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ABSTRACT 

Two important issues related to nuclear materials safeguards are the continuous 

monitoring of nuclear processing facilities to verify that undeclared uranium is not 

processed or enriched and to verify that declared uranium is accounted for.  The 

International Atomic Energy Agency (IAEA) is tasked with ensuring special nuclear 

facilities are operating as declared and that proper material safeguards have been 

followed.  Traditional safeguards measures have relied on IAEA personnel inspecting 

each facility and verifying material with authenticated instrumentation.   

In newer facilities most plant instrumentation data are collected electronically and 

stored in a central computer.  Facilities collect this information for a variety of reasons, 

most notably for process optimization and monitoring.  The field of process monitoring 

has grown significantly over the past decades, and techniques have been developed to 

detect and identify changes and to improve reliability and safety.  Several of these 

techniques can also be applied to international and domestic safeguards.   

This dissertation introduces a safeguards monitoring system developed for both 

a simulated Uranium blend down facility, and a water-processing facility at the Oak 

Ridge National Laboratory.  For the simulated facility, a safeguards monitoring system is 

developed using an Auto-Associative Kernel Regression model, and the effects of 

incorporating facility specific radiation sensors and preprocessing the data are 

examined.  The best safeguards model was able to detect diversions as small as 1.1%.  

For the ORNL facility, a load cell monitoring system was developed.   This monitoring 

system provides an inspector with an efficient way to identify undeclared activity and to 

identify atypical facility operation, included diversions as small as 0.1 kg.  The system 

also provides a foundation for an on-line safeguards monitoring approach where 

inspectors remotely facility data to draw safeguards conclusion, possibly reducing the 

needed frequency and duration of a traditional inspection.  
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1 INTRODUCTION 

Two important issues related to nuclear materials safeguards are: 1) the 

continuous monitoring of uranium enrichment facilities to verify that undeclared special 

nuclear material is not processed and 2) that declared special nuclear material is 

accounted for.  For both cases, the material enrichment and flow need to be monitored.  

This is of importance to both the National Nuclear Security Administration (NNSA) and 

the International Atomic Energy Agency (IAEA) in enforcing the elements of the Nuclear 

Non-Proliferation Treaty (NPT) and other agreements.  The signatories of the NPT have 

agreed not to develop, manufacture or otherwise acquire nuclear weapons or other 

nuclear explosive devices and have accepted safeguards on all nuclear material used in 

peaceful nuclear activities [1, 2].  The basic measure by which the IAEA verifies the 

fulfillment of these obligations is through nuclear material accountancy [3].  Therefore, 

one goal of the IAEA is to detect diversions of significant quantities of nuclear material 

from peaceful activities in a timely manner [4, 5].  The significant quantity of nuclear 

material and time period depends on the type of material.  For example a significant 

quantity of nuclear material is defined as 8 kg of plutonium, 8 kg of 233U, 25 kg of 235U in 

highly enriched uranium ( ≥20% 235U), 75 kg of 235U in low enriched uranium (<20% 

235U), or 20 tons of thorium.  Time periods may range from one month (for pure 

plutonium metal) to three months (for plutonium in irradiated fuel) [6].  A second goal of 

the IAEA is to ensure that a plant declares all of the material it processes.  Both are of 

importance to the IAEA because diverted material and undeclared nuclear material 

could be used in illegal manufacture of nuclear weapons.  Nuclear safeguards are the 

protective measures by which the IAEA ensures that nuclear material is accounted for. 

Traditional safeguards include designating material balance areas (MBA) 

throughout a facility.  Several MBAs are common within bulk handling facilities.  For 

some nuclear facilities, because of the itemized nature of most nuclear material, simple 

material control and accountability (MCA) is a sufficient safeguard.  For example, a 

nuclear power plant receives and ships nuclear fuel assemblies.  The assemblies are 

uniquely labeled and the nuclear components are not subdivided or easily removed.  

For these assemblies, tracking each container and ensuring its integrity ensures that the 
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nuclear material is kept accountable.  In this sense, the entire plant could be viewed as 

a large MBA.  Other facilities, namely fuel reprocessing plants and gas centrifuge 

enrichment plants (GCEPs), separate, divide, mix, or redistribute special nuclear 

material.  In such facilities, MCA is no longer as simple as tracking a fuel bundle and 

ensuring its integrity, so multiple MBAs are defined within the facility.  For example, 

reprocessing facilities have one MBA at the front end, a second MBA is typically defined 

that encompasses the process area, and a third MBA is usually defined around the 

product storage area at the tail end of the process.  Material flow into and out of the 

MBAs is monitored by collecting samples from various locations within the MBA for 

destructive assay and measuring flows at predetermined locations at the boundaries of 

the MBAs [7, 8].  The IAEA will inspect, either during scheduled or random short notice 

inspections, equipment in each facility’s MBA and the calibration of the instrumentation 

used to monitor the material flow between MBAs.  Additionally, full inventories are 

conducted periodically to verify the amount of material contained within a MBA, rather 

than just confirming the material flow between MBAs. 

All MBA measurements have a nominal measurement uncertainty.  As facility 

throughput increases, the absolute value of the measurement error uncertainty can 

grow to larger than a significant quantity, thus providing no assurance that a significant 

quantity of material has not been diverted within the required time period.  Additionally, 

the IAEA only verifies instrumentation calibration during an inspection.  As nuclear 

facilities continue to grow in number, size, and complexity, the manpower required to 

monitor these facilities will continue to tax the limited resources of the IAEA.  However, 

modern facilities will incorporate digital instrumentation and data acquisition systems.  

These data systems can be used to develop on-line, continuous or near-continuous 

monitoring systems, allowing IAEA inspectors to, possibly in a remote manner, 

efficiently verify equipment and instrument calibrations, as well as the total amount of 

material processed.  While historically used for maintenance scheduling and process 

optimization, the general field of Process Monitoring encompasses the methods and 

techniques of on-line continuous monitoring, much of which is directly applicable to 

nuclear safeguards monitoring. 
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Process monitoring (PM) was developed to assist condition monitoring (CM) of 

plant equipment.  CM is the practice of identifying the operating status of system 

components and using the current component condition to determine the optimal 

maintenance schedule and to optimize operations.  Previous maintenance strategies 

relied on preventive or periodic maintenance and reactive maintenance.  Preventive 

maintenance means performing maintenance on a set time schedule, regardless of the 

equipment’s current condition.  Preventive maintenance has two disadvantages.  First, 

maintenance resources are wasted on systems that do not require maintenance, 

leading to expensive and unnecessary maintenance schedules.  In addition, performing 

unnecessary maintenance on healthy components can introduce fault catalysts into 

previously properly working systems.  Conversely, reactive maintenance is performing 

maintenance when a system component fails.  This maintenance strategy leads to 

unplanned and expensive system downtimes [9]. 

One aspect of PM is to identify sensors that may require maintenance due to 

sensor drift or other malfunctions.  In PM systems, data collected from plant sensors are 

evaluated with empirical and/or physics-based models to obtain an independent 

estimate of the actual, un-faulted plant parameter.  This estimate is compared to the 

sensor signal in order to determine if the sensor has faulted.  With this technology, 

continuous or near-continuous sensor surveillance is possible.  These techniques have 

been approved in a general way for nuclear power plants for monitoring and calibration 

of safety-critical components and are used extensively in the nuclear power industry 

[10]. 

Adjusting standard PM techniques to monitoring for safeguards relevant 

information and combining those techniques with traditional nuclear safeguards offers 

the possibility to do real-time or near real time material inventory verification and 

instrumentation calibration verification.  All available data can be integrated into a 

central model.  This model can monitor changes in the system configuration, identify 

suspect instrumentation, validate operations and monitor equipment, and provide 

information for authentication and other decision-making tasks.  While research has 

examined the potential of PM for nuclear safeguards in a general way, one key 
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component missing from published safeguards research is a method to integrate 

traditional nuclear safeguards with modern process monitoring techniques for facility 

safeguards conclusions.  This work attempts to fill that need by developing a PM system 

specifically for the nuclear safeguards and for the verification of material processed.  

This work presents the research completed to develop a central monitoring system 

incorporating traditional nuclear safeguards with modern process monitoring 

techniques.  

1.1 Problem Statement 

The ultimate goal of nuclear safeguards is to validate the amount of material 

processed at a facility and to ensure that no material was diverted from its intended 

peaceful use.  Traditional nuclear safeguards rely heavily on facility and equipment 

inspections.  Facility inspections require large amounts of manpower, time, and money.  

The possibility of remote, continuous or near-continuous monitoring of a facility provides 

an efficient way to reduce the burden of facility inspections by taking advantage of the 

large amount of data already collected by a facility.  Facility data is generally large in 

volume but comes from unauthenticated instruments it is not used for safeguards 

monitoring.  On the other hand, inspector data comes from authenticated instruments 

placed at key locations between within the facility and is used in safeguards monitoring.  

While several papers have mentioned the possibility of incorporating facility data with 

inspector data for safeguards monitoring in a general way, the actual methodology and 

quantitative analysis of doing so has been overlooked in published literature. 

A major hurdle to incorporating facility data for nuclear safeguards is the volume 

of data and its authentication.  Most facilities already incorporate different degrees of 

PM to efficiently monitor signals from a wide variety of sensors, incorporate correlated 

signals into a central monitoring model, and use that model to look for subtle process 

changes that may arise from natural events such as sensor drift.  For example, consider 

a gas flowing through a pipe.  Standard instrumentation would include pressure, 

temperature, and flow rates.  Since these measurements would be correlated with each 

other it is possible to build a monitoring model that relates two pressure and 
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temperature measurements to the flow rate measurement.  By comparing the predicted 

flow rate values to the measurement values and tracking the residuals, an operator can 

quickly be alerted to changes in the process flow.  For example, if the temperature and 

pressure measurements remain constant, then the predicted flow rate should remain 

constant.  If the measured flow rate does not remain constant due to natural sensor 

drift, then the residual between the measured flow rate and predicted flow rate would be 

non-zero and would alert an operator.  In this sense, PM can be viewed as somewhat 

self-authenticating, because two independent measurements are used to predict a third 

independent measurement.  If the predicted value matches the measured value, then 

some assurance is provided that all three measurements are correct.  As the facility 

grows in complexity, the relationships between measurements grow in complexity, and 

the effort required to fool the monitoring system grows exponentially.   

Traditional safeguards methods are time consuming, tedious, and expensive.  

Additionally they ignore the potential information available in the unauthenticated facility 

data.  Since the large amounts of facility data are already collected, incorporating this 

data into safeguards monitoring incurs little financial burden with huge potential gains in 

the effectiveness of the monitoring system.  The development of automated PM routines 

coupled with the possibility of remote data access further reduces the required 

manpower to monitor a facility. The focus of this research is developing the 

methodology to create a PM system specific to nuclear safeguards incorporating both 

unauthenticated facility data with authenticated inspector data.  While several different 

PM models are available, the auto-associative kernel regression model is used here.  

Initially, PM models are developed for a simulated uranium blend-down facility to 

determine the sensitivity of the model to detect nuclear material diversions.  Then these 

algorithms are incorporating into a monitoring system developed for the Oak Ridge 

National laboratory (ORNL) mock feed and withdrawal facility.  The ORNL facility 

mimics a continuous batch feed process, similar to a GCEP, and serves as a test-bed 

for the development of a nuclear safeguards monitoring systems.  A continuous batch 

feed process is a process where containers of feed material, such as a feed cylinder at 

a GCEP, are brought into the processing area, the contents of the container are 
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processed, the empty container is removed, and then a new container is brought into 

the processing area.  The monitoring system for the ORNL facility checks the 

unauthenticated data for sensor masking and abnormal process operation, and creates 

a log of the material processed which can be coupled with traditional inspections to 

check for undeclared material processing. 

1.2 Original Contributions 

The research described herein culminates in several original contributions to the 

field of nuclear safeguards monitoring.  These contributions lie mainly in the 

development of PM algorithms to monitor and validate the material processed at a 

nuclear facility.  Additionally a graphical user interface (GUI) was developed to aid in the 

prototyping of algorithms for safeguards monitoring and material validation.  The main 

original contributions: 

1. Application of an Auto Associative Kernel Regression (AAKR) 

model for continuous or near continuous safeguards monitoring.  

These models quantitatively characterize the ability of a monitoring 

system to detector sensor masking 

2. Integration of data reconciliation and an AAKR model for 

safeguards monitoring. 

3. Development of an automated routine to validate the amount of 

material processed at the ORNL facility, including flags alerting an 

inspector to abnormal process changes.   

4. Development of a MATLAB-based toolbox and GUI for safeguards 

monitoring and material validation at the ORNL facility.  The toolbox 

and GUI is designed as a tool for potential inspectors to quickly, 

and possibly remotely, use facility data to draw safeguards 

conclusions. 
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1.3 Organization 

Chapter 2 reviews relevant literature in process monitoring algorithms and 

applications, as well as current methods in nuclear material safeguards monitoring.  

Chapter 3 presents the specific problem addressed by this work and the methodology 

proposed to solve this problem.  Section 3.1 presents a MATLAB Simulink model of a 

uranium blend-down monitoring facility.  This section also outlines the development of 

the safeguards monitoring system using an AAKR model and data reconciliation.  

Section 3.2 describes the Oak Ridge National Laboratory mock feed and withdrawal 

facility and the components of a load cell monitoring system.   

Chapter 4 presents the application and results of the safeguards monitoring 

system to the two facilities.  Section 4.1 presents the results of incorporating radiation 

sensors and data reconciliation into the AAKR architecture for the simulated uranium 

blend down facility.  Section 4.2 presents the results of the load cell monitoring system 

for the ORNL mock feed and withdrawal facility.  Section 4.2.4 describes a graphical 

user interface implementing the load cell monitoring system developed for the ORNL 

facility.  Chapter 5 presents the conclusions from this dissertation, a summary of the 

contributions, and proposed areas of future work. 
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2 LITERATURE SURVEY 

Traditional safeguards techniques rely on inspectors performing material 

balances between MBAs.  MBAs are designated boundaries within a facility, and all 

special nuclear material is recorded as it enters and leaves a MBA.  The role of 

inspectors is to validate MBA measurements and the amount of material within a MBA 

as reported by the facility.  These safeguards methods are time consuming, tedious, 

labor intensive, and expensive. Additionally, these methods are limited in the sensitivity 

and speed at which diverted material may be detected.  However, incorporating remote 

on-line monitoring of a plant has the potential to reduce the burden of IAEA inspectors.  

Most facilities incorporate some form of process monitoring already, and while the idea 

extending PM techniques for safeguards is not new, little research has been done 

develop to explore and quantitatively analyze the benefits of doing so.  The basic theory 

of process monitoring is to collect measured signal values, use them as input to a 

prediction module to create signal predictions, compare the measured signal values to 

predicted signal values, and then make decisions based on the residual between the 

measured and predicted value, as shown in Figure 2-1.  Based on the residual pattern 

the decision logic would decide if a sensor had drifted or if there was an abnormal 

process happening.  Depending on the prediction model and implementation, PM is 

very sensitive to small sensor drifts in near real time.  In an application to safeguards, 

the sensitivity of PM may be useful for detecting small diversion or sensor masking.  

The following sections outline the development of PM, including relevant monitoring 

models, and then the development of nuclear safeguards, including traditional 

safeguards methods and current research in the integration of PM to nuclear 

safeguards.  

2.1 Process Monitoring (PM) 

For successful operation of any process, it is important to detect process upsets, 

equipment malfunctions or other special events as early as possible and then to find or 

remove the factors causing those events [11].  The earliest forms of process monitoring 

(PM) were developed for chemical plants and were referred to as solution monitoring.    
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Figure 2-1.  The basic structure of a process monitoring model.  Measured values are 

used to create a prediction of the measured signals, and then the residuals between the 

measured and predicted values are used in decision logic. 
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Prior to the advent of computer, chemical plants relied on destructive analysis 

techniques, detailed and complicated physics models, and highly trained operators to 

detect and analysis process upsets.  As computers became mainstream and 

increasingly exploited for scientific investigation, the field of chemometrics emerged. 

Chemometrics is the science of relating measurements made on a chemical system or 

process to the state of the system via application of mathematical or statistical methods.  

As solution monitoring and chemometrics became more widespread, mostly due to 

advances made in both plant instrumentation and in the computer technology that 

evaluates it, these techniques were applied to other industries and were more 

generically referred to as process monitoring.  Many chemical problems and early 

applications of chemometrics involve calibration.  Using multivariate statistical 

techniques, fast, cheap, and non-destructive analytical measurements can be used to 

estimate sample properties that would otherwise require time-consuming, expensive, 

destructive testing.  As plants become more heavily instrumented, the ability to identify 

sensors that have fallen out of calibration is increasingly important.  As computer 

technology continued to evolve, newer PM techniques were developed to assist 

condition monitoring (CM) of plant equipment in real time or near-real time.  These 

techniques are commonly referred to as On-Line Monitoring (OLM) methods [15]. 

CM can be divided into two major tasks:  state estimation and state monitoring.  

State estimation refers to estimating the current condition, or state, or a system  

component.  Three techniques are generally used in state estimation:  redundant signal 

monitoring, reference signal monitoring, and diverse signal monitoring.  State estimation 

using redundant signals takes the average sensor reading when a large number of 

redundant signals are available and uses that average sensor reading as an estimate of 

the system state.  State estimation using reference signals involves comparing a 

sensor's response to a calibrated reference signal to distinguish between sensor drive 

and process drive.  The third technique, state estimation using diverse signals, is useful 

when a large number of redundant sensors are not available.  Instead of determining 

the system state from a set of redundant signals or a reference signal, the system state 

is determined from other system sensors that are correlated with the sensor being 
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monitored.  This technique is generally more practical than installing a large number of 

redundant sensors and relies heavily on multivariate modeling. 

Multivariate modeling can be further divided into physical modeling and empirical 

modeling.  Physical modeling relies on knowledge of the physics of the system to 

predict system states.  For instance, by measuring the temperature of a gas in a known 

volume, the pressure of the gas can be predicted based on established physic relations 

of gas pressure and temperature.  While physical modeling has the advantage that it 

allows one to predict future system states for a new process operation, it has the 

disadvantage that it requires detailed knowledge of the physics particular to the system.  

Alternatively, empirical modeling does not require knowledge of the system's physics, 

and it does not provide any analyzable relationships between system parameters.  

Instead, empirical modeling compares current operating conditions to past operating 

conditions to determine the expected current condition.  As chemical facilities grew in 

size and complexity, empirical models became more widespread for process monitoring 

due to the difficulty of developing detailed physics models.  The disadvantage of 

empirical modeling is that its predictive range is limited by the past operating conditions.  

If a new process condition is encountered that is significantly different from the past 

operating history, the empirical model will be unable to predict the new operating 

condition.  However, as data exemplifying the new operating condition is appended to 

the known past operating condition, model predictions become more reliable.   

Historically, these techniques have been applied specifically for condition 

monitoring in maintenance scheduling [9, 13].  Recently, a three volume NUREG/CR-

6895 series [14-16] was developed for the Nuclear Regulatory Commission (NRC) to 

provide background, technical guidance and explore implementation issues related to 

the use of PM for the extension of safety critical sensor calibration intervals.  One 

application of implementing OLM methods is summarized in [14].  Nuclear power 

utilities began investigating and developing OLM methods that would allow them to 

move away from periodic maintenance strategies towards condition-based maintenance 

philosophies.  Traditionally manual calibration of nuclear instruments is required through 

regulation and is performed during each nuclear power plant refueling outage.  There 
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are several weaknesses associated with manual calibration that could be addressed 

with OLM methods.  Manual calibration is the practice of having personnel periodically 

recalibrate instrumentation regardless of their condition.  Previous studies have shown 

that between calibration periods less than 5% of the 50 to 150 calibrated instruments 

have fallen out of calibration.  Therefore, during a refueling outage around 95% of the 

calibrations are unnecessary, and performing unnecessary maintenance on properly 

working equipment provides opportunities for faults to enter the system.  Additionally, if 

a sensor falls out of calibration it remains undetected until the next calibration period.  

An OLM method could continuously monitor the instrument channel and identify which 

sensors have degraded.  The identified sensors could be identified as needing 

calibration at the next outage or as entirely inoperable depending on the amount of 

degradation.  Identifying only the instruments that need calibration would reduce the 

amount of maintenance required during an outage and would limit the opportunity to 

introduce faults by performing unnecessary maintenance on working equipment.  

Implementing OLM methods would allow a plant to move develop a condition-based 

maintenance schedule rather than a periodic maintenance schedule, providing 

advantages such as reduced radiation exposure, increased instrument reliability, and 

increased equipment availability. 

2.1.1 Parametric Models 

There are two common empirical model architectures: parametric and non-

parametric.  Parametric models identify a set of parameters to define the functional 

relationship of the system.  An example of a common parametric model is linear 

regression:  

                               (2.1) 

Where   is the prediction,    is the nth parameter,    is the nth input, and   is an 

error term.  The error term is not a fitted parameter of the model, rather it identifies the 

error between the prediction,  , and the measurement.  For several linear regression 

models, this equation can be written more compactly in matrix form as: 
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                  (2.2) 

Where 

     

  
 
  
      

       
   
       

      
  
 
  

      

  
 
  
      (2.3) 

Parametric models use historical plant data to create a model training data set 

and then optimize the parameters (in the case of linear regression, each  ) of a 

predefined mathematical function.  The mathematical function used as the prediction 

model does not need to be linear and will depend on the system being modeled.  For 

instance, population growth is generally modeled with the Malthusian Growth Model, 

which assumes a mathematical model of the form: 

       
             (2.4) 

Where   is the predicted population,    is the initial population,   is the 

parameter to be fit,    is the time, and   is an error term [18].    is a measure of growth 

rate with respect to time.  The parameters are normally optimized by minimizing an 

objective function.  For linear regression, the objective function is the sum of the 

squared error.  Once the parameters have been optimized, the model training set is no 

longer useful, and only the optimized parameters and the predefined mathematical 

function are saved.  When a new query is made, the measured sensor values are fit to 

the mathematical function, using the previously optimized parameters, and the residual 

between the new prediction and the measured value are fed to the decision logic.  For 

example, in equation 2.4, once   is optimized (  , the initial parameter is known and the 

error term not included when making predictions), all future predictions rely only on   , 

 , and   and not the data that was used to optimize  .  Once a parametric model has 

been defined, the model is inflexible unless a new training data set becomes available 

and either the mathematical function is updated and/or the parameters are re-optimized 

based on the new training set.  More information about different parametric models, 

including models of higher complexity, is available in [19-22]. 
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2.1.2 Kernel Regression 

Kernel Regression is an empirical, non-parametric modeling technique.  A non-

parametric model uses historical data to build a local model.  It differs from a parametric 

model in that every time a new estimation is made, a new model is built from the 

historical data.  Essentially a non-parametric model creates a temporary parametric 

model, optimizes the temporary parametric model parameters using historical data 

similar to the input signals, uses the optimized temporary parametric model to perform 

predictions, and then discards the temporary parametric model.  When a new set of 

input signals is available, the process repeats.  The process of using a parametric and 

non-parametric prediction model is outlined in Figure 2-2.  Instead of saving a set of 

parameters, a non-parametric model saves the historical data and parameters are re-

optimized for every prediction and then discarded after every prediction.  In the case of 

kernel regression, instead of creating a temporary parametric model, a prediction is 

performed using a weighted sum of historical values.  Kernel regression can be formally 

defined as the process of estimation using a weighted average of historical exemplar 

observations [23]: 

An important first step creating a kernel regression model is selecting which data 

should become part of the model training data set.  Only historical data that is a close 

representation of the query data becomes part of the model training data set.  

Determining the similarity between the query data and the historical data is performed 

through a distance function.  The most common distance function is the Euclidean 

distance, also known as the L2-norm, and is given by: 

                         (2.5) 

The distance between every historical data record and the query vector is calculated, 

and the historical data records with the minimum distance are used in the model training 

set.  While the L2-norm is the most common distance measure, several more robust 

distance measures have been explored, including the L1-norm [24]. 
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Figure 2-2. Outline of a parametric and non-parametric empirical model. A parametric 

model optimizes parameters of a mathematical model once and then uses those 

parameters for each subsequent prediction.  The model training data set is not saved 

for future use.  A non-parametric model uses historical operation data to build a 

parametric model for each prediction.  Each new prediction requires a new parametric 

model, and the optimized parameters are not saved.  The historical operation data is 

saved, but the set of optimized parametric parameters is discarded after predictions are 

made. 
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In Kernel regression, estimation is performed based on a weighted average of 

similar historical data.  Once the model training data set has been selected, each record 

in the model training data set is assigned a weight.  Records that are very similar to the 

query vector (and, therefore, have a small distance) should receive a very high weight, 

while less similar records should receive a smaller weight.  The most commonly used 

kernel function is the Gaussian Kernel, given by [25]: 

       
 

     
 
   

          (2.6) 

Where h is the kernel's bandwidth.  The bandwidth determines how small the distance, 

d, must be in order to generate a large weight.  A smaller bandwidth will only generate 

high weights when the distance is close to zero.  The bandwidth is usually chosen to 

minimize model uncertainty, given by:  

                              .    (2.7) 

The effects of over or under estimating the bandwidth can be seen in Figure 2-3, and a 

properly sized bandwidth is shown in Figure 2-4.  Too large of a bandwidth can result in 

a larger prediction bias, and too small of a bandwidth will increase the prediction 

variance.  The bandwidth is generally optimized so that the quadratic sum of the bias 

and prediction uncertainty is minimized.  The Gaussian kernel is only one example of a 

kernel function.  Other kernel functions include inverse distance, exponential, absolute 

exponential, uniform weighting, triangular, biquadratic, and tricube [23].  While other 

kernel functions may perform better in specific applications, the Gaussian kernel is 

generally adequate. 

Because the kernel regression, and empirical modeling in general, does not 

require detailed knowledge of a facility can be easily applied to several different types of 

facilities.  Historically, it was used in large chemical facilities. These facilities are highly 

instrumented and the relationships between measurements are often non-linear and too 

complex for the development a physical model.  However, kernel regression can be 

used in any situation where a physical model isn't available.  For instance, reference   



17 

 

Figure 2-3. The effect of incorrect Gaussian Kernel bandwidth selection.  Too large of a 

bandwidth (top) results in a larger range of distances receiving a non-trivial weight, 

which can introduce a large prediction bias, where the peaks and values of the data are 

not well fit.  Too small of a bandwidth (bottom) results in large weights only when the 

distance is small, and can introduce a large variance [26].  An optimal bandwidth 

minimizes the model uncertainty.    
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Figure 2-4. A properly sized bandwidth balances the effect of prediction bias and model 

variance.  The result is that the peaks and values of the function are well fit and that the 

overall model uncertainty is minimized [26]. 
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[17] describes the use of various ecological variables, such as temperature, wind speed, 

precipitation, and relative humidity to predict the area burned in wildfires. 

2.1.3 Data Reconciliation 

Data reconciliation (DR) is a measurement correction technique based on the 

known physical laws of system and the instrument uncertainties.  Known material and 

energy balances serve as additional constraints to improve measurement accuracy by 

reducing random errors associated with measurements.  DR produces reconciled (or 

corrected) estimates that are consistent with the known material and energy 

conservation laws and are inherently more accurate when no systematic error exists 

[14].  An example would be liquid transfer between two tanks.  Under normal operation 

the liquid leaving tank 1 must enter tank 2; however, because of random measurement 

error, the measured amount of liquid leaving tank 1 and entering tank 2 may not be 

exactly equal.  DR would reconcile the two measurement values so that the measured 

values would be equal.   

The first application of DR was by Kuehn and Davidson [27] of the IMB 

Corporation.  Kuehn used DR on a linear material balance system in which all 

parameters were measured.  DR has since been applied to dynamic processes [28], 

non-linear models [29], and recently to processes that are both dynamic and non-linear 

[30].   

DR can generally be written as a constrained, weighted, least squares 

optimization problem: 

      
  
    

  
 
 

         (2.8) 

where   
  is the reconciled value,    is the measurement, and    is the measurement 

standard deviation.  The weights are proportional to the inverse of each measurement's 

accuracy.  Most DR techniques assume that measurements contain only a random error 

component with a Gaussian distribution.  If systematic errors exist, DR may reconcile 
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the measurements in such a way that the reconciled values are more inaccurate than 

the raw measurements [31].  Therefore, systematic error detection techniques are 

generally coupled with DR to remove and eliminate systematic errors. 

As an example of DR, consider a simple flow splitter, shown in Figure 2-5.  In this 

system, under normal operation, the mass flow out of M1 must equal the mass flow into 

M2 and M3.  However, because every measurement has some random noise, the 

measured values will not exactly obey the physical relationship that M1 = M2 + M3.  DR 

is used to calculate a correlation factor that is applied to the measured value so that 

they obey the physical relationship.  The corrected values are referred to as reconciled 

values. 

Data reconciliation calculates a correction factor,  , that is applied to measured 

values to force the system to follow known conservation laws.  The relationship between 

the reconciled values and the measured values is given by: 

                (2.9) 

where    is the reconciled values,   is the measured values, and   is the corrective 

factor to be determined.  The corrective factor is applied to the measured values to 

force the measured values to follow conservation laws, such as M1 = M2 + M3.  The 

solution to equation 2.8 requires   to be minimized.  In matrix notation, and substituting 

  for   
    , and 

 

  
 for   

  , the objective function can be expressed as: 

        
           (2.10) 

where   is the vector of corrective factors,   
   is a diagonal matrix of   

  .  For a first 

order, linear system the minimizing solution, through the application of Lagrange 

multipliers, is : 

        
  

   
   

 

  
  

   
    

  

   
 
 

 
  

       (2.11) 
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Figure 2-5. Diagram of a simple flow splitter.  In this system the mass flow out of M1 

must equal the mass flow into M2 and M3.  However, due to random measurement 

error, the measured mass flow rate may not exactly represent the relationship M1 = M2 

+ M3.  Data Reconciliation is used to calculate a correction factor to the measured 

values so that they obey the physical relationship.   
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The correction factors are weighted by both the standard deviation and the magnitude 

of the measurement value.  So measurements with higher precision, and therefore 

alower  , have a lower  .  Equation 2.11 is substituted into equation 2.8, which is then 

used to reconcile the measured values.  A summary of applying this correction factor to 

the hypothetical system in Figure 2-5 is shown in Table 2-1. 

The data in Table 2-1 shows that the measured values of M1, M2, and M3 do not obey 

the conservation law initially, but after applying data reconciliation the reconciled values 

do obey the mass conservation law..  Also the size of the correction factor is related to 

both the standard deviation and the magnitude of the measured values, which explains 

why M1 had a much larger correction factor that either M2 or M3.  It is important to note 

that DR assumes the data is under normal operation, the sensors are not faulted, and 

the conservation laws are actually true (which would not the case in a division scenario).  

If these assumptions are not met, DR can actually increase the error and uncertainty of 

the measured values [31].  In this sense, DR can be thought of as a de-noising 

technique which relates the measured values to their most likely true values (i.e. 

removes the random noise component). 

Data reconciliation was first applied only to linear processes, such as mass 

balance problems seen in almost all types of nuclear facilities.  As the techniques 

matured, the areas of application increased.  For instance, data reconciliation is used in 

several types of power plants (coal, nuclear, natural gas, etc.) where both non-linear 

and dynamic processes take place, such as plant start-up, load changing, and energy 

balances within a combustion chamber.  Specific to nuclear power plants, data 

reconciliation has successfully been used to reconcile flow rates into and out of the 

reactor core to provide a better measurement of reactor power, which enables the plant 

to operate closer to its maximum capacity throughout the entire year [14]. 
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Table 2-1. An application of data reconciliation to a hypothetical flow splitter.  The 

physical system is constrained by M1 = M2+M3, but due to measurement error the 

measured values do not exactly obey the constraining law.  Data reconciliation is used 

to calculate a correction factor for each measured value (weighted by both the 

magnitude of the measured value and the standard deviation of the measurement), to 

force the measured values to follow the conservation law.   

Sensor Measured Value, f(x) 
Standard 
Deviation 

Correction 
Factor (v) 

Reconciled 
Value, f(xbar) 

M1 500 25 -3.36 496.64 

M2 245 12.25 0.81 245.81 

M3 250 12.5 0.84 250.84 

M1-M2-M3 5   0 
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2.1.4 Sequential Probability Ratio Test 

The sequential probability ratio test (SPRT) is a sequential hypothesis test used 

as a fault detection technique that was developed by Abraham Wald [36].  The SPRT is 

useful for determining if a sequence of residuals indicates the system is in a degraded 

state.  The sequences of residuals being generated by a random process (such as 

measurement noise) should have a mean of zero, but if the system is degraded there 

will be a shift in the mean or variance of the residuals.  The SPRT determines whether a 

sequence of residuals indicates a faulted condition by calculating the log likelihood ratio.  

According to the central limit theorem, the measurement residuals can be assumed to 

be normally distributed.  Using this assumption, the SPRT determines whether or not a 

sequence of numbers comes from a specified normal distribution or not.  In the case of 

fault detection, the unfaulted normal distribution’s mean and variance would be 

determined by training the model.  In this case the SPRT determines whether or not the 

sequence of residuals comes from unfaulted normal distribution.  If the sequence fails 

the SPRT, then the data is in a faulted state.  Complete derivation of the log likelihood 

ratios is outside the scope of this work, but it can be found in [35].  The SPRT 

determines how small of a drift can be detected with a specified false alarm rate by 

calculating: 

         
  

  
      

  

 
      (2.12) 

where    is the mean,    is the residual at time m, and    is the variance.  If   is within 

certain bounds, then the residuals are said to come from unfaulted data.  The bounds 

are calculated by specifying a false alarm rate,     and missed alarm rate,  .  

     
 

   
         (2.13) 

     
   

 
         (2.14) 

If   is less than A, then the residuals are said to come from unfaulted data, if   is greater 

than B, the data is assumed faulted.  If   is between A and B the test is inconclusive. 
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2.2 Nuclear Safeguards 

The initial development of nuclear technology was for military purposes.  After 

World War II, the attention of nuclear technology turned to civil applications.  Nuclear 

safeguards refers to the development of technology and policy to assure that special 

nuclear material is used for its intended peaceful applications.  In 1953, in his "Atoms for 

Peace" address to the UN General Assembly, Dwight D. Eisenhower proposed the 

creation of an international body to both regulate and promote the peaceful use of 

atomic power [18].  In the following year, the United States proposed the creation of an 

international agency to take control of all fissile material and serve as a nuclear bank 

[36].  From this proposal the International Atomic Energy Agency (IAEA) was born.  

However, international disagreements prevented the IAEA from becoming the nuclear 

bank originally proposed.  Instead, the IAEA became tasked with ensuring that nuclear 

material is not diverted from its intended peaceful uses.  To this end, the IAEA is 

charged with: the inspection of facilities to ensure their peaceful use, providing 

information and developing standards to ensure the safety and security of nuclear 

facilities, and as a scientific center for fields involving the peaceful application of nuclear 

technology. 

Parties who have signed the Nuclear Non-Proliferation Treaty (NPT) are required 

to enter a safeguards agreement with the IAEA.  The NPT is a treaty to limit the spread, 

or proliferation, of nuclear weapons.  The treaty first came into effect in March of 1970.  

The NPT is generally interpreted as a three-pillar system: non-proliferation, 

disarmament, and the right to peacefully use nuclear technology.  The first pillar states 

that the recognized nuclear states will not transfer nuclear weapons technology to non-

nuclear weapon states or encourage non-nuclear weapon states to acquire nuclear 

weapons and that non-nuclear weapon states will not seek to acquire or manufacture 

nuclear weapons.  The second pillar is to reduce the worldwide stockpile of nuclear 

weapons.  The third pillar recognizes that non-nuclear weapon states have the right to 

peacefully use nuclear technology.   
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The basic measure by which the IAEA verifies the fulfillment of the NPT 

obligations is through nuclear material accountancy [3].  The availability of fissile 

material has long been considered the principal obstacle to a country's nuclear weapons 

development effort.  The spread of enrichment and reprocessing technology allows 

countries to develop their own nuclear technology for the peaceful purposes stated in 

the NPT, but it also inherently gives those countries the capabilities of producing fissile 

material for weapons development.  The IAEA routinely performs safeguards activities 

at over 900 facilities in over 71 countries, including power reactors, research reactors, 

conversion plants, fuel fabrication plants, enrichment plants, storage facilities and 

reprocessing plants, in addition to other facilities [37].  

Traditional safeguards rely on defining MBAs within a plant and tracking the 

material flow between MBAs.  Periodically, full inventories are conducted to verify the 

amount of material within a MBA rather than just the amount of material entering and 

leaving a MBA.  Since most facilities deal with uniquely labeled components, such as 

fuel assemblies, and the nuclear components are not easily subdivided, simple ensuring 

tracking the component as a whole is a sufficient accountability measure.  However, 

GCEPs and reprocessing plants are unique in that they don’t deal with uniquely labeled 

components.  Special nuclear material is mixed and divided throughout the plants and 

proper MCA requires taking measurements at key locations at the boundaries of MBAs 

[7, 8].  A sample MBA for a GCEP is shown in Figure 2-6.  Typical key measurements 

include concentrations, isotopic compositions, and volume, density and/or weight.  

Instrumentation and measurement techniques including alpha spectrometry, 

calorimetry, chemical titration, K-edge absorption densitometry, manometers and 

vibrating-tube densitometers, neutron techniques, spectrophotometry, uranium 

gravimetry, mass spectrometry, x-ray fluorescence, and gamma-ray spectrometry [7].  

Material inventory must be accounted for to within one significant quantity of material 

within an appropriate time period [6]. 

The Rokkasho plant in Japan is a commercial-sized reprocessing plant.  It will 

have the capacity to reprocess 800 metric tons of spent fuel a year.  The average spent   
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Figure 2-6. Block diagram of material flow through a hypothetical gas enrichment plant.  

As material is received, its contents are verified and it is put into storage.  When 

material is ready to be processed, it is moved from storage to an input accountability 

tank, thereby crossing from MBA 1 to MBA 2.  After the material is processed, it is 

removed from the process line and placed in storage, thereby crossing from MBA 2 to 

MBA 3, where it stays until it is shipped offsite. At each MBA crossing, the MCA is done 

through destructive assay and key flow measurements. 
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fuel is approximately 0.9% plutonium by weight, meaning that the plutonium throughput 

is 7.2 metric tons per year.  Assuming a realistic measurement uncertainty of 1.0%, 72 

kg of plutonium falls within the annual 1-sigma error bounds [7].  A significant quantity of 

plutonium is defined as 8 kg, so the Rokkasho plant must perform a monthly plutonium 

inventory balance to keep the 1-sigma error bound below a significant quantity.  

Regardless of measurement uncertainty, a high enough material throughputs could 

force a facility to perform more frequent inventory balances to ensure the 1-sigma error 

bound stays below a significant quantity of material.  

As commercial plants continue to spread and grow in size, eventually plant 

throughput will reach a point that even monthly inventory balances will not have the 

precision to account for one significant quantity of material. Also, no additional 

verification is performed to ensure cumulative uncertainties don’t reach a significant 

quantity.  Improvements in measurement precision will reduce the material uncertainty, 

but many of the more accurate classical techniques have a long wait time (3 – 4 

months) due to transportation of samples off-site and the time it takes to do the 

analysis. For these reasons, many experts have called for improvements in safeguards 

methods to reconcile these and other difficulties and uncertainties [38-40]. 

 Many of the improvements envisioned require drastic increases in manpower, 

technology or both.  Shortening the material accountancy period or increasing the 

number of material balance areas requires many more person-hours to accomplish a 

timely analysis.   Currently, the Rokkasho reprocessing plant requires between 1000 

and 1200 Person Days of Inspection (PDI) out of the approximately 10,000 PDIs 

deployed by the IAEA’s Safeguards Department worldwide [7].  A standard GCEP 

requires an annual inspection with 2-4 IAEA inspectors and monthly interim inspections 

is 1-2 inspectors.  The annual inspection may take between 10 and 15 days, while the 

monthly interim inspection only requires at most 4 days.  Additional process information 

would provide inspectors means for verifying the process and preventing diversion of 

nuclear material, without the need for drastic increases in manpower or technology [38]. 
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2.2.1 Process Monitoring for Nuclear Safeguards 

While a number of evaluation systems have been developed, process monitoring 

for safeguards is still in its infancy.  Certain systems, through experiences on real 

facilities, are evolving algorithms useful for evaluating real-world scenarios rather than 

idealized simulations [41, 42].  The two types of facilities most examined are a gas 

centrifuge enrichment plant and reprocessing plants. 

Process monitoring as an international safeguards tool has its root in the late 

1970s.  Prior to the 1970s, reprocessing plants were small and limited to the nuclear 

weapon states.  By the late 1970s, the Tokai Reprocessing Plant is Japan was nearing 

completion and there was the possibility of a large-scale commercial reprocessing plant 

at Barnwell in the United States.  Several countries with reprocessing technology, 

including France, Germany, Great Britain, the United States, and Japan, joined the 

IAEA in the Tokai Advanced Safeguards Exercise (TASTEX) to investigate advanced 

techniques to improve international safeguards capabilities for larger commercial plants.  

One of the recommendations was for the implementation of process monitoring.  

Research originated at the Idaho Chemical Processing Plant to detect valve setting 

errors and prevent inadvertent transfers between tanks [12].  The nature of the 

instrumentation of the Tokai made interfacing for digital data collection difficult.  

However, the Barnwell plant was built with more modern instrumentation, including a 

computer-based data collection system, so development of process monitoring 

continued at that facility.  Further development continued at the Integrated Equipment 

Test (IET) facility at the Oak Ridge National Laboratory, but the reprocessing equipment 

developed there was never intended for commercial operation.  The earliest efforts of 

process monitoring were referred to as solution monitoring because they concentrated 

on monitoring vessel volumes and the flow of solution between tanks.  The development 

of process evaluation software lagged significantly behind.  However, research at 

Barnwell and at the EIT tried to predict special nuclear material concentrations based on 

density measurements and some acid concentration measurements [54]. 
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Until the early 1990's, the techniques developed under TASTEX remained the 

international standard.  Applications expanded slightly as the scope of facility operations 

expanded, but measurement and data-collection was patterned after the Tokai system.  

All data was collected on-site and for the most part evaluation was based on the 

capabilities of the inspector to use packaged graphical interface routines.  Without the 

development of process evaluation software, the inspectors were left with a wealth of 

data but very limited ways to efficiently analyze it.  However, in the early 2000's an IAEA 

and Glasgow University collaboration made significant progress in evaluation software.  

The software was used to extract pertinent features of the data, observe specific plant 

operations, and to detect and isolate anomalies.  It still required that knowledgeable 

inspectors interact with qualitative graphical representations, but it also represented the 

first real effort to provide inspectors with both quantitative and partially diagnosed 

information [54]. 

Currently, France, Japan, Russia, and the United Kingdom operate commercial 

reprocessing plants, but only the Japanese plants at Rokkasho and Tokai fall under 

IAEA safeguards.  In existing reprocessing plants, operators have extensive and cutting 

edge systems for monitoring and control including cameras, tamper-indicating devices, 

radiation detectors, and the typical process control instrumentation.  While this broad 

range of data could provide very detailed information for the purposes of verification, 

operators have traditionally been reluctant to allow the IAEA access to the data due to 

concerns about revealing proprietary information [12].   

The first application of process monitoring for safeguards was in reprocessing 

facilities, but in the early 1970's GCEPs were also a major concern.  Initially safeguards 

at GCEPs did not involve access to the cascades halls.  Recognizing the minimal effort 

required for a commercial GCEP to be reconfigured to produce highly enriched uranium, 

the Hexapartite Safeguards Project (HSP) convened in the early 1980's with the 

objective of developing an effective safeguards approach for GCEPs.  The HSP 

approach combined traditional nuclear accountancy measures outside the cascade hall 

with limited frequency, unannounced access (LFUA) to the cascade hall.  The traditional 

measures outside the cascade hall mainly consisted of weight measurements of the 
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feed, tail, and product tanks in addition to the verification that the accountability scales 

are properly calibrated.  Inside the cascade, measures included non-destructive assay 

measurements on piping within the cascade hall and visual observation to verify design 

information.  In the early 1990's, gas centrifuge technology reached a stage where 

higher enrichment levels could be produced without visible changes to the cascade 

design, leading to the development of a continuous enrichment monitoring system 

comparable in purpose to the process monitoring systems developed for reprocessing 

facilities [45]. 

Safeguards at GCEPs focus on determining whether or not undeclared uranium 

is being enriched.  The most prevalent method is through load cell monitoring to verify 

nuclear material accountancy.  The proposed systems analyze cylinder weight data that 

is collected frequently from cylinders located in feed, tails, and product stations.   

Research exploring PM at gaseous centrifuge enrichment plants for the detection of 

undeclared production by monitoring the enrichment cascade and the load cell stations 

is described in [43-48].  A typical load cell profile is shown in Figure 2-7. 

The profile shown in Figure 2-7 lacks any noise components that would be seen 

in an actual plant.  An actual load cell profile would be contaminated with noise, most 

significantly seen as a period of instability when a tank is first loaded or removed.  

Material accountancy is then simply implemented using: 

           
         

         
          

          
          

     2.10 

where ID is the inventory difference,        
         

is the summation of the change of tank 

weights for all the feed stations,            
         

 is the summation of the change of tanks 

weights for all product stations, and        
         

the summation of the change of tanks 

weights for all tail stations.  When the plant inventory is perfectly balanced, ID will equal 

zero.  In reality, all plant experience varying amount of material holdup in pipes, valves, 

and other components, so that ID is never zero.  However, by characterizing the  
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Figure 2-7. A hypothetical load cell profile as a feed tank is loaded, processed, and 

removed from a GCEP feed station.  At an actual plant, the profile would be 

contaminated with noise spikes, most significantly when a tank is first loaded or 

removed. 
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 expected facility holdup, equation 2.10 can be expanded to include a facility holdup 

term and a more meaningful value for ID is achieved. 

Accurately determining        
         

,            
         

 , and        
         

 first requires that the 

load cell data can be matched to a template to accurately identify the number of 

cylinders placed on a feed, tail, or product station.  Then correctly identifying the initial 

and final tank weights is used to determine the material throughput.  Currently, the IAEA 

does not make use of load cell data for safeguard purposes, instead relying solely on 

authenticated accountability scales.  Incorporating load cell data with authenticated 

accountability measurements provides a measure of validation that no undeclared 

material was processed.  However, operators have two key concerns:  the unnecessary 

transmission of data out of a facility, and unnecessary inspector access to detailed 

process monitoring.  In response to these concerns, algorithms have been proposed to 

automatically and locally count the number of cylinders at a GCEP station, thereby 

limiting the transmission of data offsite. 

An outline using template matching to count the number of cylinders processed 

at a load cell station is summarized from John Howell's paper entitled "Algorithms to 

Count the Cylinder Throughput of a GCEP Feed Station" [49].  For this template 

matching procedure, it is assumed that the GCEP operator will allow local automated 

feed cylinder counting from their load cell data, but that the operator is under no 

obligation to operate a facility in a prescribed manner.  For instance, the operator may:  

(1) place a part-filled cylinder into a station, (2) temporarily halt station output, (3) 

remove a cylinder before it is completely empty, or (4) vary the rate at which a cylinder 

is emptied.  The load cell data would consist of load cell weights collected frequently 

and at regular intervals.  This data would be saved locally in a fixed format.  The 

counting algorithms would search through the data and extract the approximate times 

when cylinders were changed and their initial and final weight.  The basic profile of a 

feed station was shown in Figure 2-7.  The basic profile changes under different 

operations are shown in Figure 2-8. 
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Figure 2-8. Changes in a GCEP feed station profile under different operating conditions.  

The spikes when a tank is added or removed from the scale represent expected 

fluctuations. 
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The template outlined from Howell’s paper [49] is shown in Figure 2-9.  Section A marks 

the period when a cylinder is emptying, which is a function of the feed rate (possibly 

unspecified and varying), the initial cylinder weight, and the final cylinder weight.  

Section B marks the period when an empty cylinder still resides on the station load 

cells.  Section C marks the delay before a new feed cylinder is placed on the station.  

Section D marks the period when a new cylinder is first placed on the station and the 

weight value is still fluctuating.  Section E marks the period when a new cylinder is 

ready to be emptied.  The weight value may fluctuate due to various processes 

associated with bringing a new cylinder online.  With the exception of section A, all other 

sections would be of concern only to the operator, since section A contains all the 

information about the amount of material processed and the initial and final tank weight. 

Each template would be specified using predefined parameters corresponding to 

a weight threshold, a change of weight threshold, a time threshold, or a combination of 

all three.  For instance, section C is specified by setting a lower weight threshold 

corresponding to an empty scale weight (with some error allowance for measurement 

noise) and a length of time that the feed station must remain in section C.  Section B 

could then be specifying that a lower threshold associated with the weight of an empty 

tank and by specifying that the data is not in section A, D, or E.  Additional templates 

would be created for partially filled cylinders being placed on the station or for a cylinder 

being withdrawn prematurely.  Once the templates have been matched, the number of 

cylinders processed can easily and automatically be counted by counting the number of 

times a specific template has been matched.  With this automated system, the need for 

manual analysis would be limited to cases where the number of cylinders reported is not 

in agreement with the number of cylinders declared by the operator. 

Cylinder counting could be used as part of a wider scheme that collects, analyzes and 

integrates data from the load cells, accountancy weigh scales, and other key 

measurements taken in the facility.  Several key processes are already collected by the 

operator for use in process monitoring, but are not specifically available to the IAEA for 

safeguards.  Research in safeguards at reprocessing facilities has focused on solution 

monitoring.  Solution monitoring is a specific form of process monitoring for  
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Figure 2-9. A general feed template for a GCEP feed station.  Section A marks the 

period when a cylinder is emptying.  Section B marks the period when an empty cylinder 

still resides on the station load cells.  Section C marks the delay before a new feed 

cylinder is placed on the station.  Section D marks the period when a new cylinder is 

first placed on the station, and the weight value is still fluctuating.  Section E marks the 

period when a new cylinder is ready to be emptied [49].   
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chemical facilities.  As material is transferred from one process tank to the next, process 

variables are recorded.  The standard process measurements are level, density and 

temperature of a solution tank.  Several of these measurements are highly correlated 

with the flow of SNM through a facility and therefore could naturally lend themselves to 

drawing safeguards conclusions.  For example, consider the three tank example outline 

in [50].  In this example, a generic feed, accountability, and buffer tank are connected in 

series, as shown in Figure 2-10.  Suppose that flow rates F11 and F12 into the feed tank, 

F21 and F22 into the accountability tank, and F31 and F32 into the buffer tank and F41 out 

of the buffer tank are measured in real time and recorded every 5 minutes.  The 

temperature (Co), density ( ), and level (which is calibrated to the volume V), are also 

recorded every 5 minutes.  Different assumptions regarding the availability of 

measurements of the nitric acid concentration H, the Plutonium concentration Pu, and 

the Uranium concentration U can be examined.  Typically concentrations are not 

measured in-line, but rather by taking a stream sample and analyzing it.  

Traditional nuclear materials accountability would compare the SNM mass 

entering the feed tank with the SNM mass exiting the buffer tank.  The throughput in 

tank 2 would be ignored.  The inventory difference for the material balance is defined 

as: 

                             2.11 

Where Tin and Tout are transfers into and out of the tank, and Ibegin and Iend are the 

beginning and ending material inventory (or level) in the tank.  The inventory difference 

reported by the operator, IDoperator, is calculated using equation 2.11.  However, it is not 

feasible for an inspector to re-measure every tank.  Therefore the inspector will select a 

random subset of tanks from.  The inspector will then independently measure each of 

those tanks and compare them to the operator's measurement.  A difference statistic, D, 

is calculate by: 

              
 
         2.12 
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Figure 2-10. A generic feed, accountability, and Buffer tank connected in series [50].  A 

material balance area surrounds the three tanks.  The flow rates are denoted by F, the 

temperature by Co, the density by  , and the volume by V.  Measurements of the nitric 

acid concentration, plutonium concentration, and uranium concentration are denoted by 

H, Pu, and U respectively [50].   
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Where N is the total number of tanks, n is the subsample size, oj is the operator's 

measurement of sample j, and ij is the inspector's measurement of sample j.  The 

inventory difference as calculated by the inspector is then expressed as: 

                               2.13 

One limitation of this approach is that the uncertainty of IDoperator is generally smaller 

(due in part to the larger number of measurements available) than the uncertainty of D 

and therefore the uncertainty of IDinspector.  This lower uncertainty of IDoperator means that 

the operator is better able to detect diversions compared with an inspector.  For 

example, at the Rokkasho plant 12 important vessels are equipped with instruments 

installed and controlled by the IAEA (in addition to instruments installed by the operator) 

to make independent and externally authenticated measurements (for use in calculating 

the D statistic).  However, approximately 80 vessels only use operator's instruments 

and, therefore, are not authenticated.  Process monitoring provides a means to 

incorporate unauthenticated operator data with authenticated inspector data to lower the 

uncertainty of IDinspector and therefore increase the detection probability of unauthorized 

activity.  In the three tank example, errors from one measurement would be correlated 

with errors in subsequent measurements.  For example, if the measured flow rate F21 

into tank two is too high (meaning the actual flow rate into tank two is lower than 

measured), then the predicted volume in tank 1 would be too small, but the predicted 

value in tank 2 would be too high.  Monitoring these errors using multivariate statistical 

methods could ensure that the 3 tanks are operated as declared, providing a measure 

of authentication of each of the operator's measurement.  In this sense, process 

monitoring is self-authenticating.  Several other examples of solution monitoring for 

safeguards are available in [51-53].   

Applying process monitoring techniques to safeguards measurements provides a 

cost-effective way to reduce the burden of IAEA inspectors.  Using the self-

authenticating nature of process monitoring, the need for additionally independent and 

externally authenticated measurements is reduced and provides a possible way for 

remote monitoring of a facility.  Additionally, more sophisticated monitoring techniques 
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would lower the uncertainty of IDinspector which could translate into extending the 

intervals between inspections, further reducing the IAEA manpower needed to monitor a 

single facility.   

While initial safeguards approaches for reprocessing facilities and for GCEPs 

had different focuses and specific techniques, several of the techniques are equally 

applicable for both facilities.  For example, the load cell algorithms developed for GCEP 

monitoring could be applied to tank monitoring at reprocessing facilities, and the 

solution monitoring techniques developed for reprocessing facilities could be adapted to 

monitor the gas flow inside a GCEP cascade hall.  While on-line monitoring has been 

well established in other areas, its application to nuclear safeguards is still new.  Current 

research implementing process monitoring for safeguards at both reprocessing facilities 

and GCEPs is being conducted by Tom Burr of the Los Alamos National Laboratory and 

John Howell of the University of Glasgow, UK.  Several other laboratories and agencies 

are involved in this research including: the Oak Ridge National Laboratory [56 - 59],  

The U.S. Department of Energy, The International Atomic Energy Agency, and the 

Nuclear Nonproliferation and Technology Center, Japan.  A complete review on PM for 

safeguards, including international collaborations, is available in [54, 55].   
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3 METHODOLOGY 

Traditional safeguards techniques rely on material accountancy.  Improvements 

in monitoring techniques can reduce the burden of IAEA inspectors by extending the 

interval between inspections [38].  Historically, process monitoring techniques have 

been applied specifically for condition monitoring for maintenance scheduling [9, 13].  

More recently a three volume NUREG/CR-6895 series [14-16] was developed for the 

Nuclear Regulatory Commission (NRC) to provide background, technical guidance and 

explore implementation issues related to the use of PM for the extension of safety 

critical sensor calibration intervals.  The application and expansion of PM techniques for 

safeguards could provide a framework for reducing the burden on IAEA inspectors 

without compromising their nuclear safeguards mission.  

3.1 Safeguards Monitoring of a Simulated Uranium Blend-Down 

Facility 

The second pillar of the Nuclear Non-Proliferation Treaty calls for a reduction in 

the number of nuclear warheads held by the nuclear states.  To this end, the United 

States and Russia signed an HEU Purchase Agreement in 1993.  Under this 

agreement, Russia would dismantle part of their nuclear stockpile, blend-down their 

highly enriched uranium (HEU) components to reactor grade uranium (approximately 

4% 235U enriched), and sell the reactor grade uranium to the United States as reactor 

fuel.  The Blend-Down Monitoring System (BDMS) was designed to provide verification 

that the requirements of the HEU Purchase agreement were being met.  To monitor the 

235U flow, the Oak Ridge National Laboratory (ORNL) developed the Fissile Mass Flow 

Meter (FMFM).  The FMFM measures the delayed gammas from induced fissions of 

235U.  Figure 3-1 shows a schematic of the FMFM used in the BDMS.  THE FMFM is a 

two part system.  The first part is a neutron source assembly.  The FMFM neutron 

source is a Californium-252 used to induce fissions in a uranium hexafluoride stream.  

The source is incased in polyethylene to moderate the source neutrons.  During 

operation a shutter is opened to allow moderated neutrons to enter uranium 

hexafluoride stream and induce fissions.  The second part of the assembly is a shielded   
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Figure 3-1. A schematic of the Fissile Mass Flow Meter (FMFM) used in the blend-down 

monitoring system.  When the shutter is opened a Californium-252 neutron source 

induces fissions in a uranium hexafluoride stream.  Downstream of the neutron source 

is a shielded detector array used to detect delayed gammas from Uranium-235 fission.  

The number of delayed gammas detected is proportional to the amount of Uranium-235 

in the stream.  The time delay between the source shutter opening and the initial 

detection of fission gammas can be used to calculate the flow velocity. 
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detector located downstream from the neutron source.  The delayed gammas from 

Uranium-235 fission are detected as the stream passes the detector.  The number of 

delayed gammas detected is proportional to the amount of Uranium-235 in the stream.   

The signal from the FMFM is the number of counts per second [56].  Additionally, the 

time delay between the source shutter opening and the initial detection of fission 

gammas can be used to calculate the flow velocity.  A complete explanation of the 

BDMS and the FMFM can be found in [56 - 59].  

A MATLAB Simulink model of a uranium blend-down facility was used to create 

simulation data for modeling and testing.  A full description of relevant equations used to 

develop the Simulink model is given in Appendix A.  Conventional process monitoring 

methods were augmented through the development of algorithms that allow for the 

addition of the FMFM signal and through data reconciliation techniques.  In this 

hypothetical uranium blend-down facility, uranium of two different enrichments is 

blended into a product with a desired target enrichment.  The facility is set up to run in a 

batch mode, where tanks of high-enriched uranium-hexafluoride (HEUF6) and low 

enriched uranium-hexafluoride (LEUF6) are fed through instrumented lines, blended 

together, and then stored as product low-enriched uranium-hexafluoride (PLEUF6).  At 

standard normal atmospheric pressure and temperature, uranium-hexafluoride is 

nominally a solid, but for the purpose of these simulations it was assumed gaseous.  

The combination of sensors are used to monitor the process are shown in Figure 3-2.  

All three legs are instrumented with flow meters and weight sensors.  Additionally the 

HEUF6 and PLEUF6 are instrumented with FMFMs. 

The simulated measurements from the three flow meters, three weight sensors, 

and two FMFMs were used to create empirical auto-associative kernel regression 

(AAKR) models that encompass normal operating conditions.  Velocities were varied to 

simulate actual operations, but enrichment was held constant.  Abnormal conditions 

were simulated by allowing for the diversion of material from the HEUF6 leg just before 

the blending tee.  Because the removal happens after the HEUF6 leg instrumentation, 

its effects should only be seen in the PLEUF6 leg instrumentation.  Table 3-1 

summarizes the modeled instrumentation on the hypothetical BDMS system.   
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Figure 3-2. Schematic of the simulated uranium blend-down facility.  All legs are 

instrumented with flow sensors and tank weight sensors.  Additionally, the HEUF6 and 

PLEUF6 legs are instrumented with FMFMs.  Diversions were simulated by removing 

material from the HEUF6 just before the blending tee. 
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Table 3-1. Summary of the simulated instrumentation of the Blend Down Facility. 

Sensor  Number Sensor Type 

1 HEUF6 weight sensor (g) 

2 LEUF6 weight sensor (g) 

3 PLEUF6 weight sensor (g) 

4 HEUF6 flow meter (cm/s) 

5 LEUF6 flow meter (cm/s) 

6 PLEUF6 flow meter (cm/s) 

7 
Fissile Mass Flow meter on 
HEUF6 leg (gU235/sec) 

8 
Fissile Mass Flow meter on 
PLEUF6  leg (gU235/sec) 
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To simulated actual measurements, 1.0 % process noise was added to both the 

HEUF6 and LEUF6 fluid velocities.  Additionally, independent sensor noise was added to 

each sensor.  The flow meters and weight sensors had 1.0% and 0.1% respectively of 

their maximum sensor reading added as Gaussian noise.  Uncertainty for radiation 

detectors is not quantified the same way as process sensors, but for simulation 

simplicity the FMFM was assumed to have 1.0% Gaussian noise.  Six scenarios were 

simulated in which the magnitudes of the HEUF6 diversion were varied.  In the first 

scenario there was no HEUF6 diversion.  The remaining five scenarios had HEUF6 

diversions of 0.1%, 0.5%, 1.0%, 2.0%, and 10% respectively.   

3.1.1 Building an AAKR Model 

Four different models were created.  In each model, an AAKR architecture was 

used.  The first model used only data from the flow meters and weights sensors.  The 

second model used the same data as the first model, but data reconciliation techniques 

were used.  The third model did not use data reconciliation techniques, but the AAKR 

architecture was expanded to include FMFM signals.  Finally, the fourth model 

incorporated both the FMFM signals and used data reconciliation.  The objective of 

these models was to: 1) quantify the benefits of incorporating radiation sensors into an 

AAKR model and, 2) quantify the benefits of incorporating data reconciliation with the 

AAKR model.  The main metric will be the ability of the each model to detect a HEUF6 

diversion.  A summary of the different models is given in Table 3-2.  A block diagram of 

the models is given in Figure 3-3. 

The first step to building an AAKR model is to select which measurements should 

be included as inputs.  These variables were selected based on their correlations.  

Measurements that are highly correlated perform better as predictors.  In the simulated 

facility, all 8 sensors are highly correlated (correlations coefficients are all above 0.7), so 

all will be included in the model.  However, for a real world application with a more 

complicated system, there are likely to be measurements that are not well correlated 

and therefore should not be included in the model.  
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Table 3-2. Summary of monitoring models for the Simulated Blend Down Facility.  While 

each model was based on an empirical AAKR model, there were a total of 9 different 

parameters available to each model – 8 different sensors and the possibility of 

preprocessing the measured signal with data reconciliation.  An “X” indicates that the 

sensor or technique was included in the AAKR model. 

 Model 1 Model 2 Model 3 Model 4 

HEUF6 weight sensor X X X X 

LEUF6 weight sensor X X X X 

PLEUF6 weight sensor X X X X 

HEUF6 flow meter X X X X 

LEUF6 flow meter  X X X X 

PLEUF6 flow meter X X X X 

HEUF6 FMFM   X X 

PLEUF6 FMFM   X X 

Data Reconciliation  X  X 
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Figure 3-3. Block diagram of AAKR model with data reconciliation.  The data selection, 

model building and predictions, and computing the residuals are the exact same as an 

AAKR model without data reconciliation.  The purpose of including data reconciliation is 

to better constrain the measurement values using known physical laws about the 

system. 
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Once the relevant sensors were identified a normal dataset was generated.  This 

dataset should be fault free and cover the expected operating conditions.  The normal 

dataset serves as the historical operation data and should be large enough to cover the 

extremes of normal operation.  In the case of the uranium blend-down facility, the 

normal set should include data representing the minimum and maximum material flow 

rate as well as everything in between.  If the normal data does not contain all the 

expected operating conditions, then the model will perform poorly whenever the inquiry 

vector is not within the bounds of the normal data. For the simulated facility, the normal 

dataset was built from the data generated with no diversion. 

The normal dataset was then denoised and standardized.  Denoising, commonly 

referred to as smoothing, attempts to remove the uncorrelated and independent 

measurement noise inherent in all instrumentation as well as noise spikes resulting from 

outside processes (such as a vibration spike due to somebody hitting a pipe).  In the 

simulated facility each measurement was contaminated with 1% gaussian noise.  The 

data was denoised with a median filter with a window of 5.  Standardizing the data is the 

process of mean-centering the data and scaling the data so that it has a unit-variance.  

To mean center the data, the mean value for each sensor in the normal dataset is 

simply subtracted.  To give the data a unit variance, each value is divided by the 

variance of the normal dataset.  The denoising and standardizing, or scaling, 

parameters used to mean center and unit variance the normal data set are applied to 

each subsequent dataset.  This means that all subsequent datasets were:  denoised 

with a median filter with a window of 5, had the mean of the normal dataset subtracted 

for each sensor, and had each sensor divided by the variance of the normal dataset. 

 Next a test and validation dataset were generated.  These datasets were 

denoised and scaled in the same way the normal dataset is.  The test dataset is used to 

optimize the AAKR model and the validation dataset is used to determine the model’s 

performance. These datasets do not have to cover every operating condition as the 

normal dataset did, but should cover a sample of each.  Each dataset should be 

independent, for example the testing and validation dataset should not be the exact 
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same data.   These datasets were also generated from the simulated scenario with no 

diversion. 

When an inquiry vector is processed, the vectors in the normal dataset are 

selected based on their similarity to the inquiry vector.  The similarity is determined by 

calculating the Euclidean distance between the two vectors, and the weights are 

calculated using a Gaussian Kernel.  Initially, the kernel bandwidth is set to 1, but was 

then optimized using the test dataset. The bandwidth was optimized so that the model 

uncertainty is minimized.  Once the similar vectors have been selected, the prediction is 

calculated by taking a weighted sum of the similar vectors.  The effects of bandwidth 

optimization are shown in Figure 2-3 and Figure 2-4. 

Once the kernel has been optimized using the test dataset, the validation dataset 

was used to quantify the performance metrics of a model.  The validation dataset was 

denoised and scaled the same way as the normal dataset.  The bandwidth for the 

Gaussian kernel was previously optimized with the testing dataset.  The Euclidean 

distances and observation weights are determined, and a prediction is made using the 

weighted sum of the similar vectors.  Once a prediction is made, the residual was 

calculated by finding the difference between the prediction and actual measurement.  

Model performance characteristics such as accuracy, uncertainty, cross sensitivity, auto 

sensitivity, error-uncertainty limit monitoring (EULM) detectability, and SPRT 

detectability were calculated using this dataset.  A complete description of these metrics 

can be found in [60-62].   

Once the AAKR model was optimized and its performance metrics characterized, 

data from the other 5 scenarios (the diversions) were fed through the model and the 

residuals were analyzed using the SPRT.  A fault was declared when detected using the 

SPRT alarm.  The SPRT alarm requires four pieces of information: the mean of the 

expected residuals, the variance of the expected residuals, a false alarm probability, 

and a missed alarm probability.  The expected mean and variance of the residuals was 

captured when quantifying the performance metrics.  The false alarm and missed alarm 

probability were set to 1% and 10% respectively.  To compensate for the high false 
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alarm and missed alarm probability, several consecutive residuals were required to be 

detected using the SPRT alarm before the fault was considered detected.  So while the 

probability of a single residual being incorrectly detected using the SPRT alarm may be 

high, the probability of several consecutive residuals being incorrectly detected is much 

lower.  Therefore, the specified false alarm and missed alarm probabilities are not truly 

representative of the actual false alarm and missed alarm probabilities.  5 consecutive 

residuals had to be detected before the fault was considered identified.  In applications 

where there are not a large number of predictions, and therefore not a large number of 

residuals, the false alarm and missed alarm rates should be lowered.  

3.2 Load Cell Monitoring at a Mock Feed and Withdrawal Facility 

The Oak Ridge National Laboratory (ORNL) mock feed and withdrawal facility is 

designed to mimic large plant feed and withdrawal facilities.  A schematic of the facility 

is shown in Figure 3-4. 

In this facility, water is pumped from a feed tank into a surge tank, which then 

drains by gravity into a product tank and a tail tank.  The only instrumentation is the 

weight sensors that monitor the feed, product, and tail tanks.  Initially, the height of 

water in the surge tank was maintained via manually adjusting valves on the surge 

outlet.  This control setup led to inconsistent operation depending on the attentiveness 

of the operator.  A control valve and pressure sensor was later installed to replace 

operator (described in section 4.2.3).  Throttling valves are used to fine tune the ratio of 

product to tail flow.  This setup is analogous to a batch operation where tanks are 

placed on a scale and material is processed ,resulting in product and tail material.  The 

actual facility (shown in Figure 3-5) has three feed, three product, and two tail tanks to 

allow for continuous operation. 

For example, in a gaseous centrifuge enrichment plant, a tank of feed material 

would be weighed and fed though a cascade of centrifuges, resulting in product 

(enriched) material and tail (depleted) material.  The weight of the tank would be 

monitored by a load cell station, which includes a weight scale.  The surge tank serves   
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Figure 3-4. Schematic of the ORNL mock feed and withdrawal facility.  Tanks of water 

are placed on the feed station and the water is pumped into a surge tank.  Water is then 

partially routed to a tail and production station.  In this setup, the pump, surge tank, and 

stream splitter serve as a mock cascade area. 
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Figure 3-5. The actual ORNL mock feed and withdrawal facility.  Three feed stations are 

pumped into a Surge tank, which then drains into the product and tail stations.  Before 

and after a tank is processed at each station, it is weighed on an accountability scale. 
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as a black-box between the feed, product, and tail material.  The inventory difference is 

defined as the material unaccounted for between the beginning and end of the process.  

In a gaseous centrifuge plant, the surge tank would be analogous to material in the 

centrifuge cascade, including material that leaks or plates out on piping. 

As tanks are brought into the facility, they are weighed on an accountability scale and 

are then stored.  When a tank is ready to be processed it is placed on the appropriate 

station process scale, the material is processed, and it is removed.  A tank is then re-

weighed on the accountability scale.  The total amount of material processed is 

calculated from weight recorded by the accountability scales, and it is recorded on a 

material declaration sheet.  In an actual GCEP, the accountability scales require more 

precision and calibration than the process scales since they are used to declare the 

amount of material.  During an inspection, the IAEA will check thecalibration of the 

accountancy scales and check the weight of a sample of cylinders.  A schematic of a 

tank life cycle and the types of data generated during operation is shown in Figure 3-6. 

In the ORNL facility, the accountability scale data is a step function that represents the 

weight of a tank placed on the accountability scale.  The process scale data is a 

continuous function that shows the instantaneous weight of a cylinder as material is 

being processed.  Process scale data is collected from the weight scales at each of the 

feed, tail, and product stations.  The accountability scale data and process scale data at 

a large GCEP is directly analogous the accountability scale data and process scale data 

at the ORNL mock feed and withdrawal facility.  The facility control data is the data used 

to control the flow of material inside the mock cascade area.  In the ORNL mock feed 

and withdrawal facility, this data is limited to the signals from the feed pump current, the 

control valve and pressure transducer.  In as actual GCEP the facility control data would 

encompass all of the controls in a cascade area including:  control valves between 

centrifuges; motor signatures for each centrifuge; flow, pressure, and temperature 

measurements within each centrifuge; etc.  A sample of the different data types is 

shown below in Figure 3-7.  The accountability scale data is used to make mock 

operator declaration sheets.  The current inspection process only uses data from the 

accountability scales.  A sample declaration sheet is shown in Table 3-3.  
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Figure 3-6. The life cycle of a tank at the ORNL mock feed and withdrawal facility and 

the type of data generated during each stage of the tank life cycle.  The black boxes 

and arrows represent how the physical material is moved through the facility.  The blue 

boxes and dashed arrows represent the data collected from each physical location. 
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Figure 3-7. A sample of the different data types collected at the ORNL mock feed and 

withdrawal facility.  The accountancy scale data (a) is a step function of a tank’s weight 

before and after processing.  The process scale data (b) is continuous and shows the 

instantaneous weight of a tank on a station as material is being processed.  The feed 

pump power (c) data is a type of facility control data and may either be a step function 

or continuous depending upon the instrumentation. 
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Table 3-3. A material declaration sheet from the ORNL mock feed and withdrawal 

facility.  The sheet list the initial and final tank weight, as read by the accountability 

scales, before and after processing.   

Tank ID 
Initial 

Weight (kg) 
Date Time 

Final 
Weight (kg) 

Date Time 

25G04 85.09 14-Oct-10 3:30 PM 35.22 15-Oct-10 11:05 AM 

25G06 141.44 15-Oct-10 10:15 AM 35.56 15-Oct-10 12:05 PM 

25G05 35.32 15-Oct-10 10:15 AM 141.01 15-Oct-10 12:05 PM 

10L02 1.148 15-Oct-10 10:15 AM 10.399 15-Oct-10 1:05 PM 

10L03 1.152 15-Oct-10 10:15 AM 1.148 15-Oct-10 1:05 PM 
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To find undeclared activity, the inspector would first confirm the calibration of the 

accountancy scales and then reweigh a sample of tanks and compare them to the 

declaration sheets.  In a large facility, the sheer amount of material processed limits the 

ability of an inspector to efficiently search for undeclared activity.  However, an 

automated system that tracks the tank weights as seen by the process scale would 

provide a measure of cross-validation to the declaration sheets.  Additionally, 

implementing process monitoring techniques that are sensitive to subtle process 

changes would increase an inspector's sensitivity to undeclared activity and possible 

special nuclear material diversions. 

At the ORNL facility, sensors are sampled at 1 hertz and stored in a computer 

database.  A MATLAB graphical user interface (GUI) was developed to read the 

database output and generate a report mimicking a declaration sheet by: 

1   Identifying the state of each station (Empty, Static, Filling, or Draining) 

based on the profile of the process scale data.  The process scale data 

shows the instantaneous tank weight as material is being processed, 

rather than just the initial and final weight, and has significant features that 

give insight into the state of each station.  The station states were the 

foundation in building a load cell monitoring system.  

 

2   Providing a declaration sheet based on the weights read by the process 

scales via a cylinder counting algorithm.  The counting algorithm extracted 

how many tanks were placed and removed from each process station and 

the initial and final weight of each tank.  The GUI declaration sheet is 

similar in form to the facility declaration sheet and provided an efficient 

way to ensure that the facility declared all processing activities. 

 

3   Tracking the cumulative inventory difference of the facility identifying 

atypical process operations that could be indicative of material diversion or 

other abnormal activity. 
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The state specific models mentioned in item 3 would be based on a process 

monitoring scheme similar to the one described for the BDMS.  Initially the model would 

only use data from the process scales.  However, the effects of adding other facility data 

into the model will also be described.  A MATLAB Simulink model of the facility was also 

developed for the ORNL facility to evaluate the effect of additional sensors not originally 

present in the actual facility.  The relevant facility equations for the Simulink model are 

listed in Appendix B.  
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4 APPLICATIONS AND RESULTS 

This section presents the results of the Uranium Blend-Down Facility simulation 

and the development of a load cell monitoring system for the ORNL mock feed and 

withdrawal facility.  First, the effects of incorporating radiation detector signals and 

combining data reconciliation with the AAKR model are investigated with simulated data 

from the Uranium blend-down facility.  Second, the development of a load cell 

monitoring system for the ORNL facility is described. 

4.1 The Uranium Blend-Down Facility Simulation 

A MATLAB Simulink model was developed to simulate data from the Blend-Down 

Monitoring System.  The model was used to simulate both normal plant operations and 

anomalous operations resulting from a diversion from the HEUF6 leg.  The simulated 

data was used to develop an AAKR model to monitor the blend-down process.  The 

AAKR model requires correlated sensors to make accurate predictions.  However, the 

instantaneous tank weight is not well correlated.  Therefore, the derivative of the weight 

sensors was approximated by the difference between two consecutive observations to 

determine the instantaneous rate of change in weight, also referred to as the mass flow 

rate.  The equation relating mass flow rate and gas velocity is: 

                       (4.1) 

where    is the mass flow rate in g/sec,   is the gas density in g/cm3,         is the 

cross sectional area of the pipe in cm2, and   is the gas velocity in cm/sec.  The gas 

density is assumed to be constant during operation, so the mass flow rate and gas flow 

rate are directly proportional to each other.  Additionally, the FMFM is modeled as 

linearly proportional to the mass flow.  The linear approximation is valid for this system 

since the k-effective of the gas stream is low (<.1) and therefore the subcritical 

multiplication of the system is also low.  Therefore, all measurements essentially give 

the same information.  But, because the data comes from independent sensors they 



61 

provide a level of redundancy.  Figure 4-1 shows typical data generated by the Simulink 

model.  While only data for the LEU leg is shown, each leg is instrumented identically.   

Even though the instantaneous weight sensors are not well suited for the AAKR 

method, they still provide useful information.  A bleed-off or diversion scenario will 

eventually be detected by tracking the tank weight residual, i.e., the initial total weight of 

the HEUF6 and LEUF6 less the current sum of the three weight measurements.  This 

residual will steadily increase as more HEUF6 is diverted. 

The AAKR model is able to predict the 1% process noise because it is common 

in each sensor.  However the independent measurement noise cannot be predicted 

because it is not correlated within the sensors.  The accuracy is less than 1% because 

the model tends to average the sensor noise through the inherent redundancy in the 

physical arrangement.   

Four different models were considered and were described in section 3.1.   All 

four models have similar performance on the unfaulted data.  The unfaulted data 

performance describes the ability of the model to predict, or confirm, the measured 

sensor values.  Table 4-1 summarizes the average accuracy expressed as percent error 

and average uncertainty, expressed as a percent of the mean sensor value, for each of 

the four AAKR models built from unfaulted data.  For each model, a diversion was 

declared detected when the SPRT alarm indicated a change in the residuals.   

Neither model 1 nor model 2 incorporated the FMFM's and therefore relied only on the 

derivative of the instantaneous tank weight and gas flow velocities to build a model and 

detect a fault.  Any diversion from the HEUF6 would be seen as a change in the 

residuals between the measured and predicted values in any of the PLEUF6 sensors, 

shown in Figure 4-2.  While neither model 1 nor model 2 was able to detect the 10% 

diversion instantaneously, the diversion could still have been detected by tracking all 

three tanks weights (the HEUF6 tank, the LEUF6 tank, and the PLEUF6 tank) and 

ensuring that total outflow from the HEUF6 and LEUF6 tank equal the inflow to the   
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Figure 4-1. Simulated data from the Uranium blend-down facility Simulink model.  The 

simulated data represents unfaulted operation.  Initially, the LEU process scale is 

vacant, then a tank is added and its material processed, and finally the tank is removed.  

The LEU Flow and FMFM show a step change corresponding to when a tank begins 

processing.  The LEU mass flow is not a direct output of the model but is approximated 

by taking the derivative of the LEU tank weight. 
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Table 4-1.  Summary of AAKR model performance for unfaulted data from the blend-

down monitoring system simulation.  The accuracy is expressed in terms of percent 

error, so a lower value is indicative of less error.  The uncertainty is expressed as a 

percent of the mean sensor value. 

 Model 1 Model 2 Model 3 Model 4 

Accuracy (%) 0.45 0.27 0.58 0.43 

Uncertainty (%) 1.58 1.94 2.12 1.73 
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.   

Figure 4-2.  Residuals and SPRT Alarm for the P-LEU velocity sensor (model 2) 10% 

diversion scenario.  Because there is no statistical change between the predicted and 

measured values, a 10% diversion could not be detected with this model.  Note that in 

the top graph the residuals show no change and the SPRT does not alarm. 
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PLEUF6 tank.  The cumulative weight difference between the three tanks is shown in 

Figure 4-3.  Under normal conditions, the residual should fluctuate around zero because 

the mass flow rate out of a tank is balanced with the mass flow rate into another tank.  

Under a diversion, there is a growing residual proportional to the cumulative amount of 

material diverted.  This diversion assumes that the diverter does not introduce foreign 

material into the PLEUF6 tank at the same rate that he diverts from the HEUF6 leg.  

Doing so would ensure the mass flow rate into and out of the tanks remains equal, 

meaning that the residuals would show no indication that a diversion was taking place. 

Models 3 and 4 incorporated the FMFMs and therefore had a sensor that was 

very sensitive to only the 235U flow (instead of the total Uranium flow).  The total mass 

flow rate from the LEUF6 leg is approximately 32x larger than the mass flow rate from 

the HEUF6, so the PLEUF6 leg mass flow rate is dominated by the LEUF6 leg flow.  

Therefore, diversions from the HEUF6 leg have a minimal impact on the PLEUF6 tank 

weight and flow measurements.  However, when examining the 235U flow instead of the 

total Uranium flow, the HEUF6 is much more significant since the flow enrichment is 

90%, while the LEUF6 leg enrichment is less than 1%.  Therefore, diversions from the 

HEUF6 leg have a significant impact on the total 235U flow seen by the PLEUF6 FMFM.  

Figure 4-4 shows the measured and predicted values for the PLEUF6 FMFM in the 10% 

diversion scenario.  The diversion can immediately be identified by the step change in 

the residuals. 

Comparing the residuals, Figure 4-2 and Figure 4-4 shows that with the 6 sensor 

model (models 1 and 2), a 10% diversion could not be detected, but the 8 sensor model 

(model 3 and 4) could detect the diversion.  The next step was to determine the minimal 

diversion that could be detected with the 8 sensor model.  The Sequential Probability 

Ratio Test (SPRT) is a statistical technique developed to detect subtle changes in 

process parameters [60].  The SPRT essentially measures if a sequence of numbers 

comes from a specified distribution of not.  If the model were perfect, then the residuals 

would only reflect the measurement noise of each sensor.  Since the measurement 

noise of each sensor comes from a Gaussian distribution, the residuals should also be 

normally distributed.  During normal operation, the distribution of the residuals will   
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Figure 4-3. Cumulative weight difference between the three tanks during a diversion.  

Under normal operation, the cumulative weight difference should be zero, since 

everything that leaves the HEUF6 and LEUF6 tanks enter the PLEUF6 tank.  During a 

10% diversion, there is a growing residual as the cumulative amount of material diverted 

increases. 
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Figure 4-4. Predicted and measured PLEUF6 flow rates for the 10% diversion scenario 

for the 8 sensor model (models 3 and 4).  In the top plot the measured values are in 

blue and the prediction values are in red.  There is a large statistical change between 

the predicted and measured values.  A 10% diversion could be detected with this 

model.  Note that in the top graph, the predicted values are indistinguishable from the 

measured values before the diversion takes place.  
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remain normal and the residuals will pass the SPRT test.  The SPRT assumes the 

residuals come are gaussian white noise.  In reality the residuals do not always meet 

those assumptions.  When the assumptions are not fully met the SPRT will have a 

higher false alarm rate.  However, by initially specifying a high false alarm rate and 

requiring several consecutive residuals to fail before declared a fault identified, the true 

false alarm rate is much lower.  For instance in Figure 4-2 there are no alarmed states, 

even though with over 7000 data points and a specified false alarm rate of 1% one 

would expected about 70 false alarms.  While requiring consecutive residuals to fail 

reduces to true false alarm rate, it tends to lengthen the time to detect a fault.  But, this 

is a small effect in detecting a diversion, only requiring the alarm to occur a few time 

steps after the diversion starts.  During a diversion the distribution of residuals will 

change and if the change is large enough then the residuals will fail the SPRT test.    

For the 8 sensor model, the SPRT detectability was found to be 1.10%.  Therefore the 

model can detect a 2.0% diversion, but it cannot consistently detect the 1.0%, 0.5%, or 

0.1% diversion. Figure 4-5 shows the measured and predicted values for the PLEUF6 

FMFM in the 2.0% diversion scenario.  A missed alarm would be seen as an un-

alarmed state in Figure 4-5 after the 200th time step, which is when the diversion is 

started.  With a specified missed alarm rate of 10% and about 1000 residuals in the 

faulted state, the expected number of missed alarms would have been around 100.  

However, requiring consecutive residuals to fail the also lowers the true missed alarm 

rate just as it did for the false alarm rage.  Figure 4-5 shows now unalarmed states 

between 200 and 1200, so the true missed alarm rate is much lower than 10%. 

The models that incorporated data reconciliation had similar accuracy and 

uncertainty measurements as well as fault detection characteristics.  The improvements 

caused by data reconciliation are not visible by simply inspecting the residual plots.  

Table 4-2 summarizes some additional performance metrics.  With each metric a lower 

value is desired.  The accuracy is expressed in terms of percent error, so a lower value 

indicates less error.  The analytical uncertainty is also expressed as a percent, with a 

lower uncertainty corresponding to a higher precision.  Auto-sensitivity is a measure of 

robustness, with a lower value indicated a higher robustness.  The auto-sensitivity   



69 

 

Figure 4-5.  Predicted and measured PLEUF6 flow rates for the 2% diversion scenario 

for the 8 sensor model (models 3 and 4).  In the top plot, the measured values are in 

blue and the prediction values are in red.  The SPRT identifies statistical change in the 

residuals, indicating that a 2% diversion could be detected with this model. 
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measures how much a faulted sensor input affects the prediction of the same sensor.   

The cross-sensitivity is a measures the spillover effect.  The spillover effect is the effect 

a faulted sensor input has to the prediction of a different sensor.  The Error Uncertainty 

Limit Monitoring (EULM) detectability indicates the smallest fault that is detector using 

Error Uncertainty Limit Monitoring, which monitors the uncertainty of the prediction 

errors relative to some specified tolerance.  The EULM metric defines how small of a 

drift can be detected with 95% certainty.  Finally, the SPRT Detectability measures the 

smallest process parameter change that can be detected using the Sequential 

Probability Ratio Test.  A more complete explanation of these metrics can be found in 

[60-62].  While most of the metrics are very similar between model 3 and model 4, the 

EULM detectability and SPRT detectability were significantly improved by the 

application of data reconciliation to model 4.  Each metric is about 30% smaller in model 

4, meaning that the model’s fault detection capability is about 30% better.  It is important 

to note that these models were created using simulated data and in a highly idealized 

case.  In a real world application, the signals may not be as clean and the correlations 

between sensors would not be as high.  However, the basic relationships between the 

sensors would not change.  The effect of real data would degrade each metric in Table 

4-2 and decrease overall model performance.  However, the effects would be seen in 

each of the 4 models.  While the performance metrics listed in Table 4-2 are better than 

would be expected in an actual model, they are still useful for comparing how each 

model would perform in comparison to the other models. 

4.2 The ORNL Mock Feed and Withdrawal Facility 

The previous section showed an application of process monitoring for safeguards 

on a simulated facility with simulated data.  The ORNL Mock Feed and Withdrawal 

facility provides a more realistic test bed for the development and application of a 

safeguards monitoring system.  Whereas with the simulated uranium blend-down facility 

detecting material diversion was the sole safeguards option, with the ORNL facility the 

safeguards goal is to detect undeclared activity and to alert an inspector to atypical 

facility operation – not necessarily limited to material diversions.  
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Table 4-2.  Model performance metrics for model 3 (No Data Reconciliation) and Model 

4 (With Data Reconciliation).  With each metric, a lower value is desired.  The accuracy 

is expressed in terms of percent error, so a lower value is indicative of less error. 

 
Model 3  

(No Data Reconciliation) 

Model 4 

(With Data Reconciliation) 

Accuracy (percent) 0.58 0.43 

Uncertainty (percent) 2.12 1.73 

Auto-sensitivity 0.65 0.53 

Cross-sensitivity 0.15 0.13 

EULM Detectability 6.07 4.30 

SPRT Detectability 1.58 1.09 
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The ORNL facility has limited instrumentation.  Initially, the only data available 

came from the process load cell stations.  Using load cell data, an automated method 

for reconciling process scale data and accountability scale data to ensure that no 

undeclared material processing has taken place was developed similar to the template 

matching procedure outlined in [49].  In a real GCEP, undeclared production may 

indicate that the facility is stockpiling special nuclear material for possible clandestine 

purposes.  The developed algorithms determine if the amount of material processed 

according to the accountancy scale data matches the amount of material processed 

according to the process scale data (Figure 4-6).  Additionally, the cumulative inventory 

difference (CID) was analyzed to determine if any material diversion took place during 

operation. 

Initially, the stream splitter shown in Figure 3-4 consisted of three hand valves: a 

master on/off valve and two small throttling valves.  Maintaining a steady surge tank 

level required an operator to constantly adjust the throttling valves.  In practice, it is 

difficult to precisely control the manuals valves to keep the surge tank constant while 

routing the proper amount of flow to the tail and product legs.  This type of control 

scheme led to large inconsistencies in the instantaneous inventory difference and the 

material inflow and outflow of the surge tank.  A picture of the original control scheme is 

provided in Figure 4-7.  A typical feed, product, and tail process scale profile from this 

control scheme is shown in Figure 4-8.  Figure 4-8 shows several problems arising from 

the manual control scheme originally employed.  Most notably, material is drained into 

the tail tank for an additional 50 minutes after the feed tank has been emptied.  The two 

blue circles in Figure 4-8 represent changes to the tail tank flow, but they do not 

correspond to changes to either the feed flow or product flow.  The manual control 

scheme led to a highly variable system where the relationship between the inflow and 

outflow did not remain stable.  At an actual GCEP, the material flow into and out of the 

cascade area are tightly controlled, and the amount of holdup material in the facility low.  

In the ORNL facility, the surge tank provides an unrealistically large hold-up volume 

when compared to a GCEP.  However, the larger holdup volume is required because 

the pressure of the water column in the surge tank is the driving force of the material   



73 

 

 

Figure 4-6. An essential function of the MATLAB GUI is to determine if the amount of 

material processed according to the accountancy scale data (and listed in the 

declaration sheet) agrees with the amount of material processed according to the 

process scale data. 
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Figure 4-7. Original Facility control setup.  The yellow-handled valve behind the 

throttling valves acted as a master on/off valve for the surge tank.  During operation, the 

master valve was opened and the two throttling valves were used to route the proper 

amount of material to the product and tail legs.  Proper operation required that the 

operator be aware of the surge tank level and the ratio of material routed to the product 

and tail legs.  In practice, balancing material flow into and out of the surge tank while 

simultaneously routing the proper amount of material to each leg was difficult  to 

achieve by simply adjusting the throttling valves.  The control system was very sensitive 

to operator attentiveness and to changes in operator personnel.   
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Figure 4-8. Facility data from March 27, 2009 when the facility was still under manual 

control.  The black line at 125 minutes represents when operation should have finished.  

There is no more feed material entering the mock cascade area, and the product tank is 

completely filled.  However, because the operator was unable to balance the material 

flow within the surge tank, approximately 30 kg of water accumulated in the surge tank 

which than had to be drained into a tail tank.  Additionally the blue circles highlight times 

when the tail tank flows were adjusted, but without any corresponding adjustments to 

the feed or tail flow.  This control scheme led to high variability in the system, where  

inflow to the mock cascade area was no longer an accurate predictor of outflow of the 

mock cascade area. 
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outflow.  In an actually GCEP, pumps move the material into and out of the cascade 

area.   

4.2.1 Types of Operation at the ORNL Facility 

The ORNL facility’s purpose is to provide test data for on-line monitoring 

techniques.  Three different types of runs were performed to provide case studies for 

the load cell monitoring system: normal operation, undeclared activity, and product leg 

diversions.   During normal operation, tanks are weighed on an accountability scale, 

placed on the appropriate process station, and material is processed.  When processing 

is complete, the tanks removed from the process scales are re-weighed on the 

accountability scales.  The weights from the accountability scales are recorded on the 

material declaration sheet.  The material declaration sheet is the official record of what 

was processed, and the accountability scales are considered authenticated scales that 

would be used during an inspection.   Data from the process scales are stored in a 

central database.  The process scales are not authenticated, and the data from the 

process scales are used by the facility for process monitoring.  The process scales 

would not be used by an inspector because they are not authenticated. 

Most of the runs performed were normal operation.  The feed rates and stations 

used varied in each run to create a realistic operational history.  The data from normal 

operation was used to develop and train the monitoring system.  The undeclared activity 

runs were essentially the same as the normal operation runs, except the tanks were not 

weighed on the accountability scales and therefore do not appear on the material 

declaration sheet.  This scenario was meant to represent a facility trying to hide its 

material throughput from an inspector, for the purpose of obtaining product material.  

While the ORNL facility only processes water, at a GCEP the product material would be 

HEUF6, possibly for the purpose of developing nuclear weapons.  In practice, normal 

operation runs doubled as undeclared activity runs by simply ignoring the material 

declaration sheet.  The life cycle of a tank during an undeclared activity run is shown in 

Figure 4-9.  Comparing a material declaration sheet to a process scale declaration 

sheet can identify undeclared activity.  For undeclared activity, it was usually assumed   
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Figure 4-9. The life cycle of a tank during undeclared activity.  This scenario looks like 

normal operation except no authenticated accountability data is generated.  This 

scenario represents a facility processing undeclared material in an attempt to make 

HEUF6 for their own, possible clandestine, purpose. 
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that a feed, tail, and product tank was not declared.  However, any combination or 

number of the tanks could have been undeclared. 

The third type of run was a product leg diversion.  In this scenario some material 

was diverted from the product leg.  There were two different diversion scenarios.  In the 

first scenario no make-up material was added to the tanks to mask the diversion.  In the 

second scenario make-up material was introduced.  The ORNL facility has a small 

diversion leg installed on the product leg, as shown in Figure 4-10.  In a diversion 

scenario the material declaration sheet will match the process scale declaration sheet, 

but looking at the CID of the facility will show a non-stable value as more and more 

material is diverted.   

The final scenario was a masked enrichment operation.  In this scenario an 

undeclared feed, tail, and product tank were processed in parallel with a declared feed, 

tail, and product tank.  However, the undeclared tanks were not placed on a process 

scale, so there was no process scale data either.  This scenario was the limiting case 

study.  The CID shows some hint of atypical facility operation, but was not able to 

definitively identify that undeclared material was processed off-scale.  Figure 4-11 

describes the masked enrichment scenario. 

4.2.2 Development of a Load Cell Monitoring System 

While the relationships between the flows were highly variable, the general 

profile from each station follows a predictable pattern.  When a station is empty the 

station weight readout fluctuates around zero.  Then a tank is placed on the station 

resulting in a step change followed by a brief period of high variability as the weight 

settles.  As material is processed then weight of a tank either increases or decreased 

until the tank is full/empty, and then a tank is removed.  There is another brief period of 

high variability as the tank.  Figure 4-12 shows the raw profile for a feed, tail, and 

product station.  The raw profile is noise free except for the spikes when a tank is first 

loaded or unloaded from a station.  Part c of Figure 4-12 shows data from all the 

process scales during operation.  The first requirement of the load cell monitoring   
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Figure 4-10. Diversion path at the ORNL facility. 
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Figure 4-11. Description of an enrichment masking scenario at the ORNL facility. 
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Figure 4-12.  Raw tank station profiles.  (a) shows the profile from a Feed Station, while 

(b) shows the profile from a tail and product station.  Both (a) and (b) show the large 

spikes when a tank is added or removed (circled in red).  In (b) the product station 

(blue) spikes are not as significant because the product tanks are much smaller.  (c) 

Shows the profiles from all 8 stations (3 feed, 3 product, and 2 tail) at the ORNL facility. 
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system was to take the data from Part c of Figure 4-12 and automatically generate a 

summary sheet for comparison to the material declaration sheet. 

To calculate the number of cylinders and the amount of material processed at 

each station, a method similar to the template matching procedure outlined in [49] was 

employed.  Rather than trying to match each profile to a specific template, the state of 

each process scale was generally categorized as Empty, Static, Filling, or Draining.  

States were identified by looking at the magnitude of the weight, and the derivative of 

the weight reading, approximating the mass flow rate.  Because identifying the state 

required approximating derivatives, the large spikes associated with the loading and 

unloading of tanks were first removed or the derivative at those times would not have 

been meaningful. 

While the process scale data was sampled at 1Hz, it was downsampled to 0.2 Hz 

during analysis.  Downsampling was done to limit the amount of memory required 

process a run.  For instance, a month of process scale data contained over 25 million 

data points.  Usually only a single day’s worth of data was analyzed at a time because 

operating procedures are ORNL did not allow the facility to run over night.  

Downsampling the data reduced the amount of data exported from the facility while still 

preserving all the transients associated with operation of the facility. 

A median filter was used to remove the noise spikes.  A median filter uses a 

window of values about a point, finds the median value within the window, and assigns 

the value to the original point.  A median filter is useful for removing spikes without 

changing the original trend or mean of the data.  For the ORNL facility a window size of 

11 consecutive points was used.  Since the data was first downsampled to 0.2 Hz, a 

window size of 11 actually corresponds to a window of 55 seconds. Figure 4-13 shows 

the smoothing effect of a median filter on a feed tank profile. 

Once the noise spikes have been removed, the state of an individual station is 

categorized in a two step process.  The first step determines when the scale is empty by 

looking for a weight reading of below 0.5 kg.  0.5 kg is above the noise level of an empty   
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Figure 4-13.  The effect of using a median filter on a feed scale profile.  The raw data 

shown in blue is noise free except for spikes when a tank is unloaded and loaded – at 

approximately 600 and 650 minutes respectively.  The dotted red line shows the 

smoothed data.  It follows the same profile are the raw data, only without the noise 

spikes. 
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scale, but still well below the weight of a scale occupied with an empty tank.  There is 

no mass flow rate threshold to identify an Empty state.  The other three states, Static, 

Draining, and Filling, do have mass flow rate thresholds.  Static is used to identify the 

times when a scale is occupied but material from that specific station is not being 

processed, and Draining and Filling are used to identify when material is actually being 

processed at the station.  The mass flow rate limits for a Static state are set to +/- 0.2 

kg/sec for feed and tail tanks and +/- 0.02 kg/sec for product tanks.  Product tanks have 

a smaller window because they are about 1/10th the size of a feed and tail tank and 

because the product station scales have less noise.  The mass flow rate limits for the 

Draining and Filling state are -3 to -0.2 kg/sec and 0.2 to 3.0 kg/sec for feed and tail 

tanks and -0.3 to -0.02 kg/sec and 0.02 to 0.3 kg/sec for product tanks respectively.  

The derivative thresholds were chosen based on known properties of the system.  For 

instance, the maximum feed rate is limited by the pumps at 2.0 kg/min, while normal 

operation is 1.5 kg/min.  A summary of the state identification parameters is given in 

Table 4-3.  Figure 4-14 graphically shows a raw tank profile and its approximated mass 

flow rate, and it shows the application of each threshold for a feed tank profile.  Figure 

4-15 shows the raw data from a feed station in the top plot and the results of smoothing 

and categorizing the station state in the bottom plot.  In the bottom plot of Figure 4-15, 

the spikes associated with the loading and unloading of the tank have been smoothed, 

and the times when the station is Empty, Static, and Draining have been properly 

identified by looking at the derivative and absolute value of the raw data.  

Once the states of an individual process station have been identified, the life 

cycle of a tank can be viewed with respect to possible station states.  Figure 4-16 

outlines the possible state transitions for the process stations.  A station started in either 

the Empty state or the Static state, depending on whether or not a tank was already on 

the scale. If initially empty, once a tank was placed on the appropriate station, the state 

changed to the Static state.  As material was processed, the station transitioned to 

either a Draining or Filling state depending, depending on whether the tank was 

receiving material or was having material removed.  Once processing was complete, the 

station returned to the Static state.  If the tank was removed, the station state returned   
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Table 4-3.  Summary of thresholds for identifying station states. 

State 
Magnitude 

Threshold 

Derivative Threshold 

(Lower) 

Derivative Threshold 

(Upper) 

Empty (Feed or Tail) < 0.5 kg N/A N/A 

Static (Feed or Tail) > 0.5 kg -0.2 kg/sec 0.2 kg/sec 

Draining (Feed or Tail) > 0.5 kg -3.0 kg/sec -0.2 kg/sec 

Filling (Feed or Tail) > 0.5 kg 0.2 kg/sec 3.0 kg/sec 

Empty (Product) < 0.5 kg N/A N/A 

Static (Product) > 0.5 kg -0.02 kg/sec 0.02 kg/sec 

Draining (Product) > 0.5 kg -.30 kg/sec -0.02 kg/sec 

Filling (Product) > 0.5 kg 0.02 kg/sec .30 kg/sec 
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Figure 4-14. A feed station profile and its approximated mass flow rates.  The top plot 

shows a feed station profile with the 0.5 kg limit plotted as a dotted line.  When the 

weight reading is below the dotted line, the station is said to be in the Empty state.  The 

bottom plot shows the approximated mass flow rate for the same profile.  The 

thresholds for the Static, Filling, and Draining state are shown as dotted lines.  In 

addition to the mass flow rate falling within the specified region, the magnitude of the 

weight must be above 0.5.  
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Figure 4-15. The top plot shows the raw data from a feed station.  The bottom plot 

shows the same station only the data has been filtered and the states identified.  The 

profile portions are correctly identified as Empty, Static, or Draining based on the 

derivative and the absolute value of the data.
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 Figure 4-16. The life cycle of a process station with respect to 4 possible states.  
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to Empty.  Alternatively, if the tank was not completely empty of full, more material was 

processed and the station state would have returned to either Draining or Filling.  This 

cycle repeated itself as more tanks were added or removed.  To count the number of 

cylinders processed, one looked for when a station first enters an Empty state and then 

when the station returned to an Empty state.  If between those two states material was 

processed, then increment the number of cylinders processed.  Special cases were 

needed if station did not start in the Empty state (which happened if a tank was already 

on the station at the beginning of the analysis) and if the station did not end in the 

Empty state (which happened if the tank was not removed by the end of the analysis).   

To calculate the amount of material processed, the difference between the 

beginning and ending weight values of each Filling or Draining state was calculated and 

summed together for each tank.  By only looking at the Filling or Draining states instead 

of the weight before and after the tank is placed on the station, the influence of 

unfiltered noise spikes was minimized.  Since the data was time tagged, more 

information was available than from the declaration report.  Figure 4-17 shows an 

accountancy scale profile overlapped with a process scale profile.  The declaration 

report is generated from authenticated process scale data, while the process summary 

report comes from unauthenticated process scales.  The information in the process 

summary report can then be used to validate the declaration report to provide an 

inspector with greater assurance that all the material processed by the facility is 

properly declared for in the declaration report.  The process summary report contains 

more information than the declaration report, but information barriers could be used to 

limit the output or change the format to exactly mimic a declaration report. 

Once a process summary report has been generated, the final step is to compare 

it to a material declaration sheet to search for undeclared activity.  Undeclared activity 

means that a tank is not weighed on the accountancy scales and recorded in the 

declaration report, but is still processed at the facility.  Therefore the amount of cylinders 

recorded by a material declaration sheet and indicated by the process summary report 

would differ.  However, a direct comparison between the material declaration sheet and 

the process summary sheet is hindered by two facts:  tanks ID numbers are recorded 
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Figure 4-17.  A sample accountancy scale profile and process scale profile.  The dark 

blue bars represent data from the accountancy scales.  These values are step functions 

that represent the authenticated tank weights.  The accountancy scale values are then 

used to generate the declaration report.  The light blue line represents a station profile 

as recorded by the process scales.  This information is used to generate a process 

summary report which can be compared directly to the declaration report, providing the 

inspector with more assurance that all the material processed by the facility was 

recorded in the declaration report. 
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on the material declaration sheet, but are not available with the process scale data, and 

the process scales may not be as calibrated or precise as the accountability scales.  In 

an actual facility, the difference between an accountability scale reading and a process 

scale reading may be as much as 30 kg.  However, this difference usually represents a 

near constant offset.  Since matching based on tank ID’s is not available (because the 

tank ID is not included in the process scale data) and matching based on the initial 

and/or final weights may not be practical (due to the difference in scale calibration and 

precision), the next best method was to try and match tanks paced on the delta between 

the initial and final tank weights.  The comparison algorithms calculates the delta for 

each tank declared on the material declaration sheet and for each tank listed in the 

process summary report, and matches them most similar deltas. A report is then 

generated listing each matched and unmatched tank.  Unmatched tanks from the 

process summary report would be indicative of undeclared activity.  A sample case is 

shown in section 4.2.4. 

4.2.3 Addition of a PI Controller 

Because of the variability introduced with the manual control scheme, a rule-

based monitoring system was necessary.  A rule-based system monitoring system is a 

system where one identifies a set of rules specific to a facility.  These rules require a 

thorough understanding of the facility and its operation, therefore a system developed 

for one facility is generally not applicable to another.  For the load cell monitoring 

system, a set of rules were developed to identify the station states and to count the 

number of cylinders processed.  While a rule-based system was sufficient for cylinder 

counting and verifying the material declaration sheet, it provided a poor foundation for 

identifying atypical activity.  The MATLAB Simulink model of the facility was used to 

scope what improvements could be made if a different control scheme was employed.  

Removing the human element from the control scheme would remove most of the 

variability in the system, which in turn would make facility operation more consistent.  

The most intuitive method was to replace the manual control valves with an automated 

PI controller.  Figure 4-18 shows the simulated data when a PI controller is employed 

rather than manual control.  Comparing Figure 4-18 to actual facility data generated with   
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Figure 4-18. Simulated data from incorporating a PI controller instead of a manual 

control scheme.  In the simulated data, the PI controller keeps a constant level in the 

surge tank, so the mass flow into and out of the surge tank are kept equal.  When the 

mass flow into and out of the surge tank is equal, the correlations between each 

individual flow rate increase, and more sensitive monitoring techniques can be 

employed to search for atypical facility operation.   
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the manual control scheme shown in Figure 4-8, Figure 4-18 does not show any abrupt 

changes in the tail flow and all three tanks are filled equally.  Adding a PI controller 

removes most of the irreproducibility from each run and allows for more sophisticated 

monitoring techniques to be effectively implemented. 

A PI controller and pressure transducer were installed at the surge tank outlet.  

The pressure transducer measured the height of water in the surge tank, and the PI 

controller would adjust a ball valve to maintain a set water level.  In this setup, the total 

outflow from the surge tank is completely controlled by the PI controller.  The ratio 

between the product and tail legs is still controlled by the throttling valves, but with the 

total outflow controlled by the PI controller the throttling valves do not have to be 

constantly adjusted during operation.  As a result, the ratio between the product and tail 

legs remains, consistent and the mass balance of the system is more stable.  Figure 

4-19 shows the PI controller and pressure transducer system installed at the ORNL 

Facility. 

Tracking the CID of the facility is the primary way to search for atypical activity.  

The CID is calculated by extracting the times when the station is in the Draining or 

Filling state, taking the derivative of the instantaneous station weight to approximate the 

mass flow rate, and then summing the mass flow rate for each station.  When the 

stations are in the Static or Empty state, the mass flow rate should be zero.  But, 

because of sensor noise the mass flow rate may be non-zero.  Including these times in 

the CID calculation increases the variation.  During normal operation, the CID should 

remain stable.  However, with the manual control scheme, the CID grows to almost 40 

kg before returning to approximately 3 kg.  Figure 4-20 shows the CID plot for the March 

27, 2009 experimental run (the process station profiles are shown in Figure 4-8).  The 

top plot in Figure 4-20 shows the CID for each station type.  The inventory difference 

was calculated with respect to material entering and leaving the surge tank, so feed 

stations are positive as their material was entering the surge tank, and product and tail 

stations are negative because their material was leaving the surge tank.  The CID for 

each station shows how much material was processed at each station.  The bottom plot 

of Figure 4-20 is just the sum of the CID for each station.  This plot shows how the  
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Figure 4-19. The updated control scheme at the ORNL Facility.  The installation of a 

pressure transducer with a PI control valve removed a human element from control of 

the facility, removing the largest source of variability in facility operation.  The pressure 

transducer gave a measure of the water level in the surge tank, and the PI controller 

adjusted the valve to maintain a set level. 
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Figure 4-20. Plots of the cumulative inventory difference from the March 27, 2009 run, 

when the facility was still under a manual control scheme. 
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amount of material in the surge tank is changes.  Ideally this value should fluctuate 

around zero, but with a manual control scheme the operator was not able to effectively 

control the surge tank level.  The same plots are shown in Figure 4-21, but in this run 

the PI controller had been installed in the facility.  Importantly, the system CID peaks at 

1.3 kg and reaches a stable value of 0.6, whereas in Figure 4-20 the system CID peaks 

at 40 kg and never has a stable value.  The bottom plot of Figure 4-21 shows a few 

features related to the facility operation.  The large initial spike comes from the material 

transport delay of the system.  As water is pumped from the feed stations, it takes a 

finite amount of time to reach the surge tank.  Even more significant is that the PI 

controller is not turned on immediately, allowing the surge tank to accumulate water.  

After the PI controller is turned on, it takes more time for the surge tank level to return to 

baseline.  After this startup time (usually about 15 minutes), the total CID reaches its 

steady state value.  The larger spikes during this stable period are correlated with the 

switching of feed tanks.  The large negative spike in Figure 4-21 at ~18:15:00 is caused 

because the tank at Feed Station 3 is taken offline.  The system quickly returns to its 

steady state value as Feed Station 1 is brought online.  The final downward spike at the 

end of processing is again due to transport delay.  As the Feed tanks are fully emptied 

and no new tanks are brought online, the material takes a few seconds to be processed 

and enter the product and tail tanks.  At the end of the run, -0.3 kg is the total inventory 

difference.  Generally one would expect these values to be positive due to material 

holdup in the system (i.e. more material enters the surge tank or mock cascade area 

than leaves it), but at the ORNL facility the large volume of water in the surge tank 

allows more material to be removed from the mock cascade area than enters.  In a real 

facility, this would be analogous to the removal of residual holdup from previous 

operation. 

The Sequential Probability Ratio Test was used to search for abnormal facility 

operation.  This test determines if a sequence of numbers comes from a specified 

distribution or not.  Since during normal operation the total CID should remain stable 

(except for at the beginning and end of operation, as explained previously), the SPRT 

was used to determine if the total CID changed in a statistically significant way during   
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Figure 4-21. Cumulative inventory difference from July 19, 2010, after installation of the 

PI controller. Plot (a) is the CID for each station, and plot (b) is the total CID calculated 

by summing the data in plot (a). 
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operation.  The input to the SPRT is the mean and variance of the known distribution, 

and the probability of a missed alarm and false alarm.  The probability of a missed 

alarm and false alarm was set to 10% and 1% respectively.  However, as the uranium 

blend-down facility analysis, requiring several consecutive points to fail the SPRT 

significantly reduces the false alarm and missed alarm rates.  5 consecutive points were 

required to fail the SPRT before abnormal operation was identified.  Requiring 

consecutive points to fail the SPRT slowed down the speed with which abnormal 

operation was identified.  Since the data was downsampled to 0.2 Hz, abnormal facility 

operation could be detected in a minimum of 25 seconds.  Considering that a typical run 

took over 3 hours, delaying detection by 25 seconds was insignificant.  The mean and 

variance was directly calculated by at a window of 50 points in the total cumulative 

inventory plot.  The window was chosen about 15 minutes into the run, so that it was not 

contaminated by the facility startup transients.  Additionally, the CID was smoothed 

using a median filter to remove the spikes associated with bringing tanks online and 

offline.  The raw and smoothed CID and the results of the SPRT are shown in Figure 

4-22.  In the bottom plot, the red circles represent times when the data failed the SPRT 

and blue represents normal operation.  Even during normal operation, the data was 

expected to temporarily fail the SPRT during startup and shutdown transients.  Times 

when the data failed the SPRT will indicate when the facility was not operating at under 

normal steady state conditions.  In Figure 4-22, the stable CID lasted from 17:45 to 

about19:00, which was a total of 900 points at a downsampled rate of 0.2 Hz.  There 

are no false alarms during this period, so even though the specified false alarm rate was 

1%, the true false alarm rate is much smaller. 

The described process state identification, cylinder counting algorithms, and 

SPRT alarms were written in a simple, intuitive MATLAB GUI.  The MATLAB GUI 

provides interactive plots of all the station scales, automatically generates a summary 

report, and provides the option of automatically comparing a summary report to a 

material declaration sheet.  The GUI incorporates all of the previously described 

analysis and is designed to be a software tool for a facility inspector. 
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Figure 4-22. The cumulative inventory difference and SPRT results for the July 19, 2009 

run.  The cumulative inventory difference was smoothed with a median filter, and the 

mean and variance was taken from a window of data points right after the startup 

transient.  The bottom plot shows the result of the SPRT.  The red circles represent 

when the data failed the SPRT, and blue represents normal operation. 
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4.2.4 GUI Development 

LoadCellEvents is a MATLAB based Graphical User Interface (GUI) designed as 

a tool for load cell monitoring at the ORNL Mock Feed and Withdrawal facility.  The GUI 

provides an interactive platform for plotting load cell data, calculating the total number of 

cylinders and the amount of material processed, and examining the cumulative 

inventory difference.  There are three inputs to the GUI: a text file from the process 

scales, a material declaration sheet, and a process scale declaration sheet.  The 

outputs are: plots of the raw data, station state plots, cumulative ID plots, ID analysis 

plots, SPRT alarm plots, a process scale summary report, a process scale declaration 

sheet, and a comparison sheet used to reconcile a material declaration sheet and 

process declaration sheet.  The program has two main parts: PlotEvents, which loads 

and plots the process scale data, and AnalyzeEvents which performs all of the analysis.  

A block diagram of the program is provided in Figure 4-23. 

4.2.4.1 Using PlotEvents 

PlotEvents is the program section that loads the process scale data and provides 

plots of each station.  The input to the GUI is a simple text file containing 10 columns: 1) 

the data in yyyy-mm-dd format, 2) the time in HH:MM:SS format, 3)-10) the weights, in 

kg, for the 3 feed, 3 products, and 2 tail stations respectively.  A sample input file is 

provided in the Appendix. 

Double clicking the LoadCellEvents executable opens the PlotEvents window 

shown in Figure 4-24.  Selecting the “Load Data” button prompts the user to select an 

input file.  Once the file is selected, the raw data from the file is plotted.  The user can 

select which stations to plot by clicking the appropriate tank station button.  The time 

period of interest can be entered in the time box.  The plot will not update until the 

“Replot” button is selected.  The “New Window” button opens the current plot in a 

separate window.  The “Analyze Events” button is explained in the next section.  
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Figure 4-23. Block Diagram of the MATLAB GUI.  The inputs to the GUI are shown as 

blue lines and the outputs are shown as dotted lines.  The solid black lines represent 

different sections of the GUI. 
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Figure 4-24. The opening PlotEvents window after data has been loaded.  Clicking the 

Load Data button prompts the user to load a data file.  Initially every station is plotted, 

but the user can select difference stations and then use the Replot button to update the 

plot. 
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4.2.4.2 Analyzing Events 

Once the operator has inspected the raw data, clicking the “Analyze Events” 

button will open a new window, AnalyzeEvents shown in Figure 4-25.  Four different 

types of analysis are available and can be selected using the four toggle buttons in the 

top right corner: System states, Cumulative ID (Inventory Difference), ID Analysis, 

Prognostics.  In addition to the four types of analysis, there are three buttons available 

to the user: Replot, New Window, and Write Summary.  The Replot and New Window 

button are used for updating plots and plotting data in a new window, respectively.  The 

Write Summary button will be described after the types of analysis are discussed. 

The first analysis, System States, provides plots of the station state identification 

algorithms.  The allowed states are Empty, Static, Draining, or Filling.  The Empty state 

is for when there is nothing placed on the process station.  The Static state is when 

there is a tank on the station but no material is being removed of added to the tank.  

The Draining and Filling state is when material is actively being removed or placed into 

a tank.  Different stations can be selected using the Tank Selection buttons provided 

next to the plot; however, only an individual station can be plotted at a time.  These 

plots were included as a visual check to ensure the state categorization algorithms were 

performed correctly.  If there are any discrepancies between the summary report and a 

material declaration sheet, these plots provide assurance that the discrepancies were 

due to incorrect station analysis. 

The second type of analysis is the Cumulative ID.  As with the System States 

analysis, the primary purpose is to provide a visual check.  The Cumulative ID analyses 

the cumulative amount of material processed at each station: positive values for when 

material enters the mock cascade area (feed material) and negative values if material 

leaves the mock cascade area (product and tail material).  Additionally, the total CID is 

plotted.  Individual stations can be selected via the buttons next to the plot.  Any 

combination of stations can be selected, but the figure will not update until the Replot 

button is pressed.  Figure 4-26 shows the AnalyzeEvents window when the Cumulative 

ID analysis is plotted.  
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Figure 4-25. The window opened when the Analyze Events button was pressed.  Four 

different types of analysis are available and can be selected using the four toggle 

buttons in the top right corner.  The initial analysis is the System States. 
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Figure 4-26.  The AnalyzeEvents window when the Cumulative ID analysis is selected.  

Different stations can be selected and plotted together.  Additionally, the total 

cumulative inventory difference can be plotted. 
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The third type of analysis is called ID Analysis.  This analysis looks only at the 

total cumulative ID analysis.  Figure 6 shows the AnalyzeEvents window when ID 

analysis is selected.  This window provides two plots.  The top plot can be toggled 

between the cumulative ID and a Gaussian fit to the cumulative ID.  The first option 

plots the raw and smoothed CID (Figure 4-27).  The second option plots the makes a 

histogram of the CID values and fits them to a normal curve (Figure 4-28).  The fourth 

analysis, Prognostics, is currently non-functional.  The button is included in anticipation 

of future research, being performed by David Hooper, to predict the amount of material 

(if any) that will be unaccounted for if the current operation trend continues.   

The “Write Summary Report” button examines each station to calculate the 

number of tanks placed on the scale, the number of tanks processed, the start and end 

time of a tank processed, the initial and final weight of each tank processed, and the 

total inventory difference (Feed - Tail+Product).   A sample report is shown at the end.  

Additionaly, a process scale declaration sheet is also created.  The process scale 

declaration sheet is compared to a material declaration sheet to ensure that all the 

material processed was declared on the material declaration sheet.  A sample process 

summary report is provided in the Appendix.  A sample process scale declaration sheet 

is shown the undeclared activity case study. 

Once the “Write Summary Report” is clicked, a new button becomes available: 

“Compare to Declaration”.  This button prompts the user to select a material declaration 

sheet and a process declaration sheet.  These two declaration sheets are then 

compared to each other, matching tanks based on their initial and final weights.  Ideally, 

tanks would be matched based on their unique tank ID, but the tank ID is not recorded 

in the process scale data.  Unmatched tanks are highlight as undeclared activity.  Figure 

4-29 shows the Compare to Declaration button available after the Write Summary 

Report button has been clicked. 
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Figure 4-27.  The AnalyzeEvents window when ID analysis is selected.  The default top 

plot is the raw and smoothed cumulative ID difference.  The bottom plot is the SPRT 

alarm.  Red indicates an atypical state; blue represents a normal state.  Startup and 

shutdown transients are recognized as atypical operation.  The bottom plot is the 

Sequential Probability Ratio Test (SPRT) alarm.  When the facility is under normal 

steady state operation, the CID should be stable.  The SPRT alarm is a statistical test to 

determine if the CID is remaining stable.  The red portion indicates that the CID is not 

stable, while the blue portion means it is stable.  The SPRT alarm provides indication of 

changes to facility operation and is meant as an inspector tool to recognize atypical 

facility operations. 
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Figure 4-28.  The AnalyzeEvents window when ID analysis is selected and the 

Gaussian ID plot is selected.  Instead of the CID vs. time, the top plot is a histogram of 

the CID fitted to a normal curve.  The bottom plot remains unchanged. 
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Figure 4-29. The AnalyzeEvents window after the Write Summary Report button has 

been executed.  A new button becomes available: Compare to Declaration, which 

allows the user to select a material declaration sheet and process declaration sheet 
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4.2.4.3 Finding Undeclared Activity 

Undeclared activity is when an operator processes material without first weight 

the tanks on an accountability scale.  Therefore, the tank will appear on the process 

declaration sheet but not the material declaration sheet.  For example, consider the 

material declaration sheet from October 14 and 15, 2010 (Table 4-4).  This sheet 

provides a tank Identification number, an initial and final weight, and the date and time 

the tank was weighed. 

Using the PlotEvents software to analyze the process scale data from that time 

period and selecting the Write Summary Report in the AnalyzeEvents window will 

generate a process summary report.  In the Process Summary Report from October 14 

and 15, 2010, (Table 4-5) the start and stop times are not recorded, only the date.  Most 

importantly, the tank IDs are not recorded because the tank IDs are not recorded when 

a tank is placed on a process scale. 

Once the “Write Summary Report” button has been selected, the material 

declaration sheet and process declaration sheet can be automatically compared using 

the newly available “Compare to Declaration” button.  This button will prompt the user to 

load a material declaration sheet and process summary sheet for comparison. 

Because the tank IDs are not available in the process summary report, 

reconciling the material declaration sheet with the process declaration sheet was done 

by comparing each tanks initial and final weight (Table 4-6).  Reconciled tanks are 

displayed first, showing the tank ID and the process station they were at.  Tanks 

appearing on the material declaration sheet but not the process declaration sheet are 

shown next.  These represent tanks onsite but that have not been processed.  Finally, 

the undeclared tanks appearing in the process declaration sheet are shown.  These are 

the tanks indicative of undeclared activity. 
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Table 4-4. Material Declaration Sheet for October 14 and 15, 2010 

Tank ID 
Initial 

Weight (kg) 
Date Time 

Final 

Weight (kg) 
Date Time 

25G04 85.09 14-Oct-10 3:30 PM 35.22 15-Oct-10 11:05 AM 

25G06 141.44 15-Oct-10 10:15 AM 35.56 15-Oct-10 12:05 PM 

25G05 35.32 15-Oct-10 10:15 AM 141.01 15-Oct-10 12:05 PM 

10L02 1.148 15-Oct-10 10:15 AM 10.399 15-Oct-10 1:05 PM 

10L03 1.152 15-Oct-10 10:15 AM 1.148 15-Oct-10 1:05 PM 
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Table 4-5 Process Declaration Sheet for October 14 and 15, 2010 

Station 
Initial 

Weight (kg) 
Date 

Final 

Weight (kg) 
Date Delta (kg) 

Feed1 141.74 15-10-2010 35.91 15-10-2010 105.83 

Feed2 140.76 15-10-2010 35.49 15-10-2010 105.27 

Feed3 85.43 15-10-2010 36.08 15-10-2010 49.35 

Product1 1.15 15-10-2010 3.24 15-10-2010 -2.09 

Product2 1.16 15-10-2010 10.4 15-10-2010 -9.24 

Tail1 35.75 15-10-2010 141.38 15-10-2010 -105.63 

Tail2 35.48 15-10-2010 81.88 15-10-2010 -46.4 

Tail2 36.2 15-10-2010 132.37 15-10-2010 -96.17 
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Table 4-6. Results of comparing the Material Declaration Sheet and Process 

Declaration Sheet.  Reconciled tanks are shown first, then un-matched tanks listed on 

the material declaration sheet, and finally undeclared tanks. 

Reconciled Tanks 

Tank ID Station Date 

Initial 

Weight (kg) Date 

Final 

Weight (kg) Delta  (kg) 

25G04 Acc't 14-Oct-10 85.09 15-Oct-10 35.22 49.87 

 Feed3 15-Oct-10 85.43 15-Oct-10 36.08 49.35 

25G06 Acc't 15-Oct-10 141.44 15-Oct-10 35.56 105.88 

  Feed1 15-Oct-10 141.74 15-Oct-10 35.91 105.83 

10L02 Acc't 15-Oct-10 1.148 15-Oct-10 10.399 -9.251 

 Product2 15-Oct-10 1.16 15-Oct-10 10.4 -9.24 

25G05 Acc't 15-Oct-10 35.32 15-Oct-10 141.01 -105.69 

 Tail1 15-Oct-10 35.75 15-Oct-10 141.38 -105.63 

 

Un-Matched Tanks From Material Declaration Sheet 

Tank ID 
Initial 

Weight (kg) 
Date Time 

Final 

Weight (kg) 
Date Time 

Delta  

(kg) 

10L03 1.152 15-Oct-10 10:15 AM 1.148 15-Oct-10 1:05 PM 0.004 

 

Undeclared Tanks at Process Stations 

Station 
Initial 

Weight (kg) 
Date 

Final 

Weight (kg) 
Date Delta (kg) 

Feed2 140.76 15-10-2010 35.49 15-10-2010 105.27 

Product1 1.15 15-10-2010 3.24 15-10-2010 -2.09 

Tail2 35.48 15-10-2010 81.88 15-10-2010 -46.4 

Tail2 36.2 15-10-2010 132.37 15-10-2010 -96.17 
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4.2.4.4 Finding A Diversion 

In the case of material diversion, the process declaration sheet and material 

declaration sheet will be in agreement.  For small diversions the material holdup ,may 

fall within acceptable values.  Even for large diversions, makeup material could be 

placed in the appropriate tank to satisfy the mass balance.  However, the total CID plot 

provided by the ID analysis option in the AnalyzeEvents window provides a way to 

search for diversions.  A plot from normal operation is shown in Figure 4-30.  The CID 

remains stable with the exception of startup and shutdown transients.  The SPRT alarm 

signals on the transients, but does not alarm during steady state operation.  Figure 4-31 

shows the same analysis during a diversion.  The diversion data is from June 7, 2010 

operation.  During this operation material was diverted from the product leg starting 

around 17:45, the diversion continued until approximately 19:12, but material 

processing continued until 20:38.  Around 0.6 kg of material was diverted.  However, 

once material was finished processing, material was reintroduced into the product tank 

so that the final cumulative inventory was within normal bounds.  The SPRT alarm 

triggers within a few minutes and would alert an inspector that there was an atypical 

operation. 

4.2.4.5 Detecting Masked Enrichment 

In the case of masked enrichment, undeclared material was processed in parallel 

with declared material and the undeclared tanks were not placed on a station scale.  

Therefore process scale data was not available to identify the undeclared material.  

Additionally, the total inflow and outflow of the mock cascade area was equal.  The 

operator was trying to simultaneously divert undeclared material away from the process 

scale while ensuring that the correct mass to the declared tanks.  Therefore, the CID 

was not as stable as during normal operation.  Figure 4-32 shows the CID during the 

masked enrichment run and the associated SPRT alarms.  While the SPRT did alarm, it 

was not has definitive as in Figure 4-31.  With a more sophisticated facility, this scenario 

could be hidden from an inspector.  The CID did not give much insight in this scenario 

because most of the effected systems were inside the mock cascade area.  If facility   
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Figure 4-30.  The ID analysis of normal operation.  The CID remains stable with the 

exception of startup and shutdown transients.  The SPRT alarm triggers during the 

transients, but not steady state operation. 
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Figure 4-31.  The ID analysis of a diversion operation.  The cumulative inventory 

difference does not remain stable.  The SPRT alarm identifies the deviation from steady 

state operation. 



117 

 

Figure 4-32. SPRT alarms during a masked enrichment run. 
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data were used in addition to process scale data, this scenario could be identified by 

looking for changes in the facility data.  To this end, the MATLAB Simulink model was 

used to generate data for a masked enrichment scenario.  The simulated data included 

both the process scale data and the facility control data.  An AAKR model was trained 

using the mass flow rate (approximated from the derivative of the process scale data), 

and PI controller voltage.   

For this simulation, the undeclared feed material was 10% of the declared feed 

flow.  The expected feed flow was lower than the actual feed flow because actual feed 

flow included undeclared material processed in parallel.  Because the PI controller was 

sensitive to the total feed flow, the additional undeclared feed flow causes the PI 

controller valve to open more than expected.  Therefore, this scenario was identified by 

looking at the residuals between the measured PI voltage and the predicted PI voltage.  

Figure 4-33 shows feed flow rates, the PI voltage residuals, and the SPRT alarm 

corresponding to the masked enrichment simulation.  This scenario represented a 

limiting case for load cell analysis.  However, by incorporating facility control data and 

developing an AAKR model, the atypical facility operation would have been identified. 
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Figure 4-33. Simulated masked enrichment detection.  Because the feed flow was 

higher than expected, the PI voltage was larger than predicted.  Using an SPRT alarm 

on the residuals clearly identified that atypical operation had taken place. 
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5 CONCLUSIONS 

Developing automated routines for safeguards monitoring is a burgeoning field in 

the safeguards community.  While process monitoring has been applied across several 

industries, its application and development for safeguards is still in its infancy.  Much of 

the research in safeguards monitoring has focused specifically on two types of facilities: 

nuclear fuel reprocessing facilities, and GCEPs.  Traditional safeguards relied on 

inspection and authenticated measurements to perform material balances.  However, 

integrating the wealth of unauthenticated data typically collected by facilities for process 

monitoring with traditional safeguards measures provides a cost-effective way to reduce 

the inspector burden while providing a more complete safeguard monitoring system.   

The first step of this research examined the application process monitoring 

techniques applied to a simulated uranium blend down facility.  The goals of this 

research were to identify what safeguards conclusions could be drawn from the 

application of an on-line monitoring system and to see if the monitoring system could be 

expanded to include signals from radiation detectors specific to nuclear processing 

facilities.  To this end, a MATLAB Simulink model was used to generate normal facility 

data and diversions ranging from 0.1% to 10% of the HEU flow.  The Simulink model 

included three flow sensors, three weight scales, and two fissile mass flow meters.  The 

fissile mass flow meters incorporated radiation sensors to measure the mass flow of 

235U (a complete description of the fissile mass flow meters can be found in [56]).  Four 

different models were created based on the Auto-Associative Kernel Regression.    In 

each model, simulated data from normal operation was used to train the model.  The 

model was then tested on the diversion data to determine its sensitivity to a diversion.  

In the first two models, signals from the fissile mass flow meters were not included as 

part of the monitoring system.  The first and second model differed in that the second 

model’s data was preprocessed with data reconciliation.  Models three and four were 

similar to models one and two, except the fissile mass flow meter signals were included 

in the model.  Comparing the models provided a quantitative measure of the 

improvements gained by including radiation sensors and preprocessing the data with 

data reconciliation.  All models had similar performance on the unfaulted data, but 
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neither of the first two models was able to detect a 10% diversion of the HEU leg.  

However, models 3 and 4 were both able to detect a 1% diversion from the HEU leg, 

showing that incorporating simulated radiation signals is expected to greatly increase 

the sensitivity of the monitoring system to a diversion.  While the application of data 

reconciliation in model 4 did not greatly increase the accuracy compared to model 3, it 

did significantly improve the ELUM and SPRT detectability.  This research showed the 

development of an auto associative kernel regression model for safeguards monitoring 

and the benefits of preprocessing with data reconciliation. 

The second phase focused on developing a load cell monitoring system for the 

ORNL mock feed and withdrawal facility.  The ORNL mock feed and withdrawal facility 

is a continuous batch feed water processing facility.  This facility provides realistic data 

to develop and test automated monitoring techniques.  The load cell monitoring system 

employed an automatic cylinder counting algorithm to extract the number of tanks and 

the amount of material processed at each process scale.  This data was then 

automatically compared to a material declaration sheet to search for undeclared activity.  

Traditionally, verifying the information on a material declaration sheet required an 

inspector to tediously reweigh every cylinder on an authenticated scale.  However, due 

to the sheer number of cylinders at a facility, only a small random sample is reweighed 

during a monthly inspection.  Detecting undeclared activity would require an inspector to 

find an undeclared cylinder while reweighing a small random sample.  Applying load cell 

monitoring to a facility, even though the data comes from unauthenticated scales, 

provided an efficient way to search for undeclared activity.  Additionally, atypical facility 

operation could be identified by tracking the CID.  For instance, material diversion could 

be detected by tracking the CID.  Currently, facilities are not required to report the CID. 

The masked enrichment scenario represented a limiting case.  This scenario could not 

be easily identified only using load cell monitoring.  However, simulated data showed 

that incorporating load cell data with the PI voltage in an AAKR model would have been 

able to identify the atypical operation.  The load cell monitoring system cumulated in a 

MATLAB-based-GUI that incorporated process scale state identification, automatic 

cylinder counting algorithms, material declaration sheet verification (through process 
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scale cylinder counting), and incorporated a SPRT alarm system for when the total CID 

did not remain stable.  While a SPRT alarm did not specifically signify clandestine 

intentions, it did highlight times when the facility was not operated as expected.  An 

inspector could use this data as part of an information driven inspection, rather than just 

examining small random samples.  The GUI was designed to be a software tool for 

inspectors, possibly providing a means to remotely authenticate facility declarations and 

reduce the frequency and manpower required for a facility inspection. 

5.1 Summary of Contributions 

This research explored the development of a safeguards monitoring system for 

two specific facilities: a simulated uranium blend down facility and the ORNL mock feed 

and withdrawal facility.  For the simulated facility, a safeguards model was developed 

based on the Auto-associated Kernel Regression architecture which was augmented to 

include data-reconciliation and radiation sensors.  Incorporating radiation sensors and 

data-reconciliation should allow diversions as small as 2% of the HEU leg to be 

detected. 

For the ORNL facility, a load cell monitoring system was developed.  This system 

included an automated routine to calculate the amount of material processed, count the 

number of cylinders, and search for atypical facility operations using the CID and the 

SPRT alarm.  The load cell monitoring system cumulated in the development of a 

MATLAB-based GUI which could be used as a tool for inspectors to quickly and 

possibly remotely use facility data to draw safeguards conclusions. 

5.2 Future Work 

The area of safeguards monitoring holds many opportunities for continuing 

research beyond the scope of this dissertation.  Several such areas have been 

mentioned throughout this report; a few specific ones are outlined below. 

This research focused on developing a monitoring system used specifically to 

draw safeguards conclusions.  The main monitoring method for the uranium blend down 
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facility was based on the AAKR, which was augmented with data reconciliation.  

However several different types of models have historically been used for process 

monitoring and optimization, and future work could examine the strengths and 

weaknesses of using different monitoring models.  Also, looking at a number of different 

facilities would provide a better foundation for determine the optimum safeguards 

monitoring model.   Additionally, fault detection was determined using the SPRT test.  

The specified false and missed alarm rates were 1% and 10%, respectively.  But, by 

requiring 5 consecutive points to fail before a fault is declared, the true false and missed 

alarm rates are much lower.  Quantifying the true false and missed alarm rates was 

beyond the scope of this research, but is an important step in quantifying a real-world 

monitoring system.  One major limitation of this research was that the data was 

generated with a highly idealized MATLAB Simulink model.  Real world data would 

likely have many other features, such as increased noise or a more complicated 

operation, which would degrade the performance of the model.  A future area of 

research could examine developing these models for an actual facility, finding the limits 

of detection, and identifying the true missed alarm and false alarm rate.   

The second phase of research examined developing a load cell monitoring.  This 

load cell monitoring system used unauthenticated process scales to draw safeguards 

conclusions about a facility.  A general cylinder counting algorithm provided an efficient 

way to validate facility declarations and to search for undeclared activity.  With a 

modern control scheme, atypical facility operation could be identified by employing a 

SPRT alarm.  Future work could examine incorporating other facility data and its effects 

on safeguards monitoring.  For instance, the masked enrichment scenario represented 

the limiting case when only the process scales are included in the model.  However, 

using simulated data, it was shown that including other facility data, namely the PI 

controller voltage, into an AAKR model would easily detect this scenario.  While the 

SPRT was useful for finding atypical operation, more sophisticated residual analysis 

could provide inspector with a way to identify different scenarios (such as a diversion, 

sensor drift, or new equipment installation), rather than just identifying atypical 

operation. 
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One major hurdle to implementing online safeguards monitoring is what data are 

made available to an inspector and the possibility of transferring data offsite.  The effect 

of incorporating other facility data and its benefit to safeguards monitoring should be 

examined.  Using simulated data, it was shown that incorporating facility control data 

with load cell data into an AAKR model provided a way to identify atypical operation that 

would not have been possible using only load cell data.  While safeguards monitoring is 

usually viewed from an inspector perspective and seen as a burden to a facility, further 

research could identify the potential benefits of a facility incorporating a safeguards 

monitoring system, specifically in reducing the frequency of inspections and the length 

of each inspection.  
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APPENDIX A: Relevant Equations to the Uranium Blend-Down Model 

The simulated uranium blend down facility processes single tanks of UF6 at each 

station leg.  A tank is loaded on each station, and then HEUF6 and LEUF6 are blended 

together to produce PLEUF6.  The three types of sensors are: weight (kg), gas velocity 

(m/sec), and the Fissile Mass Flow Meter (counts/sec).  This section will give a brief 

overview of the relevant physics.  Default values were taken from [56 - 59] or 

approximated based on system geometry. 

For the HEU and LEU legs, a mass flow rate (kg/sec) is first specified.  The 

instantaneous tank weight at LEUF6 and HEUF6 legs is given by: 

           
 

 
   

Where    is the mass in the tank (kg) at time t,    is the initial mass of material in the 

tank, and    is the mass flow rate (kg/sec).  This default values for the mass flow rate 

are 8.6 * 10-3 kg/sec for the LEUF6 leg and 2.6 * 10-3 kg/sec for the HEUF6 leg.  For the 

PLEUF6 the tank weight is given by: 

                                         
 

 
   

Where         is the LEUF6 mass flow rate,         is the HEUF6 mass flow rate, and 

            is the mass flow rate of the diversion.  The mass flow rate of the diversion is 

usually specified as a percent of the HEUF6 leg.  For normal operation it is zero. 

 The gas flow velocities are given by:   

    
  

     
 

Where    is the mass flow rate (kg/sec),   is the drain rate (m/sec),   is the density 

(kg/m3), and   is the pipe cross sectional area (m2).  The pipe cross sectional area is 

9.2 * 10-3 m2 for the HEUF6 leg and 3.77 * 10-2 for the LEUF6 and PLEUF6 legs.  The 

density of the UF6 is 0.57 kg/m3. 
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The PLEUF6 enrichment is calculated in the blending tee and is governed by the 

following equation: 

     
            

            

             
 

Where E is the percent enrichment for each leg.  The default values are 90% and 1.5% 

for the HEUF6 and LEUF6 leg, respectively.     refers to the mass flow rate in kg/sec.  

The subscripts p, l, h, and d, refer to the PLEUF6 leg, LEUF6 leg, HEUF6 leg, and the 

diversion. 

 The final piece of instrumentation is the Fissile Mass Flow Meter.  The FMFM 

measures the 235U flow by counting the number of delayed gammas that appear after a 

fission event.  The 235U flow is given by  

                        

where    refers to the mass flow rate (kg/sec), E is the material enrichment, and MF is 

the mass fraction of the uranium in UF6 :  

    
                       

                             
 

235 is the atomic mass of 235U, 238 is the atomic mass of 238U, 19 is the atomic mass of 

Fluorine, and 6 is the number of Fluorine atoms per Uranium atom in UF6.  For this 

simulation, the Fissile Mass Flow Meter response was assumed to be linearly 

proportional to the 235U flow.  The equation governing the 235U mass flow to Fissile Mass 

Flow Meter counts is: 

                  
            

  
                               

where S is the neutron source strength in neutrons per sec, Solid Angle is the solid 

angle seen by the source neutron (dimensionless), Pfission is the probability that a 

neutron that has entered the material flow interacts with 235U atom and causes a 

fission(units of fission*sec/neutron), Pgamma is the probability of a delayed gamma from a 
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fission (dimensionless), and Edetector is the detector efficiency (dimensionless).  The 

simulated values are S = 1.04 * 108 neutrons/sec, Solid Angle = 0.2, Pfission = 6.75* 10-5, 

Pgamma = 0.1, and Edetector = 0.22.  Multiplying Solid Angle, Pfission, Pgamma, and Edetector 

gives the probability of a source neutron causing a fission in a 235U atom to be 2.97 * 10-

7.  With the simulated neutron source, there are 30 counts produced per a kg of 235U 

irradiated. 

The actual physics of the FMFM meter are much more complicated than described.  

The source strength was chosen to mimic a 3-4 micrograms of Cf-252 spontaneous 

fission source.  The solid angle was chosen assuming that only 1/5th of the source 

neutron have a chance to interact with the UF6 stream.  This assumes that the pipe 

encompasses approximately 1/5th of the area seen by the neutron source.  Pfission was 

calculated by multiplying the U235 fission cross section by the number density of the UF6 

gas.   
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APPENDIX B: Relevant Equations to ORNL Facility Model 

The simulated ORNL mock feed and withdrawal system was used to identify what 

the effects of changing the control scheme would be and to simulate data for 

development of an AAKR model.  In this facility, a cylinder is loaded on each station, 

and feed water is pumped into a surge tank and then drains into a product and tails 

tank.  The process scales are the only sensors. This section will give a brief overview of 

the relevant physics. 

For a given mass flow rate, the mass of water inside a cylinder is: 

           
 

 
   

where    is the mass in the cylinder (kg) at time t,    is the initial mass of material in 

the cylinder, and    is the mass flow rate (kg/sec).  The max feed mass flow rate 

isapproximately 2 kg/min. 

 The feed water flows into the surge tank, and the volume of the tank changes 

according to: 

       
              
 
   

         
 

where      and       are the mass flow rates into and out of the surge tank (kg/sec),   is 

the density of water (kg/m3), and        is the effective Surge Tank cross sectional area 

(m2). The mass flow rate out is proportional to the height of water in the tank and the 

valve positioning: 

                                        

where          is the amount the outlet valve is opened (ranges from 0 to 1), 

           is the outlet pipe cross sectional area (m2),   is the density of water (kg/m3), 

g is the gravitational constant 9.8 m/sec2, and H is the water height in the tank (m). 
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          is determined by the PI controller based on the difference between the 

setpoint height of water in the surge tank and the measured height of water in the surge 

tank.  The PI constants are adjusted based on the desired responses of the system.  

The error function is: 

                            

when the measured height is larger than the setpoint, the error is larger and the valve 

opens more. 

The surge tank water level is measured by a pressure transducer; the equation 

relating the pressure to the height of water in a tank is: 

             

where P is the pressure in Pascal,   is the density of water (kg/m3), g is the gravitational 

constant 9.8 m/sec2, and H is the height of water in the surge tank (meters). 

The flow to the product and tail legs is controlled by throttling valves.  These 

valves are opened to a set point and are then left alone during operation.  Therefore, 

the flow to the tail or product leg is just a percent of the flow out of the surge tank.  

Typically, about 3% goes to the product leg and 97% goes to the tail leg. 

The weight of a tail or product cylinder is given by: 

           
 

 
   

where    is the mass in the cylinder (kg) at time t,    is the initial mass of material in 

the cylinder, and    is the mass flow rate (kg/sec).   
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APPENDIX C: Descriptions of Algorithms used by PlotEvents 

This section will describe some of the algorithms used by the PlotEvents 

software.  A combination of inherent MATLAB functions and user-written functions are 

called at various times throughout the program.  When feasible, they are presented in 

the order in which they are called. 

1) When the “Load Data” button is clicked in the PlotEvents reader and a data file 

is selected, the pathname and file name are passed to the ReadORNL.m function.  This 

is a user-written function that simply loads the data file into two matrices: data - 7 

columns for the 7 process stations, with the rows corresponding to the weights at each 

time step, and time - one column corresponding to the time stamps. 

2) The data is then downsampled using the MATLAB inherent downsample.m 

function.  The data is downsampled from 1 hertz to 0.2 hertz (one sample every 5 

seconds instead of every second).  This is done primarily to reduce the amount of noise 

associated with loading and unloading tanks and to reduce the amount of storage space 

required. 

3) The data is plotted and the xticklabel.m function is called.  This is a user-

defined function which correctly fixes the x-axis ticks on the plots.  This function is called 

whenever the plot is updated or a when the data is plotted in a new window. 

4) When the “AnalyzeEvents” Button is pressed the raw data is passed to the 

AnalyzeEvents Window.  A new matrix, cdata, is defined being the same size as the 

data matrix, but all zeros.  This matrix will hold the state number for each station at 

each instant in time.  The raw data is smoothed by the SmoothORNL.m function.  This 

is a user-defined function that selectively smoothes the data based on  its state, defined 

in the cdata matrix.  The smoothing function is a median filter (inherent to MATLAB) 

with differing time windows.  The smooth data is recorded in the sdata matrix. 

5) Initially, all tank states are defined as zero (since cdata is initially all zeros).  

The stations are then initially categorized by the ClassifyWeightORNL.m function.  This 
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is a user-defined function that defines a state number based on the current station 

weight.  The only state defined in the ClassifyWeightORNL.m function is the Empty 

state.  It uses a hard threshold to define when a station is empty.  If station weight is 

below 0.5 kg then the station is said to be in the Empty state.  The state number or 1 

corresponds to the Empty state. 

5) Once the empty states have been defined and the cdata matrix has been 

updated accordingly, the SmoothORNL.m function is used to selectively resmooth the 

stations during the Empty state.  This helps removes some spikes associated with the 

loading and unloading of a tank. 

6) Once the data has been resmoothed and the sdata matrix updated, the 

stations are further categorized by the ClassifyDiffWeightORNL.m function.  The first 

categorization performed by the ClassifyWeightORNL.m function essentially allows the 

state to be either Empty (state number = 1 in cdata) or undefined (state number = 0 in 

cdata).  The ClassifyDiffWeightORNL.m is a user-defined function that determines the 

station state based on the instantaneous derivative of the weight.  The weight derivative 

during the times when the system state is undefined is calculated and compared to 

defined thresholds.  If the derivative is between +/-0.2 kg/sec (for feed and tail tanks) or 

between +/-0.02 kg/sec (for product tanks) the station state is defined as Static and the 

state number assigned is 2.  If the derivative is between -3 and -0.2 kg/sec (for feed and 

tail tanks) or between -0.3 and -0.02 kg/sec (for product tanks) the station state is 

defined as Draining and the state number assigned is 3,  If the derivative is between 

+0.2 and +3 kg/sec (for feed and tail tanks) or between +0.02 and +0.3 kg/sec (for 

product tanks) the station state is defined as Filling and the state number assigned is 4.  

Derivatives that do not fall within these thresholds are left undefined (state number = 0) 

7) The next step is to remove the undefined (state number = 0) states in cdata.  

This is accomplished by the CombineZerosORNL.m function.  This is a user-defined 

function that sets all undefined states to the start occurring before the undefined period.  

For example if the station is in the Empty state and then briefly falls into the undefined 

state before entering the Static state, the period of time when the state is undefined 
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would be assigned the Empty state.  This generally occurs when tanks are loaded and 

unloaded as large spikes may cause large derivatives that fall outside the thresholds 

defined in the ClassifyDiffWeightORNL.m function. 

8) At this point, all elements of cdata should be non-zero.  The amount of time a 

station remains in each state is checked by the CheckLengthORNL.m function.  This is 

a user defined function that checks how long a station remains in a specified state, 

compares it to a threshold, and then removes the state if its length is below the 

threshold.  For example, if a station is in the Static state and then for a single time step 

enters the Draining state (most likely as the result of measurement noise), followed by 

immediately re-entering the Static state, then the Draining state is reassigned as static.  

The static and Empty states must last at least 5 consecutive time steps, while the 

Draining and Filling states must last at least 30 consecutive time steps.   

9) A final check is performed by the CheckStaticORNL.m function.  This is a user 

defined function that checks the Static state for derivatives that would correspond to the 

addition or removal of a tank.  For instance, a -35.0 kg/sec derivative or higher is 

associated with removal of an empty feed tank.  These times are assigned the Empty 

state. 

10) Now the station states are completely defined in the cdata matrix.  The 

TanksProcessedORNL.m function extracts the number of tanks placed on the stations, 

processed on the station, the start and end time of all processed tanks, and the start 

and end weights of all processed tanks.  This is done by examining the cdata matrix 

and the state transitions.  This information is printed to a summary report when the 

“Write Report” button is clicked in the AnalyzeEvents window 

11) The cdata, sdata, and data matrices are then passed to the 

InventoryDifference Window.  This happens automatically once the 

TanksProcessedORNL.m function has completed.  The CumIDORNL.m function is used 

to calculate the CID for each station.  The CID starts as zero until the station state 

becomes either Draining or Filling.  Then the total amount of material processed each 



141 

time step is cumulatively added.  During times when the station is Static or Empty, the 

differential inventory difference is assumed zero. 
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APPENDIX D: Sample Input File For PlotEvents 

      Date         Time        Feed1       Feed2        Feed3    Product1   Product2  Product3     Tail1       Tail2 
2010-05-25    16:00:00  141.1100  142.4434   -0.0200    1.1530    -0.0010    7.2870       35.5600   70.1300 
2010-05-25    16:00:01  141.1100  142.4434   -0.0100    1.1530    -0.0010    7.2870       35.5500   70.1300 
2010-05-25    16:00:02  141.1100  142.4434   -0.0200    1.1530    -0.0010    7.2870       35.5500   70.1300 
2010-05-25    16:00:03  141.1100  142.4434   -0.0100    1.1530    -0.0010    7.2870       35.5500   70.1300 
2010-05-25    16:00:04  141.1100  142.4434   -0.0200    1.1530    -0.0010    7.2870       35.5600   70.1300 
2010-05-25    16:00:05  141.1100  142.4434   -0.0100    1.1530    -0.0010    7.2870       35.5600   70.1300 
2010-05-25    16:00:06  141.1100  142.4434   -0.0200    1.1530    -0.0010    7.2870       35.5600   70.1300 
2010-05-25    16:00:07  141.1100  142.4434   -0.0100    1.1530    -0.0010    7.2870       35.5500   70.1300 
2010-05-25    16:00:08  141.1100  142.4434   -0.0200    1.1530    -0.0010    7.2870       35.5500   70.1300 
2010-05-25    16:00:09  141.1100  142.4434   -0.0100    1.1530    -0.0010    7.2870       35.5500   70.1300 
2010-05-25    16:00:10  141.1100  142.4434   -0.0200    1.1530    -0.0010    7.2870       35.5600   70.1300 
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APPENDIX E: Process Summary Report 

Data from 19-Jul-2010 to 19-Jul-2010 
-------------------------------------------------------------------- 
Tank information for Feed1 
Number of tanks processed 1 
    Tank 01   
Start Time:  19-07-2010  
    18:17:04  
Start Weight: 144.22   
Stop Weight: 84.61    
Stop Time:  19-07-2010  
    19:08:44  
Delta:   59.61    
The Station is empty 0.00% of the time 
The Station is static 65.52% of the time 
The Station is being utilized 34.48% of the time 
-------------------------------------------------------------------- 
 
-------------------------------------------------------------------- 
Tank information for Feed2 
Number of tanks processed 1 
    Tank 01   
Start Time:  19-07-2010  
    17:37:27  
Start Weight: 140.86   
Stop Weight: 35.49    
Stop Time:  19-07-2010  
    19:15:18  
Delta:   105.37   
The Station is empty 6.42% of the time 
The Station is static 28.33% of the time 
The Station is being utilized 65.25% of the time 
-------------------------------------------------------------------- 
 
-------------------------------------------------------------------- 
Tank information for Feed3 
Number of tanks processed 1 
    Tank 01   
Start Time:  19-07-2010  
    17:34:53  
Start Weight: 80.04    
Stop Weight: 36.04    
Stop Time:  19-07-2010  
    18:17:04  
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Delta:   44.00    
The Station is empty 9.41% of the time 
The Station is static 62.42% of the time 
The Station is being utilized 28.17% of the time 
-------------------------------------------------------------------- 
 
-------------------------------------------------------------------- 
Tank information for Product1 
Number of tanks processed 1 
    Tank 01   
Start Time:  19-07-2010  
    17:35:52  
Start Weight: 1.15     
Stop Weight: 9.78     
Stop Time:  19-07-2010  
    19:14:13  
Delta:   8.62     
The Station is empty 2.66% of the time 
The Station is static 31.77% of the time 
The Station is being utilized 65.58% of the time 
-------------------------------------------------------------------- 
 
-------------------------------------------------------------------- 
Tank information for Product2 
Number of tanks processed 0 
The Station is empty 0.00% of the time 
The Station is static 100.00% of the time 
The Station is being utilized 0.00% of the time 
-------------------------------------------------------------------- 
 
-------------------------------------------------------------------- 
Tank information for Product3 
Number of tanks processed 0 
The Station is empty 0.00% of the time 
The Station is static 100.00% of the time 
The Station is being utilized 0.00% of the time 
-------------------------------------------------------------------- 
 
-------------------------------------------------------------------- 
Tank information for Tail1 
Number of tanks processed 1 
    Tank 01   
Start Time:  19-07-2010  
    18:26:57  
Start Weight: 35.37    
Stop Weight: 130.81   
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Stop Time:  19-07-2010  
    19:15:38  
Delta:   95.44    
The Station is empty 3.49% of the time 
The Station is static 64.03% of the time 
The Station is being utilized 32.48% of the time 
-------------------------------------------------------------------- 
 
-------------------------------------------------------------------- 
Tank information for Tail2 
Number of tanks processed 1 
    Tank 01   
Start Time:  19-07-2010  
    17:35:27  
Start Weight: 35.77    
Stop Weight: 141.04   
Stop Time:  19-07-2010  
    18:26:52  
Delta:   105.27   
The Station is empty 35.42% of the time 
The Station is static 30.27% of the time 
The Station is being utilized 34.31% of the time 
-------------------------------------------------------------------- 
 
Number of FEED    tanks processed in this time:  3 
Number of PRODUCT tanks processed in this tim3:  1 
Number of TAILS   tanks processed in this time:  2 
The total inventory difference for these events is  -0.35 kg. 
Positive inventory difference means more material entered the mock cascade area then 
left it. 
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