 

the evaluation period, respectively, and 0 is positive.  The literature suggests several variations on this 

test, such as applying the test to standardized residuals or adding robustness measures.    

   
               

 

 
   

  

    

 

 

   

Equation 4 - Likelihood Ratio Test for Page's Test 

 

Even in the early stages of IAEA inspection, a significant amount of research was directed toward the 

development of monitoring methods for continuous data streams rather than monthly inspection 

reports.  As James Shipley noted [Shipley, 1983]: 

Currently, one technique being developed for generating timely materials accounting data is near-real-time 

accounting, which is based on obtaining inventory information without interrupting the processing of 

nuclear material.  The purpose of near-real-time accounting systems is to detect anomalies, possibly 

resulting from diversion, in a timely fashion and then to localize them for investigation. 

 

Shipley then proposes several possible methods to realize near real-time accounting, focusing especially 

on various formulations of the sequential ratio probability test (SPRT) such as Wald's SPRT, a uniform 

diversion test, a sequential variance test, and SPRT derived from the CUSUM.  Such tests have obviously 

yet to be realized in practice, as the IAEA is still relying on monthly inspection reports to satisfy their 

mandate for verification of enrichment declarations, but the delay in transitioning to a near real-time 

monitoring system certainly has not been for lack of desire on the part of statisticians and researchers. 

Shortly after [Speed, et al., 1986], interest (or, more likely, funding) in process monitoring of enrichment 

facilities stagnated.  Throughout the late 1980s through the 1990s, most of the research in near real-

time accountancy was performed for reprocessing scenarios rather than enrichment, due largely to the 

political interest in plutonium management in spent nuclear fuel, as in [Burr, et al., 1995].  Although not 

directly related to this research, the reprocessing monitoring efforts of this time are noteworthy in that 
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the period represented a "changing of the guard" of the researchers involved, as the next generation of 

process statisticians were focused on the reprocessing problem at the time.  Like enrichment 

monitoring, near real-time techniques were proposed for reprocessing, usually under the term solution 

monitoring [Burr, et al., October 1997] (also printed as [Burr T. , et al., 2003]). 

In Europe, current work in process monitoring for enrichment verification is centered on the 

development of the Real Time Mass Evaluation System (RTMES), discussed in [Delbeke, et al., 2008; 

Delbeke, et al., The Detection of Undeclared LEU Production at a GCEP by Real-Time Mass-Balancing, 

2007].  In this report, the typical arrangement of load cells for product, feed, and tails stations is 

anticipated, and the data is used to generate continuous estimations of the MUF, along with cumulative 

(integrated) MUF calculations.  In this report, preliminary demonstrations of results that might be 

expected from the RTMES assume that a protracted diversion is accompanied by an increase in product 

flow rate such that the flow rate to declared product stations remains constant (and the excess is 

diverted as undeclared product).  While not a necessary step for diversion, such a scheme is intended to 

disallow use of the product load cell data only as an indicator of diversion, since the declared product 

flow rate would appear constant.  The results of such a system could then be compared to the 

operator's declarations [Howell, et al., Data Consistency Evaluation in GCEPs, 2007] such that the total 

material transfer is checked against the declarations and the internal processes are checked via CUMUF, 

likelihood tests, and assay measurements to generate a holistic picture of enrichment activity.  Early 

case study literature cites data taken from the URENCO (Capenhurst) Limited (now URENCO UK Limited, 

or informally Capenhurst) for proof of concept of load cell monitoring [Howell, et al., 2009].  While care 

would obviously be necessary to differentiate safeguards-relevant and proprietary information so that 

IAEA inspection routines do not become a potential leak of trade secrets, this is a topic that has yet to 

be resolved between the IAEA and enrichment facility operators regarding remote process monitoring 

systems. 

It should be noted, however, that while the term RTMES implies a real-time system, where results are 

provided instantly, the actual concept envisioned in [Delbeke J. , et al., 2008] is in fact a near real-time 

system, with the "near" dropped due to the rapid analytical response of the system relative to the IAEA's 

reaction time (i.e. that the system may report results daily though the IAEA may not be able to send 

inspectors on a triggered inspection for several days due to travel logistics).  In this sense, the term "real 

time" is a simplification for the sake of an easier name (RTMES vice NRTMES).  This convention is carried 
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over from [Dixon, et al., 2006].  There are currently no true "real time" processes in the existing 

literature, likely due to the significant logistical overhead presented by real-time data handling and 

processing. 

In the United States, the "renaissance" (for lack of a better term) in process monitoring research has 

been more holistic.  The proof-of-concept of load cell monitoring was performed at the Portsmouth 

gaseous diffusion facility [Krichinksy, 2008].  Preliminary development and testing of monitoring 

algorithms has been conducted using the Mock Feed and Withdrawal Facility at Oak Ridge National 

Laboratory [Krichinsky, et al., 2009], including the work in this research.  Such efforts represent the most 

thorough attempts to date to model diversion, off-scale activity, altered declarations, and other 

scenarios on the basis of load cell data.  Use of data generated from a physical facility – even if just an 

analog – represents the first "step up" from computer simulated data.  The mock facility is also used to 

develop and test data management solutions to find and demonstrate acceptable means to record, 

transmit, analyze, and protect load cell monitoring data [Garner, et al., 2011]. 

Additionally, research for next-generation safeguards verification is not only being conducted on load 

cell monitoring techniques [Krichinsky, et al., 2008; Krichinksy, 2008; Lenarduzzi, et al., 2007] but is also 

focused on all other facets of enrichment facility inspection (e.g. non-destructive assay (NDA), 

surveillance, and cylinder identification) [Laughter, et al., 2010].  The goal of these research efforts is to 

produce and demonstrate a comprehensive set of tools that the IAEA may use to increase the efficiency 

and reliability of their inspection processes while reducing the financial and manpower burdens on the 

agency [Whitaker, et al., 2009].  These additional fields are mentioned briefly, but are not expounded 

upon in this report as their development is independent of the development of load cell monitoring 

methods. 

2.3.2 Non-Destructive Assay 

One facet of enrichment process monitoring is the verification that feed, tails, and product cylinders 

contain uranium at the levels of enrichment that the facility operator has declared.  The difficulty with 

spectroscopy is the thickness of the cylinder and material, which self-shields the signature from the 

innermost contents of the cylinder.  Research is being performed to identify and develop NDA 

techniques that may provide information about the contents of the cylinder at a greater depth and with 

greater reliability. 
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2.3.3 Facility Surveillance 

The surveillance of cylinder storage and processing areas remains a relatively undeveloped area of 

improvement in enrichment monitoring due to the delicate balance between comprehensive materials 

accountability and the protection of facility intellectual property.  While constant video surveillance by 

the IAEA would allow for aggressive inspection and verification of facility activities, such data could also 

be used to provide insight into a particular facility's operational tendencies.  Enrichment facility 

operators are rightly concerned that such information may allow others to learn their trade secrets, 

nullifying any economic advantage to maintaining the secrets.  Additionally, public proliferation of 

videos of GCEP operations may conceivably aid other non-nuclear states in developing their own nuclear 

programs, resulting in an even greater proliferation risk.  The (very legitimate) facility-side concerns 

have made the video surveillance problem a mostly logistical issue, and the development of surveillance 

protocols that aid the IAEA inspectors while protecting the facility's proprietary knowledge is a matter of 

cooperation rather than innovation. 

2.3.4 Cylinder Identification 

A considerable amount of inspector's effort is spent maintaining inventory of feed, tails, and product 

cylinders.  Inspectors must visually identify each cylinder in order to maintain continuity of process 

knowledge from the time the cylinder is brought into the facility until it leaves.  If a cylinder is not in its 

expected location, the facility must be visually searched to find the location of the cylinder.  Various 

cylinder identification techniques (e.g. radio frequency identification (RFID) or global serial numbers) 

[Hori, et al., 2008; Pickett, et al., 2008; Pickett, et al., Results from a "Proof-of-Concept" Demonstration 

of RF-Based Tracking of UF6 Cylinders During a Processing Operation at a Uranium Enrichment Plant, 

2008] are currently being researched to find ways to automate the inventorying process and to provide 

more comprehensive and reliable data on the life cycles of the cylinders.  Such efforts are intended to 

enable automated cylinder identification and tracking so that the location and disposition of a cylinder 

may be determined without the need for the inspector to arrive at the facility and visually identify the 

cylinder. 

2.3.5 Inspection Periodicity 

Currently, inspections are performed on a regular schedule to meet an IAEA requirement that no more 

than one month elapses between inspections.  There is ongoing discussion about shifting from a 

periodic inspection routine to a random and/or event-triggered routine; by moving away from periodic 

inspections to a routine that does not allow the facility to know the date of the next inspection, it is 
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hoped that the number of inspections per annum may be reduced.  By incorporating improved 

monitoring techniques, current estimates suggest that as few as five or six inspections per annum may 

be sufficient to provide the same verification of declared facility operation as the current twelve-per-

annum routine, and that inspections may be smartly timed to coincide with facility operations such as 

cylinder loading or unloading [Laughter, et al., 2010].  This reduction in inspection frequency would 

reduce the burden on the IAEA as well as reduce the number of work stoppages required by the facility; 

both parties would benefit financially from a reduced inspection frequency, making this a particularly 

desirable improvement in the inspection process. 

2.3.6 Mailbox Declarations 

An additional safeguards technique of interest to the IAEA is the concept of mailbox declarations.  In a 

mailbox declaration, the facility operator would provide a timely electronic message to the IAEA 

regarding the disposition of the facility.  For example, at the time the mailbox declaration is made, the 

mailbox declaration may state which feed and withdrawal stations have cylinders present, and the 

declaration may state the ID of the cylinder on the station.  By providing basic information of the 

condition of the cylinders, the IAEA has more information between inspections that may be used for 

verification of activity when the next inspection occurs [Korbmacher, 2008].  For example, if the most 

recent mailbox declaration stated that a certain cylinder had just been loaded onto a certain feed 

station and the inspection reveals that there is no cylinder at that feed station, then the discrepancy 

could raise a red flag that would warrant further investigation into the activities of the facility.  Likewise, 

if the activity indicated in the mailbox declarations match the activity observed by inspection, then the 

IAEA may have increased confidence that the facility is operating as declared.  The declarations are 

intended to help increase the continuity of knowledge and help the IAEA maintain a faster response 

time to potential abnormalities. 

2.3.7 Automated Analysis at the Mock Feed and Withdrawal Facility 

Part of the research effort with the Oak Ridge mock feed and withdrawal facility has focused on 

demonstrating automated analysis tools for process verification in a practical setting.  The facility itself is 

designed to allow the demonstration of nearly all the aforementioned analytical techniques (excluding 

isotopic assay), including inventory monitoring, cylinder identification, on-line inspections, and database 

architecture [Garner, et al., 2011].  The process data recorded from the mock F&W facility may be 

analyzed using a MATLAB™ based software tool titled PlotEvents, written originally by James Henkel 
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[Henkel, 2010] and updated by both Henkel and this author [Hooper, et al., 2011; Henkel, et al., 2011].  

Based on process station load cell data, the PlotEvents tool counts cylinders, identifies station events 

(e.g. loadings and unloadings), calculates the amount of material processed as functions of time, 

calculates inventory differences, and provides automatically generated reports on the operation of the 

facility for time periods of interest.   

Sample screenshots of the PlotEvents tool are given in Figure 3 through Figure 6.   Figure 3 displays the 

main PlotEvents screen, where the process data is illustrated for visual review.  After clicking the 

"Analyze Events" button, Figure 4 is presented, where individual process stations may be reviewed for 

their usage.  The Cumulative ID may also be analyzed in this window, as shown in Figure 5 and Figure 6.  

The "Write Summary Report" button provides a detailed overview of the facility operation for the time 

in question, including the number of tanks processed, the amount of material processed, and the 

change in MUF over the process. In Figure 4 through Figure 6, the "ID Analysis" and "Prognostics" radio 

buttons in the "Select Analysis" window are reserved for implementation of work in this research and 

that of James Henkel in his concurrent research.   

With the PlotEvents software, the mock F&W facility data may be rapidly analyzed for operational 

features of interest to an inspector.  By using a simple, graphics-heavy interface, the inspector would not 

require intimate understanding of the algorithms.  Instead, inspector time and effort would be focused 

on interpreting the data more intuitively and using the findings to enhance and target the upcoming 

inspection efforts.  Automated report generation of visual representations of the facility operation and 

of text-based interpretations of the events during the period of interest also serve to reduce the 

inspector's workload by providing the data in pre-formatted and easily understood terms that the IAEA 

and facility operators can review.  Use of automated tools like PlotEvents to analyze the data and to 

generate results allows the inspection process to focuse on known issues rather than blindly reviewing 

the facility's operational history. 
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Figure 3 - PlotEvents Main Screen: Process Station Weight History over Time 
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Figure 4 - PlotEvents Analysis of Process Station Usage over Time 
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Figure 5 - PlotEvents Depiction of Process Scale Inventory Differences 
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Figure 6 - PlotEvents Net Inventory Difference for a Run of the Mock F&W Facility 
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2.4 Process Monitoring and Prognostics 

The field of process monitoring includes many disciplines; system monitoring, diagnostics, fault 

detection, prognostics, and health monitoring are a few such topics within the process monitoring 

umbrella.   Process monitoring may be used to understand the state of a system, help plan and execute 

maintenance of processes (and process components), search for inefficiencies, and anticipate future 

changes to the system such as remaining useful life (RUL) or time to failure (TTF) estimates.  Such an 

approach is typically used for mechanistic systems where wear of components is a natural consequence 

of their use.  While this is a departure from the verification process (where undeclared activity would be 

considered a departure from normal use and therefore not a natural consequence), the methodology 

may be applied by analogy to the safeguards realm.  Here, a discussion of prognostics is presented to 

provide context and an understanding of the discipline.  Application of prognostics to safeguards is then 

presented in Sections 3 and 4 of this report. 

Prognostics is the discipline of process monitoring that is of primary concern in this research.  Definitions 

of prognostics with regards to process monitoring vary widely; this research will focus on the RUL 

approach to prognostics, where the prognosis is the estimation of the RUL of a system or component.  

As stated by Lu and Meeker [Lu, et al., 1993], such prognostics are concerned with developing a 

measure of the degradation of a component (or system), determining correlations between the 

degradation parameter and factors within the environment and the component, and using those 

correlations to make a prediction of the time remaining until failure of the component.   

Traditional RUL prognostics focus on the time at which a system component reaches a predefined end of 

life criteria, either a hard failure or a soft failure [Orsagh, et al., 2006].  RUL estimates of actual failure 

are often termed hard failure estimates.  Such failures typically center on component breakdown, like an 

incandescent light bulb with a burned-out filament.  Soft failures, on the other hand, define a level of 

wear or degradation where a component or a system can no longer be trusted to meet its design 

specifications, like a light bulb that no longer emits its rated luminosity.  The maintenance of automotive 

motor oil is an example of soft failure; the recommended oil change periodicity (typically 3,000 miles) is 

not based on an actual failure of the oil, but rather on the time when the engine-cleaning additives 

within the oil can no longer be trusted to effectively remove carbon deposits within the engine.  With 

hard failures, the actual time to failure is seen as a distribution where both the mean and the variance of 

the RUL are desired.  Soft failures, conversely, are defined limits (such as 3,000 miles for oil changes) 
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that do not have associated distributions; once the soft limit is reached, the component is declared to be 

failed, even if it appears to be working normally. 

For the purposes of adapting prognostic techniques to GCEP verification, the SQs as defined by the IAEA 

[IAEA, 2002] may serve as soft failure limits.  For diversion of LEU or undeclared production of LEU, a 

soft limit of 75 kg is in keeping with the IAEA's objectives for verification; for production of HEU or LEU 

at higher enrichment level than declared, the soft limit of 25 kg is appropriate.  As was mentioned 

previously [Cochran, 1995], these SQ limits may be debatable as effective levels for safeguards, but the 

actual value of the soft limit generally does not affect the utility of a prognostic technique and is largely 

a moot point with regards to this research. 

2.4.1 Type I, II, and III Prognostics 

When developing predictions about the RUL or TTF of a component or system, the prognostic model 

must account for the characteristics of the component and the environment in which the component is 

used.  By considering any potential influences on RUL within these two umbrella categories, three 

different types of prognostic approaches may be considered [Hines, et al., 2008]. 

Type I prognostics are the oldest methods, providing TTF estimates based on average environmental 

conditions and average lifetimes of components or systems of interest.  Light bulb life expectancies are 

an example of Type I prognostics; if a light bulb is rated for 10,000 hours of use, that rating is based on 

an average light bulb used in a region of some standard temperature and humidity.  (Note: the limit for 

light bulbs is typically a soft limit set to assure a minimum life for most bulbs; however, the classification 

of the limit as Type I is not based on the type of limit but rather the assumptions made in setting the 

limit.)  Type I prognostics include distribution analyses, such as Weibull or exponential analysis.  

In Type II prognostics, components are still evaluated as the historical "average" component in terms of 

durability and lifespan, but variations in environmental factors are also considered.  If environmental 

conditions can be monitored and if correlations can be drawn between these conditions and the life of 

the component, then this additional information can be factored into the prognostic model to provide a 

more knowledgeable (and nominally, more accurate) estimate of RUL.  Type II methods include shock 

models, Markov Chains in some cases, and proportional hazards models.  In the case of proportional 

hazards models, Type II prognostics are often used to develop accelerated life testing models, where 

environmental factors are driven to harsher extremes (e.g. elevated temperatures or electrical currents) 
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to hasten wear.  If the relationship between the wear rate and the environmental stressors are 

understood a priori, accelerated life testing can provide EOL data for components that are expected to 

last for a long time.  In such cases, Type I EOL testing may not provide results in a timely manner.  Type I 

models, however, may sometimes be updated using Bayesian knowledge of the environment to produce 

type II models.  Such is the case with Markov Chains, where monitoring the state transitions of a 

component can allow for Bayesian updating of the transition matrix (TM). 

Type III prognostics incorporate both environmental conditions and component condition (estimated by 

sensor data) into the RUL model.  By accounting for environment and specific component 

characteristics, Type III models have the potential to provide the most reliable predictions of RUL.   The 

General Path Model (GPM) is the most common example of a Type III model, but all models of this class 

feature the ability to monitor individual components within individual environmental conditions.  This 

class of prognostic models is particularly useful for "critical" applications such as safety systems.  Type III 

prognostics are often identified by a Bayesian process that updates both the environmental and 

component-specific influences on RUL. 

2.4.2 Methods for Type III Prognostics 

Two methods appear to have significant favor for Type III prognostics: the general path model and 

particle filtering.   

2.4.2.1 General Path Prognostics 

Originally developed by Lu and Meeker [Lu, et al., 1993], the general path model was among the first 

Type III methods to gain widespread favor and is based on establishing measures of degradation rather 

than simply tracking failure times.  General Path models develop a degradation path based on historical 

data to provide information on the degradation of a component from beginning of life (BOL) to a 

defined end of life (EOL) as well as correlations to environmental and operational conditions so that the 

degradation of an object may be estimated over time by measuring the stressors as well as the 

component performance.   

The General Path Model is a method to estimate the degradation path of a unit component for a single 

failure mode.  GPM first begins with an assumption of a functional form that can be modeled using the 

historical data.  This form is typically monotonic and may be considered by Equation 5. 



26 
 

                   

Equation 5 - Functional Form for the General Path Model 

 

Here, xij represents the degradation path of the ith unit at a time tj.  The function  may be of a simple 

form (e.g. linear, exponential, or quadratic), but can be any valid function that provides a valid closed-

form cdf from beginning of life to failure [Lu, et al., 1993].  The historical data is used to develop 

estimates of the model parameters  and i, where  represents fixed effects that are constant among 

the population and i represents variance from unit to unit.  (The term ij represents the customary 

measurement error.)  Depending on the form of the function, the degradation paths of the historical 

data may be regressed onto Equation 5 to estimate the parameters, or some alternative estimation 

procedure (e.g. bootstrapping) may be employed.  The estimation of the functional form of degradation 

is considered the first stage in GPM prognostics.   

If the appropriate form for the GPM function is not known a priori, several competing models may be 

estimated using the historical data.  A metric of comparison may then be observed to determine the 

appropriate model for the problem at hand; example comparisons may include estimation of point 

parameters such as the average degradation at beginning of life (BOL), or continuous parameters such 

as the shape of the path (e.g. linear vice exponential).  Some models, such as polynomial models, may 

even be simplified based on the likelihood that individual parameters are significant.  For example, a 

quadratic model may be simplified to a linear model if the coefficient of the second-order term is not 

significantly different from zero. 

If multiple failure modes are available, the GP method may be adapted to include the known failure 

modes.  One approach to multiple failure mode inclusion is to determine the minimum time to failure 

based on the time to failure of all known modes, as in Equation 6, where the various failure modes are 

encapsulated from mode 0 through mode S [Haghighi, et al., 2010]. 

                   

Equation 6 - Minimum Time to Failure for Multiple Failure Modes 
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Extrapolation of the component's degradation path may then be performed with Bayesian updating of 

the degradation estimates based on both the environmental stressors and the component's 

performance.  By using a degradation measure (sometimes termed a prognostic parameter [Coble, 

2010]), the GPM can be used to extrapolate current degradation information of a component and can 

include censored data when building a failure model.  GPM prognostication has been since expanded to 

include a large variety of techniques, including regression models [Upadhyaya, et al., 1994], neural 

networks [Upadhyaya, et al., 1994; Chinnam, 1999], and first-principles relationships [Luo, et al., 2003].  

Uncertainty estimates of GPM techniques are relatively undeveloped in comparison to the GPM 

methodology itself, though significant work has been accomplished [Engel, et al., 2000; Byington, et al., 

2004; Hines, et al., 2006].  

The GPM approach is limited by the need to provide a closed-form function for the degradation path 

and the need to define a failure threshold [Garvey, et al., 2007].  If a convenient functional form is not 

readily apparent, the closed-form function may be approximated with more sophisticated methods, 

such as piecewise regression, fuzzy logic, or neural networking.  The failure threshold may be defined by 

actual failure (hard limits), or by an arbitrary amount of degradation prior to failure (soft limits); in either 

case, these limits must be satisfactorily addressed for general path modeling. 

2.4.2.2 General Path Model Prognostics – Case Studies in Literature 

The method proposed in [Chinnam, 1999] applies the general path method to two case studies:  the life 

expectancy of a drill bit that drills holes into stainless steel plates, and time to component failure due to 

fatigue crack growth.  For the drill bit case, the force required to cut a hole into the steel plate was 

recorded and used to generate the historical failure path model by correlating drilling force to failure 

time (in number of operational cycles).  Based on the historical data of eight drill bits employed to 

failure, a polynomial degradation model was fitted and used as the prior model.   A failure threshold of a 

critical thrust force was defined based on the historical failures.  The failure paths are shown in Figure 7 

[Chinnam, 1999]. 
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Figure 7 - Chinnam's Historical Drill Bit Failure Data [Chinnam, 1999] 
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Rather than using a Bayesian approach for GP model predictions of RUL for individual drill bits, Chinnam 

instead uses the historical data to develop the model type (e.g. polynomial vs. exponential vs. linear).  As 

the drill bit of concern is used and force measurements are taken, the data is used to estimate the 

model parameters using a weighted least squares approach, given in Equation 7.   

                       
          

     
 

 

   

 

Equation 7 - Weighted Least Squares Algorithm 

 

Here, Qw is minimized by adjusting the model parameters ().  The weighting wj may be adjusted to 

place greater emphasis on more recent observations by employing the exponential smoothing scheme 

given in Equation 8. 

                   

Equation 8 - Exponential Smoothing Scheme for Weighted Least Squares Coefficients 

 

The coefficient  determines the relative weights given to the data points, with a recommended value 

between 0.001 and 0.3 [Johnson, et al., 1974].  Chinnam used a coefficient value of  = 0.15 for his 

model. 

After the model was created, the data was bootstrapped to the model to derive confidence intervals for 

the model degradation path.  An alpha level of  = 0.01 was used, which resulted in wider confidence 

intervals than the customary  = 0.05 used in most statistical applications.  As more data is collected, 

the process of estimating model parameters and bootstrapping confidence intervals is repeated as 

frequently as desired.  Despite the lack of a Bayesian framework to incorporate the historical data in 

model parameterization, the model works well in part because the measurement noise is well below the 

measurement values, so the initial data of the drill bit correlates well to its failure path. 
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Chinnam then applies the same method to fatigue crack growth in plates [Chinnam, 1999] with data 

taken directly from Lu and Meeker [Lu, et al., 1993] and may be seen graphically in Figure 8.  (The 

historical data was generated by Lu and Meeker by visual inspection of fatigue crack growth plots in 

[Bogdanoff, et al., 1985].)  The historical data of Lu and Meeker is used to verify a third-order polynomial 

model for estimation of crack growth.  The model parameters are then estimated via bootstrapping for 

one plate using partial degradation data.  The progression of the RUL prediction is tracked by estimating 

RUL at various times in the life of the plate, along with confidence intervals.  This approach again 

provides usable estimates of time to failure because the noise in the data is low and the growth of the 

fatigue crack is very strongly correlated to the polynomial model.  In both cases, however, the lack of a 

prior model leaves the predictions susceptible to variance in early predictions. 

Another example of the General Path method may be seen in Figure 9 [Yan, et al., 2004].  Here, the 

probability failure was modeled using logistic regression to determine the likelihood that the door would 

fail to open or shut correctly.  The "Windows" represent the time until an estimated 95% probability of 

failure, with the estimate for Window 2 being taken at some time after the estimate of Window 1.  The 

updated prediction can be seen from the Bayesian updating of the parameter estimates based on the 

information collected between the two predictions.  At 200 cycles, the routine maintenance was 

performed, at which time the general path model for the door would need to be reset to account for the 

change in component condition. 

The Bayesian updating procedure allowed Yan to use the historical data in early failure predictions to 

stabilize the variance of the predictions.  As further degradation data was collected, the individual data 

took increasing precedence over the historical data, allowing the GP model to more accurately reflect 

the degradation within the individual door.  Since the signal-to-noise ratio was greater in the door data 

than in Chinnam's case studies, the Bayesian approach protected Yan from instability in the early 

prognostic estimates due to the variance of the model coefficient estimates. 
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Figure 8 - Fatigue Crack Propagation in a Metal Plate [Lu, et al., 1993] 

  



32 
 

 

Figure 9 - GPM Failure Prediction of an Elevator Door [Yan, et al., 2004] 
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2.4.2.3 Particle Filter Prognostics 

Particle Filter (PF) methods are relatively new techniques in prognostics [Orchard, et al., 2005; Cadini, 

Particle Filtering for Diagnosis, Prognosis and On Condition Maintenance, 2009] and are an adaptation of 

particle filtering methods for statistical tracking of an object's position and motion [Ristic, et al., 2004; 

Marseguerra, et al., 2009].  In particle filtering, a series of Monte Carlo (MC) simulations of an object's 

state (position or vector motion traditionally, but may be defined as a degradation parameter in failure 

analysis) are performed based on the last known state of the object and a distribution of the expected 

probabilities for changes in the object's state.  These Monte Carlo simulations (particles) are then 

compared to measurements of either the actual object's state or to metrics that correlate to the object's 

state, and then the particles are weighted based on their probability of representing the correct state.  

To ensure that a sufficient number of particles maintain enough weight to create a statistical sample, 

particles with weights below some predetermined threshold are typically eliminated, and then the 

particles are redistributed based on the distribution of the remaining particles and their weights 

[Doucet, et al., Sequential Monte Carlo Methods in Practice, 2001].  PF methods are of particular 

interest due to their ability to model non-linear processes [Cadini, et al., Monte Carlo-Based Filtering for 

Fatigue Crack Growth Estimation, 2009] as well as the elimination of the need to assume a particular 

probability density function (pdf) distribution of the process itself [Gordon, et al., 1993].  PF also 

provides a built-in estimation of uncertainty by evaluation of the particle distributions [Orchard, et al., 

2008], with ongoing research in reduction of uncertainty over long-term predictions [Orchard, et al., 

Outer Feedback Correction Loops in Particle Filtering-based Prognostic Algorithms: Statistical 

Performance Comparison, 2009].   

The particle filter is an evolution of the linear filtering method proposed by Kalman [Kalman R. E., 1960], 

commonly known as the Kalman filter.  Kalman's approach assumed a linear state-space relationship 

with a target vector x and measurement vector z.  Under these assumptions the relationship between 

the measurements at time k-1 and the target location at time k could be expressed by Equation 9.  The 

relationship between the target location and the measurements at time k could be expressed by 

Equation 10 [Arulampalam, et al., 2002].  In these equations, F and H are state matrices relating xk-1 to xk 

and xk to zk, and vk-1 and nk are sampled from Gaussian distributions.  

               

Equation 9 - Kalman Filter Target Location 
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Equation 10 - Kalman Filter Measurement Relationship 

 

With Kalman filtering, target xk is estimated based on the knowledge of xk-1, and the prediction is then 

compared to the measurement vector zk.  If the pdf p(xk-1 | z1:k-1) is available at time k-1, then the pdf for 

xk is estimated using the Chapman-Kolmogorov equation, given in Equation 11.  The resulting solution 

provides the estimate for the prior (also known as the normalizing constant) in Bayes Rule given in 

Equation 12.   

                                            

Equation 11 - Chapman-Kolmogorov Equation 

 

           
                     

            
 

Equation 12 - Bayes Rule 

 

At its heart, the Kalman filter is a method to estimate the prior in Equation 12, where the term 

           in Equation 11 is estimated by direct application of Equation 9 and Equation 10.  The 

Gaussian assumption was enforced by Kalman to ensure a symmetric, convex distribution of the MC 

routine so that the prediction estimate of the target is simply the mean of the process, as in Equation 13 

[Kalman R. E., 1960; Arulampalam, et al., 2002]. 

      
               

Equation 13 - Target Vector Prediction under the Gaussian Assumption 

 

The assumption of a linear relationship between the measurement and target vectors allowed for 

simplifications to the recursive solution routine [Kalman, et al., 1961].  With linearity, the F and H 
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relationships in Equation 9 and Equation 10 are directly invertible, allowing for rapid solution of the 

Bayesian process.  With the limitations in computational power during the time of Kalman's work, this 

assumption was somewhat mandatory for the filtering process to be timely and effective. 

The particle filter method is an evolutionary extension of the Kalman filter [Kalman R. E., 1960] where 

the two fundamental restrictions of the Kalman filter are eliminated.  Rather than assume a Gaussian 

distribution to the prior pdf, the distribution is estimated using a Monte Carlo process [Ristic, et al., 

2004].  If the target vector xk-1 and measurement vector zk-1 are known, then the prediction of the future 

target vector xk may be estimated using a MC process.  The MC particles are then compared to the 

measurement vector zk to determine the likelihood that each particle could represent the true target 

vector xk given zk.  The particles are then weighted according to their likelihoods in a process termed 

Sequential Importance Sampling (SIS) [Doucet, et al., 2001; Doucet, et al., On sequential Monte Carlo 

sampling methods for Bayesian filtering, 2000].  SIS has also been referred to as bootstrap filtering 

[Helferty, et al., 1993], condensation [MacCormick, et al., 2000], and survival of the fittest [Kanazawa, et 

al., 1995]. 

The SIS step replaces the Kalman filter's direct estimation of              in Equation 12 with a 

stochastic estimation that is free of both the linear and the Gaussian assumptions.  Such approaches 

were proposed as early as 1954 [Hammersley, et al., 1954] though limitations in computational power 

and the problem of particle degeneracy suppressed the use of SIS until the 1990s [Ristic, et al., 2004] 

when Sequential Importance Resampling (SIR) was introduced [Helferty, et al., 1993]. 

With each successive application of SIS, particles with low likelihood of representing the true target 

vector would continually have their weights reduced to the lower bound of zero weight, while the 

particle with the highest likelihood of representing the target vector would eventually receive increased 

weight to the normalized upper bound of one.  This degeneracy of the particles guaranteed that the MC 

distributions would eventually approach a zero-variance limit.  To overcome this limitation, a resampling 

of the particles was introduced.  After the SIS step, a distribution of the prior measurement vector could 

be obtained from the weighted particles.  A new set of equally-weighted particles could then be 

producing by randomly sampling from the estimated prior distribution; with a sufficient number of 

particles, the distribution of the newly-distributed particles converges to the distribution of the old, 

weighted particles.  At this point, the previous particles could then be discarded in favor of the new 

particles. 
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The resampling process can be performed at a fixed number of steps (e.g. after every SIS), but is usually 

performed when degeneracy is deemed significant.  The most common degeneracy metric, Neff, is given 

by Equation 14 [Ristic, et al., 2004].  If the weights of the particles are well-distributed, then Neff will 

retain a low value.  If the weights degenerate, then one particle's weight will grow to the upper limit of 

one and Neff will likewise approach a value of one.   By comparing Neff to some threshold limit Neff, a 

decision can be made whether resampling is necessary.  Therefore, with SIR, degeneracy may be 

avoided and the particle filter process could be repeated indefinitely. 

     
 

    
  

  
   

 

Equation 14 - Degeneracy Algorithm for Sequential Importance Resampling 

 

To apply particle filter methods to prognostic applications, some assumptions must be made of the 

target vector and its changes over time.  For tracking (i.e. non-prognostic) applications, the MC particles 

need not follow an optimal path from the current time step to the next, so long as their distribution 

encompasses that of the range of possibilities of the actual target vector, thereby ensuring that the 

target vector pdf is entirely within the sampling.  The SIS procedure provides an automatic correction to 

the particle distribution via the weight changes.  (While the distribution need not be ideal, distributions 

of the particles that more closely represent the true distribution of measured data will naturally perform 

more efficiently.)  For prognostics, however, the particles will be used to sample a distribution many 

time steps away from the last known measurement to derive conclusions about the target vector well 

into the future.  Without some control over the particle trajectories, the resulting distribution of 

particles may provide predictions with unreasonably high variances or with inaccurate understanding of 

the future path.  Such control over the particle paths may be implemented with a priori knowledge of 

the degradation path, or by shape estimation of the path either by weight sampling or particle 

resampling [Orchard, et al., A particle-filtering approach for on-line fault diagnosis and failure prognosis, 

2009].  Such applications have been developed in independent efforts for fatigue crack growth 

prognostics [Patrick, et al., 2007; Cadini, et al., Monte Carlo-Based Filtering for Fatigue Crack Growth 

Estimation, 2009] as well as for battery health management [Goebel, et al., 2008]. 
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2.4.2.4 Particle Filter Prognostics – Case Studies in Literature 

A notable example of particle filtering as a prognostics tool is given by Orchard [Orchard, et al., 2008].  

In this approach, a particle filter algorithm is used as a diagnostic tool to initially detect the presence of a 

fault.  Once the fault is detected, the current state-space pdf estimated by the PF model is used as the 

initial condition for the prediction of RUL.  Continued monitoring of the system provides Bayesian 

updating to the RUL estimate by updating the particle densities.  A case study is presented where the 

growth of a seeded crack in a planetary gear is detected and the RUL of the gear is predicted. 

Orchard compared two approaches to updating the long-term predictions.  The first approach, termed a 

"p-step ahead" approach, effectively freezes the particle weights and distribution at the last 

measurement, disallowing the redistribution of particles via SIR, and propagates the particles to the 

predefined end of life condition.  The RUL estimate is simply the expectation generated from the 

continued particle paths, as in Equation 15.  Here, the particle position estimates are given by x  , and the 

particle weights are given by .  This approach is nothing more than simply carrying the weighted 

particles to their natural EOL conclusion. 

     
   

               
   

            
   

     
   

 

Equation 15 - RUL Prediction from Orchard's First PF Prognostic Method 

 

The second approach by Orchard attempts to refine the prediction by resampling the particles and 

equalizing their weights rather than simply leaving the particles with their current weights.  This is a final 

re-application of the Sequential Importance Resampling step common to PF methods.  To guard against 

possible irregularities from the resampling step (e.g. "holes" in the particle distribution where the 

random sampling process failed to provide new particles), the resampling process is regularized with a 

quadratic kernel based on an available regularization algorithm [Musso, et al., 2001].  This method 

updates the particle position with the quadratic kernel applied to the uncertainty, as in Equation 16.  

The random variable  is randomly sampled from the kernel.  D   is computed from the covariance matrix 

of the former and current particle positions, and h is a normalizing constant based on the number of 

particles. 
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Equation 16 - Regularization of the PF Prediction with the Quadratic Kernel 

 

When applied to the case study, the regularization appeared to reduce the variance of the predictions 

without noticeably affecting their accuracy. 

Another example of PF methods for prognostics is given by Matthew Daigle [Daigle, et al., 2009].  Here, 

Daigle utilized a fixed-lag filter, where the state estimates at time t are not calculated until after some 

future measurements t+k have been observed.  This delay in state estimation is in itself undesirable, but 

if the delay is small in comparison to the length of time being predicted (e.g. if a 10-time step delay is 

used but predictions are made for 100 or more time steps in advance), then the detrimental effect is 

minimized.  The benefit to fixed-lag is that the state estimation at time t can be improved by using 

measurements before, during, and after time t.  In short, using a fixed-lag filter reduces the 

measurement error inherent in the state observation.  Daigle presented a case study of a pneumatic 

valve where the wear and eventual failure of the valve is predicted by particle filtering.  The fixed-lag 

approach provided some benefit dependent on the actual lag of the filter.  In this case study, the 

maximum lag (L=3 steps) provided the best benefit, but at cost of the greatest time delay for state 

estimation.  If the RUL prediction is expected to be many steps greater than the lag, then the fixed-lag 

approach to variance reduction appears to have merit. 

Other prognostic applications of particle filters include Saha [Saha, et al., 2009] and Abbas [Abbas, et al., 

2007].  The first article applies particle filters to the problem of EOL estimates for lithium-ion batteries, 

and the latter article applies PF to prediction of the corrosion of a battery grid.  In both cases, the PF 

approach provided useful predictions to time to failure.  Both case studies, however, illustrated the 

common thread to all PF methodologies – the need for a reasonable understanding of the failure 

mechanism and the degradation path.  This may be provided by a first-principles approach or by 

collecting historical data, but in all cases the predictions (RUL or EOL) required a priori knowledge of the 

failure path.  In the case of prognosing a human decision, such as the production of undeclared LEU or 

HEU, such a priori knowledge is not readily available and the shape of the failure path must be defined 

as an assumption rather than a common trend.  Currently, the literature is devoid of PF or GP prognostic 

models where the failure path itself is unknown. 
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2.4.3 Prognostics within Verification and Safeguards 

As prognostics are not yet formally applied to verification of activity within a safeguards context, existing 

literature is deficient in the formal discussion of prognostic types for verification and safeguards 

purposes.  For this research, it is assumed that Type I prognostics are not effective models for diversion 

or undeclared enrichment because both activities represent a decision made by the operator (or 

possibly by a malicious third party in the case of diversion) and therefore represent a change in 

operating condition.  If an "average" diversion or undeclared enrichment condition is assumed, then all 

prognostics of a plant would either predict the eventual production of an undeclared SQ or would never 

predict undeclared SQ production at all.  In either case, no new safeguards information is gained.   

Likewise, Type II prognostics are of limited use; though environmental changes may be accounted for in 

these models, they do not account for system variations such as scale biases or variations in the 

enrichment process itself.  Such system changes can have a profound influence on MUF calculations, 

which are essential in estimating diversion and undeclared production.  This research will therefore 

focus on Type III prognostics to account for both environmental factors (e.g. cold traps, MUF 

calculations, and plant operation) as well as system factors (e.g. scale biases).  Further discussion of the 

prognostic modeling in this research is discussed under Section 3. 

2.5 Model Selection Criteria 

One of the cornerstone fields of statistical research is the selection of an appropriate model for fitting to 

data.  Statistical models traditionally rely on measures of likelihood that estimate whether the suggested 

model is sufficiently correlated to the underlying data to provide a meaningful relationship between the 

measurement and target vectors.  A variety of statistical tools, such as t-tests, chi-square test, likelihood 

ratio tests, maximum likelihood estimators (MLE), mean square error (MSE) or sum of square error (SSE) 

measurements, and other goodness-of-fit tests have been developed to provide measures for model 

selection.  A thorough review of such techniques is a research topic to itself, and this review will merely 

acknowledge the vast array of techniques available for model selection criteria. 

Traditional statistical methods, such as MLE and MSE tests, have two defined limitations:  their reliance 

on arbitrary thresholds of "goodness" such as alpha values, and the assumption that the nature of 

variance of the data is known (e.g. normal, Cauchy, or lognormal).  Attempts to eliminate these 

limitations from the model selection process have led to the Information Criteria (IC) class of statistical 

measures [Bozdogan, 1987].  The seminal work in the field of IC is Akaike's entropic information criterion 
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[Akaike, 1973], known as Akaike's Information Criteria (AIC).  In summary, Akaike extended the 

maximum likelihood estimator test of model goodness of fit by providing a penalty term for the number 

of variables.    represents the parameter vector.  The penalty term k (the number of parameters in the 

model) in Equation 17 accounts for the lack of parsimony of overfitted models by the addition of new 

explanatory variables to the model. 

                   

Equation 17 - AIC Measure for Model Selection 

 

The penalization of model parsimony provided a measure of protection against overfitting.  Compared 

to traditional statistical measures of model validity, such as alpha tests, the AIC score provided a direct 

comparison between models rather than a comparison between a model and a predefined arbitrary 

standard.  The model with the lowest AIC score was regarded as the "best" fit in terms of maximal 

likelihood and in terms of model complexity [Akaike, 1974]. 

Since Akaike introduced his penalization of model complexity as an integrated part of model selection, 

several penalty terms have been suggested.  A bias-corrected form of the penalty term has been 

suggested [Bozdogan, 2000] where the number of parameters k is replaced by a bias-corrected penalty 

in Equation 18.   

                     

Equation 18 - Bias-Corrected Information Complexity 

 

Alternate formulations of the Information Criterion penalty concept replace the number of terms k in 

Equation 17 with a generalized expression for model complexity.  Takeuchi [Takeuchi, 1976] proposed a 

complexity penalty based on the trace of the inverse Fisher Information Matrix F -1 and the outer 

product form R, shown in Equation 19. 

                            

Equation 19 - Takeuchi's Information Criterion 
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The addition of Fisher information to the IC class of model selection criteria is fundamental to the 

Information Complexity (ICOMP) measures for model selection [Bozdogan, 1988], in which the IC 

concept of model selection has been extended to penalize the profusion of complexity in a model in 

addition to the penalties for lack of fit and lack of parsimony.  The general form of ICOMP utilizing the 

inverse Fisher information matrix (IFIM) is given in Equation 20.  Theoretical development and 

justification for the Fisher information matrix as a measure of model complexity may be found in 

[Kullback, et al., 1951; Bozdogan, 1988; Li, et al., 1996; Stigler, 1999]. 

                                      

Equation 20 - Information Complexity and Inverse Fisher Information, General Form 

 

The C1 function is a measure of the maximal covariance complexity and accounts for lack of parsimony 

and profusion of complexity.  As with Takeushi's information criterion, C1 incorporates the trace of the 

contained matrix as a measure of parsimony; C1 then utilizes the determinant of the contained matrix to 

add a penalty for complexity.  For ICOMP(IFIM), the C1 estimate of covariance complexity is shown in 

Equation 21.  Here, s is the rank of F -1.  Further discussion of C1 may be found in [Bozdogan, 1990]. 

     
    

 

 
    

      

 
  

 

 
          

Equation 21 - C1 Covariance Complexity for  ICOMP(IFIM) 

 

Extending the ICOMP theoretical framework for model selection, the assumption of proper model 

specification (i.e., that the fitted model is correct) may also be eliminated as in Equation 22, where the 

ICOMP score includes a penalty for misspecification [Bozdogan, et al., 2009].  In this form, the 

complexity measure penalizes against lack of parsimony and profusion of complexity using the robust 

covariance matrix F -1RF -1, which is valid if the model is correctly or incorrectly specified.  If the fitted 

model is indeed correct, then F  = R, and the covariance matrix reduces to F -1, as in Equation 20. 

                                     
          

Equation 22 - ICOMP(IFIM) for Protection against Misspecification 
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Expanding the C1 covariance complexity for ICOMP(IFMI)Misspec provides the result in Equation 23.  If the 

model is properly specified, Equation 23 reduces to Equation 21 and the information criterion in 

Equation 22 simplifies to the standard ICOMP(IFIM) measure in Equation 20.  This represents the 

optimal case, where the model is properly specified to the data and the information measure is 

minimally penalized.  Should the model be improper for the data, the covariance complexity would 

depart from the optimal case and penalize the score of the model accordingly. 

 

     
    

 

 
    

              

 
  

 

 
                

Equation 23 - C1 Covariance Complexity for ICOMP(IFIM)Misspec 

 

The penalization of a misspecified model makes the ICOMP(IFIM) Misspec criteria particularly well suited 

for comparing the goodness of fit of multiple models.  As with any IC class of model selection, the model 

with the lowest score is generally considered the "best" model in terms of fit, parsimony, and 

complexity, and unitary differences in model scores are generally considered negligible.  The 

misspecified form of ICOMP may then be used to gauge whether a model fitted to data is sufficiently 

valid for use as a model of the data by comparing the score of the hypothesized model to the score of a 

constant term or random noise. 

This chapter presented a survey of the existing literature relevant to this research.  The role of the IAEA 

as the monitoring agency was considered.  Current and proposed next-generation inspection techniques 

were reviewed along with the driving factors behind the IAEA's desire for remote monitoring of 

enrichment facilities.  Existing prognostics techniques were reviewed, with a particular focus on general 

path and particle filter models.  Finally, model selection as a means for discriminating system behavior 

was discussed.  In the next chapter, the methods of this research will be introduced.  An overview of the 

mock feed and withdrawal facility at Oak Ridge will be presented.  Prognostic techniques for predicting 

the time to diversion of significant quantities and their uncertainty estimates will be developed.  The 

PlotEvents software tool will be discussed as a means for automated analysis of the process monitoring 

data from the mock feed and withdrawal facility. 
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3 METHODOLOGY 

This research required the development of a prognostic method for safeguards and the validation of the 

prognostic method through case studies that tested the method under a variety of operating conditions.  

The mock F&W facility provided a platform to generate process data for prognostic model selection, 

development, and validation.  Load cell data from the feed, tails, and product stations were recorded at 

1 second intervals in a central database.  The data was then analyzed for operational features such as 

tank loading/unloading or cold trap operation, and the MUF estimate was calculated as a function of 

time.  The operational features and the MUF estimate were then analyzed to search for diversion or 

other undeclared activity. 

Prior to analyzing the load cell data for MUF, the data is smoothed to eliminate the effects of 

loading/unloading and other perturbations like tube attachment, and then downsampled to produce a 

smaller, more manageable data set.  Downsampling is typically performed by selecting every fifth data 

point so the analysis is performed on one data point for every five seconds of operation, or 0.2 Hz.  The 

smoothing algorithms were developed primarily by James Henkel [Henkel, 2010].  With the smoothed 

data, the inventory differences could be calculated by summing the changes in load cell weights and 

integrating over time.  This produced the MUF estimates from the load cell data. 

After developing the MUF, monitoring and prognostic analytics are applied to the data to diagnose the 

likelihood of diversion, its severity, and a prediction of the time to SQ production.  In this section, the 

theory behind the prognostic models (i.e. GP and PF models) will be developed.  Because the theory has 

been developed in process monitoring applications such as health and condition monitoring, the 

terminology used to develop the theory here will be consistent with this canon of literature.  As the 

methods are applied to the safeguards application of this research, the analogy between the process 

monitoring methods and the safeguards verification application will be explained and justified.   

3.1 Mock Feed and Withdrawal Facility 

A preliminary discussion of the mock F&W facility may be found in Appendix A. 

For the mock F&W facility to serve as a sufficient analog of a GCEP, the load cell data produced must 

bear adequate resemblance to GCEP load cells.  To this end, the mock F&W facility required some 

modifications to produce consistent data that had the same features as GCEPs.  The capacity to bleed 

water from the feed tubing (between the feed pumps and the surge tanks) allows for cold trap 
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emulation.  The ability to mask diversion was added by installing an independent tube with a funnel on 

one end and a throttle valve on the other.  The masking assembly can easily be fixed so that the water in 

the funnel pours into a product or tail tank, and the flow rate can be regulated with the throttle valve to 

match the flow rate of the diversion. 

Procedural changes were added to the mock F&W facility operation.  The product and tail lines used to 

contain a significant amount of air as a consequence of valve operation for the individual product and 

tail lines.  The air entrainment was found to cause inconsistent product and tail flow to a degree that 

was not in keeping with the GCEP analogy.  As a result, valve operation procedures were changed to 

ensure that the product and tail tubes remained watertight throughout facility operation.  The change in 

procedures have been observed to produce more consistent water flow, eliminating the need to adjust 

the product and tail throttle valves, particularly during facility startup and shutdown.  Additionally, time 

lags have been added in between tank loading/unloading and tube connection/disconnection.  The time 

lags generate data that is more similar in structure to GCEP operation and allow for the development of 

automated techniques to observe and monitor the handling of tanks on load cells. 

3.2 Prognostics and Uncertainty Estimates 

This research develops and characterizes methods that provide a prediction of the time at which a SQ of 

LEU is diverted from the process stream.  This quantity is not directly measureable by the IAEA, as a 

facility that is illicitly diverting LEU is hardly going to allow such a measurement to be recorded by IAEA 

sensors.  For this reason, the diversion of material is considered the target state – the unmeasured 

quantity of interest that is estimated by measurement of correlated parameters.  The calculation of 

MUF using the load cell measurements provides a correlated estimate of the diverted material, but MUF 

is not only attributable to diversion or undeclared production.  Normal process influences like cold trap 

operation and holdup also affect MUF calculations.  A better measure of unaccounted material 

attributed to diversion will be therefore sought. 

With a target state in mind, general path and particle filter models were developed to estimate the 

amount of diverted material as well as to predict the time until such a diversion would be expected to 

produce a significant quantity.  Development of two competing models allowed for the model 

performances to be compared so that a preferential model can be determined.  The models were 

designed to not only provide estimates of missing material and time to SQ production, but also to 
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provide estimates of the uncertainty of their predictions and, if possible, the likelihood that missing 

material may be attributable to diversion rather than measurement errors, such as scale biases. 

3.2.1 Identification of Facility Operation Features 

During normal operation of the mock F&W withdrawal facility, certain data features are always present: 

loading/unloading of cylinders, attachment of process tubes, feed and withdrawal activity, and cold trap 

operation.  These features are easily detectable by visual inspection of the raw data from the load cells, 

but this data cannot be transmitted off-site at a GCEP because of the risk that the load cell data may 

reveal proprietary information about GCEP operation.  The identification of these normal features of 

operation must therefore be performed by automated algorithms so that the normal operation of the 

plant may be verified. 

Abnormal data features may occur, such as spikes in the load cell weight readings due to a person 

stepping on the scale.  These abnormalities do not necessarily indicate illicit activity and should not be 

instantly identified as "red flags" that trigger inspections.  The analysis of such data features should 

therefore place emphasis on identification of the necessary normal operational characteristics and 

reduce the priority of abnormalities unless a particular abnormality can be correlated to illicit activity.  

The capacity to identify data features and provide a summary analysis of their significance to facility 

operation has yet to be developed for the mock F&W facility and is a continuing part of this research. 

3.2.2 Estimation of Diversion (TMUF) 

In process monitoring, the estimated state of the system is typically defined as either the measure of 

degradation or the health of the system (or individual components).  The measurement vector is a 

selection of system performance metrics (e.g. flow rates, temperatures, or voltages) that are correlated 

to the degradation or health state.  For this research, the state will be defined as the MUF of the 

enrichment process.  It should be noted at this point, however, that the MUF is generally inclusive of all 

missing material, including holdup and mass lost due to normal processes, such as holdup.  The real 

quantity of interest is not the total MUF, but rather the unaccounted material after considering normal 

deviations from the mass balance.  One may consider a refined MUF estimate, termed here as the 

TMUF, or True Material Unaccounted For measurement, which may be considered similar to Equation 

24, where LCT is the material loss from the cold trap, H is holdup, and LO/P is any other identified process 

loss. 
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Equation 24 - Conceptual Definition of TMUF 

 

The TMUF is the optimal state estimation for prediction of time to SQ production rather than the MUF.  

If this quantity can be estimated through modeling of the cold trap, holdup, and other process factors 

(such as tank switchover), the TMUF will be used as the target state.  Otherwise, the MUF will be 

estimated and the effects of normal processes will be accounted for afterward. 

At a minimum, the measurement vector will be defined as the load cell measurements (which are used 

to calculate the MUF) along with any other measurements that can provide information on the normal 

process deviations.  Examples of other possible measurements include the loading/unloading of 

cylinders, feed pump power, surge tank control valve position, and cold trap operation.  In normal 

process monitoring, these variables may be used based on optimization of the monitoring process; in 

safeguards, such variables are often constrained by negotiation between the IAEA and the GCEP 

operator.  For this reason, a minimal measurement set is sought that will include, at a minimum, the 

load cell measurements.  It is anticipated that a reliable estimate of TMUF may be provided by load cell 

measurements alone; if not then justification for other measurements should have a minimum 

likelihood of revealing proprietary operational information so that their inclusion in the prognostic 

model may be acceptable to facility operators. 

3.2.3 Automated Identification of Undeclared Activity 

In this context, undeclared activity refers to the act of feeding material into the cascade from 

undeclared cylinders in order to generate undeclared LEU or HEU.  With the traditional inspection 

method, there is a risk that undeclared activity might not be detected if a GCEP can complete the entire 

undeclared feed and withdrawal evolution in-between inspections.  (Note: due to the 

comprehensiveness of the inspections, undeclared activity is not quite as simple to conceal as the 

preceding sentence indicates, but the concept is sufficiently explained in that sentence without 

attempting to write a "how-to" for undeclared activity under current inspection procedures.)  With load 

cell data, undeclared activity can be detected by identification of feed and withdrawal that does not 

coincide with declared activity.  If, for example, the daily mailbox declarations indicate that a cascade is 

not being used but the load cell data indicates activity, an inspection might be triggered to attempt to 

resolve the discrepancy.  For the mock F&W facility, proper identification of facility usage can enable the 
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automated generation of summary reports that allow the IAEA to compare the load cell data to the daily 

mailbox declarations without transmitting the load cell data itself.  This feature would be of particular 

value in detecting undeclared activity and has to be developed for the mock F&W facility.  Reporting 

load cell activity will be performed by creating software algorithms that identify the features of facility 

operation and then automatically write reports to describe the operation.   

3.2.3.1 Information Complexity and Model Selection 

It is postulated that an undeclared removal of material from the mock F&W facility would represent a 

change in the operating regime of the process.  Specifically, the MUF calculations would have different 

temporal relationship than when the facility is operated without any undeclared production (i.e. 

diversion).  This difference in regime would change the optimal statistical model for the data by 

affecting cumulative inventory difference of the facility during operation.  Additionally, the ability to fit a 

model to the data does not necessarily indicate that the model is an appropriate description of the 

information contained within the data. 

To determine whether a trend that indicates potential diversion is a valid model for the data, the 

information complexity metric ICOMP(IFIM)Misspec is considered.  From Equation 22, the proposed model 

for the data may be compared against the data using both the maximum log likelihood criterion and the 

maximal information complexity of the misspecified covariance matrix.  This relationship imposes 

penalties for lack of fit (via maximum log likelihood) as well as lack of parsimony, complexity, and 

misspecification (via the misspecified covariance matrix).  The fitted model for the data can then be 

tested against an alternative hypothesis by recording the score of the misspecified ICOMP test and 

comparing to the score of the alternative.  In this case, two alternative hypotheses can be tested.  The 

first alternative is that the data indicates a constant MUF.  If this is true, then a constant model would 

provide the best fit, greater parsimony, and lower complexity and would then receive a lower ICOMP 

score than the fitted model.  The second model is that of random data.  If the MUF data in question is 

not well suited for a constant fit or for the fitted model, then neither would perform as well as a model 

of random data, and the random ICOMP model, with the lowest parsimony, would score equivalently or 

lower than the other models.  Where the constant model would best represent a non-diversion regime 

with constant MUF, the random model would indicate a lack of coherence between the MUF data and 

any attempt to fit a model.  Such a region would be seen as a transitional region where no information is 

usable for model selection. 
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The ICOMP score, therefore, may be used as a validation of the fitted linear model.  If a model renders a 

prediction of SQ production yet the ICOMP score does not justify the use of the model over a constant 

or random term model, then the prediction cannot be considered reliable.  Likewise, if the random 

model outscores the fitted or the constant models, then the data would suggest a lack of meaningful 

information within the inventory difference calculations.  In this case, the data may suggest alternative 

remedy.  For example, if model fitting procedures were applied to GCEP load cell data and the models 

suddenly lost relevance with respect to a random model, then the change in load cell relationships 

might indicate anomalous behavior that required further inspection. 

3.2.4 General Path Method 

The General Path Model was traditionally (and still remains) the most common method for Type III 

prognostics in process monitoring and condition-based maintenance applications.  First proposed by Lu 

and Meeker [Lu, et al., 1993], the basic approach to GPM prognostics is to first build a prior model of the 

degradation path based on unit-by-unit variance and the influence of environmental factors.  The 

historical data used to build the prior model may also include censored data, as information on the 

variance of unit performance is as important to the GPM as the environmental stressors.  The historical 

data is then used to build a functional model of the degradation path of the component.  For each unit 

in the historical data, the value of the degradation parameter may be defined as a variable xij, which is 

read as the degradation of the ith component at time j.  The degradation parameter may then be related 

to the time of life, the environment, and the individual unit characteristics using Equation 25. 

                   

Equation 25 - Unit Degradation Relationship for the General Path Model 

 

In Equation 25,  is a vector of fixed effects that are characteristic of the entire population, i is a vector 

of the individual (usually random) effects that are unique to each unit, and ij is included to account for 

measurement error.  The term  is a function that describes the relationship between the causal (i.e. 

environmental and component) data and the degradation parameter.  This function may be determined 

by first-principles models or by correlating the degradation parameter to the measured data.  Unlike 

failure-time prognostic models, the prior function in Equation 25 represents an estimate of the condition 

of a component based on the process as opposed to the likelihood of failure.  For this reason, even 
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censored historical data may be included in the historical model as the censored data contains pertinent 

information of unit condition through a process.  (In general, a few units should be operated to failure 

when building the historical model so that the model contains an estimate of failure itself.) 

For each degradation case in the historical library, the degradation history is regressed to the chosen 

degradation function described in Equation 25 and the parameters tj, , and i are recorded.  Mean 

parameters for the degradation function are then calculated using the parameters for the individual 

regression cases to develop a mean function.  This is the general path prior model, as given in Equation 

26. 

                    

Equation 26 - Fitted General Path Model 

 

The fitted model in Equation 26 provides a relationship for the mean degradation of the component 

over time, with information of the degradation path available at every step j.  The variance of each 

parameter is also calculated at this time.  If no further effort were made into development of this GP 

model, the model would be applied to a new degradation case by solving for the initial time of life of the 

component based on the initial degradation value, then predicting the degradation path of the 

component using the mean model in Equation 26.  Uncertainty of the model may then be calculated 

using the uncertainties of the model parameters.  A refined approach to extrapolation of the 

degradation path of an individual component is provided by Uphadyaya et al. in [Upadhyaya, et al., 

1994]. 

When developing the historical model, runs should be included which represent the expected range of 

operation for the component.  If a normal range of operation is not adequately represented in the 

historical data, extrapolation of the model may produce errant predictions of degradation, particularly if 

the degradation / process relationships contain nonlinearities.   

If the model contains sufficient degradation data for and is sufficiently representative of the expected 

range of process data for future components in question, then a failure limit must be established.  In the 

case of hard failure, this may be the level of degradation at which a component is expected to break, 

and typically includes both an expectation and variance for the degradation level at failure.  If a soft 
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failure criterion is employed, then the relationship between the degradation level and the soft failure 

limit must be established.  In either case, this critical degradation limit may be termed D.   

With the degradation model, the process variables may be measured for a non-historical component to 

provide an estimate of the degradation imputed upon the component from its use.  An initial 

degradation level must first be established for the component; estimation of the initial degradation may 

be as simple as assuming an average initial degradation for every component (e.g., zero degradation) or 

establishing a method to provide a unit-specific estimate of degradation.  Such estimates will not be 

discussed here; in the problem of interest to this research, the 'degradation', or production a SQ of 

material will generally be assumed to start with zero SQ produced.  As the unit is subjected to the 

process, the process variables of the GPM are measured and used to calculate the expected level of 

degradation of the component. 

At this point, the GP model is only providing a measure of the current level of degradation of the 

component (i.e. monitoring the health of the component).  If the model is to provide a prediction of RUL 

or TTF, a systematic estimation of the relationship between the unit's current state of degradation and 

its degradation level at failure must be defined.  The simplest approach is to calculate the historical 

average TTF between the current and failure degradation levels and declare such time as the estimation 

of TTF or RUL.  Unfortunately, this Type I approach to prognostics ignores the particular environmental 

stressors and characteristic response of the component itself.  For true condition-based Type III 

prognostics, an estimate should account for these individual effects.  Bayesian updating of the failure 

path is the most common approach to providing this Type III data. 

The model may be further refined using Bayesian updating so that the prior information of the individual 

component in question may be used to provide insight into its likely failure path.  Application of 

Bayesian updating is explained in Robinson and Crowder [Robinson, et al., 2000]; a brief summary of the 

Bayesian method is provided here.  The method utilizes pseudo-inversion of the data matrix in Equation 

27 to estimate the parameter vector, where in the mock F&W facility, X is the MUF estimate derived 

from the load cell measurements, Y is the material diverted, and b is the relationship between the two. 

     

Equation 27 - Linear Regression Equation in Matrix Form 
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Equation 28 - Pseudoinversion to Solve for the Parameter Vector 

 

Prior information about the model parameters may be appended by adding additional rows to X and Y 

where the added row in X has a value of one at the jth column (and zero elsewhere), and the prior value 

of the new parameter is added to Y in the jth  position.  The square matrix of variances is also expanded 

to incorporate the variance and covariances related to the prior information at the end of the matrix.  

This may be repeated multiple times to include prior information about any regression parameter.  

While this approach is a very simple, quick, and straightforward application of Bayesian updating, it has 

been shown to provide reliable predictions of RUL that account for both the historical data and the prior 

knowledge of the individual component.  The posterior estimate provided by appending the matrices X 

and Y, then solving for the parameters b can then be used to extrapolate a new failure path for the 

individual component. 

At this time, the GP model uses historical knowledge yet calculates a degradation path specific to the 

component in question.  This is the model that will be used in this research for the prediction of time to 

SQ production. 

3.2.4.1 Application of GPM to Diversion Detection and Prognostics 

The general path method was designed for application to process monitoring of plant systems and 

components where the observer is interested in failure; this author believes that the method can be 

applied by analogy to safeguards.  To complete this analogy, the variables in the general path method 

must be redefined to verification variables.  Revisiting Equation 26, the verification analog is identical 

and given in Equation 29.  

                    

Equation 29 - General Path Historical Model for Safeguards 

 

The analogy is straightforward; the "degradation" term, xij, is the undeclared production of LEU or HEU 

where the soft limit of failure is the production of one SQ of material.  For LEU, this limit is 75 kg and for 

HEU, the limit is 25 kg [IAEA, 2002].  In most cases, the initial production of undeclared material will be 
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assumed to be 0 kg so that the initial "degradation" is zero.  (If a nonzero initial production of 

undeclared material is believed to exist, the soft limit may be adjusted accordingly to monitor for a 

cumulative production of undeclared material of one SQ.)  The fixed effects vector, , includes 

measurements common to all GCEP monitoring applications, such as the load cell data and cold trap 

operation.  The random effects vector, i, represents any particular characteristics of an individual GCEP 

that may be relevant to the general path model.  For example, if a GCEP has a standard procedure of 

sampling of the feed material prior to processing into the cascade, that sampling may be accounted for 

within the general path model for that plant.   The measurement error, ij, is known based on the 

precision of the load cells, variance of mass lost due to cold trap operation, etc. 

The historical data was created using runs previously performed on the mock F&W facility.  Since a 

diversion event is most likely linear in terms of the rate of undeclared production, the model was 

assumed linear.  Also, because a diversion event is triggered by an external decision (made either by the 

operator or a third party), the model assumed that diversion is not necessarily constant at all times.  For 

example, if a GCEP runs without any diversion for three weeks, any monitoring approach must remain 

sensitive to the possibility that diversion may be initiated in the fourth week.  To maintain the flexibility 

of detection of a changing enrichment regime with a linear model, a piecewise approach was used 

where the GP was applied to a moving window of the facility data. 

Bayesian updating was performed using the measurement data collected during the run being evaluated 

as the prior knowledge.  The parameter estimates from this data were appended into the X and Y 

matrices to provide new estimates of the time to SQ production, as well as the associated uncertainty 

estimates.   

Since GCEP monitoring requires that all observed data must first be agreed upon by the IAEA and the 

facility operator, determining the minimum amount for effective verification is desirable; monitoring 

unnecessary variables might not provide sufficient benefit to justify the risk of revealing proprietary 

operational information.  Therefore, only the minimal number of necessary variables was measured.  

Once this minimum level is established, the uncertainty estimates of the current level of undeclared 

production and of the prediction of time to SQ production were generated.  These estimates were used 

to measure the ability of the model to reliably detect diversion and predict time to SQ production. 
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The model was tested against a variety of legitimate and diversion runs to test for false positive errors 

(i.e. declaring diversion when none exists) and false negative errors (not declaring diversion when 

present).  The moving average window of time for evaluation was tested to find a balance between 

stability of the model, where longer time windows minimize the effect of noise, and responsiveness, 

where shorter time windows allowed for quicker detection of diversion.   

3.2.5 Particle Filter Method 

Particle filtering was originally developed to provide an estimation of the marginal probability in Bayes' 

Theorem that would allow for modeling of nonlinear systems and potentially non-Gaussian noise [Cadini 

F. , 2009].  The PF method utilizes Monte Carlo simulation to provide an approximate solution to the 

marginal distribution by generating artificial random samples and comparing their distribution to that of 

the measurements.  The particle filter method first starts with Bayes' Theorem, given in Equation 30. 

           
                     

            
 

Equation 30 - Bayes' Theorem 

 

Here, x represents the state-space vector of the system, which is not directly measured.  In condition 

monitoring, this is typically the prognostic parameter or other measure of system health.  The term z 

represents the vector of measurements.  Measurements are first taken at time = 0; the "current" time, 

or the time of interest is represented by the subscript k, and the previous time step is k-1.  The term 

           is defined as the posterior distribution and represents the distribution of the likelihood of a 

system state xk existing given the measurements z0:k (i.e. all measurements, including the current 

measurement).  The term          is the conditional probability and represents the likelihood that a 

given state would yield the current measurements.  The term              is the prior distribution and 

is the likelihood that a given state would exist based on z0:k-1, where z0:k-1 represents all measurements 

prior to the current measurement.  Finally,              is the marginal probability and represents the 

likelihood that the current measurements would occur given all previous measurements. 

The long-standing difficulty with Bayes' Theorem is determining the marginal probability, and this is the 

purpose of particle filtering.  The first step in particle filtering is Sequential Importance Sampling (SIS), 

where a known distribution is used to generate random samples for x0:k.  (In contrast to GPM, SIS 
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updates all particles simultaneously at a given time step rather than updating a single particle all the 

way to failure.)  The distribution only needs to ensure that the range of possibilities is covered, though a 

distribution that closely resembles the true distribution of probabilities should provide faster 

convergence and more reliable results.  This distribution is defined as an importance function, as shown 

in Equation 31. 

           

Equation 31 - Importance Function for Sequential Importance Sampling 

 

Next, weights for the sample particles are defined by relating the importance function to the posterior 

distribution, as in Equation 32. 

  
  

    
       

    
       

 

Equation 32 - Definition of Sampling Weights 

 

In Equation 32, both terms in the ratio are unknown.  However, the weights from the previous time step 

are known and can be used to approximate the weights using Equation 33.  The approximation may 

require normalization to form a true pdf; this can be readily performed after all weights are estimated. 

  
      

  
       

      
      

  

    
        

       
 

Equation 33 - Approximation for Sampling Weights 

 

A generic visual example of the weighting process may be seen in Figure 10 and Figure 11.  Prior to 

weighting, all samples have equal weight.  At time step 20, those particles whose states have a higher 

likelihood of representing the true state of the system (as estimated through measurements) receive 

greater weight; the particles with less likelihood of representing the system receive less weight.  Having 

re-weighted the particles, they now represent an updated posterior distribution of the marginal 

probability and the new posterior distribution may be estimated.  
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Figure 10 - Sample Estimates of the System State Prior to Weighting 
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Figure 11 - Sample Estimates of the System State after Weighting 
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As this process is repeated, the particle weights are continually updated every time Bayes' Rule is 

applied.  Since SIS will add weight to particles with the highest likelihood at the expense of lower-

likelihood particles, the process will eventually drive the weights of all particles to zero except for the 

highest-likelihood particle, a problem known as degeneracy.  To avoid degeneracy, the particles are 

occasionally redistributed by Sequential Importance Resampling (SIR). 

SIR may be conducted by a variety of methods, but the general approach is to replace the existing 

weighted particles with new unweighted particles chosen by the posterior distribution provided by SIS.  

In review, SIS may be seen as a filter of particle weights where the weights are updated to fit the 

estimated posterior distribution.  SIR may therefore be seen as a filter of the particles themselves, 

where new particles are chosen based on the weighted particles after SIS.  This two-stage process is the 

heart of particle filtering. 

Because particle filtering employs a Monte Carlo process, uncertainty estimates may be readily provided 

by the existing particle distributions.  The state estimate at the present time is given by Equation 34.  

The failure probability estimate at a future time k+i is given by Equation 35.  The failure time distribution 

at a future time k+i is given by Equation 36. 

              
            

  

 

   

 

Equation 34 - Particle Filter State Estimation 

 

        
   

 
    

    

   
 

    
    

 

Equation 35 - Particle Filter Future Failure Probability Estimation 

 

              
         

 

   

 

Equation 36 - Particle Filter Future Failure Probability Distributions 
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Additional statistical inferences may be made via the particle distributions, such as 95% confidence 

intervals, hypothesis tests, etc. 

3.2.5.1 Estimation of the Measurement and Dynamic Noise Terms 

Particle filters require an estimate of two types of noise within the system: measurement noise and 

dynamic noise.  Measurement noise is the error associated with the measurements of the state 

variables.  The greater the certainty of the measurement, the more significant the difference between 

the measured system state and the particle state becomes.  The weight updates during SIS are greatly 

influenced by measurement noise, as high uncertainty of measurement noise reduces the effect of SIS 

on particle weights.  (See Equation 37, where the term m
2 represents the measurement noise 

estimate.)  Dynamic noise is the rate at which the system dynamics can change (i.e. how fast the system 

can accelerate between states).  If a system can rapidly change its behavior (e.g. quickly transition from 

a constant MUF to a rapidly increasing MUF), then the particles must be distributed widely enough to 

ensure that the system dynamics are captured. 

  
    

   
        

    
 

 

Equation 37 - Weight Update Equation 

 

High measurement noise and dynamic noise both lead to increased uncertainty in the predictions of 

future system states, albeit by different mechanisms.  High measurement noise reduces the effect of 

particle re-weighting, allowing outlier particles to maintain more weight and thereby increasing the 

weighted variance of the particles.  High dynamic noise demands a greater spread of particles to 

effectively cover the possible range of future system states, which also increases particle variance.  The 

noise estimates must be properly matched to system behavior to provide realistic uncertainties as well 

as particle behavior.  A detailed discussion of the methods used to estimate and control measurement 

and dynamic noise terms is provided in Appendix B. 

3.2.5.2 Application of Particle Filters to Linear Equations 

In a typical particle filter tracking application (not a prognostic application), the particles are distributed 

around the estimated position of the target at some initial time, then given random velocity vectors 

based on the dynamic noise estimate of the system.  As the particles move, and as new measured 

estimates of the target position are taken, the particles are weighted according to their likelihood of 
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representing the true position of the target, using Equation 33.  Once degeneracy creates a sufficient 

imbalance of weights among the particles, they are redistributed according to their weighted 

distribution and the process continues.   

To apply the particle filter to prognostics, an expected path shape must be provided for the particles to 

follow or their paths will simply define an expanding region around the last known target measurement 

without any regards to the particle's trending motion.  In [Orchard, et al., 2009], the path was defined as 

an exponential growth of a crack, and the critical information was the initiation of the crack growth and 

its severity.  For the problem of tracking and prognosing the mock F&W facility, there can be no genuine 

assumption about the future shape of the MUF trajectory as it is a function both of the system and of 

human decision.  In a well-operated condition with no diversion or other impedance on the MUF, the 

MUF tends to remain constant over time with only oscillatory deviations due to the natural operation of 

the facility.  If other influences on the facility operation are introduced (such as diversion, a biased load 

cell, or the use of an off-scale cylinder), the MUF may take any variety of shapes. 

Because of the lack of any foreknowable MUF trajectory, no one model may be considered more viable 

than another based on any mathematical rigor.  Instead, a linear model (Equation 38) is adopted with 

the implicit understanding that any prognosis merely answers the question: "if the system were to 

continue as operated, what is the expected outcome?"  Yet, the linear model provides a simple 

elegance: if the mock F&W system is not experiencing diversion, bias, or other impingement on the 

MUF, then the MUF level should remain constant and the linear model should merely provide an 

average of zero for the coefficient vector A. 

               

Equation 38 - Linear model for MUF Estimation 

 

If nonlinear events occur, such as time-variant diversion or intermittent diversion, the piecewise nature 

of the particle filter should track the MUF with the best linear approximation within each operating 

region.   If a prediction is requested at any time, that prediction would therefore be the most recent 

linear trend of the data.  The linear assumption is therefore not grounded in a verifiable physical 

attribute of the mock F&W facility, but rather based on its versatility within the particle filter 

framework. 
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3.2.5.2.1 Initial Linear Model Coefficients 

When the particle filter is first initiated, the particles are initially distributed about the initial measured 

MUF value.  This value is taken as a zero reference, which means that all MUF calculations are taken 

relative to this point.  The initial starting point for the particle filter is based on the initiation of the mock 

F&W facility pumps.  Observation of the system has shown that the PI controller achieves dynamic 

equilibrium around 1,000 seconds after the initiation of the first pump, whether the system is in single-

pump or dual-pump operation.  This may be seen in Figure 12, where the first pump is initiated at 

roughly 2000 seconds and the PI control stabilizes by about 3000 seconds.  (The effects at shutdown 

around 8000 seconds are an artifact of the mock F&W facility and are not considered in this study as the 

final MUF value is influenced by the manual closing of shutoff valves and is not an analog to GCEP 

operation.) 

From this starting point, the particles are evenly distributed from the calculation of a severely increasing 

MUF to a severely decreasing MUF by varying the first-order coefficient of Equation 38.  As the particles 

travel and load cell measurements are taken, the particles that best follow the path of the MUF receive 

the most weight.  As SIR commences, the particles are redistributed according to the distribution of 

weights among the existing particles, providing the Bayesian framework for tracking MUF using a 

particle filter. 

When the particles are resampled in SIR, the new first-order coefficients are chosen based on the linear 

path between the previous and current SIR position.  (For example, if the mean position at the first SIR 

point calculated a MUF of 0.1 kg and the mean position at the second SIR was a MUF of 0.15 kg, then 

the mean first-order coefficient would equal the gain of 0.05 kg of MUF divided by the time between SIR 

points.)  Given the mean coefficient, each particle's new coefficient is chosen by adding a random 

number to the mean coefficient, where the random number is normally distributed with a standard 

deviation equal to the estimated dynamic noise of the system.  The basic form is given in Equation 39. 

            
     

                              

Equation 39 - Model Coefficient Update Equation 
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Figure 12 - PI Control Stabilization and MUF Calculation 

  

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

M
U

F
 (

k
g
)

Pump 
Initiation 

PI Control 
Stabilization 



62 
 

3.2.5.3 Application of Particle Filters to Diversion Detection and Prognostics 

The PF model was tested in the same manner as the GP model.  Similar to the optimization of the GP 

time window, the PF model was tested to determine optimal frequencies of SIS and SIR updating to 

provide a balance between model stability and model responsiveness.  The particle filter model was also 

constrained to piecewise linear particle trajectories to provide sensitivity to the decision of the operator 

to either divert or not divert material at any time.  The particle filter model was built using an existing 

set of legitimate and diversion facility runs, and then tested against new runs to validate the model.  As 

described above, undeclared production, prognostic, and uncertainty estimates were all automatically 

generated by the particle distributions. 

3.2.5.4 Validation of the Fitted Particle Filter Model 

Particle filters are particularly appealing for modeling nonlinear and potentially nonmonotonic data.  

The Monte Carlo process allows the particle filter to adaptively track the data trends without knowing 

the underlying structure, as the SIS reweighting provides the model information regarding the most 

likely data trends and the SIR resampling avoids degeneracy and allows the particles to adapt to data 

trends.  The risk associated with such model flexibility is that the particle filter may adapt to any data, 

regardless of whether there is any underlying information associated with the data.  For example, if a 

particle filter is applied to purely random data, the filter process will provide a model to the data, but no 

indication that the data is random and has no structure.  To justify the particle filter model, its 

coherence to the data was tested using the ICOMP scoring system discussed in §3.2.3.1. 

For a given region between SIR updates (i.e. when particles are only re-weighted, not resampled), the 

weighted mean of the particle paths was considered a model to the data.  This model, referred to as the 

"linear" model due to the linear restrictions within the particle filter, will be scored based on its fit to its 

region of data using the misspecified ICOMP criteria.  (Again, the misspecification feature of this metric 

adds additional penalty if the particle filter is indeed the "wrong" model for the data.)  The data were 

also scored against a constant term model, which was the mean of the data in this region, as well as a 

random model, in which no coefficients were specified and the predictor data were a vector of normal 

random data with zero mean and unitary covariance.  An example scoring is shown in Table 1.  In this 

example, the particle filter scored the best in regions one and two, but then the random model suddenly 

provided the best score for the data from 2000 to 3000 seconds.  In this region, the particle filter model 

would be considered invalid and any results from the particle filter in this region would be questioned.  
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Table 1 - Sample ICOMP Scores for Theoretical Mock F&W Facility Data 

    Model Type 

Start Time Stop Time Linear Constant Random 

0 1000 -100 -50 200 

1000 2000 -250 -100 150 

2000 3000 -50 -75 -200 

3000 4000 -200 -250 120 
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Meanwhile, the data from 3000 to 4000 seconds is best represented by the constant term model.  

Again, the particle filter's results would be considered less valid than treating the MUF as a constant 

through this region.  The difference in the interpretation between regions three and four is that region 

four would be considered a coherent operating range of legitimate operation, while region three was 

poorly modeled by the particle filter and by the constant MUF assumption.  This would be a flag for an 

event requiring further inquiry, such as data corruption.  By using ICOMP rather than traditional 

statistical measures like p-value tests, the model was guarded against overfitting (e.g. fitting a linear 

model to constant data), and model selection was no longer restricted by an arbitrary limit such as an 

alpha value. 

In addition to ICOMP scores, the histogram of the particle filter prediction will be evaluated.  If the MUF 

data is well-defined by the particle filter, then the weighted histogram of particle filter predictions 

should approximate a normal distribution.  Even if the measurement noise of the data were not normal, 

the accumulation of weight updates would render the effect of the noise as a normal distribution upon 

the particles based on the Central Limit Theorem.  If the particles did not effectively capture the 

underlying trends to the data, then anormal deviations to the histogram would appear, such as 

skewness or bimodality.  Such features would indicate that the data is in transition relative to the 

particles, which does not necessarily indicate that the model is insufficient, but that any predictions 

based on the particle filter in this region are suspect and may not be reliable. 

This effect is visible in Figure 13, where a normal curve is fit to a normal distribution and a right-skewed 

beta distribution.  Applying a Lillieford test for normality to each distribution where the null hypothesis 

states that a normal distribution fits the data, the normally distributed data does not reject the null with 

a p-value of 0.276 while the beta distributed data rejects the null with a p-value of approximately zero.  

The first case suggests that the particles are well centered on the data in the region of inquiry, while the 

second indicates that the particles are distributed unevenly with regard to the data.  In this second case, 

any predictions of SQ production will be considered less reliable. 
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Figure 13 - Fitting Normal Curves to Normal and Beta Distributions 
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3.3 Software Development 

The monitoring and prognostic methods developed in this research will be developed into automated 

software using MATLAB™.  This software will be designed for observation of the mock F&W facility and 

will provide a simulation of the manner in which the monitoring of a GCEP may be automated and 

performed by on-site IAEA computers.  Basic automated analysis of the mock F&W load cell data has 

been provided by an already-developed toolkit called PlotEvents [Henkel, 2010].  PlotEvents will be 

expanded to include accountancy scale data and any other measurements deemed relevant to the 

verification process.  The software will be developed in two categories: summary reports that can be 

sent on to IAEA headquarters, and analytical tools that can be used by an inspector during an on-site 

visit.  The summary reports represent the software's declaration of the state of the facility and will only 

include data that is deemed acceptable for transmission beyond the facility.  The analytical tools will 

provide an inspector with the ability to diagnose the software's declarations so that the inspector can 

determine the source of any warnings as well as search for reasons why a warning might not have been 

transmitted as expected. 

This chapter presented an overview of the mock feed and withdrawal facility as an analog test platform 

for developing remote monitoring techniques for gas centrifuge enrichment plants.  General path and 

particle filter prognostic models were developed to predict the time until diversion of significant 

quantities of material from the mock feed and withdrawal facility.  Finally, the PlotEvents software tool 

for automated analysis of the load cell monitoring data was introduced.  The next chapter presents 

improvements made to the mock feed and withdrawal facility over the course of this research and the 

results of an observability analysis of the mock feed and withdrawal facility and its relevance to the 

monitoring process.   Analyses of the prognostic methods are presented to justify the choice of the 

particle filter as the prognostic model for this research.  Finally, four case studies are analyzed with the 

particle filter to estimate the time to diversion of a predefined significant quantity of material.  The 

results of the case studies are evaluated based on accuracy, precision, flexibility, and uncertainty. 
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4 APPLICATION AND RESULTS 

The results of this research may be divided into two distinct categories: the work related to the 

improvement and operation of the mock F&W facility, and the analytical work performed to analyze the 

data collected from the mock facility.  Subsections 4.1 through 4.3 discuss applied work performed to 

improve the mock F&W facility and to parameterize its performance.  This includes a discussion of the 

changes to the mock F&W facility and its operation, parameterization of the facility, an observability 

analysis of the facility, and efforts to reduce noise when measuring surge tank water level.  Subsection 

4.4 discusses preliminary evaluation of prognostic models that builds towards the ultimate objectives of 

this research.   

4.1 Mock Feed and Withdrawal Facility Improvements 

Several improvements were made to the mock F&W facility to improve the consistency of the data and 

to increase the flexibility of the facility to mimic potential events at an enrichment facility.  Data 

consistency was improved by automating control of the surge tank water level using a proportional-

integral (PI) controlled valve instead of the operator's visual estimation of water level.  PI control itself 

was subsequently optimized via low-pass filtering and trimmed mean averaging of the water pressure 

transducer signal to provide a clean, low-variance reading of the water level, and by eliminating physical 

sources of signal noise within the facility. 

4.1.1 Automated Control of the Surge Tank Control Valve 

Originally, flow from the surge tank was controlled by two manual throttle valves – one valve on the 

tubing leading to the product stations and one valve on the tubing leading to the tails stations.  The 

facility operator would visually observe the water level inside the surge tank and adjust the throttle 

valves as necessary to maintain the desired water level within the surge tank.  This configuration led to 

problems of consistency: the surge tank level was controllable only within the operator's ability (and 

interest) to maintain a constant level, and the "enrichment" (i.e. the product / tails ratio) was consistent 

only as far as the operator's ability to guess the appropriate throttle valve adjustments.  Figure 14 shows 

the two throttle valves (left) and the cutoff valve (center) on the outlet of the surge tank. 
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Figure 14 - Original Surge Tank Control Valve Setup 
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Without consistent flow from the surge tank, the data collected from the mock F&W facility could not 

effectively be used as an analog to GCEP operation.  The system of manual throttle valve control of 

surge flow was replaced by a proportional-integral (PI) controlled ball valve (the "surge tank control 

valve") to regulate the quantity of flow.  The two throttle valves were then used to regulate the flow 

from the surge tank control valve and maintain the desired product / tails ratio.  The PI controller was 

created using LABView™ on a Dell™ D620 laptop.  The governing equation for the PI controller is given in 

Equation 40. 

                     
 

 

 

Equation 40 - PI Control Equation 

 

In Equation 40, the term u(t) is defined as the change in actuator voltage and the error term e(t) is 

defined as the difference between the surge tank level setpoint and the actual height of water in the 

surge tank (actual height – setpoint = error).  If the surge tank level is too high, a positive error term 

would increase the voltage to the valve actuator, opening the valve.  Kp is defined as the proportionality 

constant, and KI is the integral constant.   

The water level was measured using a pressure transducer placed at the outlet of the surge tank.  The 

transducer signal was converted from a voltage to a water pressure, which could then be related to the 

height of the water above the transducer through Equation 41.  By accounting for the difference in 

height of the pressure transducer and the surge tank outlet, the water level relative to the surge tank 

control valve could be calculated. 

                       

Equation 41 - Relationship Between Water Level and Pressure 

 

Through experimentation, effective values for the constants were determined to be Kp = 12 V/(kg/min) 

and KI = 0.5 V/(kg·sec/min).  The steady-state drift of the surge tank level was observed to be about 0.02 

inches, and the valve actuator typically changed position only once about every four to five seconds, 

with incremental changes of less than 0.1 V.   
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4.1.2 Reduction of Pressure Transducer Noise 

When first applied, the PI control system was highly susceptible to noise from the pressure transducer, 

resulting in excessive operation of the valve actuator.  The 1 Hz updates in valve position caused 

constant actuator motion with changes in the actuator control signal (see Equation 40) commonly as 

high as 0.5 V (out of a 10 V range of operation).  With mock F&W facility operational runs routinely 

lasting two hours and occasionally five to eight hours, actuator wear was a concern. 

According to Equation 40, reducing the changes in the control voltage to the actuator could either be 

accomplished by reducing the constants or by reducing the changes in the transducer voltage.  Reducing 

the constants Kp and KI would reduce the effectiveness of the PI control scheme and was therefore 

undesirable.  Reducing the changes in the transducer voltage was achieved through: signal analysis to 

isolate signal noise, signal sampling and smoothing optimization, and identification and correction of 

physical sources of noise within the mock F&W facility. 

4.1.2.1 Signal Analysis 

The pressure transducer signal was recorded at 256 Hz for several minutes while the system was static 

(i.e. no water flowing into or out of the surge tank).  A subset of the raw signal is shown in Figure 15.  

The transducer signal had a standard deviation of 0.00955 V, which, when converted to water height, 

corresponds to a standard deviation of water height of 0.47 inches.  In comparison, the facility was 

expected to operate with extreme surge tank levels of 19.5 to 20.5 inches, with normal operation within 

19.95 to 20.05 inches, indicating that signal noise dominated the underlying signal of changes in the 

water level.  To examine the noise of the pressure signal, a Fast Fourier Transform (FFT) algorithm was 

applied by importing the signal into MATLAB™.  The transformed signal is shown in Figure 16.  
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Figure 15 - Pressure Transducer Voltage with no Surge Tank Flow 
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Figure 16 - Unfiltered Pressure Transducer Signal - Fast Fourier Transform 
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A very strong 60 Hz 'hum' can be seen in the transducer signal, as well as a 120 Hz signal.  The 60 Hz 

noise was an artifact of the AC power supply used to energize the transducer, and the 120 Hz noise was 

most likely harmonic noise from the same AC source.  A third-order Butterworth low-pass filter was 

applied with a break frequency of 5 Hz.  This filter was applied to the exact same signal as in Figure 15; 

the results are shown in Figure 17 and Figure 18. 

The low-pass filter eliminated the severe 60 Hz and 120 Hz noise, and the frequency with the largest 

noise signal was 4 Hz, which was more than a full order of magnitude lower in strength than the 60 Hz 

hum.  The standard deviation of the filtered signal was 0.001 V (~ 0.05 in), which was an order of 

magnitude lower than the standard deviation of the unfiltered signal. 

4.1.2.2 Signal Sampling Rate and Smoothing Optimization 

Having eliminated the electrical noise from the pressure transducer signal, the sampling rate was varied 

to quantify its relationship to signal variance.  A plot of the sample rate dependence of transducer 

standard deviation is shown in Figure 19.  Because of the desire to use fast Fourier transforms (FFTs) to 

filter the signal, sampling rates were restricted to powers of two (e.g. 256 Hz, 512 Hz, 1024 Hz, etc.). 

As the sampling rate increased, the signal standard deviation decreased.  The relationship was linear in 

log-log form up to a sampling rate of 8096 Hz, after which no significant reduction in noise was 

observed.  Since operation of the system with high sampling rates did not inhibit the LABView™ PI 

controller or generate significant heat within the laptop, a sampling rate of 8096 Hz was used to 

minimize signal noise. 

With the sampling rate and low-pass filter in place in the PI controller, a trimmed mean filter was used 

to average all of the data points for each second.  The highest ten percent and lowest ten percent of the 

data values were eliminated, with the mean of the remaining eighty percent of the signal serving as the 

transducer voltage reading for that second.  This value was then converted to a pressure value, and 

ultimately into a water level measurement so that the water level error e(t) could be calculated for  

Equation 40. 
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Figure 17 - Filtered and Unfiltered Pressure Transducer Signals 
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Figure 18 - Filtered Pressure Transducer Signal Frequency Spectrum 
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Figure 19 - Voltage Standard Deviation as a Function of Sample Rate 

  

y = 0.2886x-0.323

R² = 0.9695

0.01

0.1

10 100 1000 10000

T
ra

n
s
d

u
c
e
r 

V
o

lt
a
g

e
 S

ta
n

d
a
rd

 D
e
v
ia

ti
o

n
 (

V
)

Sample Rate (Hz)



77 
 

4.1.2.3 Reduction of Physical Sources of Pressure Transducer Noise 

Two sources of pressure variation were determined to exist in the product and tails flow tubes.  The first 

was the presence of air in the tubes.  Initially, no attempts were made to maintain an air-free 

environment within the tubes, but inconsistent flow out of the surge tank would often cause control 

problems, particularly during low-flow conditions during startup and shutdown.  During such low-flow 

conditions, flow was often observed to suddenly cease or surge, requiring significant action of the 

throttle valves to regulate the flow.  Once flow rates were of sufficient magnitude, these inconsistencies 

would generally disappear.   To eliminate the flow inconsistencies, air was eliminated from the tubes by 

changing operating procedures.  The air-free product and flow tubes provided more consistent flow 

during startup and shutdown, eliminating the need for throttle valve adjustment and providing more 

consistent flow throughout operation of the facility. 

The second source of noise was a loose tube seal at the shutoff valve for tail station 2 (TS-2).  When TS-2 

was being filled, air would periodically enter the flow stream at the shutoff valve.  The air introduction 

affected the static pressure inside the tube, causing a backpressure variation that altered the pressure 

transducer voltage.  This effect caused a fluctuation in the transducer voltage with a frequency of about 

4 Hz, which in turn caused the PI controller to move the actuator with a 4 Hz oscillation about the 

nominal actuator voltage for the current operating regime.  The TS-2 valve seal was fixed by replacing 

the tube section exiting the shutoff valve, eliminating the air entrainment and the subsequent pressure 

variation. 

4.2 Mock Feed and Withdrawal Facility Operation 

The quality of the mock F&W analog is only as good as the manner in which the facility is operated.  By 

converting surge tank level control from an operator's visual estimation of level to a PI controller, the 

response of the facility to changes in feed rates (e.g. startup, shutdown, and changes in feed tanks) was 

made more consistent.  Still, the mock F&W facility is largely under manual operation, with the feed 

pumps and all tank loadings/unloadings performed by human interaction.  To produce consistent data, 

the operational procedures of the mock F&W facility were modified and formalized. 

4.2.1.1 Separation of Tank Loading and Connecting Features 

Originally, as a tank was loaded onto a feed, tails, or product station, the feed or withdrawal tube was 

connected immediately after removing the lift truck from the tank.  However, discussions with ORNL, 

SRNL, and the IAEA revealed that there is usually a notable time lag between a cylinder loading and its 
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connection to the cascade.  When GCEP load cell data is analyzed, these two events can be distinctly 

observed as separate events – a feature that was heretofore missing from the mock F&W load cell data.  

The operation of the mock F&W facility was therefore modified so that a minimum wait time of one full 

minute was enforced between the loading of a tank and its subsequent connection to the process.  A 

similar time lag was also observed to occur during offloading, where the cylinder would be offloaded at 

some measureable time after the cascade connection was removed.  The offloading procedure of the 

mock F&W facility was similarly modified to produce these distinct data features. 

4.2.1.2 Cold Trap Emulation 

In a typical UF6 feed cylinder, a small amount of light gases are present in the feed stock; these light 

gases are an unavoidable side effect of the refinement and conversion processes that produce the UF6 

from uranium ore, but are highly undesirable in the enrichment processes, as the light gases would 

immediately travel to the interior of a centrifuge and inhibit the separation of U-235 from U-238.  To 

relieve the cylinders of any light gases, the feed cylinder is first heated to release the light gases from 

the UF6.   The light gases are then allowed to pass out of the cylinder through the cascade connection 

and diverted to a vent stream.  Since a small amount of UF6 gas inevitably accompanies the light gases 

during venting, the vented gas is passed through a cold trap where the UF6 is precipitated out of gaseous 

phase and collected.  The UF6, while a very small amount, may be recycled if the facility desires. 

The cold trap procedure affects the MUF calculation due to the loss of mass in the feed cylinder 

represented by the vented gases.  In the mock F&W facility, no emulation of the cold trap had been 

possible prior to work on this research, but discussions with the IAEA indicated interest in 

demonstrating the effect of cold trap operation on MUF calculations and subsequent diversion 

estimates.  To meet this interest, a bleed valve on the feed tubing of the mock F&W facility was reserved 

for removal of a small quantity of the feed water.  This removal was performed by pumping a small 

amount of water from a new feed tank and relieving the pumped water through the bleed line rather 

than into the surge tank.  The removal of water can be performed for the first cylinder prior to actual 

startup of the mock enrichment process, and can be performed in-line for any other cylinders without 

interrupting the process. 

4.2.1.3 Sampling 

Sampling of the product tanks was performed by siphoning after the product tanks were filled but prior 

to its removal from the filling station.  The sampling process imitates sampling of product LEU that is 
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performed to both verify the enrichment levels of the material and to demonstrate the quality of the 

product to purchasers.  The sampling may be performed while the mock enrichment process is still 

running (i.e. after the product tank in question has been filled and the mock process is filling a different 

product tank) or at the end of the process (to sample the final product tank).  Each sampling process was 

restricted to the removal of about 0.05 kg of water – an amount small enough to be discrete, yet large 

enough to measurably affect the MUF calculations.   

4.3 Mock Feed and Withdrawal Observability 

Prior to analysis of the mock feed and withdrawal facility for detection of diversion, the system must 

first be determined to be "observable".   An observable system allows for the prediction of one state 

variable with the knowledge of a defined subset of the remaining state variables.  Without observability, 

knowledge of a subset of state variables may lead to multiple valid predictions of the appropriate value 

of the final state variable, rendering impossible any verification of state variables. 

The classical approach to determining observability is to determine the rank of the observability matrix 

as defined by Equation 42 .  If the rank is of the same order as the total number of state variables, the 

system is determined to be observable; that is, the variables do contain a strict, one-to-one relationship 

with each other that guarantees that the knowledge of one state variable may be gained through 

measurement of the remaining state variables. 

    

 
  
 

     

   

Equation 42 - Observability Relationship 

4.3.1 Feed and Withdrawal Station State Variables 

The mock F&W facility was defined as having three feed stations, two tail stations, and three product 

stations.  Any decisions as to which stations were in use at any time were made by the operator and 

were not bounded by any logical or mathematical relationship.  For example, feed could arbitrarily be 

introduced through feed station one, two, or three; the feed station used also has no bearing on which 

product and tails stations are used.  Rather than focus on the individual stations, the feed, product, and 

tails flows were defined as aggregate from all stations, resulting in three station state variables: feed 

flow, product flow, and tails flow.  The simplified schematic of the mock F&W system shown in Figure 20 

illustrates this simplification with cumulative feed, product, and tail flow rates.  
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Figure 20 - Simplified schematic of the mock F&W facility 
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In a GCEP, the relationship between the product and tail flow rates is determined by the level of 

enrichment desired by the plant operator as well as the enrichment efficiency of the plant.  In the mock 

F&W facility, the relationship was governed by two throttle valves – one for each flow – that maintained 

a constant relationship between product and tail flow.  The product and tail flow rates could then be 

defined by their relationship to the flow rate exiting the surge tank by defining a product flow 

parameter, pe, as in Equation 43. 

   
                 

                         
 

Equation 43 - Definition of Product Flow parameter pe 

 

The tail flow could then be defined with respect to the product flow as in Equation 44. 

           
    

  
             

Equation 44 - Relationship between Product and Tail Flow 

4.3.2 PI Control State Variable 

The feed into the surge tank was seen as a forcing function dictated by the feed flow rate, but the flow 

out of the surge tank was controlled by the PI controller, which actuated the surge valve at the exit of 

the surge tank.  The flow into the surge tank is given in Equation 45, and the PI controller was governed 

by Equation 46: 

    
      

  
 

Equation 45 - Mass Flow into the Surge Tank 

 

           

Equation 46 - Exit flow Relationship from the Surge Tank 

 

Here,   is defined as the density of the fluid (water), a is the cross-sectional area of the surge tank exit 

pipe, g is the acceleration due to gravity, and h is the height of the water in the surge tank, with respect 
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to the exit pipe.  The √h term presents nonlinearity to the system.  However, the nominal height of 

water in the tank (relative to the exit pipe) is 20 inches, and normal variation of water height does not 

exceed 19.9 to 20.2 inches during operation.  (During operation, the water level varies between 19.98 

and 20.02 inches.  However, the level was observed to vary from 19.9 to 20.2 inches during startup.)  

Assuming that water is incompressible and has constant density, water levels of 19.9 and 20.2 inches 

experience only about a 0.5% difference in flow rate compared to a water level of 20 inches.  The height-

flow rate relationship may thus be linearized with acceptable error as in Equation 47: 

     

  
   

  

 
 

 

  
 

            

   

Equation 47 - Linearization of the Water Level / Flow Relationship 

 

4.3.3 PI Controller State-Space Representation 

The flow through the surge valve was regulated by a PI controller, which adjusted the position of the 

throttle valve by changing the control voltage of the valve actuator.  The actuator would shut the valve 

entirely with a control voltage of 0 V, and would open the valve entirely with a control voltage of 10 V.  

Typically, the control voltage of the actuator would be about 3 to 5 V during operation.  The PI controller 

was governed by the relationship in Equation 48: 

          

  
             

 

 

 

Equation 48 - PI Controller governing equation 

  

Kp represented the proportionality constant, and KI represented the integral constant for the PI 

controller.  The variable h was defined as the difference between the surge tank water level setpoint 

and the actual height of water in the surge tank.  If the water level was lower than the setpoint, h 

would be a negative value and would decrease the control voltage to the actuator, thereby restricting 

the surge tank control valve and restricting flow out of the surge tank.  The control scheme was 

dominated by proportional control, and the integral term eliminated the steady-state error of the 

controller. 
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The integral term presented a nonlinearity in the PI control equation.  However, Equation 48 could be 

linearized by defining a variable substitution for the integral term [Chau, 2002], as in Equation 49: 

       
 

 

    

   

  
      

Equation 49 - Variable Substitution for the PI Integral Term 

 

This substitution generates the coupled system of linear equations for the PI controller in Equation 50: 

          

  
         

   

  
      

Equation 50 - PI Controller Equation in Linear Coupled Form 

4.3.4 State-Space Model of the Mock Facility 

With the surge tank water height / outlet flow and the PI controller equations linearized, the entire 

facility may be written in state-space form.  The forcing function is the feed flow, which is controlled by 

manual operation of the feed pumps.  The state variables are: the perturbation in surge tank mass from 

its setpoint, the actuator voltage of the control valve, the integral term of the PI controller (as in 

Equation 50), the product stream mass, and the tail stream mass.  The mathematical variables used for 

each state variable are given in Table 2. 

The surge tank mass is directly related to the height of the water in the surge tank by the relationship in 

Equation 51: 

             

Equation 51 - Surge Tank Mass  Relationship 
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Table 2 - State Variables of the Mock Facility 

Symbol Definition 

S Perturbation of surge tank mass 

V Actuator Voltage 

x1 Integral component of PI controller 

P Product  Mass 

T Tails Mass 
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Since the surge tank is a cylinder with a smaller internal cylinder occupying some of the volume, the 

cross-sectional area of the tank is the difference in the tank cross-sectional area and the cross-sectional 

area of the internal cylinder.  

In matrix form, the state-space representation of the system is given in Equation 52: 

 

  

 
 
 
 
 
 
 
  
 
  
 
  

 
 
 
 
 

 

 
 
 
 
 
 
 
      
        
        
      

    
  

      
  

               
 
 
 
 
 
 

 

 
 
 
 
 
 
 
  
 
  
 
  

 
 
 
 
 

       

 
 
 
 
 
 
          

 
 
 
 
  

 
 
 
 
 

 

Equation 52 - Matrix Form of State-Space Representation 

 

The matrix of coefficients is typically defined as the A matrix and contains constants that linearly relate 

the state variables to their time derivatives.  The term c1 represents the relationship between the 

actuator voltage (which relates to the exit flow aperture) and the flow rate of the water from the surge 

tank and is given in Equation 53. 

    
 

 
 

   

   
 

Equation 53 - Definition of c1 constant in State-Space Equation 

 

4.3.4.1 Definition of the C Matrix 

In observability theory, the C matrix defines which variables are observed (i.e. measured) and which 

variables are not observed.  For example, if only the product and tail flow rates are measured for the 

system defined in Equation 52, then only the two final variables of the five state variables are measured.  

These measured variables are represented in the C matrix with a value of 1, and the unobserved 

variables are given a value of 0.  The column definitions of the C matrix are shown in Equation 54. 

                                                

Equation 54 – Column Definitions for C Matrix for Measurement of Product and Tail Mass 
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The Feed, Product, and Tails variables represent the measured weights of the respective feeding and 

filling stations.  The Surge variable represents the holdup volume within the surge tank.  The PI Voltage 

and PI Integral variables are the two terms necessary to linearize the PI controller as in Equation 50.  If 

the observed variables are the feed, product, and tails weights (i.e. a load cell system), then the C matrix 

would be written as in Equation 55, where the number of rows equals the number of outputs. 

    
      
      
      

  

Equation 55 - C Matrix with Feed, Product, and Tails Observed 

 

Equation 55 represents the normal observation status of a load-cell based monitoring system, where the 

actual controls of the surge volume are not observed by the monitoring party.  The "1" values indicate 

that the variable is observed, while the "0" values indicate that the variable is not observed. 

4.3.5 Observability of the Mock Facility 

Using Equation 42, Equation 52, and Equation 54, the observability of the system may be tested knowing 

only the product and tail flow rates.  In this case, the observability matrix numerically reduces to 

Equation 56: 

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
      
      
      
           
            
      
            
                  
      
                  

                         
      

                         
                                 

      
                                   

                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Equation 56 - Observability Matrix (Numeric) 
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The observability matrix of the facility was rank 6, which matched the number of variables and indicated 

that the system was completely observable.  By knowing the product and tail flows, there is a one-to-

one correspondence to the feed flow (within the limits of the linearization of the surge flow / water 

level relationship and the PI controller governing equation).  By monitoring the product and tail flow 

rates over time, the feed flow rate could also be observed over time.  If a load cell variable is omitted, 

then the system can no longer be considered observable.  For example, if the product load cell was not 

observed, then the C matrix becomes Equation 57. 

    
      
      

  

Equation 57 - C Matrix with Feed and Tails Observed 

 

The resulting observability matrix (which is not shown for brevity) is only of rank 5.  The lack of product 

load cell data renders the system unobserved, which indicates that the feed and tails observations are 

not sufficient to monitor the facility.  If another relationship could be found to accurately monitor the 

ratio of product and tails flow, such as measurement of the product and tails flow rates through their 

respective flow tubes, then observability could be restored.  This could be a redundancy that could 

verify the load cell measurements or provide back information in the event of the loss of load cell data, 

but if the discussion is confined to only load cell observation, then all load cells must be observed. 

4.3.6 Observability of a Cascade System 

While the mock F&W facility may be observable, any analysis performed on the mock facility is of value 

only if a similar analysis may be performed on a real GCEP.  A rigorous observability analysis of a GCEP is 

not possible due to the proprietary nature of the enrichment process.  Therefore, the utility of 

observability may only be estimated by determining if observability is maintained when the mock F&W 

model is increased in complexity to more realistically mimic a GCEP. 

The fundamental difference between the mock facility and a real enrichment plant is the level of 

complexity; while the mock F&W facility has only a single stage between the feed and the product/tail 

flows (i.e. the surge tank), a centrifuge enrichment facility is composed of a cascade of centrifuges.  To 

determine whether analysis based on the observability of the mock facility may be extrapolated to a 

cascade system, the analysis was performed again on a theoretical facility with two surge tanks.  The 

theoretical facility is shown in Figure 21.  
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Figure 21 - Mock Facility with a Cascade of Surge Tanks 
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With the added tank, the state space model and C matrix are shown in Equation 58: 

 

  

 
 
 
 
 
 
 

 
   

   

 
  
 
  

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
       
         
          
         
       

     
  

      
  

                
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
   

   

 
  
 
  

 
 
 
 
 
 

      

 
 
 
 
 
 
 
    

 
 
 
 
 
  

 
 
 
 
 
 

 

    
       
       
       

  

Equation 58 - State Space Model for the Surge Tank Cascade 

 

With the second surge tank, the observability matrix is of rank seven, which is indicative of all seven 

state variables and indicates that the product and tail measurements are sufficient to observe the entire 

system.  In both the single-tank and double-tank analyses, the surge level control data were not 

measured and remained unknown throughout the entire process.  The feed flow history was observable 

despite not knowing the surge tank water level or the PI control. 

4.3.7 Observability during Diversion 

Since diversion is the undeclared removal of material from the enrichment process, it is assumed that 

any attempted diversion would not be monitored (i.e. measured by instruments such as load cells) by 

the IAEA.  Therefore, the diversion would not be an observed variable in the enrichment process.  The 

question is then whether the mock facility is observable during a diversion event without measurement 

of the diversion variable. 

In the protracted diversion scenario utilized at the mock facility, the material is diverted from the 

product stream since the enriched product is the more valuable commodity at a GCEP.  Figure 22 

illustrates the location of the diversion line within the simplified schematic of the mock facility. 

With the new variable in the system, the diversion may be viewed as a fraction of the normal product 

flow, where pnd is the proportion of flow that is not diverted (i.e. the fraction of product flow that 

actually goes to the product tank).  The quantity (1-pnd) is the fraction of product flow that is actually 
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diverted.  The state equation for diversion flow is therefore a linear function of the product flow, as in 

Equation 59: 

  

  
 

       

   
  

Equation 59 - State Equation for Diversion Flow 

 

The product flow is now given in Equation 60: 

  

  
 

      

      
  

Equation 60 - State Equation for Product Flow with Diversion Present 

 

With Equation 59 and Equation 60, the state space representation of the system may be written as 

Equation 61.  This is still a linear state space system of equations and is valid for observability analysis.   

 

  

 
 
 
 
 
 
 
 
  
 
  
 
 
  

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
       
         
         
       

    
      

      
   

               

   
       

   
     

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
  
 
  
 
 
  

 
 
 
 
 
 

       

 
 
 
 
 
 
 
          

 
 
 
 
 
  

 
 
 
 
 
 

 

Equation 61 - State Space Representation with Diversion 
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Figure 22 - Schematic of the Mock Facility with Diversion 



92 
 

If the IAEA has normal monitoring of the load cells available, then the Feed, Product, and Tails load cells 

would be the observed variables and the Surge Height, PI control variables, and the Diversion would be 

unobserved.  The resulting C matrix is given in Equation 62: 

    
       
       
       

  

Equation 62 - C Matrix for the Diversion Scenario 

 

In this case, the observability matrix is only of rank 6 when the Feed, Product, and Tails variables are 

observed.  For a seven variable system, this is insufficient to correlate to output variables as defined in 

the C matrix. 

The observability assessment of the mock facility offers two insights.  First, the load cells are sufficient 

for a monitoring scheme as the behavior of the system can be satisfactorily tracked and the results are 

known to be consistent.  If a monitoring system is utilized that accurately calculates the MUF from the 

load cell data when there is no diversion, then it should be consistently accurate during facility 

operation and any particular pattern of feed and withdrawal behavior should have a consistent 

interpretation.  Second, (and by extension), if diversion is present, the load cell data is no longer able to 

provide reliable information about the process.   Deviations between the load cell observations and their 

conclusions should therefore be readily apparent. 

4.4 Predicting Time to Diversion of a Threshold Quantity 

One question of interest for safeguards monitoring is: how much material is being diverted if a diversion 

of LEU is indeed occurring?  Another way the question may be phrased is: how long until a "significant 

quantity" of material is diverted from the process?  By viewing diversion as a 'degradation' of the 

enrichment process, the question may be cast into terms of prognostics of a process, where a threshold 

level of degradation is the typical variable of concern. 

For LEU, the IAEA definition of a "significant quantity" is the amount of LEU necessary to contain 75 kg of 

U-235.  For more highly enriched LEU (e.g. 10% enrichment), this amount is lower than LEU of lower 

enrichments, such as 5% enriched LEU.  Because the mock F&W facility does not actually "enrich" water 

(or provide any analogous differentiation between the product and tails), establishing a significant 

quantity of diverted water in the mock facility requires some assumptions.  For 4% enriched LEU in the 
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form of UF6, roughly 2000 kg of material is necessary to meet the IAEA's SQ threshold.  In the mock F&W 

facility, if the product is assumed to be of similar "enrichment", the 1:100 scale of the facility would 

mean that 20 kg of product would have to be diverted to reach the same threshold.  Diversion of 20 kg 

of water in the mock facility would require either unrealistically fast diversion rates or operation of the 

facility over multiple days.  The former is impractical as analogous data, and the latter is impossible due 

to lab restrictions on working hours.  Therefore, a lower threshold is used for the mock facility.  In 

essence, this becomes a conservative estimation; by predicting the diversion of a smaller quantity than 

the significant quantity, a successful prognostic model would be more sensitive and would suggest a 

need for action well in advance of the actual generation of a mock significant quantity. 

Three candidate models were tested to determine their effectiveness in predicting the time to 

significant diversion of material:  Markov Chain, General Path, and Particle Filtering.  In each case, the 

MUF was calculated as the prognostic parameter with the assumption that an increasing magnitude of 

MUF was the direct result of diversion.  A threshold MUF quantity of 0.75 kg was set for preliminary 

model testing.  (This threshold allowed for operation of the facility with slow and fast diversion rates 

while still keeping the hours of consecutive operation of the facility within acceptable lab limits.)  The 

models were tested for progressively increasing amounts of process data to monitor the evolution of 

the predictions over time.  The prognostic models were evaluated on how quickly they effectively 

determined whether a diversion was occurring, how quickly the model converged on a prediction of the 

correct time until a significant quantity was diverted, and how confident the model was in its prediction 

(i.e. the tightness of the confidence intervals of the prediction).  

4.4.1 Definition of the Prognostic Parameter 

The cumulative inventory difference calculation provided by PlotEvents was a direct calculation of the 

MUF of the system, as shown in Figure 23.    
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Figure 23 - Inventory Difference for a Legitimate Run 
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When the mock enrichment process started, the MUF value increased (seen in Figure 23 as a decrease in 

the cumulative inventory difference value), but remained steady throughout the process.  At the end of 

the process, the MUF value decreases.  The initial increase in MUF was a consequence of the manual 

operation of the facility and the lag time of the PI controller in responding to the system startup.  

Likewise, the final decrease in MUF due to system shutdown was a function of the PI controller lag in 

responding to system shutdown and the manual closing of the cutoff valves of the system.  In both 

cases, the change in MUF was a perfectly legitimate part of the operation of the facility and therefore 

needed to be removed from the inventory difference trace.  This was accomplished by removing the 

trace prior to the stabilization of the PI controller.  Additionally, the trace was re-centered at an 

inventory difference value of 0 kg at the origin of the truncated trace, and the sign was reversed such 

that an increasing inventory difference trace corresponded to an increasing MUF value rather than a 

decreasing MUF value.  The new trace for the inventory difference data in Figure 23 is shown in Figure 

24.  Here, the time scale is referred to as "time steps", where each time step equals one second.  

By conditioning the data as in Figure 24, the inventory difference trace would always begin at a value of 

zero kg and not be influenced by the initial startup of the mock F&W facility.   

4.4.2 Markov Chain Model 

A Type II Markov Chain model was developed by defining a transition probability matrix (TPM) using 

data from the start of the prognostic trace up to the time of the prognostic observation.  For example, if 

a prognostic analysis was performed at the 400th time step, the transitions from the 0th through the 

400th time step were used to create the TPM.  The TPM then provided a sense of the behavior of the 

model for the forecasting of the trace into the future.  The TPM was defined with four possible states, as 

given in Table 3. 
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Figure 24 - Modified Inventory Difference for a Legitimate Run 
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Once the TPM was defined, Monte Carlo simulation of the process was performed for 100 predictive 

traces, and the results of the Monte Carlo simulation were used to build statistics on the mean and 

standard deviation of the time to diversion of a significant quantity.  A threshold of 10,000 time steps 

was set to discriminate between a prediction of diversion or legitimate operation; if the significant 

quantity of 0.75 kg was not predicted to have been diverted by 10,000 time steps, then the model 

assumed that diversion was not occurring.   

A representative result of the Markov Chain analysis is shown in Equation 63 and Figure 25 for a 

diversion run after 800 time steps have passed.  Here, the significant quantity was reached at 950 time 

steps, so the prognosis was queried late in the diversion scenario when most of the significant quantity 

had already been diverted.  

 

Equation 63 - Probability Matrix for Fast Diversion after 800 Time Steps 

 

In Figure 25, the data to the 800th time step is shown in red, the true data beyond the 800th time step is 

in black, and the Monte Carlo simulations are in blue.  Most of the Monte Carlo simulations reach the 

0.75 kg threshold very quickly and cannot be individually seen.  A few, however, exhibit strong negative 

trends initially, and then take many time steps to finally provide a prediction of significant diversion.  

While the Markov Chain model did correctly predict diversion and provide a reasonable estimate of the 

mean time to diversion (as seen by the distribution estimate – the red line in Figure 25), the variance 

was so great that the prediction could not be considered more than an assertion that diversion was in 

fact occurring.  That is, the Markov Chain model's time to significant diversion was not reliable due to 

the magnitude of normal process noise and variability, even with late-term diversion predictions and 

Bayesian updating of the TPM. 

 

  

   =   

0.1280 0.1220 0.1890 0.5610
0.1779 0.1718 0.2270 0.4233
0.2363 0.2143 0.2582 0.2912
0.2457 0.2595 0.2318 0.2630
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Table 3 - State Definitions for the Transition Probability Matrix 

 

State Definition 

(kg/min) 

1 <-0.01 

2 -0.01 to 0 

3 0 to 0.01 

4 >0.01 

 

 

  



99 
 

 

Figure 25 - Markov Chains for Fast Diversion after 800 Time Steps 
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4.4.3 General Path Model 

The General Path model began with a preconceived prediction of time to significant diversion by 

developing a linear trend of diversion from eight training runs known as a prior model.  The prior model 

was created by linear regression fitting to the eight data sets.  The eight training runs and the resulting 

General Path model are shown in Figure 26. 

Fitting the linear function Degradation = a*Time Cycle + b, the model coefficients were estimated to be 

a = 0.00211 +/- 0.000341, and b = 0.0690 +/- 0.173.  Because the value b = 0 was well within a standard 

deviation of the parameter mean, the parameter b could be neglected as insignificant to the model.  The 

resultant prior model is given in Equation 64. 

                                             

Equation 64 - Prior Function for the General Path Model 

 

The prior equation provided a starting estimate for the time to diversion.  With the General Path model, 

the prior was updated by the data from a run in progress according to Bayes Theorem.  The Bayesian 

updated model was then used to estimate the time until significant diversion (or to predict that 

diversion was not occurring if the time to significant diversion was greater than 10,000 time steps).  For 

the diversion run analyzed with the Markov Chain model, the prognosis estimates are shown for 

predictions after 200, 400, 600, and 800 time steps in Figure 27 and Table 4. 

The prediction of time to significant diversion from the General Path model converged toward the 

correct solution of 950 time steps, though the prediction never came within one full standard deviation, 

even after 800 time steps had passed.  Still, the General Path model clearly outperformed the Markov 

Chain model, yielding a far more reliable prediction of time to significant diversion. 

A case with no diversion is shown in Figure 28.  In no case did the predicted time to significant diversion 

occur prior to 10,000 time steps, a value that suggests that diversion is not present in this run.  The 

tendency of the prediction to "wander" between positive and negative rates of diversion was a function 

of the noise in the data  
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Figure 26 - General Path Model Prior Function Development 
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Figure 27 - General Path Model Predictions for Diversion 

  

0 500 1000 1500 2000
-0.5

0

0.5

1
TTF estimate after 200 observations.

Time

D
iv

e
rs

io
n

0 500 1000 1500
-0.5

0

0.5

1
TTF estimate after 400 observations.

Time

D
iv

e
rs

io
n

0 500 1000 1500
-0.5

0

0.5

1

1.5
TTF estimate after 600 observations.

Time

D
iv

e
rs

io
n

0 500 1000 1500
-0.5

0

0.5

1

1.5
TTF estimate after 800 observations.

Time

D
iv

e
rs

io
n



103 
 

Table 4 - General Path Estimates of Time to Significant Diversion 

 

Start of Prognostication 

(Time Steps) 

Time to Significant Diversion 

From Time = 0 

 Expectation 

(Time Steps) 

Standard Deviation 

(Time Steps) 

(Prior Model) 3555 2196 

200 1401 42 

400 1090 20 

600 974 15 

800 966 13 
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Figure 28 - General Path Model Predictions for a Legitimate Run 
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4.4.4 Particle Filter Model 

The particle filter model was applied using the techniques described in §3.2.5.  Similar to the GP model, 

the particle filter was applied to diversion and non-diversion case studies and the predictions were 

compared to the known diversion rates.  For the diversion case used in the GP model, the PF model 

provided the predictions and uncertainties given in Table 5.  The critical MUF value was again 0.75 kg, 

and the actual time to SQ production was 79:10 minutes. 

400 total particles were used in the PF model, with initial paths varying between -0.06 and +0.06 kg/min.  

Updates were allowed after 125 seconds from the initial distribution or after any SIR redistribution.  

(This equates to every 25 time steps, since measurements were available once every 5 seconds.)  The 

125 second delay in SIS and SIR updating allowed the particles to travel and spread, reducing the chance 

that high-likelihood particles would be demoted early in the process when all particles are close 

together. 

As with the GP model, a threshold of 13 hours and 53:20 minutes was set as the outer limit for a 

prediction of diversion.  If the PF model did not predict 0.75 kg of diversion after 13 hours and 53:20 

minutes (2 hours and 46:40 minutes total time steps beyond the known data), then no prediction of 

diversion would be made.  This limit censored predictions of critical MUF production due to negligibly 

low model coefficients. 

The particle filter predictions are shown in Figure 29 through Figure 32.  In Figure 29 and Figure 30, the 

particle filter is inhibited by the early "settling in" phase where the initial particle paths are uncorrelated 

to the actual MUF observations.  The prediction variances are sufficiently high to warrant suspicion 

about the predicted time to SQ diversion, but the trend is apparent.  By 50 minutes in Figure 31, the 

particle variance has reached relative equilibrium with the measured data.  The prediction of 80:07 

minutes to SQ production is within the margin of error of the actual time to SQ production of 79:10 

minutes.  The result is similar at 66:40 minute in Figure 32; the prediction of 4802 seconds with a 

standard deviation of 162 seconds is very reasonable, given the noise and the relatively constant 

increase in MUF.  Figure 33 shows the particle paths for the 66:40 minute prediction case (other cases 

are not shown as the particle paths are subsets of the particles in Figure 33).  The effect of particle 

weights is not readily apparent, as the particle paths are all illustrated with equal line weight in Figure 

33.  
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Table 5 - Particle Filter Estimate of Diversion 

Start of Prognostication 

(Seconds) 

Time to Significant Diversion 

From Time = 0 

 Expectation 

(Seconds) 

Standard Deviation 

(Seconds) 

1000 18,600 2907 

2000 7388 464 

3000 4807 163 

4000 4802 163 
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Figure 29 - Particle Filter Prediction at 16 Minutes, 40 Seconds 
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Figure 30 - Particle Filter Prediction at 33 Minutes, 20 Seconds 
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Figure 31 - Particle Filter Prediction at 50 Minutes 
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Figure 32 - Particle Filter Prediction at 66 Minutes, 40 Seconds 
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Figure 33 - Particle Paths for the Diversion Trial Run 
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4.4.5 Prognostic Model Selection 

Of the three prognostic models tested, the particle filter model was chosen for inclusion in the 

PlotEvents software for monitoring the mock F&W facility.  The Markov Chain model was clearly 

unreliable as a prognostic model due to the high noise of the system.  Also, the inability of the Markov 

Chain model to recognize the difference between a diversion and a nondiversion (as well as the time 

that a diversion may begin) rendered it useless as a prognostic model for determining whether a 

diversion event may be taking place. 

The general path model performed well, but suffered from a lack of an internal mechanism for 

piecewise regression.  Additionally, the error estimates from the general path model tended to be too 

small, resulting in overconfident predictions of diversion that were not within the margin of error from 

the actual time to SQ production.  (This tendency also caused the GP model to appear to predict long-

term diversions when no diversion was present, as the low variance of the prediction was easily 

interpreted to be a high confidence in the prediction rather than simple agreement among the multiple 

paths of the model.)   

The particle filter model, on the other hand, was a piecewise model by design (where the "pieces" may 

be viewed as the regions between SIR updates) and naturally changed trends based on changes in the 

data.  Additionally, the particle variance was directly influenced by the measurement and dynamic noise 

of the system through the SIS and SIR updates, respectively (see Appendix B: Measurement and 

Dynamic Noise Estimates). 

The particle filter model did express two limiting attributes.  First, the particle variances did not tend to 

settle out for about 33:20 minutes.  This was partly a function of the high data noise and the inability of 

a model to make reliable prognostics without sufficient data to overcome the noise, but the 

convergence time is a necessary consequence of the initial particle spread.  (The initial particle spread is 

in turn a consequence of the lack of foreknowledge of the MUF path at the time the particle filter is 

initiated.)  Second, the particle filter exhibited a limiting factor of noise reduction.  With both the 50 

minute and 66:40 minute cases, the prediction had a standard deviation of 164 seconds.  This is a 

consequence of the particle filter's reliance on noise to estimate the filter parameters. 

The inherent flexibility and the self-regulated variance estimates were the primary factors for choosing 

the particle filter model.  The higher variance of the particle filter (relative to the GP model) was an 
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admission that the noise of the system (both measurement and dynamic) limited the reliability of any 

prediction made using the data.   

4.5 Case Studies 

The particle filter prognostic model was applied to four unique case studies: legitimate operation, slow 

diversion, fast diversion, and an interrupted diversion.  The legitimate operation tested the model's 

performance when no prediction of diversion should be made.  The two diversion cases tested the 

model's ability to adapt to different rates of diversion.  The interrupted diversion case featured a pause 

in the diversion process, then a continuation of the diversion.  All four cases are explained in more detail 

in Appendix C:  Case Studies. 

For each case study, the particle filter was applied at 16:40 minutes (1000 seconds) after the initiation of 

the feed flow.  This delay in filtering allowed the PI controller time to stabilize after the initial 

perturbation of feed flow.  The cumulative inventory difference at the beginning of particle filtering was 

defined as the "zero point" for the inventory difference.  For the non-diversion and the slow diversion 

cases, the significant quantity threshold was defined as 0.8 kg.  For the fast diversion and the 

intermittent diversion cases, the significant quantity threshold was defined as 2.0 kg.  The difference in 

threshold allowed for an accurate, known time of SQ production for the slow diversion case while also 

providing more run time for the particle filter in the face of faster diversion rates.  (If scaled properly 

from the IAEA standard of 75 kg of U-235, the SQ threshold would normally be about 20 kg of material; 

however, this size of a diversion would require running the facility longer than laboratory regulations 

allowed.  The threshold was therefore set to lower values.  Fortunately, the threshold is a matter of 

scale, not of logistics, with particle filtering.) 
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4.5.1 Legitimate Operation (No Diversion) 

When applied to the non-diversion scenario, the particle filter never predicted the diversion of a 

significant quantity throughout the available range of data.  The weighted mean and weighted standard 

deviation can be seen during the range of data in Figure 34.  The instantaneous jumps in the weighted 

particle mean occur when the particles are resampled and are a function of the programmed delays in 

weight updating after resampling.  When the particles are used for prediction of SQ production, no such 

prediction is made by the time limit of 13 hours and 53:20 minutes (50,000 seconds), as is seen in Figure 

35.  Only a fraction of the particles have exceeded the 0.8 kg SQ threshold, resulting in the skewed 

distribution of times at which particles crossing the SQ threshold.  The particle traces can be seen in 

Figure 36, again revealing a prediction of no SQ production.  Also in Figure 36, the ICOMP measure of 

model validity indicated that the linear model became less valid than a constant-MUF model over time.  

This is indicated by the yellow shading over the SQ prediction alarm indicator, which shows a preference 

for the constant model. 

Finally, a look at the particle filter predictions at every five second time interval indicates that there was 

never a prediction of diversion at any time during the legitimate run, as shown in Figure 37.  An 

occasional prediction of SQ production could have been acceptable as false positives due to the noise 

inherent in the data, but in this case, all signs indicated that facility did not have an unaccounted loss of 

mass throughout this run. 
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Figure 34 - Weighted Mean Particle Trace for Non-Diversion. 
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Figure 35 - Particle Filter Statistics for Non-Diversion after 66 Minutes, 40 Seconds. 

  

0 1 2 3 4 5 6

x 10
4

-6

-4

-2

0

2

4

6

8
Estimation of Material Unaccounted For (MUF).

Seconds

M
a
te

ri
a
l 
U

n
a
c
c
o
u
n
te

d
 F

o
r 

(M
U

F
) 

(k
g
)

 

 

Observed Path

Weighted Particle Mean

-25000 0 25000 50000 75000
0

0.05

0.1

Seconds

There is no prediction of

0.80kg of MUF

within 50000 seconds of the

recorded data.

Time to 0.80 kg MUF: 

NaN +/- NaN s.

Lilliefors test for normality: 

Null rejected with p-value of

0.0000



117 
 

 

 

Figure 36 - Prognostic Particle Traces for Non-Diversion after 66 Minutes, 40 Seconds 
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Table 6 - ICOMP Scores for Non-Diversion Run 

    Model Type 

Start Time Stop Time Linear Constant Random 

0 600 -282.61 -268.88 -107.81 

600 1200 -297.99 -295.48 -110.69 

1200 2800 -582.20 -556.82 -168.15 

>2800   -692.50 -701.35 -281.81 
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Figure 37 - Predictions for Non-Diversion up to 66 Minutes, 40 Seconds 
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4.5.2 Slow Diversion 

The threshold for SQ production for the slow diversion case was set to 0.8 kg and was reached at 85 

minutes after the initiation of the particle filter.  When the particle filter is initiated, the particles require 

about 10 minutes to learn the data and to begin to track the MUF calculations.  At 10 minutes, the first 

SIR process occurs and the particles begin to track the MUF based on Bayesian updating of particle 

trajectories rather than the initial random motion of the particles.  The weighted mean and confidence 

intervals of the particles may be seen in Figure 38, along with the statistics for the prediction of time to 

significant quantity production after 66:40 minutes of particle filter operation.  In this case, the particles 

predict SQ production of 0.8 kg at 87:02 minutes after the initiation of the particle filter, with a standard 

deviation of +/- 172 seconds, or 95% confidence intervals of [81:18 92:46] minutes.  Viewing the data 

transversely, the second histogram in Figure 38 indicates a MUF at 5 seconds of 0.83 kg with a standard 

deviation of 0.03, or 95% confidence intervals [0.77 0.89] kg.  The time to SQ production statistical 

measures passes the Lillieford test for normality while the MUF at SQ time fails to reach the p = 0.05 

threshold, indicating that the particles are tracking well along the mean of the data and have stabilized 

with only minor non-normality, but that there may be outliers within the data. 

The particle traces are shown in Figure 39.  Only three total resampling instances were required to 

overcome degeneracy of the particles.  It can be seen, however, that the particles required a 

considerable amount of time (the second resampling at 30 minutes) to converge to a uniform estimate 

of time to diversion.  In the presence of high measurement noise and a slow diversion rate, such a slow 

refinement of the particle traces is hardly surprising.  Also in Figure 38, the alarm indicator showed 

predictions of impending SQ production for all times after 10 minutes (i.e. after the first SIR sequence 

updated the initial random particle trajectories).  For all particle sampling periods, the ICOMP measure 

indicated that the linear model was the best performer for the data.  This is also seen in Table 7 where 

the ICOMP scores overwhelmingly favor the linear model except for the first region of interest.  Here, 

the linear and constant model scores are too close to distinguish.  (This is also the region where no 

prediction of SQ production is made.)  Figure 40 shows the predictions at every 5 second measurement 

interval, with the actual time to SQ production falling within the confidence limits after 46:40 minutes 

have elapsed. 
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Figure 38 - Particle Statistics for Slow Diversion 
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Figure 39 - Particle Traces for Slow Diversion 
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Table 7 - ICOMP scores for Slow Diversion 

    Model Type 

Start Time Stop Time Linear Constant Random 

0 600 -443.71 -443.12 -424.13 

600 1800 -805.67 -597.74 -224.78 

1800 2800 -438.67 -330.56 131.24 

>2800   -837.90 -681.55 370.63 
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Figure 40 - Predictions of SQ Production during Slow Diversion 
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4.5.3 Fast Diversion 

The fast diversion scenario featured a diversion rate nearly twice that of the slow diversion.  The 

diversion of 2 kg of material took about two hours, or 120 minutes.  The diversion rate was constant 

and, other than noise from switching feed and tails tanks, the data was largely devoid of features. 

Unlike the slow diversion case, the particle filter converged onto the measured data quickly, with the 

weighted 95% confidence intervals of the particles effectively converging after approximately 20 

minutes, as seen in Figure 41.  The particle tracking stays well-centered on the measured data, and the 

prediction of SQ production that is taken at 83:20 minutes yields a prediction of 149:25 minutes to SQ 

production with a standard deviation of 214 seconds and 95% confidence intervals of [142:18 156:32] 

seconds.  The particle traces in Figure 42 indicate that resampling was only necessary twice in the first 

83:20 minutes, once at 10 minutes (due to the particles learning the initial data) and again at 43:20 

minutes.  This low resampling rate suggests that the particles are not rapidly suffering degeneracy (see 

Equation 37), which means that most particles are representing the measured data well and the particle 

weights are not being strongly favored to a few particles.   

In Figure 42, the weighted mean of the particles appears to be slightly skewed in favor of the slower SQ 

production rates.  Still, the ICOMP scores suggest that the linear model is best for all regions of the data, 

and once the particles resample in favor of the data instead of the initial random trajectories, the SQ 

production alarm instantly signals the sensed loss of material from diversion.  Table 8 shows the strong 

preference for the linear model, which is not surprising considering the linear relationship in the data. 

In the fast diversion run, production of 2 kg occurred about 120 minutes after initiation of the particle 

filter.  In Figure 43, the particle prognostics converge on the correct time to SQ production quickly with a 

prediction of approximately 120:50 minutes with 95% confidence intervals of [106:40 135] seconds, but 

then deviate in the presence of the noise from the tank switchovers.  As the particle estimates converge, 

however, the effect of measurement noise can be seen as the prediction diverges after the second SIR 

update at 43:20 minutes.  While still predicting that diversion will produce 2 kg within 13 hours and 

53:20 minutes, the time itself is errant at roughly 8 hours and 53:20 minutes and slowly converges on 

the correct time to significant quantity diversion over time.  The perturbation is not surprising; in a high-

noise environment, small deviations can produce large changes in predictions. This effect is most 

apparent when the particles have converged to within measurement noise but still have a long time 

until the significant quantity is reached, as is seen at 43:20 minutes in Figure 42.   
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Figure 41 - Particle Statistics for the Fast Diversion 
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Figure 42 - Particle Traces for the Fast Diversion 
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Table 8 - ICOMP Scores for Fast Diversion 

    Model Type 
Start 
Time 

Stop 
Time Linear Constant Random 

0 600 -412.39 -380.35 -179.01 

600 2600 -1440.57 -229.93 564.87 

>2600   -1250.84 -537.97 1304.62 
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Figure 43 - Predictions of Significant Quantity Prediction for Fast Diversion 

 

  

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Time (Seconds)

P
re

d
ic

ti
o
n
 o

f 
ti
m

e
 t

o
 S

Q
 p

ro
d
u
c
ti
o
n
 (

S
e
c
o
n
d
s
)

Predicted Time until 2 kg of MUF are Produced



130 
 

4.5.4 Intermittent Diversion 

The final case featured a diversion event that began approximately one hour after the start of the run, 

and included a small cessation in the diversion flow about 45 minutes later.  The entire run lasted 

approximately two hours.  During the diversion period, a total of 1.891 kg of water was diverted from 

the system; with the flow rate maintained during the active diversion, continuation of the run would 

have resulted in 2 kg of water diverted at approximately seven minutes later, or about 126:40 minutes 

from the start of the run. 

4.5.4.1 Results Prior to the Pause in Diversion 

For this run, two separate evaluation periods were observed, once at 10 minutes and once at 120 

minutes, allowing a more detailed observation of the particle filter shortly before and after the pause in 

diversion.  The particle statistics are shown at time equals 10 minutes in Figure 44, and the particle 

traces are in Figure 45.  The particle statistics indicate some discrepancy between the particles and the 

measurements, as the predicted time to 2 kg of MUF shows some right skewness in the weighted 

histogram in Figure 45.  The confidence intervals on the time to SQ production and on the amount of SQ 

production at 142:26 minutes are relatively large, in part due to the high dynamic noise of the system 

which has necessitated an increase in the dynamic noise estimate.  In other words, the rapid shift from a 

non-diversion regime to diversion introduced a large change in the system dynamics, which was 

reflected in the particle filter by an increased variance in the first-order coefficients of the linear model.  

This adjustment allowed the particles to track the more rapid changes in the data at a cost of long-term 

precision in the prediction. 

In the particle traces and SQ production alarm indicator in Figure 45, a brief alarm was raised at around 

time equals 16:40 minutes but disappeared throughout the remainder of the non-diversion regime.  This 

temporary alarm was the result of the particles adjusting to the dynamics of the data.  But even with 

this alarm, the ICOMP scores indicated that the constant model was better suited to the data than the 

linear model throughout most of the non-diversion period.  This combination of events leads to a 

conclusion that diversion is not likely happening during the first half of the run.   
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Figure 44 - Particle Statistics for Intermittent Diversion at Time = 60 minutes. 
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Figure 45 - Particle Traces for Intermittent Diversion at Time = 60 minutes. 
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4.5.4.2 Results after the Pause in Diversion 

In Figure 46, the effect of the pause in diversion can be clearly seen on the particle filter response.  The 

particles overshoot the measured data, and the subsequent SIR process causes the particles to track in a 

negative direction for a short time.  The large change in particle response again increases the dynamic 

noise estimate by roughly a factor of two (1.155, or 2.01 due to five total dynamic noise estimate 

increases).  Again, the statistics belie a large uncertainty in the consistency of the data trend.  The 

estimated time to SQ production is 151:45 minutes with a 95% confidence interval of 7:56 minutes, but 

the weighted particle estimate is largely skewed and the lack of normality indicates that the particles are 

not well centered on the data.   

The particle traces in Figure 47 illustrates the skewness of the particles.  A clear majority of the particles 

predict a slower rate of MUF production than the weighted mean, but since the measured data favors a 

faster MUF production rate, the slower ascending particles hold very little weight, creating the long tail 

seen in the histogram in Figure 46.  During the pause in diversion, the significant quantity alarm 

indicator did not suggest a diversion within the allotted time frame as seen by the zero value in Figure 

46 from about 96:40 minutes to 103:20 minutes.  During this time, the ICOMP scores favored the 

constant model over the linear model as well, as shown by the yellow highlighting for the same time 

frame.  The ICOMP scores for each region are shown in Table 9.  Even though the high dynamic noise of 

the data caused large uncertainties in the model, the random model always received much higher 

ICOMP scores than the linear and constant models, indicating that the data had a coherent structure 

and that the noise was not purely random.  Also notable in Figure 47 and Table 9 is the large number of 

SIR updates.  With high dynamic noise in the system, the particle trajectories are spread more widely 

than in the slow and fast diversion cases (which were constant rate diversions with low dynamic noise); 

more particles inevitably deviate from the measured values, increasing the degeneracy rate and 

requiring more resampling over time.  The high dynamic noise also increases the uncertainty of the 

predictions, reflecting the reduced expectation that any diversion would remain constant over time. 
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Figure 46 - Particle Statistics for the Intermittent Diversion Run at Time = 125 minutes. 
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Figure 47 - Particle Traces for Intermittent Diversion at Time = 125 minutes. 
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Table 9 - ICOMP Scores for Intermittent Diversions 

    Model Type 
Start 
Time 

Stop 
Time Linear Constant Random 

0 600 -308.53 -303.88 -199.84 

600 800 -67.22 -51.95 -50.78 

800 1200 -251.05 -264.44 -49.36 

1200 1800 -318.63 -325.83 -52.92 

1800 3000 -620.05 -621.17 -112.01 

3000 3600 -315.95 -182.01 -29.62 

3600 4200 -332.35 -174.37 -167.15 

4200 5200 -560.72 -251.38 229.57 

5200 5800 -262.66 -199.59 270.27 

5800 6200 -226.18 -238.03 205.06 

6200 6800 -365.76 -212.91 358.28 

>6800   -414.43 -171.40 482.09 
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Figure 48 shows the predictions of SQ production for all measurement times.  Again, an early prediction 

of SQ production was made when the particle filter was still "settling in" to the data, but the lack of an 

actual diversion event precluded the signal from sustaining over a significant period of time.  The rapid 

change in regime from non-diversion to diversion can be seen around 60 minutes, where a long term 

prediction first begins.  The unsteadiness of the prediction mirrors the dynamics of the data, though 

much of the diversion predictions do include the actual 2.0 kg diversion time within their estimated 

confidence intervals.  The large increases in the error ranges are the result of the increased dynamic 

error estimates 

In qualitative terms, the intermittent diversion agrees with the intuitive inference that, in the face of a 

dynamically unstable process, any prediction of a time to significant quantity diversion should be met 

with skepticism.  With MUF trends like Figure A26, it is clear that the facility operation cannot be 

considered steady.  Whether by natural dynamic variance of the enrichment process or (more likely) by 

willful changes in the enrichment operating regime by the operator or a malevolent third party, the 

assumption that trends will continue "as they are" into the future is suspect.  In this condition, 

uncertainty estimates to the predictions should be large.  This is especially true after 103:20 minutes, 

when the uncertainty of the particles has grown considerably due to the dynamics of the pause in 

diversion.  Convergence of the particles (and, by extension their relative precision) requires stability in 

the data.  The particle filter process automatically increased uncertainty in the face of increasing system 

dynamics, a feature that stands in contrast to initial testing of the general path model, which tended to 

be overly precise (see Section 4.4.3).  
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Figure 48 - Predictions of Significant Quantity Production during Intermittent Diversion 

 

 

  

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6
x 10

4

Time (Seconds)

P
re

d
ic

ti
o
n
 o

f 
ti
m

e
 t

o
 S

Q
 p

ro
d
u
c
ti
o
n
 (

S
e
c
o
n
d
s
)

Predicted Time until 2 kg of MUF are Produced



139 
 

4.5.5 Case Studies:  Concluding Remarks 

In the broadest view, the particle filter successfully identified periods of increasing MUF related to 

diversion and periods where the MUF of the system was relatively stable.  During legitimate operation 

(seen in both §4.5.1 and the first half of the data of §4.5.4), no prediction of imminent SQ production 

was made, and the ICOMP measure of model validity suggested that a linear model with increasing MUF 

did not explain the data as well as a constant model.    When diversion was present, the particle filter 

successfully recognized the event and the linear model provided a projected time to the production of a 

defined SQ of material with error bounds regulated by the measurement noise of the data, the dynamics 

of the data, and the length of time until the estimated production of the significant quantity. 

Though the particle filter was constrained to a linear model of potentially very nonlinear data, the 

piecewise solutions generated as a result of the sequential importance resampling allowed the 

prognostic model to successfully track changes in trend of the MUF.  By allowing dynamic noise updating 

and recalculation of the resampling procedure when the particles failed to adequately fit the measured 

data (see Appendix B: Measurement and Dynamic Noise Estimates), the particle filter could effectively 

track sudden changes in MUF trends without requiring unnecessarily high dynamic noise estimations 

during relatively stable periods.   

The results of the particle filter predictions cannot be interpreted beyond their assumptions.  With a 

linear particle filter model, the assumption behind any prediction is that the data will continue in the 

same linear trend as the particles have identified.  For example, Figure 48 shows several vastly different 

SQ production times for the intermittent diversion case, even when the diversion rate is relatively 

stable.  The effect is particularly noticeabe during the beginning of diversion because the SIS and SIR 

particle updates are retraining the particles to the new operating regime, and the distance between the 

current MUF value and the critical MUF value allow small changes in trend to cause large changes in 

predictions.  Simply stated, the particle filter predictions may be viewed as: if things continue as they 

trend right now, how much time until an SQ is produced?  Even then, further details, like the validity of 

the linear model over the constant model (i.e. the ICOMP scores) and how well-centered the particles 

are upon the measured data (the histograms seen in Figure 33, for example) are indicators of the 

viability of the prediction. 

In summary, the particle filter provided reliable prognostic indication of the potential production of a 

significant quantity of undeclared material from the mock F&W facility.  Unlike traditional health 



140 
 

monitoring prognostic applications, no prediction of time to SQ production can ever be considered 

wholly valid; for example, if diversion is occurring, the simple decision to cease undeclared production of 

material would render any previous predictions invalid despite the model's inability to account for such 

a decision.  In this light, the prediction itself is best viewed as an estimate of the results of the trends of 

the current operating regime. 

4.5.6 Limitations on Particle Filter Reliability 

One core assumption with particle filters is that the target moves through its system space in a 

continuous manner.  In the case of this research, it is assumed that the MUF approximation does not 

change discretely (i.e. a step change in value).  A significant discrete (or near-discrete) change to the 

measured MUF approximation could potentially move the MUF measurements outside the probability 

distribution defined by the particle positions and weights.  In this case, the particle filter would respond 

in one of two ways.  First, if the measurement values lie outside the particle range but still close enough 

to preferentially weight closer particles, the particle filter would recognize the skewed probability 

distribution and adjust the dynamic noise estimates and bias the particle trajectories toward the 

measurements.  However, the increase in the dynamic noise estimate and the bias would be so great 

that the particles would spread over an excessively wide area, resulting in excessively high uncertainties 

for any prognostic estimates.  The second possible response to a discrete change in MUF occurs if the 

new measurements are not close to the particle distribution.  In this case, all particles would have a 

near-zero likelihood of representing the measured values and the SIS step would not be able to 

meaningfully alter the particle weights.  The weights might remain unaffected, or they may vary 

randomly (and chaotically).  In any case, the particles would be "lost" in the state space. 

If the prognostic technique proposed here is kept in context with the overall process monitoring regime, 

such a discrete change in MUF value would likely be cause for alarm from the monitoring algorithms.  

Such large and rapid changes in unaccounted material would be a severe departure from normal 

operating conditions and would likely create a signal that further inspection may be necessary to 

understand the issue.  If so, then the particle filter's results need not be considered; the monitoring 

system will have triggered the necessary concern from the inspectors.  If the monitoring system does 

not provide an alarm to a discrete change in MUF, then the particle filter would have to be "reset" by 

recognizing the discrete MUF change, re-initializing the particles on the new data center, and starting 

the tracking process over again.  It should be noted as well that a discrete change in MUF would impair 
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any prognostic method, as MUF is typically a continuous variable and no prognostic method currently 

exists to anticipate discrete changes in normally continuous target locations.   

Other methods of defeating a particle filter system would typically attempt to increase the 

measurement or dynamic noise to excessive values.  For example, establishing a significant sinusoidal 

fluctuation in the MUF would require a high dynamic noise estimate to keep the particles trained on the 

measurements.  In this case, a subsequent attempt to divert – even utilizing a constant-rate diversion 

scheme – would only produce predictions of SQ diversion with excessively high uncertainties.  By the 

time the dynamic noise was trained down to suitable estimates, a significant quantity may have already 

been diverted.  As with discrete changes in MUF, excessive variation in MUF may be noted by tracking 

algorithms and flagged as an indication that the process data requires attention.  Alternatively, an alarm 

might be triggered if the dynamic noise estimate within the particle filter exceeds some factor of its 

current estimate.  If, for example, the dynamic noise estimate that is five times the normal estimate may 

serve as an alarm. 
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5 Conclusions 

Traditionally, the role of the inspector in international safeguards has been to look in the rear view 

mirror and make sense of the past.  Has undeclared material been produced?  If so, how much?  When 

did it happen?  If the next-generation inspection practices include remote monitoring techniques, 

however, the opportunity exists to provide forward-looking conclusions from the data:  If undeclared 

material is being diverted, when will a specified quantity be produced? Answers to questions like this 

could provide useful to a fully information-driven inspection scheme where on-site visits by inspectors 

are driven by data rather than by predefined periodicity.  If reliable forecasts of enrichment processes 

can be made, inspection frequencies could potentially be reduced even further, resulting in increased 

cost savings for the inspecting agency and for the facility operator. 

This research explored the use of prognostics methods to predict the time that a significant quantity of 

material may be diverted from an enrichment process.  After preliminary testing of various predictive 

methods, a particle filter technique was chosen for application to four case studies: a non-diversion 

process, slow diversion, fast diversion, and an intermittent diversion scenario.  The four cases tested the 

particle filter for false positives, false negatives, adaptation to low or high dynamic noise, and nonlinear 

trends within the MUF calculations.  

The particle filter utilized Bayesian updating of measurement and dynamic noise estimates to best 

approximate the characteristics of the data itself.  Additionally, checks were built into the resampling 

procedure to verify that the particles' trajectories remained close to the measured data and to provide 

error correction if the particles failed to accurately represent the data.  These checks increased or 

decreased the dynamic noise estimates based on the variability of the data trends (i.e. how quickly the 

trends in the data were observed to change) and prevented sudden, drastic changes in operation (e.g. 

the intermittent diversion) from defeating the particle filter's data tracking. 

The data for this research was generated on the mock feed and withdrawal facility, a scaled-down 

analog of a gas centrifuge enrichment plant that uses water as the process medium.  The mock F&W 

facility is scaled roughly 1:100 in both time and space to a GCEP so that 1 kg of material in the mock 

F&W facility is comparable to 100 kg of uranium hexafluoride and a similar scale in time.  Using the 

mock facility, load cell measurements of feed, tails, and product cylinders can be recorded as functions 

of time.   
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The first case study featured fully declared operation of the mock feed and withdrawal facility (i.e. 

without diversion).  At no time over the 66:40 minutes of available data did the particle filter predict the 

diversion of a significant quantity of material within a window of 13 hours and 53:20 minutes after the 

final measurement.  In the second case study, a diversion of 0.8 kg over the course of 85 minutes was 

introduced.  After 10 minutes (the time required for resampling of the particle from their initial random 

trajectories), the particle filter successfully identified the continual increase of unaccounted material as 

a possible diversion.  After 46:40 minutes of measured data, the particle filter predicted the diversion of 

0.8 kg by 84:10 minutes with a standard deviation of 172 seconds.  From 46:40 minutes to the end of 

measured data at 66:40 minutes, the particle filter predicted the correct time to diversion of a 

significant quantity within 95% confidence intervals.  Because the diversion was conducted at a constant 

rate, the convergence of the particle filter was expected. 

The third case study featured the diversion of 2 kg over 120 minutes.  The particle filter identified the 

diversion a the first resampling at 10 minutes, predicting that 2 kg would be diverted by 121:40 minutes 

with 95% confidence intervals of approximately [110:50 132:30] minutes.  The prediction remained 

accurate with 95% or better confidence until 2800 seconds, when the resampled particles predicted 

diversion of 2 kg by 8 hours and 53:20 minutes.  The prediction converged toward the correct time to 

significant quantity diversion, and by 83:20 minutes the particle filter prediction 2 kg of diversion by 

149:25 minutes with 95% confidence intervals of [142:18 156:32] minutes.  The loss of accuracy in this 

prediction revealed the sensitivity of the particle filter to the measurement noise.   

Finally, the fourth case study introduced nonlinearity to the problem.  The diversion was initiated 60 

minutes after initiation of the particle filter, paused for approximately five to ten minutes at about 100 

minutes, then continued for the rest of the run.  A total of 1.89 kg had been diverted when the run was 

terminated, but 2 kg of material was expected to be diverted at approximately 135 minutes after the 

initiation of the particle filter.  At 100 minutes, the particle filter predicted a time to 2 kg of diversion of 

142:26 minutes with 95% confidence intervals of [125:02 159:50] minutes.  If the actual time to 

diversion of 2 kg were adjusted by 5 minutes to 130 minutes to account for the pause in diversion, the 

prediction at 10 minutes fell well within the 95% confidence interval.  After the pause in diversion, the 

prediction was again evaluated at 125 minutes and the particle filter predicted a time to 2 kg of 

diversion by 151:45 minutes with 95% confidence intervals of [135:52 167:37] minutes, which does not 

quite capture the time to diversion of 135 minutes.  In Figure 47, the particle filter estimate appears to 
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lag the measured data, a consequence of the reduced sensitivity of the Bayesian updating of particle 

weights due to the measurement noise.  Additionally, the high dynamic noise of the system due to the 

pause in the diversion caused large error estimates in the prediction.   Several dynamic noise estimate 

updates were observed at the start of diversion and when the pause in diversion occurred, indicating 

that the dynamic noise of the system was much greater at these times than during the first 60 minutes 

when no diversion occurred.  Such changes in dynamic noise in the system could potentially be used as 

indicators of changes in the operation of the facility, but any correlations between the dynamic noise 

and operational behavior were not pursued in this research. 

It is particularly important to note that the utility of a prediction of the time to diversion of a specified 

amount of material is only valid within the context of the assumptions of the model itself.  In this 

research, a linear particle filter was used for two reasons.  First, the most likely scenario for protracted 

diversion is that of a constant removal rate of material.  Since enrichment facilities are typically run at a 

constant processing rate to maximize efficiency and minimize wear of the centrifuges due to angular 

acceleration stresses, a protracted diversion would most likely be of a constant rate as well.  Second, 

there is no a priori justification for a more sophisticated model for diversion rates (e.g. polynomial, 

exponential, or hyperbolic), so a linear diversion rate assumption is the most reasonable "first guess" for 

predicting time to diversion of a significant quantity.  The consequence of the linear model is that any 

prediction assumes that operation of the enrichment process will continue on in the same manner as 

the last series of measurements.  This leaves a qualifier to any prediction:  if trends continue as they are 

now, when would a significant quantity be diverted?  Therefore, it is unwise to treat the predictions as 

an absolute; instead, they should be viewed as a guideline that may influence decisions for inspection 

monitoring. 

For any prognostic model for predicting time to diversion, understanding the interpretation of the 

uncertainty estimates is at least as important (and perhaps even more important) than the estimate 

itself.  Diversion is, again, a process initiated and conducted by decision rather than by mechanical wear 

or degradation.  There is no guarantee of monotonicity to a diversion trend, as temporary stops in 

diversion coupled with high noise and changes in holdup could indeed produce negative MUF trends.  

Additionally, there is no guaranteed pattern for diversion; while it is most efficiently performed at a 

constant rate due to the mechanics of gas centrifuge enrichment, diversion could be performed 

intermittently, or with time-variant rate changes.  While the estimate is only as valid as its assumptions 
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(e.g. linear trends in linear vs. intermittent environments), the uncertainty estimates are more directly 

reflective of the data.   Unexpected increases in uncertainty can be indicative of changes in operation, 

which has a great influence on the reliability of the prognostic model.  

This research studied the application of health monitoring prognostic techniques to remote monitoring 

and verification of enrichment activities.  A particle filter model was developed and tested against data 

generated from the mock feed and withdrawal facility at Oak Ridge National Laboratory.  The accuracy 

of the predictions was measured at different time intervals, and the behavior of the model was analyzed 

based on these results.   Bayesian updating of the measurement and dynamic noise estimates was 

automatically performed by the particle filter model, resulting in uncertainty estimates based on the 

inherent uncertainty in the data measurements and the relative stability of the trends in the MUF 

calculations.  

5.1 Summary of Contributions 

This research presented a prognostic method to predict the time until a significant quantity of material 

was diverted from the mock F&W facility at Oak Ridge National Laboratory using only process data from 

the feed and withdrawal stations.  A Particle Filter method was chosen over Markov Chain and General 

Path models due to the Particle Filter's inherent flexibility to nonlinear data, lack of a Gaussian 

distribution constraint, inherent statistical dependence on measurement and dynamic noise, and the 

natural distribution and variance estimates of the particle predictions.  While prognostic methods have 

been developed for health monitoring applications to predict the degradation of a component or 

system, this research represents the first effort to apply these prognostic methods to decision-based 

events. 

In addition to the prediction of a time to future significant quantity diversion of material, the particle 

filter prognostic method in this research provided a thorough set of distribution and uncertainty 

measures to aid in understanding the reliability and significance of the prediction.  Weighted particle 

distributions provided a measure of the certainty of the time to failure, and these distributions varied 

according to the measurement and dynamic noise estimates of the system.  As noise sources increased 

in magnitude, the particle filter reflected the decreased predictability of the system with greater 

confidence intervals.  Further, information complexity scores provided a measure of the suitability of the 

particle filter itself and demonstrated in clear quantifiable terms whether the model was a better fit to 
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the data than a constant-MUF assumption and whether the data held sufficient coherence to justify the 

model. 

Measurement and dynamic noise estimates greatly affect the performance of particle filters.  If these 

estimates are low, the particle distributions may not adequately describe the state space represented by 

the measured data, rendering any interpretations of the particle positions and trends inaccurate and 

meaningless.  Likewise, excessively high noise estimates cause excessive variation in particle position 

and trajectory and generate high-uncertainty predictions that are likewise meaningless.  It was seen in 

this research, however, that the dynamic noise of the MUF may be relatively low for long periods of 

time and high for brief periods when the operation of the mock facility is altered, such as when diversion 

is initiated or stopped.  As discussed in Appendix B: Measurement and Dynamic Noise Estimates, data-

driven methods were added to the particle filter to estimate the noise in the data and update the filter's 

noise estimates.   

The mock feed and withdrawal facility was designed to be a fast, flexible, and reliable system for 

generating process station data analogous to that expected from a gas centrifuge enrichment plant.  As 

a part of this research, several improvements were made to the mock F&W facility that allowed the 

simulation of degassing and sampling.  These modifications emulated real and normal losses of material 

expected in a GCEP that could affect the material balance of the cascade area.  In this research, these 

effects were identified in the data and accounted in the MUF calculations to remove their influence and 

provide a more accurate MUF-to-diversion estimate.  A rules-based architecture was envisioned that 

would anticipate degassing and sampling, indicate an alarm if such events were missing, and account for 

their effects on MUF if these events were present.  

5.2 Future Work 

Application of prognostics to human intervention of mechanical systems is at best difficult.  Unlike 

classical health monitoring applications, such as crack growth in plates, or bearing failure, events such as 

material diversion are the result of a decision to change the operating regime rather than a physical 

characteristic of a component.  Better prognostic application in this field can only occur if the range of 

possibilities for human decisions can be better understood. 

The prognostic model in this research was based on measurements taken every five seconds from the 

mock F&W facility.  (The data was actually stored every second, but was then downsampled prior to use 
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in this research.)  In real-world terms, a five second sample rate equates roughly to one sample every 

eight to ten minutes, based on a very general 1:100 scale in time.  If the IAEA and enrichment facilities 

agree to remote monitoring, the data collection rate may be limited by agreement rather than the ideals 

of the inspectors and monitoring system designers.  In this light, data collection at varying rates should 

be examined to determine their effect on the prognostics – or even if prognostics are feasible at the 

current state of technology.  (This is particularly true for much slower collection rates, such as 1 data 

point per day in a GCEP, or about one point per 15 minutes in the mock F&W facility). 

One limitation of the mock F&W facility is the lack of assay data that is present in enrichment processes.  

Since the water separated in the mock facility is not actually isotopically enriched, no correlation 

between product enrichment and tails depletion may be established.  Without this knowledge, it is 

impossible to differentiate between legitimate non-diversion operations of the facility versus continuous 

replacement of diverted mass based on load cell data alone.  If prognostics are applied to enrichment 

processes, research should be performed into incorporating assay information into the prognostic 

model to identify diversion masking events. 

Most importantly, application of prognostic methods must be tested against full-scale data if forecasting 

the time to critical events such as the production of significant quantities of material is of interest to the 

IAEA (or other oversight agencies in similar scenarios).   In the specific problem studied in this research, 

the particle filter method was adapted as a prognostic tool to estimate the effects of human 

intervention on a process, and the performance of the particle filter was tuned to match the 

characteristics of the data.  For GCEP monitoring, a particle filter approach would have to include 

sufficiently accurate understanding of the measurement and dynamic noise terms in the data, as well as 

any relevant data features that might not be reproducible in the mock F&W facility.    
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Appendix A: Description of the Mock Feed and Withdrawal Facility 

A full description of the development and construction of the mock F&W facility may be found in 

Krichinsky's report [Krichinsky, et al., 2009].  For convenience, a brief description is provided in this 

appendix. 

The mock F&W facility simulates the enrichment process using water in place of uranium hexafluoride.  

Instead of a cascade of centrifuges, the enrichment "process" is mocked using a surge tank with an 

outlet flow that is split between product and tails stations.  The product to tails flow rate ratio may be 

controlled using two needle valves – one for the product flow and one for the tails flow.  The water is 

fed into a surge tank through any of three feed stations.  An image of the facility is provided in Figure A1 

from the Krichinsky report [Krichinsky, et al., 2009].  The three feed stations are in the back right of the 

figure, the two tails stations are in front, and the three product stations are to the left. 

F&W Facility Components 

Surge Tank.  The surge tank is a 32 inch tall, 28 inch wide cylindrical polyethylene tank.  A hinged lid on 

the top allows easy access if needed, but prevents evaporation when shut.  A feed line has been added 

to the top of the tank, and discharge is gravity fed through an outlet at the bottom of the tank.  

Typically, the water level in the tank is maintained at 20 inches (measured from the outlet) so that 

sufficient pressure is always available to provide suitable withdrawal flow rates.    A "volume-eating" 

cylinder is present within the surge tank to reduce the amount of water held within the tank and 

increase the sensitivity of the process to changes in feed or withdrawal flow rates. 

It should be noted that in a GCEP, the amount of holdup in the cascade is typically only a few kg of UF6.  

The 20 inches of water in the surge tank, even after accounting for the empty volume within the surge 

tank, represents far more material than GCEP holdup when scaled up.  However, the actual variation of 

the water level in the surge tank only ranges from 19.9 inches to 20.2 inches at the absolute maximum.  

The remaining 19.9 inches of water height serves only to provide static pressure for the withdrawal flow 

and is therefore not considered a part of the holdup of the process. 
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Figure A1 - Mock F&W Facility - A Snapshot 
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Feed and Tails Tanks.  The feed and tails tanks are 25-gallon polyethylene tanks with an engineered 

stainless steel cradle for transport by lift truck.  A square-shaped recess is at the bottom of each tank; by 

placing the end of the feed tube into the recess, virtually all of the water in a feed tank may be 

processed into the system.  When empty, the tank/cradle assembly weighs approximately 35 kg; when 

full, the assembly weighs approximately 140 kg.  A feed/tails tank is shown in Figure A2. 

A hole has been drilled into the cap of each of the tanks so that the feed and tails tubes may be securely 

fastened to the tank.  When the tube is inserted, a conical fitting on the tube hold the tube firmly in 

place.  When the tank does not have a tube in place, a rubber stopper is inserted into the hole in the 

cape to prevent evaporation as well as possible spillage during transport. 

Product Tanks.  The product tanks are 10-gallon polyethylene tanks with no special cradle assembly.  

With the lid, each tank weighs about 1.14 kg empty and about 12 kg full.  Due to the geometry of the 

product stations, the product tubes need not be secured as tightly as the feed and tails tubes, so no hole 

is drilled in the product tank lids. It is assumed that evaporation is not significant for the time required 

to fill a product tank (approximately two hours is typical), and the lid is fastened when the tank is not 

actively being filled.  A product tank is shown in Figure A3. 

Positive displacement pumps.  The water is fed from the feed tanks to the surge tank by positive 

displacement pumps – one pump for each feed station.  The pumps are rated for up to 80 L/hr flow 

rates with a rated head of up to 20 psig.  The flow rate is varied by adjusting the stroke and the 

frequency of the piston cycle from zero to one hundred percent.  The stroke and frequency adjustments 

are independent.  During operation the stroke is typically maintained below 100% (e.g. 80% is typical) in 

order to avoid wear that may occur when the piston travels its entire stroke length.  A feed pump 

control panel is shown in Figure A4. 
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Figure A2 - A Tank on Scale at a Tails Station 
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Figure A3 - A Product Tank on Station 
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Figure A4 - Control Panel for a Feed Pump 
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Valves.  For each feed and withdrawal station, there is a manually operated cutoff valve.  These valves 

are actuated as either open or shut and are only used to allow or prevent flow; they are not used for 

throttling.  There is a similar cutoff valve at the outlet of the surge tank. 

There are two needle valves for the product and flow lines; one valve for each line.  These valves provide 

fine control for the ratio of product and tails flow rates and are used to simulate the "enrichment" of the 

water.  Typically, about 5% of the surge tank discharge is directed to the product stations and the 

remainder is directed to the tails stations.  Figure A5 shows the product and tails needle valves (PV-H 

and TV-H, respectively) as well as the surge tank control valve, which is identifiable by the manual yellow 

handle. 

Load Cells.  The feed and tails stations consist of centering pans placed on 250-kg capacity scales with 

precision of 0.01 kg.  The product stations are 25-kg capacity scales with precision of 0.001 kg.  Two 

additional scales – one of each type – serve as the accountancy scales and have been calibrated with 

accuracy of 0.01% over the lower half of their range and 0.03% over the upper half of their range.  The 

weight of each scale is read by an OHAUS scale monitor (Figure A6) that includes basic functions for re-

zeroing and re-calibrating the scale readings if necessary.   

Diversion Line.  Diversion may be simulated using a bleed off line on the product flow line.  The bleed 

off line is located between the product throttle valve and the product stations.  A medical IV drip system 

is employed to allow fine control of the typically slow diversion flow rate.  The diversion assembly may 

be seen in Figure A7, with a close up of the flow rate control wheel in Figure A8. 

PI Controller.  The surge tank water level is controlled by proportional-integral control (see Section 

4.1.1) that actuates a globe valve between the surge tank outlet and the surge tank cutoff valve.  The 

controller senses the height of water in the surge tank by a pressure transducer located at the outlet of 

the surge tank.  The set point of the PI controller is typically 20 inches of water and the PI controller 

itself is written in LABView™, which resides on a Dell™ D620 laptop, as seen in Figure A9.  A National 

Instruments™ data acquisition card simultaneously reads the pressure transducer signal and transmits 

the control voltage for the PI control valve actuator. 
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Figure A5 - Product and Tails Needle Valves, and Surge Tank Cutoff Valve 
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Figure A6 - OHAUS Scale Monitor 
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Figure A7 - Diversion Line with Collection Tank in Place 
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Figure A8 - Diversion Line Control Wheel 
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Figure A9 - PI Control Computer with LABView™ Screenshot 
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Operation of the PI control is relatively simple and can be seen in Figure A10.  The control program is 

defaulted to start with the control valve in the off position to avoid accidental discharge.  The control 

scheme may be switched from manual control (where the user selects the actuator control voltage by 

an on-screen slider) to automatic (PI) control by a single mouse click.  PI parameters are adjustable by 

on-screen entry and may be changed during operation, though such changes are never made in practice.  

The tank representation and the chart allow the user to observe the controller's interpretation of the 

surge tank water level as well as the surge tank set point and the control valve position. 

Basic Facility Operation 

The actual operation of the facility will depend on the type of simulation that is desired, but a few steps 

are common to all runs.  These steps are briefly outlined here to give the reader an understanding of the 

mock feed and withdrawal process.  During operation, a research logbook is maintained that describes 

all actions taken and records all relevant scale readings. 

1. The tanks are weighted on accountancy scales and placed on the appropriate stations. 

2. With the surge tank cutoff valve closed, the PI valve is manually perturbed to ensure proper 

operation.  The PI valve is then shut and may be ready for automatic mode. 

3. All facility cutoff valves are checked; the appropriate valves are opened in anticipation of the 

run. 

4. Feed flow is initiated by activating the appropriate feed pump. 

5. The PI valve is set to automatic mode (the cutoff valve was opened in step 3). 

6. At the end of the run, the PI valve is set to manual mode and the control voltage set to zero. 

7. All feed pumps are de-energized. 

8. All cutoff valves are shut. 

9. Tanks are re-weighed on accountancy scales as needed.  
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Figure A10 - PI Controller Screen Capture 
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Appendix B: Measurement and Dynamic Noise Estimates 

This appendix continues the discussion from §3.2.5.1, where the importance of measurement noise 

estimates and dynamic noise estimates in particles filters were discussed.  Here, the noise estimate 

terms are developed for the inclusion in the particle filter prognostic model. 

Estimation of the Measurement Noise 

The measurement noise of the system is an estimate of the uncertainty of the state measurements 

themselves.  (For example, a measured length variable may have a precision of +/- 0.1 m, or +/- 0.01 m.)  

As measurement noise increases, the effect of measurements on the particle weights during the SIS 

phase decreases.  In Equation 33, increased measurement noise reduces the effect of the importance 

function by reducing the effect that distance from the measurement has on the updated weight of the 

particle in question.  This is seen in the weight updating equation in Equation A1, where Y is the 

measured estimate, Y  is the particle position, and m
2 is the measurement noise.  An artificially high 

estimate of measurement noise prevents the particle weights from updating efficiently, allowing outlier 

particles to maintain unnecessarily high weight.  Likewise, an artificially low estimate of measurement 

noise causes the particle weights to degenerate too rapidly, reducing the importance of particles that 

may carry accurate information about the system and requiring more resampling steps than is 

necessary. 

  
    

   
        

    
 

 

Equation A1 - Sequential Importance Sampling Update Equation 

 

Equation A1 highlights the importance of both the particle error (the distance between the particle and 

the measurement) and the measurement uncertainty.  High particle errors (the numerator in the 

exponential term) result in a rapid loss of weight for a particle, while high measurement uncertainties 

reduce the rate at which particles lose weight for a given error.  While the particle error affects only the 

individual particle, the measurement error affects the weight updates of every particle. 

The measurement noise in the system was estimated by utilizing a known sample of data from the 

system and estimating the noise with a median filter with a median window of size 8.  By analyzing the 

error term between the known data sample and the smoothed data, an estimate of the measurement 
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noise was obtained.  For the mock F&W facility, the measurement noise was estimated to be roughly 

1.0e-3 kg. 

Influence of Measurement Noise Illustrated 

The effect of the measurement noise estimate may be seen by the change in behavior of the particles 

for a given scenario.  In Figure A11 through Figure A13, the particle filter prognostic method is applied to 

the same data three times, with only the measurement noise estimate varied between the three cases.  

In Figure A11, the measurement noise was estimated to be one tenth its nominal value.  In Figure A12, 

the measurement noise was estimated to be ten times its nominal value.  Figure A13 utilized the most 

accurate available estimate of the measurement noise. 

In Figure A11, the low noise estimate quickly reduced the weights of all particles but a select few (those 

particles which were "lucky" enough to coincide with the early measurements).  As the particles were 

redistributed in SIR, they were exclusively redistributed according to the positions of the weighted 

particles, resulting in gaps between the particle clusters and a near-constant variance of the particles 

throughout the ensuing series of measurements.  Such a phenomenon reduced the effectiveness of the 

particle filter by ignoring particles that may contain relevant information about the system state. 

Figure A12 illustrates the effect of an excessively high noise measurement estimate.  Without the ability 

to efficiently de-weight outlier particles, the system variance is maintained higher than necessary.  As a 

result, the precision of the prediction of time to SQ production is significantly reduced and the 

prediction itself is of less value.   

When the measurement noise is balanced, the particle weights are changed greatly enough to favor the 

particles that better represent the system, yet do not change to rapidly as to automatically eliminate the 

importance of particles that do not coincide with the earliest of measurements (yet might well represent 

future measurements).  This is seen in Figure A13, where the resampled particles are well distributed yet 

the variance of the prediction of the time to critical MUF is not excessive. 
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Figure A11 - Low Measurement Noise Estimate and Near-Constant Particle Weights 
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Figure A12 - High Measurement Noise Estimate and Uncontrolled Particle Distribution 
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Figure A13 - Accurate Dynamic Noise and Balanced Particle Distribution 
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Estimation of the Dynamic Noise 

The dynamic noise is an estimate of how rapidly the system may change.  (In the mock F&W facility, this 

is an estimate of how rapidly the rate of MUF accumulation changes, e.g. whether the MUF 

accumulation changes from 0 kg/hour to 0.1 kg/hour in the span of 5 minutes versus 10 minutes.)  In 

tracking applications, the dynamic noise dictates how quickly the particles deviate from their "birth" 

positions after SIR.  Higher dynamic noise estimates induce faster particle motion in order to ensure that 

the particles are always present in the possible range of future measurements of the target position.  If 

the target has a low dynamic noise, then the particles need not move as quickly and the number of SIR 

updates may be reduced, resulting in a more efficient computational process. 

In the extremes, a grossly high overestimate of dynamic noise may cause the particles to move so 

quickly that their SIS updates are rendered meaningless.  In this condition, all particles end up with 

relatively little likelihood of representing the true system state and the SIS process cannot reliably 

weight the particles with respect to the actual measurements.  Conversely, a grossly low underestimate 

of dynamic noise may cause the particle to lag behind the dynamics of the system.  This condition also 

reduces the effectiveness of the SIS step by causing all particles to have low likelihoods of accurate state 

representation. 

In a classical prognostic problem such as [Orchard, et al., 2008], the dynamic noise may be estimated by 

measuring the rates of system changes throughout the life of test cases.  The maximal expected dynamic 

noise may then be used as an estimate of the system's total dynamic noise, ensuring that the particles 

may transition with sufficient speed to always cover the possible future ranges of the system state.  For 

example, if a particle filter were applied to the data in Figure 9, the second derivative of the mean 

exponential growth of the crack length would provide a sufficient estimate for dynamic noise.  If the 

exponential growth in Figure 9 were much more rapid, a higher dynamic noise estimate would be 

necessary. 

Dynamic noise also affects the precision of the prognostic estimate of the particle filter.  Low dynamic 

noise systems may have much higher prognostic precision because the particles "spread" apart more 

slowly.  If the dynamic noise is great, then the future prediction has more uncertainty associated with 

the increased variance of the future system states, resulting in a less precise prediction.  In this regard, 

particle filters naturally restrict their prognostic precision based on how rapidly the system state may 
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change.  Particle filter confidence intervals are therefore a function of both the measurement error and 

the natural system dynamics of the system.  This relationship is built into the particle filter by design. 

Unlike classical health monitoring and prognostics problems, the dynamic noise of the mock F&W facility 

(and by extension, a GCEP) is not knowable a priori, as changes in the accumulation rate of MUF is a 

function of both the normal operation of the facility and the decisions of the operator.  If the operator 

were to rapidly initiate a large diversion rate, the dynamic noise associated with the diversion would be 

much greater than a diversion that was slowly initiated and brought to full flow, even if the more slowly 

initiated diversion had the greater maximum diversion rate. 

Worse, sudden changes in the system state might only be singular events.  For example, if a rapid 

diversion were initiated, then the MUF accumulation rate might suddenly increase during initiation and 

cessation of the diversion, but otherwise be very low in magnitude.  If the dynamic noise estimate is 

large enough to account for the singular changes, then the predictions provided by the particles would 

have high variances and low utility.  If the dynamic noise estimate is instead maintained low enough to 

provide estimates with usable precision, then the particles would not be able to track the rapid change 

in MUF accumulation and would lose their validity.  (SIR updating can only resample within the space 

occupied by the particles; if the actual system value is well outside this space, then resampling provides 

no benefit.  Likewise the reweighting during SIS can no longer provide a meaningful distinction between 

particles and the particle filter model is rendered invalid.) 

Figure A14 illustrates a scenario where the dynamic noise estimate is too low (in this case, by a factor of 

5).  The system is unable to respond adequately to a systematic change in state, and all particles become 

far removed from the actual measurements.  In this case, all particles are estimated to have almost no 

weight during SIS and the update process loses physical relevance. 

Meanwhile, Figure A15 illustrates a case where the dynamic noise estimate is too high by a factor of 5.  

The particles spread out quickly to cover the range of system state positions that the dynamic noise 

estimate suggests, but the state space coverage of the particles is excessive, and their great distances 

artificially inflate the variance of the state estimate.  

Like the measurement noise estimate, the dynamic noise estimate must be balanced to provide a 

sufficiently agile response to changes in system behavior while still maintaining a precise variance of the 

particle position and prediction estimates. 
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Figure A14 - Low Dynamic Noise Estimate and Slow Particle Response 
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Figure A15 - High Dynamic Noise Estimate and Excessive Particle Response 
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Updating the Dynamic Noise Estimate Based on Data Behavior 

To atone for the unknowable nature of the dynamic noise, an updating system was implemented.  

During normal operation with no diversion or other aberrant operator actions, the system dynamic 

noise was found to be roughly the same as the measurement noise (specifically, the dynamic noise 

varied between 1e-4 and 1e-2 kg/hour).  Because of the similarity in values, the dynamic noise was 

initially set as equal to the measurement noise.  (Note: the dynamic noise need not be as precise as the 

measurement noise, so long as it is sufficient and not grossly overestimated.)   

Anytime a SIR procedure was implemented, the weighted distribution of the particles was estimated.  

Because the particles can only occupy a finite space based on their spread, their weighted distribution 

may be estimated as a beta function normalized to the maximum and minimum particle ranges.  If the 

weighted distribution indicated that the actual system state was beyond the range of the particles (i.e. if 

the distribution were monotonically ascending or descending), then the dynamic noise was considered 

as insufficient.  This monotonic behavior can be seen in Figure A16.  The particle filter was returned to 

the previous SIR step (e.g. the particle filter was "rewound").  At this previous position, the dynamic 

noise estimate was then increased by a multiplicative factor and the coefficients of the linear model 

were biased in the direction of the system change.  (If the weighted distribution indicated that the 

particles were too low in their MUF estimates, the coefficients were biased with greater values than the 

previous SIR step, and vice versa if the particles were too great in their MUF estimates.)  The dynamic 

noise estimate update accounted for the dynamics of the system, while the biasing of the model 

coefficients allowed the particles to maintain presence in the system space occupied by the measured 

data.  In this regard, the updating process allowed the particles to properly estimate the measured data 

in both high-dynamic and low-dynamic situations without requiring an excessively high dynamic noise 

estimate at all times.   A multiplier of 1.15 was found to be effective for the data from the mock F&W 

facility. 
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Figure A16 - Weighted Particle Distribution when System Measurements are out of Range 
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Conversely, if the system dynamics were found to be lower than the estimate, the noise estimate was 

systematically reduced.  When the system dynamic noise was less than the dynamic noise estimate, the 

weighted beta distribution of the particles was found to have a high peak value very near the midpoint 

of the distribution, as in Figure A17.  When this condition was observed, the dynamic noise estimate was 

reduced by a specified factor.  A lower limit was enforced such that the dynamic noise estimate was at 

least equal to the measurement noise to prevent excessive reduction of the dynamic noise estimate.  In 

the mock F&W facility, a reduction factor of 1.1 was found to be effective (i.e. if the dynamic noise 

estimate needed to be reduced, the estimate was divided by 1.1). 

The utilization of dynamic noise estimate updates allowed the particle filter to accommodate sudden, 

singular changes to the system state without requiring an unnecessarily high uncertainty of the 

prognostic estimates.  This is seen in Figure A18, where the particles are able to track the sudden change 

from a non-diversion to a diversion even at around time = 4000 seconds.  The high dynamic change of 

the system is successfully tracked, yet the particles do not have so much variance as to render a 

prediction meaningless.  (In this case, a prediction of about 8000 seconds with a standard deviation of 

about 400 seconds was made.) 
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Figure A17 - Weighted Particle Distribution when System Dynamics are Low 
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Figure A18 - Dynamic Noise Estimate Updating and Controlled Particle Variance 
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Appendix C:  Case Studies 

Four separate runs of the mock F&W facility were used as test cases for the prognostic model.  The first 

was a legitimate run where no diversion occurred; by extension, there was not a time at which a 

significant quantity of material could have been removed from the facility and the prognostic model 

should not provide a prediction. 

Legitimate Operation 

The entire feed and withdrawal profile for the legitimate run may be seen in Figure A19.  This run was 

performed on July 7, 2010 from 17:30 to 19:15 GMT.  A total of 209 kg of water was processed over a 

time of one hour and 42 minutes.  The only significant perturbation came at the very end of the run 

when one pump was shut off and the flow rate of the system was significantly reduced.  By calculating 

the cumulative inventory difference as in Figure A20, the stability of the system mass balance over time 

is evident. 

Slow Diversion 

The second case study was performed on June 28, 2010 over a total of two hours, 28 minutes from 

about 17:30 to 20:00 GMT.  Over the course of the entire run, a total of 1.2 kg of material was diverted 

from the facility.  With the slower diversion rate, the noise of the system was a factor in the stability of 

the predictions over time.  The load cell profiles may be seen in Figure A21, and the cumulative 

inventory difference is in Figure A22. 

Fast Diversion 

The third case study featured a very fast diversion rate and was performed on October 14, 2010.  The 

purpose of this run is to identify how quickly the prognostic model provides a sense of the strong 

diversion rate and whether the model can even find the diversion during the early seek time of the 

initial particle distribution.  The load cell profiles are in Figure A23, and the cumulative inventory 

difference is in Figure A24.  The run lasted for two hours, 56 minutes.  A total of 1.719 kg of material was 

diverted over the course of one hour, 34 minutes.  After the diversion, a batch replacement of material 

was performed, as can be seen in Figure A24. 
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Figure A19 - Feed and Withdrawal Profile for Legitimate Operation 
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Figure A20 - Cumulative Inventory Difference for Legitimate Operation 
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Figure A21 - Load Cell Profiles for Slow Diversion 
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Figure A22 - Cumulative Inventory Difference for Slow Diversion 
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Figure A23 - Load Cell Profile for Fast Diversion 
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Figure A24 - Cumulative Inventory Difference for Fast Diversion 
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Intermittent Diversion 

The final test run was performed on September 21, 2010 over the course of one hour, 57 minutes.  

During the run, 1.89 kg of material was diverted.  Diversion was halted midway through the process, 

however, when a tour of the facility was conducted.  (The tour was known to be happening a priori, and 

the presence of the guests was seen as an opportunity to stop the run and attempt to hide the 

diversion.  As an aside, the diversion was not visually identified by the guests, who did have some 

knowledge of the facility.)  The load cell profiles are seen in Figure A25, and the cumulative inventory 

difference is in Figure A26.  The pause in diversion occurred around the 15:50 GMT mark in the run and 

is barely visible in Figure A26.  The pause lasted for about 5 minutes. 

The run also feature the beginning of a diversion event well after the beginning of the run itself.  With 

this feature, the particle filter will have to recognize the sudden change in regime introduced by the 

diversion even after the filter has learned the typical dynamic noise of the system. 
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Figure A25 - Load Cell Profiles for Intermittent Diversion 
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Figure A26 - Cumulative Inventory Difference for Intermittent Diversion 
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